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Chapter 11
The Renin Angiotensin System and Diabetes

Ana Cristina Simões e Silva, Rodrigo Novaes Ferreira, 
and Aline Silva Miranda

Abstract The Renin Angiotensin System (RAS) is clearly implicated in the phys-
iopathology of diabetes mellitus (DM). The frequent association of diabetes melli-
tus (DM) with hypertension, retinopathy, nephropathy, and cardiovascular disease 
has implicated the RAS in the initiation and progression of these complications of 
DM. This has been supported by clinical trials in which RAS inhibitors significantly 
reduced the incidence of vascular complications in DM patients. The main RAS 
mediator, Angiotensin II (Ang II), exerts several deleterious actions in patients with 
DM, including increase in insulin resistance, endothelial damage and deterioration 
of renal function. On the other hand, only few studies have reported the potential 
protective role of the stimulation of the conter-regulatory RAS axis formed by the 
enzyme homologue to ACE, ACE2, the heptapeptide Angiotensin-(1-7) [Ang-(1-7)] 
and its receptor, the proto-oncogene Mas. In this review, we report recent experi-
mental and clinical evidence in relation to ACE2 stimulation and Mas receptor ago-
nists as potential therapeutic targets for DM.
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11.1  Introduction

The renin-angiotensin system (RAS) has been implicated in complications linked 
with diabetes mellitus, including insulin resistance, endothelial damage and dia-
betic nephropathy [1–3]. Measurements of the RAS components in diabetic patients 
have shown conflicting results: some have found elevated levels, others, reduced, 
and others yet, found no change [4–6]. The picture can be further confusing given 
the activity of local and independently regulated RASs [7, 8]. However, the signifi-
cant reno and cardioprotection that have been achieved by blockade of the RAS 
with angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor 
antagonists (ARAs) are strong compelling evidence for the role of the RAS in this 
disease [2, 9, 10].

Many studies have shown that Angiotensin (Ang) II exerts physiological and bio-
chemical actions that may contribute to cardiovascular and renal damage [11]. The 
Angiotensin type 1 (AT1) receptor mediates the main actions of Ang II [12]. Over the 
recent past, our view of Ang II has changed from being a simple vasoconstrictor to 
that of a complex growth factor mediating effects through diverse signaling path-
ways [8]. It has also become clear that Ang II is a key player in vascular inflamma-
tion. Through increased generation of reactive oxygen species (ROS) and activation 
of redox-sensitive transcription factors, Ang II promotes expression of cell adhesion 
molecules and induces synthesis of proinflammatory mediators and growth factors 
[8, 12]. These processes increased vascular permeability, leukocyte recruitment and 
fibrosis leading to tissue injury and structural remodeling. Targeting some of these 
signaling events with novel therapeutic strategies may provide important tissue pro-
tection in many forms of cardiovascular, renal and metabolic diseases.

On the other hand, it was originally thought that Ang II mediates all actions of 
the RAS. Over the past few years, other angiotensin peptides, like Ang III, Ang IV, 
and especially Ang-(1-7), were shown to selectively mediate different RAS effects 
[11, 13]. In regard to Ang-(1-7), this heptapetide can be formed from Ang I by 
neutral-endopepdidase 24.11 or prolyl-endopeptidase or from Ang II via prolyl- 
endopeptidase, prolylcarboxypeptidase [14] or mainly by ACE2, an enzyme homo-
logue to ACE [15, 16]. Ang-(1-7) binds to a G-protein coupled receptor, named Mas 
receptor [17], and, in general, plays a counter-regulatory role in the RAS by oppos-
ing the vascular and proliferative effects of Ang II [11, 13]. Currently, RAS is con-
ceived as a system formed by two opposite axes: the first and classical one composed 
by ACE, Ang II and AT1 receptor and the second and counter-regulatory axis com-
prising ACE2, Ang-(1-7) and Mas receptor [11, 13]. Experimental studies clearly 
support a role for the counter-regulatory RAS axis in diabetes. However, a limited 
number of studies have evaluated the components of ACE2-Ang-(1-7)-Mas receptor 
axis in diabetic patients [18–25], and the majority of them investigated only ACE2 
[18–20, 23–25]. In this chapter, we report evidence for the role of ACE2-Ang-(1-7)-
Mas receptor axis in diabetes mellitus and its complications, including poor glyce-
mic control, diabetic nephropathy and cardiovascular alterations.
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11.2  Role of ACE2-Angiotensin-(1-7)-Mas Axis in Glycemic 
Control

Identification of a local pancreatic RAS has led to a better understanding of the role 
of the RAS in the physiopathology of diabetes. RAS blockers seem to be able to 
reverse Ang-II-induced impairment in insulin sensitivity, insulin secretion, and pan-
creatic β-cell function [26–29]. However, the role of RAS blockers in this context is 
an ongoing matter of debate due to studies showing the inefficiency of RAS block-
ers in controlling hyperglycemic symptoms [30, 31].

