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Chapter 8
Endothelial Progenitor Cell Dysfunction 
in the Pathogenesis of Vascular Complications 
of Diabetes

Nicoleta Alexandru, Irina Titorencu, Sabina Frunzã, Emma Weiss, 
Elisabeta Bãdilã, and Adriana Georgescu

Abstract  Diabetes mellitus, a  metabolic disorder characterized by high blood 
glucose, is one of the main risk factors in the development of vascular complications 
affecting both large and small blood vessels. A major challenge is the discovery of 
new mediators and biomarkers for diabetes-related vascular complications. In this 
regard, accumulating evidence indicate that endothelial progenitor cells (EPCs), 
derived from the bone marrow and peripheral blood, are critical for the maintenance 
and regeneration of endothelial cells contributing to repair and restoration of vascu-
lar wall integrity. The studies reveal that the reduced number of circulating EPCs 
under diabetic conditions can predict cardiovascular outcomes, and EPC dysfunc-
tion could contribute to the pathogenesis of diabetes – associated vascular disease.

This chapter discusses the EPC dysfunction in relationship to vascular complica-
tions of diabetes, highlighting the pathophysiology of diabetic vascular complica-
tions, mechanisms leading to EPC dysfunction in diabetes and diabetic vascular 
complications, significance of EPCs in the pathogenesis of vascular complications 
of diabetes and potential therapeutic implications of EPCs in diabetes-associated 
vascular complications. In particular, to understand the EPC significance in diabe-
tes, the effects of hyperglycaemia, insulin resistance, insulin like growth factor 1, 
nitric oxide, oxidative stress, PI3K/Akt signaling pathway, inflammation, and of 
altered microRNA expression on the EPC dysfunctionality have been considered.
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A comprehensive knowledge of EPC role in all diabetic complications may help 
to develop new research strategies to demonstrate and consolidate their clinical rel-
evance so that they become diagnostic biomarkers and pharmacological targets to 
prevent and treat diabetes-related vascular complications. Increasing the number 
and functional capacity of EPCs by different approaches may favorably modify the 
risk for cardiovascular complications and survival for people suffering from 
diabetes.

Keywords  Endothelial progenitor cells • Diabetes • Cardiovascular disease • 
Cerebrovascular disease • Vascular complications • Endothelial dysfunction • 
Hyperglycemia • Insulin resistance

8.1  �Introduction

Diabetes mellitus represents a very serious issue in every public health system. Its 
worldwide prevalence is continuously increasing; recent statistics released by the 
International Diabetes Federation reveal that 1  in 11 adults suffer from diabetes 
(415 millions) and those numbers will increase to 1 in 10 adults (642 millions) by 
the year 2040 [1]. The global rise in diabetes occurs due to population growth and 
ageing, genetic susceptibility and to increasing trends towards an unhealthy diet, 
obesity, and sedentary lifestyle. The vascular complications of diabetes are among 
the most serious manifestations of the disease. Patients with type 2 diabetes (T2DM) 
represent about 85–95% of the people with diabetes in developed countries and an 
even higher percentage in developing countries [1]. The microvascular complica-
tions, like nephropathy, retinopathy or neuropathy, as well as the macrovascular 
ones – atherosclerotic disease in all its forms: ischaemic heart disease, cerebrovas-
cular disease, or peripheral arterial disease (PAD) are usually irreversible and lead 
to a decrease in life expectancy and to a higher mortality rate in these patients.

Despite the progress made in the last few years, vascular complications due to 
diabetes mellitus still remain a huge problem, and identifying new mechanisms 
involved in their development, like dysfunction of endothelial progenitor cells 
(EPCs), could lead to new curative and preventive therapeutic options.

8.2  �Pathophysiology of Diabetic Vascular Complications

8.2.1  �Diabetes and Vascular Risk Factors

It is well known that diabetic patients are more frequently affected by cardiovascu-
lar disease (CVD) compared with those without diabetes. CVD increases the rate of 
all-cause death nearly threefold and the rate of cardiovascular death nearly fivefold 
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in subjects with diabetes [2]. Most of this excess risk is associated with an increased 
prevalence of well-known traditional risk factors such as hypertension, dyslipidae-
mia, obesity (generalised or visceral), and smoking in these subjects. Hypertension 
is more than twice as common in people with diabetes as in people with normal 
blood glucose levels [3]. Premenopausal women who have diabetes have an 
increased risk of heart disease because diabetes cancels out the protective effects of 
estrogen. Nevertheless, these established risk factors do not fully explain the excess 
risk for CVD associated with diabetes.

Therefore, other non-traditional risk factors may be important in people with 
diabetes: insulin resistance and hyperinsulinemia; postprandial hyperglycaemia and 
glucose variability; microalbuminuria; haematological and thrombogenic factors; 
inflammation assessed by high-sensitivity C-reactive protein; homocysteine and 
vitamins; genetics and epigenetics [4, 5].

Large clinical trials in type I diabetes mellitus (T1DM) and type II diabetes mel-
litus (T2DM) have demonstrated that hyperglycaemia plays an important role in the 
pathogenesis of microvascular complications [6]. Although diabetic patients with 
the most severe hyperglycaemia have the highest risk of microangiopathy, hypergly-
caemia, however, is a necessary, but not sufficient, cause of clinically important 
microangiopathy. Hypertension, smoking, hypercholesterolaemia, dyslipidaemia, 
obesity and hyperhomocysteinaemia are additional major causes of microangiopa-
thy. The risk of macroangiopathy does not appear to be strongly related to hypergly-
caemia, but is related to general risk factors for atherothrombosis, such as age, 
smoking, hypertension, hypercholesterolaemia, dyslipidaemia, obesity and hyper-
homocysteinaemia. Cardiovascular risk factors  such as hypertension, dyslipidae-
mia, obesity, insulin resistance, hyperinsulinaemia and impaired fibrinolysis cluster 
in the metabolic syndrome [7]. All of the above-mentioned factors create a state of 
constant and progressive damage to the vascular wall, manifested by a low-grade 
inflammatory process and endothelial dysfunction [8].

8.2.2  �Diabetes and Vascular Complications

8.2.2.1  �Microvascular Complications

Diabetic Retinopathy  This is one of the most important microvascular complica-
tions in diabetes mellitus and is a leading cause of visual impairment in working-
age adults [9]. Development of diabetic retinopathy in patients with T2DM was 
found to be related to the severity of hyperglycemia, duration of diabetes, and pres-
ence of hypertension [10].

Retinopathy is classified as nonproliferative (background) or proliferative. The 
most common early clinically visible manifestations of diabetic retinopathy 
include microaneurysm formation and intraretinal hemorrhages. Microvascular 
damage leads to retinal capillary nonperfusion, cotton wool spots, increased num-
ber of hemorrhages, venous abnormalities, and intraretinal microvascular abnor-
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malities. During this stage, increased vasopermeability can result in retinal 
thickening (edema) and/or exudates that may lead to a loss in central visual acuity. 
Proliferative retinopathy is characterized by the formation of new blood vessels on 
the surface of the retina and can lead to vitreous hemorrhage. White areas on the 
retina (“cotton wool spots”) can be a sign of impending proliferative retinopathy. 
These new vessels then lead to traction retinal detachments and neovascular glau-
coma, respectively. Vision can be lost in this stage as a result of capillary nonperfu-
sion or edema in the macula, vitreous hemorrhage, and distortion or traction retinal 
detachment [11].

Diabetic Nephropathy  It  is one of the most common complications of diabetes 
mellitus. Among patients with T1DM, the incidence of diabetic nephropathy has 
decreased to 10–15% in more recent cohorts [12]. However, due to the increase in 
T2DM, the absolute prevalence of diabetic nephropathy has increased over the past 
two decades; in 2015, diabetic nephropathy was reported to be the cause of 43.9% 
of all cases of end-stage renal disease (ESRD) in the United States [13].

Diabetic nephropathy is characterized by an expanded mesangial volume, 
changes in the physical and biochemical properties of the glomerular basement 
membrane, and a decreased glomerular filtration rate. Diabetic nephropathy is a 
clinical syndrome characterized by the following: persistent albuminuria (>300 mg/
day or >200 μg/min) that is confirmed on at least two occasions, 3–6 months apart; 
progressive decline in the glomerular filtration rate; elevated arterial blood pressure 
[14]. It is preceded by lower degrees of proteinuria, or “microalbuminuria” defined 
as albumin excretion of 30–299 mg/24 h. In the absence of an intervention, diabetic 
patients with microalbuminuria typically progress to proteinuria and overt diabetic 
nephropathy. This progression occurs in both T1DM and T2DM. As many as 7% of 
patients with T2DM may already have microalbuminuria at the time they are diag-
nosed with diabetes [15]. The evidence suggests that early treatment delays or pre-
vents the onset of diabetic nephropathy or diabetic kidney disease.

The exact cause of diabetic nephropathy is unknown, but the main mecha-
nisms are: hyperglycemia (causing hyperfiltration and renal injury), advanced 
glycation end-products (AGEs), and activation of cytokines. More recent 
research highlights the role of toll-like receptors, regulatory T-cells (Treg), 
and increased expression of transforming growth factor β (TGF-β) in the glom-
eruli [16]. TGF-β and vascular endothelial growth factor (VEGF) may contrib-
ute to the cellular hypertrophy and collagen synthesis and may induce the 
vascular changes observed in persons with diabetic nephropathy. Hyperglycemia 
also may activate protein kinase C (PKC), which may contribute to renal dis-
ease and other vascular complications of diabetes. Moreover, hypergyce-
mia was shown to induce renal artery dysfunction in streptozotocin-induced 
diabetic mice [17]. This study has reported that the renal artery dysfunction is 
the result of the reduction of nitric oxide (NO) bioavailability, endothelial 
nitric oxide synthase (eNOS) expression, phospholipase C activity, and intra-
cellular free calcium concentrations [17].
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Diabetic Neuropathy  It has become the most common complication of diabetes, 
affecting as many as 50% of patients with T1DM and T2DM [18]. In T1DM, distal 
polyneuropathy typically becomes symptomatic after many years of chronic pro-
longed hyperglycemia, whereas in T2DM, it may be apparent after only a few years 
of known poor glycemic control or even at diagnosis. Chronic sensori-motor distal 
symmetric polyneuropathy is the most common form of neuropathy in diabetes. 
Diabetic autonomic neuropathy also causes significant morbidity in patients with 
diabetes. Neurological dysfunction may occur in most organ systems and can mani-
fest by gastroparesis, constipation, diarrhea, anhidrosis, bladder dysfunction, erec-
tile dysfunction, exercise intolerance, resting tachycardia, silent ischemia, and even 
sudden cardiac death [19].

