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Abstract The paper describes the problem of LTCA of a heavy-loaded multi-pair
spiroid gear. The algorithm for analysis of load distribution, accounting for elastic
and elastic-and-plastic contact in general and micro-roughnesses of contact surfaces
in particular, is proposed. Agreement of the algorithm at various accelerating
procedures is studied. Numerical examples that illustrate the efficiency of the
algorithm are given.

Keywords LTCA � Multi-pair heavy-loaded gear � Elastic and plastic contact

1 Introduction

It became common in both the theory and practice of gearing [4, 5, 8] to solve the
problems of assessing the load state and strength with account for the elastic
character of contact interaction. The traditional means of solution of this problem is
the finite element method (FEM) and the corresponding software. The following
inter-related problems of FEM application for analysis of loaded gears should be
mentioned:

– increase in error of computations for cases of assessing the stresses at tooth roots
for relatively non-smooth conjugations between tooth flanks and their roots;

– abrupt increase in the computational complexity (requirements for computa-
tional resources, accumulation of computational error because of rounding at
numerous operations, provision of convergence) for the case of a multi-pair
contact.

The assessment of stresses at tooth roots of multi-pair spiroid gears should be
related to these exact cases. As for gears of heavy-loaded, low-speed gearboxes, the
calculation values reach 1500–2000 MPa, even for maximum contact stresses that
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are uniformly distributed along lines of the conjugated contact. Concern over loss
of contact and/or the bending strength of teeth at stress concentration in these or
those areas due to the action of errors and deformations is natural. However, these
gears do successfully operate. Evidently, this is due to the rapid equalizing of loads
acting on teeth and to the reduction of corresponding stresses. The practice of
testing and operation proves this assumption: even after the first cycles of heavy
loading, one can observe plastically deformed areas of teeth (Fig. 1). Therefore,
consideration of this factor is very urgent for assessment of the strength of
multi-pair heavy-loaded spiroid gears.

As for the elastic-and-plastic statement of the problem, the above-mentioned
issues of FME application are revealed to an even greater extent. For this reason, we
developed the original iterative algorithm of analysis of the elastic and
elastic-and-plastic loaded contact in the spatial multi-pair gear; the present paper
considers its basic aspects.

2 Model of the Elastic Loaded Contact

As usual, let us consider that such an initial position of gear elements (accounting
for errors) is determined before the analysis, at which time the clearance between
teeth at a certain point or points is equal to zero (the presence or absence of the
common normal at this point is insignificant). At the remaining points of the flanks,
there is a clearance S0 that is greater than zero.

As is known, the loaded gear is a multiply statically indeterminable system with
unilateral links. As for the discretized representation of this system, the following
conditions should be fulfilled for cells of tooth flanks that participate in the load
transmission:

Fig. 1 Crumbling of apexes of spiroid gearwheel teeth after heavy loading
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P
D
Fk0m0vkm k0m0 þ S0km � Du2km ¼ 0;P

D
Fk0m0 r^2k0m0 � T2 ¼ 0;

8<
: ð1Þ

where S0km is the initial (prior to load application) clearance between the kmth cells
of surfaces for the position of links when the clearance at one of the cells is equal to
zero, mkm k′m’ is the value of the influence function determining the transmission of
surfaces at the kmth cells when applying the unit loads at the k′m′th cells, Du2km is
the relative transmission of the kmth cells as a result of the close approach of
elements at gear loading, and ř2k′m′ is the arm of action of the force Fk′m′ applied at
the k′m′th knot with respect to the gearwheel axis. The first km equations of system
(1) are the conditions of compatibility for the displacement of points of contacting
areas of teeth (in the model, they are the cells of the contact area), the latter equation
is the equation of equilibrium of torques developed by forces applied at cells and
the external torque T2 applied to the gearwheel.

The cells at which forces are applied are unknown prior to analysis; therefore,
neither the number of the first km equations of system (1), nor their specific form are
known either. That is why iterative algorithms of calculation [1, 2, 11, 12] were
given development implying the consequent specification of: the approaching of
elements, the contact area, and the values of discretely applied forces. The latter for
the elastic statement linearly influence the displacement of tooth points (by the
factors mkm k′m′).

Our developed algorithm for solving system (1) originated in works by
Zablonsky [13] and Sheveleva [11]; and it implied the following steps (see also
Fig. 2):

(1) The value of the initial approach of elements is assigned as Du2
(n) = Du2

(1)

(here and further within description of the algorithm, n is the number of the
iteration). The result is the formation of the area D(1) with the penetration of
teeth into each other.