On the other hand, ACE2 has received significant attention over the past years, 
being considered a promising target due to its beneficial role in glycemic control 
[32]. ACE2 was discovered in 2000 and shares 42% sequence homology with ACE, 
but cannot be inhibited by ACE inhibitors [15, 16].ACE2 gene is located on the 
Xchromosome and cleaves various substrates, including Ang II, angiotensin I (Ang 
I), apelin, neurotensin, and des-Arg bradykinin with the highest catalytic efficiency 
towards Ang II [15, 16]. Indeed, ACE2 is the main enzyme responsible for the con-
version of Ang II into Ang-(1-7) in many organs and tissues [33].

ACE2 overexpression has been shown to reverse the detrimental phenotypes in 
cardiovascular disease [34, 35], diabetes [36, 37],and its related complications, an 
effect known to occur by suppressing the overactive Ang II levels [38]. The benefi-
cial effects of ACE2 have been attributed to its capacity to increase Ang-(1-7) levels 
[15, 16, 33]. It has reported that Ang-(1-7) improves insulin sensitivity and glucose 
tolerance in experimental animal models, possibly by stimulating the insulin signal-
ing via Mas receptor [39, 40]. Supporting this hypothesis, mice with genetic dele-
tion of Mas receptor exhibit disturbances in glucose and lipid metabolism [41]. 
Furthermore, the increase in circulating levels of Ang-(1-7) improves glucose toler-
ance and dyslipidemia [42]. Even under physiological conditions, mice with genetic 
deletion of ACE2 progressively reduce insulin secretion and glucose tolerance [43]. 
However, when these knockout animals were under a high-fat high-sucrose diet,the 
degree of glucose intolerance is higher than in wild type mice [44]. This effect was 
attributed to the reduced skeletal muscle levels of GLUT4 and myocyte enhancer 
factor 2A expression [44]. It should be mentioned that the administration of Ang-
(1- 7) restored glucose tolerance [44]. These results support the importance of Ang-
(1-7) signaling in maintaining glucose tolerance and insulin sensitivity.

The importance of the counter-regulatory ACE2-Ang-(1-7)-Mas axis in main-
taining pancreatic β-cell function has been investigated in vitro [45]. The results 
showed that an upregulation in the expression of ACE2 and of Mas is associated 
with an increase in insulin secretion at high glucose concentrations [45]. In experi-
mental models of diabetes, ACE2 levels decrease as the disease progresses, leading 
to an uninhibited rise in the activity of the classical ACE-Ang II-AT1 axis [36, 46].
Thus, it can be speculated that, as the Ang II levels increase in hyperglycemic state, 
ACE2 is also upregulated as a compensatory mechanism and aids in the degradation 
and reduction of Ang II. Moreover, ACE2 gene therapy and the administration of 
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ACE2 activators, including xanthenone and diminazene aceturate [47], exerted ben-
eficial effects in the face of diabetes [36, 48] and its complications [49, 50].

Various mechanisms have been proposed by which ACE2 elicits opposing effects 
on Ang II signaling. Oxidative stress has been reported to be one of the predisposing 
factors of pancreatic β-cell dysfunction during hyperglycemic states [51, 52]. Ang II 
activates reactive oxygen species (ROS) [53]. ACE2 over expression reduced oxida-
tive stress and corrected Ang II-induced imbalance in the relationship between the 
expressions of AT1 receptor and of ACE2 [37]. Both mechanisms improved glyce-
mic control [37]. Pharmacological inhibition of ACE2 and of Mas receptor increased 
ROS formation induced by Ang II [54], further supporting the hypothesis that ACE2 
reduces thecapacity of Ang II to form ROSby converting Ang II into Ang-(1-7).

