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Abstract. Selecting an appropriate network architecture is a crucial
problem when looking for a solution based on a neural network. If the
number of neurons in network is too high, then it is likely to overfit.
Neural networks also suffer from poor interpretability of learning results.
In this paper an approach to building neural networks based on concept
lattices and on lattices coming from monotone Galois connections is pro-
posed in attempt to overcome the mentioned difficulties.
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1 Introduction

Neural Networks (NN) is one of the most popular approaches to Machine Learn-
ing [15]. Fitting of NN architecture to a dataset under study is a standard
procedure that major researchers apply to obtain the best performance results.
Matching appropriate architecture is important, because if we take too large net-
work for training, the possibility of getting over-trained model increases. Because
of too much redundant connections, NN may learn to select required outcome for
each example in the training dataset. So, if the trained network is applied on an
object with unobserved set of attributes, it is unable to make a correct classifica-
tion of it. An over-trained network loses generalizing ability, however if one takes
a too small network, one misses the ability to detect possible non-linearities in
data. Hence, selecting an appropriate topology and a size of neural network is
crucial for its performance. Another problem of NNs is a “black box”-problem.
Even if the system with NN shows good classification results, one cannot give
an intuitively clear explanation of this.

The first attempts to relate FCA and Neural Networks were done in [13–
15]. In [2] authors apply FCA for interpretation of neural codes. In this article
we propose an approach to generating neural network architecture based on the
covering relation (graph of the diagram) of a lattice coming from antitone Galois
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connections (concept lattice) [6] or monotone Galois connections [1]. The moti-
vation for that is two-fold: First, vertices of such neural networks are related to
sets of similar objects with similarity given by their common attributes, so easily
interpretable. The edges between vertices are also easily interpretable in terms
of concept generality (bottom-up) or conditional probability (top-bottom). Sec-
ond, many well-known indices of concept quality can be used to select “most
interesting” concepts [10], thus reducing the size of the resulting network. In
this paper we study two different types of lattices underlying network archi-
tecture: standard concept lattices [6] and lattices based on monotone Galois
connections [1]. The sets of attributes closed wrt. the latter have “disjunctive
meaning” in contrast to “conjunctive meaning” of standard FCA intents (sets
of attributes closed wrt. antitone Galois connection). This disjunctive under-
standing of a set of attributes might fit better the principle of threshold function
underlying the standard model of a neuron.

2 Formal Concept Analysis and Hypotheses

First of all, let us recall the basic definitions of Formal Concept Analysis [6].
We consider a set G of objects, a set M of attributes and a binary relation
I ⊆ G × M such that (g,m) ∈ I iff object g has the attribute m. Such a triple
K = (G,M, I) is called a formal context. Using the derivation operators, defined
for A ⊆ G, B ⊆ M by

A′ = {m ∈ M | gImfor all g ∈ A},
B′ = {g ∈ G | gImfor all m ∈ B},

we can define a formal concept of the context K as a pair (A,B) such that
A ∈ G, B ∈ M , A′ = B, B′ = A. A is called the extent B is called the intent of
the concept (A,B). These concepts, ordered by

(A1, B1) ≥ (A2, B2) ⇐⇒ A1 ⊇ A2

form a complete lattice, called the concept lattice of K = (G,M, I).
Next, we recall concept-based hypotheses [4,5,7–9], which originate from

JSM-hypotheses [3]. A target attribute ω /∈ M partitions the set G of all objects
into c + 1 subsets, where c is the number of values of the target attribute. The
set Gi of those objects that are known to belong to ωi class. The set Gτ ⊆ G
consists of undetermined examples, i.e., of those objects, for which it is unknown
what class they belong to.

Further on we consider the case of binary target and two respective classes,
which we call positive and negative. By G+ we denote the set of objects that
are known to have the property of ω and G−, the set of objects for which it
is known that they do not have the target attribute ω, and Gτ is the set of
objects for which it is not known if they have or do not have target attribute
ω. Then, K+ = (G+,M, I+), K− = (G−,M, I−), and Kτ = (Gτ ,M, Iτ ) are
positive, negative, and undefined contexts, respectively. Consider an example in
Table 1.
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Table 1. Example of formal context. Here we use the following abbreviations: “w” for
white, “y” for yellow, “g” for green, “b” for blue, “s” for smooth, “r” for round, “f”
for firm, and we use “m̄” to denote negation of a binary attribute m.

