
A Design Space for End User Development in
the Time of the Internet of Things

Fabio Paternò and Carmen Santoro

Abstract This paper discusses the issues raised by the Internet of Things for end
user development of interactive applications, and how they can be addressed. In
such technological setting, applications have to adapt to various types of contex-
tual events, which can be related to users, devices, environments, and social rela-
tionships. This calls for environments supporting the development of applications
able to cope with dynamic sets of people, objects, devices, and services.
The article discusses the characterizing concepts of such environments and their
underlying motivations by analysing various solutions proposed to support them
and their main design issues. We describe the relevant concepts and discuss how
to make them understandable by people without programming experience. One
result of this work is a design space, which identifies the main features that should
be addressed to support Internet of Things applications using EUD approaches.
Such a design space can be used as the basis for comparative discussion amongst
various approaches. The analysis provided can also inform the design and devel-
opment of new tools, and stimulate discussion on current research challenges.

Keywords End user development · Internet of Things · context-dependent
applications

1 Introduction

The design and development of flexible software able to match the many possible
users’ needs is a difficult challenge. One of the main problems is that it is almost
impossible to identify all the requirements at design time, since they are often not
static (user needs are likely to change over time), and designers also have to

F. Paternò (✉) · C. Santoro
CNR-ISTI, HIIS Laboratory, Pisa, Italy
e-mail: fabio.paterno@isti.cnr.it

C. Santoro
e-mail: carmen.santoro@isti.cnr.it

43© Springer International Publishing AG 2017
F. Paternò, V. Wulf (eds.), New Perspectives in End-User Development,
DOI 10.1007/978-3-319-60291-2_3



consider the wide variability of the possible contexts of use. In recent years, the
explosion of mobile and Internet of Things technologies has made it possible for
people to access their applications from a variety of contexts of use. In this
scenario, it is nearly impossible for professional designers and developers to guar-
antee a good fit between the initially designed system and the actual user needs at
any given time. As a result, it is important to design software through methods
and tools capable of dynamically and quickly responding to new requirements
without spending vast amounts of resources, and able to consider that boundaries
between design-time and run-time have become more and more blurred.

End User Development (EUD) is a research field that focuses on enabling peo-
ple who are not professional developers to design or customize their interactive
applications (Lieberman, Paternò, Klann, & Wulf, 2006). Indeed, nowadays users
are becoming ever more familiar with ICT technology and they are increasingly
capable of using existing tools to create simple applications by themselves.
However, since such people usually lack the training of professional software
developers, it is simply not possible to use traditional programming environments
and methodologies for software development.

The topics related to EUD have already been investigated to some extent in
recent years, however, up to a few years ago the main EUD approaches have
mainly considered desktop-based applications, such as spreadsheets, unable to
adapt to the changing context of use (Paternò, 2013). Only recently have some
proposals been put forward to address EUD through mobile technologies.
However, the Internet of Things (Atzori, Iera, & Morabito, 2010) introduces
further issues such as the need to design how to react to dynamic events that can
be generated through a variety of sensors, objects, services, and devices.

If we want to find some relevant aspects in the early end-user development litera-
ture before such technology was available, we should look at environments that
allowed developers to consider highly interactive applications. In such cases, events
were related to user interactions and application functionalities. Alice1 is a good
example of this type of environment. It supports end user development of 3D anima-
tions. In particular, it allows users to access lists of events corresponding to user
interactions or some specific animation state and indicate what the corresponding
event handler should be. HANDS (Pane, Myers, & Miller, 2002) is an environment
with similar goals, more oriented to children. It uses the cards metaphor: all objects
in HANDS are represented by cards, which have user-defined properties, while the
program execution, that is, the manipulation of cards, is represented by an agent.
HANDS allows users to select one event from seven predefined event types and indi-
cate the corresponding actions for which it provides some possible operations
(“Add,” “Sorted,” “Sum,” “Greatest_Item,” etc…). These two important contribu-
tions were designed for development in desktop systems and did not consider the
variety of events that can be triggered in modern ubiquitous settings.

In the Internet of Things (IoT) vision, “smart” physical objects are networked
together, able to interact and communicate with each other, with human beings and/or

1http://jupiter.plymouth.edu/∼wjt/foundations/alice/Alice05.pdf

44 F. Paternò and C. Santoro

http://jupiter.plymouth.edu/&sim;wjt/foundations/alice/Alice05.pdf


with the environment to exchange data and information “sensed” about the environ-
ment, reacting autonomously to events in the physical world, and influencing it by
running processes that trigger actions and perform services. According to Gartner,2

there will be nearly 26 billion devices on the Internet of Things by 2020. In this sce-
nario, immense amounts of data can be generated by sensor and communication
infrastructures that are growing by orders of magnitude, and IoT applications need to
address extremely contextualized user needs. Indeed, one of the primary concerns of
IoT is the heterogeneity of devices, sensors, actuators, and services involved in the
relevant domains. EUD foresees the use of meaningful logical abstractions and meta-
phors to abstract out low-level details and make users focus only on relevant aspects,
thus facilitating the participation of end-users in the development process.

In order to support EUD of Internet of Things-enabled context-dependent
applications we need to consider that context can vary on aspects related to users
(e.g. tasks, preferences, emotional state), technology (e.g. devices, modalities sup-
ported, connectivity), environment (e.g. light, noise, place), and social aspects
(e.g. networks, social relationships), and only end users can know the most appro-
priate ways their applications should react to contextual events. However, to reach
such a broad audience of users, authoring environments should be almost transpar-
ent to them, presenting a very low threshold to get started, while allowing users to
attain high value and even complexity of the software they create or customize. In
this way it would be possible to avoid the need to involve in the process people
with high developer skills, with the benefit of faster development, better control
over the application functionality and improved user experience.