Other mechanisms of impaired glucose homeostasis include endoplasmic reticu-
lum stress, tissue fibrosis and inflammation [55–57]. The lack of ACE2 has been 
reported to exacerbate fibrosis and inflammation in the kidney [58, 59]and in the 
heart [60], whereas the overexpression of ACE2 decreased fibrosis in the heart [61], 
lungs [62], and pancreas [63].Moreover, Ang-(1-7) improved insulin sensibility, at 
least in part, via its anti-inflammatory properties in the liver [64].This effect was 
also associated with an up regulation in ACE2 expression in the liver. On the other 
hand, there are scarce information on the role of ACE2-Ang-(1-7)-Mas axis in pre-
venting fibrosis in pancreatic islets [63]. The role of ACE2 in modulating endoplas-
mic reticulum stress, fibrosis, and inflammation in the islets warrants further 
investigation.

Figure 11.1 summarizes the main actions of the classical and the counter- 
regulatory RAS axes in the control of the glycemia and of the insulin secretion.

Fig. 11.1 The role of components of the classical and the counter regulatory renin-angiotensisn 
system axes in the control of glycemia Nd of the insulin secretion
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11.3  Role of ACE2-Ang-(1-7)-Mas Receptor Axis in Diabetic 
Nephropathy

Diabetic nephropathy is one of the most common causes of end-stage renal disease 
and one of the main complications of diabetes, but the factors responsible for the 
development of diabetic nephropathy have not been fully elucidated [65].

There is growing interest in a possible role of ACE2 in diabetic kidney disease 
[19, 46, 65]. Activation of the classical RAS axis, ACE-Ang II- AT1 receptor, is 
widely believed to contribute to kidney injury in diabetes [66]. ACE2 may act as a 
negative regulator of the classical RAS axis, exerting a renoprotective action [65]. 
Obese db/db mice (C57BLKS/JLepr) have been used as a model of type 2 diabetes, 
and their lean littermates (db/m) have served as nondiabetic controls [18, 19, 24, 
65]. In renal cortical tubules of db/db mice, the pattern of ACE and ACE2 expres-
sion was characterized by low ACE, but increased ACE2 protein [65]. These altera-
tions in ACE2 protein in renal tubules from diabetic mice are accompanied by 
corresponding changes in enzymatic activity [19]. Ye and co-workers [24]examined 
the localization of ACE and ACE2 in the glomerulus of control and diabetic mice. 
The glomerulus is the site of the nephron where the lesions of diabetic nephropathy 
appear earlier, and an increase in glomerular permeability is an early manifestation 
of diabetic kidney disease as reflected by the presence of albuminuria. The authors 
found that in glomeruli from db/db mice, ACE staining was higher than in control 
mice, while strong ACE2 staining in glomeruli from diabetic mice was less fre-
quently seen than in controls [24]. In addition, the same research group reported that 
chronic blockade of ACE2 with the enzyme inhibitor, MLN-4760, in control or 
diabetic mice produced albuminuria and matrix proteins deposition [18]. In this 
regard, Wong and co-workers [67] examined the effect of deletion of the ACE2 gene 
on diabetic kidney injury. In this study, ACE2 knockout mice [ACE2−/−]were 
crossed with Akita mice (Ins2WT/C96Y), a model of type 1 diabetes mellitus, and four 
groups of mice were studied at 3 months of age: ACE2+/yIns2WT/WT, ACE2−/yIns2WT/