Context N G/M Color Form Firm Smooth Target

w y g b r r̄ f f̄ s s̄

K+ 1 Apple × × × × ×
2 Grapefruit × × × × ×
3 Kiwi × × × × ×
4 Plum × × × × ×

K− 5 Toy cube × × × ×
6 Egg × × × ×
7 Tennis ball × × × ×

Kτ 8 Mango × × × × ?

3 Neural Network Based on Concept Lattice

In this section we introduce an algorithm for the construction of neural network
architecture from the diagram of formal concept lattice. The first step is generat-
ing the set of concepts. For the generation of the covering relation of the concept
lattice we apply Add Extent algorithm, a dual version of Add Intent from [12].

The first k upper layers of the lattice can be used as a neural network, where
concepts stay for neurons and links between them stay for network connections.
By adding extra output layer for classes we obtain an architecture of the neural
network. The last hidden layer (with most specific concepts) is connected with
the output layer, so that the activations of this layer determine the class of the
undefined object. We call the upper part of the lattice diagram with intents of
size ≤k the diagram of level k. To attain a less number of classification errors by
the network, one can try to select the “best concepts,” retain the corresponding
vertices in the network and discard the remaining ones. There are many ways to
define what are “best concepts”. Here we consider two measures, assuming that
higher values of them correspond to “better concepts.”

– F-value:
F = 2 · Precision · Recall

Precision + Recall

– Score accounted on Precision and Recall:

Score(hi) = αPrecision(hi) + (1 − α)Recall(hi),

where α ∈ [0, 1]. We will consider different values of α.
– purity of formal concept, which is the maximal part of objects from one class

in the concept extent;
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To form the set of best concepts H, we start from the empty set, and then
iteratively add a concept with the highest score (one of those given above) calcu-
lated on examples uncovered by H. This procedure stops when the set H covers
all examples from the training set.

In [11,16] authors proposed their approaches for applying Concept Lattices
to constructing NN’s architecture. Here, we will describe another possible imple-
mentation of building interpretable NN using FCA. Previously, we build a dia-
gram of level k, and after that we discard all formal concepts from the last hid-
den layer that are not considered to be good classifiers. All the neurons above
that are not connected with the remaining concepts in the last hidden layer are
also removed from the network. We connect the remaining part of the diagram
with the input and output layers, obtaining the final architecture of the neural
network.

w y g b f f̄ r r̄ s s̄

w yf̄ r f̄ r̄ fs f̄s r̄

yf̄r f̄s f̄ r̄ w fsr̄

p n

Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

Fig. 1. Architecture of feedforward neural network based on a concept lattice.

Assume that we have a context K = (G,M, I) and diagram D of its concept
lattice. Then the network structure can be build as follows:

– The input layer Inp consists of neurons which represent attributes m ∈ M of
the context K.

– Hidden layers Hidi consist of neurons which represent formal concepts of
the context K. The connections between neurons in the hidden layers are the
same as in the diagram D (so, two neurons are connected if the corresponding
formal concepts are neighbours in the diagram of formal concept lattice). The
lower (most specific) concepts are connected to neurons staying for classes.
In Fig. 1 you can see the architecture of NN that has been constructed by the
method described above.
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– The output layer Out consists of neurons representing classes. It is connected
to the last hidden layer representing the most specific concepts.

In Fig. 1 you can see that in the output layer every neuron is related to each
class. There are neurons related to formal concepts in the last hidden layer. We
can interpret each weight on the link connecting a concept from the last hidden
layer with the output layer as importance of this concept. Here, we want to note
that one has to see the proportion of such weights in each particular output
neuron. So, these weights do not allow us to compare the concepts related to
different classes.

4 Neural Networks Based on Monotone Galois
Connections

In this section we describe an approach to constructing neural networks from
lattices arising from monotone Galois connections between powersets of objects
and attributes. The motivation for this approach comes from the basic properties
of standard formal concepts and related closed sets of attributes (intents).