EUD is expected to bring several benefits to the IoT domain. Indeed, giving
end-users the adequate tools to create IoT applications is a way to ensure that peo-
ple’s needs will be adequately addressed, and it is also a way to shift innovation
from software companies to end users. In addition, EUD foresees the use of intui-
tive abstractions and metaphors to reduce the cognitive burden associated to hand-
ling the multitude and heterogeneity of things, devices, sensors, actuators, services
involved in IoT-related domains, and thus support more easily end-user participa-
tion in the development process. Furthermore, the use of meaningful abstractions
in EUD, in terms of relevant concepts, metaphors, programming styles, vocabul-
aries and intuitive notations should allow different stakeholders (e.g. professional
software developers, domain experts, and users) to comprehensively handle the
system and also to communicate ideas and concepts. Moreover, EUD is expected
to allow users to do more (and more easily) with their existing devices and things
within their homes or at work: in other words, EUD for IoT should allow for
higher control, more confidence, and better personalisation support. Considering
that IoT spams a disparate range of domains, this approach will be key to support
the long tail of requirements of IoT end user developers.

In this paper we first discuss metaphors and programming styles for EUD, in
particular those more relevant in the IoT field, also providing a discussion of
research work that have exploited them. Next we move on to present the proposed

2http://www.gartner.com/newsroom/id/2684616

453 A Design Space for End User Development in the Time of the Internet of Things

http://www.gartner.com/newsroom/id/2684616


design space, which can be used for comparative analysis. Lastly, we draw some
conclusions and mention potential areas that can be object of future research.

2 Metaphors and Programming Styles

We identified two levels for classifying the various techniques that have been
mainly used so far in the EUD-related area. One level is represented by metaphors,
i.e. concepts which do not have any specific connections with the programming
world, but rather have a precise meaning in the real world. As such, metaphors’
meaning is generally quite familiar to generic users who, by analogy, apply and
transfer to the development world the knowledge that the metaphor concept has in
the real world. In this way, metaphors provide users with easily understandable cog-
nitive hints expected to facilitate the creation or customisation of an application by
decreasing the learning effort needed by a non-professional user to manipulate
programming concepts and artefacts. For instance, using the jigsaw metaphor each
software component is seen as a piece of a puzzle and the shapes of the various
pieces provide the cognitive hints needed to understand the possible compositions.

The second level identified − programming styles − is more connected with
the programming world and with the need to identify specific interaction paradigms
and programming techniques aimed at making end user development easier. At this
level we included programming by example, trigger-action –based approaches,
natural language techniques, spreadsheets, mashups, mock-up –based and tangible
programming techniques. It is worth noting that neither level is specific to IoT and,
as such, such techniques could be applied to different domains. In the following
sections we analyse work in the state of the art which exploited the above concepts,
with particular attention to application to the IoT domain (Fig. 1).

2.1 Metaphors

Various metaphors have been considered in this area, Davidyuk, Sanchez, Gilman,
and Riekki (2015) discuss the use of some of them. Using the pipeline metaphor,
applications are represented graphically as directed graphs where nodes correspond
to elementary services or activities, and links (i.e. pipelines) connect them.
Pipelines can also be organized in complex structures, for example by using logic
binary operators connecting nodes, and they can have various implementations
depending on how such nodes are represented. Often they are rendered through
icons associated with high-level functionalities, with some output and input ports
representing the input and the output data, and the application development mainly
consists in indicating from where such functionalities receive input and where they
send the results of their processing. Realinho, Romão, and Dias, (2012) have
proposed IVO (Integrated Virtual Operator), an event-driven workflow/pipeline
framework for allowing end users to develop context-aware mobile applications.

46 F. Paternò and C. Santoro



Using IVO, users build such applications by creating workflows that determine the
application behaviour when a specified context is detected. An IVO application is
therefore described as a set of workflows that are triggered when some contexts are
checked. The workflows are created by combining the available building blocks,
which represent the various actions that can be performed by an application. The
pipeline metaphor is a visual paradigm which allows for modelling the behaviour of
complex applications. However, despite its expressiveness, the use of this metaphor
can be problematic when the number of graphical elements and their connections
increases, thereby making the resulting diagram difficult to interpret.

In the jigsaw puzzle metaphor, each software component is seen as a piece of
a puzzle and the shapes of the various pieces provide the cognitive hints needed to
understand the possible compositions. Thus, non-expert users can easily associate
each puzzle piece with the component it represents. This metaphor has been used
in various environments. First, Scratch3 proposed it for supporting children in
learning programming concepts, in particular in creating interactive applications
with multimedia content. AppInventor4 then exploited such metaphor to support
the development of functionalities triggered by events in an app user interface.
While this metaphor supports more complex configurations than the pipeline

Metaphors

Cards

Jigsaw

Pipelines

Rules

Lego
Tangible

Spreadsheet

Natural Language

Mashup

Trigger
Action

Trigger-Action

Mock-up

Programming-by-example

Timeline

Programming styles

Fig. 1 Metaphors and programming techniques considered in EUD approaches

3http://scratch.mit.edu
4http://appinventor.mit.edu/explore/

473 A Design Space for End User Development in the Time of the Internet of Things

http://scratch.mit.edu
http://appinventor.mit.edu/explore/


metaphor, one disadvantage is that it has limited expressiveness. Indeed, the pieces
of the puzzle have a limited number of interfaces (i.e. sides), thereby restricting
the set of possible programming expressions. While in Scratch and AppInventor
puzzles pieces are used to represent low-level programming constructs, in Puzzle
(Danado & Paternò, 2014), they have been exploited to support development of
Internet of Things applications on smartphones: the elements are associated with
high-level functionalities that can also control actuators. Thus, Puzzle has been
designed to facilitate the composition of various pieces through a touch interface for
a screen with limited size. Each puzzle piece represents a high-level functionality
that can be composed, and its shape and colours indicate the number of inputs and
outputs, as well as the information type they can communicate. Thus, the tool pro-
vides a usable solution but it is limited to the composition of functionalities for
which a puzzle piece has been provided. A similar approach has been investigated
also in MicroApp (De Lucia, Francese, Risi, & Tortora, 2012), which exploits gra-
phical composition of common functionalities offered by phone applications, such
as taking an image through the camera and saving it, retrieving the contact list, and
sending an email. However, in order to work it requires each action or service to
expose a description that enables automatically generating the MicroApp puzzle-
based user interface. Among commercial systems, Zipato5 exploits the jigsaw meta-
phor for rule composition. A variation of the jigsaw metaphor is the tile-based
approach (Cavallaro, Nitto, Furia, & Pradella, 2010), which allows building pro-
grams by combining graphical units (tiles). Although each tile can be combined
only with other specific tiles, the shapes of the tiles do not limit the connections.
Another variation of the jigsaw metaphor is the join-the-dots metaphor, where the
editing canvas presents a set of individual devices that are available in the environ-
ment. Each device is shown as the centre of a cluster, while the surrounding nodes
represent services accessible from the environment. Users create compositions by
linking one service to the desired destination device. This metaphor has been applied
in the editor of the Platform Composition prototype (Pering, Want, Rosario, Sud, &
Lyons, 2009). The main advantages of this metaphor is the simplicity of its visual
representation, as only services and devices available for composition are visualized.

