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Abstract. Three-way classifications divide the universe of objects into
three regions based on a given concept. Rough sets and its extensions pro-
vide effective ways to construct three-way classifications. When multiple
criteria are involved to determine three-way classifications, the problem
of determining three-way regions can be formulated as a typical multi-
criteria decision making (MCDM) problem. In this paper, we use game-
theoretic rough set model (GTRS) to solve and address the multi-criteria
based three-way classifications constructed in the context of rough sets.
GTRS implement competitive games amongst multiple criteria in order
to obtain a compromise between criteria by finding an equilibrium of
the games. Applying GTRS in MCDM consists of three stages, namely,
competitive game formulation, repetition learning process, and decision
making based on equilibria. The advantage of applying GTRS is twofold.
GTRS do not require the predefined weights for criteria or compound
decision objectives. GTRS are inherently suitable for a competitive envi-
ronment in which the involved criteria maximize their own benefits and
the payoff of each criterion is influenced by other’s strategies.

Keywords: Game-theoretic rough sets · Multi-criteria decision mak-
ing · Three-way classifications · Competitive games

1 Introduction

Three-way classifications are constructed based on the notions of acceptance,
rejection and non-commitment if the classifications are used for decision mak-
ing [14,15]. Given U as a finite nonempty set of objects and C as a undefinable
target concept, the aim of three-way classifications is to partition U based on C
into three disjoint regions [14]. The three-way classifications can be formulated
from different models or theories, such as rough sets and its extensions, fuzzy
sets, shadow sets, interval sets [15]. We focus on the three-way classifications in
the context of rough sets in this research. The determination of rough sets based
three-way classification regions is a critical research question. In order to solve
this question, we need some criteria or measures, such as accuracy, confidence,
generality, coverage, cost, and uncertainty, to evaluate the three-way classifica-
tions [2,20]. These criteria evaluate three-way classifications from different views.
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When multiple criteria are involved to determine three-way classifications, espe-
cially, the involved criteria are conflicting to each other, we have to find an
approach to balance them or to reach a compromise among them.

Determining three-way classifications based on multiple criteria can be for-
mulated as a typical multiple criteria decision making (MCDM) problem. MCDM
deals with complicated decision making problems which involve multiple conflict-
ing criteria [19]. It aims to obtain a suitable solution among various options based
on the performance of evaluation on multiple criteria, and the selected solution
can represent a tradeoff among the involved criteria. Many concepts, techniques
and approaches have been proposed to resolve MCDM problems, including: ana-
lytic hierarchy process [9], dominance-based rough set approach [4], weighted
sum model [11], and others [10]. Typically, an MCDM problem contains four
basic elements: a set of criteria, a set of alternatives or actions, the outcomes of
involved criteria, and a preference structure of criteria [18]. The set of alterna-
tives represents different decision options. The set of criteria is used to evaluate
alternatives. The outcomes of involved criteria mean the evaluations for the set
of alternatives based on multiple criteria. The preference structure guides in
selecting an appropriate alternative [18].

Game theory is a mathematical tool to study the conflict and cooperation
among decision makers [6]. MCDM problems can be formulated as competitive
games with multiple players and strategies. Using game theory to solve MCDM
problems has been attracting much attention [3,7]. Game-theoretic rough set
model (GTRS) is an advancement in determining suitable partition of three-
way regions by formulating competitive or coordinative games between multiple
measures [12,13]. The essential idea of GTRS is to implement games to obtain
suitable three-way classifications in the rough set context when multiple mea-
sures are involved to evaluate three regions [1]. GTRS combine game theory and
rough sets to solve MCDM problems in rough sets and three-way classifications.
In this problem solving process, the selection of game players, the configuration
of strategies and the definition of payoff functions are investigated in detail [5,13].
The aim of GTRS is to improve the rough sets based decision making by finding
a compromise among the involved measures.