Development of symptoms depends on many factors, such as total hyperglyce-
mic exposure and other risk factors such as elevated lipids, blood pressure, smok-
ing, increased height, and high exposure to other potentially neurotoxic agents such 
as ethanol. Genetic factors may also play a role. Important contributing biochemical 
mechanisms in the development of the more common symmetrical forms of diabetic 
polyneuropathy likely include the polyol pathway, AGEs, and oxidative stress [20].

8.2.2.2  �Macrovascular Complications

Atherosclerosis  This is the central pathological mechanism in diabetic macrovas-
cular disease. CVD is the primary cause of death in people with either T1DM or 
T2DM. T2DM is one of the components of metabolic syndrome which also includes 
abdominal obesity, hypertension, hyperlipidemia and increased coagulability; these 
factors act together to promote CVD.

Atherosclerosis results from chronic inflammation and injury to the arterial wall 
in the peripheral or coronary vascular system. The result of the process is the forma-
tion of a lipid-rich atherosclerotic lesion with a fibrous cap. The rupture of this 
lesion leads to acute vascular infarction [21]. Other mechanisms involved in macro-
vascular disease are: increased platelet adhesion and hypercoagulability, impaired 
NO generation, increased free radical formation in platelets and increased levels of 
plasminogen activator inhibitor type 1 (PAI-1) [22, 23].

Coronary Heart Disease  Coronary heart disease (CHD) has been associated with 
diabetes in numerous studies beginning with the Framingham study [24]. Other 
studies have shown that the risk of myocardial infarction (MI) in people with diabe-
tes is equivalent to the risk in nondiabetic patients with a history of previous MI 
[25]. These results have lead to the recommendations of the American Diabetes 
Association and American Heart Association that diabetes should be considered a 
coronary artery disease (CAD) risk equivalent rather than a risk factor [26].

Stroke and Cerebrovascular Disease  Stroke and cerebrovascular disease have a 
higher incidence in patients with diabetes, the later being a strong independent pre-
dictor factor for these conditions [27]. Risk of stroke-related dementia and recur-
rence, as well as stroke-related mortality, is elevated in patients with diabetes [22].
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Various subtypes of cerebrovascular diseases have been defined in T2DM. Lacunar 
strokes or the occlusion of the penetrating arteries that provide blood to the brain 
deep structures are the main subtypes of cerebrovascular disease in diabetic patients. 
It is considered that 28–43% of lacunar strokes are due to diabetes [28]. Ischemic 
stroke, caused by occlusion of the large cerebral vessels, and transient ischemic 
attacks are found in a smaller percentage compared to lacunar strokes and are 
mainly due to the strong association between diabetes mellitus and other cardiovas-
cular risk factors [29]. Hemorrhagic stroke is also frequent in diabetic patients as 
several studies have assigned a relative risk for hemorrhagic stroke of 2.4 in diabetic 
patients [30].

Diabetes is an independent predictor of poor outcomes [31]. Various studies have 
highlighted the impact of hyperglycemia during the post-stroke phase. Apparently, 
hyperglycemia ≥155  mg/dL in patients with stroke, with or without diabetes, is 
associated with a higher risk of short-term mortality and a reduced chance of recov-
ery [32].

Diabetes contributes significantly and increasingly to the burden of stroke [33]. 
In the INTERSTROKE case–control study, diabetes increased the rate of stroke by 
35% when comparing the top to the bottom tertile, and has been associated with 5% 
of the population attributable risk for stroke [34]. The Emerging Risk Factors 
Collaboration analysed 698 782 people from 102 prospective studies, finding that 
diabetes was associated with a 2.27-fold increase in the risk of ischaemic stroke and 
56% excess rate of haemorrhagic stroke [35]. Following stroke, diabetes attenuates 
cognitive recovery, limits functional outcome, and increases mortality. Diabetes 
increases the risk of recurrent stroke as well. In the Life Long After Cerebral isch-
emia (LiLAC) cohort study, diabetes increased the risk of recurrent fatal and non-
fatal stroke more than two-fold [36].

Peripheral arterial disease  Peripheral arterial disease (PAD) is another macrovas-
cular complication in diabetic patients. Compared with patients without diabetes, 
patients with diabetes had a higher prevalence of PAD (26.3 vs. 15.3%) and intermit-
tent claudication (5.1% vs. 2.1%) [37]. The rate of PAD in patients with diabetes also 
increases with age, as it does in non-diabetic persons. The PAD occurs earlier and is 
often more severe and diffuse [38]. In a multicentre cross-sectional study of patients 
older than 70 years with diabetes, 71% had PAD when detected by abnormal ankle–
brachial index [39]. Diabetes increases the incidence of critical limb ischaemia (CLI) 
four-fold in patients with peripheral artery disease; moreover, in diabetic patients 
with CLI, 50% will develop CLI in the contralateral limb within 5 years [40].

Intermittent claudication occurs three times more often in men with diabetes and 
almost nine times more often in women with diabetes than in their counterparts 
without diabetes [41]. It is also important to note that diabetes is most strongly 
associated with femoral-popliteal and tibial PAD, whereas other risk factors (e.g. 
smoking and hypertension) are associated with more proximal disease in the aorto-
ilio-femoral vessels [33].

The true prevalence of PAD in people with diabetes has been difficult to deter-
mine, as most patients are asymptomatic, many do not report their symptoms as 
pain perception may be blunted by the presence of peripheral neuropathy [42]. 
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Given the inconsistencies of clinical findings in the diagnosis of PAD in the diabetic 
patient, the measurement of ankle-brachial pressure index (ABI) has emerged as the 
relatively simple, non-invasive and inexpensive diagnostic tool of choice. An ABI 
smaller than 0.9 is not only diagnostic of PAD in the asymptomatic patients, but it 
is also an independent marker of increased morbidity and mortality from CVD [43].

8.2.3  �Molecular Basis of the Vascular Dysfunction in Diabetes 
and Diabetic Vascular Complications

A better understanding of the mechanisms underlying diabetic vascular disease is 
mandatory because it may provide novel approaches to prevent or delay the devel-
opment of its complications. The common etiology link for the different types of 
diabetes-associated vascular diseases is chronic hyperglycemia that evokes patho-
logic responses in the vasculature, which finally cause constitutive NO inhibition, 
smooth muscle cell dysfunction, overproduction of vascular endothelial growth fac-
tor, chronic inflammation, hemodynamic dysregulation, impaired fibrinolytic abil-
ity and enhanced platelet aggregation [44].

8.2.3.1  �Hyperglycemia, Oxidative Stress and Vascular Disease in Diabetes

Vascular dysfunction in diabetes is based upon endothelial and smooth muscle cells 
dysfunction which eventually leads to atherothrombosis. Micro- and macrovascular 
complications are mainly due to prolonged exposure to hyperglycemia and its fre-
quent association with other risk factors and genetic susceptibility [45]. Interestingly, 
the endothelial, mesangial and retinal cells are equipped to handle high sugar levels 
when compared with other cell types [46]. The detrimental effects of glucose 
already occur with glycemic levels below the threshold for the diagnosis of diabe-
tes; this is explained by the concept of ‘glycemic continuum’ across the spectrum of 
prediabetes, diabetes and cardiovascular risk [45, 47]. There is a strong relationship 
between dysglycemia, obesity-related insulin resistance and impaired insulin secre-
tion that will determine functional and structural alterations of the vessel wall. 
Endothelial dysfunction occurs as a consequence of the imbalance between the 
accumulation of reactive oxygen species (ROS) and NO bioavailability, a decrease 
in the latter being a strong predictor of cardiovascular events [48]. The overproduc-
tion of ROS by the mitochondria is considered one of the key triggers of vascular 
complications in diabetes [49].

Schematically (Fig. 8.1), high concentrations of intracellular glucose determine 
[45]:

•	 PKC activation, followed by:

–– increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 
levels [50], phosphorylate p66Shc at serine 36 [51], and oxidative stress and 
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ROS generation; all of which quickly inactivate NO and facilitate peroxyni-
trite (ONOO−) formation, a pro-oxidant compound responsible for protein 
nitrosylation;

–– eNOS deregulation with decreased activity, further reduction of NO availabil-
ity, and accumulation of free radicals [52]; furthermore, hyperglycemia 
reduces eNOS activity by blunting activatory phosphorylation at Ser1177;

–– increased synthesis of ET-1, favouring vasoconstriction and platelet aggrega-
tion [53];

–– increased synthesis of vasoconstrictors and prostanoids by up-regulation of 
cyclooxygenase-2 (COX-2) associated with increased thromboxane A2 
(TXA2) synthesis and decreased prostacyclin (PGI2) release [54];

–– structural and functional changes in the vasculature: alterations in cellular 
permeability, inflammation, angiogenesis, cell growth, extracellular matrix 
expansion and apoptosis [53].

•	 Overproduction of ROS by mitochondria is involved in:

–– decreased NO bioavailability;
–– up-regulation of proinflammatory genes encoding for monocyte chemo-

attractant protein-1 (MCP-1), selectins, vascular cell adhesion molecule-1 
(VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1), via activa-
tion of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-
kB) subunit p65 signalling; these factors cause monocyte adhesion, rolling 
and diapedesis with foam cells formation in the sub-endothelial layer, thus 
accelerating the atherosclerotic process [55];

Fig. 8.1  Mechanisms of hyperglycemia-induced vascular damage
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–– increased synthesis of methylglyoxal (a glucose metabolite) leading to AGE 
synthesis, accumulation and ultimately to endothelial dysfunction [56]; gen-
eration of AGEs leads to cellular dysfunction by activation of AGEs receptors 
(RAGE); AGE-RAGE signalling activates ROS-sensitive biochemical path-
ways such as the pro-oxidant hexosamine flux [57];

–– activation of the polyol pathway flux involved in vascular redox stress [49].

8.2.3.2  �Insulin Resistance and Atherothrombosis

The main feature of T2DM, insulin resistance, often precedes its onset by many 
years. Insulin resistance is critically involved in vascular dysfunction in subjects 
with T2DM [58] and is strongly related with obesity, since the adipose tissue is the 
main source for inflammatory mediators and free fatty acids (FFAs). Increased levels 
of FFAs stimulate toll-like receptors (TLR) that cause, on one hand, the activation of 
NF-kB nuclear translocation, with subsequent up-regulation of inflammatory genes 
interleukin-6 (IL-6) and tumor necrosis factor (TNF-α), and, on the other hand, the 
activation of c-Jun amino-terminal kinase (JNK) and PKC, phosphorylation of insu-
lin receptor substrate-1 (IRS-1), thus blunting its downstream targets phosphati-
dylinositol 3-kinase (PI3K) and Akt (a serine/threonine kinase also known as protein 
kinase B). These results in down-regulation of glucose transporter GLUT-4 and, 
hence, insulin resistance [45, 59]. In the vascular endothelium, a decrease in PI3K/
Akt levels leads to increased FFA oxidation and subsequent ROS generation, with 
the aforementioned consequences: PKC activation, AGE synthesis, reduced PGI2 
synthase activity and protein glycosylation; as a result, NO levels decrease dramati-
cally and endothelial  dysfunction ensues [60]. The blood coagulation system is also 
affected by insulin resistance, through alterations in IRS1/PI3K pathway leading to 
Ca2+ accumulation and increased platelet aggregation. Furthermore, insulin resis-
tance facilitates atherothrombosis through increased cellular synthesis of PAI-1 and 
fibrinogen and reduced production of tissue plasminogen activator (tPA) [61].

