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Abstract The paper presents a method for determination of the laws of load dis-
tribution in meshing of gearwheels for a multi-satellite planetary gear. The influence
of layout features of the mechanism, its parameters and manufacture errors on
compliance of elements, factors of non-uniform load distribution and technical and
economic performance is established.
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1 Introduction

Multi-satellite planetary gears are commonly used in mechanical engineering due to
their capacity for a number of types of distinctive technical and economic perfor-
mance: high load carrying capacity at small overall dimensions and mass, low
friction power losses, satisfactory vibroacoustic characteristics [1–3]. These gears
are most effectively applied in aerospace engineering, transport and hoisting
machines, robotics, mechatronic systems, etc.; essentially, any field in which the
above-mentioned features prevail in the choice of the type of mechanical drive.

In order to eliminate excessive links and equalize the load in meshing of plan-
etary gearwheels, satellites are usually arranged on spherical bearings, with the sun
pinion being placed on the gear clutch. However, such a layout allows for the
complete elimination of excessive links only in the case of a three-satellite version.
In practice, planetary gears with a greater number of satellites are applied.
Inevitable manufacture errors cause non-uniform load distribution in power flows,
even in the presence of “floating” and self-aligning elements. In order to provide the
workability of a drive in a case of its limited radial dimension, it is necessary to
mount each satellite on two bearings, or to produce a multi-row gear [4] which
causes non-uniform load distribution along tooth length or rows of satellites. Strain
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of individual elements of the mechanism partially compensates for errors in its
manufacture which can be used in load equalizing in meshing of gears, increasing
the load carrying capacity of the drive and reducing its overall dimensions and
mass. In this connection, it is important to establish the influence of manufacture
error of a gear, its layout features and the compliance of elements in the technical
and economic performance of the drive.

2 Distribution of Load and Bending Stresses
by the Length of Gearwheel Teeth

In the presence of excessive links obstructing the self-alignment of satellites,
manufacture errors of a planetary gear and deformation of its sun pinion cause the
non-uniform distribution of load and bending stresses at the tooth root along its
length (Fig. 1). In this case, factors of initial (not accounting for tooth running-in
ability) non-uniform distribution of load and bending stresses differ from each
other.

Laws of variation of the unit loadWðxÞ and the bending momentMðxÞ caused by
action of the load and its corresponding normal stresses at the root of a straight
tooth of the gearwheel can be established according to equations of displacement
compatibility written with consideration of tooth torsion relative to the longitudinal
axis and its distortion due to deformation of gear elements (the equations are written
for the direction of initial mismatch unfavorable in regard to load distribution and
when teeth come into contact in their middle part) (Fig. 2):

Fig. 1 Planetary gear with
non-self-aligning satellites
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0:5x c� c0 þ cHð Þ cos aW½ � þ 0:5uðxÞrb �WðxÞ �Wð0Þ
CW

¼ Hn

IKG

Zx

0

MðxÞ � HnWðnÞ½ � x� nð Þdn;
ð1Þ

0:5x c� ðc0 þ cHÞ cos aW½ � þ 0:5uðxÞrb �WðxÞ �Wð0Þ
CW

¼ MðxÞ �Mð0Þ
HnCM

ð2Þ

where uðxÞ is the angle of sun pinion torsion at an arbitrary cross-section with
respect to the face end,

uðxÞ ¼ rbnW
IPG

Zx

0

WðnÞðx� nÞdn;

c is the angle of the initial mismatch of teeth in the plane of meshing, c0 is the angle
of misalignment caused by deformation of the axis and satellite supports, cH is the
angle of misalignment of the satellite axis caused by deformation of the carrier,aW
is the pressure angle, rb is the base radius of the sun pinion, Hn is the arm of a force
acting on the tooth with respect to the centre of its bending, G is the shear modulus,
IK is the moment of inertia of the lateral section of the tooth (determined according
to the approximated relation written for a rectangular section with the width equal to
tooth thickness in its middle part and the height equal to its height: IK ¼ 0:19HS3,
where H ¼ 2:25m, S ¼ 0:5pm, m is the module of meshing), nW is the number of
power flows, IP is the polar moment of inertia of the cross-section for the sun

Fig. 2 Element of the sun pinion and diagrams of loads acting on it
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pinion, CM is the specific rigidity of the tooth when it is deformed under the action
of the bending moment (determined with regard to compliance of a part of the rim
adjoining the teeth), and CW is the specific rigidity of the pinion tooth under its
contact deformation, shear and compression deformation,

1
CW

¼ 1
Ct

� 1
CM

;

where 1
Ct
is the total specific compliance of the tooth with regard to one half of the

contact compliance of the meshing.
Components of rigidity and its reverse value (compliance) are determined

through methods of construction mechanics, elasticity theory and experimentalism
[1, 5, 6].