In this paper, we apply GTRS to determine three-way classifications with the
presence of multiple criteria. This process contains three stages, i.e., competitive
game formulation, repetition learning, and decision making based on equilibrium.
Compared with the conventional MCDM methods, the advantage of applying
GTRS in multi-criteria based three-way classifications is twofold. On the one
hand, GTRS do not require the predefined weights for criteria or compound
decision objectives as the conventional MCDM methods. On the other hand,
GTRS are inherently suitable for a competitive environment where involved
criteria maximize their benefits and the payoff of each criterion is influenced
by other’s strategies, while the conventional MCDM methods ignore that the
behaviors of other decision makers may effect their payoffs.
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2 Background Knowledge

In this section, we briefly introduce the background concepts about three-way
classifications in the context of rough sets, and the criteria of evaluating three-
way classifications.

2.1 Rough Sets Based Three-Way Classifications

The three-way classification theory was outlined by Yao in [14,15]. It classifies
the universe of objects U into three disjoint regions based on a undefinable
target concept C. We can construct three-way classifications with rough sets
and its extensions. Suppose the universe of objects U is a finite nonempty set.
Let E ⊆ U ×U be an equivalence relation on U , where E is reflexive, symmetric,
and transitive [8]. For an element x ∈ U , the equivalence class containing x
is given by [x] = {y ∈ U |xEy}. The family of all equivalence classes defines
a partition of the universe and is denoted by U/E = {[x]|x ∈ U}, that is the
intersection of any two elements is an empty set and the union of all elements
are the universe U [8]. For an undefinable target concept C ⊆ U , probabilistic
rough sets utilize conditional probability Pr(C|[x]) as evaluation function and
thresholds (α, β) to define three-way regions of C, i.e., positive, negative, and
boundary regions of the concept C [16]:

POS(α,β)(C) =
⋃

{[x] | [x] ∈ U/E,Pr(C|[x]) ≥ α},

NEG(α,β)(C) =
⋃

{[x] | [x] ∈ U/E,Pr(C|[x]) ≤ β},

BND(α,β)(C) =
⋃

{[x] | [x] ∈ U/E, β < Pr(C|[x]) < α}. (1)

These three-way regions are pair-wise disjoint and their union is the universe
of objects U according to Eq. (1). They form a tripartition of the universe U .
The family of the three regions constitute a three-way classification model:

π(α,β)(C) = {POS(α,β)(C), BND(α,β)(C), NEG(α,β)(C)} (2)

When we use this three-way classification to classify objects, acceptance and
rejection decision rules can be induced from positive and negative regions, respec-
tively.

2.2 Evaluating Three-Way Classifications

Given a target concept C and a pair of probabilistic thresholds (α, β), we can
obtain a three-way classification according to Eq. (1). Many criteria or measures
have been proposed to evaluate three-way classifications [17,20]. The accuracy
and coverage are two most commonly used measures to evaluate the performance
of three-way classifications [21].

The criterion accuracy intends to capture the degree of classification correct-
ness of three-way classifications. It is calculated as the ratio of the number of
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correctly classified objects by a three-way classification model and the number
of objects that can be classified by this model. The range of an accuracy value is
between 0 and 1. The accuracy of a three-way classification π(α,β)(C) is defined
as:

Acc(π(α,β)(C)) =
|C ⋂

POS(α,β)(C)| + |Cc
⋂

NEG(α,β)(C)|
|POS(α,β)(C)| + |NEG(α,β)(C)| . (3)

The criterion coverage intends to express the applicability of three-way clas-
sifications. It is the ratio of the number of objects that can be classified by a
three-way classification to the number of objects in the universe U . It expresses
the proportions of objects that can be classified by a three-way classification
model. The coverage of a three-way classification π(α,β)(C) is defined as:

Cov(π(α,β)(C)) =
|POS(α,β)(C)| + |NEG(α,β)(C)|

|U | . (4)

We would like to obtain a high level of classification accuracy and a high level
of classification coverage for three-way classifications. A high level of accuracy
means we can make more accurate classification decisions based on this three-
way classification model. A high level of coverage means we can classify more
objects by using this three-way classification model. In general, a more accurate
three-way classification model tends to be weaker in applicability or coverage.
Similarly, three-way classifications with a high coverage level may not be very
accurate. It may not be wise to consider only one criterion and ignore the others
in order to obtain suitable three-way classifications. Please note that three-way
classifications can be constructed from many different methods or theories, and
it is independent on rough sets and its extensions. The measures discussed here
can be used to evaluate three-way classifications formulated by other theories.

