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Chapter 17
Mechanisms of Hypercoagulation 
and Aberrant Clot Lyses in Type 2 Diabetes

Etheresia Pretorius

Abstract Type 2 diabetes (T2D) has attained a pandemic status with more than 
half a billion cases expected by 2030; and many having cardiovascular complica-
tions, with main hallmark of these events, the presence of systemic (chronic) inflam-
mation. Systemic inflammation is in turn characterized by a changed haematological 
system, including a pathologic coagulation system, endothelial dysfunction and 
ultimately vascular complications. This chapter discusses the pathogenesis of T2D, 
and how it is interlinked with cardiovascular disease and inflammation. Literature is 
reviewed that shows the inflammatory nature of the T2D, how this inflammatory 
profile and pathological inflammatory markers, affects the coagulation system, and 
how it plays a role in the impaired vascular function, which is a fundamental char-
acteristic of T2D. As part of the pathogenesis we discuss the considerable literature 
showing that both hypercoagulability and hypofibrinolysis are present in a large 
number of inflammatory and vascular diseases, including T2D. We discuss novel 
methods to monitor and study manifestations of both hypercoagulation and hypofi-
brinolysis in T2D. We conclude by suggesting that the multifaceted nature of the 
condition suggests a patient-orientated approach is followed where both traditional 
and novel methods should be equally explored in the monitoring of T2D patients.
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17.1  Introduction

Type 2 diabetes (T2D) have reached pandemic status with more than half a billion 
cases expected by 2030 [1]. Comorbidities of both obesity and T2D include cardio-
vascular disease, cancer and neuropsychiatric disorders [2]. Cardiovascular disease 
in particular, is one of the most common diabetes-associated complications, as well 
as a leading cause for death in these patients [3]. Important cardiovascular events 
include myocardial infarction and stroke [4] and the main hallmark of these events 
are the presence of systemic (chronic) inflammation. Systemic inflammation is in 
turn characterized by a changed haematological system, including a pathologic 
coagulation system [5–9], endothelial dysfunction [10] and ultimately vascular 
complications.

This chapter reviews and discusses literature that shows the inflammatory nature 
of the condition, how this inflammatory profile affects the coagulation system, 
including hyercoagulation and mechanisms of impaired clot lyses; and finally shows 
how these changes lead to the pathological and impaired vascular function, which is 
a fundamental characteristic of T2D (see Fig. 17.1).
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Fig. 17.1 The inflammatory nature of type 2 diabetes
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17.2  Markers of Systemic Inflammation and Cardiovascular 
Disease (CVD)

As systemic (chronic) inflammation plays a fundamental role in many chronic con-
ditions including T2D and CVD [11–15] and because CVD and vascular complica-
tions are a fundamental part of the ethiology of T2D, a quick review of the various 
dysregulated inflammatory markers in CVD follows. Dysregulated inflammatory 
markers like C-reactive protein (CRP), along with IL-2, IL-6, IL-8, TNF-α, NOS, 
PGE2, the COX-family and thromboxane A2 and NFκB, all belong to the cluster of 
general inflammation markers that are changed in systemic inflammation and 
CVD. In this chapter the focus will therefore be on the above-mentioned inflamma-
tory markers, although there are others that also play important roles in 
inflammation.

CRP is a leading inflammatory biomarker for CVD [16–23] andis produced by 
the liver hepatocytesunder regulatory control from circulating cytokines, in particu-
lar IL-6 andtumour necrosis factor-α [19, 24]. Because it is increased in the pres-
ence of inflammation, it is used to screen for inflammation, particularly 
high-sensitivity C-reactive protein (hsCRP), adds prognostic information in CVD 
[19, 20, 25].

The interleukins are a cytokine group that is well-known to be upregulated in 
inflammation [26]. Interleukin 1 Receptor 1 (IL1R1) and its ligand, IL1β, are unreg-
ulated in CVD and infection [27]. IL-1β is also known to be present in autoimmune 
conditions and contributes to several chronic diseases, including atherosclerosis 
[28–30]. IL-6 regulates the immune response, haemopoiesis, the acute phase 
response, inflammation [31] and the central nervous system [31, 32]. Its expression 
is high and transiently unregulated in nearly all pathophysiological inflammatory 
conditions and also in autoimmune diseases [33, 34]. IL-8 is also a well-known 
circulating inflammatory cytokine [35, 36]. Macrophages and other cell types such 
as epithelial cells, airway smooth muscle cells and endothelial cells produce IL-8.

