

New Perspectives in End-User Development

Fabio Paternò · Volker Wulf
Editors

New Perspectives in
End-User Development

Editors
Fabio Paternò
ISTI - C.N.R
Pisa
Italy

Volker Wulf
Universität Siegen
Siegen
Germany

ISBN 978-3-319-60290-5 ISBN 978-3-319-60291-2 (eBook)
DOI 10.1007/978-3-319-60291-2

Library of Congress Control Number: 2017951239

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recita-
tion, broadcasting, reproduction on microfilms or in any other physical way, and transmission or infor-
mation storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publica-
tion does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein
or for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface – New Perspectives in End-User
Development: Elaborating Upon a New
Research Paradigm

More than a decade ago, we postulated that the design goals of human–computer
interaction will evolve from easy-to-use to easy-to-develop applications
(Lieberman et al., 2006). Recent trends show that this challenge is more important
than ever. We need to design environments that allow users who do not necessa-
rily have a background in programming to develop or modify their applications,
with the ultimate aim of empowering them to flexibly employ digital services.

Since the origins of computing, hardware and software architectures have
become more sophisticated, higher-level programming languages have been
invented, and computer programming has evolved into a profession whose prac-
tices diverged from those of end users. The emergence of a (global) software
industry was based on some interesting related aspects:

(a) development of ever more powerful hardware – following Moore’s law for
long time

(b) abstracting programs from the particularities of the hardware they ran on
(c) creating layered software architectures with well-defined interfaces to build

upon each other
(d) abstracting software design from the particularities of specific work practices

that the Information Technology (IT) artefacts were supposed to support

These developments contributed to the emergence of affordable and widely
applied digital services. While in the beginning computing was restricted to rather
few work domains in natural science, engineering, and accounting, we are now
in the situation that IT is penetrating all aspects of life for a steadily increasing
part of the world’s population. So, the design of computer applications interacts
with social practices in a vast variety of domains (Wulf et al., 2017). However,
the software industry is still based on a division of labour between program
creation at design time and use at run time.

v

With the increased spread of digital services and their resulting deep interaction
with social practices, the traditional division of labour has become problematic,
mainly for two reasons:

(1) Modern societies have become more and more differentiated in their patterns
of life. Therefore, requirements for IT artefacts are very diverse and specific
to individual application domains. The differentiated nature of software
requirements is difficult to fully extract at design time for reasons of (a) pro-
blems in understanding the detailed social practices in all application domains,
(b) lacking manpower in terms of software developers, and (c) economic
efficiency.

(2) Social practices change rather dynamically. This is due to increasingly more
dynamic environments in which organizations and individuals act. Moreover,
the appropriation of digital services artefacts may impact social practices, indi-
vidual qualifications and preferences, and may once again lead to new require-
ments for them.

The field of end-user development (EUD) emerged as an approach to overcom-
ing these issues. In challenging the existing division of labour, EUD enables
domain experts to (re-)design their applications in use – often at run time. In line
with the Lieberman et al. (2006) definition, we suggest that:

End-User Development should be understood as a set of methods, techniques, and tools
that allow users who are acting as non-professional software developers of a specific
application environment at some point to create, modify or extend an IT artefact.

The “development” concept in the term EUD has sociotechnical implications
and thus indicates an important interdependency: on the one hand, it requires
design environments enabling end users to modify their digital services; on the
other hand, by appropriating the design environment, end users can potentially
further develop their skills and practices. The immaterial property of software
offers high-level technical flexibility in the sense that its functionality can be mod-
ified at any time – at least in theory.

EUD strives to change the traditional labour organization in the software industry
by adding tools for end users to modify existing and to develop new applications.
Existing software development cycles are still too slow to quickly respond to rapidly
changing user needs of variegated categories of users, and professional developers
often lack the needed domain knowledge to address such requirements, especially in
pervasive modern applications (Ghiani et al., 2017). End users are generally neither
skilled nor interested in adapting their applications at the same level as software pro-
fessionals. So, EUD tools need to be appropriately crafted at application design time
to anticipate technical flexibility that will be needed during their use.

Moreover, given new trends in hardware production, EUD does not even need
to be understood as restricted to software. Technologies such as 3D printing or laser
cutting enable end users to even modify aspects of hardware artefacts in use – thus
also starting to challenge the traditional division of labour in hardware production
(Ludwig et al., 2017).

vi Preface

The second aspect of the interdependency regards an emancipatory perspective
on the development of human actors’ capabilities and social practices. Engaging
in adapting IT artefacts involves learning on the users’ part and may lead to their
personal and collective development. For an explicit investigation into this rela-
tionship see Dittrich et al. (in this volume), who discuss two cases of EUD in the
context of organizations that depend on an IT infrastructure to provide their ser-
vices. In both cases, EUD was used not only to personalize technical support but
also to maintain and evolve the organizations’ infrastructure. Thus, EUD was in
both cases a constituent part of the innovation capability of the organizations.
Therefore, EUD also has a societal dimension since it enables the codesign of
work places as well as the full participation of citizens in the emerging
Information Society (Fischer et al. in this volume).

Possibilities for EUD need to be intentionally designed into the application
environment. Since EUD environments do not typically allow users to fundamen-
tally redesign software architectures, EUD requires foreseen in which aspects of
an applications’ functionality will remain stable over time (Stiemerling et al.,
1997; Stevens et al., 2006). Cabitza and Simone (in this volume) suggest a layered
perspective on the architectural design of malleable applications. Wulf et al.
(2008) explored opportunities for such architectures in the context of a
component-oriented software paradigm.

One important issue is how to design the tools to support application personali-
zation, specifically the level of complexity to offer from a user’s point of view. The
literature provides different classification schema of the technical means by which
end users could be enabled to modify their IT artefacts (e.g. Henderson & Kyng,
1991; Morch et al., 2004). Lieberman et al. (2006) distinguish broadly between
parameterization and customization as well as program modification and creation.

It is generally assumed that an EUD-friendly design environment should enable a
seamless move from the usage mode of interaction towards an adaptation mode
(Wulf & Golombek, 2001). Additionally, the different levels of adaptations should be
designed in a way that the transition towards higher levels of complexity is supported.
MacLean et al. (1990) suggested the design metaphor of a “gentle slope of complex-
ity.” AI techniques, for example, adaptivity may play a role in enabling the different
transitions and support certain EUD activities. They typically result in mixed forms
of interactions where adaptive features can support interaction but users can still take
the initiative in the development process and may provide interesting results.

Since EUD is a sociotechnical activity, it requires analysing how to empower
development in its interdependent sociotechnical aspects. Blackwell et al. (in this
volume) aim to categorize the differences among end-user developers from a psy-
chological perspective. Future work will address the design implications of such
investigations.

There is definitively a collaborative dimension in EUD activities (Mørch &
Mehandjiev, 2000; Wulf, 1999; Kahler, 2001). Actors learn from each other and
cooperate when conducting EUD. A routinization of such collaborative patterns can
lead to a division of labour among end users in conducting adaptations and sharing
tailored artefacts of different types and levels of complexity. Supporting

viiPreface

collaborative patterns in EUD is also an interesting theme in design research. This
line of research includes recommendations and awareness mechanisms for finding
suitable EUD expertise as well as reusable artefacts. EUD-related communities allow
end users to share EUD-related knowledge and artefacts with their peers (Costabile
et al., 2003; Pipek & Kahler, 2006; Draxler & Stevens, 2011).

There are other approaches to differentiate the division of labour in the software
industry by involving users more intensively into the design process; examples of
such approaches are Open Source Development, Software Ecosystems,
Prototyping, Participatory Design, Agile methods (see, for instance, Diaz et al. in
this volume). However, they all focus on design time activities.

EUD is an activity with sociocultural implications, depending on place, time,
and people involved. This is particularly true with the explosion of mobile tech-
nologies, which has made it possible for people to access their applications from a
variety of contexts of use that differ in terms of available devices, things, and ser-
vices, and that require specific actions when various types of events occur.
Differences in EUD practice are likely to develop for different application scenar-
ios, cultures, and languages. These differences may relate to who is in control of
EUD activities, the relation between individual and collaborative EUD, and how
communities of end-user developers are organized.

At the same time, theory-oriented research in EUD has a long history and may
also contribute to the community’s efforts towards engineering and reengineering
software applications. For example, deSouza (in this volume) discusses the use of
Semiotic Engineering to stimulate design-oriented EUD research from a specific
conceptual perspective. The chapter by Burnett et al. (in this volume) discusses
how theoretical foundations may facilitate the transferability of insights beyond
individual tools to the creation of generally applicable methods and principles for
other researchers to draw upon.

Comparing the current technological scenario with the state of the art when the
first EUD book was published in 2006, the most important technological revolu-
tion has been the advent of the Internet of Things. Our life is now characterized
by the presence of a multitude of sensors, objects, and devices. This technological
trend has posed new challenges for EUD as well. Paternò and Santoro (in this
volume) discuss a framework that provides opportunities to identify important
aspects to be considered when analysing EUD in Internet of Things domains. In
this area, Diaz et al. (in this volume) discuss tools to support the ideation, design,
and early prototyping of augmented experience.

This book also presents examples of how EUD research has expanded into spe-
cifically interesting and emerging domains: Menestrina and De Angeli discuss
how computer games can benefit from a EUD approach, in particular those games
designed for a purpose other than entertainment; Valtolina and Barriccelli report
on their experience with an EUD framework to support the “quantified self” con-
cept during sport activities; Morch et al. speak about their experience concerning
EUD and learning in the 3D virtual world Second Life; Reuter et al. discuss how
EUD can support the gathering and assessment process of data from social net-
works in emergency situations.

viii Preface

From a technological perspective, the Web is the most diffuse and penetrating
technological infrastructure. Various mashup environments have been proposed to
support the development of new applications starting with components of existing
ones. Ardito et al. show how they can be exploited within a three-layer meta-design
model. In this area, Aldalur et al. provide a review of Web Augmentation technologies
(aimed at improving existing Web applications) as tools and techniques for EUD.

New application domains and emerging new technologies drive innovations in
EUD. A key question is how to evaluate these innovations. Tetteroo and
Markopulos (in this volume) and Ludwig et al. (in this volume) suggest that inno-
vative EUD solutions need to be explored in practice. While laboratory evalua-
tions or short-term rollouts can be found rather frequently in the literature, these
methods do not provide a sufficient understanding regarding the appropriation of
EUD technologies in social practices and how these technologies should be
improved to encourage such practices (Wulf et al., 2017). Tetteroo and
Markopulos discuss challenges pertaining to field deployments based on their
experiences in the healthcare sector, coming up with some possible guidelines for
the evaluation of EUD technologies.

Overall, we can see that in the last ten years there have been considerable
research efforts to establishing the new EUD paradigm in all its different methodo-
logical aspects and application domains. Several chapters of this book report on
long-term research strategies conducted by individual groups. For example, Myers
et al. (in this volume) report on their efforts aiming to better understand how end
users think about their tasks, and how to support them to express those tasks in
ways closer to the way they think.

While we have better understood certain concepts and design implications of
the EUD paradigm, we also realize that generally applicable solutions are (still)
missing, important new application domains are materializing (e.g. customizing
robot behaviour, personalizing ambient-assisted living, adapting smart home
objects), and further research is required to identify how to exploit the potential-
ities of the EUD paradigm. In this context, we will have to better understand how
to apply given insights to new problem domains.

So, we hope you will join us in this fascinating research endeavour!

References

Costabile, M.F., Fogli, D., et al. (2003). Building environments for end-user
development and tailoring. In IEEE symposia on human centric computing lan-
guages and environments, Auckland.

Draxler, S., & Stevens, G. (2011). Supporting the collaborative appropriation of
an open software ecosystem. Computer supported cooperative work (CSCW),
20(4–5), 403–448.

Ghiani, G., Manca, M., Paternò, F., Santoro, C. (2017). Personalization of
context-dependent applications through trigger-action rules. ACM Transactions

ixPreface

on Computer-Human Interaction, 24(2), Article N.14, April 2017.80).
Programs, Life Cycles, and Laws of Software Evolution. IEEE 68.

Henderson, A., & Kyng, M. (1991). There’s no place like home: continuing design
in use. In J. Greenbaum, M. King, Design at work - cooperative design of compu-
ter systems (pp. 219–240). NJ, USA: L. Erlbaum Associates Inc. Hillsdale.

Kahler, H. (2001). Supporting Collaborative Tailoring. Roskilde: Department of
Communication, Journalism and Computer Science, Roskilde University.

Lieberman, H., Paternó, F., Wulf, V. (Eds.). (2006). End user development.
London: Springer.

Lieberman, H., Paternò, F., Klann, M., Wulf, V. (2006). End-user development:
an emerging paradigm. In Lieberman, H., et al. (Eds.), End user development
(pp. 1–8). London: Springer.

Ludwig, T., Boden, A., Pipek, V. (2017). 3D printers as sociable technologies:
taking appropriation infrastructures to the internet of things. Transactions on
CHI, 24(2), 17:1–17:28.

MacLean, A., Carter, K., Lövstrand, L., Moran, T. (1990, April 1–5). User-tailorable
systems: pressing the issue with buttons. In Proceedings of the conference on
computer human interaction (CHI '90) (pp. 175–182). Seattle: ACM-Press.

Mørch, A.I., & Mehandjiev, N.D. (2000). Tailoring as collaboration: the mediat-
ing role of multiple representations and application units. Computer Supported
Cooperative Work, 9(1), 75–100.

Mørch, A. I., Stevens, G., Won, M., Klann, M., Dittrich, Y., Wulf, V. (2004).
Component-based technologies for end-user development. Communications of
the ACM, 47(9), 59–62.

Pipek, V., & Kahler, H. (2006). Supporting collaborative tailoring. In H. Lieberman,
et al. (Eds.), End user development (pp. 315–354). London: Springer.

Stevens, G., Quaisser, G., Klann, M. (2006). Breaking it up: an industrial case
study of component-based tailorable software design. In H.Lieberman, F.
Paternò, V. Wulf, End user development (pp. 269–294). London: Springer.

Stiemerling, O., Kahler, H., Wulf, V. (1997). How to make software softer -
designing tailorable applications. In Proceedings of the ACM symposium on
designing interactive systems (DIS 97), 18. - 20.8.1997 (pp. 365–376).
Amsterdam, NL: ACM-Press.

Wulf, V. (1999). “Let’s see your Search-Tool!” - collaborative use of tailored arti-
facts in groupware. In Proceedings of GROUP '99 (pp. 50–60). New York:
ACM-Press.

Wulf, V., & Golombek, B. (2001). Direct activation: a concept to encourage tai-
loring activities. Behaviour & Information Technology, 20(4), 249–263.

Wulf, V., Pipek, V., Randall, D., Rohde, M., Schmidt, K., Stevens, G. (Eds.).
(2017). Socio informatics – a practice-based perspective on the design and use
of IT artefacts. Oxford: Oxford University Press.

Wulf, V., Pipek, V., Won, M. (2008). Component-based tailorability: Enabling
highly flexible software applications. International Journal of Human-
Computer Studies, 66(1), 1–22.

x Preface

Contents

Making End User Development More Natural . 1
Brad A. Myers, Andrew J. Ko, Chris Scaffidi, Stephen Oney, YoungSeok
Yoon, Kerry Chang, Mary Beth Kery and Toby Jia-Jun Li

A Practice-Oriented Paradigm for End-User Development 23
Thomas Ludwig, Julian Dax, Volkmar Pipek and Volker Wulf

A Design Space for End User Development in the Time of the Internet
of Things . 43
Fabio Paternò and Carmen Santoro

Revisiting and Broadening the Meta-Design Framework for End-User
Development . 61
Gerhard Fischer, Daniela Fogli and Antonio Piccinno

A Three-Layer Meta-Design Model for Addressing Domain-Specific
Customizations . 99
Carmelo Ardito, Maria Francesca Costabile, Giuseppe Desolda
and Maristella Matera

End-User Developers – What Are They Like? . 121
Alan F. Blackwell

Malleability in the Hands of End-Users . 137
Federico Cabitza and Carla Simone

End User Development and Infrastructuring – Sustaining
Organizational Innovation Capabilities . 165
Yvonne Dittrich, Johan Bolmsten and Jeanette Eriksson

EUD Survival “in the Wild”: Evaluation Challenges for Field
Deployments and How to Address Them . 207
Daniel Tetteroo and Panos Markopoulos

xi

http://dx.doi.org/10.1007/978-3-319-60291-2_1
http://dx.doi.org/10.1007/978-3-319-60291-2_2
http://dx.doi.org/10.1007/978-3-319-60291-2_3
http://dx.doi.org/10.1007/978-3-319-60291-2_3
http://dx.doi.org/10.1007/978-3-319-60291-2_4
http://dx.doi.org/10.1007/978-3-319-60291-2_4
http://dx.doi.org/10.1007/978-3-319-60291-2_5
http://dx.doi.org/10.1007/978-3-319-60291-2_5
http://dx.doi.org/10.1007/978-3-319-60291-2_6
http://dx.doi.org/10.1007/978-3-319-60291-2_7
http://dx.doi.org/10.1007/978-3-319-60291-2_8
http://dx.doi.org/10.1007/978-3-319-60291-2_8
http://dx.doi.org/10.1007/978-3-319-60291-2_9
http://dx.doi.org/10.1007/978-3-319-60291-2_9

Toward Theory-Based End-User Software Engineering 231
Margaret Burnett, Todd Kulesza, Alannah Oleson, Shannon Ernst, Laura
Beckwith, Jill Cao, William Jernigan and Valentina Grigoreanu

Semiotic Engineering: A Cohering Theory to Connect EUD with HCI,
CMC and More. 269
Clarisse Sieckenius de Souza

End-User Development and Social Big Data – Towards Tailorable
Situation Assessment with Social Media. 307
Christian Reuter, Marc-André Kaufhold and Thomas Ludwig

End-User Development and Learning in Second Life: The Evolving
Artifacts Framework with Application. 333
Anders I. Mørch, Valentina Caruso and Melissa D. Hartley

End-User Development for Serious Games . 359
Zeno Menestrina and Antonella De Angeli

Integrating End Users in Early Ideation and Prototyping: Lessons from
an Experience in Augmenting Physical Objects . 385
Paloma Díaz, Ignacio Aedo and Andrea Bellucci

An End-User Development Framework to Support Quantified Self in
Sport Teams . 413
Stefano Valtolina and Barbara R. Barricelli

Web Augmentation as a Promising Technology for
End User Development . 433
Iñigo Aldalur, Marco Winckler, Oscar Díaz and Philippe Palanque

xii Contents

http://dx.doi.org/10.1007/978-3-319-60291-2_10
http://dx.doi.org/10.1007/978-3-319-60291-2_11
http://dx.doi.org/10.1007/978-3-319-60291-2_11
http://dx.doi.org/10.1007/978-3-319-60291-2_12
http://dx.doi.org/10.1007/978-3-319-60291-2_12
http://dx.doi.org/10.1007/978-3-319-60291-2_13
http://dx.doi.org/10.1007/978-3-319-60291-2_13
http://dx.doi.org/10.1007/978-3-319-60291-2_14
http://dx.doi.org/10.1007/978-3-319-60291-2_15
http://dx.doi.org/10.1007/978-3-319-60291-2_15
http://dx.doi.org/10.1007/978-3-319-60291-2_16
http://dx.doi.org/10.1007/978-3-319-60291-2_16
http://dx.doi.org/10.1007/978-3-319-60291-2_17
http://dx.doi.org/10.1007/978-3-319-60291-2_17

Contributors

Ignacio Aedo Universidad Carlos III de Madrid, Madrid, Spain

Iñigo Aldalur University of the Basque Country (UPV/EHU), San Sebastián,
Spain

Antonella De Angeli University of Lincoln, Lincoln, United Kingdom

Carmelo Ardito Università degli Studi di Bari Aldo Moro, Bari, Italy

Barbara R. Barricelli Università degli Studi di Milano, Milan, Italy

Laura Beckwith Configit, Atlanta, GA, United States

Andrea Bellucci Universidad Carlos III de Madrid, Madrid, Spain

Alan F. Blackwell University of Cambridge, Cambridge, United Kingdom

Johan Bolmsten World Maritime University, Malmö, Sweden

Margaret Burnett Oregon State University, Corvallis, OR, United States

Federico Cabitza University of Milano Bicocca, Milano, Italy

Jill Cao Oregon State University, Corvallis, OR, United States

Valentina Caruso Swiss Federal Institute for Vocational Education and Training,
Zollikofen, Switzerland

Kerry Chang IBM, Armonk, NY, United States

Maria Francesca Costabile Università degli Studi di Bari Aldo Moro, Bari, Italy

Julian Dax University of Siegen, Siegen, Germany

Giuseppe Desolda Università degli Studi di Bari Aldo Moro, Bari, Italy

Oscar Díaz University of the Basque Country (UPV/EHU), San Sebastián, Spain

xiii

Paloma Díaz Universidad Carlos III de Madrid, Madrid, Spain

Yvonne Dittrich IT University, Copenhagen, Denmark

Jeanette Eriksson Malmö University, Malmö, Sweden

Shannon Ernst Oregon State University, Corvallis, OR, United States

Gerhard Fischer University of Colorado, Boulder, CO, United States

Daniela Fogli University of Brescia, Brescia, Italy

Valentina Grigoreanu Microsoft, Washington, DC, United States

Melissa M. Hartley West Virginia University, Morgantown, WV, United States

William Jernigan Oregon State University, Corvallis, OR, United States

Marc-André Kaufhold University of Siegen, Siegen, Germany

Mary Beth Kery Carnegie Mellon University, Pittsburgh, PA, United States

Andrew J. Ko University of Washington, Seattle, WA, United States

Todd Kulesza Microsoft, Washington, DC, United States

Toby Jia-Jun Li Carnegie Mellon University, Pittsburgh, PA, United States

Thomas Ludwig University of Siegen, Siegen, Germany

Panos Markopoulos Eindhoven University of Technology, Eindhoven,
Netherlands

Maristella Matera Politecnico di Milano, Piazza Leonardo da Vinci, Milano,
Italy

Zeno Menestrina University of Trento, Povo, Italy

Anders I. Mørch University of Oslo, Oslo, Norway

Brad A. Myers Carnegie Mellon University, Pittsburgh, PA, United States

Alannah Oleson Oregon State University, Corvallis, OR, United States

Stephen Oney University of Michigan, Ann Arbor, MI, United States

Philippe Palanque University of Toulouse, Toulouse, France

Fabio Paternò CNR-ISTI, HIIS Laboratory, Pisa, Italy

Antonio Piccinno University of Bari “Aldo Moro”, Bari, Italy

Volkmar Pipek University of Siegen, Siegen, Germany

Christian Reuter University of Siegen, Siegen, Germany

Carmen Santoro CNR-ISTI, HIIS Laboratory, Pisa, Italy

Chris Scaffidi Oregon State University, Corvallis, OR, United States

xiv Contributors

Carla Simone University of Siegen, Siegen, Germany

Clarisse Sieckenius de Souza Semiotic Engineering Research Group (SERG),
PUC-Rio, Rio de Janeiro, Brasil

Daniel Tetteroo Eindhoven University of Technology, Eindhoven, Netherlands

Stefano Valtolina Università degli Studi di Milano, Milan, Italy

Marco Winckler University of Toulouse, Toulouse, France

Volker Wulf University of Siegen, Siegen, Germany

YoungSeok Yoon Google, Mountain View, CA, United States

xvContributors

Making End User Development More Natural

Brad A. Myers, Andrew J. Ko, Chris Scaffidi, Stephen Oney,
YoungSeok Yoon, Kerry Chang, Mary Beth Kery and Toby Jia-Jun Li

Abstract When end users approach a development task, they bring with them a set
of techniques, expressions, and knowledge, which can be leveraged in order to
make the process easier. The Natural Programming Project has been working for
over twenty years to better understand how end users think about their tasks, and to
develop new ways for users to express those tasks that will be more “natural,” by
which we mean closer to the way they think. Our chapter in the previous book cov-
ered the first 10 years of this research; and here we summarize the most recent
10 years. This includes studies on barriers that impede EUD, and a new tool that
helps with the understanding and debugging barriers by showing developers why
their program has its current behavior. We also describe a tool that we created to

B.A. Myers (✉) · M.B. Kery · T.J.-J. Li
Carnegie Mellon University, Pittsburgh, PA, United States
e-mail: bam@cs.cmu.edu

M.B. Kery
e-mail: mkery@andrew.cmu.edu

T.J.-J. Li
e-mail: tobyli@cs.cmu.edu

A.J. Ko
University of Washington, Seattle, WA, United States
e-mail: ajko@uw.edu

C. Scaffidi
Oregon State University, Corvallis, OR, United States
e-mail: scaffidc@eecs.oregonstate.edu

S. Oney
University of Michigan, Ann Arbor, MI, United States
e-mail: soney@umich.edu

Y. Yoon
Google, Mountain View, CA, United States
e-mail: youngseokyoon@google.com

K. Chang
IBM, Armonk, NY, United States
e-mail: kerry.chang@ibm.com

1© Springer International Publishing AG 2017
F. Paternò, V. Wulf (eds.), New Perspectives in End-User Development,
DOI 10.1007/978-3-319-60291-2_1

help EUDs input, process, and transform data in the context of spreadsheets and
web pages. Interaction designers are a class of EUDs that may need to program
interactive behaviors, so we studied how they naturally express those behaviors, and
then built a spreadsheet-like tool to allow them to author new behaviors. Another
spreadsheet tool we created helps EUDs access web service data without writing
code, and extends the familiar spreadsheet to support analyzing the acquired
web-based hierarchical data and programming data-driven GUI applications. Finally,
EUDs often need to engage in exploratory programming, where the goals and tasks
are not well-formed in advance. We describe new tools to help users selectively
undo past actions, along with on-going research to help EUDs create more efficient
behaviors on smartphones and facilitate variations when performing data analysis.

Keywords Spreadsheets · exploratory programming · data analysis · the Natural
Programming Group

1 Introduction

The Natural Programming group at Carnegie Mellon University (CMU) has been work-
ing for nearly 20 years on applying methods from Human-Computer Interaction (HCI)
in order to make programming easier. We have applied this research to professional
developers (Myers, Ko, LaToza, & Yoon, 2016), to learners who are trying to become
professional developers, and to end-user developers (EUDs). Our key strategy is to
study the target developers to understand what their current problems are, and then try
to design new languages and tools that will address those problems.We try to make pro-
gramming be a more “natural” process for the developers, by which we mean closer to
the way the developers think about their tasks. The goal is to reduce the size of the gulfs
of execution and evaluation as articulated by Don Norman (1988) – to make it easier for
developers to implement what they have in mind and to understand the state of their
program. This is also motivated by the cognitive dimension of “Closeness of Mapping,”
which says: “The closer the programming world is to the problem world, the easier the
problem-solving ought to be” (Green & Petre, 1996). The Natural Programming metho-
dology helps us understand how to bring those worlds closer together.

In the early days of the Natural Programming project, as reported in our chapter
for the previous version of the End User Development book, we studied how non-
programmers think about programming tasks, and used that knowledge to develop
a more usable programming language for children (Pane & Myers, 2006). This
chapter summarizes our work since then that has been focused on EUDs:

• We studied learners and identified debugging as a key stumbling block, which
has been surprisingly ignored in many previous tools for EUDs (Ko, Myers, &
Aung, 2004). We developed a new tool called the “Whyline” which helps
EUDs answer a key question – why did or didn’t something happen with a pro-
gram (Ko & Myers, 2004).

• Most of the data on which EUDs’ code operates are richly structured, yet mostly
must be operated on as strings. The “Topes” system allows EUDs to express the
constraints and structure of their data (Scaffidi, Myers, & Shaw, 2008).

2 B.A. Myers et al.

• One class of EUDs that our group has addressed are interaction designers, who
often must now program in HTML/CSS/JavaScript in order to achieve their
desired behaviors. We first studied how interaction designers think about their
tasks (Myers, Park, Nakano, Mueller, & Ko, 2008; Ozenc, Kim, Zimmerman,
Oney, & Myers, 2010), and then designed a new tool, called InterState that
tries to enable a more natural way for interaction designers to express those
behaviors (Oney, Myers, & Brandt, 2014).

• Spreadsheets remain a key tool for EUDs to do data analyses, but much modern
data now comes from web services in hierarchical XML or JSON formats. We
developed the “Gneiss” tool to enable EUDs to create their own data analysis and
web applications using hierarchical data from web services using familiar spread-
sheet languages and interaction techniques (Chang & Myers, 2014a, 2014b, 2016).

• Much programming by EUDs and professionals is exploratory, in that the devel-
oper does not necessarily know the correct code to write before starting, and
therefore must try out different code, often by backtracking or reverting old code
(Yoon & Myers, 2014). However, there is surprisingly little support for this
exploration in programming environments. We are studying this problem as part
of a large, multi-institution project called “Variations to Support Exploratory
Programming” (http://www.exploratoryprogramming.org/). One approach is to
facilitate undoing of the unwanted edits. The “Azurite” tool supports selective
undo, to allow developers to go back and undo edits while retaining desired edits
that happened afterwards (Yoon, Koo, & Myers, 2013; Yoon & Myers, 2015).
One application of this is regional undo, where all the edits for a selected section
of code can be undone without affecting any other code.

• A current project is looking at better support for data scientists in their explora-
tory programming. Many data scientists are EUDs, using languages such as
Excel, R, or Python, and often need to try out different algorithms, libraries
and parameter values, for which there is little support. The “Variolite” tool pro-
vides many features, including light-weight variants, to support EUD explora-
tions (Kery, Horvath, & Myers, 2017).

• Finally, another new project, called “Sugilite,” supports EUD on mobile
phones, especially to help with complex and repetitive multi-app tasks. This
multimodal system can learn how to perform arbitrary tasks using third-party
Android apps from the user’s demonstration, and generalizes the automation by
finding parameters and their possible alternative values from the users’ verbal
commands and the third-party apps’ UI structures (Li, Azaria, & Myers, 2017).

The following sections discuss these projects in more detail.

2 Whyline

One of the most difficult tasks in end user development is debugging, or trying to
find the code in a program that is causing an unwanted behavior. In our lab, we
wanted to discover novel ways of making debugging easier, faster, and more suc-
cessful. To begin, we asked how do EUDs think about debugging?

31 Making End User Development More Natural

http://www.exploratoryprogramming.org/

To find out, we observed many EUDs trying to fix bugs, and discovered many
slow, unproductive strategies (Ko & Myers, 2005; Ko, Myers, Coblenz, & Aung,
2006). Less experienced EUDs would just read their code and change things they
thought might be wrong. This often introduced new defects, rather than resolving
the original ones. More experienced EUDs used breakpoint debuggers to step
through a program’s execution, looking for where it deviated from the expected
behavior. For non-trivial programs, this involved inspecting thousands of lines of
code, which required so much vigilance that many EUDs skipped right over the
bug. The most experienced EUDs guessed what the defect might be and set break-
points to see if their guess was right. If it was, or if it was close, this was effective –
unfortunately, the space of possible defects was often so large, most guesses were
wrong, and these EUDs had to spend minutes, if not hours discovering that their
hypothesis was incorrect. When we compared these strategies to those of novices
and professionals, we found that even experienced professional developers guessed
wrong the first time (but were faster at investigating their hypotheses).

In all of these observations, we noticed one recurring trend: every search for a
defect began with a question about program output such as “Why didn’t that ani-
mation start?,” “Why did this error dialog appear?,” or “Why is this button dis-
abled?” We realized that EUDs were starting their search with something they
were certain about – the faulty output – and trying to retrieve information about
its causes. This led to a compelling idea: what if EUDs could ask these “why” and
“why not” questions directly and a tool could simply answer them by showing the
causes of the faulty output?

Our breakthrough insight was that programs specify the output they produce in
the form of API calls: programs have print statements, they call graphics rendering
libraries, they call audio libraries, and so on. What our tool had to do was identify
these output statements and then present a user interface for EUDs to select which
output they wanted to ask “why” and “why not” about.

We built our prototype for the Alice programming environment, which enables
EUDs to create interactive 3D virtual worlds (Ko & Myers, 2004). As Fig. 1
shows, our interface, which is called the Whyline, lets EUDs pause the program,
click on a “why” menu that contained all of the possible program’s output, and
then select a question. To answer “why” questions, the Whyline keeps a detailed
execution history that stores the data and control dependencies of every instruc-
tion executed in the program, allowing the Whyline to identify every upstream
cause of a selected program output, and display those causes to help EUDs find
the source of the unwanted output. To answer “why not” questions, the Whyline
analyzes the static control dependencies that prevented the desired output state-
ment from executing, showing all of the conditions that were not satisfied that
would have enabled the output to execute. Fig. 1 shows an example of a “why
not” explanation.

Did the Whyline actually help? Over the course of several studies (Ko &
Myers, 2004, 2009), the answer was clearly yes, showing that EUDs using the
Whyline could localize defects anywhere from 2 to 8 times faster than EUDs using
conventional breakpoint debuggers. Our results showed these increases in

4 B.A. Myers et al.

debugging speed were due to a change in the structure of an EUD’s debugging
task: rather than having to iteratively guess the defect and check if they were cor-
rect, EUDs could work backwards from something they were certain was wrong
directly to the source code that caused it. The Whyline prevented speculation, and
instead encouraged EUDs to focus on facts. Further, we found that the Whyline’s
benefits generalize beyond EUDs and can also be effective in helping more experi-
enced developers debug Java programs (Ko & Myers, 2010). Thus, our initial
observations of EUDs’ bug fixing strategies informed the design of a technique
that is useful for both EUDs and for traditional developers.

3 Topes

Much of the data that EUDs deal with must be represented in programming sys-
tems as strings, including names, job titles, part numbers, ID numbers, locations,
etc. In fact, according to one study, 40% of spreadsheet cells contained non-
numeric, non-formula textual data (Fisher & Rothermel, 2004). Software applica-
tions offer poor support for operating on these data, so EUDs must write their
own code for working with them. Parsing, categorizing, validating, and

Fig. 1 The Whyline for Alice, showing an EUD asking why a Pac Man character did not resize,
as expected. The Whyline explains that that it would have resized, but the condition that guarded
the behavior was false

51 Making End User Development More Natural

reformatting these data can be difficult for several reasons. First, each category
can be multi-format in that each of its instances can be written several different
ways. Second, many useful categories are probabilistic rather than binary – each
category can include questionable values that are unusual yet still valid. During
user tasks, such unusual strings often are worthy of double-checking, as they are
neither obviously valid nor obviously invalid. Third, each category is application-
agnostic in that its rules for validating and reformatting strings are not specific to
one software application – rather, its rules are agreed upon implicitly or explicitly
by members of an organization or society. For example, a web form might have a
field for entering Carnegie Mellon office phone numbers like “8-5150” or “412-
268-5150.” EUD tools offer no convenient way to create code for putting strings
into a consistent format, nor do they help users create code to detect inputs that
are unusual but possibly valid, such as “7-5150” (since CMU office phone num-
bers rarely start with “7”). The result is that end-users must often manually clean
up their data, or leave the data unchecked.

In order to help users with their tasks, we created a new kind of abstraction
called a “tope” and a supporting development environment (Scaffidi et al., 2008).
Each tope describes how to validate and reformat instances of a data category.
Topes are sufficiently expressive for creating useful, accurate rules for validating
and reformatting a wide range of data categories commonly encountered by
EUDs. By creating and applying topes, EUDs can validate and reformat strings
more quickly and effectively than they can with other techniques. Tope implemen-
tations are reusable across applications and by different people, highlighting the
leverage provided by EUD research aimed at developing new kinds of
application-agnostic abstractions. The topes model demonstrates that such abstrac-
tions can be successful if they model a shallow level of semantics, thereby retain-
ing usability without sacrificing usefulness for supporting users’ real-world goals.

The Topes system includes tools that allow EUDs to define their own cate-
gories, including checking whether a string is of the desired format, and ways to
convert strings into various valid formats. For example, in Fig. 2, the user is defi-
ning two variations of a “person name,” which share the same parts. The system
will use this definition to generate code for use in spreadsheets and web pages for
validating and transforming strings representing person names. For constraints that
are “almost always” true, the system will generate warnings instead of errors for
violations. In a small user study, EUDs were able to create such definitions and
the system proved highly effective at helping EUDs to create abstractions for vali-
dating strings.

4 InterState

Creating a good user interface requires more than carefully arranging the graphical
elements that define its appearance. It also requires defining the interface’s behavior –
how it reacts to user input and other events. Although sketches and drawing software

6 B.A. Myers et al.

make it relatively straightforward to define an interface’s appearance, correctly
implementing its behavior requires programming skill. The event-callback model,
which most user interface frameworks rely on to define interface behaviors, has sev-
eral drawbacks that make it inappropriate for EUDs (Meyerovich et al., 2009;
Myers, 1991; Oney, Myers, & Brandt, 2012). We explore how to enable interaction
designers who are EUDs to program behaviors themselves by extending the spread-
sheet model of programming.

In order to explore a more usable way for EUDs to define interactive
behaviors, we started with studies on how non-programmers naturally describe
interactive behaviors (Park, Myers, & Ko, 2008). We also conducted workshops
to better understand communication barriers between interaction designers and
developers (Ozenc et al., 2010). Based on the results of those studies, we itera-
tively designed a new framework for letting interaction designers define GUI
behaviors, called the state-constraint framework. This framework combines
constraints – which allow developers to define relationships among elements that
are maintained by the system – and state machines – which track the status of an
interface. In the state-constraint framework, developers write interactive beha-
viors by defining constraints that are enforced when the interface is in specific
states (Oney et al., 2012, 2014). We implemented the state-constraint framework

Fig. 2 Dragging and dropping a prototype’s icon from the Toolbox creates a new part, and the
editor also supports drag/drop rearrangement of parts as well as copy/paste. Users can click the
example in a part’s icon to edit it, while clicking other parts of the icon displays widgets for edit-
ing its constraints, which are shared by every instance of the part. Clicking the “+” icon adds a
constraint while clicking the “x” icon deletes the constraint

71 Making End User Development More Natural

in InterState (Oney et al., 2014), an interactive spreadsheet-like graphical envir-
onment for EUDs.

InterState reduces the number of control structures that new developers need to
learn in order to write UI behaviors. Developers can express UI behaviors using
simple expressions – which are like spreadsheet equations – that define constraints
and transitions among states. InterState’s visual notation concisely represents
interactive behaviors as a table whose rows are properties and whose columns are
states. This visual notation allows developers to see which events affect a property
by scanning the property’s row and which properties an event affects by looking
at that event’s column, as Fig. 3 illustrates.

InterState also includes a live editor that helps reduce the “gulf of evaluation”
in determining the effects of a change, which has been shown to be a significant
barrier for both EUDs and experienced developers. In InterState, edits are immedi-
ately reflected in the running application and changes in runtime state and property
values are highlighted in the editor, which enables quick experimentation and
parameter tuning. The live editor also allows the developer to always have a run-
ning application by “localizing” errors. This means that only the parts of the pro-
gram that depend on problematic expressions are not executed, which avoids
confronting EUDs with dozens of syntax and runtime errors.

A comparative laboratory study indicated that InterState can be effective in
helping users who do not have prior UI programming experience understand and
modify code. Even developers with JavaScript experience were significantly faster
at understanding and modifying UI code in InterState compared to using
JavaScript (Oney et al., 2014). Further, in order to test InterState’s scalability, we
implemented several complex user interfaces, finding that by many metrics (such
as number of control structures and amount of space), InterState’s implementation
is more concise than the alternative JavaScript implementation.

Fig. 3 An illustration of a basic InterState object, named drag_lock. Properties, which control
drag_lock’s display, are represented as rows (e.g. x, and y). States and transitions are repre-
sented as columns (e.g. no_drag, drag, and drag_lock). An entry in a property’s row for a parti-
cular state specifies a constraint that controls that property’s value in that state; while drag_lock
is in the drag state, x and y will be constrained to mouse.x and mouse.y respectively, meaning
drag_lock will follow the mouse while dragging. Note that in this example, when the user per-
forms a double click to initiate drag lock, the drag_lock object does enter and then leave the
drag state intermittently as a result of the mouse.down and mouse.up events that are fired during
a double click

8 B.A. Myers et al.

5 Gneiss

Today, more and more data are moving to the cloud, and many companies provide
web services that let people access web data programmatically. Web services
allow developers to make custom use of various kinds of online data. Many web
services also provide computational services that can analyze or transform the
user’s data. While web services are powerful tools that make the data and comput-
ing ability of the cloud available to people, using these web services currently
requires significant programming expertise and effort.

The creation of Gneiss1 was motivated by prior literature that shows that even
professional developers found it difficult to use web services and often required
learning new language features or libraries to complete their tasks (Zang, Rosson, &
Nasser, 2008). Prior literature also showed that some EUDs want efficient ways to
do custom data analysis that use multiple online data sources (Lin, Wong, Nichols,
Cypher, & Lau, 2009). In Gneiss, we explored extending the spreadsheet model to
support using web service data, since spreadsheet programming is popular among
users of all programming levels from EUDs to professional developers and data
analysts.

Gneiss makes contributions in extending spreadsheets to support new program-
ming tasks that help EUDs work with online data. First, Gneiss introduces new
UIs and interaction techniques to the familiar spreadsheet environment to enable
users to send data to and retrieve data from web services without writing conven-
tional code. Gneiss has a left pane (Fig. 4 at 1) that lets users load JSON data
from REST web services. The user can send data from arbitrary spreadsheet cells
by replacing any part of the web API with spreadsheet cell name (see Fig. 4 for
an example), and extract data from the returned document in the left pane to the
spreadsheet by selecting a field and dragging it to a spreadsheet column. Using the
returned document’s structure and the user’s selection as an example, Gneiss will
extract other similar fields in the document for the users, eliminating the need to
write queries in languages such as XPath to select the desired data. Leveraging the
spreadsheet’s live programming, changes in spreadsheet cells used in a web ser-
vice call will trigger Gneiss to immediately send a new API request using the
cell’s new value and in turn update the spreadsheet data. This makes a spreadsheet
into an interactive platform for querying cloud data (Chang & Myers, 2014b).

Gneiss further enables spreadsheet users to create interactive web applications
that can use and modify spreadsheet data (Chang & Myers, 2014a). Gneiss’s right
pane (Fig. 4 at 3) is a web interface builder where the user can create web pages
by dragging-and-dropping GUI elements from the right bar and editing the proper-
ties of an element in a table (Fig. 4 at 4 and 5). In Gneiss, each GUI element prop-
erty in the web application is treated as a spreadsheet cell, so it can reference other

1Gneiss is a type of rock, pronounced like “nice.” Here it stands for Gathering Novel End-user
Internet Services using Spreadsheets.

91 Making End User Development More Natural

F
ig
.4

G
ne
is
s’
s
us
er

in
te
rf
ac
e.

(1
)
is
th
e
so
ur
ce

pa
ne

w
he
re

th
e
us
er

ca
n
lo
ad

a
w
eb

A
P
I
in

th
e
U
R
L
bo
x
an
d
vi
ew

th
e
re
tu
rn
ed

JS
O
N

do
cu
m
en
t.
T
he

us
er

ca
n
se
nd

sp
re
ad
sh
ee
t
da
ta

to
a
w
eb

se
rv
ic
e
by

re
pl
ac
in
g
pa
rt
s
of

th
e
w
eb

A
P
I
w
ith

sp
re
ad
sh
ee
t
ce
ll
na
m
es
.
H
er
e
th
e
us
er

se
nd
s
sp
re
ad
sh
ee
t
ce
ll
A
1
to

th
e

w
eb

se
rv
ic
e
as

th
e
va
lu
e
of

th
e
qu
er
y
pa
ra
m
et
er

us
in
g
th
e
sy
nt
ax

{{
A
1}
}.

T
he

us
er

ca
n
ex
tr
ac
t
fi
el
ds

fr
om

th
e
re
tu
rn
ed

JS
O
N
do
cu
m
en
t
to

th
e
ce
nt
er

sp
re
ad
-

sh
ee
t
(2
)
by

dr
ag
-a
nd
-d
ro
p.

H
er
e,

sp
re
ad
sh
ee
t
co
lu
m
n
B
-E

ho
ld

fo
ur

di
ff
er
en
t
fi
el
ds

ex
tr
ac
te
d
fr
om

th
e
re
tu
rn
ed

do
cu
m
en
t
in

(1
).
(3
)
is

th
e
w
eb

in
te
rf
ac
e

bu
ild

er
w
he
re

th
e
us
er

ca
n
cr
ea
te
a
w
eb

ap
pl
ic
at
io
n
by

dr
ag
gi
ng
-a
nd
-d
ro
pp
in
g
G
U
I
el
em

en
ts
fr
om

th
e
ri
gh
t
to
ol
ba
r
(4
)
to

th
e
ou
tp
ut

pa
ge
.T

he
us
er

ca
n
vi
ew

an
d
ed
it
a
se
le
ct
ed

G
U
I
el
em

en
t’
s
pr
op
er
tie
s
in

(5
).
H
er
e,

(5
)
sh
ow

s
th
e
pr
op
er
tie
s
of

T
ex
tB
ox
1
w
hi
ch

is
th
e
se
ar
ch

bo
x
in

th
e
ou
tp
ut

pa
ge
.
T
he

te
xt
bo
x’
s

V
al
ue

pr
op
er
ty

ch
an
ge
s
dy
na
m
ic
al
ly

ba
se
d
on

w
ha
t
th
e
us
er

en
te
rs

in
it
(c
ur
re
nt
ly

“
Ja
zz

ba
r
N
ew

Y
or
k
C
ity

”
).
In

th
e
sp
re
ad
sh
ee
t,
ce
ll
A
1
is

se
t
to

be
th
e

va
lu
e
of

th
e
se
ar
ch

bo
x
us
in
g
th
e
fo
rm

ul
a
=
T
ex
tB
ox
1!
V
al
ue
,w

hi
ch

is
th
en

se
nt

to
th
e
w
eb

se
rv
ic
e
in

(1
)
as

th
e
qu
er
y
te
rm

to
re
tr
ie
ve

ne
w
da
ta
.G

U
I
el
em

en
t

pr
op
er
tie
s
in

(3
)
ca
n
al
so

us
e
sp
re
ad
sh
ee
t
da
ta
as

th
ei
r
va
lu
es
.F

or
ex
am

pl
e,
he
re

th
e
bo
ld

te
xt

in
th
e
gr
id

lis
t
is
se
t
to

sh
ow

th
e
da
ta
in

sp
re
ad
sh
ee
t
co
lu
m
n
B

us
in
g
a
sp
re
ad
sh
ee
t
fo
rm

ul
a

10 B.A. Myers et al.

spreadsheet cells and use functions to compute its value, and also be referenced
in spreadsheet cells and functions to compute new values. This allows the use of
spreadsheet languages to construct two-way data flow between a web page and
a spreadsheet whose data can be local or from web services. Gneiss further intro-
duces interactive properties in web GUI elements whose values change live based
on how the user interacts with the elements. This enables the user to program
many kinds of interactive behaviors in a web application, such as to search, sort,
filter and visualize data using GUI controls, using spreadsheet languages without
needing to write conventional event handler code (Chang & Myers, 2014a).

Finally, since most modern web services return hierarchical data such as JSON
and XML data, we also extend spreadsheets to support hierarchical data, with con-
trol over how they are shown and manipulated in the spreadsheet (Chang &
Myers, 2016). Gneiss introduces a new method to visualize hierarchical data as a
spreadsheet using the relative hierarchical relationships among data in adjacent
columns. Under this new visualization method, reshaping, regrouping, and joining
hierarchical objects in a spreadsheet can be done using simple interaction techni-
ques (see Fig. 5). This model also extends spreadsheet languages, sorting and fil-
tering to support selecting and manipulating data by its hierarchies, allowing the
user to calculate summaries of data using spreadsheet formulas without the need
of pivot tables. In our user study, Gneiss helped spreadsheet users who were
EUDs complete data exploration tasks that involve restructuring and joining two
hierarchical JSON documents almost two times faster than Excel, and they even
outperformed experienced programmers writing JavaScript or Python code doing
the same tasks (Chang & Myers, 2016).

Fig. 5 Gneiss visualizes hierarchies in data using nested spreadsheet cells, and lets users
restructure the data by any field by drag-and-dropping a column to a different location. Here, (1)
shows a structured document of restaurant data grouped by restaurant names. The user can
restructure this document to instead view the data by restaurant categories by dragging the cate-
gories column to the front of the names column (2 and 3)

111 Making End User Development More Natural

6 Azurite

Since developers are human, they often make mistakes while writing code. In
other cases, developers intentionally make temporary changes to the code, either
as an experiment or to help with debugging. As a consequence, developers often
need to backtrack while coding, meaning that they revert their code back to an
earlier state at least partially. For example, developers try out different values for
various parameters. When developers try to learn an unfamiliar API, they might
try writing some code and running it to see if the code works as expected, and if it
does not, they backtrack and try something else. Backtracking support is much
needed in exploratory programming (Sheil, 1983), where the correct solution to
the given problem is not well known or when there are multiple potential solutions
with their own strengths and weaknesses. Moreover, recent studies show that
EUDs need easy access to past versions of their code as reference when rewriting
parts of their code (Henley & Fleming, 2016; Kuttal, Sarma, & Rothermel, 2011).

However, we noticed that modern development tools for EUDs and profes-
sional programmers alike do not provide enough support for backtracking. The
linear undo model used in development tools is not suitable for all situations.
Notably, users can only undo the most recent edits, which can be very inconveni-
ent when they realize their mistake after making some other changes that they
want to keep. Another option is to use version control systems such as Subversion
or Git, but backtracking is supported in these tools only if the desired code is
already committed to the system, and version control is rarely used by EUDs
(Grigoreanu, Fernandez, Inkpen, & Robertson, 2009).

To provide better backtracking support for developers, we first asked, when
and how do developers backtrack? To answer this, we observed developers com-
pleting simple programming tasks in our lab, interviewed and surveyed developers
about their backtracking experience, and finally collected and analyzed developers’
coding logs while they are working on their own projects. Developers felt that back-
tracking happens quite frequently, and they had problems while backtracking, such
as failing to locate the right code to be backtracked (Yoon & Myers, 2012). Our log
analysis detected about 10 backtracking instances per hour, and for 34% of those
backtracking situations, developers performed them manually by deleting or retyping
code, confirming that there are backtracking situations not very well supported by
existing tools (Yoon & Myers, 2014).

So how could we support backtracking better? One insight we had was that a
selective undo in editors could help solve these backtracking problems. Users
could use selective undo to revert only specific edits from the past, without affect-
ing the following, more recent edits. Inspired by prior research in selective undo
in the area of drawing editors (Berlage, 1994; Myers, 1998), we developed our
tool Azurite2, which is a selective undo tool that works in the Eclipse code editor.

2Azurite is a blue mineral, and here stands for Adding Zest to Undoing and Restoring Improves
Textual Exploration.

12 B.A. Myers et al.

Although Eclipse is a tool mostly used by professional developers, the ideas
explored in Azurite are relevant to EUD environments as well, since EUDs per-
form exploratory programming (Henley & Fleming, 2016; Kuttal et al., 2011), and
must enter and edit their code.

Fig. 6 shows an example screenshot of the Azurite tool. The timeline visualiza-
tion, shown at the bottom of Fig. 6, is the most basic user interface of Azurite,
where the users can see the code change history by scrolling through it, select
some past edits, and use the selective undo command (Yoon et al., 2013). All the
fine-grained code changes are automatically tracked by the Azurite system, with-
out users needing to manually commit their code. However, an important question
still remains: how can users effectively and accurately find and select the desired
edits which are to be undone?

The observations from our lab study showed that developers remember
certain aspects about the code edits that they want to undo. Our goal was to
provide a more natural way for users to express what they remember about the
code changes. To this end, Azurite supports a rich set of user interfaces for
selective undo besides the timeline visualization. One of the most popular form
of selective undo Azurite provides is regional undo, where users can select
some region of code in the editor and use a keyboard shortcut to perform

Fig. 6 An example screenshot of Azurite running in the Eclipse IDE. At the bottom, a timeline
visualization of recent code changes is provided. The user is currently using the “Interactive
Selective Undo” dialog, which is one of the more sophisticated selective undo features of Azurite

131 Making End User Development More Natural

selective undo directly on only that region. This feature was driven by our
observation that users often remember the location of the code changes they
want to undo (Yoon & Myers, 2015). With these selective undo features imple-
mented, we evaluated whether Azurite actually helps developers perform
backtracking better. Through a controlled lab study with 12 developers, we
confirmed that the users could quickly learn and use the features during the
study, and the Azurite users completed the given backtracking tasks twice as
fast compared to when not using Azurite (Yoon & Myers, 2015).

7 Variolite

In a current project, we are looking at exploratory programming in the context of
data scientists. The term “data scientist” is open-ended (and often disputed who
exactly it includes), but here we use it simply to encompass a broad range of peo-
ple who write programs to work with data. Analyzing data and using techniques
such as machine learning is increasingly important to many professions, including,
for example, engineering, medicine, marketing, and research. Individuals in these
diverse fields are very often EUDs.

Current tools for data science include GUI-based tools like SPSS or WEKA for
relatively straightforward analyses. For more complex data manipulation, individuals
often turn to programming, using languages such as Excel, MatLab, R, or Python.
While much recent research has gone into making GUI-based tools (mostly for
machine learning) more accessible to EUDs (Amershi, Cakmak, Knox, & Kulesza,
2014; Yang et al., 2013), the act of coding in this context is less studied. A few
recent studies of professional programmers (Hill, Bellamy, Erickson, & Burnett,
2016) and machine learning experts (Patel, 2013) working in data science tasks have
pointed to real struggles that experts faces with exploratory programming.

When “what code should I implement?” or “what is the precise goal of my
code?” are questions that cannot be answered at the start of a project, exploratory
programming is a way of understanding the problem better through a trial-and-
error approach with code. In a concrete sense, this means changing code,
parameters, and data to test out new ideas until something works. With data
science in particular, this process is unfortunately not always straightforward code
development. Non-linear iteration (Patel, 2013) where an attempt that failed in the
past may be fruitful in the future is quite common. For this reason, data scientists
often try, and struggle, to keep track of their experiments (Hill et al., 2016).
Experimentation can cause code to be more and more unstable, as new chunks of
code are added, tested, discarded, and run on different sets of input files. As deve-
lopers try to answer complex questions with their data, ideas tried so far can be
difficult to keep track of and confusion and logic errors are very real threats (Hill
et al., 2016; Patel, 2013). Understanding these coding practices and developing
new kinds of supports for exploration are crucial to making this kind of work
more accessible to EUDs.

14 B.A. Myers et al.

To investigate this problem more closely, we approached 10 data scientists and
interviewed them about their recent projects (Kery et al., 2017). We grounded
these discussions by viewing and discussing artifacts that went with their projects,
such as their code, data, file folders, and notes. We followed this with a survey of
an additional 60 data scientists.

What does it mean to develop exploratory code? We found that developers
currently use ad-hoc strategies for keeping track of their experiments’ code and
data. For example, developers in our study often rely on commenting and
copying code, as well as keeping around old code to facilitate “versioning” of
different ideas within the same file. For instance, in order to try different varia-
tions of an algorithm, one participant used copy-and-paste to create functions
such as “analyis1,” “analysis2” and alternated which one was run. Another parti-
cipant used code comments to alternate their code’s execution, sometimes in
complex sets of code switched “on” or “off” using a code comment symbol.
Through the survey, we found that informal versioning techniques such as these
are widely used. Furthermore, we found that even among data scientist who
actively use version control software (VCS) systems such as Git or SVN for
other kinds of work, they predominantly chose to rely on informal techniques,
rather than a VCS, for exploratory code.

Finding ways to support data scientists’ needs with versioning and experiment-
tracking may help make their explorations more robust. Informal versioning that
data scientists currently rely on allows them to perform interactions which typical
VCSs currently do not support. For example, a data scientist using simple copy/
paste and text commands can create versions of any size chunk of code, whereas
standard VCS only support versions at the file level. Furthermore, with informal
techniques, there is a far lower learning curve for EUDs who do not know VCS,
since they can simply leverage their text editing skills to explore variants, rather
than learning a new tool.

We created Variolite,3 an extension to the Atom editor, to investigate new
kinds of support for data science versioning (Kery et al., 2017). In Variolite
(Fig. 7), a developer can select any size piece of code and issue the command
“wrap in variant.” This wraps the code chunk in a box, which can be tabbed,
similar to a web browser, to keep different local versions of that code on differ-
ent tabs. We used participatory design for Variolite by showing initial sketches
of potential design ideas to data scientists and getting their feedback. In a
preliminary usability test of an implemented version of Variolite with 10 parti-
cipants, who were a mix of novice and advanced developers, the majority
found this interaction usable and desirable. We are continuing work on
Variolite, and are investigating new ways to support data scientists in their
exploratory code.

3Variolite, which is a kind of rock structure, here stands for Variations Augment Real Iterative
Outcomes Letting Information Transcend Exploration.

151 Making End User Development More Natural

8 Sugilite

In recent years, mobile phones have evolved from being solely communication
devices into ubiquitous tools that support a wide range of computing tasks,
including information seeking, game playing, entertainment, and navigating.
Mobile devices have exceeded PCs in internet usage (O’Toole, 2014) and have
become the main computing device for many users (Smith, 2015). Thus, it is
increasingly important to study how end-user development can be applied to
enable end-users to create automations to help perform personalized computing
tasks on mobile devices. In this section, we report on our ongoing project to cre-
ate a new EUD tool named SUGILITE

4 (Li et al., 2017) to enable EUDs to auto-
mate mobile tasks using a Programming by Demonstration (PbD) approach

Fig. 7 A screenshot of Variolite. Here are two variant boxes. An outer box wraps the distance
and computeAngle functions, and has three versions “Distance1,” “Distance2,” “Distance3” that the
user can flip among with tabs. The inner variant box has two versions “dot,” and “dot with norm.”
Versioning that is visible within the text editor is meant to be more accessible to novices and EUDs

4Sugilite is named after a purple gemstone, and here stands for Smartphone Users Generating
Intelligent Likable Interfaces Through Examples.

16 B.A. Myers et al.

(Cypher et al., 1993; Myers, McDaniel, & Wolber, 2000) combined with a
conversational agent.

Tasks on mobile devices are often performed using mobile apps. Each app usually
has limited functionality within a single domain. As a result, complex tasks often
require the use of multiple apps (Sun, Chen, & Rudnicky, 2016). For example, plan-
ning a dinner event may require steps like searching for a restaurant, viewing the
transportation options, determining scheduling information, making the actual reser-
vation, and entering information into a calendar, where each step is performed with a
different app. However, coordinating multiple apps is particularly challenging on
mobile compared to on a computer due to the small screen size and limited support
for multi-tasking and cross-app data sharing. For the most common scenarios of
cross-app usage, the developers of the apps may implement features to support a few
built-in data sharing mechanisms (e.g. the “Share To” button to share data from Photo
Gallery to Messenger or Social Media Apps) or the API of services (e.g. Google
Maps showing Uber fare estimates in the results). Nevertheless, the “long tail” of per-
sonalized mobile computing tasks are mostly not supported directly. This is where
EUD can play an important role in enabling the users to create their own automations
for repetitive mobile tasks in order to improve their efficiencies in mobile computing.

The SUGILITE system uses the Programming by Demonstration (PbD) approach.
It has a multi-modal interface where the user can give a verbal command to execute
an automation through a voice conversational interface (Fig. 8a), while making
demonstrations (Fig. 8b, c) and editing existing scripts (Fig. 8c, d) using direct
manipulation. In the background, SUGILITE detects the apps’ user interface hierarchi-
cal structures, such as the menu tree, for all the activities that users visit. Then,
SUGILITE combines the voice command, the actions recorded, and an analysis of the
app’s structures to infer generalizations of the script. This allows SUGILITE to learn a

a b c d

Fig. 8 Screenshots of SUGILITE: (a) the conversational interface; (b) the recording confirma-
tion popup; (c) the recording disambiguation/operation editing panel; and (d) the viewing/editing
script window

171 Making End User Development More Natural

generalized script for the task from a single demonstration. SUGILITE also provides
error handling and checking mechanisms that allow the user to demonstrate new
steps to enable the script to handle new situations at runtime.

A major advantage of SUGILITE and the PbD approach compared to other
Mobile EUD systems is that SUGILITE can automate tasks using any third-party
Android app (with a few exceptions noted in the paper (Li et al., 2017)). It also
enables the users to demonstrate directly in the interfaces of the third-party apps
that they are already familiar with, which is particularly useful for EUDs.

In a lab study, 19 participants with various levels of programming experience
(including seven non-programmers) were able to use SUGILITE to create automations
for four tasks derived from common real-world smartphone usage scenarios with an
85.5% completion rate. No significant difference in either completion rate or com-
pletion time was found between participant groups with different levels of program-
ming experience. The result also showed that for our four example tasks, using
SUGILITE to automate tasks is more efficient timewise than using direct manipulation
if a repetitive task is to be performed for more than 3 to 6 times (Li et al., 2017).

9 Lessons Learned and Implications for the Future

Here we collect some observations on EUD from our over twenty years of
research in this area.

• Studying the target group of EUDs to investigate their natural ways to describe
their tasks and procedures can reveal novel ways that the development system
might operate. For example InterState’s design was motivated by research into
non-programmers’ natural language descriptions of interface behaviors. Other
design and evaluation methods from the human-computer interaction (HCI)
area also have proven useful in improving our systems (Myers et al., 2016).

• Many of the problems that end user developers face are problems that profes-
sional developers face as well (Ko & Myers, 2005; Ko et al., 2006). The differ-
ence is that EUDs face them at a smaller scale and often with less experience,
less effective strategies, and different motivation (Ko et al., 2011). Because of
this overlap, our work has shown that it is often possible to make break-
throughs in professional developer tools by first starting with smaller scale
EUD tools. For example, the ideas behind Gneiss, the Whyline, and InterState
have been shown to benefit both EUDs and professional developers.

• Although debugging is just as important for EUDs as it is for professional
developers, many EUD tools do not provide adequate debugging support. Even
for the EUD tools that provide some debugging support, they often use the
same techniques and metaphors as professional debugging tools. While teach-
ing EUDs appropriate strategies is a great idea (Loksa et al., 2016), tools for
EUDs can do a lot more to help with debugging, as shown by the Whyline.

18 B.A. Myers et al.

• Although spreadsheets are an old tool, they are still a favorite EUD platform,
and can be extended to support EUDs in several areas. We have presented three
enhancements of spreadsheets – Topes, InterState and Gneiss, which extend
what spreadsheets can process to more expressive strings, stateful formulas,
web services and hierarchical data.

• Most EUDs use exploratory programming and write code that they may know
they do not intend to keep, or which they plan to edit frequently, but this pro-
cess is not supported by today’s tools. Ideas such as visualizing edit history,
selective undo, and light-weight variants have been shown to help.

10 Conclusions and Future Work

The Natural Programming Project has been studying end-user development and
creating novel ways for end-users to create and debug their programs for many
years, with much exciting research in progress. The “natural programming”
approach has proven to be a useful way to understand the target users’ real needs
and what might be the appropriate ways to solve them. Across this work, we have
found that supporting EUDs in all of these settings has required the same basic
process: (1) understand what is difficult about a task, and then (2) identify ways of
changing that task through new kinds of analyses and data.

For the future, we will continue to strive to produce a “gentle-slope system”

where getting started with programming will be easy for EUDs, and there will be
no walls that prevent them from learning what is needed to expand the kinds of
programs they can build (Myers, Hudson, & Pausch, 2000). While we have made
progress, research is still needed across all the topics mentioned above. In addi-
tion, the recent rise in computing power has made more powerful machine learn-
ing techniques such as deep learning possible, which computer scientists have
leveraged to create artificial intelligence capable of complex tasks including driv-
ing automobiles, categorizing videos (Clark, 2012), learning games (Muncy,
2016), and doing science (Buchen, 2009). End-user programmers, each with their
own unique and diverse needs and context, could potentially benefit from new sys-
tems enabling them to create artificial intelligences of their own. As the computing
power of machines grows ever closer to that of animals, programming could some
become as “natural” as training a dog.

Acknowledgements This article grows out of over 20 years of work by the Natural
Programming group by more than 50 students, staff and postdocs in addition to the authors, and
we thank them all for their contributions. The work summarized here has been funded at least by
SAP, Adobe, IBM, Microsoft, Yahoo! and multiple NSF grants including CNS-1423054, IIS-
1314356, IIS-1116724, IIS-0329090, CCF-0811610, IIS-0757511, and CCR-0324770. Any opi-
nions, findings and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect those of any of the sponsors.

191 Making End User Development More Natural

References

Amershi, S., Cakmak, M., Knox, W. B., Kulesza, T. (2014). Power to the people: the role of
humans in interactive machine learning. AI Magazine, 35(4), 105–120.

Berlage, T. (1994). A selective undo mechanism for graphical user interfaces based on command
objects. ACM Transactions on Computer Human Interaction. ACM Transactions on
Computer Human Interaction, 1(3), 269–294.

Buchen, L. (2009). Robot makes scientific discovery all by itself. Wired UK Online. https://
www.wired.com/2009/04/robotscientist/.

Chang, K., & Myers, B.A. (2014a, October 5–8). Creating interactive web data applications with
spreadsheets. In UIST’14: ACM Symposium on User Interface Software and Technology
(pp. 87–96). Honolulu, Hawaii.

Chang, K., & Myers, B.A. (2014b, July 28–August 1). A spreadsheet model for using web ser-
vice data. In VL/HCC’14: IEEE Symposium on Visual Languages and Human-Centric
Computing (pp. 169–176). Melbourne, Australia.

Chang, K., & Myers, B.A. (2016, May 7–12). Using and exploring hierarchical data in spread-
sheets. In Proceedings CHI’2016: Human Factors in Computing Systems (pp. 2497–2507).
San Jose, CA.

Clark, L. (2012). Google’s artificial brain learns to find cat videos. Wired UK Online. https://
www.wired.com/2012/06/google-x-neural-network/.

Cypher, A., Halbert, D. C., Kurlander, D., Lieberman, H., Maulsby, D., Myers, B. A., Turransky, A.
(1993).Watch what I do: programming by demonstration. Cambridge, MA: MIT Press.

Fisher, II, M., & Rothermel, G. (2004). The EUSES spreadsheet corpus: a shared re-source for
supporting experimentation with spreadsheet dependability mechanisms. Lincoln: University
of Nebraska. Technical Report 04-12-03.

Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming environments:
a ‘cognitive dimensions’ framework. Journal of Visual Languages and Computing, 7(2), 131–174.

Grigoreanu, V., Fernandez, R., Inkpen, K., Robertson, G. (2009, September 20–24). What
designers want: needs of interactive application designers. In IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC’09 (pp. 139–146). Corvallis, Oregon.

Henley, A.Z., & Fleming, S.D. (2016, September 4–8). Yestercode: improving code-change sup-
port in visual dataflow programming environments. In: VL/HCC’16: IEEE Symposium on
Visual Languages and Human-Centric Computing. Cambridge.

Hill, C., Bellamy, R., Erickson, T., Burnett, M. (2016). Trials and tribula-tions of developers of
intelligent systems: a field study. In VL/HCC’2016: IEEE Symposium on Visual Lan-guages
and Human-Centric Computing (pp. 162–170). Denver, CO.

Kery, M.B., Horvath, A., Myers, B.A. (2017, May 6–11). Variolite: supporting exploratory pro-
gramming by data scientists. In Proceedings CHI’2017: Human Factors in Computing
Systems (pp. 1265–1276). Denver, CO.

Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., et al. (April,
2011). The state of the art in end-user software engineering. ACM Computing Surveys, 43(3),
Article 21 44 pages.

Ko, A.J., & Myers, B.A. (2004, April 24–29). Designing the whyline, a debugging interface for
asking why and why not questions about runtime failures. In Proceedings CHI’2004: Human
Factors in Computing Systems (pp. 151–158). Vienna, Austria.

Ko, A. J., & Myers, B. A. (2005, February). A framework and methodology for studying the
causes of software errors in programming systems. Journal of Visual Languages and
Computing, 16(1), 41–84.

Ko, A.J., & Myers, B.A. (2009, April 4–9). Finding causes of program output with the java why-
line. In CHI’2009: Human Factors in Computing Systems (pp. 1569–1578). Boston, MA.

Ko, A. J., & Myers, B. A. (2010, August). Extracting and answering why and why not questions
about java program output. ACM Transactions on Software Engineering and Methodology
(TOSEM), 20(2), Article 4 36 pages.

20 B.A. Myers et al.

https://www.wired.com/2009/04/robotscientist/
https://www.wired.com/2009/04/robotscientist/
https://www.wired.com/2012/06/google-x-neural-network/
https://www.wired.com/2012/06/google-x-neural-network/

Ko, A.J., Myers, B.A., Aung, H.H. (2004, September 26–29). Six learning barriers in end-user
programming systems. In IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC) (pp. 199–206). Rome, Italy.

Ko, A. J., Myers, B. A., Coblenz, M., Aung, H. H. (2006, December). An exploratory study of
how developers seek, relate, and collect relevant information during software maintenance
tasks. IEEE Transactions on Software Engineering, 33(12), 971–987.

Kuttal, S.K., Sarma, A., Rothermel, G. (2011). History repeats itself more easily when you log it:
versioning for mashup. In IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC) (pp. 69–72). Pittsburgh, PA.

Li, T., Azaria, A., Myers, B. (2017, May 6–11). SUGILITE: creating multimodal smartphone
automation by demonstration. In Proceedings CHI’2017: Human Factors in Computing
Systems (pp. 6038–6049). Denver, CO.

Lin, J., Wong, J., Nichols, J., Cypher, A., Lau, T. A. (2009). End-user programming of mashups
with vegemite. Proceedings of the 14th International Conference on Intelligent User
Interfaces (pp. 97–106). Sanibel Island, FL: ACM.

Loksa, D., Ko, A. J., Jernigan, W., Oleson, A., Mendez, C. J., Burnett, M. M. (2016).
Programming, problem solving, and self-awareness: effects of explicit guidance. Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 1449–1461).
Santa Clara, CA: ACM.

Meyerovich, L. A., Guha, A., Baskin, J., Cooper, G. H., Greenberg, M., Bromfield, A., et al.
(2009). Flapjax: a programming language for Ajax applications. SIGPLAN Notices (Proc.
OOPSLA’2009), 44(10), pp. 1–20. 1640091.

Muncy, J. (2016). Making AI play lots of videogames could be huge (No, Seriously). Wired UK
Online. https://www.wired.com/2016/04/videogames-ai-learning/.

Myers, B.A. (1991, November). Separating application code from toolkits: eliminating the spa-
ghetti of call-backs. In UIST’91: ACM SIGGRAPH Symposium on User Interface Software
and Technology (pp. 211–220). Hilton Head, SC.

Myers, B.A. (1998, April). Scripting graphical applications by demonstration. In SIGCHI’98:
Human Factors in Computing Systems (pp. 534–541). Los Angeles, CA.

Myers, B. A., Hudson, S. E., Pausch, R. (2000, March). Past, present and future of user interface
software tools. ACM Transactions on Computer Human Interaction, 7(1), 3–28.

Myers, B. A., Ko, A. J., LaToza, T. D., Yoon, Y. S. (2016, July). Programmer are users too:
human centered methods to improve software development. IEEE Computer, 49(7), 44–52.

Myers, B., McDaniel, R., Wolber, D. (2000, March). Programming by example: intelligence in
demonstrational interfaces. Communications of the ACM, 43(3), pp. 82–89.

Myers, B.A., Park, S.Y., Nakano, Y., Mueller, G., Ko, A. (2008, September 15–18). How
designers design and program interactive behaviors. In 2008 IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC’08 (pp. 185–188). Herrsching am
Ammersee, Germany.

Norman, D. A. (1988). The design of everyday things. New York: Doubleday.
Oney, S., Myers, B.A., Brandt, J. (2012, October 7–10). ConstraintJS: programming interactive

behaviors for the web by integrating constraints and states. In UIST’2012: ACM Symposium
on User Interface Software and Technology (pp. 229–238). Cambridge, MA.

Oney, S., Myers, B.A., Brandt, J. (2014, October 5–8). InterState: a language and environment
for expressing interface behavior. In ACM Symposium on User Interface Software and
Technology, UIST’14 (pp. 263–272). Honolulu, Hawaii.

O’Toole, J. (2014, February 28). Mobile apps overtake PC Internet usage in U.S. CNN Money.
http://money.cnn.com/2014/02/28/technology/mobile/mobile-apps-internet/.

Ozenc, K., Kim, M., Zimmerman, J., Oney, S., Myers, B. (2010, April 10–15). How to support
designers in getting hold of the immaterial material of software. In CHI’2010: Human
Factors in Computing Systems (pp. 2513–2522). Atlanta, GA.

Pane, J. F., & Myers, B. A. (2006). More natural programming languages and environments.
H. Lieberman, F. Paterno, V. Wulf (Eds.). End-User development (pp. 31–50). Dordrecht: Springer.

211 Making End User Development More Natural

https://www.wired.com/2016/04/videogames-ai-learning/
http://money.cnn.com/2014/02/28/technology/mobile/mobile-apps-internet/

Park, S., Myers, B., Ko, A. (2008, September 15–18). Designers’ natural descriptions of interac-
tive behaviors. In 2008 IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC’08 (pp. 185–188). Herrsching am Ammersee, Germany.

Patel, K. D. (2013). Lowering the barrier to applying machine learning. Seattle, WA: University
of Washington. PhD Dissertation.

Scaffidi, C., Myers, B., Shaw, M. (2008, May 10–18). Topes: reusable abstractions for validating
data. In ICSE’08: International Conference on Software Engineering (pp. 1–10). Leipzig,
Germany.

Sheil, B. (1983, February). Environments for exploratory programming. In Datamation.
Reprinted in in “Papers on Interlisp-D,” Sheil, B.A. and Masinter, L.M., eds., Xerox PARC
Tech Report CIS-5.

Smith, A. (2015, April 1). U.S. smartphone use in 2015. Pew Research Center. http://www.
pewinternet.org/2015/04/01/us-smartphone-use-in-2015/.

Sun, M., Chen, Y.N., Rudnicky, A.I. (2016, March 10). Learning user intentions spanning multi-
ple domains. In Proceedings of IUI 2016 Workshop on Interacting with Smart Objects
(SmartObjects 2016). Sonoma, California.

Yang, H., Pupons-Wickham, D., Chiticariu, L., Li, Y., Nguyen, B., Carreno-Fuentes, A. (2013).
I can do text analytics!: designing development tools for novice developers. In CHI’2013:
Human Factors in Computing Systems (pp. 1599–1608). Paris, France.

Yoon, Y.S., Koo, S., Myers, B.A. (2013, September 15–19). Visualization of fine-grained code
change history. In IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC’13) (pp. 119–126). San Jose, CA.

Yoon, Y.S., & Myers, B.A. (2012, June 2). An exploratory study of backtracking strategies used
by developers. In Cooperative and Human Aspects of Software Engineering (CHASE’2012),
An ICSE 2012 Workshop (pp. 138–144). Zurich, Switzerland.

Yoon, Y.S., & Myers, B.A. (2014, 28 July–1 August). A longitudinal study of programmers’
backtracking. In IEEE Symposium on Visual Languages and Human-Centric Computing (VL/
HCC’14) (pp. 101–108). Melbourne, Australia.

Yoon, Y.S., & Myers, B.A. (2015, May 16–24). Supporting selective undo in a code editor. In
37th International Conference on Software Engineering, ICSE 2015 (vol. 1; pp. 223–233).
Florence, Italy.

Zang, N., Rosson, M.B., Nasser, V. (2008). Mashups: who? what? why? In CHI’08 Extended
Abstracts on Human Factors in Computing Systems (pp. 3171–3176). New York, NY.

22 B.A. Myers et al.

http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/
http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/

A Practice-Oriented Paradigm
for End-User Development

Thomas Ludwig, Julian Dax, Volkmar Pipek and Volker Wulf

Abstract What is end-user development (EUD) and when does a user become an
end-user developer? Since the concept of EUD encompasses methods as well as prac-
tices of appropriating technology, it is not easy to answer these questions and several
researchers already dealt with these issues. Within our chapter we suggest to concep-
tually extend our understanding of both EUD and the end user (developer). We draw
on experiences we gained from past research exploring EUD in practice. We reflect
upon the concepts of “gentle slope of complexity,” “tailoring languages” and “appro-
priation” which we situate within the broader concept of “infrastructuring.” We claim
that EUD is given whenever an end user starts modifying the permanent aspects of an
application (soft- or hardware) and, thus, starts climbing the tailorability mountain –
or in our words, the tailorability staircase – and switching to a higher level to perform
a specific practice. In our newly developed terminology this very moment, called
“point of infrastructure,” is characterized by a break-down in the current practices
which leads an end user to becoming an end-user developer.

Keywords End-user development · practice · appropriation · infrastructuring ·
gentle slope of complexity

T. Ludwig (✉) · J. Dax · V. Pipek · V. Wulf
University of Siegen, Siegen, Germany
e-mail: thomas.ludwig@uni-siegen.de

J. Dax
e-mail: julian.dax@uni-siegen.de

V. Pipek
e-mail: volkmar.pipek@uni-siegen.de

V. Wulf
e-mail: volker.wulf@uni-siegen.de

23© Springer International Publishing AG 2017
F. Paternò, V. Wulf (eds.), New Perspectives in End-User Development,
DOI 10.1007/978-3-319-60291-2_2

1 Introduction

What is end-user development (EUD), and when is a user considered an end-user
developer? What kind of development practices does an end user have to perform?
Answering these questions requires an exploration of the origins of EUD. When
exactly the discourse around EUD emerged is hard to say. While Paternò (2013)
argues, EUD emerged with the rise of graphical applications, Burnett and Scaffidi
(2013), on the other hand, argue EUD dates to the 1980s when the first personal
computers (then known as microcomputers) appeared. As Burnett and Scaffidi
(2013) reason EUD emerged at this time because personal computers were inexpen-
sive enough that companies could provide increasingly larger numbers of employees
with one and the machines had sufficient processing power to compile or interpret
new code written in higher programming languages. Computers soon came to include
innovative new hardware such as the mouse and powerful graphics cards (the latter
of which enabled graphical user interfaces and therefore direct manipulation). The
number of computer-using employees rapidly increased and came to encompasses
“managers, accountants, engineers, home makers, teachers, scientists, health care
workers, insurance adjusters, salesmen, and administrative assistants” (Burnett &
Scaffidi, 2013). The work tasks of these groups or actors are rather differentiated and
always change, which means that software needs are consequently differentiating and
changing as well. However, professional software engineers are unable to meet all of
these (contextual) needs due to capacity reasons and their limited domain knowledge
(Burnett & Scaffidi, 2013). At the same time, end users usually do not have training
in professional programming languages, formal development processes, or modeling
and diagramming notations and are therefore not able to tailor and appropriate soft-
ware according their specific requirements (Burnett & Scaffidi, 2013).

End-user development tries to help solve the mismatch between end users’
high and specific domain knowledge but limited programming expertise. In parti-
cular, it enables end users to design, tailor and customize software’s user interface
and functionality. Through EUD, end users can tailor and appropriate software
systems to fit their requirements more closely than would otherwise be possible.
In this context, tailoring is defined as any “activity to modify a computer applica-
tion within its context of use” (Won, Stiemerling, & Wulf, 2006); it can be a
simple or complex activity (Burnett & Scaffidi, 2013). However, multiple defini-
tions exist in relation to what EUD is, who the end-user developers are and at
what point end users achieve developer status. Within this chapter, we review the
understandings and specific characteristics of EUD and the end user (Sect. 2).
Based on the concepts of the gentle slope of complexity (MacLean, Carter,
Lövstrand, & Moran, 1990) and infrastructuring (Sect. 3), we conceptually extend
the current EUD discourse with a practice-oriented and hardware-related perspec-
tive. We provide a slightly changed understanding of the end-user developer and
the moment at which EUD occurs from a practical perspective (Sect. 4). Finally,
we use our extended and practice-based understanding to outline some problems
and future perspectives related to EUD (Sect. 5).

24 T. Ludwig et al.

2 EUD and the Gentle Slope of Complexity

Definitions of EUD have been provided at various junctures, including the most
prominent ones of the mid-1990s (Nardi, 1993), early 2000s (Lieberman, Paternò,
Klann, & Wulf, 2006) and today (Fischer, Fogli, & Piccinno, 2017). One of the
most influential definitions of EUD can be found in Nardi’s book A Small Matter
of Programming (Nardi, 1993). The book does not mention “end-user develop-
ment” per se (“end-user computing” is utilized instead), but the work was – and
still is – popular within the EUD community. Nardi (1993) makes a strict differentia-
tion between an end user and a professional programmer: “It is helpful to understand
that a key difference between professional programmers and end-users is that pro-
grammers like computers because they get to program, and end-users like computers
because they get to get their work done. End-users are not ‘casual,’ ‘novice,’ or
‘naive’ users; they are people such as chemists, librarians, teachers, architects, and
accountants, who have computational needs and want to make serious use of compu-
ters, but who are not interested in becoming professional programmers” (Nardi,
1993). End users do not set out to write a computer program; they want to do
something – and to accomplish their task (or to perform it more efficiently), they
need to create a program. Paternò (2013) describes it as follows: “End users have
specific goals in their own domains, which are not related to software development.”

When focusing on the term “programming,” Nardi (1993) dismisses the idea of
characterizing it as a behavior because a “definition of programming that refers to
detailed behavior is likely to be technology-specific.” She instead defines program-
ming utilizing its objective to “create an application that serves some function for
the user” (Nardi, 1993). Lieberman et al. (2006) introduce a perspective in which
EUD encompasses “a set of methods, techniques, and tools that allow users of soft-
ware systems, who are acting as non-professional software developers, at some point
to create, modify, or extend a software artifact.” From Lieberman et al.’s (2006) per-
spective, EUD focuses not only on programming itself (cp. Nardi, 1993) but also on
the methods, techniques and tools that support the act of programming. In addition
to program creation and modification, Liebermann et al. (2006) include parameteri-
zation and customization as important end-user activities. By parameterization or
customization, they mean “activities that allow users to choose among alternative
behaviors (or presentations or interaction mechanisms) already available in the appli-
cation. Adaptive systems are those where the customization happens automatically
by the system in reaction to observation the user’ s behavior” (Lieberman et al.,
2006). In contrast to parameterization or customization, they define program creation
and modification as “activities that imply some modification, aiming at creating
from scratch or modifying an existing software artifact” (Lieberman et al., 2006).
Their definition therefore broadens the scope of EUD by expanding program creation
to include software modification and extensions, which is the main differentiation
between end-user programming (EUP) and EUD (Burnett & Scaffidi, 2013).

Most recently, Ko et al. (2011) provide definitions for programming, EUP and
end-user software engineering. They do not define EUD itself and instead utilize

252 A Practice-Oriented Paradigm for End-User Development

Lieberman’s definition (2006), which states that EUD “also focuses on the use and
adaptations of software over time, and focuses on elements of the software lifecycle
beyond the stage of creating a new program.” Ko et al. (2011) clearly distinguish
EUD from professional programming and consider a program as “a collection of spe-
cifications that may take variable inputs and that can be executed (or interpreted) by
a device with computational capabilities.” They note that the “variability of input
values requires that the program has the ability to execute on future values, which
is one way it is different from simply doing a computation once manually” (Ko
et al., 2011).

The two main aspects of EUP are (1) repeatability and optionally and
(2) abstraction from a single case. A program can be executed multiple times; it
may also be generic enough to take variable inputs. This crisply defines what
programming actually is and clearly distinguishes between programming and use,
which previous definitions did not. Ko et al. (2011) also provide insights into
the end-user programming vs. programming issue, suggesting that the former be
viewed as “programming to achieve the result of a program primarily for personal,
rather public use.” The distinction they make is that in end-user programming, the
“program itself is not primarily intended for use by a large number of users with
varying needs” (Ko et al., 2011).

Fischer et al. (2017) put the concept of EUD on a more general level and
argue that the “real impact of EUD transcends the developments to create
new technologies but transform cultures by empowering all people to become
active contributors in personally meaningful activities.” They therefore broaden
the scope of EUD and argue that meta design could be applied to enable appro-
priate conditions for “putting owners of problems in charge by defining the tech-
nical and social conditions for broad participation in design activities” (Fischer
et al., 2017).

On an operational level, most of the EUD definitions rely on the concept of the
“gentle slope of complexity” (MacLean et al., 1990), which is a core and widely
cited component of EUD research (Costabile, Fogli, Mussio, & Piccinno, 2006;
Ko et al., 2011; Lieberman et al., 2006; Paternò, 2013; Rode, Rosson, & Pérez
Quinones, 2006; Spahn & Wulf, 2009; Wulf, Pipek, & Won, 2008). It originally
“characterizes the relationship between the amount of skill required and tailoring
power using a mountain climbing analogy.” As Burnett and Scaffidi (2013) sum-
marize, “at each increased level of complexity, users have more ability to redesign
the interaction and functionality of an application. At the most basic level, tailor-
ing encompasses specifying parameters to an existing application in a way that
changes its behavior at a high level of granularity. […] Once tailoring begins to
involve creating full-fledged programs in order to extend the functionality of an
application, the activity seamlessly encompasses end-user programming.”

Figure 1 shows the relationship between people’s skill in tailoring an applica-
tion and the tailoring power that this skill grants them. In the left graph, MacLean
et al. (1990) present a typical tailorable application, using the EMACS text editor
as an example; the right graph shows the system they develop around the concept
of on-screen buttons (MacLean et al., 1990). Typical applications feature steep

26 T. Ludwig et al.

slopes that require a user to acquire a relatively high amount of additional skill to
achieve only a modest increase in his or her tailoring power.

The high amount of skill required to achieve an increase of tailoring power leads
to two challenges: (1) the steep slopes are barriers to skill acquisition and (2) people
with similar skill levels form relatively isolated groups. These groups include
“workers,” who are traditional end users who utilize – but do not modify – a system;
“tinkerers,” who modify a system through parameterization; and the actual “program-
mers.” These groups “inhabit” different terraces on the “tailorability mountain.” In
the “Buttons” system (MacLean et al., 1990) and other EUD systems, “‘smoothing
off’ the mountain should allow people with different skills to intermingle more and
so communicate better with each other.” The goal of EUD is to achieve this “smooth-
ing off” by creating systems that provide a smooth learning curve – in other words, a
gentle slope of complexity.

Related to this gentle slope is the idea of “layered tailoring languages” (Won et al.,
2006), which essentially describes various regions on the “tailorability mountain” as
different layers of programming and user interface languages. Following Henderson
and Kyng (1991), Wulf (1999) describes three levels of complexity in tailoring:
choosing between alternatives of anticipated behavior, constructing new behavior
from existing pieces and altering an artifact (i.e. changing the source code). The
different levels of complexity lead to the implementation of programming and user
interface languages that correspond to these levels. There have been other, approaches
to categorize different kinds of tailoring. A prominent one – which is analogous to the
one from Wulf (1999) is the categorization into three levels of end-user tailoring by
Mørch (1997). Mørch (1997) gives a detailed overview about these three levels and
defines them as (1) Customization: “Modifying the appearance of presentation objects
(UI-widgets like buttons and text boxes), or editing their attribute values by select-
ing among a set of predefined configuration options.” (2) Integration: Integration
“[…] goes beyond customization by allowing users to add new functionality to an
application […]” by “[…] linking together predefined components within or across
the application.” (3) Extension: “Extension is an approach to tailoring where the
functionality of an application is improved by adding new code.”

Skill
Required

for
Tailoring

Skill
Required

for
Tailoring

Programmer
Handyman

Tinkerer
Worker

Move Around Screen
Receive in EMail

Situated Creation
Copying

Changing Appearance
Editing Parameters

Modifying Lisp
Using Building Blocks

Lisp Programming

Tinkerer

Worker

Tailoring Power Tailoring Power

Change Parameters

Programmer

The Tailorability Mountain
and its Inhabitants

Buttons - The Gentle Slope to Tailorability

and the Folk Who Live on the Hill

Programming Language

Fig. 1 Steep and gentle slopes of tailorability (MacLean et al., 1990)

272 A Practice-Oriented Paradigm for End-User Development

3 Social Aspects of EUD: Appropriation and Infrastructuring

Modern work environments mainly use information systems as their basic work
infrastructures (Pipek & Wulf, 2009) that are shaped and “used across many
different locales and endures over long periods” (Monteiro, Pollock, Hanseth, &
Williams, 2013). The term infrastructure arose from the Latin infra (below) and
structura (assemblage) and comprises all the basic structures which are needed for
the operation of a society. Based on its early definitions and referring to List
(1841), Jochimsen (1966) defined infrastructure as “the sum of material, institu-
tional and personal facilities and data which are available to the economic agents
and which contribute to realizing the equalization of the remuneration of
comparable inputs in the case of a suitable allocation of resources, that is
complete integration and maximum level of economic activities.” While some
researchers follow this techno-centric perspective on infrastructural approaches
to information systems (Dourish, 1999; Edwards, Newman, & Poole, 2010;
Tanenbaum, 2002), others outline the social aspects of an infrastructure, such as
that the users inevitably reshape a new infrastructure during use, and should
always be considered as “designers.” The most prominent exponents of this
socio-technical perspective on infrastructure are Star and Ruhleder (1996).
Besides just looking on the physical entities, they also took the role of the actors
as well as their relationships into account.

When considering work-related information systems, Pipek and Wulf (2009) have
outlined their infrastructural aspects such as interconnectedness, complexity, layer
approach and standardization, as well as (in-)visibility in use. A work infrastructure,
therefore, does not necessarily cover only technological systems, but – in accordance
to Star and Ruhleder (1996) – also the “entirety of devices, tools, technologies, stan-
dards, conventions, and protocols on which the individual worker or the collective
rely to carry out the tasks and achieve the goals assigned” (Pipek & Wulf, 2009).

When EUD is considered from a practical viewpoint, users often discover ways to
utilize technologies that were not anticipated by the professional software developers
and engineers as they attempt to manage their own understanding of sophisticated
“new” technologies in the context of their existing (and changing) practices (Dalton,
MacKay, & Holland, 2012). Based on two long-term studies on the evolution of
usages of collaborative software in a German authority and in a network of freelan-
cers in the field of consulting, Pipek (2005) utilize the concept of appropriation as
the sense making of a software while it is being used in practice. He argues that
“besides activities to configure the software to fit into the technological, organiza-
tional and individual work context of the users (‘Tailoring’), there is a larger area of
technology-related communication, demonstration and negotiation activities aimed at
establishing a shared understanding of how a software artefact works and what it can
contribute to the shared work context” (Pipek, 2005). For an account on the historic
emergence of the concept see Stevens and Pipek (2017).

De Souza (2017) also takes a socio-technical point of view by developing the
concept of semiotic engineering (de Souza, 1993) as a new theoretical basis for
EUD research. She argues that within semiotic engineering the “activities

28 T. Ludwig et al.

performed by end users during, and by means of, software development are pri-
marily related to a particular kind of computer-mediated social communication,
rather than to algorithmic problem solving and program coding.” Such an under-
standing explicitly privileges the social dimensions of programming and develop-
ment instead of the logic and cognitive ones.

These understandings have their roots in the established literature of computer-
supported cooperative work, in which appropriation is associated with the process
of users fitting new technologies into their practices in situ by both adopting and
adapting them (Balka & Wagner, 2006; Dourish, 2003; Mackay, 1990; Stevens,
Pipek, & Wulf, 2009). The concept of appropriation goes deeper than that of the
initial concepts of customization or tailoring of software in that it can encompass
fundamental changes in practice and embraces the possibility of users adopting
and using a technology in completely new ways (Pipek, 2005). Pipek (2005)
focuses on developing appropriation support functionalities for connecting users
of one tool, while other researchers (Draxler & Stevens, 2011; Draxler, Stevens,
Stein, Boden, & Randall, 2012) look at ensembles of tools and suggest an appro-
priation framework that would also address the developers’ interest in improving
the technology and its underlying infrastructure.

A further example that underpins the concept of appropriation was outlined by
Spahn, Dax, Yetim, and Pipek (2017), in which company staffers were given access
to a tool which allowed them to create so-called widgets. Widgets are small, interac-
tive applications for displaying data. The intended use for these widgets was to help
employees in accomplishing business tasks and widgets were used that way for the
most part. For example, one staffer created a widget for quickly looking up how
many spare kinds of a particular type are in stock and how many are in production.
However, one staffer created a birthday widget for keeping track of his colleague’s
birthdays. Both users have used the same tool as well as the same underlying
technology, but for a purpose not intended by the designers of this technology.

Pipek and Wulf (2009) broaden the scope of EUD and understand the entire
reshaping of a work infrastructure and the practice of “re-conceptualizing one’s own
work in the context of existing, potential, or envisioned IT tools” (Pipek & Wulf,
2009) as infrastructuring (Fig. 2). By introducing this term to refer to all activities that
that lead to discovering and developing the usage of an entire infrastructure and contri-
bute to successfully establishing usages of information infrastructures, Pipek and Wulf
(2009) want to “avoid confusion with classic notions of design as design-before-use
performed by professional designers.” Based on a long-term study about the introduc-
tion, appropriation, and removal of a groupware infrastructure in a German state
government, they have unconvered cases of infrastructuring and developed a design-
oriented version of the infrastructuring as a new kind of technology development
methodology that does not use a successfully designed product as its anchor, but rather
the successful establishment of technology usage in the context of a given practice
context (over time, Y axis in Fig. 2). The major aspect of this concept is that the dual
perspective on IT usage from both the infrastructural layers of work development as
well as the infrastructural layers of technology development and its specifics such as
culture of design on the one hand and culture of (technology) use on the other hand.

292 A Practice-Oriented Paradigm for End-User Development

Cabitza and Simone (2017) utilize the concept of infrastructuring and introduce
the Logic of Bricolage (LoB) as a theoretical framework for the development of
malleable systems. The LoB conceives of malleability as a first-level affordance to
be “put in full control of the end users to empower them in appropriating and
adapting their applications at different (potentially any) level of detail.” The LoB’s
“clear separation of the technical infrastructure from the platform allows an alter-
native views of the standardization problem, one of the main issue concerning
infrastructures” (Cabitza & Simone, 2017).

One important characteristic of infrastructuring as a technology development
methodology (Fig. 2) is the “point of infrastructure” (PoI), which is the moment
in which a (group of) practitioner(s) understand(s) that the current use of a technologi-
cal infrastructure needs to be reconsidered (Pipek & Wulf, 2009). A PoI does not hap-
pen arbitrarily when a practice is being performed. Instead, specific factors are likely
to trigger this reconsideration and that a dependency between a (work) practice and its
supporting (work) infrastructure has developed previously and hence becomes largely
invisible to the actors engaging in the practice in question. This dependency is what
causes the reconsideration, based on four motivational forces (Pipek & Wulf, 2009):

• Actual infrastructure breakdown: The infrastructure is not able to deliver the
service it is expected to provide, often because parts of the technologies have
become inoperable (e.g. power failure when trying to stream a video).

• Perceived infrastructure breakdown: The infrastructure does provide its service
technologically, but not to the level of expectations of its user (e.g. the low quality
of a stream video in a mobile network when there is limited bandwidth available).

• Extrinsically motivated practice innovation: The framing conditions or the task
and goals associated with a practice have changed in a way that it is impossible

Infrastructural

background work

T
im

el
in

e

Preparatory

design work

Infrastructural layers of technology development activities

Basic technology
development

Technology standards

Culture of design

Tasks
Routine
Praxis

Tasks
Routine
Praxis

Reflecting
change/new
business
opportunities

“Intention
of support”

Using predecessor
technology

Learning about
technology

Appropriation

Inventing/
Negotiating

usages

Culture of use

Work standards

Basic work
development

Preparatory

work development

Infrastructural layers of work development activities

Breakdown (real or perceived)
New innovation in work/use

Breakdown (real or perceived)
New innovation in technology

Method-driven
design activities

Programming
In-situ

design work

Tailoring

Combination/
Configuration

of tools

Point of

Infrastructure

“Intention
of usage”

Fig. 2 Infrastructural layers of technology development activities (Pipek & Wulf, 2009)

30 T. Ludwig et al.

to maintain the old practice (e.g. a video streaming platform develops a new
pricing/subscription scheme and the customer requires a new device to be
accompanied with new process documentation).

• Intrinsically motivated practice innovation: The framing conditions, tasks and
goals associated with a practice remain unchanged, but practitioners discovered
the potential for performing the practice in a new way, possibly because it is
more cost efficient, simpler, quicker, or simply more fun (e.g. equipping the
home with new sensor and management technology to be able to start streaming
a video two minutes after arrival in the living room).

The concept of infrastructuring suggests that this initial impulse gives rise to a
period of technology configuration, tailoring and convention development in
which the “last mile of technology development” is mainly performed by (not
necessarily technologically skilled) practitioners until finally the usage of a new
technology has been successfully established (Pipek & Wulf, 2009).

With the rise of ubiquitous technology as well as the vision of an Internet of
Things, new types of (physical) technology assemblies became available. The mate-
riality (of the often called cyber-physical systems) poses a new dimension for EUD
research, as it is not clear in how far insights from software can be easily transferred
or adapted to the mixed domain of hardware and software. Ludwig, Tolmie, et al.
(2017) and Ludwig, et al. (2014) conducted an empirical study within two different
communities, illustrating how 3D printer users appropriate these “new” technologies
for their purposes, and what practices are entailed in order to face several hardware
breakdowns, unexpected effects concerning the printing material, unintuitive model-
ing tools and complex configurations.

The empirical study reveals as a main take away message that most of the prac-
tices users reported were highly socially embedded in the sense that the appropria-
tion of the 3D printer was strongly enabled by cooperative informal learning and
coordination in the context of playful experimentation. Such motivations are
scarcely unique or new. A variety of material practices around hobbies in particu-
lar, such as working with wood or baking pastries, can show similar creative
aspects. During those ludic moments in 3D printing, much experimenting is done,
considerably in excess of perusal of the literature, which only seems to happen
occasionally. This is why the understanding of the printers is mostly limited to
operational handling. Those difficulties in understanding are compounded by the
identifying, locating and fixing problems encountered in the printing process e.g.
matching them conceptually to hardware, software or external factors. Solutions are
sought both internally and externally. Internally, face-to-face conversations with
colleagues are preferred. Attempts at preserving the knowledge resulted in a colla-
borative blog, which is maintained and read only very irregularly. This is because
the entries have to be made by hand after a print and entail a post-hoc overhead.

In addition to the internal practices, users often search for problem solutions in
bulletin boards and follow discussions on the web. This search however, poses a
problem in itself, concerning domain specific slang and wording. On platforms
such as Thingiverse or similar websites, 3D models themselves are central rather

312 A Practice-Oriented Paradigm for End-User Development

than solution processes, or how to print a model or best practices. This helps the
users at times, but it does not support the appropriation of 3D printers and its
entire process – they are faced with similar problems during subsequent prints and
have to try to identify the problems de novo.

Ludwig, Tolmie, et al. (2017), Ludwig et al. (2014) have found evidence for
appropriation activities in the sense that the end-users modified their machines
(e.g. installation of cameras to monitor the current printing status, Fig. 3) in ways
the manufacturers did not plan for, but could be incorporated in future generations
of their machines.

4 An Extended Conceptual Framework for EUD in Practice

To identify who the end-user developer is as well as when a development occurs,
and therefore to conceptualize a new definition of EUD, we have presented an over-
view of currently available definitions and understandings as well as related work.
While Nardi (1993) describes end users as individuals who would like to accom-
plish some specific task (which is not programming), Lieberman et al. (2006)
characterize them as users of a software system who are aided by EUD methods
and techniques in creating, modifying or extending software. However, Lieberman
et al. (2006) do not clearly distinguish between EUD and general computer use.
Many everyday computing tasks could be characterized as parameterization or cus-
tomization. The question what EUD is – compared to general computer use – and
what an end-user developer is – compared to a regular user – cannot be answered

Fig. 3 Webcam to monitor the hardware (Ludwig, Boden, & Pipek, 2017)

32 T. Ludwig et al.

clearly by using these definitions. Slightly exaggerated, one could respond to the ques-
tion, who end-user developers are with “people who do EUD” according to these defi-
nitions. When we base our understanding of EUD on tailoring as well as software
systems alone, the differences between usage and programming as well as between
the notions of design before and during usage are considered particularly poorly.

One of our aims is therefore to provide a way to separate EUD from activities
that are not EUD and end users who are not end-user developers – although these
activities and user types are often a fluent transition in practice. The tailorability
mountain and gentle slope of complexity (MacLean et al., 1990), language layer-
ing (Won et al., 2006; Wulf, 1999) and the three levels of tailoring are well known
and central concepts in EUD. We want now to extend the understanding of end-
user-development beyond software to any kind of tools. In recent years, the EUD
community concerned itself more and more with hardware and IoT (Kubitza &
Schmidt, 2015; Ludwig, Boden, et al., 2017). Therefore, we aim to formulate an
understanding of EUD which is independent of software GUIs and programming
languages, as the others are.

By applying the theoretical concept of appropriation and methodological frame-
work of infrastructuring we enhance the tailorability mountain (Fig. 4) now look-
ing more like a tailorability staircase, which we feel is closer to reality for most
EUD activities and systems. The “gentle slope” can be achieved by making the
steps small and helping people from one step to the next (like a staircase) –
through software system appropriation as well as (hardware-related) infrastructur-
ing. This mountain is not only concerned with tailorability, but also with the
general concepts of use and appropriation. The four levels are defined as follows:

• Use: Use of a tool in its default configuration, as it was provided by the vendor
and without any modifications.

• Parameterization/Customization: Parameterization of a tool by selecting from
different options provided by the vendor.

• Recomposition/Integration: Adding new functionality to a tool by integrating it
with other tools or recombining existing components of a tool.

• Extension/Altering: Adding new functionality to a tool by extending it, creating
new components and adding them to a tool or altering the already existing
components it is made of.

Use

Opportunities to Interact/Modify

Parameterization/Customization

Recomposition/Integration

Extension/Altering

Ta
ilo

rin
g

S
ki

ll
R

eq
ui

re
d

A
pp

ro
pr

ia
tio

n

Fig. 4 The concept of tailoring levels and language layers applied to the tailorability mountain

332 A Practice-Oriented Paradigm for End-User Development

The methods used in the upper two levels – Recomposition/Integration and
Extension/Altering are some form of programming language in software-related
EUD. In physical EUD, the methods used on these two levels are other physical
tools like a screwdriver or a hammer, raw material like plastic or wood and other
end-products like a lamp or a camera. To illustrate this, we build on the two exam-
ples above: The 3D-printing case as an example of a physical tool (Ludwig,
Boden, et al., 2017) and the user-defined widgets as an example of a software tool
(Spahn et al., 2017).

The Use-level of a 3D-printer is simply printing a 3D artefact with the default
configuration. (We acknowledge this may not be the most realistic scenario given
the current state of 3D-printing technology and systems.) Then a serious shortcom-
ing that became apparent in the study of how users operate their 3D printer is that
the 3D printer itself is effectively a kind of black box for end-users and lacks
descriptions of method and functionality. That is, users have no overall picture of
how it works. This became especially crucial when errors during the printing pro-
cess occurred and the users often were not able to identify or locate problems due
to the high context-dependency of those issues (e.g. the impact of sunlight to black
printing material). To address this PoIs the end users aim to gather as much con-
textual and environmental data as possible and to gather detailed information
about the behavior of the 3D printer itself that goes far beyond the kind of infor-
mation provided by the machinery’s manufacturer.

At the Parameterization/Customization-level, the end users (together with
researchers) implemented a ReplicatorG plugin that sniffs all data during the print-
ing process, for instance, the extruder temperature, the platform temperature, all
the extruder movements or the 3D model itself in STL format. To gather further
information about the socio-material context, they set up an Arduino board with
different sensors for measuring e.g. the temperature, brightness, humidity and
vibration (Fig. 5). The end users further deployed the webcam to monitor the
printing process, which represents tailoring at the Recomposition/Integration-level.
Further, if a user had added a second printing nozzle to the printer to print

Fig. 5 Arduino for gathering
socio-material context

34 T. Ludwig et al.

3D-models in two different colors, this is an instance of working on the
Extension/Altering level – but we did not reach this state during the study.

To illustrate the different levels on the EUD-system described in Spahn et al.
(2017) we must first go into more detail about the system. One example is an
“employee in the procurement department of [a company]” who “[…] needs to
access certain information related to material many times a day. For instance, he
needs to identify a specific spare part by its material number and finding out about
the quantity currently in stock and the quantity already scheduled for production”
(Spahn et al., 2017). This is the Use-level of the system, where the user just uses
standard functionality of the underlying SAP enterprise resource planning system.
However, the user has some problem when using the system: “To get a first over-
view of the status of the spare part, the employee could determine a rather fixed
set of information which she considers to be highly relevant for her work context.
[…] [This] information is widely spread within the GUI of the SAP ERP application,
and users have to gather it in a cumbersome manner.” These problems constitute an
“infrastructure breakdown” (as described above) – the user is not able to perform the
work task at hand.

In this case, the Parameterization/Customization-level provide by the ERP system
does not help the user in addressing this breakdown as it does now allow GUI custo-
mization to a degree which would allow the user to view all relevant information on
one screen. Spahn et al. (2017) now provide a system for creating widgets shown in
Fig. 6. Using this system, users can use building blocks to create widgets which
allow them to view the information they need. Building and integrating the widgets
takes place on the level of Recomposition/Integration. The Extension/Altering level

Fig. 6 Screenshot of the material lookup widget in design mode (Spahn et al., 2017)

352 A Practice-Oriented Paradigm for End-User Development

would be reached, if the users would change or extend the underlying Java or ABAP
source code to build their own GUIs.

In general, the differences between Use and Parameterization/Customization
are highly contextual, but we make a distinction here for simplicity. It is also
important to note that the same programming language, physical tool or raw mate-
rial can be used in more than one of the tailorability levels as defined by
Henderson and Kyng (1991) and that multiple programming languages, physical
tools and materials can be used on one layer. The obvious advantage is that users
do not need to learn different, maybe more complex tools and (programming)
languages to be able to customize their infrastructure. Each layer grants the user
more opportunities to interact, build and modify, but is more complex. The differ-
ent languages allow the user to switch between metaphors and programming para-
digms. On the “way up,” each layer is slightly more flexible and powerful and
adds possibilities to solve problems in certain ways – but it is also often harder to
learn and use. However, these ways of learning and using strongly dependent of
the end user’s experience.

We thus extended the EUD discourse with a conceptual model that combines
established concepts and our enhanced tailorability mountain with the ideas of infra-
structuring and appropriation support to encompass a practical perspective on all of
the diverse research interests of the EUD community (focusing on a software as well
as hardware ecosystem). We have dubbed this model the “EUD pyramid” (Fig. 7).

This EUD pyramid shows how different kinds of tools correspond to the tasks
that can be accomplished using those tools. The top level, “Practice,” signifies a sin-
gle task that a user might perform, such as 3D printing or performing ERP tasks. As
Nardi (1993) notes, EUD enables a user to accomplish a specific task that he or she
could not otherwise do (or do as well) without programming. In our definition, this
is not only true for software and programming, but for tools generally. EUD enables
users (of tools) to accomplish a specific task that they could not otherwise do (or do
as well) without using more general purpose tools. EUD accomplishes this often-
times by providing domain specific tools in the form of software. These where devel-
oped e.g. for the domain of enterprise systems (Spahn, Dörner, & Wulf, 2008),
groupware (Wulf, 1999) or research (Dax et al., 2015). Others aim to be useful in
many domains (Ardito et al., 2014; Mørch et al., 2004).

Practice

A
bs

tra
ct

io
n

fr
om

 P
ra

ct
ic

e

Domain Specific
Tool

General Purpose Tool

Application Domain

Fig. 7 The end-user devel-
opment pyramid

36 T. Ludwig et al.

As an example which illustrates the different levels of the pyramid, we can con-
sider a simple image editor. In the case of the image editor, a practice might be
drawing a house. The second level, “Domain Specific Tool,” corresponds to a
group of related tasks, which are all the tasks that an image editor enables an end
user to do (e.g. clicking on a house button or using lines and squares). The lowest
level, “General Purpose Tool,” corresponds to all the tasks that the computer can
generally do.

Another (no software-related) example for the different levels of the pyramid is
the practice of cutting out cookies from dough. A domain specific tool for cutting
the dough is a cookie cutter. A general-purpose tool which can serve the same
function is a knife. The knife can be used for many more applications then cutting
cookies, but it is harder to cut a snowman shape with a knife then with a
snowman-shaped cookie cutter. Keeping such broader ways of thinking in mind,
the pyramid becomes increasingly generic in nature from top to bottom (i.e. from
a domain expert’s viewpoint); from bottom to top, it becomes more domain speci-
fic (i.e. from a professional programmer’s perspective). Using the above example
of drawing a house, the top level is concerned with one concrete instance of a
house; in the middle level, the “first-class objects” are lines or shapes in general;
and on the lowest level, the tool is completely agnostic to the application. In other
words, the tools are increasingly abstracted from the domain of interest to the end
user at the bottom of the pyramid.

Based on such an extended (more general) conceptualization, we define a
practice-oriented and more inclusive understanding of EUD as follows: “end-user
development occurs whenever an end user has to switch to a more abstract level,
which is further away from his/her, practice to fulfill a specific task.” The moment
of recognizing that an end user has to switch to a lower (more abstract) level of
practice (and therefore become an end-user developer) is usually driven by a PoI.
The context is important within our understanding, as EUD strongly depends on
an end user’s knowledge about the system itself. The same activity may constitute
EUD for one user but just be “normal use” for another. Engaging in EUD means
climbing the tailorability mountain – or in our words the tailorability staircase –
and therefore switching to a more abstract level of practice.

5 Conclusion and Outlook

We have described the concepts of the gentle slope, language layering and appro-
priation and applied these definitions to EUD activities beyond software-related
ecologies and programming. We discussed these concepts in the contexts of
appropriation and infrastructuring. Based on two examples (Ludwig, Boden, et al.,
2017; Spahn et al., 2017), we applied these concepts to the practical experiences
we gained over the last years to derive an extended understanding of EUD. Of
course, our conceptually extended understanding of EUD has also some draw-
backs and limitations and there are still open research questions.

372 A Practice-Oriented Paradigm for End-User Development

A gentle slope is more pleasant to climb than a steep one, but a steep slope
provides a shorter path to the top. If the tools at the foot of the mountain (i.e. a
domain-specific visual language) stop providing value to people who have
mastered the tools at the top (i.e. Java), those individuals have wasted time in
learning things they are never going to use again. Moreover, if each layer is more
powerful than the one before, why should users not always utilize the most power-
ful tool they have mastered? This question has to be answered by providing EUD
tools that are so well suited to their specific tasks or practices that they are easier
to use than the more general-purpose ones – even for users who have already
mastered those more abstract tools.

Another related drawback is that switching between layers that use different
paradigms and metaphors requires re-learning. This drawback is connected
with an increasing need for abstractions. While abstractions are generally
preferable as they hide underlying details, and allow users to interact on a level
closer to their practices, coming up with appropriate abstractions that work and
do not “leak” their underlying implementation is challenging. Leaking the
underlying levels is problematic as it requires the end-user developer to under-
stand not only the current layer but also underlying ones. This is contrary to
the core idea of gentle slope of complexity, where uses do not have to under-
stand the whole system to modify it. Abstraction is always a tradeoff between
flexibility and tailorability as well as between complexity and often also
performance.

With regard to our notion of infrastructuring informed EUD more research is
needed to understand how to support both infrastructuring activities and appropria-
tion from an end-user perspective. How could designers and professional program-
mers anticipate functionality for appropriation practices that are needed at a later
time? Indeed, a discourse on how to support appropriation infrastructures already
exists (e.g. Draxler & Stevens, 2011; Pipek & Wulf, 2009; Stevens, 2009;
Stevens, Pipek, & Wulf, 2010); however, related studies deal with handling the
software tool instead of the entire set of development practices.

Another open research question focuses on how to support cooperative
approaches to allow end-user developers to cooperatively climb the gentle slope
of complexity. Appropriation encompasses highly cooperative activities, but how
to integrate the cooperation and learning between end users into the development
process also remains an open question. First attempts for example were made by
Ludwig, Schneider, and Pipek (2017) who apply the concepts of collaborative
visualization to integrate end users into development practices.

A last open issue focuses on the applicability of EUD in the “Internet of things”
era (Markopoulos, Nichols, Paternò, & Pipek, 2017; Paternò & Santoro, 2017).
Although our understanding provides space for the interweaving of digital and
physical technology, new EUD technologies are needed to be considered and
adapted to new ways of emerging development. In this context, initial approaches
are already aiming to conceptualize hardware-related appropriation infrastructures
(Ludwig, Boden, et al., 2017; Ludwig et al., 2014) and moving towards an
Internet of Practices (Ludwig, Tolmie, et al., 2017).

38 T. Ludwig et al.

References

Ardito, C., Francesca Costabile, M., Desolda, G., Lanzilotti, R., Matera, M., Piccinno, A., et al.
(2014). User-driven visual composition of service-based interactive spaces. Journal of Visual
Languages and Computing, 25(4), 278–296. doi:10.1016/j.jvlc.2014.01.003.

Balka, E., & Wagner, I. (2006). Making things work: dimensions of configurability as appropria-
tion work. In Proceedings of the 2006 20th anniversary conference on computer supported
cooperative work (pp. 229–238). ACM. doi:10.1145/1180875.1180912.

Burnett, M.M., & Scaffidi, C. (2013). End-user development. In The Encyclopedia of Human-
Computer Interaction, 2nd Ed. Retrieved from https://www.interaction-design.org/encyclopedia/
end-user_development.html.

Cabitza, F., & Simone, C. (2017). Malleability in the hands of end users. In F. Paternò &
V. Wulf (Eds.). New perspectives in end-user development (pp. 137–164). Cham: Springer.

Costabile, M. F., Fogli, D., Mussio, P., Piccinno, A. (2006). End-user development: the software
shaping workshop approach. End User Development, 183–205.

Dalton, N., MacKay, G., Holland, S. (2012). Kolab: appropriation & improvisation in mobile
tangible collaborative interaction. Proceedings of the designing interactive systems confer-
ence (pp. 21–24). Newcastle: ACM New York. doi:10.1145/2317956.2317960.

Dax, J., Ludwig, T., Meurer, J., Pipek, V., Stein, M., Stevens, G. (2015). FRAMES - a frame-
work for adaptable mobile event-contingent self-report studies. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) (vol. 9083). doi:10.1007/978-3-319-18425-8_10.

de Souza, C. S. (1993). The semiotic engineering of user interface language design. International
Journal of Man-Machine Studies, 39, 753–773. doi:10.1006/imms.1993.1082.

de Souza, C. S. (2017). Semiotic engineering: a cohering theory to connect EUD with HCI,
CMC and more. In F. Paternò & V. Wulf (Eds.). New perspectives in end-user development
(pp. 269–306). Cham: Springer.

Dourish, P. (1999). Software infrastructures (ed. Beaudouin-Lafon, M.). Computer Supported
Co-operative Work. Retrieved from https://www.lri.fr/~mbl/Trends-CSCW/references.html.

Dourish, P. (2003). The appropriation of interactive technologies: some lessons from placeless docu-
ments. Computer Supported Cooperative Work, 12(4), 465–490. doi:10.1023/A:1026149119426.

Draxler, S., & Stevens, G. (2011). Supporting the collaborative appropriation of an open software
ecosystem. Computer Supported Cooperative Work, 20(4–5), 403–448. doi:10.1007/s10606-
011-9148-9.

Draxler, S., Stevens, G., Stein, M., Boden, A., Randall, D. (2012). Supporting the social context
of technology appropriation: on a synthesis of sharing tools and tool knowledge. In
Proceedings of the 2012 ACM annual conference on human factors in computing systems –
CHI ’12 (pp. 2835–2844). doi:10.1145/2207676.2208687.

Edwards, W. K., Newman, M. W., Poole, E. S. (2010). The infrastructure problem in HCI.
Proceedings of the conference on human factors in computer systems (CHI) (pp. 423–432).
Atlanta, GA: ACM.

Fischer, G., Fogli, D., Piccinno, A. (2017). Revisiting and broadening the meta-design frame-
work for end-user development. In F. Paternò & V. Wulf (Eds.). New perspectives in end-user
development (pp. 61–98). Cham: Springer.

Henderson, A., & Kyng, M. (1991). There’s no place like home: continuing design in use. In
J. Greenbaum & M. Kyng (Eds.), Design at work cooperative design of computer systems
(pp. 219–240). Lawrence Erlbaum Associates. Retrieved from http://books.google.co.kr/
books?hl=ko&lr=&id=BCGM7GQFyqYC&oi=fnd&pg=PA219&dq=There’s+no+place+like
+home&ots=BghnneB4l0&sig=WdDuQAUfHZ6jfWoLQEQ2V6p-lYo.

Jochimsen, R. (1966). Theorie der Infrastruktur, Grundlagen der marktwirtschaftlichen
Entwicklung. Tübingen: J. C. B. Mohr. (Paul Siebeck).

Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., et al. (2011). The
state of the art in end-user software engineering. ACM Computing Surveys, 43(3), 1–44.

392 A Practice-Oriented Paradigm for End-User Development

http://dx.doi.org/10.1016/j.jvlc.2014.01.003
http://dx.doi.org/10.1145/1180875.1180912
https://www.interaction-design.org/encyclopedia/end-user_development.html
https://www.interaction-design.org/encyclopedia/end-user_development.html
http://dx.doi.org/10.1145/2317956.2317960
http://dx.doi.org/10.1007/978-3-319-18425-8_10
http://dx.doi.org/10.1006/imms.1993.1082
https://www.lri.fr/~mbl/Trends-CSCW/references.html
http://dx.doi.org/10.1023/A:1026149119426
http://dx.doi.org/10.1007/s10606-011-9148-9
http://dx.doi.org/10.1007/s10606-011-9148-9
http://dx.doi.org/10.1145/2207676.2208687
http://books.google.co.kr/books?hl=ko&lr=&id=BCGM7GQFyqYC&oi=fnd&pg=PA219&dq=There�s+no+place+like+home&ots=BghnneB4l0&sig=WdDuQAUfHZ6jfWoLQEQ2V6p-lYo
http://books.google.co.kr/books?hl=ko&lr=&id=BCGM7GQFyqYC&oi=fnd&pg=PA219&dq=There�s+no+place+like+home&ots=BghnneB4l0&sig=WdDuQAUfHZ6jfWoLQEQ2V6p-lYo
http://books.google.co.kr/books?hl=ko&lr=&id=BCGM7GQFyqYC&oi=fnd&pg=PA219&dq=There�s+no+place+like+home&ots=BghnneB4l0&sig=WdDuQAUfHZ6jfWoLQEQ2V6p-lYo

Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=703416
36&site=ehost-live.

Kubitza, T., & Schmidt, A. (2015). Towards a toolkit for the rapid creation of smart environ-
ments. In P. Díaz, V. Pipek, C. Ardito, C. Jensen, I. Aedo, A. Boden (Eds.), End-user
development SE – 21 (vol. 9083, pp. 230–235). Springer International Publishing.
doi:10.1007/978-3-319-18425-8_21.

Lieberman, H., Paternò, F., Klann, M., Wulf, V. (2006). End-user development: an emerging
paradigm. End User Development SE - 1, 9, 1–8. doi:10.1007/1-4020-5386-X_1.

List, F. (1841). Das nationale System der politischen Ökonomie. Stuttgart: Cotta Verlag.
Ludwig, T., Boden, A., Pipek, V. (2017). 3D printers as sociable technologies: taking appropria-

tion infrastructures to the internet of things. ACM Transactions on Computer-Human
Interaction (TOCHI), 24(2).

Ludwig, T., Schneider, K., Pipek, V. (2017). Integration of empirical study participants into
mobile data analysis through information visualization. In Proceedings of the international
symposium on end-user development (IS-EUD). Lecture notes in computer science.
Eindhoven: Springer.

Ludwig, T., Stickel, O., Boden, A., Pipek, V. (2014). Towards sociable technologies: an empiri-
cal study on designing appropriation infrastructures for 3D printing. In Proceedings of DIS14
designing interactive systems (pp. 835–844). Canada: Vancouver. doi:10.1145/2598510.2598528.

Ludwig, T., Tolmie, P., Pipek, V. (2017). From the internet of things to an internet of practices.
In Proceedings of 15th European conference on computer-supported cooperative work –
exploratory papers. Sheffield: Reports of the European Society for Socially Embedded
Technologies. doi:10.18420/ecscw2017-10.

Mackay, W. E. (1990). Patterns of sharing customizable software. In Proceedings of the 1990 ACM
conference on computer-supported cooperative work (pp. 209–221). Los Angeles, CA: ACM
New York. doi:10.1145/99332.99356.

MacLean, A., Carter, K., Lövstrand, L., Moran, L. (1990). User-tailorable systems: pressing the
issues with buttons. In Proceedings of the Conference on Human Factors in Computer
Systems (CHI) (pp. 175–182). Seattle, Washington: ACM New York.

Markopoulos, P., Nichols, J., Paternò, F., Pipek, V. (2017). Editorial: end user development for
the internet of things. Transactions on Human Computer Interaction (ToCHI), 24(2).

Monteiro, E., Pollock, N., Hanseth, O., Williams, R. (2013). From artefacts to infrastructures.
Computer Supported Cooperative Work: The Journal of Collaborative Computing (JCSCW),
22(4), 575–607. doi:10.1007/s10606-012-9167-1.

Mørch, A. (1997). Three levels of end-user tailoring: customization, integration, and extension.
In M. Kyng & L. Mathiassen (Eds.). Computers and design in context (pp. 51–76).
Cambridge, MA: MIT Press. Retrieved from http://dl.acm.org/citation.cfm?id=270318.270321.

Mørch, A. I., Stevens, G., Won, M., Klann, M., Dittrich, Y., Wulf, V. (2004). Component-based
technologies for end-user development. Communication ACM, 47(9), 59–62. doi:10.1145/
1015864.1015890.

Nardi, B. A. (1993). A small matter of programming: perspectives on end user computing.
SIGCHI Bulletin 26. doi:10.1145/191642.1047947.

Paternò, F. (2013). End user development: survey of an emerging field for empowering people.
ISRN Software Engineering, 2013, 1–11. doi:10.1155/2013/532659.

Paternò, F., & Santoro, C. (2017). A design space for end user development in the time of the
internet of things. In F. Paternò & V. Wulf (Eds.). New perspectives in end-user development
(pp. 43–60). Cham: Springer.

Pipek, V. (2005). From tailoring to appropriation support: negotiating groupware usage.
University of Oulu. Retrieved from http://herkules.oulu.fi/isbn9514276302/isbn9514276302.pdf.

Pipek, V., & Wulf, V. (2009). Infrastructuring: toward an integrated perspective on the design
and use of information technology. Journal of the Association for Information Systems
(JAIS), 10(5), 447–473.

40 T. Ludwig et al.

http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=70341636&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=70341636&site=ehost-live
http://dx.doi.org/10.1007/978-3-319-18425-8_21
http://dx.doi.org/10.1007/1-4020-5386-X_1
http://dx.doi.org/10.1145/2598510.2598528
http://dx.doi.org/10.18420/ecscw2017-10
http://dx.doi.org/10.1145/99332.99356
http://dx.doi.org/10.1007/s10606-012-9167-1
http://dl.acm.org/citation.cfm?id=270318.270321
http://dx.doi.org/10.1145/1015864.1015890
http://dx.doi.org/10.1145/1015864.1015890
http://dx.doi.org/10.1145/191642.1047947
http://dx.doi.org/10.1155/2013/532659
http://herkules.oulu.fi/isbn9514276302/isbn9514276302.pdf

Rode, J., Rosson, M. M. B., Pérez Quinones, M. A. (2006). End user development of web appli-
cations. End User Development, 161–182. doi:10.1007/1-4020-5386-X.

Spahn, M., Dax, J., Yetim, F., Pipek, V. (2017). Enabling users of enterprise systems to mashup
resources and develop widgets. In V. Wulf, V. Pipek, D. Randall, M. Rohde, K. Schmidt,
G. Stevens (Eds.), Socio informatics – a practice-based perspective on the design and use of
IT artefacts. Oxford University Press.

Spahn, M., Dörner, C., Wulf, V. (2008). End User Development of Information Artefacts: A
Design Challenge for Enterprise Systems. Proceedings of European Conference on
Information Systems (ECIS). 190.

Spahn M., Wulf V. (2009). End-User Development of Enterprise Widgets. In: Pipek V., Rosson
M.B., de Ruyter B., Wulf V. (eds). End-User Development. IS-EUD 2009. Lecture Notes in
Computer Science, (vol. 5435, pp. 106–125). Springer, Berlin, Heidelberg.

Star, S. L., & Ruhleder, K. (1996). Steps toward an ecology of infrastructure: design and access
for large information spaces. Information Systems Research, 7(1), 111–134. doi:10.1287/
isre.7.1.111.

Stevens, G. (2009). Understanding and designing appropriation infrastructures: artifacts as
boundary objects in the continuous software development. University of Siegen. Retrieved
from http://dokumentix.ub.uni-siegen.de/opus/volltexte/2010/433/.

Stevens, G., & Pipek, V. (2017). Making use: understanding, studying, and supporting appropria-
tion. In V. Wulf, V. Pipek, D. Randall, M. Rohde, K. Schmidt, G. Stevens (Eds.), Socio
informatics – a practice-based perspective on the design and use of IT artefacts. Oxford
University Press.

Stevens, G., Pipek, V., Wulf, V. (2009). Appropriation infrastructure: supporting the design of
usages. In B. De Ruyter, V. Pipek, M. B. Rosson, V. Wulf (Eds.). Proceedings of the 2nd
international symposium on end-user development (vol. 5435/2009, pp. 50–69). Heidelberg:
Springer. doi:10.1007/978-3-642-00427-8.

Stevens, G., Pipek, V., Wulf, V. (2010). Appropriation infrastructure: mediating appropriation
and production work. Journal of Organizational and End User Computing, 22(2), 58–81.
doi:10.4018/978-1-4666-0140-6.ch012.

Tanenbaum, A.S. (2002). Computer networks (4th Edition). Prentice Hall. Upper Saddle River,
New Jersey.

Won, M., Stiemerling, O., Wulf, V. (2006). Component-based approaches to tailorable systems.
End User Development SE – 6, 9, 115–141. doi:10.1007/1-4020-5386-X_6.

Wulf, V. (1999). “Let’s see your search-tool!”—collaborative use of tailored artifacts in groupware.
In GROUP (pp. 50–60). Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=
pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=8290831043742281329related:cS4KV-
jyDnMJ.

Wulf, V., Pipek, V., Won, M. (2008). Component-based tailorability: enabling highly flexible
software applications. International Journal of Human-Computer Studies., 66(1), 1–22.
doi:10.1016/j.ijhcs.2007.08.007.

412 A Practice-Oriented Paradigm for End-User Development

http://dx.doi.org/10.1007/1-4020-5386-X
http://dx.doi.org/10.1287/isre.7.1.111
http://dx.doi.org/10.1287/isre.7.1.111
http://dokumentix.ub.uni-siegen.de/opus/volltexte/2010/433/
http://dx.doi.org/10.1007/978-3-642-00427-8
http://dx.doi.org/10.4018/978-1-4666-0140-6.ch012
http://dx.doi.org/10.1007/1-4020-5386-X_6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=8290831043742281329related:cS4KV-jyDnMJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=8290831043742281329related:cS4KV-jyDnMJ
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=8290831043742281329related:cS4KV-jyDnMJ
http://dx.doi.org/10.1016/j.ijhcs.2007.08.007

A Design Space for End User Development in
the Time of the Internet of Things

Fabio Paternò and Carmen Santoro

Abstract This paper discusses the issues raised by the Internet of Things for end
user development of interactive applications, and how they can be addressed. In
such technological setting, applications have to adapt to various types of contex-
tual events, which can be related to users, devices, environments, and social rela-
tionships. This calls for environments supporting the development of applications
able to cope with dynamic sets of people, objects, devices, and services.
The article discusses the characterizing concepts of such environments and their
underlying motivations by analysing various solutions proposed to support them
and their main design issues. We describe the relevant concepts and discuss how
to make them understandable by people without programming experience. One
result of this work is a design space, which identifies the main features that should
be addressed to support Internet of Things applications using EUD approaches.
Such a design space can be used as the basis for comparative discussion amongst
various approaches. The analysis provided can also inform the design and devel-
opment of new tools, and stimulate discussion on current research challenges.