3 Applying GTRS in Multi-criteria Based Three-Way
Classifications

Determining three-way classifications based on multiple criteria can be formu-
lated as a multi-criteria decision making problem. In order to make the problem
easy to understand and solve, assuming that two criteria c1 and c2 are considered
to determine the partition of three regions in a three-way classification. When
more than two criteria are involved, the problem solving process is similar. The
four elements of this MCDM problem are:

– The set of criteria contains two criteria c1 and c2;
– The set of alternatives contains all possible probabilistic threshold pairs

(α1, β1), (α2, β2), ..., (αk, βk), where 0 ≤ βi ≤ 0.5 ≤ αi ≤ 1 and 1 ≤ i ≤ k;
– The outcomes of criteria with different alternatives represent the values of

two criteria c1 and c2 under all possible probabilistic threshold pairs;
– The preference of decision makers is to maximize their own criteria values.
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These MCDM elements can match the elements of a game defined in GTRS.
Applying GTRS in multi-criteria based three-way classifications includes three
stages, namely competitive game formulation, repetition learning process, and
decision making based on equilibrium, respectively. Each stage contains different
tasks and some of tasks are covered in two stages, as shown in Fig. 1.

Start

Determining game players 

Defining payoff functions

Setting the initial thresholds 

Setting strategies for players 

Building payoff table

Analyzing equilibrium

Satisfying stop condition?

Decision making on equilibrium

End

N

Y

Stage 1:
Game 

formulation
Stage 2:

Repetition 
learning 
process

Stage 3:
Decision 

making on
equilibrium

Fig. 1. The three stages of applying GTRS

3.1 Competitive Game Formulation

In game-theoretic rough sets, there are three elements when formulating a game
G, that is, game players set O, strategy sets performed by the players S, and the
payoff set of players u, and G = {O,S, u} [5]. In the game formulation stage, the
three elements of a game are specified. In fact, the elements of a game correspond
to the basic elements of MCDM problems.

Game Players. The set of game players contains two criteria c1 and c2, that is
O = {c1, c2}. The game players represent the criteria that are used to evaluate
three-way classifications. Each player evaluates three-way classifications from its
own perception, and they have opposite interests when evaluating a three-way
classification.

Initial Thresholds. The initial thresholds (α, β) are defined and they can be
any thresholds values that satisfy the constraint 0 ≤ β ≤ 0.5 ≤ α ≤ 1. For
example, we can set initial thresholds as (α, β) = (0.5, 0). Two players start
from the initial thresholds and perform their strategies to change the initial
thresholds. The setting of initial thresholds can directly influence the strategies
of players. For example, when initial thresholds are set as (α, β) = (0.5, 0),
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which means α and β get the minimum values in their own limits, the strategies
can only be set as increasing α and β. Similarly, if initial thresholds are set as
(α, β) = (1, 0.5), which means α and β get the maximum values in their own
limits, the strategies can only be set as decreasing α and β.

Strategies. The set of strategies or actions S contains two sets of strategies
performed by the game players, i.e., S = {S1, S2}, where S1 = {s1, s2, ..., sk1}
is a set of possible strategies or actions for player c1 , and S2 = {t1, t2, ..., tk2}
is a set of possible strategies or actions for player c2. All these strategies are
the changes of probabilistic thresholds α and β. Two players may have differ-
ent strategies. For example, the player c1’s strategies can be the increase of
α, S1 = {α increases 0.05, α increases 0.1, α increases 0.15}. The player c2’s
strategies can be the increase of β, S2 = {β increases 0.05, β increases 0.1,
β increases 0.15}.

A strategy profile p = {p1, p2} is a particular play of a game, in which player
c1 performs the strategy or action p1 and player c2 performs the strategy or
action p2, here p1 ∈ S1 and p2 ∈ S2.