Tumour necrosis factor- α (TNF-α) is a cell signalling cytokine involved in 
inflammation and is one of the cytokines that make up the acute phase reaction, and 
its primary function is to regulate immune cells [37–40].TNF-α dysregulation plays 
an important role in the development of metabolic syndrome features, including 
dyslipidaemia and altered glucose tolerance, and is therefore is an important cyto-
kine in the development and maintenance of systemic inflammation [39]. Vascular 
endothelial cells also respond to TNF-α by undergoing pro-inflammatory changes, 
which ultimately promote thrombosis [41, 42].

Another important marker of inflammation is the nitric oxide synthases (NOS) 
family. They are synthesized by many cell types involved in immunity and is also 
well known for its role in systemic inflammation and cardiovascular disease [43–
46]. It is also crucial in maintaining cardiovascular homeostasis [45] and a modula-
tor of vascular disease [47]. In CVD, endothelium damage induced by atherosclerosis 
leads to the reduction in bioactivity of endothelial NO synthase (eNOS) with subse-
quent impaired release of NO and ultimately leads to a cascade of  oxidation- sensitive 

17 Hypercoagulation and Aberrant Clot Lysis in Type 2 Diabetes



380

mechanisms in the arterial wall [47, 48]. In a comprehensive review, Costa and co-
workers discussed the 3 NOS isoforms, neuronal NOS (nNOS or NOS 1), endothe-
lial NOS (eNOS or NOS 3), and an inducible NOS (iNOS or NOS 2). eNOS is 
considered the main isoform involved in the control of the vascular function, how-
ever, the role of nNOS in vascular homeostasis andcardiovascular disorders such as 
hypertension and atherosclerosis has recently come to light [43].

Prostaglandins (PGs) have two derivatives, namely prostacyclins and thrombox-
anes and are critical mediators of inflammation [49–54] Cyclooxygenases (COXs) 
are the biosynthetic enzymes of PGs.PGE2 (which inhibits platelet activation and is 
also an effective vasodilator), and thromboxane (Tx)A2 (TXA2); and is synthesized 
via three sequential enzymatic reactions: The first step being arachidonic acid (AA) 
release from membrane phospholipids by phospholipase A2 (cPLA2); then, AA is 
converted into the unstable endoperoxide intermediates PGG2 and PGH2 by cycloox-
ygenase- 1 (COX-1) or COX-2 [55]. Markers like COX-1 and -2 and prostaglandin 
E2 are all closely connected and also play a prominent role in inflammation and CVD 
[56]. As mentioned before, TXA2 is also a product from COX [51, 57] and is a vaso-
constrictor, and a potent hypertensive agent that also facilitates platelet aggregation. 
Both PGE2 and TXA2 are therefore key role-players in inflammation and CVD.

NF-κB is a protein complex that is activated by pro-inflammatory cytokines such 
as interleukin 1 (IL-1) and TNFα [58] and the chronic activation or dysregulation of 
NF-κB signalling is the central to the pathogenesis of many diseases, including 
CVD [59, 60]. The activity of NF-κB in the canonical pathway results in up- 
regulation of pro-inflammatory (TNFα, IL-6 and IL-8) and pro-thrombotic [MMPs 
and TF (tissue factor)] mediators, which are known to be pro-atherogenic [60].

Central to the dysregulation of the mentioned (and other) markers of inflamma-
tion is the resulting oxidative stress and ROS generation, which plays crucial roles 
in both inflammation and CVD [61–63]. In CVD there is an imbalance between the 
antioxidant defence mechanism and ROS production and this leads to oxidative 
stress [63–65]. Ultimately, oxidative stress, is a strong pro-thrombotic factor [66], 
and the hallmark of inflammation is a prothrombotic prevalence and this translates 
to hypercoagulation. Inflammation causes hypercoagulation (which is a pro- 
thrombotic state) because of an elevated expression of the above-mentioned mark-
ers, and also elevated expression of the prothrombotic molecules like plasminogen 
activator inhibitor-1, tissue factor (TF) and increased platelet activation [67–70]. TF 
is the main trigger of the coagulation cascade; by binding Factor VIIa it activates 
Factor IX and Factor X, thereby resulting in fibrin formation [71, 72]. Increased 
fibrinogen and pathological fibrin formation are key in the development of a hyper-
coagulable state during inflammation.

If we take a closer look at the pathology in T2D, we see that the primary cause 
of death in T2D patients, is CVD and it is 2–4× times higher in people with T2D 
compared with those who are non-diabetic [73]. It is thus noteworthy that patients 
with T2D have an increased risk of atherothrombotic events [74]. Also, T2D can be 
classified as an inflammatory condition, due to upregulation of different inflamma-
tory markers [18].

