
A Study on Optimal Preventive
Maintenance Policies for Cumulative
Damage Models

Naoto Kaio

1 Introduction

The preventive maintenance policy is one of the most important problems in the
reliability theory and the maintenance one. The preventive maintenance models are
classified into several categories, and many kinds of preventive maintenance
policies have been discussed (e.g., [1–6, 10, 12–14]). Especially, there exists a
preventive maintenance policy taking account of damage by shocks as one of them
(e.g., [7, 9, 11]).

In this chapter, we consider the extended preventive maintenance policies for
cumulative damage models with stochastic failure levels. That is, we discuss the
optimal preventive maintenance policies for the system that fails when the cumu-
lated amount of damage by shocks exceeds a stochastic failure level, assuming a
continuous distribution and a discrete one, respectively. We apply the expected
costs per unit time in the steady state as criteria of optimality and seek the optimal
policies minimizing these expected costs. We show that there exists a unique
optimal policy under certain conditions, respectively. Furthermore, we refer to
the modified models where the shock does not always give the damage to the
system.
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2 Preventive Maintenance Policies for a Cumulative
Damage Model with a Continuous Distribution

2.1 Model and Assumptions

1. Consider a one–unit system.
2. System failure is revealed at failure immediately and each failed unit is

scrapped without repair.
3. An unlimited number of spare units are immediately available when they are

needed.
4. The original unit begins operating at time 0 with the cumulated amount of

damage 0.
5. The planning horizon is infinite.
6. The damage occurred by shocks is additive.
7. The unit fails only when the cumulated amount of damage by shocks exceeds

the stochastic failure label r.v. (random variable) W (W � 0). The r.v. W obeys
a cdf (cumulative distribution function) DðwÞ (w� 0) with a pdf (probability
density function) dðwÞ.

8. When the cumulated amount of damage exceeds the predetermined exchange
level w0 (0�w0\1) by any shock, the unit is exchanged if it has not failed,
by the spare one immediately (i.e., the preventive maintenance). On the other
hand, the unit is replaced if it has failed by any shock in a similar fashion (i.e.,
the corrective one).

9. The exchange and replacement actions are executed instantaneously. The new
exchanged and replaced units take over the operation immediately.

10. The similar cycles are repeated from time to time. That is, an interval from the
start of the original unit (the exchange or the replacement) to the following
exchange or replacement is defined as one cycle, and the cycle repeats itself
again and again.

11. The time interval between j� 1st shock and jth one is r.v. Tj (j ¼ 1; 2; 3; . . .;
Tj � 0 and r.v. T1 is the time interval between the time 0 and the first shock),
and the amount of damage by jth shock is r.v. Xj (Xj � 0), where r.v. Xi is
independent of r.v. Tj (i 6¼ j).

12. There exist n types of shock modes and the shock mode i occurs with proba-
bility ai (i ¼ 1; 2; . . .; n;

Pn
i¼1 ai ¼ 1; ai � 0). Under the condition that the

mode of jth shock is the ith type, r.v. Tj obeys a cdf FiðtÞ (t� 0), and r.v. Xj

obeys a cdf GiðxÞ (x� 0), that is, to say r.v. Tj obeys the cdf
FðtÞ ¼ Pn

i¼1 aiFiðtÞ, and r.v. Xj obeys the cdf GðxÞ ¼ Pn
i¼1 aiGiðxÞ.

Furthermore, we put
R1
0 tdFiðtÞ ¼ 1=ki and

R1
0 tdFðtÞ ¼ 1=k and this implies

the relation 1=k ¼ Pn
i¼1 ai=ki. The amount of damage by jth shock, r.v. Xj has

a renewal function MðxÞ and a renewal density mðxÞ.
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13. The costs considered are a cost c0 suffered for each exchange before a failure
(each preventive maintenance) and a cost ci suffered for each replacement after
a failure (each corrective one) due to shock mode i, where ci [ c0 since the
corrective maintenance is more expensive than the preventive one.

Under these model and assumptions, we derive the expected cost per unit time in
the steady state and discuss the optimal preventive maintenance policies minimizing
that expected cost.