Keywords End user development · Internet of Things · context-dependent
applications

1 Introduction

The design and development of flexible software able to match the many possible
users’ needs is a difficult challenge. One of the main problems is that it is almost
impossible to identify all the requirements at design time, since they are often not
static (user needs are likely to change over time), and designers also have to

F. Paternò (✉) · C. Santoro
CNR-ISTI, HIIS Laboratory, Pisa, Italy
e-mail: fabio.paterno@isti.cnr.it

C. Santoro
e-mail: carmen.santoro@isti.cnr.it

43© Springer International Publishing AG 2017
F. Paternò, V. Wulf (eds.), New Perspectives in End-User Development,
DOI 10.1007/978-3-319-60291-2_3

consider the wide variability of the possible contexts of use. In recent years, the
explosion of mobile and Internet of Things technologies has made it possible for
people to access their applications from a variety of contexts of use. In this
scenario, it is nearly impossible for professional designers and developers to guar-
antee a good fit between the initially designed system and the actual user needs at
any given time. As a result, it is important to design software through methods
and tools capable of dynamically and quickly responding to new requirements
without spending vast amounts of resources, and able to consider that boundaries
between design-time and run-time have become more and more blurred.

End User Development (EUD) is a research field that focuses on enabling peo-
ple who are not professional developers to design or customize their interactive
applications (Lieberman, Paternò, Klann, & Wulf, 2006). Indeed, nowadays users
are becoming ever more familiar with ICT technology and they are increasingly
capable of using existing tools to create simple applications by themselves.
However, since such people usually lack the training of professional software
developers, it is simply not possible to use traditional programming environments
and methodologies for software development.

The topics related to EUD have already been investigated to some extent in
recent years, however, up to a few years ago the main EUD approaches have
mainly considered desktop-based applications, such as spreadsheets, unable to
adapt to the changing context of use (Paternò, 2013). Only recently have some
proposals been put forward to address EUD through mobile technologies.
However, the Internet of Things (Atzori, Iera, & Morabito, 2010) introduces
further issues such as the need to design how to react to dynamic events that can
be generated through a variety of sensors, objects, services, and devices.

If we want to find some relevant aspects in the early end-user development litera-
ture before such technology was available, we should look at environments that
allowed developers to consider highly interactive applications. In such cases, events
were related to user interactions and application functionalities. Alice1 is a good
example of this type of environment. It supports end user development of 3D anima-
tions. In particular, it allows users to access lists of events corresponding to user
interactions or some specific animation state and indicate what the corresponding
event handler should be. HANDS (Pane, Myers, & Miller, 2002) is an environment
with similar goals, more oriented to children. It uses the cards metaphor: all objects
in HANDS are represented by cards, which have user-defined properties, while the
program execution, that is, the manipulation of cards, is represented by an agent.
HANDS allows users to select one event from seven predefined event types and indi-
cate the corresponding actions for which it provides some possible operations
(“Add,” “Sorted,” “Sum,” “Greatest_Item,” etc…). These two important contribu-
tions were designed for development in desktop systems and did not consider the
variety of events that can be triggered in modern ubiquitous settings.

In the Internet of Things (IoT) vision, “smart” physical objects are networked
together, able to interact and communicate with each other, with human beings and/or

1http://jupiter.plymouth.edu/∼wjt/foundations/alice/Alice05.pdf

44 F. Paternò and C. Santoro

http://jupiter.plymouth.edu/∼wjt/foundations/alice/Alice05.pdf

with the environment to exchange data and information “sensed” about the environ-
ment, reacting autonomously to events in the physical world, and influencing it by
running processes that trigger actions and perform services. According to Gartner,2

there will be nearly 26 billion devices on the Internet of Things by 2020. In this sce-
nario, immense amounts of data can be generated by sensor and communication
infrastructures that are growing by orders of magnitude, and IoT applications need to
address extremely contextualized user needs. Indeed, one of the primary concerns of
IoT is the heterogeneity of devices, sensors, actuators, and services involved in the
relevant domains. EUD foresees the use of meaningful logical abstractions and meta-
phors to abstract out low-level details and make users focus only on relevant aspects,
thus facilitating the participation of end-users in the development process.

In order to support EUD of Internet of Things-enabled context-dependent
applications we need to consider that context can vary on aspects related to users
(e.g. tasks, preferences, emotional state), technology (e.g. devices, modalities sup-
ported, connectivity), environment (e.g. light, noise, place), and social aspects
(e.g. networks, social relationships), and only end users can know the most appro-
priate ways their applications should react to contextual events. However, to reach
such a broad audience of users, authoring environments should be almost transpar-
ent to them, presenting a very low threshold to get started, while allowing users to
attain high value and even complexity of the software they create or customize. In
this way it would be possible to avoid the need to involve in the process people
with high developer skills, with the benefit of faster development, better control
over the application functionality and improved user experience.

EUD is expected to bring several benefits to the IoT domain. Indeed, giving
end-users the adequate tools to create IoT applications is a way to ensure that peo-
ple’s needs will be adequately addressed, and it is also a way to shift innovation
from software companies to end users. In addition, EUD foresees the use of intui-
tive abstractions and metaphors to reduce the cognitive burden associated to hand-
ling the multitude and heterogeneity of things, devices, sensors, actuators, services
involved in IoT-related domains, and thus support more easily end-user participa-
tion in the development process. Furthermore, the use of meaningful abstractions
in EUD, in terms of relevant concepts, metaphors, programming styles, vocabul-
aries and intuitive notations should allow different stakeholders (e.g. professional
software developers, domain experts, and users) to comprehensively handle the
system and also to communicate ideas and concepts. Moreover, EUD is expected
to allow users to do more (and more easily) with their existing devices and things
within their homes or at work: in other words, EUD for IoT should allow for
higher control, more confidence, and better personalisation support. Considering
that IoT spams a disparate range of domains, this approach will be key to support
the long tail of requirements of IoT end user developers.

In this paper we first discuss metaphors and programming styles for EUD, in
particular those more relevant in the IoT field, also providing a discussion of
research work that have exploited them. Next we move on to present the proposed

2http://www.gartner.com/newsroom/id/2684616

453 A Design Space for End User Development in the Time of the Internet of Things

http://www.gartner.com/newsroom/id/2684616

design space, which can be used for comparative analysis. Lastly, we draw some
conclusions and mention potential areas that can be object of future research.

2 Metaphors and Programming Styles

We identified two levels for classifying the various techniques that have been
mainly used so far in the EUD-related area. One level is represented by metaphors,
i.e. concepts which do not have any specific connections with the programming
world, but rather have a precise meaning in the real world. As such, metaphors’
meaning is generally quite familiar to generic users who, by analogy, apply and
transfer to the development world the knowledge that the metaphor concept has in
the real world. In this way, metaphors provide users with easily understandable cog-
nitive hints expected to facilitate the creation or customisation of an application by
decreasing the learning effort needed by a non-professional user to manipulate
programming concepts and artefacts. For instance, using the jigsaw metaphor each
software component is seen as a piece of a puzzle and the shapes of the various
pieces provide the cognitive hints needed to understand the possible compositions.

The second level identified − programming styles − is more connected with
the programming world and with the need to identify specific interaction paradigms
and programming techniques aimed at making end user development easier. At this
level we included programming by example, trigger-action –based approaches,
natural language techniques, spreadsheets, mashups, mock-up –based and tangible
programming techniques. It is worth noting that neither level is specific to IoT and,
as such, such techniques could be applied to different domains. In the following
sections we analyse work in the state of the art which exploited the above concepts,
with particular attention to application to the IoT domain (Fig. 1).

2.1 Metaphors

Various metaphors have been considered in this area, Davidyuk, Sanchez, Gilman,
and Riekki (2015) discuss the use of some of them. Using the pipeline metaphor,
applications are represented graphically as directed graphs where nodes correspond
to elementary services or activities, and links (i.e. pipelines) connect them.
Pipelines can also be organized in complex structures, for example by using logic
binary operators connecting nodes, and they can have various implementations
depending on how such nodes are represented. Often they are rendered through
icons associated with high-level functionalities, with some output and input ports
representing the input and the output data, and the application development mainly
consists in indicating from where such functionalities receive input and where they
send the results of their processing. Realinho, Romão, and Dias, (2012) have
proposed IVO (Integrated Virtual Operator), an event-driven workflow/pipeline
framework for allowing end users to develop context-aware mobile applications.

46 F. Paternò and C. Santoro

Using IVO, users build such applications by creating workflows that determine the
application behaviour when a specified context is detected. An IVO application is
therefore described as a set of workflows that are triggered when some contexts are
checked. The workflows are created by combining the available building blocks,
which represent the various actions that can be performed by an application. The
pipeline metaphor is a visual paradigm which allows for modelling the behaviour of
complex applications. However, despite its expressiveness, the use of this metaphor
can be problematic when the number of graphical elements and their connections
increases, thereby making the resulting diagram difficult to interpret.

In the jigsaw puzzle metaphor, each software component is seen as a piece of
a puzzle and the shapes of the various pieces provide the cognitive hints needed to
understand the possible compositions. Thus, non-expert users can easily associate
each puzzle piece with the component it represents. This metaphor has been used
in various environments. First, Scratch3 proposed it for supporting children in
learning programming concepts, in particular in creating interactive applications
with multimedia content. AppInventor4 then exploited such metaphor to support
the development of functionalities triggered by events in an app user interface.
While this metaphor supports more complex configurations than the pipeline

Metaphors

Cards

Jigsaw

Pipelines

Rules

Lego
Tangible

Spreadsheet

Natural Language

Mashup

Trigger
Action

Trigger-Action

Mock-up

Programming-by-example

Timeline

Programming styles

Fig. 1 Metaphors and programming techniques considered in EUD approaches

3http://scratch.mit.edu
4http://appinventor.mit.edu/explore/

473 A Design Space for End User Development in the Time of the Internet of Things

http://scratch.mit.edu
http://appinventor.mit.edu/explore/

metaphor, one disadvantage is that it has limited expressiveness. Indeed, the pieces
of the puzzle have a limited number of interfaces (i.e. sides), thereby restricting
the set of possible programming expressions. While in Scratch and AppInventor
puzzles pieces are used to represent low-level programming constructs, in Puzzle
(Danado & Paternò, 2014), they have been exploited to support development of
Internet of Things applications on smartphones: the elements are associated with
high-level functionalities that can also control actuators. Thus, Puzzle has been
designed to facilitate the composition of various pieces through a touch interface for
a screen with limited size. Each puzzle piece represents a high-level functionality
that can be composed, and its shape and colours indicate the number of inputs and
outputs, as well as the information type they can communicate. Thus, the tool pro-
vides a usable solution but it is limited to the composition of functionalities for
which a puzzle piece has been provided. A similar approach has been investigated
also in MicroApp (De Lucia, Francese, Risi, & Tortora, 2012), which exploits gra-
phical composition of common functionalities offered by phone applications, such
as taking an image through the camera and saving it, retrieving the contact list, and
sending an email. However, in order to work it requires each action or service to
expose a description that enables automatically generating the MicroApp puzzle-
based user interface. Among commercial systems, Zipato5 exploits the jigsaw meta-
phor for rule composition. A variation of the jigsaw metaphor is the tile-based
approach (Cavallaro, Nitto, Furia, & Pradella, 2010), which allows building pro-
grams by combining graphical units (tiles). Although each tile can be combined
only with other specific tiles, the shapes of the tiles do not limit the connections.
Another variation of the jigsaw metaphor is the join-the-dots metaphor, where the
editing canvas presents a set of individual devices that are available in the environ-
ment. Each device is shown as the centre of a cluster, while the surrounding nodes
represent services accessible from the environment. Users create compositions by
linking one service to the desired destination device. This metaphor has been applied
in the editor of the Platform Composition prototype (Pering, Want, Rosario, Sud, &
Lyons, 2009). The main advantages of this metaphor is the simplicity of its visual
representation, as only services and devices available for composition are visualized.

Timeline is another relevant metaphor that has been considered in the EUD area.
It basically provides a temporal reference along which events/objects are aligned, so
helping in organising relevant information in a chronological order. Timelines are
typically represented by a line on which various elements are graphically positioned,
thus, in timelines temporal relationships (between e.g. events) are basically repre-
sented as spatial relationships. TagTrainer (Tetteroo et al., 2015) is an approach
exploiting timelines for EUD. TagTrainer enables caregivers to develop rehabilita-
tion exercises for patients with hand or arm mobility problems based on the manipu-
lation of everyday objects. It is designed to create training programs consisting of
sequential activities: the workspace located in the center of the screen displays a
timeline containing the sequence of all actions associated with the objects involved

5www.zipato.com

48 F. Paternò and C. Santoro

http://www.zipato.com

in the exercise, and, depending on the selected action (e.g. “Place object”), a window
on the right side gives the possibility to specify relevant properties, such as the exact
location where the object has to be placed at a given time.

Rules represent another used metaphor in the EUD area. The underlying idea is
to specify the system behaviour by using a number of if-then statements expres-
sing how the system should behave when specific situations occur. One of the first
proposals using rules for EUD was iCAP (Dey, Sohn, Streng, & Kodama, 2006),
which introduced the possibility to create if-then rules to support personalization
of dynamic access to home appliances. Recently, due to relevancy of contextual
dynamic aspects that can potentially affect the behaviour of applications in IoT-
based environments, rule-based approaches are receiving increasing interest since
end users can easily reason about context and express in rules the desired beha-
viour of their applications by describing how the application should react to speci-
fic events occurring in the context. However, rule-based approaches can become
difficult for non-programmer users when complex rules have to be expressed,
since e.g. a correct formulation of logical expressions implies the knowledge of
some key concepts (e.g. Boolean operators, priority of operators) that could not be
always intuitive for non-professional software engineers. Rules can be realised
using various programming techniques: in TARE (Ghiani, Manca, Paternò, &
Santoro, 2017) rules are expressed using a trigger-action syntax and also by pro-
viding a representation in natural language.

2.2 Programming styles

Spreadsheets have proven enormously popular with personal computer users as
they provide a concrete, visible representation of data values, as well as powerful
features like the possibility to apply formulas to cells, which quickly allow users to
solve simple problems within their domain of interest (Burnett, Yang, & Summet,
2002). However, they do not seem suitable to address more dynamic environments
such as IoT applications.

The programming style based on user interface mock-ups as design tools
(Beaudouin-Lafon & Mackay, 2002) has long been considered due to its intuitive-
ness and effectiveness, and various tools for rapid prototyping for early stages of
design, and iterative and evolutionary prototyping have been proposed. They can
still be useful in IoT domains as well.

One programming style relevant for EUD is based on natural language, a way
of programming using a subset of constructs expressed in natural language which
should model user’s intents. An example approach exploiting this programming
style can be found in the work of Perera, Aghaee, and Blackwell (2015), which
analysed how a natural language approach can support the definition of policies to
manage the home environment. The authors considered the “sticky note” techni-
que for defining the tasks requiring information exchange between IoT appliances
and services. The findings revealed mainly that: the average number of words per

493 A Design Space for End User Development in the Time of the Internet of Things

note was relatively small; people in general adjust their language depending on
the type of addressee (human vs. machine); and their technical background affects
the way users communicate with machines. Natural language has also been
exploited in composition screens, where users are able to specify the connections
of services and devices for concrete applications, such as in the InterPlay proto-
type (Messer et al., 2006). InterPlay relies on visual “verb-object-target” construc-
tions which resemble pseudo-English sentences. Users specify a task by first
selecting a “verb” (i.e. a command), then an “object” (i.e. content) and, finally, a
“target” (i.e. a device). While this approach offers an intuitive user interface, users
are only able to trigger the automated composition of the tasks defined in the sys-
tem at design time. AppsGate (Coutaz & Crowley, 2016) is an EUD prototype
which has been deployed in real domestic environments. Its goal is to support
end-users defining their own semantics concerning the use of devices and ser-
vices available at home. AppsGate consists of a server and a set of Web clients.
The server is structured in two abstraction levels (one application-agnostic and
another one application-specific), and uses OSGi to support the dynamic appear-
ance and disappearance of devices. In order to allow users to express the
intended behaviour, a pseudo-natural language is used to express rules that are
specified in terms of conditionals (which can regard states and events) and
actions. The underlying tool supports a feedforward mechanism to facilitate users
in expressing their rules without being burdened by an excessively complicated
syntax. In addition, AppsGate also analyses the difficult problem of how to sup-
port debugging in EUD environments, by providing the possibility to run pro-
grams using a virtual date and time.

Another relevant approach in this area is represented by tangible interfaces,
where a person interacts with digital information through the physical environment.
An example of tangible interactive environment for EUD is in (Truong, Huang, &
Abowd, 2004), where they used the fridge magnet metaphor: it mimics refrigerator
magnets where the magnets offer a set of words that users can arrange into phrases.
It also provides an interface for automated capture and playback (which allows
users to replay events that were automatically recorded in the home).

From a HCI perspective, mashup refers to a composition of contents and/or fea-
tures from several sources that determines new client-side interactive applications.
For instance, Web mashups can combine data, presentations and functionalities
from different Web sites into a novel, single Web application. Various approaches
have been put forward in this area. The approach illustrated in (Desolda, Ardito,
Matera, & Piccinno, 2015) for mashing up smart things (sensors, actuators) relies
on domain-specific customization of the platform. In mashup approaches the basic
point is to facilitate new compositions amongst existing components, while a more
flexible approach would be to add incrementally new contextual rules for modifying
the original behaviour of the interactive application. In (Aghaee & Pautasso, 2014)
the authors describe the design and evaluation of NaturalMash, an EUD tool for
enabling non-professional users to create mashups by using a subset of natural lan-
guage expressions, which are associated with mashup components beforehand.
They also provided an evaluation in which they compared the expressive power of

50 F. Paternò and C. Santoro

NaturalMash with other state-of-the-art mashup environments, showing that their
tool offers a good level of expressive power compared with other tools.

IoT is characterized by the presence of a variety of sensors in contexts contain-
ing dynamic sets of devices, people, and services. Thus, applications able to exploit
such situations need to be informed of the various changes in order to adapt accord-
ingly. This has stimulated renewed interest in trigger-action programming, an
approach which is mainly based on event-condition-action (ECA) rules. Triggers
can be associated with events and/or conditions. Events are instantaneous changes
that occur at some point, while conditions define specific contextual states. For
example “when the user enters home” is an event since it refers to a state change,
while “when the user is at home” indicates a condition corresponding to the state
associated with the user being at home. Huang and Cakmak (2015) discuss current
Trigger-Action Programming trends and issues. In particular, they found that the
distinction between relevant concepts is a source of problems, since users can have
difficulties interpreting the difference between events and conditions or between the
possible types of actions (for example extended actions, which automatically revert
back to the original state after some time, and sustained actions, which do not revert
to the original state automatically). Misunderstandings can cause undesired beha-
viours (e.g. unlocking doors at the wrong time or causing unintended energy waste).
Lucci and Paternò (2014) have analysed how three Android apps support this type
of programming. Such tools categorize triggers and actions differently according to
users’ objectives. Their analysis indicates further requirements, for example that
EUD tools for IoT should allow the combination of more than one trigger and more
than one action in the same rule.

EUD based on trigger-action rules is expected to allow users to do more (and
more easily) with their existing devices and things by softening the boundaries
between “end users” and “professional developers” as well as between design done
before use and software adaptation done at runtime. By specifying customisation
rules, users should be able to get better personalisation support and more satisfac-
tion in the use of their context-dependent IoT-based applications. This type of
solution can thus contribute to creating technological infrastructures that can suc-
cessfully establish their usage in practise (Pipek and Wulf, 2009) if they are able to
address the specific challenges for obtaining low threshold and high ceiling environ-
ments. In (Ghiani et al., 2017) the authors present TARE (Trigger-Action Rule
Editor), an environment that allows end users to customize the context-dependent
behaviour of their Web applications through the specification of trigger-action rules.
The environment is able to support end-user specification of flexible behaviour,
including an underlying infrastructure able to detect available devices and objects
and possible contextual changes to achieve the desired behaviour. The resulting
environment supports the dynamic creation of application versions more suitable
for specific contexts of use. An example of its use in a real environment (a students’
home) is reported in (Corcella, Manca, and Paternò, 2017).

Another environment that aims to support the development of rule-based reactive
applications is IFTTT. It uses the textual syntax “IF This Than That” to specify the
scheduling of execution of a certain action (That), and the occurrence of a specified

513 A Design Space for End User Development in the Time of the Internet of Things

event (This). Its distinguishing feature is that, besides being able to express
“recipes” that concern and make changes in the hosting device, IFTTT communi-
cates with widely used Web services, thus allowing the automatic execution of
functions related to the internal state of apps such as Facebook, Instagram, Box,
Ebay, YouTube and others. In the mobile version the process of creating a recipe is
done sequentially through some guided steps. A recent study (Ur, McManus, Ho, &
Littman, 2014) found that trigger-action programming can express most desired
behaviour in order to customize smart home devices. They evaluated the uniqueness
of the 67,169 trigger-action programs shared on IFTTT.com, finding that real users
have written a large number of unique trigger-action interactions. Finally, they con-
ducted a 226-participant usability test of trigger-action programming, finding that
inexperienced users can quickly learn to create programs containing multiple trig-
gers or actions obtained by extending the IFTTT language, which has limited possi-
bilities, since it only supports applications with only one trigger and one action.
This shows that this approach seems suitable to support EUD of context-dependent
applications, but needs to be improved in order to allow users to express various
desired combinations of events and corresponding actions. Another interesting point
of (Ur et al., 2014) is that it shows that the approach based on IFTTT can address
emerging Internet of Things (IoT) applications as well. In such applications “smart”
physical objects are thought as networked together, able to interact and communi-
cate with each other, with human beings and/or with the environment to exchange
data and information “sensed” about the environment, and thereby able to react
autonomously to events in the real world, and influence it by running processes that
trigger actions and perform services. The availability of mobile tools to perform
real time checks of the configuration of on-site visual interactive systems is deemed
essential in (Kubitza, Thullner, & Schmidt, 2015) to accelerate the so-called
“change and re-try cycles.” An example tool for configuring smart environments is
described in (Kubitza & Schmidt, 2015). It aims to facilitate physical prototyping
by hiding the complexity that arises when many different technologies are com-
bined together. The tool is structured so as to separate the management of devices,
events and rules, and mainly targets people with some programming experience
since the rules are based on JavaScript.

a CAPpella (Dey, Hamid, Beckmann, Li, & Hsu, 2004) is a desktop tool aiming
to address context-dependent applications. It applies the programming-by-
example style in which the user does not provide the specification of the program
but just furnishes examples of sequences of interactions from which the environ-
ment understands what the corresponding expected general behaviour is. In this
case a user demonstrates context-aware behaviour that includes both a situation and
an associated action, and trains the environment on this behaviour over time by
giving multiple examples. Once the systems has been trained, the user can run the
application, which will then perform the demonstrated action whenever it detects
the demonstrated situation. An attempt to apply the programming-by-example para-
digm to a mobile development environment is “Keep Doing It” (Maues & Barbosa,
2013), which provides the possibility of identifying context-dependent adaptation

52 F. Paternò and C. Santoro

rules in the ECA format according to the history of user interactions. The rules are
represented through a natural language subset using “when,” “if” and imperatives
verbs. An example rule is: “When a wired headset is connected, if my phone is
unlocked, launch the Google Play Music application.” A different application of the
programming-by-example relevant for IoT is Improv (Chen & Lin, 2017), which
aims to support end users in dynamically defining cross-device interactions in order
to leverage the capability of additional devices. Thus, users first demonstrates the
target UI behaviour using the native input on the primary device. Improv parame-
terizes the user-demonstrated behaviour. Then, the user demonstrates the input on
an accessory device, and Improv associates it with the parameterized behaviour so
that the user can obtain the same original application behaviour through the cross-
device interaction demonstrated.

3 Design Space

Based on our analysis of metaphors and programming styles, we have identified a
logical framework to better understand and compare work in this area. It is com-
posed of seven logical dimensions.

• Platforms. The platform supported for the development activities. Traditionally it
has been the desktop, but other platforms are being increasingly considered, e.g.
mobile, even in combination. e.g. desktop and mobile together (Chen & Lin,
2017);

• Domains. An indication of the relevant application domains which the con-
cerned EUD approach can be applied to. The domain can vary depending on
the case; in the IoT area examples of application domains often considered are
home automation, ambient assisted living, rehabilitation;

• Events. In this dimension we consider the types of events that can have an impact
on the behaviour of IoT applications. They can concern not only interaction
events (i.e. events occurring when interacting with the application), but also con-
textual events (i.e. those associated to aspects such as user, technology, surround-
ing environment and social relationships) occurring in the current context of use;

• Metaphors. The metaphor dimension aims to analyse the type of representa-
tions and interactions adopted in order to make intuitive the specification of the
intended application behaviour;

• Programming styles. This dimension refer to the programming techniques
aimed at making end user development easier for the non-professional user.

• Actions. This level describes which type of changes to the application beha-
viour the EUD environment allows. Different types of actions can be identified,
e.g. those performed in appliances (to change the state of actuators), user inter-
face modifications (to change e.g. its presentation, content or navigation),
execution of functionalities (e.g. access to an external service like a weather
forecast service);

533 A Design Space for End User Development in the Time of the Internet of Things

• Event Compositions/Operators. This dimension analyses the possibility to
build composite expressions of events. Events can be combined in various
manners, by using e.g. Boolean operators or temporal operators;

• Action Compositions/Operators. This dimension analyses the possibility to
build composite expressions of actions. Constructs similar to those occurring in
programming languages can be used (e.g. sequence, for, while, if).

Such dimensions can be useful to analyse proposals for EUD environments and
think about possible new solutions. Table 1 provides an example of how our logi-
cal framework can be used to analyse various proposals. For the sake of brevity
we only consider a small set of tools, which have been identified to show different
ways to address the design space dimensions.

The first dimension is dedicated to the platform supported for the development
activities: it can be desktop (as in Alice, HANDS, a CAPpella, TagTrainer) or
mobile devices (as in Keep Doing it) or both (as in Puzzle, IFTTT, TARE,
AppsGate). As for the application domains, some are more oriented to specific
sectors (e.g. HANDS for children’s animations), while others are more general-
purpose (e.g. IFTTT). Regarding the events, all the approaches consider interac-
tion events, whereas much fewer approaches consider the full range of event
types (interaction, user-related, environment-related, technology-related, social
relationships -related), i.e. IFTTT and TARE.

As for the metaphors, the most used approaches for addressing IoT domains
seem the rule-based one (e.g. IFTTT, TARE, AppsGate) for its immediate way to
handle their typical reactive behaviour, and the one based on some subset of natural
language (see e.g. Alice and HANDS) for its intuitiveness. The most used program-
ming styles were natural language (in Alice, HANDS and AppsGate it was used in
an exclusive manner, in TARE it was used in combination with rules), programming
by demonstration (a Cappella, Keep Doing it), and the trigger-action approach
(IFTTT and TARE).

Regarding the range of actions covered by the approaches, it is addressed in a
variety of ways and also depends on the considered application domain: TagTrainer
is focused on rehabilitation exercises, IFTTT allows users to connect to a predefined
set of existing applications, TARE allows the customization of existing Web IoT
Applications, AppGate focuses on the home domain, while KeepDoing it aims to
extend the possibilities of automating smartphones’ tasks. In particular, they cover
the modification of the application UI (Alice, Hands exclusively focus on such
aspects on desktop platforms), but also consider mobile applications (Keep Doing It,
Puzzle), up to covering smart environments and IoT-based settings, especially with
the most recent approaches (see e.g. TARE, TagTrainer andAppsGate).

In addition, the possibility of composing events in EUD environments has been
considered only in a few approaches (a CAPpella, Keep Doing It, TARE and
TagTrainer), where in any case a limited set of Boolean operators among AND,
OR, NOT have been supported. Instead, action composition has been supported in
almost all approaches with a few exceptions (namely: IFTTT and AppsGate).

Looking at this table some observations can be derived, also in terms of poten-
tial areas that require further research in the near future. For example, while all the

54 F. Paternò and C. Santoro

T
ab

le
1

A
na
ly
si
s
of

re
la
te
d
w
or
k
ac
co
rd
in
g
to

th
e
pr
op
os
ed

fr
am

ew
or
k

E
U
D
en
vi
ro
nm

en
t

A
lic
e

H
A
N
D
S

a
C
A
P
pe
lla

K
ee
p
do
in
g
It

P
uz
zl
e

IF
T
T
T

T
A
R
E

T
ag
T
ra
in
er

A
pp
sG

at
e

P
L
A
T
F
O
R
M

D
es
kt
op

D
es
kt
op

D
es
kt
op

M
ob
ile

M
ob
ile
/

D
es
kt
op

M
ob
ile
/

D
es
kt
op

M
ob
ile
/

D
es
kt
op

D
es
kt
op

M
ob
ile
/

D
es
kt
op

D
O
M
A
IN

M
ul
tim

ed
ia

an
im

at
io
ns

M
ul
tim

ed
ia

an
im

at
io
ns

fo
r
ch
ild

re
n

C
on
te
xt
-

de
pe
nd
en
t

be
ha
vi
ou
r

(e
.g
.m

ee
tin

g
ro
om

s)

C
on
te
xt
-

de
pe
nd
en
t

sm
ar
tp
ho
ne

ap
pl
ic
at
io
ns

A
ut
om

at
e

se
qu
en
ce
s
of

ac
tio

ns

C
om

po
si
tio

n
of

va
ri
ou
s

ex
is
tin

g
W
eb

se
rv
ic
es

C
on
te
xt
-

de
pe
nd
en
tW

eb
Io
T

ap
pl
ic
at
io
ns

R
eh
ab
ili
ta
tio

n
H
om

e

E
V
E
N
T
S

In
te
ra
ct
.

In
te
ra
ct
.

In
te
ra
ct
.

In
te
ra
ct
.

In
te
ra
ct
.

In
te
ra
ct
.

In
te
ra
ct
.

In
te
ra
ct
.

In
te
ra
ct
.

T
ec
hn
ol
.

T
ec
hn
ol
.

E
nv
ir
on
.

U
se
r

U
se
r

U
se
r

U
se
r

U
se
r

E
nv
ir
on
.

E
nv
ir
on
.

E
nv
ir
on
.

E
nv
ir
on
.

E
nv
ir
on
.

T
ec
hn
ol
.

T
ec
hn
ol
.

T
ec
hn
ol
.

T
ec
hn
ol
.

T
ec
hn
ol
.

S
oc
ia
l

S
oc
ia
l

M
E
T
A
P
H
O
R

S
to
ry
bo
ar
d

C
ar
ds

T
im

el
in
e

R
ul
es

Ji
gs
aw

R
ul
es

R
ul
es

T
im

el
in
e

R
ul
es

P
R
O
G
R
A
M
M
IN

G
ST

Y
L
E

N
at
ur
al

la
ng
ua
ge

N
at
ur
al

la
ng
ua
ge

P
ro
gr
am

m
in
g

by
de
m
on
st
ra
tio

n
P
ro
gr
am

m
in
g
by

de
m
on
st
ra
tio

n
T
ri
gg
er
-a
ct
io
n

T
ri
gg
er
-a
ct
io
n

+
N
at
ur
al

L
an
gu
ag
e

N
at
ur
al

la
ng
ua
ge

A
C
T
IO

N
S

H
an
dl
er
s

as
so
ci
at
ed

to
in
te
ra
ct
io
n

ev
en
ts

H
an
dl
er
s

as
so
ci
at
ed

to
in
te
ra
ct
io
n

ev
en
ts

S
m
ar
t

en
vi
ro
nm

en
t

ac
tio

ns

S
m
ar
tp
ho
ne

ta
sk
s

A
ct
io
ns

fo
r

ap
pl
ic
at
io
n

U
I,
ob
je
ct
s,

ap
pl
ia
nc
es
,

an
d
de
vi
ce
s.

C
ha
ng
es

in
th
e
de
vi
ce
,

ac
tiv

at
e
W
eb

se
rv
ic
es

an
d

ap
ps

A
ct
io
ns

fo
r

ap
pl
ic
at
io
n
U
I,

ob
je
ct
s,

ap
pl
ia
nc
es
,a
nd

de
vi
ce
s.

E
xe
rc
is
es
/

ac
tio

ns
fo
r

ph
ys
ic
al

ob
je
ct
s

B
eh
av
io
ur

of
de
vi
ce
s
an
d

se
rv
ic
es

av
ai
la
bl
e
at

ho
m
e

E
V
E
N
T
S

C
O
M
P
O
SI
T
IO

N
O
P
E
R
A
T
O
R

A
N
D

A
N
D

N
O
T

A
N
D

O
R

A
N
D

A
C
T
IO

N
S

C
O
M
P
O
SI
T
IO

N
O
P
E
R
A
T
O
R
S

D
o
to
ge
th
er

D
o
to
ge
th
er

If
el
se

W
hi
le

L
oo
p

W
ai
t

A
nd

N
ot

O
r

A
nd

A
nd

L
oo
p

S
eq
ue
nc
e

S
eq
ue
nc
e

553 A Design Space for End User Development in the Time of the Internet of Things

approaches consider interaction events, only a few approaches address (at various
levels) proper contextual events (e.g. those connected with user, environment,
technology, and social aspects). This can be explained with the fact that in the
past the initial focus was mainly limited to the events raised by the interactive
application, while in more recent years the increasing availability and affordability
of various devices and sensing technologies has stimulated the development of
context-dependent applications, whose behaviour can be affected by events occur-
ring in the surrounding context. Therefore, the inclusion of various types of con-
textual events has been mainly considered only in more recent approaches, and
thus a more complete coverage of such events in future work would be advisable.

Regarding the actions, we observe a trend similar to the one identified for
events: initially the focus was on actions just affecting the interactive application;
later on, with the increasing diffusion of IoT technologies and related smart appli-
cations, the focus was extended to include actions controlling not only the applica-
tion but also devices, actuators, physical objects and appliances that can be
available in the considered context.

In addition, apart from a few exceptions, the possibility to compose events and
corresponding actions is generally very limited, some approaches even do not sup-
port their composition at all (as it happens with IFTTT). Therefore, further effort
in enabling end users to specify complex expressions of triggers and actions
should be pursued because this would provide users with the possibility to specify
more flexible behaviours.

However, especially when dealing with complex expressions of triggers (e.g.
events and conditions) and actions, there are further aspects that need to be better
analysed. As it has been previously highlighted (Huang & Cakmak, 2015), rule-
based approaches (and, in particular, trigger-action–based rules) could raise some
ambiguity in the interpretation of rules, due to potential inaccuracies in end users’
mental models. For instance, interpretation problems can occur when it is not clear
whether actions occurring in a rule should be explicitly reverted or not (by using
e.g. another rule) as soon as the involved triggers do not hold anymore. This
requires further analysis and investigation of the different types of triggers and
actions that can be included in complex expressions, in order to avoid such inter-
pretation issues in future EUD tools.

The problem of intuitive composition of logical expressions by end users has
also been studied in (Metaxas & Markopoulos, 2017), where an established theory
of mental models has been used to guide the design of interfaces for natural pro-
gramming so that people can find easy to comprehend and manipulate logical
expressions. According to such mental model theory people find it easier to con-
ceptualize logical statements as a disjunction of conjunctions (an OR of AND’s),
as opposed to other logically equivalent forms. Thus, (Metaxas & Markopoulos,
2017) presented a tool which is expected to facilitate end-users in programming
context-dependent behaviour using quite complex logical expressions. Although
this work represents a useful contribution to facilitate natural programming by
decreasing the cognitive load associated with the specification of complex logical
expressions, further studies are needed to further elaborate on these key aspects.

56 F. Paternò and C. Santoro

Finally, another interesting aspect (yet not fully developed in the EUD area) is
how people can test and possibly assess whether the modified/created behaviour of
the application actually resulted in the expected one. This need is especially relevant
in IoT domains where incorrect behaviour of applications or actuators can eventually
have safety-critical consequences (e.g. in the elderly assistance domain and in the
home domain). If we consider rule-based approaches, a way to reduce the likelihood
of errors in the specification of rules is to allow users to simulate the conditions and
the events that can trigger a rule and the effects that they will bring about. An exam-
ple of this approach can be found in TARE, where users can check the rules (e.g. by
simulating them) in order to identify possible errors or conflicts in their specifica-
tions, or directly execute them in the current context of use. In this way it should be
possible to receive information helpful to find the causes of the undesired behaviour
detected and eventually fix them. However, although debugging support could repre-
sent an important aid for improving the correctness of the resulting applications,
most EUD environments do not include debugging aids for such users (Coutaz &
Crowley, 2016) since for non-professional end users debugging becomes especially
difficult. Therefore, another possible area that can be subject of possible further
investigation is the one dedicated to improve such kind of support in EUD tools.

4 Conclusions

In this paper we have presented a design space, which identifies the main features
that should be addressed to support End User Development for Internet of Things
applications. The presented conceptual framework is useful to facilitate a better
understanding of the important aspects to consider when design EUD environments
for IoT, and can be used as the basis for comparative analysis amongst various
approaches and inform discussion about areas that can be further investigated.

The discussion about solutions for supporting low threshold/high ceiling speci-
fications of events and actions compositions has still some open points, which
require further research work.

Additional aspects that are currently starting to emerge include the possibility
for people to test/simulate the behaviour of the IoT applications obtained with the
EUD tool in order to assess whether it actually results in the expected one, with
the additional possibility to receive information helpful for finding the causes of
any undesired behaviour detected and fixing it.

References

Aghaee, S., & Pautasso, C. (2014). End-user development of mashups with natural mash.
Journal of Visual Languages and Computing, 25(4), 414–432.

Atzori, L., Iera, A., Morabito, G. (2010). The internet of things: a survey. Computer Networks,
54(15), 2787–2805. doi:10.1016/j.comnet.2010.05.010.

573 A Design Space for End User Development in the Time of the Internet of Things

http://dx.doi.org/10.1016/j.comnet.2010.05.010

Beaudouin-Lafon, M., & Mackay, W. (2002). Prototyping tools and techniques. In J.A. Jacko &
A. Sears (Eds.), The human computer interaction handbook (pp. 1006–1031). Hillsdale, NJ:
L. Erlbaum Associates Inc.

Burnett, M., Yang, S., Summet, J. (2002). A scalable method for deductive generalization in the
spreadsheet paradigm. ACM Transactions on Computer-Human Interaction, 9(4), 253–284.

Cavallaro, L., Nitto, E. D., Furia, C. A., Pradella, M. (2010). A tile-based approach for self-
assembling service compositions. In R. Calinescu (Ed.), Proceedings of the 15th IEEE inter-
national conference on engineering of complex computer systems (ICECCS’10) (pp. 43–52).
Oxford: IEEE Computer Society.

Chen, X., & Lin, Y. (2017). Improv: an input framework for improvising cross-device interac-
tion by demonstration. New York, NY: ACM TOCHI.

Corcella, L., Manca, M., Paternò, F. (2017). Personalizing a student home behaviour. In
Proceedings IS-EUD 2017, LNCS 10303 (pp. 1–16). Cham: Springer Verlag.

Coutaz, J., & Crowley, J.L. (2016, May–June). A first person experience with end-user develop-
ment for smart home. IEEE Pervasive Computing, 15(2), 26:39.

Danado, J., & Paternò, F. (2014). Puzzle: a mobile application development environment using a
jigsaw metaphor. Journal of Visual Languages and Computing, 25(4), 297–315.

Davidyuk, O., Sanchez, I., Gilman, E., Riekki, J. (2015, December). An overview of interactive
application composition approaches. Open Computer Science, 5(1), 2299–1093. doi:10.1515/
comp-2015-0007. ISSN (Online).

de A. Maues, R., Barbosa, S.D.J. (2013). Keep Doing What I Just Did: Automating Smartphones
by Demonstration. Proceedings of the 15th international conference on human-computer
interaction with mobile devices and services, MobileHCI 2013 (pp. 295–303). New York,
NY: ACM. ISBN: 978-1-4503-2273-7. doi:10.1145/2493190.2493216

De Lucia, A., Francese, R., Risi, M., Tortora, G. (2012). Generating applications directly on the
mobile device: an empirical evaluation. In Proceedings of the International Working
Conference on Advanced Visual Interfaces (AVI ’12) (pp. 640–647). New York, NY, USA:
ACM. doi:10.1145/2254556.2254674

Desolda, G., Ardito, C., Matera, M., Piccinno, A. (2015, April 19). Mashing-up smart things: a
meta-design approach. In Proceedings of workshop on end user development in the internet
of things era – CHI ’15 EA (pp. 33–36). Seoul.

Dey, S. K., Hamid, R., Beckmann, C., Li, H., Hsu, D. (2004). A CAPpella: programming by
demonstration of context-aware applications. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’04) (pp. 33–40). New York, NY, USA: ACM.
doi:10.1145/985692.985697

Dey, A.K., Sohn, T., Streng, S., Kodama, J. (2006). iCAP: interactive prototyping of context-
aware applications. Pervasive, 254–271.

Ghiani, G., Manca, M., Paternò, F., Santoro, C. (2017). Personalization of Context-Dependent
Applications Through Trigger-Action Rules. ACM Transactions on Computer-Human
Interaction, 24(2), Article 14, 33 pages. DOI: 10.1145/3057861.

Huang, J., & Cakmak, M. (2015). Supporting mental model accuracy in trigger-action programming.
Proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous com-
puting (UbiComp ’15) (pp. 215–225). New York, NY: ACM. doi:10.1145/2750858.2805830.

Kubitza, T., & Schmidt, A. (2015). Towards a toolkit for the rapid creation of smart environ-
ments. IS-EUD, 9083, 230–235.

Kubitza, T., Thullner, S., Schmidt, A. (2015). VEII: a toolkit for editing multimedia content of
interactive installations on-site. Proceedings of the 4th ACM International Symposium on
Pervasive Displays, 2015 (pp. 249–250). New York, NY, USA: ACM.

Lieberman, H., Paternò, F., Klann, M., Wulf, V. (2006). End-user development: an emerging
paradigm. In H. Lieberman, F. Paternò, V. Wulf (Eds.), End-user development (Human-
Computer Interaction Series) (pp. 1–8). Netherlands: Springer.

Lucci, G., & Paternò, F. (2014). Understanding end-user development of context-dependent
applications in smartphones. In HCSE (pp. 182–198). Heidelberg: LNCS Springer Verlag.

58 F. Paternò and C. Santoro

http://dx.doi.org/10.1515/comp-2015-0007
http://dx.doi.org/10.1515/comp-2015-0007
http://dx.doi.org/10.1145/978-1-4503-2273-7
http://dx.doi.org/10.1145/2493190.2493216
http://dx.doi.org/10.1145/2254556.2254674
http://dx.doi.org/10.1145/985692.985697
http://dx.doi.org/10.1145/3057861
http://dx.doi.org/10.1145/2750858.2805830

Messer, A., Kunjithapatham, A., Sheshagiri, M., Song, H., Kumar, P., Nguyen, P., et al. (2006,
March). InterPlay: a middleware for seamless device integration and task orchestration in a
networked home. In Proceedings of the 4th annual IEEE conference on pervasive computing
and communications (PERCOM’06) (pp. 296–307). Pisa: IEEE Computer Society.

Metaxas, G., & Markopoulos, P. (2017). Natural contextual reasoning for end users. ACM
Transactions on Computer-Human Interaction, 24(2), Article 13. doi:10.1145/3057860.

Pane, J.F., Myers, B.A., Miller, L.B. (2002). Using HCI techniques to design a more usable
programming system. Proceedings of 2002 IEEE Symposia on Human Centric Computing
Languages and Environments (HCC 2002) (pp. 198–206). doi:10.1109/hcc.2002.1046372

Paternò, F. (2013). End user development: survey of an emerging field for empowering people.
ISRN Software Engineering, 2013, Article ID 532659, 11 pages.

Perera, C., Aghaee, S., Blackwell, A.F. (2015). Natural notation for the domestic internet of
things. In Proceedings IS-EUD (pp. 25–41). Cham: Springer Verlag.

Pering, T., Want, R., Rosario, B., Sud, S., Lyons, K. (2009, May). Enabling pervasive collaboration
with platform composition. In H. Tokuda et al. (Eds.), Proceedings of the 7th international
conference on pervasive computing (Pervasive’09), LNCS 5538 (pp. 184–201). Nara: Springer.

Pipek, V., & Wulf, V. (2009). Infrastructuring: toward an integrated perspective on the design
and use of information technology. Journal of the Association for Information Systems
(JAIS), 10(5), 447–473.

Realinho, V., Romão, T., Dias, A.E. (2012). An event-driven workflow framework to develop
context-aware mobile applications. In Proceedings of the 11th International Conference on
Mobile and Ubiquitous Multimedia (MUM ’12). ACM, New York, NY, USA, Article 22, 10
pages. doi:10.1145/2406367.2406395

Tetteroo, D., Vreugdenhil, P., Grisel, I., Michielsen, M., Kuppens, E., Vanmulken, D., et al.
(2015). Lessons learnt from deploying an end-user development platform for physical rehabi-
litation. In Proceedings of the 33rd annual ACM conference on human factors in computing
systems (CHI ’15) (pp. 4133–4142). New York, NY: ACM. doi:10.1145/2702123.2702504.

Truong, K.N., Huang, E.M., Abowd, G.D. (2004). CAMP: a magnetic poetry interface for end-
user programming of capture applications for the home. In Proceedings of Ubicomp
(pp. 143–160). Heidelberg: Springer.

Ur, B., McManus, E., Pak Yong Ho, M., Littman, M. L. (2014). Practical trigger-action program-
ming in the smart home. In Proceedings of the 32nd annual ACM conference on human fac-
tors in computing systems (CHI 14) (pp. 803–812). New York, NY, USA: ACM.
doi:10.1145/2556288.2557420

593 A Design Space for End User Development in the Time of the Internet of Things

http://dx.doi.org/10.1145/3057860
http://dx.doi.org/10.1109/hcc.2002.1046372
http://dx.doi.org/10.1145/2406367.2406395
http://dx.doi.org/10.1145/2702123.2702504
http://dx.doi.org/10.1145/2556288.2557420

Revisiting and Broadening the Meta-Design
Framework for End-User Development

Gerhard Fischer, Daniela Fogli and Antonio Piccinno

Abstract Our contribution will review, analyze, discuss, and synthesize the
research work done over the last 10 years exploring meta-design as a major
framework for end-user development (EUD). The overriding perspective of our
approach is grounded in the basic assumptions that (1) designers can prompt and
support change in a community of practice, but they cannot predetermine it and
(2) design and use mutually shape one another in iterative, social processes. The
chapter argues and provides evidence that EUD should not be restricted to create
new technologies but its most important and far-reaching impact will be to
transform cultures by empowering all people to become active contributors in
personally meaningful activities. The individual sections discuss and describe our
basic framework, EUD applications in different domains, new conceptual develop-
ments that broadened the concept of meta-design, the identification of design
trade-offs and drawbacks, and design guidelines. All of these activities have
contributed to revisiting and broadening the meta-design framework for end-user
development.

Keywords Design · meta-design · participatory design · transformative cultures ·
cultures of participation · co-evolution · socio-technical systems · design
methodologies · design guidelines · design drawbacks and trade-offs

G. Fischer
University of Colorado, Boulder, CO, United States
e-mail: gerhard@colorado.edu

D. Fogli
University of Brescia, Brescia, Italy
e-mail: daniela.fogli@unibs.it

A. Piccinno (✉)
University of Bari “Aldo Moro”, Bari, Italy
e-mail: antonio.piccinno@uniba.it

61© Springer International Publishing AG 2017
F. Paternò, V. Wulf (eds.), New Perspectives in End-User Development,
DOI 10.1007/978-3-319-60291-2_4

1 Introduction

In earlier developments, End-User Development (EUD) was conceived as “a set of
methods, techniques, and tools that allow users of software systems, who are acting
as non-professional software developers, at some point to create, modify, or extend
a software artifact” (Lieberman, Paternò, Klann, & Wulf, 2006). However, if one
analyses the variety of proposals in the EUD field in international journals or in the
proceedings of the five editions of the International Symposium on EUD held up so
far, such a definition is too restrictive. Due to the many possibilities provided by
technology (e.g. Web 2.0 and 3.0, Internet of Things, smart appliances and devices),
the term EUD today should be conceived as a broader umbrella, including methods,
situations, and socio-technical environments allowing and empowering end users
“to express themselves and being independent of high-tech scribes.”

One influential framework for supporting EUD is meta-design (Fischer &
Giaccardi, 2006) empowering all stakeholders (including end users) to be actively
engaged in the continuous development of personally meaningful socio-technical
systems (Fischer & Herrmann, 2011).

Historically, software design was initially dominated by professionals.
Professional-dominated design is a methodology founded on the belief that profes-
sional experts understand the users’ needs (Rittel, 1984). At design time, they create
artifacts which users “have to live with” at use time. While professional-dominated
design has its place, it often creates systems that are at odds with users’ interests,
needs, and background knowledge. Successively, user-centered design (Norman &
Draper, 1986) has been a major step forward to transcend the limitations of
professional-dominated design by analyzing the interests, needs, and background
knowledge of users and envisioning how users are likely to use an artifact. Then, to
better cope with the users’ needs and include them into the design, participatory
design (PD) (Schuler & Namioka, 1993) focused on system development at design
time by involving end users more deeply in the design process as co-designers by
empowering them to propose and generate design alternatives themselves. It requires
the social inclusion and active participation of the users at design time by bringing
developers and users together to envision the contexts of use. But, despite the efforts
at design time, systems need to evolve at use time to fit new needs, account for chan-
ging tasks, deal with a great variety of subjects, contexts and evolving needs, and
incorporate new technologies, making meta-design a necessity.

This chapter explores how this conceptualization of EUD supported by meta-
design was advanced over the last decade. As indicated in Fig. 1, the different
sections describe

• the impact of EUD on transforming cultures and some specific developments
exploring and supporting this transformation process;

• a description of applications in different domains that were influenced by meta-
design;

• new conceptual developments that broadened the concept of meta-design;
• the identification of design trade-offs and drawbacks that need to be carefully

considered.

62 G. Fischer et al.

Fig. 1 synthesizes the structure of our contribution; while design guidelines
proposed by various scholars to realize the conceptual developments above and
cope with trade-offs and drawbacks are finally presented.

2 End-User Development: From Creating
Technologies to Transforming Cultures

EUD is instrumental for “the ability to reformulate knowledge, to express one-
self creatively and appropriately, and to produce and generate information rather
than simply to comprehend it” (National Research Council, 1999). It appeals to
diverse audiences by supporting them in designing and building their own
artifacts by situating computation in new contexts, by generating content, and
by developing tools that democratize design, innovation, and knowledge crea-
tion (von Hippel, 2005). This broad vision of EUD complements and transcends

Related frameworks

and models

R
e
m

ix

TMSP

Maker m
ove

ment

Softw
are Shaping W

orkshops

Hive-m
ind space

E-government

Mash-ups

Electronic Patient Record

Assistive technologies
Physical rehabilitation

Virtual W
orlds

Design guidelines

Co-evolution m
odel

E
U

D
 ta

xo
n
o
m

y

Rich ecologies of p
artic

ipation
Cultures of partic

ipation

Utility
 vs. usability

Usability vs. flexibility

Participation overload

Standardization vs. improvisation

Libertarian paternalism

Social production

Dem
ocratizing innovation

W
ikinom

ics

New application

domains
META-DESIGN

revisited

New conceptual

developments

Design drawbacks

and trade-offs

Fig. 1 An overview of the structure of our contribution

634 Revisiting and Broadening the Meta-Design Framework for End-User Development

a technological perspective of EUD (Burnett & Scaffidi, 2013) that is closely
related to:

• End-User Programming (EUP) that empowers and supports end users to
program (with techniques such as: programming by demonstration, visual
programming, scripting languages, and domain-specific languages) (Lieberman,
Paternò, & Wulf, 2006); and

• End-User Software Engineering (EUSE) that adds to EUP support for systematic
and disciplined activities for the whole software lifecycle (including: reliability,
efficiency, debugging support, and version control) (Burnett, 2009).

In other words, EUD provides the enabling conditions for putting owners of
problems in charge by defining the technical and social conditions for broad parti-
cipation in design activities (Fischer, 2013). In this view, in a broader and updated
definition, EUD is not only important in the context of software systems (the
primary focus of EUP and EUSE), but it “encompasses methods, techniques,
methodologies, situations, and socio-technical environments that allow end users
to act as professionals in those domains in which they are not professionals.”
Examples can be found in software systems, as well as in many other technologi-
cal fields. In 3D modeling, for example, non-professional designers can today
easily create their models and 3D print them to obtain the desired physical
artifacts; or family members can easily create and control their smart home by
using cheap off-the-shelf devices, smart objects and smartphones. Such a new
perspective aims at seeing EUD more than a mere technique or tool, but includes
conditions that allows end users to actually do EUD, easily and continuously, by
taking advantage with respect to the traditional counterparts and finding this
convenient and engaging during the time. This slightly differs, but includes,
the definition given in the chapter by Ludwig et al. based on the concepts of the
“gentle slope of complexity” (Ludwig, Dax, Pipek, Wulf, 2017).

An early inspiration for conceptualizing EUD as a transformational culture was
articulated by Ivan Illich with convivial systems envisioned to “give each person
who uses them the greatest opportunity to enrich the environment with the fruits
of his or her vision” (Illich, 1973).

2.1 Meta-Design: Framing and Supporting EUD
as a Cultural Transformation

Meta-design derives from the observation that designing a system that can suffi-
ciently anticipate all possible uses in advance (that is, when the system is created)
is an impossible task. This idea led for example to the downfall of expert systems
and of closed systems in general (Fischer & Scharff, 2000). Closed systems
typically create a sharp separation between design and use; however, providing
functionality of interactive systems that is fixed when the system is created has
important implications on how it will be used. As a consequence, it has been

64 G. Fischer et al.

estimated that 40–60% of a system’s cost over its lifetime is spent after the
original system design is finished, not only to cope with the traditional need of
“maintenance,” but rather to carry out all those enhancement activities whose need
is noticed by domain experts during the use of the system (Fischer & Scharff,
2000).

To this end, meta-design promotes the design of open systems that users can
modify and evolve at use time (Henderson & Kyng, 1991). As open systems are
used, users will encounter mismatches and opportunities serving as potential
sources for new insights and new understandings, and giving rise to the
co-evolution between system and users (Costabile, Fogli, Mussio, & Piccinno,
2007; Fogli & Piccinno, 2013a). Therefore, meta-design as “design for design
after design” is a fundamentally different design methodology compared for exam-
ple to user-centered design and participatory design, which substantially promote
“design for use before use” (Binder et al., 2011; Ye & Fischer, 2007). Indeed, the
latter approaches force all the design intelligence to the earliest part of the design
process, when everyone knows the least about what is really needed. In a world
that is not predictable, meta-design allows taking into account improvisation, evo-
lution, and innovation by including the emergent and making it an opportunity for
more creative and adequate solutions to problems (Fischer & Giaccardi, 2006).
For these reasons, meta-design is an interdisciplinary activity, bringing together
multiple perspectives from different stakeholders and areas of expertise: from
designers having specific knowledge in mathematics, computer science, and engi-
neering, but who are ignorant of the problem domain, to end users, who are
experts in the problem domain, but ignorant of the domain of software solutions
(Fischer, 2000). Such a “symmetry of ignorance” (Rittel, 1984) (or “asymmetry of
knowledge”) can be an advantage for social creativity instead of an obstacle for
design. This is particularly true for ill-defined problems, whose solution cannot be
delegated to professional software developers, but requires that end users, as own-
ers of problems, be put in charge. For example, in an interview with a geoscientist
of the University of Colorado reported in (Fischer, Nakakoji, & Ye, 2009), it
emerged that this end user, after a three months period in acquiring programming
knowledge, spent an hour every day on average in the development of software
for data analysis. This was necessary, since there was not any suitable software
available and explaining the needs to a software developer was not possible due
their variability as the research progressed. Therefore, the geoscientist, even
though not considering himself a software developer, arrived at accepting software
development as an essential task of his daily work. A meta-design approach would
have probably been better suited to such a situation, by involving the geoscientist
in the design of an open system to be shaped to his own needs at use time, without
requiring him to spend three months learning a programming language. Such an
approach would be even more useful in other domains (such as the medical one),
in which domain experts are not interested and not motivated to invest time in
learning technical skills that are not directly related to their work, rather they are
willing to manipulate building blocks that make sense to their work practice
(Cabitza & Simone, 2017).

654 Revisiting and Broadening the Meta-Design Framework for End-User Development

In summary, meta-design does not only encompass the study and development
of enabling technologies for EUD, but also and above all sustaining a cultural
transformation (Benkler, 2006; Fischer, 2013; von Hippel, 2005). Therefore, the
primary objective of meta-design is to allow and support end users to become
end-user developers of their systems, where, nowadays, the term “system” denotes
all the software and hardware components such as smartphones, smart watches,
interactive displays, as well as the low cost devices that contribute to create the
so-called Internet of Things (Barricelli & Valtolina, 2015; Cabitza, Fogli,
Lanzilotti, & Piccinno, 2016).

2.2 Integrating and Relating Meta-Design
with other Frameworks

Framing meta-design as a cultural transformation from closed systems (designed at
design time and fixed at use time) to the design of open systems that users can
modify and evolve at use time relates meta-design with a number of other frame-
works summarized in Table 1 and briefly described below.

Libertarian Paternalism. An interesting perspective and framework for EUD
is provided by the book “Nudge: Improving Decisions about Health, Wealth, and
Happiness” (Thaler & Sunstein, 2009). The fundamental concept explored in the
book is libertarian paternalism. The libertarian aspect of their approach “lies in
the straightforward insistence that, in general, people should be free to do what
they like and to opt out of undesirable arrangements if they want to do so” (p. 5).
The paternalistic objective is grounded in the claim that “it is legitimate for choice
architects to try to influence people’s behavior in order to make their lives longer,
healthier, and better” (p. 5). Nudges are defined by choice architects trying to

Table 1 Overview of related frameworks

Framework Relationship to meta-design

Libertarian Paternalism Providing evidence for the different ways how control can be
divided between designers and end users

Social Production Illustrating the possibilities and the power how individual
autonomy can lead to interesting new artifacts

Democratizing Innovation Allowing professional amateurs to do things because they want
to do them

Wikinomics Supporting mass collaboration

Remix Indicating the intellectual property challenges with evolving
artifacts

Technology Mediated
Social Participation

Representing a model for new scientific communities

Maker Movement Technology-based extension of a “Do-it-Yourself (DIY)”
culture

66 G. Fischer et al.

motivate people to engage in certain actions and behavior. The role of choice
architects is closely related to the role of meta-designers who create contexts in
which users can provide content. By providing rich seeds (Fischer & Ostwald,
2002), they impose structures that affect the choices and actions of users, making
a certain level of paternalism inevitable. The approach provides evidence and
arguments about the importance of good defaults especially for activities that users
consider personally of minimal relevance: users welcome a default rule and prede-
fined functionality making life simpler and easier and protecting them from parti-
cipation overload (see Sect. 5.2) and against their own mistakes.

Social Production. Benkler (2006) provides an elaborate framework and argu-
ments that the most important aspect of the networked information economy is the
possibility for reversing the control focus of the industrial information economy
by enriching individual autonomy. This objective will be achieved by creating
environments built less around control and more around facilitating action. He
differentiates between passive (e.g. television) and active (e.g. open source,
Wikipedia, Second Life) media (see Sect. 4.1). In active media, users are restricted
to the role of consumers limited to selecting finished goods they can consume
from a pre-defined range of options whereas in active media users are treated as
active, creative human beings, capable of solving their own problems and building
their own fantasies, alone and in affiliation with others.

Democratizing Innovation. Von Hippel (2005) provides evidence from a
broad range of different domains that users (supported by improvements in com-
puter and communication technology) increasingly can develop their own new
artifacts and services. His case studies demonstrate that users (acting as profes-
sional amateurs – “pro-ams” – (Leadbeater & Miller, 2004)) who innovate can
develop exactly what they want, rather than relying on designers of manufacturers
to act as their agents or scribes. Additionally, individual users (acting as power
users, local developers, and gardeners (Nardi, 1993)) do not have to develop
everything they need on their own: they can benefit from innovations developed
and freely shared by others.

Wikinomics. Tapscott and Williams (2006) in their book “Wikinomics: How
Mass Collaboration Changes Everything” explore what the Web 2.0 (O’Reilly,
2005) and mass collaboration (Cress, Jeong, & Moskaliuk, 2016) means for busi-
ness and technology. They describe and analyze a number of success stories
(including Wikipedia, open source, and LEGO) and introduce a number of con-
cepts such as “prosumers” (indicating that users today often being “producers” in
one context and “consumers” in another one). While the book analyzes success
stories based on wiki-based environments, it does not mention that many efforts
engaging users in participation (including their own effort that readers edit their
book or write a chapter of it) did not succeed providing evidence for the empirical
finding that “most wikis are dead at arrival.”

Remix. Lessig (2008) in his book “Remix: Making Art and Commerce Thrive
in the Hybrid Economy” analyzes participatory cultures (as promoted and sup-
ported by meta-design) from an intellectual property perspective. He distinguishes
between two cultures: (1) a RO (“Read/Only”) culture dominated by consumption,

674 Revisiting and Broadening the Meta-Design Framework for End-User Development

and (2) a RW (Read/Write) culture in which all people contribute to the
re-creation and evolution of an existing culture by remixing existing components to
create new ones. He discusses specifically the importance of “amateur creativity”
(Leadbeater & Miller, 2004) in a RW culture (resembling the creativity of end users
in an EUD culture) and how to avoid that this creativity is restricted by copyright
regulation.

Technology Mediated Social Participation (TMSP). TMSP (http://tmsp.umd.
edu) represents a movement (sponsored by the U.S. National Science Foundation)
aiming to develop a scientific research agenda and educational recommendations
for creating a cohesive community that generates the foundational science, engi-
neering, and graduate training necessary for a new era of social participation tech-
nologies by empowering individuals to become active in local and global
communities with a focus on exploring questions of how to motivate participation,
increase social trust, and promote collaboration (Shneiderman, 2009).

Maker Movement. A basic belief and objective underlying the community of
Makers is that the movement will end the monopoly of mass manufacturing just
as the Internet ended the monopoly of mass media (Anderson, 2012). It creates a
culture that represents a technology-based extension (with 3D printers, laser cut-
ters, microcontrollers, etc.) of the “Do-it-Yourself (DIY)” culture (as it has existed
in numerous other domains such as home improvement activities). It emphasizes
learning-through-doing in social environments by highlighting informal, networked,
peer-led, and shared learning motivated by interest and fun.

2.3 Methodologies and Models Extending
the Meta-Design Framework

The meta-design framework has inspired some methodologies for modeling and
developing systems for EUD. Two of such extensions will be briefly described.

Software Shaping Workshop (SSW). The SSW is a design methodology
based on the meta-design framework to model EUD-enabling systems (Costabile,
Fogli, Mussio, & Piccinno, 2006; Costabile et al., 2007). The idea underlying this
methodology is that software environments should be designed in analogy with
artisan workshops, where traditional artisans, such as blacksmiths and joiners,
extract the necessary tools to perform their activities from a repository, put them
on a bench to do their work and finally set back in the repository those ones not
useful anymore. In this way, artisans shape their work environments to their needs
by using all and only the tools needed in a specific situation. By analogy, a SSW
is designed as a virtual workshop, in which end users find a set of virtual tools
useful to carry out their activities and shape their environment and tools by
adapting them to their current needs, without the burden of using a traditional
programming language. In SSW, end users manipulate objects and tools through
a suitable domain-oriented visual language, and unwittingly create software

68 G. Fischer et al.

http://tmsp.umd.edu
http://tmsp.umd.edu

programs (Costabile, Mussio, Parasiliti Provenza, & Piccinno, 2008), through
which they later perform the necessary computations. In the SSW approach, users
play two distinct roles, which should be supported by two types of SSWs. The for-
mer is that of end users who perform their work activities; the latter refers to
domain experts, who are called on to design the SSW for end users in collabora-
tion with other experts, e.g. software engineers, graphic designers, and HCI
experts. End users will use application SSWs; whilst, the workshops used by
domain experts to perform their design activities are called system workshops. The
other members of the design team are supported by system workshops as well; all
application and system workshops are customized to the culture and skills of their
users. The designed interactive system results in a hierarchical network of SSWs,
each specific for a community of users (Costabile et al., 2007). The network
encompasses three levels: (1) the meta-design level, where software engineers
shape the tools and the system workshops to be used in the next level; (2) the
design level, where HCI experts and domain experts use their system workshops
to design, implement, and validate the application workshops devoted to end
users; and (3) the use level, where end users of the different sub-communities use
their application workshops and cooperate to achieve a task.

The SSW methodology encourages software designers to become meta-
designers by involving all stakeholders in system design. In SSW, all stakeholders
can make contributions that will be available to the other stakeholders for evalua-
tion and feedback, in order to eventually converge to a common design. In light of
these considerations, meta-design has been conceived in (Costabile, Fogli,
Mussio, & Piccinno, 2005) as “a technique, which provides the stakeholders in the
design team with suitable languages and tools to foster their personal and common
reasoning about the development of interactive software systems to support user
work.” This definition complements that of Fischer and Giaccardi, who conceive
meta-design as a conceptual framework for defining and creating socio-technical
infrastructures in which new forms of collaborative design can take place (Fischer &
Giaccardi, 2006).

Hive-Mind Space (HMS) Model. The HMS model (Zhu, 2012; Zhu,
Barricelli, & Iacob, 2011; Zhu, Mussio, & Barricelli, 2010) is an evolution of the
SSW methodology specifically oriented to support collaborative and creative
design activities of multidisciplinary design teams. Hive Mind models in general
focus on the collective intelligence (the hive mind) of people collaborating to
pursue a common goal. They rely on the metaphor that people may collaborate
within a community as a swarm of bees (Kelly, 1995), where each member of the
community interacts locally, according to local rules, with a limited number of
other community members, and the global behavior of the community emerges
from local interactions. The HMS blends the general Hive Mind models and the
SSW approach to support collaborative design and to foster creativity among
design teams. The HMS model considers group activities, collective intelligence,
and social creativity; whilst, from the SSW approach, the HMS model retains the
three-level structure of the SSW network and enriches the workshops with tools
for communication with other members of the same community and with other

694 Revisiting and Broadening the Meta-Design Framework for End-User Development

communities involved in the design collaboration. To this end, the HMS model
introduces a central communication channel, called digital boundary zone, that
allows the exchange and management of so-called digital boundary objects (Zhu
et al., 2010) consisting of software artifacts to represent what stakeholders mean
during a collaboration activity. The HMS model supports a Community of Interest
(CoIs) (Fischer, 2001) composed of a set of Communities of Practice (CoPs)
(Wenger, 1998; Wenger, McDermott, & Snyder, 2002). Indeed, the HMS model,
as well as the SSW approach, offers different workshops for various CoPs
involved in collaborative design, each one localized to the CoP’s culture, role and
platform in use. Furthermore, the architecture proposed for the HMS model has an
open under-development structure: further levels could be added to the network
and at each level new CoPs can collaborate if needed. In order to evaluate the
HMS model and provide some concrete guidelines for its implementation, the
MikiWiki meta-design environment has been developed (Zhu, Vaghi, & Barricelli,
2011). It is a structured programmable wiki that encompasses a hierarchical page
organization made of pages and folder pages. Communication features are made
available in MikiWiki as underdesigned “nuggets” (e.g. chat, comment, wall, and
notify nuggets), which also represent the seeds (Fischer et al., 2001) for promoting
system appropriation and modification. Users can easily start using and remixing
existing nuggets, while power users may modify them, thus introducing new beha-
viors. MikiWiki has been applied in a variety of case studies, including the
support of co-located meetings for the collaborative design of original mobile
applications, such as the creativity barometer (Zhu & Herrmann, 2013).

The above conceptualizations define and support the role of meta-designers as
professionals (1) using their own creativity to produce socio-technical environ-
ments in which other people can be creative and (2) defining the technical and
social conditions for broad participation in design activities, which are as impor-
tant as creating the software artifacts themselves.

3 Exploring Applications in Different Domains
from a Meta-Design Perspective

This section presents some applications in different domains for which a meta-
design perspective has been adopted. It is based on specific case studies (discussed
in more detail in other publications) illustrating how meta-design has allowed
modeling problems in innovative ways and putting end users in charge with the help
of socio-technical mechanisms enabling EUD activities. They are all examples of
system design to support human-problem interaction, rather than human-computer
interaction (see design guidelines listed in Sect. 6). However, it is worth noticing
that tools developed in the case studies were not deployed, but remained at an aca-
demic proofs-of-concept level; therefore, no consideration about consequences of
long-term participation within related communities will be provided.

70 G. Fischer et al.

3.1 E-government

Meta-design and EUD techniques have been applied in the e-government domain
pursuing two main objectives: (1) supporting municipality clerks in performing con-
tent authoring tasks by paying attention to the accessibility of the underlying
web-oriented code (Fogli, 2009; Fogli, Colosio, & Sacco, 2010); and (2) supporting
the same users in the creation of online e-government services devoted to citizens
(Fogli & Parasiliti Provenza, 2011, 2012).

In the first case, a Content Management System (CMS) was extended to allow
end users creating accessible web content (e.g. tables that could be easily accessed
by visually impaired people) without being aware of performing software develop-
ment, that is, creating proper HTML code. The extended CMS allowed users to
accomplish tasks by simply editing content or selecting some content from avail-
able choices; the system then generated the correct HTML code by exploiting the
content provided by the user. In the case of e-government service creation, a
meta-design approach structured in two main phases was adopted: (1) a bottom-up
activity was carried out, starting from the analysis of current services made avail-
able by the municipality, with the aim of defining a meta-model of e-government
services; and (2) an EUD environment that allowed civil servants to create
instances of the meta-model was developed; this environment allowed creating
XML documents, without being aware of that, and these documents were automa-
tically interpreted to generate web applications that implemented e-government
services (see Fig. 2).

Both objectives were achieved after the observation of the daily tasks of end
users (civil servants) and their usual approach to the use of computer systems; in
this way, a fill-in form interaction style was provided in both solutions, given that
administration tasks often consist in the compilation of paper-based forms. In the
case of service creation, the interaction style was combined with a wizard design
pattern that reflected the structure of the service to be created. Indeed, according
to libertarian paternalism (Sect. 2.2), the civil servants should not have had so

EUD Environment

Service model

Interpreter

Service meta-model

Citizen

E-gov Service

Civil servant

Fig. 2 EUD approach to e-government service creation

714 Revisiting and Broadening the Meta-Design Framework for End-User Development

much freedom (and consequent responsibility) to modify the layout of the service
pages or the structure of the service. In this way, service analysis and model-based
design of EUD techniques remained in control of the software developers, as well
as the consequent development of the fill-in forms that allowed civil servants to
create online services.

In both cases, the rational for participation of civil servants consisted in becom-
ing more independent from IT people for editing web site content and defining
e-government services respectively. An EUD approach to this field was indeed
been recognized by the domain experts as a way to improve work practice, in
terms of effectiveness and efficiency, especially in those small or rural government
agencies that cannot afford the budget necessary to employ software professionals
or pay for software consultants. In this sense, EUD in the e-government domain
can be conceived as a social production framework (Benkler, 2006) (Sect. 2.2),
which contributes to enrich individual autonomy by making people capable of
solving their own problems.

3.2 Mash-ups

From the end users’ perspective, the development of web-based interactive
systems is a demanding task. Perfectly in line with a democratized innovation
(von Hippel, 2005), a common technique addressing this problem are mash-ups,
i.e. the creation of Web applications through the composition of available Web
services, without requiring skills in computer programming. Cappiello and collea-
gues present DashMash (Cappiello et al., 2011), an end-user oriented platform
enabling inexperienced users to compose their own mash-ups, in the form of dash-
boards exploiting company-internal services operating on data warehouses and
public APIs.

The work in (Ghiani, Paternò, & Spano, 2011) proposes an approach, based on
direct manipulation, which allows end users to create mash-ups by using web
components extracted from existing web applications, such as Amazon or eBay.
Other EUD tools for mash-ups are based on annotation features (e.g. Avola,
Bottoni, & Genzone, 2011; Dittrich, Madsen, & Rasmussen, 2011).

A recent mash-up platform, EFESTO, enables end users to create interactive
workspaces by exploiting visual composition paradigms that accommodate
the end-user mental model. With EFESTO end users create “live mash-ups” where
information is dynamically extracted from heterogeneous data sources and visua-
lized and manipulated into visual templates (Desolda, Ardito, & Matera, 2016).
Besides the composition paradigm for end users, one of the most relevant features
of EFESTO is the possibility to exploit the data available in the Linked Open Data
cloud. In fact, this mash-up platform allows end users to extend a Web service
with the so-called “polymorphic data source” built on top of the Linked Open
Data cloud. It is called polymorphic because it provides mutable information with
respect to the data sources of which it is composed (Desolda, 2015).

72 G. Fischer et al.

Following a RW culture, instead of a RO one, mash-up platforms can be
regarded as EUD environments able to foster user creativity in defining tools for
personalized search and data analysis, and, at the same time, transform end users
from consumers of a variety of Web services into producers of Web applications
suitable to their work practice or personal needs.

3.3 Electronic Patient Records

Patient records are official artifacts with which medical and paramedical personnel
preserve the memory or knowledge of facts and events that occurred in a hospital
ward (Berg, 1999). The patient record is a many-sided document: it is available to
several different people, with different skills, background and expertise. They are
not only physicians and nurses, but also patients and their relatives; thus patient
records must have the ability to speak different “voices” to convey different
meanings according to people using it (Cabitza & Simone, 2009). A patient record
is composed of a number of modules, each one containing specific patient data;
hospital personnel in different wards are usually only interested in a subset of
such modules. The employees use the modules to accomplish their specific tasks:
for example, the reception staff records personal data at the acceptance of patients
into the hospital; physicians examine other modules to make a diagnosis; nurses
record medications and patients’ parameters; and so on.

The development of the Electronic Patient Record (EPR) must take into
account the various stakeholders involved in the EPR management and their
different needs and personal (visual) languages. In the study reported in (Costabile
et al., 2009), five different stakeholders have been identified: (1) practice managers,
who decide the modules to be taken into account for the hospital; (2) head physi-
cians, who are responsible for the specific EPR (subset of modules) for the ward;
(3) physicians, using the EPR into their ward; (4) nurses, who fill the EPR; and
(5) administrative staff who manages patient admission and billing. This is a typical
situation that can be found in any hospital. In particular, the head physician has the
responsibility of the definition of the EPR to be adopted in her/his ward, and
currently must transfer her/his EPR specification to IT personnel or software consul-
tants for successive implementation.

The SSW methodology described in Sect. 2.3 has been applied for the develop-
ment of a novel concept of EPR, tailored to the ward’s needs and to the different
stakeholders’ preferences and practices (Costabile et al., 2007, 2008). In particular,
the hierarchical and interconnected structure of SSWs has allowed implementing
the concept of libertarian paternalism (Sect. 2.2). At the meta-design level foreseen
by the SSW methodology a team composed of software engineers, HCI experts
and physicians designed the software environments for the different stakeholders,
as well as the data modules, which are the basic components of the EPR. At the
design level, software environments allowing each head physician to design the
EPR for her/his ward by directly manipulating data modules in her/his software

734 Revisiting and Broadening the Meta-Design Framework for End-User Development

environment have been created, without depending anymore on “high-tech
scribes,” but sharing control on the system with them (see design guidelines in
Sect. 6). In this case, physicians and nurses of a specific ward are the end users,
while the head physician is the end-user developer in charge of creating the EPR
for them.

3.4 Supporting People with Cognitive Disabilities

People with cognitive disabilities represent a “universe of one” problem (Carmien
& Fischer, 2008, 2010). They often will have several different disabilities and
each specific combination of cognitive, motoric, sensory, and psychological
impairments together define a need for deeply customized assistive technology
such that a solution for one person will rarely work for another. The “universe of
one” conceptualization includes the empirical finding that (1) unexpected islands
of abilities exist: users can have unexpected skills and abilities that can be lever-
aged to ensure a better possibility of task accomplishment; and (2) unexpected
deficits of abilities exist often occurring in otherwise high functioning individuals.
Accessing and addressing these unexpected variations in skills and needs, particu-
larly with respect to creating task support, requires an intimate knowledge of the
user that only caregivers can provide.

The fundamental challenge derived from supporting the “universe of one”
requirement is that it demands highly specific systems that we tried to achieve
with a meta-design approach.

The Memory Aiding Prompting System (MAPS) (Carmien, 2006) represents a
socio-technical environment based on a meta-design framework by providing the
caregivers the design power to modify and evolve the technical systems according
to the needs of individual users. To accommodate unexpected issues at use time,
systems need to be underdesigned (Brand, 1995) by providing a context and a
background against which situated cases can be interpreted thereby allowing the
“owners of problems” to create the solutions themselves at use time.

Supporting people with cognitive disabilities represents a multi-tiered proxy
design problem, since the end users (the persons with cognitive disabilities) cannot
act as end-user developers, but only their caregivers can exercise this role. Some
problems are characterized by the presence of end users that may not be able to
express their needs, requiring additional stakeholders to articulate such needs and
act as end-user developers on behalf of them and for them (see the proposed
taxonomy of EUD activities in Sect. 4.3).

The challenge of MAPS was to design tools flexible enough to adapt to the
unique needs of people with cognitive disabilities. The system was developed as a
platform able to provide a prompting system for individuals with cognitive disabil-
ities, along with an editing tool that allowed caregivers to design prompting scripts
(Fig. 3). It was aimed to support the independence and safety of people with cog-
nitive disabilities in their daily activities, such as going to a grocery store or taking

74 G. Fischer et al.

a bus. Participation was motivated by the fact that creating a specific environment
by caregivers helped the people with cognitive abilities. Furthermore, like in other
applications previously described, participation was facilitated by domain-oriented
interaction support: indeed, designing a system for a unique use could be learnt
and done with a reasonable time investment, thus coping with the trade-off
between cultures of participation and participation overload (see Sect. 5.2).

MAPS included: (1) an editor to enable the caregiver (usually a family member)
to edit, store, and reuse multimedia scripts for prompting instructions to support
different daily tasks (i.e. sequences of video and verbal instructions); (2) a shared
information space for storing script images and sounds, user and task modeling meta-
data, and a repository of tested scripts to be used as templates by other caregivers
using the editor; and (3) a PDA-based device that prompted instructions to support
the persons with cognitive disabilities in the accomplishment of their daily tasks.

Multi-tiered proxy design problems push further in the direction of adopting
meta-design approaches, since all involved stakeholders must be provided with
suitable languages and tools to foster their participation in the development of
software and hardware systems that support end users (Costabile et al., 2007).

3.5 Physical rehabilitation

The PhD research of Daniel Tetteroo (2013, 2015) explored the design, develop-
ment, and deployment of an end user extensible physical rehabilitation technology
(called TagTrainer). The thesis provides a socio-technical perspective on the merits
and issues related to the deployment of an EUD system in the context of physical
rehabilitation therapy requiring personalized exercises, due to the high diversity in
patients and their corresponding treatment needs.

TagTrainer is a tangible, interactive training platform for arm-hand rehabilitation
exercises focused on relearning daily activities, such as manipulating cutlery and
cups, in patients who experienced a stroke (Tetteroo, Seelen, Timmermans, &
Markopoulos, 2014). It consists of four parts: (1) one or more interactive boards that

MAPS
designer

MAPS
Scripts editor

Caregiver

Design a Script

Caregiver

Created Script Script
used

Person
with

cognitive
disabilities

Fig. 3 MAPS: empowering caregivers to act as designers

754 Revisiting and Broadening the Meta-Design Framework for End-User Development

can give audio-visual feedback and are able to detect RFID-tagged objects; (2) a col-
lection of objects with RFID-tags attached to them; (3) the TagTrainer Exercise
Creator, which supports therapists in creating and modifying exercises to be executed
on the board; and (4) the TagTrainer Patient Interface, which allows therapists to man-
age personalized exercise programs by providing patients with feedback about their
progress. From a preliminary study, it emerged that therapists are not information
workers and usually do not rely on ICT for delivering treatment to patients; however, a
cultural transformation could be fostered through TagTrainer, which allowed therapists
to become end-user developers, without the need to learn any programming language.

The PhD thesis describes the user-centered and participatory design process
adopted for TagTrainer development; and it presents four studies in which
TagTrainer was deployed in the context of rehabilitation clinics. The aim of these
studies was to evaluate the acceptance of TagTrainer, to probe the feasibility of
therapists as end-user developers of training exercises (supported by a meta-design
environment based on a closely related architecture as illustrated in Fig. 3 for
MAPS), and to identify factors that influence the uptake of EUD practices. In par-
ticular, it has been observed how therapists varied in engagement as exercise crea-
tors: indeed, they played different roles, either (re-)using existing exercises or
creating new ones, depending on their attitudes, age, and experience with informa-
tion technology, as anticipated by cultures of participation theory introduced in
(Fischer, 2011) (see Sect. 4.1). The research effort centered on TagTrainer identified
some key challenges for enabling EUD practices (see Tetteroo & Markopoulos,
2017) in clinical settings. This by aligning with the organization model, guiding
end-user developers to ensure usability and software quality of their creations (see
design tradeoffs discussed in Sect. 5), and providing features for retrieval and
sharing of solutions created by end-user developers (Tetteroo et al., 2014).

3.6 Virtual worlds

Research conducted by Benjamin Koehne (Koehne, Redmiles, & Fischer, 2011)
(closely related to the research by Mørch and colleagues (Caruso, Hartley, &
Mørch, 2015; Mørch, Caruso, Hartley, 2017)) employed meta-design based the-
ories in virtual worlds specifically by contrasting massively-multiplayer online
role-playing games such as “Lord of the Rings Online” with open-ended virtual
worlds such as “Second Life.” The research employed ethnographic methods to
explore the following research objectives:

• develop additional examples of meta-design for worlds that have no laws and
boundaries;

• support the empowerment of end users that are not initially interested or moti-
vated to conduct design practice;

76 G. Fischer et al.

• assess the duality between virtual worlds and meta-design, i.e. how does meta-
design affects practices in virtual worlds and vice versa; and

• analyze the support for meta-design in both unique environments, focusing on
the benefits and shortcomings of the gaming-oriented and the open-ended
environment under study.

Some of the findings of this research can be summarized as follows:

• Virtual worlds offer an opportunity to study the effects of collaboration on the
way casual users move through rich ecologies of participation (see Sect. 4.2).
Technical scaffolding systems alone are not sufficient. Instead, social community
components need to make collaboration tools more accessible and attractive for
casual users.

• Current open-ended virtual worlds (such as Second Life) provide means for
extensions through source code modification which only technical people will
be able to do. Additional mechanisms supporting meta-design would empower
end users to extend these systems with additional capabilities.

4 New Conceptual Developments

This section explores some of the concepts related to the meta-design paradigm
that emerged or were refined in the last decade. Table 2 briefly summarizes such
concepts, while the next subsections discuss them in more detail.

Table 2 Concepts related to meta-design

Concept Description

Cultures of
participation

A shift from a consumer culture to cultures of participation, in which
all people are provided with the socio-technical means for
participation, has been observed in commercial systems and
scientific works.

Rich ecologies of
participation

Beyond the roles of consumer and designer, other roles of end users
have been identified in literature; this led to identify richer ecologies
of participation in software development.

Taxonomy of EUD
activities

Different types of EUD activities have been identified and
classified as individual EUD, public inward EUD and public
outward EUD.

Co-evolution model A model describing the interaction and co-evolution of users and
systems is proposed; it takes into consideration all the different types
of EUD foreseen in the EUD taxonomy.

774 Revisiting and Broadening the Meta-Design Framework for End-User Development

4.1 Cultures of Participation

The rise in social computing (based on social production and mass collaboration)
has facilitated a shift from consumer cultures (specialized in producing finished
artifacts to be consumed passively) to cultures of participation (in which all
people are provided with the means to participate and to contribute actively in
personally meaningful problems) (Fischer, 2011; Jenkins, 2009).

Cultures of participation are facilitated and supported by a variety of different
technological environments (such as: the participatory Web (“Web 2.0”)
(O’Reilly, 2005), table-top computing and domain-oriented design environments
(Arias, Eden, & Fischer, 2016)); all of them contributing in different ways to the
aims of engaging diverse audiences, enhancing creativity, sharing information,
and fostering the collaboration among users acting as active contributors and
designers. They democratize design and innovation (von Hippel, 2005) by shifting
power and control towards users, supporting them to act as both designers and
consumers (“prosumers”) (Tapscott & Williams, 2006) and allowing systems to be
shaped through real-time use.

The following design requirements derived from the meta-design framework
support cultures of participation as follows:

• Making changes must seem possible: Contributors should not be intimidated
and should not have the impression that they are incapable of making changes;
the more users become convinced that changes are not as difficult as they think
they are, the more they may be willing to participate.

• Changes must be technically feasible: If a system is closed, then contributors
cannot make any changes; as a necessary prerequisite, there needs to be possi-
bilities and mechanisms for extension.

• Benefits must be perceived: Contributors have to believe that what they get in
return justifies the investment they make. The benefits perceived may vary and
can include: professional benefits (helping for one’s own work), social benefits
(increased status in a community, possibilities for jobs), and personal benefits
(engaging in fun activities).

• The environments must support tasks that people engage in: The best environ-
ments will not succeed if they are focused on activities that people do rarely or
consider of marginal value.

• Low barriers must exist to sharing changes: Evolutionary growth is greatly
accelerated in systems in which participants can share changes and keep track
of multiple versions easily. If sharing is difficult, it creates an unnecessary bur-
den that participants are unwilling to overcome.

• Defining the role of meta-designers: Meta-designers should use their own
creativity in developing socio-technical environments in which other people
can be put in charge. They must be willing to share control of how systems
will be used, which content will be contained, and which functionality will
be supported.

78 G. Fischer et al.

Cultures of participation support users as active contributors who can transcend
the functionality and content of existing systems. By facilitating these possibilities,
control is distributed among all stakeholders in the design process. There is
evidence that shared control will lead to more innovation (von Hippel, 2005):
“Users that innovate can develop exactly what they want, rather than relying on
manufacturers to act as their (often very imperfect) agents.” (A similar argument
surfaced in the interview with the geo-scientist described earlier). Cultures of
participation erode monopoly positions held by professions, educational institu-
tions, experts, and high-tech scribes (Fischer, 2002). Drawbacks and trade-offs
associated with cultures of participation are discussed in Sect. 2.

4.2 Rich Ecologies of Participation

Users and developers are commonly considered two distinct groups of people.
Nowadays, with the Web 2.0 and the widespread use of web-based software
systems, the sharp distinction between users and developers is quickly disap-
pearing since users are more and more involved in the development of interac-
tive (web-based) systems. An example is given by Google Sites and the many
other similar platforms that today allow even naïve users to have an active role
in the development of web sites suited to their needs. This results in a conti-
nuum ranging between end users as passive consumers to meta-designers
(Fischer & Giaccardi, 2006). In some cases, the same individuals play different
roles: sometimes they are and want to be consumers, in other situations they
prefer to be designers. Therefore, the terms “consumer” and “designer” cannot
be considered as attributes of a person, but as roles in a specific context. More
generally, several virtual organizations of end users exist in which richer
ecologies of participants can develop according to their own needs (Preece &
Shneiderman, 2009). A deeper understanding of these ecologies leads to
identify further roles beyond the traditional ones: professional amateurs
(Leadbeater & Miller, 2004), prosumers (Tapscott & Williams, 2006), power
users, local developers, and gardeners (Nardi, 1993), bricolant-bricoleur
(Cabitza & Simone, 2015). Such roles need to be exploited to create multi-
faceted computational environments (Myers, Ko, & Burnett, 2006)
tailored to the interests, needs and expertise of different stakeholders (see for
instance the SSW methodology and HMS model discussed in Sect. 2.3), in order
to also support migration paths among the different roles (Fischer, Piccinno, &
Ye, 2008).

The meta-designer role is usually intended for those professionals who are in
charge of creating “open systems at design time that can be modified by their
users, acting as co-designers, requiring and supporting more complex interac-
tions at use time” (Fischer & Herrmann, 2011). The work of Cabitza, Fogli,
and Piccinno (2014b) extended this definition by introducing a distinct role for

794 Revisiting and Broadening the Meta-Design Framework for End-User Development

http://dx.doi.org/10.1007/978-3-319-60291-2_5#Sec2

her/his social counterpart, that is the role of the maieuta designer.1 On the one
hand, the meta-designer is regarded more as a technical role: he/she is in charge
of designing the EUD environment and all those tools by which end users could
carry out their EUD activities. On the other hand, the maieuta designer can be
considered as someone in charge of designing the EUD-enabling environment
by creating the social conditions for end users to become developers of their
own system. These social conditions include: (1) sustaining end users to appro-
priate the design culture and the technical notions necessary for system devel-
opment; (2) involving as many end users as possible in the process of
continuous refinement of the system, by stimulating their participation and pro-
viding tools supporting their collaboration; and (3) facilitating the migration
from the role of passive user to that of end-user developer. For these reasons,
such a designer has been called a “maieuta,” that is, someone who is able to
apply the Socratic method of making people acquire notions, motivations, and
self-confidence to undertake challenging tasks.

The maieuta designers are the persons who guarantee the long-term sustainability
of an EUD project. Indeed, they should be identified within a community as someone
who could make all community members become progressively independent from
the IT professionals. One of their main tasks is to design (or better “co-design”) initia-
tives in which to promote the EUD project and transfer to the community members
the underlying values and concepts (i.e. empowerment, co-production, appropriation,
cultures of participation, etc.). For example, the maieuta designer can devise simple
mechanisms to foster participation and build a real culture of participation by creating
proper motivation strategies, e.g. by exploiting gamification mechanisms (Benzi,
Cabitza, Fogli, Lanzilotti, & Piccinno, 2015), and by creating collaboration infra-
structures (e.g. by setting up social media associated with the EUD project to stimu-
late contributions and moderate communication among community members).

4.3 EUD Taxonomy

The new developments that occurred in the EUD field in the last ten years have led
research scholars to analyze the new concepts, roles, and artifacts developed around
EUD. To this aim, an EUD taxonomy has been proposed in (Cabitza, Fogli, &
Piccinno, 2014a). In this taxonomy, a classification of EUD into individual EUD and
public EUD is proposed (see Fig. 4). Individual EUD encompasses all those activities
that are concerned with the creation, modification or extension of a software
artifact for personal use only (therefore, individual EUD overlaps with End-User
Programming (Myers et al., 2006)). Typical examples of individual EUD are spread-
sheet programming for macro creation or modification, and scripting environments,

1From “maieutic,” the adjective relating to the method used by Socrates of eliciting knowledge
in the mind of a person by interrogation and insistence on close and logical reasoning (http://
dictionary.com).

80 G. Fischer et al.

http://dictionary.com
http://dictionary.com

like R and MATLAB, for statistical computing and data visualization (used by biolo-
gists, geologists and other scientists to analyze and display their data autonomously).

Public EUD denotes all those situations where end users either create or configure
software artifacts that are used by other people belonging to the same community
(because they are colleagues and co-workers) or belonging to a different community
(because they work in a different department). In both cases, public EUD means that
the outcome of the EUD activity is aimed at being shared and publicly available to
others than the end user involved in the programming activity. The main difference
between public and individual EUD is then the explicit intention behind the develop-
ment effort: either making something intended to be shared or not.

Public EUD can be further specialized into inward EUD and outward EUD. In
the former case, the people carrying out the EUD activity work for a community
they also belong to, as in the case of Electronic Patient Records mentioned before
(Costabile et al., 2007, 2008). In inward EUD, activities are intended to support
members of small teams and groups of people sharing sets of conventions,
assumptions, and practices, i.e. communities of practice (Wenger, 1998; Wenger
et al., 2002). In this case, one member or a group of members of the community
carries out the EUD activities, possibly engaging a conversation with software
professionals over time, according to a mutual development approach (Andersen
& Mørch, 2009): they work for the proficiency of the community itself, given their
(often tacit) knowledge of the characteristics and skills of its members. In the out-
ward EUD case, the EUD activity is aimed at building and improving tools that
have to be used across different communities or, even, in other communities.
Therefore, at least two communities (forming a community of interest (Fischer,
2001)), are involved and there is no guarantee that those who carry out EUD

PUBLIC EUD

OUTWARD EUD

INWARD EUD

INDIVIDUAL EUD

EUD ACTIVITIES

Fig. 4 A taxonomy of EUD activities

814 Revisiting and Broadening the Meta-Design Framework for End-User Development

activities will also take advantage of the product of these activities. For example, in
the e-government case (see Sect. 1) (Fogli & Parasiliti Provenza, 2011, 2012), the
civil servants are in charge of creating e-government services for the citizens,
whereas in the Memory Aiding Prompting System (see Sect. 3.4) (Carmien &
Fischer, 2010), caregivers develop and customize prompting systems for persons
with cognitive disabilities. Therefore, in public outward EUD, the quality of the
software artifacts created by the end-user developers is more important than in
individual and public inward EUD (see design tradeoffs in Sect. 5.5).

The objective of deepening the meaning implicit in the taxonomy is twofold.
On the one hand, it suggests that there exist different “types” of end-user develop-
ments, and thus different meta-design frameworks, methods, and techniques
should be considered for sustaining the activities of the end-user developers. On
the other hand, it focuses on public EUD that is more and more pervading our
daily life, but that has not received so far enough attention by the EUD community
(this is true especially for outward EUD).

4.4 Co-evolution Model

EUD encompasses techniques and applications that empower end users to develop
and adapt systems creating foundations for the co-evolution of users and systems
(Costabile et al., 2007). To model this phenomenon, the Interaction and
Co-Evolution (ICE) model (proposed in Costabile, Fogli, Marcante, & Piccinno,
2006) encompasses three cycles: the user-system interaction cycle, the task-artifact
co-evolution cycle, and the organization-technology co-evolution cycle. The inner
cycle emphasizes that two different interpretation processes occur inside the human
and the machine, which may become the source of usability problems and are related
to the communication gap existing between users and designers at design time. The
task-artifact co-evolution cycle recalls a well-known phenomenon described by
Carroll and Rosson (Carroll & Rosson, 1992), namely that the software artifacts
created to support some user’s tasks usually suggest new possible tasks and that, to
support these new tasks, new artifacts must be created. The outer cycle regards the
co-evolution phenomenon according to a wider view: since technological advances
provide designers with new possibilities for improving interactive systems once they
are already in use, these possibilities may change users’ work habits, thus making
their social and work organization evolve itself with technology.

The ICE model is suitable to individual EUD, whilst an extended model, ICE2,
has been proposed in (Fogli & Piccinno, 2013a) to deal with public inward and
outward EUD. Here, since end-user developers develop for others, they need to
interact easily with an EUD environment to create, modify, or adapt software systems
devoted to end users. Therefore, the ICE2 model encompasses the end-user developer
role, and three additional cycles model the mutual influence that systems and technol-
ogy have with end-user developers and respective organizations.

Figure 5 illustrates the ICE2 model presented in (Fogli & Piccinno, 2013a).
The left-hand side of the figure corresponds to the ICE model previously

82 G. Fischer et al.

http://dx.doi.org/10.1007/978-3-319-60291-2_3#Sec1

S
ys

te
m

E
n

d
 u

se
r

E
n

d
-u

se
r

d
ev

el
o

p
er

Ta
sk

Ta
sk

O
rg

an
iz

at
io

n-
te

ch
no

lo
gy

 c
yc

le
O

rg
an

iz
at

io
n-

te
ch

no
lo

gy
 c

yc
le

Ta
sk

-a
rt

ifa
ct

 c
yc

le
Ta

sk
-a

rt
ifa

ct
 c

yc
le

In
te

ra
ct

io
n

cy
cl

e
In

te
ra

ct
io

n
cy

cl
e

Te
ch

no
lo

g
y

M
a
te

ri
a
liz

a
ti
o
n

Materia
liz

atio
n

In
te

rp
re

ta
tio

n
In

te
rp

re
ta

ti
o
n

In
te

rp
re

ta
tio

n

In
te

rp
re

ta
ti
o
n

M
a
te

ri
a
liz

a
ti
o
n

Materia
liz

atio
n

ar
ti

fa
ct

O
rg

an
iz

at
io

n
O

rg
an

iz
at

io
n

F
ig
.5

T
he

IC
E
2
m
od
el

834 Revisiting and Broadening the Meta-Design Framework for End-User Development

mentioned; it describes a process that is influenced by the specular process involving
end-user developers, which is described by the right-hand side of the figure. The
artifact can be regarded as a boundary object (Star, 1989) between the community of
end users and that of end-user developers. It consists of the software system devoted
to the end users and of the EUD tools used by end-user developers to generate and/
or adapt the software system for end users. Different kinds of interaction between
the two co-evolution processes occur at use time. They are discussed in (Fogli &
Piccinno, 2013a) with the help of some case studies.

5 Identifying Design Drawbacks and Trade-Offs
Associated with Meta-Design

This section will examine some of the most important design trade-offs associated
with meta-design. They are first summarized in Table 3 and then analyzed in the
following sub-sections.

Table 3 Design trade-offs related to meta-design scenarios

Trade-off Description

Standardization vs. Improvisation Tension between improvisation that
encompasses innovation and creativity and the
need for providing standard applications easy to
distribute and maintain.

Cultures of participation vs. Information,
participation and collaboration overload

Cultures of participation can cause
(1) information overload (by generating more
information), (2) participation overload (by
engaging people to act as active contributors),
and (3) collaboration overload (by requiring
coordination activities between the numerous
contributors).

End-user driven evolution vs. Lack of
continuity and synergy

End user-driven evolution is no guarantee for
success because: (1) there is a lack of continuity
over time, and (2) professional developers and
users did not collaborate.

Usability of EUD products vs. flexibility
of EUD tools

Guaranteeing the usability of the software
artifacts created by end-user developers should
be counterbalanced by a lack of flexibility in
their creation/adaptation possibilities.

Utility vs. usability of EUD products Some EUD projects should privilege utility
whilst other should focus more on the usability
of the results of EUD activities (i.e. EUD
products); the “type” of EUD (see EUD
taxonomy) may determine the choices in setting
up the socio-technical conditions for EUD.

84 G. Fischer et al.

5.1 Standardization versus Improvisation

Meta-design creates inherent tensions, for example, between standardization and
improvisation. The SAP Info (July 2003, page 33) argues to reduce the number of
customer modifications (Fischer & Giaccardi, 2006, p. 446): “every customer
modification implies costs because it has to be maintained by the customer. Each
time a support package is imported there is a risk that the customer modification
may have to be adjusted or re-implemented. To reduce the costs of such on-going
maintenance of customer-specific changes, one of the key targets during an
upgrade should be to return to the SAP standard wherever this is possible.”
Finding the right balance between standardization (which can suppress innovation
and creativity) and improvisation (which can lead to a Babel of different and
incompatible versions) has been noted as a challenge in open-source environments
(Raymond & Young, 2001), in which forking has often led developers in different
directions.

5.2 Transcending Consumer Cultures versus Information
and Participation Overload

More and more information is available in the current digital society, coming from
social networks, smart sensors and actuators, personal mobile systems, and web-
based applications (e.g. there are approx. 1.5 Million Apps available for iPhones
and Android phones). Better support environments (such as: search engines,
recommender systems, aggregators systems, and context-aware applications based
on user and task models) are needed to cope with this information overload
(Fischer, 2012).

Cultures of participation (see Sect. 4.1) have as a downside that they are contri-
buting to a participation overload problem. People are more and more required to
personally take care of their bank accounts, travel arrangements, retirement plans,
etc. All these activities are manifestations of the DIY society. E-participation,
e-democracy, wikis, open source software and EUD environments represent other
situations where end users are asked to participate with their opinions, votes,
interests, knowledge and expertise. In addition, users are asked to participate in
peer-support communities, collaboratories, and crowdsourcing environments.

Participation overload is one of the most serious problems for meta-design. The
following design trade-offs should be taken into account:

• for personally irrelevant problems, individuals should not be forced to act as an
active contributors in cases in which they want to be consumers; people do not
enjoy freedom of choice, and specifically in complex and unfamiliar domains,
active choosing can be a burden, not a benefit (in the libertarian paternalism fra-
mework (see Sect. 2.2) the paternalism dimensions should be emphasized);

854 Revisiting and Broadening the Meta-Design Framework for End-User Development

• for personally meaningful problems, individuals should not be restricted to act
as consumers in situations where they want to be active contributors and
decision makers. In such situations, environments should support engagement,
promote learning, and participation. The rationale for this is provided by the
following observation: “The experience of having participated in a problem
makes a difference to those who are affected by the solution. People are more
likely to like a solution if they have been involved in its generation; even
though it might not make sense otherwise” (Rittel, 1984).

To cope with the participation overload problem, existing methods such as rich
seeds, reuse, redesign, and remixing need to be further improved and extended.
Support environments, such as construction kits and domain-oriented design envir-
onments providing high-level building blocks and allowing users to express them-
selves in their own language should be studied and developed.

5.3 Lack of Continuity and Lack of Synergy

The Oregon Experiment, a housing experiment at the University of Oregon,
instantiating the concept of end user-driven evolution, served as an interesting
case study that end user-driven evolution is no guarantee for success (Alexander,
1975). The analysis of its unsustainability indicated two major reasons: (1) there
was a lack of continuity over time, and (2) professional developers and users did
not collaborate, so there was a lack of synergy. These findings led to postulate the
need for methods and techniques for maintaining high the interest in the user-
driven evolution activities during the time and making developers and users
engage in intense collaborations. The first aspect regards long-term sustainability,
i.e. the need for taking high the interest of users when they are involved as contri-
butors in the evolution, even after that any expert has left them alone.

With design rationale captured, communication enhanced, and end-user modifiabil-
ity supported, developers have a rich source of information to evolve the system in the
way users really need it. This leads to address a new issue that is the perception of rela-
tive advantage: for an innovation to have an impact on the daily life of its users it is
important that these latter ones perceive the new thing as giving them a clear advantage
with respect to the traditional counterparts whatever these are (Emani et al., 2012).

As has been outlined in Sect. 4.2, in a richer ecology of participants, the role of
the maieuta designer is to make the community around an EUD system progres-
sively more independent from the professionals (Cabitza et al., 2014b). In other
words, the maieuta designer is the person who is in charge of designing the EUD-
enabling environment by creating the social conditions for end users to become
developers of their own system and guaranteeing the long-term sustainability of
the end-user driven evolution of the system at hand.

The more and more involvement of end users in the evolution of the system
brings different stakeholders, including consultants, designers internal to the

86 G. Fischer et al.

organization and end users, to collaborate among themselves to shape the system.
This means that such stakeholders need to face fundamental challenges in learning
how to communicate and in building a shared understanding. Such a lack of
synergy emerged also because during time, users and environments evolve.
Collaborative design has emerged as a response to the needs felt by various orga-
nizations of adapting software to specific environments and users. Visual media-
tion mechanisms for collaborative design, development and evolution of software
have been proposed to provide a means to improve communication and coopera-
tion among all stakeholders involved in the design process (Ardito et al., 2011).

5.4 Usability of EUD Products versus Flexibility of EUD Tools

Several companies are more and more requiring information systems that are flex-
ible enough to be adapted to the variety of their users, e.g. employees, business
analysts, customers, and providers (Dörner, Heß, & Pipek, 2007). EUD methods
have been proposed as a solution for developing flexible systems, which can be
adapted to the different needs directly on behalf of end users. However, such end
users have no or few competencies in information technologies and often are not
willing to acquire them; therefore, the software engineering community has raised
many doubts on the effectiveness of the EUD approach, by underlying the impor-
tant role played by skilled, professional software developers to guarantee software
correctness, efficiency, maintainability, and security (Harrison, 2004). For these
reasons, the End-User Software Engineering (EUSE) research addresses the issue
of software quality in EUD (Burnett & Scaffidi, 2013). Literature works in this
area propose methods oriented to non-professional software developers to carry
out requirement analysis and specification, system design and reuse, code debug-
ging, verification and testing. However, there is a further and important issue
related to EUD, that is the usability of the software artifacts developed by end
users (Fogli & Piccinno, 2013b). EUSE mainly considers EUD as an activity tar-
geted to create programs for personal rather than public use, thus distinguishing it
from professional programming (Ko et al., 2011); in this view, usability may not
be an issue. However, if we consider public outward EUD (see Fig. 4), where
end-user developers create and adapt programs for others (sometimes belonging to
another community), usability of the results of the EUD activity could become a
problem. This is due to the fact that end-user developers are neither professional
developers nor HCI experts, and may have a vague understanding of the usability
concept. The idea proposed in (Fogli & Piccinno, 2013a, b) to cope with this pro-
blem does not conceive EUD as direct creation of code on behalf of end-user
developers, but as the instantiation of a meta-model that represents a domain-
dependent class of software applications for end users. Therefore, usability of the
resulting environments is achieved through a meta-design activity, carried out by a
multi-disciplinary design team including domain experts, which is aimed at defin-
ing the conceptual model of the resulting applications, the meta-model subsuming

874 Revisiting and Broadening the Meta-Design Framework for End-User Development

them and proper EUD tools for instantiating the meta-model in a easy way by
end-user developers. To guarantee usability, the types of available EUD activities
should be restricted and end-user developers’ creativity could be limited as a con-
sequence. In summary, a trade-off would emerge between the flexibility of EUD
tools and the usability of systems resulting from EUD activities.

5.5 Utility versus Usability of EUD Products

Another design trade-off that has been observed in different contexts is that
between utility and usability of software applications. In Grudin (1992), Grudin
highlighted that in in-house and internal system development emphasis is usually
put on utility since software artifacts are built according to the functional needs of
the company; whilst, in commercial projects, usability is more important, since
one of the priorities is to facilitate system acceptance by users and thus promote
the diffusion of the system.

This trade-off is revived in meta-design and is concerned with utility and
usability of EUD products. Recalling the EUD taxonomy described in Sect. 4.3,
if one considers individual EUD and public inward EUD, the activities of end-
user development encompass system adaptation and extension to increase effec-
tiveness of the individual user and/or of his/her community; therefore, emphasis
in these cases should be mainly put on utility. On the other hand, in public
outward EUD, end-user developers create or adapt a software artifact by con-
stantly taking into account the requests of the end users belonging to a different
community.

As a consequence the socio-technical conditions that meta-designers (and
maieuta designers) must create are different for these two situations. To support
end-user developers in individual EUD and public inward EUD, meta-design must
focus on the design of EUD tools and infrastructures for communication within
the community (Dittrich, Bolmsten, & Ericksson, 2017); furthermore, proper
training of the end-user developers must be taken into consideration, both in terms
of programming methods and languages and of software engineering methods for
guaranteeing software quality (as EUSE prescribes). On the other hand, in public
outward EUD, not only tools supporting end-user developers must fit their charac-
teristics, skills and background, but also the artifacts created for end users by the
end-user developers must be usable. Thus, in this case, EUD techniques must be
based on domain-specific concepts inspired to daily work practices and enriched
with proper mechanisms for making artifact creation easier and code generation
transparent, as well as for guaranteeing the creation of usable artifacts. Therefore,
in this case, end-user developers should be supported no more with training in
programming, but rather with user-friendly and visually engaging EUD systems,
along with motivation strategies to foster end-user developers’ participation in
effectively doing EUD.

88 G. Fischer et al.

6 Design Guidelines

The above mentioned conceptual developments and analyzed trade-offs and draw-
backs led the research on EUD, meta-design, and co-design to look for design
guidelines for domain experts and for designing in use.

Among them, the set of guidelines for domain experts (representing end users
who are experts in domains other than software design) proposed in (Fischer
et al., 2009) include:

• Support human-problem interaction. Domain experts are interested in solving
their problems, rather than in interacting with computers, therefore design must
support human-problem interaction, rather than human-computer interaction.
This can be achieved by increasing domain specificity, as in the case of
domain-oriented design environments (Arias et al., 2016) and the various
Software Shaping Workshops (see Sect. 2.3) (Costabile et al., 2006, 2007).

• Underdesign for emergent behavior. Underdesign (Brand, 1995) relates to
meta-design, in that it creates design spaces where users can create solutions
suitable to their contingent needs allowing them to explore problems and solu-
tions not envisioned at design time. Systems should be underdesigned so that
users do not treat them as finished products but view them as continuous beta
versions that are open to incorporate emergent design behaviors during use.

• Enable legitimate peripheral participation. Newcomers to a community must
be able to engage in legitimate peripheral participation (Lave & Wenger, 1991)
through transparent policies and procedures for incorporating user contributions
into the software systems. To this aim, the system architecture must support rich
ecologies of participation (see Sect. 4.2), in order to support newcomers in pro-
gressively difficult and independent tasks, so that they can start participating
peripherally and move on gradually to take charge of more difficult tasks.

• Share control. Meta-designers must share control on the system with the partici-
pating users. Users can play different roles, depending on their level of involve-
ment, and thus have their own responsibility and authority. When users change
their roles in the community by making frequent and substantial contributions
(Fischer et al., 2008), they should be granted with more authority in the decision-
making process that shapes the system. This helps sustain user participation and
system evolution: users become stakeholders, acquire ownership in the system,
and will likely make further contributions; granting authority attracts (new) users
who want to influence system development and encourages them to contribute.

• Reward and recognize contributions. Fostering user participation in system use
and development requires paying attention to users’ motivations. Human beings
do not act only for material gain but also for psychological well-being, social
integration and connectedness, social capital, recognition, and reputation
(Benkler & Nissenbaum, 2006). Motivation is derived from users’ satisfaction
in their involvement by shaping the software system to solve their problems,
and can be positively reinforced and amplified when the community’s social
structure and conventions reward and recognize the contributions of users.

894 Revisiting and Broadening the Meta-Design Framework for End-User Development

• Foster reflective communities. The knowledge relevant to a complex design
problem is usually distributed among many domain experts. Fostering reflective
communities becomes a fundamental goal of meta-design (Arias et al., 2016)
and can be achieved by creating proper mechanisms for collaboration among
domain experts, who may bring controversial perspectives to the problem solu-
tion. This requires facilitating a shared understanding among domain experts,
by allowing them to bring their different knowledge sources and equally contri-
bute to the creation of new insights, new ideas, and new artifacts.

The set of guidelines for designing in use (Maceli & Atwood, 2011) are derived
from the literature on co-design (in which designers and users collaboratively are
shaping a system over time) and include:

• Connect with other people with similar needs, both nearby and far away. This
principle would like to encourage designers to focus on how users can use the
system to connect with other people, and how they might extend the system to
satisfy this requirement.

• Reach out and converse with other people in real-time, while they are using
the system. This principle emphasizes how users can have live experiences and
conversations with other people, who could be not only other users within or
outside their community, but also designers or users acting as designers. This
principle also suggests paying attention to the emergent use of chat and micro-
blogging tools to facilitate backchannel conversations.

• Combine it with other tools and systems they use regularly. The idea suggested
by this principle is regarding a system as only one piece of a larger, evolving
puzzle and not assume it to be something on which the user is totally focused
for all the time. Users interact with several tools and systems on a daily basis
and often at the same time. The possibility offered by mashups (see Sect. 3.2)
to combine different data sources and programming interfaces to create novel
tools is suggested as a possible way to address this need.

• Begin using it quickly, without a lot of help or instruction. This principle is
related to the general and traditional theme of system usability; it is aimed at
envisioning ways in which users could begin using a system quickly, by poten-
tially becoming able to act as designers with a limited effort.

• Tailor it to their personalized needs. This principle regards tailorability as fun-
damental to support users to act as designers. Both adaptivity (the system may
tailor itself on the basis of recurrent user interactions) and adaptability (the user
consciously performs tailoring actions) are considered successful solutions to
provide users with the necessary tools for system modification when new needs
arise during its use.

With respect to the meta-design guidelines mentioned before, these principles
are especially aimed at providing a frame for users and designers to communicate
changes across the system lifecycle to foster co-evolution of system and users.

90 G. Fischer et al.

7 Conclusion

Providing all citizens with the means to become co-creators of new ideas, knowl-
edge, and products in personally meaningful activities presents one of the most
exciting innovations and transformations with profound implications in the years
to come. This objective characterizes the vision behind EUD as a cultural trans-
formation, which complements and transcends the traditional technological per-
spective of EUD (Burnett & Scaffidi, 2013) mainly oriented to engage and
support people in programming activities.

To make this vision a reality, the EUD research community needs to estab-
lish (1) new theoretical frameworks (the chapter by Clarisse S. de Souza in this
volume argues that Semiotic Engineering can provide a unified theoretical
framing for various EUD-related topics (de Souza, 2017)), (2) new discourses
and shared languages about concepts, assumptions, values, stories, metaphors,
design approaches, and (3) new learning theories, such as those aimed at
promoting computational thinking (Brennan & Resnick, 2012; Kafai, 2016).
End users (by claiming ownership in personally meaningful problems) should
be empowered to design, build, and evolve their own artifacts and meta-
designers should create environments to foster cultures of participation. These
objectives will support all citizens to situate computation in new cultural and
material contexts with the support of socio-technical environments that demo-
cratize design.

New information and communication technologies have been heralded as the
major driving forces behind innovations in working, learning, and collaborating.
But many approaches have had only a minor impact by being conceptualized pri-
marily as technology-centered developments. Technology alone does not determine
social structure: it creates feasibility spaces for new social and cultural practice.
Changes in complex environments are not only dictated by technology; rather, they
are the result of an incremental shift in human behavior and social organization and,
as such, require the co-design of social and technical systems.

In an EUD culture supported by meta-design, individuals acting as designers
will acquire a new mindset: they are no longer passive receivers of knowledge,
but instead are active researchers, designers, and communicators of knowledge.
Knowledge is no longer handed down from above, but instead is constructed col-
laboratively in the contexts of work.

Meta-design provides the enabling conditions for putting owners of problems
in charge by defining the technical and social conditions for broad participation in
design activities. It addresses the challenges of fostering new mindsets, new
sources of creativity, and cultural changes to create foundations for innovative
societies. The foremost objective of meta-design is empowering humans (albeit
not all of them, not at all times, not in all contexts) to be and act as designers in
personally meaningful activities (Fischer, 2011).

914 Revisiting and Broadening the Meta-Design Framework for End-User Development

Acknowledgements The authors would like to thank Stefan Carmien, Benjamin Koehne,
Monica Maceli, Anders Mørch, Yunwen Ye, Daniel Tetteroo, and Li Zhou, who (based on their
own research related to meta-design) provided us with important insights and findings in
response to a questionnaire.

References

Alexander, C. (1975). The oregon experiment. New York: Oxford University Press.
Andersen, R., & Mørch, A. (2009). Mutual development: a case study in customer-initiated

software product development. In V. Pipek, M. B. Rossen, B. deRuyter, V. Wulf (Eds.). End-
user development (pp. 31–49). Heidelberg: Springer.

Anderson, C. (2012). Makers - the new industrial revolution. New York: Crown Business.
Ardito, C., Barricelli, B. R., Buono, P., Costabile, M. F., Piccinno, A., Valtolina, S., et al.

(2011). Visual mediation mechanisms for collaborative design and development. In
C. Stephanidis (Ed.). Universal access in human-computer interaction. Design for all and
eInclusion (vol. 6765, pp. 3–11). Berlin: Springer. doi:10.1007/978-3-642-21672-5_1.

Arias, E. G., Eden, H., Fischer, G. (2016). The envisionment and discovery collaboratory
(EDC): explorations in human-centered informatics. San Rafael, CA: Morgan & Claypool.

Avola, D., Bottoni, P., Genzone, R. (2011). Light-weight composition of personal documents
from distributed information. In M. F. Costabile, Y. Dittrich, G. Fischer, A. Piccinno
(Eds.). End-user development (vol. 6654, pp. 221–226). Berlin: Springer. doi:10.1007/978-3-
642-21530-8_17.

Barricelli, B. R., & Valtolina, S. (2015). Designing for end-user development in the internet of
things. In P. Díaz, V. Pipek, C. Ardito, C. Jensen, I. Aedo, & A. Boden (Eds.), End-user
development (vol. 9083, pp. 9–24). Springer International Publishing. doi:10.1007/978-3-
319-18425-8_2.

Benkler, Y. (2006). The wealth of networks: how social production transforms markets and free-
dom. New Haven: Yale University Press.

Benkler, Y., & Nissenbaum, H. (2006). Commons-based peer production and virtue. Political
Philosophy, 14(4), 394–419.

Benzi, F., Cabitza, F., Fogli, D., Lanzilotti, R., Piccinno, A. (2015). Gamification techniques for
rule management in ambient intelligence. In B. De Ruyter, A. Kameas, P. Chatzimisios,
I. Mavrommati (Eds.), Ambient intelligence (vol. 9425, pp. 353–356). Springer International
Publishing. doi:10.1007/978-3-319-26005-1_25.

Berg, M. (1999). Accumulating and coordinating: occasions for information technologies in
medical work. Computer Supported Cooperative Work, 8(4), 373–401. doi:10.1023/
A:1008757115404.

Binder, T., De Michelis, G., Ehn, P., Jacucci, G., Linde, P., Wagner, I. (2011). Design things.
Cambridge, MA: MIT Press.

Brand, S. (1995). How buildings learn: what happens after they’re built. New York: Penguin Books.
Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the develop-

ment of computational thinking. In Proceedings of annual meeting of the American
Educational Research Association (AERA’12) (pp. 1–25). Vancouver.

Burnett, M. (2009). What is end-user software engineering and why does it matter? In V. Pipek,
M. B. Rossen, B. deRuyter, V. Wulf (Eds.). End-user development (pp. 15–28). Heidelberg:
Springer.

Burnett, M., & Scaffidi, C. (2013). End-user development. In M. Soegaard, R. F. Dam (Eds.).
The encyclopedia of human-computer interaction, 2nd. Aarhus: The Interaction Design
Foundation. Available at http://www.interaction-design.org/encyclopedia/end-user_develop-
ment.html.

92 G. Fischer et al.

http://dx.doi.org/10.1007/978-3-642-21672-5_1
http://dx.doi.org/10.1007/978-3-642-21530-8_17
http://dx.doi.org/10.1007/978-3-642-21530-8_17
http://dx.doi.org/10.1007/978-3-319-18425-8_2
http://dx.doi.org/10.1007/978-3-319-18425-8_2
http://dx.doi.org/10.1007/978-3-319-26005-1_25
http://dx.doi.org/10.1023/A:1008757115404
http://dx.doi.org/10.1023/A:1008757115404
http://www.interaction-design.org/encyclopedia/end-user_development.html
http://www.interaction-design.org/encyclopedia/end-user_development.html

Cabitza, F., Fogli, D., Lanzilotti, R., Piccinno, A. (2016). Rule-based tools for the configuration
of ambient intelligence systems: a comparative user study. Multimedia Tools and
Applications, 1–21. doi:10.1007/s11042-016-3511-2.

Cabitza, F., Fogli, D., Piccinno, A. (2014a). “Each to his own”: distinguishing activities, roles
and artifacts in EUD practices. In L. Caporarello, B. Di Martino, M. Martinez (Eds.). Smart
organizations and smart artifacts (vol. 7, pp. 193–205). Switzerland: Springer International
Publishing. doi:10.1007/978-3-319-07040-7_19.

Cabitza, F., Fogli, D., Piccinno, A. (2014b). Fostering participation and co-evolution in sentient
multimedia systems. Journal of Visual Languages and Computing, 25(6), 684–694.
doi:10.1016/j.jvlc.2014.10.014.

Cabitza, F., & Simone, C. (2009). LWOAD: a specification language to enable the end-user
develoment of coordinative functionalities. In V. Pipek, M. B. Rosson, B. de Ruyter, V. Wulf
(Eds.). End-user development (vol. 5435, pp. 146–165). Berlin: Springer. doi:10.1007/978-3-
642-00427-8.

Cabitza, F., & Simone, C. (2015). Building socially embedded technologies: implications about
design. In V. Wulf, K. Schmidt, D. Randall (Eds.). Designing socially embedded technologies
in the real-world (pp. 217–270). London: Springer. doi:10.1007/978-1-4471-6720-4_11.

Cabitza, F., & Simone, C. (2017). Malleability in the hands of end users. In F. Paternò &
V. Wulf (Eds.). New perspectives in end-user development (pp. 137–164). Cham: Springer.

Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci, C. (2011).
DashMash: a mashup environment for end user development. In S. Auer, O. Díaz,
G. A. Papadopoulos (Eds.). Web engineering (vol. 6757, pp. 152–166). Berlin: Springer.
doi:10.1007/978-3-642-22233-7_11.

Carmien, S. (2006). Socio-technical environments supporting distributed cognition for persons
with cognitive disabilities. PhD Thesis, Computer Science Department, University of
Colorado, Boulder. http://www.scarmien.com/papers/dissertation_sm.pdf.

Carmien, S., & Fischer, G. (2008). Design, adoption, and assessment of a socio-technical environ-
ment supporting independence for persons with cognitive disabilities. Proceedings of CHI 2008:
ACM conference on human factors in computing systems (pp. 597–607). New York, NY:
ACM Press.

Carmien, S., & Fischer, G. (2010). Beyond human-computer interaction: meta-design in support
of human problem-domain interaction. In M. Banich, D. Caccamise (Eds.). Generalization of
knowledge: multidisciplinary perspectives (pp. 331–349). New York: Psychology Press.

Carroll, J. M., & Rosson, M. B. (1992). Getting around the task-artifact cycle: how to make
claims and design by scenario. ACM Transactions on Information Systems, 10(2), 181–212.
doi:10.1145/146802.146834.

Caruso, V., Hartley, M. D., Mørch, A. I. (2015). End-user development in second life: meta-
design, tailoring, and appropriation. In P. Díaz, V. Pipek, C. Ardito, C. Jensen, I. Aedo,
A. Boden (Eds.). End-user development: 5th international symposium, IS-EUD 2015,
Madrid, Spain, May 26-29, 2015. Proceedings (pp. 92–108). Cham: Springer International
Publishing. doi:10.1007/978-3-319-18425-8_7.

Costabile, M. F., Fogli, D., Marcante, A., Mussio, P., Parasiliti Provenza, L., Piccinno, A. (2008).
Designing customized and tailorable visual interactive systems. International Journal of Software
Engineering and Knowledge Engineering, 18(3), 305–325. doi:10.1142/S0218194008003702.

Costabile, M. F., Fogli, D., Marcante, A., Piccinno, A. (2006, May 23–26). Supporting interac-
tion and co-evolution of users and systems. In Proceedings of international conference on
advanced visual interface (pp. 143–150). Venice, Italy. doi:10.1145/1133265.1133294.

Costabile, M. F., Fogli, D., Mussio, P., Piccinno, A. (2005, September 20–24). A meta-design
approach to End-User Development. In Proceedings of IEEE symposium on visual languages and
human-centric computing (VL/HCC) (pp. 308–310). Dallas, TX. doi:10.1109/VLHCC.2005.7.

Costabile, M. F., Fogli, D., Mussio, P., Piccinno, A. (2006). End-user development: the software
shaping workshop approach. In H. Lieberman, F. Paternò, V. Wulf (Eds.). End user develop-
ment 9, (183–205). Dordrecht: Springer. doi:10.1007/1-4020-5386-X_9.

934 Revisiting and Broadening the Meta-Design Framework for End-User Development

http://dx.doi.org/10.1007/s11042-016-3511-2
http://dx.doi.org/10.1007/978-3-319-07040-7_19
http://dx.doi.org/10.1016/j.jvlc.2014.10.014
http://dx.doi.org/10.1007/978-3-642-00427-8
http://dx.doi.org/10.1007/978-3-642-00427-8
http://dx.doi.org/10.1007/978-1-4471-6720-4_11
http://dx.doi.org/10.1007/978-3-642-22233-7_11
http://www.scarmien.com/papers/dissertation_sm.pdf
http://dx.doi.org/10.1145/146802.146834
http://dx.doi.org/10.1007/978-3-319-18425-8_7
http://dx.doi.org/10.1142/S0218194008003702
http://dx.doi.org/10.1145/1133265.1133294
http://dx.doi.org/10.1109/VLHCC.2005.7
http://dx.doi.org/10.1007/1-4020-5386-X_9

Costabile, M. F., Fogli, D., Mussio, P., Piccinno, A. (2007). Visual interactive systems for end-u-
ser development: a model-based design methodology. IEEE Transactions on System Man and
Cybernetics Part A-Systems and Humans, 37(6), 1029–1046. doi:10.1109/
TSMCA.2007.904776.

Costabile, M. F., Mussio, P., Parasiliti Provenza, L., Piccinno, A. (2008, May 28–30). Advanced
visual systems supporting unwitting EUD. In Proceedings of international conference on
advanced visual interfaces (AVI) (pp. 313–316). Naple, Italy. doi:10.1145/1385569.1385621.

Costabile, M. F., Mussio, P., Piccinno, A., Ardito, C., Barricelli, B.R., Lanzilotti, R. (2009,
September 10–12). End-user development in the medical domain. In Proceedings of 15th
international conference on distributed multimedia systems (DMS) (pp. 10–15). San
Francisco Bay, CA.

Cress, U., Jeong, H., Moskaliuk, J. (Eds.) (2016). Mass collaboration and education.
Heidelberg: Springer.

Desolda, G. (2015). Enhancing workspace composition by exploiting linked open data as a poly-
morphic data source. In E. Damiani, J. R. Howlett, C. L. Jain, L. Gallo, G. De Pietro (Eds.).
Intelligent interactive multimedia systems and services (pp. 97–108). Cham: Springer
International Publishing. doi:10.1007/978-3-319-19830-9_9.

Desolda, G., Ardito, C., Matera, M. (2016). EFESTO: a platform for the end-user development
of interactive workspaces for data exploration. In F. Daniel, C. Pautasso (Eds.). Rapid
mashup development tools: first international rapid mashup challenge, RMC 2015,
Rotterdam, The Netherlands, June 23, 2015, revised selected papers (pp. 63–81). Cham:
Springer International Publishing. doi:10.1007/978-3-319-28727-0_5.

de Souza, C. S. (2017). Semiotic engineering: a cohering theory to connect EUD with HCI,
CMC and more. In F. Paternò & V. Wulf (Eds.). New perspectives in end-user development
(pp. 269–306). Cham: Springer.

Dittrich, Y., Bolmsten, J., Eriksson, J. (2017). End user development and infrastructuring –
sustaining organizational innovation capabilities. In F. Paternò & V. Wulf (Eds.). New
perspectives in end-user development (pp. 165–206). Cham: Springer.

Dittrich, Y., Madsen, P., Rasmussen, R. (2011). Really simple mash-ups. In M. F. Costabile,
Y. Dittrich, G. Fischer, A. Piccinno (Eds.). End-user development (vol. 6654, pp. 227–232).
Berlin: Springer. doi:10.1007/978-3-642-21530-8_18.

Dörner, C., Heß, J., Pipek, V. (2007, September 10–14). Improving information systems by end
user development: a case study. In Proceedings of European conference on information sys-
tems (ECIS) (pp. 783–794). St. Gallen, Switzerland.

Emani, S., Yamin, C. K., Peters, E., Karson, A. S., Lipsitz, S. R., Wald, J. S., et al. (2012).
Patient perceptions of a personal health record: a test of the diffusion of innovation model.
Journal of Medical Internet Research, 14(6). doi:10.2196/jmir.2278.

Fischer, G. (2000). Symmetry of ignorance, social creativity, and meta-design. Knowledge-Based
Systems, 13(7–8), 527–537. doi:10.1016/S0950-7051(00)00065-4.

Fischer, G. (2001). Communities of interest: learning through the interaction of multiple knowl-
edge systems. In Proceedings of 24th annual information systems research seminar in
Scandinavia (IRIS’24) (pp. 1–14). Ulvik, Norway.

Fischer, G. (2002). Beyond ‘couch potatoes’: from consumers to designers and active contributors.
FirstMonday, 7(12), http://firstmonday.org/issues/issue7_12/fischer/. doi:10.5210/fm.v7i12.1010.