The tight bond between insulin resistance and atherosclerosis is further estab-
lished by the alterations in the lipid profile, such as high triglycerides, low HDL 
cholesterol, increased remnant lipoproteins, elevated apolipoprotein B (ApoB) as 
well as small and dense LDL cholesterol [62]. Accordingly, the experimental asso-
ciation of hyperlipemia with diabetes diminished the relaxation of the resistance 
arteries to bradykinin by an NO-dependent and an NO-independent mechanism 
(mediated via Ca2+ activated K+ channels) [63]. Moreover, the simultaneous insult 
of hyperlipemia-hyperglycemia has been associated with the highest contractility 
of the resistance arteries to prostaglandin F2a and the highest circulating glucose 
and cholesterol levels; the activation of PKC pathway, the alteration of cyclooxige-
nase and the Ca2+ dependent K+ channels generate the augmented contractility [64].
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8.2.3.3  �Micro RNA and Diabetic Vascular Disease

MicroRNAs (miRNAs) are a newly identified class of small non-coding ribonucleic 
acids (RNAs); they regulate gene expression at the post-transcriptional level. 
Alterations in miRNA expression occurring in T2DM play an important role in 
hyperglicemia-induced vascular damage pathogenesis [65]. Thus, in endothelial 
cells exposed to hyperglicemia, miR-320, miR-221, miR-503 are highly expressed, 
while miR-222 and miR-126 are submitted to down-regulation. The alterations in 
miRNA expression lead to decreased angiogenesis, generation of AGEs, decreased 
EPC proliferation, migration and homing, endothelial dysfunction and impaired 
vascular repair [45].

There is evidence that suggest that reduced miR-126 expression levels are par-
tially responsible for impaired vascular repair capacities in diabetes; in contrast, 
restored expression of this miRNA promotes EPCs-related repair capacities and 
inhibits apoptosis [66].

8.2.3.4  �Thrombosis and Coagulation

Both diabetes and insulin resistance are associated with a prothrombotic status, as a 
result of the alterations in clotting factors and platelet aggregation [67]. The most 
frequent alterations consist of: increased PAI-1 and fibrinogen, reduced tPA levels, 
increased expression of tissue factor (TF) with procoagulant activity and thrombin 
generation, platelet hyperreactivity, up-regulation of glycoproteins Ib and IIb/IIIa, 
increased levels of microparticles (MPs) released in the circulation [45]. Platelet 
hyperactivity and hyperaggregability in T2DM is induced by several factors includ-
ing oxidative stress, abnormal intracellular Ca2+ homeostasis and hyperhomocyste-
inaemia. It has been showed that the  endogenous production of ROS, Ca2+ 
mobilization and platelet aggregation are significantly greater in platelets from dia-
betic patients than in controls, even though they have been exposed to the same 
concentrations of homocysteine (Hcy), indicating that platelets from diabetic donors 
are more sensitive to plasma Hcy levels [68]. Besides, the exogenous oxidative 
stress, thrombin activation,  and ageing lead to protein carbonyl formation in plate-
lets from diabetic patients [69]. Moreover, it has been shown that MPs from patients 
with T2DM increase coagulation activity in endothelial cells. MPs carrying TF pro-
mote thrombus formation at the sites of injury,  representing a novel and additional 
mechanism of coronary thrombosis in diabetes [70]. On the other hand, it has been 
reported that enoxaparin – a low molecular weight heparin, restores the altered vas-
cular reactivity of resistance arteries in aged and aged-diabetic hamsters [71]. The 
author concludes that, these pharmacological effects supplement the anticoagulant 
properties of enoxaparin and may be of relevance for improving perfusion/circula-
tion in the microvasculature of aged and of aged–diabetic persons [71].
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8.2.3.5  �Vascular Hyperglycemic Memory

The “hyperglycemic memory” concept derived from large observational studies, 
where adequate control of patients’ glucose blood levels acquired years after dis-
ease  onset,  failed to result in a lower cardiovascular risk [72]. However, in patients 
with early-onset therapy, well-established benefits were obtained [73]. The persis-
tence of hyperglycemic stress despite blood glucose normalization has been defined 
as “hyperglycemic memory” [45]. Transitory episodes of hyperglycemia activate 
NF-kB, with a lingering effect even after blood glucose level become optimal. 
Hyperglycemia induces endothelial dysfunction, vascular inflammation and apop-
tosis through Sirtuin 1 (SIRT1) downregulation, p53 and p66Shc activation, PKCβII 
activation, inhibition of eNOS activity, expression of inflammatory genes and 
mitochondrial ROS accumulation, thus perpetuating a vicious circle that maintains 
the vascular lesional status in patients with diabetes despite optimal glycemic 
control [74].

8.3  �Endothelial Progenitor Cell Biology

8.3.1  �Definition of Endothelial Progenitor Cells

EPCs are a heterogeneous population of cells that reside in the bone marrow (BM) 
in close association with hematopoietic stem cells (HSCs) and the stroma [75]. These 
cells can be found (circulate) in the peripheral and umbilical cord blood and have 
been first isolated using magnetic micro beads by Asahara et al. (1997) [76]. EPCs 
represent between 1 and 5% of the total BM cells and less than 0.0001–0.01% of 
peripheral circulating mononuclear cells [77]. EPCs are involved in the maintenance 
of endothelial regeneration, vascular repair and in angiogenesis processes [78].

8.3.2  �Ontogeny of Endothelial Progenitor Cells

In circulation two categories of EPCs can be found: a population with hematopoi-
etic origin, and another population named non-hematopoietic EPCs [79]. It is well 
known that hematopoietic EPCs arise from a progenitor cell of mesodermal origin, 
defined as hemangioblast [76, 80, 81]. This cell type is rare, slowly proliferating and 
is described as a precursor for hematopoietic cells (myeloid and lymphocytic lin-
eages), and also for a part of EPCs [82, 83]. The angioblast (immature stage of 
EPCs) and primitive HSCs present common hematopoietic stem cell markers as: 
CD133, CD34, CD45 or Flk-1/KDR [80, 84–87] (Fig. 8.2). During the differentia-
tion process the angioblasts start to express new cell surface markers (CD) and 
become primitive EPCs, an immature population of cells (Fig. 8.2). Some markers 

8  Endothelial Progenitor Cell in Diabetes Mellitus



170

(CD14 and CD45) are common with myeloid lineage suggesting the hematopoietic 
origin of these EPCs [88]. In BM or in circulation, the hematopoietic EPCs begin to 
express specific markers for endothelial cells (ECs): vascular endothelial growth 
factor receptor 2 (VEGFR-2) and von Willebrand factor (vWf), in addition to 
CD133 and CD34 [80, 82, 85]. Regarding CD133, its expression is downregulated 
in non-hematopoietic cells and absent in mature ECs [85, 89, 90].

In vitro, hematopoietic EPCs generate the endothelial cell colony forming units 
(CFU-ECs) [91] with spindle shape and low proliferative capacity, named also “early 
endothelial colonies” or early EPCs (Table 8.1). These cells are able to incorporate 
acetylated LDL (AcLDL) and to bind specific lectins (BS-1 and ulex europaeus) 
which are usually considered endothelial specific [92, 93]. They are also character-
ized by the expression of vWf, VEGFR-2 and CD31 [88, 94]. However, early EPCs 
do not generate vascular tubes in vitro, but they can induce the angiogenesis indi-
rectly by producing angiogenic factors and inflammatory cytokines/chemokines per-
mitting new vessels to form and to extend [95–99]) (Table 8.1).

Another EPC subtype is known as non-hematopoietic EPCs or late EPCs or 
outgrowth endothelial cells (OECs), because in the culture they generate the endo-
thelial colony forming cell (ECFC) that develop into monolayers with a typical 
“cobblestone” morphology [79, 85]. OECs have a higher proliferative potential and 
they easily form tube-like structures in vitro [79]. These cells are present in 

Fig. 8.2  The origin and differentiation of EPCs from hematopoietic and non hematopoietic stem 
cells: the profile of cell surface markers (+: positive cells, –: negative cells)
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peripheral and cord-blood and non-hematopoietic tissues [79]. Late EPCs do not 
express hematopoietic marker CD45 or the monocyte markers CD14 and CD115, 
but they express many EC antigens CD31, CD105, CD144, CD146, vWF, KDR, 
and UEA-1 [100] (Table 8.1 and Fig. 8.2). It has been also observed that, in vivo, 
these cells continue to differentiate and incorporate into the endothelium, and the 
expression of CD31 and vWF increases [91].

Table 8.1  Differentiation of early compared with late EPCs (as two types of culture period-
dependent cells)

Early EPCs or 
hematopoietic EPCs Ref.

Late EPCs or non-
hematopoietic EPCs or (EOCs) Ref.

In vitro 
features

Grown on fibronectin-
coated surfaces

[76, 91, 
98, 101]

Grown on collagen type 
I-coated surfaces

[97, 102]

Appear in 3–5 days in 
culture

Appear after 2–3 weeks in 
culture

Are round cells 
surrounded by 
spindle-shaped cells

Are elongated cells in culture 
(3–5 weeks), and form a 
cobblestone-shaped monolayer

Proliferate slowly 
with a peak growth in 
culture at 2–3 weeks

Have a great proliferative 
potential
Can be cultured until 15 
passages

Angiogenic 
potential

Do not generate 
vascular tubes in vitro

[96, 97] Generate tube-like structure in 
vitro

[79, 103]

Secret angiogenic 
factors and induce 
angiogenesis by 
paracrine mechanism

Have vasculogenic and 
angiogenic potential, processes 
underlying the generation of 
new blood vessels
Form vascular networks de novo

Endothelial 
properties

VEGFR-2, CD31, 
vWf, ability to bind 
AcLDL and lectins

[92, 93] VEGFR-2, CD31, CD105, 
CD144, vWf, CD34, eNOS, 
Tie-2, VE-cadherin, ability to 
bind AcLDL and lectins

[100, 103]

Role and 
function

High cytokine release [104, 105] Low cytokine release [104, 106]
Phagocytic function Incorporation and tube-

forming capability
No phagocytic function
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8.4  �Endothelial Progenitor Cell Dysfunction, a Link 
Between Diabetes and Vascular Disruption

Cardiovascular risk factors induce endothelial injury. The occurring damages repre-
sent a balance between the degree of injury and the capacity of various complex 
mechanisms of repairing it. Diabetes mellitus is considered to be a clinical condi-
tion characterized by early and extended endothelial dysfunction. Hyperglycemia 
impairs vascular endothelial function and contributes to the vascular damage in dia-
betic patients [107]. Current studies suggest there is a negative correlation between 
the severity of diabetes and EPC count and function [108].

