
Geometric Pitch Configurations—Basic
Primitives of the Mathematical Models
for the Synthesis of Hyperboloid Gear
Drives

V. Abadjiev and E. Abadjieva

Abstract The pitch configurations (circles and surfaces) are the basic primitives,
upon which the mathematical models for synthesis of spatial gears with crossed
axes of rotation are worked out. These mathematical models are created after the
approach to synthesis based on one common point of contact between the operating
tooth surfaces of the mating gears, this point being, at the same time, a common
point of the pitch configurations. This point is called a pitch contact point. When the
pitch circles and surfaces are in a static position, they are treated as geometric
characteristics of the designed gears, and determine not only the basic parameters of
their structure but also the dimensions of the gears’ blanks. If the pitch configu-
rations are put in a rotation according to a given law of motions transformation,
then the dimensions and the mutual position of the configurations serve to define
the dimensions and the longitudinal and profile geometry of the tooth surfaces
contacting at the pitch point. The study deals with the synthesis of geometric pitch
configurations for two main cases of three-link hyperboloid gears with externally
mating gears: with normal (traditional) orientation of the gears and with inverse
(opposite of the traditional) orientation of the gears.
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1 Introduction

The mathematical models oriented to the synthesis of spatial gears transforming
rotations between crossed axes (hyperboloid gear sets) ensure, in principle, a
possibility for their multi-parametrical and multi-criteria optimization. This is
explained by the existence of a large number of free parameters which take part in
the description of the rotations transformation process. This fact creates possibilities
for achieving desired technological and exploitation characteristics of the consid-
ered transmissions in their synthesis by looking for suitable combinations of the
free parameters. Some of these characteristics are: use of universal and simple
equipment for the manufacture of gears; high reliability and durability; low
vibration activity and noiselessness; high accuracy of realization of the motions
transformation law; high hydrodynamic loading capacity, etc. As a rule, the positive
technological and exploitation qualities of the spatial gear mechanisms result from
the higher requirements needed to obtain gears’ specific kinematical characteristics.
Everything mentioned up to now determines, to a great extent, the kinematical
character of the chosen approach to the synthesis and the kinematical character of
the created models [1–5].

The successful introduction of spatial gearings with new kinematical and
strength characteristics in technics depends directly on the creation of adequate
mathematical models for synthesis in accordance with the motion transformation
processes described by them.

The global structure of each mathematical model for synthesis of a three-link
spatial gear mechanism is determined by [6]:

• the purpose the gear-pair is designed for, from a viewpoint of the defined law of
motion transformation;

• the geometry and the character of the conjugation of the tooth surfaces (i.e.,
whether the tooth surfaces contact at a point or along a line);

• the technological reasons for a choice of the instrumental surfaces’ geometry
and of the kinematics of the technological process by which the active tooth
surfaces of the gear set are generated.

The performed and published researches [6–12] determine the authors’ opinion
about the types of mathematical models that are suitable for the synthesis of
hyperboloid gears. Below, we will summarize the basic specific characteristics of
one of these models.

The mathematical model for synthesis upon a pitch contact point is based on the
assumption that the necessary quality characteristics (that define concrete
exploitation and technological requirements to the active tooth surfaces) are guar-
anteed only at one concrete point P of the active tooth surfaces R1 and R2, and in its
close vicinity (see Fig. 1) [9]. This model can be applied for synthesis of spatial
gears with both point and linear contact. According to it, the common contact point
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P of the conjugate tooth surfaces R1 and R2 is the common point of the circles
Hc

i ði ¼ 1; 2Þ that are called a pair of pitch circles (Hc
1:H

c
2). The point P is called a

pitch contact point, the plane Tm, including the tangents to Hc
i ði ¼ 1; 2Þ at the point

P is a pitch plane, and m� m is the pitch normal to Tm at the point P. The mutual
position of these two circles in the fixed space in the case of traditional construc-
tions of hyperboloid gears with externally meshed tooth surfaces is illustrated in
Fig. 1. The diameters diði ¼ 1; 2Þ of Hc

i ði ¼ 1; 2Þ, together with the parameters
ai; hi; diði ¼ 1; 2Þ; d and aw, define their mutual position in the fixed space [in the
coordinate frames SiðOi; xi; yi; ziÞ; ði ¼ 1; 2Þ]. These parameters are related to the
definition of the longitudinal and profile orientations of the active tooth surfaces
Riði ¼ 1; 2Þ at the pitch contact point. The pair of rotation surfaces, including the
pair of pitch circles whose common normal at P is the straight-line m� m, are an
analogue of Hc

i ði ¼ 1; 2Þ. These surfaces are called pitch surfaces. The pair of
circles (Hc

1:H
c
2) is directly related with the evaluation of the pitch and of the tooth

module of the designed gear set. The parameters di; diði ¼ 1; 2Þ define the
dimensions of the reference coaxial rotation surfaces, i.e., the blank proportions of
the gears depend on them. The above parameters are used when the mounting
dimensions of the synthesized gear-set are calculated.

Thus, the mathematical model for synthesis based on a pitch contact point
ensures the solution of two basic problems:

• synthesis of the pitch circles/pitch surfaces;
• synthesis of the active tooth surfaces.

The necessary, and preliminarily-defined, geometric characteristics of the syn-
thesized gear set in a close vicinity of the pitch contact point are found by solving
these two problems together.

In conclusion, it should be pointed out that the approach to the synthesis of
spatial gears described here is based on the following kinematical condition: The
relative velocity vector V12 at the pitch contact point P has to lie both in the pitch
plane Tm and in the common tangent plane of the tooth surfaces R1 and R2

contacting at P, this vector being oriented along the common tangent to the lon-
gitudinal lines of the active tooth surfaces Riði ¼ 1; 2Þ.