Fischer, G. (2011). Understanding, fostering, and supporting cultures of participation.
Interactions, 18(3), 42–53. doi:10.1145/1962438.1962450.

Fischer, G. (2012, May). Context-aware systems: the ‘right’ information, at the ‘right’ time, in
the ‘right’ place, in the ‘right’ way, to the ‘right’ person. In G. Tortora, S. Levialdi, &
M. Tucci (Eds.), Proceedings of the conference on advanced visual interfaces (AVI 2012)
(pp. 287–294). Capri: ACM.

Fischer, G. (2013). End-user development: from creating technologies to transforming cultures.
In Y. Dittrich, M. Burnett, A. Mørch, D. Redmiles (Eds.). End-user development (vol. 7897,
pp. 217–222). Berlin: Springer. doi:10.1007/978-3-642-38706-7_16.

94 G. Fischer et al.

http://dx.doi.org/10.1109/TSMCA.2007.904776
http://dx.doi.org/10.1109/TSMCA.2007.904776
http://dx.doi.org/10.1145/1385569.1385621
http://dx.doi.org/10.1007/978-3-319-19830-9_9
http://dx.doi.org/10.1007/978-3-319-28727-0_5
http://dx.doi.org/10.1007/978-3-642-21530-8_18
http://dx.doi.org/10.2196/jmir.2278
http://dx.doi.org/10.1016/S0950-7051(00)00065-4
http://firstmonday.org/issues/issue7_12/fischer/
http://dx.doi.org/10.5210/fm.v7i12.1010
http://dx.doi.org/10.1145/1962438.1962450
http://dx.doi.org/10.1007/978-3-642-38706-7_16

Fischer, G., & Giaccardi, E. (2006). Meta-design: a framework for the future of end user devel-
opment. In H. Lieberman, F. Paternò, V. Wulf (Eds.). End user development 9, (427–457).
Dordrecht, The Netherlands: Springer. doi:10.1007/1-4020-5386-X_9.

Fischer, G., Grudin, J., McCall, R., Ostwald, J., Redmiles, D., Reeves, B., et al. (2001). Seeding,
evolutionary growth and reseeding: the incremental development of collaborative design
environments. In G. M. Olson, T. W. Malone, J. B. Smith (Eds.). Coordination theory and
collaboration technology (pp. 447–472). Mahwah, NJ: Lawrence Erlbaum Associates.

Fischer, G., & Herrmann, T. (2011). Socio-technical systems: a meta-design perspective.
International Journal of Sociotechnology and Knowledge Development (IJSKD), 3(1), 1–33.
doi:10.4018/jskd.2011010101.

Fischer, G., Nakakoji, K., Ye, Y. (2009). Metadesign: guidelines for supporting domain experts
in software development. IEEE Software, 26(5), 37–44. doi:10.1109/MS.2009.134.

Fischer, G., & Ostwald, J. (2002). Seeding, evolutionary growth, and reseeding: enriching
participatory design with informed participation. In Proceedings of the participatory design
conference (PDC’02) (pp. 135–143). Sweden: Malmö University.

Fischer, G., Piccinno, A., Ye, Y. (2008). The ecology of participants in co-evolving socio-technical
environments. In P. Forbrig, & F. Paternò (Ed.). Engineering interactive systems (Proceedings
of 2nd conference on human-centered software engineering (vol. LNCS 5247, pp. 279–286).
Heidelberg: Springer.

Fischer, G., & Scharff, E. (2000). Meta-design: design for designers. In Proceedings of 3rd
conference on designing interactive systems: processes, practices, methods, and techniques
(pp. 396–405). New York City, NY. doi:10.1145/347642.347798.

Fogli, D. (2009). End-user development for e-government website content creation. In V. Pipek,
M. B. Rosson, B. de Ruyter, V. Wulf (Eds.). End-user development (vol. 5435/2009,
pp. 126–145). Berlin: Springer. doi:10.1007/978-3-642-00427-8.

Fogli, D., Colosio, S., Sacco, M. (2010). Managing accessibility in local e-government websites
through end-user development: a case study. Universal Access in the Information Society,
9(1), 35–50. doi:10.1007/s10209-009-0158-z.

Fogli, D., & Parasiliti Provenza, L. (2011). End-user development of e-government services through
meta-modeling. In M. F. Costabile, Y. Dittrich, G. Fischer, A. Piccinno (Eds.). End-user devel-
opment (vol. 6654, pp. 107–122). Berlin: Springer. doi:10.1007/978-3-642-21530-8_10.

Fogli, D., & Parasiliti Provenza, L. (2012). A meta-design approach to the development of e-gov-
ernment services. Journal of Visual Languages and Computing, 23(2), 47–62. doi:10.1016/j.
jvlc.2011.11.003.

Fogli, D., & Piccinno, A. (2013a). Co-evolution of end-user developers and systems in multi-tiered
proxy design problems. In Y. Dittrich, M. Burnett, A. Mørch, D. Redmiles (Eds.). End-user
development (vol. 7897, pp. 153–168). Berlin: Springer. doi:10.1007/978-3-642-38706-7_12.

Fogli, D., & Piccinno, A. (2013b). Enabling domain experts to develop usable software artifacts.
In P. Spagnoletti (Ed.). Organizational change and information systems (vol. 2, pp. 419–428).
Berlin: Springer. doi:10.1007/978-3-642-37228-5_41.

Ghiani, G., Paternò, F., Spano, L. D. (2011). Creating mashups by direct manipulation of
existing web applications. In M. F. Costabile, Y. Dittrich, G. Fischer, A. Piccinno (Eds.). End-
user development (vol. 6654, pp. 42–52). Berlin: Springer. doi:10.1007/978-3-642-21530-8_5.

Grudin, J. (1992). Utility and usability: research issues and development contexts. Interacting
with Computers, 4(2), 209–217. doi:10.1016/0953-5438(92)90005-Z.

Harrison, W. (2004). From the editor: the dangers of end-user programming. IEEE Software,
21(4), 5–7. doi:10.1109/MS.2004.13.

Henderson, A., & Kyng, M. (1991). There’s no place like home: continuing design in use. In
J. Greenbaum, & M. Kyng (Eds.). Design at work: cooperative design of computer systems
(pp. 219–240). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Illich, I. (1973). Tools for conviviality. New York: Harper and Row.
Jenkins, H. (2009). Confronting the challenges of participatory cultures: media education for the

21st century. Cambridge, MA: MIT Press.

954 Revisiting and Broadening the Meta-Design Framework for End-User Development

http://dx.doi.org/10.1007/1-4020-5386-X_9
http://dx.doi.org/10.4018/jskd.2011010101
http://dx.doi.org/10.1109/MS.2009.134
http://dx.doi.org/10.1145/347642.347798
http://dx.doi.org/10.1007/978-3-642-00427-8
http://dx.doi.org/10.1007/s10209-009-0158-z
http://dx.doi.org/10.1007/978-3-642-21530-8_10
http://dx.doi.org/10.1016/j.jvlc.2011.11.003
http://dx.doi.org/10.1016/j.jvlc.2011.11.003
http://dx.doi.org/10.1007/978-3-642-38706-7_12
http://dx.doi.org/10.1007/978-3-642-37228-5_41
http://dx.doi.org/10.1007/978-3-642-21530-8_5
http://dx.doi.org/10.1016/0953-5438(92)90005-Z
http://dx.doi.org/10.1109/MS.2004.13

Kafai, Y. B. (2016). From computational thinking to computational participation in K–12 educa-
tion. Communications of the ACM, 59(8), 26–27. doi:10.1145/2955114.

Kelly, K. (1995). Out of control: the new biology of machines, social systems, and the economic
world. Boston, MA: Addison-Wesley Longman Publishing Co., Inc.

Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., et al. (2011). The
state of the art in end-user software engineering. ACM Computing Surveys, 43(3), 1–44.
doi:10.1145/1922649.1922658.

Koehne, B., Redmiles, D., Fischer, G. (2011). Extending the meta-design theory: engaging
participants as active contributors in virtual worlds. In M. F. Costabile, Y. Dittrich,
G. Fischer, A. Piccinno (Eds.). End-user development (Third International Symposium, Torre
Canne, Italy, June) (vol. LNCS 6654, pp. 264–269). Heidelberg: Springer.

Lave, J., & Wenger, E. (1991). Situated learning: legitimate peripheral participation. New
York: Cambridge University Press.

Leadbeater, C., & Miller, P. (2004). The Pro-AM revolution — how enthusiasts are changing
our economy and society. London: Demos.

Lessig, L. (2008). Remix: making art and commerce thrive in the hybrid economy. New York:
Penguin Press.

Lieberman, H., Paternò, F., Klann, M., Wulf, V. (2006). End-user development: an emerging
paradigm. In H. Lieberman, F. Paternò, V. Wulf (Eds.). End user development (vol. 9, pp. 1–8).
Dordrecht: Springer. doi:10.1007/1-4020-5386-X_1.

Lieberman, H., Paternò, F., Wulf, V. (Eds.) (2006). End user development 9, Dordrecht:
Springer. doi:10.1007/1-4020-5386-X_9.

Ludwig, T., Dax, J., Pipek, V., Wulf, V. (2017). A practice-oriented paradigm of end-user devel-
opment. In F. Paternò & V. Wulf (Eds.). New perspectives in end-user development (pp. 23–42).
Cham: Springer.

Maceli, M., & Atwood, M. E. (2011). From human crafters to human factors to human actors
and back again: bridging the design time – use time divide. In M. F. Costabile, Y. Dittrich,
G. Fischer, A. Piccinno (Eds.). End-user development (vol. 6654, pp. 76–91). Berlin:
Springer. doi:10.1007/978-3-642-21530-8_8.

Mørch, A., Caruso, V., Hartley, M. M. (2017). End-user development and learning in second life:
the evolving artifacts framework with application. In F. Paternò & V. Wulf (Eds.). New perspec-
tives in end-user development (pp. 333–358). Cham: Springer.

Myers, B. A., Ko, A. J., Burnett, M. M. (2006). Invited Research Overview: End-User
Programming. Proc. of CHI ’06 Extended Abstracts on Human Factors in Computing
Systems (pp. 75–80), Montréal, Québec, Canada. doi:10.1145/1125451.1125472.

Nardi, B. A. (1993). A small matter of programming. Cambridge, MA: The MIT Press.
National Research Council (1999). Being fluent with information technology. Washington, DC:

National Academy Press.
Norman, D. A., & Draper, S. W. (1986). User centered system design; new perspectives on

human-computer interaction. Hillsdale, NJ: L. Erlbaum Associates Inc.
O’Reilly, T. (2005). What is web 2.0 - design patterns and business models for the next generation

of software. http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html.
Preece, J., & Shneiderman, B. (2009). The reader-to-leader framework: motivating technology-

mediated social participation. AIS Transactions on Human-Computer Interaction, 1(1), 13–32.
Raymond, E. S., & Young, B. (2001). The cathedral and the bazaar: musings on linux and open

source by an accidental revolutionary. Sebastopol, CA: O’Reilly & Associates.
Rittel, H. (1984). Second-generation design methods. In N. Cross (Ed.). Developments in design

methodology (pp. 317–327). New York: John Wiley & Sons.
Schuler, D., & Namioka, A. (1993). Participatory design: principles and practices. Hillsdale,

New Jersey: Lawrence Erlbaum Associates, Inc.
Shneiderman, B. (2009). National initiative for social participation. Science, 323(5920),

1426–1427.

96 G. Fischer et al.

http://dx.doi.org/10.1145/2955114
http://dx.doi.org/10.1145/1922649.1922658
http://dx.doi.org/10.1007/1-4020-5386-X_1
http://dx.doi.org/10.1007/1-4020-5386-X_9
http://dx.doi.org/10.1007/978-3-642-21530-8_8
http://dx.doi.org/10.1145/1125451.1125472
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

Star, S. L. (1989). The structure of ill-structured solutions: boundary objects and heterogeneous
distributed problem solving. In L. Gasser, M. N. Huhns (Eds.). Distributed artificial intelli-
gence (vol. II, pp. 37–54). San Mateo, CA: Morgan Kaufmann Publishers Inc.

Tapscott, D., & Williams, A. D. (2006). Wikinomics: how mass collaboration changes every-
thing. New York, NY: Portofolio, Penguin Group.

Tetteroo, D. (2013, June). TagTrainer: a meta-design approach to interactive rehabilitation technol-
ogy. In End-user development: fourth international symposium (pp. 289–292). Copenhagen,
Denmark.

Tetteroo, D. (2015). End-user adaptable rehabilitation (Ph.D. Dissertation), Eindhoven
University of Technology.

Tetteroo, D., & Markopoulos, P. (2017). EUD survival “in the wild”: evaluation challenges for
field deployments and how to address them. In F. Paternò & V. Wulf (Eds.). New perspec-
tives in end-user development (pp. 207–230). Cham: Springer.

Tetteroo, D., Seelen, H., Timmermans, A., Markopoulos, P. (2014). Rehabilitation therapists as
software creators?: Introducing end-user development in a healthcare setting. International
Journal of Sociotechnology and Knowledge Development (IJSKD), 6(1), 36–50. doi:10.4018/
ijskd.2014010103.

Thaler, R. H., & Sunstein, C. R. (2009). Nudge — improving decisions about health, wealth, an
happiness. London: Penguin Books.

von Hippel, E. (2005). Democratizing innovation. Cambridge, MA: MIT Press.
Wenger, E. (1998). Communities of practice — learning, meaning, and identity. Cambridge, UK:

Cambridge University Press.
Wenger, E., McDermott, R. A., Snyder, W. (2002). Cultivating communities of practice: a guide

to managing knowledge. Boston, MA: Harvard Business Press.
Ye, Y., & Fischer, G. (2007). Converging on a “science of design” through the synthesis of design

methodologies (CHI’2007 workshop). http://swiki.cs.colorado.edu:3232/CHI07Design/3.
Zhu, L. (2012). Hive-mind space: a meta-design approach for cultivating and supporting colla-

borative design (PhD). Università degli Studi di Milano, Milano.
Zhu, L., Barricelli, B. R., Iacob, C. (2011). A meta-design model for creative distributed colla-

borative design. International Journal of Distributed Systems and Technologies (IJDST),
2(4), 1–16. doi:10.4018/jdst.2011100101.

Zhu, L., & Herrmann, T. (2013). Meta-design in co-located meetings. In Y. Dittrich, M. Burnett,
A. Mørch, D. Redmiles (Eds.). End-user development: 4th international symposium, IS-EUD
2013, Copenhagen, Denmark, June 10-13, 2013. Proceedings (pp. 169–184). Berlin:
Springer. doi:10.1007/978-3-642-38706-7_13.

Zhu, L., Mussio, P., Barricelli, B. R. (2010). Hive-mind space model for creative, collaborative
design. In Proceedings of 1st DESIRE network conference on creativity and innovation in
design (pp. 121–130). Aarhus, Denmark.

Zhu, L., Vaghi, I., Barricelli, B. R. (2011). A meta-reflective wiki for collaborative design. Proc.
of Proceedings of the 7th International Symposium on Wikis and Open Collaboration –
WikiSym ’11 (pp. 53–62), Mountain View, California. doi:10.1145/2038558.2038569.

974 Revisiting and Broadening the Meta-Design Framework for End-User Development

http://dx.doi.org/10.4018/ijskd.2014010103
http://dx.doi.org/10.4018/ijskd.2014010103
http://swiki.cs.colorado.edu:3232/CHI07Design/3
http://dx.doi.org/10.4018/jdst.2011100101
http://dx.doi.org/10.1007/978-3-642-38706-7_13
http://dx.doi.org/10.1145/2038558.2038569

A Three-Layer Meta-Design Model for
Addressing Domain-Specific Customizations

Carmelo Ardito, Maria Francesca Costabile, Giuseppe Desolda
and Maristella Matera

Abstract Meta-design has been proposed as a model to design systems able to support
End-User Development (EUD). Meta-design means “design for designers.” Differently
than in traditional design, professional developers do not directly create a final appli-
cation, but they build software environments thorough which non-technical end users,
acting as co-designers, are enabled to shape up the application while they are using it.
Allowing end users to participate to the creation of their applications, by modifying or
even creating from scratch software artifacts, is very challenging. To make this possible,
end users have to be provided with software environments customized to their specific
domain, which they can easily understand and use. In order to cope with domain specifi-
city, this chapter presents a newmeta-design model that specifically addresses the custo-
mization to a domain of interest. Customization, performed by domain experts possibly
in collaboration with professional developers, becomes the key activity to provide
non-technical end users with software environments that are adequate to their knowl-
edge and needs, thus allowing them to actually become co-designers of their applica-
tions. The model is illustrated by describing its successful application to the design of a
mashup platform that allows end users to create new applications by integrating data and
functionality taken from different resources. The customization of the platform to different
domains, such as Cultural Heritage and Technology Enhanced Learning, is discussed.

Keywords Meta-design · End-User Development · Mashup platform

C. Ardito (✉) · M.F. Costabile · G. Desolda
Dipartimento di Informatica, Università degli Studi di Bari Aldo Moro, Via Orabona 4,
Bari 70125, Italy
e-mail: carmelo.ardito@uniba.it

M.F. Costabile
e-mail: maria.costabile@uniba.it

G. Desolda
e-mail: giuseppe.desolda@uniba.it

M. Matera
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
Piazza Leonardo da Vinci 32, Milano 20134, Italy
e-mail: maristella.matera@polimi.it

99© Springer International Publishing AG 2017
F. Paternò, V. Wulf (eds.), New Perspectives in End-User Development,
DOI 10.1007/978-3-319-60291-2_5

1 Introduction

Meta-design is a model often applied to designing systems supporting End-User
Development (EUD) (Costabile, Fogli, Mussio, & Piccinno, 2007; Fischer &
Giaccardi, 2006; Fischer, Giaccardi, Ye, Sutcliffe, & Mehandjiev, 2004). It pro-
motes the active involvement of software engineers and end users in a continuous
cycle of development, use and evolution of systems. As defined by Fischer et al.:
“Meta-design extends the traditional notion of system development to include
users in an ongoing process as co-designers, not only at design time but through-
out the entire existence of the system” (Fischer et al., 2004). The meta-design
model encompasses different activities: meta-design activities consist of designing
software environments; this leads to the next activities of design and use, where
end users complete the design of the final application and use it. Meta-design is in
line with the so-called culture of participation (Díez, Mørch, Piccinno, & Valtolina,
2013; Fischer, 2011; Jenkins, 2009), which has received a lot of attention as it pro-
motes a shift from consumer cultures, where produced artifacts are passively con-
sumed, to participatory approaches that greatly exploit computational media to
support collaboration and communication. The aim behind this design model is to
provide end users with the means to become co-creators of new ideas, knowledge
and products that can effectively satisfy their specific needs (Porter, 2008).

Following this line of action, in this chapter we show how the original meta-
design model is refined by explicitly modeling all those activities that enable
domain experts, possibly in collaboration with professional developers, to custo-
mize general tools to the domain of interest. Customization is indeed instrumental
to provide non-technical end users with software environments that are adequate
to their knowledge and needs and that actually allow them to perform EUD activ-
ities. In the new model we therefore devise three different types of activities that
conceptually can be organized in three different layers.

The chapter also discusses the application of the new model to the customiza-
tion of a mashup platform. In the last years we have indeed worked extensively on
fostering the adoption, in real contexts and by non-technical end users, of mashup
platforms enabling EUD. Such class of tools accommodate very well EUD, as
they allow end users to create new applications by integrating functions and con-
tent exposed by remote services and Web APIs. By means of two case studies in
Cultural Heritage and Technology Enhanced Learning, this chapter illustrates how
the three-layer meta-design model allowed us to customize a general mashup plat-
form for its use in the two domains.

The adoption of mashup platforms in real contexts is largely debated (see for
example (Casati, 2011)). So far, the research on mashup highlighted several advan-
tages that can favor EUD. For example, the possibility to start from ready-to-use
components certainly mitigates the complexity of creating a new application from
scratch and can be also faced, under given assumptions, by non-technical end users
who do not know how to program and do not want to be forced to do it. However,
several disadvantages also emerged, for example in relation to the difficulties for

100 C. Ardito et al.

end users in understanding and using the notations to compose resources, to the
inadequacy of available components with respect to the end-user needs, and to the
difficulty of adding new components into the composition platforms (Namoun,
Nestler, & De Angeli, 2010). Our position, which also derives from observing
people adopting our tools during field studies, is that these disadvantages occur
because the proposed platforms are too “general,” claiming that one single design
might satisfy the requirements of many domains. We therefore propose domain
customization as a solution to make meta-design still more effective in creating
platforms that really fit the end-user needs. This position is also in line with the
guidelines proposed in (Fischer, Fogli, & Piccinno, 2017).

This chapter is organized as follows. Sect. 2 illustrates the background of this
research by discussing related work. Sect. 3 presents the three-layer meta-design
model and illustrates how it has driven the development of the mashup platform
according to an open architecture that specifically favors customization activities.
Sect. 4 reports two case studies that show how the platform was used in two appli-
cation domains, after a proper customization to each one of such domains. Sect. 5
concludes the paper.

2 Background and Related Work

In this section, we discuss the background of this article along two main dimen-
sions, namely meta-design as a design model to support EUD and mashup
platforms as tools for fostering user-driven innovation. The goal is to push end
users to evolve from passive consumers of software to active producers of new
knowledge and products.

2.1 Meta-Design to Foster EUD

Traditionally, the life cycle of interactive systems distinguishes between design
time and use time. At design time, system developers create a system that should
satisfy the requirements they collected about end users’ needs and objectives. At
use time, end users exploit the system to accomplish their tasks. Design frame-
works are based on the assumption that major design activities end at a certain
point; then use time begins and people use the system. Participatory design was
introduced to take into account the participation of end users in the design process
(Schuler, 1993). It was based on the rationale that users are experts of the applica-
tion domain, thus a system can be effective only if these experts are allowed to
participate in its design, highlighting their needs and expectations. In participatory
design, end users are members of the design team, but no tools are provided to let
them create or modify software. EUD started the trend toward a more
active involvement of end users in the overall software design, development, and

1015 A Three-Layer Meta-Design Model for Addressing Domain-Specific Customizations

evolution processes, to allow them becoming co-designers of the tools and
products they will use. This does not imply transferring the responsibility of good
system design to them. It actually makes the work of professional developers even
more difficult, since: (a) it is still their responsibility to ensure the quality of the
software artifacts created by end users (Ko et al., 2011), and (b) they have to
create proper tools that support end users in these new roles of designers and
developers.

The design of systems that enable EUD activities thus requires a different
design paradigm, called meta-design, which literally means “design for designers”
(Costabile et al., 2007; Fischer et al., 2004). It consists of two types of activities
that might also alternate: meta-design activities are performed by professional
developers, who create the design environments that allow the diverse stake-
holders to participate in the creation of the final applications; design activities con-
sist of designing the final applications and are performed by end users, and
possibly other stakeholders, by using the design environments devoted to them.
The two activities are not clearly distinct and are executed several times in an
interleaved way because the design environments evolve, both as a consequence
of the progressive insights the different stakeholders gain into the design process,
and as a consequence of the feedbacks provided by end users working with the
system in the field.

Since several years, Costabile et al. have been working on the creation of
software infrastructures that support EUD activities (Costabile, Fogli, Fresta,
Mussio, & Piccinno, 2003; Costabile, Fogli, Mussio, & Piccinno, 2006; Costabile
et al., 2007; Costabile, Mussio, Parasiliti Provenza, & Piccinno, 2009). They
defined a design approach that allows a team of stakeholders to cooperate in the
design, development, use and evolution of interactive systems. The approach is
based on a meta-design model, because it prescribes that, instead of developing
the final interactive system as in traditional design approaches, professional devel-
opers design software environments for the different communities of stakeholders
involved in the creation of the system. Such stakeholders will use such environ-
ments to carry out specific tasks at use time, and as a side effect they will also
contribute to the design and evolution of the interactive system (Costabile et al.,
2009). These software environments are called Software Shaping Workshops
(SSWs or briefly workshops). The term workshop comes from the analogy with an
artisan’s workshop (e.g., the joiner’s or the smith’s workshop), i.e., the workroom
where the artisan finds all and only those tools necessary to carry out her/his activ-
ities. According to the metaphor, the different software environments provide all
and only the tools necessary to their users to perform their specific activities, as
well as interaction languages tailored to their users’ culture, defined by formalizing
the traditional user notations and system of signs (Iverson, 1980). In the original
definition, and in particular in (Costabile et al., 2006, 2007), the SSW model dis-
tinguished three levels of activities: (1) design by software engineers; (2) design
by different communities of experts of the application domain or of experts of
human factors; (3) use by different communities of end users. The design by soft-
ware engineers is actually meta-design according to the definition provided in

102 C. Ardito et al.

(Fischer & Giaccardi, 2006; Fischer et al., 2004). Moreover, since the focus is on
EUD, it is implicit that some communities operate at both level 2 and level 3, i.e.,
they perform both design and use of an application, at use time.

By applying the SSW model to real cases, it was soon realized that domain
experts often need to perform meta-design. Several case studies are reported in
(Ardito, Buono, Costabile, Lanzilotti, & Piccinno, 2012), which show that meta-
design is not only performed by software engineers, but some domain experts
have often to shape software artifacts that are used by other communities of
experts and/or end users to design other artifacts. Specifically, most of such meta-
design activities perform customization to a specific domain, in order to tailor gen-
eric tools to the needs of non-technical end users. In (Cabitza, Fogli, & Piccinno,
2014a, 2014b), Cabitza et al. introduce the “domain developer”, i.e., a domain
expert actively involved in the creation of artifacts more suitable for end users and
the tasks in the work domain at hand. The three-layer meta-design model pre-
sented in this chapter makes explicit the customization activities, which are crucial
for making EUD possible.

Fisher proposed the model called SER (Seeding, Evolutionary and Reseeding)
(Fischer, 1998). Instead of building a complete system at design time, system design
starts from seeds, which are developed by meta-designers in a participatory team
involving end users. A subsequent evolutionary growth follows, and then a reseeding
phase occurs. The seeding phase concerns the definition of the initial prototype, which
will be used by end users to perform their activities. The reseeding is performed by
meta-designers to modify the initial state of a software artifact, on the basis of the evo-
lutions determined by end users. The evolving system continually alternates between
periods of unplanned evolutions by end users and periods of deliberate restructuring
and enhancement. Customization to a specific domain is not explicitly addressed.

Other authors present meta-design as an approach supporting end users to tailor
the tools they use. Maceli and Atwood discuss that end users often adapt systems
by a trial-and-error strategy (Maceli & Atwood, 2011). Koehne et al. show that
meta-design is instrumental to provide useful tools for involving end users in the
design of virtual worlds, such as online role-playing games like “Lord of the
Rings Online,” and open-ended virtual world like “Second Life” (Koehne,
Redmiles, & Fischer, 2011). Sutcliffe and Papamargaritis suggest that customiza-
tion is successful for “seeding” the adoption of EUD tools and propose the use of
a configuration environment based on generic conceptual models of problem
domains (Sutcliffe & Papamargaritis, 2014).

2.2 User-Driven Innovation by Web Mashup

Meta-design can be fruitfully exploited for the design of Web mashup (simply
called mashup) platforms. As also remarked in (Fischer et al., 2017), given their
component-based nature, mashups intrinsically favor EUD and meta-design.
Mashups are “composite” applications constructed by integrating ready-to-use

1035 A Three-Layer Meta-Design Model for Addressing Domain-Specific Customizations

functions and content exposed by public or private services and Web APIs
(Daniel & Matera, 2014). Mashups were initially exploited in the context of the
consumer Web to rapidly create applications reusing programmable APIs and con-
tent scraped out from Web pages. Soon, the potential of such lightweight integra-
tion practice emerged in various domains. Several mashup platforms have been
proposed in the last years to allow end users to visually compose data and services
taken from different sources, so that they can satisfy their information needs (e.g.,
see Aghaee & Pautasso, 2014; Danado & Paternò, 2014; Daniel & Matera, 2014;
Ghiani, Paternò, Spano, & Pintori, 2016; Mehandjiev & de Angeli, 2014). Very
often these platforms are general, i.e., they do not show any specificity with
respect to given domains. As observed in (Casati, 2011), the lack of specificity is
a problem when platforms have to be adopted by users without expertise in com-
puter programming. Methodologies are therefore needed to create platforms that,
although designed to be generic, can be then effectively specialized when adopted
in specific application domains.

Mashup development resembles service composition, a development practice
traditionally covered by powerful standards and technologies that, however, can
only be mastered by IT experts (Ro, Xia, Paik, & Chon, 2008). What makes
mashup development different from plain Web service integration is the possibility,
deriving from recent Web technologies, to merge ready-to-use resources at the
client-side, thus with reduced efforts and without the need of complex integration
platforms. Mashup development also emphasizes novel issues, such as the compo-
sition at different layers of the application stack of heterogeneous resources that
make use of different technologies. In particular, the integration at the presentation
layer is the most innovative aspect enabling the creation of full-fledged Web appli-
cations whose user interface (UI) can be easily obtained by synchronizing the UIs
of different ready-to-use components. If supported by adequate tools, mashup
development can be an alternative to service composition that goes towards the
dream of a “programmable Web” (Maximilien, Wilkinson, Desai, & Tai, 2007)
even by end users without any knowledge in programming.

Because of its intrinsic value as development practice to let end users produce
new value, mashup composition is in line with the so-called “culture of participa-
tion” (Fischer, 2010); users are enabled to evolve from passive consumers of
applications to active co-creators of new ideas, knowledge, and products. There is
indeed a specific driver at the heart of the user participation to the mashup phe-
nomenon: user-driven innovation, that is, the desire and capability of users to
develop their own things, to realize their own ideas, and to express their own crea-
tivity (Von Hippel, 2005). According to recent works published in literature
(Ardito, Costabile, Desolda, Latzina, & Matera, 2015; Latzina & Beringer, 2012),
there is also an increasing need to replace fixed applications with elastic environ-
ments that can be shaped up flexibly, to accommodate different situational needs.
New design principles are emerging to promote paradigms where end users can
access contents and functions through different devices and flexibly use and com-
pose such resources in several situations and across several applications. If the
composition activity turns out to add significant new value, the advantage for the

104 C. Ardito et al.

users is that they co-create effective applications matching exactly their needs.
Additionally, an interesting side effect is that the providers of the original
resources can integrate the user innovation back into their core products (Iyer &
Davenport, 2008) and improve their services, in order to fulfill users’ requirements
without the need of carrying out the iterative experimentation generally required
to identify requirements and develop and test a new product. In this new process,
the end users are entirely in charge of these aspects because they are enabled to
create solutions that closely meet their needs.

Such innovation potential requires adequate approaches and tools for enabling
mashup by non-technical end users (Daniel & Matera, 2014). However, the research
on mashups has been focusing especially on enabling technologies and standards,
with little attention on easing the mashup development process. Research teams and
industrial players tried to define simplified composition paradigms, mostly based on
visual notations and lightweight design and execution platforms running on the
Web. A number of tools have been proposed that offer composition paradigms
based on graphical notations, which abstract relevant mashup development aspects
and operations. The user defines diagrams to express the internal logic of a mashup,
without writing code. However, many of such tools failed because they resulted non
adequate for end users (Casati et al., 2012; Namoun et al., 2010). One of the main
reasons is that they lack intuitive abstractions (Burnett, Cook, & Rothermel, 2004;
Liu, Huang, & Mei, 2007). To support the user-driven innovation potential, the
challenge is indeed to let users concentrate on the conception of new ideas, rather
than on the technicalities beyond service composition. In other words, users should
be enabled to easily access resources responding to personal needs, integrate them
to compose new applications, and simply run such applications without worrying
about what happens behind the scenes.

To achieve this goal, one direction is to restrict mashup platforms to a well-
defined domain the user is comfortable with. General-purpose platforms are not
adequate to the needs of specific application domains and specific end users.
Some studies on composition approaches indeed showed that too general plat-
forms are not used with satisfaction by end users (Casati, 2011; Namoun et al.,
2010). This represents an obstacle to a wider adoption of such platforms by non-
technical people, who need to interact with tools and notations they are familiar
with (e.g., see Costabile et al., 2006, 2007). In order to develop generic platforms
that can be valid in different domains, it is fundamental to design platform archi-
tectures able to support the easy customization of the platform. This is what our
extension to the meta-design model supports.

3 A Three-Layer Meta-Design Model for a Mashup Platform

Since 2012, we have been developing a mashup platform where end users, at use
time and according to their needs, can select and integrate content into Interactive
Workspaces (IWs). The platform may be accessed through different devices, such

1055 A Three-Layer Meta-Design Model for Addressing Domain-Specific Customizations

as a desktop computer, a mobile device or a large multi-touch display; it shows
content retrieved by dynamically querying Web data sources registered into the
platform, and allows the users to select pertinent content items to fill-in visual
templates, i.e., visualization skeletons through which users easily organize and
instantiate with data their IWs. In other words, the visual templates are the
“containers” in which raw data (i.e., content) retrieved from Web sources are
shown in the visual interface (Ardito et al., 2015). Examples of visual templates
are a map showing geo-referenced data, a list of items, a chart of values. A live
programming paradigm let the users see immediately the effect on any composi-
tion action, having the possibility to assess directly the progressive definition of
the final application. Users can therefore easily explore any feature offered by the
platform and easily go back when they are not satisfied with their choice.

The result of the visual composition is an XML-based representation of the IW,
which the user can store on the platform server and download anytime and any-
where for its execution on different devices. The schema specifies the selected ser-
vices, the way they are queried in order to create the desired mashup, and how the
mashup results are displayed through rendering elements of the visual template.

3.1 The Three-Layer Meta-Design Model

The mashup platform we developed is not tied to any specific domain. Indeed, a
key feature of the platform is that it provides mechanisms for customization to spe-
cific usage domains. The only way to offer a composition paradigm and resources
adequate to end users of a specific application domain is to capitalize on their
domain knowledge. Thus, the general tools and interaction elements have to be
customized to the domain of interest. To make this possible, the platform adopts a
stratification into different design (and meta-design) layers where different stake-
holders contribute to the creation of different artifacts (Fischer et al., 2004). The
involvement of domain experts is instrumental for a successful customization.

As represented in Fig. 1, the top layer refers to a meta-design activity performed
by professional developers (likely a multi-disciplinary participatory team), who
design and develop the design environments for the other stakeholders. The team also
develops visual templates, by using Web technologies (for example HTML and
JavaScript) or specific languages for other devices (e.g., Java for Android). Visual
templates are important ingredients for the successive customization, since custo-
mized visualizations can reflect the knowledge domain.

The middle layer refers to another meta-design activity, Domain customization.
Domain experts, possibly collaborating with professional developers (not necessa-
rily the same that act at the first level), customize the general-purpose tool result-
ing from the activities at the top layer. Domain experts are familiar with the types
of information end users would retrieve, the manipulations they would perform
and the most suitable visualizations. Thus, they exploit a platform tool, called

106 C. Ardito et al.

Workspace composition environment, to register services, compose registered
services by exploiting data-composition operations (like join and union), select
how to materialize service results by means of visual templates (e.g. map, list,
graph) (Matera, Picozzi, Pini, & Tonazzo, 2013). Domain experts perform these
technical activities in a way that is suitable for their skills. However, they do not
have the skills and expertise to perform more complex customization activities
like the registration of more sophisticated services (e.g. the ones requiring
complex authentication mechanisms, proprietary technologies), advanced service
compositions, the development of new and domain-specific visual templates, as
well as the development of workspaces skeletons (i.e., pre-defined, typical aggre-
gations of services). This is the reason why another environment, more devoted to
advanced activities, is available for professional developers that integrate the
domain experts’ requests in the general-purpose tool.

At the bottom layer, end users finally design, use and update their IWs. This
means that they start by a customized version of the mashup tool, which provides
a selection of services composed and visualized according to the customization
activity. In addition, in order to satisfy personal and situational needs, end users
can manipulate content extracted from the registered services, for example, by
using the union and join of different result sets. They can also associate different
visualizations to the composed content and bookmark content in order to save it.

Professional design & development Platform repository

Workspace design & use

Domain customization

SW environment developmentProfessional
developer

Domain
expert

End user

Registered
services

Visual
templates

Workspace
templates

Interactive
Workspaces

Visual template development

Visual template customization

Workspace template creation

Service descriptor definition

Service customization

Service selection

Service query

Union mashup

Join mashup

Visual template selection

Content bookmarking

Fig. 1 The three-layer meta-design model; the middle layer is devoted to the customization to
the domain of interest

1075 A Three-Layer Meta-Design Model for Addressing Domain-Specific Customizations

The possibility for end users to select pertinent services, query them and aggre-
gate the retrieved content, and especially the opportunity to define and customize
visual templates makes the entire approach elastic. So far, software systems have
been conceived as pre-packaged sets of data, functionality, and visualizations that
somebody else (the software developer) builds for us. Elastic systems diverge
from such idea and try to promote paradigms where contents, functionality and
access devices are totally decoupled from specific contexts of use and can be
determined at use time. Elasticity is, in other words, an opportunity to accommo-
date multiple and variable contextual needs, moving the responsibility to end users
of creating their own applications (Latzina & Beringer, 2012).

The customization is performed before using the platform in a new application
domain; it can be later re-executed to satisfy specific needs emerging later, e.g., to
register or to combine further services, as it emerges by the platform usage in the
field. In Sect. 4, we illustrate customization activities by means of examples of the
usage of a real platform in two different application domains.

3.2 Architecture for Mashup Platforms Implementing the
Meta-Design Model

Adequate software architectures are needed, in order to make concrete the meta-
design model illustrated above. We here report the architecture of EFESTO
(Desolda, Ardito, & Matera, 2016), the mashup platform that we have designed
with the specific purpose of supporting a meta-design methodology. The platform
architecture complies with a separation of concerns so that the layers managing
the different aspects of mashup creation and execution (presentation, logics, data)
are decoupled. This means that each aspect, if needed, can be easily adapted to the
application domain.

Separation of concerns is facilitated especially by the compositional nature of
the platform. Being a mashup platform, EFESTO is indeed conceived for the inte-
gration of heterogeneous services. This openness facilitates the customization of
the platform with respect to the characteristics and needs of specific communities
of end users. Customization, for example, occurs by selecting and registering into
the platform services and data sources (public or private) that, for any different
domain, can provide content able to fulfill specific users’ information needs.
Service registration is kept as simple as possible, so that even non-technical users
can possibly add new services if needed. Indeed. Except for particular cases, ser-
vice registration requires the user to input, by means of visual forms, the service
URI and the value of some search keys for executing basic service queries. Then
the XML specification, i.e. the Service Descriptor, is automatically generated by
the system and stored in the Repository Server (Desolda, 2015). A further custo-
mization activity performed by domain experts consists of reducing the initial data
set of a registered service, so that only the attributes of interest for a specific
domain are available to end users.

108 C. Ardito et al.

In EFESTO different Visual templates, which play the role of visualization
containers (Cappiello, Matera, & Picozzi, 2015), can be easily introduced to repre-
sent metaphors and interaction paradigms that best suit the background and the
needs of the addressed end users. Through visual templates, domain experts define
how the content dynamically retrieved by querying a service will be visualized in
proper visualization containers to be then adopted by end users to create their
IWs. Visual templates, available in the Repository Server, provide end users with
a schematic representation of how data extracted from services will be organized,
i.e., aggregated and visualized. They also provide data integration schemas, as
they determine how the involved data sources are queried and the resulting data
integrated.

This schematic representation can be easily modified to reflect domain specifi-
city. Providing a new visual template implies defining a new HTML template or a
new View for execution on an Android smart phone. At composition time, by
visually associating selected service attributes to visual template fields, the end
user defines a projection of the only attributes of interest. In addition, if the attri-
butes associated to a single visual template element are selected from multiple ser-
vices, then the structure of the visual template determines a global integration
schema mapping the attributes of single services into an integrated data set. In few
words, to operate on data, end users actually manipulate visual representations
that can be easily modified to accommodate the end-user mental model.

The overall organization of the platform is represented in Fig. 2. Thanks to the
adoption of a live programming paradigm, end users create their IW through the

Workspace Composition Environment Multi-device Execution Environment

Execution Engine

UI
Controller Desktop

Interactive
Whiteboard

Mobile
Device

Multi-Touch
Screen

Web Services
and APIs

Service
descriptor

Visual
template

Visual
template

Workspace

schema

Repository Server

Visual
Templates

Workspace
schema

Service
descriptor

C
us

to
m

iz
at

io
n

E
nv

iro
nm

en
t

Workspace
schema

Service
Manager

Registered
Services

Workspace
Schemas

Visual
Templates

Workspace Manager

Service
descriptor

Schema
Manager

Schema
Interpreter

Service
Querying

Fig. 2 The architecture of the EFESTO mashup platform

1095 A Three-Layer Meta-Design Model for Addressing Domain-Specific Customizations

Workspace Composition Environment, an HTML/JavaScript Web application that
allows them to execute composition actions and immediately see the result, i.e., a
running application. A Workspace Manager intercepts the visual mapping and
synchronization actions performed by an end user. Through its Schema Manager
module, such actions are automatically translated into elements of a Workspace
schema, expressed in an XML-based domain specific language (Cappiello et al.,
2015), which describes the service queries, the association of the query results
with specific visual templates, and possible synchronizations among different
visual templates.

The execution of an IW can occur on the device where it was created, as well
as through an Execution Environment running on a different device (right side of
Fig. 2). An Execution Engine, possibly implemented through any Web or device-
native technology, interprets the Workspace schema (Schema Interpreter) and
instantiates the adopted visual templates (UI controller), by rendering the corre-
sponding user interface and filling the visual elements with data requested to the
involved services (Service Querying). It is worth noting that the Model-Driven
Architecture paradigm on which our approach is based allows the user to generate
one platform independent model, representing the structure, in terms of integrated
data sources and data visualizations, of the composed application, and to perva-
sively execute it on different devices and in different contexts of use.

4 Customization to Specific Application Domains

In order to verify the usefulness and validity of the extended meta-design model
implemented in our mashup platform, we performed two field studies in different
application domains. One study was carried out in the context of visits to archaeo-
logical parks. Two professional guides composed a mashup application for retriev-
ing content relative to an archaeological park using a desktop application,
accessible through a PC placed in his/her office. Later, during a guided visit of the
archaeological park, two guides use the mashup application to show the content to
visitors by using a large interactive display when introducing the visit and a tablet
device during the tour in the park.

Another field study, performed in a context of Technology-Enhanced Learning
(TEL), allowed us to analyze the use of the platform in a situation where students
learn about a topic presented in class by their teacher, complementing the teacher’s
lecture by searching information on the Web. The retrieved information can also
be communicated and shared with the teacher and the other students using interac-
tive whiteboards, desktop PCs and personal devices (e.g., laptop, tablet and smart-
phone). These two studies are reported in details in (Ardito et al., 2014). The
description in the next two subsections emphasizes the customization activities
performed before the actual studies.

110 C. Ardito et al.

4.1 Customization in a CH Context

In order to customize the mashup platform to the Cultural Heritage context, in
particular to provide support to the activities of professional guides, we worked in
a team that included two professional developers with HCI expertise and two
guides with a long experience of conducting visit in archaeological parks. They
met twice to perform various activities.

During the first meeting, the guides explained the way they usually organize a
visit. The briefing phase performed before the actual tour through the ruins is fun-
damental. It aims at both introducing visitors to the history of the archaeological
park and providing some preliminary information. It is usually carried out in front
of a large panel showing the map or an aerial photography of the park. This phase
would greatly benefit from making the panel interactive and able to show multi-
media content related to the topics described by the guide. The team agreed that
the debriefing should be supported by an interactive workspace displayed on a
large display. Multimedia content (Web pages, images and videos) retrieved
beforehand by the guide from the Web could be displayed as icons on a map.

After the meeting, the professional developers performed a first step of custo-
mization of their Interactive Workspaces (IW) by registering in the platform
services like Google Search, Wikipedia, Google Images, FlickR and YouTube. In
addition, developers integrated the map visual template by including the Google
Maps service that, beyond the map, also provides some business logic; for exam-
ple, it displays further details of a place by clicking on the corresponding pin on
the map.

During the second meeting, the two guides had the possibility to directly per-
form a second step of customization using a desktop application, accessible
through a PC placed in their office. First, they decided which services should be
synchronized with the map, in order to show service data as pin on the map when
a search was performed. Second, they saved favorites contents relative to the
archaeological park of Egnathia (in Southern Italy) in a specific container with
lists of items. Lastly, both the guides and the developers decided that the same
interactive workspace should be made available on a tablet carried out by the
guide, so that it could be accessed during the tour (Fig. 3).

Once the platform was customized, few days later the guides experimented the
mashup platform with a large interactive display (46-inch) and a tablet device
(7-inch) during two guided visits of the archaeological park, involving 28 visitors.
To introduce the visit, the professional guides interacted with the IW they created,
in order to “enhance” their presentation of the history of the park. The IW was
then executed on a large interactive display available at the entrance of the park
museum (Fig. 4a). Media contents, such as photos, videos, and wiki pages asso-
ciated with park locations to be visited during the guided tour were represented by
an icon and a title placed on a map centered on the park. By tapping on an icon, a
pop-up window visualizes the corresponding media. During the park tour, the

1115 A Three-Layer Meta-Design Model for Addressing Domain-Specific Customizations

guides accessed their IW on the tablet (Fig. 4b), in order to show photos, videos
and other information when appropriate.

The study showed a general appreciation of the use of IW in the context of the
visit and interesting insights emerged. The guides acknowledged the support of
the mashup platform in composing the application and organizing the material for
the visit. However, they complained about the scarce material they were able to
find when searching the services available in the platform. This is a problem
common to all service-based applications, which have to rely on content made
available by third-parties. To limit this problem, more sensible services should be
added into the platform; they can be further third-parties’ services, if any respond-
ing to the user needs exists, but they can also be local and ad-hoc created collec-
tions of contents, maintained by domain experts and even fed by end users
themselves by adding self-produced material. Also, since the services used for the

Fig. 3 A guide performing the customization of the platform

a b

Fig. 4 IW for the archaeological park of Egnathia visualized on a large interactive display
(a) and on tablet (b)

112 C. Ardito et al.

study at the Egnathia park are Web 2.0 resources, the guides could publish online
their own material (e.g., videos, pictures, Wikipedia pages) that can thus be easily
accessed through the mashup platform. This of course requires a more intensive
use of the system by the guides, since they have to realize which content is miss-
ing and to enrich consequently their public online collections.

It also emerged that guides would like to have the possibility of switching
among different visualizations, according to the specific task they are performing.
For example, it happens quite often that they want to refer to buildings or venues
located in a different park. In this case, they are forced to navigate in the map for
localizing the other park, which could be very far, and then show the content.
Thus, they want the possibility to organize these contents, which cannot be posi-
tioned on the park they are currently visiting, in a different visual template, even a
simple folder tree like the one used by Windows™ operating system they are
familiar with.

4.2 Customization in a TEL Context

The platform was also validated in a Technology Enhanced Learning (TEL)
context. Nowadays, schools are provided with different computing devices, not
only desktops but also different types of tablets and interactive whiteboard.
Teachers and students are increasingly using such devices in their daily activities.
The experience on TEL of some of the authors of this paper showed that, if used
with proper techniques and tools, technology may be a valid support to learning
and can even encourage people to become more active in their learning activities
(Ardito, Costabile, De Angeli, & Lanzilotti, 2012). The proposed platform has a
great potential to be one of such supporting tools.

The customization of the platform to the TEL domain was performed by a
team of two professional developers with HCI expertise and two high school tea-
chers. They met four times to perform various activities. Other activities were per-
formed in between two consecutive meetings.

In the first two meetings, important information to identify new services to be
registered was collected. Teachers illustrated their current use of technology in
their school. Teachers and students regularly use Google Drive tools to support
the activity of sharing and integrating information they find on the Web using stu-
dents’ laptops or tablets. The teacher organizes a Google Drive folder in sub-
folders, each related to a class topic. Web pages, images, videos, presentations, or
part of them that the teacher has selected for her/his class are pasted into a docu-
ment and saved in a folder, which is shared with students. In addition, each stu-
dent has a folder on Google Drive (named with his/her name), containing his/her
documents, some of which are shared with other students and with the teacher,
others are only in view modality for other people. In class, the teacher uses the
interactive white board, in order to show and discuss the contents available in the
folder of that specific topic. A blank document is opened, in which s/he writes

1135 A Three-Layer Meta-Design Model for Addressing Domain-Specific Customizations

the titles of the topics that students will further deepen. Students individually
perform their searches in the laboratory or at home and create documents that
contain links to content on the Web and/or portions of Web documents that
are copied and pasted in a new document. Each student saves these documents in
the personal folder in the class folder. Back to classroom, the teacher, through the
interactive whiteboard, examines and discusses with students the documents
produced by them. During the discussions, the two teachers realized that, while
Google Drive only permits manual operations to copy and paste into a new
document text, images and links to Web pages, videos, etc., the mashup platform
should be valuable in performing, in particular, the following activities: (1) creat-
ing more sophisticated search tools by composing data coming from different
services; (2) updating the content returned by the components by simply
re-running their queries; (3) organizing contents in appropriate visual templates.
At the end of the second meeting, the team agreed that the teacher’s class should
be supported by multimedia content (Web pages, images, videos, presentations)
retrieved beforehand by the teacher from the Web. Thus, the services Google
Search, Wikipedia, SlideShare, Google Images, YouTube and Vimeo were regis-
tered in the platform.

In the third meeting, teachers customized the platform by registering new ser-
vices (e.g. Wikipedia, SlideShare). They were able to manipulate content, per-
forming join and union of services, primarily using various types of lists to
visualize the results. They asked for having the possibility to save the current
results of the composed services somewhere, replicating the classical operation
they were used to do: they copy and paste the results of their searches in a docu-
ment in Google Drive. This opened a discussion within the team. Teachers under-
stood the different behavior of a widget in the workspace. Indeed, once a user,
acting on that widget, performs a query, the original sources are accessed, but the
results may be different than those obtained with a previous query on the same
widget. This has many advantages, but the teachers explained that sometimes,
when they find an interesting result, they want to keep it to show later to their stu-
dents. In order to satisfy this requirement, the final decision was to implement
in the platform a very primitive container, a kind of folder, in which they can save
the results of a specific query. This “Favourite” folder was indeed implemented
in the platform.

In the fourth and last meeting, teachers finalized the customization of the plat-
form by refining the services and saving some contents in the favorite container.
However, some concerns aroused about the appropriateness of the content visuali-
zation allowed by the “Favourite” container for supporting class activities. At the
end, the teachers insisted on having a different visual template, such as a concept
map, which permits to organize and structure the retrieved contents according to
learning concepts and their relationship. Therefore, the design team specified the
requirements of this new visual template so that a first prototype could be
available.

The use of the customized platform was carried out at a high school in Southern
Italy. It was organized over three days and involved a class of 16 students

114 C. Ardito et al.

(9 females, 19-year-old on average) and a teacher. The first day, using a PC in his
office, the teacher composed an IW relative to a specific topic, i.e., Computer
Networks, searching and including content about Protocols, Architectures,
Switching and Security retrieved from the registered services. The retrieved con-
tents were saved and organized in the concept map container (see Fig. 5).

Two days later, the teacher taught a class supported by the IW visualized on an
interactive whiteboard. The teacher very effectively presented the different con-
tents; he visualized them using the concept map container, with which he was
familiar. At the end, he divided the students in groups of 2–3; each group was
assigned the task of creating an IW about a specific Computer Networks sub-topic,
e.g., Protocols, Packet Switching, Latency Period. After a brief individual training
session, all the groups accessed the laboratory to carry out their assignments.

Next day students presented in class their group work using a interactive white-
board (see Fig. 6). The list container, used by students to organize the content
they retrieved, proved very poor for presentation purposes. In particular, the list
visualization makes difficult the identification of a specific content to be
illustrated.

Students agreed that the concept map would be a better visual template,
even if they did not realize this during the workspace composition. A group of
students proposed a visual template in which contents could be organized in
different folders; it is evident that this derived from the influence of Google
Drive on their mental model. In general, they agreed on the value of more flex-
ibility in organizing the interactive workspace. The provided visual templates
should also be empowered with functionality that permits ordering, filtering and
searching actions.

Fig. 5 The Interactive Workspace on Computer Networks created by the teacher using a
desktop PC

1155 A Three-Layer Meta-Design Model for Addressing Domain-Specific Customizations

4.3 Discussion

The studies conducted in the Cultural Heritage and in the Technology Enhanced
Learning domains (see Ardito et al., 2014 for more details) demonstrated how the
customization activities allowed domain experts to take advantage of their domain
knowledge to adapt the general-purpose mashup platform to the specific end-user
requirements in those domains. Customization was functional to foster the adop-
tion of mashup platforms in real contexts, also favoring the “seeding” of such
EUD tools in a specific domain.

Besides allowing us to assess the advantages of the customization activities
introduced in the meta-design model, the studies demonstrated that the platform is
sufficiently easy to use and users felt quite supported in accomplishing their tasks.
Most participants appreciated the value of the platform in enabling easy and effec-
tive integration of content retrieved on the fly from online APIs. Low response
time of the platform was indicated as a negative aspect, but this was due to the
very poor technology infrastructure available both at the archaeological park and
at the school lab. In other studies that we performed to evaluate the platform, none
ever complained about this problem.

Participants highlighted the lack of collaboration tools, such as chats or forums.
Other remarks also concerned distributed collaborative creation of components
and functions to annotate them services, widgets and information items. In earlier
versions of the platform (Matera et al., 2013) we already included these functions,
thus their provision would be possible. They were not made available during the
study as our main focus was on the adequateness of the composition paradigm.

The studies also revealed new requirements that mashup platforms should fea-
ture to foster their adoption in real contexts. First, the users expressed the need to

Fig. 6 A student presenting the Interactive Workspace of her group organized as a list of
contents and visualized on an Interactive White Board

116 C. Ardito et al.

“manipulate” data extracted from services. They highlighted that through the
platform they could not perform much more than visualizing data, modifying
visualizations, and inspecting data details. They would instead appreciate func-
tions to make the displayed information actionable, i.e., suitable for being manipu-
lated according to their task goals. For example, in the content retrieval task,
beyond composing services and choosing how to visualize retrieved content, parti-
cipants also wanted to perform ordering, filtering, or selecting a specific part of a
content item, possibly annotating the selected parts with comments. A suggestion
came out about the adoption of the mind map as further visual template, because
teachers are familiar with it and it is indeed appropriate in the learning domain
where concept relationships are very significant.

Second, they needed to satisfy complex information needs by gathering data
from the entire Web - not only from pre-packaged components. Inspired by these
requirements, the most recent version of EFESTO offers: (1) a set of tools to orga-
nize, visualize and manipulate extracted data according to specific functions
(Ardito et al., 2015); (2) a new “polymorphic” data source that exploits the Linked
Open Data cloud (Desolda, 2015); (3) visual mechanisms to integrate data
retrieved from different data sources (Ardito et al., 2014). Further studies have
been planned to assess the benefit of these new features.

5 Conclusion

This chapter presented a three-layer meta-design model to build systems that
enable EUD and that leverage domain specificity to provide end users with tools
that really make sense in real contexts of use. The peculiarity is the introduction
of additional methodological activities, which address the customization of
systems to specific domains. This customization is performed by domain experts,
possibly in collaboration with professional developers.

Although the studies were conducted in two specific domains, we are confident
that the proposed methodology can be effectively applied to the customization of
any domain. Our current work is devoted to further refining the customization
activities. For this purpose, following a bottom-up approach, we are applying the
methodology for customizing the mashup platform to other domains, in particular
home automation to support the elderly. This domain poses some more challenges:
even the composition paradigm needs to be revised, as also smart objects needs to
be composed and synchronized with Web services. Some preliminary results how-
ever already confirmed the effectiveness of the three-layer design model and the
adequateness of the architecture organization of the EFESTO platform.

Acknowledgments This work is partially supported by the Italian Ministry of University and
Research (MIUR) under grants PON03PE_00136_1 - “DSE - Digital Services Ecosystem” and
CTN01_00128_111357 - “SHELL - Cluster Smart Living Technologies”.

1175 A Three-Layer Meta-Design Model for Addressing Domain-Specific Customizations

References

Aghaee, S., & Pautasso, C. (2014). End-user development of mashups with naturalmash. Journal
of Visual Languages & Computing, 25(4), 414–432.

Ardito, C., Bottoni, P., Costabile, M. F., Desolda, G., Matera, M., Picozzi, M. (2014). Creation
and use of service-based distributed interactive workspaces. Journal of Visual Languages &
Computing, 25(6), 717–726.

Ardito, C., Buono, P., Costabile, M. F., Lanzilotti, R., Piccinno, A. (2012). End users as
co-designers of their own tools and products. Journal of Visual Languages & Computing, 23
(2), 78–90.

Ardito, C., Costabile, M. F., De Angeli, A., Lanzilotti, R. (2012). Enriching exploration of
archaeological parks with mobile technology. ACM Transactions on Computer-Human
Interaction, 19(4), 1–30. Article 29.

Ardito, C., Costabile, M. F., Desolda, G., Lanzilotti, R., Matera, M., Picozzi, M. (2014). Visual
composition of data sources by end users. In Advanced visual interfaces (AVI ’14), Como,
Italy (pp. 257–260). New York: ACM.

Ardito, C., Costabile, M. F., Desolda, G., Latzina, M., Matera, M. (2015). Making mashups action-
able through elastic design principles. In P. Díaz, V. Pipek, C. Ardito, C. Jensen, I. Aedo,
A. Boden (eds.). End-user development - IS-EUD 2015 vol. LNCS 9083, (pp. 236–241). Berlin
Heidelberg: Springer.

Burnett, M., Cook, C., Rothermel, G. (2004). End-user software engineering. Communications of
the ACM, 47(9), 53–58.

Cabitza, F., Fogli, D., Piccinno, A. (2014a). “Each to his own”: distinguishing activities, roles
and artifacts in EUD practices. In L. Caporarello, B. Di Martino, M. Martinez (eds.). Smart
organizations and smart artifacts: fostering interaction between people, technologies and
processes vol. 7, (193–205). Cham: Springer International Publishing.

Cabitza, F., Fogli, D., Piccinno, A. (2014b). Fostering participation and co-evolution in sentient
multimedia systems. Journal of Visual Languages & Computing, 25(6), 684–694.

Cappiello, C., Matera, M., Picozzi, M. (2015). A UI-centric approach for the end-user develop-
ment of multidevice mashups. ACM Transactions on the Web, 9(3), 1–40.

Casati, F. (2011). How end-user development will save composition technologies from their con-
tinuing failures. In M. Costabile, Y. Dittrich, G. Fischer, A. Piccinno (eds.). End-user devel-
opment - IS-EUD 2011 LNCS vol. 6654, (4–6). Berlin Heidelberg: Springer.

Casati, F., Daniel, F., Angeli, A. D., Imran, M., Soi, S., Wilkinson, C. R., et al. (2012).
Developing mashup tools for end-users: on the importance of the application domain.
International Journal of Next-Generation Computing, 3(2), 144–172.

Costabile, M. F., Fogli, D., Fresta, G., Mussio, P., Piccinno, A. (2003). Building environments
for end-user development and tailoring. In IEEE symposium on human centric computing lan-
guages and environments (HCC’03) (pp. 31–38). Auckland, New Zealand: IEEE Computer
Society.

Costabile, M. F., Fogli, D., Mussio, P., Piccinno, A. (2006). End-user development: the software
shaping workshop approach. In H. Lieberman, F. Paternò, V. Wulf (eds.). End user develop-
ment (pp. 183–205). Dordrecht, The Netherlands: Springer.

Costabile, M. F., Fogli, D., Mussio, P., Piccinno, A. (2007). Visual interactive systems for end-
user development: a model-based design methodology. IEEE Transactions on Systems, Man,
and Cybernetics - Part A: Systems and Humans, 37(6), 1029–1046.

Costabile, M. F., Mussio, P., Parasiliti Provenza, L., Piccinno, A. (2009). Supporting end users
to be co-designers of their tools. In V. Pipek, M. Rosson, B. de Ruyter, V. Wulf (eds.). End-
user development - IS-EUD 2009 vol. LNCS 5435, (70–85). Berlin Heidelberg: Springer.

Danado, J., & Paternò, F. (2014). Puzzle: a mobile application development environment using a
jigsaw metaphor. Journal of Visual Languages & Computing, 25(4), 297–315.

Daniel, F., & Matera, M. (2014). Mashups - concepts, models and architectures. Berlin
Heidelberg: Springer-Verlag.

118 C. Ardito et al.

Desolda, G. (2015). Enhancing workspace composition by exploiting linked open data as a poly-
morphic data source. In E. Damiani, R. J. Howlett, L. C. Jain, L. Gallo & G. De Pietro
(Eds.), Intelligent interactive multimedia systems and services - IIMSS ’15 40, (97–108).
Cham: Springer.

Desolda, G., Ardito, C., Matera, M. (2016). EFESTO: a platform for the end-user development
of interactive workspaces for data exploration. In: F. Daniel, C. Pautasso (Eds.), Rapid
mashup development tools. Communications in Computer and Information Science. Vol 591
(pp. 63–81). Cham: Springer.

Díez, D., Mørch, A., Piccinno, A., Valtolina, S. (2013). Cultures of participation in the digital
age: empowering end users to improve their quality of life. In Y. Dittrich, M. Burnett,
A. Mørch, D. Redmiles (eds.). End-user development - IS-EUD 2013 vol. LNCS 7897,
(pp. 304–309). Berlin Heidelberg: Springer.

Fischer, G. (1998). Seeding, evolutionary growth and reseeding: constructing, capturing and
evolving knowledge in domain-oriented design environments. Automated Software
Engineering, 5(4), 447–464.

Fischer, G. (2010). End user development and meta-design: foundations for cultures of participa-
tion. Journal of Organizational and End User Computing, 22(1), 52–82.

Fischer, G. (2011). Understanding, fostering, and supporting cultures of participation.
Interactions, 18(3), 42–53.

Fischer, G., Fogli, D., Piccinno, A. (2017). Revisiting and broadening the meta-design frame-
work for end-user development. In F. Paternò & V. Wulf (eds.), New perspectives in
end-user development (pp. 61–98). Cham: Springer.

Fischer, G., & Giaccardi, E. (2006). Meta-design: a framework for the future of end-user devel-
opment. In H. Lieberman, F. Paternò & V. Wulf (eds.), End user development (pp. 427–457).
Dordrecht, The Netherlands: Springer.

Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A., Mehandjiev, N. (2004). Meta-design: a manifesto
for end-user development. Communications of the ACM, 47(9), 33–37.

Ghiani, G., Paternò, F., Spano, L. D., Pintori, G. (2016). An environment for end-user
development of web mashups. International Journal of Human-Computer Studies, 87(C),
38–64.

Iverson, K. E. (1980). Notation as a tool of thought. Communications of the ACM, 23(8),
444–465.

Iyer, B., & Davenport, T.H. (2008). Reverse engineering: Google’s innovation machine.
Harvard Business Review, 86(4).

Jenkins, H. (2009). Confronting the challenges of participatory culture: media education for the
21st century. Cambridge, MA: MIT Press.

Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., et al. (2011). The
state of the art in end-user software engineering. ACM Computing Surveys, 43(3), 1–44.

Koehne, B., Redmiles, D., Fischer, G. (2011). Extending the meta-design theory: engaging parti-
cipants as active contributors in virtual worlds. In M. F. Costabile, Y. Dittrich, G. Fischer,
A. Piccinno (eds.). End-user development - IS-EUD 2011 vol. 6654, (pp. 264–269). Berlin
Heidelberg: Springer.

Latzina, M., & Beringer, J. (2012). Transformative user experience: beyond packaged design.
Interactions, 19(2), 30–33.

Liu, X., Huang, G., Mei, H. (2007). Towards end user service composition. In: Computer software
and applications conference (COMPSAC ’07), Beijing, China, 24–27 July (pp. 676–678). IEEE.

Maceli, M., & Atwood, M. E. (2011). From human crafters to human factors to human actors
and back again: bridging the design time – Use time divide. In M. F. Costabile, Y. Dittrich,
G. Fischer, A. Piccinno (eds.). End-user development - IS-EUD 2011 vol. 6654, (pp. 76–91).
Berlin Heidelberg: Springer.

Matera, M., Picozzi, M., Pini, M., Tonazzo, M. (2013). PEUDOM: a mashup platform for the
end user development of common information spaces. In F. Daniel, P. Dolog, Q. Li (eds.).
Web engineering - ICWE ’13 vol. LNCS 7977, (pp. 494–497). Berlin Heidelberg: Springer.

1195 A Three-Layer Meta-Design Model for Addressing Domain-Specific Customizations

Maximilien, E. M., Wilkinson, H., Desai, N., Tai, S. (2007). A domain-specific language for
web APIs and services mashups. In B. Krämer, K.-J. Lin, P. Narasimhan (eds.). Service-
oriented computing – ICSOC 2007 vol. LNCS 4749, (pp. 13–26). Berlin Heidelberg: Springer.

Mehandjiev, N., & de Angeli, A. (2014). Guest editors introduction: representations and environ-
ments for user-driven development of service applications. Journal of Visual Languages &
Computing, 25(4), 251–252.

Namoun, A., Nestler, T., Angeli, A. (2010). Conceptual and usability issues in the composable
web of software services. In F. Daniel, F. M. Facca (eds.). International conference on web
engineering - ICWE 2010 workshops - revised selected papers vol. LNCS 6385, (pp. 396–407).
Berlin Heidelberg: Springer.

Namoun, A., Nestler, T., De Angeli, A. (2010). Service composition for non-programmers: pro-
spects, problems, and design recommendations. In: IEEE European conference on web ser-
vices (ECOWS ’10), Ayia Napa, Cyprus (pp. 123–130). Washington, DC: IEEE Computer
Society.

Porter, J. (2008). Designing for the Social Web. Thousand Oaks, CA: New Riders Press.
Ro, A., Xia, L.-Y., Paik, H.-Y., Chon, C. (2008). Bill organiser portal: a case study on end-user

composition. In S. Hartmann, X. Zhou, M. Kirchberg (eds.). Web information systems engi-
neering – WISE 2008 workshops vol. LNCS 5176, (pp. 152–161). Berlin Heidelberg: Springer.

Schuler, D. (1993). Participatory design: principles and practices. Hillsdale, NJ: L. Erlbaum
Associates.

Sutcliffe, A., & Papamargaritis, G. (2014). End-user development by application-domain config-
uration. Journal of Systems and Software, 91, 85–99.

Von Hippel, E. (2005). Democratizing innovation. Cambridge, MA: MIT Press.

120 C. Ardito et al.

End-User Developers – What Are They Like?

Alan F. Blackwell

Abstract End-user developers are identified by their difference from (ordinary)
developers. This difference is both a matter of definition, and an essential starting
point for investigation. So the question arises how are they different? Since there
are so many more non-developers in the world than developers, it seems likely
that the differences among end-user developers may be even larger than the differ-
ence between (ordinary) developers and end-user developers. This chapter will
review these individual differences, to the extent that they have been addressed in
the research literature. These differences influence and are determined by educa-
tion and training, differences in professional and domestic settings, differences in
personality and intrinsic motivation, and differences in work practices and habits
of thinking. All of these differences between individuals present questions for
future investigation in end-user development research, and also opportunities for
design of tools and systems that support end-user developers in different ways.

Keywords End-user developers · work practices · professional developers · artistry

1 Introduction

An end-user developer is not a professional developer. As a definition of the
phrase “end-user development,” this provides a good starting point for investiga-
tion. However, when a definition is framed in negative terms like this, the attri-
butes that we might associate with the definition will also be negative attributes.
For example, we might observe that the end-user developer has not received pro-
fessional training in development, is not paid for doing development, would not
describe development as being her profession, and so on.

There is not necessarily any problem in a negative definition like this. After all,
many people do things that are not their job, do things they are not trained for, and

A.F. Blackwell (✉)
University of Cambridge, Cambridge, United Kingdom
e-mail: afb21@cam.ac.uk

121© Springer International Publishing AG 2017
F. Paternò, V. Wulf (eds.), New Perspectives in End-User Development,
DOI 10.1007/978-3-319-60291-2_6

do things without being paid for them. Such everyday activities include mundane
duties (doing laundry, washing a car), DIY projects (adjusting a bicycle, shortening
a pair of trousers, putting up a shelf), hobbies (making a sundial, arranging flowers,
playing a violin) or games (competing at bridge, chess, or tennis). All of these are
activities that might equally be done by a professional, who we pay for the pleasure
of watching them at work, or just because we don’t fancy doing it ourselves.

However, if there is any respect in which the tools and techniques of the non-
professional “end-user” will differ from those of the professional, we need to ask
more closely what end-users are really like. What motivates them to do these
things? Is there any economic logic, or are they being “irrational” (in the eco-
nomic sense (Harper, Randall, & Sharrock, 2016)).

Why would somebody who is not a professional developer even consider creat-
ing a piece of software? Possibilities include: because they like it; because it is
immediately useful; or because they believe they will be good at it. The rest of
this chapter considers each of these in turn. However, we do not assume that all
end-user developers are the same. They are not only different from professional
developers – they are different from each other. The main focus of this chapter,
therefore, is on understanding each of these perspectives as a basis for studying
such differences, in order to better understand the range of tools and techniques
that might support the various different types of end-user developer in future.

2 Because They Like It … Motivation in End-User
Development

Professional developers do development work because they are paid for it. This is an
extrinsic motivation – professional workers may or may not enjoy their work, but
they do it because they are paid. There are also some end-user developers who create
software as part of their employment (perhaps to improve efficiency), in which case
they also have an extrinsic motivation, although it is subject to a cost-benefit equation
(Mehandjiev, Sutcliffe, & Lee, 2006; Wulf & Jarke, 2004). I will discuss cost-benefit
models in the next section, but there is another kind of motivation – intrinsic motiva-
tion, when people do things just because they enjoy it, for its own sake.

The discussion in this section is based on the first systematic study of intrinsic
motivation in end-user programming, taking into account the differences between
people that cause some people to be motivated by different things from others.
Those differences between people can be related (unsurprisingly) to different per-
sonality types. Furthermore, it is possible to describe these differences systemati-
cally, by reference to the standard psychometric basis of personality – the five
factor or “Big Five” model (John & Srivastava, 1999) that builds on the reliable
statistical independence found between individual factors of (1) Openness to
experience, (2) Conscientiousness, (3) Extraversion, (4) Agreeableness and
(5) Neuroticism (the Big Five can easily be recalled with the mnemonic O.C.E.A.N).

Aghaee, Blackwell, Kosinski, and Stillwell (2015) developed a statistical model
that correlates motivations for end-user programming within the five factor

122 A.F. Blackwell

“OCEAN” model of personality differences. They based their work on a calibrated
data set of over 6 million Facebook users who had volunteered to complete standar-
dised personality questionnaires, followed by providing access to their Facebook
profiles for research purposes (Kosinski, Matz, Gosling, Popov, & Stillwell, 2015).
This data set had been used for many previous studies, relating various kinds of
online and social data to underlying personality models (e.g. Quercia et al., 2012).

In using this data set to study motivations for end-user development, the
Facebook data was used to construct a statistical model of hypothetical factors that
previous literature had suggested might motivate people to do end-user program-
ming: practical tinkering (which we describe as bricolage), creative expression
(which we describe as artistry), and fascination with new technology (which we
describe as technophilia). As with other MyPersonality studies (Kosinski et al.,
2015), these hypothetical factors must be operationalised by constructing indepen-
dent sets of Facebook likes that the researchers expect to be associated with each
factor. The hypothetical factors are then tested for reliability, in terms of reliably
independent correlations with the OCEAN components.

These factors, summarised in relation to Facebook likes that were correlated with
them, can be seen in Fig. 1. This figure presents a dimension-reduced view of a large
statistical model in which the many dimensions of the MyPersonality data set were
subjected to principal components analysis (PCA) in order to characterise hypotheti-
cal motivation factors. As can be seen from the figure, it was possible to construct a
PCA model in which the three hypothetical factors characterizing end-user program-
ming were relatively orthogonal. More importantly, they were also associated with
different profiles of OCEAN measures.

In the following sections, we provide narrative descriptions of these alternative
intrinsic motivations for end-user development, and discuss the ways in which
they were found to be reliably correlated with different personal characteristics.
Note that this work has been published relatively recently, and is yet to be applied
more widely. Although the hypothetical factors were found to be reliably corre-
lated with OCEAN components using the MyPersonality data set, application to
end-user programming has only been tested in two studies of 100 participants
each. These studies demonstrate that the constructs do predict the experiences that
end-user developers have with a single product (IFTTT), but it is not yet known
whether the same constructs will predict experiences with other end-user develop-
ment tools, or whether there might be further reliable constructs for intrinsic moti-
vation in end-user development. More details of the process by which the
constructs were derived, the statistical model development, and the experimental
tests of their predictive power, can be found in Aghaee et al. (2015).

2.1 Bricolage

A bricoleur is a practical person, a person who takes delight in making things use-
ful and making them work. A hacker, a fixer. Anthropologist Claude Levi Strauss
borrowed the term to mean a particular kind of philosophical style. Not a

1236 End-User Developers – What Are They Like?

–
0
.6

–
1.

0
–
0
.6

–
0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1.
0

–0.4

–1.0–0.6–0.20.20.40.60.81.0

–0.20.00.2

PC2

–
0
.4

–
0
.2

0
.0

P
C

1

0
.2

0
.4

F
ig
.
1

P
ri
nc
ip
al

C
om

po
ne
nt
s
A
na
ly
si
s
of

th
e
th
re
e
se
ts

of
Fa
ce
bo
ok

lik
es

as
so
ci
at
ed

w
ith

en
d-
us
er

de
ve
lo
pm

en
t
m
ot
iv
at
or
s
B
ri
co
le
ur
is
m
,
T
ec
hn
op
hi
lia

an
d

A
rt
is
tr
y.

T
he

Fi
ve

F
ac
to
r
M
od
el
pe
rs
on
al
ity

co
m
po
ne
nt
s
(O

,C
,E

,A
,N

)
ar
e
sh
ow

n
as

ve
ct
or
s
m
ap
pe
d
w
ith

in
th
e
sa
m
e
PC

A
sp
ac
e.
R
ep
ro
du
ce
d
fr
om

A
gh
ae
e

et
al
.(
20
15
)

124 A.F. Blackwell

theoretician or scientist, but someone who cobbles together mash-ups, lash-ups,
bodges and dodges. In France, “bricolage” has become the local word for DIY,
and the weekend handy-man or -woman will visit the Bricomart before going
home to faire le brico. For computer scientists, this kind of approach might reflect
the worst kind of indiscipline, amateurism and unprofessionalism. It sounds like
the ideal characterisation of the end-user developer.

In the study of personality correlations by Aghaee et al., as seen in Fig. 2,
Bricoleurism was most significantly correlated with the big five factor of
Conscientiousness. Bricoleurs are motivated by making things work, and they are
likely to persist until they succeed. In contrast, bricoleurism was associated with
low Openness to experience – as the editors of the Wikipedia Big Five page
express this, they are practical people, preferring the plain, straightforward, and
obvious over the complex, ambiguous, and subtle. When computer scientists criti-
cize undisciplined “craft” approaches to programming (e.g. Dijkstra, 1970), it is
possible that their lack of sophisticated intellectual analysis, rather than lack of
discipline, is most objectionable.

In designing end-user development tools to suit the bricoleur, it seems likely
that simple techniques and components, allowing for systematic assembly and
testing, may be both appreciated and successful.

2.2 Artistry

People increasingly make software as an outlet for their creativity. Maker and
hack-spaces are always full of enthusiasts working on art projects, and the rising
enthusiasm for trends such as “live coding” and “algoraves” (Collins & McLean,
2014) suggests that we will continue to see both audiences and aspirations for

–0.2

–0.15

–0.1

–0.05

0
C E A N

T

B

AO

0.05

0.1

0.15

0.2

0.25

Fig. 2 BigFive personality traits profile for the three motivational factors (T: Technophilia,
B: Bricoleurism, A: Artistry, O: Openness, C: Conscientiousness, E: Extroversion, A: Agreeableness,
N: Neuroticism). Reproduced from Aghaee et al. (2015)

1256 End-User Developers – What Are They Like?

people to do artistic things with software. As with most art-forms, this popularity
will no doubt be associated with support for high-end software artists – profes-
sionals like Nick Rothwell and Marc Downie (Woolford, Blackwell, Norman, &
Chevalier, 2010). These people have some serious skills, and unsurprisingly use
high-end software tools and workstations, just as any media professional would
do. However, the end-user development end of software artistry still represents the
motivations of a large number of people. They might be creating interactive web
pages, experimental mobile apps, competing in the demoscene (Scheib, Engell-
Nielsen, Lehtinen, Haines, & Taylor, 2002), or just fooling around for their own
satisfaction. Their motivation is quite different to that of the bricoleur – artists are
not making something because it is useful, but for the experience it provides.

Unlike bricoleurism, artistry is most strongly correlated with the Big Five factor
of Openness to experience, as seen in Fig. 2. Artists love to try out new things,
whether or not they have any practical value, or even whether they work. They are
curious and like adventures, quite possibly playing around with something just
because it is unusual or different to what they have tried before. They are also
likely to be high in Extraversion and Neuroticism. They are energetic and like
mixing with people, so end-user development is far more likely to be a social
activity for those motivated by artistry. Unfortunately, they might also become
upset or discouraged more easily, or become anxious or stressed when technology
is not working as they expect.

When we design end-user development tools for artists, it might be more
important to support rapid experimentation, but with a safety net allowing users to
roll back quickly when the experiments are unsuccessful. Most EUD tools focus
on maintaining a minimal and stable feature set, but artists might appreciate tools
in which novel capabilities emerge serendipitously or unpredictably. Appearances
are important to people motivated by artistry, so both the tools and the products
should aspire to higher aesthetic standards that the typical software engineering
IDE. Looking at tools that software artists create for themselves, such as Downie’s
Field1 or Brian Eno’s Bloom2, illustrates just how far EUD could go in thinking
about the visual surface of their work.

2.3 Technophilia

Some people just love technology. They like everything to do with technology,
are always keen to buy the latest gadget, or read about new and future develop-
ments. When they get a new toy, they try out all the features, to see what it can
do. We all know people like this, and we probably know people who engage in
end-user development just because it seems fun to see what else can be done with

1http://openendedgroup.com/field
2http://www.generativemusic.com

126 A.F. Blackwell

http://openendedgroup.com/field
http://www.generativemusic.com

technology. For a technophile, programming is not a chore, but a technical adven-
ture, or perhaps just an excuse to play around.

Once again, we can see in Fig. 2 that people motivated by Technophilia have a
different personality profile by comparison to Artists and Bricoleurs. Opposite to
artists, technophiles are low on extraversion – perhaps they are quite happy to stay
in their bedrooms reading and playing with their gadgets. They are the first of our
end-user types to have a strong tendency on the Agreeableness scale – but this is a
negative correlation! With low agreeableness, they are less interested in other peo-
ple, and may be unfriendly or uncooperative. Perhaps they will engage in online
communities, but only for what they can get out of it, not for chitchat or to make
friends. They are, however, more likely to be low in neuroticism, tending to be
emotionally stable and less likely to be upset.

In designing end-user development tools for technophiles, compatibility with
other new technologies is likely to be important, but perhaps not compatibility
with other people. Although not driven by creative experimentation, they may also
be less likely to be disappointed when facing challenges. Importantly for early
adopters, practicality need not be a major priority, so a technophile will spend
more time working on integration with other technologies, without being impatient
to see practical benefits.

This discussion of the intrinsic motivation factors proposed by Aghaee et al. is
based on a single publication, so should be interpreted with some caution.
Reliability is dependent on the MyPersonality data set and research methods
(Kosinski et al., 2015) and the two predictive experiments conducted by Aghaee
et al., studying user experiences of the IFTTT tool. As the first study of intrinsic
motivation in end-user development, it complements earlier studies of extrinsic
motivation, for example in terms of cost-benefit analysis.

3 Because They Find It Useful … Rational Choice in End-User
Development

In this section, we turn away from the intrinsic motivation differences between
end-user developers to extrinsic motivation – what’s in it for me? End-user devel-
opment tools can clearly be useful, but the specific way this utility becomes appar-
ent also differs between people.

Many end-user developers, writing programs for their own use, do so in order to
automate some routine procedure that they would otherwise have to carry out manu-
ally. The routine manual procedure might involve repetitive calculations, routine
decisions, or searching and filtering data sets. However, the amounts of data or repeti-
tion involved in an end-user development application are likely to be relatively small,
simply because situations involving really high volume data processing are more
likely to justify the employment of a professional programmer. Organisations may
well be able to assess the financial costs of having such work done by an end-user
rather than a software specialist (e.g. Mehandjiev et al., 2006; Wulf & Jarke, 2004).

1276 End-User Developers – What Are They Like?

Whether or not an organizational case is made, if an individual end-user devel-
oper is automating a procedure that they would otherwise have to complete manu-
ally, this involves a personal cost-benefit calculation. On the benefit side, how
much manual processing effort will be saved if the task can be successfully auto-
mated? On the cost side, how much effort will be involved in creating the auto-
mated solution? The “effort” is unlikely to involve strenuous physical effort.
Instead, it is attentional effort – the amount of time that the user must spend con-
centrating on the data or on the program, in order to complete the task.

This kind of end-user development, automating tasks that the same person
would otherwise have to complete manually, can therefore be described as an
“attention investment” (Blackwell, 2002). The promise of attention investment is
that a relatively small amount of concentration right now (to write the automation
program) will result in a larger saving of concentration in future (through complet-
ing the automated task without further attention from the user).

The amount of attention involved is not simply the number of minutes or hours
to be saved, but rather the amount of effort. Writing a program does involve con-
siderable concentration, when compared to routine data processing tasks. Many
people might therefore choose to complete their work manually (involving rela-
tively little concentration) rather than engaging in end-user development, with the
higher levels of concentration that this will require. The decision of whether to
engage in end-user programming therefore depends on how different people make
this judgment.

In addition to estimating the relative amounts of concentration involved in
choosing a manual or automated approach, the end-user also has to take into
account the risks that might be involved. Investment of attention in order to
receive future benefits through time saving is similar to financial investment for
future benefits, because investment in the future always carries a degree of uncer-
tainty or risk. Perhaps the amount of manual processing to be done in future will
be less than estimated, in which case the investment might not be paid back?
Perhaps it will take longer to write the automation program than expected, in
which case the immediate costs will be too high relative to future savings?
Perhaps the program will not handle all cases automatically, in which case there
will continue to be future costs of manually processing the exceptions? In the
worst case, unsuccessful automation might even make things worse, if the auto-
mated program runs out of control, creating further problems that need to be fixed.
Such things are less likely to happen with manual processing, because the pro-
blems can be recognised as they happen, and fixed immediately.

This attention investment process, although long-established as a significant
aspect of human factors in end-user development, is closely related to recent inter-
est in behavioural economics, popularised as the “nudge” theory (Leonard, Thaler,
& Sunstein, 2008). The core principle of behavioural economics is that people
make cost-benefit decisions in all areas of their lives, based on a trade-off between
immediate costs and future benefits. The “nudge” strategy suggests that people
often make decisions on the basis of short-term convenience that might be worse
for them in the long term. It would therefore be in their own interests if somebody

128 A.F. Blackwell

(such as a paternalistic government) “nudged” them to behave in the right way,
for their own good.

The attention investment model of end-user development has been used to justify
a related design strategy, in which users might be encouraged to consider a pro-
gramming approach to their tasks, rather than continuing with manual task comple-
tion. It was applied, for example, in the domain of spreadsheet debugging in the
form of surprise-explain-reward – by drawing the user’s attention to a potential
bug, where they had previously assumed that the spreadsheet was correct, they
would be nudged out of their complacency by this surprise. If they follow up on the
surprise by taking the time to look at an explanation (rather than just carrying on
with their previous plan), they should receive a “reward” telling them how much
valuable time they have saved by fixing the bug (Wilson et al., 2003).

A similarly nudge-based strategy seemed promising (and still seems promising)
as a user interface pattern for programming-by-example systems. If the user really
is carrying out repetitive manual tasks rather than choosing to automate them, then
the system should be able to detect the regularity in those tasks, and suggest an
automated alternative. Cypher’s Eager (1991) was one of the first prototypes
implementing this principle, with a cartoon character “eagerly” offering to help
the user by automating repeated operations that the user had been performing in
the Apple Finder. Of course, a related approach later became very unpopular
indeed, with the now proverbial Clippy character that was included in versions of
Microsoft Office, and whose offers of help were often irrelevant or unwelcome.
Users are easily able to recognise the implicit paternalism in these offers of assis-
tance, and resent them when they are poorly informed. Future machine learning
algorithms, exploiting larger volumes of data about user behaviours, should in
future make it more straightforward to derive good quality generalisations for use
in automating end-user tasks.

These opportunities for incidental end-user development will continue to rely
on better understanding of the specific reasons for individual user choices, as
well as on technical capabilities for accurate and reliable automated assistance.
Systems will not be able to anticipate the broader context of a user decision. For
example, what if this is the last day before a user leaves the company? It is extre-
mely unlikely that they will want to develop a new solution to save future man-
ual processing effort. What if they are just in a bad mood, or alternatively, what
if they have time to spare, having intended for many months to try out a new
programming feature, and decide to use it just for the experience, despite little
likelihood of practical benefit? Successful approaches to end-user development
should allow users to make such decisions according to the broader context of
personal costs, risks, and benefits that only they are aware of, rather than assum-
ing that they will act rationally in accordance with the financial or organizational
goals of others.

Nevertheless, users will be better supported in making such decisions if the
information available to them does provide accurate estimates of cost, risk and
benefit. This is currently an untouched area of EUD research. People implicitly
make judgments about cost of concentration all the time. Sometimes a person

1296 End-User Developers – What Are They Like?

might drive her car fast, concentrating hard in order to avoid other traffic, man-
oeuvre around slower cars, accelerate and brake etc. At other times, she might just
want to relax, staying in the slow lane, driving at a steady pace while thinking
about other things. Different people make different choices, for different reasons.
In order to make those choices well, they need better information about costs, risks
and benefits. Furthermore, such information should not be costly to absorb. If it
were necessary for the user to read complex documentation, or provide additional
information about future plans, such activities would themselves take extra con-
centration! Designing for end-user development, according to attention investment
principles, requires subtle design cues and clever visual design, providing users
with access to information about available capabilities, but without increasing cog-
nitive and attentional load.

From a research perspective, it is important to consider how the design princi-
ples appropriate for the support of end-user development might differ from those
of conventional user interface design. The golden rules of user interface design, in
the modern era of graphical user interfaces and touch screen interaction, are those
of direct manipulation – the data that the user is working with should always be
visible on the screen, operations should act directly on that data, the effects should
be immediately visible, and they should be immediately reversible (Shneiderman,
1982). At first, these principles seem to make sense from an attention investment
perspective. The cost of action is low, the risks are low, and the user does not
need to spend much time deciding how to act. Unfortunately, the benefits are also
low – this is not a recipe for automation, but for manual processing.

If users want to move beyond manual processing, by engaging in end-user
development, the golden rules of direct manipulation are no longer the main con-
sideration. Whereas manual processing can be done by direct manipulation, deal-
ing with each object in turn, automated processing happens in the future, with
objects that you haven’t seen yet. The actions you are specifying are not immedi-
ate, but will take place when the program executes. You can’t see the effects at
the time you write the program, because those effects are in the future. At a deep
level, end-user development is the opposite of direct manipulation, so making
good user interfaces for end-user development requires that we abandon some of
the most fundamental principles in the user experience textbooks.

This contradiction between end-user development and conventional good prac-
tice in user experience design should perhaps come as no surprise. Before the
modern user interface paradigm became established, everyday user interaction
with computers resembled programming languages. The command line interface
was a simple programming language, and indeed remains so today, with the close
relationship between command “shells” and shell scripts. The transition from the
command line to the windows, icons, menus and pointer of the graphical user
interface was associated with reduced user functionality – a reality that was imme-
diately recognised, and loudly complained about, by many professional computer
users at the time. The loss of command line interfaces quickly became a serious
obstacle for end-user development, because the smooth upgrade path from single
commands to simple batch files and shell scripts was no longer available.

130 A.F. Blackwell

However, despite the loss of functionality, few technical experts at the time
recognised how the advantages that had been gained for end-users could be formu-
lated in terms of programming. These advantages can be clearly expressed in
terms of attention investment. Although the potential benefits of automation had
been lost, these had been balanced by the gains of huge cost savings (in attentional
effort) and the reduction in risks that had been associated with powerful com-
mands that often went wrong. This is not a simple story in which end-user devel-
opment is good, and direct manipulation bad. Successful design of end-user
development functionality requires a deep understanding of the ways that we can
express future functionality, in terms of the things we are doing right now, for
example as “tailoring” of an interface to better suit future usage (MacLean, Carter,
Lövstrand, & Moran, 1990; Wulf & Golombek, 2001).

From this perspective, end-user development is purely a way of talking about
the future. All human languages make distinctions between talking about the
future – especially things in the future that are conditional on different situations
and contexts – and instructions to act in the moment. Talking about the future is
more complicated than simple instructions, as will be easily understood by anyone
who has raised small children. A three year-old may (or may not) follow an
instruction to put her toy in the toy box right now. But there is no point in telling
a child of this age that they should put their toy away tomorrow. Extrinsic motiva-
tion is not the same for everyone – the measures may be comparable, but percep-
tions of the future differ between individuals.

4 Because They Believe They Will Be Good At It …
Self-Efficacy and End-User Development

This final section considers the ways in which some people may be more inclined
to engage in end-user development because they believe they will be good at it.
As discussed in the previous section, the extrinsic rewards of end-user develop-
ment are subject to constant estimation and re-evaluation. People assess the likely
cost of concentrating on a programming project, and weigh this up against the
likely benefit that will result, along with any associated risks. These attention
investment judgments are modified by perceived risks and benefits of the technol-
ogies they work with. To follow our theme of understanding individual differ-
ences, different people perceive those risks in different ways, modified by
expectations based on their own personal experience (and of course, intrinsic moti-
vation), as well as by cultural expectations of class, race, gender and wealth.

American education researcher Mary Rowe studied the way in which cultural
expectations about laboratory equipment were likely to influence learning and per-
formance in science lessons (1978). She observed that white male students were
more likely to play around with the equipment before the lesson started, and that
this resulted in confidence and an attitude of ownership that naturally encouraged
their experimental work in the lesson itself. Female students and ethnic minorities

1316 End-User Developers – What Are They Like?

were more likely to hold back, reluctant to touch the equipment, gaining less bene-
fit from the lesson that followed.

This analysis has been applied in the past to end-user development. In a study of
men and women learning to use spreadsheets Beckwith, Kissinger et al. (2006)
observed whether the students spent time playing around and experimenting with
the system features – behaviour they described as tinkering. It did indeed turn out
that men were more likely to spend time tinkering, and that this was associated with
increased self-efficacy – confidence in their own abilities, and belief that they were
likely to succeed. Self-efficacy is well-known to be closely associated with success-
ful educational outcomes (Bandura, 1994). Those students who believe they are
going to succeed, do achieve the confidence to go on and do well, while for those
who believe they are going to fail, this becomes a self-fulfilling prophecy.

There is also an obvious relationship between self-efficacy and attention invest-
ment, in that those who do not believe they are likely to do well at end-user devel-
opment will assess the benefits and risks in a way that discourages them from
even starting. As a result, an initial difference in self-efficacy, for example related
to gender expectations of technology use, may lead to a decrease in tinkering, and
eventual gender-linked failure to gain benefits from end-user development.
Burnett’s GenderMag, which originally developed from research into self-efficacy
in end-user development (Beckwith, Burnett et al. 2006), has been widely pro-
moted as a general approach to the analysis of gender bias in user interface design
(Hill, Ernst, Oleson, Horvath, & Burnett, 2016). Although most widely studied in
relation to gender, it would seem likely that race, class and economic situation are
equally likely to have similar effects in the context of end-user development.

A small amount of work has been carried out in relation to race and class
effects in computer science education, especially among high school students.
Indications from work by Margolis (2013) and others are that students from min-
ority and lower socio-economic groups are more likely to be motivated by the
potential for professional career opportunities, including experiments in which stu-
dents were paid to carry out professional work (as system testers) as an extension
of the educational context. This focus on professionalism is certainly welcome as
an educational initiative, but does not appear directly related to end-user develop-
ment concerns, where development work is carried out by non-professionals with-
out explicitly associated financial reward.

In comparison to race and class, there has been more focus on gender expecta-
tions of programming in both educational contexts and end-user development. In
the Anglo-American countries, programming is identified as a stereotypically male-
gendered activity, and computer science degree programmes attract far higher pro-
portions of male students (Margolis & Fisher, 2003). This is seen as undesirable,
where there is a liberal focus on equal opportunity of education and professional
attainment. Researchers with links to the end-user development community have
therefore created a range of educational programming tools that are designed to be
attractive to girls at about the age this stereotypical gender separation is observed.
The most prominent example is Kelleher’s Storytelling Alice (Kelleher & Pausch,
2006; Kelleher, Pausch, & Kiesler, 2007), which can be contrasted with educational

132 A.F. Blackwell

tools that aspire to more stereotypically male interests such as robot programming
(Lego Mindstorms) or rap music (“Scratch” DJ culture).

However, in contrast to educational settings, end-user development takes place
in rich cultural contexts, where stereotypical gender expectations are still perva-
sive. Self-efficacy mixes with intrinsic motivation to produce gendered behavior
in end-user development in both business learning contexts such as the use of
spreadsheets (Beckwith, Kissinger et al., 2006), and also in routine home automa-
tion, where particular devices are strongly associated with particular gender roles,
resulting in dramatic differences in self-efficacy and attention investment decisions
(Blackwell, Rode, & Toye, 2009).

The design lessons to be drawn from considerations of self-efficacy place a
new emphasis on end-user development tools as cultural artefacts, which are
embedded within cultural systems of expectation. These systems might often be
discriminatory or exploitative, and could perhaps be dismissed as irrelevant to this
volume, on the basis that they belong in the domain of political critique rather
than software engineering. Nevertheless, it is undeniably true that the individual
differences in intrinsic and extrinsic motivations discussed in the first two sections
of this chapter are shaped by cultural forces. We need to pay close attention to the
ways in which the design of end-user development tools might reinforce social
expectations, whether expressed in crude “paint it pink” visual styling, or more
subtle appeals to theories of aptitude that rely on gender-linked stereotypes such
as “systemizing” traits (Fine, 2010).

5 Summary

This chapter has set out an agenda for understanding individual differences in
end-user development. End-user developers are not all alike, and the current audi-
ence for end-user development tools is perhaps more homogeneous than neces-
sary. If end-user development is to become more broadly adopted, then it seems a
natural conclusion that it must be extended to appeal to a broader audience.
Understanding the sources of variation, and identifying the different respects in
which people might be observed to differ, is therefore a critical priority for the
end-user development field.

We need not assume that everyone will be good at end-user development, or
even that they will want to do it at all, so aiming for a universal theory of end-user
development is unnecessary and perhaps unhelpful. As an alternative, we might
look for people who are likely to find end-user development useful, appealing, or
accessible, but are different to the current assumed audience for EUD. This not
only broadens our potential audience, but helps us to be inclusive, perhaps deliver-
ing new capabilities to people who had been excluded from the potential of end-
user development for reasons of gender, race, class, social status or other cultural
and economic factors. More qualitative empirical research would be beneficial in
gaining a richer understanding of end-user developers in their specific work and
leisure contexts.

1336 End-User Developers – What Are They Like?

Many of the observations in this chapter are explicitly linked to design opportu-
nities and design guidance that could be used to develop new kinds of end-user
development tools for broader audiences. These connections have been mentioned
in passing, as they arise, but this chapter is not primarily concerned with design
methods. Other chapters in this volume provide far more information about the
principles and methods for creation of new end-user development tools, and read-
ers should find it instructive to assess and apply them in the light of aspects of
diversity that have been reviewed here.

References

Aghaee, S., Blackwell, A. F., Kosinski, M., Stillwell, D. (2015). Personality and intrinsic motiva-
tional factors in end-user programming. In Z. Li, C. Ermel, S. D. Fleming (Eds). Proceedings
of IEEE symposium on visual languages and human centric computing (VL/HCC 2015),
Atlanta, GA (pp. 29–36). Los Alamitos, CA: IEEE.

Bandura, A. (1994). Self-efficacy. New Jersey: John Wiley & Sons, Inc.
Beckwith, L., Burnett, M., Grigoreanu, V., Wiedenbeck, S. (2006). Gender hci: what about the

software? Computer, 39(11), 97–101.
Beckwith, L., Kissinger, C., Burnett, B., Wiedenbeck, S., Lawrance, J., Blackwell, A., et al.

(2006). Tinkering and gender in end-user programmers’ debugging. In Proceedings of CHI
2006 (pp. 231–240).

Blackwell, A. F. (2002). First steps in programming: a rationale for Attention Investment models.
Proceedings of the IEEE symposia on humancentric computing languages and environments,
Arlington, VA (pp. 2–10). Los Alamitos, CA: IEEE.

Blackwell, A. F., Rode, J. A., Toye, E. F. (2009). How do we program the home? Gender, attention
investment, and the psychology of programming at home. International Journal of Human
Computer Studies, 67, 324–341.

Collins, N., & McLean, A. (2014). Algorave: A survey of the history, aesthetics and technology
of live performance of algorithmic electronic dance music. In Proceedings of 14th inter-
national conference on new interfaces for musical expression, B. Caramiaux, K. Tahiroğlu,
R. Fiebrink, A. Tanaka (Eds.). (pp. 355–359). London: Goldsmiths University.

Cypher, A. (1991). Eager: programming repetitive tasks by example. In S. P. Robertson,
G. M. Olson, J. S. Olson (Eds.). Proceedings of the SIGCHI conference on human factors in
computing systems (CHI'91), New Orleans LA (pp. 33–39). New York: ACM.

Dijkstra, E. W. (1970). Notes on structured programming. Eindhoven Netherlands: Technological
University.

Fine, C. (2010). Delusions of gender. London: Icon.
Harper, R., Randall, D., Sharrock, W. (2016). Choice. New Jersey: John Wiley & Sons.
Hill, C., Ernst, S., Oleson, A., Horvath, S., Burnett, M. (2016). GenderMag experiences in the

field: the whole, the parts, and the workload. In A. Blackwell, B. Plimmer, G. Stapleton
(Eds.). Proceedings of the IEEE symposium on visual languages and human-centric computing,
Cambridge, UK (pp. 199–207). Los Alamitos, CA: IEEE.

John, O. P., & Srivastava, S. (1999). The Big Five trait taxonomy: history, measurement, and
theoretical perspectives. Handbook of Personality: Theory and Research, 2(1999), 102–138.

Kelleher, C., & Pausch, R. (2006). Lessons learned from designing a programming system to
support middle school girls creating animated stories. In J. Grundy, J. Howse (Eds.).
Proceedings of the IEEE symposium on visual languages and human-centric computing,
Brighton, UK (pp. 165–172). Los Alamitos, CA: IEEE.

134 A.F. Blackwell

Kelleher, C., Pausch, R., Kiesler, S. (2007). Storytelling Alice motivates middle school girls
to learn computer programming. In M. B. Rosson, D. Gilmore (Eds.). Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI'07), San Jose, CA
(pp. 1455–1464). New York: ACM.

Kosinski, M., Matz, S., Gosling, S., Popov, V., Stillwell, D. (2015). Facebook as a social science
research tool: opportunities, challenges, ethical considerations and practical guidelines.
American Psychologist, 70(6), 543–556.

Leonard, T. C., Thaler, R. H., Sunstein, C. R. (2008). Nudge: improving decisions about health,
wealth, and happiness. Constitutional Political Economy, 19(4), 356–360.

MacLean, A., Carter, K., Lövstrand, L., Moran, T. (1990). User-tailorable systems: pressing the
issues with buttons. In J. C. Chew, J. Whiteside (Eds.). Proceedings of the SIGCHI conference
on human factors in computing systems (CHI'90), Seattle WA (pp. 175–182). New York: ACM.

Margolis, J. (2013). Stuck in the shallow end: education, race and computing. Cambridge,
MA: MIT Press.

Margolis, J., & Fisher, A. (2003). Unlocking the clubhouse. Cambridge, MA: MIT Press.
Mehandjiev, N., Sutcliffe, A., Lee, D. (2006). Organisational view of end-user development. In

H. Lieberman, F. Paterno, V. Wulf (Eds.). End user development. Berlin, Heidelberg, New
York: Springer.

Quercia, D., Las Casas, D. B., Pesce, J. P., Stillwell, D., Kosinski, M., Almeida, V., et al. (2012).
Facebook and privacy: the balancing act of personality, gender, and relationship currency. In N.
Ellison, J. G. Shanahan, Z. Tufekci (Eds.). Sixth International AAAI Conference on Weblogs
and Social Media (ICWSM), Dublin (pp. 306–313). Palo Alto, CA: AAAI Press.

Rowe, M. B. (1978). Teaching science as continuous inquiry. 2nd ed. New York: McGraw-Hill.
Scheib, V., Engell-Nielsen, T., Lehtinen, S., Haines, E., Taylor, P. (2002). The demo scene.

In T. Appolloni (Ed.). ACM SIGGRAPH 2002 conference abstracts and applications
(pp. 96–97). New York: ACM.

Shneiderman, B. (1982). The future of interactive systems and the emergence of direct manipula-
tion. Behaviour & Information Technology, 1(3), 237–256.

Wilson, A., Burnett, M., Beckwith, L., Granatir, O., Casburn, L., Cook, C., et al. (2003).
Harnessing curiosity to increase correctness in end-user programming. In G. Cockton, Panu
Korhonen (Eds.). Proceedings of the SIGCHI conference on human factors in computing sys-
tems (CHI’03), Ft. Lauderdale, FL (pp. 305–312). New York: ACM.

Woolford, K., Blackwell, A. F., Norman, S. J., Chevalier, C. (2010). Crafting a critical technical
practice. Leonardo, 43(2), 202–203.

Wulf, V., & Golombek, B. (2001). Direct activation: a concept to encourage tailoring activities.
Behaviour & Information Technology, 20(4), 249–263.

Wulf, V., & Jarke, M. (2004). The economics of end-user development. Communications of the
ACM, 47(9), 41–42.

1356 End-User Developers – What Are They Like?

Malleability in the Hands of End-Users

Federico Cabitza and Carla Simone

Abstract The chapter deconstructs the notion of malleability in regard to interactive
systems, mainly seen as the affordance that the system offers to the end users to
adapt (some of) the system’s behaviors and structures to their contingent needs, and
it positions this concept in the ambit of the different approaches that have character-
ized it so far in the EUD perspective. The notion of malleability adopted in this
chapter lies at the core of a research line that, starting in the late ‘90 with the notion
of Coordination Mechanism, is now focusing on a conceptual framework called
Logic of Bricolage. This framework conceives of malleability as a first-level affor-
dance to be put in the hands, i.e., in full control of the end users to empower them
in appropriating and adapting their applications at different (potentially any) level of
detail. The chapter illustrates how this framework has been defined on the basis of
several field studies and sketches how it can be instantiated in a computational plat-
form, AdHoc, that is currently oriented to document-based management systems.
The chapter will highlight the research efforts that are still needed to make the fra-
mework more effective in supporting the collaborative bricolage of the end users.

Keywords Malleability · interactive systems · Logic of Bricolage · socio-technical
dimensions of EUD

1 Introduction

The chapter presents the outcomes of a quite long research trajectory that is rooted
in the CSCW stream of research and met the EUD ambit along its unfolding.
There are several reasons why this was a natural event from the plain fact that

F. Cabitza (✉) · C. Simone
University of Milano Bicocca, Milano, Italy
e-mail: cabitza@disco.unimib.it

C. Simone
University of Siegen, Siegen, Germany
e-mail: simone@disco.unimib.it

137© Springer International Publishing AG 2017
F. Paternò, V. Wulf (eds.), New Perspectives in End-User Development,
DOI 10.1007/978-3-319-60291-2_7

these two ambits share some of their basic tenets (Henderson & Kyng, 1992;
MacLean, Carter, Lövstrand, & Moran, 1990). Among these latter ones, first the
attention for the users of the technology and their work contexts as main source of
inspiration for the identification of its features; second, the acknowledgment that
the context of use can change for many reasons and therefore the technology has
to allow for the change of its features accordingly; and finally, the conviction that
activities are increasingly collaborative and therefore the related technologies must
offer affordances dealing with work interdependency and collaboration.

How can CSCW and EUD be mutually supportive? On the one hand, EUD
outcomes can contribute to the conception of CSCW applications by making these
more suitable to be changed and thus by offering to CSCW technical and social
considerations explicitly connected to this specific requirement; on the other hand,
CSCW can offer to EUD a rich set of methods and case studies to better under-
stand the very nature of cooperation thus promoting in EUD scholars the aware-
ness of how collaborative applications have to be conceived and how the practices
around their changes should be better supported.

This mutual influence can be seen under a unique perspective: moving from the
traditional design approaches that are merely focused on technology delivery to
design approaches that focus on the users and on technology-design-in-use, in
order to account for the impossibility to anticipate all the possible usage contexts
and conditions. This shift would consequently aim at enhancing user agency in the
construction of the technology itself. This is the perspective taken in the research
trajectory that we report in this chapter.

There is a clear element that should be factored in the feasibility of such an
integrated approach in order to avoid misleading preconceptions: the kind of
problem at hand. We can identify two extreme situations. In the first case, the
problem is about how to make existing work practices more effective by tapping
into the capabilities of the related computational technologies, and then about how
to govern their adoption to minimize the risk that the above work practices are dis-
rupted and their evolution hindered. In the second case, the problem is about how
to deal with a situation in which traditional work practices are not applicable or
have been proven to be ineffective, through the adoption of a prospective technol-
ogy. These two situations define different contextual conditions. In the former
case, the end users know the requirements of the technology all too well: their pro-
blem is that they are not in the condition to build a technology complying with
those (even implicit) requirements; in the latter case, the requirements themselves
are unknown, and their definition is part of the problem together with the construc-
tion of the technology addressing them (Buchanan, 1992). In this latter case, the
active participation of the end users to these two activities has to be carefully
planned and stimulated since sometimes different/external competences are
required (Borchorst, Bødker, & Zander, 2009; Bratteteig & Wagner, 2014): to this
aim, the above approach can play a role only in combination with the usage of
techniques that are typical of User-Centered Design and Participatory Design
(Kensing & Blomberg, 1998; Stiemerling, Kahler, & Wulf, 1997), as aptly

138 F. Cabitza and C. Simone

proposed in (Hartswood et al., 2008). Both traditions, and especially the latter
one, deal with situations where the participation of users cannot be taken for
granted for several reasons, and it might require a specific technology that would
stimulate and support the participation itself.

The real life situations are often somewhere in-between these two extremes
cases: then the approach has to be open and flexible enough to be usefully applic-
able under many circumstances and for various purposes. The chapter by Dittrich,
Bolmsten, and Eriksson (2017) shows two nice examples of this complex situation
and shares our claim that the possibility to adapt the whole process (from the defi-
nition of the problem up to the construction of an interactive system) to various
and ever-varying situations is based also on the capability of the realized technol-
ogy to do the same: we metaphorically call this capability malleability.

Since in the specialist literature different terms are used to express a similar
property, the paper characterizes what we mean by malleability, as how we define
it has a strong impact on the following arguments. Then, a conceptual framework
and architecture, which we have called Logic of Bricolage (LOB), is proposed for
the development of malleable systems in terms that are general enough to be applied
to any specific application domain; its relation to the notion of infrastructure-(ing)
is discussed to better clarify our contribution. The observation of work practices in a
number of field studies served as a sort of sandbox for the progressive definition
and refinement of the LOB.

The LOB is then instantiated in the case of document-based work practices
(that is work practices based on the recording of information), which are (still)
common in many application and organizational domains. The architecture guided
the development of a prototypical platform, called AdHoc, that supports the
construction of this class of systems. The conclusions of the chapter highlight
the research efforts that are still needed to make that the LOB, and any similar
conceptual initiative, more effective in supporting the collaborative bricolage of
the end users.

2 What We Mean by Malleability

From the very beginning, the EUD research field has followed different research
lines and adopted alternative approaches according to the peculiar differences
among the work settings, from both the technological and the organizational
standpoints. Consequently, several terms ended up by denoting the different
approaches to emphasize and corroborate a specific perspective. In (Lieberman,
Paternò, Klann, & Wulf, 2006; Chap. 1), the authors proposed an initial systemati-
zation of the phenomenon that encompassed different dimensions and that has
been an important reference for the EUD community. We will elaborate on this
effort to highlight the dimensions characterizing the notion of malleability that
informs the conceptual framework illustrated in this chapter.

1397 Malleability in the Hands of End-Users

http://dx.doi.org/10.1007/978-3-319-60291-2_1

2.1 The Sociotechnical Dimension of EUD

EUD was naturally conceived in the framework of a socio-technical approach to
system design: the proposed solutions are characterized by how these two aspects
are taken into account. When the focus is on the tools enabling the modification of
existing applications or the creation of new applications, “the main goal of EUD
[solutions] is empowering end users to develop and adapt systems themselves”
(Lieberman et al., 2006; Chap. 1), and the attention is paid to the extent end users
are differently interested in (and skilled for) these activities. The functionalities
that have been proposed so far to achieve these goals vary a lot in relation to the
chosen perspective. For example, in (Mørch, 1997) the authors use the tailoring
metaphor to emphasize the phenomenon of modifiability; this latter can be divided
in increasing levels, namely: customization, integration and extension. Other
proposals focus on a guided sequence of checkpoints to respect some predefined
norm (Fogli, Colosio, & Sacco, 2010); or to support the modification of the
predefined system behaviours by using different patterns (e.g., model-based
programming, programming by examples or various kinds of user-friendly visual
languages).

All of these specific solutions can be seen as part of a class of technological
supports that can coexist in the same solution, to both take into account the variety
of end users and to implement what is called a “gentle slope” to complexity
(MacLean et al., 1990), that is to align the system to the different skills and compe-
tencies that end users may acquire within a learning curve and over time.
Moreover, when there is a concern about the overall quality of a user generated
application (e.g., stability, reliability, security), there are attempts to apply and
adapt some software engineering methods to the case of EUD for an easier verifica-
tion of the software quality during code debugging, verification and testing
(Hailpern & Santhanam, 2002) or for the check of their degree of fault tolerance to
internal and external failures (Voas, Charron, McGraw, Miller, & Friedman, 1997).

Modularity is often claimed as a good programming style to achieve this goal
(e.g., Won, Stiemerling, & Wulf, 2006), but also other means of software develop-
ment are proposed to guarantee the quality of the final product such as design pat-
terns or abstraction and reuse techniques (Ko et al., 2011).

When the focus is on the organization of the social context in which the EUD
activities themselves are to be performed, approaches are proposed such as those
discussed in the Software Shaping Workshop (Costabile, Fogli, Mussio, &
Piccinno, 2006) or those based on the concept of co-realization (Hartswood et al.,
2008), or on the concept of seeds (Fischer & Giaccardi, 2006). The main idea of
the seed concept is to conceive initial and possibly partial solutions that end users
can develop further with the help of the designers. In this perspective, a crucial
issue is related to the relationship between end users and IT designers, that is
between people who possess different levels of skills in system design and devel-
opment, and people that perform these activities as professionals in the IT sector
(Hartswood et al., 2003). This relationship requires to give an explicit interpretation

140 F. Cabitza and C. Simone

http://dx.doi.org/10.1007/978-3-319-60291-2_1

of what empowering end users means as an aim, but also as a high-level goal, of
EUD. This problem has been addressed along different perspectives. One attempt
is to classify different classes of users according to their skills and attitudes: roles
such as “power user,” (Lieberman et al., 2006; Chap. 1), “gardener” (Gantt &
Nardi, 1992), “local developer” (Cabitza, Fogli, & Piccinno, 2014), “end-user
developer” (Fogli & Piccinno, 2013), “bricolant bricoleur” (Cabitza & Simone,
2015) have been identified from both vertical and cross-sectional field studies.
Another possibility is to classify different classes of (IT) professionals who should
fill in the competence gap in different ways: roles such as meta-designer and
maieuta-designer (Cabitza & Simone, 2015) have been identified. In (Cabitza
et al., 2014) is given an articulated discussion of the roles involved in EUD as well
as of the kind of activities that these roles perform and of the artifacts that are built
under their responsibility.

To sum up, the territory in which EUD is called to find an adequate solution is
varied: therefore the underlying approach has to make clear how the malleability
requirement is interpreted, and how the relationship between end users and IT pro-
fessionals is defined accordingly.

2.2 The Features of Malleability

The term malleability has been used within EUD and CSCW with different meanings.
Within the EUD discourse, Richter and Riemer (2013) limit the scope of the

applicability of the malleability requirement by distinguishing between two kinds
of software applications. On the one hand, they consider what they call Purpose-
Specific End-User Software (PEUS). This kind of software “is introduced with the
aim to solve an existing corporate problem or to immediately improve an existing
user task.” like, e.g., ERP or CRM; consequently it “is thus prescribed and com-
municated in a ‘top-down’ manner by the corporate management.” On the other
hand, there is what they called Malleable End-user Software (MEUS), whose
“main characteristic […] is its inherent flexibility and openness when enabling
and supporting a wide variety of work practices without the need for technical
customization.” Examples of MEUS are spreadsheets, platforms like Dropbox,
and (Enterprise) Social Networking platforms. However, this distinction seems
questionable as it creates an undue barrier between applications that are strongly
integrated in the work practices. Moreover in this case, the meaning of the term
malleability denotes a property that we prefer to call versatility, since the use of
the platforms “are open-ended and not prescribed by the software, a wide range of
possible ways exist to appropriate such platforms”: in fact in this case the platform
remains the same but can be used to serve different purposes according to the con-
tingent culture and needs. In addition, in (Trier & Richter, 2013) malleability is
put in relation to the property of simplicity that is defined “as an economic quality
that aims at achieving a maximum of results with given means through parsimony

1417 Malleability in the Hands of End-Users

http://dx.doi.org/10.1007/978-3-319-60291-2_1

of elements and structural principles.” Hence, in the authors’ view malleability
and simplicity are strongly intertwined to make software appropriation by the
users more likely, or easy, to happen.

Within the CSCW field, the term malleability takes a richer connotation. The
first authors to refer to malleability were probably Navarro, Prinz and Rodden,
who in (Navarro, Prinz, & Rodden, 1992) wrote that “CSCW systems need be
malleable and tailorable […] both by developers and users.” In the same year,
Dourish in a Xerox technical report spoke of malleability in terms of interoper-
ability, open-endedly extensibility, efficiency in a range of different circumstances,
“even when those circumstances could never have been foreseen by the systems
designer.” However, Dourish did not specify how this ambitious goal could be
reached by mere hardware and software compatibility. Some years earlier,
Randall in (Randall, 1988) wrote that “systems need to be malleable in the sense
that the user can appropriate them to the task at hand in ways that arise naturally
in the course of activity.” He also rightly noted that “the danger, however, is that
as systems become more malleable, they also become more complex due to an
increased range of options. This forces users to spend more time dealing with the
system and less with the task at hand. In cases of well-established activities for
which there is a wealth of collective experience, this danger can sometimes be
avoided.”

The concept of malleability that we use in this chapter is close to the socio-
technical perspective that considers the “psychological fit between users and inter-
active systems” and to the typical CSCW and HCI concerns of “maximizing the
sovereignty, creativeness and satisfaction of the final user” (Potas, 1978). We
introduce these ideas by referring to a visionary work from almost 40 years ago –
and of uncertain impact – because this contribution, by relating to the metaphor of
the “man-machine symbiosis” coined by Licklider (1960), also introduced ideas
that are central to our proposal. In Potas’ words:

systems may be structured to allow the development of command tools based on key
underlying data objects and operators having relatively simple initial structure. The user
could then build his command repertoire from these elements, or, if a system provided
some initial set of commands built upon a basic internal command language, could rede-
fine or enhance such commands. Malleability [regards the] richness of basic elements and
structures which can be used to create small chunks incorporating immense complexity.

Independently from this seminal contribution, we also consider malleability as
the capability of interactive systems to empower end users in tailoring their sys-
tems in different ways: accordingly, malleability goes beyond versatility. Indeed,
its meaning is compatible with the idea of logical malleability of computer systems
Moor (1985) introduced and connected with ethical concerns and with an ethics of
design. In his words: “Computers are logically malleable […] in that they can be
manipulated to do any activity that can be characterized in terms of inputs, outputs,
and connecting logical operations. […] Because computers are logically malleable,
they will continue to be applied in unpredictable and novel ways, generating
numerous policy vacuums for the foreseeable future.” On the other hand, Moor
claims that malleability is not only a generator of ethical dilemmas, but also

142 F. Cabitza and C. Simone

what makes computer systems less rigid “political artifacts” (Winner, 1980), that is
artifacts that do have politics by either imposing or reflecting political and moral
values, e.g., in the categories (Suchman, 1994) they afford and disseminate, and in
the behaviors that they promote and constraint. This is because the designers’
politics can be confronted, and modified (at least to some extent and in principle)
at run time, by the end users themselves, if they do not fit the users’ worldview or
if changes made them no longer correct or applicable.

The above connotation of malleability is fully coherent with one of the basic
properties of Computable Coordination Mechanisms (CCM) (Schmidt & Simone,
1996), that is constructs that had been derived from a series of field studies by
observing how people define and use information artifacts in cooperative settings
to support the articulation of their activities. Not only “a CM must be malleable in
the sense that it supports users in specifying its behavior […] by making local and
temporary changes to [it]”; but in addition, the available building blocks (the
Potas’ “underlying data objects and operators”) should be at the semantic level of
articulation work: “at a semantic level, at a level of granularity, and in a modality
which is appropriate for the specific work domain at hand. That is, […] expressed
in terms of categories of articulation work […] that are meaningful to the partici-
pants involved in terms of their everyday work activities.” A similar requirement
is stressed in (Lieberman et al., 2006; Chap. 1): “a system’s component structure
[should be] designed to be meaningful for its users and […] these users [should
be] able to easily translate changes in the application domain into corresponding
changes in the component structure.” For these reasons we prefer to use the more
comprehensive phrase semantic level of work practices, which includes articula-
tion work. Accordingly, malleability aims to support appropriation (Wulf et al.,
2015) through the suitable semantic level of the building blocks rather than by
relying on the notion of simplicity. This latter is usually interpreted from the per-
spective of the IT designer(s) rather than from the perspective of the users’ work
practices, thus taking an undue and risky simplification. In so doing, malleability
and appropriation reduce the danger of distraction raised in (Randall, 1988).

Finally, the concept of malleability that we use in this chapter implies the open-
ness emphasized in (Richter & Riemer, 2013): as in the case of CCM, malleability
entails a third level, besides those devoted to the definition and execution of an
application. This level would allow for the extension and modification of the basic
building blocks if new digitized practices made this necessary. Moreover, since
practices and technologies mutually influence each other and co-evolve (Carroll,
Kellogg, & Rosson, 1991; Fogli & Piccinno, 2013), the framework should allow
end users to construct not only open but also opennable applications (Cabitza,
Simone, & Storni, 2016). Opennable means that end users can unpack their appli-
cations (almost) at any level of detail, up to the basic building blocks that the
framework makes available to them, while still remaining at the semantic level of
their work practices.

This complex notion of malleability has been taken as a reference by the
research we have undertaken in the recent years. We kept observing work prac-
tices in different domains to identify the required basic building blocks and their

1437 Malleability in the Hands of End-Users

http://dx.doi.org/10.1007/978-3-319-60291-2_1

composition at the appropriate semantic level, and we tapped into the evolution of
the enabling technologies that had progressively become available to test their
technological feasibility. This effort allowed us to identify a more general concep-
tual framework that is independent of any specific application domain: this frame-
work is generative as it defines the main constituents for the construction of more
specific architectures that have to be instantiated in each domain. This framework
encompasses also the characterization of the roles that the people involved in the
construction activities are called to play.

3 The Conceptual Framework: The Logic of Bricolage

The leading idea in the conception of the conceptual framework that informs our
proposal is the following one: in order to fully achieve the objectives of the EUD
agenda we believe that it is necessary to rethink how end-user applications are
conceived (Procter & Robin, 1996). Thus, the starting point is to face the problem
of the relationship between end users and IT designers. As widely discussed in
(Cabitza & Simone, 2015), the culture and practice of the IT designers are funda-
mentally based on the notion of model: indeed, the construction of an application is
conceived as the construction of computational models at different levels of
abstraction. We see in this general, widespread, and almost undisputed attitude one
of the main reasons of the failure of these applications, as they are often neither
useful nor usable by their target users. This occurs for two main reasons. First,
these models are conceived by the IT designers: they interpret the users’ needs
(irrespective of how these have been collected) and transform them into functional-
ities of the target application. In so doing, the models incorporated in the applica-
tion are almost unfamiliar to the end users and distant from their work practices; in
other words the models carry “invisible programming values” (Moor, 1985). This
approach affects also some of the approaches developed in the EUD ambit, as aptly
reported in (Eriksson, Lindeberg, & Dittrich, 2003) where “leaving variability man-
agement to the end users” is based on their accessibility to a component architec-
ture that is strongly integrated in the chosen programming environment. Second,
and more importantly, end users do not organize their work practices in terms of
conceptual models: they usually build what is instrumental to fulfil their needs by
conceiving of ad-hoc information structures, often represented in traditional spread-
sheets, which soon become effective shadow tools (Cabitza & Simone, 2014;
Handel & Poltrock, 2011) working “in the shade” of official information systems;
and perform actions that manipulate those information structures in what is munda-
nely called a bricolage endeavour. In (Cabitza & Simone, 2015) we reconstructed
how the notion of bricolage, which has been recently reused by Rob Procter et al.
(2013) in the domain of assisted living technologies, has been promoted since the
early 90s by scholars belonging to the IS area and how this unorthodox position
influenced our research approach. For this reason we denote our conceptual

144 F. Cabitza and C. Simone

framework with the term of Logic Of Bricolage (LOB), also to blur the distinction
between the classes of applications proposed by Richter and Riemer (2013).

According to this logic, the goal should not be to provide end users with a fra-
mework that allows them to perform increasingly complex actions on the products
built with the logic of the IT designers, possibly by means of a user-friendly user
interface. Rather, the goal is to provide end users with a framework that takes into
account all the facets of malleability discussed in the previous section in the con-
struction of their tools. The LOB agenda takes then a challenging and radical per-
spective in its goals as it proposes an approach that can be taken in the design of
applications in any specific domain; but it is incremental and iterative in the way
these goals are pursued as its validity has to be proven for each domain.

4 The Conceptual Architecture

The following basic principles are (presently) at the basis of the LOB we propose:

• To clearly separate the features that are or are not at the semantic level of work
practices and then under end-user control: in other words, to distinguish
between the platform targeted to the end users and the underlying technological
infrastructure.

• To guarantee an adequate level of technical opennability and openness to avoid
any undue barrier to changes in the usage of the platform (design-in-use).

• To consider components that are built by IT designers only when their develop-
ment is outside of the competence that an end user can reasonably acquire, and
to start this development from the identification of features that are at the
semantic level of end-user practices.

• For each application domain, to identify the functionalities peculiar to that
domain and the composition patterns that can make sense to the end users, pos-
sibly by trying to factorize the ones that are common to several domains.

• To define in a clear and flexible way the roles of the people involved in the
EUD activities and their domain of responsibility. We identified four main
roles: on the non-technical side, the bricoleur end user and the maieuta
designer; and on the technical side, the meta-designer and the IT professional.
The maieuta- and meta-designers play the role of mediators between the end
users and the IT professionals to fulfil domain requirements and solve technical
problems, respectively.

Fig. 1 summarizes the above principles in a conceptual tiered architecture
where also the roles and the tasks they are mainly involved in are reported for
each identified level.

In this architecture, openness and opennability are afforded to the end users by
the Editors, which define, extend and combine the (basic) building blocks. In order
to keep this layer as general as possible we have proposed a grammar (its detailed

1457 Malleability in the Hands of End-Users

definition can be found in Cabitza & Simone, 2015) that contains productions to
define, through dedicated constructs:

• The layout of the application interface;
• The structure of the objects characterizing the application domain;
• The if-then rules to make those objects active (Dourish et al., 2000) thorough

two kinds of operators: functional operators characterizing the application
domain (e.g., the function to compute the fluid balance of a patient or to manip-
ulate a 3D object); and actional operators that reflect the work practices affect-
ing the objects (e.g., the commands to save, move, combine, delete, augment,
link, mailto).

• The annotations that users can link to any kind of element mentioned in the
grammar: they are constituted by a target and a multimedia content.

The grammar explicitly mentions the annotations as a fundamental affordance
offered by the platform: as already mentioned in (Lieberman et al., 2006; Chap. 1)
annotations offer a way to support communication and the sharing of contextual

Situated
Practices

Annotations

structures

Editing and Working
Environments

Platform

Infrastructure

Editors of
constructs/structures and

the running execution
environment

for their actual use.

Editing Primitives and
Middleware-related

services (APIs).

(e.g., power, connectivity,
low level services
like memory and

other 0S related ones)

d
e
fi
n
it
io

n
 t
im

e

constructs

Tasks–Artifacts Main roles Main Task

EntangIement

B
ricoleur - (E

n
d
) U

s
e
rs

C
re

a
tin

g
 c

o
n
te

n
t a

n
d

annotations, u
s
in

g
 structures

a
n
d
 c

re
a
tin

g
 w

eb
s,

D
e
fi
n
in

g
structures

a
n
d

constructs

B
ricolants a

n
d

M
aieuta-

D
e
s
ig

n
e
rs

M
e
ta

-
D

e
s
ig

n
e
rs

 a
n
d

IT
p
ro

fe
s
s
io

n
a
ls

IT
p
ro

fe
s
s
io

n
a
ls

D
e
p
lo

y
in

g
b
a
s
ic

constructs

D
e
ve

lo
p
in

g
p

rim
itives

Bricolant
bricoleur

ru
n
 t
im

e

Fig. 1 The conceptual architecture

146 F. Cabitza and C. Simone

http://dx.doi.org/10.1007/978-3-319-60291-2_1

information among the roles involved in the EUD activities and more generally
involved in any cooperative activities (Cabitza, Simone, & Locatelli, 2012). In
addition, annotations and if-then rules allow for the expression of another feature
that is fundamental to support cooperative actors, namely various kinds of aware-
ness (Schmidt, 2002): notifications to collaborators as well as the change of affor-
dances of the objects (e.g., the usage of cues to bring the attention to relevant
pieces of information).

The conceptual architecture and the related grammar support the incremental
construction of a platform that does not build undue barriers between application
domains, but yet still recognizes their peculiarities; and that does not raise barriers
between actors with different competence and attitudes, but rather recognizes that
these latter ones have to be duly taken into account, respected and possibly pro-
moted. In fact, the platform offers the following advantages:

• To facilitate the appropriation of the technology through the presence of differ-
ent levels of abstraction at which end users can construct, modify and use the
combination of the basic building blocks; moreover, the attention to the appro-
priate semantic level creates the conditions for an easier and more effective
way to document and share the blocks as well as the already constructed com-
binations. In other words, these latter “speak” the local jargon of the end-user
community and constitute a ground (a “repertoire” as said by Wenger, 1998)
where this community can record and share individual outcomes and experi-
ences. This is an answer to the claim mentioned in (Lieberman et al., 2006;
Chap. 1) that components have to be meaningful to the users.

• To make the space of action of all of the roles involved clear and, in so doing,
to reduce the odds for subordinate positions by end users in the EUD “game.”

• To give end users a way to show to the top management and the IT designers
that an alternative way to build applications is feasible and affordable.

The LOB can be interpreted as a contribution to the effort to define paradigms
for EUD that go beyond specific solutions and support the identification of con-
ceptual frameworks guiding the construction of technologies supporting EUD.
The LOB shares many of the tenets underlying the meta-design paradigm whose
evolution is described in the chapter by Fischer, Fogli, and Piccinno (2017). As
discussed in (Cabitza & Simone, 2015) the main difference regards a more radical
view of the role of the professional designers in EUD and an explicit emphasis on
malleability at the semantic level of work practices as a leading requirement shap-
ing the construction of technological frameworks that make a correct relationship
between end-users and professional designers possible.