Timeline is another relevant metaphor that has been considered in the EUD area.
It basically provides a temporal reference along which events/objects are aligned, so
helping in organising relevant information in a chronological order. Timelines are
typically represented by a line on which various elements are graphically positioned,
thus, in timelines temporal relationships (between e.g. events) are basically repre-
sented as spatial relationships. TagTrainer (Tetteroo et al., 2015) is an approach
exploiting timelines for EUD. TagTrainer enables caregivers to develop rehabilita-
tion exercises for patients with hand or arm mobility problems based on the manipu-
lation of everyday objects. It is designed to create training programs consisting of
sequential activities: the workspace located in the center of the screen displays a
timeline containing the sequence of all actions associated with the objects involved

5www.zipato.com

48 F. Paternò and C. Santoro

http://www.zipato.com


in the exercise, and, depending on the selected action (e.g. “Place object”), a window
on the right side gives the possibility to specify relevant properties, such as the exact
location where the object has to be placed at a given time.

Rules represent another used metaphor in the EUD area. The underlying idea is
to specify the system behaviour by using a number of if-then statements expres-
sing how the system should behave when specific situations occur. One of the first
proposals using rules for EUD was iCAP (Dey, Sohn, Streng, & Kodama, 2006),
which introduced the possibility to create if-then rules to support personalization
of dynamic access to home appliances. Recently, due to relevancy of contextual
dynamic aspects that can potentially affect the behaviour of applications in IoT-
based environments, rule-based approaches are receiving increasing interest since
end users can easily reason about context and express in rules the desired beha-
viour of their applications by describing how the application should react to speci-
fic events occurring in the context. However, rule-based approaches can become
difficult for non-programmer users when complex rules have to be expressed,
since e.g. a correct formulation of logical expressions implies the knowledge of
some key concepts (e.g. Boolean operators, priority of operators) that could not be
always intuitive for non-professional software engineers. Rules can be realised
using various programming techniques: in TARE (Ghiani, Manca, Paternò, &
Santoro, 2017) rules are expressed using a trigger-action syntax and also by pro-
viding a representation in natural language.

2.2 Programming styles

Spreadsheets have proven enormously popular with personal computer users as
they provide a concrete, visible representation of data values, as well as powerful
features like the possibility to apply formulas to cells, which quickly allow users to
solve simple problems within their domain of interest (Burnett, Yang, & Summet,
2002). However, they do not seem suitable to address more dynamic environments
such as IoT applications.

The programming style based on user interface mock-ups as design tools
(Beaudouin-Lafon & Mackay, 2002) has long been considered due to its intuitive-
ness and effectiveness, and various tools for rapid prototyping for early stages of
design, and iterative and evolutionary prototyping have been proposed. They can
still be useful in IoT domains as well.

One programming style relevant for EUD is based on natural language, a way
of programming using a subset of constructs expressed in natural language which
should model user’s intents. An example approach exploiting this programming
style can be found in the work of Perera, Aghaee, and Blackwell (2015), which
analysed how a natural language approach can support the definition of policies to
manage the home environment. The authors considered the “sticky note” techni-
que for defining the tasks requiring information exchange between IoT appliances
and services. The findings revealed mainly that: the average number of words per

493 A Design Space for End User Development in the Time of the Internet of Things



note was relatively small; people in general adjust their language depending on
the type of addressee (human vs. machine); and their technical background affects
the way users communicate with machines. Natural language has also been
exploited in composition screens, where users are able to specify the connections
of services and devices for concrete applications, such as in the InterPlay proto-
type (Messer et al., 2006). InterPlay relies on visual “verb-object-target” construc-
tions which resemble pseudo-English sentences. Users specify a task by first
selecting a “verb” (i.e. a command), then an “object” (i.e. content) and, finally, a
“target” (i.e. a device). While this approach offers an intuitive user interface, users
are only able to trigger the automated composition of the tasks defined in the sys-
tem at design time. AppsGate (Coutaz & Crowley, 2016) is an EUD prototype
which has been deployed in real domestic environments. Its goal is to support
end-users defining their own semantics concerning the use of devices and ser-
vices available at home. AppsGate consists of a server and a set of Web clients.
The server is structured in two abstraction levels (one application-agnostic and
another one application-specific), and uses OSGi to support the dynamic appear-
ance and disappearance of devices. In order to allow users to express the
intended behaviour, a pseudo-natural language is used to express rules that are
specified in terms of conditionals (which can regard states and events) and
actions. The underlying tool supports a feedforward mechanism to facilitate users
in expressing their rules without being burdened by an excessively complicated
syntax. In addition, AppsGate also analyses the difficult problem of how to sup-
port debugging in EUD environments, by providing the possibility to run pro-
grams using a virtual date and time.

Another relevant approach in this area is represented by tangible interfaces,
where a person interacts with digital information through the physical environment.
An example of tangible interactive environment for EUD is in (Truong, Huang, &
Abowd, 2004), where they used the fridge magnet metaphor: it mimics refrigerator
magnets where the magnets offer a set of words that users can arrange into phrases.
It also provides an interface for automated capture and playback (which allows
users to replay events that were automatically recorded in the home).