Therefore, the considered approach to a basic synthesis upon a pitch contact
point gives a possibility for the mathematical model and the algorithm (worked out
on the model) to have a universal structure for all types of hyperboloid gears. The
algorithm can be developed and become an algorithm for an optimizing synthesis.
This is achieved through construction of criteria for control of the quality of
meshing in the vicinity of the pitch contact point, the criteria taking into account the
specifics of the geometry and of the technology of different hyperboloid gears in an
adequate way.
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2 Pitch Configurations: Essence and Definition

Here, we study the pitch configurations that are basic elements of the mathe-
matical models for synthesis of hyperboloid gears. These elements treat one actual,
but still disputable (in terms of content and terminology), part of the meshing theory.

In the theory of spatial gearing, the terms “primary surfaces” and “pitch sur-
faces” have been used at the same time [13–16]. In most cases, these terms (primary
and pitch surfaces) have been used for one and the same surfaces.

Professor F. Litvin gave the following definition of primary surfaces [13]:
“The primary surfaces H1 and H2 firmly connected with the movable links of the

mechanism are called primary ones if the following conditions are fulfilled: (a) the
rotation axis of the primary surface coincides with the rotation axis of the movable
link; (b) the surfaces H1 and H2 tangent at a given point P of the fixed space, and
the velocity of the relative motion of the links 1 and 2 at P lies on the common
tangent to the helical lines of the surfaces H1;H2 and Q (author’s note: Q is a family
of coaxial cylinders and the vector (helical) lines of the vector field of the relative

motion velocity V
ð12Þ

are situated on them). The second requirement means that
they have a common normal at the chosen point, and the velocity vector of the

relative motion V
ð12Þ

lies in the common tangent plane of H1 and H2. … If i12 ¼
constant the primary surfaces could be arbitrary surfaces of revolution only if:

(a) the axis of rotation i� i of Hi is an axis of rotation of i-th link; (b) V
ð12Þ

lies in

Fig. 1 Geometric and
kinematic interpretation of the
mathematical model for
synthesis based on a pitch
contact point: Hc

i ði ¼ 1; 2Þ are
pitch circles; Tm is a pitch
plane; m� m is a pitch
normal to Tm at the point P;
Riði ¼ 1; 2Þ are tooth surfaces
contacting at the point P
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the common tangent plane of H1 and H2. For i12 ¼ constant for the primary sur-
faces could be chosen random surfaces of rotation if: (a) the axis of rotation of
Hi i� i is the axis of rotation of the i-th link; (b) the common tangent planet to H1

and H2 contains V
ð12Þ

.
In the theory of gearing, without any restriction to consider small parts of H1 and

H2 in the vicinity of P, these surfaces are defined as a whole: they have a form of
cylinders or cones depending on the vector xðiÞ being parallel to the tangent plane
or not (author’ note: xðiÞ is the vector of rotation of the movable link i). Such
treatment is possible but not obligatory: H1 and H2 could be other surfaces of
revolution if they have a common tangent plane at the point P. For the practice, it is
convenient as primary surfaces to be chosen cylinders (for worms, cylindrical
gears) or cones (for conical and hypoid gears).

In order to avoid any misunderstanding it is necessary to note the following
principles:

(a) In the most common case the primary surfaces can not be identified with the
axoids; such identification is possible only in the case of gear-pairs with parallel or
intersecting axis, and is not permitted for gear sets with crossed axes of rotations;
(b) the tooth surfaces R1 and R2 do not coincide with the primary surfaces.
Although R1 and R2 tangent at the point P, the normal vectors eðRiÞ and eðHiÞ have
different directions. The common tangent plane of R1 and R2 at the point P does not

coincide with the common tangent plane of H1 and H2 but V
ð12Þ

belongs to each of
them; (c) the condition of the simultaneous tangent of H1;H2 and Q at the point P is
possible but not obligatory…”.

Later, Litvin (see [14, 16]) called the primary surfaces “operating pitch surfaces”
in accordance with their practical application in the design of spatial gears with
crossed axes. They differ from the axoids of the movable links [15]:

“The operating pitch surfaces represents: (i) two cylinders for a worm-gear and
helical gears with crossed axes and (ii) two cones for a hypoid gear drives. The
chosen surfaces that are called in the technical literature “operating pitch surfaces”
must satisfy the following requirements:

(i) The axes of cylinders (cones) have to form the same crossed angle and be at
the same shortest distance as for the designed gears.

(ii) The cylinders (cones) must be in tangency at the middle point of contact of
the surfaces of the gears to be designed.

(iii) The relative sliding velocity V12 at point P of tangency of the cylinders (cones)
must lie in the plane that is tangent to the cylinders (cones) and V12 must be
directed along the common tangent to the helices of the gears to be designed.
The term “helix” is a conventional one. Actually, we have to consider a
spatial curve that belongs to the operating cylinders (cones) and represents
the line of intersection of the gear tooth surfaces with the operating cylinders
(cones). For the case of a helical gear, a cylinder worm, this line of inter-
section is indeed a helix. For the case of spatial bevel gears and hypoid gears,
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the line of intersection is a spatial curve that differs from a helix and might be
represented with complicated equations.

(iv) The tangent point P of operating pitch cylinders (cones) will be simultane-
ously the point of tangency of gear tooth surfaces if the surfaces have a
common normal n� n at P and n� n is perpendicular to V12 …”

In [17], W. Nelson treated the pitch surfaces for one concrete type of spatial
gears—the Spiroid®1 ones. There, he used the terms “primary pitch cone” (the
coaxial cone limiting the tips of the Spiroid pinion threads) and “pitch surface” (an
envelope of the primary pitch cone in its relative motion with respect to the axis of
the second movable link of the Spiroid gear). On the common line of contact of
both pitch surfaces, he looked for that pitch contact point which had determined the
most suitable spatial curve used as a longitudinal line of the synthesized tooth
surfaces of the Spiroid pinion. This is an approach to the choice of such surfaces
that does not differ from those already considered.