The complex pathophysiology of vascular damage in diabetes is not fully com-
prehended. Oxidative stress plays a crucial role in the pathogenesis of late diabetic 
complications. EPC dysfunction in diabetic patients has been correlated to oxidative 
stress and the generation of ROS [109]. Reduced extracellular superoxide dismutase 
(SOD) activity, the major antioxidant enzyme system of the vessel wall, has been 
associated with increased vascular oxidative stress and has been implicated in the 
endothelial dysfunction. In patients with CAD, SOD activity was substantially 
reduced [110].

NO is a biologically active unstable radical that is synthesized in vascular endo-
thelial cells by eNOS. EPC mobilization from bone marrow to the peripheral blood 
and function requires NO [111]. Endothelial dysfunction is characterized by low 
biovailability of endothelium-derived NO, witch is itself an independent predictor 
of future cardiovascular events.

Chen et al. [112] have reported that prolonged exposure of early or late EPCs to 
high glucose concentrations reduces their number and proliferative ability, NO bio-
availability, and the extent of phosphorylation of eNOS [112]. Exposure of EPC to 
high glucose concentrations has increased NADPH oxidase activity which results in 
increased O2- generation and reduced NO bioavailability because O2- inactivates 
NO and uncouples eNOS [113]. Therefore, decreased NO bioavailability is one of 
the determinants of vascular damage in diabetes.

On the other hand, ischemia induces neovascularization in diabetic patients. The 
oxygen deficit is considered the strongest stimulus for EPC mobilization from the 
bone marrow, through the up regulation of VEGF. It seems that EPC recruitment in 
regenerating tissues is mediated by a  hypoxic gradient by Hypoxic Inducible 
Factor -1 (HIF-1) [114]. The expression of angiogenic factors, VEGF and HIF-1, 
has been reduced in the hearts of diabetic patients during acute coronary syndromes 
(ACS). In rats, myocardial infarct size has increased in hyperglycemic conditions 
and has been associated with a reduced expression of the HIF-1 gene [115]. 
Lambiase et al. (2004) have shown that modest coronary collateral vessels develop-
ment, which is typical for diabetes, may be related to low levels of circulating EPCs 
[116]. Diabetic EPCs have not been  able to stimulate vascularization, even becom-
ing anti-angiogenic. Gill et al. [117] have reported that coronary artery bypass graft-
ing is followed by a marked increase in circulating EPCs that peaks at 6–12  h, 
resembling very closely to VEGF increase effects [117].
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Nondiabetic patients with PAD alone and patients with uncomplicated diabetes 
have had similar EPC reduction versus control subjects [118]. Patients with diabetes 
and PAD have had a further significant decrease in circulating EPC levels, espe-
cially in the presence of ischemic foot lesions. EPC levels have been strongly cor-
related with the ankle-brachial index, the most objective diagnostic and prognostic 
test for lower-extremity arterial disease.

In addition, hyperglycemia induces retinal ischemia and the release of angio-
genic factors that stimulate the proliferation of microvessels, leading to proliferative 
retinopathy. EPCs may be involved in the development of proliferative retinopathy. 
This is a paradox as, in diabetic patients, the vascular ischemia may coexist with a 
condition of pathological neovascularization. Interestingly, the pericyte loss is an 
early and selective event leading to endothelial activation and proliferation in the 
retina, and CD34+ progenitors of perivascular cells have been demonstrated in 
peripheral blood [119]. Thus, depletion of generic CD34+ progenitor cells may be 
one cause of pericyte loss.

Another possible link between diabetes and EPC alterations is the effect of insu-
lin resistance per se. It has been demonstrated that patients with metabolic syn-
drome have decreased levels of CD34+KDR+EPCs compared with patients without 
the syndrome [120].

Given the EPC effects revealed by ongoing clinical studies we may consider new 
pathways of understanding and treatment of diabetic complications.

8.5  �Mechanisms Leading to Endothelial Progenitor Cell 
Dysfunction in Diabetes and Diabetic Vascular 
Complications

EPCs from humans and animals with T2DM have multiple functional defects in 
vitro, with biologically relevance in vivo, including decreased migration to chemo-
tactic stimuli, reduced proliferative potential and differentiation, diminished ability 
to form vascular-like structures, which limit their regenerative capacity [121, 122].

In the following sections, we highlight the putative mechanisms by which meta-
bolic features of diabetes impair EPC functions.

8.5.1  �Effect of Hyperglycaemia

The abnormalities of glucose regulation are associated with changes in EPC biol-
ogy, including reduced circulating EPC numbers, incorrect mobilization from bone 
marrow, decreased functional properties, lowered capacity to mediate endothelial 
repair, and altered differentiation propensity. These alterations of EPCs reduce their 
potential to generate vascular regenerative cells favouring the development of pro-
inflammatory cells [123–125].
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It has been shown that in both patients with T2DM or pre-diabetic states (mean-
ing impaired fasting glucose and reduced glucose tolerance) and animal models of 
diabetes, the function and number of circulating EPCs are decreased compared to 
normoglycemic conditions and these are correlated with disease severity [118, 125–
130]. EPCs have been negatively associated with glucose levels after a glucose 
challenge, in individuals with impaired glucose tolerance [131], and also with serum 
glucose and glycated haemoglobin A1c levels, in patients with T2DM [132].

The mechanisms by which hyperglycaemia influences EPC function involve the 
formation of AGEs and oxidative stress with augmentation of ROS production 
through the activation of NAPDH oxidase in mitochondrion, with role in EPC apop-
tosis [133]. Increased ROS generation could also stimulate the AGE production, 
which further triggers ROS production. These activate nuclear factor-kappa B (NF-
B) and subsequently the target genes that encode inflammatory proteins inducing 
interleukin 1𝛽 (IL-1𝛽) and tumor necrosis factor-𝛼 (TNF-𝛼). In parallel, NF-𝜅B tran-
scription factor activates p53 accelerating cell senescence and inducible NOS (iNOS) 
that further potentiates the ROS production [134–136]. Hyperglycaemia causes also 
endoplasmic reticulum (ER) stress and excessive autophagy which further facilitate 
EPC death and reduce their migration [137, 138]. Apart from that, high glucose con-
centrations influence the proliferative capacity of EPCs either via inhibition of Akt 
phosphorylation followed by NOS activation or via activation of C-JunN-terminal 
kinase (JNK) pathway [139–141]. It has been demonstrated that the exposure to high 
levels of glucose, in vitro, induces decreased early and late EPC number and activity 
by downregulation of eNOS expression and phosphorylation, suggesting that eNOS 
is an important target for high glucose adverse effects [112]. However, it is still 
unclear whether high glucose-associated eNOS damage causes oxidative stress or if 
oxidative stress associated with high glucose causes eNOS deactivation [142]. 
Hamed et  al. (2009) showed that in patients with T2DM an inverse relationship 
between plasma glucose and reduced NO bioavailability in EPCs can be found, due 
to enhanced oxidative stress which damages the protein signaling pathways that lead 
to diminished NO generation [143]. The relationship between the NO signaling path-
way and EPC dysfunction will be discussed in detail below. High glucose levels also 
induce EPC senescence by one of NF-𝜅B target genes, p53, and by the activation of 
the p38 mitogen-activated protein kinase (MAPK) pathway [144] (Fig. 8.3).

A very recent study has shown that the main factors (AGE, oxidative stress) for 
EPC apoptosis and dysfunction induced by hyperglycaemia are also potent inducers 
for epigenetic changes in EPCs [145]. For example, ROS has been associated with 
a series of histone changes in the promoter and enhancer of superoxide dismutase 
(SOD) 2 gene in retinal endothelial cells isolated from diabetic rats with retinopathy 
[146]. In human microvascular endothelial cells, hyperglycaemia has induced the 
increase of H3K4mel expression and decreases of H3K9me2 and H3K9me3 levels 
on the of NF-𝜅B promoter leading to NF-𝜅B activation [147]. Moreover, the histone 
codes H3K9ac, H3K12ac, H3K4me2, and H3K4me3 suppress the eNOS transcrip-
tion conducting to decreased NO [148].

Taken together, these studies demonstrate the obvious and complex influence of 
hyperglycaemia on impaired EPC levels and function.
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8.5.2  �Effect of Insulin Resistance and Insulin Like Growth 
Factor 1

Insulin resistance, a key feature of T2DM and the metabolic syndrome, results in a 
variety of metabolic and vascular phenomena such as dyslipidaemia, inflammation 
and a pro-thrombotic tendency, which eventually promote the development of ath-
erosclerosis. Insulin resistance has been correlated with impaired downstream insu-
lin signal transduction that reduces the glucose uptake in metabolic tissues [124].

Fig. 8.3  The mechanisms by which diabetic hallmarks induce EPC dysfunction

8  Endothelial Progenitor Cell in Diabetes Mellitus



176

The homoeostasis model assessment (HOMA) of insulin resistance (a method 
used to quantify insulin resistance and beta-cell function), has been found to be 
negatively correlated with EPCs, in patients with cardiovascular risk [120]. In addi-
tion, it has been shown that healthy men of South Asian descent, that are more 
insulin resistant than Caucasian peoples, present a reduced EPCs number and func-
tion [149]. Also, in insulin receptor (IR)-null mice, the number of circulating EPCs 
has been decreased [150]. Flow cytometric and cell culture analyses have revealed 
lower levels of circulating EPCs across the spectrum of insulin-resistant states 
[124]. Furthermore, the treatment with an insulin sensitizer, metformin, or thiazoli-
dinediones, such as rosiglitazone, restored circulating EPC levels in diabetes [151–
153]. The reduction of circulating EPC levels could be the result of a number of 
factors, such as defective mobilization, diminished proliferation and shortened sur-
vival into the circulation [94, 154].