This properties may result in problems when we take intents for nodes of
a neural network and covering relation of the concept lattice for connections
(arcs) of the neural network. For example, consider a neural network with node
C, which have two parents, node A and node B, connected with corresponding
weights wAC and wBC . Assume that for some object g neuron A is activated,
but neuron B is not. According to neural network model, neuron C also will
be activated: wAC · 1 + wBC · 0 = wAC (here we use linear activation function).
However, if the given neurons are formal concepts with intents Â, B̂ and Ĉ,
respectively, then object g does not have some attributes from B̂ (as B is not
activated), and, as a result, object g does not have some attributes from Ĉ.
The latter means that object g does not belong to the extent of concept C,
but neuron C is activated for g. This difference may lead to a problem when
neurons, which are not supposed to be activated, have significant weights in the
constructed neural network.

In this section we will use monotone Galois connection [1,17,18] for building
network architecture, which will help us to deal with the problem of ’conjunc-
tivity’ of formal concepts, i.e., the property of the concept intent that one has
to have all attributes when having the intent.

Consider a formal context (G,M, I), then monotone Galois connections are
defined as

A′ = {b | �a ∈ G \ A such that aIb},

B′ = {a | ∃b ∈ B such that aIb},

where A ⊆ G is a set of objects and B ⊆ M is a set of attributes. Further we
will call a pair (A,B), where A′ = B, B′ = A, a disjunctive formal concept.

As in the case of standard formal concepts, disjunctive formal concepts form
a lattice with operation ∪, defined as (A1, B1)∪(A2, B2) = (A1∪A2, (B1∪B2)′′).
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So, we can use the diagram of the concept lattice for building neural network
(in the same way as we did it in the previous section).

To show advantages of this approach, consider the previous example, but
with disjunctive formal concepts instead of the standard ones. Consider that
neuron A is activated, but neuron B is not. So, object g has some attributes
from Â, and does not have any attribute from B̂. As Â ⊂ Ĉ, then object g
has some attributes from Ĉ too. Thus, object g belongs to the extent of Ĉ, so
neuron C is activated (we do not have contradictions between disjunctive formal
concepts and neural network model).

In order to compute the set of disjunctive formal concepts in a context K =
(G,M, I), we need to perform three steps:

1. Compute the complement of the initial relation (replacing all zeros by ones
and vice versa);

2. Run Add Extent algorithm (a dual version of Add Intent from [12]) to compute
formal concepts and the covering relation on them;

3. Replace all extents A by G \ A.

Besides determining the network structure, to train the network one needs
to set initial weights on neuron connections. Here we consider several ways of
initializing weights.

First, consider the following assignment of weights:

1. w1((A1, B1), (A2, B2)) = |A1|
|A2| The weights of this kind just give the confidence

of the association rule B1 → B2.
Second, one can use similar weights, but with the zero mean:

2. w2((A1, B1), (A2, B2)) = |A1|
|A2| − 0.5.

The idea of the following kind of weights is quite simple: the more general
the concept, the less important a connection from any concept to it:

3. w3((A1, B1), (A2, B2)) = 1
|A2| .

Here w((A1, B1), (A2, B2)) is the weight of the connection from concept
(A1, B1) to (A2, B2). For edges connecting the last hidden layer and the out-
put layer we initialize weights w((A,B), i) as follows:

w((A,B), i) =
|{a : a ∈ A, l(a) = i}|

|A| ,

where i is a class, and l(·) is a function that takes any object g to its class l(g).

5 Experiments

We have performed experiments with the following six datasets from the open
source UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/index.
html) (Table 2):

1. Breast Cancer

http://archive.ics.uci.edu/ml/index.html
http://archive.ics.uci.edu/ml/index.html
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2. Credit Card Default
3. Heart Disease
4. Mammographic Mass Data
5. Seismic Bumps.

Table 2. Basic characteristics of the datasets

Dataset Train sample Test sample Number of
variables

Number of classes
in target variable

Breast cancer 512 57 30 2

CreditCard
default

27000 3000 23 2

Heart disease 273 31 13 5

Mammographic
mass data

865 96 5 2

Seismic bumps 2326 258 18 2

5.1 Experiments with Different ML Methods

First, we consider the performance of Neural Networks without any prior infor-
mation about dataset. For all of the five datasets above we have learnt neural
networks with different architectures. We apply Adam stochastic optimization
strategy because of small number of parameters required for tuning.

As you can see in Fig. 2, neural networks are very unstable wrt. size. For each
dataset, it is required to select its own best performing architecture. Even small
modifications in the network structure can dramatically affect the results.

