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Abstract We studied the construction of subgrid-scale models for large-eddy sim-
ulation of incompressible turbulent flows, focusing on consistency with important
mathematical and physical properties. In particular, we considered the symmetries
of the Navier-Stokes equations, and the near-wall scaling and dissipation behavior
of the turbulent stresses. After showing that existing models do not all satisfy the
desired properties, we discussed a general class of subgrid-scale models based on the
local filtered velocity gradient. We provided examples of models from this class that
preserve several of the symmetries of the Navier-Stokes equations and exhibit the
same near-wall scaling behavior as the turbulent stresses. Furthermore, these models
are capable of describing nondissipative effects.

1 Introduction

It is well known that the governing equations of fluid dynamics, the Navier-Stokes
equations, are form invariant under transformations like instantaneous rotations of
the coordinate system and the Galilean transformation [13]. Such transformations,
also referred to as symmetries, play an important physical role, because they make
sure that the description of fluids is the same in all inertial frames of reference.
Furthermore, they relate to conservation and scaling laws [14]. To ensure physical
consistency it is desirable that the basic equations of large-eddy simulation, which
are used to study the large-scale behavior of turbulent flows, satisfy the same princi-
ples. Speziale [17] was the first to emphasize the importance of Galilean invariance
of subgrid-scale models for large-eddy simulation. Later, Oberlack [10] formulated
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requirements to make subgrid-scale models compatible with all the symmetries of
the Navier-Stokes equations. Aside from preserving symmetries, it is desirable that
subgrid-scale models share some basic properties with the turbulent stresses, such
as the observed near-wall scaling [2] and the dissipation behavior [20]. In the cur-
rent work we aim to construct subgrid-scale models that preserve these and other
properties of the Navier-Stokes equations and the turbulent stresses.

In Sect. 2 we will outline several model requirements, after which, in Sect. 3, we
analyze the properties of existing subgrid-scale models. Section4 is devoted to the
construction of new subgrid-scale models. Conclusions are presented in Sect. 5.

2 Model Constraints

In large-eddy simulation, the large-scale behavior of incompressible turbulent flows
is described by the filtered Navier-Stokes equations, [15]

∂ ūi
∂xi

= 0 ,
∂ ūi
∂t

+ ū j
∂ ūi
∂x j

= − 1

ρ

∂ p̄

∂xi
+ ν

∂2ūi
∂x j∂x j

− ∂

∂x j
τi j . (1)

The turbulent stresses, τi j = uiu j − ūi ū j , are not solely expressed in terms of the
filtered velocity field and therefore have to be modeled. In what follows we will
discuss requirements that make sure that specific properties of the Navier-Stokes
equations and the turbulent stresses are preserved in this modeling process.

2.1 Symmetry Requirements

We would like to ensure that the basic equations of large-eddy simulation, (1) with
a subgrid-scale model in place of the turbulent stresses, admit the same symmetries
as the unfiltered Navier-Stokes equations. Assuming that the filtering operation does
not destroy symmetry properties, we need the following transformation behavior for
the modeled subgrid-scale stresses, τmod [10].

τ̂mod
i j = τmod

i j , (2)

τ̂mod
i j = QimQ jnτ

mod
mn , (3)

τ̂mod
i j = e−2a+2bτmod

i j , (4)

τ̂mod
i j = Rim(t)R jn(t)τ

mod
mn . (5)

In (2) the hat indicates the time (S1) or pressure translation (S2), or the generalized
Galilean transformation (S3). Conditions (3) and (4) ensure invariance under, respec-
tively, instantaneous rotations and reflections (S4), and scaling transformation (S5),
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for an orthogonal matrix Q, and real a and b. Material frame-indifference in the
limit of a two-component flow (S6) holds when (5) is satisfied for a constant-in-rate
rotation about an axis perpendicular to the flow directions, described by R(t). In
principle, (2) also has to hold under time reversal (S7) [10, 11, 14].

2.2 Near-Wall Scaling Requirements

Using numerical simulations, Chapman and Kuhn [2] have revealed the near-wall
scaling behavior of the time-averaged turbulent stresses. We will require that the
modeled stresses show the same asymptotic behavior, but then instantaneously (P1).
Denoting the wall-normal distance by x2, we can express this property as

τmod
11 , τmod

13 , τmod
33 = O(x22 ) ,

τmod
12 , τmod

23 = O(x32) , (6)

τmod
22 = O(x42 ) .

This ensures that, for instance, dissipative effects fall off quickly enough near walls.