From a HCI perspective, mashup refers to a composition of contents and/or fea-
tures from several sources that determines new client-side interactive applications.
For instance, Web mashups can combine data, presentations and functionalities
from different Web sites into a novel, single Web application. Various approaches
have been put forward in this area. The approach illustrated in (Desolda, Ardito,
Matera, & Piccinno, 2015) for mashing up smart things (sensors, actuators) relies
on domain-specific customization of the platform. In mashup approaches the basic
point is to facilitate new compositions amongst existing components, while a more
flexible approach would be to add incrementally new contextual rules for modifying
the original behaviour of the interactive application. In (Aghaee & Pautasso, 2014)
the authors describe the design and evaluation of NaturalMash, an EUD tool for
enabling non-professional users to create mashups by using a subset of natural lan-
guage expressions, which are associated with mashup components beforehand.
They also provided an evaluation in which they compared the expressive power of

50 F. Paternò and C. Santoro



NaturalMash with other state-of-the-art mashup environments, showing that their
tool offers a good level of expressive power compared with other tools.

IoT is characterized by the presence of a variety of sensors in contexts contain-
ing dynamic sets of devices, people, and services. Thus, applications able to exploit
such situations need to be informed of the various changes in order to adapt accord-
ingly. This has stimulated renewed interest in trigger-action programming, an
approach which is mainly based on event-condition-action (ECA) rules. Triggers
can be associated with events and/or conditions. Events are instantaneous changes
that occur at some point, while conditions define specific contextual states. For
example “when the user enters home” is an event since it refers to a state change,
while “when the user is at home” indicates a condition corresponding to the state
associated with the user being at home. Huang and Cakmak (2015) discuss current
Trigger-Action Programming trends and issues. In particular, they found that the
distinction between relevant concepts is a source of problems, since users can have
difficulties interpreting the difference between events and conditions or between the
possible types of actions (for example extended actions, which automatically revert
back to the original state after some time, and sustained actions, which do not revert
to the original state automatically). Misunderstandings can cause undesired beha-
viours (e.g. unlocking doors at the wrong time or causing unintended energy waste).
Lucci and Paternò (2014) have analysed how three Android apps support this type
of programming. Such tools categorize triggers and actions differently according to
users’ objectives. Their analysis indicates further requirements, for example that
EUD tools for IoT should allow the combination of more than one trigger and more
than one action in the same rule.

EUD based on trigger-action rules is expected to allow users to do more (and
more easily) with their existing devices and things by softening the boundaries
between “end users” and “professional developers” as well as between design done
before use and software adaptation done at runtime. By specifying customisation
rules, users should be able to get better personalisation support and more satisfac-
tion in the use of their context-dependent IoT-based applications. This type of
solution can thus contribute to creating technological infrastructures that can suc-
cessfully establish their usage in practise (Pipek and Wulf, 2009) if they are able to
address the specific challenges for obtaining low threshold and high ceiling environ-
ments. In (Ghiani et al., 2017) the authors present TARE (Trigger-Action Rule
Editor), an environment that allows end users to customize the context-dependent
behaviour of their Web applications through the specification of trigger-action rules.
The environment is able to support end-user specification of flexible behaviour,
including an underlying infrastructure able to detect available devices and objects
and possible contextual changes to achieve the desired behaviour. The resulting
environment supports the dynamic creation of application versions more suitable
for specific contexts of use. An example of its use in a real environment (a students’
home) is reported in (Corcella, Manca, and Paternò, 2017).

Another environment that aims to support the development of rule-based reactive
applications is IFTTT. It uses the textual syntax “IF This Than That” to specify the
scheduling of execution of a certain action (That), and the occurrence of a specified

513 A Design Space for End User Development in the Time of the Internet of Things



event (This). Its distinguishing feature is that, besides being able to express
“recipes” that concern and make changes in the hosting device, IFTTT communi-
cates with widely used Web services, thus allowing the automatic execution of
functions related to the internal state of apps such as Facebook, Instagram, Box,
Ebay, YouTube and others. In the mobile version the process of creating a recipe is
done sequentially through some guided steps. A recent study (Ur, McManus, Ho, &
Littman, 2014) found that trigger-action programming can express most desired
behaviour in order to customize smart home devices. They evaluated the uniqueness
of the 67,169 trigger-action programs shared on IFTTT.com, finding that real users
have written a large number of unique trigger-action interactions. Finally, they con-
ducted a 226-participant usability test of trigger-action programming, finding that
inexperienced users can quickly learn to create programs containing multiple trig-
gers or actions obtained by extending the IFTTT language, which has limited possi-
bilities, since it only supports applications with only one trigger and one action.
This shows that this approach seems suitable to support EUD of context-dependent
applications, but needs to be improved in order to allow users to express various
desired combinations of events and corresponding actions. Another interesting point
of (Ur et al., 2014) is that it shows that the approach based on IFTTT can address
emerging Internet of Things (IoT) applications as well. In such applications “smart”
physical objects are thought as networked together, able to interact and communi-
cate with each other, with human beings and/or with the environment to exchange
data and information “sensed” about the environment, and thereby able to react
autonomously to events in the real world, and influence it by running processes that
trigger actions and perform services. The availability of mobile tools to perform
real time checks of the configuration of on-site visual interactive systems is deemed
essential in (Kubitza, Thullner, & Schmidt, 2015) to accelerate the so-called
“change and re-try cycles.” An example tool for configuring smart environments is
described in (Kubitza & Schmidt, 2015). It aims to facilitate physical prototyping
by hiding the complexity that arises when many different technologies are com-
bined together. The tool is structured so as to separate the management of devices,
events and rules, and mainly targets people with some programming experience
since the rules are based on JavaScript.

a CAPpella (Dey, Hamid, Beckmann, Li, & Hsu, 2004) is a desktop tool aiming
to address context-dependent applications. It applies the programming-by-
example style in which the user does not provide the specification of the program
but just furnishes examples of sequences of interactions from which the environ-
ment understands what the corresponding expected general behaviour is. In this
case a user demonstrates context-aware behaviour that includes both a situation and
an associated action, and trains the environment on this behaviour over time by
giving multiple examples. Once the systems has been trained, the user can run the
application, which will then perform the demonstrated action whenever it detects
the demonstrated situation. An attempt to apply the programming-by-example para-
digm to a mobile development environment is “Keep Doing It” (Maues & Barbosa,
2013), which provides the possibility of identifying context-dependent adaptation