Payoff Functions. The set of payoff functions results from players perform-
ing strategies u = {u1, u2}. The payoff of player c1 under the strategy profile
p = {p1, p2} is denoted as u1(p) = u1(p1, p2). The payoff of player c2 under the
strategy profile p = {p1, p2} is denoted as u2(p) = u2(p1, p2). The payoff func-
tions of two players are defined by the criteria they are representing. The payoff
of each player depends on the strategies or actions performed by both game
players. The strategy performed by one game player can influence the payoff of
the other player. For example, if the initial thresholds are (α, β) = (0.5, 0), the
player c1 performs the strategy s1, i.e., α increases 0.05 and the player c2 per-
forms the strategy t3, i.e., β increases 0.15. The probabilistic thresholds under
the strategy profile p = {s1, t3} is (α, β) = (0.55, 0.15). The payoffs of players
are the values of the criteria they represent when (α, β) = (0.55, 0.15).

Payoff Tables. For a two-player game, we can build a payoff table to represent
the game. The Table 1 shows a payoff table. Each cell of the payoff table corre-
sponds to a strategy profile and contains a pair of payoff values based on that
strategy profile.

Table 1. A payoff table of a two-player game

c2

t1 t2 ......

c1 s1 〈u1(s1, t1), u2(s1, t1)〉 〈u1(s1, t2), u2(s1, t2)〉 ......

s2 〈u1(s2, t1), u2(s2, t1)〉 〈u1(s2, t2), u2(s2, t2)〉 ......

s3 〈u1(s3, t1), u2(s3, t1)〉 〈u1(s3, t2), u2(s3, t2)〉 ......

...... ...... ...... ......
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3.2 Repetition Learning Mechanism

The second stage formulates competitive games repeatedly with different initial
thresholds and strategies to approach a balanced solution. In other words, if the
values of thresholds obtained in the current game are not good enough to apply
in decision making, we can repeat the game with the new thresholds. This stage
first analyzes pure strategy equilibrium of the game and then check if the stop
condition is satisfied.

Pure Strategy Equilibrium. The game solution of pure strategy Nash equi-
librium is typically used to determine possible game outcomes in GTRS. In a
two-player game, the strategy profile (si, tj) is a pure strategy Nash equilibrium,
if for players c1 and c2, si and tj are the best responses to each other. This is
expressed as [6],

∀s
′
i ∈ S1, u1(si, tj) � u1(s

′
i, tj), where si ∈ S1 and s

′
i �= si,

∀t
′
j ∈ S2, u2(si, tj) � u2(si, t

′
j), where tj ∈ S2 and t

′
j �= tj . (5)

Equation (5) may be interpreted as a strategy profile such that no player would
like to change his strategy or they would loss benefit if deriving from this strategy
profile, provided this player has the knowledge of other player’s strategies.

After analyzing the equilibrium, we check if the stop condition is satisfied.
If the stop condition is not satisfied, new thresholds values will be set as initial
thresholds and another game will be formulated. For example, the initial thresh-
olds are (α, β), equilibrium analysis shows that the result thresholds are (α′, β′)
and the stop condition is not satified. In the subsequent iteration of the game,
the initial thresholds will be set as (α′, β′).

3.3 Making Decision Based on Equilibrium

The last stage contains setting the stop conditions and making the final decision
based on the equilibrium.

Stop Conditions. We need to stop the iterations at the proper time in order to
obtain the balanced thresholds. This requires proper stop conditions be defined.
There are many possible stop conditions, for example, thresholds (α, β) violate
the constraint 0 ≤ β ≤ 0.5 ≤ α ≤ 1, the payoffs of players are beyond some
specific values, a subsequent iteration does not improve previous configurations,
or the gain of one player’s payoff is less than the loss of the other player’s payoff
in the current game.

Decision Making. The final three-way classification can be defined by the
initial thresholds used in the last game.

4 Illustrative Example

In this section, we present an example to demonstrate that a balanced three-way
classification can be obtained by applying GTRS when two criteria are involved
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to evaluate this three-way classification. In the experiment, we use a random
generator to generate the probabilistic information of experimental data. The
probability Pr(Xi) is a random number between 0.001 and 0.1, and the sum
of all Pr(Xi) is 1. The condition probability Pr(C|Xi) is a random number
between 0 and 1. Table 2 summarizes probabilistic data about a concept C.
There are 20 equivalence classes denoted by Xi(i = 1, 2, ..., 20), which are listed
in a decreasing order of the conditional probabilities Pr(C|Xi) for convenient
computations.