2.2 Analysis and Theorems

The expected cost per one cycle Acðw0Þ is given by

Acðw0Þ ¼ c0

Z1
w0

½GðwÞ �
Zw0

0

�Gðw� uÞdMðuÞ�dDðwÞ

þ
Xn
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aici

Zw0

0

�GiðwÞþ
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0
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:

9=
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þ
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;dDðwÞ
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where �wð�Þ ¼ 1� wð�Þ, in general.
The mean time of one cycle Bcðw0Þ is

Bcðw0Þ ¼ ð1=kÞ
Zw0

0

1þMðwÞf gdDðwÞþ 1þMðw0Þf g�Dðw0Þ
2
4

3
5: ð2Þ

We obtain the following when w0 ¼ 0 and w0 ! 1.

Acð0Þ ¼ c0

Z1
0

GðwÞdDðwÞþ
Xn
i¼1

aici

Z1
0
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Bcð0Þ ¼ 1=k ; ð4Þ
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and

Bcð1Þ ¼ ð1=kÞ
Z1
0

1þMðwÞ½ �dDðwÞ : ð6Þ

Thus, the expected cost per unit time in the steady state is given by

Ccðw0Þ ¼ Acðw0Þ
Bcðw0Þ ð7Þ

(see [15], p. 52).
Define the numerator divided by mðw0Þ�Dðw0Þ of the derivative of the right-hand

side in Eq. (7) as

qcðw0Þ ¼ ½1=�Dðw0Þ� �c0
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�Gðw� w0ÞdDðwÞ
2
4

þ
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Z1
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�Giðw� w0ÞdDðwÞ
3
5Bcðw0Þ

� Acðw0Þð1=kÞ;

ð8Þ

where qcð0Þ ¼ �c0=k\0.
We obtain the following theorems with respect to the optimal exchange level w�

0
minimizing the expected cost per unit time in the steady state Ccðw0Þ in Eq. (7).

Theorem 1 There exists at least one positive optimal exchange level w�
0

(0\w�
0 �1). If qcð1Þ[ 0, then there exists at least one positive and finite

optimal exchange level w�
0 (0\w�

0\1).

Proof These results hold clearly since qcð0Þ ¼ �c0=k\0. □

Theorem 2

1. Suppose that qcðw0Þ is strictly increasing.

(i) If qcð1Þ[ 0, then there exists a finite and unique optimal exchange level w�
0

(0\w�
0\1) satisfying qcðw0Þ ¼ 0 and the corresponding expected cost is

Ccðw�
0Þ ¼ ½k=�Dðw�

0Þ� �c0

Z1
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0
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3
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(ii) If qcð1Þ� 0, then the optimal exchange level is w�
0 ! 1, i.e., the unit con-

tinues operation until its failure and then it is replaced by the new one, and the
corresponding expected cost is Ccð1Þ ¼ Acð1Þ=Bcð1Þ.

2. When qcðw0Þ is decreasing, we have w�
0 ! 1.

Proof These results hold clearly from the monotone properties of qcðw0Þ and
Theorem 1. □

2.3 Remarks

In the present model, if we put cN ¼ ci (i ¼ 1; 2; . . .; n), DðwÞ ¼ uðw�W0Þ (unit
function), and w0\W0, or if we put cN ¼ Pn

i¼1 aici, GðxÞ ¼ GiðxÞ,
DðwÞ ¼ uðw�W0Þ, and w0\W0, we have

Acðw0Þ ¼ c0 þðcN � c0Þ �GðW0Þþ
Zw0

0

�GðW0 � uÞdMðuÞ
2
4

3
5 ; ð10Þ

and

Bcðw0Þ ¼ ½1þMðw0Þ�=k: ð11Þ

This is equivalent to the result discussed by Nakagawa [9].
In the present model, we assume that the shock gives the damage to the system

with probability 1. Next, we refer to the preventive maintenance policy for the
modified continuous type cumulative damage model, where the shock does not
always give the damage to the system (see [11]). That is, we consider the situation
that the shock generates the damage to the system with probability p (0\p� 1),
i.e., it does not with probability 1� p. Also for this situation, we can apply our
results by using k p instead of k.