52 F. Paternò and C. Santoro



rules in the ECA format according to the history of user interactions. The rules are
represented through a natural language subset using “when,” “if” and imperatives
verbs. An example rule is: “When a wired headset is connected, if my phone is
unlocked, launch the Google Play Music application.” A different application of the
programming-by-example relevant for IoT is Improv (Chen & Lin, 2017), which
aims to support end users in dynamically defining cross-device interactions in order
to leverage the capability of additional devices. Thus, users first demonstrates the
target UI behaviour using the native input on the primary device. Improv parame-
terizes the user-demonstrated behaviour. Then, the user demonstrates the input on
an accessory device, and Improv associates it with the parameterized behaviour so
that the user can obtain the same original application behaviour through the cross-
device interaction demonstrated.

3 Design Space

Based on our analysis of metaphors and programming styles, we have identified a
logical framework to better understand and compare work in this area. It is com-
posed of seven logical dimensions.

• Platforms. The platform supported for the development activities. Traditionally it
has been the desktop, but other platforms are being increasingly considered, e.g.
mobile, even in combination. e.g. desktop and mobile together (Chen & Lin,
2017);

• Domains. An indication of the relevant application domains which the con-
cerned EUD approach can be applied to. The domain can vary depending on
the case; in the IoT area examples of application domains often considered are
home automation, ambient assisted living, rehabilitation;

• Events. In this dimension we consider the types of events that can have an impact
on the behaviour of IoT applications. They can concern not only interaction
events (i.e. events occurring when interacting with the application), but also con-
textual events (i.e. those associated to aspects such as user, technology, surround-
ing environment and social relationships) occurring in the current context of use;

• Metaphors. The metaphor dimension aims to analyse the type of representa-
tions and interactions adopted in order to make intuitive the specification of the
intended application behaviour;

• Programming styles. This dimension refer to the programming techniques
aimed at making end user development easier for the non-professional user.

• Actions. This level describes which type of changes to the application beha-
viour the EUD environment allows. Different types of actions can be identified,
e.g. those performed in appliances (to change the state of actuators), user inter-
face modifications (to change e.g. its presentation, content or navigation),
execution of functionalities (e.g. access to an external service like a weather
forecast service);

533 A Design Space for End User Development in the Time of the Internet of Things



• Event Compositions/Operators. This dimension analyses the possibility to
build composite expressions of events. Events can be combined in various
manners, by using e.g. Boolean operators or temporal operators;

• Action Compositions/Operators. This dimension analyses the possibility to
build composite expressions of actions. Constructs similar to those occurring in
programming languages can be used (e.g. sequence, for, while, if).

Such dimensions can be useful to analyse proposals for EUD environments and
think about possible new solutions. Table 1 provides an example of how our logi-
cal framework can be used to analyse various proposals. For the sake of brevity
we only consider a small set of tools, which have been identified to show different
ways to address the design space dimensions.

The first dimension is dedicated to the platform supported for the development
activities: it can be desktop (as in Alice, HANDS, a CAPpella, TagTrainer) or
mobile devices (as in Keep Doing it) or both (as in Puzzle, IFTTT, TARE,
AppsGate). As for the application domains, some are more oriented to specific
sectors (e.g. HANDS for children’s animations), while others are more general-
purpose (e.g. IFTTT). Regarding the events, all the approaches consider interac-
tion events, whereas much fewer approaches consider the full range of event
types (interaction, user-related, environment-related, technology-related, social
relationships -related), i.e. IFTTT and TARE.

As for the metaphors, the most used approaches for addressing IoT domains
seem the rule-based one (e.g. IFTTT, TARE, AppsGate) for its immediate way to
handle their typical reactive behaviour, and the one based on some subset of natural
language (see e.g. Alice and HANDS) for its intuitiveness. The most used program-
ming styles were natural language (in Alice, HANDS and AppsGate it was used in
an exclusive manner, in TARE it was used in combination with rules), programming
by demonstration (a Cappella, Keep Doing it), and the trigger-action approach
(IFTTT and TARE).

Regarding the range of actions covered by the approaches, it is addressed in a
variety of ways and also depends on the considered application domain: TagTrainer
is focused on rehabilitation exercises, IFTTT allows users to connect to a predefined
set of existing applications, TARE allows the customization of existing Web IoT
Applications, AppGate focuses on the home domain, while KeepDoing it aims to
extend the possibilities of automating smartphones’ tasks. In particular, they cover
the modification of the application UI (Alice, Hands exclusively focus on such
aspects on desktop platforms), but also consider mobile applications (Keep Doing It,
Puzzle), up to covering smart environments and IoT-based settings, especially with
the most recent approaches (see e.g. TARE, TagTrainer andAppsGate).

In addition, the possibility of composing events in EUD environments has been
considered only in a few approaches (a CAPpella, Keep Doing It, TARE and
TagTrainer), where in any case a limited set of Boolean operators among AND,
OR, NOT have been supported. Instead, action composition has been supported in
almost all approaches with a few exceptions (namely: IFTTT and AppsGate).