(2) For the pointed area, the zero approach of discretely applied forces is
determined as Fkm

nð Þ ¼ Fkm
1ð Þ with account for the condition of force equi-

librium proportional to the formed penetrations S0km � Du2km
1ð Þ as follows:

f km
1ð Þ ¼ S0 km�Du2km

1ð Þ; ð2Þ

Fkm
ð1Þ ¼ T2f km

ð1Þ=
X
D

f km
ð1Þr^2km ð3Þ

The following steps of the algorithm are related to both the first and all the
subsequent nth iterations.

(3) Displacement of points due to application of forces and corresponding dis-
crepancies nkm of the first km equations of system (1) are determined:
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Fig. 2 Scheme of analysis of a multi-pair elastic loaded gear

48 E. Trubachev et al.



wkm ¼
X
D

Fk0m0 v1km k0m0 þ v2km k0m0ð Þ ¼
X
D

Fk0m0vkm k0m0 ; ð4Þ

nkm
nð Þ ¼ wkm

nð Þ þ S0 km�Du2 km
nð Þ: ð5Þ

(4) The average value of discrepancies within the area D reduced to the angle of
the gearwheel rotation is determined:

nav
nð Þ ¼ 1

I

X
D

nðnÞkm=r2km: ð6Þ

(5) The chosen value of approaching Du2
(n) for the next (n + 1)th iteration is

corrected by the value of the average discrepancy:

Du nþ 1ð Þ
2 ¼ Du nð Þ

2 þ nðnÞav: ð7Þ

(6) Discrepancies nkm are corrected for the new value of approaching Du2
(n+1):

~nkm
nð Þ ¼ S0 km þwðnÞ

km�Du2km
nþ 1ð Þ ¼ nkm

nð Þ�n nð Þ
avr2 km: ð8Þ

(7) The area D [the number km of equations of system (1)] is corrected.
After correction of the value of approaching (7), those cells (unloaded at the
nth iteration) should be added to area D, for which ~nkm nð Þ\0.

(8) Corrections DFkm
nþ 1ð Þ to discretely applied forces are determined.

This is the crucial step of the algorithm. The manner of changing the values
of forces determines the convergence of iteration to the solution. In our
opinion, in order to correct the forces, it is reasonable to use the moments of
discrepancies available at the moment. This issue will be considered in detail
below.

(9) Values of forces are determined at the following iteration:

f km
ðnþ 1Þ ¼ Fkm

ðnÞ þDFkm
nþ 1ð Þ: ð9Þ

(10) The area D is corrected again [the number km of equations of system (1)].
Cells with negative values of f km nþ 1ð Þ are excluded from it, while for the rest
of the cells, the values of forces are corrected in accordance with the con-
dition of their equilibrium:
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Fkm
ðnþ 1Þ ¼ T2f km

ðnþ 1Þ=
X
D

f km
ðnþ 1Þr^2km: ð10Þ

(11) The condition of reaching the value of correction of forces (step 8) of the
assigned allowable low value is checked. In the case of a negative result, we
return to step 3.

The end of the algorithm.
Let us consider the issue of the rational variation of values of discretely applied

forces within iterations. In particular, we study the classical method for a simple
iteration applied for solution of traditional large systems of linear equations (note
that the “peculiarity” of our case is that the number of equations in (1) can, in
general, be varied during analysis). Let us further assume conditionally that the first
I equations of system (1) will be solved at each iteration, having represented it as

N � F ¼ b; ð11Þ

where N is the matrix of the influence factors, F is the column vector of the
sought-after, discretely applied forces, and b is the column vector of free members
of the system, its coordinates being the values Du2km − S0km (therefore, the value
Du2km is temporarily considered to be constant). Discrepancies in equations of
system (11) should be reduced to a minimum. It should be accounted for that, in
general, the matrix N is unsymmetrical, since the compliance of various areas of
teeth is different, for example, it is increased when approaching the edges (faces or
apexes) of teeth and it is decreased closer to the recess (tooth root) [1, 2, 6], thus
imposing limitations for choosing certain efficient methods of solution of such large
systems of equations.

The method of simple iteration for solving system (11) implies its reduction to
the form

F ¼ B � Fþ c: ð12Þ

In this case, the solution is found to be the limit of the sequence

Fðnþ 1Þ ¼ B � FðnÞ þ c: ð13Þ

In the simplest case, the basis for correction of F can be the column vector n of
discrepancies of Eq. (11) obtained at the previous iteration

F nþ 1ð Þ ¼ F nð Þ�tðnþ 1Þn nð Þ ¼ F nð Þ�tðnþ 1ÞðN � F nð Þ�bÞ: ð14Þ

Equation (14) is reduced to the form (13) if we accept that
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B ¼ E� tðnÞN; ð15Þ

where E is the unit matrix. In the general case, the scalar parameter t nð Þ can be

replaced by the matrix T(n) with the diagonal consisting of factors t nð Þ
km that are

suitably chosen for the kmth components of F and the remaining cells are zero:

F nþ 1ð Þ ¼ F nð Þ � T nð Þ � n nð Þ: ð16Þ

Let us call the iteration process in which t(n) (T(n)) does not change at iteration a
stationary one; otherwise, we deal with a non-stationary process.