From the survey conducted, it is established that the pitch configurations have
influence when they define such basic characteristics of the gear-pair as: the
structure and the geometry of the gear set, the longitudinal and profile orientations
of the active tooth surfaces of the gears, pitch value, the tooth module, the strength
loading of the gears, the shafts and bearings of the gear mechanism, the efficiency
coefficient, etc. All said illustrates the great significance of the development of this
scientific field of the theory of gearing from scientific, applied and methodological
viewpoints. The authors of the present paper have given up a part of their researches
to the mentioned topics in relation to the solution of problems connected with the
synthesis and design of spatial gears [6–12]. First of all, our researches have been
oriented to the precision of the content of the basic terms: pitch circles and pitch
surfaces. The exact definition of these notions gives us the possibility to precise the
applied mathematical models for synthesis of spatial gears on the one hand, and, on
the other hand, ensures possibilities for new ideas referring to the creation of
hyperboloid gears with new qualities, and new applications in technics, respec-
tively. It is natural that each study in this field will be effective when it leads to
creation of an adequate mathematical model, describing the status of the pitch
configurations in the process of the spatial transformation of rotations.

Analyzing illustrations in Figs. 1 and 2, and commented upon above, we can
conclude that:

• If the law of transformation of rotations i12 ¼ x1=x2 ¼ constant between fixed
crossed axes 1� 1 and 2� 2 (the shortest distance between them being aw ¼
constant and the angle between them—d ¼ \(x1,x2) ¼ constantÞ is given, and
if the position of a point P (treated as a point of contact of conjugate tooth
surfaces R1 and R2Þ in the fixed space is known, then the diameters and the
mutual position of the circles Hc

i ði ¼ 1; 2Þ are completely and uniquely deter-
mined. The circumferential velocity vectors Viði ¼ 1; 2Þ of the common point P,

1Spiroid and Helicon are trademarks registered by the Illinois Tool Works, Chicago, Ill.
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and the relative velocity vector V12 at the same point, (i.e., the plane Tm where
the coplanar vectors Viði ¼ 1; 2Þ and V12 lie), as the normal m� m to Tm at the
point P are determined in a unique way as well.

• In the case considered in [13], the primary surfaces H1 and H2 are not defined in
a unique way, since all surfaces of revolution, including the pair of circles
Hc

i ði ¼ 1; 2Þ, can be primary surfaces. The primary surfaces, discussed in [13],
are simple rotation surfaces (cylinders and cones) tangent at one only point P. In
practice, the algorithms for their synthesis define the diameters and the mutual
position of the circles Hc

i ði ¼ 1; 2Þ passing through the common point P.
• It is sufficient to know the mutual position of the crossed axes of rotation 1� 1

and 2� 2, and the position of the point P (as a common point of the tooth

Fig. 2 Pitch configurations:
Hc

i ði ¼ 1; 2Þ are pitch circles;
Hs

i ði ¼ 1; 2Þ are pitch
surfaces; Hiði ¼ 1; 2Þ are
primary surfaces with an
arbitrary geometry; P is pitch
contact point (pole of
meshing); Tm is pitch plane;
m� m is pitch normal
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surfaces R1 and R2) in the fixed space, in order for the circles Hc
i ði ¼ 1; 2Þ to be

completely and uniquely determined (as diameters and mutual position). The
plane Tm formed by the tangents to the circles Hc

i ði ¼ 1; 2Þ at the point P, as the
normal m� m to Tm at the point P are uniquely determined as well. The
mentioned upper parameters are geometric ones, since the circles Hc

i ði ¼ 1; 2Þ
do not “put in rotation” according to the law i12 ¼ x1=x2. After the law of
rotations transformation begins acting, the geometric parameters defining the
diameters and mutual position of Hc

i ði ¼ 1; 2Þ, considered together with the
kinematic parameters of the gear set, serve for determination of the longitudinal
orientation of the conjugate tooth surfaces Riði ¼ 1; 2Þ, of their pitches and of
the gear module.

All said up to now is resulted in this pair of circles to be called geometric pitch
circles [6–12]. Later, the geometric pitch circles will become pitch circles only, the
plane Tm—pitch plane, and the normal m� m to the pitch plane—pitch normal (see
Fig. 2).

Depending on the position of the pitch circles with respect to the plane Tm, we
differentiate:

– externally contacting pitch circles when Hc
i ði ¼ 1; 2Þ are situated in different

half-spaces with respect to Tm;
– internally contacting pitch circles when Hc

i ði ¼ 1; 2Þ are situated in one and the
same half-space with respect to Tm.

For the externally contacting configurations from Fig. 2, that written above
applies to the pitch surfaces, which are alternatives to the pitch circles.

The externally tangent pitch circles have a relation to the synthesis of hyper-
boloid gears with external meshing (hypoid, Spiroid, helical, wormgears, etc.). As a
hypothesis, the synthesis of internally tangent pitch circles can be treated as a stage
of the design of new types of spatial gears with internal meshing.

An alternative to the defined pitch configurations are the so-called kinematical
pitch configurations, consisting of kinematical pitch surfaces and kinematical pitch
circles, whose synthesis is based on the synthesis of pairs of isokinematical quasi-
hyperboloids [6]. The pitch surfaces, based on the synthesis of the hyperboloids
axodes of spatial gears with crossed axes, should participate in the class of kine-
matic pitch configurations. Analogically to the geometric pitch surfaces, they are
called pitch surfaces only [3–5]. The kinematic pitch configurations’ synthesis
depends on the preliminary given law of transformation of rotations
i12 ¼ x1=x2 ¼ constant, and the basic geometric parameters aw ¼ constant and
d ¼ constant (characterizing the structure of the motions transformer) while the
geometric pitch configuration synthesis does not take into account the rotations
transformation law. Thus, the combination of kinematic and geometric parameters
uniquely determines the pair of hyperboloids of revolution (the axodes that contacts
along the instantaneous axis of the relative helical motion), the geometric axes of
axodes coinciding with the axes of rotation of the hyperboloid gear shafts. In the
synthesis of kinematic pitch surfaces, this axis is a locus of the kinematic pitch
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points chosen to be poles of meshing of the synthesized hyperboloid gears. If a
point from the instantaneous helical axis is chosen as a common point of the tangent
tooth surfaces R1 and R2, then the synthesized gear-pair has a minimal sliding
velocity in a vicinity of this point (pole of meshing).