However, the direct effect of insulin on the mobilization and differentiation of 
EPCs remains underexplored [155]. On this line, it has been shown that insulin 
resistance is closely associated with abnormalities in NO bioavailability and PI3K/
Akt signaling, both playing an essential role in EPC mobilization from the bone 
marrow [94, 156–159]. Furthermore, in diabetic patients, EPCs have reduced clono-
genicity and uncoupled eNOS mediated by ROS, which additionally contribute to 
augmented oxidative stress and impaired vascular repair [113] (Fig. 8.3). In one 
study on patients with poorly controlled T2DM, insulin significantly enhanced EPC 
mobilizationin subjects with the stromal cell-derived factor 1 (SDF-1)-3′-A/G 
allele, a polymorphism known to be correlated with increased EPC mobilization, 
suggesting that this peptide plays a role in this EPC function [160, 161].

The mechanism by which insulin stimulates the in vitro outgrowth of EPCs from 
patients with T2DM involved the insulin-like growth factor (IGF-I) receptor, the stim-
ulation of MAPKs and extracellular-signal-regulated kinase (ERK1/2) signaling path-
ways, but not IR [162]. IGF-I has complementary activity  to insulin, and low IGF-I 
levels are recognized as an independent risk factors for CVD [163]. Treatment with 
growth hormone, which increases circulating IGF-I levels induced, in middle-aged 
humans, both the enhancement of circulating EPC levels and their incorporation into 
tube-like structures, and eNOS expression followed by the improvement of EPC col-
ony forming and migratory capacity [157]. In vitro, IGF-I stimulates via the IGF-I 
receptor the EPC differentiation, migratory capacity and ability to incorporate into 
vascular networks [157]. Furthermore, it has been demonstrated that haploinsuffi-
ciency of the IGF1-receptor increases endothelial repair and favorably modifies 
the angiogenic progenitor cell phenotype. This angiogenic trait accelerated the endo-
thelial regeneration in vivo, and increased the tube formation ability and adhesion 
potential of progenitor cells in vitro, and in general enhanced vascular repair [164]. It 
should be noted that a study has shown that IGF-I increases the eNOS expression, 
phosphorylation and activity in a PI3K/Akt-dependent manner in EPCs [157] (Fig. 8.3).

The heterozygous mouse models for IR knockout (IRKO), although non-diabetic, 
have revealed the presence of endothelial dysfunction and reduced EPC number and 
function. The descendants of IRKO mice crossed with transgenic mice with 
Tie-2-driven human IR expression in endothelial cells (HIRECO), have presented 
restored insulin signaling in endothelial cells through IR, and improved blood pres-
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sure, endothelial function, NO bioavailability, and vascular repair in the setting of 
global IR. This has not been related to glucoregulation or EPC abundance [165]. 
Insulin resistant, non-diabetic hemizygous mice for IRKO have presented a lower 
number of circulating EPCs in peripheral blood, but not in bone marrow and 
decreased EPC mobilization compared to wild-type mice [150]. Moreover, in IRKO 
mice, after arterial injury, the endothelial regeneration was delayed, but it has been 
restored after the transfusion of mononuclear cells or c-kit+bone marrow cells from 
wild-type mice [150].

All these studies demonstrate that both insulin and IGF-I significantly influence 
the EPC function, but more investigations are needed to understand their mode of 
action.

8.5.3  �Nitric Oxide as a Key Factor of Endothelial Progenitor 
Cell Dysfunction

NO, a biologically active unstable free radical is synthesized from L-arginine in 
vascular endothelial cells by eNOS, an enzyme which is constitutively expressed in 
these cells. NO bioavailability depends on the balance between the rate of its gen-
eration and its inactivation, particularly by ROS [166, 167]. Moreover, NO and 
eNOS play an important role in mobilization of EPCs from bone marrow stem cell 
niches to the peripheral circulation [11, 168, 169]. NO bioavailability in sites of 
active vascularization seems to be crucial for EPC biology and function. The admin-
istration of endogenous NOS inhibitors, such as asymmetric dimethylarginine 
(ADMA), induces decreased EPC mobilization, differentiation, and proliferation in 
patients with CVD, suggesting the essential role of this enzyme in EPC function 
regulation [170].

Impaired NO bioavailability, the hallmark of endothelial dysfunction, is one of 
the contributing factors to the vascular damage in T2DM. NO bioavailability may 
be diminished either due to the lower overall systemic fraction of L-arginine that is 
converted to NO, or due to the reduction of essential eNOS cofactor and (6R)-5,6,7,8-
tetrahydro-L-biopterin (BH4) [171, 172]. Reduced NO concentration contributes to 
defective migratory activity in diabetic EPCs. It has been demonstrated that EPCs 
isolated from diabetic patients have an impaired migration to stimulation with 
SDF-1 due to defective cell deformability, and the NO treatment improves deform-
ability and normalizes the migration of these diabetic cells [173]. The EPC dysfunc-
tion in T2DM has been reported to be restored through NO-dependent mechanisms 
by various ways: (i) treatment with a NO donor drug which normalized their migra-
tion [173]; (ii) treating wounds with SDF-1α which reestablished their homing 
[140]; (iii) inactivation of NADPH oxidase which improved their reendothelializa-
tion capacity, in vivo [174]; (iv) preservation of the NO bioavailability with SOD 
which restored EPC proliferation [169]. Furthermore, since it has been demon-
strated that prostacyclin (PGI2), an vasorelaxant prostanoid, has a direct effect on 
EPC functions and number in an autocrine or paracrine manner through an NO-
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dependent mechanism [175–177], it has been considered that PGI2 may have a sub-
stantial therapeutic role in diabetes as well [142].

8.5.4  �PI3K/Akt Signaling Pathway and Endothelial Progenitor 
Cell Dysfunction

The  phosphatidylinositol triphosphate kinase/protein kinase B (PI3K/Akt) path-
way has been suggested to be involved in the regulation of  EPC recruitment, mobili-
zation, and proliferation [178]. Well-known activators of the PI3K/Akt pathway such 
as hydroxymethylglutaryl-coenzyme A reductase inhibitors (statins), erythropoietin, 
estrogens, and VEGF, are able to increase circulating EPC levels, proliferation and 
migration [156, 179]. Pharmacological inhibition of PI3K and the overexpression of 
a dominant-negative Akt construct have been shown to abolish EPC proliferation and 
differentiation induced by statin and VEGF, in vitro and in vivo [156]. Moreover, Akt 
is an upstream enzyme of  the eNOS signaling pathway which, as we mentioned 
above, is essential for EPC mobilization. Thus, perturbations in the PI3K/Akt/eNOS/
NO signaling pathway or in one of its members may result in EPC dysfunction [168].

8.5.5  �Oxidative Stress Impairs the Function of Endothelial 
Progenitor Cells

Oxidative stress is defined as an imbalance between ROS production and antioxi-
dant defences. ROS generation is promoted by the p66shc, an adaptor protein [180, 
181], while the antioxidant protection is provided by catalase, SOD, and glutathione 
peroxidase (GPx), which scavenge the excess of oxygen-free radicals and reduce 
ROS action. Previous reports have shown that the oxidative stress has a pivotal dam-
aging effect on EPC functions [155, 182]. Thus, enhanced superoxide generation 
reduces the EPC levels and impairs EPC function [113]. Dysregulations of p66shc 
expression and SOD activity have been detected in AGEs-stimulated late EPCs, 
changes that are mediated by high mobility group box-1 (HMGB-1), a nonchromo-
somal nuclear protein [183, 184]. However, in the  early-stage of diabetic EPCs, 
increased levels of ROS are not found, owing to the enhanced expression of antioxi-
dant enzymes such as catalase [185].

Additionally to the indirect effects of ROS on EPCs it has been suggested that 
ROS exert direct effects on EPCs. Hydrogen peroxide (H2O2) induces in EPCs the 
increase of Forkhead box O3 (FOXO3a) protein expression, in a dose-dependent 
manner, and thereafter the activation of pro-apoptotic protein, Bim, that leads to the 
following effects: decreased viability, increased apoptosis, and the impairment of 
tube formation [186]. Also, H2O2 stimulates EPC apoptosis by the activation of 
apoptosis signal-regulating kinase 1 (ASK1), due to the oxidation of sulfhydryl 
groups of multiple anti-oxidant proteins such as glutaredoxin and thioredoxin [187, 
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188]. Moreover, H2O2 produces the oxidation of important EPC proteins such as the 
T-complex protein 1 subunit α, cofilin-1, peroxiredoxin-4, isoform A of prelamin--
A/C, and actin [189].

Under diabetic conditions, enhanced oxidative stress induces the excessive gen-
eration of oxidized low density lipoprotein (oxLDL) [142]. It has been shown that 
the oxLDL reduces the number of viable EPCs in culture and induces the dysfunc-
tion of cultured EPCs isolated from healthy subjects [190–192]. These effects are 
mediated by NADPH oxidase, NF-𝜅B activation, or LOX-1 activation that subse-
quently inhibit the Akt/eNOS pathway [190, 192]. In T2DM patients, elevated lev-
els of circulating oxLDL contribute to cardiovascular symptoms [193]. OxLDL 
accelerates the EPC senescence by the activation of the Akt/p53/p21 signaling path-
way [144, 190] and inhibits VEGF-mediated differentiation via LOX-1 receptors, 
increasing the LOX-1 mRNA expression [194].

High-density lipoproteins (HDL), particles with antioxidant and anti-inflammatory 
properties, have a positive impact on EPC physiology [195, 196]. In T2DM patients, 
the HDL particles are dysfunctional, and the serum levels of oxidized HDL (oxHDL) 
and myeloperoxidase (MPO) enzyme have been found to be elevated as well [197, 
198]. The administration of reconstituted HDL to T2DM patients has improved cir-
culating EPC functions [199], while the treatment with HDL of cultured EPCs has 
induced the intensifications in their proliferation, migration, adhesion, and tube for-
mation and also protected them from apoptosis [200]. In addition, HDL protects 
EPCs from the deleterious effects of ox-LDL. On the other hand, high concentra-
tions of HDL (>400 μg/ml) seem to induce EPC senescence and to decrease their 
tube formation ability via the activation of Rho kinase that inhibits the Akt and p38 
MAPK signaling pathways [201]. Conversely, ox-HDL stimulates EPC apoptosis in 
a dose-dependent manner, via the CD36 pathway. Interaction of ox-HDL with CD36 
also enhances the NADPH oxidase activity, upregulates Nox2 mRNA (NADPH oxi-
dase subunit), and activates the MAPK/NF-𝜅B pathway [202].

Other data have revealed that ROS induce the impairment of EPC function in 
diabetes, but the mechanisms that explain this phenomenon have not yet been stud-
ied by these authors [155, 203]. One of the mechanisms of diabetes-induced oxida-
tive stress action has been recently investigated by Wu et al. (2016). This study has 
indicated that HMGB-1 has a significantly involvement via a positive feedback loop 
including the AGE/ROS/HMGB-1 pathway [203].