The iteration process (14) can be given a reasonable physical essence: for the
cells in which nkm

(n) > 0 (a clearance appeared at iteration), the increment of the force
at the following iteration must be negative (the current value of the force causes too
large a deformation, which is why a clearance appears); otherwise (if there is a
penetration, that is, nkm

(n) < 0), the increment of the force must be positive. The
iteration relations for the correction of forces proposed in [2, 11] can be reduced to
the following form at the next iteration:

Fðnþ 1Þ
km ¼ FðnÞ

km � sI

wðnÞ
km þ S0km

� � ~nðnÞkm ; ð17Þ

Fðnþ 1Þ
km ¼ FðnÞ

km � sIIP
k0m02D

mkmk0m0
~nðnÞkm : ð18Þ

We proposed the following, more simple and, as will be shown below, rather
efficient iteration relation for the correction of forces:

Fðnþ 1Þ
km ¼ FðnÞ

km � sIII
mkm

~nðnÞkm ; ð19Þ

factors s/mkm of which are components of the vector of parameters T(n). Another
non-crucial correction that considers the feature of the algorithm stated above is
introduced here: having defined the method for correcting the value of approaching
Du2 and the area D at the next iteration in steps 6, 7 and 8, it is better that we use
the column vector ~n of the corrected discrepancies (8).

The physical meaning of relation (19) can be explained as: the (n + 1)th
increment of the force for compensation of “penetration” or “clearance” (appearing
within the calculation at the nth iteration) depends on the elastic properties of the
loaded system, that is, the more the system reacts to the change of load at this step
(the factors of influence are greater at the denominator), the less the increment of
the force must be.

We considered the convergence of the above given iteration algorithm for dif-
ferent parameters s by the example of the conjugated spiroid gear of a heavy-loaded
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low-speed gearbox with a loading torque of 2000 Nm. The basic parameters of the
test gear are given in Table 1.

Figure 3 shows the diagrams of variation of numerical parameters of the analysis
when applying relations (17)–(19) within the iteration cycle. As can be seen, the
parameters can be arranged as follows with regard to the velocity of specification:
approaching, discrepancies, discretely applied forces.

We considered the behavior of a stationary iteration process for different values
of parameters s. The main results are shown in Fig. 4. As was expected, when
decreasing the values sI,II,III, the velocity of convergence is decreased; and when the
above given values are increased, the algorithm begins diverging—first locally and
then, as a rule, globally.

As can be seen, the optimal parameter s can have a very wide range of values. In
this context, it is desirable to have a more versatile parameter that regulates the
velocity of convergence. In order to get it, let us consider the possibilities of a
non-stationary iteration process for which we will use information on the variation
of discrepancies at the last iteration; namely, let us assume that:

– this variation depends on the parameter s linearly:

DnðnÞmean sq:

sðnÞ
¼ Dnðnþ 1Þ

mean sq:

sðnþ 1Þ ; ð20Þ

where Dnðn;nþ 1Þ
mean sq: ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
DðnÞ nðn�1;nÞ

km � nðn;nþ 1Þ
km

� �2
=NðnÞ

D

r
is the mean square varia-

tion of discrepancies at the nth ((n + 1)th) iteration;

– there is a certain desired value of V of the relation. At first sight, it is desirable to
assign a big relation, however, as the results shown in Fig. 5 prove, there is a
certain improvement of system (1) that is limited for solution of the elastic
system; and it is obtained at two neighboring iterations:

nkm
nþ 1ð Þ ¼ nkm

nð Þ=V : ð21Þ

Table 1 Basic parameters of the test gear

Center distance (mm) 60

Axial module of the worm (mm) 2.75

Gear ratio 46:1

External diameter of the spiroid worm (mm) 42

External/internal diameters of the spiroid gearwheel (mm) 175/138

Factors of the addendum/dedendum 1/1.2

Profile angles of the right/left flanks 10°/30°
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One can obtain, as a result,

sðnþ 1Þ ¼ sðnÞ 1� 1
V

� �
nðnÞmean sq:

DnðnÞmeansq:

: ð22Þ

–– – left (concave) side;      –– – right (convex) side
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Fig. 3 Convergence of the algorithm for different iteration relations: 1, 2, 3 correction of forces
with regard to (17–19), respectively
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The efficiency of the applied procedure is illustrated by the results of the test
calculations shown in Fig. 5. As can be seen, comparatively close optimal values of
the parameter V are obtained: 1.6–1.8, providing, in this case and as a rule, better
convergence than that for the stationary process.