Looking at this table some observations can be derived, also in terms of poten-
tial areas that require further research in the near future. For example, while all the

54 F. Paternò and C. Santoro



T
ab

le
1

A
na
ly
si
s
of

re
la
te
d
w
or
k
ac
co
rd
in
g
to

th
e
pr
op
os
ed

fr
am

ew
or
k

E
U
D
en
vi
ro
nm

en
t

A
lic
e

H
A
N
D
S

a
C
A
P
pe
lla

K
ee
p
do
in
g
It

P
uz
zl
e

IF
T
T
T

T
A
R
E

T
ag
T
ra
in
er

A
pp
sG

at
e

P
L
A
T
F
O
R
M

D
es
kt
op

D
es
kt
op

D
es
kt
op

M
ob
ile

M
ob
ile
/

D
es
kt
op

M
ob
ile
/

D
es
kt
op

M
ob
ile
/

D
es
kt
op

D
es
kt
op

M
ob
ile
/

D
es
kt
op

D
O
M
A
IN

M
ul
tim

ed
ia

an
im

at
io
ns

M
ul
tim

ed
ia

an
im

at
io
ns

fo
r
ch
ild

re
n

C
on
te
xt
-

de
pe
nd
en
t

be
ha
vi
ou
r

(e
.g
.m

ee
tin

g
ro
om

s)

C
on
te
xt
-

de
pe
nd
en
t

sm
ar
tp
ho
ne

ap
pl
ic
at
io
ns

A
ut
om

at
e

se
qu
en
ce
s
of

ac
tio

ns

C
om

po
si
tio

n
of

va
ri
ou
s

ex
is
tin

g
W
eb

se
rv
ic
es

C
on
te
xt
-

de
pe
nd
en
tW

eb
Io
T

ap
pl
ic
at
io
ns

R
eh
ab
ili
ta
tio

n
H
om

e

E
V
E
N
T
S

In
te
ra
ct
.

In
te
ra
ct
.

In
te
ra
ct
.

In
te
ra
ct
.

In
te
ra
ct
.

In
te
ra
ct
.

In
te
ra
ct
.

In
te
ra
ct
.

In
te
ra
ct
.

T
ec
hn
ol
.

T
ec
hn
ol
.

E
nv
ir
on
.

U
se
r

U
se
r

U
se
r

U
se
r

U
se
r

E
nv
ir
on
.

E
nv
ir
on
.

E
nv
ir
on
.

E
nv
ir
on
.

E
nv
ir
on
.

T
ec
hn
ol
.

T
ec
hn
ol
.

T
ec
hn
ol
.

T
ec
hn
ol
.

T
ec
hn
ol
.

S
oc
ia
l

S
oc
ia
l

M
E
T
A
P
H
O
R

S
to
ry
bo
ar
d

C
ar
ds

T
im

el
in
e

R
ul
es

Ji
gs
aw

R
ul
es

R
ul
es

T
im

el
in
e

R
ul
es

P
R
O
G
R
A
M
M
IN

G
ST

Y
L
E

N
at
ur
al

la
ng
ua
ge

N
at
ur
al

la
ng
ua
ge

P
ro
gr
am

m
in
g

by
de
m
on
st
ra
tio

n
P
ro
gr
am

m
in
g
by

de
m
on
st
ra
tio

n
T
ri
gg
er
-a
ct
io
n

T
ri
gg
er
-a
ct
io
n

+
N
at
ur
al

L
an
gu
ag
e

N
at
ur
al

la
ng
ua
ge

A
C
T
IO

N
S

H
an
dl
er
s

as
so
ci
at
ed

to
in
te
ra
ct
io
n

ev
en
ts

H
an
dl
er
s

as
so
ci
at
ed

to
in
te
ra
ct
io
n

ev
en
ts

S
m
ar
t

en
vi
ro
nm

en
t

ac
tio

ns

S
m
ar
tp
ho
ne

ta
sk
s

A
ct
io
ns

fo
r

ap
pl
ic
at
io
n

U
I,
ob
je
ct
s,

ap
pl
ia
nc
es
,

an
d
de
vi
ce
s.

C
ha
ng
es

in
th
e
de
vi
ce
,

ac
tiv

at
e
W
eb

se
rv
ic
es

an
d

ap
ps

A
ct
io
ns

fo
r

ap
pl
ic
at
io
n
U
I,

ob
je
ct
s,

ap
pl
ia
nc
es
,a
nd

de
vi
ce
s.

E
xe
rc
is
es
/

ac
tio

ns
fo
r

ph
ys
ic
al

ob
je
ct
s

B
eh
av
io
ur

of
de
vi
ce
s
an
d

se
rv
ic
es

av
ai
la
bl
e
at

ho
m
e

E
V
E
N
T
S

C
O
M
P
O
SI
T
IO

N
O
P
E
R
A
T
O
R

A
N
D

A
N
D

N
O
T

A
N
D

O
R

A
N
D

A
C
T
IO

N
S

C
O
M
P
O
SI
T
IO

N
O
P
E
R
A
T
O
R
S

D
o
to
ge
th
er

D
o
to
ge
th
er

If
el
se

W
hi
le

L
oo
p

W
ai
t

A
nd

N
ot

O
r

A
nd

A
nd

L
oo
p

S
eq
ue
nc
e

S
eq
ue
nc
e

553 A Design Space for End User Development in the Time of the Internet of Things



approaches consider interaction events, only a few approaches address (at various
levels) proper contextual events (e.g. those connected with user, environment,
technology, and social aspects). This can be explained with the fact that in the
past the initial focus was mainly limited to the events raised by the interactive
application, while in more recent years the increasing availability and affordability
of various devices and sensing technologies has stimulated the development of
context-dependent applications, whose behaviour can be affected by events occur-
ring in the surrounding context. Therefore, the inclusion of various types of con-
textual events has been mainly considered only in more recent approaches, and
thus a more complete coverage of such events in future work would be advisable.

Regarding the actions, we observe a trend similar to the one identified for
events: initially the focus was on actions just affecting the interactive application;
later on, with the increasing diffusion of IoT technologies and related smart appli-
cations, the focus was extended to include actions controlling not only the applica-
tion but also devices, actuators, physical objects and appliances that can be
available in the considered context.

In addition, apart from a few exceptions, the possibility to compose events and
corresponding actions is generally very limited, some approaches even do not sup-
port their composition at all (as it happens with IFTTT). Therefore, further effort
in enabling end users to specify complex expressions of triggers and actions
should be pursued because this would provide users with the possibility to specify
more flexible behaviours.