Regarding the antioxidant protection, it has been shown that EPCs from healthy 
humans contain high intracellular expression levels of manganese SOD (MnSOD) 
[204, 205], while EPCs from T2DM patients have increased SOD activity that neu-
tralizes the high levels of superoxide anions [142]. Moreover, it has been reported 
that the antioxidant therapy with SOD in diabetic mice has reduced oxidative stress 
and improved EPC levels and differentiation capacity [206]. The treatment with 
SOD of glucose-stressed EPCs has restored their proliferation through an NO-
dependent mechanism suggesting that the interaction between NO and superoxide 
anions has an important role in the development of EPC dysfunction and subse-
quently in CVD development in T2DM patients [169]. The augmentation of SOD 
expression in human EPCs by shear stress can accelerate the neutralization of super-
oxide anions, preventing the peroxynitrite formation, and thus increasing NO bio-
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availability in EPCs [207]. Likewise, the MnSOD overexpression effectively 
reversed the diabetic EPC dysfunction including tube formation, migration, while 
the transplantation with MnSOD-overexpressed diabetic EPCs improved in vivo 
wound healing ability [208]

8.5.6  �Inflammation and Endothelial Progenitor Cells 
Dysfunction

Inflammation affects both EPC number and function, and EPCs react in two differ-
ent ways to an inflammatory environment [208]: (1) at low concentrations of inflam-
matory cytokines, the number and function of EPCs are positively regulated, 
meaning that the increased number of circulating EPCs adheres and is recruited to 
the injured area; (2) at high concentrations of inflammatory cytokines, in a severe 
and chronic inflammatory environment such as diabetes, EPC functions (mobiliza-
tion, adhesive capacity and proliferation) are impaired and the EPC number is 
reduced, leading to deficiency in angiogenesis. Subclinical inflammation has been 
shown to be a powerful predictor of cardiovascular events and T2DM [155]. In these 
conditions, the systemic inflammation is characterized by elevated levels of 
C-reactive protein (CRP), TNF-α, and many cytokines, such as interleukins (ILs): 
IL-1, IL-6, IL-10 and IL-18 [209, 210]. The interaction of these factors with differ-
ent receptors results in the increase of oxidative stress and activation of NF-𝜅B in 
EPCs, which lead to their dysfunction (Fig. 8.3).

CRP has been reported to have the following effects, mediated through receptors 
for AGE, on EPCs: (i) significantly disturbs migration, adhesion and proliferation; 
(ii) reduces eNOS expression, increases apoptosis and necrosis [211, 212]. In addi-
tion, CRP increases mitochondrial ROS production, modulating the expression of 
anti-oxidant enzymes, such as GPx and MnSOD [212]. There was no association 
found between plasma levels of CRP and EPCs [213]. Regarding the effect of ILs, 
it has been shown that IL-1β: (i) induces murine EPC viability, proliferation, and 
migration both in vivo and in vitro, via ERK1/2 pathway activation [214]; (ii) 
increases mRNA and protein levels of VEGF-A in EPCs, via the PI3K/Akt signal-
ing pathway [215]; (iii) reduces the number and proliferation of pig EPCs, and also 
EPC migration, adhesion, and angiogenesis, through p38 MAPK pathway activa-
tion [216]. Also, IL-18 reduces the ability of EPCs from healthy individuals to dif-
ferentiate into mature endothelial cells [217] while IL-6 increases EPC migration, 
proliferation, and differentiation in cell culture, by activating both the JNK/STAT3 
pathway and the ERK1/2 pathway [218]. Moreover, IL-10 alone has no effect on 
EPC migration and differentiation, although it  did augmente significantly the 
expressions of VEGF and matrix metallopeptidase-9 (MMP-9) and potentiated the 
negative effects of TNF-α on EPCs [219].

TNF-α serum levels are higher in diabetes and have been associated with various 
complications of this disease [220, 221]. It has been shown that TNF-α influences 
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the EPC function by different ways: (i) induces IL-18 expression that has negative 
effects on EPC differentiation; (ii) decreases Akt phosphorylation mediated by insu-
lin and increases apoptosis through NF-𝜅B pathway activation [222]; (iii) inhibits 
migration and proliferation in a dose and time-dependent manner; (iv) mediates 
downexpressions of VEGFR-1 and SDF-1 as well as of the iNOS and eNOS [223]. 
On the contrary, in another study it has been reported that TNF-α enhances EPC 
migration, adhesion, and tube formation [219].

Regarding the effect of NF-𝜅B, it has been indicated that its overexpression: (i) 
improves EPC adherence to the  endothelium by increasing the expressions of 
E-selectin and P-selectin glycoprotein ligand-1 [224]; (ii) does not impair the migra-
tion or vasculogenesis, in murine embryonic EPCs. In addition, simultaneous stim-
ulation with TNF-α and NF-𝜅B of EPCs isolated from insulin resistant ZO rats 
induces apoptosis via caspase-3 [222]. The activation of NF-𝜅B can mediate the 
damage induced by Benzo[a]pyrene, an environmental toxin, on EPCs by increas-
ing ROS production, thus impairing their migration, proliferation, and vasculogen-
esis [225].

8.5.7  �Altered Micro RNA Expression and Dysfunctionality 
of Endothelial Progenitor Cells

The small noncoding molecules, microRNAs (miRNAs), are key regulators of 
diverse cellular processes, and their expression reflects the disease pathology [226]. 
The miRNAs in the body fluid seem promising to be used as biomarkers to monitor 
diabetes onset, and their number has been found to play a significant physiological 
role in tissues where diabetes complications occur.

Regarding the involvement of miRNAs in diabetic EPC dysfunctions, there are 
several data sustaining this aspect. For example, it has been shown that in T2DM, 
the miRNA-126 expression has been downregulated in EPCs, inhibited EPC prolif-
eration/migration ability, and induced apoptosis, leading to diabetes-mediated 
CVD [227]. The altered expressions of miRNA-126 as well as of miRNA-130a have 
been involved in EPC dysfunction through extracellular signal–regulated kinase, 
Ras/ERK/VEGF, and the PI3K/Akt/eNOS signaling pathway [227, 228]. In addi-
tion, dysregulated miR-130a has impaired EPC function by directly targeting 
MAP3K12, a newly identified target gene of the JNK signaling pathway [141]. 
Alternatively, in T1DM patients the expression of miR-126 in EPCs has increased 
compared to control subjects [229]. In primary cultured EPCs from diabetic patients, 
an increased expression of miR-21 has been detected compared to that from control 
individuals, and it was suggested that elevated levels of muR21 protect EPCs from 
apoptosis via the regulation of downstream target DAXX [230]. Moreover, the over-
expression of miR-34a in EPCs results in an increase in EPC senescence with 
impaired angiogenesis and SIRT1 expression [231] (Fig.  8.3). Also, augmented 
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levels of miR-34a and miR-217 have induced the downregulation of some important 
targets of SIRT1, such as FOXO1 and eNOS, thereby leading to premature endothe-
lial cell senescence and apoptosis [231, 232]. More recently, it was demonstrated 
that in T1DM patients with diabetic retinopathy, the miR-221 expression in EPCs 
has been significantly higher than in T1DM patients without diabetic retinopathy 
and control subjects [229]. Thus, it was hypothesized that when retinal damage is 
widespread with chronic hypoxia and nonperfusion, the EPCs would respond by 
increases of miR-221 expression and specific chemokines, a process not activated in 
earlier stages in noncomplicated diabetic patients.

The identification of miRNAs as diabetic biomarkers and pathogenic factors 
would not only contribute to the detection of early complications and progressive 
changes of diabetes, but also would provide targets for strategic therapeutic 
approaches in diabetes mellitus.

8.6  �Significance of Endothelial Progenitor Cells 
in the Pathogenesis of Vascular Complications 
of Diabetes

Several studies have revealed the innate complex mechanisms underlying changes 
that occur in the vasculature during diabetes and lead to the  cardiovascular risk 
associated with macrovascular and microvascular complications of diabetes [233]. 
It is well known that EPCs play an essential role in endothelial repair, angiogeneo-
sis, neovascularization and attenuation of vascular dysfunction. Therefore, altera-
tions in EPC number and functions are considered markers of cardiovascular risk in 
the general population and in diabetic patients, as well as a cause of diabetic vascu-
lar complications [120, 234, 235].

8.6.1  �Endothelial Progenitor Cell Dysfunction 
and Macrovascular Complications in Diabetes

The linkage between diabetes mellitus and macrovascular disease has been very 
well established in many scientific studies [236]. It has been reported that diabetic 
patients have a two to fourfold increased risk of developing CAD and PAD com-
pared with non-diabetic individuals [22]. Also, the severity of macrovascular com-
plications in diabetes has been attributed to a profoundly impaired collateralization 
of vascular ischemic beds [237]. In addition, EPCs have been found to be involved 
into the mechanisms that delay ischemia-induced neovascularization in diabetes. In 
animal models of diabetic vasculopathy, it has been shown that diabetic EPCs are 
not able to promote vascularization, becoming antiangiogenic [238, 239], while the 
administration of EPCs from control animals has reduced defective 
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collateralization. Consequently, a referenced study has established that EPCs play 
an important role in the vascularization and also, in healing of diabetic wounds 
[240]. Additionally, it has been demonstrated that the EPC reduction in diabetes is 
strongly correlated with the severity of both carotid and lower-limb atherosclerosis, 
suggesting that EPC number can be a valuable marker of atherosclerotic involve-
ment [115]. In agreement with these findings, other studies have indicated that the 
lower circulating EPC number reflects the evolution of atherosclerotic disease both 
in animal models [241–243] and in patients [244]. These papers have used for EPC 
analyzing and quantification the flow cytometry technique. Furthermore, it has been 
reported that the determination of EPC number, using flow cytometry, is sufficiently 
reproducible to be used in the clinical practice, providing additional information 
over the classical risk factor analysis. This EPC measuring reflects not only vascular 
function and atherosclerotic changes, but also the endogenous vasculoregenerative 
potential [120, 245, 246]. The CD34+ KDR+ EPC count has been showed to predict 
the cardiovascular events independently of risk factors and hard indexes, such as left 
ventricular ejection fraction [244, 245, 247].

These findings have indicated that both decreased levels and dysfunction of 
EPCs play a significant role in enhanced cardiovascular risk and diabetes-related 
complications.

8.6.1.1  �Endothelial Progenitor Cells and Diabetic Coronary Artery 
Disease

It is well known that diabetic patients die from CVD, diabetes representing the 
major cause of death among this population and contributing to a shortening of 
average life span by 5–10 years in these patients [248]. Diabetes increases the risk 
of future MI more than any other risk factors, and the consequences of MI are 
greater in these patients compared to the patients without diabetes mellitus [236].