In this case, the process of optimization does not include the criterion that
controls the magnitude of the sliding velocity between the tangent tooth surfaces.
The kinematic pitch surfaces include the chosen conjugate parts from the axodes, as
simple surfaces of revolution (cones and cylinders) that are approximations of the
rotation hyperboloids at the chosen pole of meshing. If the design of the spatial
gears with crossed axes is based on geometric pitch configurations, the chosen pitch
contact point is defined by geometric parameters only. These parameters determine
the form and dimensions of the geometric pitch surfaces, and of the blanks of the
rotating links. Their synthesis does not depend on the sliding velocity at the points
of contact of the conjugate tooth surfaces. In this case, the optimization process is
being controlled by quality criteria, the sliding velocity here included.

3 Mathematical Model for Synthesis of Pitch
Configurations with Normal Orientation of
Hyperboloid Gears with External Meshing

Let two crossed axes 1� 1 and 2� 2 (being the axes of rotations of the movable
links of a three-link tooth mechanism) be given in the fixed space. Their mutual
position is defined by the angle d ¼ constant (the angle between the angular
velocity vectors x1 and x2 of the moving links ði ¼ 1; 2Þ) and the shortest distance
aw ¼ constant. The concrete study is performed when d 2 (0; p). Each pitch circle
Hc

i lies in a plane perpendicular to the axis of rotation i� i of the movable link i and
has a radius equal to the distance from the point P to the axis i� i. The pitch plane
Tm is determined by the tangents at the pitch contact point P to the circles Hc

1 and
Hc

2. The straight-line m� m is the normal to Tm at P.
The study is performed by means of the notations and the coordinate frames

S1(O1; x1; y1; z1) and S2(O2; x2; y2; z2), introduced in Figs. 3 and 4.
The dimensions and the mutual position of Hc

1 and H
c
2 are completely determined

by the cylindrical coordinates ai; ri; hiði ¼ 1; 2Þ of the contact point P in the systems
Siði ¼ 1; 2Þ and by the angles diði ¼ 1; 2Þ between the planes of Hc

i ði ¼ 1; 2Þ and
the normal m� m. The pitch surfaces Hs

i ði ¼ 1; 2Þ—analogs of the pitch circles are
illustrated in Figs. 3 and 4.

We represent the radius-vector O1P and the unit vector m of the normal m� m
by a1; r1; h1, and a2; r2; h2, and using aw and d. Thus, we get the following set of
equations:
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r1 cos h1 ¼ r2 cos h2 cos d� a2 sin d;

r1 sin h1 ¼ aw � r2 sin h2;

a1 ¼ r2 cos h2 sin d� a2 cos d;

cos d1 sin h1 ¼ cos d2 sin h2;

sin d1 ¼ sin d2 cos dþ cos d2 cos h2 sin d;

cos d1 cos h1 ¼ sin d2 sin d� cos d2 cos h2 cos d:

ð1Þ

Here, the upper signs refer to externally contacting pitch circles Hc
i ði ¼ 1; 2Þ and

pitch surfaces Hs
i ði ¼ 1; 2Þ when z2;C2 [ 0 (Fig. 3), and the lower ones—for exter-

nally contacting/tangent pitch circles Hc
i ði ¼ 1; 2Þ and pitch surfaces Hs

i ði ¼ 1; 2Þ
when z2;C2\0 (Fig. 4). Besides, each of the last three equations in (1) is a conse-
quence of the other two.

Fig. 3 Externally contacting
pitch circles Hc

i ði ¼ 1; 2Þ and
pitch surfaces Hs

i ði ¼ 1; 2Þ,
corresponding to hyperboloid
gears with external meshing
when z2;C2 [ 0
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Later, the study of the system (1) will be performed taking into account the

following geometric conditions: h1 2 0;
p
2

h i
; h2 2 0;

p
2

� i
; d1 2 0;

p
2

h �
; d2 2 0;

p
2

h i
;

aw [ 0; ri [ 0ði ¼ 1; 2Þ; ai � 0ði ¼ 1; 2Þ.
We will solve and study the set (1) of 5 independent equations with 10

unknowns d; aw; d1; r1; a1; h1; d2; r2; a2; h2. For this purpose, 5 among the
unknowns will be considered as free ones. Let them be d; aw; d1; r1 and a1. We will
look for those analytical conditions that the free parameters must fulfill so that the
system (1) might have a solution.

It is natural to study the following basic cases: d ¼ p
2
(the axes of rotations 1� 1

and 2� 2 are orthogonal); d 6¼ p
2
; z2;C2\0; d 6¼ p

2
; z2;C2 [ 0. The last two cases

treat non-orthogonal hyperboloid gears and are illustrated in Figs. 3 and 4,
respectively.

Fig. 4 Externally contacting
pitch circles Hc

i ði ¼ 1; 2Þ and
pitch surfaces Hs

i ði ¼ 1; 2Þ,
corresponding to hyperboloid
gears with external meshing
when z2;C2\0
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3.1 Synthesis of Orthogonally Tangent Pitch
Configurations: d ¼ p

2

Let us pay attention to the following cases that are essential for the practice:

3.1.1 d1 ¼ 0 and a1 6¼ 0

This case refers to orthogonal hyperboloid gears with external meshing when the
coaxial surfaces of the link i ¼ 1—reference, root and tip surfaces, are of cylin-
drical form.