Now, let us compare the performance of various ML methods and FCA-based
NN algorithms. We constructed a network with one hidden layer and random
initial weights. As you can see in Table 3, on Breast Cancer and on Mammo-
graphic Mass datasets we achieve same results or that comparable with other
algorithms. On Credit Card Default and Seismic Bumps datasets the network
based on antitone Galois connections perform better than other ML methods.
On the other hand, FCA-based NN models shows worse performance on Heart
Disease dataset. At the same time, you can see that the performance of fully-
connected NN on this sample is higher than ours. If we consider FCA-based NN
as a simple neural network without redundant connections, then we can sup-
pose that it can achieve performance comparable with fully-connected neural
networks. The reason why we have obtained worse results may reside in poor
selection of the “best concepts”. Nevertheless, the main goal of this work was to
construct neural network architecture, which can give interpretable results. In
future work we would like to attain performance of lattice-based neural networks
close to results obtained with simple feed-forward neural networks.
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Fig. 2. Performance of NNs with different architectures on breast cancer data. On
x-scale number of neurons in each hidden layer, on y-scale F-values. Each NN were
learned applying Adam stochastic optimization strategies with initial learning rates
equal: (a) 0.01, (b) 0.001, (c) 0.0001.

Table 3. Performance of machine learning methods.

Method F-value

Breast cancer CreditCard
default

Heart disease Mammogr
mass

Seismic
bumps

Nearest
neighbour

89.0% 27.6% 7.8% 77.2%
5.5%

Decision tree 92.4% 40.5% 34.7% 76.7% 18.5%

Random
forest

91.9% 41.9% 28.2% 80.0% 13.2%

Neural
network (for
the best
architecture)a

92.9% 37.1% 48.5% 81.7% 12.7%

FCA with
AGC based
NN

91.8% 50.1% 37.3% 83.4% 23.2%

FCA with
MGC based
NN

91.8% 34.6% 39.2% 80.5% 10.2%

aFor Breast Cancer and CC Default datasets: 2 layers, 25 neurons; for Heart Disease:
3 layers, 10 neurons; for Mammographic Mass data: 1 layer, 40 neurons; for Seismic
Bumps: 2 layers, 10 neurons

5.2 Comparing Different Methods of Pretraining Neural Network

In Sect. 4 we have proposed three methods of pretraining initial weights of the
model based on the properties of disjunctive formal concepts. We have compared
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their efficiency on Car Evaluation dataset for different activation functions. To
this end, we have constructed the network architecture from the 4-level diagram
of disjunctive formal concepts, by initializing weights according to the formu-
las above and training the model. The table below shows the results of the
experiments:

As you can see, the first method of initializing weights for disjunctive concepts
w1((A1, B1), (A2, B2)) shows the worst results, almost like coming from random
choice. The reason can be in high values of preinitialized weights, which result
in high values of activation function in class nodes, so it is difficult for neural
network to fit the data (Table 4).

This model is significantly less accurate than the previous one. The reason of
such difference may reside in the monotone nature of disjunctive concepts (the
size of extents increases with the size of intent). The top level of the lattice gives
very general concepts with big extents and intents, which are not so good for
classifying objects.

Table 4. Performance of disjunctive formal concepts with various initial weights and
activation functions

Activation function Predefined weights

w1 w2 w3

Sigmoid 32.7% 43.1% 41%

Rectify 33.8% 45.1% 41.9%

Softmax 29.2% 30.9% 31.2%

6 Conclusion

In this paper we have proposed an approach for constructing neural networks
based on lattices coming from antitone Galois connections (standard concept
lattices) and monotone Galois connections.

Neural networks that are based on concept lattices are very sparse compared
to standard fully-connected networks. All neurons in the last hidden layer are
related to concepts coming from the dataset. Another advantage of neural net-
works based on concept lattices is their interpretability, which is very significant
in domains like medical decision making and credit scoring. One can both pre-
dict the probability of default of applicants, but also implement specific rules and
then weight them according to their importance for predicting target variable.
Thus, NNs based on concept lattices can be implemented in domains where it is
important to explain why objects are assigned to particular classes.

We have presented some results of experiments with different heuristics and
parameters of the model. We have calculated performances of simple neural
networks with different number of hidden layers and neurons. Also, we have
evaluated performance of other learning algorithms in order to compare them
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with neural networks based on concept lattices for different datasets. We can
conclude that on some datasets we have achieved results comparable with those
obtained by other learning approaches. Our further research will be on the study
of methods for selecting best concepts for better network performance.
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