It has been shown that EPCs isolated from the peripheral blood (PB-EPCs) of sub-
jects with cardiovascular risk factors and previously diagnosed diabetic CAD, have 
altered phenotypes [247, 249], while in patients with known CAD, these cells have 
exhibited a reduced migratory capacity and weak proliferative response [250]. 
Additionally, lower levels of EPCs have been found in patients with severe atheroscle-
rosis or diabetes-related vasculopathy [251, 252], and it was concluded that the circu-
lating EPC levels predict cardiovascular events in patients with CAD [245, 253].

Most importantly, due to the EPC heterogeneity and the variable changes in the 
EPC phenotype at different stages of CAD and diabetes development, there are 
some limitations in establishing the predictive value of the number and functionality 
of EPCs in cardiovascular risk calculation [233].

Moreover, modulating EPC levels in T2DM with known CAD using different 
drugs is still under study. Regarding this aspect, it was found that valsartan, an 
angiotensin-2 receptor blocker, in high doses, has a positive influence on bone 
marrow-derived EPCs phenotyped as CD14+ CD309+ and CD14+ CD309+ Tie2+ in 
T2DM patients with known asymptomatic CAD [254]. Additionally, strong evi-
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dence has been provided to support that statins (atorvastatin and pravastatin) have  a 
favourable in vitro effect on functional parameters of EPCs derived from diabetic 
patients with acute ST segment elevation MI (STEMI) [248]. These data indicate 
that treatment with statins may be beneficial for EPC-driven vascular repair after an 
acute MI (AMI) and may improve the cardiovascular outcome of diabetic patients.

8.6.1.2  �Endothelial Progenitor Cells and Diabetic Peripheral Arterial 
Disease

PAD is a common vascular complication in the diabetic population, diabetes increas-
ing the risk of developing PAD at least two-fold [255, 256]. Patients suffering from 
both diabetes and PAD present poor lower extremity function and are at risk of 
developing critical limb ischaemia and ulceration, potentially requiring limb ampu-
tation [257, 258]. Moreover, these patients respond poorly to the treatment of PAD 
and exhibit a higher mortality [245, 246].

Regarding EPC involvement in this pathology, it has been shown that patients 
with PAD alone and patients with uncomplicated diabetes had similar EPC decrease 
versus control subjects, while patients with PAD and diabetes had a more signifi-
cantly reduction in circulating EPC levels, mainly in the presence of ischemic foot 
lesions [115]. EPC levels are strongly correlated with the ankle brachial index, the 
most objective diagnostic and prognostic test for lower extremity arterial disease 
[118]. A recent study has demonstrated that ankle-brachial index is the determinant 
of EPC population state in disease-affected groups, and EPCs could predict the 
prevalence and severity of symptomatic PAD [259]. Moreover, EPCs isolated from 
diabetic patients with PAD have exhibited impaired proliferation and adhesion 
capacity to mature endothelium [260], while EPCs isolated from diabetic mice had 
suppressed EPC mobilization following hindlimb ischaemia [261–265]. In isch-
aemic tissue the existence of an inverse relationship was proven between diabetes 
duration and EPC number [266]. Furthermore, it has been reported that the admin-
istration of: (i) non-diabetic EPCs into diabetic hindlimbs, following ischaemia, 
have accelerated the blood flow restoration [238]; (ii) vitamin B1 analogue, benfo-
tiamine or statins, have prevented the diabetes-induced reduction in circulating 
EPCs in mice subjected to limb ischaemia [265, 267]; (iii) insulin and G-CSF (gran-
ulocyte colony stimulating factor) have partially restored the deficient EPC mobili-
zation in diabetic rats after ischaemia/reperfusion injury [268].

8.6.1.3  �Endothelial Progenitor Cells and Diabetic Cerebrovascular 
Disease

In diabetic patients, ischemic cerebral damage is exacerbated, and the outcome is 
poor, but the responsible mechanisms are not well known. Likewise, there is less 
information regarding the correlation of circulating EPCs with cerebral vascular 
density (as an index of angiogenesis) and ischemic injury [269]. Information on 
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ischemic stroke in diabetic animal models is also lacking. In a study using db/db 
mice as a T2DM animal model for in vivo ischemic stroke it has been shown that 
impaired circulating EPC number, reduced EPC production/function, and increased 
generation of microparticles (MPs) might be the mechanisms responsible for 
increased ischemic damage [269]. Moreover, these data suggest that circulating 
EPCs and MPs could be used as predictive biomarkers for ischemic stroke compli-
cations in diabetes and might be thus targeted, offering new therapeutic possibilities 
for diabetes and ischemic stroke. In another study it has been reported that EPC 
transplantation alone had a modest effect on stroke recovery in diabetic mice in 
terms of angiogenesis, neurogenesis, axonal remodeling, and neurological behavior. 
These phenomena may be explained by the fact that only a small number of trans-
planted cells survived and successfully homed to the ischemic brain in these dia-
betic animals [270]. Recently, the same group has reported that EPC transplantation 
combined with p38 mitogen-activated protein kinase inhibitor administration into 
db/db diabetic mice, after ischemic stroke induction, have accelerated recovery, by 
increasing levels of proangiogenic and neurotrophic factors [271].

As a result, EPC dysfunction is perhaps a promising target for diabetes treatment 
strategies. Indeed, the improvement of EPC number and functionality seems to 
reduce cardiovascular risk and diabetes-related macrovascular complications, but 
the mechanisms underlying these outcomes are not fully clear, requiring more 
investigations.

8.6.2  �Endothelial Progenitor Cell Dysfunction 
and Microvascular Complications in Diabetes

Patients with diabetes mellitus are at high risk for the development of microvascular 
complications and major adverse cardiovascular events. The EPC dysfunction 
related to the three manifestations of microvascular disease in diabetes: retinopathy, 
nephropathy, and neuropathy, will be discussed in further detail below.

8.6.2.1  �Endothelial Progenitor Cells and Diabetic Retinopathy

Diabetic retinopathy represents an important cause of visual deficiency in the 
Western world [9]. In the United States this disease has been responsible for ~8% of 
cases of legal blindness and ~12% of all new cases of blindness in each year in the 
last decade of the twentieth century [236]. The majority of T1DM patients and more 
than 60% of patients with T2DM develop background retinopathy. The severity of 
hyperglycemia, duration of diabetes mellitus, insulin resistance and additionally, 
hypertension, dyslipidemia, inflammation and smoking are important factors that 
contribute to the development of microvascular disease [272, 273].
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The role of EPC in the development of diabetic retinopathy is controversial 
[145]. EPC number has been reported as either decreased, increased or unchanged 
in diabetic patients with severe retinopathy when compared to diabetic patients with 
or without mild retinopathy, or to healthy subjects [229, 274–277]. Additionally, 
there are studies showing that in patients with nonproliferative diabetic retinopathy 
the circulating EPC number is reduced [127] compared to proliferative diabetic reti-
nopathy patients which have increased EPC levels [278]. In T1DM and 
T2DM patients with diabetic retinopathy, it was found that although the EPC num-
ber is increased, their functions, such as migration, mobilization and homing, are 
often impaired [277, 279]. Intravitreal delivery of cartilage oligomeric matrix 
protein-angiopoietin 1 (COMP-Ang1) recovers the endothelial integrity and ame-
liorates the vascular leakage by promoting incorporation of endothelial colony-
forming cells into retinal vasculature [280] in diabetic mice, and this way reverses 
diabetic retinopathy. Moreover, it has been demonstrated in culture studies that the 
early EPC (eEPCs) are responsible for ‘provisional repair’, first homing at the lesion 
and attracting the CD34+ cells, and later on attracting late outgrowth endothelial 
progenitor cells (late EPCs) [281]. In nonproliferative diabetic retinopathy, eEPCs 
are dysfunctional and they can not recruit late EPCs into the retina to repair the acel-
lular capillaries, while in proliferative diabetic retinopathy the eEPCs take a proin-
flammatory phenotype and recruit too many late EPCs leading to pathological 
neovascularization. Correcting these dysfunctions may allow the use of a diabetic 
patient’s own EPCs to repair their injured retinal and systemic vasculature, in both 
the early and intermediate phase of vasodegeneration, to enhance vessel repair, 
reverse ischemia, and prevent progression to the late stages of diabetic retinopathy 
[281]. Thus, for durable repair and sustained correction of retinal ischemia the use 
of these expanded in vitro cells (eEPCs and late EPCs) has been proposed as being 
better than the use of the freshly isolated ones [282–284]. Nevertheless, more rigor-
ous investigations are needed to solve this problem.

8.6.2.2  �Endothelial Progenitor Cells and Diabetic Nephropathy

Diabetic nephropathy is found at a rate of ~7% of patients already diagnosed with 
T2DM. It occurs in less than 12% of patients with T1DM at 7 years after the diag-
nosis has been made, and in ~25% of patients with T2DM at 10 years after diagnosis 
[236]. Diabetic nephropathy is characterized in the early stages by hyperperfusion 
and hyperfiltration, due to the endothelial cell damage and abnormal angiogenesis, 
and in the late stages by the development of glomeruli fibrosis that results in renal 
failure. However, the exact mechanisms of nephropathy are not fully elucidated. At 
the present time, it has been reported that AGEs, oxidative stress, and the activation 
of the renin-angiotensin-aldosterone system (RAAS) are involved in these changes 
partially through the activation of TGF-1 signaling and increased VEGF expression 
in the kidney [285–287]. The negative correlation between EPC number and micro-
albuminuria or albumin excretion rate reported in both T1DM and T2DM patients, 
has suggested that EPCs have a protective effect in the structure and function of 
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glomeruli [179, 288]. The involvement of dysfunctional EPC has been described in 
both endothelial damage and microcirculatory impairment that occurs in the early 
pathogenetic events in diabetic nephropathy and also in defective glomerular repair 
and renal disease progression in diabetes [115]. Moreover, it has been suggested 
that EPCs, being pluripotent, have the ability to transdifferentiate into different phe-
notypes. Due to the kidney-derived hormone, erythropoietin, that has a major role 
in the regulation of EPC mobilization and differentiation, the relations between 
EPCs and renal function are more complicated [179]. In diabetes, the oxygen-
erythropoietin feedback that depends on the hypoxia-sensing system, hypoxia-
inducible factor 1-alpha (HIF-1α), is dysregulated. The erythropoietin response is 
affected by microangiopathy and progressive tubulointerstitial fibrosis which 
increase the latency of the  erythropoietin system, and by ROS production and 
hyperglycemia which themselves stabilize HIF-1α [289]. It has been demonstrated 
that HIF-1α downregulation had a negative impact on EPC mobilization in diabetes 
[268]. Another factor that has complicated the relationship between EPCs and renal 
function is represented by ADMA. This endogenous NO inhibitor that is accumu-
lated in patients with chronic kidney disease (CKD) [290] and diabetes [291], is also 
a potent inhibitor of EPC mobilization and function [170]. Thus, the  disrupted 
erythropoietin system and an excess of ADMA in CKD seem to inhibit EPC mobi-
lization, differentiation, and homing, while EPC alterations that occur in diabetes 
impair the renal microvasculature. Due to this vicious circle, diabetic nephropathy 
can be associated with a deficiency of EPCs rather than with CKD in general, which 
would represent an additional risk for CVD and death [268].