System (1) has the following unique solution:

h1 ¼ 0; tanh2 ¼ aw
a1

; a2 ¼ r1; r2 ¼ aw
sinh2

; d2 ¼ p
2
; ð2Þ

in an arbitrary choice of aw; r1 and a1.
The parameters in (2) define the dimensions and the position of the pitch circles

corresponding to spatial high reduction gears of type Helicon® [18]. This is the
borderline case that separates externally and internally tangent geometric pitch
circles (Fig. 5).

3.1.2 d1 ¼ 0 and a1 ¼ 0

The solution of the set (1) is described with one more parameter d2, namely:

h2 ¼ p
2
; h1 ¼ p

2
� d2; a2 ¼ r1 sin d2; r2 ¼ aw � r1 cos d2: ð3Þ

For the existence of a solution, it is necessary for cos d2 � aw
r1
.

If aw [ r1, the upper condition is always fulfilled.

Fig. 5 Pitch configurations for the gears of type Helicon: a pitch surfaces Hs
i ði ¼ 1; 2Þ; b pitch

circles Hc
i ði ¼ 1; 2Þ; aw ¼ 100 mm; d ¼ 90�; d1 ¼ 0�; a1 ¼ 119:18 mm; r1 ¼ 31 mm; d2 ¼

90�; a2 ¼ 31 mm; r2 ¼ 155:58 mm
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Pitch configurations corresponding to one particular solution,

d2 ¼ 0; h1 ¼ p
2
; a2 ¼ 0; r2 ¼ aw � r1; h2 ¼ p

2
; ð4Þ

correspond to orthogonal worm gears or helical gears (Fig. 6).
Solution (4) of (1) is the only one for which the pitch contact point P is situated

on the common normal O1O2 of the crossed axes 1� 1 and 2� 2.
Solution (3) of set (1) of the form

d2 ¼ p
2
; h1 ¼ 0; a2 ¼ r1; r2 ¼ aw; h2 ¼ p

2
ð5Þ

defines the geometric characteristics of toroid gears whose pitch surfaces and circles
are illustrated in Fig. 7.

3.1.3 d1 [ 0

In this case, the condition for the existence of geometric pitch configurations is
a1 � (aw � r1) tan d1, and the solution to system (1) is:

cot h2 ¼ r1 tan d1 þ a1
aw

; sinh1 ¼ aw
r1 þ a1 cot d1

;

a2 ¼ r1 cos h1; cosd2 ¼ sin d1
cos h2

;

r2 ¼ aw � r1 sin h1
sin h2

:

ð6Þ

Fig. 6 Pitch configurations for orthogonal worm/helical gears: a pitch surfacesHs
i ði ¼ 1; 2Þ; b pitch

circles Hc
i ði ¼ 1; 2Þ; aw ¼ 100 mm; d ¼ 90�; a1 ¼ a2 ¼ 0 mm; d1 ¼ d2 ¼ 0�; r1 ¼ 30 mm;

r2 ¼ 69 mm
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Fig. 7 Pitch configurations for toroid gears: a pitch surfaces Hs
i ði ¼ 1; 2Þ; b pitch circles

Hc
i ði ¼ 1; 2Þ; aw ¼ 100 mm; d ¼ 90�; d1 ¼ 0�; a1 ¼ 0 mm; r1 ¼ 31 mm; d2 ¼ 90�; a2 ¼ 31 mm;

r2 ¼ 100 mm

Fig. 8 Pitch configurations for orthogonal hypoid/spiroid gears: a pitch surfaces Hs
i ði ¼ 1; 2Þ;

b pitch circles Hc
i ði ¼ 1; 2Þ; aw ¼ 100 mm; d ¼ 90�; d1 ¼ 5�; a1 ¼ 100 mm; r1 ¼ 31 mm;

d2 ¼ 83�; a2 ¼ 30:89 mm; r2 ¼ 139:57 mm

Fig. 9 Pitch configurations of a “common”wormgears: a pitch surfacesHs
i ði ¼ 1; 2Þ; b pitch circles

Hc
i ði ¼ 1; 2Þ; aw ¼ 100 mm; d ¼ 90�; d1 ¼ 30�; a1 ¼ 39:84 mm; r1 ¼ 31 mm; d2 ¼ 0�; a2 ¼ 0

mm; r2 ¼ 79:67 mm
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The parameters of the pitch configurations of orthogonal hypoid gears and gears
of type Spiroid [14] are calculated by the relations given in (6). The pitch surfaces
and circles are visualized in Fig. 8.

One particular solution of (6) is the case of “common” wormgears, when

a2 ¼ 0; h1 ¼ p
2
; tand1 ¼ a1

aw � r1
; h2 ¼ p

2
� d1; r2 ¼ aw � r1

cos d1
: ð7Þ

The pitch surfaces and circles of this type spatial gears are shown in Fig. 9.

3.2 Synthesis of Non-orthogonal Contacting Pitch
Configurations When d 6¼ p

2 and z2;C2\0

First, it should be pointed out that system (1) has a solution if d 2 0; p=2ð Þ, which
follows from the condition a2 � 0.

The unknown h2 is calculated by the formula

cot h2 ¼ r1 tan d1 þ a1ð Þ sin d
aw

: ð8Þ

To find h1, we use the equation

cos d� d1ð Þt2 � 2 cot h2 � cos d1 � t � cos dþ d1ð Þ ¼ 0; ð9Þ

where t ¼ tan
h1
2
.

Let us consider the following cases consecutively:

3.2.1 dþ d1 � p
2

In this case, it is necessary that a1 [ 0 or d1 [ 0 to be fulfilled.
If, additionally, the condition

a1 � aw cot d� r1 tan d1 ð10Þ

is satisfied, which presumes r1 � aw cot d1 cot d, then

tan
h1
2
¼ cos d1 cot h2 þ

ffiffiffiffi
D

p

cos d� d1ð Þ ; ð11Þ
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where D ¼ cos2 d1 sin2 d
a2w

r1 tan d1 þ a1ð Þ2�a2w tan2 d1 � cot2 d
� �h i

.