Specific extrapolation (20) of the behavior of discrepancies at the nth iteration to
the future behavior of discrepancies obtained at the (n + 1)th iteration is a rather
contradictory procedure. The greater the specification obtained at a certain iteration

τIII = 4 τIII = 5

0 50 5

0 50

τII = 100 / 150 τII = 150 / 200

(а) stationary process with application of the relation (17)
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Fig. 4 Convergence of the algorithm for different parameters of s (the nominator of the value is
for the left flank, the denominator is for the right flank)
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(configuration of discrepancies will be changed more significantly, correspond-
ingly), the less the expectation that the tendency obtained at this iteration will be
further kept. No worse and sometimes better results can be obtained when per-
forming the next but one iteration with small values of factors s for more precise
assessment of the velocity of convergence. Performance of these, at first sight, idle
iterations allows for forecasting the behavior of discrepancies and, correspondingly,
for succeeding in the velocity of convergence.

(c) non-stationary process with application of the relation (19)

V = 1.6 V = 1.7

V = 1.7 / 1.6 V = 1.8 / 1.7 

(а) stationary process with application of the relation (17)
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Fig. 5 Convergence of the algorithm of the parameter s at regulation by (22)
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3 Assessment of the Influence Function of Teeth
and Threads

As was stated above, the considered solution of the problem of searching for load
distribution in the gearing is based on discretization of the elastic system, its
equilibrium state being described by Eq. (1). An important component of the part of
this system of equation which determines its solution and participates in imple-
mentation of the iteration algorithm is the influence function mkm k′m′. This function
reflects the reaction of the position of cells that form a continuous flank of the tooth
(thread) on the external action by the value of 1 N in one of them. Traditionally,
two components of the influence function are singled out: contact and
bending-and-shearing (here and further, the subscript 1 indicates the relation of the
parameter to the worm thread, and the subscript 2 is for the gearwheel tooth):

m1;2 ¼ mj1;2 ~x;~yð Þþ mu1;2 ~x;~yð Þ: ð23Þ

Plotting of the influence functions has been performed within the coordinate
systems shown in Fig. 6; for each of them, the counting of the tooth height is done
along one of the coordinate axes, and the counting of the tooth length is done along
the other one. The initial surface and its unfolding have a common point C which is
the center of unfolding: for the gearwheel tooth, this point is at the intersection of
the mean cylinder and the pitch surface of the gear rim; for the worm thread, it is at
the pitch cylinder.

3.1 Contact Component of the Influence Function

The classic solution of the problem of assessing the contact displacements at the
point i(x, y) due to the arbitrarily k(x′, y′) applied unit normal force is the
Boussinesq relation for the semi-space:

m x; yð Þ ¼ a
r
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2

q
; a ¼ 1� l2

pE
: ð24Þ

The main and obvious difficulty of applying this function within the following
software implementation for the considered approach is the tendency of its value to
infinity when considering the deformations in the vicinity infinitely close to the
loading point.

The second feature of its application to the analysis of the loaded contact is that
teeth have finite dimensions comparable with the dimensions of contact areas. That
is why the influence function should additionally consider the closeness of the apex
and face edges where the compliance is higher, and also recesses at their roots,
where the compliance is conversely lower [10]. We have taken the solutions
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obtained in [2, 10] as the basis and augmented them with regard to peculiarities of
the geometry of the spiroid gear:

mj1 ~x;~yð Þ ¼ 1� l21
� �

= 2rE1ð Þ� � � B1 þB2 þB8ð Þ; ð25Þ

mj2 ~x;~yð Þ ¼ 1� l22
� �

= 2rE2ð Þ� � �X8
j¼1

B0
j; ð26Þ

for r2j � r2 B0
j ¼ 1� 2

p arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j =r2 � 1

q� �
;

for r2j \r2 B0
j ¼ 1;

(
j ¼ 1; 7

for r28 � r2 B0
8 ¼ �1þ 2

p arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r28=r

2 � 1
p� �

;

for r28\r2 B0
8 ¼ �1;

( ð27Þ

~xmin ¼ ~yp tanðWÞ; ð28Þ

flank of the worm thread

boundaries of the thread 
within unfolding of the 
coordinate system 

boundaries of the tooth within 
unfolding of the coordinate sys-
tem 

flank of the gearwheel tooth

y~

O

x~

y~
x~

yx ~,~

yx ~,~

Fig. 6 Coordinate systems
for plotting the influence
function
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where rj is the distance from the point i of the displacement measurement to the
point k of load application (j = 1) and its jth mirror-like image given in Figs. 7 and
8, accounting for the oblique boundary of the tooth ð~xminÞ.