E. Pretorius



381

17.3  Type 2 Diabetes and Its Relation with Cardiovascular 
Disease

The pathogenesis of T2D, and how it is interlinked with CVD and inflammation, is 
summarized below:

• There is an intimate relationship between inflammation and metabolism, includ-
ing glucose, fat and cholesterol metabolism [75].

• T2D is known to be one common risk factors for CVD [63], and both obesity and 
T2D are associated with a state of chronic low-level inflammation [18, 76, 77] 
and cardiovascular complications [78, 79].

• Patients with CVD and T2D have increased circulating inflammatory markers 
[80] and a number of systematic reviews have shown the association between 
inflammatory markers, such as CRP, IL-1β, IL-6, TNF-α, IL-4, or IL-10, and 
cardio-metabolic diseases (e.g. T2D) [15, 81–86]. TNF-α e.g. has emerged as a 
key cytokine that influences intermediary metabolism [39].

• Oxidative stress plays an important role in T2D and it has a critical impact on the 
development and progression of vascular pathologies, including atherosclerosis 
and diabetic vasculopathy [64].

• Endothelial dysfunction is implicated in the pathogenesis of vascular disease 
seen in T2D [10]; and central to this dysfunction is microvascular complications 
which are related to oxidative stress, and inflammation, all factors traditionally 
associated with the pathogenesis of vascular damage seen in CVD [87].

• In T2D there is a decreased fibrinolysis, increased thrombin generation, and 
platelet hyperactivity.

• In T2D there is elevated levels of circulating TF and this is a biomarker for the 
severity of microvascular disease in these individuals [67, 72, 88].

17.4  Hypercoagulability and Hypofibrinolysis in Type 2 
Diabetes

Recently, we have reviewed in great detail the considerable literature showing that 
both hypercoagulability and hypofibrinolysis are present in a large number of inflam-
matory and vascular diseases [89] (e.g. [90–123]). We have also shown that in T2D, 
fibrin structure is fundamentally changed, and that both erythrocytes and platelets 
are affected by oxidative stress and circulating up regulated inflammatory markers 
[6–9, 124–127]. Also see Table 17.1 for selected references for the co- occurrence of 
hypercoagulation and hypofibrinolysis in diabetes; adjusted from [89].

Because T2D is associated with both a hypofibrinolytic and hypercoagulable 
state, both these pathologies are of crucial importance in the overarching mecha-
nism for increased cardiovascular risk in this population. This forms the basis of the 
pathology related to, and involved in atherothrombotic complications, which are the 
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main cause of mortality in T2D. This inflammatory state in T2D presents itself as 
premature atherosclerosis, increased platelet reactivity and activation of coagulation 
factors, with associated hypofibrinolysis. Ultimately all of these pathologies 
together contribute to increased cardiovascular risk in this population [128].

Except for the pathological levels of inflammatory markers in T2D leading to 
ROS generation and oxidative stress that we discussed in the previous paragraphs, a 
number of factors have been implicated in impaired fibrin clot lyses are:

• Altered structure of the fibrin (ogen), including glycation and oxidation, result-
ing in a more compact clot with thinner fibres and increased branching that are 
more difficult to lyse [74, 129, 130].

• Increased incorporation of antifibrinolytic proteins (e.g. plasminogen inhibitor 
and complement C3 into the clot [131, 132] with both proteins having antifibri-
nolytic activities [74].

• Higher levels of plasminogen activator inhibitor-1 (PAI-1), which causes a path-
ological fibrinolytic process, because of a decreased plasmin generation [128]. 
PAI-1 has been found in blood from patients with T2D and in other conditions 
associated with insulin resistance [133–135]. IncreasedPAI-1  in blood is also 
associated with a tendency toward venous thrombosis and pulmonary embolism 
[135], and is associated with a decreased fibrinolytic activity or hypofibrinolysis 
[136]. This hypofibrinolysis are also related to insulin resistance [137]. Schneider 
and co-workers in 2004 already suggested that an increase in PAI-1  in vessel 
walls might predispose to acceleration of atherosclerosis and development of 
plaques with specific characteristics rendering them vulnerable to rupture [138]. 
Glycation of plasminogen in T2D also directly affects fibrinolysis by decreasing 
plasmin generation and reducing protein-specific activity [74].

• Elevated glucose levels result in increased plasminogen glycation, which affects 
protein clearance [139]. Tissue plasminogen activator (tPA) mediates plasmino-
gen conversion to plasmin. Binding of tPA to fibrin typically increases the cata-
lytic conversion of plasminogen to plasmin while simultaneously localizing 
plasmin generation to the site of thrombus formation, thus preventing systemic 
plasmin generation [74]. Therefore, hypofibrinolysis in T2D is also the result of 
glycation of plasminogen leads to both decreased plasmin generation and lower 
catalytic efficiency of plasmin activity [74].