2.3 Requirements Relating to the Production
of Subgrid-Scale Kinetic Energy

We now focus on the production of subgrid-scale kinetic energy, also referred to as
subgrid dissipation. Given the rate-of-strain tensor, see (12), it can be expressed as

Dτ = −tr(τ S̄) . (7)

Vreman’sModel RequirementsVreman [20] requires that the modeled production
of subgrid-scale kinetic energy vanishes for flows for which the actual production is
known to be zero. Preferably, also the converse is true. In summary, P2a,b:

Dτmod = 0 when Dτ = 0 , (8)

Dτmod �= 0 when Dτ �= 0 . (9)

These conditions are aimed at making sure that subgrid-scale models are neither
overly (P2a), nor underly dissipative (P2b).
Nicoud et al. Model Requirements On the basis of physical grounds, Nicoud et
al. [8] argue that certain flows cannot be maintained if energy is transported to
subgrid scales. They therefore require that the modeled subgrid dissipation vanishes
for all two-component flows (P3a) and for the pure axisymmetric strain (P3b). Note



244 M.H. Silvis and R. Verstappen

that these requirements are not compatible with the mathematical properties of the
turbulent stresses as found by Vreman [20] and thus not with requirements P2a,b.
Consistency with the Second Law of Thermodynamics In turbulent flows, energy
can be transported from large to small scales (forward scatter) and vice versa
(backscatter). The second law of thermodynamics requires that the net transport
of energy is of the former type, P4 [14]:

Dτmod ≥ −2ν tr(S̄2) . (10)

3 Analysis of Existing Subgrid-Scale Models

Before aiming to create subgrid-scale models that satisfy the constraints discussed
in the previous section, we present a summary of the properties of several existing
models in Table1. A detailed discussion of results is omitted, but observe that the
models do not necessarily satisfy all the desired properties. Because we assume the
use of an isotropic filter, results relating to properties P2a,b differ slightly from those
of Vreman [20].

4 Examples of Physically Consistent Subgrid-Scale Models

The subgrid-scalemodels of Sect. 3 are all basedon the local filteredvelocity gradient.
Looking for models of a similar form to satisfy the constraints of Sect. 2, we take [4,
6, 12]

τmod = α0 I + α1 S̄ + α2 S̄
2 + α3Ω̄

2 + α4(S̄Ω̄ − Ω̄ S̄) + . . . , (11)

where the filtered rate-of-strain and rate-of-rotation tensors are given by

S̄i j = 1

2

(
∂ ūi
∂x j

+ ∂ ū j

∂xi

)
, Ω̄i j = 1

2

(
∂ ūi
∂x j

− ∂ ū j

∂xi

)
, (12)

and, by isotropy (S4), the coefficients can depend only on the tensor invariants

I1 = tr(S̄2) , I2 = tr(Ω̄2) , I3 = tr(S̄3) , I4 = tr(S̄Ω̄2) , I5 = tr(S̄2Ω̄2). (13)

We now aim to set this dependence in such a way that more constraints of Sect. 2
are fulfilled. Here it is important to keep in mind that the requirements of Nicoud
et al. (P3a,b) are incompatible with those of Vreman (P2a,b). Furthermore, no two-
dimensional material frame-indifferent quantities (S6) were found that satisfy both
of Vreman’s requirements. This may point to a limitation of the model ansatz (11).

Combining compatible constraints, we obtain a class of what we will call phys-
ically consistent subgrid-scale models. The simplest models in this class with the
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proper near-wall scaling behavior (P1) have coefficients that depend only on the
invariants of the rate-of-strain tensor, I1 and I3. For example (Ex. 1),

τmod = c0δ̄
2 I

4
3

I 51
I + c1δ̄

2 I
3
3

I 41
S̄ + c4δ̄

2 I
4
3

I 61
(S̄Ω̄ − Ω̄ S̄) . (14)

Here, δ̄ denotes the filter length. Without additional procedures, the above model
satisfies all the symmetries of the Navier-Stokes equations, apart from scale invari-
ance (S5). Being orthogonal to each other, the three terms all have a different role.
The first term on the right-hand side models the generalized subgrid-scale kinetic
energy, the second describes dissipative processes, whereas the last term represents
energy transport among large scales.

In view of the requirements of Nicoud et al. (P3a,b), a possibly attractive model
of eddy viscosity type is based on the nonnegative quantity I5 − 1

2 I1 I2, Ex. 2:

τmod
e − 1

3
tr(τmod

e )I = −2(C δ̄)2
√
I1(

1

2
− I5

I1 I2
)3/2 S̄ . (15)

It has the desired near-wall scaling behavior (P1) and it vanishes only in two-
component flows, and in states of pure shear and pure rotation.

For comparison, the properties of these example models are summarized in
Table1.

5 Summary

We studied the construction of subgrid-scale models for large-eddy simulation of
incompressible turbulent flows, aiming to preserve importantmathematical and phys-
ical properties of the Navier-Stokes equations and the turbulent stresses. To this end,
we first outlined model requirements coming from the symmetries of the Navier-
Stokes equations, and from the near-wall scaling and dissipation behavior of the
turbulent stresses. An analysis of existing subgrid-scale models showed that they do
not all satisfy these requirements.We then considered a general class of subgrid-scale
models based on the local filtered velocity gradient and provided examples of ‘phys-
ically consistent models’ that satisfy different combinations of model requirements.
Although no models were obtained that exhibit all the desired properties, we believe
the current reasoning has led to an interesting class of models, particularly because
it allows for the description of nondissipative processes in turbulent flows.
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