WT, ACE2+/yIns2WT/C96Y, and ACE2−/yIns2WT/C96Y. ACE2−/yIns2WT/C96Y mice exhibited 
increased mesangial matrix scores, glomerular basement membrane thicknesses, 
glomerular deposit of fibronectin and a twofold augmentation in the urinary albu-
min excretion rate compared with ACE2+/yIns2WT/C96Y [67]. The treatment with an 
AT1 receptor blocker, irbesartan, reversed the alterations in renal histology and 
reduced proteinuria in ACE2−/yIns2WT/C96Y mice [67]. More recently, ACE2 knock-
out mice with streptozotocin-induced diabetes presented an increase in serum cre-
atinine, urea levels and albuminuria in comparison with wild type diabetic animals 
[66]. In addition, glomerular and tubulointerstitial injuries and macrophage infiltra-
tion were significantly more severe inACE2 knockout mice than in wild type con-
trols. AT1receptor blocked with olmersartan attenuated the effects of ACE2 
deficiency, but only partially [66]. Taken together, these studies suggested that 
ACE2 plays a protective role in the diabetic kidney, and ACE2 is an important deter-
minant of diabetic nephropathy.
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Some studies have also suggested a close correlation between albuminuria and 
ACE2. The treatment of HK-2 cells with bovine serum albumin has led to significant 
changes in ACE/ACE2 expression favoring Ang II formation [52]. More recently, 
Marquez and co-workers [68] showed that insulin increases ACE2 gene, protein 
expression, and enzymatic activity in cultured podocytes and these increases were 
maintained over time. In the presence of albumin, the beneficial effect of insulin on 
ACE2 expression and activity disappeared [68]. Therefore, ACE2 reduction might 
increase urinary albumin excretion, while albuminuria, in turn, could disrupt the bal-
ance of ACE/ACE2 expression [68]. In this regard, Riera and co-workers [69] stud-
ied the non-obese diabetic mice model, since these animals develop autoimmune 
diabetes that resembles human type 1 diabetes. At an early stage of diabetes, diabetic 
mice exhibited tenfold increase in urinary albumin excretion, glomerular enlarge-
ment, increased glomerular filtration rate and higher blood pressure in comparison to 
controls [69]. At a later stage, diabetic mice had a 20-fold increase in albuminuria, 
mesangial expansion and reduced podocyte number. Circulating and urine ACE2 
activity were markedly increased at early and late stage of diabetes. Insulin adminis-
tration prevented albuminuria, markedly reduced GFR, blood pressure, and glomeru-
lar enlargement at the early stage; and prevented mesangial expansion and the 
reduced podocyte number at the late stage of diabetes. The increase in serum and 
urine ACE2 activity was normalized by insulin administration at the early and late 
stages of diabetes. The authors conclude that diabetic mice develop features of early 
kidney disease associated with increased activity of ACE2 in both serum and urine 
and these alterations can be completely prevented by the administration of insulin.

Ang-(1-7) has also a role in experimental models of diabetes. The administration 
of Ang-(1-7) was able to normalize creatinine clearance and significantly attenuate 
proteinuria in Zucker diabetic fattyrats, a model of type 2 diabetes and diabetic 
nephropathy [70]. Diabetic rats treated with Ang-(1-7) displayed markedly reduction 
in renal fibrosis, presenting levels of extracellular matrix proteins similar to control 
animals [70]. Levels of TNF-α, IL-6, endothelin-1, and hypoxia inducible factor 
(HIF)-1α in the kidneys were also decreased to levels similar of those of control ani-
mals. The same effect was observed in renal and urinary levels of neutrophil gelatin-
ase-associated lipocalin (NGAL), a marker of kidney damage [70]. Accordingly, 
chronic infusion of Ang-(1-7) also had significant protective effects in leptin deficient 
db/db mice, another model of type2 diabetes and diabetic nephropathy [25]. Animals 
treated with Ang-(1-7) for 28 days normalized urinary albumin excretion and signifi-
cantly decreased kidney weight and mesangial expansion. Phosphorylation of STAT3 
and renal fibrosis were also significantly reduced, as well macrophage infiltration in 
perirenal adipose tissue [71]. These findings suggest that both elevated levels of Ang 
II and decreased levels of Ang-(1-7) may contribute to renal damage [68].

In contrast to experimental studies, limited data were obtained in regard to 
ACE2-Ang-(1-7)-Mas axis in patients with diabetic nephropathy [22]. Most studies 
measured urinary levels of ACE2 in patients with type 2 diabetes [18, 20, 23, 24] 
and few others investigated mRNA and/or protein expression for ACE2 in human 
renal tissue [21, 25].
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Concerning the studies that measured ACE2 in urine, Park and co-wotkers investi-
gated whether urinary ACE2 levels are associated with abnormal glucosehomeostasis 
and urinary albumin excretion [23]. The authors found that urinary ACE2 levels were 
an independent predictor of microalbuminuria afteradjusting for other clinical risk 
factors in patients with type 2 diabetes [23]. In patients with type 2 diabetes and 
chronic kidney disease, Abe and co-workers showed that the treatment with the AT1 
receptor antagonist olmesartansignificantly increases urinary ACE2 levels indepen-
dently of blood pressure andplasma aldosterone levels and reduces albuminuria, uri-
nary liver-type fatty acidbinding protein, and plasma aldosterone levels [18]. The 
authors raised the possibility that increased ACE2 contributes to renoprotection elic-
ited by olmesartan [18]. More recently, Liang and co-workers reported that urinary 
levels of ACE2 are increased in type 2 diabetic patients with various degrees of albu-
minuria [20]. Furthermore, the treatment with RAS inhibitors reduced urinary ACE2 
excretion [20]. The authors concluded that urinary ACE2 measurement mightpoten-
tially function as a marker for monitoring the metabolic status and therapeutic response 
to RAS inhibitors in diabetes [20]. Only one study investigated ACE2 in patients with 
type 1 diabetes and found that urinary ACE2 activity and protein expression are 
increased prior to the onset of clinical complications [19]. None of these studies have 
investigated the mechanisms that promote the elevation of ACE2 in the urine of dia-
betic patients. A possible explanation is that the augmentation of urinary ACE2 levels 
might be a compensatory mechanism in response to kidney injury in diabetic patients.