In order to obtain analytical relations, let us solve the stated task in parts, having
first considered the laws of distribution of the load and bending stresses for rigid
elements of the gear, only taking into account the initial mismatch of teeth and their
compliance. In this case, expressions (1) and (2) can be represented as a Volterra
integral equation

WðxÞ ¼ k2
Zx

0

WðnÞðx� nÞdnþFðxÞ; ð3Þ

where

FðxÞ ¼ Wð0Þþ 0:5cxCW þ 0:5ðkxÞ2 0:5cCt
b
2
� x
3

� �
�W

� �
;

k2 ¼ H2
n CW þCMð Þ

GIK
:

Let us write Eq. (3) in operator form:

L WðxÞ½ � ¼ xðpÞ ¼ p2f ðpÞ
p2 � k2

: ð4Þ

Turning to the original equation, and transforming the obtained expression with
regard to statics, we obtain

WðxÞ ¼ W þ cbCR

2
2x
b
� 1þ 2CW

kbCM
shkxþ 1� chkb

shkb
chkx

� �� �
; ð5Þ

MðxÞ
Hn

¼ W þ cbCR

2
2x
b
� 1� 2

kb
shkxþ 1� chkb

shkb
chkx

� �� �
: ð6Þ
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Here, W is the average unit load in the meshing; b is the tooth length equal to the
working width of the rim bW ; and CR is the specific rigidity of the meshing in the
absence of a mismatch (CR ¼ 0:5Ct ¼ 0:075E [1], E being the Young modulus).

When the load is applied to the tooth at the middle part of its height, the
following approximated values of components of Eqs. (5) and (6) will be obtained:
CW=CM ¼ 0:5, k ¼ 1=m. Then, the maximum values of the unit load and the
moment and corresponding initial factors of non-uniformity are equal to

KW ¼ WðbÞ
W

¼ 1þ cb
2W

CHðbÞ ¼ 1þ cb
2W

CR 1þ m eb=m � 1
� �
b eb=m þ 1ð Þ

" #
; ð7Þ

Km ¼ WðbÞ
WHn

¼ 1þ cb
2W

CFðbÞ ¼ 1þ cb
2W

CR 1� 2m eb=m � 1
� �

b eb=m þ 1ð Þ

" #
: ð8Þ

Figure 3 shows the diagrams of dependences of WðXÞ ¼ Wðx=bÞ=W and
MðXÞ ¼ Mðx=bÞ=HnW on the parameter X ¼ x=b for a relative angle of the initial
mismatch C ¼ Ecb=W ¼ 20 and tooth length b ¼ 18m. Figure 4 shows the same
dependences for b ¼ 5m. Figure 5 presents the dependences of KW and Km on C.

The most unfavorable case with regard to load distribution along the length of
the gearwheel teeth is the case when angles of initial mismatch c of the teeth at
external and internal meshing have opposite signs, and the carrier is fixed. Then,
equations for determining the unit loads and bending moment can be presented as
follows:

WðxÞ ¼ Wð0Þþ f ðxÞCHðbÞ; ð9Þ

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

)(XW

)(XM

X

Fig. 3 Distribution of relative load and bending stresses along the gearwheel tooth length for
fixed elements of the gear, Г = 20, b = 18m
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MðxÞ
Hn

¼ Mð0Þ
Hn

þ f ðxÞCFðbÞ; ð10Þ

where the function of mismatch of the teeth with consideration of torsion of the sun
pinion when the torque is transmitted from its face end is

f ðxÞ ¼ cxþ r2bnw
IpG

Zx

n

WðnÞðx� nÞdn: ð11Þ

Let us determine the unit load W(x) at external meshing of the gear by substi-
tuting Eq. (11) for Eq. (9) and differentiating the obtained expression twice:
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Fig. 4 Distribution of the relative load and stresses along the length of the gearwheel tooth for
fixed elements of the gear

0 2 4 6 8 10 12 14 16 18 201

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Kw Γ( )