All of the above, result in an inhibition of the fibrinolytic process and together 
with the known hypercoagulability contribute to the development of (specially isch-
emic) cardiovascular disease in T2D [74].

Two of the more novel methods to study clot structure in inflammatory conditions, 
including T2D, is thromboelastography (TEG) that shows both clot formation and clot 

Table 17.1 Selected references for the co-occurrence of hypercoagulation and hypofibrinolysis in 
type 2 diabetes

Type 2 
Diabetes

Some references showing 
blood hypercoagulability

Some references showing reduced clot permeability 
or decreased susceptibility of clot to (fibrino) lysis

[118, 150–156] [128, 131, 132, 151, 154, 156–163]

Adapted from [89]
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lyses, as well as scanning electron microscopy (SEM) that gives visual information 
regarding the structure of the actual clot. These two techniques are grouped under the 
general term, visco-elastic techniques, and together with inflammatory marker analy-
sis, can give valuable information in an individualized patient- orientated approach, 
when treating individuals with T2D. For a background on the technique, see various 
publications of Vance Nielsen’s group [140–146]. Table 17.2 shows the typical param-
eters that show clot formation and lyses with TEG, and Fig. 17.2 shows examples of 
healthy and aberrant T2D fibrin clot structures. In a typical healthy individual, we see 
a spaghetti-like fibrin network with elongated fibrin fibres (for additional examples of 
healthy fibrin fibres (see https://1drv.ms/f/s!AgoCOmY3bkKHgkFy7q1sVsxRv_2s) 
[147]. In T2D, plasma with added thrombin forms a clot with finer fibre structure and 
areas of thick matted areas [6, 9, 124, 126, 148, 149]. Such a pathologic finer fibrin 
structure might be the cause of the known hypofibrinolytic clot in T2D, where the 
denser clot areas, together with the netted areas may also lead to the characteristic a 
hypercoagulable state in T2D. We have also previously found that in T2D, the TEG 
results vary considerably, depending of the individual clot parameters. This condition 
is extremely complex, and therefore we have suggested a individualized approach, 
using not only traditional pathology tests, but also novel methods like SEM and TEG 
to monitor patient wellness [125].

Table 17.2 TEG parameters typically generated for whole blood and platelet poor plasma

Parmeters Explanation

R value: reaction time 
measured in minutes

Time of latency from start of test to initial fibrin formation 
(amplitude of 2 mm); i.e. initiation time

K: kinetics measured in 
minutes

Time taken to achieve a certain level of clot strength 
(amplitude of 20 mm); i.e. amplification

Α (Alpha): Angle (slope 
between the traces represented 
by R and K) Angle is measured 
in degrees

The angle measures the speed at which fibrin build up and 
cross linking takes place, hence assesses the rate of clot 
formation; i.e. thrombin burst

MA: Maximal Amplitude 
measured in mm

Maximum strength/stiffness of clot. Reflects the ultimate 
strength of the fibrin clot, i.e. overall stability of the clot

Maximum Rate of Thrombus 
Generation (MRTG) measured 
in Dyn.cm−2.s−1

The maximum velocity of clot growth observed or maximum 
rate of thrombus generation using G, where G is the elastic 
modulus strength of the thrombus in dynes per cm−2

Time to Maximum Rate of 
Thrombus Generation 
(TMRTG) measured in 
minutes

The time interval observed before the maximum speed of the 
clot growth

Total Thrombus Generation 
(TTG) measured in Dyn.cm−2

The clot strength: the amount of total resistance (to movement 
of the cup and pin) generated during clot formation. This is 
the total area under the velocity curve during clot growth, 
representing the amount of clot strength generated during clot 
growth

Lysis time (LY30) % Percentage lysis obtained 30 min after MA

Adapted from [164]
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17.5  Conclusion

T2D is probably one of the most complex inflammatory conditions that clinicians 
need to treat, particularly due to the complex cardiovascular involvement. The 
mechanisms of both hypercoagulation and aberrant clot lyses in T2D are of great 
importance in the treatment of the condition. Furthermore, the multifaceted nature 
of the condition suggests that we follow a patient-orientated approach and educate 
clinicians to use e.g. TEG as an additional method for disease monitoring. Only by 
closely following each individual patient’s progress with a variety of research and 
traditional laboratory pathology methods will we ensure the healthiness of this vul-
nerable population. The most important strategy is to manage systemic inflamma-
tion, and the resulting cardiovascular pathology; only then will we be able to reduce 
the T2D pandemic.
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