The same requirement allows us to reformulate the EUD pyramid proposed by
Ludwig, Dax, Pipek, and Wulf (2017) (see Fig. 2). In our view, end users should
not be requested to learn and use any General Purpose Language (whatever it can
be) for the design-in-use of their applications. Instead, they should rather be put in
the condition to leverage the language they are able to use to both sustain and
innovate these applications (see Dittrich et al., 2017) since this language is at the
semantic level of their work practices. In this view, the EUD “staircase” can be

1477 Malleability in the Hands of End-Users

http://dx.doi.org/10.1007/978-3-319-60291-2_1

climbed by the end users at their own speed by leveraging different levels of com-
plexity (and granularity) of the technology that they develop. To achieve this goal,
the formalization of that language in a generative grammar is performed in two
steps: a domain independent definition of the productions that guarantee the open-
ness and opennability of the prospective application, that is a quasi-grammar gov-
erning their construction through suitable categories (the non terminal symbols of
the grammar): at this stage the grammar is capable to generate only a nominal lan-
guage,1 in that it only defines a space of possibility. And a domain and user-
dependent definition of the full language through the identification of the neces-
sary atomic operators and their composition laws (the terminal symbols of the
grammar): at this stage the grammar is able to generate the actual language that
the end users can use to construct functionalities at any level of granularity,
according to their needs and work practices. In this view, there are as many actual
languages related to the same nominal one as there are specific application
domains and local practices.

Then, the LOB can be viewed as a contribution to make the notion of work
infrastructure operational. This concept has been introduced to take into account
the broader context in which technology is constructed and to relate to the EUD
tenets (Pipek & Wulf, 2009). The LOB shares the idea that the work infrastructure
is the outcome of an infrastructuring effort that involves the maintenance and
innovation of the LOB architecture and of the specific applications built on top of
it. Moreover, the clear separation of the technical infrastructure from the end-user

Full grammars
(with domain dependent

terminal symbols)

...

A. L. for
CAD

A. L. for
Production
Systems

...

Quasi-grammar
(no terminal symbols) Openness

Opennability

LOGIC OF BRICOLAGE

Functionalities
with different granularity
at the Semantic level of

Work PracticesActual Language for
Document based

Information Systems

GENERAL PURPOSE LANGUAGE

Nominal language

Technological
Infrastructure

Fig. 2 The pyramid of malleability (A.L. means Actual Language)

1We borrow the terms nominal and actual (used later on in the chapter) from the definition of the
notation proposed in (Schmidt & Simone, 1996) to express the mentioned Coordination
Mechanisms: for instance, a task is at the nominal level since it defines the space of possibility
where different actions at the actual level can be done to accomplish it. The term quasi-grammar
used in Fig. 2 is inspired by the field of urban design (Aydin & Schnabel, 2013).

148 F. Cabitza and C. Simone

realm allows for an alternative view of the standardization problem, which is one
of the main issues concerning infrastructures.

At the technical infrastructure level, standardization (and all of the related
issues like interoperability and compatibility) can be managed according to the
ICT methods that are out of the scope of EUD: the LOB identifies a clear space of
responsibility, the meta-designer and IT professional roles, for the management of
the technical impact of the changes of the technical infrastructure on the domain-
dependent level. At this latter level, standardization is problematic as it would
imply a sort of standardization of work practices: this attempt has been proved
unfeasible and harmful in a number of studies (especially in the CSCW ambit).
The LOB promotes the local and collaborative development of work practices
and their ICT support as a unique way to make them appropriated by the end
users. The LOB also envisages a bottom-up approach to deal with the need of stan-
dardization concerning the objects that flow across local settings. In (Cabitza &
Simone, 2015) we mentioned the idea of minimal data set to contain those basic
objects whose structure and semantics have to be negotiated, and to let more
articulated constructs be (automatically) reconstructed in each local setting accord-
ing to its logic, in the line of the approach proposed in (Parsons & Wand, 2000).
In other words, at this level standardization results from a negotiation process that
defines contracts among the involved parties at any level of the organizational
dimension (Simone, 2016): instead of being an imposition from above, standardi-
zation is a bottom-up collaborative process of continuous learning.

Finally, the LOB can be interpreted also as a contribution to make approaches
to practice-based computing (Schmidt & Bansler, 2016; Wulf et al., 2015) opera-
tional, by stressing the need to help users in identifying and expressing the
mechanisms supporting their work practices (the maieuta designer role) through
the domain-dependent language. To this aim, the LOB architecture offers (at least)
a technological sandbox, where prototypes and technical probes can be tested
and validated.

5 Where the Logic of Bricolage Came From

The LOB distilled the above set of guiding principles for the construction of a
malleable technology from the findings of a series of field studies. The settings
that we had the chance to analyse were characterized by an intensive usage of
(paper-based) documents that played three main roles: on the one hand, as also
recognized by Berg (1999), the accumulation of information through the artifacts’
progressive inscriptions; and the coordination of collaborative activities through
the affordances, inscriptions, marks and signs hosted by the artifacts to promote
the mutual awareness of the actors involved. In addition to these two latter roles,
also the exchange of contextual information to support collaborative decision mak-
ing and the continuous on-the-go learning of the involved actors. In order to
emphasize and characterize this latter role in a EUD perspective, we proposed the

1497 Malleability in the Hands of End-Users

term knowledge artifact (Cabitza, Colombo, & Simone, 2013). Thus, the artifacts
that we observed in our field studies showed that the three above roles cannot be
separated or handled in isolation (Cabitza & Simone, 2012a). In what follows, we
will refer to these three indivisible roles with the phrase “work artifacts.”
Moreover, all these studies showed that users were ingeniously creative in trying
alternative paper-based solutions that could better meet their needs of informality,
flexibility and dynamicity. This led us to propose them a critical discussion and a
trial in a controlled environment of some ad-hoc mock-ups and prototypes that
had been inspired by their own ideas. These partial solutions paved the road for
the development of the platform supporting EUD activities in the application
domains where work artifacts are recognized to play a relevant role: this platform,
called AdHoc, will be illustrated in some detail in the next section.

In what follows of this section, we will report on the main findings of the field
studies in the healthcare domain that helped us to characterize the notion of malle-
ability and to conceive the LOB: healthcare is an ideal domain encompassing
many of the situations that can be encountered in other domains.

5.1 The Requirements and Their Technical Probes

The field studies mainly involved doctors and nurses in hospital settings and iden-
tified the requirements illustrated here below.

5.1.1 About the Information Structure

The main kind of work documents in use in a clinical setting are related to the
Patient Record (PR), and it is well known how the introduction of its digitized
counterpart, the Electronic Patient Record (EPR), is far from being a trivial task
(Fitzpatrick & Ellingsen, 2013). For this reason the artifacts that we analysed were
mainly still based on paper. As in many other ethnographic observations (e.g.,
Berg & Toussaint, 2003; Harper, O’Hara, Sellen, & Duthie, 1997; Schmidt,
2008), also our studies confirmed the effectiveness of this support, which is
mainly based on its flexibility and openness (Fitzpatrick, 2004). The kind and the
layout of the fields constituting the template of a work artifact can be easily chan-
ged, extended, printed out and put to work in a very short time. The same flexibil-
ity and openness is not achieved in EPRs (Fitzpatrick & Ellingsen, 2013); for
instance doctors and nurses can only have access to templates displaying the fields
that that have been a priori identified as the most relevant ones for each single car-
ing phase, so as to impose layouts that are optimized according to technical visua-
lization criteria only (Swinglehurst, Greenhalgh, & Roberts, 2012). However, it is
well known that a broader context and the spatial layout of the information con-
veys additional meaning about and across the various inscriptions (Harrison &
Dourish, 1996). Moreover, every minimal change requires a long time as the IT
designers and developers of the IT vendor and provider have to be involved.

150 F. Cabitza and C. Simone

Since the caring process often occurs in critical situations (e.g., for the kind of
intervention, the heavy workload or the unexpected interruptions) often provi-
sional inscriptions are used to be checked and confirmed afterwards.

It is often the case that the EPR incorporates in a visible position (typically on
the front-page of the folder) a particular work artifact that contains the visual
description of a caring process, i.e., a Clinical Pathway, especially when the
intended trajectory is considered to be complex and risky, or conversely when it is
rarely performed (Cabitza & Simone, 2008). This usually graphic information
should be preserved and reproduced in a prospective EPR since professionals are
used to interpret Clinical Pathways as a “plan for situated action” (Suchman,
1987). This point is critical in relation to EPR construction (as any other workflow
digitalization) but it is out of the scope of this chapter: we refer to (Cabitza &
Simone, 2013) for a discussion on malleability in relation to work processes.

Since the very beginning, the prototypes that we proposed to the health profes-
sionals fulfilled the above requirements at different degrees (see for example
Fig. 3 taken from (Cabitza, Simone, & Zorzato, 2009)), as they reflect and support
the practices established around paper-based work artifacts. Nowadays there are

Fig. 3 A screenshot of the Pro-Doc prototype to support healthcare practices

1517 Malleability in the Hands of End-Users

applications/platforms that increasingly allow for the construction of form
templates that can be instantiated and filled in; moreover, the adoption of mobile
devices, such as smart phones and tablets, offers interfaces that can be closer to
the look-and-feel of the paper-based work artifacts. However these solutions still
show a limited openness, they are not opennable and in general can be poorly inte-
grated with more collaboration-oriented functionalities.

5.1.2 Augmenting the Work Artifacts

The work practices that we analysed in the hospital settings made it evident that
the clinical work is characterized by several kinds of redundancy. It is not difficult
to recognize this phenomenon also in other domains, such as office work. We
observed redundancy of function when the same professionals possess compe-
tences that overlap those of other colleagues in a team to deal with the (sudden)
unavailability of a human resource; redundancy of effort when the same action is
executed more than once, typically for the sake of safety and cross-check; and
redundancy of data when the same information appears, possibly slightly elabo-
rated, in different points of the same work artifacts or in different work artifacts.
All these kinds of redundancy should be taken into consideration in the construc-
tion of an EPR (as of any other work artifact). Let us start from the redundancy of
data whose articulation in the four possible cases is summarized in Table 1. A
detailed exemplification of the four cases can be found in (Cabitza, Sarini,
Simone, & Telaro, 2005). For this paper it is useful to distinguish if the data are
exactly the same or closely related, and if they belong or not to the same work
artifact: in fact the four cases have obvious implications on the affordances that
have to be offered to the end users and on the way they have to be dealt within
the platform.

Redundancy of function and of effort have an impact on the flexibility by
which the platform allows the various actors to play different roles (as character-
ized by their competences), to manage the distributed workflow of their actions to
encompass repeated and repetitive actions, and to deal with the consequences of
possible discrepancies in their effects and outcomes.

The practices unfolding around the work artifacts showed another kind of redun-
dancy that would be helpful to support, as suggested also by other studies (Bringay,
Barry, & Charlet, 2006; Whittaker, 2003). The work practices augment the artifacts
themselves in different ways that can be grouped under two main categories: anno-
tations and conventions. Annotations are inscriptions added to the artifacts that

Table 1 The four cases of redundancy of data

Same Data Correlated Data

Same artifact Redundancy by replicated data Redundancy by derived data

Different Artifacts Redundancy by duplicated data Redundancy by supplementary data

152 F. Cabitza and C. Simone

contribute to enrich their interpretation by the collaborating actors: for example, an
exclamation mark next to a field in a document can be used to bring the attention
of readers to an anomalous value. On the other hand, conventions are sort of rules
that are agreed upon in a more or less explicit way by the members of a work team
or organization, and that these latter apply (or expect that the others comply with) if
some specific conditions have been met. For instance, the combination of specific
patient’s conditions have to be notified to the appropriate doctor specialist; a capital
U jotted down next to an exam entry means that this should be accomplished
quickly as it is urgent (Cabitza & Simone, 2007). These conventions, differently
from formal rules, are not aimed at the construction of any sort/approximation of
expert systems: the professionals we met in our field studies emphasized that the
useful rules should only cover the relevant knowledge put to work at each step of a
caring processes and could also be sometimes contradictory as they have in any
case to be interpreted by the professionals involved in these processes. Thus, the
role of annotations and conventions is to facilitate the collaborative interpretation of
relevant events and conditions, not to prescribe behaviours.

Annotations are nowadays a function that is usually offered by document man-
agement systems, although still in a basic manner. Conversely, the possibility to
make tacit conventions explicit, if users deem it necessary, to improve coordination
and, as in the case of healthcare, patient safety are usually not supported. We con-
structed some prototypes to check the feasibility and acceptability of these affor-
dances: for example, the Lifebook prototype (Cabitza & Simone, 2012b) offers an
interface that mimics the classical sheet and the possibility to have a rich set of tex-
tual annotations; in (Cabitza & Simone, 2009) we experimented with a group of
clinicians a mock-up interface to define rules in a pseudo-natural language that
could be automatically translated into a machine-readable format (see Fig. 4).

5.1.3 Linking the Work Artifacts to Their Context

The redundancy of pieces of information contained in a work artifact, especially
across different artifacts, points to the need to consider what we called Web of

1) SPECIFICATION TIME

doc

coordinative requirements coordinative functionalities

WHENEVER
THEN

IF

contextual conditions

provision of information

promoting awareness of

actions a1..n and

connections c1..k

DESIGN
x, y, z

2) RUN TIME

Fig. 4 The translation rules expressed in a pseudo-natural language

1537 Malleability in the Hands of End-Users

Documental Artifacts (WOAD) (Cabitza & Simone, 2010). For this phrase, we
took inspiration from the phrase “Web of Artifacts” proposed in (Bardram &
Bossen, 2005), but aimed to make this notion even stronger by supporting differ-
ent kinds of relations between work artifacts: these relations are obviously
depending on the setting where the work artifacts are in use.

In the case of the healthcare settings that we have investigated, the profes-
sionals mentioned a set of relations that they would like to have embedded into a
digital support such as an EPR. For instance, in (Cabitza & Simone, 2008) we
observed that the subtle differences between the relationships proposed in the
Clinical Document Architecture (CDA) standard were not easily accepted by a
group of clinicians that would have had the possibility to define more locally
meaningful relations such as: (1) “the source because of the target,” used by clini-
cians to convey a strict causal relationship between two items; (2) “the source
after the target,” used by the clinicians not only in strictly temporal sense, but
also to hint at a very weak or just hypothesized causal relationship between two
entries; and (3) “the source for the target,” used by clinicians to express either
a justification, provide evidence supporting a decision or to make explicit an
intention (Cabitza & Simone, 2008). The clinicians emphasized that the specifica-
tion of these relations has to be open-ended and under their control. Moreover, in
combination with the above requirement to make work artifacts active, proper
rules could associate a specific behaviour with each relation, e.g., to facilitate
double-checking and the propagation of information that promotes collaboration
awareness.

In the healthcare domain, we observed work artifacts that flank institutional
and official information systems: we already introduced the term shadow tools to
refer to this phenomenon. Indeed, paper-based work artifacts were sometimes
locally defined according to the local work practices irrespective of any kind of
Hospital Information System in use or any work artifacts that were more official
and imposed by the management for the sake of the standardization of the caring
processes. Shadow tools impose a double work as the information they are built to
contain has to be transferred, often only partially, to the official Information
Systems. Then, a basic requirement of any support of the EUD activities around
user-defined work artifacts is to have an easy and solid interface with these
Information Systems. In (Cabitza & Simone, 2012c) we discussed a conceptual
architecture that aims to reconcile the coordinative role of artifacts and the archival
roles of the IS through the design of a meta-content layer that encompasses an
awareness (promoting) manager (AM in Fig. 5).

The findings from our investigations in the healthcare and other application
domains (examples of this kind can be found in (Cabitza & Simone, 2014, 2015)
and of parallel studies by other authors on various kinds of artifacts (e.g., Schmidt &
Wagner, 2004; Xiao, 2005) allowed us to conceive of the LOB conceptual frame-
work described in the previous section. As a first step to check the feasibility of
the translation of the framework into a concrete technology we built a platform
supporting the EUD of work artifacts, and more specifically document-based
artifacts.

154 F. Cabitza and C. Simone

6 The AdHoc Platform

The AdHoc platform allows end users to create their own work artifacts templates,
and create their computationally-augmented work artifacts out of these templates.
According to the LOB tenets AdHoc mirrors how users create working documents
and forms from (electronic) templates existing in their everyday work practices. The
name of the platform itself reflects this main requirement: end users must be able to
create work artifacts ad hoc, that is for a specific task, also through re-use and adap-
tation of other documents (acting as templates) created in the same or other end-user
communities. In this section we describe how the main functionalities that AdHoc
offers to its users to construct malleable applications based on work artifacts reflect
the LOB architecture: more details can be found in (Cabitza & Mattozzi, 2017).

In AdHoc end users can define the structure of their work artifact by creating a
corresponding template in a bottom-up manner. To this aim, they have to instanti-
ate the layout and objects structure of the general grammar that is associated with
the Logic of Bricolage. We use the phrase bottom-up to hint at the fact that this
process of construction is not based on any abstract data model, but rather it is
performed by considering the work artifact interface as a sort of blank canvas on
which end users can place writings, headings and data fields and controls, accord-
ing to specific and local needs. Moreover, end users can create their own control
structures, that is application behaviours, by which to have the platform process
the document’s content, change its appearance or activate other actions for sake of
communication, coordination, awareness promotion and knowledge exchange. In
order to both build the structural templates and attach to these latter ones the beha-
viours that make them active, the end users can find within the AdHoc platform
the two visual editors characterizing the LOB architecture: these editors present
and allow for the direct manipulation of the building blocks that closely mirror the
constructs of the instantiated grammar.

Model

DBMS

Business Rules

Control Presentation

Application Logic

AM engine

Conventions

users
Artifa

ct

D Work

Context

Information System

Fig. 5 A conceptual architecture bridging an IS and coordinative artifacts

1557 Malleability in the Hands of End-Users

A first visual editor (see Fig. 6) allows end users to define basic data structures,
or what we call datoms (Cabitza & Simone, 2015) and then include them recur-
sively in greater and more complex (layout) structures (e.g., records, folders, repo-
sitories). These datoms will contain the data that end users will consider
meaningful to bind strictly together, for any reason, like the name of a drug and
its prescribed dose of administration, or the name and family name of a patient.

Templates encompass sets of these datoms; documents are created by activating
the corresponding template in any given context. In addition, the same datom can
be re-used in different templates, thus creating different kinds of associative rela-
tions between active documents that spread the data inscribed in a document into
other related documents (see (Cabitza & Mattozzi, 2017) for further details).

The second visual editor allows end users to develop the set of if-then rules
that make documents active (see Fig. 7), and associate them with a template. In so

Fig. 6 A screenshot from the main interface of the datom editor of the AdHoc platform

Fig. 7 A screenshot from the main interface of the rule editor of the AdHoc platform

156 F. Cabitza and C. Simone

doing, any document created from the same template is endowed with the rules
associated with their original template. The then part of the rules uses and com-
bines the functional and actional operators of the full grammar that the users iden-
tified, possibly with the help of maieuta- and meta-designers. Combinations of
operators can be named and recorded; and can be accessed and unpacked for
modification, according to the opennability feature of malleability.

Finally, AdHoc integrates a tool that allows users to create n-ary associative rela-
tions between document elements, documents and annotations themselves. In Fig. 8
we show an AdHoc document, defined from a template containing an anatomic
diagram. Through the annotation function the user has augmented the diagram with
three markings, namely three small circles and put them in three different places of the
image to indicate where the patient reported pain. Then she selected these three
elements and created a textual annotation linked to these elements (target of the anno-
tation; just anything that can be selected can become an association target, so also any
portions of text. In this case, the elements are graphical markings). The annotation,
depicted on the right, contains a short textual comment. Graphically AdHoc makes the
anchoring between the comment and the target explicit (the thin blue lines), so that the
annotation acts as a ternary relation, relating three elements of the documents together.

Then AdHoc collects in a single platform the main functionalities that have
been separately discussed and validated with the users in the collection of probes
presented in the previous section.

7 Conclusions and Future Work

The research trajectory described in this chapter has led to the definition of a con-
ceptual framework for EUD infrastructures that is characterized by two main
tenets. First, the infrastructure should give to the end users the possibility to

Fig. 8 A screenshot from the AdHoc interface that visualizes an annotated form

1577 Malleability in the Hands of End-Users

construct malleable applications that they can adapt to their changing needs and
contexts at any level of detail: this means that end users can construct their appli-
cations and unpack them (bricolage) by manipulating (basic) building blocks that
at any level of detail make sense according to their work practices. Second, this
recursive manipulation is the means by which to balance the different attitudes of
the end users with the role of the professional designers involved in the construc-
tion of the applications, and by which to circumscribe the more technical interven-
tion to the implementation of what the end users are not able to do in autonomy
(i.e., the basic building blocks and constructs to combine them). The conceptual
framework has been instantiated in a specific platform (AdHoc) that can be viewed
as a proof-of-concept for a practice-based and open toolkit supporting the brico-
lage of malleable document-based applications.

The research path described above has produced some stable results but is not
over. On the one hand, the AdHoc platform has to be validated in real settings to
increase the quality of the user experience with its interface, including the two
visual editors presented above. On a more conceptual level, the Logic of
Bricolage has to be validated in application domains that are characterized by
objects of different kinds: in other words, through autonomous investigations and
from the literature we aim to identify the basic building blocks and the composi-
tion constructs that these potential domains would require and then to validate the
expressive power of the proposed grammar.

Another relevant issue that has to be further investigated relates to what in the
literature has been called collaborative tailoring, that is the activities that in
real-work settings end users perform to deal with their (technological) problems
within the communities of practice they belong to. Pipek and Kahler (2006)
articulated this issue by offering a taxonomy that is based on scenarios of
increasing complexity in relation to “ideas and approaches according to what
actually motivates users to collaborate regarding the configuration of software
tools.” The approach presented in this chapter falls under the “shared tool” sce-
nario and shares some tenets with the meta-design approach (as discussed in the
previous sections): as Pipek and Kahler (2006) emphasize, there are several
(technological) means that can support collaborative tailoring in this scenario
such as situated communication, shared representations, models of the decisions
processes and so on. A modular architecture affording several of these means is
proposed in (Stevens, Pipek, & Wulf, 2010). Pipek and Kahler (2006) point also
to the risk to propose, if not impose, means that would require an additional
learning effort to the end-users. Without denying the value of these means, and
in the aim to reduce this risk, it would be interesting to verify if collaborative
tailoring could be supported by a dedicated platform based on the LOB itself:
here again, the observation of the real practices is a necessary source of inspira-
tion to identify the suitable objects and constructs, and then to instantiate the
grammar and build a dedicated platform accordingly. A very preliminary attempt
to deal with this aspect of EUD was illustrated in (Bandini & Simone, 2006): by
taking inspiration from the practices governing the maintenance of a repertoire
of software components for the sake of reuse that we observed in a IT system

158 F. Cabitza and C. Simone

integration company (Cabitza et al., 2013), the idea was to augment the
component-based EUD technology proposed in (Won et al., 2006) with function-
alities supporting a similar behaviour. The interesting aspect of this attempt
was that the observed practices were not related to any software engineering
standard; instead, the professionals identified a classification of the stored com-
ponents and of the relationships among them that reflected their way to minimize
the effort to keep the information about the experimented software components
up-to-date, and to guarantee their effective reuse. This experience shows that
malleability, and then EUD, matters not only for naïve users. Rather, it raises
interesting challenges for any setting, if practices are seriously taken into
account as the conceptual framework proposed in this chapter aims to do.

References

Aydin, S., & Schnabel, M. A. (2013). Coding shape grammars: hints for generating a parametric
design tool for large-scale urban renewal projects. In M. A. Schnabel (ed.), Proceedings of
the 47th International Architectural Science Association Conference (pp. 177–186).
Australia: The Architectural Science Association (ANZAScA).

Bandini, S., & Simone, C. (2006). EUD as integration of components off-the-shelf: the role of
software professionals knowledge artifacts. End-user development: the software shaping
workshop approach. In H. Lieberman, F. Paternò, V. Wulf (Eds.). End user development
(pp. 347–369). Dordrecht, The Netherlands: Kluwer Academic Publishers.

Bardram, J. E., & Bossen, C. (2005). A web of coordinative artifacts: collaborative work at a hos-
pital ward. In G. Mark & M. Ackerman (eds), Proceedings of the 2005 international ACM
SIGGROUP Conference on Supporting Group Work (pp. 168–176). New York USA: ACM.

Berg, M. (1999). Accumulating and coordinating: occasions for information technologies in med-
ical work. Computer Supported Cooperative Work, 8(4), 373–401.

Berg, M., & Toussaint, P. (2003). The mantra of modeling and the forgotten powers of paper: a
sociotechnical view on the development of process-oriented ICT in health care. International
Journal of Medical Informatics, 69(2), 223–234.

Borchorst, N.G., Bødker, S., Zander, P.O. (2009). The boundaries of participatory citizenship.
In ECSCW 2009, - Proceedings of the 11th European conference on computer supported
cooperative work (pp. 1–20). London: Springer.

Bratteteig, T., & Wagner, I. (2014). Disentangling participation: Power and decision-making in
participatory design. Switzerland: Springer International Publishing.

Bringay, S., Barry, C., Charlet, J. (2006). Annotations: a functionality to support cooperation,
coordination and awareness in the electronic medical record. Frontiers in Artificial
Intelligence and Applications, 137, 39.

Buchanan, R. (1992). Wicked problems in design thinking. Design Issues, 8(2), 5–21.
Cabitza, F., Colombo, G., Simone, C. (2013). Leveraging underspecification in knowledge arti-

facts to foster collaborative activities in professional communities. International Journal of
Human-Computer Studies, 71(1), 24–45.

Cabitza, F., Fogli, D., Piccinno, A. (2014). “Each to his own”: distinguishing activities, roles and
artifacts in EUD practices. In L. Caporarello, B. Di Martino, M. Martinez eds., Smart organi-
zations and smart artifacts - fostering interaction between people, technologies and processes
(pp. 193–205). Berlin: Springer.

Cabitza, F., & Mattozzi, A. (2017). The semiotics of configurations for the immanent design of
interactive computational systems. Journal of Visual Languages and Computing. In press.
doi:10.1016/j.jvlc.2017.01.003.

1597 Malleability in the Hands of End-Users

http://dx.doi.org/10.1016/j.jvlc.2017.01.003

Cabitza, F., Sarini, M., Simone, C., Telaro, M. (2005). When once is not enough: the role of
redundancy in a hospital ward setting. In Proceedings of the 2005 International ACM
Conference on Supporting Group Work (pp. 158–167). New York USA: ACM.

Cabitza, F., & Simone, C. (2007). “… and do it the usual way”: fostering awareness of work
conventions in document-mediated collaboration. In: L. J. Bannon, I. Wagner, C. Gutwin, R.
H. R. Harper & K. Schmidt (eds), ECSCW 2007 - Proceedings of the 10th European
Computer Supported Cooperative Work 2007 (pp. 119–138). London: Springer.

Cabitza, F., & Simone, C. (2008, June 17–19). Supporting practices of positive redundancy for
seamless care. In CBMS’08: proceedings of the 21th IEEE international symposium on
computer-based medical systems (pp. 470–475). Jyväskylä, Finland.

Cabitza, F., & Simone, C. (2010). WOAD: a framework to enable the end-user development of
coordination-oriented functionalities. Journal of Organizational and End User Computing
(JOEUC), 22(2), 1–20.

Cabitza, F., & Simone, C. (2012a). Affording mechanisms: an integrated view of coordination and
knowledge management. Computer Supported Cooperative Work (CSCW), 21(2–3), 227–260.

Cabitza, F., & Simone, C. (2012b). Tell me another story, granpa! Requirements for sharing lived
lives online. I-Com, Zeitschrift für interaktive und kooperative Medien, 11(3), 14–18.

Cabitza, F., & Simone, C. (2012c). “Whatever works”: making sense of information quality on
information system artifacts. In G. Viscusi, G. M. Campagnolo & Y. Curzi (Eds.),
Phenomenology, organizational politics, and IT design: the social study of information sys-
tems (pp. 1–321). Hershey USA: IGI Global.

Cabitza, F., & Simone, C. (2013). Computational coordination mechanisms: a tale of a struggle
for flexibility. Computer Supported Cooperative Work (CSCW), 22(4–6), 475–529.

Cabitza, F., & Simone, C. (2014). “Through the glassy box”: supporting appropriation in user
communities. In COOP 2014-proceedings of the 11th international conference on the design
of cooperative systems, Nice (France) (pp. 173–187). Springer International Publishing.

Cabitza, F., & Simone, C. (2015). Building socially embedded technologies: implications about
design. In Designing socially embedded technologies in the real-world (pp. 217–270).
London: Springer.

Cabitza, F., Simone, C., Locatelli, M. P. (2012). Supporting artifact-mediated discourses through
a recursive annotation tool. In: C. Inpken & T. Gross (Eds), Proceedings of the 17th ACM
International Conference on Supporting Group Work (pp. 253–262). New York USA: ACM.

Cabitza, F., Simone, C., Storni, C. (2016). Seams and sutures in IT artifacts: sewing up the socio and
the technical together. International Journal of Systems and Society (IJSS), 3(1), 18–31.

Cabitza, F., Simone, C., Zorzato, G. (2009). PRODOC: an Electronic Patient Record to Foster
Process-Oriented Practices. In I. Wagner, H. Tellioglu, E. Balka, C. Simone & L. Ciolfi
(Eds.), ECSCW09: Proceedings of the 11th European Conference on Computer Supported
Cooperative Work. 2009 (pp. 85–104). London: Springer.

Carroll, J. M., Kellogg, W. A., Rosson, M. B. (1991). The task-artifact cycle. In J. M. Carroll
(ed). Designing Interaction: Psychology at the Human-Computer Interface (pp. 74–102).
New York, NY: Cambridge University Press.

Costabile, M. F., Fogli, D., Mussio, P., Piccinno, A. (2006). End-user development: the software
shaping workshop approach. In H. Lieberman, F. Paternò, V. Wulf (Eds.). End user develop-
ment (pp. 183–205). Dordrecht: Kluwer Academic Publishers.

Dittrich, Y., Bolmsten, J., & Eriksson, J. (2017). End user development and infrastructuring —

sustaining organizational innovation capabilities. In F. Paternò & V. Wulf (Eds.). New
perspectives in end-user development (pp. 165–206). Cham: Springer.

Dourish, P., Edwards, W. K., LaMarca, A., Lamping, J., Petersen, K., Salisbury, M., et al.
(2000). Extending document management systems with user-specific active properties. ACM
Transactions on Information Systems (TOIS), 18(2), 140–170.

Eriksson, J., Lindeberg, O., Dittrich, Y. (2003). Leaving variability management to the end user;
a comparison between different tailoring approaches. Blekinge Institute of Technology
Research Report 2003:10.

160 F. Cabitza and C. Simone

Fitzpatrick, G. (2004). Integrated care and the working record. Health Informatics Journal,
10(4), 291–302.

Fitzpatrick, G., & Ellingsen, G. (2013). A review of 25 years of CSCW research in healthcare:
contributions, challenges and future agendas. Computer Supported Cooperative Work
(CSCW), 22(4–6), 609–665.

Fischer, G., Fogli, D., & Piccinno, A. (2017). Revisiting and broadening the meta-design frame-
work for end-user development. In F. Paternò & V. Wulf (Eds.). New perspectives in end-user
development (pp. 61–98). Cham: Springer.

Fischer, G., & Giaccardi, E. (2006). Meta-design: a framework for the future of end user devel-
opment. In H. Lieberman, F. Paternò, V. Wulf (Eds.). End user development (pp. 427–457).
Dordrecht: Kluwer Academic Publishers.

Fogli, D., Colosio, S., Sacco, M. (2010). Managing accessibility in local e-government websites
through end-user development: a case study. Universal Access in the Information Society,
9(1), 35–50.

Fogli, D., & Piccinno, A. (2013). Co-evolution of end-user developers and systems in multi-
tiered proxy design problems. In Y. Dittrich, M. Burnett, A. Mørch, D. Redmiles (eds.). End-
user development LNCS, vol. 7897, (pp. 153–168). Berlin: Springer. LNCS.

Gantt, M., & Nardi, B. A. (1992). Gardeners and gurus: patterns of cooperation among CAD
users. In: P. Bauersfeld, J. Bennet & G. Lynch (eds), Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI) (pp. 107–117). New York USA: ACM.

Hailpern, B., & Santhanam, P. (2002). Software debugging, testing, and verification. IBM
Systems Journal, 41(1), 4–12.

Handel, M. J., & Poltrock, S. (2011). Working around official applications: experiences from a
large engineering project. In Proceedings of the ACM 2011 Conference on Computer
Supported Cooperative Work (pp. 309–312). New York USA: ACM.

Harper, R. H., O’Hara, K. P., Sellen, A. J., Duthie, D. J. (1997). Toward the paperless hospital?
British Journal of Anaesthesia, 78(6), 762–767.

Harrison, S., & Dourish, P. (1996). Re-place-ing space: the roles of place and space in collabora-
tive systems. In Proceedings of the 1996 ACM Conference on Computer Supported
Cooperative Work (pp. 67–76). New York USA: ACM.

Hartswood, M. J., Procter, R. N., Rouchy, P., Rouncefield, M., Slack, R., Voss, A. (2003).
Working IT out in medical practice: IT systems design and development as co-realisation.
Methods of Information in Medicine, 42(4), 392–397.

Hartswood, M., Procter, R., Slack, R., Voß, A., Büscher, M., Rouncefield, M., et al. (2008).
Co-realization: toward a principled synthesis of ethnomethodology and participatory design.
Resources, co-evolution and artifacts (pp. 59–94). London: Springer.

Henderson, A., & Kyng, M. (1992). There’s no place like home: continuing design in use. In
Design at work (pp. 219–240). L. Erlbaum Associates Inc.

Kensing, F., & Blomberg, J. (1998). Participatory design: issues and concerns. Computer
Supported Cooperative Work (CSCW), 7(3–4), 167–185.

Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., et al. (2011). The
state of the art in end-user software engineering. ACM Computing Surveys, 43(3), Article 21
(April 2011), 44 pages.

Licklider, C. R. (1960). Man-computer symbiosis. IRE Transactions on Human Factors in
Electronic HFE, 1, 4–11.

Lieberman, H., Paternò, F., Klann, M., Wulf, V. (2006). End-user development: an emerging
paradigm (pp. 1–8). Springer, The Netherlands.

Ludwig, T., Dax, J., Pipek, V., & Wulf, V. (2017). A practice-oriented paradigm of end-user
development. In F. Paternò & V. Wulf (Eds.). New perspectives in end-user development
(pp. 23–42). Cham: Springer.

MacLean, A., Carter, K., Lövstrand, L., Moran, T. (1990). User-tailorable systems: pressing the
issues with buttons. In: J. Carrasco Chew & J. Whiteside (eds), Proceedings of the SIGCHI
conference on Human Factors in Computing Systems (pp. 175–182). New York USA: ACM.

1617 Malleability in the Hands of End-Users

Moor, J. (1985). What is computer ethics? Metaphilosophy, 16(4), 266–75.
Mørch, A. (1997). Three levels of end-user tailoring: customization, integration, and extension.

M. King & L. Mathiassen (eds), Computers and Design in Context (pp. 51–76). Cambridge
Massachusetts USA: MIT Press.

Navarro, L., Prinz, W., Rodden, T. (1992). Towards open CSCW systems. In Proceedings of the
third workshop on Future Trends of Distributed Computing Systems (pp. 4–10). Los
Alamitos California USA: IEEE Computer Society Press.

Parsons, J., & Wand, Y. (2000). Emancipating instances from the tyranny of classes in informa-
tion modeling. ACM Transactions on Database Systems (TODS), 25(2), 228–268.

Pipek, V., & Kahler, H. (2006). Supporting collaborative tailoring. End user development
(pp. 315–345). The Netherlands: Springer.

Pipek, V., & Wulf, V. (2009). Infrastructuring: toward an integrated perspective on the design
and use of information technology. Journal of the Association for Information Systems,
10(5), 447–473.

Potas, W. A. (1978). Interactive systems as if users really mattered. Information Systems
Methodology (pp. 618–630). Berlin: Springer.

Procter, R., Greenhalgh, T., Wherton, J., Sugarhood, P., Rouncefield, M., Dewsbury, G. (2013).
The ATHENE Project: the importance of bricolage in personalising assisted living technologies.
International Journal of Integrated Care (IJIC), 13(7). doi:10.5334/ijic.1423.

Procter, R., & Robin, W. (1996). Beyond design: social learning and computer-supported coop-
erative work—some lessons from innovation studies. Human Factors in Information
Technology, 12, 445–463.

Randall, D. (1988). Guided tours and tabletops: tools for communicating in a hypertext environ-
ment. ACM Transactions on Information Systems (TOIS), 6(4), 398–414.

Richter, A., & Riemer, K. (2013). Malleable end-user software. Business & Information Systems
Engineering, 5(3), 195–197.

Schmidt, K. (2002). The problem with “awareness”: introductory remarks on awareness in
CSCW. Computer Supported Cooperative Work, 11(3), 285–298.

Schmidt, K. (2008). Cooperative work and coordinative practices. London: Springer 3–27.
Schmidt, K., & Bansler, P. (2016). Computational artifacts: interactive and collaborative comput-

ing as an integral feature of work practice. In: De Angeli, A., Bannon, L., Marti, P., Bordin,
S. (Eds.) COOP 2016 Proceedings of the 12th International Conference on the Design of
Cooperative Systems (pp. 21–38). Springer International Publishing.

Schmidt, K., & Simone, C. (1996). Coordination mechanisms: towards a conceptual foundation of
CSCW systems design. Computer Supported Cooperative Work (CSCW), 5(2–3), 155–200.

Schmidt, K., & Wagner, I. (2004). Ordering systems: coordinative practices and artifacts in architec-
tural design and planning. Computer Supported Cooperative Work (CSCW), 13(5–6), 349–408.

Simone, C. (2016). Everything is permitted unless stated otherwise. Models and representations
in socio-technical (re)design. In Proceedings of the conference ITAIS 2016. Verona, Italy. To
appear in LNSOI, Springer.

Stevens, G., Pipek, V., Wulf, V. (2010). Appropriation infrastructure: mediating appropriation
and production work. Journal of Organizational and End User Computing (JOEUC), 22(2),
58–81.

Stiemerling, O., Kahler, H., Wulf, V. (1997). How to make software softer—designing tailorable
applications. In: S. Coles (Ed), Proceedings of the 2nd Conference on Designing Interactive
Systems: processes, practices, methods, and techniques (pp. 365–376). New York USA: ACM.

Suchman, L. (1987). Plans and situated actions: the problem of human-machine communication.
Cambridge: Cambridge University Press.

Suchman, L. (1994). Do categories have politics? Computer Supported Cooperative Work
(CSCW), 2(3), 177–190.

Swinglehurst, D., Greenhalgh, T., Roberts, C. (2012). Computer templates in chronic disease
management: ethnographic case study in general practice. BMJ Open, 2(6), e001754.

162 F. Cabitza and C. Simone

http://dx.doi.org/10.5334/ijic.1423

Trier, M., & Richter, A. (2013). “I can simply…” - theorizing simplicity as a design principle
and usage factor. In Proceedings of ECIS 2013 Completed Research. 72. http://aisel.aisnet.
org/ecis2013_cr/72.

Voas, J., Charron, F., McGraw, G., Miller, K., Friedman, M. (1997). Predicting how badly”
good” software can behave. IEEE Software, 14(4), 73.

Wenger, E. (1998). Communities of practice: learning, meaning, and identity. Cambridge,
England: Cambridge University Press.

Whittaker, S. (2003). Things to talk about when talking about things. Human–Computer
Interaction, 18(1–2), 149–170.

Winner, L. (1980). Do Artifacts Have Politics? Daedalus, 109(1), 121–136.
Won, M., Stiemerling, O., Wulf, V. (2006). Component-based approaches to tailorable systems.

End-user development: the software shaping workshop approach. In H. Lieberman,
F. Paternò, V. Wulf (Eds.). End user development (pp. 115–141). Dordrecht: Kluwer
Academic Publishers.

Wulf, V., Müller, C., Pipek, V., Randall, D., Rohde, M., Stevens, G. (2015). Practice-based
computing: empirically-grounded conceptualizations derived from design case studies. In
V. Wulf, K. Schmidt, D. Randall (eds). Designing socially embedded technologies in the
real-world (pp. 111–150). London: Springer.

Xiao, Y. (2005). Artifacts and collaborative work in healthcare: methodological, theoretical, and
technological implications of the tangible. Journal of Biomedical Informatics, 38(1), 26–33.

1637 Malleability in the Hands of End-Users

http://aisel.aisnet.org/ecis2013_cr/72
http://aisel.aisnet.org/ecis2013_cr/72

End User Development and Infrastructuring –
Sustaining Organizational Innovation
Capabilities

Yvonne Dittrich, Johan Bolmsten and Jeanette Eriksson

Abstract Today, both businesses and public organizations need to be able to inno-
vate and continuously develop their services and processes along with the under-
pinning IT infrastructure. We argue that End-User Development (EUD) becomes a
necessary part of the innovation capability that underpins such service and process
innovation. The book chapter presents a meta-analysis of two case studies. The
analysis shows how the need for change in both cases brought about an organiza-
tionally established sustainable practice of EUD, where empowered employees
cooperated with IT professionals in the development and evolution of an IT infra-
structure based on flexible technologies. The chapter further discusses how such
practices are supported by (participatory) organizational IT management structures
and processes. Finally, it discusses how EUD in this way contributes to the inno-
vation capability of the organization. The conclusion points to transferability of
the insights gained and provides suggestions for future research.

Keywords Case studies · sustainable practise · IT management structures · techni-
cal infrastructures

1 Introduction

In most of today’s organizations competition is hard. Providing for innovation and
rapidly adapting to changes driven by the business and organizational environment
is a matter of survival. In order to be able to organizationally sustain innovation

Y. Dittrich (✉)
IT University, Copenhagen, Denmark
e-mail: ydi@itu.dk

J. Bolmsten
World Maritime University, Malmö, Sweden
e-mail: johan.bolmsten@wmu.se

J. Eriksson
Malmö University, Malmö, Sweden
e-mail: jeanette.eriksson@mah.se

165© Springer International Publishing AG 2017
F. Paternò, V. Wulf (eds.), New Perspectives in End-User Development,
DOI 10.1007/978-3-319-60291-2_8

capability and support the evolution of services and processes, the IT infrastruc-
ture must adapt to changes as well as provide a base for future innovations.

End-User Development (EUD) (Lieberman, Paternò, Klann, & Wulf, 2006)
allows domain experts to tailor and customize their software. However, non-IT
professionals are not always incentivized or even welcome to change the IT infra-
structure (Dittrich, Lundberg, & Lindeberg, 2006). This chapter addresses the
question of what it takes to include EUD as part of a developing and evolving IT
infrastructure of an organization as a means of supporting continuous organiza-
tional innovation.

The chapter reports the re-analysis of two case studies:

• Case 1 – The Telecom Provider: Empirical research took place from 1999 to
2006 concerning IT support for the back office and economic unit. In long-
term engagement, both the development of a tailorable application supporting
specific tasks and the flexible integration of different applications were
addressed (Dittrich et al., 2001; Eriksson, 2008; Eriksson & Dittrich, 2007).
Though not at that time a focus of the research collaboration, the IT unit and
business units worked closely together to handle the flexibility necessary to co-
design work practices and technologies (Dittrich & Lindeberg, 2002, 2004).

• Case 2 – The UN University: Empirical research took place from 2008 to
2013 on the Participatory Design (PD) of the IT infrastructure for a university.
Though the technical base was crucial for providing enough flexibility
(Bolmsten, 2016), collaboration between end-user developers and the IT pro-
fessionals turned out to be important as well (Bolmsten & Dittrich, 2011). To
support the co-development of work and business practices and the supporting
technology, participatory approaches were developed at the project and organi-
zational level of structures and processes for participatory IT management
(Bolmsten, 2016).

Both cases turned out to address EUD and flexible technical infrastructures to
support organization and work practice change and innovation. In both cases, a
sustained culture of EUD was developed. These similarities triggered a meta-
analysis of the two cases: Yvonne Dittrich has been part of both projects as a
principle investigator PhD supervisor, respectively. While engaged on the latter pro-
ject, similarities between the two projects became visible. Jeanette Eriksson is one
of two PhD students who worked on the telecom provider case. Johan Bolmsten
completed his PhD studies while employed as an IT officer at the UN University.

Based on our meta-analysis, we recognize how flexible technologies are an
enabling factor that needs to be complemented with empowered employees who
are entrusted with making (design) decisions, and constructive collaboration
between IT professionals and end-user developers. These three factors need to be
supported and complemented by organizational structures and processes that pro-
vide a frame for organizationally accountable development and the evolution of a
common IT infrastructure. The concepts, together with their interaction, can be
regarded as an empirical theory grounded in the meta-analysis of the two case stu-
dies. An analytical framework is put forward that relates the observed sustained

166 Y. Dittrich et al.

EUD to technical, organisational and collaboration practices. In the discussion
we argue that such sustained EUD becomes part of the continuous day-to-day
infrastructuring that, in turn, is a central contribution to the innovative capabilities
of an organisation.

The remainder of the chapter will be structured as follows: Sect. 2 discusses
related work with respect to EUD, innovation, and IT infrastructures; Sect. 3 dis-
cusses the research approach of the meta-analysis; Sect. 4 present the relevant
aspects of the two case studies; Sect. 5 then discusses the findings and develops the
core concepts and their relations; Sect. 6 sums up the conclusions and discusses the
study’s limitations as well as possibilities for future research.

2 Innovation, End-User Development, and Infrastructuring

In order to provide the necessary background to understanding the further discus-
sion, this section discusses related work around four concepts: innovation, EUD,
IT infrastructure, and infrastructuring. As innovation and infrastructuring are not
commonly associated with EUD, they warrant a more comprehensive discussion.
The first Subsect. 2.1 develops a modern concept of organizational innovation
by relating democratized innovation to organizational processes of learning and
innovation. In the organizational arena, user-driven innovation is dependent on an
evolution of the enabling technical infrastructure. Subsect. 2.2 presents research
on EUD that focuses on providing and using technically flexible infrastructures to
support the evolution of the organization. Sect. 2.3 then presents state-of-the-art
understanding of “infrastructuring” (Karasti, 2014; Karasti & Syrjänen, 2004) as a
way to conceptualize the social aspect of the socio-technical design and evolution
of the infrastructure that is needed to support organizational innovation.

2.1 Democratized Innovation in the Organization

Organizations have become faced with the challenge of developing and sustaining
capabilities for innovation to cope with the increased pressure for change, the
acceleration of globalization, and the possibilities that come with new information
technologies (Ober, 2008; Orlikowski, 2002). According to Lawson and Samson
(2001), an innovation capability is the “ability to continuously transform knowl-
edge and ideas into new products, processes, and systems for the benefit of the
firm and its stakeholders.” At the same time, both the capability to innovate and
the understanding of how to put innovations to use is a learning process that must
continuously develop (Lawson & Samson, 2001).

Current developments in the understanding of and conditions for innovation
provide new opportunities for organizations faced with the challenge of innovat-
ing. Using the concept of “democratizing innovation,” von Hippel (2005) shows

1678 End User Development and Infrastructuring …

that in many cases it is the users of technology who actually take the first step that
leads toward basic innovations. According to von Hippel (2005), user-centered
innovation processes offer great advantages in that users can develop exactly what
they need. These differ from the traditional model in which dedicated designers
and engineers develop products and services. In this traditional model, the user’s
role is to have needs, which are funneled in design and where somebody else
develops solutions (von Hippel, 2005).

This new innovation trend is supported by technological developments that
enable users both to innovate IT products and services and to share their innova-
tions. When it comes to IT, the users’ ability to innovate is radically and rapidly
improving in line with the quality of computer software and hardware, increased
access to easy-to-use tools and components for innovation, and enriched innova-
tion commons (von Hippel, 2005). This is illustrated, for example, by free and
open source software projects, which are in many cases well developed. It is
further illustrated by the potential of new internet-based innovation communities,
in which individual users do not have to develop everything they need on their
own: they can benefit from innovations developed and shared by others. Users
joining together in networks and communities provide useful structures and tools
for their interactions and for the distribution of innovations.

Different spheres of user-centered innovations can be distinguished. Von
Hippel (2005) focuses on the benefits to the consumer in the marketplace of user-
centered innovations, and how innovations by users provide a necessary comple-
ment and feedstock to manufacturer innovation. Companies are well advised to
open their innovation models to incorporate the innovations especially of lead-
users of their services and products in their business models: “if […] the informa-
tion needed to innovate in important ways is widely distributed, the traditional
pattern of concentrating innovation-support resources on a few individuals is
hugely inefficient” (von Hippel, 2005, p. 14). Björgvinsson, Ehn, and Hillgren
(2010) discuss democratized innovation from the point of view of public spheres
and everyday life. They address the question of how open innovation milieus can
be participatory designed for the user as a citizen, and how new constellations,
issues, and ideas evolve from bottom-up and long-term collaborations among
diverse stakeholders.

In this chapter, democratized innovation is discussed from the perspective of
users as members of organizations. Democratized innovation, in this respect, is
about the need for organizations to take advantage of the capabilities of their own
members. User-centered innovation by organizational members is needed for orga-
nizations to develop new products and services as well as internal operations
(Manville & Ober, 2003; Ober, 2008). Organizations need to make use of and cul-
tivate the capabilities of their members, the communities that they are part of, and
the networks that they have access to – inside and outside the organization. This is
a process that involves both user-centered innovation and organizational learning
of how to make use of innovations to add organizational value. Orlikowski (2002)
recognizes that especially when it comes to complex organizational change, the
collective capabilities of organizational members need to be drawn on, with a

168 Y. Dittrich et al.

focus on “organizational knowing as emerging from the ongoing and situated
actions of organizational members” (Orlikowski, 2002; Suchman, 1987, 2007).

The need to combine bottom-up innovation and learning processes that take
their stance with organizational members is addressed by Andreu and Ciborra
(1996), ranging from improvements of routines to strategic capabilities, and
involves both what can be referred to as “bricolage” and “radical learning.” The
former relates to incremental advances through situated tinkering by organizational
members to improve their everyday work, and the latter concerns bringing about
radical change by becoming aware of what the context is and explicitly stepping
out of the box and innovating in a new manner (Andreu & Ciborra, 1996).
Combined democratized and user-centered innovation and organizational learning
challenge traditional approaches to information system management, where top-
down planning-oriented management schemes are not sufficient to keep up with
innovation and learning pressures (Andreu & Ciborra, 1996; Ciborra, 2000).

In Eriksén (1998), shop floor IT management by users is recognized as high-
lighting their capabilities to cater for the development of their own software
support to the benefit of the organization. How such “design in use” complements
a traditional “use for design” in the user-centered development approach PD is
further developed by Dittrich, Eriksén, and Hansson (2002). In the analysis of two
cases of software support in a municipality and a public service one-stop-shop,
respectively, they find that important development activities are going on “in the
wild,” which are managed by the users themselves with only a secondary depen-
dence on IT professionals. In “From control to drift,” Ciborra (2000) analyzes a
number of infrastructure development projects in multi-nationals with regard to
how bottom-up development initiatives are important to understanding the
dynamics of corporate information infrastructures; nevertheless, such development
initiatives are found to appear to be “drifting” (anarchic) compared to the wisdom
of the predominate information system management approaches.

In the chapter by Cabitza and Simone (2017) a conceptual framework called
the Logic of Bricolage is developed to understand the technical malleability of
systems to allow end-users to both make incremental improvements and innovate
new solutions. Our cases focus on socio-technical dimensions enabling such prac-
tices. The comparative analysis of our two cases shows how EUD can become an
integral part of such organizational user-centered innovation. Based on the obser-
vations, the discussion section indicates how the user-centered innovation of IT
infrastructures can be contained and supported by IT management structures that
make EUD practices organizationally accountable.

2.2 End-User Development

EUD and end-user software engineering (Ko et al., 2011) address tools and techni-
ques that allow non-IT experts to develop software applications, such as Excel
sheets, or finalize the design of software, as when developing the filters of an

1698 End User Development and Infrastructuring …

e-mail reader, through an interface that is understandable to non-IT professionals.
In this volume, Ludwig, Dax, Pipek, and Wulf (2017) put forward a practice-
oriented definition of EUD where EUD is defined to occur whenever an end-user
has to switch to a lower language layer to fulfil a specific task. An open question
identified that relate to the contribution of this chapter is how to support coopera-
tive approaches in order to allow end-user developers to together develop IT-
support of different technical complexities. Whereas the EUD community in the
US emphasizes programming language technologies to support non-IT profes-
sionals, the European part of the community emphasizes the need to understand
the context in which EUD takes place in order to support not only the individual
end-user developer but also the sharing and evolution of the results of EUD. As
the analysis presented in this chapter focuses on the deployment of EUD and sus-
tainable innovation, the research on cooperation around EUD and its connection
to the organizational arena is most relevant here.

From the very start, the research on EUD has not only addressed the tools and
interfaces for EUD but also the sharing and cooperation around the tailoring of
software. One of the very first articles, “There’s no place like home: continuing
design in use” by Henderson and Kyng (1992), discussed the sharing of EUD
results. In “A small matter of programming,” Nardi (1993) analyzes, among other
things, the role of super users of customizable Computer Aided Design (CAD)
software to support other users in the organization and how to quality assure and
support the sharing of macros and customizations. In these early cases, the end-
user developers and users cooperated around the adaptation of individual perfor-
mance tools.

However, organizational and cooperative aspects became more prominent when
EUD research extended into contexts where EUD tasks concerned the adaptation or
provisioning of common resources or infrastructures. An early example is the
research reported by Trigg and Bødker (1994) in “From implementation to design:
tailoring and the emergence of systematization in CSCW.” The development of a
set of form letters to be shared among the employees of a public agency in
Denmark was considered to be of an organizational importance that warranted an
organizational process to review and approve the form letters by a committee of
lawyers. Likewise, the tailoring of a common cooperation infrastructure used by
ministerial employees that cooperated between Bonn and Berlin during the transi-
tion of the German government to the new capital in the 1990s needed to be subject
to negotiation and discussion, as EUD did not only affect individual work tools
(Pipek & Kahler, 2006). Dittrich et al. (2006) mention deliberation and quality
assurance in the context of configuration and customization of mission critical sys-
tems as two of the central challenges for EUD in such contexts. However, the
research of Wulf (1999) on the tailoring of access rights indicates that EUD can be
used to implement and assure compliance with organizational strategies. To date,
the research on the organizational side of EUD has, in most cases, been analytical.

Reflecting on their experiences, Pipek and Kahler (2006) provide a categoriza-
tion of cooperative tailoring scenarios: most of the early projects, like that of

170 Y. Dittrich et al.

Henderson and Kyng (1992), fall into the shared usage scenario that requires the
least coordination, whereby user groups are a self-help feature in both commercial
and private contexts. The tailoring of CAD systems reported in Nardi (1993) is
an example of the shared context scenario that requires better possibilities for shar-
ing customizations, but might result in conflicts if changes to the individual tool
hinder the sharing of work results. In a shared tool scenario, as in the case of
form letters by a public agency (see Trigg & Bødker, 1994), the group needs to
negotiate not only the adaptations but also the usage of the common tool with the
adaptations.

Shared infrastructure scenarios, the last of Pipek and Kahler’s (2006) cate-
gories, have been and still are the least researched scenarios. Here, tailoring
results can affect configurations of other systems. The shared infrastructure sce-
nario also provides additional challenges. The design space for EUD of an indivi-
dual application is constrained by interoperability requirements. Both the cases
discussed in our meta-analysis fall into this scenario. Heterogeneous user groups
are dependent on each other, though they share neither a common work practice
nor a common tool.

Another challenge that might also be responsible for the difficulties in
researching cooperative EUD in shared infrastructure scenarios is that the evolu-
tion of shared infrastructures often involves collaboration between users, end-
user developers, and IT professionals. The notion of meta-design (Fischer, 2010)
has been introduced to describe the need for software engineering of EUD sys-
tems to target the design of design environments for end-user developers. Fischer
(1998) also coined the term of “seeding – evolutionary growth – reseeding” to
describe long-term cooperation between users and IT professionals in the context
of EUD, whereby the IT professionals provide initial design environments with
currently needed building blocks as a base for EUD. Over time, the dynamics of
usage and EUD practices result in requirements that cannot be supported within
the current state of the EUD environment. In this situation, IT professionals
are required to evolve the EUD environment. Fischer’s concepts have informed
the design of successful EUD environments (Costabile, Dittrich, Fischer, &
Piccinno, 2011).

Shared infrastructure aspects have already been discussed in earlier publications
on the projects presented here: Dittrich and Lindeberg (2002) observe that in infra-
structures supporting data-intensive businesses like telecommunications, the flex-
ibility of a specific application can only be deployed when other applications in
the same network and the interoperability platform are tailored accordingly
(Dittrich & Lindeberg, 2002). The importance of combining EUD and professional
development activities when evolving such a common infrastructure and gaining
support for it has been raised in both cases (Bolmsten & Dittrich, 2011; Bolmsten,
2016; Eriksson, 2008; Eriksson & Dittrich, 2007). In our comparative analysis, we
go one step further: we aim not only to understand how EUD can take place in a
shared infrastructure setting but what it takes to integrate EUD and infrastructure
development in order to sustain the innovation capacity of an organization.

1718 End User Development and Infrastructuring …

2.3 IT Infrastructures and Infrastructuring

Infrastructures and their maintenance and evolution have been subject to discus-
sion in their own right in the Information Systems and PD communities. Inspired
by observations similar to the ones leading to Eriksén’s (1998) concept of “shop
floor IT management,” Karasti (Karasti, 2014; Karasti & Syrjänen, 2004) devel-
oped the concept of “infrastructuring.” Karasti (2014), here, refers to Star and
Ruhleder’s (1994, 1996) salient characteristics of information infrastructures.

Star and Ruhleder (1994, 1996) use information infrastructures to analytically
target technology development that goes beyond the local project and to discuss
how technology affects organizational transformation. Based on their analysis of
the development of a distributed information system that served as a platform for
archiving and exchanging data in a scientific community, eight characteristics of
information infrastructures are described: (1) embeddedness in other social and
technological structures and arrangements; (2) transparency in invisibly supporting
tasks; (3) spatial and temporal reach or scope; (4) the taken-for-grantedness of
artifacts and organizational arrangements, learned as part of membership in a com-
munity; (5) infrastructures shape and are shaped by conventions of practice;
(6) infrastructures are plugged into other infrastructures and tools in a standardized
fashion, though they are also modified by scope and conflicting (local) conven-
tions; (7) infrastructures do not grow de novo, but wrestle with the inertia of the
installed base and inherit strengths and limitations from that base; (8) normally
invisible infrastructures become visible upon breakdown. These eight characteris-
tics stress situated and socio-technical relations. The analysis of infrastructural
relations provides an understanding of infrastructure development that, according
to Star and Ruhleder (1994), moves away from a conception of infrastructure as a
substrate of “something upon which something else runs or operates” to infrastruc-
ture as something that is constantly “in the making” (p. 252). The possibility of
infrastructures as “genuine universals,” where tasks to be automated are well-
structured, the domain well understood, and system requirements determinable by
formal a priori needs assessments, is challenged by this definition (Star &
Ruhleder, 1994, 1996). In Star and Bowker (2002), the discussion is extended to
implications for infrastructure development and a focus on “how to infrastructure.”
This includes the challenge of designing for flexibility and the need for the infra-
structure designer to always be aware of the multiple set of contexts upon which
her work impinges.

Karasti and Syrjänen (2004) approach infrastructures from a bottom-up point
of view, compared to Star and Ruhleder (1994, 1996), who are concerned with
large infrastructure projects. Through two cases in very different contexts, one
community of dog hobbyists and one community of information managers within
a large-scale research network, Karasti and Syrjänen (2004) develop an under-
standing of community PD. The community members in both of these cases exhi-
bit common traits: a community identity through common causes, shared interests,

172 Y. Dittrich et al.

and strong commitments. In addition, they take long-term responsibility for their
work domain and for both existing systems and procedures and the development
of new ones. The notion of “infrastructuring” is applied to sensitize the under-
standing of infrastructure maintenance and development as a procedural, ongoing,
and multi-relational activity that unfolds over extended periods of time (Karasti &
Syrjänen, 2004). In order to deepen the relational understanding of infrastructures,
Karasti and Syrjänen (2004) also connect infrastructuring to Suchman’s (1987,
2007) notion of artful integrations, which refer to hybrid systems comprising
media, material, and practices. This emphasizes a “located accountability” of
design, where change becomes a part of everyday practice, and further highlights
design as a continuous process of inscribing knowledge and activities in new
material forms.

Infrastructuring can be further understood in an organizational context through
Pipek and Wulf’s (2009) framework of infrastructural layers of technology devel-
opment. Their framework takes a stance on the “work infrastructure” of in-situ
development activities and connects these to preparatory and background related
activities. In addition, work- and technology-related activities are distinguished.
In the framework, infrastructure development is triggered by “points of infrastruc-
ture” at which an infrastructure becomes visible to its users (and IT professionals),
either during instances of infrastructure breakdowns or local innovation. As the
infrastructure becomes visible, the activities that contribute to that specific part of
the infrastructure development become visible as well. This can, in turn, trigger
new work and technology design in the supporting infrastructure layers, such as
method-driven design activities (preparatory) and basic development of work and
technology standards (background). Pipek and Wulf (2009) further highlight the
role of end-users and their EUD activities, observing that any actual work infra-
structure includes numerous user innovations, and that IT professionals are
rarely, if ever, able to take full account of the evolution of the systems and prac-
tices involved in the local accomplishment of work goals. They further argue
how a wide variety of work practices – tasks, routines, and praxes – prepare both
users and professional designers for “points of infrastructure” design. In this
volume, Rohde & Wulf (in, press) develop a process framework of Integrated
Organization and Technology Development (OTD) to facilitate change in organi-
zational structures and processes with their supporting IT-infrastructure. The pro-
cess framework has been developed over time to support a practice-based
research perspective in a number of empirical cases that are characterized by
parallel development of work practice, technical, organizational systems. In
Bolmsten, (2016), participatory IT management structures and processes are pro-
posed that support the linking of different work and technology layers in organi-
zationally accountable infrastructure development, which are independent of the
support and intervention by researchers. The focus is on managing integrated
technical and organizational change through empowering end-users to participa-
tory in sustainable change processes. These proposals are taken up and further
developed in this chapter.

1738 End User Development and Infrastructuring …

2.4 Summary

The interrelated work on democratized innovation, organizational innovation, and
learning indicates, on the one hand, that there is a need to acknowledge user inno-
vation of the IT and work infrastructure as part of the innovation necessary for an
organization to continue to perform in a changing environment; on the other hand,
such user innovation is regarded as (anarchic) drift that is in contradiction to the
traditional IT management frameworks (Ciborra, 2000). The observation of such
“shop floor IT management activities” (Eriksén, 1998; Dittrich & Eriksén, 2002)
inspired the development and exploration of the notion of “infrastructuring,” as
such innovation and design activities involve maintaining and evolving the IT
infrastructure. EUD has been identified as a core activity in such scenarios
(Bolmsten, 2016; Pipek & Wulf, 2009).

The current chapter sets out to explore what is needed to sustain EUD activities
to better the organization and to correspondingly underpin EUD as an innovation
capability of the organization. Sect. 3 that follows discusses the research methods
before the following section presents the analysis of two cases focusing on the
relevant dimensions of the resulting model.

3 Research Methods

Both case studies examined in this chapter were designed and researched as inde-
pendent projects. Both of them applied Cooperative Method Development
(CMD), an action research approach combining qualitative empirical research with
software engineering tool, method, and process improvements (Dittrich, Rönkkö,
Eriksson, Hansson, & Lindeberg, 2008) The research results of each case have
been published prior to the meta-analysis undertaken for this chapter. Table 1
summarizes the fieldwork supporting the meta-analysis for both cases and the
prior publication in the context of each case. The specific research method applied
in each case is briefly introduced in the case descriptions. The method section here
refers to the method of meta-analysis. The Subsect. 3.1 describes the meta-
analysis performed. Thereafter in Subsect. 3.2, we discuss what measures we have
taken to assure the trustworthiness of the research.

3.1 Meta-Analysis

The chapter aggregates qualitative research from two case studies. A common
way to aggregate qualitative research is multiple case studies (Yin, 2013) or
meta-ethnography (Britten et al., 2002). Multiple case studies are typically
designed as such, and the cases are chosen to triangulate specific research

174 Y. Dittrich et al.

questions. Meta-ethnography involves aggregating published research based on
articles. This case is a hybrid between the two: research on each case took place
independently of the other. Both cases are based on long-term engagement. A
strict control for the sake of comparability would not have allowed us to follow
the dynamics of the collaboration. Furthermore, the two cases took place one after
another, and it was not anticipated that there would be common themes emerging
from the research. Compared with a meta-ethnography, the meta-analysis does not
only refer to the published results but is also able to take the original field material
into account. Below, we describe how the meta-analysis was conducted.

Both case studies resulted in new insights about EUD, cooperation between
users and organizational units, and IT professionals and their departments. Given
a prior understanding of common threads in the empirical material, the researchers
involved met for a brainstorming session on how innovation, IT infrastructure,
and EUD were interrelated in the field material. Episodes of the respective field
materials resulted in an initial identification of common themes.

This initial set of themes was used to identify relevant sections in the field
material. The researchers then went back to their original analyses and the field
material itself using the themes in an axial coding manner, identifying supportive

Table 1 Research methods and earlier results related to the two cases

Case Research approach
and focus

Initial fieldwork
and material

Quality assurance
of initial research

Publications

Telecom
Provider

Action research
and design research
on the introduction
of flexible
technologies
providing the basis
for software and
infrastructure
evolution.

Participatory
observation;
design and
evaluation of
prototypes;
individual and
group interviews;
document analysis

Method
triangulation;
researcher
triangulation;
member
checking; rich
descriptions

Dittrich &
Lindeberg, 2001;
Dittrich &
Lindeberg, 2002;
Dittrich &
Lindeberg, 2003;
Dittrich &
Lindeberg, 2004;
Dittrich et al.,
2006; Dittrich
et al., 2001;
Eriksson &
Dittrich, 2007;
Eriksson, 2007;
Eriksson, 2008

World
Maritime
University

Action research
addressing
technical
development, IT
management
structures and
representations
mediating
infrastructure
projects.

Participatory
observation; field
notes; taped
individual and
group interviews;
document analysis

Method
triangulation;
research
triangulation;
member
checking;
complete audit
trail of field
material

Bolmsten, 2016;
Bolmsten &
Dittrich, 2011;
Bolmsten, 2016

1758 End User Development and Infrastructuring …

and contradicting evidence. The results were used not only to refine the set of
themes but also to identify relationships between these themes.

The results were again integrated, giving us a first version of Fig. 1, represent-
ing an empirical theory grounded in the two cases. The initial figure was then
used as a basis for theoretical coding, resulting in a refined version of the figure
and theory.

The meta-analysis informed an empirically grounded theory relating how tech-
nology, people, and organizational aspects contribute to sustainable organizational
innovation capabilities.

3.2 Trustworthiness

To assure trustworthiness of the meta-analysis, on the one hand, we relied on the
quality assurance of the original research detailed in Table 1; on the other hand,
we worked with both data triangulation across the cases and researcher
triangulation.

A comparative meta-analysis of the two cases situated in as widely differing
domains as education and telecommunication, in itself provides an indication that
the developed, empirically grounded theory is sound. Relating different cases to
the same codes and concepts forced us to sharpen our conception.

Researcher triangulation assures that the judgments, e.g., on codes and the
relationship between concepts and empirical material, are inter-subjective. The

Sustainable
EUD
as

infrastructuring

“Empowered”
employees

Flexible

technologies

Organizational IT management structures and processes

Requires

InspiresNeeds

Enables
“right”

Enables

Enables Enables

Need of change
and

innovation

Requires,
enables,

Makes
necessary

Requires

Enables

EnablesRequires

Collaboration

between
IT

and
domain experts

EnablesRequires EnablesRequires

Fig. 1 Empirical theory based on two cases

176 Y. Dittrich et al.

first author has been involved in both cases and is able to triangulate the main
fieldworkers’ analyses in both cases. Further, the cooperation between researchers
not engaged in each other’s cases forced us to explicate our at times tacit assump-
tions and to explicate the relations encountered.

Finally, we provide a thick description (Ponterotto, 2006) to allow the reader to
review our analysis and discussion.

Sect. 4 presents the two cases based on the categories identified as constitutive
for sustainable EUD.

4 The Two Cases

In this section, we present and analyze the two cases. For each of them, we first
give an overview of the case and the major lines of research. We then present the
original research approach and methods. The following subsections then focus on
the need for change that was the rationale behind the observed EUD practices, the
organizational characteristics that sustained EUD as an organizational practice,
and finally the organizational IT management that provided a frame for this sus-
tained EUD. An overview of these building blocks and their relations is given in
Fig. 1, which illustrates our meta-analysis (see Sect. 3). Our resulting empirical
theory of how the different building blocks contribute to sustainable EUD as infra-
structuring is discussed further in Sect. 5.

4.1 Telecom Case: Innovating for Changing Business Practices

The telecom case was carried out in cooperation with a major telecommunication
operator in Sweden. Since this line of business is characterized by rapid change,
the company’s information infrastructure and development processes need to sup-
port frequent change. Telecommunication operators remain competitive by,
among other things, being innovative and introducing new types of services to
their customers. Their business system must therefore be upgraded to continu-
ously support these new services. In such a fast-changing world, flexible software
is beneficial to prevent it from becoming obsolete. Because changes are very fast,
it takes a lot of effort to keep business systems up to date. To come to terms with
this problem, the telecom operator had invested in making some systems tailor-
able by the end-user (Dittrich & Lindeberg, 2002; Dittrich et al., 2006), and
started to cooperate with the researchers of this study in this pursuit. In the begin-
ning, the research focused on a contract and payment system – from hereon called
“the payment system.” To keep up with changes in the telecom market, new pay-
ment types had to be created at short notice. The payment system was used to
compute payments based on contracts that were modelled in the system, and the
payments were triggered by specific events. The data describing the triggering

1778 End User Development and Infrastructuring …

events were periodically imported from another system. It became evident that
the communication and data exchange between systems constrained the flexibility
of the individual applications. In a second cooperation project, we therefore
focused on flexible connections in the infrastructure: the researchers developed
concepts and prototypes to provide the end-users with the possibility to tailor the
communication paths and data flow between different systems – a possibility to
manage the system infrastructure. This second part of the cooperation focused on
how to structure a tool that made it possible for end-users to manage a large infra-
structure and at the same time facilitate use, tailoring, and further development of
the tailoring capabilities (Eriksson, 2008).

From the very beginning, it struck us that the users were treated as equal mem-
bers of the development team and engaged in tweaking the system and developing
workarounds where necessary in cooperation with the IT professionals (Dittrich &
Lindeberg, 2001, 2004). When so engaged, it is important that the users are aware
of the possibilities and limitations of the software, so they can recognize when tai-
loring is not enough. The tailoring capabilities are always limited, meaning that
tailoring cannot support completely unanticipated changes. The tailoring capabil-
ities must therefore be extended, and tailoring activities must be coordinated with
software evolution activities performed by IT professionals. The second study
with the telecom provider (Eriksson, 2008) shows that it is possible to benefit
from both user and system perspectives through collaboration between users, tai-
lors, and IT professionals. It is necessary for users and IT professionals to collabo-
rate closely in order to make tailorable information systems both durable and
innovative to the business environment. In this way, the development of useful,
sustainable software, which adapts easily to changes in an evolving environment,
can be achieved.

4.1.1 Methods of Original Research

The study followed the CMD methodology and implemented two research cycles
with three iterative phases: (1) understanding the problem, (2) cooperation to
make improvements, and (3) implementation and evaluation. Both cycles involved
the development of prototypes as part of the improvement based on the findings in
the previous phase. The research approach adopted in the second phase may be
termed “design science research,” as the projects started out by defining the
research question based on business needs and unexplored issues in the research
discourse. Design research has been discussed in several papers, among others
Nunamaker, Chen, and Purdin (1991), March and Smith (1995), Hevner, March,
and Park (2004), and Peffers, Tuunanen, Rothenberger, and Chatterjee (2007). In
2016, Rohde, Brödner, Stevens, Betz, and Wulf (2016) published an evolved ver-
sion of Design Science Research called Grounded Design (GD). In retrospective,
the Telecom case can be seen as Grounded Design as the study implements the
GD principles (Rodhe et al., 2016). The prototypes were iteratively developed and
evaluated in cooperation with IT professionals and users at the telecom company.

178 Y. Dittrich et al.

In another chapter in this volume, Tetteroo and Markopoulos (2017) discuss how
to evaluate successful deployment of EUD technology and how EUD should be
postponed until the host technology is accepted by the users. In line with their
recommendations, the prototype in the Telecom case was implemented on top of
existing software. The evaluation involved not only technical issues but also
addressed “how” and “why” the prototypes worked. In other words, issues such as
user knowledge, collaboration, and organizational aspects were considered in the
evaluation.

In both studies, the collected data were analyzed in a qualitative manner.
Coding schemes were developed, taking field notes and transcripts as a starting
point. For specific research questions, multiple sources of data were combined.
For quality assurance, member checking and researcher triangulation were applied.

4.1.2 Need for Change

As mentioned above, the motivation to explore the use of flexible technical solu-
tions allowing for EUD stemmed from the market competition that forced the tele-
com operator to devise and compute new payments to keep up with the changing
telecom market. The payment system that was the subject of cooperation had sev-
eral predecessors, all of which were suitable for the needs at hand but unable to
scale or to provide the necessary flexibility for future development needs. Each
solution supported a number of contracts and payments but failed to support inno-
vative marketing strategies. This resulted in only part of the payments based on
events being able to be handled automatically by the regular payment system.
Innovative contracts and payments, which were called “extra payments,” needed
to be handled and computed manually once a month, just like the regular pay-
ments. The computation of the extra payments was done based on database
queries and complex spreadsheets.

Each generation of the in-house developed system included the current extra
payments as regular payments in the new system. Experience suggested that it
was impossible to anticipate what future extra payments would look like and
which details were needed. It became clear that this situation was set to continue:
the competitive telecom business was forcing the company to come up with new
services on a continuous basis, which consequently resulted in new types of pay-
ments that could not be handled through the system. These extra payments were
based on new types of events, which meant that new types of datasets were
needed. This resulted in the innovation of a new approach to not only replace
manual computation but also support EUD of contract types and payments as well
as user-defined assembling of data from different systems.

Besides a more flexible payment system, this required an event definer/handler
that was able to communicate with any system in the infrastructure. What was
needed was an infrastructure tool for inter-application communication, which
could be adapted by the user. At the same time, it was essential that the tool allow
for expansion of the tailoring capabilities so that new data sources could be added.

1798 End User Development and Infrastructuring …

What made the telecom case special at the time was that the EUD features
where not introduced to support personalization of tools or the adaptation of gen-
eric software to any specific organization, but as a continuous development of part
of the IT infrastructure in order to support business innovation on a corporate level.

4.1.3 Flexible Technologies as Enablers

From the very start, the exploration of flexible technologies to support this specific
area of business was at the center of the cooperation. Creating prototypes that
acted as mediating artifacts enabled exploration of what was required of the flex-
ible technology to support EUD for business critical processes. One of the central
insights was that not only EUD but three different interfaces needed to be consid-
ered: the tailoring interface, the deployment interface, and the development
interface.

From the study, it was determined what was required of technology to act as an
enabler for innovation (Dittrich et al., 2006; Eriksson, 2008):

• Functionality for controlling and testing changes has to be integrated into the
tailoring interface, and there must be sufficient technical support for the end-
user to estimate and check the correctness of the computation.

• A tailorable system has to support the development of a mental model that
makes a clear division between normal execution and tailoring. This mental
model must be adopted in the tailoring interface and shared by users, end-user
developers, and IT professionals.

• The tailoring interface also has to make the potential for unanticipated use visi-
ble. This means that the information given must, to a certain extent, exceed
what is currently necessary.

• The tailoring interface can be more complex, provided that the tailoring process
makes the usage easier. The tailoring interface is not used as often as the
deployment interface and the tailoring itself often additionally involves careful
thought.

• The developer expanding the tailoring capability should only interact with one
clearly defined point in the tailorable system: that is, changes are made at one
point in the system.

The flexibility for innovation of the technology was clearly recognized by the
users in the business unit, both for its potential and its challenges. The following
citation underpins the innovative potential of flexible technology.

This is interesting! It opens up new opportunities. It might be like one extra payment uses
another payment as a base. (User comment, evaluation session, February 24, 2004, cited
in Eriksson & Dittrich, 2007)

In a discussion with the business department of the potential design of a tailor-
ing interface, one of the business unit managers indicated an organizational pro-
blem: if a change in the business practices does not require an IT development

180 Y. Dittrich et al.

project anymore, the deliberation on what to offer has to be taken care of by the
business units (Dittrich et al., 2001). For the technology to act as an innovation
enabler not only must the “right” flexibility from a business perspective be imple-
mented but also the support functionality in terms of control and testing.

4.1.4 Collaboration Between End-User Developers and IT Professionals

One of the central findings was that end-user developers and IT professionals
needed to work tightly together to make sure that the IT infrastructure allowed the
company to maintain its competitive edge. The fieldwork and evaluation estab-
lished that it is impossible to know what future contracts and extra payments will
look like. Therefore, there will always come a time when the end-user wants to
establish payment types that cannot be supported in the current system, or use
data that is not yet published in an available view. In such cases, IT professionals
need to step in to develop new modules, implement a new view in the system, or
update existing ones, and also to publish the relevant information on how to use
and tailor the system.

Another issue related to communication and cooperation between users and IT
professionals concerned the decision of how much information to make available
for the users to do a good job of tailoring. The users wanted to see as much infor-
mation as possible, within reasonable scope. The IT professionals would rather
restrict the users’ options in order to have better control over the execution of the
system and detach maintenance that would not necessarily impact on communica-
tion with the payment system. These two perspectives had to be negotiated. The
culture of cooperation between users and IT professionals had a major impact on
the evaluation of trade-offs between flexibility, usability, development effort, and
change effort (Dittrich & Lindeberg, 2003).

In the telecom company, cooperation between business units and the IT unit
worked very well. The users were quite aware of the limits of their own compe-
tences and knew when to consult the responsible IT professionals. All users fre-
quently referred to IT professionals when they experienced something that was
beyond them. As the IT professionals were involved in maintenance and operation
of the software, they could, if needed, take over the adaptation, tailoring, and espe-
cially the testing of the changes (Dittrich & Lindeberg, 2003). Neither users nor
IT professionals considered the necessary coordination and cooperation to be a
serious problem.

4.1.5 Empowered Users

In the information systems and PD literature, users are often described as people
with low power and influence that need to be supported in their participation; this
definitely was not the case at the telecom provider. Users were equal members in
the project teams and sometimes even shared project management responsibilities

1818 End User Development and Infrastructuring …

(Dittrich & Lindeberg, 2004). During participatory observations at the telecom
company, the high expertise of the users was acknowledged, not only with regard
to their tasks but also to managing the data available in the different databases that
were part of the IT infrastructure. To be able to create new kinds of payment, data
had to be collected from different sources and then pruned and aggregated using
algorithms implemented as spreadsheets. To map requirements regarding the task
at hand demanded expertise about the available data in the different systems. The
communication between different systems was normally hidden from the user in a
data communication layer for the separate systems, but users nevertheless acquired
the knowledge necessary to perform the assembly of data.

The prototype created in the second study helped with the exact location of the
data; for example, it guided the user to which fields to use by listing them with
examples of the data they contained. However, the user had to understand the
sometimes quite cryptic names and know where to look for specific data. Both
users and IT professionals were aware of each other’s competences and the
responsibilities for the different systems were clear to all parties. This contributed
to transparency in the organization, whereby the users and the IT professionals
knew whom to ask depending on what the question was.

Business knowledge about contracts and payments provided the basis on which
the users decided what data to collect. Extensive business knowledge was a promi-
nent feature of the results in the evaluation of the created prototype. The users’
reflections on which data to collect often concerned different aspects of the busi-
ness tasks. The users were also well aware of which errors could occur, that is,
errors concerning the use of the prototype, the IT infrastructure, and the task.
Task-specific errors were, for example, particularly important for the end-user to
monitor since they could cause serious consequences for the company if they were
not caught. Concern over making errors was expressed in statements like this:

when you work as we do you must know a little about database management, you have to
understand how the tables are constructed and how to find the information. And also in
some way understand the consequences of or the value of the payment. In other words
how you can formulate conditions and what that leads to. (User comment, evaluation ses-
sion, February 24, 2004; cited in Eriksson & Dittrich, 2007).

In summary, the users’ awareness of system capabilities, fellow workers’ com-
petences, and business cases made it possible for them to compile and execute
data for extra payments. At the same time, users cooperated with IT professionals
on equal footing in the development projects as well as the operation of the sys-
tems (Dittrich & Lindeberg, 2004). This required users to become trusted end-user
developers (Eriksson & Dittrich, 2007).

4.1.6 Organizational Structures and Processes

From the very beginning of the research cooperation, it was striking how closely
domain experts and IT professionals cooperated. This was partly due to the

182 Y. Dittrich et al.

company’s project model. The workspace at the telecom company was organized
as open plan offices. Initially, the IT unit was co-located with some of the users,
and cooperation did not only take place in meetings but also by walking over to
other people and having a chat about a problem or an idea. The IT project model
was a specialization of the general project model that was used for any kind of
change project. The model was structured around three decision points where the
company-wide project committee decided whether to continue the project: the start
of a pre-study was based on a document formulating the business unit require-
ments. The pre-study resulted in a document describing the outcome of the project
in more detail and outlining the budget and a development model. For software
projects, this document was complemented by requirements’ specification, a more
technical implementation proposal, and a time-plan detailing implementation tasks
based on the implementation proposal. The implementation proposal described the
functionality of the future system at a more concrete level. This meant that it
already contained a preliminary design.

The general project model required all affected organizational units to be repre-
sented both in the project team and in the steering committee. The same principle
applied for users and IT professionals in the software development projects. The
first study was related to a project developing a new and innovative version of the
payment system. The project management of this project was shared by a general
project manager from the business department and a technical project manager
from the IT department. As further elaborated on in the previous articles (Dittrich &
Lindeberg, 2001, 2004), the collaboration built on long-term contact and mutual
appreciation.

IT professionals were not only responsible for new developments, but also for
supporting operations of the system in the case of errors occurring. They also sup-
ported users, e.g., when looking for up-to-date and accurate data on which to base
new payment types. The established way of cooperating across departments and
the day-to-day cooperation around the operations of the system provided a sound
basis for the continuous and flexible evolution of the system both through end-
user tailoring and new developments.

In the studies, it could be observed that a flexible system requires an organiza-
tional structure to decide what changes can actually be reasonably implemented
from a business point of view (Dittrich & Lindeberg, 2003). This requires coop-
eration between the IT unit and the business units around the deliberation of
changes not only by IT professionals but also by end-user developers.

Further, the prototype demonstrating the possibility to tailor the interaction
between other systems and the payment system showed the need for coordination
across the infrastructure of the telecom provider: when preparing an extra pay-
ment, regardless of whether the process is supported by tailorable software or not,
the user needs to know where to find relevant and accurate data. During some
workshops, it became apparent that there was friction in the coordination between
the payment system and the changes in the surrounding systems. Each one of
these systems was itself the subject of both tailoring and evolution. Both users and
the IT professionals addressed the necessity of communicating with other system

1838 End User Development and Infrastructuring …

owners and assigning responsibilities regarding the publication and updating of
the connected information and kinds of data available. When one system in the IT
infrastructure was changed, the changes were orally communicated to the owners
as well as users of other systems that might be affected by the change. This indi-
cates that it is important for the organization to support these kinds of communica-
tion paths.

4.2 The UN University Case: Infrastructuring in a Knowledge
Organization

The second case concerns a UN-based university. The rationale of the university
is the development and alignment of education and training across the member
countries of a particular UN agency. Students at the university come from all over
the world and stay for a 14-month master’s program. The special nature of the uni-
versity also implies that it does not align with the host country’s legislation and
framework concerning higher education. This has meant that the employees need
to innovate the organizational strategies, policies, processes, and structures, and
supporting IT solutions – as it turned out, with or without the assistance of IT
professionals. Three such cases are reported on in a long-term action research
study by Bolmsten, (2016) about sustaining PD in the organization: (1) faculty
and faculty assistants working closely with IT professionals in the development of
course administration support (such as scheduling, marking, and e-learning com-
ponents); (2) the registrar also taking on the technical development of a registry
system to support enrollment, grade reporting, curriculum quality evaluation, and
student welfare and living support; and (3) an administrative assistant developing
electronic forms and an address database. These shop floor IT management prac-
tices, where local software development takes place in close connection to daily
work activities in different situated constituencies, were established approaches
that predate the research study by many years.

The research focused on the increasing need for cross-organizational collabora-
tion and integration: the enrollment process, for example, takes place not only
within the registry department but has many points of integration with the faculty,
where information flows back and forth; consequently, many considerations and
decisions have to be made at both ends before a student is enrolled. In the same
way, marking entails a work process that first involves a number of faculty and
faculty assistants, and later continues at the registry department. Likewise, the
working purpose of the electronic forms is not only for these to be used by the
administrative department but by all departments and published in common infor-
mation repositories.

The empirical research resulted in new insights about how EUD is an important
contributor to the innovation capabilities of a knowledge intensive organization
such as a university. The following sections describe how sustainable EUD
depends on employees taking charge of their work tasks and the IT needed to

184 Y. Dittrich et al.

support them. This, in turn, puts requirements on a flexible technical base when
EUD extends from local applications to shared infrastructure, and mandates new
ways of collaboration between end-user developers and IT professionals.
Moreover, organizational structures and processes need to support participatory IT
management to coordinate the development of an integrated technical base.

4.2.1 Methods of Original Research and Analysis for This Chapter

The empirical findings reported here are based on a PhD study (Bolmsten, 2016),
where Bolmsten worked as an embedded action researcher employed as an IT pro-
fessional by the university and combined action research with the daily develop-
ment of software support with and for users. The research took place over the
course of 5 years. Combined, the embedded nature and duration of the research
provided an opportunity to understand, deliberate, and evaluate improvements of
infrastructure development together with users. To guide the exposed research pro-
cess, CMD was chosen as a structured methodology. CMD was appropriated
beyond software engineering (1) to address PD and provide a focus on the devel-
opment of the use organization, and (2) to include technical and organizational
infrastructure from the users’ perspective. In total, three interlinked CMD research
cycles were carried out, where the findings in one CMD research cycle pushed
further inquiry and improvements in a new CMD research cycle. Empirical data
were recorded during day-to-day interaction through an audio and text-based
research diary, complemented with participatory observations, workshops, and
semi-structured interviews. This also provided a basis for triangulation of the
empirical findings. In addition, off-site debriefing sessions were carried out, and in
some cases complementary interviews with end-users were conducted by Dittrich.
The findings reported below are based on open coding of transcribed episodes
selected from the empirical material.

4.2.2 Need for Change

As mentioned above, the university is a unique and specialized agency in the UN
system to which standard university regulations do not apply, such as accreditation
and quality assurance frameworks. Academic and administrative staff needed to
develop policies, structures, and processes, borrowing meaningful elements from
different national systems and adapting them to the specific context, which
includes interaction with third-party organizations providing funding for the stu-
dents for their education, for example. As the IT systems also needed to support
these tailored procedures, EUD and close collaboration with IT staff were crucial
to developing the IT infrastructure of the UN university.

The registry system is a primary example of how to deal with this need for
change. Due to its special status, there was still no accountable system in place
for course, subject, credit, and grade management when the registrar joined the

1858 End User Development and Infrastructuring …

university 10 years after its inauguration. “Can you imagine, coming into this
situation?,” the registrar reflected on the situation that had confronted him. The
registrar took on the creation of such a system himself, which also came to involve
the technical development of the registry IT system. When analyzing the system
15 years later from a technical point of view, technical improvements could still
be identified, partly due to the registrar not having been trained as an IT profes-
sional. For example, the technical database design was not optimized. However,
when analyzed from a usefulness point of view, the registry system was one of the
most integrated and comprehensively working systems in the organization.

Key to the continuous usefulness of the system were the development
dynamics, wherein use and socio-technical development were intertwined as an
often natural part of everyday work. When studying the development of the regis-
try system, it was the day-to-day discussions that came across as most important,
where the development of the technical system was discussed and negotiated in
relation to its daily operation and development of work practices. The same devel-
opment dynamics were observed in regard to the development of other university
systems, where a piece of functionality working well or not so well in relation to
the execution of a work task would lead to an in-situ discussion of how it could
be improved. When interviewing a registry assistant about the development
approach of the registry system, it was notable how such evolution of the registry
system was an almost implicit part of her work. For example, she exemplified the
nature of day-to-day development collaboration, citing an issue with menu tabs
being divided into different databases in her interface “[…] you can always call
him [the registrar], go in to him, and he listens […] it is not like it is small petites
[…] I have not thought about it before, but now when we are talking about it, it is
pretty great […] and then he either says it works, if it works […].” These develop-
ment dynamics would not have been possible to capture, for example, by studying
a formal project management framework, which in many cases was, in fact,
absent.

One of the motivations for the research resulting in a PhD thesis was the recog-
nition that this approach has its limitations when the development of bespoke IT
systems take up more and more resources and, at the same time, the need for inte-
gration becomes visible.

4.2.3 Flexible Technologies as Enablers

For the end-users to effectively participate in the development of IT support, the
technology used was of importance. This became evident when EUD expanded
from local development, adaptation, and configuration to encompass infrastructure
development on a shared technical base. In total, three improvements to technical
bases were designed as part of the action research, of which one was specifically
implemented to support EUD. In order to allow for both cross-university integra-
tion and local innovation and EUD, a fourth-generation Content Management
System was adapted as a technical base to host the Learning Management System

186 Y. Dittrich et al.

and all other faculty portals. Special attention was paid to selecting a technical
base that supported the integration with local tools and custom-developed modules
for situated work practices. The improvements to EUD were twofold: when devel-
opment took place on a shared technical base, possibilities opened up for end-user
developers to exchange information and use the same datasets and modules as
other local applications developed on the same technical base. This created oppor-
tunities for end-users to develop consolidated reports with interlinked information
that previously resided within the confines of local departments. An example was
academic reporting that used schedule data from the faculty department, grade
data from the registry department, and employee data from the human resources
department. Another benefit from a shared technical base was that it enabled
shared investments that otherwise would not have been possible, e.g., new catalo-
gues of pre-defined modules that could be shared, further developed, and config-
ured by the end-users themselves in different local applications.

The shared technical base also came to prompt coordination between end-user
developers and the IT staff: it became necessary to negotiate requirements for
shared modules across the university. An example was the decision to have a new
module for shared documents between two local application communities, which
turned into a “straightjacket” for one of them as it had not been properly deliber-
ated. For the grade notifications, the access rights needed to be configured in a
more granular way than could be accommodated by the newly shared module.
These experiences provided motivation for the organization as a whole to develop
organizational structures and processes for proper deliberation of decisions impact-
ing more than one department.

4.2.4 Collaboration Between End-User Developers and IT Professionals

Before the university undertook the development of an integrated IT infrastructure,
IT staff had not only taken care of the administration of network servers but also
supported users with the development of custom applications that required more
technical expertise than they could master themselves. This cooperation became
more pronounced when the shared technical base was implemented to support the
integration of different local applications. The development, configuration, and
maintenance of the shared technical base required the expertise of IT profes-
sionals. The empirical research showed that IT professional expertise is also
needed to moderate the often complex and multi-layered negotiations between dif-
ferent user interests and areas of expertise that need to be accommodated: design
options need to be analyzed and presented to the domain experts, and dependen-
cies and trade-offs need to be rendered understandable so that domain experts can
gain an overview of the implications of the decisions. In the university case, PD
techniques and tools were experimented with for this purpose. These included
rich-picture workshops (Bødker, Kensing, & Simonsen, 2004) and design work-
shops to support end-users from different application domains to learn about and
negotiate the trade-offs of technical base decisions. However, different end-user

1878 End User Development and Infrastructuring …

developers had different strategies of how to relate to the organization and their IT
professional colleagues: some decided to isolate their professional domain and its
IT support; others included the IT professionals in their personal network and
exploited their expertise where suitable (Bolmsten & Dittrich, 2011).

IT professionals also benefited from the expertise of end-user developers in
their development work. End-user developers care about usability and are con-
fronted with the problems of unusable software. This expertise came in handy for
IT professionals when working with IT infrastructure tasks: end-user developers,
for example, helped to recruit the right people for user participation, to prioritize
issues, and to distinguish between those of them leading users to reject an applica-
tion or representing “good to have” features that could wait until the IT profes-
sionals had time to attend to them.

4.2.5 Empowered Users

One of the motivations for the research was that users were in charge of the soft-
ware support for academic and administrative areas: the academic vice president
hired IT support personnel instead of administrative assistants to take care of the
development under his guidance; administrative personnel very outspokenly
rejected the design solutions (Bolmsten, 2016); and end-user developers took
charge of the development of software support for their specific professional
domains (Bolmsten & Dittrich, 2011).

The analysis of the empirical material (Bolmsten, 2016) shows that EUD is a
professional skill that contributes to the service provisioning of the organization. It
also became evident that this skill was not always adequately recognized, which
could place both the individual end-user developer as well as the professional
domains and co-workers that were beneficiaries of the EUD results in a vulnerable
position.

The administrative assistant developing the electronic forms described herself as
a “spider in the net.” For the electronic forms to work she consciously had to target
other staff with her development. Over time, she developed her own approach not
only to gathering requirements but also to addressing lifecycle management, such
as training, further development, and maintenance. She had established relation-
ships with internal staff stakeholders and developed the know-how of whom to ask
for certain requirements and how different people could contribute. She also main-
tained relationships with internal IT professionals and external communities with
lead-users and IT professionals that could aid her development. In addition, she
continuously had to develop her own technical proficiency by reading manuals and
books as well as downloading and testing new applications from the Internet.

In the beginning, the professionalization of the organizational IT management
especially obscured such networking-oriented EUD. The administrative assistant,
however, did not let that hinder her development efforts. Instead, she described
how she approached it with a “bugger that” mentality and carried on with her
development regardless. Not only does such lack of recognition of EUD create

188 Y. Dittrich et al.

personal impediments, for example, for career development, but it can also make
IT systems that are important for the organization vulnerable. In addition, organi-
zational invisibility can also risk loss of opportunities for infrastructure integra-
tions and collaborations. This was something that was taken into consideration in
the improvements’ organizational decision-making structures and processes
described below.

4.2.6 Organizational Structures and Processes: Participatory IT
Management

The findings above triggered the development of an organizational IT management
that supported both EUD and collaboration between users and professional IT-
developers in more profound development projects. To this end, the changes
facilitated by the action research built on the existing IT management at the
WMU: the university already had a long-term tradition of committee-based
IT management that involved representatives from user-, end-user developer-, IT
professional-, and manager-stakeholder groups. However, being faced with
increasingly complex infrastructure development, also involving an increasing
number of stakeholders, called for improvements. The mandate for change that
underpinned the action research was to extend the existing working shop floor IT
management practices as EUD in the organizational arena. The action research
contributed through structure, process, and procedure improvements to sustaining
a participatory IT management for infrastructure development purposes, which
can be related to democratic decision-making criteria (Dahl & Shapiro, 2015). As
discussed in (Bolmsten, 2016) the proposed approach of participatory IT manage-
ment consisted of:

(a) A participatory and evolutionary project management approach enabling users
and end-user developers to effectively participate in infrastructure develop-
ment spanning the realm of individual EUD domains. The project manage-
ment approach was based on a combination of the Bødker et al. (2004) PD
approach called MUST together with an evolutionary and agile development
and implementation approach based on Floyd, Reisin, and Schmidt (1989)
and Beck and Andres (2004). The importance of not adding unnecessary
bureaucracy was highlighted. The project management had to be flexible in
order to cope with projects of different scope. The project management model
was developed and appropriated throughout the empirical research: it was first
introduced to support two projects that were already ongoing. The first project
was about the development of electronic forms, which already had strategic
anchoring but used project management to strengthen the definition of project
scope, and supported the organization and prioritization of tasks during the
course of the project. In the second project, which involved a further develop-
ment of course administration, the project management framework allowed
project members and stakeholders to take a step back and reconsider the

1898 End User Development and Infrastructuring …

strategic alignment of the project. This resulted in an in-depth study of work
practices and several technical prototypes that were then used to define practi-
cal development tasks that were prioritized in an evolutionary manner, using
the agile component of the project management framework.

(b) PD representations that enabled users and end-user developers to acquire a
thorough understanding of both work- and technology-related infrastructure
design matters. These included extended versions of story cards (Beck &
Andres, 2004; Kyng, 1995) that were used to communicate the implications
of infrastructure development from a work practice perspective. They were
co-constructed between users and IT professionals and continuously updated
throughout the development as a living boundary object. In the most compre-
hensive project documented in the action research, the story cards were co-
constructed through the use of a number of PD tools and techniques both to
gain an in-depth understanding of important workflows in the current use
organization and develop visions and proposals for new IT usage in regard to
the registry system. Participatory observations were used to understand and
document work domains and workflows, and underpinned an iterative writing
process of a story card between users and IT professionals. The story cards
were then mapped onto rich-pictures that were used in multi-stakeholder
workshops to understand how both technical and organizational infrastructure
improvements could be made. The story cards were further used in contact
with IT-providers to understand how their applications provided solutions for
the organization. The participatory observations and the story cards show how
the original in-situ close-knit approach, where development took place in
close connection to work realities, was further developed to address more
complex socio-technical infrastructure developments.

(c) Processes and associated documentation to connect the local development to
IT and infrastructure development. To this end, a practice based on what was
referred to as business plans was developed to detail the organizational ratio-
nale of the projects. These business plans related the inline analysis of the
MUST-based project management approach to the cross-organizational infra-
structure development. They contributed toward users exercising control of the
complete agenda of technical and organizational infrastructure development
that affected their individual applications. The business plans were important
not only in prioritizing development resources, such as the time of the IT pro-
fessionals, but also in providing transparency for affected stakeholders between
different but linked local applications. A typical example was how a proposed
change in one part of an administrative infrastructure to consolidate databases
had implications for the local of the contact database that the administrative
assistant was working with. The business plans allowed for the identification
and negotiation of this dependence on a pre-project and development stage,
using the organizational structures and processes described next.

(d) Improved decision-making processes and procedures in the committee-based
IT management. These addressed how to prepare, present, decide, and record
agenda items, including the above-mentioned business plans to plan and track

190 Y. Dittrich et al.

projects. This was of additional benefit to users, who could influence the
agenda of design and development also in regard to infrastructure develop-
ment. In addition, structural change was undertaken where the IT profes-
sionals were formally defined as a resource for committee-based management.

The empirical findings show that EUD and user-centered design need to be
supported by a participatory IT management approach to effect the necessary
change and innovation in a sustainable manner. The chair of the committee-based
management described how the improvements resulted in an organized and con-
structive approach to planning by focusing on the “subject matter”:

then one has the subject matter, one has a presentation, the one who has prepared the case
then has to focus on what is suggested […] it is important that opinions can be put for-
ward, subject matter arguments, and that it is documented, then that goes a long way […]
if one can come to a clear concrete decision, and if I then don’t get a hearing for my view
then one kind of has to accept, there has been a forum, I have put forward the arguments,
and they were not approved, then one has to accept the vote of the majority.

The citation shows that decision-making in the committee-based management
was actually important. Even though it was not common for decision-makers to
have to resort to voting, the stakes could be high when negotiating different inter-
ests in infrastructure development. The findings provide one example of how such
participatory IT management can be instantiated, but there are other possibilities
as well. They also show the value of the underlying principles of (1) enabling
effective participation in individual projects, (2) enabling users to gain an enligh-
tened understanding of infrastructure design issues, (3) including a broad array of
stakeholders that can (4) control the agenda, together with (5) inclusive decision-
making practices for other organizations to apply.

4.3 Summary

The studies reveal similarities between the organizations in regard to EUD as a
sustained organizational capability for innovation. The pressure for change makes
it necessary to consciously include EUD as part of the development of the organi-
zational infrastructure. On the one hand, this requires flexible technologies when
designing specific applications and, on an infrastructure level, when connecting
different applications; on the other hand, users need to be capable as well as
empowered to take on EUD tasks. In order to provide the right flexibility and to
take local expertise into account, we observed close collaboration between IT and
domain experts in local design constituencies in both cases. The organizational IT
management needs to accommodate these design constituencies with processes
and structures that make the situated infrastructuring organization accountable and
to coordinate EUD and infrastructure evolution.

Table 2 summarizes the analysis and allows for a comparison of how the ele-
ments of the model in Fig. 1 become manifest in the two cases.

1918 End User Development and Infrastructuring …

Table 2 Summary of analysis results

Sustainable EUD
factors

Telecom case UN university case

Need for change
and innovation

• Rapidly changing industry due to
technology development

• Not subject to standard
university regulations

• Fierce competition, where it is
important to rapidly answer to
changes in the market by: (1)
providing new products and
services to the customers; and as
an implication (2) developing
internal support systems

• Needed to develop policies,
structures, and processes

• Borrows elements from national
systems

• Need for IT solutions supporting
these processes

• Need for integrated solutions

Flexible
technologies

• Evolution through three interfaces:
deployment, tailoring, and
development

• Technical base allowing for:

• Tailoring interface separates
deployment and tailoring and
allows for testing

• Custom development by IT
professionals

• Tailoring interface supports
unanticipated changes

• Usage of pre-defined modules
that can be configured by the
end-users themselves

• Defined points of interaction
between tailoring and professional
IT development

• End-users exchange information
and datasets across local
applications on the same
infrastructure

Collaboration
between IT and
domain experts

• End-user developers and IT
professionals need to work tightly
together

• IT staff support users with
custom applications requiring
more technical expertise than
users can master themselves

• Understanding of each other’s
competencies

• Negotiations between different
user interests and areas of
expertise by PD workshops

• Overlapping knowledge of
professional domain, where, e.g.,
IT professionals support domain
experts with their in-situ tailoring
and adaptation

“Empowered”
employees

• Users equal members in the
project teams

• Users in charge of the design
and development of software
support for administrative areas

• Shared management
responsibilities

• End-user developers taking
charge of the development of
software support for their
specific professional domains

• Developers and users are trusted
in a de facto evolutionary agile
development model

• User influence by competence
and position

(continued)

192 Y. Dittrich et al.

5 Discussion

This section further discusses how, in the two cases, empowered employees, tight
collaboration between domain experts and IT professionals, and flexible technolo-
gies contribute to sustainable EUD as infrastructuring. Sect. 5.1 highlights the
need for change that has been identified as the driver for the development of the
EUD culture in the respective organization and relates the cases to the discussion
on user-driven innovation and organizational innovation. Sect. 5.2 further elabo-
rates sustainable EUD in connection to the related work. Sect. 5.3 discusses the
organizational structures and processes necessary to support sustainable EUD.
Finally, Sect. 5.4 further considers how important sustainable EUD is in enabling
the innovative capabilities of the organizations.

5.1 Need for Change and Innovation

The two cases’ area of operation is very different: where the telecommunications
company needs to provide state-of-the-art technical services, the UN university

Table 2 (continued)

Sustainable EUD
factors

Telecom case UN university case

• Acknowledgment of users’
business knowledge

• Developers are responsible for
operations

Organizational
structures and
practices

• Participatory and flexible project
model

• Participatory IT management

• Representation by all affected
organizational stakeholders in both
project team and steering
committee

• Organizational IT management
supports both EUD and
collaboration between users and
professional IT-developers

• Users and developers in the same
building, which stimulates quick
and informal communication

• A participatory and evolutionary
project management

• IT unit and users co-located • PD representations for users and
end-user developers to
understand both work- and
technology-related infrastructure
design

• Coordination of infrastructure
across individual applications

• Processes and documentation to
relate local development to the
strategic level of IT and
infrastructure development

• Decision-making procedures in
the committee-based IT
management

1938 End User Development and Infrastructuring …

provides education, research, and capacity-building. Both organizations have,
however, experienced a long-term need to be innovative. The telecom company is
in a constantly changing market, where the company is forced to invent new ser-
vices both to retain existing customers and attract new ones. The services need to
be unique to gain a market advantage. The UN university also provides services,
but in terms of training, education, and capacity-building. The innovatory need
stems from the university being in a unique situation that is not comparable with
other universities. This implicated a need for unique administrative solutions,
where standard systems did not suffice.

Despite the different organizations having different primary trades and different
motivations for why innovation is necessary, we can see that their need for unique
solutions is a common factor. The telecom company requires unique services to
remain competitive, while the UN university needs unique solutions to address
their particular situation. In both cases, therefore, unique technical support systems
are required.

Both organizations have historically handled the need for change by isolated
EUD initiatives. In the telecom company, the need for “extra payments” arose fre-
quently and at short notice. This entailed both a need for EUD support in the indi-
vidual “payment systems” and a technical infrastructure to support these type of
activities. External circumstances push the need for constant updating and renewal
of the administrative system. The UN university managed the bespoke systems
through an individual initiative. For example, there was a need for a reliable aca-
demic management system to manage courses, subjects, grades, and grading,
which the registrar developed on his own.

One similarity between the two cases is that the need for change and innovation
is initiated by external factors. For the telecom company, this means external fac-
tors such as market forces, while the UN university need for change is initiated by
the continuously developing demands of education and training from the
International Maritime Organization and its member states.

The administrative support systems at both the telecom company and at the UN
university must evolve over time. What made the telecom case special at the time
was that the EUD features were not introduced to support personalization of tools
or the adaptation of generic software to a specific organization but to continuously
develop part of the IT infrastructure in order to encourage business innovation on
a corporate level. What makes the UN university special is that all the knowledge
of how to handle administrative issues was situated with the individual users, and
to be able to elucidate the knowledge to form an infrastructure, a special kind of
IT management was needed which would lead to the continuous development of
the infrastructure.

The need for continuous change and innovation originated from external factors
in both cases, but it demanded solutions that took their stance of origin in the situ-
ated development of end-user developers. In the telecom case, changes clearly
needed to be effected at short notice, and it was the users who knew what kind of
changes to the system were required and who was best positioned to perform the
changes. In both cases, the need for change and innovation concerned complex

194 Y. Dittrich et al.

socio-technical infrastructures that required the situated expertise of end-user
developers to develop them. A comprehensive understanding of both current work
practices and the need for change, together with technical know-how, were called
for to come up with new solutions. These findings provide concrete evidence in
support of the assumptions of user-centered innovation and organizational learning
put forward by von Hippel (2005), Björgvinsson et al. (2010), and Orlikowski
(2002), as described in the related work. In this way, the need for change is
initiated by external factors but the innovative solutions are provided from the bot-
tom up by the staff on the shop floor, which creates end-user developers. This, in
turn, allows continuous change and innovation. The following Subsect. 5.2 dis-
cusses what was needed to allow both case organizations to rely on EUD as part
of the continuing development of the IT infrastructure. Thereafter, the organiza-
tional structures underpinning these requirements are discussed.

5.2 Sustainable End-User Development

In both cases, the need for innovation and change was partly realized through
established practices of EUD, although this took place in very different contexts.
From the outset, faculty and administrators at the UN university took on EUD as
part of the development of their work processes and practices, and partly due to
the lack of professional IT support, as the IT department was focused on hardware
and network provisioning; the EUD at the telecom provider took place in close
collaboration with the respective software engineers of the IT unit. As the telecom
provider was one of the pioneering companies in Sweden, software and business
had to be developed hand in hand. Technical expertise among users and business
knowledge among software engineers developed due to close collaboration that
was supported by management. As in both cases EUD was not introduced by the
researcher but was already an established practice in the organization, the compari-
son allows us to analyze what is needed for EUD practices to become a sustain-
able part of the IT development of an organization.

In both cases, users made use of standard applications for their development
tasks: for example, spreadsheets provided an important tool for end-user develo-
pers in both organizations, which required interfaces to integrate results produced
with the help of local tools. At the telecom provider, an interface for “extra pay-
ments” for which the necessary data were compiled “by hand” was implemented;
at the UN university, the course management module supported the import of
schedule and room allocation from spreadsheets. In both cases, the custom-
developed software provided possibilities for end-user developers and/or IT pro-
fessionals to configure and customize the individual applications. In both cases,
the need for flexible integration between applications became visible. The telecom
provider already had an, at that time advanced, data warehouse that allowed the
sharing of data across different applications before the research cooperation was
implemented. The second part of the cooperation explicitly addressed the

1958 End User Development and Infrastructuring …

development of customizable data exchange. From the very beginning, the
research together with the UN university addressed the development of an infra-
structure that was flexible enough to enable access to heterogeneous data sources
to support specific, local practices. However, in both cases the deployment of flex-
ible technology was clearly not enough to support sustainable EUD.

We observed a high level of IT expertise among the group of domain experts
who undertook the EUD for the respective organizations. In the context of the tel-
ecom provider, domain experts had acquired substantial technical knowledge that
enabled them to work independently with database queries and the aggregation of
results in elaborated spreadsheets (Dittrich & Lindeberg, 2004). Similarly, at the
UN university, especially those domain experts who took on the development sup-
porting the whole organization and not only their individual tasks continuously
had to acquire the necessary technical skills (Bolmsten & Dittrich, 2011). On their
own initiative, they engaged in Internet communities to get answers to issues they
were facing, read books and manuals, and participated in training courses.
Whereas the IT skills and EUD by domain experts at the telecommunication pro-
vider were regarded as important and necessary to support the evolving business
and to provide input into the development, however, the situation of end-user
developers at the UN university depended from the outset on the organizational
position of the EUD. Though EUD was wide spread in the organization, and the
competence of domain experts and end-user developers was widely acknowl-
edged, different end-user developers developed different strategies to sustain
their practices.

One of the most prominent observations at the telecom provider was the close
cooperation between end-user developers and IT professionals. The cooperation
was based on long-term development between software engineers and domain
experts. Often, the same domain experts and software engineers were involved in
consecutive development projects addressing the same business domain. Between
the projects, the software engineers were responsible for operations, fixed bugs,
and implementing smaller changes to the software they had developed. They sup-
ported the end-user developers with their knowledge of the surrounding systems
and their quality control expertise. As we mentioned above, users and developers
openly discussed the need to cooperate when evaluating the prototype for flexible
integration of heterogeneous databases. From the IT unit, this was an explicit strat-
egy: one of the managers in the project emphasized that whereas technical exper-
tise could be acquired through the use of consultancy hours, the business
knowledge and the understanding of what was needed in terms of IT support was
a strategic business asset. In the analysis of the end-user developers’ strategies at
the UN university, a lack of collaboration between end-user developers and IT
professionals was shown to be problematic, both for the individual EUD and also
for the organization. Collaboration with IT professionals was necessary to support
a controlled and accountable integration in the IT infrastructure. In both cases,
the interlacing of EUD and evolution of both individual applications and the infra-
structure became visible as a matter requiring both cooperation and organizational
support.

196 Y. Dittrich et al.

Though other studies as well as theoretical work corroborate the findings above,
the comparison between the two cases allowed us to address them in a more sys-
tematic manner and gain an in-depth understanding of the technical and organiza-
tional infrastructure that is needed to support EUD. Many case studies show and
discuss the IT expertise of the end-user developers, indicating that non-IT profes-
sionals can indeed competently develop software if given the right tools. Only few
studies discuss the organizational support for end-user developers. Nardi (1993),
for example, compares different cases of EUD of Computer Aided Design soft-
ware and proposes acknowledging the contribution of the end-user developers in
the organization and supporting their role through formal structures. Trigg and
Bødker (1994) report that, in their case, the organization needed to re-evaluate
which configuration tasks could be left to end-user developers and which needed
to be discussed and decided on at an organizational level. Kanstrup (2005) dis-
cussed the role of local designers as brokers between users and IT professionals.
However, our analysis shows that skills and organizational empowerment but also
collaboration with the software engineers are necessary to include EUD as part of
the infrastructure maintenance and evolution. Our observations regarding the coop-
eration between IT professionals and end-user developers support Fischer’s (1998)
approach to meta-design and the conceptualisation of software developments in
terms of seeding, evolutionary growth, and reseeding. However, our analysis also
shows that this is not the only interaction needed to support organizationally sus-
tainable EUD. Collaboration between IT professionals and end-user developers
continues between projects and only intensifies when an application is redeveloped
to take care of the evolution pressure that cannot be handled by EUD alone.
Similarly to Star and Ruhleder’s (1994, 1996) discussion of the use of information
infrastructures to target organizational transformation, our analysis extends the
understanding of salient infrastructural dimensions, what triggers their develop-
ment, and their relations in supporting EUD. As shown, empowering employees,
collaborating with IT professionals, and flexible technologies are integral infra-
structure dimensions that are necessary to sustain EUD in the organization.

Our systematic analysis further points to the need for organizational structures
and processes that provide a foundation and frame for both EUD and the colla-
boration between IT professionals when together developing the IT infrastructure
for an organization. The next Subsect. 5.3 analyzes and discusses our respective
findings.

5.3 Organizational Structures and Processes

Above, we have argued that sustainable EUD underpinned the evolution of both
IT and work practices to meet the requirements for change that the case organiza-
tions faced. This requires not only flexible technologies supporting the adaptability
of both the individual applications and their connection but also end-user develo-
pers who are empowered with IT skills and a mandate from the organization,

1978 End User Development and Infrastructuring …

as well as a close collaboration between IT professionals and domain experts.
To mandate the former and establish the latter, IT management strategies and pro-
cesses need to be adequately designed. In this respect, the two cases differ sub-
stantially: whereas the telecom provider had established IT management
structures, the research at the UN university explicitly addressed this aspect. Here,
we structure the discussion on the IT management based on the elements we iden-
tified and established at the UN university and compare it with the respective ele-
ments of the IT management at the telecom provider. In the latter case, we have
analyzed the IT project model and its implementation in one of the projects in
detail in the article “How Use-Oriented Development can take place” (Dittrich &
Lindeberg, 2004). Much of the discussion below is based on this material and ana-
lysis. The difficulty is that, at the time of the research, we only focused on the pro-
ject level and did not address the organizational level. This aspect is therefore
rather underdeveloped in the following discussion of the telecom case. The com-
parison shows that what we deemed necessary together with the UN university
was actually in place, though in a different form, at the telecom provider.

In order to take into account the requirements and needs of both the users and
the end-user developers, the individual project needs to be organized in a partici-
patory manner. To this end, the IT steering group at the UN university decided on
a participatory project management approach, adapting the MUST approach by
Bødker et al. (2004). The PD covered by the MUST approach was complemented
with an XP-oriented agile development interlacing with the PD activities. In addi-
tion, a process and documentation approach referred to as business cases detailed
the relation of the individual project to the organizational IT strategy and planning.
Though not using the word PD explicitly, the projects at the telecom provider
implemented a participatory process. Users and developers were equal project
members: after developing an implementation proposal together, which also
detailed the implications for other applications in the infrastructure, the develop-
ment process was an iterative one (today one would call it agile), where annotated
“implementation sketches” containing both a UI draft and technical specifications
served as the main boundary object (Star & Griesemer, 1989) between users and
developers. In the project that was the subject of the study, project management
was shared between a software engineer from the IT unit and a project manager
from the business side.

To empower the project to take decisions based on the PD process on the one
hand, and make sure that the dynamics in the project do not lead the project
beyond what has been decided at the organizational level on the other, the connec-
tion between the project and the organizational IT management level needs to be
explicitly taken care of. At the UN university, this was achieved by the PD project
management approach and the “business case” document, which was decided by
the IT steering committee. At the telecom provider, the implementation proposal
developed in a pre-study served a similar purpose.

In order to support joint decisions by representatives of the local design consti-
tuencies and the IT professionals on infrastructure matters, the IT steering commit-
tee needed to be supported by tools and techniques to discuss the impact of

198 Y. Dittrich et al.

individual projects as well as cross-cutting infrastructure development decisions.
In order to achieve a common understanding, we used an approach of storytelling
initially called “reflection papers” that was inspired by user stories (Beck &
Andres, 2004; Kyng, 1995). These were co-constructed between users and IT pro-
fessionals and described the technical implications routed in day-to-day use as
well as EUD practices. In the telecom provider case, the implementation proposal
served the same issue. Before the company-wide project committee decided on a
project, a pre-study was implemented resulting in a requirements’ specification, an
implementation proposal, a specification of the implementation project model, and
a budget. The implementation proposal also detailed the effect on other systems of
the infrastructure. As in the specific case, the pre-study was not only reported to
the project committee but presented in a meeting to which all affected units and
groups were invited.

In order to take in the interests of the users and end-user developers in the man-
agement of the organization, the decision-making structures and processes need to
be anchored with the different parts of the organization affected by the decisions.
To this end, the UN university established an IT steering committee consisting of
representatives of users, IT professionals, and managers, which was mandated to
take decisions on IT projects. Decisions were deliberated based on the above-
mentioned PD project management, representations, and the business cases for the
individual projects. The agenda of the committee meetings and supportive material
was published well in advance. Discussions and decisions were documented. This
rendered the IT management procedures at the UN university open and accounta-
ble to the whole organization. Anyone affected by a decision had the chance to
partake in the discussion either in person or through a designated representative
on the committee. By comparison, the organizational IT management at the tele-
com provider was more comprehensive: the cross-organizational project commit-
tee did not only hold responsibility for IT-related projects; the company had a
strict process organization. Any changes to existing processes were organized as
projects, and all such projects were decided by the project committee.

In the book chapter “Organizational IT managed from the shop floor –
Developing Participatory Design on the organizational arena,” with reference to
the UN university case, Bolmsten (2016) argue that in order to support an organi-
zation heavily relying on empowered domain experts to reach its objective, the IT
management needs to take a participatory approach as well, and show how it is
possible to leverage PD in the organizational arena. They also demonstrate that it
is possible to provide organizational structures that support a bottom-up IT man-
agement in which EUD is an integrated part of organizational IT development,
challenging the current standard of IT management as a top-down structure design
approach (Bernard, 2005). The discussion above indicates that also in organiza-
tions that need to have an IT management of a different size and scope due to their
technical infrastructure, as in the case of the telecom provider, IT management
structures can be found that support bottom-up as well as top-down decision-
making. We also showed that the integration of EUD and professional software
development benefits from such participatory structures: these structures allow us

1998 End User Development and Infrastructuring …

to take into account local developments to support evolving business and work
practices, making local EUD organizationally accountable. In this way, they sup-
port shop floor IT management practices (Dittrich et al., 2002; Eriksén, 1998) and
can provide an organizational frame for infrastructuring, as discussed by Karasti
(2014; Karasti & Syrjänen, 2004) and Pipek and Wulf (2009). The next section
will take this argument one step further by contending that such structures and the
sustainable EUD practices they support substantially contribute to the innovative
capability of an organization.

5.4 Innovation Capabilities

In the analysis above, we can see that EUD is an important ingredient of the inno-
vative capability of the two case organizations. In the related work section, we
defined innovation capability according to Lawson and Samson (2001) as the
“ability to continuously transform knowledge and ideas into new products, pro-
cesses, and systems for the benefit of the firm and its stakeholders.” In both cases
of EUD presented here, EUD was part of the organizational practices and struc-
tures that enabled the development and evolution of IT systems to support the
innovation of new services that the organization provided. As previously dis-
cussed, both the telecom provider and the UN university faced continuously high
pressure to innovate. The fact that the systems were in both cases sustained over
an extended period of time with a continuous dependence on improvements and
extensions by end-user developers further adds to the recognition of end-user
development as an innovative capability.

Not only do the cases demonstrate that, as an innovatory capability, EUD
answers to organizational needs for change, but they additionally indicate which
infrastructural technical and organizational structures and processes are necessary
for EUD innovations to become a sustained ingredient of the innovation capabil-
ities of an organization. When EUD expands from individual appropriation and
customizations to becoming part of the cooperative development of the organiza-
tion’s IT infrastructure, EUD alone is not enough. End-users need a supporting
technical and organizational infrastructure to innovate. At the same time, this is a
reciprocal dependence, where the resulting EUD innovations are put into use as
part of the very same infrastructure. The dimensions discussed in the previous two
sections, in this way, constitute a socio-technical infrastructure and together under-
pin the organization’s capability to innovate. This forms the main contribution of
this chapter. An overview of these infrastructural dimensions and their relations is
presented in Fig. 2 and summarized in the following claim: end-users need to be
empowered through a flexible technical base, their development needs to receive
professional recognition in the organization, and the collaboration between EUD
and other IT professionals needs to be supported. As is further shown, these infra-
structural dimensions are not statically provided; rather, end-users need to partici-
pate in decision-making structures and processes to develop them.

Especially, the organizational IT management processes were necessary to
sustain EUD and the innovation capabilities through it. The UN university case

200 Y. Dittrich et al.

showed that these structures needed to be maintained and unfolded together with
renewal and evolution of the technical infrastructure, the corresponding changes
for the EUD, and the professional development processes. The evolution of the
organizational structures, the EUD processes, and the technical infrastructure
development can be denoted by the term “infrastructuring,” representing the con-
tinual maintenance and evolution of the organization’s socio-technical infrastruc-
ture (Karasti, 2014; Karasti & Syrjänen, 2004). Especially, in the case of the
long-term action research at the UN university, it was possible to follow how
the process of sustaining EUD as an innovation capability unfolded over time.
The needs of the administrative assistant developing the address database to colla-
borate with IT professionals, for example, developed over time when the address
database gradually benefited from interfacing with other systems on a shared
technical platform. Another example is how possible synergies arising from
the integration of the Learning Management System and the registry system at the
UN university prompted a new and more advanced technical base and the
advancement of coordination both on a project and organizational level between
end-user developers, users, IT professionals, and other stakeholders that were
associated with the respective developments. At the UN university, the challenge

Innovation
capabilities

Sustainable EUD

“Empowered”

employees
Flexible

technologies

Collaboration

between
IT and

domain experts

Infrastructuring

Participatory IT managementOrganizational structures

Fig. 2 Overview of infrastructural dimensions

2018 End User Development and Infrastructuring …

of sustaining an innovatory EUD capability can be recognized as maintaining a
local accountability of development in an expanding process of technical and
organizational infrastructuring. However, the telecommunication provider case
also shows that EUD of the back-end systems and the connected IT infrastructure
were backed up by continuous professional development and a close collaboration
between the end-user developers and the software engineers of the IT unit. Also
here, the organizational IT management structures underpinned the EUD practices
as well as the close collaboration between end-user developers and the IT unit.
Nevertheless, the resulting professional IT practices were contested as they did not
adhere to the then prevalent control-oriented state of the art in software engineer-
ing; indeed, they were much closer to the more recently evolving agile paradigm.

Previous studies have described how organizations are challenged to develop
and sustain capabilities for innovation to cope with an increased pressure for
change (Orlikowski, 2002). At the same time, new possibilities of democratized
innovation are described, whereby users themselves can innovate products and
services (Björgvinsson et al., 2010; von Hippel, 2005), which can potentially meet
those challenges. The combined analysis of the cases adds empirical evidence that
such democratization of innovation is also possible within organizations and that
this, if carefully supported, contributes to the innovation capability of the organi-
zation. Through the combined results of the cases discussed here, it is possible to
concretize how a democratized innovation capability can be realized to cope with
the increased pressure for change in an organization. Ciborra (Andreu & Ciborra,
1996; Ciborra, 2000) also discusses the principal need for a process that combines
bottom-up innovation and learning to make both incremental and radical improve-
ments that range from improvements of routines to strategic capabilities. The
results here show how end-user development can be positioned to meet such need
for innovation and learning. The occurrence and possibilities of end-user develop-
ment have been discussed before in connection to a wide range of cooperative tai-
loring scenarios (Pipek & Kahler, 2006). The results here connect end-user
development with shared infrastructure development as a strategic capability for
innovation. In addition, it has been shown how the bottom-up process of innova-
tion and learning can be depicted as “infrastructuring” (Karasti, 2014; Karasti &
Syrjänen, 2004). Where this is based on end-user development, it is a central
ingredient of the innovation capability in organizations that are dependent on an
IT infrastructure. The several dimensions of “infrastructuring” that are presented
can, in this respect, be related to Pipek and Wulf’s (2009) layers of infrastructural
technology development. This ranges from how innovations are trigged by
end-users – either through breakdowns or other needs for local innovation – to
how end-users work together with IT professionals and other users in method-
driven design activities, to the need to improve technical platforms and organiza-
tional decision structures and processes. Moreover, Sects 5.2 and 5.3 have detailed
what is required with respect to technology, competences, and cooperation, and
how the organizational structures need to support infrastructuring through ade-
quate project models, collaboration tools, and decision-making procedures.

202 Y. Dittrich et al.

6 Conclusion

In this chapter, we have provided a comparative analysis of two cases of EUD in
the context of organizations that depend on an IT infrastructure to provide their
services. In both cases, EUD was not only used to personalize IT support but to
maintain and evolve the organizations’ IT infrastructure. EUD was in both cases a
constituting part of the innovation capability of the organizations.

Based on our two cases, we indicate what is required in terms of organizational
IT management to support the inclusion of EUD activities as part of IT infrastruc-
ture development in the organization and support both lasting quality in use for
the domain experts and the competitive advantage of the business. Besides a
flexible technical base, the EUD practices were dependent on the skills and
competences of the end-user developers as well as a fruitful cooperation between
end-user developers and professional software engineers.

EUD as part of organizational IT management can be expected to become
more and more relevant. The need for development and evolution of organization-
specific software and IT solutions continues to grow, and has already outgrown
the capacity of the software developers we educate. Even if we are able to educate
more software engineers, we will not be able to keep up with the growing needs
of organizations. The only solution to this situation is to open up participation to
end-users in the development and maintenance of their work infrastructure. At the
same time, more and more software provides generic functionality and invites
users to configure and combine these building blocks. Examples here are learning
environments and case handling systems.

The comparison of the IT management structures and processes of the two case
organizations allowed us to abstract some cornerstones for an accountable organi-
zational frame for EUD practices as innovation capability: PD on a project level
was important to communicate local needs for change and diversity; IT develop-
ment projects needed to be well-connected to the embedding infrastructure so that
the impacted professional and EUD practices were not disrupted; the infrastruc-
tural implications of local development were in both cases part of the deliberation
process preceding decisions on IT projects; and last but not least, the organiza-
tional decision-making about the IT infrastructure supported bottom-up as well as
top-down initiatives.

This points us toward a number of future research trajectories: most promi-
nently, the mutual dependency between IT management, organizational innovation
capacity, and EUD is here only touched upon, yet the comparison of the two
cases provides some indication of what is needed from an IT management to sup-
port both IT-based innovation and EUD. However, additional focused case
studies would allow for the development of the observed regularities into recom-
mendations and methods. From a technical and conceptual point of view, the inte-
gration of EUD with respect to individual applications and across applications and
work practices has so far not been addressed. As in the case of early EUD, indus-
trial solutions supporting and integrating both exist but are not systematized.

2038 End User Development and Infrastructuring …

It could be that the concept of meta-design needs to be complemented. Last, but
not least, in both cases, the representation of infrastructures in order to visualize
dependencies and deliberate new developments was an area in need of more
development. At the UN university we experimented with extended user story-
inspired descriptions; at the telecom company, involvement of relevant
organizational stakeholders in the deliberation provided the relevant information.
Here, we see the need for further research to support EUD with the means for
participatory infrastructuring.

References

Andreu, R., & Ciborra, C. (1996). Core capabilities and information technology: an organiza-
tional learning approach. In B. Moingeo, A. Edmondson (Eds.). Organizational learning and
competetive advantage (pp. 139–163). London: Sage.

Beck, K., & Andres, C. (2004). Extreme programming explained: embrace change. Boston MA,
USA: Addison-Wesley Professional.

Bernard, S. A. (2005). An introduction to enterprise architecture. USA: Authorhouse.
Björgvinsson, E., Ehn, P., Hillgren, P.-A. (2010). Participatory design and “democratizing

innovation”. Presented at the PDC ‘10: proceedings of the 11th biennial participatory design
conference (pp. 41–50). New York: ACM.