Km Γ( )

Γ

Fig. 5 Factors of non-uniform distribution of load and bending stresses of the tooth versus the
relative angle of initial mismatch for fixed elements of the gear and b = 18m
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W 00ðxÞ � r2bnWCHðbÞ
IpG

¼ W 00ðxÞ � l2WðxÞ ¼ 0: ð12Þ

Taking into account the equations
R b
0 WðxÞdx ¼ Wb and W 0ð0Þ ¼ cCHðbÞ, the

solution to this equation will be as follows:

WðxÞ ¼ c
l
CHðbÞshlxþ Wlb� cCHðbÞ

l
chlb� 1ð Þ

� �
chlx
shlb

: ð13Þ

Then, applying Eqs. (9), (10) and the equations of statics, we determine

MðxÞ
Hn

¼ W þ CFðbÞ
CHðbÞ WðxÞ �W½ �: ð14Þ

0 5 10 15 20 25 30
1

1.4

1.8

2.2

2.6

Kw1 B( )

Kw2 B( )

Kw3 B( )

B

Fig. 6 Factor of non-uniform
load distribution along the
tooth length for a sun pinion
versus G and B. Subscripts 1
for Г = 0; 2 for Г = 10; 3 for
Г = 20
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Fig. 7 Factor of non-uniform
stress distribution along the
tooth length for a sun pinion
versus Г and B. Subscripts 1
for Г = 0; 2 for Г = 10; 3 for
Г = 20
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Figures 6 and 7 represent diagrams of dependences of non-uniformity factors
KW , Km on G and B ¼ b=m for a fixed layout of the carrier and the number of teeth
of the sun pinion z ¼ 18, nW ¼ 3, d0 ¼ 0. Diagrams are plotted according to
expressions (13) and (14) and allow for evaluating the pointed strength perfor-
mances of a multi-satellite planetary gear.

3 Influence of the Compliance of Planetary Gear Elements
on Load Distribution Among Satellites

One of the simplest and most efficient layouts of a multi-satellite planetary gear is
the gear comprising axes as cantilevers in the carrier jaw, the axes containing
spherical bearings and two central gearwheels (Fig. 8). Compliance of cantilever
axes and bearings of satellites provides load equalization in meshing of gearwheels,
and at corresponding parameters, it can lead to close to uniform load distribution,
even in the absence of mechanisms of self-alignment for elements of a planetary
gear.

In this connection, it is important to determine the compliance of the axis and the
parts in contact with it and to establish the level of its influence on the value of the
factor of non-uniform load distribution in meshing of gearwheels.

Fig. 8 Planetary gear with
cantilever axes of
self-aligning satellites
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Accounting for distortion of the satellite axis under the action of the force
applied to it and increased compliance of the inner ring of the bearing at its face
ends, the load on the axis from the bearing side can be presented by the equation
(Fig. 9):

qðxÞ ¼ qm sin
px
l

� 	
¼ pP

2l
sin

px
l

� 	
; ð15Þ

where qm is the maximum value of the unit load.
Then, deflection of a steel axis in the middle part of the area of contact with the

bearing ring caused by action of the bending moment and lateral force and deter-
mined by known Mohr’s formulas will be

y0 ¼ Pl3

IE
5
96

� 0:5p� 1
2p3

� �
þ 1:11Pl

SG
0:25þ 0:5

p

� �
; ð16Þ

where d is the diameter of the satellite axis, I is the axial moment of inertia of its
cross-section, S is the area of the lateral cross-section of the axis, and E and G are
elasticity moduli of the 1st and 2nd types, respectively.

Let us represent the equation of the deformed axis in the area of its contact with
the carrier jaw as follows (see Fig. 9):

Fig. 9 Loading scheme for
cantilever axis of the satellite
and the carrier jaw
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1
CH

d2xðzÞ
dz2

¼ d2yðzÞ
dz2

¼ MðzÞ
IE

þ 1:11
xðzÞ
SG

: ð17Þ

Here, CH is the specific contact rigidity of the joint determined experimentally
(CH ffi E=1:2 [4]), MðzÞ ¼ � R z