3 Preventive Maintenance Policies for a Cumulative
Damage Model with a Discrete Distribution

3.1 Model and Assumptions

We apply items 1–6, 9, 10, and 13 not only in Sect. 2.1 but also in this section, and
we rewrite items 7, 8, 11, and 12 for the discrete distribution as follows.
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7. The unit fails only when the cumulated amount of damage by shocks exceeds
the stochastic failure label r.v. V (V ¼ 0; 1; 2; . . .). The r.v. V obeys a cdf KðvÞ
(v ¼ 0; 1; 2; . . .) with a pmf (probability mass function) kðvÞ (kð0Þ ¼ 0).

8. When the cumulated amount of damage exceeds the predetermined exchange level
v0 (v0 ¼ 0; 1; 2; . . .) by any shock, the unit is exchanged if it has not failed, by the
spare one immediately (the preventivemaintenance).On the other hand, the unit is
replaced if it has failed by any shock in a similar fashion (the corrective one).

11. The time interval between k � 1st shock and kth one is r.v. Bk

(k ¼ 1; 2; 3; . . .; Bk ¼ 0; 1; 2; . . . and r.v. B1 is the time interval between the
time 0 and the first shock), and the amount of damage by kth shock is r.v. Dk

(Dk ¼ 0; 1; 2; . . .), where r.v. Di is independent of r.v. Bj (i 6¼ j).
12. There exist n types of shock modes and the shock mode i occurs with proba-

bility ai (i ¼ 1; 2; . . .; n;
Pn

i¼1 ai ¼ 1; ai � 0). Under the condition that the
mode of kth shock is the ith type, r.v. Bk obeys a cdf FiðbÞ (b ¼ 0; 1; 2; . . .) with
a pmf fiðbÞ (fið0Þ ¼ 0), and r.v. Dk obeys a cdf GiðdÞ (d ¼ 0; 1; 2; . . .), that is, r.
v. Bk obeys the cdf FðbÞ ¼

Pn
i¼1 aiFiðbÞ with the pmf f ðbÞ ¼ Pn

i¼1 aifiðbÞ, and
r.v. Dk obeys the cdf GðdÞ ¼ Pn

i¼1 aiGiðdÞ. Furthermore, we putP1
b¼0 bfiðbÞ ¼ 1=ki and

P1
b¼0 bf ðbÞ ¼ 1=k and this implies the relation

1=k ¼ Pn
i¼1 ai=ki. The amount of damage by kth shock, r.v. Dk has a renewal

function MðdÞ and a renewal probability mass function mðdÞ (see [8]).

Under these model and assumptions, we derive the expected cost per unit time in
the steady state and discuss the optimal preventive maintenance policies minimizing
that expected cost.

3.2 Analysis and Theorems

The expected cost per one cycle Adðv0Þ is given by

Adðv0Þ ¼ c0
X1

v¼v0 þ 1

½GðvÞ �
Xv0
l¼0

�Gðv� lÞmðlÞ�kðvÞ

þ
Xn
i¼1

aici½
Xv0
v¼0

f�GiðvÞþ
Xv

l¼0

�Giðv� lÞmðlÞgkðvÞ

þ
X1

v¼v0 þ 1

f�GiðvÞþ
Xv0
l¼0

�Giðv� lÞmðlÞgkðvÞ�:

ð12Þ

The mean time of one cycle Bdðv0Þ is

Bdðv0Þ ¼ ð1=kÞ
Xv0
v¼0

f1þMðvÞgkðvÞþ f1þMðv0Þg�Kðv0Þ
" #

: ð13Þ
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We obtain the following when v0 ¼ 0 and v0 ! 1.

Adð0Þ ¼ c0
X1
v¼1

GðvÞkðvÞþ
Xn
i¼1

aici
X1
v¼1

�GiðvÞkðvÞ ; ð14Þ

Bdð0Þ ¼ 1=k ; ð15Þ

Adð1Þ ¼
Xn
i¼1

aici
X1
v¼0

½�GiðvÞþ
Xv

l¼0

�Giðv� lÞmðlÞ�kðvÞ ; ð16Þ

and

Bdð1Þ ¼ ð1=kÞ
X1
v¼0

½1þMðvÞ�kðvÞ : ð17Þ

Thus, the expected cost per unit time in the steady state is given by

Cdðv0Þ ¼ Adðv0Þ
Bdðv0Þ ð18Þ

(see [15], p. 52).
Define the numerator divided by mðv0 þ 1Þ�Kðv0Þ of the difference of Cdðv0Þ in