Bødker, K., Kensing, F., Simonsen, J. (2004). Participatory IT design: designing for business
and workplace realities. London: MIT Press.

Bolmsten, J. (2016). Sustaining participatory design in the organization-infrastructuring with
participatory design. PhD Thesis. Denmark: IT University of Copenhagen.

Bolmsten, J., & Dittrich, Y. (2011). Infrastructuring when you don’t–end-user development and orga-
nizational infrastructure. In End-user development (pp. 139–154). Berlin Heidelberg: Springer.

Britten, N., Campbell, R., Pope, C., Donovan, J., Morgan, M., Pill, R. (2002). Using meta eth-
nography to synthesise qualitative research: a worked example. Journal of Health Services
Research & Policy, 7(4), 209–215.

Cabitza, F., & Simone, C. (2017). Malleability in the hands of end users. In F. Paternò &
V. Wulf (Eds.). New perspectives in end-user development (pp. 137–164). Cham: Springer.

Ciborra, C. (2000). From control to drift: the dynamics of corporate information infastructures.
USA: Oxford University Press.

Costabile, M. F., Dittrich, Y., Fischer, G., Piccinno, A. (2011). End-user development - third
international symposium, IS-EUD 2011, Torre Canne, Italy, June 7–10, 2011, Proceedings.
Berlin and Heidelberg: Springer-Verlag.

Dahl, R. A., & Shapiro, I. (2015). On Democracy: Second Edition. New Haven, Connecticut,
United States: Yale University Press.

Dittrich, Y., Eriksén, S., Hansson, C. (2002). PD in the Wild; Evolving practices of Design in
Use. In: Binder, T., Gregory, J., Wagner, I. Proceedings of the Participatory Design
Conference 2002, Malmö, Sweden. Computer Professionals for Social Responsibility, Palo
Alto, California, United States, pp. 124–134.

Dittrich, Y., & Lindeberg, O. (2001). Can software development be too use oriented? Going
native as an issue in participatory design. In IRIS 24, information systems research seminar
in Scandinavia. Department of Information Systems, University of Bergen, Norway.

Dittrich, Y., & Lindeberg, O. (2002). Designing for changing work and business practices. In
N. Patel (Ed.). Evolutionary and adaptive information systems. 1st edition (pp. 152–171).
USA: IDEA Group Publishing.

Dittrich, Y., & Lindeberg, O. (2003). Designing for changing work and business practices.
Adaptive Evolutionary Information Systems (pp. 152–171). Hershey, PA: Idea group Inc.

204 Y. Dittrich et al.

Dittrich, Y., & Lindeberg, O. (2004). How use–oriented development can take place.
Information and Software Technology, 46(9), 603–617.

Dittrich, Y., Lindeberg, O., Ludvigsson, I., Lundberg, L., Wessman, B., Diestelkamp, W., et al.
(2001). Design for change. Research Report, Blekinge Institute of Technology, Sweden, ISSN:
1103–1581.

Dittrich, Y., Lundberg, L., Lindeberg, O. (2006). End-user development as adaptive mainte-
nance. In H. Lieberman, F. Paternò, V. Wulf (Eds.). End user development. 1st edition
(pp. 295–313). Netherlands: Springer Verlag.

Dittrich, Y., Rönkkö, K., Eriksson, J., Hansson, C., Lindeberg, O. (2008). Cooperative method
development. Empirical Software Engineering, 13(3), 231–260.

Eriksén, S. (1998). Knowing and the art of IT management: an inquiry into work practices in
one-stop shops. PhD Thesis. Lund, Sweden: Lund University.

Eriksson, J. (2007). Support of Cooperative Design of End-user Tailorable Software, the 2nd
IFIP Central and East European Conference on Software Engineering Techniques CEE-SET
2007.

Eriksson, J. (2008). Supporting the cooperative design process of end-user tailoring (Doctoral
dissertation series, Blekinge Institute of Technology), 1653–2090; 2008:03.

Eriksson, J., & Dittrich, Y (2007). Combining tailoring and evolutionary software development
for rapidly changing business systems - what is required to make it work? Journal of
Organizational and End-User Computing, 19(2), 47ff.

Fischer, G. (1998). Seeding, evolutionary growth and reseeding: constructing, capturing and
evolving knowledge in domain-oriented design environments. Automated Software
Engineering, 5(4), 447–464.

Fischer, G. (2010). End user development and meta-design: foundations for cultures of participa-
tion. Journal of Organizational and End User Computing (JOEUC), 22(1), 52–82.

Floyd, C., Reisin, F., Schmidt, G. (1989). STEPS to software development with users (vol. 89,
pp. 48–64). Presented at the ESEC’89.

Henderson, A., & Kyng, M. (1992). There’s no place like home: continuing design in use. In J.
Greenbaum & M. Kyng (Eds.), Design at work: cooperative design of computer systems (pp.
219–240). New Jersey, United States: L. Erlbaum Associates Inc.

Hevner, A. R., March, S. T., Park, J., et al. (2004). Design science in Information Systems
research. MIS Quarterly, 28(1), 75–105.

von Hippel, E. (2005). Democratizing innovation, edn. Cambridge, MA: The MIT Press.
Kanstrup, A. (2005). Local design: an inquiry into workpractices of local it-supporters.

Department of Communications. Denmark: Aalborg University.
Karasti, H. (2014). Infrastructuring in participatory design. In Presented at the the 13th participa-

tory design conference (vol. 1, pp. 141–150). New York, NY: ACM Press.
Karasti, H., & Syrjänen, A.-L. (2004). Artful infrastructuring in two cases of community PD. In

Presented at the Proceedings of the eighth conference on Participatory design: artful integra-
tion: interweaving media, materials and practices (vol. 1, pp. 22–30). ACM.

Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., et al. (2011). The state
of the art in end-user software engineering. ACM Computing Surveys (CSUR), 43(3), 21.

Kyng, M. (1995). Making representations work. Communications of the ACM, 38(9), 46–55.
Lawson, B., & Samson, D. (2001). Developing innovation capability in organisations.

International Journal of Innovation Management, 05(03), 377–400.
Lieberman, H., Paternò, F., Klann, M., Wulf, V. (2006). End-user development: an emerging

paradigm (pp. 1–8). Netherlands: Springer.
Ludwig, T., Dax, J., Pipek, V., & Wulf, V. (2017). A practice-oriented paradigm of end-user

development. In F. Paternò & V. Wulf (Eds.). New perspectives in end-user development
(pp. 23–42). Cham: Springer.

Manville, B., & Ober, J. (2003). A company of citizens: What the world’s first democracy
teaches leaders about creating great organizations. Cambridge, MA, USA: Harvard Business
Press.

2058 End User Development and Infrastructuring …

March, S. T., & Smith, G. F. (1995). Design and natural science research on information technol-
ogy. Decision support systems, 15(4), 251–266.

Nardi, B. A. (1993). A small matter of programming: perspectives on end user computing
(vol. xvi). Cambridge: MIT Press.

Nunamaker, J., Chen, M., Purdin, T. (1991). System development in Information Systems
research. Journal of Management Information Systems, 7(3), pp. 89–106.

Ober, J. (2008). Democracy and knowledge: Innovation and learning in classical Athens. New
Jersey, United States: Princeton University Press.

Orlikowski, W. J. (2002). Knowing in practice: Enacting a collective capability in distributed
organizing. Organization science, 13(3), 249–273.

Peffers, K., Tuunanen, T., Rothenberger, M. A., Chatterjee, S. (2007). A design science research
methodolgy for information system research. Journal of Management Information Systems,
24(3), pp. 45–77.

Pipek, V., & Kahler, H. (2006). Supporting collaborative tailoring. In End user development
(vol. 9, pp. 315–345). Dordrecht: Springer. Netherlands.

Pipek, V., & Wulf, V. (2009). Infrastructuring: towards an integrated perspective on the design
and use of Information technology. Journal of the Association for Information Systems,
10(5), 447–473.

Ponterotto, J. G. (2006). Brief note on the origins, evolution, and meaning of the qualitative
research concept Thick Description. The Qualitative Report, 11(3), 538–549.

Rohde, M., Brödner, P., Stevens, G., Betz, M., Wulf, V. (2016). Grounded design–A praxeolo-
gical IS research perspective. Journal of Information Technology. doi:10.1057/jit.2016.5.

Rohde, M., & Wulf, V. (2017). Integrated Organization and Technology Development (OTD): a
critical evaluation. In Wulf, V., Pipek, V., Randall, D., Rohde, M., Schmidt, K., Stevens, G.
(Eds.), Socio informatics – a practice-based perspective on the design and use of IT artefacts.
Oxford: Oxford University Press.

Star, S. L., & Ruhleder, K. (1994, October). Steps towards an ecology of infrastructure: complex
problems in design and access for large-scale collaborative systems. Proceedings of the 1994
ACM conference on Computer supported cooperative work (pp. 253–264). New York, NY,
USA: ACM.

Star, S., & Ruhleder, K. (1996). Steps toward an ecology of infrastructure: design and access for
large information spaces. Information Systems Research, 7(1), 111–134.

Star, S. L., & Bowker, G. C. (2002). How to infrastructure. In Handbook of new media: social
shaping and social consequences of ICTs (pp. 230–245). London: Sage Publications Ltd.

Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, translations’ and boundary objects:
amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology, 1907–39. Social
Studies of Science, 19(3), 387–420.

Suchman, L. A. (1987). Plans and situated actions: the problem of human-machine communica-
tion (Learning in Doing: Social, Cognitive and Computational Perspectives). New York:
Cambridge University Press.

Suchman, L. A. (2007). Human-machine reconfigurations: plans and situated actions.
Cambridge, United Kingdom: Cambridge University Press.

Tetteroo, D., & Markopoulos, P. (2017). EUD survival “in the wild”: evaluation challenges for
field deployments and how to address them. In F. Paternò & V. Wulf (Eds.). New perspec-
tives in end-user development (pp. 207–230). Cham: Springer.

Trigg, R. H., & Bødker, S. (1994, October). From implementation to design: tailoring and the
emergence of systematization in CSCW. In Proceedings of the 1994 ACM conference on
Computer supported cooperative work (pp. 45–54). New York, NY, USA: ACM.

Wulf, V. (1999). “Let’s see your search-tool!”—collaborative use of tailored artifacts in group-
ware. Proceedings of the international ACM SIGGROUP conference on Supporting group
work (pp. 50–59). New York, NY, USA: ACM.

Yin, R. K. (2013). Case study research: design and methods. Thousand Oaks, CA, USA: Sage
publications.

206 Y. Dittrich et al.

http://dx.doi.org/10.1057/jit.2016.5

EUD Survival “in the Wild”: Evaluation
Challenges for Field Deployments
and How to Address Them

Daniel Tetteroo and Panos Markopoulos

Abstract This chapter discusses methodological choices facing researchers wishing
to evaluate end user development technologies. While laboratory evaluations or
short term evaluations are often conducted as a way to validate an end user deve-
lopment technology, these do not provide sufficient guarantees regarding the
adoption of end user development practices and how systems should be improved
to encourage such practices. The challenges pertaining to field deployments are
discussed first at an operational level and second at a teleological level where we
debate what should be success criteria for such studies. Discussing previous
studies and our experiences from a deployment case in the healthcare sector, we
propose guidelines for the evaluation of EUD technologies.

Keywords Evaluation of EUD technologies · EUD deployment success · surveys ·
methodological choices

1 Introduction

A recent literature survey on research methods and purposes characterizing
research studies in the field of end user development (Tetteroo & Markopoulos,
2015) has shown that field evaluations of EUD systems are relatively uncommon.
Mostly, these systems are evaluated in a lab setting, an approach which while use-
ful and sometimes a necessary prerequisite to field testing, disregards the impact
of the context of actual use in which such systems would be deployed in practice.
Although it is worrying that there have been only a few attempts to deploy an
EUD system in the field, it is also quite understandable. After all, arranging a field
deployment is usually much harder and costly than arranging a lab study. Further,

D. Tetteroo (✉) · P. Markopoulos
Eindhoven University of Technology, Eindhoven, Netherlands
e-mail: d.tetteroo@tue.nl

P. Markopoulos
e-mail: p.markopoulos@tue.nl

207© Springer International Publishing AG 2017
F. Paternò, V. Wulf (eds.), New Perspectives in End-User Development,
DOI 10.1007/978-3-319-60291-2_9

and this is the major point throughout this chapter, evaluating the impact of an
EUD deployment is far from trivial: What exactly needs to be evaluated, in order
to conclude anything about the success of an EUD deployment? Which measures
should be taken and which outcomes are to be expected?

This chapter discusses these methodological questions, starting with a discussion
on what actually constitutes “success” in the case of EUD deployments. Then we
reflect on our own deployment studies of an end-user adaptable technology for phy-
sical rehabilitation. We present a structured literature survey on previous attempts of
EUD deployments, analyzing the evaluations performed and the success measures
considered in those studies. Finally, we propose some guidelines for the evaluation
of EUD field deployments.

2 Related Work

A recent literature survey (Tetteroo & Markopoulos, 2015) that classified research
methods used in the field of End User Development (EUD), pointed out that a signifi-
cant part of the work that is performed in the field of EUD (42%, of the works
covered in that survey) includes an evaluation of EUD systems or parts thereof. Of
course, not all of user evaluations are equal in nature; published studies apply quite
diverse methods (e.g., case study, lab study) and measures. Choosing amongst these
methods reflects the particular aims of the research, e.g., whether it aims to assess the
usability of a system or the impact of a particular technology in the workplace, or
perhaps how successful is a particular theoretical framework in guiding design, etc.

While formative evaluations are a common and, arguably, a necessary element of
the design most interactive systems and therefore also EUD technologies, research
articles in this field that introduce EUD technologies report summative evaluations as
a means to demonstrate the success of the design effort; examples of such works are
(Namoun, Wajid, Mehandjiev, & Owrak, 2012; Wong & Hong, 2007). Most often
such evaluations are conducted in a laboratory setting, where test participants use the
system tested on artificial tasks selected for the evaluation rather than the actual work
or activities spontaneously stemming from their own interests and real life needs.
Also, testing often takes place in controlled conditions rather than in the context of
actual work or daily life. In these cases, success measures are often related to the
usability of the tool and the efficiency with which users can complete tool-related
tasks. Beyond the efficiency of the tool itself some researchers focus on the impact
of specific methods, practices or functionality on the behavior of their users,
e.g., (Ruthruff, Prabhakararao, & Reichwein, 2005; Tsandilas, Letondal, & Mackay,
2009). However, it is not often that research papers examine what happens if experi-
mental EUD systems are deployed in a context of actual use. Interestingly it appears
that they are also not very explicit about how they define what should be considered
a successful EUD field deployment. This chapter, therefore, explores further the
question of successful EUD deployments, and aims to establish a common under-
standing hereof amongst the members of the EUD research community.

208 D. Tetteroo and P. Markopoulos

3 Defining “Success” in Field Deployments of End User
Development Technology

With regards to information technology there exists a fairly established view on
how success can be defined referring to actual use and adoption of novel tech-
nologies and perhaps factors that predict it, see for example (Venkatesh, Morris,
Davis, & Davis, 2003). Here we argue that transposing such concepts and criteria
to EUD is not straightforward and researchers seem to hold different assumptions
regarding success for EUD in the field.

3.1 What Makes EUD Special?

One could state that the deployment of an EUD system is nothing more than a
specific case of software deployment in general, which brings together concerns
regarding the technology, its users, and the context of deployment. For example, a
successful deployment might require the technology to be functional and match
the needs of its users and require it to fit the organization’s goals.

However, it is important to note that from a technological perspective EUD is
often an “extra” layer, an add-on to a technology that already provides some value
to its users (see the Chap. 2). After all, if the essence and main purpose of a tech-
nology would be to allow for the modification, extension and creation of software
artifacts, this technology would in fact be a “regular” software development
environment1. Similarly, from a socio-technical perspective, EUD is an additional
activity that users may perform, aiding them in achieving a grander core task.
After all, if development would be a person’s primary activity, the person would
be a developer rather than a user of that technology.

In other words, the EUD component of a technology is per definition auxiliary
to that host technology. This does not imply that the EUD functionality needs to
be deployed separate from the host technology itself. In fact, it often forms an
integral part of it, such as in the case of macro editors in office software, or level
editors in games. Nevertheless, the core tasks that end users perform with these
base technologies will not be EUD related.

Assuming this view on EUD, one can state that the adoption of EUD practices
transcends regular use of the host technology. Where technology use implies the
application of that technology for a core task, EUD requires end users to deviate
from that task to engage in an activity that will presumably, eventually benefit
the core task. As such, it creates additional challenges over and above those that
come with the deployment of “traditional software.” As with most definitions

1The discussion here steers clear from programming environments that address novice program-
mers with general purpose programming languages and development environments for which
success criteria are very different and more similar to information systems in general.

2099 EUD Survival “in the Wild” …

http://dx.doi.org/10.1007/978-3-319-60291-2_2

that imply an inclusion/exclusion criterion we expect that there will be cases that do
not neatly follow this rule; however, for a large majority of cases referring to the
long tail of software engineering, this definition appears like a useful departure point.

In light of this view, two important questions arise when it comes to evaluating
EUD deployments:

1. Does it make sense to separate the evaluation of the EUD-part of a socio-
technical system from the use-part?

2. In what way could one separately evaluate the impact of EUD?

These questions are discussed later in this chapter.

3.2 How to Define “Success” of EUD?

Often, from the perspective of the EUD researcher, “success” equals the adoption
of EUD practices. The rationale adopted here is often very direct: people are using
my (EUD) tool, so it must be good. However, such adoption is usually put forward
as a means towards a higher order goal, such as increased efficiency in completing
repetitive tasks through the creation of macros, or the personalization of technol-
ogy, etc. Given that there can be alternative ways to achieve such higher-level
goals, not necessarily involving any EUD, usage as such does not equate to suc-
cess. Moreover, there might even be cases in which the adoption of EUD practices
indicates failure, e.g., a system is so poorly designed that end users are forced to
“fix” it through EUD. In short, simply showing that EUD is actually taking place
does not represent a sufficient evaluation goal.

Consider the example of a primary school teacher who aims to increase her
pupils’ motivation during a math class. During the class, pupils learn arithmetic
by interacting with a virtual character on their tablet computers. One way to
increase their motivation is by tailoring the math exercises to the personal interests
of each specific student, e.g., sports, animals, cars. In this scenario, EUD deploy-
ment would be successful if the teacher would adopt EUD practices in order to
create personalized training content for her pupils, eventually increasing their
motivation and performance at school. It is these latter end-goals that represent
success rather than engaging in EUD as such.

Although the above scenario relates to a typical EUD case (tailorability and
personalization), there are other cases in which a continuous occurrence of EUD
practices are in fact a sign of failure. An example class of such scenarios is the
“IKEA case”: the business model of this furniture supplier requires customers to
assemble their own furniture. While some customers might actually enjoy the
process of assembling their newly bought furniture, most customers would
probably prefer pre-assembled furniture instead and only choose to construct their
furniture to save costs and facilitate transport from the shop. In a similar manner,
if development tasks are “offloaded” to end users that could have been handled as
well (or even better) by technology providers, one can hardly consider such end

210 D. Tetteroo and P. Markopoulos

user development practices signs of a successful software deployment (Fischer,
2011). The notion of a successful EUD deployment is thus strongly tied to the
tasks it aims to facilitate and is application specific. Despite this high level of
context dependency, successful EUD deployments have in common that they aim
to maximize the value of EUD within their context, thus increasing the likelihood
that EUD practices contribute to the achievement of end users’ goals. In the words
of Fischer et al. (see their chapter elsewhere in this book), users should be enabled
to participate and to contribute actively in personally meaningful problems.

Some questions remain, however, such as: How to best capture evidence of the
success of an EUD deployment? What measures are best to be used?, and What
methods are most likely to deliver the desired data? In the remainder of this
chapter, we first analyze and reflect on the evaluations performed during four EUD
deployment studies in a healthcare setting. Then, we compare these evaluations to
deployment evaluations performed by other researchers in previous studies. We dis-
cuss whether and how existing theoretical models can help design and interpret
such evaluation studies, and from there we finally draw some general guidelines for
future evaluations of EUD deployments.

4 Evaluating TagTrainer

In the following paragraphs we discuss and review a series of deployment studies
concerning the customization and personalization of rehabilitation training tech-
nology by means of EUD. These studies and their findings relating to the quality
of the therapy and the attitudes of the therapists are described extensively in
(Tetteroo, Timmermans, Seelen, & Markopoulos, 2014; Tetteroo, Vreugdenhil, &
Grisel, 2015); below we reflect on methodological aspects aiming to draw lessons
of more general interest for evaluating EUD deployments. We start by introducing
TagTiles, the host technology enabling tangible interaction, and TagTrainer, the
EUD environment for constructing interactive exercises.

4.1 TagTiles and TagTrainer

TagTiles is an interactive board that supports tangible interaction with objects
adorned with RFID tags; see Fig. 1. It encases a grid of RFID tag readers and a grid
of RGB LED lights that provide visual stimuli and feedback for tangible interaction.
The board can detect placement, lifting and movement of objects on its surface;
interaction involves physical manipulations of the objects and audio/visual output.

TagTrainer is a software system that runs on a personal computer connected to
the TagTiles board, which can be used to select, author, and execute interactive
exercises for the board. TagTrainer supports upper extremity rehabilitation for
neurological patients including stroke survivors, multiple sclerosis patients, spinal

2119 EUD Survival “in the Wild” …

cord injury patients and cerebral palsy patients. TagTrainer can help train daily
living skills, e.g., opening a box, drinking from a cup, eating with knife and fork,
etc., by prompting the patient to carry out relevant manipulations of such objects
and by providing stimulating feedback. Typically, exercises consist of multiple
iterations where a target area on the TagTiles board lights up, and the patient
needs to touch this area with the appropriate side of an object (see Fig. 2).

Rather than prepackaging exercises with the interactive board, as were the first
therapeutic applications for TagTiles (Lanfermann, Te Vrugt, & Timmermans,
2007; Li, Fontijn, & Markopoulos, 2008), TagTrainer provides a simple timeline
based programming interface (TagTrainer Exercise Creator, see Fig. 3). Exercises
can be modified or created by dragging actions (such as: “place object,” “move
object,” etc.) onto the timeline, assigning RFID-tagged parts of an object (e.g., the

Fig. 1 TagTiles board by
SymbioTherapy, with a cup;
a target for placing the mug
down is highlighted with blue
color

1 2 3

4 5 6

Fig. 2 Storyboard representation of a simple exercise: (1) A target (red square) lights up (2) a cup
is placed on the target which turns green (3) another target lights up (blue square), (4) the cup is
rotated 90° around an axis parallel to the plane (5) a final target appears (yellow square) (6) the
cup is rotated the other way to touch the final target with its yellow marker. Note that the target col-
ors correspond with the colors of the tags attached to the cup at suitable positions

212 D. Tetteroo and P. Markopoulos

bottom of a cup, the index finger on a glove) to these actions, and indicating corre-
sponding target areas on the TagTiles board.

This TagTrainer Exercise Creator interface allows therapists to create exercises
for each patient addressing their specific training needs and explicit requests. In a
therapy session supported by TagTrainer the therapist might commence by inquiring
what the patient wishes to train, rapidly create an exercise or retrieve an exercise
created earlier, and then ask the patient to train for a certain duration or number of
repetitions. This type of approach fundamentally changes the role of therapists; next
to their role of caregivers – who instruct, monitor and encourage – they are also
responsible for creating software content. Programming exercises for TagTiles is
straightforward using TagTrainer, though creating such interactive applications with-
out TagTrainer requires considerable effort and software development expertise.

5 Evaluation of TagTrainer

We chose to evaluate TagTrainer in several stages. First, TagTrainer was evaluated
in a lab setting in order to ensure it was fit for use in the field (Hochstenbach-
Waelen, Timmermans, & Seelen, 2012). After some improvements and participatory
design activities carried out on location at a rehabilitation clinic, a series of four field

Fig. 3 The TagTrainer Exercise Creator software. The center area (A) shows the workspace
with the exercise, featuring a timeline with actions associated with the objects (“measuring cup”
and “cup”) involved in the exercise. Properties of the selected action (in this case “lift object”)
such as position on the board are displayed to the right (B). Finally, additional actions can be
dragged from the library (C) into the workspace to extend an exercise. Note that beyond actions
involving manipulations on the board, other actions such as giving instructions (D) and pausing
(E) can be used

2139 EUD Survival “in the Wild” …

deployment studies was conducted. In all these studies, we were interested in
whether and how rehabilitation therapists would engage in EUD practices. More
specifically, we were interested in identifying and understanding factors influencing
the adoption of EUD practices in the workplace, the feasibility of EUD in the con-
text of a rehabilitation clinic, and how technical aspects of the TagTrainer influence
or hinder this feasibility.

5.1 Success Criteria

The latter study goals are mainly related to an EUD research agenda. However,
for EUD to occur, TagTrainer first needed to be accepted as a technology for use
in physical rehabilitation. After all, without the technology being adopted by
therapists, adopting EUD practices would not be possible in the first place.
Therefore, the following success criteria were used during the four case studies:

SC1. Therapists accept TagTrainer as a viable technology for arm-hand
rehabilitation.

SC2. Therapists use TagTrainer in daily arm-hand therapy.
SC3. Therapists are able to perform EUD activities with TagTrainer.
SC4. Therapists perform EUD activities as part of their daily work.

5.2 Methodology

Two different methodologies were used in the evaluation of TagTrainer. For the
first case study, an action research methodology (Herr & Anderson, 2014) was
applied. In action research the researcher has a dual agenda of effecting a change
in the context of the study (here to introduce a new form of therapy which requires
a different set of responsibilities for therapists) and to study the process of change.
The rationale behind applying this methodology was that it would allow us to
study the adoption of TagTrainer in a clinical setting, while at the same time it
would allow us to perform adjustments and modifications to better fit TagTrainer
into a clinical context.

The three latter deployments adopted a case study approach, see (Yin, 2003).
Though “bug” fixes and minor improvements were still performed by the researcher
during these studies, significant modifications of or extensions to the system were
no longer undertaken, and the participants in these studies were no longer actively
participating in the development of TagTrainer or in the setting of research goals,
assuming the role of a test-user rather than a co-designer or co-investigator.

The case studies were performed at three different clinics in The Netherlands
and Belgium. These clinics provide physical rehabilitation to patients with stroke,
spinal cord injury and multiple sclerosis. In total, 24 therapists (20 female, 4 male)

214 D. Tetteroo and P. Markopoulos

participated in the studies, and both physiotherapists and occupational therapists
were involved. The duration of the studies ranged from 3 weeks for the first
case study, to 8 weeks for the third case study. Though from a researcher’s
perspective longer field studies are preferable, the study length was capped by the
clinic whose business model only includes compensation for time spent with
patients rather than participating in studies or creating content.

During all case studies we chose to apply a staged deployment of TagTrainer.
Given that TagTrainer was new to the participants, we first introduced TagTrainer
only as a technology-supported solution for providing rehabilitation training. At a
later stage during the case studies, we explained to the participants the possibility
to add, modify or expand upon exercises already available from the start.

The action research approach adopted in the first study helped us to quickly
develop TagTrainer into a technology fit for use in a practical setting. However,
the continuous presence of the first author and his active engagement with profes-
sionals on site has probably caused a compliance bias. Due to their continuous
involvement in the development of TagTrainer, therapists were triggered to work
with the system. Our suspicions towards this bias are strengthened by the fact that
the number of EUD activities in the latter studies (where the researcher was less
frequently present) was significantly lower than that of the first study. The studies
and their findings are described elsewhere (Tetteroo et al., 2014, 2015), so they
will not be repeated here. Rather we aim to reflect on methodological choices and
limitations of the approach chosen.

5.3 Measures

In all TagTrainer deployment studies several measurements have been taken. To
measure whether therapists considered TagTrainer a viable technology for arm-
hand training (SC1), we administered both the UTAUT questionnaire based on the
unified theory of technology acceptance by Venkatesh (2003) and the CEQ ques-
tionnaire, which measures the therapists’ perception of TagTrainer as a technology
suitable for arm-hand rehabilitation.

The therapists’ use of TagTrainer in daily arm-hand therapy (SC2) was measured
by logging all instances where TagTrainer was used, and by observing therapists
during usage.

EUD activities performed with TagTrainer (SC3 and SC4) were also captured
through automated logging, as all instances of exercise modification and creation
were stored by the system. Additionally, a self-efficacy questionnaire constructed
according to the guidelines by Bandura (2006) allowed us to capture therapists’
self-confidence in performing EUD tasks, regardless of their actual performance
that we captured through logging.

Finally, semi-structured interviews were used to enrich the quantitative data that
was collected. They allowed us to reveal the causes of some quantitative findings
and helped us to better interpret the data.

2159 EUD Survival “in the Wild” …

5.4 Reflection on the Case Studies

Through four case studies, we have captured large amounts of data on the deploy-
ment of TagTrainer in rehabilitation clinics. The question we consider here is,
whether the methods and measures that were chosen for our evaluations have
resulted in data that helps us to determine whether the implementation of
TagTrainer has been successful.

Since a relative wealth of data (see Tetteroo et al., 2015) was available for mea-
suring SC1, one would expect that it was easy to determine whether or not therapists
accepted TagTrainer as a technology for rehabilitation therapy. However, the flipside
of having many data sources is that these sources might support conflicting conclu-
sions. Indeed, results from the UTAUT and CEQ questionnaires often showed a
relatively favorable result for the acceptance of TagTrainer, but interview and obser-
vation data revealed a more nuanced picture. The overall picture emerging on the
acceptance of TagTrainer is one of yes, but …: Yes, therapists do accept TagTrainer
as a technology for physical rehabilitation, given that certain boundary conditions
(e.g., organizational support, technical support) are met. The important question now
is whether the measures used were appropriate for measuring SC1.

As far as we know, our studies are the first in the domain of EUD where the
UTAUT questionnaire was applied to measure the acceptance of the deployed
solution over time. The questionnaire provided us both with new insights, and
data that confirmed findings obtained from other sources (e.g., interviews).
Interestingly, where theoretically the UTAUT model is supposed to carry predic-
tive value about the use of technology, in our cases it was more useful in confirm-
ing and triangulating findings obtained from other data sources. For example,
though in our studies the initial results from the UTAUT questionnaire predicted
fairly good levels of acceptance (and thus technology use), the use of TagTrainer
declined over the duration of our studies. Eventually, at the end of the studies, the
results from the UTAUT questionnaire would confirm this development. One
might be inclined to question the predictive validity of survey data. Nonetheless,
we think these measures used are appropriate, and the mixed results from the
different data sources show the importance of longitudinal quantitative data, which
can indicate a general inclination towards a particular outcome, and qualitative
data, which can provide nuance and depth to this inclination.

The outcome of SC2 was mainly measured by analyzing log files that were
automatically generated by TagTrainer which helped pinpoint exactly which parti-
cipants were more or less actively engaged in using TagTrainer. This allowed us
to query participants during interviews on their use behavior. In this respect, it
was also helpful that interviews were scheduled regularly, such that changes in
usage behavior over time could be tracked and explained. Again, observations and
interviews provided depth to the quantitative data, explaining not only who was
using TagTrainer, and when, but also how and why.

Though a previous study (Hochstenbach-Waelen et al., 2012) had already
shown that, in principle, rehabilitation experts (there students) without software

216 D. Tetteroo and P. Markopoulos

expertise are able to act as creators of therapy exercises for TagTrainer, we were
interested whether this finding would also hold amongst professionals in the con-
text of a rehabilitation clinic (SC3). In this regard, especially the self-efficacy
questionnaire provided useful information. Increasing self-efficacy scores on EUD
related tasks aligned with actual EUD performance that was recorded in the
TagTrainer log files. Once more, interviews and observations provided us with
additional insights, for example as to why particular therapists seemed more (or
less) skilled in EUD related tasks.

Ultimately, the question we wanted to answer through our case studies is
whether therapists would adopt EUD practices as part of their daily work (SC4).
Although in principle the logs combined with the data from interviews and obser-
vations provided us with the possibility to answer this question, the analysis and
interpretation of this data led us to the conclusion that the success criterion may
not have been well chosen in the first place.

The difficulty in measuring whether therapists adopt EUD practices as part of
their daily work is that it is hard to define what this qualifier actually means.
Taken literally, it would require therapists to perform EUD activities every
single day. By the nature of the rehabilitation profession and process there are
bounds to what role TagTrainer can play in therapists’ daily work, so this would
be an unreasonable expectation. Rather, adoption in daily work should be inter-
preted more broadly, meaning that therapists have embraced EUD activities as
an integral part of working with TagTrainer. When EUD activities take not place
on a daily basis, any evaluation on the adoption of EUD practices in this context
needs to be longitudinal, before a reliable and truthful picture of therapists’ EUD
practices can be formed.

An additional complication to the SC4 definition is that one would expect the
amount of EUD activities to decrease over time, as the set of exercises grows and
the need to create even more exercises declines. So even if there would be a value
for, or an understanding of therapists’ engagement in EUD activities, such a value
or understanding would be specific to a particular moment in time, and rather
meaningless on its own.

Finally, taking a cultures of participation-view (Fischer, 2011) where EUD is
situated in a socio-technical setting that involves multiple actors practicing various
degrees of EUD, what exactly do the collected data tell us about the EUD activities
taking place within the TagTrainer community in its entirety? How meaningful is it
to consider the EUD activities of individual therapists, if these activities are
entwined with those of other members of the community?

Concluding, in our studies we were successful in evaluating the three success
conditions (SC1–3) that we regarded as instrumental for the adoption of EUD
practices. Our decision to delay the introduction of EUD to the participants
enabled us to record findings that may otherwise have gone unnoticed, such as the
decline in TagTrainer usage after participants had been introduced to EUD. We
were able to identify that it was not TagTrainer per se, but rather the organiza-
tional requirements that EUD put on our participants which hindered its usage in
the later stages of our studies.

2179 EUD Survival “in the Wild” …

Though we were able to successfully evaluate the first three success-conditions,
we were unable to get an unambiguous result regarding SC4 (“Therapists perform
EUD activities as part of their daily work.”). Our inability to do so is not caused
by a wrongfully chosen evaluation strategy, but by a lack of clarity regarding
what might constitute a successful benchmark for the adoption of EUD techno-
logy. To answer to this rather fundamental question, in the next section we present
a structured literature survey on the evaluation goals, methods, measures that
previous deployment studies of EUD environments have reported.

6 A Structured Literature Survey

A structured literature survey was conducted by querying the online digital libraries
of ACM (dl.acm.org) and Scopus (www.scopus.com). Together these libraries
include indexes of the most relevant conference proceedings and journal publica-
tions on EUD. In addition to the database searches, the proceedings of all editions
of the International Symposium on End User Development (IS-EUD, (Costabile,
Mussio, Parasiliti Provenza, & Piccinno, 2008; Dittrich, Burnett, Morch, &
Redmiles, 2013; Pipek, Rosson, & Wulf, 2009); were manually analyzed for articles
missed by the dataset search but matching the criteria of this survey. Finally, two
relevant articles that had not been captured by the search were added manually.
Fig. 4 provides an overview of the survey process.

6.1 Inclusion/exclusion Criteria

Articles resulting from the search were included if they were written in English,
published between 1991 and June 2015 when the survey was carried out, acces-
sible to the authors and describing actual in-the-field deployment of EUD
systems. We excluded papers published before 1991, in non-English languages
or describing lab-studies, usability evaluations, retrospective analyses of cases,
theories, methods, etc.

6.2 Search Keywords

The databases used were queried for articles containing at least one of the following
terms as keywords end user programming, end user development, EUD, and meta
design. Meta-design is a conceptual framework aimed at defining and creating
social and technical infrastructures in which new forms of collaborative design can
take place (Fischer, 2007) – the term was included since work in this area is closely
related to end user development.

218 D. Tetteroo and P. Markopoulos

http://dl.acm.org
http://www.scopus.com

In addition to matching one of the keywords, to filter for studies describing
actual in-the-field deployments of EUD systems, articles had to include at least
one of the following terms as a keyword, or in their abstracts: deployment, case
study, field study, ethnography, practices, ethnographic methods.

6.3 Results

The combined queries returned 144 results (ACM: 31, Scopus: 113). After correct-
ing for duplicates, 121 unique results remained. The abstracts of all candidate
articles were read and compared against the inclusion/exclusion criteria. Where
abstracts were found to provide insufficient information for the inclusion/exclusion
decision, the full article was read. The proceedings of IS-EUD were scanned for

Database query results
(n = 144)

Unique articles

(n = 121)

Exclusion of
duplicates
(n = 23)

Eligible study

reports after full

text screening

(n = 6)

Exclusion of non-

accesible articles

(n = 2)

Exclusion of articles

not fitting scope

(n = 114)

Inclusion of articles

from IS-EUD &

manually (n = 1)

Fig. 4 Flowchart of the structured literature survey

2199 EUD Survival “in the Wild” …

relevant articles not covered by the database search, but no additional eligible articles
were found. Most of the excluded articles, although being EUD related, did not
present deployment studies. Instead, they often concerned formative (lab) evaluations
and retrospective analyses of cases where EUD would already be in place. Finally,
one article that was missed by the keyword search was added manually.

Six articles in total were found to be eligible for answering our research ques-
tions (see Table 1). A summarized version of these articles is given below.

Bolchini, Garzotto, and Paolini (2008) have attempted to identify the key factors
that contribute to the success of a hypermedia development tool. They acknowl-
edge that success factors exist on various levels, but focus on those that can be
observed and are directly related to the “product.” In their case study, the authors
have studied the adoption of the 1001Stories tool. This tool allows for web-based
hypermedia development and has been deployed amongst Italian primary-school
and high-school classes. The authors have studied the adoption of the tool through
two sub-studies: the first study involved primary school children and teachers,
focusing on tool and process simplicity. In this study, task-based observational
user testing was used to evaluate the ease of use of the tool. Contextual inquiry
was used to study the development process. Finally, a questionnaire was submitted
to the participating children at the end of the study, to investigate their overall
satisfaction. Their second study was mainly devoted to investigate satisfaction,
prospective adoption, and success factors on a larger statistical base (Bolchini
et al., 2008). In this study, the authors queried participating teachers through an

Table 1 Articles selected for analysis in this survey

Title Authors Source Year

“Let’s see your search-tool!” – On the
collaborative use of tailored artifacts

Wulf, V. Proc.
GROUP’99

1999

Investigating success factors for hypermedia
development tools

Bolchini, D.,
Garzotto, F.,
Paolini, P.

Proc.
Hypertext’08

2008

Design, adoption, and assessment of a socio-
technical environment supporting independence
for persons with cognitive disabilities

Carmien, S.P.,
Fischer, G.

Proc. CHI’08 2008

Software development cultures and cooperation
problems: a field study of the early stages of
development of software for a scientific
community

Segal, J. CSCW
(journal)

2009

Study of using the meta-model based meta-design
paradigm for developing and maintaining web
applications

De Silva, B.,
Ginige, A.

Proc.
UNISCON’09

2009

End-user development of enterprise widgets Spahn, M.,
Wulf, V.

End-user
development
(book)

2009

Enabling users of enterprise systems to mashup
resources and develop widgets

Spahn, M.
et al.

220 D. Tetteroo and P. Markopoulos

online questionnaire. Finally, they measure the success of their tool and its deploy-
ment by assessing the following variables: appreciation, educational benefits,
prospective adoption, tool simplicity, and process efficiency. Although the results
of their questionnaires are generally favorable, the authors draw no conclusions
about the success of their deployments.

Carmien and Fischer (2008) have studied the use of EUD practices to enhance
the independence of cognitively disabled persons. They present the Memory
Aiding Prompting System (MAPS), which provides caregivers the opportunity to
create scripts that can be used by people with cognitive disabilities (“clients”) to
support them in carrying out tasks that they would not be able to achieve by them-
selves (Carmien & Fischer, 2008).The system consists of the MAPS-DE, an EUD
environment allowing caregivers to create and share scripts, and MAPS-PR, a cli-
ent interface for the created scripts. They present a field study with 6 participants
(3 caregiver-client dyads) who have been provided with the MAPS system. The
authors used several ethnographic methods to collect data, in particular participant
observation and semi-structured interviews. Their goals were to (1) learn about the
client’s and caregiver’s world and their interactions, (2) observe and analyze how
tasks and learning of tasks were currently conducted, (3) understand and explicate
the process of creating and updating scripts, (4) comprehend and analyze the pro-
cess of using the scripts with a real task, and (5) gain an understanding of the role
of meta-design in the dynamics of MAPS adoption and use. During their field
study, the authors collected audio recordings, field notes and secondary artifacts.
The authors are not explicit about the success of their deployment.

Segal (2009) describes the development process of scientific software as a
combined effort of several “professional end user developers” (i.e., scientists who
can program). The article focuses on cooperation problems arising from the
professional end user development culture associated with the development
project. While her article strictly speaking does not meet the inclusion criteria for
this survey (since EUD is already common practice amongst these scientists), the
collaborative nature of the software project described presents new challenges to
the users involved and hence can be regarded as the “deployment” of a new form
of EUD. The process that Segal describes is one in which professional end user
developers, as part of an organized project with multiple stakeholders that belong
to several organizations, develop a laboratory information management system for
use in biology research. These stakeholders are: a management board, the develop-
ment team (highly heterogeneous, nine members, five locations), collaborators
from research groups that have the potential to share resources with the develop-
ment team, and the users. The goal of the field study that Segal conducted is to
illustrate how cultural influences impact cooperation in a professional end user
development project. For this, she collected data through ten observations, ten
interviews, twelve phone calls, numerous emails, and by consulting project
documentation.

De Silva and Ginige (2009) describe the deployment of end-user extensible
websites for three small and medium-size enterprises (SMEs). They draw inspira-
tion from Fischer’s meta-design theory (Fischer & Scharff, 2000) and provide the

2219 EUD Survival “in the Wild” …

SMEs with a first version of a website as a seed that can later be extended by the
SMEs. The goal of their study was to investigate how the tool making industry in
Australia, specifically the SMEs, could benefit from end-user extensible websites.
The data collected is very sparse: only data on the toolmakers’ perceived ability to
execute maintenance tasks and a log of the maintenance activities performed by
the SMEs have been collected.

Spahn and Wulf (2009) describe the deployment of their Widget Composition
Platform (WCP) – a platform that allows business users to create custom widgets,
tailored to their personal information needs – to three mid-sized German compa-
nies. The goal of their evaluation was to investigate questions such as: are their
end users able to create widgets using WCP? Do the widgets address practical
problems in real work contexts? Are advanced end users able to create and wrap
enterprise resources as new services to extend the available building blocks for
widget creation? What types of end users exist with regard to widget usage and
development and how do they collaborate? Spahn and Wulf used interviews,
observations, and questionnaires focusing on EUD-related tasks to find answers to
these questions.

Volker Wulf (1999) describes the development of a component-based search tool
as an extension to an existing database system. They deployed the artifact in a
German government organization and studied a small group of users in depth. The
goals of their evaluation were to research (1) to which extend users without pro-
gramming skills would be able to tailor the search tool, (2) which division of labor
would emerge between the end users and the local experts, (3) whether end users
would be able to understand the components, compound components and search
tool alternatives provided to them by programmers and local experts, and (4) how to
support the exchange of tailored artifacts between end users and local experts. Their
deployment approach was staged: first they presented the prototype to a group of
participants in a workshop and performed a formative usability evaluation, after
which the tool was adopted by the designers. Then, they deployed the revised tool
for a period of two weeks, starting with a workshop where the tool was presented to
the participants and training was provided. During this study, participants were
observed in their tailoring process and the emerging problems. Finally, semi-
structured interviews were held with the participants, and the tailored artifacts were
copied for analysis. During all workshops and the field study, written notes were
taken and transcribed directly after each session.

6.4 Evaluating EUD Deployments

As has been demonstrated by the survey, research in which researchers attempt to
create an environment that facilitates EUD, by implementing appropriate methods,
techniques and tools, as well as by shaping facilitating conditions on a psychologi-
cal and social level is far less common than retrospective ethnographic studies.

222 D. Tetteroo and P. Markopoulos

Remarkably few attempts of EUD deployments were found, and the variation
between them (amongst others in terms of domain, approach, scope, authors and
findings) leads to believe that this aspect of EUD is currently underexplored, and the
state of the art is limited to ad-hoc attempts rather than structured and planned
approaches. One possible explanation for the scarcity of deployment studies is that
EUD needs not necessarily be introduced as part of an orchestrated effort - involving
planned investments of time and effort by end users and commitment by some form
of management. Rather, suitable environments may have evolved gradually to
accommodate for EUD. Still, the articles discussed in this survey show there is a
need for an orchestrated deployment of EUD technology in several cases. For exam-
ple, non-information workers (such as the caregivers in Carmien & Fischer, 2008)
might not be aware of the possibilities that EUD environments can provide them
with to address personally relevant problems. The need for organizational support
for encouraging EUD practices has been also argued on the basis of the surveys by
Mehandjiev, Sutcliffe, and Lee (2006) and Kierkegaard and Markopoulos (2011).

Table 2 provides an overview of the aims of the surveyed articles, and the eva-
luation methods that were used in these articles. Most articles are not very clear
on what they expect to find when starting their deployment. Nevertheless, by
“reading through the lines” it is clear that the studies had either one or both of the
following goals: to evaluate a tool for EUD, or to better understand the principles
that underlie EUD (see also the “research purpose” qualifications in Kjeldskov &
Graham, 2003).The methods that these studies used varied, but the use of qualita-
tive methods such as observations and interviews is common, especially amongst

Table 2 Aims and research methods used in the surveyed studies

Article Study aims Methods used New
tech?

Bolchini et al.
(2008)

Tool evaluation Task-based observational
user testing

Yes

Contextual inquiry
Questionnaires

Carmien and
Fischer (2008)

Understanding EUD principles Observations Yes
Interviews

Segal (2009) Understanding EUD principles Observations No
Interviews
Documentation analysis

De Silva & Ginige
(2009)

Tool evaluation understanding
EUD principles

Usage logging Yes
Questionnaires

Spahn and Wulf
(2009)

Tool evaluation understanding
EUD principles

Observations Yes
Interviews
Questionnaires

Wulf (1999) Tool evaluation understanding
EUD principles

Observations No
Interviews

2239 EUD Survival “in the Wild” …

studies that focus on creating a better understanding of EUD principles. Where
questionnaires were used, their aim varied from measuring tool appreciation and
usability, to measuring the participants’ general opinions on the use and usefulness
of EUD in their domain. Interestingly, only two studies concerned the deployment
of EUD as an addition to an already existing system (e.g., an extension or plugin),
while the others introduced a new technology entirely. There seems to be no corre-
lation between the deployment type and the methods used.

7 Discussion

In order to find an answer to the question how should deployments of EUD systems
be evaluated? we have reflected on the deployment studies of TagTrainer. Further,
we presented a structured literature survey on other deployment studies of EUD
systems. We discuss the results of the survey and our reflections on a number of
questions that are related to the evaluation of EUD deployments.

7.1 How to Best Capture Evidence of the Success
of an EUD Deployment?

The studies discussed in this chapter are characterized by a great diversity in their
approaches, methods, goals and results. Therefore, it is not easy to draw a conclusion
about what are suitable methods for capturing evidence of successful EUD deploy-
ments. On the other hand, if we take a step back and look at how the different studies
have interpreted the evaluation task, we can make some interesting observations.

Earlier in this chapter, we stated that successful EUD deployments maximize
the value of EUD within their context, thus increasing the likelihood that EUD
practices contribute to the achievement of an end user’s goals. Success, by this
definition, is thus strongly related to the goals that a particular end user of the
EUD technology has in a particular context. As has been shown before, these
goals vary greatly between different cases, and range from “allowing patients to
live more independently” (therapists, Carmien & Fischer, 2008) to “developing
web-based hypermedia to pass a course” (high-school children, Bolchini et al.,
2008) and “running a profitable business” (De Silva & Ginige, 2009).

As much as the goals of the end users in the contexts of the surveyed studies
differ, the role that EUD plays in these contexts differs as well. For example, the
relative importance of an up-to-date website for an SME in (De Silva & Ginige,
2009) might be less than the importance of a working memory prompting system
for the cognitive disabled in (Carmien & Fischer, 2008). SMEs will probably pri-
marily be focused on producing and selling goods and services. Maintaining an

224 D. Tetteroo and P. Markopoulos

up-to-date online presence can help to increase sales but is usually not amongst
the core activities of such companies.

It can be argued that the evaluation approach, and the methods and measures
used should be adapted to the role that EUD is expected to play for the end users.
For example, adopting an action research approach where researchers collaborate
with end users in the deployment and evaluation of an EUD environment over an
extended period of time, might not be the right choice if the prospective adoption
of EUD practices will remain low and infrequent (e.g., De Silva & Ginige, 2009).
However, it is not always trivial to estimate the importance of EUD for the context
in which it is being implemented. For example, in our own studies we expected
the importance of EUD in the use of TagTrainer to be greater than it turned out to
be. Though therapists indicated that providing patient-centered training content is
an important consideration to them, in practice they often settled for readily avail-
able exercises (rather than ones tailored for a specific patient) from the library of
exercises that we made available to them.

Since it is difficult to predict in advance what the rate of EUD adoption will be,
it is sensible to adopt a staged approach in the evaluation of EUD systems. Rogers
(2010) famously describes a five-stage model on the diffusion of innovations that
provides us with sufficient theoretical guidance to propose suitable methods of
evaluation for the different stages of EUD deployments. The five stages of his
model are (adapted from Rogers, 2010, p. 169):

1. Knowledge, occurs when an individual is exposed to an innovation’s existence
and gains an understanding of how it functions.

2. Persuasion, occurs when an individual engages in activities that lead to a
choice to adopt or reject the innovation.

3. Decision, takes place when an individual engages in activities that lead to a
choice to adopt or reject the innovation.

4. Implementation, occurs when an individual puts a new idea into use.
5. Confirmation, takes place when an individual seeks reinforcement of an

innovation-decision already made, but he or she may reverse this previous
decision if exposed to conflicting messages about the innovation.

Importantly, the five stages of Rogers’ model show us that at different moments
during a deployment process, different factors become important for the end user
in relation to the adoption of the technology that is being deployed. If we now
turn the question with which we started this section - on the best way to capture
evidence of successful EUD deployments - we can use Rogers’ model to define for
each stage what evidence could or should be collected in support of any statement
on the success of an EUD deployment:

1. Knowledge: evaluate the end users’ understanding of the EUD system being
deployed e.g., its usability and functionality.

2. Persuasion: evaluate the end users’ attitude towards the system, for example
by using the UTAUT model (Venkatesh et al., 2003) or self-efficacy regarding
EUD (Bandura, 2006).

2259 EUD Survival “in the Wild” …

3. Decision: evaluate whether, in the opinion of the end users, adopting EUD
practices will lead to a positive outcome of the cost/benefit tradeoff related to
the adoption of EUD practices (relative advantage, in Rogers’ theory (2010)).
Blackwell’s Attention Investment model (Blackwell, 2002; Blackwell &
Burnett, 2002) could be used to gauge this specifically for EUD.

4. Implementation: evaluate the EUD practices that end users develop, the role
that EUD starts playing in the context in which it is deployed, and most impor-
tantly, the extent to which the EUD practices help the end user to achieve his
or her goals.

5. Confirmation: evaluate whether the decision to (not) engage in EUD has sus-
tained after a period of time, and if not, what has caused the end user to reverse
his or her initial decision.

The advantage of designing evaluations in a staged approach, as outlined above,
is that it is then possible to relate different evaluation studies to each other and we
can pinpoint more precisely areas of improvements. It also protects us from setting
up large, time-consuming and expensive evaluations that study EUD practices, if in
an earlier stage we can detect threads for a successful deployment (e.g., usability
flaws, acceptance issues). The first two stages can, in principle, even be evaluated
in a laboratory setting. Finally, the structured and staged evaluation approach
allows us to better compare different cases of EUD deployments. It provides us
with terminology to discuss these cases in a context independent manner, and
allows us to draw generalizations over several cases of EUD deployments, even if
these cases themselves are context specific.

7.2 The Role of New Technology in EUD Deployments

Earlier in this chapter we limited our discussion to cases where EUD comes on top
of an existing host technology (e.g., as a plugin to existing software), or is deployed
simultaneously with another, new host technology (e.g., the case of TagTrainer). As
we have experienced ourselves, evaluating the impact of introducing EUD in an
organization while simultaneously introducing a new host technology can lead to
difficulties. The impact of the introduction of the new technology might overshadow
the impact of introducing EUD, thereby obscuring the effects that the introduction
of EUD might have had. Further, the actual adoption of EUD practices might, in
such a context, be hampered by the fact that the host technology introduced does
not align with the existing practices within that context (i.e., what Rogers calls
compatibility with previously introduced ideas Rogers, 2010).

In our own studies, we have tried to counter this bias caused by the introduction
of a new host technology, by adopting a staged introduction of TagTrainer. First, the
system was introduced as a technology for physical rehabilitation, without focusing
on the possibility for therapists to modify or create exercises. Only later were the par-
ticipating therapists instructed on the EUD possibilities that the system offered them.

226 D. Tetteroo and P. Markopoulos

The rationale was that therapists could first get used to working with TagTrainer as a
new technology for physical arm-hand rehabilitation. Then, once they had adopted
the technology for this purpose, they would be introduced to EUD. We assumed
that through this approach, the novelty of the technology would no longer interfere
with the introduction of EUD. Still, many of the issues that were raised by therapists
in the later stages of our deployment studies were related to the system in general and
not specifically to the possibility to modify or create exercises. Some of these issues
would have such a negative impact on their perception of the system that they would
abandon it completely, limiting our ability to study EUD adoption and practice.

The studies reviewed in the survey however reveal different results. Four of
these articles report a simultaneous introduction of a new technology, as well as
EUD, as part of their study. Still, they do not report on issues in the adoption
of EUD practices arising from this simultaneous introduction, nor do they report
on the occurrence of a results bias. It is possible that in some cases, such as
(Spahn & Wulf, 2009), the technology that was introduced was compatible
enough (see Rogers, 2010) to the technology their participants had been working
with previously, that it did not cause any significant problems.

Earlier, we asked ourselves whether it is sensible to separate the evaluation of the
EUD-part of an environment from the other parts. Unfortunately, this question cannot
conclusively be answered from the results of our survey. The fact that none of the
surveyed studies report on issues arising from the simultaneous evaluation of the tech-
nology and EUD practices does not mean that such issues do not occur. Moreover,
since in our own studies we did encounter these issues, we believe that the answer to
this question depends on the context in which the EUD system is being deployed.

8 Conclusion

Evaluating EUD deployments is far from trivial, since it is difficult to define the
precise subject of evaluation and to determine which approach and which methods
are suitable for such an evaluation. In this chapter, we have explored these
questions by first defining what makes EUD deployments different from regular
software deployments. Then, we discussed the evaluation of TagTrainer, after
which we presented a literature survey on EUD deployment studies. One lesson
we can draw from this survey is that evaluations of EUD deployments so far do
not share a common framework and form a rather fragmented picture.

From this survey and from our own experiences, we discussed suitable ways to
evaluate EUD deployment, and more specifically:

1. A staged evaluation approach, evaluating sequentially the end users’ knowl-
edge about, and acceptance of the deployed system, the tradeoffs that the end
users face in considering to engage in EUD activities, the EUD practices and
activities that end users develop, and finally whether these practices sustain
after a longer period of time.

2279 EUD Survival “in the Wild” …

2. A staged implementation of the host technology (the technology to which
support for EUD is added) and the EUD technology. Where the host technology
is deployed next to EUD technology, the deployment of EUD technology
should be postponed until the host technology has been accepted and incorpo-
rated by the end users.

We believe that if future EUD deployment studies take these suggestions into
account, we can more effectively compare different studies and draw generalizable
conclusions from their data.

References

Bandura, A. (2006). Guide for constructing self-efficacy scales. In Urdan, T., & Pajares, F. Eds.
Self-efficacy beliefs of adolescents. IAP, 2006.

Blackwell, A., & Burnett, M. (2002). Applying attention investment to end-user programming.
In Proc. HCC 2002 (pp. 28–30). IEEE.

Blackwell, A.F. (2002). First steps in programming: a rationale for attention investment models.
In Proc. HCC 2002 (pp. 2–10). IEEE.

Bolchini, D., Garzotto, F., Paolini, P. (2008). Investigating success factors for hypermedia devel-
opment tools. In Proc. HT 2008 (pp. 187–192). New York: ACM.

Carmien, S. P., & Fischer, G. (2008). Design, adoption, and assessment of a socio-technical
environment supporting independence for persons with cognitive disabilities. In Proc. CHI 2008
(pp. 597–606). New York: ACM.

Costabile, M.F., Mussio, P., Parasiliti Provenza, L., Piccinno, A. (2008). End users as unwitting
software developers. In Proc. 4th int. workshop end-user softw. eng (pp. 6–10). ACM.

De Silva, B., & Ginige, A. (2009). Study of using the meta-model based meta-design paradigm
for developing and maintaining web applications. In Int. united inf. syst. conf (pp. 304–314).
Springer.

Dittrich, Y., Burnett, M., Morch, A., Redmiles, D. (2013). End-user development: 4th interna-
tional symposium, IS-EUD 2013, Copenhagen, Denmark, June 10–13, 2013, Proceedings.
Berlin Heidelberg: Springer.

Fischer, G. (2007). Meta-design: expanding boundaries and redistributing control in design. In
C. Baranauskas, P. Palanque, J. Abascal, S. D. J. Barbosa (Eds.). Hum.-comput. interact. –
INTERACT 2007 (pp. 193–206). Berlin Heidelberg: Springer.

Fischer, G. (2011). Understanding, fostering, and supporting cultures of participation.
Interactions, 18, 42–53.

Fischer, G., & Scharff, E. (2000). Meta-design: design for designers. In Proc. DIS 2000
(pp. 396–405). New York: ACM.

Herr, K., & Anderson, G. L. (2014). The action research dissertation: a guide for students and
faculty. Thousand Oaks: SAGE Publications.

Hochstenbach-Waelen, A., Timmermans, A., Seelen, H., Tetteroo, D., Markopoulos P. (2012).
Tag-exercise creator: towards end-user development for tangible interaction in rehabilitation
training. In Proc. EICS 2012 (pp. 293–298). ACM.

Kierkegaard, P., & Markopoulos, P. (2011). From top to bottom: end user development, motivation,
creativity and organisational support. In Int. symp. end user dev (pp. 307–312). Springer.

Kjeldskov, J., & Graham, C. (2003). A review of mobile HCI research methods. In L. Chittaro (ed).
Hum.-comput. interact. mob. devices serv. (pp. 317–335). Berlin Heidelberg: Springer.

Lanfermann, G., Te Vrugt, J., Timmermans, A., Bongers, E., Lamber, N., Van Acht, V. (2007).
Philips stroke rehabilitation exerciser. In Tech. aids rehabil.-TAR 2007 January 25–26 2007.

228 D. Tetteroo and P. Markopoulos

Li, Y., Fontijn, W., Markopoulos, P. (2008). A tangible tabletop game supporting therapy of
children with cerebral palsy. In P. Markopoulos, B. Ruyter, W. de IJsselsteijn, D. Rowland (Eds.).
Fun games (pp. 182–193). Berlin Heidelberg: Springer.

Mehandjiev, N., Sutcliffe, A., Lee, D. (2006). Organizational view of end-user development.
In H. Lieberman, F. Paternò, V. Wulf (Eds.). End user dev (pp. 371–399). Netherlands:
Springer.

Namoun, A., Wajid, U., Mehandjiev, N., Owrak, A. (2012). User-centered design of a visual
data mapping tool. In Proc. AVI 2012 (pp. 473–480). New York: ACM.

Pipek, V., Rosson, M.-B., Wulf, V. (2009). End-user development: 2nd international symposium,
IS-EUD 2009, Siegen, Germany, March 2–4, 2009, Proceedings. Berlin-Heidelberg:
Springer.

Rogers, E.M. (2010). Diffusion of innovations, 4th Edition. Simon and Schuster.
Ruthruff, J. R., Prabhakararao, S., Reichwein, J., Cook, C., Creswick, E., Burnett, M. (2005).

Interactive, visual fault localization support for enduser programmers. Journal of Visual
Languages and Computing, 16, 3–40. doi:10.1016/j.jvlc.2004.07.001.

Segal, J. (2009). Software development cultures and cooperation problems: a field study of the
early stages of development of software for a scientific community. Computer Supported
Cooperative Work (CSCW), 18, 581 doi:10.1007/s10606-009-9096-9.

Spahn, M., & Wulf, V. (2009). End-user development of enterprise widgets. In V. Pipek,
M. B. Rosson, B. Ruyter, V. de, Wulf (Eds.). End-user dev (pp. 106–125). Berlin Heidelberg:
Springer.

Tetteroo, D., & Markopoulos, P. (2015). A review of research methods in end user development.
In Díaz P., Pipek V., Ardito C., Jensen C., Aedo I., Boden A. (Eds.), End-user dev (pp. 58–75).
Springer International Publishing.

Tetteroo, D., Timmermans, A. A., Seelen, H. A., Markopoulos, P. (2014). TagTrainer: supporting
exercise variability and tailoring in technology supported upper limb training. Journal of
NeuroEngineering and Rehabilitation, 11, 140 doi:10.1186/1743-0003-11-140.

Tetteroo, D., Vreugdenhil, P., Grisel, I., Michielsen, M., Kuppens, E., Vanmulken, D., et al.
(2015). Lessons learnt from deploying an end-user development platform for physical rehabi-
litation. In Proc. CHI 2015 (pp. 4133–4142). New York: ACM.

Tsandilas, T., Letondal, C., Mackay, W. E. (2009). Musink: composing music through augmented
drawing. In Proc. CHI 2009 (pp. 819–828). New York: ACM.

Venkatesh, V., Morris, M. G., Davis, G. B., Davis, F. D. (2003). User acceptance of information
technology: toward a unified view. MIS Q, 27, 425–478.

Wong, J., & Hong, J. I. (2007). Making mashups with marmite: towards end-user programming
for the web. In Proc. CHI 2007 (pp. 1435–1444). New York: ACM.

Wulf, V. (1999). “Let’s see your search-tool!”—Collaborative use of tailored artifacts in groupware.
In Proc. GROUP 1999 (pp. 50–59). New York: ACM.

Yin, R. K. (2003). Case study research: design and methods. Thousand Oaks: SAGE
Publications.

2299 EUD Survival “in the Wild” …

http://dx.doi.org/10.1016/j.jvlc.2004.07.001
http://dx.doi.org/10.1007/s10606-009-9096-9
http://dx.doi.org/10.1186/1743-0003-11-140

Toward Theory-Based End-User
Software Engineering

Margaret Burnett, Todd Kulesza, Alannah Oleson, Shannon Ernst,
Laura Beckwith, Jill Cao, William Jernigan and Valentina Grigoreanu

Abstract One area of research in the end-user development area is known as
end-user software engineering (EUSE). Research in EUSE aims to invent new kinds
of technologies that collaborate with end users to improve the quality of their soft-
ware. EUSE has become an active research area since its birth in the early 2000s,
with a large body of literature upon which EUSE researchers can build. However,
building upon these works can be difficult when projects lack connections due to
an absence of cross-cutting foundations to tie them together. In this chapter, we
advocate for stronger theory foundations and show the advantages through three
theory-oriented projects: (1) the Explanatory Debugging approach, to help end users

M. Burnett (✉) · A. Oleson · S. Ernst
Oregon State University, Corvallis, OR, United States
e-mail: burnett@oregonstate.edu

A. Oleson
e-mail: olesona@oregonstate.edu

S. Ernst
e-mail: ernstsh@oregonstate.edu

T. Kulesza · V. Grigoreanu
Microsoft, Redmond, WA, United States
e-mail: todd.kulesza@microsoft.com

V. Grigoreanu
e-mail: valeng@microsoft.com

L. Beckwith
Configit, Copenhagen, Denmark
e-mail: laura.beckwith@gmail.com

J. Cao
comScore, Portland, OR, United States
e-mail: jillchencao@gmail.com

W. Jernigan
GE, Manhattan, KS, United States
e-mail: wdcjernigan@gmail.com

231© Springer International Publishing AG 2017
F. Paternò, V. Wulf (eds.), New Perspectives in End-User Development,
DOI 10.1007/978-3-319-60291-2_10

debug their intelligent assistants; (2) the GenderMag method, which identifies
problems with gender inclusiveness in EUSE tools and other software; and (3) the
Idea Garden approach, to help end users to help themselves in overcoming pro-
gramming barriers. In each of these examples, we show how having a theoretical
foundation facilitated generalizing beyond individual tools to the production of
general methods and principles for other researchers to directly draw upon in their
own works.

Keywords End-user software engineering · theory foundations · theory-oriented
products · EUD research

1 Introduction

Since the first book on end-user development (EUD) (Lieberman, Paterno, & Wulf,
2006), research on EUD has made significant progress. From its early beginnings
focusing mostly on supporting end users’ software development using spreadsheets
and event-based computing paradigms, EUD research has emerged to support end-
user development of web automations, mobile devices, personal information
management systems, business processes, programming home appliance devices,
and even internet-of-things programming. Further, EUD research now spans much
more of the software development lifecycle, supporting not only creating new
programs alone and collaboratively and testing/debugging them, but also designing,
specifying, and reusing them. For a survey of related works, see (Ko et al., 2011).

However, EUD research as a field also has an important shortcoming: it lacks
cross-cutting foundations. Although it is common to ground EUD research efforts
in formative empirical studies so as to understand a particular target group of end-
user developers, this (important) practice still leaves a gap: weak connections
among similar EUD research projects that target different audiences or tasks. This
lack of broad, cross-cutting foundations, in turn, silos our research (Burnett &
Myers, 2014), making it difficult for EUD researchers to build on one anothers’
shoulders in principled ways.

1.1 Theory: What It Is and How It Can Help

This is where theory can help. The essence of theory is generalization through
abstraction – mapping instances of successful approaches to cross-cutting principles.
In the realm of human behavior, these abstractions can then produce explanations of
why some software engineering tools succeed at supporting people’s efforts and
why some tools that were expected to succeed did not.

As Shaw eloquently explains, scientific theory lets technological development
pass previously imposed limits inherent in relying on intuition and experience

232 M. Burnett et al.

(Shaw, 1990). For example, her summary of civil engineering history points out
that structures (buildings, bridges, tunnels, canals) had been built for centuries –
but only by master craftsmen. Not until scientists developed theories of statics and
strength of materials could the composition of forces and bending be tamed.
These theories made possible civil engineering accomplishments that were simply
not possible before, such as the routine design of skyscrapers by ordinary
engineers and architects (Shaw, 1990). In computer science, we have seen the
same phenomenon. Expert developers once built compilers using only their intui-
tions and experiences, but the advent of formal language theory brought tasks like
parser and compiler writing to the level that undergraduate computer science
students now routinely build them in their coursework (Aho, Lam, Sethi, &
Ullman, 2006). In a more recent example, de Souza shows how semiotic theory
can provide a unified theoretical underpinning for the communication aspects of a
wide range of EUD projects (2017).

Opinions differ on exactly what a theory is, but as Sjoberg et al. explain, most
discussions of what a theory is come down to four points: what a theory does,
what its elements are, where they come from, and how they are evaluated
(Sjøberg, Dybå, Anda, & Hannay, 2008). At least five types of theory have been
identified from the perspective of what theory does (Gregor, 2006), but the types
of interest to this chapter are those that explain why something happens, those
that predict what will happen under different conditions, and those that prescribe
how to do something. According to Sjoberg et al., scholars agree that theory’s
basic elements are constructs, relationship, and scope; and theories come to a
given discipline by borrowing them from other disciplines (with or without adap-
tation along the way) or may be generated from scratch within the discipline using
data collected. Sjoberg et al.’s fourth point, how theories are evaluated, brings up
a particularly important point: theories of human behavior, which are the theories
of interest to this chapter, can never be completely “proven” – because we cannot
see inside humans’ heads – but they can be supported or refuted through empirical
evidence.

This chapter advocates for more theory-based research in the end-user develop-
ment domain. Informing EUD research with theories – i.e., being good consumers
of theory – can lead to the kinds of advantages Shaw described. In terms of
Sjoberg et al.’s four points, this chapter is a consumer of theories (1) that
explain, predict, or prescribe; (2) that come from other disciplines; (3) whose con-
structs, relationships, and scope are potentially good fits to end-user development
projects; and (4) are already well supported through significant amounts of empiri-
cal evidence. Further, informing next steps of our research with principles that we
can derive from our results – i.e., being good producers of theory – enables EUD
researchers to build upon one anothers’ findings effectively because the derived
principles identify the new fundamentals of successful results. This chapter
demonstrates this point by deriving prescriptive theories in the form of principles
accompanied by a beginning body of supporting evidence.

23310 Toward Theory-Based End-User Software Engineering

1.2 Overview of This Chapter: Three Examples
of Theory-Based Research

To illustrate EUD research from both a theory-consuming perspective and a
theory-producing perspective, we present theory-oriented views of three of our
recent EUD projects in the area of end-user software engineering.

End-user software engineering (EUSE) is a particular type of EUD research that
focuses on the quality of end-user developed software (Ko et al., 2011). A signifi-
cant challenge in EUSE research is to find ways to incorporate software engineering
activities into users’ existing workflows without requiring people to substantially
change the nature of their work or their priorities. For example, rather than expecting
spreadsheet users to incorporate a testing phase into their programming efforts, tools
can simplify the tracking of successful and failing inputs incrementally, providing
feedback about software quality as the user edits the spreadsheet program.
Approaches like these allow users to stay focused on their primary goals (balancing
their budget, teaching children, recording a television show, making scientific
discoveries, etc.) while still achieving software quality (Ko et al., 2011).

The three EUSE examples in this chapter illustrate how starting with a theory
foundation (being consumers of theory) facilitated our ability to not only chart a
path toward new visions, but also to derive principles to guide others following
similar paths in their own works (being producers of theory).

We will begin with Explanatory Debugging, an approach to enabling end users
without backgrounds in debugging or in computer science to personalize or
“debug” their intelligent assistants. Explanatory Debugging draws mainly upon
Mental Model Theory (Johnson-Laird, 1983). From this foundation, we derived a
set of principles to form a design-oriented theory about how to create EUD tools
that support Explanatory Debugging, instantiated them in a prototype, and used
that prototype to empirically evaluate the principles. The second example we dis-
cuss, Gender HCI, describes a series of theory-based works that originated in the
EUSE domain to investigate how gender differences in problem solving styles
come together with software for problem-solving tasks (such as end-user deve-
lopment tasks). It draws from several theories, most notably Self-Efficacy Theory
(Bandura, 1986) and Information Processing Theory as per Meyers-Levy’s
Selectivity Hypothesis (Meyers-Levy, 1989; Meyers-Levy & Loken, 2015;
Meyers-Levy & Maheswaran, 1991). Finally, we discuss the Idea Garden, an
explanation approach designed to supplement existing end-user development envir-
onments to enable end users who are “stuck” to help themselves to overcome their
barriers. As in the Explanatory Debugging approach, the Idea Garden draws from
theory – here, the primary theory used was Minimalist Learning Theory (Carroll,
1990, 1998; Carroll & Rosson, 1987; van der Meij & Carroll, 1998). From these
foundations, we derived principles to form a design-oriented theory for how to
create Idea Garden tools for EUD environments, instantiated the principles in proto-
types, and used the prototypes to empirically evaluate the principles. The evaluation
of the principles served a dual role: it not only empirically evaluated the principles

234 M. Burnett et al.

themselves, but also evaluated the derivation of the principles (i.e., whether we intro-
duced problems in the course of deriving them from the original theory).

2 Explanatory Debugging

2.1 End Users Personalizing (“Debugging”)
Machine Learning: Foundations

An increasing amount of software includes some form of machine learning, from
facial recognition to personalized search results, document classification, and
media recommendation. Often these learning systems allow users to personalize their
behavior by providing examples (e.g., “I really liked Casablanca, so recommend
more movies like it”) or by placing limits on the system (e.g., “Only recommend
movies in the film noir genre”).

End users change the system’s logic when they personalize it in the above man-
ners, resulting in a software artifact that is now (hopefully) more closely aligned
with the way its end user expects it to behave. We term such changes “debugging”
the system – a form of end-user software engineering – because they are changing
the learning system to make its behavior better match their requirements.

However, debugging learning systems can be difficult, regardless of the mechan-
isms available to debug, because many machine learning systems are complex –
their internal logic is often Byzantine, and may change after (learn from) each user
action. Because of this difficulty, many learning systems do not try to empower end
users to understand or debug them – instead, they act as a “black box” to the user.
For example, such systems usually provide little or no explanation of their predic-
tions. Further, if the system allows any user feedback at all about a prediction, it is
usually limited to users being able to say they disagree with the system’s prediction
or possibly to say what the answer should be. However, users are rarely allowed to
explain why they disagree or what the system should start or stop taking into
account in its reasoning. In contrast, we subscribe to Shneiderman’s viewpoint that,
just as professional software developers need to understand the software they main-
tain and debug, end users likewise need to understand (at least some of) how the
learning system works, and further, must be empowered to fix (debug) the system
so that its behavior becomes more useful to their needs (Shneiderman, 1995).

To investigate how to enable ordinary users to understand such complex systems
as machine learning environments, we turned to the mental model theory of reason-
ing. In this theory, mental models are internal representations that people generate
based on their experiences in the real world. These models, when they are reasonably
accurate, allow people to understand, explain, and predict phenomena, then act
accordingly (Johnson-Laird, 1983). In the context of machine learning systems, rea-
sonably accurate mental models should help users understand why a system is
behaving in a given manner and allow them to predict how it will respond if they
make specific changes to it. Given this foundation, we hypothesized that by being

23510 Toward Theory-Based End-User Software Engineering

able to accurately predict how a learning system will respond to specific adjustments,
a user with a reasonably accurate mental model will be able to debug the system
more successfully than a user whose mental model is flawed.

We explored this hypothesis and investigated the accuracy and malleability of end
users’ mental models through a succession of user studies (Kulesza, Burnett, Wong,
& Stumpf, 2015; Kulesza, Stumpf, Burnett, & Kwan, 2012; Kulesza et al., 2010,
2011; Kulesza, Stumpf, Burnett, & Yang, 2013). Critically, we found that users rarely
have accurate mental models of how common machine learning systems operate, and
that in the absence of explanations, these models do not improve over time through
continued interaction with the system. Even brief explanations, however, were able
to increase the quality of users’ mental models. This increase was often matched by a
corresponding increase in users’ abilities to personalize the learning system to their
satisfaction. Thus, the mental model theory of reasoning helped us identify the
importance of explanations to interactive machine learning systems.

The mental model theory of reasoning also helped direct our research efforts as
we strove to better understand how end users build mental models of machine
learning systems. For example, the theory posits that mental models are “run-
nable,” meaning that people should be able to compare the results of different
actions by “running” their mental model on multiple inputs. This implied that our
research should consider how much and what kind of information end users need
in order to create runnable models, as well as how users might want to use the
insights gained from these models to correct their learning systems.

Our Explanatory Debugging approach for interactive machine learning systems
was born from these foundations. Our formative research found a significant corre-
lation between the quality of a user’s mental model and their ability to control the
learning system as desired, suggesting that the better someone understands the
underlying system, the better they will be able to control it (Kulesza et al., 2012).
Explanatory Debugging is therefore characterized by eight principles: four for
explainability, and four for correctability.

2.2 The Explainability Principles

The first four principles of Explanatory Debugging are intended to enable end
users to build high-quality mental models. They must, however, be carefully
balanced: there is a tension among these four principles, such that increasing some
of them may cause undesirable decreases in others.

Principle 1: Be Iterative
Our formative research suggested that users personalize a learning system best if
they build their mental models while interacting with it (Kulesza et al., 2012),
and therefore that explanations should support an iterative, in situ learning
process. For example, explanations could take the form of concise, easily consum-
able “bites” of information in the context of the system’s recent outputs. Such
incremental, situated ways of explaining can thereby allow more interested users

236 M. Burnett et al.

to incrementally attend to more of these explanations, while still allowing less
interested users to incrementally attend to fewer bite-sized chunks of information,
all in the context of the system’s most recent actions on their behalf.

Principle 2: Be Sound
We use the term soundness to mean the extent to which each component of an
explanation’s content is truthful in describing the underlying system (Kulesza
et al., 2013): does the explanation include “nothing but the truth?” Kulesza et al.
detailed the impact of explanation fidelity on mental model development, finding
that users did not trust – and thus, were less likely to attend to – the least sound
explanations (Kulesza et al., 2013). Thus, because reducing soundness reduces the
likelihood that users will invest attention toward it, Explanatory Debugging
requires designing explanations that are as sound as practically possible.

One method for evaluating explanation soundness is to compare the explanation
with the learning system’s mathematical model. For each of the model’s terms that
are included in the explanation, how accurately is it explained? If those terms are
derived from more complex terms, is the user able to “drill down” to understand
those additional terms? The more accurately these explanations reflect the underlying
model, the more sound the explanation is.

Principle 3: Be Complete
Completeness is a complement to soundness, and describes the extent to which all
of the underlying system is included in the explanation: does it explain “the whole
truth?” Thus, a complete explanation does not omit important information about
the model. In our formative research, we found that end users built the best mental
models when they had access to the most complete explanations, which informed
them of all the information the learning system had at its disposal and how it used
that information (Kulesza et al., 2013). Also pertinent is work showing that users
often struggle to understand how different parts of the system interact with each
other (Kulesza et al., 2011). Complete explanations that reveal how different parts
of the system are interconnected may help users overcome this barrier.

One method for evaluating completeness is via Lim and Dey’s intelligibility
types (2009); a more complete explanation system will cover more of these intel-
ligibility types than a less complete system.

Principle 4: Don’t Overwhelm
Balanced against the soundness and completeness principles is the need to remain
comprehensible and to engage user attention. Achieving this goal while maintain-
ing reasonably high soundness and completeness is still an underexplored pro-
blem, but the following approaches provide several starting points.

Findings from (Kulesza et al., 2013) suggest that one way to engage user atten-
tion is to frame explanations concretely, such as referencing the predicted item
and any evidence the learning system employed in its prediction. In some circum-
stances, selecting a more comprehensible machine learning model may also be
appropriate. For example, a neural network can be explained as if it were a

23710 Toward Theory-Based End-User Software Engineering

decision tree (Craven & Shavlik, 1997), but this reduces soundness because a dif-
ferent model is explained, and may in turn require an additional explanation of the
differences between the two models. Similarly, a model with 10,000 features can
be explained as if it only used the 10 most discriminative features for each predic-
tion, but this reduces completeness by omitting information that the model uses.
Still, when the differences in outcome are small, the omissions may not be proble-
matic. Alternative approaches that embody the Explanatory Debugging principles
include selecting a machine learning model that can be explained with little
abstraction (e.g., Lacave & Díez, 2002, Stumpf et al., 2009, Szafron, Greiner, Lu,
& Wishart, 2003) or using feature selection techniques (Yang & Pedersen, 1997)
in high-dimensionality domains to prevent users from struggling to identify which
features to adjust (as happened in Kulesza et al., 2011).

2.3 The Correctability Principles

Given an appropriate mental model, we posited that users would be able to correct a
learning system that has somehow gone awry, such as by having not enough data or
having received skewed data. To empower them to do this, we added four correct-
ability principles to our Explanatory Debugging approach; these four correctability
principles are interdependent on the four explainability principles. In other words,
besides informing correctability itself, the correctability principles also reinforce –
and even suggest mechanisms helpful to – instantiating the explainability principles.

Besides the mental model theory of reasoning, two additional theoretical
foundations were prominent in informing correctability. The first was the
attention-investment model (Blackwell, 2002), which posits that users will invest
their attention toward something (e.g., learning a little bit more about a specific
machine learning system) if they expect their benefits (e.g., time saved through
better recommendations or predictions) to be greater than the costs and risks
(e.g., time, effort, or potential lack of payoff) of investing their attention. This
model helped us shape an interactive paradigm in which users immediately see
the benefits of their feedback, with the intent of encouraging further interaction.
Minimalist learning theory (to be more fully introduced in Sect. 4.1) also
informed our approach, especially as it relates to helping users learn and work
with a concept in-situ (van der Meji & Carroll, 1998). (Both of these foundations
were also useful in informing Explainability Principle 1.)

Principle 5: Be Actionable
Both theory (Blackwell, 2002) and prior empirical findings (Bunt, Lount, & Lauzon,
2012; Kulesza et al., 2012, 2013) suggest that end users will ignore explanations
when the benefit of attending to them is unclear. By making explanations actionable,
we hoped to lower users’ perceived (and actual) cost of attending to them by obviat-
ing the need to transfer knowledge from one part of the user interface (the explana-
tion) to another (the feedback mechanism). Actionable explanations also fulfill three

238 M. Burnett et al.

aspects of minimalist learning (van der Meji & Carroll, 1998): (1) people are learn-
ing while performing real work; (2) the explanatory material is tightly coupled to the
system’s current state; and (3) people can leverage their existing knowledge by
adjusting the explanation to match their own mental reasoning.

Principle 6: Be Reversible
A risk inherent in enabling users to provide feedback to a machine learning
system is that they may actually make its predictions worse (e.g., Kulesza et al.,
2010, Stumpf et al., 2009). Being able to easily reverse a harmful action can help
mitigate that risk, which is especially important to the risk component of the atten-
tion investment model. Reversibility may also encourage self-directed exploration
and tinkering, which can facilitate learning (Rowe, 1973). When combined with
Principle 8, reversibility also fulfills a fourth aspect of minimalist learning (van
der Meji & Carroll, 1998): helping people identify and recover from errors.

Principle 7: Always Honor User Feedback
As Yang and Newman found when studying users of smart home thermostat sys-
tems (which learn from their users to predictively adjust the home’s temperature)
(Yang & Newman, 2013), a system that appears to disregard user feedback deters
users from continuing to provide feedback. However, methods for honoring user
feedback are not always straightforward. Handling user feedback over time (e.g.,
what if new instance-based feedback1 contradicts old instance-based feedback?)
and balancing different types of feedback (e.g., instance-based feedback versus
feature-based feedback2) requires careful consideration of how the user’s feedback
will be integrated into the learning system.

Principle 8: Incremental Changes Matter
In our formative work (Kulesza et al., 2013), participants claimed they would
attend to explanations only if doing so would enable them to more successfully
control the learning system’s predictions, a result predicted by the attention-
investment model. Thus, continued user interaction likely depends on users being
able to see the incremental effects their feedback has had on the learning system’s
reasoning immediately after each interaction. (This is an example of closing
Norman’s gulf of evaluation – enabling the user to see the results of their last
action to interpret the state of the system, so as to evaluate how well their expecta-
tions and intentions were met (Norman, 2002)). This principle is also related to
Principle 1 (Be iterative) because our thesis is that users will develop better mental

1Instance-based feedback, also known as label-based feedback, is when a user tells a machine
learning system what a specific item’s predication label should be. A common example is telling
a junk mail filter that a specific email message is (or is not) SPAM.
2Feature-based feedback is when the user tells a machine learning system which particular
features of the data (e.g., which words or fields of email messages) it should or should not use in
its reasoning. One example would be a user telling a junk mail filter that every message from a
specific email address should always go to the junk folder.

23910 Toward Theory-Based End-User Software Engineering

models iteratively, requiring many interactions with the learning system. These
interactions may not always result in large, obvious effects, so being able to com-
municate even small, incremental effects a user’s feedback has had upon a learning
system may be critical to Explanatory Debugging’s feasibility.

2.4 EluciDebug: A Prototype of Explanatory
Debugging in Action

To evaluate the Explanatory Debugging approach’s viability with end users, we
prototyped it in the context of text classification. We designed a prototype, which
we call EluciDebug, to look like an email program with multiple folders, each
representing a particular topic (Fig. 1). The prototype’s machine learning compo-
nent attempts to automatically classify new messages into the appropriate folder.

To support Explanatory Debugging’s Soundness and Completeness principles
(Principles 2 and 3), we designed our EluciDebug explanations to detail all of the
information the classifier could potentially use when making predictions (comple-
teness) and to accurately describe how this information is used (soundness). For
example, the explanation shown in Fig. 2 tells users that both feature presence and
folder size played a role in each prediction. The explanation shown in Fig. 3
builds on this, telling the user all of the features the classifier knows about and
may use in its predictions. To make clear to users that these features can occur in

a b c d

fe

Fig. 1 The EluciDebug prototype. (A) List of folders. (B) List of messages in the selected
folder. (C) The selected message. (D) Explanation of the selected message’s predicted folder.
(E) Overview of which messages contain the selected word. (F) Complete list of words the learning
system uses to make predictions

240 M. Burnett et al.

all parts of the document – message body, subject line, and sender – EluciDebug
highlights features in the context of each message (Fig. 1, part C).

The Why explanation (Fig. 2), which was inspired in part by the WhyLine for
end-user debugging (Ko & Myers, 2004), is a concrete explanation and includes
only information that was used for the selected prediction. This brevity is inten-
tional; as per Principle 1, it is intended to be consumed iteratively, with users
learning more about the overall system as they attend to more Why explanations.
Such a design also supports Principle 4 by reducing the amount of information
continuously shown to end users, to avoid overwhelming them with details that
they may not (yet) care about.

Fig. 2 The Why explanation tells users how features and folder size were used to predict each
message’s topic. This figure is a close-up of Fig. 1 part D

24110 Toward Theory-Based End-User Software Engineering

The Important words explanation (Fig. 3) is the primary actionable explana-
tion in EluciDebug (Principle 5). Users can add words to – and remove words
from – this explanation, which in turn will add those words to (or remove them
from) the machine learning model’s feature set. Users are also able to adjust the
importance of each word in the explanation by dragging the word’s bar higher
(to make it more important) or lower (to make it less important), which then
alters the corresponding feature’s weight in the learning model. As described in
(Kulesza et al., 2015), EluciDebug incorporates these corrections into its classi-
fier in such a way that the user’s feedback is always honored (Principle 7).

Finally, EluciDebug incorporates infinite undo functionality to allow the user to
retrace their steps as far back as they like (Principle 6), and highlights recent
changes to the classifier’s predictions and certainty levels (Principle 8). The latter
is especially important for motivation, because a single user correction often will
not cause a classifier’s predictions to change; instead, the classifier’s certainty in
predictions will shift, becoming either more or less certain. By observing these
certainty changes, users can see how the system is honoring their feedback and
can identify whether it is moving in the right or wrong direction.

2.5 Evaluation

We conducted an empirical evaluation to learn whether the Explanatory
Debugging principles, as instantiated in the EluciDebug prototype, would indeed
enable users to effectively and efficiently “debug” a machine learning system. The
full details of our experiment design and procedures are enumerated in (Kulesza
et al., 2015), but we present a brief summary of the results below to highlight the
outcomes achievable by grounding EUSE research in theory.

Overall, Explanatory Debugging’s cycle of explanations – from the learning
system to the user, and from the user back to the system – resulted in smarter users

baseball

Im
p
o
rt

a
n
c
e

bill canadian dave david hockey player players

Fig. 3 The Important words explanation tells users all of the features the classifier is aware of,
and also lets users add, remove, and adjust these features. Each topic is color-coded (here, the
left, blue bar in a pair for hockey and right, green bar for baseball) with the difference in bar
heights reflecting the difference in the word’s probability with respect to each topic (e.g., the
word canadian is roughly twice as likely to appear in a document about hockey as one about
baseball, while the word player is about equally likely to appear in either topic). This figure is an
excerpt from Fig. 1 part F

242 M. Burnett et al.

and smarter learning systems. For example, treatment participants (i.e., those using
the Explanatory Debugging prototype) understood how the learning system oper-
ated about 50% better than control participants using a traditional learning system
that lacked actionable explanations (Fig. 4). Further, this improvement correlated
with the F1 scores of participants’ classifier accuracy (ρ[75] = .282, p = .013),
which were significantly more accurate (given the same number of corrections) for
EluciDebug participants than for control participants (Fig. 5). Finally, participants
liked Explanatory Debugging, rating EluciDebug significantly better than the con-
trol group and responding enthusiastically to the system’s explanations.

We attribute these positive outcomes to Explanatory Debugging’s strong theo-
retical foundations. The psychological theories of how people learn, understand,
and invest their attention when working with interactive systems provided us the
guidance to stay on an efficient research track. This guidance not only foretold our
promising results, but enabled us to avoid false starts in wrong directions that
might have later needed to be discarded and redone. For example, the mental
model theory of reasoning guided our approach to enable ordinary end users to
understand a fairly complex machine learning system. The attention investment
and minimalist learning models combined with the mental model foundation to
guide our research toward the correctability principles.

Finally, these theoretical foundations enabled us to think about Explanatory
Debugging at the level of principles rather than systems and UI widgets, so that
future approaches for different systems and situations can still leverage them. We
hope that others will build upon these principles for interactive machine learning
to further advance the state of the art in producing more controllable and satisfying
experiences for end users than traditional machine learning systems, enabling
ordinary end users to gain the most benefit from the learning systems on which
they increasingly depend.

0.0

10.0

20.0

Control Treatment

M
e
n
ta

l
m

o
d
e
l
s
c
o
re

Fig. 4 Participants who used
EluciDebug for 30 minutes
learned approximately 50%
more about how the classifier
worked than control
participants

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90 100

F
1
 s

c
o
re

of corrections

Fig. 5 Corrections provided
by participants using
EluciDebug (light orange)
resulted in significantly more
accurate classifiers than the
same number of corrections
provided by control partici-
pants (dark blue)

24310 Toward Theory-Based End-User Software Engineering

3 Gender HCI and GenderMag

In the Gender HCI project, our path toward improving EUSE systems again began
with theories, then moved to an iterative series of refinements and applications of
the theories, and ultimately produced a general method that we call GenderMag.
The overall project goals were (1) to investigate whether gender differences
reported in social science domains, such as psychology and education, applied to
EUSE tools; and when the importance of these differences became clear, (2) to
develop a theory-based method that would enable creators of EUSE environments
and tools to identify features in their software that were not gender-inclusive.

Toward these ends, we built on social science theories using the research
paradigm presented in Fig. 6. We began with social science literature containing the-
ories potentially applicable to gender differences in how people problem-solve with
computers. We then derived hypotheses about what these theories might predict in
EUSE situations and empirically tested these hypotheses in controlled laboratory
studies. Using the results of these studies to guide our designs, we prototyped new
features in our EUSE tools and again evaluated them empirically, keeping in mind the
foundational theories, and decided whether the EUSE setting required further potential
refinements. The highly iterative process then began again with refined theories.

We illustrate this paradigm using two of the theories that strongly influenced
the Gender HCI project: self-efficacy theory and information processing theory.

3.1 A GenderMag Foundation: Self-Efficacy Theory

Self-efficacy is a person’s belief that they can succeed at a specific task (Bandura,
1986). It is a form of self-confidence specific to a situation or task; for example,
someone may have high bike-riding self-efficacy and low computer self-efficacy.
According to this theory, someone with high self-efficacy who encounters
problems will persist through adversity, such as by trying different approaches and
strategies to overcome the problems. In contrast, someone with low self-efficacy is
more likely to stay with faulty approaches and strategies and to experience high
levels of self-doubt. As a result, low self-efficacy individuals are often unsuccess-
ful in their tasks, leading to lower and lower self-efficacy in an unfortunate

Derive

Evaluate

Prototype
Redesign

Results

Hypotheses

Refine,
test,

understand

Theories

Fig. 6 The Gender HCI
project’s iterative research
paradigm

244 M. Burnett et al.

feedback loop. Research shows that self-efficacy is particularly important when it
comes to challenging tasks and is a reasonably accurate predictor of success and
behavior in such situations (Bandura, 1986).

Computer self-efficacy is a person’s belief about their capabilities to use
computers in a variety of situations (Compeau & Higgins, 1995). Previous studies
have found that females statistically have lower computer self-efficacy than males.
This holds true across a number of computing situations, from females majoring
in computer science to female end users (Appel, Kronberger, & Aronson, 2011;
Beyer, Rynes, Perrault, Hay, & Haller, 2003; Huffman, Whetton, & Huffman,
2013; Luger, 2014). Research has also reported females having lower computer
self-efficacy even when objective measures show them to be just as competent at
completing the task as males (Hargittai & Shafer, 2006).

Our own investigations of how self-efficacy relates to gender differences with
debugging and programming tools also showed that females often had lower
computer self-efficacy than males. More important, their low self-efficacy was tied
to the way females used software features (Burnett et al., 2011, Hartzel, 2003). For
example, females’ self-efficacies were predictive of their successful use of debug-
ging tools – even though there was no predictive relationship for males (Beckwith
et al., 2005, Beckwith, Burnett, Wiedenbeck, Grigoreanua, & Wiedenbeck, 2006).
Females were also (statistically) less willing to engage with or explore novel debug-
ging features – despite these features being tied to improved debugging performance
by both females and males (Beckwith et al., 2006, Beckwith, Inman, Rector, &
Burnett, 2007). Further, Subrahmaniyan et al. showed that females used different
features and used features differently than males (2008). Finally, the features most
conducive to females’ successes were features that are not commonly found in
EUSE environments (Subrahmaniyan et al., 2008).

Informed by self-efficacy theory and in light of the above empirical results, we
devised two new features to add to our EUSE prototype. The previous prototype,
a spreadsheet system, had a testing feature, in which users could “check off” any
spreadsheet cell value that they decided was right, or “X out” any spreadsheet cell
value they decided was wrong. Based on a hypothesis that the previous “it’s right”
and “it’s wrong” checkmark and X in the spreadsheet cells might seem like a
stronger statement than low self-efficacy users would feel comfortable making, we
introduced “seems right maybe” and “seems wrong maybe” options to the check
box widget in each spreadsheet cell (Fig. 7). The intention of this change was to
communicate the idea that a user didn’t have to be confident about a testing deci-
sion in order to be “qualified” to make judgements (Grigoreanu et al., 2008).

Fig. 7 Clicking on the
checkbox turns it into four
choices whose tool tips say
“it’s wrong,” “seems wrong
maybe,” “seems right
maybe,” “it’s right.” Our
decision to add this feature to
the prototype was based on
self-efficacy theory

24510 Toward Theory-Based End-User Software Engineering

The second feature we introduced to the prototype was to add strategy explana-
tions in two formats: short video snippets and equivalent hypertext content (Fig. 8).
The original prototype had included only feature-oriented tooltips to explain the
system’s functionalities. Our addition of video snippets was informed by work with
the “vicarious experience” source of self-efficacy, which is self-efficacy based on
watching someone similar to the user perform the task (Bandura, 1977; Zeldin &
Pajares, 2000). In each video snippet, the female debugger works on a debugging
problem, and a male debugger, referring to the spreadsheet, converses with her
about strategy ideas (Grigoreanu et al., 2008), ultimately ending in the female suc-
ceeding. The hyperlink contained the same information as the video and was offered

Fig. 8 (Top): 1-minute video
snippets. (Bottom): Hypertext
version. As with Fig. 7, our
decision to add these features
to the prototype was based on
self-efficacy theory

246 M. Burnett et al.

as an option for those who don’t learn best pictorially, or who want to quickly scan
to a particular part of the information as a time saver.

With the addition of these new features, both females’ and males’ (but especially
females’) usage of testing/debugging features increased, which translated into testing
and debugging improvements. Females’ confidence levels also improved to an
appropriate level – where their self-judgments were roughly appropriate indicators
of their actual ability levels. Males’ confidence levels had already been appropriate
indicators of their abilities, and remained so. Females’ and males’ (but especially
females’) post-session verbalizations showed that their attitudes toward the software
environment were significantly more positive. Note that the gains for females came
without disadvantaging the males, and, in fact, usually ended up helping them as
well (Grigoreanu et al., 2008).

3.2 A GenderMag Foundation: Information Processing Theory

Another theory that has strongly influenced our gender investigations is the
Selectivity Hypothesis of information processing styles (Meyers-Levy, 1989;
Meyers-Levy & Maheswaran, 1991; Meyers-Levy & Loken, 2015). This theory
proposes that males process information in a selective manner, attending to highly
available and salient cues and then acting, whereas females process information in a
comprehensive manner, gathering as much information from all available cues as
possible to develop a full picture of the issue before acting. The theory also claims
that males and females categorize and classify information into categories differently,
with females creating more categories than males, and placing statements with con-
ceptual similarity into these categories in more consistent ways than males (Meyers-
Levy, 1989; Meyers-Levy & Loken, 2015; Meyers-Levy & Maheswaran, 1991).

We hypothesized that someone’s information processing style should affect the
way they approach a problem in the realm of debugging. Indeed, our studies have
shown this link. For example, females tended to process information comprehen-
sively using code inspection to get a relatively complete picture of the problem.
This strategy often resulted in success for female participants. On the other hand,
males had more success using dataflow and following particular dependencies one
at a time, which coincides with selective information processing (Grigoreanu
et al., 2009; Subrahmaniyan et al., 2008).

A close-up look at the most successful female participant and the most successful
male participant from one of our studies helps to illustrate these distinct information
processing styles. In (Grigoreanu et al., 2012), we investigated how male and female
end users made sense of spreadsheet correctness when debugging. Participants were
given 45 minutes to decide whether a (flawed) spreadsheet was correct, and, if it
wasn’t, to fix it.

The most successful female demonstrated the comprehensive information pro-
cessing style, gathering a lot of information before taking fix action(s) (stars above
the graph in Fig. 9), which often occurred in bursts. The lengths of her bursts of

24710 Toward Theory-Based End-User Software Engineering

information gathering are indicated by the superimposed horizontal arrows. In all
cases her fixes were successful, indicated on the graph by all the stars being filled
in. This burst-y style, during which she spent a burst of time gathering a large
batch of information and then acted upon that batch in a burst of activity, is con-
sistent with a comprehensive style of information processing.

This strategy generally worked well for our female participant, but it had a
downside as well. In times of uncertainty, the successful female would continue
gathering information even though it did not yield results, as evident in Fig. 9
where she sometimes did not emerge from the information gathering stages for
long periods of time. This resulted in her noticing bugs while foraging but not
marking them or fixing them at the time, so she sometimes forgot to fix them.

In contrast to the female’s style, the successful male’s style was a classic exam-
ple of selective processing. In fact, his maximum time spent gathering information
(about 5 minutes in the graph) was less than the successful female’s minimum
time spent on gathering information. Instead, he iterated tightly between gathering
a little information and trying out a fix. As Fig. 9 shows with hollow stars, many
of his attempted fixes were unsuccessful, but he often realized that and went back
to gather a little more information and then try again.

As with the female’s use of her comprehensive processing strategy, our male
participant’s selective processing strategy worked well for him, but also had a
downside. He fixated on one bug and focused on only that bug until it was fixed.
This cost him time and also discouraged him from fixing or identifying other bugs
that he came across while working on his target bug.

0
Sh
EF
Sc
H
P
R

5 10 15 20 25 30 35 40 45

0
Sh
EF
Sc
H
P

Female

Male

R

5 10 15 20 25 30 35 40 45

Fig. 9 Two end-user developers’ information processing activities while debugging a spread-
sheet over about 45 minutes. The bottom three rows of each graph (green, yellow, and orange)
are information gathering activities, and the top three rows (red, pink, and blue) are acting upon
that information. (Top graph): The most successful male participant. (Bottom graph): The most
successful female participant

248 M. Burnett et al.

In total, the two participants fixed the same number of bugs. (The number of
filled-in stars shows one extra for the male because he also implanted a new bug
along the way that he also had to fix.) As these two participants illustrate, both
styles have advantages and disadvantages, but can lead people differently to equal
levels of success.

Insights into these information processing styles are then reasonably prescrip-
tive: they suggest that an EUSE tool should support both styles. In Sect. 4, one
example of how to do this will be seen in Table 2, in which expandable tooltips
are used to support this diversity of information processing styles.

3.3 GenderMag: A Theory-to-Practice Method

We have used foundations like those mentioned above to develop a practical
method for evaluating software features for gender inclusiveness issues. We call it
GenderMag (Gender-Inclusiveness Magnifier) (Burnett et al., 2016).

3.3.1 The GenderMag Method

GenderMag is based on five theory-based facets of individual differences that sta-
tistically cluster according to gender. The five facets are: motivation, information
processing, computer self-efficacy, risk-aversion, and tinkering. We discussed two
of them (self-efficacy and information processing) above, and a discussion of all
five facets can be found in (Burnett et al., 2016). Our criteria for selecting these
particular five facets were that (1) they had been extensively researched in prior
literature, (2) they were usable for ordinary software developers or UX designers
without needing backgrounds in gender research, and (3) they had implications for
software usage in problem-solving situations. We conducted several formative stu-
dies, a lab study, and a field study to ensure that the facets satisfied these criteria
(Burnett et al., 2016, Burnett, Peters, Hill, & Elarief, 2016).

These facets are embedded in a set of four personas to bring them to life: Tim,
Abby, Pat(ricia), and Pat(rick). Personas are archetypes of particular user groups of
interest (Marsden, 2014; Turner & Turner, 2011). Thus, in our case, each persona
captures facets of individual differences that statistically cluster by gender. The Tim
persona has facet values that were most frequently seen in males across numerous
studies, and Abby’s facet values are those least frequently seen in males while still
occurring frequently in females. Most of Pat(ricia)’s and Pat(rick)’s facet values
are “between” Tim’s and Abby’s values. The only difference between the two Pat
personas is their gender, to reinforce the point that the road to gender inclusiveness
lies not in a person’s gender identity, but in the facet values themselves.

As a concrete example, Fig. 10 demonstrates a portion of the data behind the
Motivation facet values of each persona. As with all the facets, motivation is
backed by multiple studies, but for simplicity of presentation, only one of them is

24910 Toward Theory-Based End-User Software Engineering

illustrated in the figure (Burnett et al., 2010). In that study, about 2/3 of males and
1/3 of females were motivated by exploring next-generation technology (covered
by Tim), and about 1/5 of both males and females felt neutral about it (covered by
the two Pats). The largest percentage of females and smallest percentage of males
did not enjoy exploring next-generation technology (covered by Abby). Fig. 11
shows the persona side of such mappings, with text snippets of how another facet,
self-efficacy, maps to each persona.

GenderMag intertwines these personas with a specialized Cognitive Walkthrough
(CW). The CW is a long-standing inspection method for identifying usability issues
for users new to a system or feature (Wharton, Rieman, Lewis, & Polson, 1994).
We based the GenderMag CW on a streamlined version of the CW (Spencer, 2000)
and further streamlined from there to increase the method’s practicality.

More important, we embedded mentions of the personas and the appropriate
facets to consider in each CW questions. Our reason for mentioning the personas
was to address the problem of evaluators thinking about the way they would respond
to the interface, not the way the persona would respond. (Some researchers term this
unfortunate tendency that evaluators sometimes have as the “I methodology.”) Our

Tim 68% Pat
Abby

41%

10%

NoNeutral

22%

37%

Yes

22%

Fig. 10 A portion of the empirical foundations behind the personas’ Motivation facet values
(see text)

Computer Self-Efficacy: Abby has ... low self-

confidence in performing computing tasks other than

the ones she is familiar with..

Computer Self-Efficacy: Tim is very confident ...

with technology ... doesn’t give up ... he will spend

hours ... not his fault if he can’t get it ...

Computer Self-Efficacy: Pat has ... some self-

confidence in ... computing tasks doesn’t give up

right away ...

Fig. 11 The self-efficacy portions of Abby, Tim, and the two Pats, drawn from self-efficacy and
empirical data (Burnett et al., 2016) (see text)

250 M. Burnett et al.

reason for embedding the facets in the questions was to keep evaluators focused on
the five facet values, instead of falling back on their own biases and stereotypes.

3.3.2 Evaluation: GenderMag in the Field

GenderMag has just started being used in the field, but it has already produced
encouraging and rather surprising results.

More specifically, we recently conducted a field study of four software teams
in U.S. technology organizations who used GenderMag to evaluate their own soft-
ware for gender-inclusiveness issues (Burnett et al., 2016). Their software spanned
a range of types and maturity levels, and evaluation team members spanned a
range of job titles, including software developers, UX researchers, computer
science researchers, and software managers.

Despite these differences, the results consistently showed that all teams found
gender-inclusiveness issues in their software. Most issues were those that would
disproportionately affect users in the group represented by Abby, but one team
also uncovered an issue that would disproportionately affect users in the group
represented by Tim. (This field study occurred before the Pat personas had been
released.) On average, the teams turned up gender-inclusiveness issues in 25% of
the software features they evaluated (Fig. 12). In many cases, these issues had
gone unnoticed for months or even years.

All the teams found the method to be useful. Agency G’s two teams (GB and
GS) found four issues that they deemed important enough to pursue fixing, even
though their software had been in maintenance status for years. Team E fixed three
issues right away, and Team W convinced the software’s designers to fix three
issues. Teams GB, GS, and W also made longer-term follow-up plans involving
GenderMag. Perhaps most important, all of the teams ultimately realized that for
software to be gender-inclusive, it needs to support a range of facet values, not
just facet values matching the designers’ own personal styles. In essence, they

0%
Team GB

14% 22%

33%

29%
25%

60%
39% 30%

56%

Team GS Company
E

Company
W

Average

50%

100%

Fig. 12 Issues each team found as a percentage of the number of user actions and subgoals eval-
uated (Burnett et al., 2016). Dark blue: gender-inclusiveness issues. Light gray: other issues

25110 Toward Theory-Based End-User Software Engineering

realized that gender inclusiveness is not about sorting people into gender bins–it is
about supporting the entire range of facet values (Burnett et al., 2016).

4 The Idea Garden

Our third example is the Idea Garden, a theory-based approach we developed to
support end users’ problem-solving during programming and debugging.
Evidence abounds that, despite advances in EUSE environments and tools, users
continue to encounter programming barriers. For example, Ko et al. identified six
learning barriers faced by end users in using Visual Basic (Ko, Myers, & Aung,
2004). In the realm of spreadsheets, Chambers and Scaffidi found that spreadsheet
users face barriers similar to those faced by Visual Basic learners as identified by
Ko et al. (Chambers & Scaffidi, 2010). Our own research found the same barriers
in other end-user programming platforms as well, such as CoScripter and Gidget
(Cao, Fleming, & Burnett, 2011; Lee et al., 2014).

To help end users overcome barriers like these, the Idea Garden aims to help
end users generate new ideas and problem-solve in a self-directed way. This goal
contrasts with approaches that aim to remove such barriers. For example, we do
not seek to change the programming language to make it simpler or more natural
(Blackwell & Hague, 2001; Kelleher & Pausch, 2006; Myers, Pane, & Ko, 2004;
Little et al., 2007), do not seek to automatically eliminate or solve problems for
the user (Ennals, Brewer, Garofalakis, Shadle, & Gandhi, 2007; Hartmann,
MacDougall, Brandt, & Klemmer, 2010; Lin, Wong, Nichols, Cypher, & Lau,
2009; Little et al., 2007; Miller et al., 2010; Repenning & Ioannidou, 2008), and
do not seek to delegate programming responsibilities to someone other than the
end users themselves (Brandt, Dontcheva, Weskamp, & Klemmer, 2010; Oney &
Myers, 2009). Rather, we seek to help end users generate their own ideas to over-
come the programming barriers they do encounter.

4.1 The Idea Garden’s Foundations

Toward that end, we followed a theory-based approach to devise the Idea Garden.
The principle theoretical foundation behind the Idea Garden is minimalist learning
theory (Carroll, 1990, 1998; Carroll & Rosson, 1987; van der Meij & Carroll,
1998). Rooted in the constructivism of Bruner and Piaget, minimalist learning the-
ory (MLT) is an education theory that explains how (and why) to design instruc-
tional materials for end users: the theory terms people like this “active” computer
users. Active computer users are those whose primary motivation is to do some
computer-based task of their own, not particularly to learn computing skills.
Active users are so focused on the task at hand that they are often unwilling to
invest time in taking tutorials, reading documentation, or using other training
materials – even if such an investment would be rational in the long term. Helping

252 M. Burnett et al.

users who face this paradox learn despite their lack of interest in learning per se is
the goal of MLT. This theory is especially suited to the design of the Idea Garden
features because the Idea Garden aims to help end users generate new ideas while
they are working on their own, self-directed programming tasks.

MLT suggests several design principles that lend themselves to effective learn-
ing activities for active users. The Idea Garden follows these guidelines in the fol-
lowing ways:

(MLT-1) Permit self-directed reasoning: The Idea Garden suggests strategy alterna-
tives and provides (intentionally) incomplete hints, all of which require the user to
actively reason and problem solve in order to make substantive progress on the
task at hand (as opposed to simply giving them the solution). The parts that are not
problem-specific are “correct” in that they apply regardless of the granular details
of the user’s task. The incomplete parts of hints are so specific that they are unli-
kely to be exactly what the user needs and must be adapted to the user’s specific
problem or barrier. In addition, the Idea Garden uses negotiated-style interruptions,
which inform users of pending messages but do not force them to acknowledge
the messages (McFarlane, 2002). This allows users to decide for themselves
whether to read and consider the messages, permitting self-directed reasoning.
This interruption style contrasts with assertive instructional agents that violate
users’ self-directedness with immediate-style interruptions, such as Microsoft
Office’s paperclip (“Clippy”), which hijack the user’s attention (McFarlane, 2002).
Negotiated-style interruptions have been shown to be superior to immediate-style
interruptions in end-user debugging situations (Robertson et al., 2004).

(MLT-2) Be meaningful and self-contained and (MLT-3) Provide realistic tasks
early on: In the Idea Garden, hints are task-oriented, and many of them are clo-
sely coupled with the user’s context. To follow MLT-2, hints are generally tied
to tasks that the user has already chosen to initiate with the goal of giving
meaning, value, and realism. Hints also uphold MLT-3 using examples of tasks
that the user is likely to be working on or may have performed in the past.

(MLT-4) Be closely linked to the actual system: The Idea Garden is a layer on top of a
host environment. The Idea Garden can be a layer on any end-user programming
environment that allows the Idea Garden to: retrieve the user’s data and code as it
appears to the user (i.e., on the screen) and as it appears to the machine (i.e., after
parsing); change the user’s code (e.g., by inserting constants or lines of code); and
annotate the programming environment and/or user’s code with interactive widgets
(e.g., tooltips, buttons, graphics, or font changes). Many programming environ-
ments, including Excel, CoScripter, Gidget, and Cloud9, satisfy these constraints,
providing pluggable architectures into which Idea Garden features can be added
(Cao et al., 2010, 2011; Jernigan et al., 2015, 2017; Loksa et al., 2016).

(MLT-5) Provide for error recognition and recovery: The Idea Garden is not
intended to replace the programming environment’s native error recovery system,
so it leaves most of the detection of and recovery from errors to the host environ-
ment itself. Rather, the Idea Garden adds onto its host programming environment,
expanding whatever help systems and error supports the host provides.

25310 Toward Theory-Based End-User Software Engineering

Using the MLT principles as our foundation, we define the Idea Garden as
(Cao, Fleming, Burnett, & Scaffidi, 2014):

(Host) A subsystem that extends a “host” end-user programming environment to
provide hints that…

(Theory) follow the 5 MLT principles (MLT-1 through MLT-5) and…
(Content/Presentation) non-authoritatively give intentionally imperfect guidance

about problem-solving strategies, programming concepts, and design patterns,
via negotiated interruptions.

(Implementation) In addition, the hints are presented via host-independent templates
that are informed by host-dependent information about the user’s task and progress.

4.2 The Idea Garden in Action

We have implemented the Idea Garden in three host programming environments:
CoScripter (Cao et al., 2010, 2011), Gidget (Jernigan et al., 2015, 2017), and
Cloud9 (Jernigan et al., 2017; Loksa et al., 2016). Although each version looks
different, all follow the Idea Garden definition and MLT guidelines we have just
presented. In the next subsections, we show examples of ways the five MLT
guidelines can be instantiated, using these implementations.

4.2.1 CoScripter

The first environment in which we prototyped the Idea Garden was CoScripter, an
end-user programming-by-demonstration environment for web scripting (Cao
et al., 2010, 2011; Lin et al., 2009). Users demonstrate to CoScripter how they
would carry out a task on the web by actually performing the task themselves.
The system watches and translates users’ actions into a script that they can later
execute to perform the same task again, or can generalize to perform the task in a
variety of situations. When working on these scripts, users can turn to Idea
Garden hints if they get “stuck.”

Recall that, to stay in accordance with MLT-1, Idea Garden hints have both
“correct” and “incomplete” parts. Fig. 13 demonstrates with a representative hint
from the CoScripter prototype. The “correct” part suggests using a repeat statement to
iterate over cells in a column rather than addressing each cell as a separate case. The
“incomplete” part gives a specific example of using this strategy that does not directly
solve the user’s problem, but that the user can use as a model for the correct solution.

The hint shown in Fig. 13 also demonstrates how the Idea Garden supports
MLT-2, MLT-3, and MLT-4 as follows. The hint example started as a “repeat”
template, then plugged in URLs (“http://maps.google.com/”), cell references
(“‘Address’ column of row 1”), and widgets (“the first button”) from the user’s
own code. This content’s concrete connections to the user’s own task are to fulfill
the “meaningful” aspect of MLT-2 and also the “realistic task” aspect of MLT-3.
In addition, the hint’s example does not require background knowledge of the user

254 M. Burnett et al.

http://maps.google.com/

beyond common copy/paste editing operations and programming constructs they
have already used, thereby adhering to the “self-contained” aspect of MLT-2.

4.2.2 Gidget

Gidget, an online puzzle game that centers on debugging, hosted the second ver-
sion of the Idea Garden. In the game, a robot named Gidget provides players with
code to complete missions. According to the game’s backstory, Gidget was
damaged, and the player must help Gidget by diagnosing and debugging Gidget’s
faulty code. Game levels introduce or reinforce different programming concepts.

Gidget’s adherence to MLT-1 through MLT-4 are similar to CoScripter’s, so
we do not repeat them here. However, the Gidget example shown in Fig. 14
demonstrates particularly well its adherence to MLT-5, the Idea Garden’s integra-
tion with the host environment’s built-in error identification and recovery systems.
The superimposed callouts (“grab/piglet/” and “Oh no! …”) show the way the
host environment points out and helps with a logic error in the user’s code.
Fig. 14 shows Gidget handling the same error while the Idea Garden augments the
environment with a tooltip based on the user’s code. By acting as a layer on top of
the native environment rather than a full replacement of its help system, the Idea
Garden allows users to fully use Gidget’s built-in error handling.

4.2.3 Cloud9

The third host environment for the Idea Garden was Cloud9, a web-based IDE.
We used this version of the Idea Garden in two 2-week high school web

Fig. 13 The hint’s content is triggered if the user’s scripting suggests that they are trying to
repeat the same action on more than one data element, adhering to MLT-2 and MLT-3. The hint
does not pop up; its availability is indicated in situ (for MLT-4) by an icon that decorates the
user’s script at the relevant script segment. The user can click on the icon to see this hint. To
uphold MLT-1, the hint’s example has incomplete parts, so that the user must actively engage
with it by modifying the script to make it work. MLT-5 is not shown in this example

25510 Toward Theory-Based End-User Software Engineering

development camps that taught HTML and JavaScript, as a resource for students
to turn to when they were stuck (Loksa et al., 2016). The Idea Garden runs within
Cloud9 in the form of a plugin. The pluggable architecture of the environment
gave us access to Cloud9’s background processes, such as its parser, tokenizer,
and listener, which allowed us to directly inspect and handle the user’s code, as
was also the case in the other two environments.

The Cloud9 implementation of the Idea Garden adheres to the MLT principles
in ways similar to the other two host environments, but its appearance is different.
Fig. 15 shows the Idea Garden as it appears in the expandable panel within the
programming environment, designed to look and act similarly to the rest of
Cloud9’s expandable panels for MLT-4. Fig. 16 shows how the use of the

Fig. 15 The top portion of
the Idea Garden panel in the
Cloud9 IDE. To uphold
MLT-4, the panel mimics the
functionality of Cloud9’s
other expandable panels

Fig. 14 How MLT-5 is supported in Gidget. The (in the code pane, upper left) and the
tooltip-like hint (lower left) are the Idea Garden’s error recognition and recovery mechanisms,
which supplement Gidget’s built-in error/recovery features (outlined with pink boxes in the upper
left (“grab/piglet/”) and lower right (“Oh no! …”)). The superimposed callouts are for readability

256 M. Burnett et al.

negotiated interruption style to inform users of potentially useful hints by decorat-
ing the environment with a icon, as per MLT-1.

4.3 The Idea Garden’s Principles

As we empirically investigated these instantiations of the Idea Garden with end
users, we found that the Content/Presentation aspect of the definition (Sect. 4.1) –
arguably the most important of the four aspects – was difficult to get right. The
collection of MLT principles MLT-1 though MLT-5 were too high-level to ade-
quately address this problem. We needed a lower-level set of principles that would
expand upon MLT’s guidelines while still being implementation-independent
enough to support future Idea Gardens.

To address this need, we derived seven lower-level principles using prior Idea
Garden studies and the theoretical foundations of Sect. 4.1 to better ground the
Content/Presentation aspect (Jernigan et al., 2015), which we enumerate in
Table 1. As we discussed in the introduction, a theory can explain, predict, or pre-
scribe behaviors, and theory can be both consumed and produced. Here, we con-
sume prescriptions and predictions from MLT and related theories, and produce
our own prescriptive set of principles on how a system like the Idea Garden might
be most effective.

Most of the principles build upon MLT’s points as to how to serve active users.
For instance, IG1-Content provides content that relates to what the user is already
doing; IG2-Relevance displays content in a way that the user believes it to be rele-
vant to the task at hand; IG3-Actionable gives the user something to do with the
newfound information; and IG6-Availability ensures that users can access content
within the context in which they are working to keep their focus on getting the
task done rather than searching for solutions from external sources. Figs. 17 and
18 and Table 2 show concrete examples of how we implemented the Gidget-based
Idea Garden according to these principles.

Detecting antipatterns enables support for two of the Idea Garden principles.
Antipatterns, a notion similar to “code smells,” are implementation patterns that
suggest some kind of conceptual, problem-solving, or strategy difficulty, such as
not using an iterator variable within the body of a loop or defining a function with-
out calling it. We used antipatterns in all three Idea Garden implementations. The
examples shown here are from the Gidget version.

Antipatterns define context for IG6.ContextSensitive, letting the hint be derived
from and shown in the context of the user’s problem. For IG2-Relevance, the hint

Fig. 16 An example of the Idea Garden decorating the code with an icon. Here, the icon links to
the Iteration with For hint if the user decides to click on it

25710 Toward Theory-Based End-User Software Engineering

Table 1 The seven Idea Garden Principles and their explanations. A hyphenated name signifies
a principle (e.g. IG1-Content), while a name with a dot signifies a subprinciple (IG1.Concepts)

Principle Explanation

IG1-Content Content that makes up the hints need to contain at least one of the
following:

IG1.Concepts Explains a programming concept such as iteration or functions.
Can include programming constructs as needed to illustrate
the concept.

IG1.Mini-patterns Design mini-patterns show a usage of the concept that the user must
adapt to their problem (minipattern should not solve the user’s
problem).

IG1.Strategies A problem-solving strategy such as working through the problem
backward.

IG2-Relevance For Idea Garden hints that are context-sensitive, the aim is that the
user perceives them to be relevant. Thus, hints use one or more of
these types of relevance:

IG2.MyCode The hint includes some of the user’s code.

IG2.MyState The hint depends on the user’s code, such as by explaining a concept
present in the user’s code.

IG2.MyGoal The hint depends on the requirements the user is working on, such as
referring to associated test cases or pre/post-conditions.

IG3-Actionable Because the Idea Garden targets MLT’s “active users,” hints must give
them something to do (Carroll & Rosson, 1987; Carroll, 1990). Thus,
Idea Garden hints must imply an action that the user can take to
overcome a barrier or get ideas on how to meet their goals:

IG3.Explictly
Actionable

The hint prescribes actions that can be physically done, such as
indenting or typing something.

IG3.Implicitly
Actionable

The hint prescribes actions that are “in the head,” such as “compare”
or “recall.”

IG4-Personality The personality and tone of Idea Garden entries must try to encourage
constructive thinking. Toward this end, hints are expressed non-
authoritatively and tentatively (Lee & Ko, 2011). For example, phrases
like “try something like this” are intended to show that, while
knowledgeable, the Idea Garden is not sure how to solve the user’s
exact problem.

IG5-Information
Processing

Because research has shown that (statistically) females tend to gather
information comprehensively when problem-solving, whereas males
gather information selectively (Meyers-Levy, 1989), the hints must
support both styles. For example, when a hint is not small, a
condensed version must be offered with expandable parts.

IG6-Availability Hints must be available in these ways:

IG6.Context Sensitive Available in the context where the system deems the hint relevant.

IG6.ContextFree Available in context-free form through an always-available widget
(e.g., pull-down menu).

IG7-Interruption
Style

Because research has shown the superiority of the negotiated style of
interruptions in debugging situations (Robertson et al., 2004), all hints

(continued)

258 M. Burnett et al.

communicates relevance (to the user’s current problem) by being derived from the
player’s current code as soon as they enter it, such as using the same variable
names (Fig. 17, IG2 and IG6). The Gidget-based Idea Garden brings these two
principles together by constructing a context-sensitive hint whenever it detects a
conceptual antipattern. The Idea Garden then displays the hint indicator (in the
Gidget-based version) beside the relevant code to show the hint’s availability.

4.4 Evaluation

We conducted an empirical study with teams of teenaged students to evaluate
these principles (Jernigan et al., 2015) as instantiated in Gidget. Teams worked
through Gidget’s levels, and, if they had time, designed their own levels using the

Table 1 (continued)

Principle Explanation

must follow this style. In negotiated style, nothing ever pops up.
Instead, a small indicator “decorates” the environment (like the
incoming mail count on an email icon) to let the user know
where the Idea Garden has relevant information. Users can then
request to see the new information by hovering or clicking on
the indicator.

Fig. 17 An example of a context-sensitive Idea Garden hint in Gidget. Hovering over the
shows the hint, and the superimposed black ovals show where the seven principles are instan-
tiated in the hint

25910 Toward Theory-Based End-User Software Engineering

built-in editor. As it turned out, teams did not always need the Idea Garden; they
solved many of their problems just by discussing them with each other, reading
the reference manual, etc. However, when these measures did not suffice, they
turned to the Idea Garden for more assistance.

As Table 3 shows, the Idea Garden enabled campers to problem-solve their
way past the majority of these barriers (52%) without any guidance from the

Fig. 18 As part of IG6 and IG7, the Idea Garden’s hints appear as tooltips when the user hovers
over a . The superimposed callouts are for readability

Table 2 How the seven Idea Garden principles were implemented, with examples in Gidget

Principle Which part(s) of Idea Garden affected Example in Gidget

IG1-Content Body of hint: Code example (drawn from
antipattern); strategy

Fig. 18, large callout;
Fig. 17, middle

IG2-Relevance Gist of hint (“Are you trying to…?”); Inclusion
of user’s own code and variable names

Fig. 17, gist and code
example

IG3-Actionable Suggested strategy in hint, using actionable
words like “pretend” and “write”

Fig. 17, numbered steps

IG4-Personality Tentative phrasing (“You might try…/…Try
something like this”)

Fig. 17, text

IG5-Information
Processing

Expandable strategies in longer hints Fig. 17, “Click to see
more”

IG6-Availability In-context availability through antipattern-
triggered icons; Context-free availability via a
UI widget that always gives access to all hints

Fig. 17, ; Fig. 18,
small callout of
dictionary button

IG7-Interruption
Style

Icon users can choose to interact with rather
than hijacking control to display a hint

Fig. 17,

260 M. Burnett et al.

helper staff. Particularly noteworthy is the fact that their problem-solving progress
with the Idea Garden alone (52% solved their problem using the Idea Garden
alone, without in-person help from camp helpers) was almost as high as their pro-
gress with in-person help (59% solved their problem using only in-person help
from camp helpers, without the Idea Garden).

Further, the results suggested that each principle complemented the others in
coming together to support a diversity of problems, information processing and
problem-solving styles, cognitive stages, and people.

For example, teams’ successes across a diversity of concepts served to demon-
strate this point while also validating the concept aspect of IG1-Content.
Antipatterns were especially involved in teams’ success rates with different kinds
of barriers. Together, these aspects enabled the teams to overcome, without any
in-person help, 41–68% of the barriers they encountered across diverse barrier
types. Adding to this, teams could overcome these barriers in diverse ways by
IG2-Relevance and IG6-Availability working together to provide relevant, just-in-
time hints to afford teams diverse paths by which to use the to make progress.
This suggests that IG2 and IG6 help support diverse EUP problem-solving styles.

IG3-Actionable’s explicit vs. implicit approaches also played to different
strengths. Teams tended to use explicitly actionable instructions (e.g., “Indent…”)
to translate an idea into code, at the Bloom’s Taxonomy of Educational Objectives
“apply” stage (using information in new situations) (Anderson et al., 2001). In con-
trast, teams seemed to follow implicitly actionable instructions more conceptually
and strategically (“recall how you…”), as with Bloom’s “analyze” stage (drawing
connections among different ideas). This suggests that the two aspects of IG3 can
help support EUPs’ learning across diverse cognitive process stages. Finally,
IG5-InformationProcessing requires the Idea Garden to support both the compre-
hensive and selective information processing styles, as per previous research on
gender differences in information processing styles. The teams used both of
these styles, mostly aligning by gender with the previous research, implying that
following IG5 helps support diverse EUP information processing styles.

Much of the success of the Idea Garden principles ties to the theories upon
which they are grounded. Minimalist learning theory (MLT) defined our
intended audience of active users and prescribed ways in which we could target
them with the Idea Garden’s resources. The guidelines laid down by MLT gave

Table 3 Barrier instances and teams’ progress with/without getting in-person help. Teams did
not usually need in-person help when an Idea Garden hint and/or an antipattern-triggered was
on the screen (top row). The third column, containing instances of barriers where teams did not
make progress, is shown to ensure the rows sum to the correct values

IG Available and
On-screen?

Progress without
in-person help

Progress if team got
in-person help

No evidence of
progress

Yes (149+25
instances)

77/149 (52%) 25/25 72/(149+25)

No (155 instances) 53/155 91/155 (59%) 11/155

26110 Toward Theory-Based End-User Software Engineering

us a strong foundation from which to begin the research. Past successes with
MLT-based systems also predicted our success with the early versions of the
Idea Garden.

When it became clear that we needed to develop lower-level principles tailored to
the Idea Garden, we again turned to theory to help us build some theory of our own.
By beginning with the MLT foundations that had served us so well and then expand-
ing to encompass theory from the realms of cognition and information processing
styles, we were able to create a specialized set of principles to support a diverse range
of problem solving styles and situations. For instance, Meyers-Levy’s theories on
information processing styles (Meyers-Levy, 1989) informed the way that we struc-
tured Idea Garden hints in order to benefit both selective and comprehensive learners.

Most important, however, basing the Idea Garden on a set of principles provided
generality, which we evaluated by implementing the system for three different
EUSE environments and evaluating each (Cao et al., 2015; Jernigan et al., 2015,
2017; Loksa et al., 2016). These general principles then contribute to the theory
pool to further research in end-user problem solving and debugging. We hope that
others in the EUSE research community will be able to draw from these principles
as they develop new systems to support end users’ problem solving endeavors.

5 Discussion and Concluding Remarks

This chapter has advocated for researchers in the EUSE research community to
increase their connections to theory, both as consumers and producers. We see this
approach as a complement to the many other EUSE design methods in our commu-
nity, with each method having its own unique advantages and disadvantages.

One example of an atheoretic approach is the idea-tool-summative sequence, in
which a researcher gains inspiration from some kind of problem they have seen or
learned about in the literature, devises an approach to solve that problem, and
evaluates its effectiveness empirically. Its strength lies in showing that the new
tool works better than some comparative approach. However, its weakness is that
it cannot easily get from the success of the tool to underlying causes of why
exactly it worked better. As Ruthruff et al. showed, the underlying causes might
be quite surprising to a researcher; for example, his study of alternative EUSE
fault localization tools showed that, although one might have assumed that differ-
ences in effectiveness were due to differences in the algorithms’ reasoning
approaches, they actually had more to do with nuanced differences in the user
interface than algorithmic differences (Ruthruff, Burnett, & Rothermel, 2006).