0 xðvÞðz� vÞdv.
After double differentiation of the equality (17), we obtain

d4xðzÞ
dz4

� 1:11CH

SG
d2xðzÞ
dz2

þ CH

IE
xðzÞ ¼ 0; ð18Þ

hence,

xðzÞ ¼ C1sh az=bð Þ sin bz=bð ÞþC2ch az=bð Þ sin bz=bð Þ
þC3sh az=bð Þ cos bz=bð ÞþC4ch az=bð Þ cos bz=bð Þ; ð19Þ

a ¼ b
ffiffiffi
4

p CH

IE
cos 0:5 arccos

ffiffiffiffiffiffiffiffiffiffiffi
IECH

p
1:8FG

� �� �

b ¼ b
ffiffiffi
4

p CH

IE
sin 0:5 arccos

ffiffiffiffiffiffiffiffiffiffiffi
IECH

p
1:8FG

� �� �

In order to determine constants of integration C1 � C4, we apply the following
boundary conditions and equations of statics:

Zb

0

xðzÞdz ¼ �P;
Zb

0

xðzÞðb� zÞdz ¼ 0:5Pl;

for z ¼ 0
d2xðzÞ
dz2

¼ 1:11CH

SG
xðzÞ;

for z ¼ b
d2xðzÞ
dz2

¼ �0:5CHPl
IE

þ 1:11CH

SG
xðzÞ:

Displacement of the axis in the area of the bearing mounting caused by com-
pliance of the “axis—carrier jaw” contact is

yh ¼ 1:2
E

xðzÞþ l
2
dxðzÞ
dz

� �
Z¼b

¼ 1:2
E

fsha sin b½C1 þ 0:5
l
b
ðC2a

� C3bÞ� þ cha cos b½C4 þ 0:5
l
b
ðC2bþC3aÞ� þ sha cos b½C3

þ 0:5
l
b
ðC1bþC4aÞ� þ cha sin b½C2 þ 0:5

l
b

C1a� C4bð Þ�g

ð20Þ
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Correctness of analytical determination of the axis compliance accounting for
the deformability of the carrier jaw is proved by SolidWorks finite-element analysis
of the mode of deformation of the “satellite axis—carrier jaw” contact. Figure 10
shows the mode of deformation of the carrier jaw for P ¼ 10000N, d ¼ 20 mm,
b ¼ 10 mm.

In order to determine the factor of non-uniformity of load distribution for
satellites, we apply equations of displacement compatibility accounting for the
deformation of axes and parts in contact with them (carrier jaw, rolling bearings)
along with gear manufacture and assembly errors:

F1 ¼ P1
2 cos aW

¼ bWCR e� d1 � y1 þ yB1ð Þ cos aW½ �;
� � � ;

Fi ¼ Pi
2 cos aW

¼ bWCR e� di � yi þ yBið Þ cos aW½ �;
� � � ;

FN ¼ PN
2 cos aW

¼ bWCR e� dN � yN þ yBNð Þ cos aW½ �;PN
iþ 1

Fi ¼ bW
PN
i¼1

Wi ¼ NWbW ;

9>>>>>>>>>=
>>>>>>>>>;

ð21Þ

where Fi is the normal force in meshing of the ith satellite with central gearwheels;
Pi is the load acting on the ith axis from the side of the bearing ring; Wi is the unit
load in meshing of the ith satellite with the stationary gearwheel and pinion; W is
the average unit load in meshing of satellites with sun pinions; N is the number of
satellites; aW is the pressure angle (this system of equations corresponds to the
equality of angles for internal and external meshing); CR is the specific rigidity of a
single-pair meshing (CR ¼ 0:075E); di is the initial mismatch of teeth (clearance) in
meshing of the ith satellite with gearwheels caused by errors of tangential

Fig. 10 Computer-aided
model of the carrier jaw
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arrangement of the axes and pitch of teeth (the clearance in the internal meshing is
equal to the clearance in the external one); bW is the working face width of the
satellite; yi is the displacement of the ith axis at the area of bearing mounting caused
by the axis bending, deformation of the carrier jaw and contact deformation of the
“axis—bearing ring” contact (yi ¼ y0i þ yhi þ 0:5pqi=CH , where qi is the average
unit load acting on the axis of the ith satellite); e ¼ const; and yBi is the dis-
placement of the ith satellite caused by the compliance of the rolling bearing
(accounting for variation of the bearing compliance within a wide range depending
on the load; let us assign its approximate value as yBi ffi 5qi

E ).
The initial mismatch of teeth in meshing of gearwheels with the most loaded

satellite is absent (d1 ¼ 0). Then, knowing the values di, corresponding to the
degree of accuracy of gear manufacture, we use Eq. (21) and determine the values
Fi; e and the factor on non-uniform load distribution for power flows
K ¼ Fmax=F ¼ Wmax=W .