Relations (26)–(28) given above allow for assessing the contact displacements
with account for the closeness of the tooth and thread apexes, their roots, and two
faces of the tooth, one of them having massive basis outside the tooth (Fig. 9). Note
here that, similar to the traditional procedure [2, 10, 13], we assume that the
convexity (concavity) of the tooth flank does not influence the character of the
contact deformations (at least within those tooth areas where these deformations are
significant), and that the difference of angles between the tooth flanks on one hand
and the faces, apexes and root on the other hand, from the value of 90°, does not
significantly influence the values and character of the contact deformations.

h

x~

kx~

ix~

ky~
iy~

y~

i

k1

k2k4

k3 

k8 k5 

O

max'~x

αk7

k6

αcos/~
iy

αcos/~
ky

min
~x

Fig. 7 Definition of contact displacement at the point i for load application at the point k on the
gearwheel tooth flank

x~

kx~
ix~

iy~
ky~

y~ k2

k1

k8

i

Fig. 8 Definition of contact
displacement at the point i for
load application at the point
k on the flank of the spiroid
worm thread
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Accounting for the influence of both faces is necessary when the tooth length is less
than 9 modules (the value is obtained on the basis of numerical research of tooth
compliance); this is the length at which the tooth curvature can be neglected. In
other cases, the factors B1, B2 and B6 or B7 and B8 should be excluded, depending
on which of the faces ends up being closer to the considered point.

3.2 Influence Function of the Bending and Shearing
Compliance

Prof. E. Airapetov proposed, in [1], the model of the bending displacement of teeth
as being

w x; yð Þ ¼ K xð Þ � K yð Þ; ð29Þ

where K(y) is the function characterizing the variation of displacement (in this
context) along the height; and K(x) is the function characterizing the variation of
displacement along the length (it is constructed on basis of the Fourier composi-
tion). After numerous experimental investigations in the field of gear couplings,
planetary and double-enveloping worm gears, this method has been developed up
to the discretely continuous model of the tooth with the elastic root. We have
augmented this model with account for the tooth geometry features for a spiroid
gear, and the model ended up taking the following form:

mu1 ¼ h3 cos2 a=pD1
� �

k1xkykd; ð30Þ

mu2 ¼ h3 cos2 a=pD2
� �

k2xkyklkR; ð31Þ

А B

Fig. 9 Areas A and B of
different rigidity of the tooth
root
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ky ¼ ky2 1þ ky1~Y
2 ~Yk � ~Yi=3
� �	 


for 0� ~Y � ~Yk;

ky ¼ ky2 1þ ky1~Y
2
k

~Yi � ~Yk=3
� �	 


for ~Yk � ~Y � 1

(
; ð32Þ

k1x ¼ e�bD~X cos bD~Xþ sin bD~X
� �

; ð33Þ

k2x ¼ e�bD~X cos bD~X þ sin bD~X
� �þ kx1e

�bkx2 D~Xþ ~Xkð Þ cos bkx2D~X

þ kx3e
�bkx4 D~X þ 2~Xkð Þ � cos bkx4 D~X þ 2~Xk

� �� sin bkx4 D~Xþ 2~Xk
� �	 


;
ð34Þ

kl ¼ 1þ kl1 h=lð Þkl2 ; ð35Þ

kR ¼ 1� kR1 Sef 2=R
� �kR2 ; ð36Þ

kd ¼ 1þ kd1 h cos c1=df 1
� �kd2 ð37Þ

~Yi ¼ ~yi=h;D~X ¼ ~Xi � ~Xk

�� �� ¼ ~xi � ~xkj j=h;
~Yk ¼ ~yk=h; ~Xk ¼ ~xk=h;

: ð38Þ

Relative dimensionless coordinates ~X and ~Y of the center of the cell i at which
the displacement is calculated and cells k of force application are counted from the
nearest face for a tooth and from the center of unfolding for a thread. The particular
case of the factor kd is its equality to 1 at an infinitely large diameter of the worm
solid and the helix angle of the thread equal to 90°; this corresponds to the problem
of an infinitely long plate with an elastic root loaded by a concentrated force.