However, especially when dealing with complex expressions of triggers (e.g.
events and conditions) and actions, there are further aspects that need to be better
analysed. As it has been previously highlighted (Huang & Cakmak, 2015), rule-
based approaches (and, in particular, trigger-action–based rules) could raise some
ambiguity in the interpretation of rules, due to potential inaccuracies in end users’
mental models. For instance, interpretation problems can occur when it is not clear
whether actions occurring in a rule should be explicitly reverted or not (by using
e.g. another rule) as soon as the involved triggers do not hold anymore. This
requires further analysis and investigation of the different types of triggers and
actions that can be included in complex expressions, in order to avoid such inter-
pretation issues in future EUD tools.

The problem of intuitive composition of logical expressions by end users has
also been studied in (Metaxas & Markopoulos, 2017), where an established theory
of mental models has been used to guide the design of interfaces for natural pro-
gramming so that people can find easy to comprehend and manipulate logical
expressions. According to such mental model theory people find it easier to con-
ceptualize logical statements as a disjunction of conjunctions (an OR of AND’s),
as opposed to other logically equivalent forms. Thus, (Metaxas & Markopoulos,
2017) presented a tool which is expected to facilitate end-users in programming
context-dependent behaviour using quite complex logical expressions. Although
this work represents a useful contribution to facilitate natural programming by
decreasing the cognitive load associated with the specification of complex logical
expressions, further studies are needed to further elaborate on these key aspects.

56 F. Paternò and C. Santoro



Finally, another interesting aspect (yet not fully developed in the EUD area) is
how people can test and possibly assess whether the modified/created behaviour of
the application actually resulted in the expected one. This need is especially relevant
in IoT domains where incorrect behaviour of applications or actuators can eventually
have safety-critical consequences (e.g. in the elderly assistance domain and in the
home domain). If we consider rule-based approaches, a way to reduce the likelihood
of errors in the specification of rules is to allow users to simulate the conditions and
the events that can trigger a rule and the effects that they will bring about. An exam-
ple of this approach can be found in TARE, where users can check the rules (e.g. by
simulating them) in order to identify possible errors or conflicts in their specifica-
tions, or directly execute them in the current context of use. In this way it should be
possible to receive information helpful to find the causes of the undesired behaviour
detected and eventually fix them. However, although debugging support could repre-
sent an important aid for improving the correctness of the resulting applications,
most EUD environments do not include debugging aids for such users (Coutaz &
Crowley, 2016) since for non-professional end users debugging becomes especially
difficult. Therefore, another possible area that can be subject of possible further
investigation is the one dedicated to improve such kind of support in EUD tools.

4 Conclusions

In this paper we have presented a design space, which identifies the main features
that should be addressed to support End User Development for Internet of Things
applications. The presented conceptual framework is useful to facilitate a better
understanding of the important aspects to consider when design EUD environments
for IoT, and can be used as the basis for comparative analysis amongst various
approaches and inform discussion about areas that can be further investigated.

The discussion about solutions for supporting low threshold/high ceiling speci-
fications of events and actions compositions has still some open points, which
require further research work.

Additional aspects that are currently starting to emerge include the possibility
for people to test/simulate the behaviour of the IoT applications obtained with the
EUD tool in order to assess whether it actually results in the expected one, with
the additional possibility to receive information helpful for finding the causes of
any undesired behaviour detected and fixing it.

References

Aghaee, S., & Pautasso, C. (2014). End-user development of mashups with natural mash.
Journal of Visual Languages and Computing, 25(4), 414–432.

Atzori, L., Iera, A., Morabito, G. (2010). The internet of things: a survey. Computer Networks,
54(15), 2787–2805. doi:10.1016/j.comnet.2010.05.010.

573 A Design Space for End User Development in the Time of the Internet of Things

http://dx.doi.org/10.1016/j.comnet.2010.05.010


Beaudouin-Lafon, M., & Mackay, W. (2002). Prototyping tools and techniques. In J.A. Jacko &
A. Sears (Eds.), The human computer interaction handbook (pp. 1006–1031). Hillsdale, NJ:
L. Erlbaum Associates Inc.

Burnett, M., Yang, S., Summet, J. (2002). A scalable method for deductive generalization in the
spreadsheet paradigm. ACM Transactions on Computer-Human Interaction, 9(4), 253–284.

Cavallaro, L., Nitto, E. D., Furia, C. A., Pradella, M. (2010). A tile-based approach for self-
assembling service compositions. In R. Calinescu (Ed.), Proceedings of the 15th IEEE inter-
national conference on engineering of complex computer systems (ICECCS’10) (pp. 43–52).
Oxford: IEEE Computer Society.

Chen, X., & Lin, Y. (2017). Improv: an input framework for improvising cross-device interac-
tion by demonstration. New York, NY: ACM TOCHI.

Corcella, L., Manca, M., Paternò, F. (2017). Personalizing a student home behaviour. In
Proceedings IS-EUD 2017, LNCS 10303 (pp. 1–16). Cham: Springer Verlag.

Coutaz, J., & Crowley, J.L. (2016, May–June). A first person experience with end-user develop-
ment for smart home. IEEE Pervasive Computing, 15(2), 26:39.

Danado, J., & Paternò, F. (2014). Puzzle: a mobile application development environment using a
jigsaw metaphor. Journal of Visual Languages and Computing, 25(4), 297–315.

Davidyuk, O., Sanchez, I., Gilman, E., Riekki, J. (2015, December). An overview of interactive
application composition approaches. Open Computer Science, 5(1), 2299–1093. doi:10.1515/
comp-2015-0007. ISSN (Online).

de A. Maues, R., Barbosa, S.D.J. (2013). Keep Doing What I Just Did: Automating Smartphones
by Demonstration. Proceedings of the 15th international conference on human-computer
interaction with mobile devices and services, MobileHCI 2013 (pp. 295–303). New York,
NY: ACM. ISBN: 978-1-4503-2273-7. doi:10.1145/2493190.2493216

De Lucia, A., Francese, R., Risi, M., Tortora, G. (2012). Generating applications directly on the
mobile device: an empirical evaluation. In Proceedings of the International Working
Conference on Advanced Visual Interfaces (AVI ’12) (pp. 640–647). New York, NY, USA:
ACM. doi:10.1145/2254556.2254674

Desolda, G., Ardito, C., Matera, M., Piccinno, A. (2015, April 19). Mashing-up smart things: a
meta-design approach. In Proceedings of workshop on end user development in the internet
of things era – CHI ’15 EA (pp. 33–36). Seoul.