Figure 11 represents the diagram of dependence of the factor of non-uniform
load distribution for satellites of the gear with excessive links (see Fig. 8) on
D ¼ dE=W ¼ bWdE=F and b ¼ b=l for N ¼ 3; aW ¼ 200; l ¼ d, bW ¼ l, d2 ¼
d3 ¼ d (the most unfavorable case with regard to load distribution).

According to the analysis performed and the diagrams plotted thereafter, the
compliance of cantilever axes leads to considerable reduction of non-uniform load
distribution for satellites. But for a small ratio of the carrier jaw thickness to the axis
diameter and cantilever length, it is possible to go beyond allowable values (see
Fig. 10) of stresses in the area of the “axis—carrier jaw” contact. It is also feasible
to reduce the negative influence of manufacture errors for planetary gears on load
distribution in meshing of gearwheels by applying satellites with complaint rims;

Fig. 11 Factor of
non-uniform load distribution
for three satellites versus the
value of relative initial
mismatch of teeth. Subscripts
1 for b ¼ 2; 2 for b ¼ 1:5; 3
for b ¼ 1; 4 for b ¼ 0:6
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however, the bending strength of this rim can become the limiting factor for the
load-carrying capacity of the gear and negatively influence its lifetime.

As for load distribution in meshing of gearwheels and the load-carrying capacity
of a mechanical drive, the planetary gear with the “floating” sun pinion, the fixed
rigid carrier and single-rim self-aligning satellites mounted on spherical bearings
(Fig. 12) is the most efficient. The compliance of this double-support axis of the
satellite is determined according to the design scheme shown in Fig. 13, where b is
the width of the carrier jaw, l is the half width of the bearing ring for the satellite,
and L is the half length of the span between the jaws of the carrier.

The unit load in the area of contact of the satellite axis and carrier jaw xðzÞ is
determined through Euler’s method according to the expression (19), and in the
area of bearing mounting on the axis, according to the formula

qðxÞ ¼ C5shðaxÞ sinðbxÞþC6chðaxÞ cosðbxÞ: ð22Þ

Constants of integration C1 � C6, which are components of Eqs. (19) and (22),
are determined according to statics equations and boundary conditions:

(1)
Rl
0
qðxÞdx ¼ 0:5P ¼ F cos aW ;

(2)
Rb
0
xðzÞdz ¼ 0:5P;

(3) for z ¼ b MðzÞ ¼ 0, and according to the equation of the deflected axis

x==ðbÞ ¼ 1:11
CHxðbÞ

SG
;

Fig. 12 Planetary gear with
self-aligning satellites and a
“floating” sun pinion
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(4) for z ¼ 0 MðzÞ ¼ Mð0Þ ¼ Rb
0
xðzÞzdz ¼ IE 1:11 xð0Þ

SG � x==ð0Þ
CH

h i
;

(5) bending moments at segments for z ¼ 0 and x ¼ l are inter-connected by the
equation

MðlÞ ¼ IE
q==ðlÞ
CH

� 1:11
qðlÞ
SG

� �
¼ 0:5PðL� lÞþMð0Þ;

(6) inter-relation between angular deformations of segments of the axis is as
follows:

� q=ðlÞ
CH

¼ x=ð0Þ
CH

þ Mð0Þ
IE

ðL� lÞþ 1:11
0:5P
SG

þ 0:5P L� lð Þ2
2IE

:

Tangential displacement of the satellite caused by deformation of its axis and the
contacting jaws of the carrier and bearing ring is

y ¼ xð0Þ
CH

þ qðlÞ
CH

þ q=ðlÞ
CH

ðL� lÞþ Mð0Þ
2IE

L� lð Þ2 þ 0:5P
3IE

ðL� lÞ3: ð23Þ

The factor of non-uniform load distribution for satellites is determined by
solving the system of Eq. (19), according to the displacement of the ith satellite yi
and above-assigned values of apposition of bearing rings yBi obtained from (23).

Results of this analysis are represented as diagrams of dependences K ¼
Fmax=F ¼ Wmax=W on the relative error H ¼ bWdE=F and the ratio of the half
length of the slot between the carrier jaws to the diameter of the satellite axis L=d

Fig. 13 Design scheme with
double-support axis of the
satellite
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for 0:5� b=d� 0:7; l=d ¼ 0:5; bw=L ¼ 1:8 and different numbers of satellites N
(Figs. 14, 15 and 16).