Numerical simulation has been carried out to specify the type of relation and
numerical value of factors which are components of (30)–(38). Simulation was done
using the finite element method, and it implied the consequent stamp loading of
flanks at their different points, singling the results of contact components out of the
obtained results, the components being calculated in accordance with relations
(25)–(28), and the consequent approximation of the remaining bending and
shearing displacements. An example of these calculation results at loading in the
center of the tooth is given in Fig. 10. It was established after the simulation that:

(1) as expected (see Fig. 9), the compliance of the “tooth heel” (the area adjacent to
the external diameter of the gearwheel) is higher than the compliance at the
center of the unfolding by a factor of 8 when loading along the left flank; and
by a factor of 1.7 when loading along the right flank. These values for the
“tooth toe” (the area adjacent to the internal diameter of the gearwheel) are 1.4
and 2.7, respectively (Fig. 11);

(2) elastic displacements at thread flanks decrease down to small values at a dis-
tance 1/8–1/4 of the thread pitch (smaller values are for cases with big diam-
eters of the worm solid);
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(3) factors which are components of (28)–(36) have the following values (they
turned out to be different for the opposite name flanks due to the asymmetry of
teeth in a spiroid gear) for the gearwheel tooth:

kR1 ¼ 10; kR2 ¼ 2; Sef 2 ¼ 0:97 � Sf 2 Sa2=Sf 2
� �0:2

;

0

47101417212427313539
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47101417212427313539

(a)

(b) ix~ , mm 

Fig. 10 Bending- and-shearing displacements of a tooth when loading the left (a) and right
(b) flanks at the center C of the tooth
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– for the left loaded flank:

b ¼ 1:18; kl1 ¼ 18; kl2 ¼ 3:2;

ky1 ¼ 0:063þ 0:0733 � ~Yk; ky2 ¼ 7:036þ 4 � ~Yk;

at the toe end:

ix~ , -1-2-3 1 20

theor. av

theor. av

3

6

9

1

kx

kx

2

1

ix~ , -1-2-3 1 20

(a)

(b)

Fig. 11 Variation of the bending compliance along the tooth (loading of the left (a) and right
(b) flanks)
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kx1 ¼ 4:86; kx2 ¼ 2:08; kx3 ¼ 1:4; kx4 ¼ 1:2;

at the cap end:

kx1 ¼ 0:11; kx2 ¼ 0:25; kx3 ¼ 1:5; kx4 ¼ 1;

– for the right loaded flank:

b ¼ 1:28; kl1 ¼ 21; kl2 ¼ 3:7;

ky1 ¼ 0:061þ 0:0795 � ~Yk; ky2 ¼ 7:742þ 1:87 � ~Yk;

– at the toe end:

kx1 ¼ 1:25; kx2 ¼ 0:9; kx3 ¼ 2:1; kx4 ¼ 1:9;

– at the cap end:

kx1 ¼ 0:6; kx2 ¼ 0:08; kx3 ¼ 2:0; kx4 ¼ 1:0:;

for the worm thread:

– for the left loaded flank:

b ¼ 1:27; ky1 ¼ 0:0632þ 0:1548 � ~Yk; ky1 ¼ 10:124� 1:9345 � ~Yk;

kd ¼ 1þ 3:7 h cos c1ð Þ=df 1
� �2

;

– for the right loaded flank:

b ¼ 1:2; ky1 ¼ 0:1206þ 0:1464 � ~Yk; ky1 ¼ 9:408þ 2:2024 � ~Yk;

kd ¼ 1þ 2:9 h cos c1ð Þ=df 1
� �2

:

Note that application of the finite element analysis is preliminary, a sort of
adjusting procedure; its results are valid for a variety of investigated gears, and the
main algorithm for assessing the loading state of a multi-pair gear is carried out
based on approximating relations.
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4 Consideration of Plastic Deformations

First of all, we consider such a level of gear loading and such distribution of contact
stresses (established after the first loading cycles) for which contact contortion is
not continued (is not progressed). Evidently, a situation of the hyper-loading of a
gear is possible when the loading torque and contact stresses are so high that
contact contortion at the tooth flanks continues developing after each loading cycle
(other fractures are also possible). Though this important case should be detected in
calculations, our considered quantitative analysis of the loaded contact does not
cover this case.

Putting it all aside, one can single out two statements of the problem of the
loaded gear analysis:

– the geometry of the contact flanks is known, and such a load distribution is
determined that provides conditions of equilibrium and displacement compati-
bility; this is practically the analysis of an elastically loaded gear in a pure form;

– load distribution is known; the geometry of the flanks is to be determined,
providing conditions of equilibrium and displacement compatibility; it can be,
for instance, synthesis of the tooth flanks in accordance with the assigned law of
force distribution.

The considered problem of analysis of an elastic and plastic loaded gear is a sort
of combination of these two problems: there are areas of elastic contact and areas of
elastic-and-plastic contact in such a gear, for which the geometry of the flanks
(plastic deformations) should be selected in accordance with the assigned limiting
contact stress.