Other approaches emphasize theory building over theory consuming. For
approaches following this philosophy, research begins with formative empirical
work to understand the detailed needs of users in a particular domain, then builds
new theories based upon the results of this research. Grounded theory work is an
example of this kind of approach (e.g., Stol, Ralph, & Fitzgerald, 2016). The the-
ories derived from this method are intended to be consumed in later tool building

262 M. Burnett et al.

phases (whether by those researchers or by other researchers). The outcome of this
approach is a highly detailed understanding of the particular domain. However,
the resulting theories are often not particularly parsimonious or cohesive; perhaps
for that reason, it is often challenging for researchers other than the original inves-
tigators to then consume the theories built by this method.

Practice-based computing (Wulf, Müller, Pipek, Randall, & Rohde, 2015) adds
an emphasis on the contextual and social aspects of technology usage in practice.
This method may or may not result in new theories, but its main emphasis is not
theory. Rather, its distinguishing characteristic from most other approaches is its
emphasis on in-the-wild settings for knowledge discovery. This method can reveal
social aspects of technology appropriation and usage that many other methods
may miss; but its findings may be so situated in the system(s) studied that reusing
its findings in other types of systems can be challenging.

Although these other approaches all have advantages, we argue that theory
consumption should be brought into the picture much more often and that it is
currently underutilized in EUSE research. In a recent lecture, Herbsleb eloquently
explained one example when he pointed out that certain theories of how people self-
organize in groups reflect processes that have evolved in humans over thousands of
years (Herbsleb, 2016). Rather than ignore these theories, it makes sense to leverage
them (i.e., become good consumers of them) in designing our own tools.

Another example is information foraging theory (IFT), a theory devised to
explain and predict how people seek information (Pirolli, 2007). The basic build-
ing blocks are that “predators” (people seeking information) look for “prey”
(information relevant to their goals) through “patches” of information (such as
different files) that contains “cues” (such as clickable links) about where to find
the information they want. Such a simple set of concepts can be remarkably
powerful when applied to software tools. For example, Fleming et al. used IFT to
reveal commonalities among different sub-branches of software engineering
research that could be leveraged toward faster progress (Fleming et al., 2013), and
Piorkowski et al. (2016) used IFT to reveal a kind of “lower bound” in software
tool usage that determines programmers’ minimum costs in using a software tool.

Theory likewise brought a number of advantages to the projects we presented
in this chapter. In Explanatory Debugging, the mental model theory of reasoning’s
notion of “runnable” mental models gave us a deep understanding of how
Explanatory Debugging can effectively support the actionability necessary for
debugging. This, in turn, led to the EluciDebug prototype and a set of general
principles for Explanatory Debugging approaches. In the GenderMag work, the
attention investment model, self-efficacy theory, and information processing
theory gave us the ability to make reasonable predictions about what diverse users
might attend to and follow through with (or not) and why. Because these theories
went deeper than gender itself, they provided a basis for GenderMag to help
software developers improve the inclusiveness of the software they build for a
diversity of users – without the need to navigate the political waters of talking
about one gender versus another. Finally, in the Idea Garden project, minimalist
learning theory provided us a number of prescriptive ideas on how to not only

26310 Toward Theory-Based End-User Software Engineering

enable, but also entice, untrained end users to incrementally succeed when faced
with software development misbehaviors, difficulties, and barriers.

These theory-grounded projects demonstrate the idea that an EUSE research
project can be both theory-informed and theory-producing – allowing EUSE
researchers to participate in both the verification and creation of theories that can,
in turn, further inform EUSE. As examples like these show, theories enable us to
go beyond instances of successful approaches to cross-cutting principles and meth-
ods that can be used across a breadth of situations. Further, theories can give us
ways to connect multiple research efforts, pattern-matching existing projects to a
common theory to evolve to a deeper understanding of the domain. In essence,
theories can provide powerful means by which EUSE researchers can better “stand
on the shoulders” of the researchers who came before them.

Acknowledgements We thank our students and collaborators who contributed to our work,
all the participants of our empirical studies, and the reviewers for their helpful suggestions. Our
work in developing this chapter was supported in part by the National Science Foundation under
grants CNS-1240957, IIS-1314384, and IIS-1528061, and by the DARPA Explainable AI (XAI)
program grant DARPA-16-53-XAI-FP-043. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not necessarily reflect
those of the sponsors.

References

Aho, A., Lam, M., Sethi, R., Ullman, J. (2006). Compilers: principles, techniques & tools.
Boston, MA, USA: Addison Wesley.

Anderson, L., Krathwohl, D., Airasian, P., Cruikshank, K., Mayer, R., Pintrich, P., et al. (Ed.).
(2001). A taxonomy for learning, teaching, and assessing: a revision of Bloom’s taxonomy of
educational objectives (Complete edition). Longman.

Appel, M., Kronberger, N., Aronson, J. (2011). Stereotype threat impair ability building: effects
on test preparation among women in science and technology. European Journal of Social
Psychology, 41(7), 904–913.

Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological
Review, 8(2), 191–215.

Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs, NJ: Prentice
Hall.

Beckwith, L., Burnett, M., Wiedenbeck, S., Grigoreanua, V., Wiedenbeck, S. (2006). Gender
HCI: what about the software? Computer, (Nov. 2006), 83–87.

Beckwith, L., Inman, D., Rector, K., Burnett, M. (2007). On to the real world: gender and self-
efficacy in excel. In IEEE symposium visual languages and human-centric computing
(pp. 119–126). USA: IEEE, Couer d’Alene, Idaho.

Beckwith, L., Sorte S., Burnett, M., Wiedenback, S., Chintakovid, T., Cook C. (2005).
Designing features for both genders in end-user programming environments. In IEEE sympo-
sium VLHCC (pp. 153–160). USA: IEEE, Dallas, Texas.

Beyer, S., Rynes, K., Perrault, J., Hay, K., Haller, S. (2003). Gender differences in computer science
students. In SIGCSE: special interest group on computer science education (pp. 49–53). Reno,
Nevada, USA: ACM.

Blackwell, A., & Hague, R. (2001). AutoHAN: an architecture for programming the home. IEEE
symposium human-centric computing languages and environments (pp. 150–157). Stresa:
IEEE.

264 M. Burnett et al.

Blackwell, A. F. (2002). First steps in programming: a rationale for attention investment models.
In IEEE VL/HCC (pp. 2–10). Arlington, Virginia, USA: IEEE.

Brandt, J., Dontcheva, M., Weskamp, M., Klemmer, S. (2010). Example-centric programming:
integrating web search into the programming environment. In ACM conference on human
factors in computing systems (pp. 513–522). Atlanta, Georgia, USA: ACM.

Bunt, A., Lount, M., Lauzon, C. (2012). Are explanations always important? A study of deployed,
low-cost intelligent interactive systems. In ACM IUI (pp. 169–178). Austin, Texas, USA: ACM.

Burnett, M., Beckwith, L., Wiedenbeck, S., Fleming, S. D., Cao, J., Park, T. H., et al. (2011).
Gender pluralism in problem-solving software. Interacting with Computers, 23, 450–460.

Burnett, M., Fleming, S., Iqbal, S., Venolia, G., Rajaram, V., Farooq, U., et al. (2010). Gender
differences and programming environments: across programming populations. In ACM-IEEE
international symposium on empirical software engineering and measurement. 10 pages.
http://doi.acm.org/10.1145/1852786.1852824

Burnett, M., & Myers, B. (2014). Future of end-user software engineering: Beyond the silos. In
ACM/IEEE international conference on software engineering: future of software engineering
track (ICSE companion proceedings) (pp. 201–211). Hyderabad, India: ACM

Burnett, M., Peters, A., Hill, C., Elarief, N. (2016). Finding gender-inclusiveness software issues
with GenderMag: a field investigation. In ACM conference on human factors in computing
systems (CHI). (pp. 760–787). Oxford, UK: Oxford University Press.

Burnett, M., Stumpf, S., Macbeth, J., Makri, S., Beckwith, L., Kwan, I., et al. (2016).
GenderMag: a method for evaluating software’s gender inclusiveness. Interacting with
Computers, 28(6), 760–787. doi:10.1093/iwc/iwv046.

Cao, J., Fleming, S., Burnett, M. (2011). An exploration of design opportunities for “gardening”
end-user programmers’ ideas. In IEEE symposium on visual languages and human-centric
computing (pp. 35–42).

Cao, J., Fleming, S., Burnett, M., Scaffidi, C. (2015). Idea Garden: situated support for problem
solving by end-user programmers. Interacting with Computers, 27(6), 640–660.

Cao, J., Rector, K., Park, T., Fleming, S., Burnett, M., Wiedenbeck, S. (2010). A debugging
perspective on end-user mashup programming. In IEEE symposium on visual languages and
human-centric computing (pp. 149–156). Madrid, Spain: IEEE.

Carroll, J. (1990). The nurnberg funnel: designing minimalist instruction for practical computer
skill. Cambridge, MA, USA: MIT Press.

Carroll, J. (Ed.). (1998).Minimalism beyond the nurnberg funnel. Cambridge, MA, USA: MIT Press.
Carroll, J., & Rosson, C. (1987). The paradox of the active user. In Interfacing thought: cognitive

aspects of human-computer interaction (pp. 26–28). Cambridge, MA, USA: MIT Press.
Chambers, C., & Scaffidi, C. (2010). Struggling to excel: a field study of challenges faced

by spreadsheet users. IEEE symposium on visual languages and human-centric computing
(pp. 187–194). Pittsburg, USA: IEEE.

Compeau, D., & Higgins, C. (1995). Application of social cognitive theory to training for
computer skills. Information System Research, 6(2), 118–143.

Craven, M. W., & Shavlik, J. W. (1997). Using neural networks for data mining. Future
Generation Computer Systems, 13, (Nov. 1997), 211–229.

de Souza, C. S. (2017). Semiotic engineering: a cohering theory to connect EUD with HCI,
CMC and more. In F. Paternò & V. Wulf (Eds.). New perspectives in end-user development.
(pp. 269–306). Cham: Springer.

Ennals, R., Brewer, E., Garofalakis, M., Shadle, M., Gandhi, P. (2007). Intel mash maker: join
the web. SIGMOD Record, 36(4), 27–33.

Fleming, S., Scaffidi, C., Piorkowski, D., Burnett, M., Bellamy, R., Lawrance, J., et al. (2013).
An information foraging theory perspective on tools for debugging, refactoring, and reuse
tasks. ACM Trans. Soft. Engr. and Method. (TOSEM), 22(2), 14:1.

Gregor, S. (2006). The nature of theory in information systems. MIS Quarterly, 30(3), 611–642.
Grigoreanu, V., Brundage, J., Bahna, E., Burnett, M., ElRif, P., Snover, J. (2009). Males’ and

females’ script debugging strategies. In Symposium on end-user development. (pp. 205–224).
Siegen, Germany: Springer.

26510 Toward Theory-Based End-User Software Engineering

http://dx.doi.org/10.1145/1852786.1852824
http://dx.doi.org/10.1093/iwc/iwv046

Grigoreanu, V., Burnett, M., Wiedenbeck, S., Cao, J., Rector, K., Kwan, I. (2012). End-user debug-
ging strategies: a sensemaking perspective. Transactions on Computer-Human Interaction 19,
1, ACM.

Grigoreanu, V., Cao, J., Kulesza, T., Bogart, C., Rector, K., Burnett, M., et al. (2008). Can
feature design reduce the gender gap in end-user software development environments? In
IEEE symposium on visual languages and human-centric computing (pp. 149–156). New
York, New York, USA: ACM.

Hargittai, E., & Shafer, S. (2006). Differences in actual and perceived online skills: the role of
gender. Social Science Quarterly, 87(2), 432–448.

Hartmann, B., MacDougall, D., Brandt, J., Klemmer, S. (2010). What would other programmers
do: suggesting solutions to error messages. In ACM conference on human factors in computing
systems (pp. 1019–1028). Atlanta, Georgia, USA: ACM.

Hartzel, K. (2003). How self-efficacy and gender issues affect software adoption and use.
Communications of ACM, 46(9), 167–171.

Herbsleb, J. (2016). Building a socio-technical theory of coordination: why and how. In ACM
symposium foundations of software engineering (pp. 2–10). Seattle, Washington, USA: ACM.

Huffman, A., Whetton, J., Huffman, W. (2013). Using technology in higher education: the
influence of gender roles on technology self-efficacy. Computers in Human Behavior, 29(4),
1779–1786.

Jernigan, W., Horvath, A., Lee, M., Burnett, M., Cuilty, T., Kuttal, S., et al. (2015). A principled
evaluation for a principled Idea Garden. In Proceedings IEEE Visual Languages and Human-
Centric Computing (VL/HCC ’15) (pp. 235–243). Atlanta, Georgia, USA: IEEE.

Jernigan, W., Horvath, A, Lee, M., Burnett, M., Cuilty, T., Kuttal, S., et al. (2017). General
principles for a Generalized Idea Garden. Journal of Visual Languages and Computing, 39,
51–65.

Johnson-Laird, P. N. (1983). Mental Models: Towards a Cognitive Science of Language,
Inference, and Consciousness. Cambridge MA, USA: Harvard University Press.

Kelleher, C., & Pausch, R. (2006). Lessons learned from designing a programming system to
support middle school girls creating animated stories. Symposium on visual languaes and
human-centric computing (pp. 165–172). Brighton: IEEE.

Ko, A., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., et al. (2011). The state of
the art in end-user software engineering. ACM Computing Surveys 43(3), Article 21, 44 pages.

Ko, A., & Myers, B. (2004). Designing the whyline: a debugging interface for asking questions
about program behavior. In ACM conference on human factors in computing systems
(pp. 151–158). Vienna, Austria: ACM.

Ko, A., Myers, B., Aung, H. (2004). Six learning barriers in end-user programming systems. In
IEEE symposium on visual languages and human-centric computing (pp. 199–206). Rome,
Italy: IEEE

Kulesza, T., Burnett, M. M., Wong, W. -K., Stumpf, S. (2015). Principles of explanatory debug-
ging to personalize interactive machine learning. In ACM conference on intelligent user inter-
faces (pp. 126–137). Atlanta, Georgia, USA: ACM.

Kulesza, T., Stumpf, S., Burnett, M. M., Kwan, I. (2012). Tell me more? The effects of mental
model soundness on personalizing an intelligent agent. In ACM CHI (pp. 1–10). Austin,
Texas, USA: ACM.

Kulesza, T., Stumpf, S., Burnett, M. M., Wong, W. -K., Riche, Y., Moore, T., et al. (2010).
Explanatory debugging: supporting end-user debugging of machine-learned programs. In IEEE
symposium on visual languages and human-centric computing (pp. 41–48). Madrid, Spain: IEEE.

Kulesza, T., Stumpf, S., Burnett, M. M., Yang, S. (2013). Too much, too little, or just right?
Ways explanations impact end users’ mental models. In IEEE symposium on visual languages
and human-centric computing (pp. 3–10). San Jose, California, USA: IEEE.

Kulesza, T., Stumpf, S., Wong, W. -K., Burnett, M. M., Perona, S., Ko, A. J., et al. (2011).
Why-oriented end-user debugging of naive Bayes text classification. ACM Transactions on
Interactive Intelligent Systems, 1, 1.

266 M. Burnett et al.

Lacave, C., & Díez, F. J. (2002). A review of explanation methods for Bayesian networks. The
Knowledge Engineering Review, 17(2), 107–127.

Lee, M., Bahmani, F., Kwan, I., Laferte, J., Charters, P., Horvath, A., et al. (2014). Principles of
a debugging-first puzzle game for computing education. IEEE Symposium on Visual
Languages and Human-Centric Computing, Melbourne, Australia (pp. 57–64).

Lee, M., & Ko, A. (2011). Personifying programming tool feedback improves novice program-
mers’ learning. In Proceedings of ICER (pp. 109–116). Providence, Rhode Island, USA:
ACM Press.

Lieberman, H., Paterno, F., Wulf, V. (Eds.). (2006). End-user development. Dordrecht, The
Netherlands: Kluwer/Springer.

Lim, B. Y., & Dey, A. K. (2009). Proceedings of the International Conference on Ubiquitous
Computing. Orlando, Florida, USA: ACM.

Lin, J., Wong, J., Nichols, J., Cypher, A., Lau, T. (2009). End-user programming of mashups
with Vegemite. In ACM international conference on intelligent user interfaces (pp. 97–106).
Sanibel Island, Florida, USA: ACM.

Little, G., Lau, T., Cypher, A., Lin, J., Haber, D., Kandogan, E. (2007). Koala: capture, share,
automate, personalize business processes on the web. In ACM conference on human factors
in computing systems (pp. 943–946). San Jose, California, USA: ACM.

Loksa, D., Ko, A. J., Jernigan, W., Oleson, A., Mendez, C.J., Burnett, M. (2016). Programming,
problem solving, and self-awareness: effects of explicit guidance. In ACM conference on human
factors in computing systems (CHI). (pp. 1449–1461). California, USA: ACM, San Jose

Luger, E. (2014). A design for life: recognizing the gendered politics affecting product design. In
CHI workshop: perspectives on gender and product design. https://www.sites.google.com/
site/technologydesignperspectives/papers.

Marsden, N. (2014). CHI 2014 workshop on perspectives on gender and product design. https://
www.sites.google.com/site/technologydesignperspectives/papers.

McFarlane, D. (2002). Comparison of four primary methods for coordinating the interruption of
people in human-computer interaction. Human-Computer Interaction, 17(1), 63–139.

Meyers-Levy, J. (1989). Gender differences in information processing: a selectivity interpreta-
tion. In P. Cafferata & A. Tubout (Eds.), Cognitive and affective responses to advertising.
Lexington Books. (pp. 219–260). Lanham, Maryland, USA.

Meyers-Levy, J., & Loken, B. (2015). Revisiting gender differences: what we know and what
lies ahead. Journal of Consumer Psychology, 25, pp. 129–149.

Meyers-Levy, J., & Maheswaran, D. (1991). Exploing differences in males’ and females’ proces-
sing strategies. Journal of Consumer Research, 18, 63–70.

Miller, R., Bolin, M., Chilton, L., Little, G., Webber, M., Yu, C. -H. (2010). Rewriting the web
with chickenfoot. In A. Cypher, M. Dontcheva, T. Lau, & J. Nichols (Eds.), No code
required: giving users tools to transform the web (pp. 39–63). Burlington, MA, USA:
Morgan Kaufmann.

Myers, B. A., Pane, J. F., Ko, A. (2004). Natural programming languages and environments.
Communications of the ACM, 47(9), 47–52.

Norman, D. A. (2002). The design of everyday things. Revised and Expanded Edition. New
York, New York, USA: Basic Books.

Oney, S., & Myers, B. (2009). FireCrystal: understanding interactive behaviors in dynamic
web pages. In IEEE symposium on visual languages and human-centric computing
(pp. 105–108).

Piorkowski, D., Henley, A., Nabi, T., Fleming, S., Scaffidi, C., Burnett, M. (2016). Foraging and
navigations, fundamentally: developers’ predictions of value and cost. In ACM symposium
foundations of software engineering (pp. 97–108). Seattle, Washington, USA: ACM.

Pirolli, P. (2007). Information foraging theory: adaptive interaction with information. Oxford,
UK: Oxford University Press.

Repenning, A., & Ioannidou, A. (2008). Broadening participation through scalable game design.
International Conference on Software Engineering (pp. 305–309). Leipzig: ACM.

26710 Toward Theory-Based End-User Software Engineering

https://www.sites.google.com/site/technologydesignperspectives/papers
https://www.sites.google.com/site/technologydesignperspectives/papers
https://www.sites.google.com/site/technologydesignperspectives/papers
https://www.sites.google.com/site/technologydesignperspectives/papers

Robertson, T., Prabhakararao, S., Burnett, M., Cook, C., Ruthruff, J., Beckwith, L., et al. (2004).
Impact of interruption style on end-user debugging. In ACM conference on human factors in
computing systems (CHI) (pp. 287–294). Vienna, Austria: ACM.

Rowe, M. B. (1973). Teaching science as continuous inquiry. New York, New York, USA:
McGraw-Hill.

Ruthruff, J., Burnett, M., Rothermel, G. (2006). Interactive fault localization techniques in a
spreadsheet environment. IEEE Transactions on Software Engineering, 2(4), 213–239.

Shaw, M. (1990). Prospects for an engineering discipline of software. IEEE Software, 7, 15–24.
Shneiderman, B. (1995). Looking for the bright side of user interface agents. ACM Interactions,

2(1), 13–15, January.
Sjøberg, D., Dybå, T., Anda, B., Hannay, J. (2008). Building theories in software engineering. In

F. Shull, J. Singer, & D. I. K. Sjøberg (Eds.), Guide to advanced empirical software engineering
(pp. 312–336). London, UK: Springer.

Spencer, R. (2000). The streamlined cognitive walkthrough method, working around social con-
straints encountered in a software development company. ACM Conference on Human
Factors in Computing Systems, The Hague, The Netherlands (pp. 353–359).

Stol, K., Ralph, P., Fitzgerald, B. (2016). Grounded theory in Software Engineering research: a cri-
tical review and guidelines. In ACM/IEEE international conference on software engineering
(pp. 120–131). Austin, Texas, USA: ACM.

Stumpf, S., Rajaram, V., Li, L., Wong, W. -K., Burnett, M. M., Dietterich, T., et al. (2009).
Interacting meaningfully with machine learning systems: three experiments. International
Journal of Human-Computer Studies, 67(8), 639–662. (Aug. 2009).

Subrahmaniyan, N., Beckwith, L., Grigoreanu, V., Burnett, M., Wiedenbeck, S., Narayanan, V.,
et al. (2008). Testing vs. code inspection vs. … what else? Male and female end users’
debugging strategies. In Proceedings of CHI (pp. 617–626). Florence, Italy: ACM.

Szafron, D., Greiner, R., Lu, P., Wishart, D. (2003). Explaining naive Bayes classifications. Tech
report TR03-09, University of Alberta.

Turner, P., & Turner, S. (2011). Is stereotyping inevitable when designing with personas?
Design Studies, 32, 30–44, 1, January 2011.

van der Meij, H., & Carroll, J. M. (1998). Principles and heuristics for designing minimalist
instruction. In J. M. Carroll (Ed.). Minimalism beyond the nurnberg funnel (pp. 19–53).
Cambridge, MA: MIT Press.

Wharton, C., Rieman, J., Lewis, C., Polson, P. (1994). The cognitive walkthrough method: a
practioner’s guide. In J. Nielsen, & R. Mack (Eds.). Usability inspection methods (pp. 105–
140). New York: John Wiley.

Wulf, V., Müller, C., Pipek, V., Randall, D., Rohde, M. (2015). Practice based computing:
empirically-grounded conceptualizations derived from design cases studies. In V. Wulf,
K. Schmidt, D. Randall (Eds.). Designing socially embedded technologies in the real-world.
(pp. 111–150). London: Springer.

Yang, R., & Newman, M. W. (2013). Learning from a learning thermostat: lessons for intelligent
systems for the home. In ACM international joint conference on pervasive and ubiquitous
computing (pp. 93–102). Zurich, Switzerland: ACM.

Yang, Y., & Pedersen, J. O. (1997). A comparative study on feature selection in text categoriza-
tion. Twentieth International Conference on Machine Learning, 412–420. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.

Zeldin, A. L., & Pajares, F. (2000). Against the odds: self-efficacy beliefs of women in mathemati-
cal, scientific, and technological careers. American Educational Research Journal, 37, 215–246.

268 M. Burnett et al.

Semiotic Engineering: A Cohering Theory to
Connect EUD with HCI, CMC and More

Clarisse Sieckenius de Souza

Abstract Theories have an important role to play in research areas whose
application faces rapid technological changes. They can provide longer-term
intellectual references that shape deeper investigations and contribute to consoli-
date the identity of such research areas. A recent survey of EUD-related work
published between 2004 and 2013 suggests that our field is remarkably techno-
centered and could increase its scientific impact by diversifying some of its
research approaches and practices. In this paper we show concrete examples of
how Semiotic Engineering, originally a semiotic theory of human-computer inter-
action, can provide a unified theoretical framing for various EUD-related topics
of investigation. Our contribution to the collection of chapters in this book is to
demonstrate this particular theory’s potential as a catalyst of new kinds of trans-
disciplinary debate, as well as a source of inspiration for new breeds of technolo-
gical developments.

Keywords Semiotic Engineering · computer-mediated social communication · pro-
gramming as self-expression · EUD theory

1 Introduction

In ten years since the publication of the first end user development (EUD) book
(Lieberman, Paternò, & Wulf, 2006), software produced by non-professional develo-
pers has grown in volume and diversified in kind. Commercial and non-commercial
tools for data mashup creation and visualization (e.g. Tableau1 and Klipfolio2),

C.S. de Souza (✉)
Semiotic Engineering Research Group (SERG), Departamento de Informática, PUC-Rio,
Rio de Janeiro, Brazil
e-mail: clarisse@inf.puc-rio.br

1Tableau – http://www.tableau.com/
2Klipfolio – https://www.klipfolio.com/

269© Springer International Publishing AG 2017
F. Paternò, V. Wulf (eds.), New Perspectives in End-User Development,
DOI 10.1007/978-3-319-60291-2_11

http://www.tableau.com/
https://www.klipfolio.com/

repetitive task automation and scripting (e.g. iMacros3 and UiPath4), customized
service integration (e.g. IFTTT5 and Microsoft Flow6), IoT programming
(e.g. IFTTT and Cayenne my Device7) and mobile application development
(e.g. AppInventor8 and AppsGeyser9) have been extensively used by non-expert
end users. The programming style in many of these tools has been influenced by
pioneering end user programming and computational thinking acquisition environ-
ments such as Scratch10, Alice11, AgentSheets12 and KidSim13. Yet, in a recent
study about the methods, the purposes and the impact of work published in EUD-
related fields between 2004 and 2013, Tetteroo and Markopoulos (2015) conclude
that the influence of EUD research on the work done by other scientific communities
is smaller than expected. The authors report the prevalence of techno-centered
approaches in the surveyed publications and the relative scarcity of work aimed at
gaining deeper understanding about the central object of investigation in EUD, the
contexts and conditions in which it occurs, how EUD tasks are successfully
achieved, and why. By implicitly electing the HCI community as the main potential
beneficiary of research done by the EUD community, the authors claim that “the
impact of [EUD] research for the greater HCI community can increase” [Tetteroo
and Markopoulos (2015), p. 60]. Indeed, a greater impact on HCI should create a
healthy interdisciplinary feedback loop, given that most of the research done in
EUD is founded in HCI theories, frameworks, approches and models.

This chapter is about EUD research based on theory, more specifically on a
semiotic theory, and its potential to respond to some important aspects of Tetteroo
and Markopoulos’s call to action. Semiotic Engineering was originally proposed
as a semiotic theory of human-computer interaction (de Souza, 2005a,b). This is the
first and most apparent reason why we typify it a cohering theory, that is, a theory
that can create stronger coherence between otherwise unevenly related fields such
as, in our case, EUD and HCI. Additionally, as we will discuss in subsequent
sections, Semiotic Engineering can also create and strengthen coherence with other
relevant areas of research, besides HCI. Coherence is achieved because the theory
defines that the activities performed by end users during, and by means of, soft-
ware development are primarily related to a particular kind of computer-mediated

3iMacros – http://imacros.net/
4UiPath – http://www.uipath.com/
5IFTTT – https://ifttt.com/recipes
6Microsoft Flow – https://flow.microsoft.com/en-us/
7Cayenne - http://www.cayenne-mydevices.com/
8App Inventor - http://appinventor.mit.edu/explore/
9AppsGeyser - https://www.appsgeyser.com/
10Scratch – https://scratch.mit.edu/
11Alice - http://www.alice.org/index.php
12AgentSheets – http://www.agentsheets.com/
13Kidsim has been known as Stagecast Creator since 1997 – more about it at http://web.archive.
org/web/20150517004640/http://www.stagecast.com/index.html

270 C.S. de Souza

http://imacros.net/
http://www.uipath.com/
https://ifttt.com/recipes
https://flow.microsoft.com/en-us/
http://www.cayenne-mydevices.com/
http://appinventor.mit.edu/explore/
https://www.appsgeyser.com/
https://scratch.mit.edu/
http://www.alice.org/index.php
http://www.agentsheets.com/
http://web.archive.org/web/20150517004640/http://www.stagecast.com/index.html
http://web.archive.org/web/20150517004640/http://www.stagecast.com/index.html

social communication, rather than to algorithmic problem solving and program
coding, which although fundamentally important to EUD, come second to social
communication. In other words, the theory explicitly privileges the social dimen-
sions of programming instead of the logic and cognitive ones.

The communication-centered approach of Semiotic Engineering is not, in itself, an
innovation. Most semiotic approaches and accounts of human-computer interaction,
programming and computation do the same (see, for example, Andersen, 1997;
Andersen, Holmqvist, & Jensen, 1993; Liu, 2000; Nadin, 1988, 2011, Tanaka-Ishii,
2010). Even outside the domain of semiotic expertise, more than two decades ago
Terry Winograd, one of the foreground figures in HCI research, expressed his belief
that communication is at the center of computing (Winograd, 1997):

[…] the computer is not a machine whose main purpose is to get a computing task done.
The computer, with its attendant peripherals and networks, is a machine that provides new
ways for people to communicate with other people. The excitement that infuses comput-
ing today comes from the exploration of new capacities to manipulate and communicate
all kinds of information in all kinds of media, reaching new audiences in ways that would
have been unthinkable before the computer. (p. 150)

Theories can play an important role in research areas whose application faces
rapid technological changes. They provide long-term intellectual references to
guide and advanve investigations of persistent hardcore issues that contribute to
define a field of studies. In this light, we will show that Semiotic Engineering
stands as an attractive theoretical choice for EUD researchers who share
Winograd’s view although, as is the case of any theory, it is limited by nature and
by design. It is limited by nature because it is produced by human minds and
human minds can only produce limited accounts of reality. And it is limited by
design because, as all theories do, Semiotic Engineering focuses on a particular
dimension of a complex phenomenon. Focus, as we know, is achieved by abstrac-
tion, that is, by hiding away other dimensions that undeniably exist but fall outside
the interest of theorists.

This chapter presents concrete examples of how Semiotic Engineering can
bring current EUD-related discussions involving computer education, end user
software engineering (EUSE), computer-mediated social communication (CMC)
and self-expression through software under a unified theoretical framing. The
examples are drawn from a 5-year project with three Brazilian schools in which
we developed and used technologies especially designed to explore the power of
social communication through programmable computer proxies. The chapter also
illustrates how our own research in EUD has changed and evolved since our con-
tribution to the 2006 edition of this book (de Souza & Barbosa, 2006).

In the sections that follow we will briefly outline the theory (Sect. 2), then
highlight selected research results from the Scalable Game Design Brasil project
(Sect. 3), and discuss the cohering power of Semiotic Engineering in view of
perceived characteristics of EUD research (Sect. 4). Finally, we will conclude the
chapter and share some thoughts about theory-driven research in our field and the
importance of intellectual diversity for the growth and continuation of scientific
research areas (Sect. 5).

27111 Semiotic Engineering: A Cohering Theory to Connect EUD with HCI, CMC and More

2 Semiotic Engineering

Semiotic Engineering appeared in 1993 as a semiotic approach to interface
language design (de Souza, 1993). It shared most of the semiotic perspectives on
HCI and computing that had been previously expressed by Nadin (1988),
Andersen (1997), Andersen et al., (1993), Kammersgaard (1988) and others,
viewing human-computer interaction as a special case of computer-mediated
human communication. Kammersgaard’s work provides us with a good lead into
the semiotic theory we developed. The author presents four perspectives in
human-computer interaction. One of them is the media perspective, that is, view-
ing computers as a medium through which humans communicate with each other.
In this perspective, humans do not interact with computers, but rather through
computers, a communication-centered view that is at the core of the Language-
Action Perspective (LAP). LAP gained much popularity after the publication of
Winograd and Flores’s influential book entitled “Understanding Computers and
Cognition – New Foundations for Design” (Winograd, 2006; Winograd & Flores,
1986). While in their version of LAP Winograd and Flores chose Speech Acts
(Searle, 1985) as a theoretical basis in the context of group technologies,
Kammersgaard pointed at additional less obvious possibilities (Kammersggard,
1988):

Seen from the media perspective, two types of communications are interesting. First of
all, communication between (groups of) users that takes place through the computer appli-
cation. Secondly, the one-way (mass) communication from designer to user which takes
place when an application designed by one person is used by other persons. I will not go
into further detail about this last type of communication, except to mention that
Oberquelle, Kupka, & Maass (1983) talk about delegation of communicating behaviour
from the designer to the machine and then treat the situation as seen from a dialogue part-
ner perspective, whereas Andersen (1985) treats the designer as having the role of one
sender in a collective of senders, who makes a contribution to each message sent through
the medium. (p. 356, reference calls added)

Semiotic Engineering sprang from the idea that designers speaking to users
through the machine, their delegated proxy, was neither a case of dialog partner-
ship (computers and humans engaged in mutually intelligible conversation), nor
necessarily or even mainly a matter of participation in collective human discourse
delivered through computers. It was rather a matter of computer-mediated meta-
communication, involving systems designers (as well as systems developers) and
systems users. This was the touchstone of the entire theory (de Souza, 2005a) that
developed from our earlier approach (de Souza, 1993). Metacommunication in
this case refers to communication about the conditions, purposes and effects of
communication with the system.

For a quick illustration of what metacommunication is, consider the sequence
of CMC turns in Fig. 1. The context of communication is one where the user has
seen that the clock app in her friend’s cell phone shows the time in three different
cities around the world. The user lives in Rio de Janeiro and now wishes to be

272 C.S. de Souza

able to see the time in Rio and in Austin, Texas, on her cell phone’s clock screen.
Her son lives in Austin and she prefers to call him when he is at home. Being able
to see the time of day in Austin directly on screen is better than having to do men-
tal calculations with time zones before making the call. With this goal in mind,
she therefore engages in interaction that is partly shown and commented in Fig. 1,
where balloons of different shapes and colors denote system’s and user’s turns in
communication.

The entire communication develops as the user interacts with the system, by
pressing on certain areas of the phone screen, and the system responds to the user,
by changing its states. The verbalizations in the balloons are not part of the actual
interaction. They are just annotations we have added to the screen shot images in
order to describe and explain the structure, the style and the intent of meanings
exchanged by user and system during this short span of interaction. The system,
who speaks for the people who have created it, opens the conversation (see the
numbering of turns in Fig. 1) and then begins to respond to the user’s interactive
turns. Note that the user’s sixth (“<6>”) and seventh (“<7>”) turns do not elicit

Fig. 1 Explanatory verbalizations for a piece of metacommunication between user and system
acting as its designer’s proxy

27311 Semiotic Engineering: A Cohering Theory to Connect EUD with HCI, CMC and More

new communication content from the system. This is because the user has not sent
the messages expressed in the balloons to the system. In this particular kind of
computer-mediated communication, the activation of the channel that carries the
user’s message to the system must be explicitly commanded by pressing on
the appropriate interface control. If not, the message cannot reach its targeted
recipient. This protocol can be the source of many blunders in human-computer
interaction. Therefore, to say that smooth, pleasurable, effective and efficient
communication in this context is the result of competent “semiotic engineering” of
interface languages and communicative protocols is not a pretentious choice
of terms. Indeed, since every system is different from all other systems, every sys-
tem has a unique interface language and set of communicative protocols that users
must learn through a process that can justifiably be characterized as the acquisition
of an artificial language. For every new system, a new language of interaction
must be engineered and deployed by the system’s designers and developers, and
acquired and mastered by the system’s users.

2.1 A Specifically Defined Object of Investigation

Theories do not necessarily have to construct their individual object of investiga-
tion, but many of them do. The option with Semiotic Engineering has been to do
so because the more natural alternative, to take “human-computer interaction” as
its object of investigation, would blur a fundamentally important distinction that
the theory was trying to make. At a time when user-centered design and usability
studies were practically the dominant topics in HCI, designers and developers
were completely out of the picture in human-computer interaction accounts. Users
were at the center stage, as paradigmatically defined in Norman’s widely known
and used Seven Step Theory of Action (Norman, 1986). It proposed a characteri-
zation of human-computer interaction as the iterated traversal of two gulfs, the
Execution Gulf and the Evaluation Gulf (see Fig. 2).

The radical view that users should be at the center of HCI investigations is
powerfully expressed by the fact that all the actions involved in Norman’s theory
of HCI are performed by the user. In Fig. 2 we see that “the user” is the subject of
all verbs and phrases defining the seven steps in interaction. There are no other
“humans” in view in this model and, for many, there should not be, otherwise the
users might have their central position threatened by the presence of other stake-
holders in systems design and development. This fear has been voiced in one of
the first reviews of the book introducing Semiotic Engineering (see below),
because in our perspective, a system’s interface is the producers’ proxy, capable of
enacting all and only the communicative exchanges encoded in software.
Sometimes literally (speaking through natural language words and sentences) and
sometimes metaphorically (speaking through non-verbal signs and patterned beha-
vior as shown in Fig. 1), this proxy communicates to users, with greater or lesser
effectiveness and efficiency, what, how, when, where, why and for what purposes

274 C.S. de Souza

and effects users can or should, in turn, communicate back with the system.
The complete message from designers and developers is totally encoded in soft-
ware before metacommunication begins and the process unfolds progressively as
users engage in the action by interacting with the system.

Once we defined a specific object of investigation in a vastly complex field of
studies such as HCI, the shift in focus was at least in part felt as a threat to the
field (if the theory was adopted) or to the theory (if the field continued to reaffirm
user-centered values and views that were dominant at the time). In his review of
The Semiotic Engineering of Human-Computer Interaction (Gerd Waloszek,
2005), Waloszek gives us an example of this way of thinking:

I hear the alarm bells ring in the user-centered design (UCD) fraction. Are we in danger
of reviving an idea that we believed to be long dead? Are we supporting the “users are
stupid!” proponents, who put all blame on the users who are seemingly unable to decipher
the designers’ noble plans? This is an open question for me. Of course, there are two sides
of the coin, the other of which would be to attribute the users’ failures to the designers
because they were unable to communicate their intentions properly through the user inter-
face. Nevertheless, my personal feeling is that the designer’s role is overemphasized in
the picture that semiotic engineering sketches of HCI.

Waloszek’s review was addressed to interaction design practitioners, not HCI
researchers. By contrast, and as a lead into the importance of cohering theories,
only a few years later Norman himself published an article about systems thinking
(Norman, 2009) where he picked Semiotic Engineering as an example of a theory
that “can help ensure consistency and coherence” (p. 54) in the broader picture of
systems design, development and use. Of course this comes at the expense of
reframing familiar concepts and having the appropriate means to operate with
them while searching for new knowledge, be it at the level of users’ tasks and
actions, or at the level of services and experiences.

Exe
cu

te

Plan
Form

ulate

Plan of

Actio
n

Est
ab

lis
h

Im
m

ed
ia

te

In
te

nt
io

n

Defi
ne

Ove
ra

ll G
oal

Execution Gulf

Evaluation Gulf

Perce
ive

Sys
tem’s

State
Interp

re
t

Sys
tem’s

State
Eva

luate

Goal

Completio
n

Fig. 2 Seven Steps in Norman’s theory of action

27511 Semiotic Engineering: A Cohering Theory to Connect EUD with HCI, CMC and More

2.2 An Ontology and Theory-Specific Methodology

In order to keep its semiotic orientation and narrow focus on metacommunication,
Semiotic Engineering created its own ontology and specific methods. This is not
to say that all other ontologies, from more, or less, popular theories of HCI are
incompatible with our theory. However, some of them are (such as the already
mentioned Seven Step Theory of Action Norman, 1986) and most of them,
although not incompatible (such as Activity Theory Kuutti, 1996), do not keep a
sharp focus on metacommunication, its limits and possibilities, modalities, struc-
ture, qualities and strategies.

From the ontological point of view, Semiotic Engineering added participants
on the interaction stage. Designers and developers became the senders of an inter-
active message delivered by systems interfaces. By the same token, contrary to the
user-centered ontology, systems became senders and receivers of smaller pieces
of locally connected communication with users. In other words, in this new ontol-
ogy, designers, developers, users and systems share the same role in HCI, they
all are (directly or indirectly) communication partners in the same event. Even
more importantly, because communication involves intentions, in a Semiotic
Engineering perspective, interaction design must explicitly address the designers’
(and developers’) goals expressed through systems interfaces, which in general
amount to responding in the best possible way to the needs and expectations of
the users. One of the effects of giving the same ontological status to systems pro-
ducers and consumers is that it opens the way to the study of certain kinds of
interaction where talking about “tasks,” “goals” and preferences does not seem to
be exactly right. For example, in computer art (Edmonds, 2007) the user plays a
totally different role than defined in user-centered theories of HCI. The intent and
expression of the designer can be just as important or even prevail. The same is
arguably the case in security-sensitive systems, where users must follow protocols
that they may not like and enjoy, but are safer by design.

The Semiotic Engineering ontology also included non-cognitive concepts that
play an important role in distinguishing natural human communication and
computer-mediated metacommunication. The most important one is semiosis, bor-
rowed from Peircean semiotics (Peirce, 1992, 1998). In very brief and necessarily
simplified terms, semiosis is the process by which (human) minds continually
assign and revise meaning to whatever is perceived as potentially significant. For
example, the sign when first seen by users was probably significant in strict
terms (i.e. it meant “something”) yet unknown, or not well understood. Overtime,
as sharing items on social networks became popular, users began to associate
with the idea of sending the item to others or posting it on various kinds of digital
boards. However, the meaning of is constantly changing, not only because new
social computing technologies are constantly being deployed, but much more
importantly because one’s personal experience with (and hence the value assigned
to) sharing items online resignifies and repurposes in unanticipated ways.
Therefore, in semiotic theory, semiosis is an unlimited process that actually

276 C.S. de Souza

determines all change and evolution, be it at the small individual scale, or at the
very large cultural level. Moreover, for a number of theorists, semiosis is part of
our genetic programming, that is, we cannot not signify or resignify the world
around us (this is true even for non-semiotic theories, see for example Calvo &
Peters, 2013).

The theoretical distinctions that Semiotic Engineering introduces in the study
of computer-mediated human communication through software are particularly
powerful in the context of EUD. As will be shown in the next section, it promotes,
in Norman’s terms, a systems thinking approach to EUD, even though – as we
should emphasize one more time – the theory cannot account for all parts of the
system. It can, however, transform our way of looking at EUD. If nothing else,
we can now think about how end users can develop software for other end users
to engage with, be it for the sake of the producers’ interest, the consumers’, or
both. As a consequence of this shift in perspective, what users mean by their soft-
ware and the way they communicate it come immediately into focus.

In order to operationalize the use of all concepts introduced in the new ontol-
ogy of HCI proposed by Semiotic Engineering, we developed specific methods to
investigate metacommunication through software. Because they can characterize
how the designers’ and developers’ message to users is elaborated and expressed
(i.e. emitted), as well as how it is interpreted and used (i.e. received) by the end
users, in practice the two methods can be applied in HCI evaluation to determine
the fundamental semiotic quality of systems in our perspective, communicability
(de Souza & Leitão, 2009).

In keeping with the example, systems whose interface signs include speak
for their human designers and developers, to their human users. Therefore, the
meaning of for human parties involved in various instances of metacommunica-
tion enabled by these systems will typically evolve. Users, as already mentioned,
will naturally change their interpretation of sharing in view of experiences that
they (or others) have with these (or other) technologies. But the same will happen
with designers and developers. Once their product systems are deployed, their
interpretation of sharing will, for the same reasons, change, too. A system’s inter-
pretation of will however stay the same, until or unless it is reprogrammed by
developers or users. This is to say that unlike human semiosis, computer semiosis
is limited by its algorithmic nature (Nake & Grabowski, 2001).

Semiotic Engineering methods to study communicability and metacommunica-
tion concentrate on signs and semiosis, supporting the investigation of designers’,
systems’ and users’ meanings. They are interpretive methods that belong in the
domain of qualitative methodology (Blandford, Furniss, & Makri, 2016). This is
an important feature of the potential contributions of this theory to EUD, which
will be presented and discussed in the following sections. Other qualitative meth-
ods, such as action research (Greenwood & Levin, 2007) for example, can also be
used in investigations informed or guided by Semiotic Engineering. The use of
metrics and quantitative methodology should however be used with caution (if at
all), since the counting of meaning-related objects and events can be not only
difficult but also questionable.

27711 Semiotic Engineering: A Cohering Theory to Connect EUD with HCI, CMC and More

3 Social Communication Through Software Programming

The intersection between EUD-related topics and Semiotic Engineering dates back
to the late 1990’s, when a number of young researchers at PUC-Rio were doing
their PhDs. Simone Barbosa’s work on the interpretation of metaphors and meto-
nymies expressed in user interface languages as a mechanism to extend or modify
a system’s behavior (Barbosa & de Souza, 2001) is a good example of what can
be done with this theory. Another example is the evaluation framework derived
from two principles we have proposed in order to assess the quality of scripting
languages (or any other system of signs, such as visual ones in graphical user
interfaces), namely the interpretive abstraction principle and the semiotic conti-
nuum principle (de Souza, Barbosa, & da Silva, 2001). In the 2006 EUD book
(Lieberman et al., 2006) the chapter written by Simone Barbosa and myself
(de Souza & Barbosa, 2006) followed the lines anticipated in the 2005 introduc-
tion to Semiotic Engineering (de Souza, 2005a). We argued that thanks to the
principle of ongoing semiosis (see Sect. 2) the “usability” of interactive systems
was intrinsically dependent on how they supported customization and extension
carried out by the end users themselves. Besides the conceptual framing of EUD
in the light of semiotic theory, our chapter provided a semiotic characterization
and classification of customization and extension styles known at the time. To the
best of our knowledge, what we proposed then is still applicable today, even after
radical changes in technology.

In 10 years, our research in Semiotic Engineering has become even more
tightly related to EUD, but following a completely different direction. In the
sequel of the more technical kinds of metacommunication that we investigated in
a previous phase, we began to investigate subjective aspects of metacommunica-
tion, that is, the presence of individual and collective beliefs, values, affect and
intent in software design (see for example Semiotic Engineering work about cul-
ture and HCI Salgado, Leitão, & de Souza, 2012) and computer programming.
The remainder of this section presents the highlights of our work in Scalable
Game Design Brasil (SGD-Br), a 5-year computational thinking acquisition pro-
ject in partnership with Alexander Repenning’s Scalable Game Design initiative
in Colorado, using AgentSheets (Repenning & Ioannidou, 2004, 2006;
Repenning, Webb, & Ioannidou, 2010). The main feature of the Brazilian version
of the project was an emphasis on self-expression and social communication
through programming (de Souza et al., 2014; de Souza, Garcia, Slaviero, Pinto, &
Repenning, 2011; Ferreira et al., 2012) rather than on the learning of computa-
tional thinking patterns. To be sure, the required cognitive skills for anyone to be
able to express ideas through software he or she has created include the ability to
think computationally. The interesting addition to the story is that expressive and
communicative skills are just as important (de Souza, 2013).

The parallel between computational thinking and social communication
through storytelling or writing is not new and has been explored in different
ways. Kelleher’s work with Storytelling Alice (Kelleher & Pausch, 2007) is well

278 C.S. de Souza

known for increasing young girls’ interest in computer technology. In a different
direction, Burke and Kafai’s work has investigated how programming can help
young students master narrative structures in discourse (Burke & Kafai, 2010,
2012). Additionally, the interdisciplinary work of Wolz and colleagues (2011)
has shown how broader participation in computing can be increased by teaching
strategies centered on social communication activity, more specifically on what
they call interactive journalism. Although our project shares many of the underly-
ing assumptions and motivations of these and other related works, the main dif-
ference is our focus on semiotic aspects of computer programming, that is, on the
representations and meanings that computer programs manifest internally (when
looking at their code) and externally (when looking at their interface and the
interactions supported by it) and on how these can signify a programmer’s intent,
beliefs and values.

SGD-Br is a collaborative project carried out by the Semiotic Engineering
Research Group (SERG) at the Pontifical Catholic University of Rio de Janeiro, in
partnership with: the Center for Lifelong Learning and Design at the University of
Colorado in Boulder; the Active Documentation & Intelligent Design Laboratory
at Universidade Federal Fluminense; AgentSheets, Inc.; and 3 schools located in
the metropolitan area of Rio de Janeiro. The project ran from Mach 2010 to
February 2015, with an average duration of four semesters at each school. In
Table 1 we show that a total of 235 students and 19 teachers learned to program
games and simulations using AgentSheets. In all three schools, teachers have car-
ried out activities that explicitly involved the expression of ideas through games
and simulations. They were, however, free to choose other kinds of activity, which
they did (for example, asking the students to build versions of traditional games
like Space Invaders and Frogger).

Three kinds of technologies have been used in SGD-Br studies. The first is
AgentSheets, the visual programming environment used for creating games and
simulations. The second is a dedicated live documentation Web system called
PoliFacets, which we developed to explore meanings and representations
embedded in AgentSheets projects. The third is SideTalk, a Firefox extension to
create metacommunication dialogs for scripted navigation. SideTalk is built on top

Table 1 SGD-Br facts

School one School two School three Totals

Duration 2010–2013 2012–2014 2012–2014 2010–2014
CTA programs 6 7 9 22

Number of trained teachers 6 5 8 19

Number of coached classes 4 3 3 10

1 Geography 1 Informatics 1 Media Arts

Classes subjects 1 Biology 1 Literature 1 Science

2 Math 1 Math 1 Programming

Number of students 72 46 117 235

27911 Semiotic Engineering: A Cohering Theory to Connect EUD with HCI, CMC and More

of IBM’s CoScripter (Leshed, Haber, Matthews, & Lau, 2008) and was used
mainly in one particular study with a small group of volunteer students and their
teacher. We will briefly describe and illustrate each one of these technologies and
provide references for readers who wish to know more about them.

3.1 AgentSheets

AgentSheets is a visual programming environment specifically designed to support
computational thinking acquisition (Repenning & Ioannidou, 2004; Repenning
et al., 2010). The programming involves: (a) creating one or more agents;
(b) deciding on their appearance and behavior; and (c) creating one or more
Worksheets, which are game/simulation spaces where agents are deployed. The
program can be executed (“played”) at different speeds (from slow to fast) or step
by step. An agent’s behavior is defined by a set of if/then rules triggered by a
set of events. Rules are created and tested interactively with direct manipulation of
visual objects representing agents, rule conditions, actions and play space
(Repenning, 2011).

For an illustration, consider the image shown in Fig. 3. It shows the execution
space (worksheet named Skies) once the program is “played.” Fireworks
(like two variations of it, discussed below) is a demonstration program, built by
one of the SGD-Br researchers. The visual pattern on screen is a collection of
agents shown in the Gallery of agents (right-hand side of Fig. 3). In this case there
are two agents in the gallery, FireRed and SetOnFire. One of them has five

Fig. 3 AgentSheets worksheet after Fireworks execution and program agents gallery

280 C.S. de Souza

depictions (visual forms), while the other has only two. All depictions and agents
must have a name chosen by the user (upper and lower case used in this chapter
to improve readability).

The initial state of the play space is shown in Fig. 4, where all we see is vir-
tually a blank sheet with only three red dots at the bottom (three instances of the
agent class FireRed). The worksheet configuration is changed during execution,
according to the agents’ behavior rules. Multiple instances of the two classes of
agents, with different depictions, are shown in the program’s final state (see the
worksheet configuration in Fig. 3). In Fig. 5, we show the only two behavior rules
for the SetOnFire agent. The empty rule triggered by AgentSheets While
running event is created automatically. However, the non-empty rule triggered
by the “On” event has been defined by the programmer. A pseudo-natural lan-
guage translation of the rule might be: “if <no specific condition required>, then
change <yourself> to <selected depiction>”.

3.2 PoliFacets

PoliFacets is a Web system specifically designed to support the semiotic explora-
tion of meanings and representations embedded in AgentSheets projects. The
targeted users of PoliFacets are learners and teachers using AgentSheets to

Fig. 4 AgentSheet’s execution interface (Worksheet) in Fireworks initial state

28111 Semiotic Engineering: A Cohering Theory to Connect EUD with HCI, CMC and More

communicate ideas through games and simulations. The exploration of meanings
and representations is done through navigating and interacting with the system,
which thus becomes a live documentation of the semiotic engineering activity
involved in the design and construction of games and simulations (Mota, Faria, &
de Souza, 2012; Mota, Monteiro, Ferreira, Slaviero, & de Souza, 2013). There are
six facets to explore: Description; Tags; In Practice; Worksheets;
Rules; and Connections. The Description facet displays the program-
mer’s free-text description and instructions to the player. The Tags facet displays
an interactive tag cloud showing which commands have been used more and less
frequently by the programmer (and where, if the user interacts with the cloud
terms). The In Practice facet loads an applet for the user to “play.” The pro-
grammer’s description and instructions are shown above the applet. The
Worksheets facet enables various kinds of interactions to explore how the
programmer has structured the “play space” and where various instances of agents
are displayed in a worksheet’s initial state. The Rules facet presents a (pseudo)
natural language translation of agents’ behavior rules, that is, the program logic as
conceived and encoded by the programmer. Finally, the Connections facet
presents a series of graphs showing the (kinds of) relations between agents by vir-
tue of their behavior rules. Relations can be appreciated from different agents’
point of view.

Except for Descriptions, all facets are automatically generated. In
Practice is generated by Ristretto, an AgentSheets component. The other four
facets are generated by the PoliFacets parsing component. In Fig. 6, we show the
the system’s interface exhibiting part of the Description facet of the
Fireworks program. Notice the thumbnail image of the programs initial (nearly

Fig. 5 AgentSheets’ interface to create behavior rules

282 C.S. de Souza

blank) worksheet beside the metadata information section, with the program’s
name, the author’s ID, the date of creation, etc. The six facets can be accessed
through the links displayed on the right-hand side of the screen.

We will illustrate the purpose and power of PoliFacets with a brief exploration
of selected facets of three different programs whose output produces exactly the
same visual pattern. We have already shown the agents in the first version, called
Fireworks (see Figs. 3–5, above). In Fig. 7 we compare the introductory part
of the Rules facet for Fireworks (top), AnotherFireworks (center) and
YetAnotherFireworks (bottom). We can already see a significant difference
in the programming (i.e. in the way the authors’ messages are signified).
Fireworks has only two active agents, no passive agents and no stacked agents.
AnotherFireworks has three agents, two active and one passive, and no
stacked agents (like Fireworks). Finally, YetAnotherFireworks has two
agents, like Fireworks, but unlike any of the other two, it has stacked instances
of both classes of agents.

An interesting case to explore is the Connections facet for Fireworks
and YetAnotherFireworks. Although both have exactly two agents (with
exactly the same names), the relations between them are different in the graphs
compared in Fig. 8. The YetAnotherFireworks connections graph shown in
the upper half of the image has an annotated edge between the two nodes. The
red-color node is the agent “whose connections” are being explored. The black-
color agent is the one with which it is related. The green-color edge between them
indicates that the rule(s) establishing the connection between them can be found in
the behavior of the red-colored agent, in focus. The annotation on the edge

Fig. 6 PoliFacets’ interface showing the Description facet of Fireworks

28311 Semiotic Engineering: A Cohering Theory to Connect EUD with HCI, CMC and More

Fig. 7 Snippets of three programs’ Rules facets

Fig. 8 A comparison between YetAnotherFireworks (1) and Fireworks (2) “Connections” facet

284 C.S. de Souza

indicates how many rules are involved. Moreover, below the graph, there is an
indication of the command(s) that have been used to create the connection.

The Fireworks connections graph at the lower half of Fig. 8 has a gray-
colored edge connecting the two agents. This means that connections are estab-
lished by behavior rules of the other agent, which is not in focus. Notice that there
are no annotations on the edge. Below the YetAnotherFireworks graph on
the upper half of Fig. 8 there is an indication of a different command (Stacked)
than the one used to established connections between the same two agents in
Fireworks (Broadcast).

Another meaningful comparison can be made using the Tags and the
Worksheets facets of all three programs. In, Table 2 we show a synopsis of
the outstanding differences between the internal signs of the three programs. The
external signs exhibited when the programs are executed are virtually perceived as
the same, in spite of slightly noticeable differences in the speed of execution,
depending on the machine where the program is running. But for all practical
effects, the player does (and sees the program do) the same actions in all three
cases. Although the facets’ images in Table 2 are definitely not readable or signifi-
cant in detail, the broad-brush visual patterns that can be seen in the three columns
with visual cues to the programs’ facets support the comments on differences
shown in the last row of the table. The details of differences in programming are
lengthy and beyond the purpose of this paper. The interested reader is invited to
explore them online in the collection of sample projects showcased in the
PoliFacets website14.

The points in evidence by way of the illustrations above is that, first, the coding
of programs is laden with meanings that can tell us interesting things about the
programmer’s frame of mind, and that, second, a semiotic analysis combining
internal and external program signs can be further explored in certain domains.
For example, in Computer Art there are interesting discussions about the concep-
tual dimensions of images produced by a computer program (Boden & Edmonds,
2009; Nake, 2005). The kind of semiotic analysis carried out by PoliFacets with
AgentSheets suggests that there may be room to develop exciting EUD art tools
based on semiotic dimensions advanced by Semiotic Engineering and other related
theories. The three programs above paint the same trivial pattern on the screen
and they have been created by the same programmer. However, it they had been
produced by different participants of an introductory “Art with AgentSheets”
workshop for non-artist novice programmers, for example, PoliFacets would show
that the programmer of YetAnotherFireworks conceived his artistic piece as
something different from the other two programmers. While interacting with
YetAnotherFireworks, the player sees a succession of manually designed
worksheets, whereas in the other two programs the player sees the action

14PoliFacets sample projects can be accessed at http://www.serg.inf.puc-rio.br/polifacets/project/
list.lua?lg=en&page=example. The user can use the search box to access “Fireworks,”
“AnotherFireworks” and “YetAnotherFireworks” more quickly. To run the programs, a Java-
enabled browser is required.

28511 Semiotic Engineering: A Cohering Theory to Connect EUD with HCI, CMC and More

http://www.serg.inf.puc-rio.br/polifacets/project/list.lua?lg=en&page=example
http://www.serg.inf.puc-rio.br/polifacets/project/list.lua?lg=en&page=example

T
ab

le
2

A
co
m
pa
ri
so
n
be
tw
ee
n
fa
ce
ts
of

th
re
e
pr
og
ra
m
s

F
ir
ew

or
ks

A
no
th
er

fi
re
w
or
ks

Y
et
an
ot
he
r
fi
re
w
or
ks

T
ag
s

9
co
m
m
an
ds

8
co
m
m
an
ds

8
co
m
m
an
ds

W
or
ks
he
et
s

1
w
or
ks
he
et

1
w
or
ks
he
et

11
w
or
ks
he
et
s

(c
on
tin

ue
d)

286 C.S. de Souza

T
ab

le
2

(c
on
tin

ue
d)

F
ir
ew

or
ks

A
no
th
er

fi
re
w
or
ks

Y
et
an
ot
he
r
fi
re
w
or
ks

C
on
ne
ct
io
ns

(c
on
tin

ue
d)

28711 Semiotic Engineering: A Cohering Theory to Connect EUD with HCI, CMC and More

T
ab

le
2

(c
on
tin

ue
d)

F
ir
ew

or
ks

A
no
th
er

fi
re
w
or
ks

Y
et
an
ot
he
r
fi
re
w
or
ks

R
ul
es

2
ag
en
ts
:

3
ag
en
ts
:

2
ag
en
ts
:

F
ir
er
ed

(5
de
pi
ct
io
ns
,1

m
et
ho
d,

14
ru
le
s)

F
ir
er
ed

(5
de
pi
ct
io
ns
,1

m
et
ho
d,

14
ru
le
s)

F
ir
er
ed

(5
de
pi
ct
io
ns
,1

m
et
ho
d,

2
ru
le
s)

S
et
on

fi
re

(2
de
pi
ct
io
ns
,2

m
et
ho
ds
,3

ru
le
s

to
ta
l)

S
et
on

fi
re

(1
de
pi
ct
io
n,

2
m
et
ho
ds
,2

ru
le
s

to
ta
l)
on

fi
re

(1
de
pi
ct
io
n,

1
m
et
ho
d,

1
em

pt
y

ru
le
)

S
et
on

fi
re

(2
de
pi
ct
io
ns
,1

m
et
ho
d,

1
ru
le
)

C
om

m
en
ts

on di
ff
er
en
ce
s

T
he
re

ar
e
on
ly

2
ag
en
ts
,w

ho
se

ap
pe
ar
an
ce
s

ar
e
ch
an
ge
d
as

–
in

th
e
co
ur
se

of
ex
ec
ut
io
n

–
th
ei
r
re
la
tio

n
w
ith

on
e
an
ot
he
r
ch
an
ge
s.

[s
tr
ic
t
ag
en
t
st
at
e
(d
ep
ic
tio

ns
)
ch
an
ge

st
ra
te
gy
]

T
he
re

ar
e
3
ag
en
ts
.c
ha
ng
es

in
m
ut
ua
l

re
la
tio

ns
du
ri
ng

ex
ec
ut
io
n
le
ad

to
ch
an
ge
s

of
ap
pe
ar
an
ce
s,
se
lf
-d
es
tr
uc
tio

n
or

cr
ea
tio

n
of

ne
w
ag
en
ts
.[
m
ix

of
ag
en
ts
ta
te

(d
ep
ic
tio

ns
)
ch
an
ge

an
d
ag
en
t
cr
ea
tio

n
st
ra
te
gy
]

T
he
re

ar
e
2
ag
en
ts
.c
ha
ng
es

in
m
ut
ua
lr
el
at
io
ns

du
ri
ng

ex
ec
ut
io
n
le
ad

to
a
su
cc
es
si
on

of
gl
ob
al

ch
an
ge
s
in

th
e
pl
ay

sp
ac
e,
in
tr
od
uc
in
g
m
or
e
st
at
ic

ag
en
ts
,a
te
ac
h
ch
an
ge

st
ep
.[
fr
am

e
an
im

at
io
n

st
ra
te
gy
,w

ith
in
te
ns
iv
e
us
e
of

st
ill

im
ag
es

in
th
e

pl
ay

sp
ac
e]

288 C.S. de Souza

algorithmically defined by if/then rules. Would this be an indication that
the rule-based “art” of two participants is more conceptual than that of the other
participant? Likewise, would the program using the smallest number of resources
(agents, rules, or worksheets) be a minimalist version of the others? These are just
hints at possibilities that could be further explored with more robust technologies
of the same sort as AgentSheets and PoliFacets in end user programming and
development activities involving creativity and art, in middle schools, high
schools, or even elsewhere.

3.3 SideTalk

SideTalk first appeared under the name of Web Navigation Helper, used in a series
of accessibility studies (Intrator, 2009; Intrator & de Souza, 2008; Monteiro, da
Silva Alves, & de Souza, 2013). Later, as it began to be explored in SGD-Br
research, it was revised and renamed to express the fact that it could be used
for many different purposes beyond helping navigate the Web (Monteiro & de
Souza, 2012; Monteiro, Tolmasquim, & de Souza, 2013). As already mentioned,
SideTalk is an extension to Firefox built on top of CoScripter (Leshed et al.,
2008). CoScripter is a macro recorder for the Web, which allows users to create
scripts mainly to automate repetitive tasks like form filling, login and navigation
in a frequently used workflow system, project testing and debugging. Automation
does not preclude interaction. Script users can interact with the pages at various
stages (which can be controlled by the script or not). With SideTalk, an end user
can create and follow a parallel conversation with another user who is running a
CoScript. The purpose of the parallel conversation can be to explain what happens
while the script is executed, to instruct the script user about how to interact with
a Web application, to make a commentary on Web content, and more. One of
the useful things we can do with SideTalk is to guide a user’s interaction with
website designed for a foreign culture, with content in a foreign language. In
Fig. 9 the superimposed images show SideTalk running in Firefox’s sidebar, with
a sequence of steps recorded with CoScripter (lower-layer image). The SideTalk
home page, whose content is in Brazilian Portuguese, is loaded when the first step
is executed. At this point, the author of the conversation under construction deci-
des to create a dialog (as conversational steps are called in SideTalk) that will be
shown to the conversation’s end user, the author’s interlocutor in this sort of meta-
communication. The dialog creation window (upper-layer image) illustrates some
of the functionality supported by the dialog editor.

In Fig. 10, we show superimposed images of a dialog creation screen (lower-
layer image), captured while the author designs the metacommunication he wants
to achieve with the targeted users, and a mediated web navigation snapshot (upper-
layer image), captured while the user is running the script. Notice that the commu-
nication language on the sidebar, the actual the side talk, is different than on the

28911 Semiotic Engineering: A Cohering Theory to Connect EUD with HCI, CMC and More

main page. This script works as an interpreter for a foreign English-speaking
visitor to the SideTalk website.

Although SideTalk, just like PoliFacets, is technically limited in a number of
ways, it has the power to probe metacommunication in considerable depth. For

Fig. 10 SideTalk conversation, in design and use mode

Fig. 9 SideTalk’s sidebar and dialog creation interface

290 C.S. de Souza

example, in SGD-Br, SideTalk has been used in combination with PoliFacets
in a study carried out by Monteiro and colleagues (Monteiro, de Souza, &
Tolmasquim, 2015). Six volunteer students from one of the partner schools
designed SideTalk conversation to present their favorite AgentSheets project to
their teacher. The presentation was based on the live documentation of their game,
generated and supported by PoliFacets. The results of the study showed powerful
evidence of first-person discourse embedded in AgentSheets programs. In Fig. 11
we show a snapshot of the mediating conversation that Eva, an 8th grader,
designed for Mr. Tobias, her teacher. She wants to share with him her view of the
Frogger game she has created. Notice her expressive choices while explicitly or
implicitly commenting on PoliFacets interface (Tagssssss, fancy diagram) or her
own programming choices (the bigger the command is, the more times I’ve used
it, As you can see I’ve used 16 commands although this is a pretty simple game).

The power of metacommunication in this context can be appreciated in at least
three dimensions. The technical one is that Eva is using a program whose object is
another program, that is, she is engaged in metaprogramming. The design of meta-
communication steps and dialogs is entirely of her own, although she has been
occasionally helped by an instructor while trying to correct a mistake or find the
appropriate control to be used in SideTalk’s dialog-creation interface. The psycho-
logical dimension, already manifest in Fig. 11, is that Eva is proudly presenting

Fig. 11 A snapshot of student-teacher asynchronous conversation mediated by SideTalk

29111 Semiotic Engineering: A Cohering Theory to Connect EUD with HCI, CMC and More

her own meanings and achievements in different programming environments. She
used AgentSheets to design her version of Frogger and now she is using SideTalk
to comment on what PoliFacets is saying about her program. This unique triangula-
tion context is full of possibilities for EUD (and non-EUD) activity. Finally, the
social communication dimension can be appreciated by the teacher’s reaction to the
SideTalk conversations designed by his students. The detailed findings and discus-
sions of this dimension can be found in Monteiro’s work (Monteiro et al., 2015)
(see also Monteiro & de Souza, 2012 for a related study). This is one of the com-
ments made by the teacher, with his reaction to the use of SideTalk in this activity:

I liked it a lot. I think the tool is fantastic. It has this personal touch to it. I think that
’cause they were addressing me specifically, and this was between me and them, it was a
great opportunity for them to kind of have a closure of the class and kind of, you know,
have a way of […] connecting with me.

The teacher also commented on the pedagogical potential of asking the students
to use SideTalk in combination with PoliFacets to present their programming pro-
jects. He said:

I think that would help them make better games […]. I think it has the potential to give
them awareness, which could stimulate actually computational thinking ’cause they’d
think deeper about what they did and why they did it.

4 On the Potential Contributions of Semiotic Engineering for
Increasing EUD’s Scientific Impact

In the introduction to this paper we contrasted evidence of great technological
influence achieved by EUD-related research with the perception that its scientific
influence on closely related areas – especially HCI – has been much less substan-
tial (Tetteroo & Markopoulos, 2015). Although we do not discuss why (or even if)
this perception is correct, we propose that Semiotic Engineering is a cohering the-
ory that can be productively used to achieve two important kinds of effects.
Firstly, it can inspire the development of new kinds of technologies. Secondly,
with its origins in HCI and its commitments with CMC, this theory provides a
pathway for EUD researchers to exchange knowledge and make significant contri-
butions across disciplinary borders.

Since our chapter is about the development and use of theory in research that
involves distinctly practical goals and settings, we begin this discussion by invok-
ing Stokes’s revision (Stokes, 2011) of the traditional contrast between basic and
applied research crystallized in Vannevar Bush’s famous postwar report about the
role of science in peacetime (Bush, 1990). Stokes argues against the separation
between basic and applied research and what he calls the dynamic form of this
contrastive paradigm, visually depicted in Fig. 12 as a sequence of steps leading
from basic science to technological innovation.

292 C.S. de Souza

Although Stokes was mainly interested in discussing public policies for funding
research, his revision helps us to clarify what we mean by theory-oriented work
and why we think it should be more stimulated in the field of EUD. He claims
that research made to understand reality must not be (and most often is not)
carried out without considerations of how its results might be used to control (or
change) reality. According to Stokes, the Quadrant Model of Scientific Research
(see Fig. 13) can not only accommodate research to understand reality and
research to control reality more easily articulated with one another, but also orga-
nize a much richer territory within which scientists can position and reposition
themselves as their scientific projects evolve over time.

The Quadrant Model in Fig. 13 might be used to map where EUD research has
been more intense to date. Tetteroo and Markopoulos’s conclusion that EUD
research published between 2004 and 2013 is remarkably techno-centered sug-
gests that there aren’t (many) members of the EUD community positioned in the
Bohr’s Quadrant. Yet, the fact that most of the surveyed papers were classified
as applied research (Tetteroo & Markopoulos, 2015, p. 62), following the
traditional perspective inspired by Vannevar Bush, leaves considerable room for
ambiguity regarding which of the remaining quadrants (Edison’s or Pasteur’s)
would be home for EUD research produced in the past decade. Even without revi-
siting and reanalyzing Tetteroo and Makopoulos’s data, we can make some
considerations about the scientific impact of our work in other fields of study by
simply looking at what it means to be in Edison’s or Pasteur’s Quadrant.

Basic research Applied research Development
Production &
Operations

Fig. 12 The dynamic form of the separated basic and applied research paradigm

Considerations of Use ?

NO

NO

YES

YES
Bohr’s

Quadrant

Pasteur’s

Quadrant

Edison’s
Quadrant

Quest for Fundamental
Understanding?

Fig. 13 The Quadrant Model for scientific research

29311 Semiotic Engineering: A Cohering Theory to Connect EUD with HCI, CMC and More

If most of our work is to be plotted inside Edison’s Quadrant, this means that,
in general, our community is not driven by a quest for fundamental understanding
of the phenomena involved in end user development. Although a possibility, this
would seem to be a strange choice in such a young field of studies as EUD. If ver-
ified, this situation would imply that, just like Edison, EUD researchers in this
case would be using fundamental understanding that they have imported from
other fields of knowledge. HCI theories, for example, typically orient their under-
standing of who the users are, what they do when they interact with computer
technologies, what makes such technologies usable, and so on. Software
Engineering and Information Systems Development knowledge, in turn, typically
orient their understanding of which programming languages and styles can be
used and what kinds of systems integration possibilities should be explored. The
impact of research positioned in Edison’s Quadrant is to create new life-changing
products, environments and possibilities. The greater and better the change, the
deeper and stronger the impact.

If, however, most of our work is to be plotted inside Pasteur’s Quadrant, this
means that even though we are driven by use considerations (and at times exten-
sively so), our research is also concerned with setting the grounds and foundations
for future EUD research. Therefore, although we might be possibly importing con-
cepts and methods from other fields of studies, we would also be committed to
proposing new concepts and methods that contribute to consolidate and advance
EUD as a field. Compared to the case with Edison’s Quadrant, the depth and
strength of impact achieved by this mode of research can now be additionally
assessed in terms of intellectual influence, that is, by how its proposed new ways
of describing and thinking about EUD-enabled reality influence the perspective of
other scientists, while doing their own work.

Our perception therefore is that an increase of EUD research impact outside its
borders is probably more a matter of explicitly positioning our research in the
so-called Pasteur’s Quadrant (Stokes, 2011) than a matter of preferred research
methods or practical engineering orientation (Tetteroo & Markopoulos, 2015).
Moreover, we claim that Semiotic Engineering is a cohering theory with which
EUD research can connect with HCI, CMC and other areas of investigation. We
have presented a compact description of the theory in Sect. 2 and shown how it
has been used to address practical challenges in Sect. 3. Could it help increase the
scientific impact of EUD? Why? How has it contributed to this end up to now?

Although the first publication about Semiotic Engineering appeared in 1993
(de Souza, 1993), only in 2005 was the complete theory presented in a book,
which included an entire chapter dedicated to software customization, extension
and programming carried out by end users (de Souza, 2005a). The theory is there-
fore about as young as EUD and, from the start, committed to making an explicit
articulation between HCI and EUD. During the first decade of EUD as a field,
Semiotic Engineering was also in the process of maturing and becoming more
widely known. The progress made by the theory since 2005 can be appraised by
the publication of three additional books, whose topics are very closely related to
topics of investigation in EUD. In 2009 the Semiotic Engineering methods book

294 C.S. de Souza

(de Souza & Leitão, 2009) was published. The Semiotic Inspection Method and
the Communicability Evaluation Methods allow for a detailed analysis of meta-
communication from a sender’s (designer and developer) and a receiver’s (user’s)
perspective. In 2012, Salgado and co-authors published a book about the semiotic
engineering of cross-cultural interactive systems (Salgado et al., 2012). The inter-
est of this work is that the notion of culture can also be used to frame studies
about systems that aim to shorten the distances between professional and non-
professional cultures of software development, a topic that lies at the heart of
EUD. Finally, in 2016, the first Semiotic Engineering book that explicitly addresses
software engineering activities (de Souza, Cerqueira, Afonso, Brandão, & Ferreira,
2016), such as systems modelling and programming, was published. In it the
authors propose a suite of tools for investigating how human meanings get to be
inscribed in software. This amounts to tracing the presence of related signs across
different stages of software design, development and use. Intentionality, meaning
and representations are at the center of the SigniFYI Suite presented in this book,
which suggests that the tools included in the suite might shed an attractive light
onto certain kinds of EUD studies (especially those related to EUSE).

The paragraph above contains part of our answers to the other two questions
above (“why” and “how”). The work done in Semiotic Engineering to-date sug-
gests that the theory could indeed support an increase of the scientific impact of
EUD by helping some of the research done in our field to be framed and posi-
tioned more clearly as work that is not exclusively engaged in building new tech-
nology. A coherent use of the above-mentioned Semiotic Engineering concepts,
methods and tools while developing technology can help researchers articulate
their theory or model of EUD-related objects and phenomena in such a way that
other researchers in the field can use them, regardless of whether their technology
is of the same kind (and even regardless of whether they are developing any tech-
nology at all). Two examples of how we have done it are presented in Sect. 3, but
much more can be done by a creative community of research.

The answer to why this theory can increase the scientific impact of EUD-
related research is nonetheless incomplete if we do not discuss the role of theories
in expanding the influence and applications of a field of studies. In her analysis of
existing HCI theories, Rogers (2012) comments on the proliferation of theories
and theoretical approaches in that field, in connection with how their roles have
changed over time. According to the author, one of the lessons learned with the-
ories used in the early stages of HCI development is that “you cannot simply lift
theories out of an established field (i.e., cognitive psychology), that have been
developed to explain specific phenomena about cognition, and then reapply them
to explain other kinds of seemingly related phenomena in a different domain (i.e.,
interacting with computers)” (Rogers, 2012, p. 22). When the HCI community rea-
lized this, a multitude of theories that aimed at overcoming the limitations shown
with early cognitive theories were developed. However, the transfer of knowledge
from theory to practice has been far less clear and direct than one would have
expected. Today, in the midst of what Rogers describes as “a messy and ever-
changing, technologically augmented world”, HCI theories play an important

29511 Semiotic Engineering: A Cohering Theory to Connect EUD with HCI, CMC and More

transdisciplinary role, by enabling HCI researchers to establish productive debates
with colleagues from other fields whose objects of investigation are most certainly
affected by computer technologies. Following this line of thought, we see an ana-
logous situation in the future of EUD, that is, theoretical work that addresses
directly the specific contexts, conditions and activities of EUD can eventually con-
tribute to transdisciplinary discussions, which will naturally increase the impact of
our field beyond its borders.

In the field of design studies and design research, authors interested in the role
of theories have raised additional points that are also relevant for EUD. Di Sessa
and Cobb (2004) underline the importance of theories in achieving ontological
innovation, that is, in establishing “new categories of existence in the world”
(diSessa & Cobb, 2004, p. 84). With ontological innovation, theories induce new
ways of thinking and new possibilities for action. Venable (2006), in turn, surveys
a large number of publications about design science and research, including
Herbert Simon’s ground-breaking Sciences of the Artificial (Simon, 1996). He
sees the role of theories as that of supporting technological innovation as well as
the process of design, evaluation, problem diagnosis and problem solving, by
means of utility theoretical constructs that relate solution spaces and problem
spaces in the field of interest. Venable defines utility theories as those whose
assertions state that certain classes of technology can improve certain classes pro-
blem situations because of certain facts, principles or other consistently and suffi-
ciently articulated justification.

Rogers, diSessa and Cobb, and Venable speak of the relations between theories
and innovation in fields of studies that are very closely related to EUD. If Tetteroo
and Markopoulos are correct in concluding that EUD-related research is remark-
ably focused on (re)engineering activities (Tetteroo & Markopoulos, 2015), this is
an important cultural feature of our community. Consequently, the chances of
adoption of any theory in EUD are proportional to the perception of their role in
the design and development of new technologies. We can take the example of the
Cognitive Dimensions of Notations (CDN) framework (Blackwell & Green, 2003)
to check if, as a well known and often used theoretical approach in EUD, it
confirms the above-mentioned points made by Rogers, diSessa and Cobb, and
Venable.

CDN is a theoretical framework that supports mainly the analysis (but also the
design) of representations that users of information artifacts must understand and
manipulate while using them. According to its creators, CDN sets out a small
vocabulary of relevant terms with which evaluators and designers can articulate
cognitive aspects involved in the use of notations for a variety of tasks carried out
with information artifacts (Green & Petre, 1996). Evidence of its power to support
cross-disciplinary debates mentioned by Rogers (2012) comes not only from the
research community interested in the psychology of programming (which, accord-
ing to Blackwell has been “something of a research ghetto within mainstream
HCI” Blackwell, 2006), but also from examples of its adoption in other research
areas such as Software Engineering (Mehra, Grundy, & Hosking, 2005) and
Programming Languages (Jones, Blackwell, & Burnett, 2003), especially Visual

296 C.S. de Souza

Programming Languages (Green, 2006). We also have evidence of its role in
achieving ontological innovation, as defined by diSessa and Cobb (diSessa &
Cobb, 2004). One example is how it has inspired Hundhausen’s “Communicative
Dimensions” framework (Hundhausen, 2005). This work is explicitly proposed as
an extension to the CDN framework, now focusing on other sorts of dimensions
that must be attended to in the context of information visualization environments,
where end users create representations aimed at, in Hundhausen’s words, “[med-
iating] conversations about a scientific domain of interest”. CDN’s ontological
innovation lies in prompting researchers to think of other dimensions that might
play an equally critical role in the use of information artifacts. Since
Hundhausen’s work aims at informing the design of end user visualization envir-
onments, his contribution plays a similar role as Venable’s utility theories
(Venable, 2006).

The purpose of mentioning CDN in this argumentation is to underline the influ-
ence that theory-based EUD research might have in other research communities if
we use cohering theoretical references (which, given the examples above, is
clearly the case of CDN) and explicitly show their role in our own EUD research
(techno-centered, or not). Semiotic Engineering is an alternative theoretical basis
for EUD. Compared to the CDN framework, it refers to other dimensions, which
are in fact “communicative dimensions,” like those of Hundhausen’s framework
(Hundhausen, 2005). A critically important difference, for better or worse, is that
the goal of Semiotic Engineering extends beyond that of CDN. It is far more than
a vocabulary that corresponds to a set of relevant cognitive dimensions of nota-
tions, which is also how and why it is different from Hundhausen’s communica-
tive dimensions of notations framework and hence apt to achieving new kinds of
ontological innovations and promoting new kinds of transdisciplinary conversa-
tions. While the use of Semiotic Engineering requires more investment in learning
its principles, ontology, models and methods than the use of CDN, the return on
such investment has been signposted throughout this entire paper. On the theoreti-
cal front, our theory has been originally proposed as an HCI theory that requires
that end users be able to customize and extend software that they use (de Souza,
2005a). Hence the connections between HCI and EUD are native to Semiotic
Engineering, unlike most other approaches except Meta-Design (Arias, Eden, &
Fischer, 2015; Fischer & Giaccardi, 2006; Maceli, & Atwood, 2011, 2013), whose
influence is so extensive in EUD that Tetteroo and Markopoulos take it as an
EUD-related “field” (Tetteroo & Markopoulos, 2015). Meta-Design, just like
Semiotic Engineering, proposes that the main challenge for productive use of sys-
tems is that the users’ interpretation of systems, contexts and opportunities for
action are constantly evolving. Both perspectives conclude that we should there-
fore design for meaningful evolution. However, similarly to the case with CDN,
compared to Semiotic Engineering, Meta-Design is not a theory in the same sense,
but a powerful conceptual framework and a design process model.

In addition to the basic ontological foundations that bind three distinct areas of
research – HCI, CMC and EUD – Semiotic Engineering, as we have shown in
Sect. 3, has already inspired technological innovations that can be advantageously

29711 Semiotic Engineering: A Cohering Theory to Connect EUD with HCI, CMC and More

explored by EUD researchers. More recently, Semiotic Engineering studies have
shown that PoliFacets has also a great potential as a support tool for EUSE educa-
tion (Monteiro et al., 2017). However, we believe that a possibly more enduring
scientific impact that Semiotic Engineering should help achieve stems from the
idea that end user programming and development can be widely practiced and pro-
moted as a means of self-expression and social communication, rather than as a
means for solving problems, personalizing technologies, or increasing personal
efficacy. This perspective, in our view, is likely to raise substantial interest from
other disciplines such as Psychology, Sociology, Communication Studies and
even Philosophy. Note that, for these disciplines to have a good grasp of what is
involved in social communication and self-expression through software proxies,
the EUD research community has a critically important role to play in conceptua-
lizing, exposing and operationalizing knowledge about this particular phenomenon
and how various kinds of technologies influence the way how people experience
and explore EUD in “technologically augmented worlds” (Rogers, 2012).

5 Concluding Remarks

The motivation for this chapter is the perception that the scientific impact of EUD
research is lesser than one would expect. In their survey of one decade of publica-
tions in EUD-related fields, Tetteroo and Markopoulos (Tetteroo & Markopoulos,
2015) concluded that little work is dedicated to understanding what end user
development, as a distinctive human activity, is, and what are the various contexts
and conditions that lead to success or failure in this sort of activity. Since this kind
of research typically involves the adoption (or development) of a theoretical stand,
our goal with this chapter is to show that Semiotic Engineering (de Souza, 2005a)
is a promising alternative to stimulate theoretically-based EUD research. In
Sects. 2 and 3 we briefly outlined the theory and gave examples from a research
project where we have developed and used technology that was designed in accor-
dance with Semiotic Engineering principles and whose results have contributed to
develop central aspects of the theory. In Sect. 4 we addressed the underlying
assumption of the chapter, namely, that theory-based research has a positive influ-
ence on the scientific impact of a field of studies. The argumentation in favor of
this view started by invoking Stokes (2011) revision of the traditional classifica-
tion of research as basic or applied, the former being typically the home of theory-
centered work, and the latter the home of technology-centered work. Stokes
convincingly argues that considerations about use (i.e. application) are present in a
large portion of theory development and have considerable influence on how the
theory is shaped and evolved. We then proposed that theory-based research in
EUD is not incompatible with this community’s drive towards engineering and
reengineering systems. In fact, we should emphasize in these final remarks that
EUD theories could benefit extensively from being tested (even if partially) in

298 C.S. de Souza

technological developments. Could this increase the impact of our field outside its
disciplinary borders?

The second part of our argumentation in Sect. 4 brought up a discussion of per-
ceived roles of theory in two areas of research that are tightly connected with EUD,
namely, HCI and Design. We took one of the elements of Rogers’s view on HCI
theories (Rogers, 2012) – the ability to create transdisciplinary conversations – and
the notion of “ontological innovation’ from diSessa and Cobb’s discussion of the
roles of theory in Design Studies (diSessa & Cobb, 2004) to show that theory-
based work has the potential to increase the scientific influence of a field of studies.
Moreover, using Venable’s characterization of “utility theories” (Venable, 2006) as
the ones that are most productive in Design research and science, we reinforced the
argument put forth using Stokes’s revision of the traditional basic vs. applied classi-
fication of research and proposed that there is a window of opportunity for our com-
munity if we begin to stimulate the development of EUD theories or EUD-related
theoretical work.

Throughout the discussion, we showed how Semiotic Engineering is favorably
positioned to be used as a theoretical basis for EUD research. The main points in
the argument were the following. First, Semiotic Engineering is a theory of HCI
where the end-users’ ability to modify and extend the technologies with which
they interact is of fundamental importance. This is because of the centrality of
semiosis in communication and interpretation, as was explained in Sect. 2. This
radical coupling of HCI and EUD at the root of Semiotic Engineering is in itself a
key factor for the success of transdisciplinary conversations between researchers
from the two fields. Second, in consonance with other semiotic approaches to
HCI, Semiotic Engineering states that systems’ interfaces are actually the systems’
creators proxies with which end users communicate during interaction. This view
is entirely different from greatly influential theories of user-centered design, such
as Norman’s Seven-Step Theory of Action (Norman, 1986). The effect of the
change in perspective is to connect the fields of HCI and Social Communication
through deeper theorizations on specific kinds of computer-mediated human com-
munication. This connection can not only fulfill the social role of theories in scien-
tific debate put forth by Rogers (2012), but also achieve its share of ontological
innovation on both sides of the disciplinary border. To be sure, bringing designers
and users together at interaction time (de Souza, 2005b) expands the ontology of
most theories of human-computer interaction, as well as of theories of social com-
munication. Third, and as a result of Semiotic Engineering being used in practical
projects such as Scalable Game Design Brasil (SGD-Br), the theory has expanded
its original boundaries and begun to explore programming and software develop-
ment, more explicitly and deeply, as a means of self-expression. Studies with middle
school children and teachers indicate that our project’s principle – that logic and
algorithmic problem solving can come second to learning why and how programs
are a means of self-expression – has obtained very promising preliminary confirma-
tion. There is thus an open avenue for interdisciplinary research involving two
directly implicated fields – EUD and Computer Education – as well as other con-
nected fields, such as Psychology (cf. Turkle’s “Second Self” studies Turkle, 2005)

29911 Semiotic Engineering: A Cohering Theory to Connect EUD with HCI, CMC and More

and, of course, Semiotics. Once again, we can see Semiotic Engineering’s
potential to involve EUD researchers in transdisciplinary debate and to achieve
ontological innovation inside and outside the borders of EUD. Moreover, since
our studies about programming as self-expression have been carried out with tech-
nologies that have been specifically designed to this end, we have evidence of the
theory’s capacity of being used as a “utility theory” in Venable’s sense (Venable,
2006), possibly enabling new kinds of conversations with Design researchers as
well. Our technologies might thus be taken as instances of a class of technologies,
for which there are probably other instances and sub-classes yet to be discovered.
This can be especially fitting for a community that, in accordance to Tetterro and
Markopoulos (Tetteroo & Markopoulos, 2015), has a strong attraction to engineer-
ing and reengineering systems and technologies. Fourth and finally, Semiotic
Engineering has also been used, more recently, in research about professional soft-
ware development (de Souza et al., 2016), which shows that the theory might also
be useful in EUSE studies. In fact, one of our latest studies shows that PoliFacets
is richly equipped to support end-user software engineering education initiatives
in high schools and colleges (Monteiro et al., 2017).

The argument presented in Sect. 4 therefore sustains our claim that Semiotic
Engineering can contribute to increase the scientific impact of EUD in the next
decade. We emphasize, however, that this is not the only way to do theory-based
work in EUD. Green’s Cognitive Dimensions of Notations framework (Blackwell,
2006; Blackwell & Green, 2003; Green & Petre, 1996) and Fischer’s Meta-Design
approach (Arias et al., 2015; Fischer & Giaccardi, 2006; Maceli, & Atwood,
2011, 2013) are two examples of very successful foundations used not only in
EUD but also in other fields, such as HCI. The achievements they already have in
record reinforce our argument that an investment in paying more attention to theo-
retical aspects of EUD research can bring us more impact in return. However,
given that the first paper on Semiotic Engineering was published at about the
same time as the first papers on CDN and Meta-Design, one might ask: why have
the latter been more widely used in EUD research than Semiotic Engineering?

The answer, as mentioned in Sect. 4, is that, in comparison, Semiotic
Engineering is a much larger and consequently more complex body of knowledge
than CDN or Meta-Design. Therefore, not only has it taken longer to mature and
required much more time and effort to be fully exposed to the broader research
community, but it naturally requires that those who are interested in using it spend
more of their resources in learning its concepts and methods before putting them
into practice. The positive side of this theory’s breadth and complexity is how
many different things can be done with it. There is, however, a deeper reason why
we might encourage more EUD work based on Semiotic Engineering. It is the
importance of intellectual diversity for the survival of a field of studies.

In their book dedicated to analyzing how the human body and mind has been
replicated and extended in the history of science and technology, Franchi and
Güzeldere (Franchi & Güzeldere, 2005) discuss the dispute between Cybernetics
and Artificial Intelligence, which shared much of the centuries-old ideal of build-
ing automata that would look like humans, think like humans and act like humans.

300 C.S. de Souza

The dispute was eventually won by Artificial Intelligence and Cybernetics shrank
into insignificance compared to the success of the winner. According to the
authors, one of the main reasons why Cybernetics lost the battle for AI was that
the entire project of the field, although reaching out for intensive interdisciplinary
involvement and collaboration, tried to impose certain kinds of research methods
and conceptualizations that, at the time, seemed to be the only ones compatible
with the grand view of the discipline in the eyes of its founders. It so happened,
however, that the excluded researchers from various disciplines – those who
would prefer to use different methods, different perspectives and look at different
aspects of human mind and body – gradually proved their points in their respec-
tive disciplines. Consequently, the disciplinary project of Cybernetics was
suddenly confronted with the misjudgment regarding the choice theoretical and
methodological foundations. Interestingly, Franchi and Güzeldere conclude
their chapter by asking whether AI was not in risk (at least at the time of their
book’s publication) of facing a similar fate, given its focus on engineering and
computing.

As our chapter has shown, we already have considerable intellectual diversity
in EUD, considering that ours is a young field of studies and also a relatively small
community of researchers. The message I want to send with the chapter is that we
can make more extensive and reflective use of such diversity. By so doing we will
most probably contribute to increase the scientific impact of EUD research outside
its borders and, thinking of Franchi and Güzeldere’s analysis of Cybernetics and
AI, keep our field alive and intellectually healthy for years to come.

Acknowledgements I thank CNPq, FAPERJ and The AMD Foundation for financial support
to the research reported in this paper. I am also grateful to Alex Repenning, AgentSheets Inc.
and all the participants, researchers and partner schools involved in SGD-Br. I am additionally
thankful to Ernest Edmonds and Alan Blackwell for comments, suggestions and interesting dis-
cussions about some of the ideas exposed in this paper. Finally, I am greatly obliged to the anon-
ymous reviewers whose insightful comments have helped me improve this chapter significantly.

References

Andersen, P. B. (1997). A theory of computer semiotics: semiotic approaches to construction
and assessment of computer systems. Cambridge: Cambridge University Press.

Andersen, P. B. (1985). Semiotics and informatics: computers as media Proceedings of the
Conference on Information Technology for Information Use. Copenhagen: The Royal School
of Librarianship.

Andersen, P. B., Holmqvist, B., Jensen, J. F. (1993). The computer as medium. Cambridge:
Cambridge University Press.

Arias, E. G., Eden, H., Fischer, G. (2015). The envisionment and discovery collaboratory
(EDC): explorations in human-centered informatics with tabletop computing environments.
San Rafael, California: Morgan & Claypool Publishers.

Barbosa, S. D. J., & de Souza, C. S. (2001). Extending software through metaphors and metony-
mies. Knowledge-Based Systems, 14(1), 15–27.

30111 Semiotic Engineering: A Cohering Theory to Connect EUD with HCI, CMC and More

Blackwell, A. (2006). Psychological issues in end-user programming. In H. Liberman,
F. Parternò, V. Wulf (Eds.). End user development (pp. 9–30). Dordrecht, Netherlands:
Springer.

Blackwell, A., & Green, T. (2003). Notational systems–the cognitive dimensions of notations
framework. In J. Carroll (Ed.), HCI models, theories, and frameworks: toward an interdisci-
plinary science (pp. 103–133). San Francisco, Calif: Morgan Kaufmann.

Blandford, A., Furniss, D., Makri, S. (2016). “Qualitative HCI research: going behind the
scenes.” Synthesis Lectures on Human-Centered Informatics, 9(1), 1–115.

Boden, M. A., & Edmonds, E. A. (2009). What is generative art? Digital Creativity, 20, 21–46.
Burke, Q., & Kafai, Y. B. (2010). Programming & storytelling: opportunities for learning about

coding & composition. In Proceedings of the 9th International Conference on Interaction
Design and Children (IDC ’10) (pp. 348–351). New York, NY, USA: ACM. doi:10.1145/
1810543.1810611.

Burke, Q., & Kafai, Y. B. (2012). The writers’ workshop for youth programmers: digital story-
telling with scratch in middle school classrooms. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education (SIGCSE ’12) (pp. 433–438). New York, NY,
USA: ACM. doi:10.1145/2157136.2157264.

Bush, V. (1990). Science: the endless frontier: a report to the president on a program for post-
war scientific research. Washington, DC: National Science Foundation. 192 p.

Calvo, R. A., & Peters, D. (2013). The irony and re-interpretation of our quantified self.
In H. Shen, R. Smith, J. Paay, P. Calder & T. Wyeld (Eds.), Proceedings of the 25th
Australian computer-human interaction conference: augmentation, application, innovation,
collaboration (OzCHI ’13) (pp. 367–370). New York, NY, USA: ACM. doi:10.1145/
2541016.2541070.

de Souza, C., Barbosa, S., da Silva, S. (2001). Semiotic engineering principles for evaluating
end-user programming environments. Interacting with Computers, 13, 467–495.

de Souza, C. S. (1993). The semiotic engineering of user interface languages. International
Journal of Man-Machine Studies, Academic Press, 39, 753–773.

de Souza, C. S. (2005a). The semiotic engineering of human-computer interaction. Cambridge,
MA: The MIT Press.

de Souza, C. S. (2005b). Semiotic engineering: bringing designers and users together at interac-
tion time. Interacting with Computers, 17(3), 317–341.

de Souza, C. S. (2013). Semiotic perspectives on interactive languages for life on the screen.
Journal of Visual Languages & Computing, 24(3), 218–221.

de Souza, C. S., & Barbosa, S. D. J. (2006). A semiotic framing for end-user development. In
H. Lieberman, F. Paternò, V. Wulf (Eds.). End user development (pp. 401–426). Netherlands:
Springer.

de Souza, C. S., Cerqueira, R. F. G., Afonso, L. M., Brandão, R. M. R., Ferreira, J. S. J. (2016).
Software developers as users: semiotic investigations in human-centered software develop-
ment. Cham: Springer International Publishing.

de Souza, C. S., Garcia, A. C. B., Slaviero, C., Pinto, H., Repenning, A. (2011). End-user devel-
opment: third international symposium, IS-EUD 2011, Torre Canne (BR), Italy, June 7–10,
2011. Proceedings (pp. 155–170). Berlin, Heidelberg: Springer Berlin Heidelberg.

de Souza, C. S., & Leitão, C. F. (2009). Semiotic engineering methods for scientific research in
HCI. Synthesis Lectures on Human-Centered Informatics, 2(1), 1–122.

de Souza, C. S., Salgado, L. C., Leitão, C. F., Serra, M. M. (2014). Cultural appropriation of
computational thinking acquisition research: seeding fields of diversity. In Proceedings of the
2014 conference on Innovation & technology in computer science education (ITiCSE ’14)
(pp. 117–122). New York, NY, USA: ACM. doi:10.1145/2591708.2591729.

diSessa, A. A., & Cobb, P. (2004). Ontological innovation and the role of theory in design
experiments. The Journal of the Learning Sciences, 13(1), 77–103.

Edmonds, E. A. (2007) Reflections on the Nature of Interaction CoDesign, 3, 139–143.

302 C.S. de Souza

http://dx.doi.org/10.1145/1810543.1810611
http://dx.doi.org/10.1145/1810543.1810611
http://dx.doi.org/10.1145/2157136.2157264
http://dx.doi.org/10.1145/2541016.2541070
http://dx.doi.org/10.1145/2541016.2541070
http://dx.doi.org/10.1145/2591708.2591729

Ferreira, J. J., de Souza, C. S., de Castro Salgado, L. C., Slaviero, C., Leitão, C. F., de F.
Moreira F. (2012), Combining cognitive, semiotic and discourse analysis to explore the
power of notations in visual programming. In 2012 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC)., September, 2012 (pp. 101–108). Los Alamitos,
CA: IEEE Computer Society.

Fischer, G., & Giaccardi, E. (2006). Meta-design: a framework for the future of end-user devel-
opment. End user development (pp. 427–457). Netherlands: Springer.

Franchi, S., & Güzeldere, G. (2005). Machinations of the mind: cybernetics and artificial
intelligence from automata to cyborgs. In S. Franchi, & G. Güzeldere (Eds.). Mechanical
bodies, computational minds (pp. 15–149). Cambridge, MA: The MIT Press.

Gerd Waloszek. (2005). Book review: the semiotic engineering of human-computer interaction.
https://experience.sap.com/archived/review_semiotic_eng/ Accessed 24 May 2016.

Green, T. (2006). Aims, achievements, agenda—where CDs stand now. Journal of Visual
Languages & Computing, 17(4), 288–291.

Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming environments: a
‘cognitive dimensions’ framework. Journal of Visual Languages & Computing, 7(2), 131–174.

Greenwood, D. J., & Levin, M. (2007). Introduction to action research. Social research for
social change (2nd Edition) Thousand Oaks, CA: Sage Publications, Inc.

Hundhausen, C. D. (2005). Using end user visualization environments to mediate conversations:
a ‘communicative dimensions’ framework. Journal of Visual Languages and Computing,
16(3), 153–185.

Intrator, C. (2009). Using web scripts to improve accessibility. MSc dissertation. Departamento
de Informática. PUC-Rio. 103 p. http://www2.dbd.puc-rio.br/pergamum/tesesabertas/0711270_
09_pretextual.pdf.

Intrator, C., & de Souza, C. S. (2008). Using Web scripts to improve accessibility. In IHC
2008 - VIII Simpósio Brasileiro de Fatores Humanos em Sistemas Computacionais, 2008,
Porto Alegre. Proceedings of the VIII Brazilian Symposium on Human Factors in
Computing Systems (v. 378. pp. 292–295). New York: ACM.

Jones, S. P., Blackwell, A., Burnett, M. (2003). A user-centred approach to functions in Excel. In
Proceedings of the eighth ACM SIGPLAN international conference on Functional program-
ming (ICFP ’03) (pp. 165–176). New York: ACM.

Kammersggard, J. (1988). Four different perspectives on human–computer interaction.
International Journal of Man-Machine Studies, 28, 343–362.

Kelleher, C., & Pausch, R. (2007). Using storytelling to motivate programming. Communications
of the ACM, 50, 58–64.

Kuutti, K. (1996). Activity theory as a potential framework for human-computer interaction
research. In Context and consciousness: activity theory and human-computer interaction
(pp. 17–44). Cambridge, Mass.: MIT Press.

Leshed, G., Haber, E. M., Matthews, T., Lau, T. (2008). CoScripter: automating & sharing how-
to knowledge in the enterprise. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’08) (pp. 1719–1728). New York, NY, USA: ACM.
doi:10.1145/1357054.1357323.

Lieberman, H., Paternò, F., Wulf, V. (Eds.) (2006). End user development. Netherlands,
Dordrecht: Springer.

Liu, K. (2000). Semiotics in information systems engineering. Cambridge: Cambridge University
Press.

Maceli, M., & Atwood, M. E. (2011). From human crafters to human factors to human actors
and back again: bridging the design time–use time divide. In International symposium on end
user development (pp. 76–91). Berlin Heidelberg: Springer.

Maceli, M., & Atwood, M. E. (2013). “Human crafters” once again: supporting users as
designers in continuous co-design. In International symposium on end user development
(pp. 9–24). Berlin Heidelberg: Springer.

30311 Semiotic Engineering: A Cohering Theory to Connect EUD with HCI, CMC and More

https://experience.sap.com/archived/review_semiotic_eng/
http://www2.dbd.puc-rio.br/pergamum/tesesabertas/0711270_09_pretextual.pdf
http://www2.dbd.puc-rio.br/pergamum/tesesabertas/0711270_09_pretextual.pdf
http://dx.doi.org/10.1145/1357054.1357323

Mehra, A., Grundy J., Hosking, J. (2005). A generic approach to supporting diagram differencing
and merging for collaborative design. In Proceedings of the 20th IEEE/ACM international
conference on automated software engineering (ASE ’05) (pp. 204–213). New York: ACM.

Monteiro, I. T., da Silva Alves, A., de Souza, C. S. (2013). Using mediated communication to
teach vocational concepts to deaf users. In C. Stephanidis, & M. Antona (Eds.). Universal
access in human-computer interaction. applications and services for quality of life: 7th
international conference, UAHCI 2013, held as part of HCI international 2013, Las Vegas,
NV, USA, July 21–26, 2013, Proceedings, Part III (pp. 213–222). Berlin Heidelberg: Springer.

Monteiro, I. T., & de Souza, C. S. (2012). The representation of self in mediated interaction with
computers. In Proceedings of the 11th Brazilian Symposium on Human Factors in
Computing Systems (IHC ’12) (pp. 219–228). Porto Alegre, Brazil: Brazilian Computer
Society.

Monteiro, I. T., de Souza, C. S., Tolmasquim, E. T. (2015). My program, my world: insights
from 1st-person reflective programming in EUD education. In P. Díaz, V. Pipek, C. Ardito,
C. Jensen, I. Aedo, A. Boden (Eds.), End-user development: 5th international symposium,
IS-EUD 2015, Madrid, Spain, May 26–29, 2015. Proceedings (pp. 76–91). Cham: Springer.

Monteiro, I. T., de Castro Salgado, L. C., Mota, M. P., Sampaio, A. L., de Souza, C. S. (June
2017). Signifying software engineering to computational thinking learners with AgentSheets
and PoliFacets. Journal of Visual Languages & Computing, 40, 91–112. doi:10.1016/j.
jvlc.2017.01.005.

Monteiro, I. T., Tolmasquim, E. T., & de Souza, C. S. (2013). Going back and forth in metacommu-
nication threads. In Proceedings of the 12th Brazilian symposium on human factors
in computing systems (IHC ’13). Brazilian computer society, Porto Alegre, Brazil (pp. 102–111).

Mota, M. P., Faria, L. S., de Souza, C. S. (2012). Documentation comes to life in computational
thinking acquisition with agentsheets. In Proceedings of the 11th Brazilian Symposium on
Human Factors in Computing Systems (IHC ’12) (pp. 151–160). Porto Alegre, Brazil:
Brazilian Computer Society.

Mota, M. P., Monteiro, I. T., Ferreira, J. J., Slaviero, C., de Souza, C. S. (2013). On signifying
the complexity of inter-agent relations in AgentSheets games and simulations. In Proceedings
of the 31st ACM international conference on design of communication (pp. 133–142).
New York: ACM.

Nadin, M. (1988). Interface design and evaluation – semiotic implications. In H. R. Hartson, &
D. Hix (Ed.), Advances in human-computer interaction ablex (v. 2, pp. 45–100).

Nadin, M. (2011). Computation, information, meaning. Anticipation and Games International
Journal of Applied Research on Information Technology and Computing, 2, 50–76.

Nake, F. (2005). Computer art: a personal recollection. In Proceedings of the 5th conference on
Creativity & cognition (C&C ’05) (pp. 54–62). New York, NY, USA: ACM. doi:10.1145/
1056224.1056234.

Nake, F., & Grabowski, S. (2001). Human–computer interaction viewed as pseudo-communication.
Knowledge-Based Systems, 14, 441–447.

Norman, D. A. (1986). Cognitive engineering. In D. Norman, & S. Draper (Eds.), User centered
systems design (pp. 31–629). Hillsdale, N.J.: L. Erlbaum Associates.

Norman, D. A. (2009). THE WAY I SEE IT: Systems thinking: a product is more than the pro-
duct. Interactions, 16, 52–54.

Oberquelle, H., Kupka, I., Maass, S. (1983). A view of human—machine communication and
co-operation. International Journal of Man-Machine Studies, 19, 309–333.

Peirce, C. S. (1992). The Essential Peirce. Selected Philosophical Writings Volume 1 (1987–1893)
edited by Nathan Houser and Christian Kloesel. Bloomington IN: Indiana University Press.

Peirce, C. S. (1998). The Essential Peirce. Selected Philosophical Writings Volume 2 (1893–1913)
edited by Nathan Houser and Christian Kloesel. Bloomington IN: Indiana University Press.

Repenning, A. (2011). Making programming more conversational. 2011 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC) (pp. 191–194). Los Alamitos,
CA: IEEE Computer Society.

304 C.S. de Souza

http://dx.doi.org/10.1016/j.jvlc.2017.01.005
http://dx.doi.org/10.1016/j.jvlc.2017.01.005
http://dx.doi.org/10.1145/1056224.1056234
http://dx.doi.org/10.1145/1056224.1056234

Repenning, A., & Ioannidou, A. (2004). Agent-based end-user development. Communications of
the ACM, 47(9), 43–46.

Repenning, A., & Ioannidou, A. (2006). What makes end-user development tick? 13 design
guidelines. In H. Lieberman, F. Paternò, V. Wulf, (Eds.). End user development (pp. 51–85).
Netherlands: Springer.

Repenning, A., Webb, D., Ioannidou, A. (2010). Scalable game design and the development of a
checklist for getting computational thinking into public schools. In Proceedings of the 41st
ACM technical symposium on Computer science education (SIGCSE ’10) (pp. 265–269).
New York, NY, USA: ACM. doi:10.1145/1734263.1734357.

Rogers, Y. (2012). HCI theory: classical, modern, and contemporary. Synthesis Lectures on
Human-Centered Informatics 5.2, 1–129.

Salgado, L. C. C., Leitão, C. F., de Souza, C. (2012). A journey through cultures: metaphors for
guiding the design of cross-cultural interactive systems. London; New York: Springer.

Searle, J. R. (1985). Expression and meaning: studies in the theory of speech acts. Cambridge:
Cambridge University Press.

Simon, H. A. (1996). The sciences of the artificial. 3rd Edition Cambridge, MA: The MIT Press.
Stokes, D. E. (2011). Pasteur’s quadrant: basic science and technological innovation.

Washington, DC: Brookings Institution Press.
Tanaka-Ishii, K. (2010). Semiotics of programming. Cambridge: Cambridge University Press.
Tetteroo, D., & Markopoulos. (2015). A review of research methods in end user development.

In P. Díaz, V. Pipek, C. Ardito, C. Jensen, I. Aedo, A. Boden (Eds.), End-user development:
5th international symposium, IS-EUD 2015, Madrid, Spain, May 26–29, 2015 (pp. 58–75).
Cham: Springer.

Turkle, S. (2005). The second self: computers and the human spirit. Twentieth Anniversary
Edition. Cambridge, MA: The MIT Press.

Venable, J. (2006). The role of theory and theorising in design science research. In S. Chatterjee &
A. Hevner (Eds), Proceedings of the First International Conference on Design Science in
Information Systems and Technology (DESRIST 2006) (pp. 1–18). Claremont, CA: Claremont
Graduate University.

Winograd, T. (1997). The design of interaction. In P. Denning (Ed.). Beyond calculation: the
next fifty years of computing (pp. 149–161). New York: Springer.

Winograd, T. (2006). Designing a new foundation for design. Communications of the ACM, 49,
71–74.

Winograd, T., & Flores, F. (1986). Understanding computers and cognition: a new foundation
for design. Boston, Mass.: Addison-Wesley.

Wolz, U., Stone, M., Pearson, K., Pulimood, S. M., Switzer, M. (2011). Computational thinking
and expository writing in the middle school. Transactions on Computing Education, 11,
9:1–9:22.

30511 Semiotic Engineering: A Cohering Theory to Connect EUD with HCI, CMC and More

http://dx.doi.org/10.1145/1734263.1734357

End-User Development and Social Big
Data – Towards Tailorable Situation
Assessment with Social Media

Christian Reuter, Marc-André Kaufhold and Thomas Ludwig

Abstract The amount of data being available is increasing rapidly. Based on the
technological advances with mobile and ubiquitous computing, the use of social
media is getting more and more usual in daily life as well as in extraordinary
situations, such as crises. Not surprisingly, this increasing use is one reason why
data on the internet is also developing that fast. Currently, more than 3 billion
people use the internet and the majority is also registered with social media
services such as Facebook or Twitter. While processing this kind of data by the
majority of non-technical users, concepts of End-User Development (EUD) are
important. This chapter researches how concepts of EUD might be applied to
handle social big data. Based on foundations and an empirical pre-study, we
explore how EUD can support the gathering and assessment process of social
media. In this context, we investigate how end-users can articulate their personal
quality criteria appropriately and how the selection of relevant data can be
supported by EUD approaches. We present a tailorable social media gathering
service and quality assessment service for social media content, which has been
implemented and integrated into an application for both volunteers and the
emergency services.

Keywords Social media · information quality · tailoring · End-User Development ·
emergencies

C. Reuter (✉) · M.-A. Kaufhold · T. Ludwig
University of Siegen, Siegen, Germany
e-mail: christian.reuter@uni-siegen.de

M.-A. Kaufhold
e-mail: marc.kaufhold@uni-siegen.de

T. Ludwig
e-mail: thomas.ludwig@uni-siegen.de

307© Springer International Publishing AG 2017
F. Paternò, V. Wulf (eds.), New Perspectives in End-User Development,
DOI 10.1007/978-3-319-60291-2_12

1 Introduction

The amount of data has experienced exponential growth – data generation has been
estimated at 2.5 Exabytes (=2,500,000 Terabytes) per day. The sources are manifold
and include not only technical sensors, but also social sensors, such as posts to social
media such as Facebook or Twitter. To handle this big data, new applications, frame-
works, and methodologies arose that allow efficient data mining and information
fusion from social media and new applications and frameworks (Bello-Orgaz, Jung, &
Camacho, 2016). Usually, the data is called user-generated content, which is according
to the definition of the Organization for Economic Co-operation and Development
(OECD) (2007), “content that has been made publicly available via the internet”.

Not only in daily life but also in recent emergencies, such as the 2012 hurricane
Sandy or the 2013 European floods, both the people affected and volunteers alike
used social media to communicate with each other and to coordinate private relief
activities (Kaufhold & Reuter, 2016). Since the involvement of citizens is, still,
mostly uncoordinated and the content is therefore not necessarily created in a struc-
tured way, a vast amount of resulting data has to be analyzed. Appropriate methods
of valuation are essential for the analysis, whereby a consistent evaluation of the qual-
ity of information can be complex (Friberg, Prödel, & Koch, 2010). Especially in
cases where a selection, whether by emergency managers or citizen volunteers, has to
be made from a variety of information sources and formats under time-critical
constraints, it is helpful if the evaluation can be simplified by applying situationally
relevant quality criteria. Thus, our research question is how the concepts of End-User
Development (EUD) can be applied to support individuals in extracting relevant
social media information in the extraordinary and unique settings of emergencies.

This chapter explores the challenges arising from the integration of citizen-
generated content and the analysis of information from social media focusing on
EUD. Based on a review of related work in big data analysis, social media and
EUD (Sect. 2), we present a design case study (Wulf, Müller, Pipek, Randall, &
Rohde, 2011, 2015) on social media use in emergencies and its assessment by the
tailorable weighting of information quality criteria. Accordingly, an empirical study
on the use of citizen-generated content and social media by emergency services and
the challenges, focusing on individual and dynamic quality assessments of social
media data, informed the implementation of tools for platform-independent social
media gathering (Social Media API) and quality assessment (Social-QAS) (Sect. 3).
Furthermore, we have prototypically integrated and evaluated Social-QAS in two
reference applications (Sect. 4). Finally, we draw conclusions (Sect. 5).

2 Big Data, Social Media and End-User Development

2.1 Big Data, Social Media and Data Analysis

Although – or because – big data is a buzzword, there is no unified definition of
the term big data across various origins (Ward & Barker, 2013). According to the

308 C. Reuter et al.

Gartner IT Glossary, big data is “high-volume, high-velocity and high-variety in
formation assets that demand cost-effective, innovative forms of information pro-
cessing for enhanced insight and decision making.” Dijcks (2012) distinguishes
between different types of data: traditional enterprise data, machine-generated/
sensor data and finally social data, which are also known as social big data: it
“will be based on the analysis of vast amounts of data that could come from multi-
ple distributed sources but with a strong focus on social media” (Bello-Orgaz
et al., 2016). Reviewing current literature, Olshannikova, Olsson, Huhtamäki, and
Kärkkäinen (2017) contribute with the definition of social big data as “any high-
volume, high-velocity, high-variety and/or highly semantic data that is generated
from technology-mediated social interactions and actions in digital realm, and
which can be collected and analyzed to model social interactions and behavior.”
Ward and Barker (2013) explicitly research for a definition of big data and suggest
that it: “is a term describing the storage and analysis of large and/or complex data
sets using a series of techniques including, but not limited to: NoSQL,
MapReduce and machine learning.”

Ganis and Kohirkar (2012) consider that most big data is from social media:
“Where is all of this big data coming from? It’s produced within the many social
media applications by a wide variety of sources (people, companies, advertisers,
etc.).” Additionally, Bassett (2015) outlines that the existence of social media as
big data was underplayed in the past, and, to bridge the gap to the domain of
emergency management, Watson, Finn, and Wadhwa (2017) exemplify promising
benefits of big data to support situational awareness and decision making espe-
cially before and during emergencies.

Data from social media contains complex dependencies and relationships
within itself and this, combined with its – not to mention the characteristics of
crises and emergencies – heterogeneous nature and imposes strong limitations on
the data models that can be used as well as on the scope of information that can
be discovered. In the case of current social media, the amount of data is increasing
steadily as the data set is constantly supplemented. Data analysis or mining in the
context of social media must continuously transform raw social media data into a
processable form by selectively using specific characteristics needed for the
upcoming analysis process. In the following, we will specify characteristics for the
analysis process.

Big Data Paradox: Social media data has a huge amount of records consisting
of different data types, like profiles, posts, groups, relationships and other.
Therefore, enormous computing and storage capacities are required to process the
data (Batrinca & Treleaven, 2014). However, little data exists for individuals, and
conventional data mining techniques do not process relationships between profiles.

Obtaining Sufficient Samples: A wide range of data is accessible so that trends,
indicators and patterns can be detected based on statistical information (Zafarani,
Abbasi, & Liu, 2014). However, collecting data from social media has several
limitations. In many cases one gets only a limited amount of data in a restricted
period of time (Reuter & Scholl, 2014).

Context and User Dependency: A large part of data from social media is gener-
ated and consumed by users and, from the interactions between different actors

30912 End-User Development and Social Big Data …

and the environment, new metadata such as time, location, groups, hashtags and
other variables arise. When analyzing data it is important to mention that the data
that is being processed originates from a variety of sources (e.g. third-party appli-
cations) which have their own use context and purpose (Mislove et al., 2007).

Structured and Unstructured Data: Profile data, the number of likes or retweets
are structured data and can easily be compared with each other. In contrast, user-
generated text is usually in an unstructured form and varies in quality and quantity
(Stieglitz, Dang-Xuan, Bruns, & Neuberger, 2014). This is a challenge because
data mining requires the identification of high-quality information in the large data
sets (Agichtein, Castillo, Donato, Gionis, & Mishne, 2008).

Importance of Metadata: Metadata represent an essential part of the social
media’s information content. They provide the interaction context of users such as
a specification of time and location. Because a large set of metadata is available in
almost any situation, it may be possible to draw conclusions on the user intention
and situation. The in-situ context influences user behavior significantly and is
formed by activities, time, place and conversations of the respective user (Church &
Oliver, 2011).

Historicity of Data: The historicity of data can be represented not only by the
data and metadata itself but also through the interactions between social media.
A snapshot can be created in the virtual space of social media including all depen-
dencies. Here it is vital that the collected data is stored persistently because the
access to data from social media such as Twitter is volatile, particularly at high-
traffic events such as crises.

Type of content: Social media is strongly characterized by the use of images,
videos and sounds and by text comments and annotations from users and therefore
important contextual information may be present. Hence, data mining of social
media usually includes natural language processing (NLP). A major problem with
NLP on social media is non-standard language (Ritter, Clark, Mausam, & Etzioni,
2011; Xu, Ritter, & Grishman, 2013). Social media reports frequently contain
non-standard grammar (punctuation, capitalization, syntax) and vocabulary
(including non-standard spelling) (Eisenstein, 2013).

2.2 The End-User Development Perspective in Data Analysis

Referring to situation assessment during emergencies, it is important to have informa-
tion available at the right time, the right place and in the right format (Ley, Pipek,
Reuter, & Wiedenhoefer, 2012). Endsley (1995) makes a distinction between situa-
tion awareness as a “state of knowledge” and situation assessment as the “process of
achieving, acquiring, or maintaining” that knowledge; he defines information gather-
ing as a selection procedure which results in the construction of a mental model
pursuant to individual goals. Since several emergencies are extraordinary and time-
critical, they require a demand for unpredictable information. It is therefore essential
to have instantaneous access to as many sources as possible. Still, it is not easy to

310 C. Reuter et al.

dispose of all the necessary information (Turoff, Chumer, van de Walle, & Yao,
2004). Simultaneously, it is very important to prevent a possible information over-
load so that the decision making is not affected (Hiltz & Plotnick, 2013).

In crisis management, situation assessment and decision making are supported by
information systems (van de Walle & Turoff, 2008). Of course, it can come to diffi-
culties, particularly when dealing with seldom used technologies within emergencies
and while assessing social media. Adjustments of these technologies and especially
of the considered information are essential and play a big role at ‘use-time’ (Fischer &
Scharff, 2000; Pipek & Wulf, 2009; Stevens, Pipek, & Wulf, 2009).

EUD supports flexible adjustments by making it possible for end-users to tailor
and rearrange information systems independently (Lieberman, Paterno, & Wulf,
2006). EUD can be defined as all “methods, techniques, and tools that allow users
of software systems, who are acting as non-professional software developers, at
some point to create modify or extend a software artefact” (Lieberman et al.,
2006). One essential part of EUD, with regard to the change of a “stable” aspect
of an artefact, is adapting (Henderson & Kyng, 1991). Nonetheless, for some
people it is “tailoring,” for others it is “use.” An essential part of software with
regard to its establishment in practice definitely is tailorability. EUD uses mashups
to combine services or information from various sources (Cappiello, Daniel,
Matera, Picozzi, & Weiss, 2011). The metaphor of a “bazaar” has therefore been
used (Doerner, Draxler, Pipek, & Wulf, 2009). While component-based architec-
tures in software engineering enable tailorable systems (Won, Stiemerling, &
Wulf, 2006), intuitive notions as well as interaction designs are needed to support
end-user articulations (Hess, Reuter, Pipek, & Wulf, 2012). Pipek (2005) argues
that tailoring might lead towards appropriation support to support the users.

2.3 Existing Approaches in EUD and Emergency Management

There are existing approaches and models (Costabile, Member, Fogli, Mussio, &
Piccinno, 2007; Doll & Torkzadeh, 1988; Grammel, 2009) to deal with data analy-
sis using EUD: Wong and Hong (2007) argue that there is “a tremendous amount
of web content available today, but it is not always in a form that supports end-
users’ needs.” Addressing this, their EUD tool enables end-users to create mash-
ups that re-purpose and combine existing web content and service. In the domain
of social networks, Heer and Boyd (2005) present a case study of the design of
Vizster, an interactive visualization system for end-user exploration of online
social networks. Resulting techniques include connectivity, highlighting and
linkage views for viewing network context, X-ray mode and profile search for
exploring member profile data, and visualization of inferred community structures.
Coutaz and Crowley (2016) present their “lived-with” experience with an EUD
prototype deployed at their home.

Considering the domain of visual programming, Borges and Macías (2010)
present a visual language and a functional prototype, called VISQUE, providing

31112 End-User Development and Social Big Data …

an easy-to-use mechanism to create SQL queries for non-programmer profes-
sionals, such as engineers, scientists and freelancers. With VISQUE the users can
build the queries through a web-based visual interface to explore and analyze data
without the need of SQL skills. Ardito et al. (2014) conducted a study to identify
end-user requirements for accessing and customizing web-services and APIs. Based
on their findings, the authors present a prototype, which enables people without pro-
gramming skills to create a dashboard of widgets. With the help of a wizard the
users can create a widget to combine data from different services and APIs and
choose a visualization format. In addition, FaceMashup (Massa & Spano, 2015) is
an EUD environment that “empowers social network users, supporting them in
creating their own procedures for inspecting and controlling their data.”

Taking the case of emergency management, where social media is used for
about 15 years (Reuter & Kaufhold, 2017), in addition to information that is pro-
vided automatically (meteorological data, water levels, etc.), there are two other
kinds of information sources provided by people: emergency services in the field
from whom information can be requested (Ludwig, Reuter, & Pipek, 2013) and
other individuals and organizations not actively dealing with the emergency. In
the case of a house coal for example, the (target) number of residents can be
requested from the registration office, but the estimation of the fire’s size and of
the (actual) number of affected people can only be performed on-site. Unlike
sensor data, information provided by citizens is not always objective. Sometimes
citizen-generated content is accurate – illustrated at a comparison of Wikipedia
and Britannica encyclopedia articles (Giles, 2005). In some cases, however, the
subjectivity of citizen-provided reports can generate some sort of vigilantism (Rizza,
Pereira, & Curvelo, 2013). Additionally, the misinterpretation of a situation –
whether deliberate or not – can lead to potential misinformation; this can result from
the reporter paying too little attention to some aspects of the situation or from an
incorrect representation of the facts (Thomson, Ito, Suda, & Lin, 2012). However,
some information cannot be obtained from other sources (Zagel, 2012). This subjec-
tivity makes data analysis rather complex.

There are approaches concerning the selection and use of data from social
media; these, however, do not support a complete quality assessment (Reuter,
Ludwig, Ritzkatis, & Pipek, 2015): Twitcident (Terpstra, Vries, de Stronkman &
Paradies, 2012) allows the user to select tweets by keywords, message types or
users and display them on a map. Nevertheless, quality assessment based on meta-
information such as the time of creation is not possible. Alert.io1 offers individual
trainable tonality analyses and thus first approaches to the integration of machine
learning in the form of a learning process to be carried out by the end-user.
HootSuite2 emphasizes the design of the analysis by adapting and extending
software artifacts. Tweet4act (Chowdhury, Amer-Yahia, Castillo, Imran, &
Asghar, 2013) enables the tracing and classification of information on Twitter

1https://mention.com/en/
2www.hootsuite.com

312 C. Reuter et al.

https://mention.com/en/
http://www.hootsuite.com

by matching every Tweet against an emergency-specific dictionary to classify
them into emergency periods. With TwitInfo (Marcus et al., 2011) information
concerning a specific event can be collected, classified and visualized graphically
including additional information about the (not adaptable) quality of the actual
information. Netvizz is a “data collection and extraction application that allows
researchers to export data in standard file formats from different sections of the
Facebook social networking service” (Rieder, 2013) to allow quantitative and
qualitative research in the application, mainly based on pre-defined categories.
Ushahidi (McClendon & Robinson, 2012) enables citizens to exchange informa-
tion. Additionally, emergency services can get access to the information. The
direct communication and the spread of unfiltered information can cause an infor-
mation overload, which forces the user to evaluate the information manually
according to its quality.

To sum up, one can say that many studies and approaches about citizen-
generated content exist, but concerning EUD in quality assessment of social big
data, they are missing a tailorable tool for assessing social media information.

3 EUD in Social Big Data Gathering and Assessment

Based on the results of our literature review, an empirical pre-study and further
analysis, we developed two tailorable services processing social media content. First,
this section summarizes the key findings of the pre-study. Second, it introduces the
“Social Media API” (SMA), which allows end-users to gather, process, store and
re-access social media content and, third, it serves as a foundation of the “Social
Quality Assessment Service” (Social-QAS) that facilitates the assessment of social
media content by the tailorable weighting of information quality criteria.

3.1 Pre-Study: Social Media Assessment by Emergency Services

To gain a deeper understanding of the impact of citizen-generated content in social
media on emergency services, we analyzed the data from a previous empirical
study on the work practices of the emergency services (focus on fire departments
and police) in two different regions of Germany. The results of this pre-study have
already been published (Reuter et al., 2015; Reuter & Ritzkatis, 2014) and we
aggregate the main results within this chapter.

The question: “Who is going to evaluate this now […] and is it really going to
help us to assess the situation?” (I03) often appears in emergency situations. The
sheer amount of citizen-generated content makes its use especially difficult:
“Above all, 290 [messages] of 300 are trash. You can only get something from
ten reports” (I02). The mass of information quickly raises the problem of how to

31312 End-User Development and Social Big Data …

handle it: “You have to read them all. Of course, it would be helpful if there was a
preselection” (I02).

For this reason, automatic selection is recommendable: “It would be nice if
there was a selection that separates the important from the unimportant” (I03).
Nevertheless, information has to appear in a certain quantity to render it trustworthy
for the emergency services: “It’s a problem if I only have one source. It is certainly
more reliable to have five sources than just one” (I15). External sources are espe-
cially susceptible to providing misinformation (I14, I15) and have to be verified (I15)
because of this: You “have to be careful with the content because it does not always
reflect reality” (I14) – “In such cases it becomes obvious that someone is trying to
lead us up the garden path […] and we have to evaluate the information for
ourselves” (I02). In these cases, misinformation is not always intended; potentially it
can result from the subjective perception of the situation, which can appear very dif-
ferent to a neutral observer. In conclusion, the use of citizen-generated content from
social media fails because of the need for assessment by the emergency services:
“There is simply a bottleneck which we cannot overcome” (I02).

Overall it is noticeable that “the more precise information, the more relevant it
is” (I02). This kind of precision can be achieved by assessment. There has to be
some form of guarantee that the selected information is useful for the emergency
services (I02, I03). Global selection also proves to be difficult because “it does
not seem possible to me that we can select in advance what is important for the
section leader. He might need the same information as the chief of operations – or
not” (IM01). This therefore necessitates the possibility of flexible assessment
criteria (I19). Due to the time-critical aspect of emergency situations, it is impera-
tive that the personal selection of information be supported since every member
of the emergency team has to decide “relatively quickly between the important
and the unimportant” (I19).

The first impression has to include some amount of significance and has to be
helpful for the situation assessment: “If someone takes a photo of a window, I
know that he was really there. But where is that window exactly?” (I16). This
shows that pictures need additional meta-information just as normal textual infor-
mation does. Pictures can be especially useful for assessing crowds of people
at huge events: “If someone had noticed that a relevant number of people were
congregating in certain areas, you could have closed the entrance immediately
with the help of the security” (I06). Even though this entails gathering a lot of
information, “most people […] do not [know] what counts and what kind of infor-
mation we need” (I02). There is therefore a risk that the information has no
additional value and cannot be used in the emergency situation: “I do not believe
that someone who is not connected in some way to the police or the fire service is
capable of providing useful information in these stress situations” (I02). It is
unusual for an untrained citizen to have knowledge of this sort. “You have to be
very careful with this kind of information” (I14).