The diagrams correspond to the ratio between deviations of satellite axes from a
theoretically accurate position that is unfavorable for a gear with a “floating” sun
pinion: for N ¼ 5 d1 ¼ d2 ¼ d, d3 ¼ d4 ¼ d5 ¼ 0; for N ¼ 6
d1 ¼ d2 ¼ d3 ¼ d4 ¼ d, d5 ¼ d6 ¼ 0; N ¼ 7 d1 ¼ d2 ¼ d3 ¼ d4 ¼ d, d5 ¼ d6 ¼

Fig. 14 Factor of
non-uniform load distribution
for power flows versus the
relative error for N ¼ 5.
Subscripts 1 for L=d ¼ 1; 2
for L=d ¼ 0:7; 3 for fixed
axes and carrier; 4 for fixed
axes, carrier and bearings

Fig. 15 Factor of non-uniform load distribution for power flows versus relative error for N ¼ 6.
Subscripts 1 for L=d ¼ 1; 2 for L=d ¼ 0:7; 3 for fixed axes and the carrier; 4 for fixed axes, the
carrier and bearings
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d7 ¼ 0 (for an odd number of satellites, the clearances in three of them are elim-
inated by self-alignment of the sun pinion even at a low load).

An investigation conducted according to the above given method shows that, in
case of a “floating” sun pinion and unfavorable deviation of satellite axes from a
theoretically precise position, the load carrying capacity of a five-satellite layout
does not differ, practically speaking, from this parameter of a gear with six satel-
lites, since the increase in the load carrying capacity due to an increase in the
number of power flows is compensated for by the possible increase in the factor of
non-uniform load distribution in meshing of gears. The load carrying capacity of a
seven-satellite gear in the presence of its manufacturing errors exceeds the pointed
technical and economic parameters for five- and six-satellite layouts by approxi-
mately 20–30%, which should be considered when analyzing planetary gears.

4 Load Distribution Among Satellite Rows

In the case of a gear with a limited radial dimension, it is reasonable to make each
satellite with two or more self-aligning gearwheels that are not rigidly connected to
each other and that are fixed on cantilever axes (Fig. 17). In this layout, there is a
non-uniformity of load distribution for rows of satellites caused by both gear
manufacturing errors and torsion of the sun pinion under the action of a torque
applied to it.

The factor of non-uniform load distribution for rims of a double-row satellite is
determined by solution of a system of equations:

Fig. 16 Factor of non-uniform load distribution for power flows versus relative error for N ¼ 7.
Subscripts 1 for L=d ¼ 1; 2 for L=d ¼ 0:7; 3 for fixed axes and the carrier; 4 for fixed axes, the
carrier and bearings
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q1l
2 cos aW

¼ bWCR e� y1 þ yB1ð Þ cos aW½ �;
q2l

2 cos aW
¼ bWCR e� d� yu � y2 þ yB2ð Þ cos aW

� �
;

q1 þ q2 ¼ 2q ¼ 4W cos aW :

9=
; ð24Þ

Here, e ¼ const; bW is the face width of one rim of a satellite; d are clearances
between the teeth of the second rim of the satellite and central gearwheels (clear-
ances in both meshes are identical) at tight contact of the teeth in meshing of the
first satellite with central gearwheels; q1 and q2 are unit loads acting on the axes of
the satellite rims from the perspective of the side of the bearings; q is the average
unit load; l is the length of the cantilever part of the axis (see Fig. 9); yB1 and yB2 are
displacements of the satellite rims caused by compliance of the rolling bearings; y1
and y2 are displacements of the satellite rims caused by deflection of the axes and
contact deformation in areas of their contact with carrier jaws and bearing rings (yBi
and yi are determined in a manner similar to that of a gear with single-row satellites,
as shown in Figs. 8 and 9); and yu is the half difference of tooth displacements for a
sun pinion in its lateral cross-sections by symmetry planes for satellite rims due to
torsion:

yu ¼ 0:5urb ¼ 0:5rbb2W
IpG

0:875t2 þ 0:125t1ð Þ ð25Þ

where the unit moment of pinion torsion at sections of its contact with the i th rim of
the satellite is ti ¼ 0:5Nqirb

cos aW
; rb is the pinion base radius, Ip is the polar moment of

inertia of the pinion cross-section, u is the difference between angles of torsion for
cross-sections, and N is the number of rims of satellites in one row.