Dey, S. K., Hamid, R., Beckmann, C., Li, H., Hsu, D. (2004). A CAPpella: programming by
demonstration of context-aware applications. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’04) (pp. 33–40). New York, NY, USA: ACM.
doi:10.1145/985692.985697

Dey, A.K., Sohn, T., Streng, S., Kodama, J. (2006). iCAP: interactive prototyping of context-
aware applications. Pervasive, 254–271.

Ghiani, G., Manca, M., Paternò, F., Santoro, C. (2017). Personalization of Context-Dependent
Applications Through Trigger-Action Rules. ACM Transactions on Computer-Human
Interaction, 24(2), Article 14, 33 pages. DOI: 10.1145/3057861.

Huang, J., & Cakmak, M. (2015). Supporting mental model accuracy in trigger-action programming.
Proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous com-
puting (UbiComp ’15) (pp. 215–225). New York, NY: ACM. doi:10.1145/2750858.2805830.

Kubitza, T., & Schmidt, A. (2015). Towards a toolkit for the rapid creation of smart environ-
ments. IS-EUD, 9083, 230–235.

Kubitza, T., Thullner, S., Schmidt, A. (2015). VEII: a toolkit for editing multimedia content of
interactive installations on-site. Proceedings of the 4th ACM International Symposium on
Pervasive Displays, 2015 (pp. 249–250). New York, NY, USA: ACM.

Lieberman, H., Paternò, F., Klann, M., Wulf, V. (2006). End-user development: an emerging
paradigm. In H. Lieberman, F. Paternò, V. Wulf (Eds.), End-user development (Human-
Computer Interaction Series) (pp. 1–8). Netherlands: Springer.

Lucci, G., & Paternò, F. (2014). Understanding end-user development of context-dependent
applications in smartphones. In HCSE (pp. 182–198). Heidelberg: LNCS Springer Verlag.

58 F. Paternò and C. Santoro

http://dx.doi.org/10.1515/comp-2015-0007
http://dx.doi.org/10.1515/comp-2015-0007
http://dx.doi.org/10.1145/978-1-4503-2273-7
http://dx.doi.org/10.1145/2493190.2493216
http://dx.doi.org/10.1145/2254556.2254674
http://dx.doi.org/10.1145/985692.985697
http://dx.doi.org/10.1145/3057861
http://dx.doi.org/10.1145/2750858.2805830


Messer, A., Kunjithapatham, A., Sheshagiri, M., Song, H., Kumar, P., Nguyen, P., et al. (2006,
March). InterPlay: a middleware for seamless device integration and task orchestration in a
networked home. In Proceedings of the 4th annual IEEE conference on pervasive computing
and communications (PERCOM’06) (pp. 296–307). Pisa: IEEE Computer Society.

Metaxas, G., & Markopoulos, P. (2017). Natural contextual reasoning for end users. ACM
Transactions on Computer-Human Interaction, 24(2), Article 13. doi:10.1145/3057860.

Pane, J.F., Myers, B.A., Miller, L.B. (2002). Using HCI techniques to design a more usable
programming system. Proceedings of 2002 IEEE Symposia on Human Centric Computing
Languages and Environments (HCC 2002) (pp. 198–206). doi:10.1109/hcc.2002.1046372

Paternò, F. (2013). End user development: survey of an emerging field for empowering people.
ISRN Software Engineering, 2013, Article ID 532659, 11 pages.

Perera, C., Aghaee, S., Blackwell, A.F. (2015). Natural notation for the domestic internet of
things. In Proceedings IS-EUD (pp. 25–41). Cham: Springer Verlag.

Pering, T., Want, R., Rosario, B., Sud, S., Lyons, K. (2009, May). Enabling pervasive collaboration
with platform composition. In H. Tokuda et al. (Eds.), Proceedings of the 7th international
conference on pervasive computing (Pervasive’09), LNCS 5538 (pp. 184–201). Nara: Springer.

Pipek, V., & Wulf, V. (2009). Infrastructuring: toward an integrated perspective on the design
and use of information technology. Journal of the Association for Information Systems
(JAIS), 10(5), 447–473.

Realinho, V., Romão, T., Dias, A.E. (2012). An event-driven workflow framework to develop
context-aware mobile applications. In Proceedings of the 11th International Conference on
Mobile and Ubiquitous Multimedia (MUM ’12). ACM, New York, NY, USA, Article 22, 10
pages. doi:10.1145/2406367.2406395

Tetteroo, D., Vreugdenhil, P., Grisel, I., Michielsen, M., Kuppens, E., Vanmulken, D., et al.
(2015). Lessons learnt from deploying an end-user development platform for physical rehabi-
litation. In Proceedings of the 33rd annual ACM conference on human factors in computing
systems (CHI ’15) (pp. 4133–4142). New York, NY: ACM. doi:10.1145/2702123.2702504.

Truong, K.N., Huang, E.M., Abowd, G.D. (2004). CAMP: a magnetic poetry interface for end-
user programming of capture applications for the home. In Proceedings of Ubicomp
(pp. 143–160). Heidelberg: Springer.

Ur, B., McManus, E., Pak Yong Ho, M., Littman, M. L. (2014). Practical trigger-action program-
ming in the smart home. In Proceedings of the 32nd annual ACM conference on human fac-
tors in computing systems (CHI 14) (pp. 803–812). New York, NY, USA: ACM.
doi:10.1145/2556288.2557420

593 A Design Space for End User Development in the Time of the Internet of Things

http://dx.doi.org/10.1145/3057860
http://dx.doi.org/10.1109/hcc.2002.1046372
http://dx.doi.org/10.1145/2406367.2406395
http://dx.doi.org/10.1145/2702123.2702504
http://dx.doi.org/10.1145/2556288.2557420

	A Design Space for End User Development in the Time of the Internet of Things
	1 Introduction
	2 Metaphors and Programming Styles
	2.1 Metaphors
	2.2 Programming styles

	3 Design Space
	4 Conclusions
	References