In regard to the evaluation of Ang-(1-7) and Mas receptor in diabetic patients, 
Mizuiri and co-workers reported that the proximal tubules from type 2 diabetic 
patients with nephropathy exhibited higherexpression of ACE and lower expression 
of ACE2, Ang-(1-7) and Mas receptor in comparison to healthy controls and to 
patients with minimal change nephrotic syndrome [21].

Figure 11.2 displays the effects of the classical and the counter-regulatory RAS 
axes in diabetic nephropathy.

11.4  Role of ACE2-Ang-(1-7)-Mas Receptor Axis in Diabetic 
Cardiovascular Disease

Diabetes mellitus is associated with substantial risk of heart failure and has been 
described as the leading cause of morbidity and mortality related with cardiovascu-
lar diseases (CVD) worldwide. Diabetic CVD includes myocardial infarction, 
mainly associated with premature atherosclerosis, and diabetic cardiomyopathy, 
characterized by left ventricular (LV) remodeling and dysfunction, both leading to 
heart failure [72, 73]. Indeed, diabetes has been considered not only a risk factor for 
CVD, but also a cardiovascular event equivalent, since diabetic subjects had a risk 
of cardiovascular complications similar to patients with previous myocardial infarc-
tion [74]. Accordingly, diabetic patients with myocardial infarction have worse 
prognosis than non-diabetic patients with myocardial infarction [75].
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The pathophysiological mechanisms underlying diabetic CVD remain poorly 
elucidated. The discover that RAS key components are also locally expressed in 
different organs, including the heart, opens the road for the hypothesis that RAS 
exerted both hemodynamic and non-hemodynamic effects [76]. In fact, RAS com-
ponents, including renin, angiotensinogen, ACE and Ang II receptors, were up- 
regulated in the heart after cardiac injury, volume overload, myocardial infarction, 
and heart failure [77–80]. In the context of diabetes, over the past decades, clinical 
and experimental studies have been linked the classical RAS axis to diabetic CVD 
pathophysiology. For instance, ACE inhibitors, like perindopril, and AT1 receptor 
blockers improved cardiovascular morbidity and mortality in patients with diabetes 
[81, 82] and prevented atherosclerosis and myocardial infarction in diabetic apoli-
poprotein E-deficient mice and in a streptozotocin-induced diabetes model [83–85]. 
There is evidence that Ang II by binding to its AT1 receptors might mediate cardio-
vascular damage by inducing reactive oxygen species generation, tissue inflamma-
tion, fibrosis, and apoptosis [83, 84, 86–89].

A more modern concept has been supported that diabetic CVD depends on a bal-
ance between both RAS axes, the classical (ACE-Ang II-AT1 receptor) and the 
counter-regulatory (ACE2-Ang-(1-7)-Mas receptor) [50, 90, 91].In line with this 
view, an elegant study demonstrated a significant reduction in cardiac ACE2 expres-
sion and activity along with elevated circulating levels of AngII and reduced Ang-
(1-7) concentration in the heart in streptozotocin-induced diabetic mice. The 
changes in RAS components in response to diabetes induction were associated with 