Eq. (18) as

qdðv0Þ ¼ ½1=�Kðv0Þ� �c0
X1

v¼v0 þ 1

�Gðv� v0 � 1ÞkðvÞ
"

þ
Xn
i¼1

aici
X1

v¼v0 þ 1

�Giðv� v0 � 1ÞkðvÞ
#
Bdðv0Þ

� Adðv0Þð1=kÞ:

ð19Þ

We obtain the following theorems with respect to the optimal exchange level v�0
minimizing the expected cost per unit time in the steady state Cdðv0Þ in Eq. (18).

Theorem 3

1. If qdð1Þ[ 0, then there exists at least one finite optimal exchange level v�0
(0� v�0\1).

2. If qdð0Þ\0, then there exists at least one positive optimal exchange level v�0
(0\v�0 �1).

Proof These results hold clearly. □
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Theorem 4

1. Suppose that qdðv0Þ is strictly increasing.

(i) If qdð0Þ\0 and qdð1Þ[ 0, then there exists a finite and unique optimal
exchange level v�0 ( 0\v�0\1) satisfying qdðv0 � 1Þ\0 and qdðv0Þ� 0. We
have the following relationship with respect to the optimal expected cost.

½k=�Kðv�0 � 1Þ� �c0
X1
v¼v�0

�Gðv� v�0ÞkðvÞ
2
4

þ
Xn
i¼1

aici
X1
v¼v�0

�Giðv� v�0ÞkðvÞ
3
5

\Cdðv�0Þ

� ½k=�Kðv�0Þ� �c0
X1

v¼v�0 þ 1

�Gðv� v�0 � 1ÞkðvÞ
2
4

þ
Xn
i¼1

aici
X1

v¼v�0 þ 1

�Giðv� v�0 � 1ÞkðvÞ
3
5:

ð20Þ

(ii) If qdð1Þ� 0, then the optimal exchange level is v�0 ! 1, and the corre-
sponding expected cost is Cdð1Þ ¼ Adð1Þ=Bdð1Þ.

(iii) If qdð0Þ� 0, then the optimal exchange level is v�0 ¼ 0, i.e., the unit is
exchanged or replaced (failure) by the new one at the first shock. The cor-
responding expected cost is Cdð0Þ ¼ Adð0Þ=Bdð0Þ.

2. When qdðv0Þ is decreasing, we have v�0 ! 1 or v�0 ¼ 0.

Proof These results hold clearly from the monotone properties of qdðv0Þ and
Theorem 3. □

3.3 Remarks

We put

uðdÞ ¼
Xd
j¼0

dðjÞ ¼ 1; d ¼ 0; 1; 2; . . .; ð21Þ
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where

dðdÞ ¼ 1; d ¼ 0;
0; d ¼ 1; 2; 3; . . .:

�
ð22Þ

In the present model, if we put cN ¼ ci (i ¼ 1; 2; . . .; n), KðvÞ ¼ uðv� V0Þ, and
v0\V0, or if we put cN ¼ Pn

i¼1 aici, GðdÞ ¼ GiðdÞ, KðvÞ ¼ uðv� V0Þ, and v0\V0,

Adðv0Þ ¼ c0 þðcN � c0Þ½�GðV0Þþ
Xv0
l¼0

�GðV0 � lÞmðlÞ�; ð23Þ

and

Bdðv0Þ ¼ ½1þMðv0Þ�=k: ð24Þ

This is equivalent to the result discussed by Kaio and Osaki [7].
In the similar fashion of Sect. 2.3, when the shock generates the damage to the

system with probability p (0\p� 1), i.e., it does not with probability 1� p, we can
apply our results by using k p instead of k.

4 Concluding Remarks

In this chapter, we have discussed the preventive maintenance policies for the
extended cumulative damage model, in which the system fails when the cumulated
amount of damage by shocks exceeds a stochastic failure level, assuming several
shock modes, and a continuous distribution and a discrete one, respectively. We
have applied the expected costs per unit time in the steady state as criteria of
optimality and sought the optimal policies minimizing these expected costs. We
also have shown the relationships between the results of this chapter and ones
obtained in the earlier contributions.
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