If the condition

a1 � aw cot d� r1 tan d1 ð12Þ

is fulfilled, then

tan
h1
2
¼ cos d1 cot h2 �

ffiffiffiffi
D

p

cos d� d1ð Þ : ð13Þ

If the equality dþ d1 ¼ p
2
is true, i.e., d ¼ p

2
� d1, then

h1 ¼ 0; d2 ¼ p
2
; r2 ¼ aw

sin h2
; a2 ¼ a1 cos d� r1 sin d ð14Þ

in condition r1 � a1 cot d. Equalities (14) are obtained from (15), and define the
pitch configurations of a non-orthogonal spatial face gear-pair (Fig. 10).

3.2.2 dþ d1 [
p
2

In this case, if a1 þ r1 tan d1 2 [aw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 d1 � cot2 d

p
; aw cot d], which supposes that

tan d1 �
ffiffiffi
2

p
cot d, then h1 is calculated by the equality (11).

But if a1 þ r1 tan d1 [ maxðaw cot d; aw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 d1 � cot2 d

p
Þ, then h1 is obtained

through (13).
For the calculation of the rest of the unknowns in the cases 3.2.1 and 3.2.2, we

use

Fig. 10 Pitch configurations: a pitch surfaces Hs
i ði ¼ 1; 2Þ; b pitch circles Hc

i ði ¼ 1; 2Þ; aw ¼
110 mm; d ¼ 75�; d1 ¼ 15�; a1 ¼ 100 mm; r1 ¼ 20 mm; d2 ¼ 90�; a2 ¼ 6:57 mm; r2 ¼
149:86 mm
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a2 ¼ a1 cos d� r1 sin d cos h1;

r2 ¼ aw � r1 sin h1
sin h2

; cosd2 ¼ cos d1 sin h1
sin h2

:
ð15Þ

3.3 Synthesis of Non-orthogonal Contacting Pitch

Configurations When d 6¼ p
2
and z2;C2 [ 0

3.3.1 d1 ¼ 0

Let consider the following two cases:
If a1 ¼ 0, then the solution to the set of Eq. (1) is in the form

h1 ¼ h2 ¼ p
2
; d2 ¼ 0; a2 ¼ 0; r2 ¼ aw � r1 ð16Þ

when the condition aw [ r1 is satisfied and if d 2 0;
p
2

� �
[ p

2
; 0

� �
.

Relations (16) describe the pitch surfaces and circles of non-orthogonal
worm/helical gears, as shown in Fig. 11. Only in this case of non-orthogonal hy-
perboloid gears, the common pitch contact point P lies on the common normal
O1O2 of the crossed axes 1� 1 and 2� 2.

If a1 6¼ 0, the solution to (1) is

cot h2 ¼ a1
aw

sin d; coth1 ¼ � a1
aw

tan d;

tan d2 ¼ � cos h2 tan d; a2 ¼ r1 cos h1 sin d� a1 cos d;

r2 ¼ aw � r1 sin h1
sin h2

:

ð17Þ

Fig. 11 Pitch configurations for non-orthogonal worm and helical gears: a pitch surfaces
Hs

i ði ¼ 1; 2Þ; b pitch circles Hc
i ði ¼ 1; 2Þ; aw ¼ 100 mm; d ¼ 45�; d1 ¼ d2 ¼ 0�; a1 ¼ a2 ¼

0; r1 ¼ 31 mm; r2 ¼ 69 mm
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The intervals for the unknowns involve the conditions d[
p
2
; a21 [ (r21 �

a2w) cot
2 d (the second condition is true if r1\awÞ.

In Fig. 12, you can see the pitch configurations of non-orthogonal hyperboloid
gears with a cylindrical pinion and a conical gear.

3.3.2 d1 [ 0

Now, we will pay attention to the following cases:

• Let d1 ¼ d� p
2
, which a priori involves d[

p
2
.

Then, the solution to the set of Eq. (1) is given by

cot h2 ¼ r1 sin d1 þ a1 cos d1
aw

; tan
h1
2
¼ sin d1

cot h2
;

cos d2 ¼ cos d1 sin h1
sin h2

; a2 ¼ r1 cos h1 sin dþ a1 sin d1;

r2 ¼ aw � r1 sin h1
sin h2

:

ð18Þ

Algorithm (18) describes the geometric pitch configurations of non-orthogonal
hypoid/Spiroid gearing. One concrete design is illustrated in Fig. 13.

The inequalities defined in the paper beginning

h1 2 0;
p
2

h i
; d1 2 0;

p
2

h �
; d2 2 0;

p
2

h i
; aw [ 0; ri [ 0 ði ¼ 1; 2Þ; ai � 0 ði ¼ 1; 2Þ

Fig. 12 Pitch configurations for non-orthogonal hyperboloid gears with cylindrical pinion and
conical gear: a pitch surfaces Hs

i ði ¼ 1; 2Þ; b pitch circles Hc
i ði ¼ 1; 2Þ; aw ¼ 100 mm;

d ¼ 100�; a1 ¼ 110 mm; d1 ¼ 0�; r1 ¼ 31 mm; a2 ¼ 49:25 mm; d2 ¼ 76�300; r2 ¼ 140:20 mm
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impose the following restrictions on the free parameters:
If aw [ r1, it is also necessary that a1 � (aw � r1) tan d1.
If aw\r1 it is necessary that a21 � (r21 � a2w) tan

2 d1.

• Let d1 þ d ¼ p
2
, i.e., d ¼ p

2
� d1.

From the last relation, it immediately follows that d 2 0;
p
2

� �
. Then,

cot h2 ¼ r1 sin d1 þ a1 cos d1
aw

: ð19Þ

In this case, the set of Eq. (1) has the following two solutions:

h1 ¼ 0; d2 ¼ p
2
; r2 ¼ aw

sin h2
; a2 ¼ r1 cos d1 � a1 sin d1 ð20Þ

which is possible if a1 � r1 cot d1;

tan
h1
2
¼ cot h2

sin d1
; d2 ¼ cos d1 sin h1

sin h2
; r2 ¼ aw � r1 sin h1

sin h2
; ð21Þ

a2 ¼ r1 cos h1 sin d � a1 cos d

if the condition a1 � aw � r1ð Þ tan d1 is true.
The cases below differ only in regard to the conditions imposed upon the

parameters d; aw; d1; r1 and a1 and the formula for the calculation of h1.