Ultimately, it is a member of the emergency team who has to assume responsi-
bility for actions and who also has to decide if the information is utilized or not
(I15). Misinterpretation is possible both by humans and through computer support.

314 C. Reuter et al.

It does not matter how good the assessment mechanism is: there “remains a risk
and the person in charge has to bear it, it is as simple as that” (I15). That is the
reason why the emergency services are so careful when using external informa-
tion. In conclusion, it can be stated that “assessing information, assessing it
correctly and dealing with it […] is a challenging task” (I15). Every single piece
of information is an input to evaluate the whole situation: “You add more and
more flesh to the skeleton you start off with so that in the end, you have a picture;
not just a silhouette but a whole figure and any actions executed by the police are
mostly based on that figure” (I16). Situation assessment influences the actions
which in return influence the situation.

3.2 EUD in Social Big Data Gathering

Before assessing any social media data, ways of gathering relevant information must
be established with the flexibility to support EUD applications, such as Social-QAS
(Sect. 3.3). Thus, the “Social Media API” (SMA) allows its user to gather, pro-
cess, store and re-query social media data (Reuter et al., 2016). Although it was
developed as enabling technology for emergency management applications initially,
its implementation enables the support of a variety of use cases in different fields of
application, e.g. it allows its users to examine the impact of a product image within
the field of market research (Reuter et al., 2016). Because it serves as the foundation
of Social-QAS, we discuss its key challenges and concepts, implementation and
tailorability in the following sections.

3.2.1 Key Challenges and Concept

To enable access to social big data and allow subsequent analysis, our first step
was to specify a service for gathering and processing social media content. During
the analysis, we agreed upon the following requirements, which are partly derived
from Sect. 2.2 and enriched with considerations from conceptual and implementa-
tion viewpoints.

1. Multi-Platform Support: Relevant data during emergencies is spread across
different social media services. Furthermore, depending on the participants,
different services are used. As a result, it is required that a request allows
access to multiple platforms. To obtain sufficient samples and reach most users,
a further requirement is therefore to allow the gathering and posting of citizen-
generated information spread widely on social media services.

2. Extensible and Unified Data Format: Both the multi-platform support and cross-
platform usage imply the requirement of a standardized data format that is capable
of mapping the diverse attributes, whether structured or unstructured content, of
different social media content and providers. The possible emergence or relevance

31512 End-User Development and Social Big Data …

of new attributes, which define the activity’s and users’ context, requires the
extensibility of the data format.

3. Gathering Service: The historicity and volatility of social media content require
the continuous capturing of citizen-generated information in nearly real time in
order to accumulate a rich representation and allow post-analysis of the emer-
gency. We therefore need to specify a service that constantly gathers the data
over a defined period of time.

4. Integration of Rich Metadata: Literature not only identifies textual content but
also images, sounds and videos as important information carriers during emer-
gencies. Furthermore, location- and time-based information are very important
metadata, because they provide interesting context-data to the information
itself. Therefore, a requirement is that location- and time-based data are
provided with the information itself.

5. Flexible Query of Data: Not only in the acquisition but also in the retrieval of
already gathered data from database, sufficient filtering parameters are required
to enable situated data analysis and provide a high degree of flexibility to
support tailorable client applications or services.

3.2.2 Implementation of a Cross-Platform Social Media API

To gather and process social media content, we developed a REST web service
called “Social Media API”. With gathering we refer to the ability to uniquely or
continuously collect social media activities (e.g. messages, photos, videos) from
different platforms (Facebook, Google+, Instagram, Twitter and YouTube) in a
unified manner using multiple search or filter criteria. Processing means that the
API is capable of accessing, disseminating, enriching, manipulating and storing
social media activities. The SMA is realized as a service following the paradigm
of a web-based, service-oriented architecture (SOA). It is a Java Tomcat applica-
tion using the Jersey Framework for REST services and the MongoDB database
for document-oriented data management. Several libraries facilitate the integration
of social media platform APIs such as Facebook Graph API or Twitter Search
API. All gathered social media entities are processed and stored according to the
ActivityStreams 2.0 specification (World Wide Web Consortium, 2016) in JSON
format (JavaScript Object Notation). The SMA uses service interfaces, allowing a
standardized implementation of further social media if their APIs provide suitable
access to their data.

It comprises four main services, each providing a multitude of service func-
tions: The Gathering Service comprises endpoints for gathering and loading social
media activities. The main components are the Search service, enabling onetime
search requests, and Crawl Service, which continuously queries new social media
activities across a specified timeframe. Using the Enrichment Service, gathered
social media activities are enriched with further computed and valuable metadata.
Moreover, the Dissemination Service is a unified endpoint for publishing, replying

316 C. Reuter et al.

to or deleting (multiple) social media activities (simultaneously). The Data Service
provides structured database management operations. For instance, it encapsulates
remote MongoDB operations to insert, load, update or delete data.

While working with SMA, based on the available type of social media, differ-
ent data attributes are accessible (Table 1). The implementation or support of dif-
ferent attributes depends on the individual policies of social media providers. For
instance, while it is certainly possible to add the age to a Facebook user account,
the Facebook Graph API, which provides applications and developers access to
Facebook data, does not allow retrieving the age of Facebook users. On the one
hand, the flexibility of the document-oriented approach allows the social media
users to store distinct structured documents with different numbers of attributes.
Using ActivityStreams 2.0, the majority of attributes is stored according to a stan-
dardized specification. On the other hand, in terms of divergent metadata, the com-
parability and therefore analysis of social media activities is restricted. Therefore,
it is not possible to apply all quality assessment methods in the same way. Also,
because not all attributes can be mapped to the ActivityStreams 2.0 specification,
we needed to add a custom property mapping our special metadata.

Furthermore, as already discussed in Sect. 2.2, during implementation some
technical and business-oriented limitations became apparent (Reuter & Scholl, 2014):
Quota limits restricted the access to social media data and most data is publicly avail-
able for a limited time only. Consequently, especially with non-expensive approaches,
it is possible to capture and process merely small portions of the high-volume social
data. Concerning the historicity of data, another challenge arose: As social media
activities are likely to be updated regarding, for instance, the number of comments,

Table 1 Excerpt of source-based data attributes

Attributes Facebook Google+ Instagram Twitter YouTube

Date, Time ✔ ✔ ✔ ✔ ✔

Sender ✔ ✔ ✔ ✔ ✔

Age ✗ ✔ (Age range) ✗ ✗ ✔ (Age range)

Location ✔ ✔ ✗ ✔ ✔

Real name ✔ ✔ ✔ ✔ ✔

Title ✗ ✔ ✔ (Caption) ✗ ✔

Tags ✗ ✗ ✔ ✗ ✔

Replies ✔ (Comments) ✔ (Replies) ✔ (Comments) ✗ ✔ (Google+)

Content ✔ ✔ ✔(Caption) ✔ ✔ (Description)

Mentions ✔ ✗ ✗ ✔ ✗

Views ✗ ✗ ✗ ✗ ✔

Likes ✔ (Likes) ✔ (Plusoners) ✔ (Likes) ✗ ✔ (Likes)

Dislikes ✗ ✗ ✗ ✗ ✔ (Dislikes)

Retweets ✗ ✗ ✗ ✓ ✗

Shares ✔ ✔ (Resharers) ✗ ✗ ✗

31712 End-User Development and Social Big Data …

number of likes or the content itself, inconsistencies between the online data and the
stored data occur.

Besides the available data, there are two kinds of additional valuable data: First,
some data is only available in certain social media, but computable for others. For
instance, embedded hyperlinks, mentions or tags can be extracted from activities to
get a comparable amount of data from each social media. Second, some required
data regarding the assessment of quality is not available in any social media.
Therefore, the SMA computes classification attributes (negative sentiment, positive
sentiment, emoticon conversion, slang conversion), content attributes (number of
characters, number of words, average length of words, words-to-sentences ratio,
number of punctuation signs, number of syllables per word, entropy) and metadata
attributes (hyperlinks, language, location, media files, tags) manually.

3.2.3 Tailorability: Filtering Data during Gathering and Post-Processing

A key challenge of a tailorable SMA is the provision of suitable service endpoints
with sufficient filter parameters that behave consistently over heterogeneous social
media. Table 2 summarizes our implemented filter parameters of the Crawl and
Search services. The flexibility of filtering depends on the providing APIs to a
certain degree: While some social media APIs support location (Twitter,
YouTube) and temporal (Facebook, Twitter, YouTube) filtering, it has to be rea-
lized manually for the other ones. However, given the quota limitations of social
media, manual filtering always implies the prior gathering of results that do not
match the filter criteria and is therefore less efficient than using native filter para-
meters. Another issue is the keyword parameter, because social media process
keywords differently and support various types and notations of logical query
operators (e.g. and, or, not, phrases). Here, the need for a unified query language
and layer becomes apparent, which translates the unified query parameters into the
platform-specific parameters.

Table 2 Parameters for social media search

Parameter Type Description

keyword String Required. The search term.

platforms String Required. A csv-list (Facebook, Google+, Instagram, Twitter,
YouTube).

since Long Search Service. Lower bound of the searched timeframe (Unix time).

until Long Search Service. Upper bound of the searched timeframe (Unix time).

start String Crawl Service. Starting point of the crawl job (Unix time, default: now).

end String Crawl Service. Termination of the crawl job (Unix time, default: null).

latitude Double Latitude for geo search (decimal degree).

longitude Double Longitude for geo search (decimal degree).

radius Double Radius for geo search (km).

318 C. Reuter et al.

After data is gathered and stored into the database, the access becomes an
important factor to allow loading and post-processing of data. Given the job id,
social media activities of past crawl or search jobs can be loaded and filtered by
count (amount of data returned) and offset (position of the first result to be
returned) parameters. Alternatively, a list of activity ids allows loading the desired
social media activities explicitly. However, to enhance the tailorability of SMA in
order to increase the flexibility for consuming client applications, the implementa-
tion of additional parameters is planned, e.g. keyword, platform, location and
time-based filtering, or language. In this case, the efficiency and flexibility of
filtering is dependent on the underlying database management solution. Based on
the SMA, the application Social Data Service has been implemented, which aims
to allow the generation of data sets (Reuter et al., 2016).

3.3 EUD in Social Big Data Assessment

As our literature review suggests, citizens may provide emergency-relevant
information via social media, but challenges regarding the quality of information,
especially under time-critical constraints, persist. Moreover, our pre-study and
further literature report on the relevance of quality-relevant metadata during emer-
gencies, e.g., author reputation, location and time. That is why the “Social Quality
Assessment Service” (Social-QAS) aims on facilitating the assessment of social
media content by the tailorable weighting of information quality criteria. This
section refers to content that has already been published in a research paper
(Reuter et al., 2015), but is required to introduce the application’s concept, depict
its evaluation and elaborate the chapter’s discussion.

3.3.1 Key Challenges and Concept

Our literature review and the empirical study have proved that the quality assess-
ment of mass information and extractions of relevant information is a great
challenge. Of course, various circumstances call for various assessment methods.
That is why the possibility to combine these methods could help to improve
the quality assessment practice (Ludwig, Reuter, & Pipek, 2015). Our concept
allows the assessment of (social media) content with 15 assessment methods
(Table 3), which are subdivided into four categories pursuant to their technical
execution:

1. The rating of metadata consists of five assessment methods (author frequency,
temporal proximity, local proximity, number of followers/likes, amount of
metadata), in which either the discrepancy from the entered research criteria or
the absolute appearance is defined by rating the difference.

31912 End-User Development and Social Big Data …

2. The rating based on the content allocates two assessment methods (frequency
of search keyword, stop words), which identify the occurrence of particular
words (or their synonyms) from a list.

3. The rating based on the classification of the message supplies six assessment
methods (sentiment analysis, fear factor, happiness factor, named entity recog-
nition, emoticon, slang), which determine the occurrence of words applying
word lists. Thus, information is sorted in different categories.

4. The rating based on scientific methods provides two assessment methods (Shannon
Information Theory (Entropy), term frequency, inverse document frequency).

Table 3 Implemented quality assessment methods (Reuter et al., 2015)

Method/Criterion Description

A Assessment of metadata

1 Author frequency (Reputation) Number of messages from the same author in the
message set. The level of knowledge about the situation
depends on the number of messages an author writes.

2 Temporal proximity
(Currency)

Temporal proximity of the messages to the center of the
search period. The information’s importance depends on
the proximity to the search moment.

3 Local proximity Distance between the place where the message was
created and the incident’s place. Short distance stands
for higher probability that the message is about the
current disaster.

4 Followers/likes (Credibility) It is assumed that credibility and the number of likes/
followers conferred on a particular message/author grow
proportionally.

5 Metadata (pictures/links) It can be helpful to complement textual information with
an image or other media material. With this assessment
criterion the amount of data can be ascertained.

B Assessment based on content

6 Frequency of search keyword
(Interpretability)

The keyword indicates the issue; it does not appear
randomly in the message. The message is also searched
for synonyms.

7 Stop words Stop words such as “so” do not allocate any information
as long as they do not increase the validity of the
message. That is why the decrease of stop words
increases message utility.

C Assessment based on classification of the message

8 Sentiment analysis
(Impartiality)

The message is analysed concerning its emotional property.
Emotional content, especially fear, can falsify the meaning.

9 Negative sentiment (Fear
Factor)

Words that are related to the subject of fear are
identified in the message; The Fear Factor determines
the degree of expression of fear.

10 Positive sentiment (Happiness
Factor)

Words that are related to the subject of joy are identified
in the message; The Happiness Factor determines the
degree of expression of joy.

(continued)

320 C. Reuter et al.

A subjective quality of information can be defined if the (non-specified) end-
user of an application based on Social-QAS has the option to select various assess-
ment methods. In addition to that, this selection and the classification enable
further use of the quality assessment service within several scenarios.Generally
speaking: Initially, the individual messages are analyzed absolutely regarding the
specific method. Then the score of each message is determined. The message with
the highest absolute score is rated with “1.0” (100%), the one with the lowest
absolute score gets a “0.0” (0%). After that, an overall score is received by weight-
ing the single scores. Further, to address both the requirements of querying multi-
ple sources and enabling the subjectivity of quality assessment, the individual user
gets the option to choose the desired social media sources.

3.3.2 Implementation of Social-QAS

The actual quality assessment service is conceived as a service that follows the
paradigms of a web-based, service-oriented architecture (SOA). The use of such
architecture enables a central rating and makes it possible to integrate it into

Table 3 (continued)

Method/Criterion Description

11 Named entity recognition
(NER)

Number of entities in the message. The relation between
the information’s content and another information
source is indicated by an entity. The more entities, the
higher the information quality.

12 Emoticon conversion The possibility to make a message readable for different
audiences by converting emoticons into language
expressions.

13 Slang conversion The possibility to make a message readable for different
audiences by converting slang words into standard
language.

D Assessment based on scientific methods

14 tf-Idf (term frequency –
Inverse document frequency)

The appearance of individual search keywords (term
frequency) with the frequency of appearance in all
messages (inverse document frequency). Helpful if
more than one single keyword is used since the
occurrence of a fragment of the whole term, which only
appears frequently in few documents, is weighted
higher than the occurrence of a fragment, which appears
in many documents but less frequently.

tf ðt; dÞ= f ðt; dÞ
maxff ðw; dÞ : w∈dg

15 Shannon information theory
(Entropy)

Shannon theory of information. The average amount of
information contained in each message received.

IðpxÞ= loga
1
px

� �
= −logaðpxÞ

32112 End-User Development and Social Big Data …

various applications by allocating assessment results with the original data in
JSON format (JavaScript Object Notation). The interface is called “via HTTP-
GET” and the URL is complemented with query parameters, which are separated
by “&”. The client’s processing load is supposed to decrease by the server-sided
information rating. Via SMA, as illustrated in Fig. 1, the APIs of the particular social
network providers are used to extract data from the social networks (Reuter &
Scholl, 2014). In this context, especially Twitter and Facebook appear to be essential
APIs: these APIs allocate many possibilities to both export and import data concern-
ing the related social network.

To collect the semantic content of the message, one can apply a Named Entity
Recognizer (NER) (No.11). The Stanford NER3 is available as Java library for
free. The corpus “deWac generalized classifier” was used for the NER because it
works exceptionally well with German messages from social networks. The library
Classifier4J4 was utilized for the creation of a Bayes Classifier (No. 8) that enables

Client Applications

XHELP (Reuter et al., 2015)

Data Access Service

H
T

T
P

/J
S

O
N

J
a
v
a
 L

ib
ra

rie
s

Gathering Service

Enrichment Service (additional metadata)

Dissemination Service

Crowd Monitor (Ludwig et al., 2015)

EmerGent Architecture (Moi et al., 2015)

Social-QAS (Reuter et al., 2015)

Social Media Collector (Reuter et al., 2016)

Social Media API

Social Media

Token

Fig. 1 Overall architecture of client applications such as Social-QAS that use the Social Media
API to access different social media over a unified interface

3http://nlp.stanford.edu/software/CRF-NER.shtml
4http://classifier4j.sourceforge.net/

322 C. Reuter et al.

http://nlp.stanford.edu/software/CRF-NER.shtml
http://classifier4j.sourceforge.net/

the division of information into various categories since it can be skilled with lists
of words. The list of synonyms (No. 6) was created by applying the Open
Thesaurus web services5. One requires a geographical reference in order to visua-
lize the information; however, in many cases the information does not contain any
geographical metadata so that it has to be geocoded. The Gisgraphy Geocoder6 is
usable by web services and geocodes location information for any map material.
To accelerate the process, there is a list of locations which have already been
geolocated and whereof the coordinates can be defined without geolocation.
GSON7 is used for conversion since it allocates an automatic generation of a
JSON object based on a java object model.

3.3.3 Tailorability: Integration of Social-QAS into a Web Application

To test the implemented service, we have integrated Social-QAS into a web-based
application specified for emergency services as well as a Facebook-app “XHELP”
to support volunteer moderators during disasters. In the following we will outline
prototypically the implementation into XHELP, which allows information to be
both acquired and distributed cross-media and cross-channel (Reuter et al., 2015).

Inside this application, it is possible to search for information by using different
quality parameters in order to perform a quality assessment (Fig. 2). For this, the
user chooses an assessment criterion with the help of a slider. Integrating the user
in this way meets the requirements for a flexible and manageable quality assess-
ment, as identified in the pre-study.

The search results are presented in a table and on a visual situation map. An
abundance of meta-information such as the degree of completion of particular meth-
ods is illustrated as tool tips in the table. Simultaneously, the situation map makes it
possible to directly determine the proximity of the information to the search location
(Fig. 3). Thus, the user may select one mode in which s/he wishes to view the
results; this method improves the flexibility of the application. This user interface is
only one of several possibilities how Social-QAS can be applied.

To sum up, Social-QAS unifies the following functionalities (Reuter et al.,
2015): Assessment takes place on the basis of metadata as well as on the basis of
content. The user decides upon the weighting of each method. When all the
assessments of every method have been combined, the subjective quality of a
message develops. Social-QAS is very flexible since it makes it possible to expand
the sources and assessment methods very easily. Due to the SOA-based imple-
mentation it is possible to integrate it and use it in other applications.

5http://www.openthesaurus.de/
6http://www.gisgraphy.com/
7https://code.google.com/p/google-gson/

32312 End-User Development and Social Big Data …

http://www.openthesaurus.de/
http://www.gisgraphy.com/
https://code.google.com/p/google-gson/

4 Evaluation: Tailorable Quality Assessment

To answer the question how tailorable assessment services can be provided to
users properly and how users can articulate the assessment criteria appropriately,
Social-QAS has been evaluated by potential end-users.

4.1 Methodology

The philosophy behind the evaluation process was derived from the notion of
“situated evaluation” (Twidale, Randall, & Bentley, 1994), in which qualitative
methods are applied to draw conclusions about real-world use of a technology
using domain experts. The purpose is to derive subjective views from experts

Fig. 2 Quality Assessment Service integrated into an application

Fig. 3 Search results (left), degree of completion (lower left) and map presentation (right)

324 C. Reuter et al.

about how useful and relevant the technology might be in use instead of measuring
the relationship between evaluation goals and outcomes.

In order to obtain as much knowledge as possible about the potential of the
service and the quality assessment of citizen-generated information, the evaluation
consisted of a scenario-based walkthrough with a subsequent semi-structured
interview. The participants were directed to tell us their thoughts according to the
think-aloud protocol (Nielsen, 1993), enabling underlying reasoning and subjective
impressions to be gathered. Each evaluation took about 45 minutes and was per-
formed with 20 people in all (E1-E20). While, besides general knowledge on the use
of social media, 15 participants were skilled technology experts, four participants had
been initiators and moderators of Facebook pages during the European floods in
2013, and one was member of a voluntary fire brigade. Any participant who was not
a volunteer using social media very actively had a role definition introduced to them,
enabling them to place themselves in the position of a volunteer.

The scenario was supposed to show the participants a disaster’s character and
what volunteers do in crises (unless the participant was already an experienced volun-
teer). They worked on the basis of hurricane Xaver, which destroyed big parts of the
German coast in December 2013. The participants got a general role description in
order to know how to deal with the information demands of affected citizens with the
help of Social-QAS embedded in XHELP (see Sect. 3.3.3). After that, the partici-
pants had the chance to get to know the application by solving a concrete problem:
they were supposed to filter and search specific information about water levels. An
evaluation mode was added to the search function for this purpose. The results of the
search were assumed beforehand on preselected data records in order to be sure that
the participants’ results were comparable. In the following, semi-structured inter-
views were meant to support reflection on the evaluation process, on handling and
the overall application’s value. The questions were specialized in overall impressions
concerning quality assessment, the advantages and disadvantages of Social-QAS,
coverage of information demands, influence on information flow, potential overload
and problems of cross-platform information acquisition. The interviews were evalu-
ated and classified systematically. “Open” coding was employed, i.e. distributing
data into adequate categories to reflect the issues raised by respondents relying on
repeated readings of the data and its grouping into “similar” statements. The most
remarkable classifications will be presented in the following.

4.2 Results I: How Much Tailoring? Quality Assessment Criteria

Many users considered the number of assessment criteria to be too high for effective
use under the time-critical constraints of emergencies (E09, E07, E19). Nonetheless,
the respondents agreed with the opinion that different situations require different
assessment criteria (E12, E13, E08); and that a certain adjustment of the criteria to the
situation is necessary: “There are many criteria, but I think that this is important,
because different questions require different search keywords” (E13). Accordingly, the
suggestion was made that the assessment criteria could be adjusted in such a way that

32512 End-User Development and Social Big Data …

allows the goal to be achieved more quickly (E12). Furthermore, other possibilities –
for example the opportunity to search for a hyponym (E19) – were requested in addi-
tion to the various settings. The evaluation demonstrated that the biggest challenge to
be overcome is the identification of criteria of appropriate quality. Although currency
was an important criterion for all respondents, only a few understood the meaning of
coordinate quality. The explanation of coordinate quality as a measure for the local
proximity helped them to understand its meaning. One participant raised the question
of the correlation between the author’s number of subscribers and his reputation (E4).

4.3 Results II: Broad Information Basis and
Information Overload

In order to achieve a situational overview of an emergency setting, users especially
regarded the opportunity to consider different information sources simultaneously to
be an added value (E19, E15, E18): “Because public networks are used such a lot, it
is much better to relate them to each other. That could really help to meet the infor-
mation need” (E17). The number of sources should be steadily supplemented with
further useful sources. What is more, not only social networks but also e.g. news
sites should be taken into consideration. Furthermore, the interviewed persons were
afraid of being confronted by a flood of information while searching for information
in social networks during a large-scale emergency (E16, E19). This fear was
soon quelled by sorting the results in Social-QAS. Most users did not want to go
through the entire list of search results, but preferred to only look at the first few
results on the list. Still it should remain possible for the user to see the additional
results at will since some scenarios potentially require an inspection of the addi-
tional results.

4.4 Results III: Automatic and Tailorable Quality
Assessment Necessary

The quality assessment of information proceeds automatically. Users accept this
automatism as they have the possibility to control the assessment and are able to
comprehend why something was assessed in a particular way (E08, E11). “As
always, when something is evaluated, that does not replace your own opinion”
(E10). Yet the general possibility to combine criteria was considered a benefit:
“The default settings do not matter. That means if I do nothing, my search results
will not change” (E13). “As a consequence, diverse combinations are possible, of
course, which seems to me to be helpful” (E07). To counter negative impacts on
actions, manual post-processing should be implemented, allowing the correction
or recognition of defective entries.

326 C. Reuter et al.

Considering the possibilities and suggestions for improvement shown (E13, E19,
E14), there is potential to improve the information flow in emergency situations.
This could especially be realized by the classification of emergency situations and a
preset of weightings based on this. Crucial temporal and organizational bottlenecks
could be avoided by collecting information from local people (real volunteers) or
the internet (digital volunteers) (Reuter, Heger, & Pipek, 2013) (E07, E16): “The
benefits are that I can find things quickly, […] because it is possible to search speci-
fically for something and that is really displayed on the different platforms, just how
I want it. And I can weight very easily using the assessment criteria” (E18).

5 Discussion and Conclusion

From the perspective of EUD, many systems for analyzing social media offer
more or less customization possibilities and are aimed at end-users who have little
or no technical knowledge. However, the adaptability is largely limited to visuali-
zation elements, e.g. in form of a central dashboard. There, the presented
figures are prepared in such a way that the end-user can scale and analyze along
fixed dimensions. At another level of customization, there are systems such as
HootSuite, which provide strong software extensibility by providing their own
SDK. Expert users are able to create new functionalities available to all end-users.
These extensions do not affect the design of the analysis process, thus, the end-
user cannot tailor it to the individual preferences. The system alert.io with the
structure of a learning process of tonality analysis shows approaches to such
extensibility. An end-user trains this component based on his or her own situation
understanding so that the machine learning algorithm can work independently on
new data from a certain size of the experience data base.

This article demonstrates how it is possible to combine EUD and social big
data. It discusses how situation assessment practices of crisis management actors,
namely emergency services (Ludwig et al., 2015) and informal volunteers (Reuter
et al., 2015), can be encouraged by tailorable quality assessment of citizen-
generated information from social media. At the beginning, the results of an
empirical study involving emergency services concerning the use of citizen-
generated content and social media within their current work practices are sum-
marized. With the help of literature and empirical findings we identified the need
for different quality criteria and applied them on information from social media.
We implemented an own Social Media API and a quality assessment service.

We come to three results that extend the current state of the art:

(1) An analysis of dealing with citizen-generated content in emergencies by
means of an empirical study, which emphasizes the range and quality assess-
ment of citizen-generated content in emergencies (Reuter & Ritzkatis, 2014).

(2) A concept for a tailorable social media gathering (Sect. 3.2.1) and quality
assessment service (Sect. 3.3.1) for social media as well as a running

32712 End-User Development and Social Big Data …

implementation which is SOA-oriented, tailorable and can be applied in var-
ious applications (Reuter et al., 2015, 2016).

(3) A reference implementation of the gathering service (Sect. 3.2.2) as well as
quality assessment service (Sect. 3.3.2) inside an existing web-based applica-
tion for emergency services (Ludwig et al., 2015) and an existing web-app for
volunteers (Reuter et al., 2015) (Sect. 3.3.3).

The contribution of this chapter is to show the process from data selection to
use from an EUD perspective including pre-study, design, implementation and
evaluation in order to generate findings to the field.

To sum up, it is useful to be flexible by tailoring options for source platform
selection and quality assessment criteria since situation assessment revealed itself
to be very subjective. Consequently, personal feelings, experience and the situa-
tion itself influence the information requirement. Our findings turned out to
be interesting for other application fields as well. While gathering or analyzing
information and implementing information systems to encourage the task, there
is always one question that is hard to answer: How can we realize information
systems, which enable the automatic selection of relevant data and, simultaneously,
grant end-users the option to adapt this automation, thus allowing tailorable quality
assessment pursuant to their requirements?

In terms of big data, some restrictions are apparent: Although social media pro-
vide high-volume, high-velocity and a high-variety (McAfee & Brynjolfsson, 2012)
of social data (Dijcks, 2012), the access is limited allowing client applications such
as Social Media API and Social-QAS to merely gather small portions of data (Reuter
& Scholl, 2014). Even with continuously gathering new data and filling the database,
the volume and velocity of data processing in client applications like those will be
small compared to the daily data creation in social media (Kaisler, Armour,
Espinosa, & Money, 2013). Therefore, in high-volume scenarios, valuable informa-
tion according to the user-selected quality criteria may be missed. In future work, it
is important to examine how the end-user can be better integrated into the analysis
process by applying machine learning to ensure the adaptability and alignment of the
analysis of social media in the dynamic context of end-users.

Our work still has some limitations. Not all the criteria that are relevant for
quality assessment are included within Social-QAS. Furthermore, according to the
context, the number of criteria might overburden the cognitive skills of end-users.
It is, therefore, important to define standards and to allow end-users to adapt them,
whereby different tailoring power might then require different skills, according to
MacLean, Carter, Lövstrand, and Moran (1990); thus local developers may be
required (Gantt & Nardi, 1992).

Acknowledgements The research project EmerGent’ was funded by a grant of the European
Union (FP7 No. 608352). This article is built upon existing and published research; the empirical
study has been presented at Mensch & Computer conference (Reuter & Ritzkatis, 2014), in some
parts the concept enhances, refocuses and improves a paper presented at the 2015 international
symposium on EUD (Reuter et al., 2015).

328 C. Reuter et al.

References

Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G. (2008). Finding high-quality con-
tent in social media. In Proceedings of the 2008 international conference on web search and
data mining (pp. 183–194). Palo Alto: ACM Press. doi:10.1145/1341531.1341557.

Ardito, C., Costabile, M. F., Desolda, G., Lanzilotti, R., Matera, M., Picozzi, M. (2014). Visual
composition of data sources by end users. In Proceedings of the 2014 international working
conference on advanced visual interfaces - AVI ’14 (pp. 257–260). New York: ACM Press.
doi:10.1145/2598153.2598201.

Bassett, C. (2015). Plenty as a response to austerity? Big data expertise, cultures and communities.
European Journal of Cultural Studies, 18(4–5), 548–563. doi:10.1177/1367549415577394.

Batrinca, B., & Treleaven, P. C. (2014). Social media analytics: a survey of techniques, tools and
platforms. AI & Society, 30(1), 89–116. doi:10.1007/s00146-014-0549-4.

Bello-Orgaz, G., Jung, J. J., Camacho, D. (2016). Social big data: recent achievements and new
challenges. Information Fusion, 28, 45–59. doi:10.1016/j.inffus.2015.08.005.

Borges, C. R., & Macías, J. A. (2010). Feasible database querying using a visual end-user
approach. In Proceedings of the 2nd ACM SIGCHI symposium on engineering interactive
computing systems - EICS ’10 (pp. 187–192). New York: ACM Press. doi:10.1145/1822018.
1822047.

Cappiello, C., Daniel, F., Matera, M., Picozzi, M., Weiss, M. (2011). Enabling end user develop-
ment through mashups: requirements, abstractions and innovation toolkits. In M. F.
Costabile, Y. Dittrich, G. Fischer, A. Piccinno (Eds.). Proceedings of the international sym-
posium on end-user development (IS-EUD) (pp. 1–16). Torre Canne: Springer.

Chowdhury, S., Amer-Yahia, S., Castillo, C., Imran, M., Asghar, M. R. (2013). Tweet4act: using
incident-specific profiles for classifying crisisrelated messages. In T. Comes, F. Fiedrich, S. Fortier,
J. Geldermann, T. Müller (Eds.). Proceedings of the information systems for crisis response and
management (ISCRAM) (pp. 834–839). Baden-Baden, Germany: ISCRAM Digital Library.

Church, K., & Oliver, N. (2011). Understanding mobile web and mobile search use in today’s
dynamic mobile landscape. In Proceedings of the 13th international conference on human
computer interaction with mobile devices and services (pp. 67–76). Stockholm: ACM.

Costabile, M. F., Fogli, D., Mussio, P., Piccinno, A. (2007). Visual interactive systems for end-user
development: a model-based design methodology. IEEE transactions on systems, man, and
cybernetics - part a: systems and humans, 37(6), 1029–1046. doi:10.1109/TSMCA.2007.904776.

Coutaz, J., & Crowley, J. L. (2016). A first-person experience with end-user development for
smart homes. IEEE Pervasive Computing, 15(2), 26–39. doi:10.1109/MPRV.2016.24.

Dijcks, J. (2012). Oracle: Big data for the enterprise. Oracle white paper, (June), 1–14.
Doerner, C., Draxler, S., Pipek, V., Wulf, V. (2009). End users at the bazaar: designing next-

generation enterprise-resource-planning systems. IEEE Software, 26(5), 45–51.
Doll, W. J., & Torkzadeh, G. (1988). The measurement of end-user computing satisfaction. MIS

Quarterly, 12(2), 259. doi:10.2307/248851.
Eisenstein, J. (2013). What to do about bad language on the internet. In L. Vanderwende (Ed.).

Proceedings of NAACL-HLT 2013 (pp. 359–369). Atlanta: The Association for Computational
Linguistics.

Endsley, M. R. M. R. (1995). Toward a theory of situation awareness in dynamic systems.
Human Factors: The Journal of the Human Factors and Ergonomics Society, 37(1), 32–64.
doi:10.1518/001872095779049543.

Fischer, G., & Scharff, E. (2000). Meta-design – Design for designers. In D. Boyarski,
W. Kellogg (Eds.). Proceedings of the international conference on designing interactive
systems (pp. 396–405). New York: ACM.

Friberg, T., Prödel, S., Koch, R. (2010). Analysis of information quality criteria in crisis situation
as a characteristic of complex situations. In M. Lacity, S. March, F. Niederman (Eds.).
Proceedings of the 15th international conference on information quality. Little Rock: AIS
Electronic Library (AISeL).

32912 End-User Development and Social Big Data …

http://dx.doi.org/10.1145/1341531.1341557
http://dx.doi.org/10.1145/2598153.2598201
http://dx.doi.org/10.1177/1367549415577394
http://dx.doi.org/10.1007/s00146-014-0549-4
http://dx.doi.org/10.1016/j.inffus.2015.08.005
http://dx.doi.org/10.1145/1822018.1822047
http://dx.doi.org/10.1145/1822018.1822047
http://dx.doi.org/10.1109/TSMCA.2007.904776
http://dx.doi.org/10.1109/MPRV.2016.24
http://dx.doi.org/10.2307/248851
http://dx.doi.org/10.1518/001872095779049543

Ganis, M., & Kohirkar, A. (2012). Ensuring the accuracy of your social media analysis. Cutter
IT Journal, 25(10), 13–18.

Gantt, M., & Nardi, B. (1992). Gardeners and gurus: patterns of cooperation among CAD users. In
P. Bauersfeld, J. Bennett, G. Lynch (Eds.). Proceedings of the conference on human factors in
computing systems (CHI) (pp. 107–117). Monterey: ACM Press. doi:10.1145/142750.142767.

Giles, J. (2005). Internet encyclopaedias go head to head. Nature, 438(December), 900–901.
doi:10.1038/438900a.

Grammel, L. (2009). Supporting end users in analyzing multiple data sources. In R. DeLine, M.
Minas, M. Erwig (Eds.). 2009 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC) (pp. 246–247). Corvallis: IEEE. doi:10.1109/VLHCC.2009.5295248.

Heer, J., & Boyd, D. (2005). Vizster: visualizing online social networks. In M. Ward, J. Stasko
(Eds.). IEEE symposium on information visualization, 2005. INFOVIS 2005 (pp. 32–39).
Minneapolis: IEEE. doi:10.1109/INFVIS.2005.1532126.

Henderson, A., & Kyng, M. (1991). There’s no place like home: continuing design in use. In
J. Greenbaum & M. Kyng (Eds.), Design at work cooperative design of computer systems
(pp. 219–240). Lawrence Erlbaum Associates.

Hess, J., Reuter, C., Pipek, V., Wulf, V. (2012). Supporting end-user articulations in evolving
business processes: a case study to explore intuitive notations and interaction designs.
International Journal of Cooperative Information Systems (IJCIS), 21(4), 263–296.

Hiltz, S., & Plotnick, L. (2013). Dealing with information overload when using social media
for emergency management: emerging solutions. In T. Comes, F. Fiedrich, S. Fortier,
J. Geldermann, T. Müller (Eds.). Proceedings of the information systems for crisis response and
management (ISCRAM) (pp. 823–827). Baden-Baden, Germany: ISCRAM Digital Library.

Kaisler, S., Armour, F., Espinosa, J. A., Money, W. (2013). Big data: issues and challenges mov-
ing forward. In R. H. Sprague (Ed.). 2013 46th hawaii international conference on system
sciences (pp. 995–1004). Wailea: IEEE. doi:10.1109/HICSS.2013.645.

Kaufhold, M.-A., & Reuter, C. (2016). The self-organization of digital volunteers across social
media: the case of the 2013 european floods in germany. Journal of Homeland Security and
Emergency Management (HSEM), 13(1), 137–166.

Ley, B., Pipek, V., Reuter, C., Wiedenhoefer, T. (2012). Supporting improvisation work in inter-
organizational crisis management. In Proceedings of the conference on human factors in
computing systems (CHI) (pp. 1529–1538). Austin, TX: ACM Press.

Lieberman, H., Paterno, F., Wulf, V. (2006). End-user development. Dordrecht: Springer.
doi:10.1007/1-4020-5386-X.

Ludwig, T., Reuter, C., Pipek, V. (2013). What you see is what I need: mobile reporting practices
in emergencies. In O. W. Bertelsen, L. Ciolfi, A. Grasso, G. A. Papadopoulos (Eds.).
Proceedings of the European conference on computer supported cooperative work (ECSCW)
(pp. 181–206). Paphos: Springer. Retrieved from http://link.springer.com/chapter/10.1007/978-1-
4471-5346-7_10.

Ludwig, T., Reuter, C., Pipek, V. (2015). Social haystack: dynamic quality assessment of
citizen-generated content during emergencies. Transactions on human computer interaction
(ToCHI), 22(4), 17:1–17:27. doi:10.1145/2749461.

MacLean, A., Carter, K., Lövstrand, L., Moran, L. (1990). User-tailorable systems: pressing the
issues with buttons. In J. C. Chew, J. Whiteside (Eds.). Proceedings of the conference on
human factors in computing systems (CHI). Seattle: ACM Press.

Marcus, A., Bernstein, M., Badar, O., Karger, D. R., Madden, S., Miller, R. C. (2011). Twitinfo:
aggregating and visualizing microblogs for event exploration. In D. Tan, G. Fitzpatrick,
C. Gutwin, B. Begole, W. A. Kellogg (Eds.). Proceedings of the conference on human
factors in computing systems (CHI) (pp. 227–236). Vancouver, Canada: ACM Press.

Massa, D., & Spano, L. D. (2015). FaceMashup: enabling end user development on social
networks data BT. In P. Díaz, V. Pipek, C. Ardito, C. Jensen, I. Aedo, A. Boden (Eds.). 5th
international symposium on end-user development (IS-EUD) (pp. 204–210). Cham: Springer
International Publishing. doi:10.1007/978-3-319-18425-8_17.

330 C. Reuter et al.

http://dx.doi.org/10.1145/142750.142767
http://dx.doi.org/10.1038/438900a
http://dx.doi.org/10.1109/VLHCC.2009.5295248
http://dx.doi.org/10.1109/INFVIS.2005.1532126
http://dx.doi.org/10.1109/HICSS.2013.645
http://dx.doi.org/10.1007/1-4020-5386-X
http://link.springer.com/chapter/10.1007/978-1-4471-5346-7_10
http://link.springer.com/chapter/10.1007/978-1-4471-5346-7_10
http://dx.doi.org/10.1145/2749461
http://dx.doi.org/10.1007/978-3-319-18425-8_17

McAfee, A., & Brynjolfsson, E. (2012). Big data: the management revolution. Harvard Business
Review, 90(10), 61–67.

McClendon, S., & Robinson, A. C. (2012). Leveraging geospatially-oriented social media com-
munications in disaster response. In L. Rothkrantz, J. Ristvej, Z. Franco (Eds.). Proceedings
of the information systems for crisis response and management (ISCRAM) (pp. 1–11).
Vancouver, Canada: ISCRAM Digital Library.

Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., Bhattacharjee, B. (2007). Measurement
and analysis of online social networks. In C. Dovrolis, M. Roughan (Eds.). Proceedings of
the internet measurement conference (pp. 29–42). San Diego: ACM Press.

Nielsen, J. (1993). Usability engineering. San Francisco, CA: Morgan Kaufmann.
Olshannikova, E., Olsson, T., Huhtamäki, J., Kärkkäinen, H. (2017). Conceptualizing big social

data. Journal of Big Data, 4(1), 1–19. doi:10.1186/s40537-017-0063-x.
Organisation for Economic Co-operation and Development (OECD). (2007). Participative web:

user-created content. http://www.oecd.org/internet/ieconomy/38393115.pdf.
Pipek, V. (2005). From tailoring to appropriation support: negotiating groupware usage (PhD-

Thesis) (Faculty of Science - Department of Information Processing Science - University of
Oulu, Ed.). Oulu: Oulu University Press.

Pipek, V., & Wulf, V. (2009). Infrastructuring: toward an integrated perspective on the design
and use of information technology. Journal of the Association for Information Systems
(JAIS), 10(5), 447–473.

Reuter, C., & Kaufhold, M.-A. (2018). Fifteen years of social media in emergencies: a retrospec-
tive review and future directions for crisis informatics. Journal of contingencies and crisis
management (JCCM), 26(1).

Reuter, C., Heger, O., Pipek, V. (2013). Combining real and virtual volunteers through social
media. In T. Comes, F. Fiedrich, S. Fortier, J. Geldermann, T. Müller (Eds.). Proceedings of
the information systems for crisis response and management (ISCRAM) (pp. 1–10). Baden-
Baden: ISCRAM Digital Library.

Reuter, C., Ludwig, T., Kaufhold, M.-A., Pipek, V. (2015). XHELP: design of a cross-platform
social-media application to support volunteer moderators in disasters. In B. Begole, J. Kim,
K. Inkpen, W. Woo (Eds.). Proceedings of the conference on human factors in computing
systems (CHI) (pp. 4093–4102). Seoul: ACM Press.

Reuter, C., Ludwig, T., Kotthaus, C., Kaufhold, M.-A., von Radziewski, E., Pipek, V. (2016).
Big data in a crisis? Creating social media datasets for emergency management research.
I-Com: Journal of Interactive Media, 15(3), 249–264. doi:10.1515/icom-2016-0036.

Reuter, C., Ludwig, T., Ritzkatis, M., Pipek, V. (2015). Social-QAS: tailorable quality assess-
ment service for social media content. In P. Díaz, V. Pipek, C. Ardito, C. Jensen, I. Aedo,
A. Boden (Eds.). Proceedings of the international symposium on end-user development
(IS-EUD) (pp. 156–170). Madrid: Lecture Notes in Computer Science.

Reuter, C., & Ritzkatis, M. (2014). Adaptierbare Bewertung bürgergenerierter Inhalte aus
sozialen Medien. In M. Koch, A. Butz, J. Schlichter (Eds.). Mensch & computer: interaktiv
unterwegs – Freiräume gestalten (pp. 115–124). München: Oldenbourg-Verlag.

Reuter, C., & Scholl, S. (2014). Technical limitations for designing applications for social media.
In M. Koch, A. Butz, J. Schlichter (Eds.). Mensch & computer: workshopband (pp. 131–140).
München: Oldenbourg-Verlag.

Rieder, B. (2013). Studying facebook via data extraction: the netvizz application. Proceedings of
the 5th annual ACM web science conference (pp. 346–355). New York: ACM. doi:10.1145/
2464464.2464475.

Ritter, A., Clark, S., Mausam, Etzioni, O. (2011). Named entity recognition in tweets: an experi-
mental study. In P. Merlo, R. Barzilay, M. Johnson (Eds.). EMNLP ’11 Proceedings of the
conference on empirical methods in natural language processing (pp. 1524–1534).
Edinburgh: Association for Computational Linguistics.

Rizza, C., Pereira, Â., Curvelo, P. (2013). Do-it-yourself justice-considerations of social media use
in a crisis situation: the case of the 2011 vancouver riots. In T. Comes, F. Fiedrich, S. Fortier,

33112 End-User Development and Social Big Data …

http://dx.doi.org/10.1186/s40537-017-0063-x
http://www.oecd.org/internet/ieconomy/38393115.pdf
http://dx.doi.org/10.1515/icom-2016-0036
http://dx.doi.org/10.1145/2464464.2464475
http://dx.doi.org/10.1145/2464464.2464475

J. Geldermann, T. Müller (Eds.). Proceedings of the information systems for crisis response and
management (ISCRAM) (pp. 411–415). Baden-Baden: ISCRAM Digital Library.

Stevens, G., Pipek, V., Wulf, V. (2009). Appropriation infrastructure: supporting the design of
usages. In V. Pipek, M. B. Rosson, V. Wulf (Eds.). Proceedings of the second international
symposium on end-user development (IS-EUD) (pp. 50–69). Heidelberg: Springer, LNCS.

Stieglitz, S., Dang-Xuan, L., Bruns, A., Neuberger, C. (2014). Social media analytics.
Wirtschaftsinformatik, 56(2), 101–109.

Terpstra, T., Vries, A., de, Stronkman, R., Paradies, G. L. (2012). Towards a realtime twitter ana-
lysis during crises for operational crisis management. In L. Rothkrantz, J. Ristvej, Z. Franco
(Eds.). Proceedings of the information systems for crisis response and management
(ISCRAM) (pp. 1–9). Vancouver: ISCRAM Digital Library.

Thomson, R., Ito, N., Suda, H., Lin, F. (2012). Trusting tweets: the fukushima disaster and infor-
mation source credibility on twitter. In L. Rothkrantz, J. Ristvej, Z. Franco (Eds.).
Proceedings of the information systems for crisis response and management (ISCRAM)
(pp. 1–10). Vancouver: ISCRAM Digital Library.

Turoff, M., Chumer, M., van de Walle, B., Yao, X. (2004). The design of a dynamic emergency
response management information system (DERMIS). The Journal of Information
Technology Theory and Application (JITTA), 5(4), 1–35. Retrieved from http://aisel.ais-
net.org/jitta/vol5/iss4/3.

Twidale, M., Randall, D., Bentley, R. (1994). Situated evaluation for cooperative systems situated
evaluation for cooperative systems. Lancester.

van de Walle, B., & Turoff, M. (2008). Decision support for emergency situations. Information
Systems and E-Business Management, 6(3), 295–316. doi:10.1007/s10257-008-0087-z.

Ward, J.S., & Barker, A. (2013). Undefined by data: a survey of big data definitions. Computing
Research Repository, abs/1309.5.

Watson, H., Finn, R. L., Wadhwa, K. (2017). Organizational and societal impacts of big data in
crisis management. Journal of contingencies and crisis management (JCCM), 25(1), 15–22.
doi:10.1111/1468-5973.12141.

Won, M., Stiemerling, O., Wulf, V. (2006). Component-based approaches to tailorable systems.
In H. Lieberman, F. Paternó, V. Wulf (Eds.). Enduser development (pp. 115–141).
Dordrecht: Springer.

Wong, J., & Hong, J. I. (2007). Making mashups with marmite. In Proceedings of the SIGCHI
conference on human factors in computing systems - CHI ’07 (pp. 1435–1444). New York:
ACM Press. doi:10.1145/1240624.1240842.

World Wide Web Consortium. (2017). Activity vocabulary. Retrieved July 3, 2016, from https://
www.w3.org/TR/activitystreams-vocabulary/

Wulf, V., Müller, C., Pipek, V., Randall, D., Rohde, M. (2015). Practice based computing:
empirically-grounded concpetualizations derived from design cases studies. In V. Wulf,
K. Schmidt, D. Randall (Eds.). Designing socially embedded technologies in the real-world.
London: Springer.

Wulf, V., Rohde, M., Pipek, V., Stevens, G. (2011). Engaging with practices: design case studies
as a research framework in CSCW. In Proceedings of the conference on computer supported
cooperative work (CSCW) (pp. 505–512). Hangzhou: ACM Press.

Xu, W., Ritter, A., Grishman, R. (2013). Gathering and generating paraphrases from twitter with
application to normalization. In Proceedings of the sixth workshop on building and using
comparable corpora (pp. 121–128). Sophia: Association for Computational Linguistics.

Zafarani, R., Abbasi, M. A., Liu, H. (2014). Social media mining: an introduction. Cambridge:
Cambridge University Press.

Zagel, B. (2012). Soziale Netzwerke als Impulsgeber für das Verkehrs-und Sicherheits
management bei Großveranstaltungen. In A. Koch, T. Kutzner, T. Eder (Eds.).
Geoinformationssysteme (pp. 223–232). Berlin/Offenbach: VDE Verlag GMBH.

332 C. Reuter et al.

http://aisel.aisnet.org/jitta/vol5/iss4/3
http://aisel.aisnet.org/jitta/vol5/iss4/3
http://dx.doi.org/10.1007/s10257-008-0087-z
http://dx.doi.org/10.1111/1468-5973.12141
http://dx.doi.org/10.1145/1240624.1240842
https://www.w3.org/TR/activitystreams-vocabulary/
https://www.w3.org/TR/activitystreams-vocabulary/

End-User Development and Learning in
Second Life: The Evolving Artifacts
Framework with Application

Anders I. Mørch, Valentina Caruso and Melissa D. Hartley

Abstract We explore the relationship of end-user development (EUD) and learn-
ing in a case study informed by a new conceptual framework (evolving artifacts).
The case is an online distance education program for training in-service teachers
in special education in the 3D virtual world Second Life (SL). The “box,” a spe-
cific building block in the SL environment became a multipurpose tool for EUD
in the study. The professor of the course designed the learning environment by
creating and combining 3D boxes and then used boxes as containers to share
course materials to the class. Some of the in-service teachers created boxes to per-
sonalize their learning activity. The conceptual framework for analysis integrates
EUD concepts and concepts from sociocultural and constructivist learning
theories (duality of learning; adaptation). We present an analysis of the partici-
pants’ spoken utterances and turn taking around the use of the boxes through
the lens of two different EUD and learning situations (technology-adaptation
and knowledge-adaptation). We show how participants take up these features to
become engaged in the activity. One of the situations required the learners to
adopt EUD techniques (technology-adaptation), and the professor used EUD
techniques to enable knowledge-adaptation.

Keywords 3D virtual world · adaptation · empirical analysis · end-user tailoring ·
EUD · evolving artifacts framework · in-service teacher · knowledge adaptation ·
Second Life · qualitative study · special education · tailorable component · teacher
education · technology adaptation

A.I. Mørch (✉)
University of Oslo, Oslo, Norway
e-mail: anders.morch@iped.uio.no

V. Caruso
Swiss Federal Institute for Vocational Education and Training (SFIVET), Lugano, Switzerland
e-mail: valentina.caruso@iuffp.swiss

M.D. Hartley
West Virginia University, Morgantown, WV, United States
e-mail: melissa.hartley@mail.wvu.edu

333© Springer International Publishing AG 2017
F. Paternò, V. Wulf (eds.), New Perspectives in End-User Development,
DOI 10.1007/978-3-319-60291-2_13

1 Introduction

Second Life (SL) is a multi-user virtual environment (MUVE) and a virtual world
(VW) in which individuals interact in real time as avatars with other people and
virtual objects in a three-dimensional space (Sardone & Devlin-Scherer, 2008).
MUVEs offer course organizers new opportunities to design advanced learning
environments composed of computer-based tools and virtual spaces for interaction
and to stage authentic learning activities with resources that would be difficult to
match in a traditional classroom setting.

Second Life provides a platform for teaching distance education courses as syn-
chronous interactions (Baker, Wentz, & Woods, 2009). Faculty members in a tea-
cher preparation program at a research university in the US have been teaching in
SL for 5 years, and it has been the educational platform for six online graduate
courses, at both the Master’s and Doctoral level. It has also been incorporated into
undergraduate, campus-based courses for role-play simulation. The present study
reports on a course designed for preservice and in-service special education tea-
chers and held entirely in Second Life (Caruso, Mørch, Thomassen, Hartley, &
Ludlow, 2014; Mørch, Hartley, & Caruso, 2015); specifically, we focus on the
participants’ involvement with end-user development (EUD) and the relationship
of EUD to learning activities. The professor created the flexible learning environ-
ment using the embedded Second Life build feature (a design environment), and
the participants used this virtual campus to collaboratively create and enact role-
play scenarios as part of their online learning activities. Fig. 1 shows part of the
virtual campus.

A specific building block in the SL environment is the “box.” The box origi-
nated as way of packaging and purchasing goods in the SL marketplace (building
units, furniture, clothing, etc.); in our study, this tool was used for EUD by a
professor and a group of fulltime in-service teachers following an evening
master’s degree program. The professor created the virtual campus, learning
resources and information sharing containers using boxes, and the in-service teachers
used, created and sometimes further developed (tailored) these containers in the
collaborative learning activities (Caruso, Hartley, & Mørch, 2015; Mørch, 2016).

Fig. 1 Two buildings of the Second Life™ virtual campus used in the distance education pro-
gram (Left: Main Classroom; right: Small Group Building)

334 A.I. Mørch et al.

Our informants used the term “box” when they described the tool. The technical
term is “default prim” or “cube prim,” a primitive object or just “object.” Other prim
types are named after basic 3D shapes (prism, sphere, cylinder, torus, tube, ring)
(Fig. 2, left). Prims are the basic building blocks in SL and can be created, modified
and stored with simple commands. Prims are created in a design environment
(builder) invoked by Ctrl-B (Fig. 2, left and right). In the builder, objects can be
linked to form composite prims or grouped objects to model more complex building
parts. The surface texture and other attributes (e.g. size and rotation) of an object can
also be edited in the builder (Fig. 2, right). Later (runtime) edits are possible on any
object on land with building permit by right clicking on the object and selecting
“Edit” from the pop-up menu, referred to as direct activation in the EUD literature
(Wulf & Golombek, 2001). All of these features were used in the study reported here.

We adopt a “components approach” to EUD (Bandini & Simone, 2006; Mørch
et al., 2004; Mørch & Zhu, 2013; Won, Stiemerling, & Wulf, 2006). The compo-
nents approach combined with tools for end-user tailoring (Mørch, 1997; Mørch,
2011) differs from the “programming approach” in that end users create and mod-
ify software artifacts using high-level (user oriented; domain specific) operations
rather than programming operations. However, using the Linden Scripting
Language (LSL), boxes can also be modified by writing code. Such modification
was not observed in this course, but the professor has used LSL in another course
to create a non-player character (NPC) in a roleplay.

Our long-term goal is to use EUD to practice generic (domain general) skills
in order to complement the domain-specific concepts and skills taught in classes.
The skills and concepts taught in the special education class we report from
include: negotiation, conflict resolution, persuasion, and resistance (Caruso et al.,
2014; Mørch et al., 2015). On the other hand, generic skills include: learning to
learn, academic basics (reading and writing; computational skills), communication,
adaptability, personal development, and group effectiveness (Carnevale, 1991;
Kearns, 2001). We argue adaptability is the generic skill best matched for EUD
and learning. It is defined as follows: (1) The ability to bridge the gap between
what is and what ought to be, (2) the ability to produce a novel idea, and then turn
it into a practical one (Carnevale, 1991; Kearns, 2001).

Fig. 2 Left: Selecting a basic 3D shape (prim) in the SL builder. Right: setting two of the attri-
bute values (size and rotation) of the cube prim (“box”)

33513 End-User Development and Learning in Second Life …

The skill most often thought of in conjunction with EUD and learning is com-
putational thinking, i.e., programming and algorithmic problem solving (Grover &
Pea, 2013; Repenning, Webb, & Ioannidou, 2010; Wing, 2006) and certain areas
of mathematics, such as geometry (Papert, 1980) and vector calculus (El-Nasr &
Smith, 2006). The full mastery of EUD in SL requires skills in programming and
applied mathematics, but in the work presented here we aim to go beyond compu-
tational thinking and use EUD for practicing adaptability in conjunction with
preparing for learning domain-specific skills.

We address the following research questions: (1) How do the multiple function-
alities of the SL “box” support end-user development, and (2) what is the role of
EUD in the learning activity?

The rest of the chapter is organized as follows. The conceptual framework is
presented in Sect. 2. The design of the virtual learning environment is described in
Sect. 3, and the research methods for data collection and analysis of the case study
are given in Sect. 4. Sect. 5 presents five data extracts for exemplification. The
findings are discussed in Sect. 6 in terms of the conceptual framework. At the end,
we identify some limitations and unresolved issues with our approach and suggest
some directions for further research.

2 The Evolving Artifacts Framework (EAF)

We present a conceptual framework for research design and analysis that inte-
grates concepts in EUD and concepts from sociocultural and constructivist learn-
ing theories. The three areas of research have developed independently, but have
some things in common: learning with the use of tools and application of evolu-
tionary principles and ideas beyond biology. We draw on their similarities to iden-
tify a set of concepts and techniques for end-user development as a learning
activity (adapt to learn; sense making) and learning as the creation and modifica-
tion of knowledge (learn to adapt; tool mediation). Researchers in the learning
sciences (e.g., Cobb, 1994) have argued for integrating sociocultural and construc-
tivist learning based on complementarity of individual and social processes. In this
chapter we propose the complementarity of EUD (tool adaptation) and learning
domain-specific concepts (knowledge adaptation).

2.1 Evolving Artifacts in End-User Development:
Frameworks, Tools, and Techniques

End-user development is defined as the methods, techniques, and tools that allow
users who are acting as non-professional software developers, to create, modify or
extend a software artifact (Lieberman, Paterno, & Wulf, 2006). One branch of EUD
focuses on enabling and studying these activities in evolutionary application develop-
ment (Fischer, 1998; Mørch, 2011; Stevens, 2017), i.e. continuous processes of

336 A.I. Mørch et al.

creating and modifying software artifacts that may also involve professional develo-
pers and changes made on different time scales (design time vs. use time). Key
notions are meta-design, end-user tailoring and appropriation.

2.1.1 Meta-Design

Meta-design is a conceptual approach for system development with end users that
pioneered the adoption of evolutionary ideas in EUD (Fischer, 1998). Through this
approach, developers create at design-time an environment in which users, as
“owners of problems,” are empowered during use-time with methods and tools to
create the solutions themselves and engage actively in the continuous development
of systems rather than being restricted to the use of existing systems (Fischer, 2009).
More recently, researchers have broadened meta-design to include different applica-
tion domains, including virtual worlds (Fischer, Fogli, & Piccinno, 2017). Second
Life is an example of a meta-design environment (Koehne, Redmiles, & Fischer,
2011). SL provides a set of components (building blocks and tools) for a range of
different tasks that define flexible design spaces for end-user developers to create
locally adapted solutions and participate in the continuous development of the shared
environment (Caruso et al., 2015).

Fischer (1998) refers to two types of system development processes (evolution-
ary growth and reseeding) inspired by two types of organism evolution, ontoge-
netic (individual; lifespan) and phylogenetic (species; genes). End user developers
are the main contributors during evolutionary growth, whereas seeding and reseed-
ing involves professional system developers. Mørch, Nygård, and Ludvigsen
(2009) refer to the two processes as adaptation and generalization, and Andersen
and Mørch studied the interdependencies of adaptation and generalization and
refer to the overall process as mutual development (Andersen & Mørch, 2009). In
the case study we report from here, reseeding or generalization means to maintain
the Second Life software and spawn new versions, which is a design-time activity
organized by Linden Lab with initial release in 2003 and downloaded by end users
during use-time. Evolutionary growth or adaptation is the creation and modifica-
tion of specific artifacts in SL during use-time by end user developers. Both types
of evolution have shaped the SL box tool and other SL artifacts; we have focused
our research on end-user developed solutions.

2.1.2 End-User Tailoring and Direct Activation

Researchers in EUD have created instances of meta-design by specific tools and
techniques for continuous application development (Cabitza & Simone, 2017;
Fogli & Provenza, 2012; Mørch, 1997). Mørch (1997) has suggested tools for
tailoring generic applications at three levels – customization, integration and exten-
sion. These levels provide a gradual transition into the computational complexity of
an application via increased power for each level. Fogli and Provenza (2012) apply

33713 End-User Development and Learning in Second Life …

a meta-design model to create EUD environment for citizens to take active part in
an e-government service in Italy. These tools and environments empower domain
expert users to create solutions themselves (Costabile et al., 2008) and learning
while doing it (Caruso et al., 2015).

The SL user interface consists of visual components. The notions of direct acti-
vation by event handling (Mørch, 1995; Wulf & Golombek, 2001) and compo-
nents approach (Bandini & Simone, 2006; Mørch et al., 2004; Mørch & Zhu,
2013; Won et al., 2006) support tailorability. It entails that tools for EUD are part
of the runtime environment at the granularity of components and invoked by a
mouse-keyboard combination. Direct activation supports a “gentle slope to com-
plexity” (Ludwig, Dax, Pipek, & Wulf, 2017), which means that the practice situa-
tion indicates to the user when there is need to tailor, e.g., associated with a
breakdown or problem. A breakdown triggers the need for “repair,” whereby a tai-
lor descends to a lower level of detail to make the necessary changes (Ludwig
et al., 2017). Direct activation is supported in Second Life by right clicking on a
modifiable 3D object. The edit command in the pop-up menu opens a property
sheet for customization, allowing object features, textures and content to be chan-
ged (see Fig. 2).

2.1.3 Appropriation

Appropriation of everyday objects will typically not involve actions to “create,
modify or extend a software artifact.” For example, appropriation is defined in the
arts in Wikipedia to use pre-existing objects or artifacts in new ways and combina-
tions with little or no transformation applied to them. On the other hand, both
appropriation and EUD can be characterized as continuous processes of evolving
artifacts. Software appropriation has been researched in computer supported coop-
erative work (CSCW) and human computer interaction (HCI) and defined as com-
bining adoption and adaptation: adoption of a specific technology in an
organizational context and adaptation of the technology to that context (Dourish,
2003; Tchounikine, 2017).

Pipek (2005) argues that appropriation should be considered in terms of design
in use and tailoring. He describes appropriation as “an ongoing design process
that end users perform largely without any involvement of professional develo-
pers” (Pipek, 2005, p. 5). Based on two long-term empirical studies, he identified
advanced user activities with collaboration tools (groupware) in two workplace
settings and proposed appropriation support to aid the activities. Pipek character-
ized this appropriation as “a collaborative effort of end users … to make sense of
the software in their work context” (Pipek, 2005, p. 5). The appropriation support
combines communication, demonstration, negotiation, and tailoring.

More recently Stevens (2017) has proposed appropriation as a sociotechnical
framework (infrastructure) for EUD. He traces the roots of the concept back to
German idealism in the works of Hegel and Marx and studies its uptake in 20th

century Activity Theory of Leontiev and Engeström, who connect appropriation

338 A.I. Mørch et al.

with expansive learning, thus forming a dialectic of mental and material appro-
priation activities (Engeström, 1999). The dialects of acting on the external world,
as a form of production and reproduction, and changing one’s inner nature as a
form of learning and self-expression, are elements of Marx’ theory that provided
later scholars with ideas for new research methods for studying human activity as
a dialectic process (Stevens, 2017).

2.2 Evolving Artifacts and Human Learning

EUD and learning from a sociocultural and constructivist perspective share a focus
in the use of tools (cultural tools in sociocultural learning; learning through con-
crete experiences in constructivist learning) and application of evolutionary ideas.
However, there are also important differences between the two perspectives, one
being that constructivist theory suggests to focus on individual learning motivated
by personal interest while sociocultural theory is more concerned with the ways in
which learning is culturally dependent and involve social interaction and scaffold-
ing (Scott & Palincsar, 2013). We present two theoretical ideas, Vygotsky’s
Genetic law of cultural development and Piaget’s process of Adaptation, which
we integrate with concepts from EUD to define two types of adaptation:
technology-adaptation (EUD) and knowledge-adaptation (learning).

2.2.1 The Genetic Law of Cultural Development (Duality of Learning)

Vygotsky’s “genetic law of cultural development,” referred to here as “duality of
learning” to avoid confusion with the contemporary meaning of genetics (genes
and DNA), states that “every function in the child’s cultural development appears
twice: first, on the social level, and later, on the individual level; first between peo-
ple (inter-psychological), and then inside the child (intra psychological). This
applies equally to voluntary attention, to logical memory, and to the formation of
concepts. All the higher functions originate as actual relations between human
individuals” (Vygotsky, 1934/1978, p. 57, emphasis original).

Wertsch (1991) suggested that the interaction between individual and social
processes is not linear but interdependent and that tool-mediated human activity is
central to the interdependence. The activities that tools facilitate are the co-
construction of knowledge and the internalization of knowledge for the individuals
(Säljö, 1999; Wertsch, 1991). Leontiev (1981), a junior colleague of Vygotsky,
used the term “appropriation” to characterize this process of internalization to sim-
plify the task of understanding the history of development of specific artifacts that
have taken centuries and decades to evolve in order to appropriate such objects
into their own system of activity (Newman, Griffin, & Cole, 1989).

The connection between appropriation as a form of advanced technology use and
the social construction of knowledge has been studied in teacher education research,

33913 End-User Development and Learning in Second Life …

for example, in examining the appropriation that occurs when learners (teachers in
training) adapt information technology in a way that is meaningful to them (Cook,
Smagorinsky, Fry, Konopak, & Moore, 2002; Grossman, Smagorinsky, & Valencia,
1999). Appropriation involving modification to software (EUD) has been studied in
computer science education research where the aim is to teach computational think-
ing (Grover & Pea, 2013; Repenning et al., 2010; Wing, 2006) and in CSCW to pro-
vide a sociotechnical infrastructure for tool modification (EUD) and flexible use
practices (e.g. participatory design, collaborative sense making, and learning) in
workplace settings (Stevens, 2017). However, to the best of our knowledge, EUD
has been little investigated in research in special education.

2.2.2 Piaget’s Adaptation: Assimilation, Accommodation and Equilibration

Constructivism is a theory that puts forward the hypothesis that knowledge is not
passively received but actively built on an individual’s prior experiences. It also con-
siders the main function of cognition as adaptive in order to organize and make sense
of the experiential world (Bruner, 1961; Piaget, 1952; Von Glasersfeld, 1989).
Piaget’s constructivism suggests that learning happens whereby learners integrate
new experiences with prior knowledge through two complementary processes of
adaptation, assimilation and accommodation, driven by a tension-laden internal
dynamic referred to as equilibration (Piaget, 1952).

In assimilation, people take information from the outside world and convert it to
fit in with their existing ideas and concepts. These mental categories are known as
schemas, and are used to understand the world around them. When people encoun-
ter information that is completely new or that challenges their existing ideas, they
often have to form a new schema to accommodate the information or alter their
existing mental categories (Piaget, 1952). The desire for equilibration (inner sense
of balance of knowing) motivates learners in periods of restless mind (cognitive
conflict) to adjust old ideas and imprecise concepts and to learn new and better
ones. Piaget’s tension-laden process of evolving knowledge artifacts can be com-
pared with and form part of Vygotsky’s broader social-individual (outer-inner)
dynamic of learning and knowledge development in the context of human activity.

2.2.3 Duality of Adaptation: Technology Versus Knowledge

By synthesizing two sets of ideas on adaptation, we suggest that adaptation takes
place in two realms by two processes: in the social realm by technology adaptation,
and later, in the individual realm, by knowledge adaptation. This is not a strict
linear process, but one that iterates between two sides, where each side draws on the
other to cope with own shortcomings (e.g., lack of knowledge to accompany
technology-adaptation and lack of stable intermediate forms in knowledge-adaption).
Furthermore, knowledge adaptation does not have to be an individual activity;

340 A.I. Mørch et al.

collaborators can create and adapt knowledge together and conversational data
allows researchers to study knowledge adaptation in a semi-naturalistic setting.

In sum: The key concepts of the evolving artifacts frameworks are the following,
1) technology-adaptation: customization, integration, extension, 2) knowledge-
adaptation: assimilation, accommodation, 3) complementarity, and 4) bridging
concepts (in alphabetical order): cognitive conflict, collaboration, direct activation,
externalization, internalization, knowledge refinement, practice iteration, scaffolding,
social tension, and tool mediation. These concepts have informed our research
design and we have used some of them as sensitizing concepts to classify the data
material we report in Sect. 5. We also refer to aspects of meta-design (time scales:
design-time vs. use-time) and appropriation (gentle slope; sociotechnical infrastruc-
ture) in our discussions in Sect. 6.

2.3 Constructionism

Constructionism developed by Papert and colleagues (Papert & Harel, 1991) is
probably the best known theory of knowledge construction in EUD and builds on
the constructivist ideas developed by Piaget (self-directed learning involving
tangible objects and motivated by personal interest rather than predefined curricu-
lar goals) and supported by visual programming environments, pioneered by Logo
(Papert, 1980). Several constructionist environments have been created after Logo,
such as Boxer (diSessa & Abelson, 1986), Alice (Conway, Audia, Burnette,
Cosgrove, & Christiansen, 2000), Agentsheets (Repenning, Ioannidou, & Zola,
2000), Scratch (Maloney, Resnick, Rusk, Silverman, & Eastmond, 2010), and
Blockly from Google. The boundary between these environments and the “compo-
nents approach” is not clear-cut. For example, LEGO WeDo and App Inventor are
construction kits that contain a large number of building blocks for composition,
programming, and modification, thus combining component-based design and
programming. Furthermore, contemporary constructionist environments provide
learners with a wealth of scaffolding by online help and instruction, online peer
communities, libraries of examples, and video tutorials (Roque, Rusk, & Resnick,
2016), thus bridging the gap between constructionism (self directed) and sociocul-
tural (facilitated) learning theory.

In sum, our approach to EUD (component-based design and modification) and
theoretical perspective (Evolving Artifacts) differ from Constructionism in two
ways: 1) at the technology level in the same way as Minecraft (and Second Life)
differs from Scratch (modification vs. programming; learning domain-oriented
concepts vs. computational thinking), and 2) at the theoretical level by a con-
ceptual framework based on evolutionary ideas. However, the two perspectives
overlap with respect to the following: end users are learners who actively contri-
bute to own learning through advanced technology use while interacting with
fellow learners, facilitators and culture specific scaffolds.

34113 End-User Development and Learning in Second Life …

3 Designing the Learning Environment: Buildings & Activities

The third author of this study is the “professor;” who created the learning environ-
ment from scratch using Second Life’s build feature (a design environment). This
was accomplished based on skills acquired through a workshop offered by Sloan
Consortium (now called Online Learning Consortium), in which she learned how
to build a “box” and how to put content inside of a box. Below we describe two
types of functionality that can be built with the SL box as basic building blocks:
virtual buildings and learning activities and tools (Caruso et al., 2015).

3.1 Designing Virtual Buildings

After taking the workshop, the professor-as-designer spent time playing in SL to
practice making virtual buildings. She built the buildings (two of them are shown
in Fig. 1) by creating multiple boxes and linking them together, as shown in
Fig. 3: left). There were restrictions on the size of an individual object; therefore,
multiple boxes were put together to create a building of the size needed.

Fig. 3 Left: Building a box in Second Life; right: changing the size attributes of a box

342 A.I. Mørch et al.

In order for the main classroom to appear as one large lecture hall, the interior
walls of the boxes were set to “phantom” and made transparent, as shown in the
left part of Fig. 3. When an object is set to phantom in SL as opposed to merely
“transparent,” one can walk through the object. The main classroom had six boxes
linked together in order to create the look and feel the designer wanted. Once the
walls were created, faculty built one large floor from a box so that the texture on
the floor would look uniform.

After the interior walls were created, the professor changed each “texture” of
the exterior of each box to give the objects the appearance of a building. It was
the intent to make the buildings look similar to the architectural design of the
downtown campus, including vaulted windows (see Fig. 1). The professor built
the floor for the foyer by building a box and adjusting the dimensions. She then
linked the boxes and the floor together. Several other pieces were also created in a
similar manner and finally linked together.

In addition to the main classroom, it was necessary to build small-group
buildings for collaborative work. Each group building included a group table
with chairs, as well as a lounge area with a sofa and chairs. The group buildings
were 60 (virtual) meters apart to avoid sound interference between groups while
talking. Combining two boxes and making the interior walls of the boxes trans-
parent and “phantom” created the small group buildings, and the texture of the
boxes was changed to account for floors and walls (including windows) without
building separate boxes. After the prototype group building had been created,
multiple copies were made by duplication of the original; in total, five group
rooms per instructor were created.

3.2 Designing Learning Activities and Tools

The learning environment was designed to maximize collaboration and student
engagement. When envisioning the main classroom, the online instructors
wanted a space where students could meet as a large group (N = 25) and engage
in interactive lectures. The professor had visited other instructors’ classes in SL
and thought that flipping through slides in SL while students sat in a seat and
watched was less engaging than students physically moving their avatar to parti-
cipate, which is more in line with constructivist learning ideals such as active
learning (Karagiorgi & Symeou, 2005). Therefore, a decision was made to design
the space so that students would walk from display board to display board
(Fig. 4, left).

The display boards were used to show lesson content by uploading PowerPoint
slides as jpeg textures, and there were individual activities throughout the lesson.
After the interactive lecture, students worked in groups for the remainder of the
session. During this time, students worked collaboratively to solve problems. In
addition to solving problems, students were asked to create a role-play scenario
for their classmates to practice skills surrounding one of the topic areas taught
in the class (e.g., interpersonal problem solving, effective communication,

34313 End-User Development and Learning in Second Life …

negotiation, persuasion, conflict, resistance). The right-hand side of Fig. 4 shows a
group of students engaged in a role-play, using a box attached to a table to share
information.

Incorporating role-playing through virtual simulations is grounded in the con-
structivist notion of learning through concrete experiences and then reflecting
upon those experiences (Bruner, 1961; Piaget, 1952). Role-playing scenarios typi-
cally encountered in special education training were enacted during class sessions,
in order prepare future teachers to experience controlled situations and allow them
to rehearse professional responses using effective communication strategies. In
addition to participating in role-play creation and play, they were also asked to
facilitate their classmates’ participation in their role-play, which we show by
example in Sect. 5.

As part of this assignment, students had to learn how to build boxes to dissemi-
nate their materials, create notecards and put them inside the boxes, and allow their
boxes to be “purchased” for zero Linden dollars. These were the same kind of boxes
the professor used to create the learning environment, but in this case, the students
did not have to connect boxes. Instead, some of the in-service teachers played
around with self-created boxes and customized them to personalize it to their colla-
borative work, serving as a “group identity” (Greenberg, 1991). To add content to
their box, they dragged a notecard from their inventory into the Contents section of
the Edit window.

4 Methods and Research Design

Thirty-four in-service teachers took part in the study, participating in seven live
2-hour class sessions and nine collaborative group work sessions spanning four
weeks. Each class consisted of a combination of teacher-led and student-centered
activities, including interactive lectures of theoretical concepts (30 minutes), indi-
vidual activities (15 minutes), group activities in separate rooms (30 minutes), and
role-play activities (10 minutes). Learning was embedded within the activities, and
members of the group were assigned roles (leader, facilitator, secretary, time kee-
per, organizer) during collaborative group work sessions.

Fig. 4 Left: Professor lecturing and walking students through slides; right: a student facilitating
a role-playing session using a “box” for information sharing (the box is on the table)

344 A.I. Mørch et al.

We used a qualitative research analysis, combining a case study (Yin, 2003)
and virtual ethnography (Boellstorff, Nardi, Pearce, & Taylor, 2012; Hine, 2000).
A cases study is a particular instance of something used or analyzed in order to
illustrate a thesis or principle. In accordance with virtual ethnography (Boellstorff
et al., 2012; Hine, 2000), all sessions were observed at a distance in the virtual
world and video-recorded with screen capture software (BSR, Camtasia, SnagIt)
by the first two authors (in total 15 hours of raw video data). Afterwards, two
interviews were conducted with one student who volunteered, and with the profes-
sor, by using chat and voice (headset), in SL.

In order to manage and classify the data material, each session and interview
were stored in a separate file and entirely transcribed. We thematically categorized
the data (Guest, 2012) in two rounds: first according to an open coding and
iterative classification process (data-driven), and then informed by our research
questions and by two empirical concepts (technology-adaptation and knowledge-
adaptation). We focused on one group’s activities as they unfold throughout the
collaborative work and roleplay. This group was chosen because its members
were the most active in using EUD techniques in their collaborative work. Then
we counted the occurrences of domain-specific concepts in the transcripts (“con-
flict” had 34 instances in the session we report from). Inspired by the interaction
analysis method (Jordan & Henderson, 1995) we base our claims on the partici-
pants’ utterances (chat and voice), verbal interactions, turn taking, and tone of
voice (“body language”). We integrate the participants’ EUD actions with their
verbal and non-verbal data using screen images and comments. We have repro-
duced five extracts below, which are snapshots of the learning trajectory organized
into two themes: technology-adaptation (Extracts 1–3) and knowledge-adaptation
(Extracts 4–5).

5 Data Extracts and Findings

Each subsection below is organized as follows: (1) short context description, (2)
illustrative example of “raw” data (spoken utterances, set in italics), and (3) brief
summary of findings. The transcript notation used in the data presentations
includes these symbols: (..) short pause; ((text)) comment by researcher; [..]
excluded (not audible) speech; :: interruption of talk by extraneous sources at the
participant site.

5.1 Data Extract 1: Creating a Box and Personalize the
Learning Activity

In Extract 1, in-service teachers are working in small groups. We follow the group
consisting of Heather, Janet, Mandy, and Stacy (fictitious names of participants).
After creating a scenario for the role-play activities, they need to write the instructions

34513 End-User Development and Learning in Second Life …

on a notecard intended for one of the other groups to act out. The notecard is put
in a box. When the extract below begins, the group is ready to create their box:

Stacy: OK, now we need somebody to make the box.

Heather: Y’all go together and do that. I kind of… can we build it in here? ((A default
box appears on the screen in yellow color))

Stacy: I’m not sure if we can or not.

Heather: I think we can build it here ((in their group room)), we just have to put it in
our inventory before we leave. I have one (..) started; I’ll try to get it so you
can see it. ((Typing on keyboard)) (..)

Janet: Exactly. ((chat))

[14:18] Stacy: Ok. ((chat)) (..) ((long pause, then the box’ color changes several times))

Heather: That’s a fancy box. Is it changing:: the scenery on it or are you changing
that? (..)

Mandy: Yeah, can you see it? ((Positive tone of voice))

Heather: Yeah, I can ((laughs)) (..)

Mandy: OK, tell me when you… we get something that you like. ((Happy voice))

The group attempts to collaboratively create a box for sharing documents with
another group, but Stacy is unsure if they can build it in their group room or some-
where else. The box eventually appears in the room in a default state based on
Heather’s actions (“I have one … started; I’ll try to get it so you can see it.”), and
she believes it can be saved in her inventory (a local storage for each person’s
items). Then, Mandy modifies the box into the pattern shown in Fig. 5, thus con-
necting the box with their case.

Fig. 5 The participants in the four-person group shown in data extracts 1–4 collaborate to build
and customize a box for information sharing (the fancy colored box in the lower right-hand corner).
The professor provided the two other boxes for seeding the environment with learning resources

346 A.I. Mørch et al.

What the in-service teachers build is not rocket science in EUD; they set para-
meters in the box’s property sheet, but they struggle with the physical location
and operations on the object (shared view vs. local actions). But when they figure
out how to make changes that are visible to them all, it gives them great pleasure.
It also gives them a sense of ownership of the box they made, which is evident by
the tone of their interactions, as shown in the last four turns.

5.2 Data Extract 2: Customizing the Box for Content Sharing

The content to be put in boxes refers to notecards with instructions for the role-
players of another group. To accomplish this, the groups needs to make one more
adjustment to the box to allow for content sharing, as shown in Extract 2:

Mandy: How do I make the box (..) ahm:: have a price of nothing? What do I…?

Stacy: There should be a spot on there ((in the property sheet)) that says… with
a… I think it’s down toward the bottom where it says ahm, the price or
whatever and you have to set it to zero dollars. Let me see if I can…

Mandy: Oh pay… about object (..) I’ll have to make it for sale.

Stacy: Yeah.

[14:25] Mandy: Features, ahm:: (..) I’ll have to look it up. I’m trying to build. If you guys
want to talk, I’ll still listen (..) All right. I did have the note (..) So:: what
exactly do we want to put in this box? I’m guessing do we need to put a
little snippet of (..) what part of this case we’re going to talk about and
what skill we want them to practice on?

Stacy looks at the property sheet for the box after doing an edit command on
the object, and suggests an attribute to be set (“the price or whatever”). She strug-
gles at first to understand why they have to set the value to “zero dollars,” which
was described in the instructions from the professor. Mandy suggests they have to
make the object for sale, and goes on modifying the box (“I’m trying to build. If
you guys want to talk, I’ll still listen”). The other in-service teachers comment on
her work, test the box, and report what they see. By setting the value of the con-
tent to $0L in the box’s property sheet, they allow the content to be shared without
payment (a feature inherited from the box’ commodity packaging origin). Now,
they can start to work on their role-play script to be disseminated to another group
and start educational role-playing and concept application.

5.3 Data Extract 3: Exploring Online Scaffolding

The participants we observed were newcomers to SL, and the professor pre-
pared multiple ways of scaffolding the learning activities. She created a “getting
started handbook” (Hartley, Ludlow, & Duff, 2016) and several instructional

34713 End-User Development and Learning in Second Life …

videos for specific situations. The use of the handbook is shown in the follow-
ing extract:

[14:28] Mandy: In our handbook that we have did it say how to put a card in there (..) or
was it on-line that the instructions were there?

Heather: I’ll see if I can help too. I remember doing it for that activity but let me go
play around, see what I can find (..) Mandy, what did you put under ahm::
content permission?

Heather: Go under content and click on permissions and see what you have
selected there.

Mandy: It has all checked ahm:: (..) Maybe I need to put share there (..) Anyone (..)
ok (..) see if that works and you can buy it now (..)(..)

Heather: How did you pick it up, Mandy? ((a new box appears on their lap))

Mandy: I have no idea. I just started cracking up laughing because I have no idea
why it’s on my lap ((laughs)).

Heather: Somebody else has it. Janet, you have it on you.

Janet: How do I get it off, it’s squashing me! ((the box is on her lap))

Heather: If you right click it’ll say drop ((laughs)) (..) It’s floating above the window
(..) (..) There are two tie-dye boxes floating above the window. ((box is in
the air))

Mandy: Yeah, I see them.

Extract 3 shows the necessity of giving the participants some examples and
instructions for scaffolding their activities. When the professor incorporates an
online handbook and short video instructions, she ensures that in-service tea-
chers feel more confident with the virtual environment. They refer to the online
handbook to set permission for sharing documents, and as a result they make
changes to some attribute values in the property sheet of the box. It is worth
noticing that the work to do this takes some time and is partly done individually
according to own time preferences. For examples Heather needs to “play
around,” and Mandy asks, “if that works,” after setting a value in the property
sheet. It is clear from the tone of their voice that they enjoy the activity, which
gives them time to reflect on and learn to understand what it means to create
and modify boxes.

5.4 Data Extract 4: Using Domain-Specific Concepts in
Planning a Roleplay

The pre-service teachers were asked to create a role-play scenario for their class-
mates to practice one or more interpersonal problem solving skills during the
role-play activity. In addition, each member was assigned a specific role in coordi-
nating the activities: leader, organizer, timekeeper, secretary, and facilitator. In
Extract 4 the group of students are planning the role-play activity (note: Franklin

348 A.I. Mørch et al.

is a child described in the scenario and the role players argue for best placement
for him using the concepts taught in class):

Stacy: Is our situation going to be like Franklin and other – and other teachers or is
it going to be like teachers talking about Franklin or:: (…) what? You know,
what kind of scenario? I think we’ve got to think of what kind of scenario first
and then think of what kind of skill we should practice.

[14:14] Janet: True ((chat))

Janet: I think that we could do something like ahm:: the teachers talking about what
they can do to help him, like what is the best help. I mean, because that’s
kind of what we’ve struggled on too, what is the best help for Franklin? Do
we try and seek counseling for him, do we just punish him for making dirty
pictures and making shanks at home, like what is the best for Franklin?

[14:14] Stacy: Ok, that sounds good ((chat))

Stacy: So do you think that might fall under negotiation? (…) Because they’re…
teachers are kind of negotiating with each other about (…) what would be
best for him.

[14:15] Janet: I think that or conflict ((chat))

By planning the role-play activities in collaboration, in-service teachers were
highly motivated to take part in the group discussions, thus making sense of the the-
oretical concepts taught in the course. This is in the beginning of planning the role-
play and they are raising the issue of what should be the key concepts to be taught,
and considers negotiation and conflict. The extract also illustrates how the role-play
in Second Life provided the pre-service teachers with a significant level of immer-
sion and realism, since they interpreted their roles by practicing real collaboration
skills and exploring learning situations more safely than in the real world.

5.5 Data Extract 5: Using Domain-Specific Concepts
in Skills Practice

In Extract 5, reproduced below, we are at the end of a debrief session of a roleplay
facilitated by one of members in the group shown above (Heather). This session
occurs one week after the session reported in Extracts 1–4. The debrief starts
immediately after time is up for role-playing. The students are no longer playing
scripted roles, and we get an idea of what they learned from it:

Heather: Okay, do you guys have any, um, we need to head back to class, you guys were
doing, like, amazing, but is there anything, real quickly, you would say, um, about
(..) You kind of talked about different persuasion strategies which could work, um,
what the cause of conflict is, just real quickly, about why the team members cannot
reach an agreement, from page two-ninety-seven to two-ninety-nine. Then we can
head back to class, ‘cause I know the other group is finished already.

Jenny: ((long pause)) I think some of it was [passed]
(continued)

34913 End-User Development and Learning in Second Life …

(continued)

Andy: ::I was gonna say with individuals, if not conflict between individuals with the
same goals, because we all have the same goal (..) and we all have different
opinions of what’s best for this student.

Peter: Yeah, I’d mean, I agree, I think it’s – it’s conflicts (..) it could probably easily be
considered like you said, conflict with the same goal, ‘cause everyone’s looking out
for the student, but one side, they’re lookin’ out, okay, what’s best for the student,
is it to remove him from my ((emphasized)) classroom and everyone else wants the
best for him, but it- it’s the same goal, but they (..) still using different placements.

Heather: Awesome! ((Chat))

The in-service teachers show evidence of knowing about the skills associated
with persuasion and conflict, in two ways: Referring to the pages in the text book
where it was presented (Heather), and used when reflecting upon their application
of the concepts in the role play. The reflection is about what kind of conflict, if
any, did this persuasion strategy lead to and what was the cause of it. The three
participants (Jenny, Andy, Peter) elaborate on each other’s answer (“I think some
of it was” → “conflict between individuals with the same goals” → “it’s the same
goal, but they still using different placements”), which is acknowledged as “awe-
some” and “I agree” by the facilitator at the end of the in-group debrief.

5.6 Summary of Findings

The results of the study indicate that the learning we observed in Second Life was
highly motivating for the in-service teachers. They took part in collaborative and
role-play activities and were deeply engaged; they applied the theoretical concepts
taught by the professor in lecture, which in turn aided the participants’ learning of
key concepts in the subject domain through skills practice. The collaborative activ-
ities included advanced technology use, such as modification of 3D boxes for
information sharing in Second Life. We focused our analysis of two situations of
collaboration and learning, technology adaptation and knowledge adaptation.

The situations revealed two trajectories of evolving artifacts, which were not
directly connected but we suggest they are complementary, in the following man-
ner. Technology adaptation required mastery of adaptability skills (i.e., “the ability
to bridge the gap between what is and what ought to be” in terms of modifying an
SL box from a generic one toward one that is personalized to a group of learners),
but it did not involve domain specific concepts or skills to serve as a kind of
design rationale for the adapted box. On the other side, knowledge adaptation by
which in-service teachers learned domain-specific concepts and skills in special
education in an iterative, incremental, three-step fashion (i.e., interacting with pro-
fessor during theory presentation; collaborative planning of roleplay involving the-
oretical concepts and skills practice; practicing required skills doing role playing)
did not provide any means for practicing adaptability hands-on to ensure deep
learning. We hypothesize these “shortcomings” of either side are “off loaded” to

350 A.I. Mørch et al.

the other. At this stage our findings are tentative and must be further explored, as
this is the first application of a new conceptual framework for learning with com-
puter tools. We elaborate our findings in the next section.

6 Discussion

Drawing on the findings reported in the previous section and using the conceptual
framework presented in Sect. 2, we discuss the research questions raised in Sect. 1.

6.1 How Do the Multiple Functionalities of the SL “Box”
Support End-User Development?

A specific building block in the SL environment, the “box,” became the focus for
our study as it supported end-user development in Second Life in two different
ways: (1) building the learning environment with boxes as building blocks and (2)
collaboratively adapting boxes for information sharing with other groups. We dis-
cuss our findings in terms of the evolving artifacts framework (and in some areas
supplemented by and compared with meta-design and appropriation).

The findings show that professional educators (a professor of education and a
class of in-service teachers) are able to design and appropriate advanced 3D objects
through an engaging process of collaboration in the 3D virtual environment Second
Life, despite little knowledge of computer science. This was possible by an environ-
ment created according to principles of meta-design, which according to Fischer
(2009) include that “owners of problems” act as designers. In our case the owners
of problems are a professor and the in-service teachers, who act in their capacity as
domain-expert users (Costabile et al., 2008). The in-service teachers created note-
cards for preparing learning activities such as role-play scenarios, and they used and
sometimes customized boxes for sharing the notecards with peers (Extract 1–2).

The basic building block used by the professor to create the learning environ-
ment is the “box tool” (Mørch, 2016), allowing both buildings and learning
resources to be created (see Sect. 3). Buildings required connecting boxes (a form
of tailoring by integration) whereas modifying them required tailoring by customi-
zation (Mørch, 1997). The generic nature of the box tool did not prevent in-
service teachers from taking part in EUD. The boxes were also specific enough
and provided a “gentle slope” to complexity (Ludwig et al., 2017) so that in-
service teachers could further adapt them by customization, which was an enjoy-
able activity that gave the in-service teachers a sense of ownership of their case
(Extract 1), connection with their learning activity (Extract 2), and means to reflect
on their learning activity (Extract 3).

In some instances customizing the box tool gave the users some unforeseen
challenges (as shown in Extracts 2–3). We firmly believe that this form of appro-
priation was beneficial for them in terms of self-confidence in accomplishing an

35113 End-User Development and Learning in Second Life …

online learning activity in real time (this is evident in that they had a lot of fun
and were able to “play around,” see Extract 3). The professor created scaffolding
structures using video and signposts in the virtual world to explain that in some
places objects cannot be modified (inventory) and in other locations they can
(when attached to modifiable building units or land with building permitted, or in
a sandbox).

The notions of direct activation (Mørch, 1995; Wulf & Golombek, 2001) and
the components approach to EUD (Bandini & Simone, 2006; Mørch et al., 2004;
Mørch & Zhu, 2013; Won et al., 2006) suggest that tools for EUD should be avail-
able where the need for tailoring occurs in order to minimize interruption of the
ongoing activity and to enter a new activity. Our data indicates that the participants
understood these notions. Direct activation is supported in SL by right clicking on
an editable 3D object and selecting the edit command (or by keyboard shortcut
Ctrl-3). The edit command opens a property sheet for basic operations (move,
resize, rotate, modify texture, etc.). The group consisting of Heather, Janet, Mandy,
and Stacy (Extracts 1–2) were able to customize their own notecard-sharing box in
their group room and enjoyed the activity. Further research ought to investigate
ways to stimulate engagment in deeper complexity and increased flexibility in tech-
nology adaptation in Second Life, and to compare two conditions of object modifi-
cation (direct activation vs. sandbox) in order to determine the optimal balance of
ease of use and space for experimentation without unanticipated consequences.

6.2 What Is the Role of EUD in the Learning Activity?

The evolving artifacts framework presented in this chapter takes inspiration from
meta-design, appropriation, and constructionism (Sect. 2). In this section we compare
appropriation and evolving artifacts as conceptual frameworks for addressing RQ2.

6.2.1 Appropriation Versus Evolving Artifacts

One of the aims of writing this chapter was to develop a new framework for EUD
and learning. Appropriation is one possible way to start because it encompasses
sociotechnical development (Dourish, 2003; Pipek, 2005; Stevens, 2017;
Tchounikine, 2017) and learning (Billet, 1998; Grossman, 1999; Newman et al.,
1989; Wertsch, 1998). Dourish (2003) defined appropriation in the field of computer
supported cooperative work (CSCW) as the process by which people adopt and
adapt technologies, fitting them into their working practices. Dourish (2003) also
says “it is similar to customization, but concerns the adoption patterns of technology
and the transformation of practice at a deeper level.” Wertsch defined appropriation
as learning from a socio-cultural perspective as “the process of taking something
that belongs to others and make it one’s own” (Wertsch, 1998, p. 53). Implied by
this perspective is the idea that knowledge is constructed during appropriation, and

352 A.I. Mørch et al.

that students play an active role in the process (Cook et al., 2002; Grossman et al.,
1999). The process of constructing knowledge originates in social and cultural
sources, and then it is integrated into one’s prior knowledge (Billet, 1998).

The gaps bridged by appropriation by the scholars cited are technology adapta-
tion and social organization on one hand (CSCW), and cultural development and
learning on the other (sociocultural perspective). The problem with appropriation
as an overarching framework is when it attempts to integrate two types of develop-
ment activities that operate on different time scales (short term vs. long term;
specific vs. general; ontogeny vs. phylogeny) with the risk of aligning incompati-
ble activities (Billet, 1998). This problem is articulated by Newman et al. (1989)
in terms of sociocultural learning as follows: “task of understanding the history of
development of specific artifacts that have taken millennia to evolve in order to
appropriate such objects into their own system of activity.”

Arguable it is easier to bridge two forms of ontogeny, tool adaptation and
knowledge adaptation, in the activities of a small group of learners as we have
attempted with our case study, despite shortcomings associated with weak connec-
tions between the two sets of actions and interactions (complementarity rather
than subsumption). Two premises of the evolving artifacts framework that should
be considered before it is put to further use are as follows: (1) knowledge adapta-
tion is enhanced by hands-on adaptability experience, i.e., learning to bridge prior
and new (taught) knowledge by end-user development, thus making learning con-
crete, and (2) technology adaptation (in the broadest sense of the term, not limited
to computers) is a fundamental human activity (design) that gives rise to joy,
meaning, and knowledge by accounting for the choices made during the activity.
The latter corresponds to a type of design rationale referred to in CSCW as
“accountable artifacts” (e.g., Dourish, 2003; Stevens, 2017).

6.2.2 The SL Box as Evolving Artifact

The Box became an evolving artifact for the participants in several situations, start-
ing with the basic box tool as shown in Fig. 2, used by the professor for creating
building units and information sharing containers (Figs. 1 and 3). Some of those
information-sharing containers (Figs. 4: right and 5) served as models for in-service
teachers to create their own personalized containers (Fig. 5). The actual time span
during which in-service teachers were engaged in box adaptation was about 10–15
minutes, a short and intense activity, which is captured by Extracts 1–3.

The trajectory of the conversation in these extracts starts with a focus on
Second Life idiosyncrasies (build, boxes, inventory, property sheet) in Extract 1,
followed by adopting the vocabulary of real-life metaphors built into SL and
extending to other application domains (price of nothing, make it for sale, zero
dollars) in Extract 2, and in Extract 3 the participants are more comfortable and
use also experimental and humorous phrases such as “play around,” “it’s squash-
ing me,” and “floating above the window.” Once the technology and metaphors
had been appropriated, the students’ conversation switched almost instantaneously

35313 End-User Development and Learning in Second Life …

into the terminology of the skills practice and boxes as artifacts were put in the
background for the rest of the session (Caruso et al., 2014; Mørch et al., 2015).

6.2.3 Domain-Specific Skills Practice as Evolving Artifact

Our data captures conversations between the professor and in-service teachers and
among in-service teachers in their group work. Their conversation is “public” in
the sense that it does not directly represent the thoughts of individual learners but
meaning making at the group level, i.e., collaborative learning. The professor
applied multiple strategies to support collaborative learning: combing theory and
practice, repeating the activities, and providing “before” and “after” methods with
the role-play (Mørch et al., 2015). Theoretical concepts such as persuasion and
conflict were first taught in interactive lectures, then in-service teachers became
engaged in collaborative group work to create a role-play scenario (Extract 4), and
finally applied in role-playing, which ends with a debrief (Extract 5). The debrief
takes place in two rounds: within the group organized by a peer group (Extract 5),
and for the whole class organized by the professor. This combination of abstract
and concrete learning activities, application of skills in several rounds and debrief-
ing (skills practice iteration) provides for multiple ways of prior knowledge to sur-
face in the learners’ conversations. It also gives the learners multiple opportunities
to interact with flexible technology and to refine their knowledge over time.

During the group collaboration activity, the in-service teachers went through a
process of making sense of the theoretical concepts presented by the professor
(Extract 4). This indicates that the concepts were “assimilated” among the contributing
members of the group. We did not observe “accommodation,” i.e. that learners adjust
old ideas and imprecise concepts in order to create better ones, with the methods we
used. However, in the final extract (Extract 5) the participants in the roleplay show evi-
dence of knowing about the skills associated with “conflict” in their discussions as
they elaborate on each other’s answer in response to the facilitator’s question in the
debrief session, and in a sense the participants build on each other’s experiences of the
whole situation, the participants’ roles, the rules of the game, and the interactions among
the role-players (revealed in our video data by tone of voice, temper, and position).

7 Conclusions, Shortcomings, and Directions for
Further Research

This study shows that the “box,” a specific and flexible (multipurpose) tool in
Second Life is used in three different ways: (1) the environment developer (the
professor) created the learning environment by combining boxes to create the vir-
tual campus with buildings and learning resources (tailoring by integration) and
editing the user interface of the boxes (customization), (2) active users (more tech-
nically inclined in-service teachers) modified boxes by customization, and (3)
ordinary users (in-service teachers) used the boxes for information sharing without

354 A.I. Mørch et al.

any modifications. There are two interesting findings, one that can be read out of
our data and another which is indicative at this stage and requires more work to
establish: (1) The modification of boxes allowed in-service teachers to personalize
their learning activity, which engaged them in the learning process, and (2) by off-
loading those aspects of knowledge adaptation that individuals cannot be con-
sciously aware of, EUD makes the whole learning process more transparent and
meaningful to the participants and observers. Furthermore, modification of boxes
is simplified by direct activation of a builder (design environment) and editor
(property sheet) by right clicking on modifiable 3D objects. The boxes can be
modified over an extended period of time by storing them in a repository con-
nected with their copy of the SL software, thus making the modifications be per-
sistent across all sessions in this environment.

This empirical study is primarily descriptive and adopts a qualitative approach to
data collection and analysis, focusing on giving empirical evidence for claims through
the voices of the participants, and by giving concrete examples of possibilities and
limitations of the technology in a real context (outside a usability laboratory). The
overarching theoretical perspective is the evolving artifacts framework (EAF), which
entails that humans learn by evolving artifacts in two realms (outer and inner; social
and individual; technology and knowledge). We have explored the role of end-user
development in the “outer realm,” and found that it increases engagement in the learn-
ing activity, and we hypothesize that EUD complements the more abstract knowledge
adaptation by concrete (hands on) activity and experimentation.

7.1 Theoretical and Methodological Shortcomings

Further work should integrate insights from contemporary theories of collaborative
learning to enrich the conceptual framework for knowledge adaptation. We have
used Piaget’s notions of assimilation and accommodation that focus on knowledge
adaptation at the individual level, but our data and methods for knowledge adapta-
tion are discursive and focus on situations of collaborative learning. These two
shortcomings can be addressed in the following ways: (1) extend the theoretical
framework with concepts and models for knowledge adaptation as a social process
(e.g. collaborative inquiry models; from ontogenetic to sociogenetic development),
and (2) extend the researchers’ toolbox with methods for capturing knowledge
adaptation at the individual level, such as to identify students’ prior knowledge and
differences in prior and new knowledge as a result of flexible tool mediation (EUD)
and instructor’s facilitation (e.g. pre and posttests; treatment and control groups).

7.2 Technology Improvements

(1) Compare two conditions of object modification (in-place and sandbox) in order
to determine the optimal balance of ease of use and space for experimentation

35513 End-User Development and Learning in Second Life …

without unanticipated consequences, (2) identify the pros and cons of the various
ways to support (or not support) direct activation of tailoring tools in EUD-enabled
learning environments, (3) compare the “components approach” and the “program-
ming approach” to EUD to identify their respective strengths and weaknesses to
(fail to) support constructivist ideals and design principles, and (4) identify the key
characteristics of computer tools to support active learning, and (5) compare EUD
with other computational approaches toward that end.

Acknowledgements The first author (Mørch) received funding from Dept. of Education,
University of Oslo, to explore Second Life as a platform for distance education courses. The sec-
ond author (Caruso) was a visiting researcher at Dept. of Education, University of Oslo with a
6 months stipend from University of Palermo while the research was carried out. The third author
(Hartley) built the virtual campus on a private island provided by WVU’s College of Education &
Human Services.

References

Andersen, R., & Mørch, A. I. (2009). Mutual development: a case study in customer-initiated
software product development. In Proceedings IS-EUD 2009 (pp. 31–49). Berlin: Springer.

Baker, S. C., Wentz, R. K., Woods, M. M. (2009). Using virtual worlds in education: second life
as an educational tool. Teaching of Psychology, 36(1), 59–64.

Bandini, S., & Simone, C. (2006). EUD as integration of components off-the-shelf: the role of
software professionals’ knowledge artifacts. In H. Lieberman, F. Paterno, V. Wulf (Eds.).
End-user development (pp. 347–369). Berlin: Springer.

Billett, S. (1998). Appropriation and ontogeny: identifying compatibility between cognitive and
sociocultural contributions to adult learning and development. International Journal of
Lifelong Education, 17(1), 21–34.

Boellstorff, T., Nardi, B., Pearce, C., Taylor, T. L. (2012). Ethnography and virtual worlds: a
handbook of methods. Princeton, NJ: Princeton University Press.

Bruner, J. S. (1961). The act of discovery. Harvard Educational Review, 31, 21–32.
Cabitza, F., & Simone, C. (2017). Malleability in the hands of end users. In F. Paternò &

V. Wulf (Eds.). New perspectives in end-user development (pp. 137–164). Cham: Springer.
Carnevale, P. (1991). America and the new economy. San Francisco, CA: Jossey Bass.
Caruso, V., Hartley, M. D., Mørch, A. I. (2015). End-user development in Second Life: meta-design,

tailoring, and appropriation. In Proceedings IS-EUD 2015 (pp. 92–108). Berlin: Springer.
Caruso, V., Mørch, A. I., Thomassen, I., Hartley, M., Ludlow, B. (2014). Practicing collabora-

tion skills through role-play activities in a 3D virtual world. The new development of technol-
ogy enhanced learning (pp. 165–184). Berlin: Springer.

Cobb, P. (1994). Where is the mind? Constructivist and sociocultural perspectives on mathemati-
cal development. Educational Researcher, 23(7), 13–20.

Conway, M., Audia, S., Burnette, T., Cosgrove, D., Christiansen, K. (2000). Alice: lessons
learned from building a 3D system for novices. In Proceedings CHI 2000 (pp. 486–493).
New York, NY: ACM Press.

Cook, L. S., Smagorinsky, P., Fry, P. G., Konopak, B., Moore, C. (2002). Problems in develop-
ing a constructivist approach to teaching: one teacher’s transition from teacher preparation to
teaching. The Elementary School Journal, 102(5), 389–413.

Costabile, M. F., Fogli, D., Lanzilotti, R., Mussio, P., Parasiliti Provenza, L., Piccinno, A. (2008).
Advancing end user development through meta-design. In End user computing challenges and
technologies: emerging tools and applications (pp. 143–167). Hershey, PA: IGI Global.

356 A.I. Mørch et al.

DiSessa, A., & Abelson, H. (1986). Boxer: a reconstructible computational medium.
Communications of ACM, 29(9), 859–868.

Dourish, P. (2003). The appropriation of interactive technologies: some lessons from placeless
documents. Computer Supported Cooperative Work, 12, 465–490.

El-Nasr, M. S., & Smith, B. K. (2006). Learning through game modding. Entertainment
Computing, 4(1), Article 7.

Engeström, Y. (1999). Innovative learning in work teams: analyzing cycles of knowledge
creation in practice. In Y. Engeström, R. Miettinen, R.-L. Punamäki (Eds.). Perspectives on
activity theory (pp. 337–404). Cambridge: Cambridge University Press.

Fischer, G. (1998). Seeding, evolutionary growth and reseeding: constructing, capturing and
evolving knowledge in domain-oriented design environments. Automated Software
Engineering, 5(4), 447–464.

Fischer, G. (2009). End-user development and meta-design: foundations for cultures of participa-
tion. In Proceedings IS-EUD 2009 (pp. 3–14). Berlin: Springer.

Fischer, G., Fogli, D., & Piccinno, A. (2017). Revisiting and broadening the meta-design frame-
work for end-user development. In F. Paternò & V. Wulf (Eds.). New perspectives in end-user
development (pp. 61–98). Cham: Springer.

Fogli, D., & Provenza, L. P. (2012). A meta-design approach to the development of e-govern-
ment services. Journal of Visual Languages and Computing, 23, 47–62.

Greenberg, S. (1991). Personalizable groupware: accommodating individual roles and group dif-
ferences. In Proceedings ECSCW’91 (pp. 17–31). Dordrecht: Kluwer.

Grossman, P. L., Smagorinsky, P., Valencia, S. (1999). Appropriating tools for teaching English: a
theoretical framework for research on learning to teach. American Journal of Education, 108(1),
1–29.

Grover, S., & Pea, R. (2013). Computational thinking in K-12: a review of the state of the field.
Educational Researcher, 42(1), 38–43.

Guest, G. (2012). Applied thematic analysis. Thousand Oaks, CA: Sage Publications.
Hartley, M. D., Ludlow, B. L., Duff, M. C. (2016) Using Second Life in Teacher Preparation:

https://drive.google.com/file/d/0B_iZGKQ6INBxS3hYTHlNbTR3THc/view
Hine, C. (2000). Virtual ethnography. London: Sage Publications.
Jordan, B., & Henderson, A. (1995). Interaction analysis: foundation and practice. The Journal

of the Learning Sciences, 4, 39–103.
Karagiorgi, Y., & Symeou, L. (2005). Translating constructivism into instructional design: poten-

tial and limitations. Educational Technology & Society, 8(1), 17–27.
Kearns, P. (2001). Generic skills for the new economy. Australian National Training Authority.

Kensington Park: NCVER Ltd.
Koehne, K., Redmiles, D., Fischer, G. (2011). Extending the meta-design theory: engaging participants

as active contributors in virtual worlds. In Proceedings EUD-2011 (pp. 264–269). Berlin: Springer.
Leontiev, A. N. (1981). Problems of the development of the mind. Moscow: Progress Publishers.
Lieberman, H., Paterno, F., Wulf, V. (Eds.) (2006). End-user development. Berlin: Springer-Verlag.
Ludwig, T., Dax, J., Pipek, V., & Wulf, V. (2017). A practice-oriented paradigm of end-user

development. In F. Paternò & V. Wulf (Eds.). New perspectives in end-user development
(pp. 23–42). Cham: Springer.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E. (2010). The Scratch program-
ming language and environment. Transations on Computing Education, 10(4), 1–15.

Mørch, A. (1995). Application units: basic building blocks of tailorable applications. In
B. Blumenthal, J. Gornostaev, C. Unger (Eds.). Selected papers from the 5th East-West
Conference on Human-Computer Interaction (pp. 45–62). London: Springer.

Mørch, A. (1997). Three levels of end-user tailoring: customization, integration, and extension.
In M. Kyng, & L. Mathiassen (Eds.). Computers and design in context (pp. 51–76). Cambridge,
MA: MIT Press.

Mørch, A. I. (2011). Evolutionary application development: tools to make tools and boundary
crossing. In H. Isomäki, & S. Pekkola (Eds.). Reframing humans in information systems
development (pp. 151–171). London: Springer.

35713 End-User Development and Learning in Second Life …

https://drive.google.com/file/d/0B_iZGKQ6INBxS3hYTHlNbTR3THc/view

Mørch, A. I. (2016). End-user development and learning in second life: the “box” as multipur-
pose building block. In A. Blackwell, B. Plimmer, G. Stapleton (Eds.). In Proceedings of
2016 IEEE symposium on visual languages and human-centric computing (pp. 208–212).
Washington, DC: IEEE.

Mørch, A. I., Hartley, M. D., Caruso, V. (2015). Teaching interpersonal problem solving skills
using roleplay in a 3D virtual world for special education: a case study in second life.
In Proceedings ICALT 2015 (pp. 464–468). Washington, DC: IEEE Computer Society.

Mørch, A. I., Nygård, K. A., Ludvigsen, S. R. (2009). Adaptation and generalisation in software
product development. In H. Daniels et al. (Eds.). Activity theory in practice: Promoting learn-
ing across boundaries (pp. 184–205). London: Taylor & Francis Books.

Mørch, A. I., Stevens, G., Won, M., Klann, M., Dittrich, Y., Wulf, V. (2004). Component-based
technologies for end-user development. Communications of ACM, 47(9), 59–62.

Mørch, A. I., & Zhu, L. (2013). Component-based design and software readymades.
In Proceedings EUD-2013 (pp. 278–283). Berlin: Springer.

Newman, D., Griffin, P., Cole, M. (1989). The construction zone: working for cognitive change
in school. Cambridge: Cambridge University Press.

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. New York, NY: Basic
Books.

Papert, S., & Harel, I. (1991). Constructionism. Norwood, NJ: Ablex Publishing Corporation.
Piaget, J. (1952). The origins of intelligence in children. New York, NY: International University

Press.
Pipek, V. (2005). From Tailoring to appropriation support: negotiating groupware usage (PhD

Thesis). University of Oulu, Finland.
Repenning, A., Ioannidou, A., Zola, J. (2000). AgentSheets: end-user programmable simulations.

Artificial Societies and Social Simulation, 3(3), 14. http://jasss.soc.surrey.ac.uk/3/3/forum/1.html
Repenning, A., Webb, D., Ioannidou, A. (2010). Scalable game design and the development of a

checklist for getting computational thinking into public schools. In Proceedings SIGCSE
2010 (pp. 265–269). New York, NY: ACM.

Roque, R., Rusk, N., Resnick, M. (2016). Supporting diverse and creative collaboration in the
Scratch online community. In U. Cress et al. (Eds.). Mass collaboration and education
(pp. 241–256). Berlin: Springer.

Säljö, R. (1999). Learning as the use of tools: a sociocultural perspective on the human-
technology link. In K. Littleton, & P. Light (Eds.). Learning with computers (pp. 144–161).
New York, NY: Routledge.

Sardone, N. B., & Devlin-Scherer, R. (2008). Teacher candidates’ views of a multi-user virtual
environment. Technology, Pedagogy and Education, 17(1), 41–51.

Scott, S., & Palincsar, A. (2013). Sociocultural Theory. http://www.education.com/reference/arti-
cle/sociocultural-theory/ (Updated on Jul 15, 2013; read on Des 8, 2016).

Stevens, G. (2017). Understanding and designing appropriation infrastructure (PhD thesis),
Faculty of Economic Disciplines, University of Siegen, Germany. Forthcoming.

Tchounikine, P. (2017). Designing for appropriation: a theoretical account. Human-Computer
Interaction, 32(4), 155–195.

Von Glasersfeld, E. (1989). Constructivism in education. In T. Husen, & T. N. Postlethwaite
(Eds.). The international encyclopedia of education vol. 1, (162–163). Oxford: Pergamon Press.

Vygotsky, L. (1978). Mind in society: the development of higher psychological processes.
Cambridge, MA: Harvard University Press.

Wertsch, J. V. (1991). Voices of the mind: a sociocultural approach to mediated action.
Cambridge, MA: Harvard University Press.

Wertsch, J. V. (1998). Mind as action. Oxford: Oxford University Press.
Wing, J. M. (2006). Computational thinking. Communications of ACM, 49(3), 33.
Won, M., Stiemerling, O., Wulf, V. (2006). Component-based approaches to tailorable systems. In

H. Lieberman, F. Paterno, V. Wulf (Eds.). End-user development (pp. 115–141). Berlin: Springer.
Wulf, V., & Golombek, B. (2001). Direct activation. A concept to encourage tailoring activities.

Behaviour & Information Technology, 20(4), 249–263.
Yin, R. K. (2003). Case study research: design and methods. London: Sage Publications.

358 A.I. Mørch et al.

http://jasss.soc.surrey.ac.uk/3/3/forum/1.html
http://www.education.com/reference/article/sociocultural-theory/
http://www.education.com/reference/article/sociocultural-theory/

End-User Development for Serious Games

Zeno Menestrina and Antonella De Angeli

Abstract End-User Development (EUD) is a topic that finds application in varied
domains but so far it has only been marginally considered in digital games
research. However, there are several games that would benefit from a EUD
approach, in particular for those games designed for a purpose other than enter-
tainment, such as learning or training. These processes are permeated by large
individual variation; as a consequence, the teacher must have a control over
the game to use it like any other educational resource. In this chapter we present
the state of the art in research on EUD for serious games from academic and
industrial perspectives. We discuss a case study investigating the design process
and evaluation of the Actors’ Programming Environment (APE), a EUD tool for
modelling the behaviour of Non-Player Characters (NPCs). Starting from the
literature review and empirical experience gathered over a time span of two years,
the chapter provides a set of guidelines for the design of EUD tools for serious
games, reflecting on their importance and complexity. It concludes with a set of
heuristics that may advance research in the topic.

Keywords Serious game · end-user development · high-level programming ·
interaction design

1 Introduction

Since the first book on End User Development (EUD) (Lieberman, Paternò, &
Wulf, 2006), the principles and practices of EUD have found application in sev-
eral domains, spanning from service engineering (Mehandjiev & De Angeli, 2012;

Z. Menestrina (✉)
University of Trento, Trento, Italy
e-mail: zeno.menestrina@unitn.it

A. De Angeli
University of Lincoln, Lincoln, United Kingdom
e-mail: antonella.deangeli@unitn.it; adeangeli@lincoln.ac.uk

359© Springer International Publishing AG 2017
F. Paternò, V. Wulf (eds.), New Perspectives in End-User Development,
DOI 10.1007/978-3-319-60291-2_14

Namoun, Nestler, & De Angeli, 2010) to healthcare (Martín, Alcarria, Sánchez-
Picot, & Robles, 2015; Tetteroo et al., 2015). Surprisingly, EUD practices and
tools have only marginally affected research on video games and the rich market
surrounding it. As a matter of fact, a few software applications have been devel-
oped over the years to supplement professional game editors. Examples are Unreal
Engine or CryEngine, which allow users to contribute to the game content and
extend the gameplay experience. However, these applications are often similar to
the ones used by developers and require a steep learning curve. In other cases,
such as Minecraft, the customization is at the core of the game and the modifica-
tion of the virtual environment is a basic game mechanic. Although these solutions
are very effective, the level of customization is limited.

In the wider framework of EUD, scant attention has been devoted to implement
simplified tools that are directly aimed at the end-users. Yet, there are several appli-
cations of game research and development that would benefit from an EUD
approach, in particular games designed for specific purposes other than entertain-
ment. In the last decades, games have been studied not only as entertainment
products, but also as specific educational or training tools. This growing field of
research is addressed by the label serious games (Breuer & Bente, 2010) and has
covered many fields of application, from military training (Lim & Jung, 2013) to
healthcare (De Mauro, 2011; Göbel, Hardy, Wendel, Mehm, & Steinmetz, 2010;
Vidani, Chittaro, & Carchietti, 2010) and emergency management (Chittaro &
Ranon, 2009; El Mawas & Cahier, 2013). The discussion has focused on different
topics, such as their educational value (Egenfeldt-Nielsen, 2006; Gee, 2007) or
development (Khaled & Ingram, 2012; Linehan, Kirman, Lawson, & Chan, 2011),
but research on EUD remains a niche. We posit that an increased use of EUD tools
in serious games would benefit their efficacy, fostered by the adaptation of the
content around the players’ skills and teachers’ needs (Mehm, Konert, Göbel, &
Steinmetz, 2012).

Due to their structure, video games require special attention when considering
EUD. According to Schell (2014), video games can be decomposed in four ele-
ments: technology, aesthetics, story and mechanics. The technology is the artefact
mediating the gameplay experience. It is linked to implementation requirements,
and usually cannot be easily modified by the user. The aesthetics regards the
user’s sensory experience of the game (e.g., graphics and sounds) and can be open
to basic or advanced customisation. Both technology and aesthetics are typical
components of software products; what differentiates games are story and
mechanics. The story relates to the sequence of events that unfold in the game;
changing the behaviour of a character or adding a new event in a game level has
consequences for the story. The mechanics are the procedures of the game; defin-
ing new rules or adding new features to the player interaction has consequences
on the mechanics.

In this chapter we focus on serious games, which for this writing are considered
as simulation environments where people exercise/acquire skills by playing in a
virtual word, and the EUD tools that might be provided to the stakeholders to per-
sonalize the content of the game according to their requirements. This chapter first

360 Z. Menestrina and A. De Angeli

introduces the application of EUD to serious games, discussing the challenges and
potentials, and underlining the necessity of a EUD approach in this research field.
Secondly, following the call made by Tetteroo to collect experiences from EUD
deployment studies (Tetteroo et al., 2015), we present a case study on the develop-
ment of a EUD tool for emergency management training. The experience shared
from the case study and the literature review highlights the need for a deeper
reflection on the use of EUD principles in the game domain. We propose a set of
reflections, in form of guidelines, to support designers to work in an agile way on
the design of EUD tools for serious games and aimed at stimulating a discussion
and encourage further research on this topic.

The chapter grounds its argument on a review of serious games literature and
focuses on the application of EUD in serious game research (Sect. 2). This knowl-
edge is compared with a rich set of data collected during a 2-year industrial
research project aimed at the development of an interactive virtual simulation out-
fitted with a set of tools for the customization of the digital environment (Sect. 3).
Reflections on the case study and the design of EUD tools for serious games are
elaborated (Sect. 4) and followed by a discussion of results and limitations of our
work (Sect. 5). The chapter closes with some final considerations (Sect. 6).

2 Related Work

This section provides a broad and comprehensive vision on software products targeted
to the creation and/or modification of game elements by end-users. It focuses on the
application of EUD tools and methods, describing solutions related to entertainment
games and serious games from a research and development perspective. The section
closes with a reflection on the design issues that these tools exhibit.

2.1 Serious Games

Early attempts at creating learning games with software programs (Breuer & Bente,
2010) date back to the 80s. The interest has expanded over the years finding applica-
tion in different contexts (Dondlinger, 2007; Egenfeldt-Nielsen, 2006) and being
identified by a variety of keywords, such as entertainment education, edutainment,
game-based learning or digital game-based learning (Breuer & Bente, 2010). Even
if these keywords describe slightly different products (e.g., edutainment specifically
concerns children, whereas entertainment education refers to a larger user popula-
tion), they all reflect a continuous interest on the instructional application of games
that has recently consolidated under the umbrella definition of serious game.

Serious games have explicit educational, training or informational purposes,
going beyond pure entertainment. This keyword has quite a broad meaning, cover-
ing various research directions and applications. Carter and colleagues (2014) note

36114 End-User Development for Serious Games

that the most explored branch of games research within human-computer interac-
tion research relates to the operative paradigm, defined as games “that leverages
knowledge gained from the study of games or play to exert control upon the
world, such as encouraging exercise or learning.”. Several researchers have
studied the efficacy of these tools in relation to their purpose, providing various
meta-analysis on the operative studies (Boyle et al., 2016; Sitzmann & Ely, 2010;
Wouters & van Oostendorp, 2013). Most notably a vast number of these works
has focused on instructional serious games, mostly used in schools. However,
these games have been applied to and studied in many other markets. Zayda
(Zyda, 2005) provided in 2005 a categorization of serious games in five domains:
healthcare, public policy, strategic communication, defence, training and education.
Only three years later, Alvarez and Michaud (Alvarez & Michaud, 2008) extended
this classification, identifying seven serious games application domains: defence,
training and education games, advertising, information and communication, health,
culture, and activism.

These studies are useful to identify the various applications of serious games, but
also to show their continuous expansion of use. Like video games, serious games
have been developed in various directions, for different markets and purposes. An
increased use of EUD tools could have many potential benefits, including, but not
restricted to, the adaptability of the game content around the players abilities and
needs (Mehm et al., 2012), and the direct involvement of the instructors in the
design (Torrente, Moreno-Ger, Fernández-Manjón, & Sierra, 2008). EUD tools
could encourage wider distribution and increased longevity, by enabling users to
update, change or enrich a game according to different pedagogies, technologies,
representations, cultures, contexts and learners (Protopsaltis et al., 2011). These
tools also could contribute to cost reduction, allowing the repurposing of a product
for diverse contexts without constraining the educational value (Torrente et al.,
2015).

2.2 EUD for Digital Games

The EUD framework proposed by Liebermann and colleagues (2006), as well as
the end-user modifiability paradigm proposed by Fisher (Fischer & Girgensohn,
1990), start with the assumption that a software artefact arrives sooner or later at a
state in which it is no longer suitable to fully meet the needs of its user. The activ-
ities that the user performs may evolve, but these new circumstances lead to new
service requirements, and usually the system stays static unless the software devel-
opers intervene to extend its features. To solve this problem, Liebermann and
Fischer assert that the user should be empowered to master the system. In other
words, the software artefact should be modifiable and should include features to
allow the end-user to make changes without requiring specific computing exper-
tise. The skills of the user must be taken into account; the system must remain
accessible and user-friendly, keeping the investment in learning to a minimum and

362 Z. Menestrina and A. De Angeli

raising the scope of application to its maximum potential (Fischer, Giaccardi, Ye,
Sutcliffe, & Mehandjiev, 2004). In regard to digital games, various tools have
been designed to edit the game elements, to modify or expand the digital environ-
ment (e.g., adding new mechanics).

2.2.1 Research

Video games are products divided into multiple genres and sub-genres; this hetero-
geneity is based on variations on story, aesthetics, mechanics and technology
(Schell, 2014). It is clear that a game like Candy Crush (a puzzle game played on
mobile platforms) has in common with StarCraft (a real time strategy game played
on a computer) little more than a shared definition of video game. In serious games
this diversification is further accentuated by a game’s purpose, which can range
from the training of pilots, to the teaching of the multiplication tables to children.
Considering all these factors, serious games cannot be attributed to a single type or
label, in the same way that research on EUD tools for serious games is diversified
by different points of view.

A strain of research investigates the design of EUD tools from a game-oriented
perspective. The game elements are placed in the foreground, and the EUD tools
developed around them. In this sense, the tools are developed ad hoc and could
not be applied to any other game without appropriate changes. The most explored
type of game is interactive storytelling, which can be roughly defined as a game
where the player interacts with a multiple-choice story. As the name suggests, the
player “lives” a story, influencing the progression of the narrative while interacting
with a virtual world, usually based on the communication with Non-Player
Characters (NPCs). NPCs are computer-generated agents that move in the virtual
world and whose presence makes the virtual world and the narrative more realistic,
challenging and effective. The scope varies from professional training to conflicts
management, but these games are largely based on similar mechanics. Works such
as Scribe (Medler & Magerko, 2006), Art-E-Fact (Iurgel, 2004), StoryTec (Gobel,
Salvatore, & Konrad, 2008; Mehm et al., 2012) and Scenejo (Weiss, Müller,
Spierling, & Steimle, 2005) provide development environments for the creation and
customization of interactive stories for users with basic programming knowledge.
Their use is simple and intuitive, however these platforms allow the development of
a pre-defined type of game, and thus fix a strong constraint to the EUD potential.

Within the game-oriented perspective, Hackel and colleagues (Heckel,
Youngblood, & Hale, 2009) and Van Est (van Est, Poelman, & Bidarra, 2011)
propose EUD tools in the context of professional training. The former proposes
Behaviourshop, a character builder for the construction of behavioural models of
NPCs. The latter proposes Shai, an editor for event management designed to allow
trainers to define chains of events in virtual training (e.g., event 1: the car crash
against a wall, event 2: oil starts to leak from the tank) and control it at runtime
(scene 3a: The car takes fire and explode, or the trainer decide to activate scenes
3b: the leakage continues, but nothing else happens). Both systems were evaluated

36314 End-User Development for Serious Games

with positive feedbacks from the end-users; nonetheless, situated within these
fairly elaborate systems, the tools are quite complex, and require a modicum of
technical proficiency, e.g., basic understanding of Artificial Intelligences (AIs).

Tetteroo and colleagues (2015) experimented with EUD to provide a personalized
experience in the physical world while applying serious games to physiotherapy
rehabilitation. Their study shows interesting results; however, the focus is not on the
tool but on users, highlighting issues such as the lack of confidence in using content
generated by others. Even if their research applies to a quite different technological
environment – tangible interfaces – compared to the previous studies, the design of
the EUD tool is oriented to a specific game and a specific purpose.

Another strain of research investigates the design of EUD tools from a tool-
oriented perspective. The focus is not on the customization of a specific game, but
on the structure of the EUD tool and its use for multiple applications. In this regard,
Lagerstorm and colleagues (Lagerström, Soute, Florack, & Markopoulos, 2014) pro-
pose a development kit for simple tangible outdoor games (e.g., enhanced tag game)
focussing on the customization and the player interaction on the physical objects.
The customization system is related to a particular design space, but without tying
the work of users to a single application. The design is tool-oriented, placing the
game in the background and emphasising the EUD properties; the game is designed
accordingly.

In this regard, Protopsaltis et al. (2011) proposes the mEditor, a tool for repurpos-
ing scenario-based games. With mEditor the user can manage most of the game con-
tent as black boxes, and use the blocks to create modified scenarios to fit individual
needs and situations. As with EUD in interactive storytelling, the specificity of use
restricts the richness of customization. This is not necessarily a negative design
aspect; it is the responsibility of the designers to find a right balance between the
skills and needs of end users. An example in this regard is Mokap (Torrente et al.,
2015), successor of e-Adventure (Torrente, Del Blanco, Marchiori, Moreno-Ger, &
Fernández-Manjón, 2010; Torrente et al., 2008), that offers a complete development
environment for educational games, providing advanced EUD tools to the user, yet
keeping the system easy to use. Another product with a similar purpose is
AgentCubes (Ioannidou, Repenning, & Webb, 2009), that offers a development
environment and a simplified visual programming language to the players.

Depending on the application, EUD tools for serious games can integrate high-
level programming languages, leveraging a common research interest into new
user-friendly development paradigms (Paternò, 2013). High-level programming
languages differentiate from EUD as they are usually aimed at the development of
complete programs and not to the partial customization of a product. The use of
high-level programming languages in EUD tools for serious games depends on
the needs, and abilities, of the users. If we take a simple example, such as chan-
ging the colour palette of the game, this can be achieved via a one-click wizard or
single page where colours are set. Using a high-level language to change colours
would increase the complexity without providing particular benefits. On the other
hand, the modification of an NPC’s behaviour could require a deeper level of cus-
tomization, which might be facilitated by the use of a (more or less complex)

364 Z. Menestrina and A. De Angeli

programming language. In general, high-level abstractions aim at providing tools
with an expressiveness similar to the one offered by more technical products, but
requiring a lower cognitive load. The design of these tools is oriented towards end
users and their capabilities. Two leading products in the game domain are Scratch
(Resnick et al., 2009; Resnick & Rosenbaum, 2013) developed at the MIT with
the objective of exposing children to computing through a modular programming
language, and developed by Lego to program the robots of the Mindstorm series,
also targeted at children. These products are grounded in comprehensive studies on
the design of high-level interactions. The classical programming approach is
replaced by a modular structure, and the division into categories and colours makes
navigation between modules clearer, to aid users in building their mental model of
the language.