It has been recently suggested that for treating diabetic nephropathy the endothe-
lial colony-forming cells (ECFCs) could be a promising and complimentary thera-
peutic target [145]. Another promising idea is to apply ECFC with higher level of 
NO or angiopoietin 1 (Ang1) that will be favorable for stabilizing capillaries by 
reversing ‘uncoupled VEGF with NO’ balancing ‘Ang1/Ang2 competition’ and 
‘rendering Ang1/VEGF’. Alternatively, induced pluripotent stem cells (iPSC)-based 
ECFCs would be one of the major strategies for diabetic microvascular abnormality 
treatment. In this direction it has been disclosed that the endothelial progenitors 
generated from human iPSCs derived from cord blood have a greater capacity for 
homing and long term incorporation into injured retinal vessels [292, 293]. To 
improve endothelial function and protect vessel from retinopathy as well as 
nephropathy, ECFC administration has been proposed in the early stage of diabetes 
for better efficacy [145].

8.6.2.3  �Endothelial Progenitor Cells and Diabetic Neuropathy

The development of diabetic neuropathy is associated with vascular and nonvascu-
lar abnormalities. The neuropathy is characterized by basement membrane thicken-
ing, pericyte loss, reduced capillary blood flow to C fibers, resulting in attenuated 
nerve perfusion and attendant endoneurial hypoxia, axonal thickening and eventual 
loss of neurons [294]. There are two major types of clinical manifestations: (1) 
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chronic, symmetrical, length-dependent sensorimotor polyneuropathy, that is asso-
ciated with the  severity and duration of hyperglycemia [295]; (2) asymmetrical 
polyneuropathies that develops at more unpredictable times during the development 
of diabetes [296].

In the experimental diabetic neuropathy, the reduction of vasa nervorum is an 
obvious characteristic of peripheral nerves, and decreased blood supply to periph-
eral nerves can accelerate disease progression [297]. It was hypothesized that EPCs 
may have a crucial role in the homeostasis of the nutritive microvasculature, their 
dysfunction contributing to the acceleration of disease. Due to the ability of these 
cells to differentiate also toward the neural phenotype [298], it is possible that the 
imbalance of immature circulating cells in diabetes influences this chronic compli-
cation, downregulating both endothelial and neuronal progenitors [268]. To support 
this hypothesis it has been reported that the EPC intramuscular administration can 
reverse the impairment of sciatic nerve conduction velocity and nerve blood flow in 
diabetic rats [299]. Chavez et al. (2005) have demonstrated that the EPC dysregula-
tion in diabetic neuropathy may be attributed to a defective HIF-1α activation [300]. 
Other groups have shown that diabetic neuropathy can by delayed by the adminis-
tration of some EPC-modulating agents, such as erythropoietin and statins [301]. 
Consequently, the EPC alterations have contributed to the pathogenesis of diabetic 
neuropathy, but future studies are needed to elucidate the involved mechanisms.

Taken together, these findings indicate that, although very important, the role of 
EPCs in the pathogenesis of diabetic microvascular diseases is still uncertain and 
future investigations are necessary to reveal the EPC mysterious nature for thera-
peutic applications.

8.7  �Potential Therapeutic Implications of Endothelial 
Progenitor Cells in Diabetes-Associated Vascular 
Complications

8.7.1  �Prognostic Value of Endothelial Progenitor Cells

In the recent years many studies have focused on an attempt to define the role of 
EPCs in identifying patients with increased cardiovascular risk. Clinical studies 
have demonstrated a correlation between the levels of circulating EPCs and the 
increasing cardiovascular risk profile [250, 302]. Thus, the adjuvant potential of 
EPCs as a cardiovascular risk biomarker has been proposed, based on the inverse 
link between EPC number, their migratory/proliferative potential and risk factors 
for CVD. Thereby, it has been demonstrated that the number of circulating EPCs 
and their migratory activity are reduced in the presence of classic cardiovascular 
risk factors such as smoking [94, 303–305], hypertension [306–308], hypercholes-
terolemia [250, 309], obesity [310, 311], T1DM and T2DM [115, 121, 128, 235] 
(Fig. 8.4). These effects could be possibly explained by three different mechanisms, 
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either separate or in combination: (a) an impaired mobilization of EPCs from the 
bone marrow, (b) an increased uptake of EPCs at sites of vascular injury to induce 
the endothelial repair; and (c) a decreased half-life of circulating EPCs by acceler-
ated senescence and apoptosis of the remaining cells [94, 312]. In this way the 
reduction in mobilization, homing, and differentiation/survival of EPCs may limit 
their ability to repair injured tissues. The endothelial dysfunction and alteration 
have also determined the higher tissue request for EPCs and their increased turnover 
[305]. On the other hand, with ageing there is a decrease in the production of EPCs 
in BM [313].

In contrast, some pathologies such  as ACS and acute myocardial infarction 
(AMI) cause hypoxia and vascular injury determining increased levels of inflamma-
tory and hematopoietic cytokines, which induced a rapid mobilization of EPCs in 
the circulation [314, 315] (Fig. 8.4). Also, it is well known that physical exercises, 
hypoxia and some chemokines and growth factors (VEGF, SDF-1, angiogenin and 
colony-stimulating factor-CSF) increase EPC number and improve their function 
[106, 315, 316] (Fig. 8.4).

Fig. 8.4  The influence of physiological and pathological factors on EPC number and function
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8.7.2  �Pharmacological Manipulation of Endothelial 
Progenitor Cells

Besides their role as diagnostic and prognostic biomarkers, EPCs may be important 
targets in the CVD therapy. Thereby, many cardiovascular pharmacotherapies have 

Table 8.2  Effect of drug therapy on EPC number and function

Medication Response

Antihypertensive medication

Angiotensin II receptor blockers

Candesartan – [Ref. 328] ↑ EPC number in hypertensive patients
Telmisartan – [Ref. 329, 330] ↑ EPC proliferative activity in vitro; ↑ EPC number in 

normotensive patients with CAD
Irbesartan – [Ref. 241] ↑ EPC number in hypertensive-hypercholesterolemic animal 

model
Irbesartan – [Ref. 244] ↑ EPC number in patients with hypertension and 

dyslipidemia
Angiotensin converting enzyme inhibitors

Ramipril – [Ref. 331] ↑ EPC number and EPC migration, proliferation, adhesion 
abilities in patients with stable CAD

Enalapril – [Ref. 332] ↑ EPC number in hypertensive patients
Zofenopril – [Ref. 332] ↑ EPC number in hypertensive patients
Calcium channel blockers

Nifedipine – [Ref. 333] ↑ EPC number and function in stage I hypertensive patients
Barnidipine – [Ref. 334] ↑ EPC number in mild essential hypertension patients
Nitrates

Nitroglycerin – [Ref. 335] ↑ EPC number in vitro

Cholesterol lowering medication

Statins

Atorvastatin – [Ref. 250, 336, 
337]

↑ EPC number and migration in patients after cardiac 
surgery and in patients with ischemic cardiomyopathy

Rosuvastatin – [Ref. 338] ↑ EPC number in patients with chronic heart failure
Pravastatin – [Ref. 339] ↑ EPC number in patients with essential hypertension
Simvastatin – [Ref. 340] ↑ EPC adhesion in vitro

Valsartan – [Ref. 341] ↓ EPC senescence in chronic smokers
Rosiglitazone – [Ref.153] ↑ EPC number and migratory activity in patients with 

T2DM
Ramipril – [Ref. 342] ↑ EPC number and EPC proliferation, migration, adhesion, 

vasculogenesis capacity in vitro

Anti-diabetic medications

Insulin – [Ref. 162] ↑ EPC number and clonogenic properties in vitro

Metformin – [Ref. 152] ↑ EPC number in patients with T2DM
Pioglitazone – [Ref. 343] ↑ EPC number in patients with T2DM
Metformin + Pioglitazone [Ref. 
158, 344]

↑ EPC number and EPC migration in patients with T2DM 
and CAD
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been used to improve the number and function of EPCs in patients with cardiovas-
cular risk (Table 8.2).

8.8  �Conclusions

In diabetes mellitus, the hyperglycemia has profound detrimental effects on the vas-
cular endothelial cells, due to their anatomical location in the blood vessel, leading 
to the emergence of endothelial dysfunction. The vascular complications, particu-
larly macrovascular (coronary artery disease, peripheral arterial disease, cerebro-
vascular disease) and microvascular (retinopathy, nephropathy, neuropathy), are 
principal causes of disability and death in patients suffering from diabetes 
mellitus.

Accumulating data evoke that the mechanisms which are involved in the patho-
genesis of vascular complications in diabetes have a well-defined role in the mobi-
lization and function of EPCs. Thus, hyperglycaemia, insulin resistance, insulin like 
growth factor 1, nitric oxide, oxidative stress, PI3K/Akt signaling pathway, inflam-
mation, and altered microRNA expression can contribute to decreasing of circulat-
ing EPC levels and to EPC dysfunctionality in diabetes. Many studies have shown 
that, in patients with diabetes and CVD, the number of EPCs from peripheral blood 
is reduced and EPC function is impaired. On the other hand, the alterations in EPC 
number and function may have a relevant role in the development of diabetes-related 
vascular complications.

A better understanding of the mechanisms leading to impairment of EPC mobi-
lization and function in diabetes can further help in identifying the targets to prevent 
or reduce the risk of disease progression towards vascular complications.

It is currently hoped that addressing EPCs as targets for diagnostic and therapy 
in diabetes will favourably modify the risk for cardiovascular complications and 
survival. The drug therapy on EPC number and function can enhance the protection 
against vascular complications during diabetes. Therefore, EPCs could represent a 
diagnostic biomarker and pharmacological target to conduct the preventive or thera-
peutic interventions in diabetes. Nevertheless, further studies need to elucidate the 
exact role of EPCs in the pathogenesis of vascular complications in diabetes and 
their potential therapeutic implications.
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