Fig. 13 Pitch configurations for non-orthogonal hyperboloid gears with conical pinion and gear
when d� d1 ¼ p

2: a pitch surfaces Hs
i ði ¼ 1; 2Þ; b pitch circles Hc

i ði ¼ 1; 2Þ; aw ¼ 100 mm;
d ¼ 95�; a1 ¼ 110 mm; d1 ¼ 5�; r1 ¼ 31 mm; a2 ¼ 40:10 mm; d2 ¼ 76�380; r2 ¼ 143:17 mm
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The remaining unknowns have been calculated by:

cot h2 ¼ (a1 þ r1 tan d1) sin d
aw

;

cos d2 ¼ cos d1 sin h1
sin h2

; r2 ¼ aw � r1 sin h1
sin h2

;

a2 ¼ r1 cos h1 sin d� a1 cos d:

ð22Þ

Let us describe the cases mentioned:

• If d\
p
2
; d1 þ d\

p
2
; aw [ r1; and a1 � (aw � r1) tan d1; then h1 is calculated by

(11).

• If d[
p
2
; d1 [ d� p

2
and a1 �maxð0; ðaw � r1Þ tan d1Þ; then h1 is received

using (13).

• If d[
p
2
; d1 [ d� p

2
and a1 �maxð0; ðaw � r1Þ tan d1Þ; then h1 is calculated

by equality (13).

• If d\
p
2
; d1 þ d[

p
2
; aw [ r1; a1 � (aw � r1) tan d1; and (r1 tan d1 þ a1)2 [

a2w( tan
2 d1 � cot2 d), then h1 is determined by means of (11).

Another variant of the pitch surfaces and circles of non-orthogonal hyperboloid
gears of type hypoid or Spiroid is shown in Fig. 14.

• If d[
p
2
; d1 [ d� p

2
; aw [ r1; a1 �ðaw � r1Þ tan d1; and (r1 tan d1 þ a1)2 [

a2w( tan
2 d1 � cot2 d), then h1 can be calculated by both (11) and (13).

The pitch configurations illustrated above (Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13 and
14) are obtained from the developed computer program. The coordinate system
Sðx; y; zÞ, which is shown in all figures, is a basic one. According to it, the location
of the coordinate systems S1 and S2 (in Figs. 3 and 4) of the corresponding pitch
configurations Hs

i and Hc
i ði ¼ 1; 2Þ is fixed. In the program created, visualization of

the coordinate systems S1 and S2 is not intended.

Fig. 14 Pitch configurations for non-orthogonal hyperboloid gears with conical pinion and gear
when d1 þ d[ p

2: a pitch surfaces Hs
i ði ¼ 1; 2Þ; b pitch circles Hc

i ði ¼ 1; 2Þ; aw ¼ 100 mm;
d ¼ 85�; a1 ¼ 110 mm; d1 ¼ 10�; r1 ¼ 31 mm; a2 ¼ 21:20 mm; d2 ¼ 83�210; r2 ¼ 148:77 mm
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4 Mathematical Model for Synthesis of Pitch
Configurations of Hyperboloid Gears with External
Meshing and Inverse Orientation of the Pitch
Configurations

The study is performed by the notations and the coordinate frames S1(O1; x1; y1; z1)
and S2(O2; x2; y2; z2) introduced in Fig. 15 [10]. The dimensions and mutual
position of Hc

1 and Hc
2 are completely determined by the cylindrical coordinates

ai; ri; hiði ¼ 1; 2Þ of the contact point P in the systems Siði ¼ 1; 2Þ, and by the angle
diði ¼ 1; 2Þ between the plane of Hc

i ði ¼ 1; 2Þ and the normal m� m. The analogs
of the pitch circles Hc

i ði ¼ 1; 2Þ, which are the pitch surfaces (cones) Hs
i ði ¼ 1; 2Þ

Fig. 15 Externally contacting pitch circles Hc
i ði ¼ 1; 2Þ and pitch surfaces Hs

i ði ¼ 1; 2Þ with
inverse orientation corresponding to hyperboloid gears with external meshing
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are illustrated in Fig. 2. The points of intersection C0
iði ¼ 1; 2Þ of the axes of

rotation i� iði ¼ 1; 2Þ and the plane Tm are tips of the pitch cones Hs
i ði ¼ 1; 2Þ.

Figure 15 is oriented to the synthesis of pitch configurations whose position in the
fixed space ensures the design of one special group of non-orthogonal hyperboloid
gears. There, the geometric pitch configurations, when they are with inverse orien-
tation in the fixed space, can be seen. This type of pitch configurations is characteristic
for special constructive types of non-orthogonal spatial gears, which allows for the
optimal bearing of both gears from a strength point of view. The geometric charac-

teristics: d[
p
2
; z2;C2 [ 0;\ C1C0

1;O1z1
� � ¼ 180�;\ C2C0

2;O2z2
� � ¼ 180� are

valid for this class of gears.
Representing the radius-vector O1P and the unit vector m of the normal m� m

by a1; r1; h1 and a2; r2; h2, and using aw and d, we get to the following set of
equations:

r1 cos h1 ¼ r2 cos h2 cos dþ a2 sin d;

r1 sin h1 ¼ aw � r2 sin h2;

a1 ¼ r2 cos h2 sin d� a2 cos d;

cos d1 sin h1 ¼ cos d2 sin h2;

sin d1 ¼ �ðsin d2 cos dþ cos d2 cos h2 sin dÞ;
cos d1 cos h1 ¼ sin d2 sin d� cos d2 cos h2 cos d:

ð23Þ

We will examine (23), taking into account the following geometric conditions:

h1 2 0;
p
2

h i
; h2 2 0;

p
2

� i
; d1 2 0;

p
2

h �
; d2 2 0;

p
2

h i
; aw [ 0; ri [ 0; ai � 0

ði ¼ 1; 2Þ:

Each of the last three equations in (23) is the consequence of the other two,
i.e., (23) is a set of 5 independent equations with 10 unknowns: d; aw; d1;
r1; a1; h1; d2; r2; a2; h2. Therefore, each solution to (23) is a function of 5 of them
(we will consider them as free ones). We suppose that the independent (free)
parameters are d1; aw; d1; r1 and a1. We will look for the analytical relations that
have to be fulfilled so that the set (23) can have a solution.