Four types of cell on the loaded teeth are singled out in a discretized model of a
loaded gear:

– cells of the first type, in which stresses are so high that contact contortion covers
these cells completely; one can consider that the initial micro-roughnesses
become completely contorted in this case;

– cells of the second type, in which plastic deformation is specific only for apexes
of micro-roughnesses;

– cells of the third type, for which the elastic deformation takes place;
– cells of the fourth type, which do not take part in load transfer.

When loaded elements are rotating, the maximum part of the plastic deformation
is displaced along the contact flanks, together with the contact areas, changing them
irreversibly (changing the coordinates of points, “drowning” the points into the
“tooth solid”). At the consequent loading cycles, the contact surfaces (that are the
final object of analysis) will have this very state: changed not only close to the
specific considered contact area, but also along the significant part of the tooth
flank. That is why the first assessment of contortion cannot be precise: cells that are
not contorted, or even loaded at this phase of meshing, will probably be among
those contorted at the next phase when the contact area is displaced, with the
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contorting load definitely appearing there. This consideration will certainly influ-
ence the stress distribution and, consequently, the conditions for the presence of
contorted cells and the value of contortion in the analysis. Therefore, in order to
specify the set of contorted cells and the values of the simulated contortion for
them, another cycle of iterations (external with regard to the algorithm of the load
distribution analysis) should be introduced; and it should be carried out after the
analysis of load distribution along the whole flank of teeth and threads. Meeting
these requirements means repetition of a relatively time-consuming analysis for a
rather large (infinitely large at the extreme) number of meshing phases. An alter-
native can be consideration of a relatively small number of phases with the gen-
eration of contortion areas on tooth flanks (sets of points with coordinates being
changed at simulation of contortion). After that, approximation of the maximum
values of simulated contortions in cells can be carried out. Such an approach is
demonstrated in Fig. 12.

Nevertheless, in our opinion, the additional external cycle of iterations is too
time-consuming. Calculation of the plastic deformation of contact flanks can be
added directly to the algorithm described above for load distribution analysis; in
this case, the algorithm is supplemented with the following features (Fig. 13):

– after initial assessment (or beginning with a certain iteration, that is, after
obtaining a rather precise distribution of forces) of the contact area, the value of
elements approaching and the values of discretely applied forces, the type of
each loaded cell is determined; for cells of the first type, the value of contortion
is determined (see below);

– the following values are corrected in accordance with the values of discrepan-
cies obtained at each consequent iteration:

areas of 
contortion

areas of 
contortion

line of approxima-
tion of contortion 

Fig. 12 Approximation of
plastic deformation on the
tooth flank
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for cells of the first type, the value of contortion;
for cells of the second and third types, the values of forces;

– relation of the cell to one or another type can vary:

to contorted ones (type one), on exceeding the allowable limit of the design
stress;
to elastically deformed ones (types two and three), on achieving the negative
value of contortion.

0. Approach of elements without load

1. First approximation for approaching of Δϕ2
(1) and the contact area D(1)

2. First distribution of forces proportionally to penetrations

3.-7. Assessment of displacements due to forces, discrepancies, approach-
ing and the area D

8-10a. Correction of discretely 
applied forces. Contact stress 
analysis. Correction of the set 
of the type of cells. Correction

of the area D

11. Check of the condition for achieving the assigned accuracy of cal-
culations

begin

end

8-10b. Correction of contor-
tion. Correction of the set of 
cells of the 2nd and 3rd types

for cells of the 2nd and 3rd types for cells of the 1st type

Fig. 13 Scheme of consideration of plastic deformations
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5 Simulation of Plastic Deformation of the Contact
Surface Area (Cells of the 1st Type)

Here, we deal with cells of the 1st type; during calculations, the level of contact
stress in them exceeded the assigned limit. The latter is often determined for contact
in gears in accordance with the following relation:

rh
	 
 ¼ 2:8rT ; ð39Þ

where rT is the yield point of the material.
It is reasonable to calculate the values of plastic displacement wpkm

nþ 1 and the
force Fkm

nþ 1 applied at the overloaded kmth cell at step 11, depending on the
values obtained for this cell at the current nth iteration: elastic displacement whkm

n,
acting rh kmn and allowable [rh] contact stresses:

wnþ 1
p km ¼ wn

km 1� rh½ �
rnh km

� �
; ð40Þ

Fnþ 1
p km ¼ Fn

km
rh½ �
rnh km

: ð41Þ

6 Simulation of Deformation of Micro-roughnesses

We accept for the cells of the 1st type that plastic deformation of micro-roughnesses
is equal to the height of the profile relative to the mean line (RP).