Fig. 11.2 The role of components of the classical and the counter regulatory renin-angiotensisn 
system axes in diabetic nephropathy
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a significant cardiovascular damage, which included thinning of the LV wall, mild 
ventricular dilatation, increased cardiomyocyte apoptosis and compensatory heart 
hypertrophy [90]. Interestingly, the induction of diabetes by streptozotocin in mice 
genetically deficient for ACE2 did not change Ang II and Ang-(1-7) concentrations; 
neither led to cardiovascular dysfunction. Moreover, the absence of ACE2 also pre-
vented the accelerated atherosclerosis found in diabetic apolipoprotein E-deficient 
mice. Altogether, these findings suggest that ACE2 might be a key factor in RAS 
activation in diabetic CVD, mainly by regulating cardiac levels of Ang II and of 
Ang-(1-7) [91]. Accordingly, in a model of human diabetes by employing the Akita 
mice with the loss of ACE2 expression increased plasma and heart tissue levels of 
Ang II, leading to systolic dysfunction on a background of impaired diastolic func-
tion [91]. The cardiovascular systolic alterations were associated with increased 
oxidative stress, degradation of the extracellular matrix activation of protein kinase 
C and loss of Akt and endothelial nitric oxide synthase phosphorylation, all of 
which prevented by the administration of the AT1 receptor blocker, irbesartan [90].
Similarly, diabetes induction by streptozotocin in male Wistar rats resulted in dia-
stolic dysfunction, cardiac hypertrophy and fibrosis along withACE2/ACE ratios 
imbalance, ERK1/2 phosphorylation and changes in the AMP-activated protein 
kinases, AMPK-α and AMPK-β1 expression. All these changes were prevented by 
the oral administration of the ACE2 activator XNT, suggesting that increase in 
ACE2 activity might be a promise therapy for diabetic CVD [50]. This hypothesis 
was supported by further studies showing that ACE2 over expression induced by a 
gene therapy with adenovirus was superior to losartan in attenuating diabetic car-
diomyopathyas indicated by a decrease in myocyte hypertrophy, myocardial fibro-
sis, and LV remodeling and an improvement in LV systolic and diastolic function 
[92]. A protective effect was also found following an oral administration of the 
ACE2 activator, diminazene aceturate (DIZE), reflected by the improvement in car-
diac electrical function in streptozotocin-induced diabetic rats [93].

Emerging evidence have been supported the idea that the beneficial effects of 
ACE2 is related with its capacity to convert AngII into Ang-(1-7). For instance, 
increased plasma levels of Ang-(1-7) were independently associated with a protec-
tion of left ventricular function in patients with type 2 diabetes mellitus [94]. 
Moreover, a growing body of experimental studies showed that the administration 
of Ang-(1-7) or of the Mas receptor oral agonist, AVE0991, significantly protects 
against diabetes-induced cardiovascular dysfunction [95–99]. Importantly, the 
opposite effect was observed with the administration of the Mas receptor antago-
nist, A779 [95, 98]. In this scenario, the elevation of Ang-(1-7) levels might also 
represent a promise therapeutic strategy for diabetic CVD.

The mechanisms underlying Ang-(1-7) cardiac protection might rely on the inhi-
bition of inflammation and of oxidative stress by decreasing the transcript factor 
NF-kB activity and the NADPH oxidase activation, by restoring lipid profile 
 alterations, and by reducing collagen and fibronectin-1 production, and TGF-β1 
expression [95, 98, 99]. More recent studies, by employing the db/db mice, a well-
established model of type 2 diabetic cardiomyopathy, showed that Ang-(1-7) 
improves myocardial hypertrophy and fibrosis by decreasing the lipotoxicity and 
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the inflammatory response [100, 101]. Similar findings were reported by an in vitro 
study showing that Ang-(1-7) protects cardiomyocytes against high glucose-induced 
injuries by inhibiting the activation of the reactive oxygen species-activated leptin-
p38 MAPK/ERK1/2 pathways [102].

It has been also reported that the cardioprotective effects of Ang-(1-7) may result 
from a complex interaction between AT2 and Mas receptors with a subsequent 
down-regulation of ACE expression and activity and of AT1receptor expression, as 
well as up-regulation of ACE2 expression and activity [98, 103]. In addition, an 
increase in AT2 expression was associated with higher apoptosis rate of cardiomyo-
cytes in diabetic rats [104]. In fact, the exogenous Ang-(1-7) significantly increased 
myocardial ACE2 activity and Ang-(1–9) levels, possibly via its effect on AT2 
receptor. The increased activity of ACE2 leads to higher conversion rate of Ang II 
into Ang-(1-7), thus forming a positive feedback that elevates Ang-(1-7) levels, 
which, in turn, produce protective effects in diabetes-induced CVD [98].

Figure 11.3 shows the role of the classical and the counter-regulatory RAS axes 
in heart alterations of diabetes.

11.5  Conclusion

Despite available treatments for diabetes, a substantial population is still suffering 
from renal injury, cardiovascular alterations and other associated comorbidities. 
The inhibition of the classical RAS axis with angiotensin receptor blockers and/or 
ACE inhibitors is not effective for all cases and, in such conditions, we may specu-
late the usefulness of therapies to activate the counter-regulatory RAS axis. 

Fig. 11.3 The role of components of the classical and the counter regulatory renin-angiotensisn 
system axes in heart alterations in diabetes
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Therefore, different ways to activate ACE2-Ang-(1-7)-Mas receptor axis emerge as 
a promise therapeutic strategy for diabetes and its co-morbidities.
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