4.1 Synthesis of Non-orthogonally Contacting Pitch
Configurations with Inverse Orientation

After examining the set of Eq. (23), written in accordance with the symbols given
in Fig. 15, the following three groups of solutions are established:

112 V. Abadjiev and E. Abadjieva



4.1.1 d ¼ p
2
þ d1

Then, the solution to (23) is of the form

h1 ¼ 0; d2 [
p
2
; r2 ¼ aw

sin h2
; a2 ¼ r1 sin d� a1 cos d;

cot h2 ¼ a1 � r1 tan d1ð Þ sin d
aw

¼ a1 cos d1 � r1 sin d1
aw

:
ð24Þ

The condition for the existence of solution (24) is a1 � r1 tan d1. This solution is
illustrated in Fig. 16a.

4.1.2 d[
p
2
þ d1

In this case, the solution to (23) can be calculated by the formulae

cot h2 ¼ a1 � r1 tan d1ð Þ sin d
aw

;

tan
h1
2
¼ cos d1 cot h2 �

ffiffiffiffi
D

p

cos dþ d1ð Þ ;

a2 ¼ r1 cos h1 sin d� a1 cos d;

cos d2 ¼ cos d1 sin h1
sin h2

; r2 ¼ aw � r1 sin h1
sin h2

;

ð25Þ

where D ¼ cos2 d1 sin2 d
a2w

a1 � r1 tan d1ð Þ2 þ a2w cot2 d� tan d1
� �h i

.

The condition for the existence of solution (25) is a1 � r1 tan d1. This solution is
illustrated in Fig. 16b.

4.1.3 d[
p
2
; d1 ¼ 0

Now, the solution to the set of Eq. (23) for the case of pitch configurations with
inverse orientation is

cot h2 ¼ a1 sin d
aw

; tand2 ¼ � cos h2 tan d;

tan
h1
2
¼ cot h2 �

ffiffiffiffi
D

p

cos d
; a2 ¼ r1 cos h1 sin d� a1 cos d;

r2 ¼ aw � r1 sin h1
sin h2

;

ð26Þ
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Fig. 16 Pitch configurations with inverse orientation when Hs
1 is a rotation cone: a Hs

2 is a disc,
aw ¼ 100mm; d ¼ 100�; a1 ¼ 100mm; d1 ¼ 10�; r1 ¼ 30mm; d2 ¼ 90�; r2 ¼ 136:75mm; a2 ¼
46:91mm; b Hs

2 is a rotation cone, aw ¼ 100mm; d ¼ 110�; a1 ¼ 100mm; d1 ¼ 10�;
r1 ¼ 30mm; d2 ¼ 75�250, r2 ¼ 126:20mm; a2 ¼ 61:87mm

Fig. 17 Pitch configurations with inverse orientation when Hs
1 is a rotation cylinder and Hs

2
is a rotation cone, aw ¼ 100mm; d ¼ 100�; a1 ¼ 100mm; d1 ¼ 10�; r1 ¼ 30mm, d2 ¼ 75�540;
r2 ¼ 129:55mm; a2 ¼ 45:92mm
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where D ¼ cot2 h2 þ cos2 d.
The pitch configurations, shown in Fig. 17, are visualized using algorithm (26).

5 Conclusions

Considering one contact point P, which belongs to the conjugate tooth surfaces R1

and R2 as a common point of the geometric pitch circles Hc
1 and Hc

2, makes it
possible to understand the approaches applied to the construction of mathematical
models for synthesis of hyperboloid gears with both externally and internally
meshing. In this context, it is essential to remind that the geometric pitch circles are
used to define the longitudinal orientation of the tooth surfaces Riði ¼ 1; 2Þ con-
tacting at P. It has to be pointed once more that these circles can be elements from
the coaxial reference, root and tip surfaces. The surfaces, including the geometric
pitch circles, are called geometric pitch configurations or simply pitch configura-
tions. The pairs of geometric pitch circles and the pairs of geometric pitch surfaces
form the set of geometric pitch configurations. The reference surfaces of the gears
are often used as pitch surfaces in the practice of the synthesis of hyperboloid gears.
It is possible that one of the pitch surfaces coincides with the tip surfaces of one of
the gears. Then, the other pitch surface is an envelope of the first one, and includes
the second geometric pitch circle.

In conclusion, one and the same pair of pitch configurations can stay in the base
of the synthesis of different spatial gears with crossed axes of rotations, from the
viewpoints of both the form of the corresponding geometric pitch surfaces and the
realized law of rotations transformation.

The defined and synthesized geometric pitch configurations are basic primitives
of the worked out mathematical models oriented to the synthesis and design of
spatial gears with crossed axes of rotation.

The presented mathematical model for synthesis of inverse oriented geometric
pitch configurations of non-orthogonal hyperboloid gears continues the part of this
study that treats normally oriented pitch surfaces and circles related to the same
class of mechanisms. The presented algorithms and conditions for their existence
are a basic element from the process of design of non-orthogonal gear transmissions
with crossed axes. The non-orthogonal character of the structure of these gears,
together with the special orientation of their pitch configurations, creates conditions
for synthesis of spatial gear mechanisms with innovated qualities.
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