In order to calculate deformations of the micro-roughnesses of cells of the 2nd
and 3rd types, a numerical model proposed by Izmailov [6] has been taken as the
basis; we adapted it to our algorithm with the following features and allowances:

(1) The tooth flank is represented as a certain number of micro-roughnesses in the
form of segments of a sphere (see Fig. 14). The actual micro-relief of the
surface, which is the alternation of ridges (marks of cuts at tooth machining), is
surely different from such a model; however, as is shown in [7], the accepted
allowance provides a rather satisfactory level of errors. Dimensions of segments
(heights and radii) are random values, which are distributed in accordance with
the two-parametrical beta-distribution. Parameters of beta-distribution are
chosen based on relations [3, 9] that take into account the results of mea-
surement of real rough surfaces. The dimensions of single recesses in each
specific cell are the same, and their number depends on:

– the dimension of the cell itself;
– the radius and height of micro-roughnesses that are average for the tooth.
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The dimension of the cell is chosen so that it could fit at least one single recess.

(2) The force acting on the single recess is equal to

Fi ¼ Fkm

n
; ð42Þ

where n is the number of single recesses in the given cell.

(3) Relation of cells to the 2nd or 3rd type is carried out based on the dimensionless
coefficient a calculated by the formula

a ¼ 1þ
ffiffiffiffiffiffiffiffi
Fcr;i

Fi

r� ��1

; ð43Þ

where Fcr,i is the critical force calculated by the formula

Fcr;i ¼ 14
H3r2i
E�2 ; ð46Þ

where ri is the radius of rounding of the single recess, E* is the equivalent Young
module, and H is the micro-hardness of the surface. For a < 0.5, the contact is
considered to be elastic, and the cell is related to the third type; for a = 0.5–1, the
contact is elastic and plastic, and the cell is related to the second type.

Fig. 14 Single recesses in
the cell of the gearwheel tooth
flank

68 E. Trubachev et al.



(4) Deformation in cells of the 2nd type is calculated by the formula

dn;i ¼ dcr;i 0:5
Fi

Fcr;i
þ 0:5

ffiffiffiffiffiffiffiffi
Fi

Fcr;i

s !
; ð47Þ

dcr;i ¼ 5
H2ri
E�2 : ð48Þ

Deformation in cells of the 3rd type is calculated by the formula

dy;i ¼ 9
16

F2
i

riE�2

� �1
3

: ð49Þ

(c)
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(b) 
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Fig. 15 Projection of the summarized contact pattern onto the axial plane of the gearwheel

Model of Loaded Contact in Multi-pair Gears 69



-14 -16
-18 -20 -22 68 70 72 74 76 78 80 82 84 86 88

1200

1000

800

600

400

200

0
-14

-16
-18

-20
-22 68 70 72 74 76 78 80 82 84 86 88

radius of the tooth

de
fo

rm
at

io
n

70 72 74 76 78 80 82 84 86
-16 

-18 -19
-20 -21

-17

tooth height radius of the tooth

1200

1000

800

600

400

200

0

de
fo

rm
at

io
n

tooth height
radius of the tooth

tooth height

1200

1000

800

600

400

200

0

de
fo

rm
at

io
n

Fig. 16 Distribution of contact stresses along contact areas
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7 Examples of Calculations

The example that illustrates the workability of the algorithm is shown in Figs. 15
and 16; several results of calculating the loading of a gear with parameters are given
in Table 1 for the loading torque of 4000 Nm and an allowable level of contact
stresses at the gearwheel of 1200 MPa. In particular, these Figs. show the sum-
marized contact patterns on the left (concave) tooth flanks in projections on the
axial plane of the gearwheel with shadowing of areas subjected to plastic defor-
mation, and the corresponding three-dimensional diagrams of distribution of con-
tact stresses along the contact areas obtained at one meshing phase and
conditionally projected onto the flank of one tooth, for the cases:

– of the conjugated contact in the absence of errors (Figs. 15a, and 16a);
– of the conjugated contact accounting for the increased compliance of the

gearwheel and worm units (this corresponds approximately to the error of the
interaxial angle in a gear 0.1/30) (Figs. 15b, and 16b);

– of the contact which is localized along the tooth height and length (Figs. 15c,
and 16c).

In all the cases, the summarized contact pattern is propagated along the entire
active tooth flank. The maximum of plastic deformation in a conjugated gear is at
the edges of the teeth, a tendency that is strengthened when introducing the errors.
Consideration of plastic deformations provides an increase in the area of each
individual contact area by 10–12% on average.

8 Conclusions

The algorithms of analysis of load distribution in multi-pair spiroid gearing
described in the paper can be applied for both the elastic and elastic-and-plastic
statements of the problem. The algorithms are adjusted for high productivity and
validity of calculations in accordance with the results of numerical and real
experiments. Calculation results are applicable for assessment of the tooth strength
of heavy-loaded gears.
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