Table 2. Summary of the experimental data

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Pr(Xi) 0.083 0.077 0.07 0.066 0.06 0.051 0.04 0.025 0.021 0.011

Pr(C|Xi) 1 0.98 0.93 0.89 0.81 0.77 0.71 0.66 0.64 0.58

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

Pr(Xi) 0.013 0.019 0.028 0.041 0.049 0.055 0.061 0.069 0.074 0.087

Pr(C|Xi) 0.51 0.49 0.44 0.39 0.31 0.26 0.21 0.11 0.08 0

Two criteria accuracy and coverage are used to evaluate three-way classifica-
tions defined by different probabilistic thresholds. We can set these two criteria
accuracy and coverage as game players, i.e., O = {acc, cov}. The strategy set
is S = {Sacc, Scov}. The possible strategies of two players are the changes of
thresholds. The initial thresholds are (α, β) = (1, 0.5). The player acc tries to
decrease β, so its strategy set is Sacc = {β doesn’t change, β decreases 0.05,
β decreases 0.1}. Under these strategies, the corresponding β values are 0.5,
0.45, and 0.4, respectively. The player cov tries to decrease α, so its strategy
set is Scov = {α doesn’t change, α decreases 0.05, α decreases 0.1}. The corre-
sponding α values are 1, 0.95, and 0.9, respectively. The payoff functions of two
players are defined by the criteria they are representing, i.e., the Eqs. (3) and (4).

Table 3. The payoff table

cov

α = 1 α = 0.95 α = 0.9

acc β = 0.5 <0.8349, 0.569> <0.8523, 0.643> <0.8599, 0.713>

β = 0.45 <0.8462, 0.547> <0.8627, 0.624> <0.8695, 0.694>

β = 0.4 <0.8617, 0.519> <0.8769, 0.596> <0.8825,0.666>

The payoff table is shown in Table 3. The strategy profile (β decreases 0.1,
α decreases 0.1) is the equilibrium. We set the stop condition as the gain of
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one player’s payoff is less than the loss of the other player’s payoff in the cur-
rent game. When the thresholds change from (1, 0.5) to (0.9, 0.4), the accuracy
increases from 0.8349 to 0.8825 and the coverage increases from 0.566 to 0.666.
We repeat the game by setting (α, β) = (0.9, 0.4) as initial thresholds. In the sec-
ond iteration of the game, the initial thresholds is (α, β) = (0.9, 0.4), two players’
strategy sets are Sacc = {β doesn’t change , β decreases 0.05, β decreases 0.1}
and Scov = {α doesn’t change , α decreases 0.05, α decreases 0.1}, respectively.
The competition will be repeated three times. The result is shown in Table 4. In
the third iteration, we can see that the gain of the payoff values of player acc
is 0.0021 which is less than the loss of payoff values of player cov 0.025. The
repetition of game is stopped and the final result is the initial thresholds of the
third competitive game (α, β) = (0.8, 0.3).

Table 4. The repetition of games

Initial (α, β) Result (α, β) Payoffs

1 (1, 0.5) (0.9, 0.4) <0.8825, 0.666> +0.1476

2 (0.9, 0.4) (0.8, 0.3) <0.9064, 0.702> +0.0559

3 (0.8, 0.3) (0.7, 0.2) <0.9085, 0.677> −0.0229

5 Conclusion

We use game-theoretic rough sets to determine multi-criteria based three-way
classifications. When multiple criteria are involved to determine three-way clas-
sifications, we formulate this problem as a multi-criteria decision making prob-
lem. Within the GTRS framework, multiple criteria that are used to evaluate
three-way classifications are set as game players. The competitive games are for-
mulated to solve the conflict among criteria. The strategies of both players are
the changes of thresholds. Both players can gradually approach the balanced
probabilistic thresholds by repeatedly modifying the initial thresholds and find-
ing the pure strategy equilibrium of repeated games. GTRS provide a feasible
and effective method for multi-criteria based three-way classifications in the con-
text of rough sets. GTRS accommodate and meet the rough sets related special
requirements when formulating games between criteria. GTRS do not rely on
any predefined knowledge about criteria or compound objective functions. More-
over, GTRS are more suitable to solve a competitive situation where involved
criteria have opposite interest and the payoff of each criterion is influenced by
other criteria’s strategies.
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