Equations are written for the case when the most loaded rim (the first one) of a
satellite is located from the side of torque input to the sun pinion (an unfavorable
case), and the load is distributed uniformly along the width of separate self-aligning
rims of the satellite.

Fig. 17 Planetary gear with
double-row satellites and a
“floating” sun pinion
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Figures 18 and 19 show diagrams of the factor of non-uniform load distribution
among rims of a double-row satellite KV ¼ q1=q depending on D ¼ dE=W at a
number of satellites in a row N ¼ 3; aW ¼ 200; l ¼ l=d ¼ 1; bW ¼ bW=l ¼ 1 and
different values of relative thickness of the carrier jaw b ¼ b=d and the relative
width of a sun pinion ba ¼ 2bW=da (da is the diameter of the pitch circumference of
the sun pinion).

Fig. 18 Factor of
non-uniform load distribution
among rims of a double-rim
satellite versus D for ba ¼ 1.
Subscripts 1 for b ¼ 2; 2 for
b ¼ 1:5; 3 for b ¼ 1; 4 for
b ¼ 0:6

Fig. 19 Factor of
non-uniform load distribution
among rims of a double-rim
satellite versus D for ba ¼ 3.
Subscripts 1 for b ¼ 2; 2 for
b ¼ 1:5; 3 for b ¼ 1; 4 for
b ¼ 0:6
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Figure 20 shows the assembly unit of satellites for a planetary gear with a
limited radial radius. Each satellite is constructed of two self-aligning gearwheels
mounted on cantilever axes.

5 Technical and Economic Parameters of Multi-Satellite
Planetary Gears

The important technical and economic parameters of a gear are its efficiency and the
relation of its mass to the moment at the output shaft. As numerous research works
have shown [1], including experimental ones (Fig. 21), the first of the pointed
parameters is rather high (about 95%), and the second one is determined by ana-
lyzing the contact strength for external gears that limits the load carrying capacity of
the drive, and accounting for the gear ratio i, it can be found according to the
following approximated relation:

M ¼
0:5pqKE 1þN 0:5i� 1ð Þ2 þ 4kb i� 1ð Þþ kh i� 1ð Þ2

h i
rHP=0:418ð Þ2N 0:5i� 1ð Þ sin aW cos aW

kg=Nm; ð26Þ

where q is the density of the gearwheel material; K is the factor considering the
non-uniform load distribution among satellites; rHP is the allowable contact stress
of the teeth; kb is the factor that considers the thickness of the rim of the fixed
gearwheel and the gear casing; and kh is the factor that considers the thickness of
the carrier jaws and gear caps.

Fig. 20 Assembly unit of
satellites for a planetary gear
with double-row satellites
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Figure 22 shows a diagram of the parameter M depending on the gear ratio and
the number of gear satellites at uniform load distribution in meshing of gearwheels,
kb ¼ 0:2; kh ¼ 0:6; the material of gear parts is steel, rHP ¼ 600 MPa. As we see,
the minimum value of the specific mass is i ffi 3:5. When the number of satellites is
increased, under other equal conditions, the mass-dimensional parameters are
improved. The most common configurations in practice are three-satellite layouts or
layouts with an odd number of satellites, since the load is distributed less uniformly
in the case of an even number of satellites.

The diagram in Fig. 23 is made for a gear with self-aligning satellites and a
“floating” sun pinion at L=d ¼ 0:7 (see Figs. 12 and 13); values of the
non-uniformity factor K for number of satellites N ¼ 5 and N ¼ 7 correspond to
the value of a relative error D ¼ 30, for N ¼ 3 the value K ¼ 1.

Fig. 21 Experimental apparatus for testing coaxial gears

Fig. 22 Relative mass of a gear versus gear ratio and the number of satellites in the absence of
manufacturing errors. Subscripts 1 for N ¼ 3; 2 for N ¼ 4; 3 for N ¼ 5; 4 for N ¼ 6; 5 for N ¼ 7
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The relations shown allow for selecting rational values of parameters of a
planetary gear providing close to uniform load distribution in meshing of gear-
wheels and, therefore, a high load carrying capacity of a mechanism at good
mass-dimensional parameters and high efficiency.
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