2.2.2 Development

In contemporary video game industry, diverse authoring tools are on offer for edit-
ing virtual environments, e.g., constructing new levels, modifying NPC behaviour
and even changing the rules of a game. However, compared to the wide choice of
video games, those that implement some sort of EUD features represent a small
percentage. The most popular game series usually allow for the creation, editing
and sharing of mods. Mods can be defined as formal or functional changes to a
video game (e.g., new game levels, characters and quests, and also new
mechanics) created by professionals or by gamers. Examples of authoring tools
include the Unreal Engine, CryEngine, F.E.A.R. Software Development Kit or
The Elder Scrolls Construction Set. These development environments provide
features that are similar to the ones used by the game developers. The interaction
approach is low-level and the complexity of these tools requires strong knowledge
of programming and advanced topics such as AI architecture. For this reason,
passionate users, willing to acquire a full understanding of the tools in order to
extend the game according to their own desires, are the primary users. Players
with limited programming knowledge use mods developed by the most expert
members of a game community. Generally, the design of these tools is not fully in
line with the principles of EUD. The tools allow appropriation by a user only if
she is willing to learn how to use their complex functionalities. There is no media-
tion between the potential of the tool (i.e., what the player can do on the game
content) and its simplicity of use; the user is forced directly from the role of player
into the role of programmer.

In other cases, customization is one of the basic mechanics of a game. In games
such as Minecraft, Scribblenauts or DayZ the modification of the game world is
one of the main features, allowing the player to add new elements to enrich the
virtual world. They are simpler to use in comparison to the game editors
previously described, but the level of customization is also drastically reduced. A
player can usually add new game elements, such as buildings or vehicles, but she
has no control over more complex aspects of the game, such as changing the

36514 End-User Development for Serious Games

behaviour of a specific NPC or adjusting a particular game mechanic (e.g., setting
the running speed of the main character). An exception is Minecraft that can also
be used as a hybrid between a game and a development environment: the game is
a simplified development environment that allows the creation of new content that
goes beyond the scope of the game itself (e.g., users were able to create working
Turing machines). Whatever the capabilities of the tools provided, it is clear that
the type and quality of results achieved by users depends on their desire to learn
and practice the most complex tools provided by the system.

Serious games that provide authoring tools have similar usability problems.
Some products only allow the setting of certain parameters of the system (e.g., the
difficulty of the training session). This simplifies the interaction with the tool but
also makes the virtual environment rather static. In other cases, the available
authoring tools are particularly rich, but their subsequent complexity makes it dif-
ficult for the end-user to build a clear mental model of the actions made on the
system. XVR Sim, for example, is a virtual reality software aimed at training
operational and tactical skills of safety and security professionals. The product
provides a trainer with all the elements to set up a training scenario, like placing
objects in the environment (e.g., vehicles and human avatars), setting animations
and managing specific events (e.g., if a player enters the room, then turn on the
light). However, XVR lacks an automatic control on the game; if a user wants to
define the behaviour of a NPC or a decisional tree for the game events, these must
be simulated manually. For example, if the trainer wants a NPC to move to a parti-
cular place under specific circumstances (e.g., if you see a fire, then reach the
emergency exit and find help, else proceed on your tasks), she has to move it by
hand because the system will not automatically check the state of the world.
Overall, the interface of XVR allows easy manipulation of the basic game ele-
ments, but it has a quite complex interaction for a deeper control on the system.

VBS2 Behaviour Modeling Discovery Machine is another example of a serious
game with authoring tools. Aimed at the preparation of the army for the manage-
ment of terrorist attacks in urban conflict zones, this product is provided with a
series of interfaces for modelling the behaviour of NPCs. The interaction is limited
to the setting of a long list of parameters that the user can customize for a specific
NPC. Using dropdown lists as the core interaction simplifies the use of the inter-
face. The user is guided extensively in the setting of the behavioural model and
the parameters are constrained to the values proposed by the system. While this
basic interaction simplifies use, it limits the customization in that the complexity
of the final result, a list of dozens of parameters, makes it difficult for the end-user
to link it to the constructed model.

2.2.3 Reflections

A common problem to various EUD systems for serious games concerns the
balance of language, an expression that does not specifically refer to a programming
language, but to the overall functionalities proposed by the system. The balance of

366 Z. Menestrina and A. De Angeli

language concerns the issues related to designing tools that are sufficiently expres-
sive yet ease to use. This concept can be connected to the gentle slope of MacLean
and colleagues (1990) that correlated the tailoring mechanisms of the system to the
skills needed to use them. The balance of language underlines the risk of creating a
EUD tool that places users in a position of the slope not suited to their skills, nega-
tively (easy tool, but little expression) or positively (expressive tool, but too techni-
cal). In considering this balance, several questions arise: how rich is the language of
the tool? Is it rich enough to allow a sufficient level of customization for the user? Is
it too rich, making the interaction complex for a non-technical user? These questions
summarize a fundamental dilemma in the development of EUD tools.

The research described in the literature review introduced this dilemma. The
interactive storytelling approach (Gobel et al., 2008; Iurgel, 2004; Medler &
Magerko, 2006; Weiss et al., 2005) proposed fairly simple interfaces, but these
strongly limit the outcomes of the user interaction. More technical tools, such as
Shai and BehaviorShop (van Est et al., 2011; Heckel et al., 2009), allow a
higher degree of customization, but they also require an in-depth learning of the
system. In other cases, such as Scratch (Resnick et al., 2009; Resnick &
Rosenbaum, 2013), and even Minecraft, the proposed systems are simple and
versatile. However, when the user acquires in-depth knowledge she can obtain
more complex results, but the interaction is much less efficient as compared to
more technical tools (e.g., Scratch can be recommended for the introduction to
programming, but environments such as Unity3D are more efficient for the devel-
opment of digital games).

The literature review suggests an interest in research and development for
providing tools that allow the users to become “authors” of the game they play.
Overall, the design of these products lacks a solid foundation, in part caused by
the limited nature of research, which leaves many uncertainties and wide margin
for action. As Tetteroo (2015) suggests, there is a need to expand this discussion
and bring new studies on EUD tools for serious games. The collection of new
empirical evidence will raise the discussion to a higher level, elaborating on the
general principles that inform the design of these tools. We contribute to this
challenge with a case study focussed on the design of a EUD tool for the customi-
zation of the behaviour of NPCs in simulations aimed at emergency management
training.

3 Case Study

Our case study concerns the Plausible Representation of Emergency Situations for
Training Operations (PRESTO), an industrial research project aimed at training
professionals in the context of emergency management (Busetta, Ghidini, Pedrotti,
De Angeli, & Menestrina, 2014). The aim of PRESTO was to build a platform for
the development of serious games in the form of interactive virtual simulations.
The platform had to be enriched with a set of EUD tools to tailor the game

36714 End-User Development for Serious Games

according to particular training objectives for the purpose of improving re-use and
adaption. In this type of serious game the training sessions involve two main
stakeholders: the trainers and the trainees. The former are managers of the game,
who set the goals and monitor the gameplay sessions; the latter are players who
interact with the virtual environment to accomplish training goals.

The EUD tools designed for PRESTO were aimed at defining the story of the
training sessions, through the management of the chain of events (e.g., if
“Firefighter Samantha” does not check in time for gas leaks, there will be an
explosion) and the behaviour of the characters (e.g., “Doctor John” panics while
seeing the fire). An AI controlled the virtual environment, and the instructor was
the director of the game. The EUD tools allowed defining the progression of the
events in the scenario and the behaviour of the NPCs that populated it. Once the
parameters were set, the AI staged the training session.

We participated in this project as design researchers in two phases. The first
was focussed on the development of a EUD prototype for the customization of the
behaviour of the NPCs populating the virtual environment. The second phase
started approximately one year later, when we were tasked with the evaluation of
the tool, which since our proposal had undergone several iterations, expansions
and modifications. These two interventions were characterised by generalised diffi-
culty in interacting with real users of the tools, a difficulty that arose from the
novelty of the product. In fact, the use of serious games in a training context is
still nascent, and although in years their application has indeed increased, a well-
defined reference professional figure was not yet established itself in the target
market of PRESTO.

3.1 First Intervention – Design of APE

The first intervention for the PRESTO project focussed on the development of a
EUD tool for the customization of the behaviour of NPCs used in virtual simula-
tions for emergency management training. The tool was called the Actors’
Programming Environment (APE) (Menestrina, De Angeli, & Busetta, 2014). The
main goal of this tool was to modify, or even build from scratch, the behavioural
models of game NPCs. A behavioural model can be roughly described as the
definition of the available sets of actions (what can they do?) and strategies (how
do they do it?) of a specific NPC. These behavioural models can be used in the
training sessions to fulfil the following goals:

• Meet specific educational goals (e.g., add a wounded character who needs aid);
• Change the environment according to new requirements (e.g., alter the beha-

viour of “Firefighter Samantha” because emergency tactics of this NPC are not
updated);

• Diversify the gameplay experience (e.g., modify the behaviour of some civilians
to confront trainees with unexpected events).

368 Z. Menestrina and A. De Angeli

The modification of the behaviour of NPCs can have an impact both on story
and mechanics of the game. For example, adding a panicked person in a fire simu-
lation can have consequences on the story, because the player will have first to
rescue the person and only then deal with the fire. Adding a firefighter (controlled
by the system) can have consequences on the mechanics, as the player can exploit
this new character to implement cooperative tactics.

The design of APE was based on the metaphor of the theatrical performance.
NPCs were considered virtual actors whose actions depended on a script, while
the instructor played the role of director. In the game, each NPC was defined by
a set of roles and behaviours, depending on the capabilities of the actor. The role
defined who was the character and what that character was capable of. The beha-
viours reflected “how” the character would act in specific circumstances. In this
way a character could, for example, have the role of a fireman associated to a
heroic behaviour, which would push it to bravely face situations of extreme risk
in order to save human lives. That same firefighter could also have a secondary
role of paramedic, which would provide the competences for first response to the
injured.

APE was divided into two interfaces, the RoleAssignment and the ScriptEditor.
The former was used to define the roles that a certain NPC could play, thus deter-
mining possible actions (e.g., the role fireman has the capability of managing a
fire, the doctor cannot, but she can examine patients). The latter was used to set
the behaviours that would be translated in action plans (e.g., in normal conditions
the nurse proceeds with the work routine, consisting of actions A, B and C; in
case of fire, the nurse puts into practice the emergency management plan, consist-
ing of actions D, E and F). While the RoleAssignment was represented by a rather
simple interface in which the user chose the roles from a list, the ScriptEditor was
based on a visual programming language (Fig. 1). The ScriptEditor was visually
divided into two parts: on the left there was a toolbox containing various actions,
categorized according to their type; on the right side there was the canvas, used to
compose the action plans. In order to build elaborated behavioural patterns, the
actions in the toolbox were moved into the canvas and interconnected via three
basic controls – sequence, selection and iteration – which could be combined to
form more complex structures. There was also a fourth structure dealing with the
termination condition of behaviours with no specific goal fulfilment (e.g., “wave
your hands” has no specific interruption and needs a termination such as “until
you see someone coming”).

The system facilitated the user interaction by automatically creating the control
structures based on how the actions were placed in the canvas. The actions placed
on different columns were considered to be sequential; for example, an action in
the second column was performed only after those in the first. The actions placed
in the same column but different rows were treated as exclusive disjunctions: a
conditional structure was immediately created and the condition could be set
through a wizard. Termination conditions automatically appeared in the cells in
which there were actions with no default termination. The deletion, addition
or insertion of an action in the canvas caused the automatic rearrangement of

36914 End-User Development for Serious Games

the behavioural structure. The only control structures that could not be generated
automatically by the system were loops, which needed to be inserted manually by
the user. Different wizards managed the setting of specific information, such as
conditional and loop structures. Features similar to the ones of common spread-
sheets (e.g., add a column, remove a cell) supported the editing of the elements in
the canvas. The spreadsheet metaphor was selected after testing various prototypes;
the structure in rows and columns was considered the clearest in the representation
of flow for behavioural models. Additional functionalities of APE were quite similar
to the ones used in spreadsheets (insert a new column, delete a row, copy a cell). In
this design we operated under the assumption that recalling the interface of this
commonly used system (e.g., Excel, Google Spreadsheet) would have simplified the
user interaction and reduced the learning curve.

As an operative example, let us consider the following user scenario: the user
wants to add a new character to a training session that entails the evacuation of a
burning building. The user opts for a civilian trapped in the building. Using the
RoleAssignment, she assigns the character the role of “civilian,” able to move
around, communicate, and interact with objects, but with no competence in
the management of emergencies. At this point the user can create the behavioural
model through the ScriptEditor: she places the action “go to [a corner of the
room]” in the cell corresponding to the first column and first row. Then she adds
the action “go to [door]” in the second column, first row. Finally she places the
action “ask for help” in the same column, but in the row below. The system auto-
matically creates a conditional structure between these two columns. The user sets,
via a wizard, the condition to reach the door if the character “perceives [a firefighter]

Fig. 1 Example of a simple behaviour using the ScriptEditor: the NPC waves the hands until
Player1 approaches the scene (condition set through a wizard); if the NPC is calm she will follow
Player1, else she will run to Player1 screaming and gesticulating

370 Z. Menestrina and A. De Angeli

[inside the building],” otherwise it will ask for help. To finalize the behaviour the
user adds a do-while cycle around this last column, with the condition that it will
loop until the character “perceives [a firefighter] [inside the building].” With this
behaviour the civilian will go to a corner of the room, continuing to ask for help
until the arrival of the firefighters in the building, then they will rush to the door. If
the user wants to change the behaviour at a later time, she can load the script to the
canvas and add or delete elements.

Due to the difficulty in engaging real users, we opted for an expert based eva-
luation conducted by four interaction designers. Their feedback supported the
development of a high-fidelity interactive prototype, which was released as the
result of the first design intervention to the PRESTO development team.

3.2 Second Intervention – Evaluation of APE

The second intervention in the PRESTO project started one year after the develop-
ment of APE. This intervention focused on the evaluation of the tool, which since
the original proposal underwent several iterations, expansions and modifications
by the development team who added several additional features1. In the original
version, the termination, conditional and loop controls could be set up with only
one condition, while the new version introduced Boolean expressions (AND, OR,
NOT), allowing the user to set more conditions for a single control. The system
also integrated the management of internal variables: for example, an NPC could
detect the other NPCs that were in its field of view and could perform specific
actions based on this information. The loop control, previously limited to
do-while, was extended including for loops. Furthermore, the developers imple-
mented the feature to set triggering events in the form of control structures used to
impose a new behaviour above the one currently active. For example, if the
“Firefighter Samantha” saw a wounded civilian, it paused the current behaviour
and activated a rescue plan. Finally, the new APE had nested control structures
through which a user could create complex structures, for example conditional
sub-levels (e.g., if () {if () {} else {}} else {}) or mixed controls (e.g., while () {if
() {for () {}}}). These changes made APE a much richer tool, allowing users to
have a deeper control on behavioural models. However, it also became a more
complex system, and where the first version required a minimum programming
bases, such as knowing the meaning of an if-then-else statement, the new version
of APE required a more developed understanding of programming.

APE was used during the course “Agent-Oriented Software Engineering” at the
University of Trento (N = 25). The objective was to introduce the students to the
PRESTO architecture, expose them to a new application area of serious game, and

1More details about these features can be found at https://youtu.be/QdEKQ0BeIAA.

37114 End-User Development for Serious Games

https://youtu.be/QdEKQ0BeIAA

test the functionalities of the system. This evaluation approach was chosen for
students’ background akin to that of the target users. In this regard, the develop-
ment team identified as pre-requisites for the user a thorough knowledge of
emergency management (skills not required for this evaluation phase) and an inter-
mediate programming knowledge. These individuals were characterized by a
constant use of computers and by being able to master the standard elements of
programming languages, such as control structures and Boolean expressions. The
project’s goal was the development of a set of new behaviours for different NPCs
(2–3 receptionists, 2–3 doctors, 1 nurse) to be used in a light version of the envir-
onment provided by PRESTO comprising a virtual simulation of a hospital ward.
Starting from default behaviours, the students were required to model the different
actors and make them as realistic as possible. We observed students using the
APE interface during four lab sessions (each lasting 2 hour). Additionally, we
held two extra sessions of tutoring (each lasting 2 hours), one of which included a
focus group concerned with the experience with the system (a summary of the
activities is shown in Table 1). Students were informed that their performance
would be evaluated as part of the course-work, which prompted them to be extre-
mely proactive in asking for changes to the interfaces, which were implemented
on the fly. The pivotal objective of the entire course and the meetings that
followed was the collection of feedback, suggestions and detection of bugs.
Communication took place both face to face during the course and through contin-
uous and rapid email exchanges with the students. This mode of communication
enabled a dynamic re-design and release of seven updates of the tool during the
evaluation period.

Table 1 Summary of the activities organized by researchers and developers during the course

Date Activity Description

5/6/12-May-
2016

Introduction to JACK and
CoJACK (Ritter et al., 2012)

The developers provided the theoretical basis
related to the architecture of the AI of
PRESTO.

13-May-
2016

Introduction to APE The researchers introduced the basic structure
of APE.

19/20/26/27-
May-2016

Lab session Researchers and developers provided a manual
for the use of APE and PRESTO, and the
interfacing of the two. The students worked
individually or in groups; researchers and
developers provided support and collected
feedbacks for the improvement of the system.

28/29-May-
2016

Tutoring and focus group The researchers organized two tutoring sessions
in order to support the students in the advanced
phase of the course and collected additional
feedbacks during a focus group.

2-June-2016 Deadline Submission of the coursework.

372 Z. Menestrina and A. De Angeli

4 Analysis

The course and subsequent meetings provided many insights that emerged from
the students’ experiences. After collecting the main feedbacks and implementing
changes to the system we could identify three different categories of challenges:

• interaction: the problem was related to the APE interface and the interaction
with its components;

• semantic: the problem was related to the interpretation of the meaning of a
particular element of the system or a specific action on the system;

• integration: the problem was related to gaps in the integration of APE in the
PRESTO architecture and in perceiving the two modules as parts of a single
system.

The users highlighted some positive aspects and criticalities. The focus of this
section is not to evaluate the effectiveness of the product, which was generally
perceived as simpler than classic programming languages but still far from being a
EUD tool, but to present our reflections on the collected data. This information
has been processed in form of guidelines applicable to the design of other EUD
tools. We processed the user data with an analysis based on design guidelines
coming from the works of Nielsen (Nielsen, 1994), identified with the label NIE,
Namoun et al. (2010), identified with the label NAM, McIver & Conway (1996),
identified with the label MCI, and Green & Petre (1996), identified with the label
GRE. We clustered the information collected from labs and tutoring hours accord-
ing to a set of principles provided in these works and we examine them in the
next subsections. Table 2 shows the relation between our guidelines and these
works. As previously discussed in the related work session, the heterogeneity of
the game context makes it difficult to produce frameworks or models that are valid
for every possible application, and these guidelines serve solely as reflection
points to support design.

4.1 Simplify the Semantics

The terminology and language used within a EUD tool should help the users
understand the meaning of their actions without requiring computing knowledge.
This heuristic implies that the language should not be technical, favouring
domain-specific terminologies to computing-orientated ones. This is a general
design principle applicable to many EUD applications that are often developed by
the software authors to interface the computing codes they have implemented.
However, as modern serious games increasingly tend to introduce powerful AI
engines in their architectures, the need for a simple semantics increases in rele-
vance. The rhetoric of AI research unfolds on an explicit parallel between human

37314 End-User Development for Serious Games

and machine intelligence and behaviour. This parallel manifests in the language
used in AI, which reflects a strong anthropomorphic metaphor. However, AI
research and development is highly technical and concepts such as behavioural
models, roles and goals, can be of little meaning to untrained users.

Throughout the evaluation, we witnessed several problems that specifically
addressed the semantic level, as the interface exposed the complexity of the AI
architecture directly to the user. Due to this characteristic, users found it hard to
understand some logic, operations, and functionalities. A key example was
linked to the system ontology, which successfully conveyed knowledge to the
machine while carrying little meaning to human beings. The machine-readable
ontology was directly exposed in the interface and instigated important commu-
nication breakdowns. In the design of the first iteration of APE (Fig. 1) we paid
attention to using a simple and intuitive language, but the toolbox of the last
version of APE was populated by goals that had overly technical (e.g., “start
gone to entity” or “get location id”) or general (e.g., “perform”) labels. Even if
these terms had a specific meaning to the system, the need for a revision of
the language became clear. One possible solution for our case would be a double
vocabulary for the system providing different labels according to the use, one
that is hidden from the user and used by the system and the developers, and
another that is visible in the interface and defined according to language under-
standable by the user.

Table 2 The relation between the proposed guidelines and related works

Proposed guidelines Related works

Simplify the semantics User language and terminology – NAM

Match between system and the real world – NIE

Closeness of mapping – GRE

Balance the syntax Make the syntax readable and consistent – MCI

Error prevention – NIE

Error-proneness – GRE

Support the understanding of
errors (and recover from them)

Help users recognize, diagnose, and recover from
errors – NIE

Provide better error diagnosis – MCI

Provide a small and orthogonal
set of feature

Provide a small and orthogonal set of feature – MCI

Design a coherent system Visibility of system status – NIE

Premature commitment – GRE

Balance the abstraction level Abstraction gradient – GRE

Balance between difficulty and
motivation

Balance between difficulty and motivation – NAM

Provide a complete
documentation

System help – NAM

Help and documentation – NIE

374 Z. Menestrina and A. De Angeli

4.2 Balance the Syntax

McIver writes that the “language should aim to boost the conceptual signal and
reduce the syntactic noise” (McIver & Conway, 1996). In the development of
EUD tools, a solution would be the use of simple and limited subsets of a lan-
guage, aimed at “a careful design which prevents a problem from occurring in the
first place” (Nielsen, 1994). However, as the balance of language underlines, the
expressiveness is necessarily related to the complexity of the overall system. An
example of this issue can be found in Scratch. Scratch is based on a visual lan-
guage, in which the various elements of the language are represented by blocks
that can be dragged on a canvas and wedged according to certain syntactic criteria
(e.g., logical operators are characterized by a specific shape and can be placed
only in cells that can receive that shape). This “puzzle box” system constrains the
user interaction, preventing any syntactical error in the creation of the code (i.e., if
the placement of a block goes against the syntactic criteria, the block cannot be
dropped in the canvas). This approach, however, is not efficient for writing com-
plex programs and can result in very elaborate structures of blocks that are more
difficult to read than other representations of code.

In APE, the spreadsheet metaphor implicitly constrained the interaction, redu-
cing the possibility to make mistakes and simplifying the language. These aspects
were greatly appreciated by our users, and yet this penalized the expressiveness.
A balance between richness, simplicity and constraints should be taken into
account at the design phase of any EUD tool. Moreover, this balance should not
be set a priori by designers and developers, but studied in relation to the needs of
users and focussed on the required manipulation of the system. The users may
need to change the game elements in a precise and detailed way (e.g., changing
structural mechanics), or calibrate only a few parameters and these diverse options
would effect different consequences for the design.

4.3 Support the Understanding of Errors
(and Recover from Them)

The users must be able to easily understand whether they are making errors and
be able to recover from them. The design of EUD systems should take particular
note of this point, especially given a lack of technical training of users. The system
should prevent errors, which could be done by constraining the interaction to a
simple set of actions. When such constraints are not possible, for example when
a simple set of actions would not provide enough customization, the system
should give the user a clear overview of the error and the reasons for that error.
Similarly, the system should allow for quick and intuitive means to remedy errors.
Furthermore, the quantity of information available to the user should be propor-
tional to the type of interaction. It should not provide overly technical details, as
these would be beyond the effective knowledge of the users and largely

37514 End-User Development for Serious Games

unnecessary for a EUD approach. Conversely, the notifications must not be too
abstract, to avoid preventing the user from maintaining a clear understanding of
their actions.

One example in APE is the design of the deletion features, which proved
difficult. During the evaluation the users requested to be able to remove multiple
blocks at once. This improvement would have increased the efficiency of
editing, yet it would also have increased the risk of undesired deletions. One
way to solve this issue was to provide an undo/redo functionality and allow the
users to navigate between the last actions on the system. Another feature that
was added was a notification system used to inform the users about any possible
missing data, in which case a pop-up would appear providing information about
the problem (e.g., information missing for the goal “start gone to location” at
cell B1).

4.4 Provide a Small and Orthogonal Set of Feature

The language should have a small set of non-overlapping features, with distinct
syntactic representations, a factor that is particularly important to avoid ambiguity.
Every element should have a specific unambiguous meaning, and any overlapping
features should be carefully analysed (e.g., keyboard shortcuts are usually allowed
even if the same effects can be obtained through different interactions). This heur-
istic is related with 4.2 and is particularly advisable for the design of a lean
language, where the overall set of features is minimized in an effort to reduce the
cognitive load for the user.

An example of this is related to the deletion feature. The delete of the items
inside the spreadsheet of APE could be done through right click, and selecting
“delete” from a context menu, or a combination of “X” and “left click.” While the
former was positively evaluated, the latter was found less intuitive and too quick
as it allowed users to rapidly delete every item with the potential to initiate unde-
sired deletions.

4.5 Design a Coherent System

A primary design guideline states that the user should be able to easily understand
the status of the system (Nielsen, 1994). This requirement can be complex when
designing EUD for serious games, as they tend to be developed as additional inter-
faces on top of a complex architecture. The EUD tools consist of interfaces used
by the players to interact with the game: the input is on the tool, but the real out-
put is on the game. If the tool and the game are not well integrated, the users can
struggle understanding the cause-effect relation of their actions on the system.

376 Z. Menestrina and A. De Angeli

This then can lead to the undesired need to drastically change the work done on
the tool (e.g., the user assumes to have created a specific behaviour, but the NPC
acts in a completely different way). A seamless integration of authoring tools and
the actual system should be a must in order to help the user achieve, and maintain
a complete overview.

Several users during the evaluation remarked on the difficulty of understanding
the causes of NPCs acting differently compared to their expectations. The main
reason was the “gap” between APE and the PRESTO architecture that played the
virtual simulation. In fact, the two were not perfectly integrated and this made it
difficult to understand the status of the overall system. As a result, when the NPCs
did not behave according to the expectations, it was not clear whether this was
due to the programming of the behaviour via APE, or the execution of the beha-
viour in the virtual simulation. This issue also increased the risk of a premature
commitment, obliging the users to develop the complete behaviour of the NPCs
before any possible testing.

4.6 Balance the Abstraction Level

Green and Perte (1996) suggest focusing the design on the level of abstraction of
the system, considering the possibility to encapsulate details. Encapsulating ele-
ments of the system for a more high-level management means also to hide details
from the users. The question then arises concerning what level of control the user
needs to have over the system.

An example of this requirement can be seen in the nesting system introduced in
the second version of APE. In the first version, the control structures could be
used in a linear way, without being able to combine them into complex structures
(e.g., a for loop enveloping an if-then-else condition, with another for loop
inserted in the else branch). To allow more control over the system, the second
version of APE enabled users to generate sub-canvas and create endless combina-
tions of control structures. This change brought a clear advantage in the level of
customization of behaviours, but it greatly complicated the understanding of the
outcome of the system.

4.7 Balance between Difficulty and Motivation

Building on MacNeal, Namoun et al. (2010) suggests a “gentle slope of difficulty”
(MacLean et al., 1990) meaning that the users should be taught new features in a
progressive way. The user should not have access to advanced actions without
having first acquired the basic skills, and interaction with the system should
be gradual to reduce the possibility of error and avoid an overabundance of

37714 End-User Development for Serious Games

information. Considering the complexity of serious games, the customization of
the game content could potentially be demanding.

APE allowed using every feature from the beginning that often caused misun-
derstandings. The users were able to do everything immediately, however some-
times it was easier to undertake an action than to understand its meaning and
effect on the system. Working on an AI platform, this quick interaction was risky.
A possible solution could be designing the system with different levels of editing.
For example, dividing between “basic” and “advanced” features would help the
users in their progression through the interaction with the system.

4.8 Provide a Complete Documentation

The user should be supported in understanding and using the system. In the
previous heuristics we particularly emphasized the need for a lean design.
However, when EUD tools cannot be simple, it is necessary to provide a clear
documentation, with a level of detail proportional to the use (e.g., a digest version
of the architecture of the AI).

In our case, even if every user defined APE as “easy to use,” their main issue
was to understand the structure of the AI they were using. Even as every student
was able to use APE, many struggled to fully understand what they could do with
it (e.g., they had some issues in understanding the meaning of the different goals
they could use to populate the canvas). From this, it becomes clear that a complete
documentation on the overall system is another fundamental aspect.

5 Discussion

Serious games and EUD tools are complex systems, the design of which is
anything but trivial. If we consider the objectives of the two systems, to create
digital games for training or learning purposes and allow non-technical users to
modify these games, the problem is very delicate. This issue does not only con-
cern the complexity of the systems, but also their diversity. When we talk about
serious games, we do not refer to a specific product, but applications that can be
diversified depending on the type (e.g., virtual simulation or puzzles) and pur-
pose of use (e.g., military training or math teaching) (Breuer & Bente, 2010). In
addition, it is important to consider that many elements characterize video
games (Schell, 2014). Other media, such as movies, have aesthetics, a story and
a technological support, but have no mechanics. Other software applications
have aesthetics, technological support, but no story; they have mechanics, but
usually not complex as in video games where mechanics tend to influence not
only the user interaction, but also the general behaviour of the system and the
game rules. All these factors affect the design of video games, and therefore
also any EUD tool connected to them.

378 Z. Menestrina and A. De Angeli

Compared to other application domains, serious games are characterized by a
wider variety of perspectives. Technology, aesthetics, story and mechanics are
always part of the design, making the customization of serious games a complex
and delicate process. For example, the mechanics of a game may involve several
factors, from the general rules (e.g., fire extinguishers can be used to extinguish
the fire) to the behaviour of the NPCs (e.g., an unconscious person can not use a
fire extinguisher), and have varied levels of detail (e.g., a fire extinguisher lasts
fifteen). In addition, the mechanics can have an impact on other dimensions,
such as the story (e.g., civilians are now capable of performing first aid), going
to affect the whole gaming experience in different ways. Defining how, and to
what extent, users can change these aspects has no simple solution, which
depends on many factors, such as the context of use, the type of game and
players.

The case presented in this chapter is but one of many potential applications of
EUD tools in the serious games domain, yet it reveals a number of interesting
design challenges. The PRESTO case study exemplifies the difficulty of finding a
right balance of the language. The first design intervention produced a relatively
simple tool, which nevertheless had several limitations in the customization as
compared to the tools used by the developers, who felt the need to expand it. The
second version of the software provided much richer functionalities, but the users
highlighted issues related to the technical expertise required to handle them. The
general feeling was that the new version of APE moved our users from tinkerers
(“workers who enjoys exploring the computer system, but may not fully under-
stand it” MacLean et al., 1990) in the direction of becoming programmers of the
system. Finding a fair balance between the richness of the language and ease of
use is not an immediate process and requires a clear understanding of the context
and how the tool is used in practice.

The design of video games, even more than other interactive software, provides
great possibilities in the development of EUD tools, allowing the modification of
a wider set of elements. Moreover, considering the serious purpose, this kind of
systems requires customization features to adjust its content to the training or edu-
cational needs. Given this complexity, defining generic rules that could be applied
to each case study may not be possible at the current state of the knowledge on
the subject, limited as it is compared to the breadth of the application domain. Our
case study focused on the customization of behavioural models in the context of
emergency management. It is debatable to what extent our reflections will be of
value for similar tools applied to different serious games (e.g., military training).
Such a question applies not only to the purpose of the game, but also that of the
EUD tool: would the same considerations still hold for the design of a different
customization tool? These questions can likely be answered, but only through a
broader discussion on the topic, one that collects other experiences and efforts to
define generally applicable solutions. In this regard, our guidelines are not aimed
at providing a definitive set of rules for the design of EUD tools for serious games,
but to structure the reflections, to contribute to the discussion and expand the
research made by the academic community on this topic.

37914 End-User Development for Serious Games

5.1 Limitations

The PRESTO case study had a major limitation concerning the involvement of
users. This limitation is likely to emerge in other projects, particularly when the
development outcome is an artefact that is not yet used in current working
practices, and for which there is not an established professional figure to act as
informer. In the PRESTO project we put in place several strategies to counteract
the lack of direct user involvement, by relying for example on expert designers
and user-surrogates in the forms of students. The involvement of students could
not be considered equal to an evaluation with the end users, but it certainly led to
important results that informed the re-design of APE. In fact, the feedbacks clearly
expressed that, even if the tool was found to be relatively simple, the design par-
tially deviated from the principles of EUD, placing it in a middle ground between
those used by developers and those used by novices.

What was particularly interesting in our experience was the definition of a new
end user by the development team. At the end of the first design intervention we
built a tool aimed at providing professional trainers with limited computing
knowledge the possibility to adapt a simulation scenario. In the following year,
the development team enriched this tool and they were well aware it no longer sui-
ted the original target users. At this point, the users were represented by a sub-set
of the original target, which was expected to be computing literate and domain
expert, and training was proposed to enable them to execute this role.

This fact highlighted a clear issue in the relationship between developers and
designers. Even if the former were familiar since the beginning with the design of
APE, their decisions were strongly influenced by technical requirements of
PRESTO (e.g., implementation of a new AI for the management of game events
and the behaviours of NPC). The principles of EUD were not a main concern in
the development of their part of the project, pushing the overall design in the
direction of an authoring tool. APE gradually lost part of its purpose, as it was not
designed for a general user, but for a sub-set of the reference group.

6 Conclusion

The chapter focused on EUD and its potential application in the context of serious
games. The development of customization tools for serious games targeted to non-
technical users can have significant benefits, allowing the modification of the
game elements in accordance with the training or the educational goals. The
academic community has shown interest on the topic, but the discussion boast few
examples compared to the wide possibilities of application. The discussion on the
subject is complex and more studies are essential.

In this regard, we presented an analysis of the literature, broadening to the
work proposed by the game industry in an effort to provide a complete overview.

380 Z. Menestrina and A. De Angeli

Moreover, we presented a case study, aimed at the development of a tool for the
customization of AIs for NPCs populating virtual simulations in the context of
emergency management. Where our previous work provided a general description
of PRESTO (Busetta et al., 2014) and a preliminary study of APE (Menestrina
et al., 2014), this chapter focused on the design of the tool, analysing pros and
cons in regard to the EUD objectives. Combining the work of other researchers,
from the heuristics of Nielsen (1994) to the design recommendations by Namoun
(2010), we structured the reflections on the case study providing a set of guide-
lines aimed at highlighting critical elements and offering various suggestions on
the development of EUD tools for serious games.

References

Alvarez, J., & Michaud, L. (2008). Serious games. Advergaming, edugaming, training and more.
Montpellier, France: IDATE.

Boyle, E. A., Hainey, T., Connolly, T. M., Gray, G., Earp, J., Ott, M., et al. (2016). An update to
the systematic literature review of empirical evidence of the impacts and outcomes of computer
games and serious games. Computers & Education, 94, 178–192.

Breuer, J. S., & Bente, G. (2010). Why so serious? On the relation of serious games and learning.
Eludamos. Journal for Computer Game Culture, 4(1), 7–24.

Busetta, P., Ghidini, C., Pedrotti, M., De Angeli, A., Menestrina, Z. (2014). Briefing virtual
actors: a first report on the PRESTO project. In Proceedings of the AI and games symposium
at AISB. London, UK: SSAISB.

Carter, M., Downs, J., Nansen, B., Harrop, M., Gibbs, M. (2014). Paradigms of games research
in HCI: a review of 10 years of research at CHI. In Proceedings of the first ACM SIGCHI
annual symposium on computer-human interaction in play (pp. 27–36). New York, NY,
USA: ACM.

Chittaro, L., & Ranon, R. (2009). Serious games for training occupants of a building in personal
fire safety skills. In Conference in games and virtual worlds for serious applications, VS-
GAMES’09 (pp. 76–83). New York, NY, USA: IEEE.

De Mauro, A. (2011). Virtual reality based rehabilitation and game technology. EICS4Med, 1,
48–52.

Dondlinger, M. J. (2007). Educational video game design: a review of the literature. Journal of
Applied Educational Technology, 4(1), 21–31.

Egenfeldt-Nielsen, S. (2006). Overview of research on the educational use of video games.
Digital Kompetanse, 1(3), 184–213.

El Mawas, N., & Cahier, J.-P. (2013). Towards a knowledge-intensive serious game for training
emergency medical services. In Proceedings of the 10th international conference on informa-
tion systems for crisis response and management, ISCRAM ’13 (pp. 135–139). ISCRAM
Conference, Baden-Baden, Germany.

van Est, C., Poelman, R., Bidarra, R. (2011). High-level scenario editing for serious games. In
GRAPP (pp. 339–346). GRAPP Conference,Vilamoura, Portugal.

Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A. G., Mehandjiev, N. (2004). Meta-design: a mani-
festo for end-user development. Communications of the ACM, 47(9), 33–37. doi:10.1145/
1015864.1015884.

Fischer, G., & Girgensohn, A. (1990). End-user modifiability in design environments. In
Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’90
(pp. 183–192). New York, NY, USA: ACM. doi:10.1145/97243.97272.

38114 End-User Development for Serious Games

http://dx.doi.org/10.1145/1015864.1015884
http://dx.doi.org/10.1145/1015864.1015884
http://dx.doi.org/10.1145/97243.97272

Gee, J. P. (2007). Good video games + good learning: collected essays on video games, learning,
and literacy. New York, NY, USA: Peter Lang.

Göbel, S., Hardy, S., Wendel, V., Mehm, F., Steinmetz, R. (2010). Serious games for health: persona-
lized exergames. In Proceedings of the international conference on multimedia (pp. 1663–1666).
New York, NY, USA: ACM.

Göbel, S., Salvatore, L., Konrad, R. (2008). StoryTec: a digital storytelling platform for the
authoring and experiencing of interactive and nonlinear stories. In International conference
on automated solutions for cross media content and multi-channel distribution, AXMEDIS’08
(pp. 103–110). New York, NY, USA: IEEE.

Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming environments: a
“cognitive dimensions” framework. Journal of Visual Languages & Computing, 7(2), 131–174.

Heckel, F.W.P., Youngblood, G. M., Hale, D. H. (2009). BehaviorShop: an intuitive interface
for interactive character design. In AIIDE (pp. 46-51). AAAI, Palo Alto, CA, USA.

Ioannidou, A., Repenning, A., Webb, D. C. (2009). AgentCubes: incremental 3D end-user devel-
opment. Journal of Visual Languages & Computing, 20(4), 236–251.

Iurgel, I. (2004). From another point of view: art-E-fact. Technologies for interactive digital
storytelling and entertainment (pp. 26–35). Berling, Heidelberg, Germany: Springer-Verlag.

Khaled, R., & Ingram, G. (2012). Tales from the front lines of a large-scale serious game project.
In Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’12
(pp. 69–78). New York, NY, USA: ACM.

Lagerström, S., Soute, I., Florack, Y., Markopoulos, P. (2014). Metadesigning interactive out-
door games for children: a case study. In Proceedings of the 2014 conference on interaction
design and children, IDC ’14 (pp. 325–328). New York, NY, USA: ACM.

Lieberman, H., Paternò, F., Klann, M., Wulf, V. (2006). End-user development: an emerging
paradigm. In H. Lieberman, F. Paternò, V. Wulf (Eds.). End user development (pp. 1–8).
Netherlands: Springer.

Lieberman, H., Paternò, F., Wulf, V. (2006). End user development (human-computer interaction
series). New York: Springer-Verlag New York, Inc.

Lim, C.-W., & Jung, H.-W. (2013). A study on the military serious game. Advanced Science and
Technology Letters, 39, 73–77.

Linehan, C., Kirman, B., Lawson, S., Chan, G. (2011). Practical, appropriate, empirically-
validated guidelines for designing educational games. In Proceedings of the SIGCHI conference
on human factors in computing systems, CHI ’11 (pp. 1979–1988). New York, NY, USA:
ACM.

MacLean, A., Carter, K., Lövstrand, L., Moran, T. (1990). User-tailorable systems: pressing the
issues with buttons. In Proceedings of the SIGCHI conference on Human factors in computing
systems, CHI ’90 (pp. 175–182). New York, NY, USA: ACM.

Martín, D., Alcarria, R., Sánchez-Picot, Á., Robles, T. (2015). An ambient intelligence frame-
work for end-user service provisioning in a hospital pharmacy: a case study. Journal of
Medical Systems, 39(10), 1–10.

McIver, L., & Conway, D. (1996). Seven deadly sins of introductory programming language
design. In Proceedings of the international conference software engineering: education and
practice, SE:EP ’96 (pp. 309–316). Washington, DC, USA: IEEE.

Medler, B., & Magerko, B. (2006). Scribe: A tool for authoring event driven interactive drama.
In Technologies for interactive digital storytelling and entertainment (pp. 139–150). Berling,
Heidelberg, Germany: Springer-Verlag.

Mehandjiev, N., & De Angeli, A. (2012). End user mashups: analytical framework. In
Proceedings of the 2nd international workshop on adaptive services for the future internet
and 6th international workshop on web APIs and service mashups (pp. 36–39). New York, NY,
USA: ACM.

Mehm, F., Konert, J., Göbel, S., Steinmetz, R. (2012). An authoring tool for adaptive digital edu-
cational games. In 21st century learning for 21st century skills (pp. 236–249). Berling,
Heidelberg, Germany: Springer-Verlag.

382 Z. Menestrina and A. De Angeli

Menestrina, Z., De Angeli, A., Busetta, P. (2014). APE: end user development for emergency
management training. In Sixth international conference of the games and virtual worlds for
serious applications, VS-GAMES ’14 (pp. 1–4). New York, NY, USA: IEEE.

Namoun, A., Nestler, T., De Angeli, A. (2010). Service composition for non-programmers:
Prospects, problems, and design recommendations. In IEEE 8th European Conference on
Web Services (ECOWS), 123–130.

Nielsen, J. (1994). Heuristic evaluation. In Usability inspection methods (pp. 25–62). Fremont,
CA, USA: Nielsen Norman group.

Paternò, F. (2013). End user development: survey of an emerging field for empowering people.
In ISRN software engineering. London, UK: Hindawi.

Protopsaltis, A., Auneau, L., Dunwell, I., de Freitas, S., Petridis, P., Arnab, S., et al. (2011).
Scenario-based serious games repurposing. In Proceedings of the 29th ACM international
conference on design of communication, SOGDOC ’11 (pp. 37–44). New York, NY, USA:
ACM.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., et al.
(2009). Scratch: programming for all. Communications of the ACM, 52(11), 60–67.

Resnick, M., & Rosenbaum, E. (2013). Designing for tinkerability. In Design, make, play:
growing the next generation of STEM innovators (pp. 163–181). Abingdon-on-Thames, UK:
Routledge.

Ritter, F. E., Bittner, J. L., Kase, S. E., Evertsz, R., Pedrotti, M., Busetta, P. (2012). CoJACK:
A high-level cognitive architecture with demonstrations of moderators, variability, and impli-
cations for situation awareness. Biologically Inspired Cognitive Architectures, 1, 2–13.

Schell, J. (2014). The art of game design: a book of lenses. San Francisco, CA, USA: Morgan
Kaufmann.

Sitzmann, T. (2011). A meta-analytic examination of the instructional effectiveness of computer-
based simulation games. Personnel Psychology, 64(2), 489–528.

Tetteroo, D., Vreugdenhil, P., Grisel, I., Michielsen, M., Kuppens, E., Vanmulken, D., et al.
(2015). Lessons learnt from deploying an end-user development platform for physical rehabi-
litation. In Proceedings of the SIGCHI conference on human factors in computing systems,
CHI ’15 (pp. 4133–4142). New York, NY, USA: ACM.

Torrente, J., Del Blanco, Á., Marchiori, E. J., Moreno-Ger, P., Fernández-Manjón, B. (2010).
<e-Adventure>: introducing educational games in the learning process. In Education engi-
neering, EDUCON (pp. 1121–1126). New York, NY, USA: IEEE.

Torrente, J., Moreno-Ger, P., Fernández-Manjón, B., Sierra, J. L. (2008). Instructor-oriented
authoring tools for educational videogames. In Eighth IEEE international conference on
advanced learning technologies, ICALT’08 (pp. 516–518). New York, NY, USA: IEEE.

Torrente, J., Serrano-Laguna, Á., Fisk, C., O’Brien, B., Alesky, W., Fernández-Manjón, B., et al.
(2015). Introducing mokap: a novel approach to creating serious games. In Proceedings of
the 5th international conference on digital health (pp. 17–24). New York, NY, USA: ACM.

Vidani, A. C., Chittaro, L., Carchietti, E. (2010). Assessing nurses’ acceptance of a serious game
for emergency medical services. In Second international conference of the games and virtual
worlds for serious applications, VS-GAMES ’10 (pp. 101–108). New York, NY, USA: IEEE.

Weiss, S., Müller, W., Spierling, U., Steimle, F. (2005). Scenejo - an interactive storytelling plat-
form. In Virtual storytelling. Using virtual reality technologies for storytelling (pp. 77–80).
Berlin, Heidelberg, Germany: Springer-Verlag.

Wouters, P., & van Oostendorp, H. (2013). A meta-analytic review of the role of instructional
support in game-based learning. Computers & Education, 60(1), 412–425.

XVR Sim. http://www.xvrsim.com/. Accessed 1 January 2017.
Zyda, M. (2005). From visual simulation to virtual reality to games. Computer, 38(9), 25–32.

38314 End-User Development for Serious Games

http://www.xvrsim.com/

Integrating End Users in Early Ideation
and Prototyping: Lessons from an Experience
in Augmenting Physical Objects

Paloma Díaz, Ignacio Aedo and Andrea Bellucci

Abstract Creating rewarding and resonant user experiences usually requires a
designerly approach, that is, to explore multiple ideas and later converge to a spe-
cific design outcome that can be eventually implemented. Engaging novice
designers as well as end users in fuzzy ideation processes can cause participants’
discouragement and disengagement when they do not understand the goal of the
various design tasks and the contribution of such tasks to the whole development
process. To mitigate this problem, we propose two software tools (called CoDICE
and ECCE) to support the ideation, design and early prototyping of augmented
experiences. The tools make it possible to apply generative techniques to promote
creativity whilst providing a virtual space where ideas and designs can be persis-
tently documented and developed further. The creation of physical prototypes is
supported to close the loop, thus enabling end users to ideate, design and proto-
type their own augmented experiences. Tools were tested with end users who
valued (i) to have a process flow to follow, (ii) to be able to explore multiples
ideas and interrelate them and, finally, (iii) to create their own working prototypes.

Keywords Co-design · software engineering · design thinking · digital cultural
heritage

1 Introduction

The current status of ubiquitous and tangible computing is opening a new panor-
ama for interactive applications in different domains, including quotidian activ-
ities, health, work, leisure or cultural heritage. Moving the software development

P. Díaz (✉) · I. Aedo · A. Bellucci
Computer Science Department, Universidad Carlos III de Madrid, Madrid, Spain
e-mail: pdp@inf.uc3m.es

I. Aedo
e-mail: aedo@ia.uc3m.es

A. Bellucci
e-mail: andrea.bellucci@uc3m.es

385© Springer International Publishing AG 2017
F. Paternò, V. Wulf (eds.), New Perspectives in End-User Development,
DOI 10.1007/978-3-319-60291-2_15

to the physical world and integrating tangible objects and wereables make it possi-
ble to envision resonant applications that blur the boundaries between the real and
the virtual to provide more enjoyable, intrinsically motivating and memorable
experiences. To identify what is motivating or memorable for end-users we have
to integrate them into the whole development process. Developing such augmen-
ted and tangible technologies that intertwine human practices and values, interac-
tion spaces and complex digital artifacts is rather difficult and multifaceted since
designers have to envision cohesive interaction ecosystems that augment our capa-
cities and experiences (Buchanan, 1992; Kaptelinin & Nardi, 2006; Simon, 1996;
Zimmerman, Forlizzi, & Evenson, 2007). Three agents (namely people, technolo-
gies, and spaces) and their interrelationships have to be taken into account to iden-
tify affordances and constraints that emerge from the agents and their interaction
(Terrenghi, Quigley, & Dix, 2009). Also, understanding how technology can be
employed to improve our capacities and our experiences can be considered as a
wicked problem that, as defined by Rittel and Weber (1973), doesn’t have a
unique solution nor a linear way to solve it. When designers are shaping the future
and not solving a well-defined problem, requirements are unclear and evolve over
time as more powerful technologies become available and end users become famil-
iar with them. End users and stakeholders might also have competing values and
priorities. For instance, within the domain of cultural heritage, whilst curators
might be chiefly interested in knowledge transmission, the cultural institutions
main goal might be creating stronger links with visitors that will imply using tech-
nology in novel ways not necessarily oriented towards improving their knowledge
but to provide more engaging experiences. Visitors also have their own ideas
about how to augment cultural heritage to make it more enjoyable and personally
meaningful.

In this context, design becomes an exploratory and iterative process aimed at
understanding how technology can augment and improve user experiences. In this
chapter we focus on the design of such augmented digital experiences, assuming
that their design is a serendipitous process that expands over time. Deliberation
and argumentation become essential to provide rationale on the design decisions
in order to understand why and how technologies augment human experiences as
suggested in (Buchanan, 1992).

Since there is no panacea solution that works in any context, it is not enough to
count on end-user platforms that enable end users to prototype augmented experi-
ences. As stated by Sanders and Stappers (2008), end users have to engage in
co-design tasks that span throughout the whole development process to provide their
unique perspective on how technology can enhance their lives. Therefore, their
active participation in early ideation and exploration tasks can also be considered
as part of the end-user development process. In this chapter we will describe how
we dealt with the need to support a more serendipitous (Liang, 2012) and reflec-
tive practice (Schön, 1983) within the context of the meSch EU project (mesch-
project.eu), aimed at integrating smart objects in cultural heritage sites. In order to
encourage and make it easier the participation of end users in the ideation tasks,
we developed a set of tools that follow a goal-oriented co-design process based on

386 P. Díaz et al.

three steps: ideation, design and early prototyping. The first two steps are sup-
ported by CoDICE (COdesigning DIgital Cultural Encounters), a multi-device
environment that offers interfaces for situated, collocated and distributed ideas
co-generation and co-elaboration (Díaz, Aedo, & van der Vaart, 2015). Early pro-
totyping of small-scale ecologies of devices is supported by using ECCE (Entities,
Components, Couplings and Ecosystems), a tool that reduces the complexity of
implementing smart objects by providing a EUD interface (Bellucci, Díaz, Aedo,
& Malizia, 2014). This chapter describes how such tools were used to engage end
users in group working to ideate, design and prototype augmented experiences.
We will assume the definition of Lieberman, Paternò, Klann, and Wulf (2006) of
end users as “non professional software developers” that in our case will be able
to design and prototype digital futures even though they are not experts in creative
design nor in physical or ubiquitous computing.

2 Context and Related Works

Co-design is a social creativity endeavor that involves designers and other profes-
sional and non-professional participants in the process of ideation, design and build-
ing of design artifacts (Sanders & Stappers, 2008). In this chapter we understand
co-design as a process made up of divergent design tasks that are aimed at ideating
and exploring solutions, and convergent design tasks aimed at reflecting upon differ-
ent alternatives to choose the ones that should be prototyped to test whether they fit
the end users and stakeholders expectations (Rhea, 2003). The next subsections
explore these processes and analyze related works in the literature.

2.1 Co-design Tools

To enable end users to describe their problems and ideas in a natural and expres-
sive way, generative techniques like collages, affinity diagrams, journey maps,
personas, storyboards, inspirational cards and so on, are often used in co-design
workshops (Sanders, Brandt, & Binder, 2010). A comprehensive guide of techni-
ques can be found at (Hanington & Martin, 2012). These techniques are called
generative since they guide the members of the co-design team in the exploration
of the problem and the co-creation of solutions through a cyclic and evolving pro-
cess (Sanders & Stappers, 2008). The unrestricted nature of these techniques facil-
itates the exploration of open-ended questions like ideating future interaction
scenarios, but as posited by several researchers (Rhea, 2003; Sanders & Stappers,
2008) they tend to end up into fuzzy processes in which some participants, and
particularly novice designers and end users, often are unaware of the goal of each
design task and the way different tasks are interconnected (Garde & van der
Voort, 2012; Kleinsmann & Valkenburg, 2008; Sanders & Westerlund, 2011).
This situation can provoke participants’ discouragement and disengagement.

38715 Integrating End Users in Early Ideation and Prototyping …

However, richness of perspectives and knowledge is a key feature of co-design
that can only be achieved when end users are integrated not only to evaluate and
take decisions but also during the ideation process (Sanders & Stappers, 2008).
The goal of the work reported in this chapter is related with using technological
tools to support co-design as a collaborative and reflective practice. This goal goes
beyond empowering individual end users to quickly prototype their own ideas and
aims at encouraging them to participate in collaborative ideas generation, ideas
assessment and decision making in order to build a common understanding of
both, the problem and the potential courses of action (Bergman, Lyytinen, &
Mark, 2007; Buchanan, 1992; O’Neill, Johnson, & Johnson, 1999).

The use of software tools for free ideation processes might impose limitations
such as circumscribed thinking, premature fixation, and bounded ideation
(Robertson & Radcliffe, 2009). These problems might be caused by the erroneous
conception of software tools as design facilitators that mediate and guide the
ideation process. For instance, tools like Two Thousand Points of Interaction
(Harboe, Doksam, Keller, & Huang, 2013) or The designers’ outpost (Klemmer,
Newman, Farrell, Bilezikjian, & Landay, 2001) provide user interfaces to support
the generation of design products like affinity diagrams. This kind of software
tools are more limited in terms of expressivity than typical creativity techniques
since the tool forces designers to use very specific constructs that have limited
functionality. On the contrary and in order to promote a more active participation
from end uses and stakeholders, most generative techniques rely upon more
natural expression means like free drawing and crafting with physical materials
(such as paper, pens or dough) or even performing scenarios. Such techniques do
not force participants to learn to use a new tool to express their ideas nor they
limit them to use specific constructs. Participants only need to focus on the goal of
the ideation task and put their imagination to work.

Using software tools for free ideation can limit their efficacy by producing cir-
cumscribed thinking as discussed in (Luebbe, Edelman, Steinert, Leifer, & Weske,
2010; Robertson & Radcliffe, 2009) since the media used to externalize ideas
shapes the way people think, For example, the experiments by (Robertson &
Radcliffe, 2009) using CAD tools showed that participants not only might be lim-
ited to express their ideas because they are forced to use the constructs offered by
the software tool but they also tended to use only the easiest constructs. Our pro-
posal to avoid this kind of circumscribed thinking is to consider software tools not
as mediators but as additional virtual co-design spaces that coexists with other
spaces, including the physical design space and the ideation tasks carried out by
participants using generative techniques as proposed in (Sanders & Westerlund,
2011). In this way, co-designers will be able to use any technique in a free idea-
tion process and then use the virtual co-space of the software tools to document,
validate and generate a design rationale about their augmented experiences. The
goal is to promote and facilitate the exploration of ideas and their evaluation in a
reflective process, but at the same time letting co-designers and end-users use any
techniques that boost their creativity and active participation.

388 P. Díaz et al.

2.2 Prototyping Augmented Experiences

Once the best ideas are selected by the co-design team they have to be implemen-
ted. The implementation has to be a very agile process enabling to quickly gener-
ate physical prototypes that support further exploration in terms of affordances,
possibilities and limitations (Nielsen, 1993). However, prototyping interactions
among interconnected devices is a complex task that requires specialized technical
skills, such as knowledge of electronics, different programming languages and
developing platforms. Even software developers become end users in this context,
since they rarely have the variety of knowledge required to prototype such ecolo-
gies of interconnected devices that include mobile devices with sensors and actua-
tors embedded in physical objects.

To ease the labor of designers, researchers are focusing on novel programming
approaches and end-user toolkits that speed-up the prototyping of device ecosystems
and enable new interaction scenarios. The majority of such tools banks on web-based
technologies to build device- and platform-agnostic interfaces. For instance, Weave
provides an authoring environment for interweaving off-the-shelf wereables and
mobile devices (Chi & Li, 2015). It uses JavaScript for the definition of cross-device
behaviors and HTML for the user interface components. Panelrama (Yang & Wigdor,
2014) targets web applications and allows to build cross-device interactions by
extending the HTML language with additional tags for the definition of distributed
interfaces. XDStudio (Nebeling, Mintsi, Husmann, & Norrie, 2014) provides a visual
tool for interactively designing cross-device interfaces. It allows to simulate target
devices, thus allowing the authoring of cross-device behaviors on a single device, and
also to deploy the generated interfaces on the devices. All these tools, however, expect
the user to be proficient with scripting languages, such as JavaScript, and therefore
they are not suitable for designers with no programming expertise. As for the case of
contemporary interaction designers with programming experience, the aforementioned
tools offer limited support to the design and development of custom interactive
devices; that is, they support off-the-shelf smartphones and wearables and do not
allow to program custom physical objects augmented with sensors and actuators.

WatchCONNECT (Houben & Marquardt, 2015) explores sensor-based interac-
tions focusing on smart watches. It represents an exception to the previous toolkits
since it provides a custom and extendable platform for prototyping interactions
between smart watches and other off-the-shelf devices. However, the toolkit
focuses on gestural interaction with wearable devices and does not support, for
example, the implementation of other types of custom tangibles. It also seems to
support only interactions between one single wearable device and another display-
enabled device, thus limiting the creation of extended ecosystems.

Other environments embrace visual programming for prototyping physical interac-
tion and offer tools that address more closely the needs of users with little technical
knowledge. For instance, Scratch4Arduino (Rosenbaum, Eastmond, & Mellis, 2010)
exploits the Scratch visual environment (Maloney, Resnick, Rusk, Silverman, &
Eastmond, 2010) to program Arduino hardware through the composition of logical

38915 Integrating End Users in Early Ideation and Prototyping …

blocks on the screen. However, Scratch4Arduino is meant for educational purposes
and to ease the transition to a classical textual programming language, thus it does
not provide support for the rapid prototyping of multi-device interaction. More
advanced tools for this task are Node-RED (nodered.org) and MIT App Inventor
(Pokress & Veiga, 2013). Node-RED implements a visual data-flow language to
interweave smart things. It provides high configurability and extensibility and it is
powered by a crowd-based development that allows to reuse code created by others.
However, users still need to have programming knowledge to create useful programs,
it does not support interactions with mobile devices and does not offer direct support
for interconnecting devices. App Inventor offers a visual environment for building
mobile user interfaces via drag-and-drop of graphical elements and programming
device behaviors (including sensors) via a Scratch-like approach. It is limited to
mobile devices and it does not support cross-device interfaces. Therefore, integrating
different devices in the same environment would still require considerable effort.

Our approach, which aims to ease and speed-up the creation of physical interfaces,
resonates with the vision of sketching “interactive materials” proposed by Obrenovic
and Martens (2011) with their Sketchify. This tool enables designers to rapidly proto-
type interactive systems by combining pen-based mock-ups of the user interface with
interactive elements, that includes a wide range of i/o devices (e.g., Nintendo
Wiimote) as well as external software services and environments (e.g., MAX/MSP).
While sharing similar motivations, design goals and rationale, our prototyping tool
ECCE differs from Sketchify in that ECCE supports the rapid prototyping of small-
scale device ecosystems, including off-the-shelf device and custom-made tangibles,
thus enabling cross-device interactions similarly to aforementioned systems such as
Weave (Chi & Li, 2015) or XDStudio (Nebeling et al., 2014). Moreover, CoDICE
supports two previous tasks to prototyping, namely divergent and convergent design,
so that using the tools here proposed alternatives can be explored and properly docu-
mented including the rationale behind the design decisions taken. In this way, not
only the design outcomes are digitized but they also include information about how
or when they can be used, by whom, their limitations as well as their evolution as
suggested by (Carroll & Rosson, 2003; Krippendorf, 2005).

3 The Co-design Process with Codice-Ecce

The work reported in this chapter aims at linking three processes involved in co-
design (ideation, design and early prototyping) through the use of a set of software
tools that will enable end users to participate in the whole process. In particular,
four design spaces are supported or partly supported by software tools as depicted
in Fig. 1 and described in the next paragraphs.

The Situated design space is where co-designers explore the physical objects or
places that will be augmented to try to understand how to provide a better experi-
ence. For instance, if an augmented object is going to be used in a museum it might
be worth running a workshop in that place to look for inspiration and understand

390 P. Díaz et al.

the limitations and possibilities of the physical space. For this kind of design task
CoDICE-mobile can be used to collect material while visiting the physical environ-
ment as shown in Fig. 2. Resources captured with CoDICE-mobile can be tagged
and automatically uploaded to a central server, so that they will be available for

CODICE-MOBILE

SITUATED DESIGN

DIVERGENT
DESIGN

CONVERGENT
DESIGN

PROTOTYPING

DESIGN TASK

TASK OUTCOME

PROTOTYPES

DESIGN RATIONALE

Who can use the prototypes? For which purposes?
In which scenarios? Which experiences/values are supported?...

DESIGN
PRODUCTS

IDEAS

RESOURCES
(pictures, videos...)

CODICE-DESKTOP ECCE

SOFTWARE TOOL

Fig. 1 Design spaces, tasks and tolos

Fig. 2 CoDICE-mobile can be used to collect inspirational material in onsite visits or to digita-
lize the outcomes of design workshops like paper-based stories, affinity diagrams or perfor-
mances of interaction scenarios

39115 Integrating End Users in Early Ideation and Prototyping …

subsequent design tasks. Any other kind of document that might be useful during
the design process, such as existing multimedia material and reports, can be directly
uploaded to the server using CoDICE-desktop. Resources are independent and per-
sistent entities that can be tied to more than one idea and design product.

The Divergent Design space is where co-design teams engage in free brain-
storming and exploration assuming two of the classical tenets of brainstorming
(Osborn, 1979): generate lots of ideas and defer judgment. This is the space where
co-designers can hold and share their ideas before evaluating whether they should
be implemented or not. In this space, co-design teams will use the techniques they
prefer to explore and externalize their ideas. In order to keep such ideas in a per-
sistent and meaningful way so they can be revisited and studied further, CoDICE-
desktop offers a web platform to document them using four entities (namely phy-
sical objects, encounters, personas and augmented objects) that will be described
in the next section. With these four entities teams can start envisioning whose
objects will be augmented, how the augmentation experience will be, the target
users and the technologies that will be used, respectively.

CoDICE-desktop virtual space makes it possible to keep track of all the ideas that
emerge during the co-design workshops, even those that didn’t succeed. In this way,
if interesting ideas are not developed further due to temporal constraints, they can be
revisited later. Also ideas that failed can be kept along with the reasons that made
them not viable, so that co-design teams can learn from their mistakes. Fig. 3 shows
an idea that was discarded by a co-design team as described in the use case reported

Fig. 3 Recording all ideas, whether successful or not

392 P. Díaz et al.

in (Díaz et al., 2015). The idea was to implement a monocular to look closer at
objects and get more information on them. Two facts, shortly reported as comments
in the interface, remind co-designers about the discussions on this artifact that sup-
ported this decision (see the right lower panel in Fig. 3): people with low vision, like
the elder visitors, might have problems to enjoy it; and the artifact had to be used on
an individual basis and the museum audience was mainly composed of families who
were usually more interested in experiencing the visit as a social activity.

In the Convergent Design space ideas are assessed and those positively evalu-
ated are moved to the CoDICE-desktop virtual design space to be elaborated
further. More concrete information on the prototypes, scenarios of use and require-
ments is provided, including a design rationale that justifies and explains why
decisions were made. Information on known uses and evolutions can also be
included so the history and genetic evolution of artifacts (Krippendorf, 2005) can
be fully documented. With this purpose, the conceptual entities of CoDICE are
envisioned as long-term entities whose information is constantly updated, even
once artifacts are implemented and deployed in real environments. Indeed, infor-
mation on known uses of the artifact can be added to its description. Fig. 4 shows

Fig. 4 Evolution of an idea reported as a design product. Area 1 includes general information
on the concept; Area 2 contains descriptions of the artifact including multimedia files such as the
youtube video and the image in the “validation” tab; Area 3 includes comments about this com-
ponent and its relations with other components such as the personas that will use this prototype,
the scenarios in which it can be used, its requirements, its evolutions; Area 4 includes a naviga-
tion tool, information about the updates of this element and a link to create a pdf file with all the
information provided for this component

39315 Integrating End Users in Early Ideation and Prototyping …

an example of an artifact ideated and developed through several meSch co-design
workshops, called the Loupe. The description of the final prototype includes a pic-
ture, user generated ratings and tags, visual and technical description, validation
information, design rationale and known uses. Comments on the design artifact
can also be added by the co-design team, as well as links with related entities like
the personas who will use the artifact, the scenarios of use, the identified require-
ments and its evolutions if any.

Finally, in the Early Prototyping space co-design teams can create an early pro-
totype to test how their ideas will work in the real world. To facilitate the genera-
tion of ecologies of devices by end users and reduce the programming complexity,
the ECCE toolkit is used. With this tool, end users can choose the components of
their artifact and define the rules that determine their behavior using a visual inter-
face. The goal is not to support the generation of complete high-quality proto-
types. ECCE Toolkit, instead, aims at enabling end users to generate a quick-and-
dirty physical prototypes they can tinker with to get feedback on their ideas and
designs, fix problems and improve the characteristics of their designs in an itera-
tive cycle as shown in Fig. 1.

Next subsections describe in a detailed way the tools used in this process before
introducing the co-design workshops where the integration of both CoDICE and
ECCE was used to enable teams both to reflect on their ideas and to give shape to
them through early prototypes.

3.1 Ideation and Design with CoDICE

CoDICE is a software platform developed within the meSch EU project to sup-
port the co-design of digital ecosystems in which physical objects are augmented
using smart objects to support more engaging user experiences. One the main pil-
lars of the project is the use of a co-design approach to envision such futures
and, hence, for a period of two years a number of co-design workshops and
activities involved cultural heritage professionals (CHP), end users, designers,
software engineers and developers in this endeavor. Whilst these workshops
were being held, we designed a technological tool that may assist co-designers in
their work. Thus, CoDICE development was informed by requirements and
needs identified in the literature and also by the experience gained in the co-
design workshops run by the meSch consortium. The latter source of inspiration
made it possible to understand which kind of software platform could be
deployed in the wild to assist multidisciplinary teams, who work both in collo-
cated and distributed ways, without imposing constraints that will make the tool
useless. During these workshops it emerged that there was a need to properly
document the outcomes and their interrelationships as suggested in the literature
(Garde & van der Voort, 2012; Kleinsmann & Valkenburg, 2008; Sanders &
Westerlund, 2011). In this way all the team members understand why they are
participating in a specific task and why their contribution is relevant.

394 P. Díaz et al.

CoDICE assists such heterogeneous teams in co-design tasks through three vir-
tual design spaces that can be used in a collocated or distributed way: situated
design, ideation and convergent design. In the context of the tool, end users are het-
erogeneous groups of technical and non-technically skilled people who want to take
part in a collaborative process to ideate new ways to interact with smart objects.

The platform is conceived as a multi-device toolkit that makes it possible to
support situated, collocated and distributed tasks using different devices as shown
in Fig. 5. With this purpose it implements a client-server architecture: the server
makes use of a web service to store the information using in a SQL database; and
two clients are implemented to support different design spaces and tasks,
CoDICE-mobile that supports Situated resources gathering and CoDICE-desktop
that is used in the other two design spaces, Divergent and Convergent design.
CoDICE-mobile is a quite simple app that is only used to collect information and
upload it to the server. For that reason, the remaining of this subsection is only
focused on CoDICE-desktop, the virtual space where ideation (or divergent
design) and convergent design take place.

In order to ease communication among team members during the design tasks,
a number of Design Boundary Objects (DBOs) are identified. DBOs are defined
as conceptualizations that encapsulate a shared representation of the design out-
comes and their design rationale (Bergman et al., 2007). Examples of DBOs pro-
posed in the literature include Personas, Scenarios or proto-architectures (Bergman
et al., 2007; Carroll & Rosson, 2003; Cooper, 1999). Boundary objects should be
flexible and expressive enough as to accommodate the needs of different partici-
pants and at the same time be able to convey useful design knowledge. After sev-
eral iterations in the meSch workshops the final structure of DBOs supported by
CoDICE-desktop are represented in Fig. 6 using an entity-relationship model. The
model reads as follows. For the Ideas spaces (upper area in the Figure), physical
Objects can be enhanced through Encounters that make use of Augmented con-
cepts to improve the user experience of Personas. This BDOs (defined in Table 1)

Fig. 5 CoDICE architecture

39515 Integrating End Users in Early Ideation and Prototyping …

and their relations set up the ideation space, offering design entities to document
each agent involved in an augmented experience. The lower part of the figure
represents what happens during convergent design. Once the ideas are assessed,
those Encounters and Augmented Concepts that are considered worth to be

Object(s)

Ideas

Design products

Encounter

Persona

Augmented
concepts

Makes use of

Describes the use ofScenario Prototype

Requirement

Evolves from

1:N

1:N

0:N

0:N

0
:N

1:N

1:N

1:N

1:N

0:1

0:N
1:N

1:N

1:N

1:N 1:N

0:N

1
:N

Is enhanced in

Is for
Suited for

Evolves toEvolves to

Uses
Experiences

Satisfies

Fig. 6 CoDICE final conceptual model. DBOs are linked through relations (arrows) whose car-
dinality reflects whether they are mandatory or not (1 or 0 respectively) and whether they can be
linked to 1 or more components (1 and N respectively)

Table 1 DBOs provided by CoDICE to document ideas and designs

BDO idea/design
concept

Description Goal

Object Physical object or
collection of objects
to be augmented

To analyze the real objects in terms of features,
interaction affordances and constraints, and the
emotions and feelings they inspire

Encounter/scenario Augmentation
scenario

To envision augmented experiences with cultural
heritage objects or sites focusing on the values
and benefits they will bring

Augmented
concept/prototypes

Augmented concept To ideate digital artifacts or ecologies that will
support the augmented encounters with the
physical objects

Persona User stereotypes To identify potential users of an augmented
object for which encounters are devised focusing
on their needs, expectations and goals

Requirements Implementation
requirements

To specify the features of the prototypes in terms
of functional, usability, user, data and technical
requirements

396 P. Díaz et al.

explored further will evolve into Scenarios and Prototypes (see dashed lines in the
Figure), respectively, to provide more details in the Design Products space. In this
space, Prototypes might evolve into other prototypes and they are linked with a
number of requirements. Relationships are labelled and each end has two cardinal-
ities indicating the minimum and maximum of instances of that conceptual entity
that must take part in the relationship. In general terms, 0 cardinalities are added
to support more flexible and evolving processes where entities not linked yet to
other entities can be stored since they are considered yet useful for design pur-
poses. For instance, I can define a Persona for which I haven’t yet found a useful
Encounter. N cardinalities reflect the fact that some ideation and design outcomes
can be linked to more than one occurrence of other outcomes. For example, the
relationship among Scenario and Prototype in the Design Products area of the
Figure imply that an interaction scenario can involve the use of more than one pro-
totype and that the same prototype can be used in different scenarios.

For each of DBO, described in Table 1, CoDICE-desktop provides a web user
interface (see Figs. 3 and 4) to include information on them as well as to link
them, so that the relationships in the data model in Fig. 6 can be directly navi-
gated. The evolution of Ideas into Design Products is guided by a wizard that
forces to comply with the 1:N relationships. For instance, an Augmented Concept
(that is, a potential new artifact) cannot be transformed into a Prototype if at least
one Persona and one Encounter have been defined for such an artifact (that is, the
artifact idea is expected to be useful for at least one type of user and implements
at least one interaction scenario). Moreover, the wizard asks users provide a justifi-
cation on their decision to move that element to the design space by asking them
to fill a SWOT (Strengths, Weaknesses, Opportunities and Threats) matrix. This
matrix, along with the use of Scenarios and relationships among prototypes and
personas are included to support the generation of a design rationale about the pro-
duct under development. Some additional concepts are included to facilitate the
organization of co-design session materials, including Resources to add any kind
of reusable content or file, Workshops to keep track of different co-design sessions
and Projects to organize information concerning different developments. Finally,
when Prototypes are defined a whole document including all the information about
their conception, design, and evolution can be automatically produced. This docu-
ment includes the design rationale as well as information on known uses so that
the co-design team can produce a complete description of their design. All these
DBOs and concepts are not related with the cultural heritage domain and, there-
fore, they can be used to model any augmentation of a physical object.

The tool was used to document the different prototypes generated by the co-
design teams in the meSch project (Díaz et al., 2015). During its development, the
tool was continuously evaluated with the projects partners who had different back-
grounds and provided their view on how the tool could support the co-design pro-
cesses. In this chapter we focus on the experiment we carried out outside the
boundaries of the project in order to understand in a broader sense the tool utility
for end users who are not experts in ideating, designing and prototyping augmen-
ted experiences with physical objects.

39715 Integrating End Users in Early Ideation and Prototyping …

3.2 Early Prototyping with ECCE

The intrinsic technical complexity of building interactive systems that make use of
heterogeneous interconnected devices limits their current design. Without the
appropriate development tools, the implementation of advanced designs is a privi-
lege of experienced developers. We designed the ECCE (Entities, Components,
Couplings and Ecosystems) Toolkit (Bellucci et al., 2014) to lower the skill barrier
and shift implementation efforts from low-level technical details to more sophisti-
cated design nuances. The ECCE Toolkit implements a graphical web-based inter-
face for authoring physical/digital multi-device interactions (see Fig. 7). The interface
allows designers to create device ecosystems by creating new devices (both off-the-
shelf and custom tangibles), defining their interactive capabilities and program the
interaction among interconnected devices. To this end, the authoring tool provides
three main modules:

1. The Entities & Components Editor assists the design of the user interface as
well as the physical assemblage of sensor and actuators. ECCE supports smart-
phones, tablets or interactive tabletops and surfaces as well as custom-built elec-
tronic-incorporated objects, e.g., sensor-based devices with microcontrollers.

2. The Couplings Editor enables end users to define interactions among devices
by means of event-based behaviors, taking into account the capabilities of the
components, physical or digital, on each device.

3. The Ecosystem Code Generator automatically generates the Entity Runtime
source code (web applications as well as microcontrollers code) by parsing
XML-descriptors created with the authoring tool. The runtime code is deployed

Fig. 7 The Web interface of the ECCE Authoring Environment to create an ecosystem: (1) add/
edit new entities via the Entity & Components Editor and (2) define their behavior (Couplings
Editor). By selecting an existing entity, a preview gives users a prompt feedback regarding the
entity design. (3) Automatically generate the runtime code of the entities as well as the server
logic (Ecosystem Code Generator)

398 P. Díaz et al.

on target devices according to its development environment and capabilities.
The Ecosystem Code Generator also instantiates the logic of the Ecosystem
Server that embeds the functionality to setup and to transparently manage data
routing among heterogeneous networked devices.

The Entities & Components Editor (Figs. 8 and 9, respectively) module allows
to add new devices to the ecosystem by (i) using off-the-shelf mobile devices such
as tablets or smartphones, laptops and multi-touch surfaces such as tabletops, see-
through displays or projected surfaces, or (ii) building custom sensor-based inter-
active objects with micro-controllers. In the Entities & Components Editor, each
entity is designed as the aggregation of different components both physical and
digital. Examples of physical components that are supported by the toolkit are (i)
sensors such as accelerometers, gyroscopes, distance, luminosity sensors, load or
flex, (ii) physical input devices such as potentiometers, joysticks or RFID readers,
and (iii) actuators such as speakers, motors or LEDs. Digital components – the ele-
ments of the graphical interface – can be defined for entities that feature a display
screen. They are labels, digital buttons, sliders, video streams and the like. New
entities can be created by selecting from a list of predefined entities (Fig. 7).
Common off-the-shelf devices are provided (e.g., Apple iPad, Apple iPhone 4/5/6,

Fig. 8 Screenshot of the web
interface for the definition of
Tinkerkit-based interactive
entities. Users can (a) select
an entity from the main page
and (b) edit the entity by
drag-and-drop sensors and
actuators from a palette of
components to the desired
input or output sockets

Fig. 9 Screenshot of the web
interface for editing off-the-
shelf devices with a display
screen. User can (a) add sen-
sors and interface elements
from a palette, and (b) config-
ure the properties of digital
elements on the screen

39915 Integrating End Users in Early Ideation and Prototyping …

Google Nexus 4/5/6/7, Samsung Galaxy Tab 10.1, Samsung S4/S5) as well as the
possibility to create custom configurations, for instance by defining the screen
resolution and available sensors. With respect to custom-made devices, the current
implementation supports the design of custom objects building on top of the
Tinkerkit hardware toolkit, which provides an Arduino shield to connect ready-to-
use sensors and actuators.

The Entities & Components Editor provides a coherent definition of all the
objects in the ecosystem in terms of their components (e.g., sensors and actuators)
and attributes. Those descriptions are store in XML archives, which provides the
backbone for the development of physical and digital models that are independent of
the underlying hardware. The Couplings Editor exploits the descriptions to link com-
ponents with the definition of the rules that manage the interplay between physical
and digital components. Again, a graphical interface is provided for the end-user
configurability of behaviors (see Fig. 10). ECCE has been developed to allow a wide
range of integration of physical and digital components following an event-driven
approach. At this stage of development, cross-device behaviors can be implemented
with two sensors/actuators couplings: (i) a direct mapping that provides a one-to-one
mapping of the input value of a sensor into an output value of an actuator/output
device (e.g., LED or servomotor), and (ii) trigger-action rules that have been demon-
strated to be powerful enough to enable a wide range of smart behaviors for device
ecosystems (Ur, McManus, Pak Yong Ho, & Littman, 2014). The trigger-action pro-
gramming approach is not new in the development of interactive systems and it has
been mostly adopted by earlier systems, for instance e-Gadgets (Markopoulos et al.,
2004), to provide a tool for untrained user to program interconnected device in smart

Fig. 10 Screenshot of the interface for configuring cross-device behaviors. (1) A direct mapping:
The button on port I2 (see Fig. 3) is used to toggle the visibility of a label on the graphical inter-
face of a tablet. (2) A trigger-action: if I am at more than 10cm from the distance sensor change
the background of the projected display to “red.”

400 P. Díaz et al.

environments, such as the case of smart home systems. Recent commercial systems
such as IFTTT.com have enhanced the capabilities of trigger-action programming
by providing APIs to seamlessly interconnect physical devices with a wide variety
of web services. In our case, the use of trigger-action programming aims at lowering
the development threshold for non tech-savvy user and thus support open-ended sce-
narios for creative design. All the XML-based descriptions are parsed by the
Ecosystem Code Generator, which creates the logic of the Ecosystem Server in terms
of data structures that hold the description of interactive objects, their interactions
and network-agnostic data routing. It also generates the source code for Tinkerkit-
based objects to be uploaded on the microcontrollers. The Ecosystem Server acts as
a central communication unit. All the messages from one object to another pass
through it and it maintains the data structures for validating the interaction rules
between physical and virtual objects. The server receives events from remote sensors
and dispatches the event to the corresponding target entity.

4 Using Codice-ECCE To Ideate and Design Smart Objects

Both CoDICE and ECCE had been evaluated separately to assess their usability as
reported in Díaz et al. (2015) and Bellucci et al. (2014) respectively. In this chap-
ter we report the evaluation of the combined use of the two tools by end users
who ideated, designed and prototyped augmented experiences with physical
objects. Though the tools were inspired by the observations done in the co-design
workshops of the meSch project, they do not include any specific components or
functionalities related with cultural heritage, so they can be used to ideate augmen-
ted experiences for any purpose. Hence, the goal was to assess how end users per-
ceived the use of such tools to ideate and early prototype augmented physical
objects. We were interested in covering design processes that expanded over time
to identify the benefits of using the tools to organize ideas, make them evolve into
design artifacts and, finally, materialize them through prototypes. With this pur-
pose we involved a group of end users with no capabilities to implement augmen-
ted experiences who could perform the task as a multi-session assignment.
Participants were 8 students of a Master course on “Formal methods for multime-
dia and the web” who had different backgrounds, all of them technical, but none
of them had used or programmed micro-controlled objects nor were they familiar
with design thinking methods, so they could be considered as end users. During a
three-weeks period they were asked to use the tools to ideate, design and prototype
an innovative augmented experience with a physical object. For the first two tasks
(ideation and design) they used CoDICE as the documentation tool whilst proto-
typing was done using ECCE. Participants used their own computers and worked
both in collocated sessions as well as in a distributed way. They organized them-
selves in groups of two or three. Self-organization instead of random assignation
was chosen given the fact that and that most of the work had to be done outside
the course lectures, so facilitating distributed work was a key factor.

40115 Integrating End Users in Early Ideation and Prototyping …

4.1 Procedure

The experiment expanded over three weeks, with one additional week to prepare
an oral presentation of the final prototype. Each week, there was a 2 hours session
of collocated work in a classroom where students could bring their own laptops or
tablets. The first session was devoted to the ideation process and the second and
third to move ideas to the design space and to implement a prototype (see
Fig. 11). All the ideas and designs were documented using CoDICE. ECCE was
employed to create the final prototype together with Arduino and Tinkerkit plat-
forms and a number of sensors, actuators and mobile devices. At the end of the
workshop, participants filled a questionnaire indicating their perception of the uti-
lity of the tool and of its main features. The time allocated for collocated meetings
was 4.5 hours (slots of 1.5 hours per week) so most of the work had to be done in
a distributed way. This made it possible to test the technologies in a realistic envir-
onment in which co-designers can reflect upon their work and elaborate it further
once the collocated sessions are completed.

In order to ideate digital futures three objects were made available in the room
to facilitate inspiration: (i) a Mayan funerary mask, (ii) the Chichén Itzá pyramid
and (iii) glyphs of the Mayan script that were combined to write words or sen-
tences. Cards with information on the objects and their cultural meaning were also
provided. During the ideation process, they were no restrictions at all: students
could choose as many objects as wanted and groups were encouraged to freely
ideate digital augmentations without being constrained by cost, feasibility or other
issues. They were also asked to ideate any kind of augmented use, not necessarily
related with cultural heritage. For the example, participants in Fig. 11 designed an
augmented mask that hides a security code.

Participants were suggested a specific design flow to follow during the three
sessions. The first step was to think about the physical object itself using the
CoDICE Object entity. Then they were suggested to imagine scenarios of use for
that idea and to document them using the CoDICE Encounter entity and to iden-
tify potential user profiles or Personas that might benefit from such an encounter
and finally to describe their proto-prototypes using the Augmented concept entity.

Fig. 11 Designing and prototyping new artifacts using CoDICE and ECCE

402 P. Díaz et al.

During the second co-located session, participants moved some of their ideas to
the design space. They were asked to choose just one of the Augmented concepts
they created in the previous session and make it evolve to the design space, so
they could work further on it and prepare the implementation process. After using
the wizard that asks them to provide a SWOT matrix justifying their decision, a
Prototype design entity was created where they could add technical and detailed
information, refine use Scenarios and identify Requirements.

In the last session, prototypes were created. Participants used ECCE to imple-
ment at least once of the design ideas they chose making use of the hardware at
their disposal.

One week later, they met again to present their work highlighting the ideation
and design process they followed to propose such artifact.

At the end of this last session, participants were given a questionnaire. Two
open-ended questions provided information on whether or not participants under-
stood the purpose and value of the two software tools and if they would use the
tools again for designing smart objects. Then set of closed questions was used to
assess the potential utility of the tools and the design flow established in the
experiment.

4.2 Data Collection and Findings

At the end of the three weeks, 6 augmented concepts were ideated from which 3
evolved into prototypes all of which were implemented with ECCE. All the propo-
sals included the description of at least one use scenario where the prototype will
be used and one persona who will benefit from it (see Table 2). All the prototypes
were justified through a SWOT matrix.

Concerning the data collected in the questionnaires, the first open question was
to describe the goal and use of the tools. All participants acknowledged to under-
stand in which context both tools could be used for and described their purpose in
a very precise way. Most of them focused on the fact that the tools helped them to
be systematic and to collaborate. As one of the said “The purpose of CoDICE-
ECCE is to support the process of converting a smart object idea into a working
prototype in a collaborative environment. It makes this process less chaotic and
more systematic by providing the tools to document and share ideas and design
decisions easily with collaborators (CoDICE). Additionally, ECCE allows non-
experts to augment and interconnect objects easily in order to rapid-prototype
those smart object ideas.”

Table 2 Number of related
DBOs defined per prototype

Prototype Scenarios Personas Requirements

Interactive pyramid 1 1 3

Karicha simulation 1 3 4

Interactive mask 1 1 3

40315 Integrating End Users in Early Ideation and Prototyping …

The second part of the questionnaire was aimed at analyzing the utility of the
tools from the point of view of end users. In particular, we measured three issues
about the tools and the design flow. For each aspect, participants answered a set of
questions using a 5 points Likert scale, being 5 “Strongly Agree” and 1 “Strongly
Disagree.” The three issues analyzed were:

1. The perceived utility of the tools is related with how useful participants find the
functionalities currently offered. Focusing on usefulness as in the TAM model
(Davis, 1989) would have assumed that participants were professional designers
and not end users, since it requires a capability to assess how the tools improve
the quality of your work. Participants do not have any scale or expertise to mea-
sure such quality but they can rate how useful the software tools were to reach
their goals. Since the tools are developed in an iterative way this kind of ques-
tions make it possible to understand if those tools who are not considered useful
should be removed or whether this perception is based on a problem with the
design session organization. For example, the use of different types of multime-
dia resources in a design process might not be considered useful if the designer
moderator does not stress the need to use different techniques during the ideation
process and the participants feel more comfortable using descriptions they can
include in the tool fields instead of drawings or performing scenarios.

2. The performance expectancy is the degree participants feel they could use to
tools do perform specific tasks (Venkatesh, Morris, Davis, & Davis, 2003). In
this case, we focused on the design tasks participants were asked to perform
that include: generating and exploring multiple ideas; interrelating concepts;
documenting their ideas; justifying their decisions, and transforming ideas into
design concepts and designs into prototypes. This set of questions makes it
possible to understand whether participants perceived they were accomplishing
their goals using the tools and whether there are problems with the interfaces
or the design flow used in the experiment.

3. Attitude towards the tools understood as the individual affective reaction to
using the tools, that is, how participants liked performing the different tasks
proposed (Venkatesh et al., 2003). In this case, all questions started by “I
valued …” so that participants were asked to rate their level of satisfaction
with performing such task.

Other factors included in the UTAUT model (Venkatesh et al., 2003) like facil-
itating conditions or social influence were not considered since participants are
students and given their lack of expertise in professional contexts their opinions
might not be too informative. As summarized in Table 3, all the questions about
the three dimensions were positively rated above 3 (neutral value). For the first
dimension (M=4.05, Median=4.0, SD=0.78), a one-sample Wilcoxon Signed-
rank test shows that Likert scores are significantly different from a neutral value
(p < 0.05, 95% CI [4.0, 4.5]). The one-sample Wilcoxon Signed-rank test shows
similar results also for the second dimension (M=4.08, Median=4.0, SD=0.96,
p <0.05, 95% CI [4.0, 4.5]) as well as the for the third dimension (M=4.02,
Median=4, SD=0.81, p < 0.05, 95% CI [4.0, 4.5]).

404 P. Díaz et al.

Concerning the first dimension, the questions explicitly mentioning documenta-
tion (documenting ideas, design concepts and moving ideas to design concepts)
were the ones rated more positively. This is a relatively surprising finding as most
students of technical courses do not usually appreciate spending time in documen-
tation tasks.

The second group of questions tried to explore whether participants felt they
could do all the tasks involved in the assignment using the tools. Again all the
results were above the neutral value, being “Justify my design decisions” the one
rated less positively (with a mean value of 3.6) but still had a mode value of 4.
Finally, for the questions about attitude towards the tasks performed, positive
values were obtained for all the questions. In this case, “justifying decisions” task

Table 3 Perceived utility of the tools and tasks performed with them

(1) Utility of the tools

How useful participants found the functionalities of the tools whilst performing the assignment

Tool Functionality Mean Mode

Adding different kinds of resources 3,6 4

Documenting ideas 4,4 4

Separation between ideas and designs 3,9 4

Transition from ideas to designs 4,4 5

Documenting design concepts 4,4 5

Transition from designs to prototypes 4,0 4

Implementing interactive prototypes 3,8 4

(2) Performance expectancy

How well participants could perform the different tasks involved in the assignment

Task Mean Mode

Explore multiple ideas before deciding to implement one of them 4,4 5

Generate and share documentation about my ideas 3,9 5

Justify my design decisions 3,6 4

Interrelate concepts (vg, personas with augmented concepts) 4,4 5

Transform my ideas into design concepts 4,3 4

Transform my ideas into prototypes 4,0 4

(3) Attitude towards

How participants valued the different tasks perfomed with the tools

Task Mean Mode

Exploring multiple ideas before deciding to implement one of them 4,0 4

Generating and share documentation about my ideas 4,1 5

Justifying my design decisions 3,5 4

Interrelating concepts (vg, personas with augmented concepts) 4,4 5

Transforming my ideas into design concepts 4,0 4

Transforming my ideas into prototypes 3,8 4

40515 Integrating End Users in Early Ideation and Prototyping …

was again the one with the lowest score. The fact that such justification was under
the name of “design rationale” a concept participants were not familiar with, and
that the interface was not in their mother tongue, might have created some miscon-
ception about what we meant by justifying my decisions. In any case, both results
might suggest the need to stress the relevance that design rationale has in the co-
design process. Given the fact that co-design teams did not work on designs done
by other teams, they might have not appreciated how valuable it is making it
explicit how and why artifacts are proposed. However, when they did the oral pre-
sentations of their artifacts they used the links among entities and the SWOT
matrix to justify their decisions.

4.3 Lessons Learnt

All participants acknoweledged that they understood the goal of the tools and they
said that they will use them again in case of having to design an augmented
experience. Taking into account their comments, three benefits can be highlighted.

CoDICE helped them to organize ideas and the process. As one of the partici-
pants said “Starting from a lot of ideas, CoDICE helped us to organize them in
the best way, working step-by-step you could see how the project evolved.” Since
they had a limited set of entities to organize their ideas and there was a certain
process flow, participants knew how different design tasks (like defining scenarios
and personas) were connected. This is a problem that has been identified in co-
design workshops in which novice designers tend to be disoriented when they do
not understand the purpose of each activity they are involved in (Garde & van der
Voort, 2012; Kleinsmann & Valkenburg, 2008). In our case, the ability to link the
different outcomes of such activities into a comprehensive space like the one pro-
vided by CoDICE makes it possible to have a clear idea of the whole picture and
to understand the development process and the forces that drove it.

Our participants acknowledged in their definitions of the tool the fact that they
could interrelate the objects, places, scenarios and personas involved in the use of
a specific artifact. This is particularly important in many application domains
where the same object can be experienced in a different way by different people.
The fact that there are different entities for each of these concepts in CoDICE
pushed participants to look more closely into each of them. Additionally, most
participants tried to reuse the concepts they defined by linking them with other
entities, for instance assigning the same persona with several artifacts. Though
given the constraints of the experiment there were no many associations among
concepts, this is a need we identified in (Díaz et al., 2015) were professional
designers and end users (in that case curators) needed to detach scenarios from
physical objects, personas and design artifacts to reuse scenarios, personas or
objects. In that case, we used the example of two artifacts (the Loupe and the
Monocular) implementing the same scenario (Layered information) as well as an
artifact (the Loupe) used in two different scenarios (Wayfinding and Layered

406 P. Díaz et al.

information). Analyzing the same artifact in different scenarios of use can also
provide ideas about its utility as well as limitations. For example, in the case of
the Loupe, the use in a scenario about wayfinding with children demonstrated that
the augmented artifact became a goal per se. Children were eager to find out the
next step with the Loupe and were distracted from the real objective: following a
route in a museum to learn about a specific topic.

It’s worth noting here that the use of CoDICE helped to move the focus from
the implementation to the ideas space. Since all our participants had a technical
background they were eager to discuss the technical features of the prototype, but
being forced to think about the object affordances, personas or scenarios made
them realize they had to explore the problem first and then think about the imple-
mentation. Indeed, according to their own comments at the end of the workshop
they did appreciate the possibility of discussing all kind of ideas. As one of them
said “Even though I found documenting every step of the design process a little
boring I understand its usefulness, especially when collaborating with other peo-
ple and when a long time passes from session to session (when the rationale
behind decisions is easily forgotten if not registered). CoDICE provides many
tools to avoid this information loss.”

Tinkering with early prototypes created with ECCE made it possible to test
ideas very quickly. Our participants considered that being able to create their own
prototypes with ECCE was also a very rewarding and productive task. Even if
some of the participants stated they would have liked to create more complex pro-
totypes – a task that was precluded by the limited functionality that ECCE pro-
vides in terms of composition of sensors and actuators – participants still
acknowledged that moving from ideas to something that worked in a very short
time was very useful for them. This finding has been already highlighted by other
agile design methods, such experience prototyping (Buchenau & Suri, 2000).
When the aim is to cover early prototyping of ideas, complexity has to give way
to simplicity. The design of physical artefacts like smart objects deals with issues
that go beyond graphical interfaces and focus on the physicality and affordances
of the devices among others, which can only be tested if the devices are given a
physical shape. Spending too much time implementing different aspects of a phy-
sical prototype, however, can compromise the exploration of more than one idea.
ECCE applies an end-user approach to make it easier the creation of physical pro-
totypes thus supporting broad exploration. The tradeoff is the reduced complexity
of the potential prototypes.

A relevant challenge in co-design is to engage participants into broad explora-
tion processes that not only focus on the first idea but give room and opportunities
to diverge and explore from multiple perspective problems and solutions before
converging into specific ways of action and reflecting over the outcomes (Adams,
Daly, Mann, & Dall’Alba, 2011; Garde & van der Voort, 2012; Sanders &
Westerlund, 2011). The combination of CoDICE that makes it possible to keep in
a persistent and meaningful way ideas and ECCE that allows to give shape to
such ideas offered a co-design space where multiple ideas could be explored both
from a conceptual and physical way.

40715 Integrating End Users in Early Ideation and Prototyping …

Participants valued the capacity to work in a collaborative and distributed
way and share all the information among different groups. The fact that the co-
design workshop can expand beyond the limits of co-located sessions was consid-
ered quite useful since it replicates the way developers and designers work in real
projects. As one of our participants said “The main benefit is that it allows you to
make collaborative brainstorming, without the need to be all together in the same
room. It allows to have something persistent at the end of a co-design workshop
and allows ideas to be shared.”

Another issue that was considered particularly interesting was sharing the same
workspace, so that the entities defined by other groups could be reused or just
examined to look for inspiration. Indeed, when they first opened the tools they
already had an item for each of the conceptual entities as an example to under-
stand better why the entities should be used for but also as an element they could
reuse in their own designs. We all are creative but we do not have all the same
level of creativity or feel equally comfortable when taking part in creative activ-
ities. The possibility of revisiting ideas in a distributed way, help those who are
not so bold to make their own contributions in the comfort area of their own lap-
top. In this way, the tools here presented can help to deal with another typical pro-
blem in co-design workshops: the lack of documentation of participants Also,
being able to revisit all ideas promotes a more reflective practice that is not limited
by the time constraints of co-located sessions.

5 Conclusions

In this chapter we have discussed the use of two tools, CoDICE and ECCE, that
enable end users to ideate, design and prototype physical smart artifacts that aug-
ment user experiences. Compared to end-user tools, the approach here described
focuses not only on the implementation phase but on the whole process that starts
from an idea and evolves into a number of design outcomes that eventually are
implemented. Moreover, it stimulates end users to explore not only one idea but
different options applying a brainstorming process as defined by Osborn (1979).
In this way, the tools provide virtual spaces to keep in a persistent way divergent
and convergent design outcomes so that judgment can be deferred and design
rationale can be elaborated for each of the design decisions taken. In this way, co-
designers can engage in serendipitous processes required to create meaningful
experiences with interactive technologies (Liang, 2012). These design spaces are
also complemented with a tool that facilitates the creation of early prototypes to
physically test ideas following an experience prototyping approach (Buchenau &
Suri, 2000).

The experience gained through the use of the tools in real projects (Díaz et al.,
2015) and workshops shows that software tools can be used to involve end users
in ideation and early prototyping activities without compromising creativity. Our
approach consists on integrating software tools as an alternative design space that

408 P. Díaz et al.

coexists with creative design workshops were generative techniques are used.
Such an alternative space was used to document ideation and design outcomes
and to turn such outcomes into working prototypes that could be tested. In the
evaluation reported in this chapter, the use of the tool forced participants to
explore several ideas. In our experience as interaction design teachers in computer
science, this is a very important activity that needs to be stressed with technical
students who usually prefer to think in the solution rather than spending a lot of
time exploring the problem. From this point of view, we found the workshop and
the use of the tools quite useful from an educational point of view.

The use of the tools in projects and workshops showed that being a bit systema-
tic always pays off for co-designers with a technical as well as a non technical
background. Creativity techniques usually applied in co-design workshops are
very uplifting and fun but not always the participants understand their goal and
purpose in the design process, so they can feel frustrated and discouraged (Sanders
& Westerlund, 2011), particularly if the designer in charge of the session is not
experienced enough as to engage all of them in a meaningful way. The space
shaped by the ideas and design concepts in CoDICE and the rules that determine
the process flow helped to avoid this kind of disorientation in novice co-designers.
They had clear goals to follow with a process that forces them to start from ideas
before moving to design concepts. Also the possibility of linking scenarios, perso-
nas, objects and artifacts provided a view on how all these concepts are interre-
lated and why they have to be defined. Moreover, since there are validation rules
that avoid moving a concept from the ideas space to the design space if it is not
linked with some other components that justify this evolution, our designers were
reminded of the need to think not only on augmented objects but also on the sce-
narios these objects will be used or the types of users who might enjoy them.

The capability of keeping track of all the ideas, even if they are not implemen-
ted, in an integrated and meaningful way helps to revisit and justify decisions and
understand why some ideas were discarded. For instance in the case study in (Díaz
et al., 2015), the designer documenting prototypes remembered why one the poten-
tial scenarios for a prototype didn’t work even though apparently was a good idea,
and she could keep this information in a persistent way, so none will try it again.

However, as all kind of software tools to support creative processes, they are
not devoid of problems. Of course they shape and constraint the way designers
think about their artifacts, since a number of limited entities are managed; but still
these limitations can be worth if the co-design teams is not highly innovative and
does not feel comfortable with too fuzzy processes. Highly creative and expert
designers do not like the idea of documenting their design and providing a ratio-
nale on their decisions, but novice designers and end users need a way to confirm
what they think is a good idea, and trying to put prototypes in context, relating
them with people and scenarios of uses, can be a useful way to look at ideas from
different perspectives.

Acknowledgements meSch is funded by EC FP7 “ICT for access to cultural resources”
(ICT Call 9: FP7-ICT-2011-9) under the Grant Agreement 600851.

40915 Integrating End Users in Early Ideation and Prototyping …

References

Adams, R. S., Daly, S. R., Mann, L. M., Dall’Alba, G. (2011). Being a professional: three lenses
into design thinking, acting, and being. Design Studies, 32(6), 588–607.

Bellucci, A., Díaz, P., Aedo, I., Malizia, A. (2014). Prototyping device ecologies: physical to
digital and viceversa. In: Proceedings of the 8th international conference on tangible,
embedded and embodied interaction (pp. 373–376). New York, NY, USA: ACM.

Bergman, M., Lyytinen, K., Mark, G. (2007). Boundary objects in design: an ecological view of
design artifacts. Journal of the Association for Information Systems, 8(11), 546.

Buchanan, R. (1992). Wicked problems in design thinking. Design Issues, 8(2), 5–21.
Buchenau, M., & Suri, J. F. (2000). Experience prototyping. In: Proc. of the 3rd conference on

designing interactive systems: processes, practices, methods, and techniques (pp. 424–433).
New York, NY, USA: ACM.

Carroll, J. M., & Rosson, M. B. (2003). Design rationale as theory. In: HCI models, theories and
frameworks: toward a multidisciplinary science (pp. 431–461). San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

Chi, P. Y. P., & Li, Y. (2015). Weave: scripting cross-device wearable interaction. In:
Proceedings of the 33rd annual ACM conference on human factors in computing systems
(pp. 3923–3932). New York, NY, USA: ACM.

Cooper, A. (1999). The inmates are running the asylum. Indianapolis, IN, USA: Macmillan
Publishing Inc. Co.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of informa-
tion technology. MIS Quarterly, 13(3), 319–340.

Díaz, P., Aedo, I., van der Vaart, M. (2015). Engineering the creative co-design of augmented
digital experiences with cultural heritage. In: International symposium on end user develop-
ment (pp. 42–57). Switzerland: Springer International Publishing.

Garde, J. A., & van der Voort, M. C. (2012). Participants’ interpretations of PD workshop
results. In: Proceedings of the 12th participatory design conference: exploratory papers,
Workshop descriptions, Industry cases (pp. 5–8). New York, NY, USA: ACM.

Hanington, B., & Martin, B. (2012). Universal methods of design: 100 ways to research complex
problems, develop innovative ideas, and design effective solutions. Beverly, MA, USA:
Rockport Publishers.

Harboe, G., Doksam, G., Keller, L., Huang, E. M. (2013). Two thousand points of interaction: aug-
menting paper notes for a distributed user experience. In: Distributed user interfaces: usability
and collaboration, Human–computer interaction series (pp. 141–149). London, UK: Springer.

Houben, S., & Marquardt, N. (2015). Watchconnect: a toolkit for prototyping smartwatch-centric
cross-device applications. In: Proceedings of the 33rd annual ACM conference on human fac-
tors in computing systems (pp. 1247–1256). New York, NY, USA: ACM.

Kaptelinin, V., & Nardi, B. A. (2006). Acting with technology: activity theory and interaction
design. Massachussetts, MA USA: MIT Press.

Kleinsmann, M., & Valkenburg, R. (2008). Barriers and enablers for creating shared understand-
ing in co-design projects. Design Studies, 29(4), 369–386.

Klemmer, S. R., Newman, M. W., Farrell, R., Bilezikjian, M., Landay, J. A. (2001). The
designers’ outpost: a tangible interface for collaborative web site. In: Proceedings of the 14th
annual ACM symposium on user interface software and technology (UIST ’01) (pp. 1–10).
New York, NY, USA: ACM.

Krippendorff, K. (2005). The semantic turn: a new foundation for design. Boca Raton, FL, USA:
CRC Press.

Liang, R. H. (2012). Designing for unexpected encounters with digital products: case studies of
serendipity as felt experience. International Journal of Design, 6(1), 41–58.

Lieberman, H., Paternò, F., Klann, M., Wulf, V. (2006). End-user development: an emerging
paradigm. In: H. Lieberman, F. Paternò, V. Wulf (Eds.). End-user development, Human-
Computer Interaction Series 9, (1–7). Netherlands: Springer.

410 P. Díaz et al.

Luebbe, A., Edelman, J., Steinert, M., Leifer, L., Weske, M. (2010). Design thinking implemen-
ted in software engineering tools. 8th Design Thinking Research Symposium (DTRS8).
Sydney: University of Technology.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E. (2010). The scratch programming
language and environment. ACM Transactions on Computing Education (TOCE), 10(4), 16.

Markopoulos, P., Mavrommati, I., Kameas, A. (2004). End-user configuration of ambient intelli-
gence environments: Feasibility from a user perspective. In: EUSAI 2004, European Symposium
on Ambient Intelligence. Lecture notes in computer science vol 3295 (pp. 243–254). Springer,
Heidelberg.

Nebeling, M., Mintsi, T., Husmann, M., Norrie, M. (2014). Interactive development of cross-
device user interfaces. In Proceedings of the 32nd annual ACM conference on human factors
in computing systems (pp. 2793–2802). New York, NY, USA: ACM.

Nielsen, J. (1993). Iterative user-interface design. Computer, 26(11), 32–41.
Obrenovic, Ž., & Martens, J. B. (2011). Sketching interactive systems with sketchify. ACM

Transactions on Computer-Human Interaction (TOCHI), 18(1):1–38.
O’Neill, E., Johnson, P., Johnson, H. (1999). Representations and user-developer interaction in

cooperative analysis and design. Human-Computer Interaction, 14(1), 43–91.
Osborn, A. F. (1979). Applied imagination: principles and procedures of creative problem-

solving. 3rd ed. New York, NY, USA: Scribner.
Pokress, S.C., & Veiga, J.J.D. (2013). MIT App inventor: enabling personal mobile computing.

arXiv preprint arXiv:1310.2830.
Rhea, D. (2003). Bringing clarity to the “Fuzzy Front End”. In: B. Laurel (Ed.). Design research:

methods and perspectives (pp. 145–154). Cambridge, USA: MIT Press.
Rittel, H. W., & Webber, M. M. (1973). Planning problems are wicked. Polity, 4, 155–69.
Robertson, B. F., & Radcliffe, D. F. (2009). Impact of CAD tools on creative problem solving in

engineering design. Computer-Aided Design, 41(3), 136–146.
Rosenbaum, E., Eastmond, E., Mellis, D. (2010). Empowering programmability for tangibles.

In Proceedings of the fourth international conference on tangible, embedded, and embodied
interaction (pp. 357–360). New York, NY, USA: ACM.

Sanders, E. B. N., Brandt, E., Binder, T. (2010). A framework for organizing the tools and tech-
niques of participatory design. In Proc. of the 11th Biennial Participatory Design Conference
(pp. 195–198). New York, NY, USA: ACM.

Sanders, E. B. N., & Stappers, P. J. (2008). Co-creation and the new landscapes of design.
Co-design, 4(1), 5–18.

Sanders, E. B. N., & Westerlund, B. (2011). Experiencing, exploring and experimenting in and
with co-design spaces. In Proc. nordic design research conference (pp. 298–302). Helsinki,
Finland: Aalto University.

Schön, D. A. (1983). The reflective practitioner: how professionals think in action 5126, New
York, NY, USA: Basic Books.

Simon, H. A. (1996). The sciences of the artificial. Cambridge, MA, USA: MIT Press.
Terrenghi, L., Quigley, A., Dix, A. (2009). A taxonomy for and analysis of multi-person-display

ecosystems. Personal and Ubiquitous Computing, 13(8), 583–598.
Ur, B., McManus, E., Pak Yong Ho, M., Littman, M. L. (2014, April). Practical trigger-action

programming in the smart home. In Proceedings of the SIGCHI conference on human factors
in computing systems (pp. 803–812). New York, NY, USA: ACM.

Venkatesh, V., Morris, M. G., Davis, G. B., Davis, F. D. (2003). User acceptance of information
technology: toward a unified view. MIS Quarterly, 27(3), 425–478.

Yang, J., & Wigdor, D. (2014). Panelrama: enabling easy specification of cross-device web
applications. In: Proceedings of the 32nd annual ACM conference on human factors in com-
puting systems (pp. 2783–2792). New York, NY, USA: ACM.

Zimmerman, J., Forlizzi, J., Evenson, S. (2007). Research through design as a method for inter-
action design research in HCI. In: Proceedings of the SIGCHI conference on Human Factors
in Computing Systems (pp. 493–502). New York, NY, USA: ACM.

41115 Integrating End Users in Early Ideation and Prototyping …

An End-User Development Framework
to Support Quantified Self in Sport Teams

Stefano Valtolina and Barbara R. Barricelli

Abstract In the IoT domain, communities of domain experts, having different skills
in specific areas of endeavor, need effective and easy-to-use ways for managing
physical devices and their data streams. The configuration of networks of sensors,
the design of the business logic of IoT applications based on proper policies, and
the visualization and analysis of relevant events can be successfully carried out if
different competencies are brought into play. Starting from a definition of End-User
Development designed around the pervasive requirements of IoT applications, we
describe an End-User Development model and a related three-layered architecture
used for the development of the SmartFit framework. SmartFit is designed to
be used in non-professional sport teams and is constituted by three different envi-
ronments, respectively for IoT Engineers, Coaches and Trainers, and Athletes.

Keywords Interaction design · Internet of Things · End-user Development ·
lifelogging · quantified-self

1 Introduction

Nowadays networks of sensors and mobile apps allow to digitally monitoring the
physical world and take real-time actions on data upon the occurrence of specific
relevant events. These conditions enable the Internet of Things (IoT) to have a
profound impact on our daily lives, including technologies for home, health, and
environment monitoring. IoT is deeply changing the way we interact with physical
objects and the environment. Success in designing and developing tools and
services based on IoT requires a broad approach that includes expertise in sensing
hardware, networked systems, human-computer interaction, usability, and data

S. Valtolina (✉) · B.R. Barricelli
Università degli Studi di Milano, Milan, Italy
e-mail: valtolina@di.unimi.it

B.R. Barricelli
e-mail: barricelli@di.unimi.it

413© Springer International Publishing AG 2017
F. Paternò, V. Wulf (eds.), New Perspectives in End-User Development,
DOI 10.1007/978-3-319-60291-2_16

management. IoT adoption could be further encouraged by the application of a
multifaceted and interdisciplinary approach that often transcends technology and
focus on requirements regarding privacy, user experience, public policies, and
regulatory issues.

These requirements can be explicated by domain experts who are not technical
experts but know well their context of work, have the competence for controlling
dataflows, and are able to detect interesting events or anomalous situations.
Experts in healthcare, wellness, fitness, and ambient intelligence are examples of
domain professionals that can take advantage by adopting an IoT ecosystem of
tools and services for detecting, handling, and advising people on the occurrence
of critical events (e.g., a patient taking an inappropriate behavior, an athlete asking
more of her/himself than is reasonable). Beside physical sensors, for phenomena like
temperature and humidity detection, domain experts need also to control personal
sensors able to gather biological data (e.g., heartbeat, quality of sleep).

IoT ecosystems include devices that interact in rich and complex ways. One of
the main risks in designing tools for domain experts is to force them in spending
time and efforts in tasks aimed at configuring software and hardware components
that are in constant flux. This is a typical task for IoT engineers, whereas domain
experts have to focus on other aspects of the process, aimed at taking critical deci-
sions on the base of the monitored flow of data.

This leads to the establishment of a network of interdisciplinary stakeholders
bound together by common objectives but playing different roles and having
competencies according to their work activities and processes. The involved stake-
holders constitute three distinct Communities of Practice (CoPs), having different
expertise, that need to design and develop efficient and effective software for
complex IoT ecosystems; this requires new approaches to software development
including tools and practices that reflect the changing needs of designers and
developers. This chapter presents an evolution of what published in (Barricelli &
Valtolina, 2016) and (Barricelli & Valtolina, 2017).

Specifically, in this chapter we present and discuss our sociotechnical study on
the design and development of IoT ecosystems to be used to monitor sleep, food
intake, exercise, mood, and other behaviors that characterize people health land-
scape. In this field, one of the clearest and complete examples can be identified in
the management of sport teams.

Coaches and trainers have to monitor what their athletes are or are not doing;
for example, sleep is not an active time but it is just as essential as the training
activities an athlete will do in track and field. Indicators of nutritional compliance
and psychological states, such as the mood, in combination with burned calories
can bring to change the training plans. Finally, a good heart rate monitor or other
sensor can get simple data such as the recovery rate after active rest sessions that
can be used for setting up the day’s load. Moreover, the promise of a cheaper,
better, and efficient healthcare monitor brings us to take into account non-
professional sport teams that need to gather data from heterogeneous devices and
apps, unlike of professional teams that they can count on specialized laboratories
and medical centers.

414 S. Valtolina and B.R. Barricelli

The peculiar structure of non-professional sport organizations is characterized
by the existence of small teams with athletes who live different kind of lives,
being professionals in different domains and meeting only for some hours a week.
Keeping track of their habits, in terms of physical activity, nutrition, and sleep,
would help the coaches in understanding the variety of the team members and in
finding successful plans of training. For managing such application domain, we
need to adopt End-User Development (EUD) techniques for supporting non-
experts in computer science in designing services and dataflows (Costabile, Fogli,
Mussio, & Piccinno, 2007; Fischer, Giaccardi, Ye, Sutcliffe, & Mehandjiev, 2004;
Petre & Blackwell, 2007).

In a non-professional sport organization, we need to take into account two
classes of problems that involve stakeholders with different competencies. The
first problem concerns the need of collecting and combining data from heteroge-
neous devices able to gather the athletes’ physiological states, nutrition behavior,
and mood. Several challenges should be faced for handling data that are heteroge-
neous in structure (different types), in spatial and/or temporal granularity, and in
thematic. Therefore, there is the need of services to be applied during data acquisi-
tion in order to properly identify the relevant streams when significant events occur
and to undertake the proper actions. For this reason, we need to involve a figure like
the IoT engineer able to understand the meaning of data acquired and how to com-
bine and handle them according to the type of the gathered data or the sampling or
granularity with which they are acquired. This task cannot be carried out by coaches
and trainers who are not experts in handling stream of data but who, on the other
hand, are the only domain experts able to detect significant or critical events once
the dataflow has been generated. To do so they need a tool for composing control
rules able to trigger warnings in case specific conditions are met.

The idea is to empower the domain experts for making them become unwitting
developers. Therefore, in such context, EUD activities need to support IoT engineers
for controlling and configuring more than one sensor/device (even of different
brands) in order to combine, aggregate, and port data coming from different data
sources. Then, we need to devise EUD strategies for supporting domain experts in
defining business polices and rules for detecting relevant and critical events. This
chapter aims at presenting an architecture designed around a EUD methodology
addressed to provide different CoPs, respectively of IoT engineers and domain
experts, with proper environments that according to their competencies can be used
for configuring, manipulating, and accessing the flow of data and events that charac-
tering their IoT domain.

2 Design Model

The knowledge associated with the design of the highly dynamic data processing
that characterizes an IoT system is tacitly distributed among the various design com-
munities (Fischer, 1999, 2000; Rittel & Webber, 1973). Specifically, in lifelogging

41516 An End-User Development Framework to Support Quantified Self in Sport Teams

and quantified-self applied to the management of non-professional sport teams, the
communities are: IoT engineers, Coaches and Trainers, and Athletes.

IoT sensors/devices engineers are in charge of connecting, maintaining, and
setting up the devices and sensors to be used by the IoT ecosystems and its users
(coaches, trainers, and athletes). Their system enables the design of data flows by
dragging and dropping data sources and applying visual operators to them for
filtering, transforming, aggregating and composing the gathered data. The role of
coaches and trainers is to collaborate in guiding, instructing, and training the
members of a sport team. To exploit at best, the potentials of IoT in their practice
requires a specialized interactive system for designing rules able to define what
actions have to be performed in response to specific events. They act as End-User
Developers by designing the rules to be used to supervise athletes’ performances
and lifestyle and they also analyze the gathered data in their interactive system.
Finally, athletes can be seen as the ones who generate the data gathered by
the IoT sensors and devices on the basis of which coaches and trainers created
the rules for ehancing their lifestyle and sport performances. A tailored inte-
ractive system can be used to have a view on their behavior and performances at
any time during the day.

Several solutions have been proposed to bridge the communication gap that
exists among the different CoPs and to design usable interactive systems
(Costabile et al., 2007; Zhu, Mussio, & Barricelli, 2010). In the last 4 years, we
defined and widely applied the Hive-Mind Space (HMS) model (Zhu et al., 2010),
an evolution of the SSW methodology (Costabile et al., 2007). HMS, depicted in
Fig. 1, is aimed to support multidisciplinary design teams’ collaboration and to
foster their situated innovation by means of several EUD methods. The model
provides localized habitable environments for diverse stakeholders and tools for
tailoring the system, allowing the co-evolution of systems and practices. Layered
levels of participation give access to different degrees of tailoring and system

Meta-Design Level

Boundary Zone

Mediation Agent

Shared

(Common meeting
space, create and
exchange boundary
objects)

An open development
infrastructure allows
new plug-ins to be
implemented)

Knowledge Base
(Exchanging data
with other communities)

Design Level

Use Level

Fig. 1 The hive-mind space model

416 S. Valtolina and B.R. Barricelli

complexity. Boundary objects and boundary zones are used within the HMS
model to facilitate the communication amongst stakeholders as well as their
participation. HMS follows a bottom-up approach that breaks down static social
structures to support richer ecologies of participation. It provides means for struc-
turing communication and appropriation over time and it extends the “boundary
object” concept with open mediation mechanisms to tackle unforeseen communi-
cation gaps among different design communities. The HMS model supports three
different levels of participation and design activities: (i) Meta-design level, where
software engineers maintain the system and design environments for domain
experts; (ii) Design level, where domain experts design environments for end
users; (iii) Use level, where end users use the environments and tools. For the
CoPs we consider in the specific IoT application domain, at Meta-design Level
the IoT engineers CoP operates, at Design Level there is the Domain Experts Cop,
while Use Level is dedicated to General Users CoP. The HMS model can be
adapted for supporting the design of IoT ecosystems at design and meta-design
level relying on the concept of space and time data model as described in Sect. 3.
In our solution we identify a stream with both its temporal and spatial dimensions
that can be exploited from one side for the identification of the useful information
needed to face a given event and from the other side for the analysis and forecast
of useful activities for notifying people.

The HMS introduces a central communication channel serving as a boundary
zone that supports the exchange and management of boundary objects. In our
solution, there are two types of boundary objects. The first type is exchanged
among the IoT engineers and the coaches and trainers for assessing what data
have to be extracted from the sensors’ streams and how they need to be aggre-
gated and filtered. The second type are the rules created by coaches and trainers
that are discussed with representatives of the athletes. In the current version of
the SmartFit Framework, the boundary zone is implemented as an asynchronous
private messages tool but will be further developed for offering more powerful
features (e.g. synchronous communication). In this way, according to the HMS
model, our solution provides: (1) sensors and services configuration that are not
fixed but can be easily adapted and enlarged to meet the users’ needs; (2) new
solutions can be drafted, which leave enough space for proposing creative add-
ons during design for use as well as during use. Our model follows a bottom-up
approach that breaks down static social structures to support richer ecologies of
participation. Fig. 2 presents the dataflow that characterizes the case study
described in Sect. 3. It offers three different levels of participation and design
activities: (i) Dataflow design level; (ii) Rules design level; (iii) Rules deploy-
ment, where the rules are deployed and end users use the environments and
tools. In the rest of chapter, we will focus only on the environments used by IoT
engineers (at Dataflow design level) and the coaches and trainers (at Rule design
level), because better describe the EUD activities that are behind the creation of
rules.

In what follows, we present the SmartFit case study by which we experiment
the potentials of our solutions both at meta-design and design level. All the

41716 An End-User Development Framework to Support Quantified Self in Sport Teams

interactive systems used by IoT Engineers, Coaches and Trainers, together with
the IoT devices, constitute the SmartFit Framework. SmartFit aims at offering a
set of graphical visual environment for exploiting the potentials of an IoT environ-
ment in the domain of non-professional athletes training.

3 Dataflow Design

At dataflow design level, IoT Engineers need to configure the network of sensors
and services for managing the data-flow to be served at the rules design level. The
outcome of this environment is the detection of a set of relevant events that
coaches and trainers need to manipulate for monitoring the physical activities or
daily behavior of their athletes. We identify an event with its temporal, spatial,
and thematic dimensions that can be exploited both for the identification of the
useful information needed to face a given event and for the analysis and forecast
of useful activities to be notified to the users.

3.1 State of the Art for Visual Design of ETL Operators

Dataflow design systems supporting a wide range of operations have been proposed
in different contexts depending on the kinds of data to handle (structured and semi-
structured). In (Gorawski & Gorawska, 2014; Theodorou, Abelló, Thiele, & Lehner,
2014; Vassiliadis, Simitsis, & Skiadopoulos, 2002; Zhou, Yang, & Xu, 2012) there
is a good treatment of ETL (Extract, Transform, Load) operations at the conceptual
level for feeding a Data warehouse. Moreover, approaches for the semi-automatic
generation of ETL operations depending on the user needs and context of use are
proposed in (Theodorou et al., 2014).

Dataflow design

Transform Before

After

Synch

Join

Join

Time

Space

Filter

Enhance Aggregate
Action

e1

e4

e2

e2

e5

e3

Rules design Rules deployment

Fig. 2 The different environments in the eWellness application domain

418 S. Valtolina and B.R. Barricelli

ETL operations refer to a process in database usage and are usually coupled with
graphical visual dataflows for helping the user in the identification of the original
data sources, the application of the operations for extracting, cleaning, transforming
and combining their data. These approaches have been mainly developed for produ-
cing relational data to feed conventional Data Warehouse (DW) System. Moreover,
approaches for the semi-automatic generation of ETL operations depending on the
user needs and context of use are proposed in (Mesiti, Valtolina, Ferrari, Dao, &
Zettsu, 2015) and (Mesiti & Valtolina, 2014). ETL operations are usually coupled
with graphical visual dataflow for helping the user in the identification of the origi-
nal data sources and the application of the operations for extracting, cleaning, trans-
forming and combining their data. Once the ETL specification is completed, some
strategies are proposed for the optimization of the data-flow and for the efficient
execution of the loading schedule. These approaches have been mainly developed
for producing relational data to feed conventional DW systems. In (Mesiti &
Valtolina, 2014) an approach is presented for feeding arbitrary target sources (either
relational or based on a NoSQL system). Commercial systems such as Talend
Studio,1 StreamBase Studio,2 Waylay.io,3 Node.Red4 offer graphical interfaces for
designing workflows and dataflows as graphs of connected nodes representing tasks
and data-sources. While Talend works on static data coming from fixed data-
sources, StreamBase, WayLay and Node.Red can receive and analyze continuous
data streams and are specifically designed for IoT. These environments provide rich
user interface support for the full application lifecycle but they are desktop-based
systems and in some cases, specific conditions can be only created by adopting
strategies based on programming languages paradigms (as for StreamSQL in
StreamBase Studio) or by personalizing existing templates having well-defined
trigger policy (as in Waylay.io or Node.Red).

These systems offer a composition paradigm based on the use of graphs for repre-
senting the flow of data that are generated by sensors and services. This notation fits
very well the mental model of IoT experts who are used to adopt a visual representa-
tion where nodes representing data inputs, outputs, and functions are connected with
edges that define the data flow between components (Blackstock & Lea, 2014;
Guinard, Trifa, Mattern, & Wilde, 2011). Nevertheless, these systems are not able to
support multidisciplinary requirements of the stakeholders at all different levels of
the IoT design chain. What is missing in these solutions is a clear separation from
the IoT engineers’ task that concerns the need to configure a network of data sources,
by the task itself that is aimed at supporting domain experts in expressing policies
and rules for managing the dataflow and for detecting relevant events. For these lat-
ter, a graph-based notation introduces severe problems that downgrade performance
and satisfaction due the need to adopt a too technical and programming-oriented

1www.talend.com
2www.streambase.com
3www.waylay.io
4https://nodered.org/

41916 An End-User Development Framework to Support Quantified Self in Sport Teams

http://www.talend.com
http://www.streambase.com
http://www.waylay.io
https://nodered.org/

behavior (Namoun, Nestler, & De Angeli, 2010). For this reason, we need to sepa-
rate the data-flow design environment by a task automation tool that aims at enabling
non-technical domain experts to associate “condition” with “action” according to an
ECA (Event-Condition-Action) paradigm to use at rule design level (Ng, 2015).

Finally, another problem affecting visual programming environments such as
Talend Studio, StreamBase Studio, Waylay.io, or Node.Red concerns the fact that
their visual notation is not adequate for meeting the real characteristics of the knowl-
edge base that IoT engineers have to use for configuring the data-flow. In other words,
it is important to foster domain-specificity, a quality that is fundamental in IoT plat-
forms (Casati, 2011). In order to allow IoT engineers to make sense of the services,
sensors, and objects that are available for composition, it is indeed important to restrict
the platform to a well-defined domain, represented through adequate notations the
users are comfortable with. The idea is to provide a unified description schema of the
knowledge base able to describe resources and their semantic relationships. For this
reason, our tool is designed for simplifying the developing of data extraction features
able to acquire data according to their spatio-temporal-thematic dimensions.

3.2 Visual Dataflow Design System

We designed a meta-design environment for helping the IoT engineers to detect
relevant events by exploiting three dimensions of the data-flow: Space, Time, and
Theme. Relying on the concept of event, we can characterize an event stream that
a source (either sensor or service) can produce.

As an example, let us consider a sport scenario where a trainer wishes to moni-
tor the physical conditions of her/his athletes for suggesting better exercises or for
warning them about anomalous situations. For example, a possible anomalous
situation is the overtraining syndrome (Budgett, 1990) that can be described as a
consequence of high intensity and/or large volume training associated with insuffi-
cient recovery, potentially leading to impairment of both physical performance
and training capacity. Many factors have been described to enhance the risk of
overtraining states, including a variable resting heart rate, inadequate nutrition
and/or weight loss, sleep patterns, environmental conditions, and psychological
stressors.

For simplifying we consider to put together the following sensors and services:
(i) An electronic bracelet for gathering data about the heartbeat, the quality of
sleep (hours of sleep, number of awakenings for night, and minutes of restless
sleep), the burned calories and the physical (number of steps or kilometers
walked); (ii) a calorie counter app, (iii) a mood tracker app and finally. At the first
stage of design, before to understand the problem of the overtraining syndrome
and how to check critical situations, we need a strategy for putting together hetero-
geneous data coming from different devices and apps. At this stage, we need to
involve IoT engineers who understand the schemas of the data sources; they are

420 S. Valtolina and B.R. Barricelli

able to combine the data for producing a flow of events that the trainer or coach
can monitor and according to which they define a set of conditions at rule design
level that, if met, can trigger a warning. The data collected by these types of sen-
sors and services can be characterized by the time dimension (when the parameters
have been detected), the space dimension (where they have been detected) and the
theme is the meaning associated to a value or a set of values.

In our approach, EUD activities take place during the meta-design where the
system enables IoT Engineers to design data-flows for transforming, enriching,
and combining data. These EUD activities are exploited for executing efficiently
and effectively ETL operators. So far, several operations have been developed for
processing and combining the streams produced by the sensors (Mesiti &
Valtolina, 2014).

According to this design strategy, we developed a web-based system, named
StreamLoader, that offers facilities for the development of data-flows specifically tai-
lored for heterogeneous sensor and service data through the definition of a graph of
operations that load, filter, transform, aggregate, and compose different kinds of
stored and stream data relying on the context in which they are acquired. Following,
in describing these operations in details, with data-stream we mean the flow of data
coming from a specific sensor or service that is described by its data-schema.

The Transform operation allows the users to apply a transformation function on
the properties of the data schemas. At the current stage, the following transforma-
tion functions have been considered: (i) for changing the unit of measure (e.g.
from yards to meters); or (ii) for checking that data conform to given validation
rules (e.g. dates conforming to given patterns). However, further functions can be
easily integrated in our framework. The Aggregation operation allows the users to
aggregate every t time interval, the data-stream of a sensor or a service on a set of
properties by applying an aggregation function: count, avg, sum, min, max on the
other properties. The temporal granularity t of the aggregation function needs to be
compatible with the one of the data-stream (both have to be expressed in minutes or
hours or other time measure unit). The Union operation allows the users to union
the data-streams produced by different sensors in the same time window and
produce a new stream of data. The Join operation allows the users to make in corre-
spondence two data-streams when their temporal and spatial granularity are identical
and the join predicate is verified. The evaluation of the join is window-based, that
is, it is performed on the data collected from the two streams in a given temporal
interval and produce a joint data-stream having a new associated theme. The Enrich
operation allows the users to include extra information to the data-schema by adding
a new property coming from the data-schema of other sources. The binding between
the current data-stream and one from which the property is inherited is realized
through a join function. The spatio-temporal granularity of the two data-streams
need to be compliant. The Virtual Property operation allows the users to include a
new property to the schema according to a given specification. This specification is
an arithmetic expression allowing to determine the value of the property relying on
the values of the other properties of the data-schema.

42116 An End-User Development Framework to Support Quantified Self in Sport Teams

The final result is a flow of data that can be used in a dedicated environment by
domain experts (e.g., Coaches, Trainers), not necessarily expert in IoT technologies,
for defining rules to monitor specific situations and to adopt suitable actions according
to the occurrence of particular conditions.

In our example, the data-streams might concern the user’s physical conditions,
which will be used for suggesting what exercises are better to perform, or which
precautions to follow for improving the quality of live. To help the trainer in
taking proper decisions and precautions, StreamLoad has to provide a set of data-
flows about heartbeats, quality of sleep, physical activities, burned calories and
caloric intake and mood status. By using StreamLoader, in order to provide such
data-flows, IoT engineers have to manage the data-schema of each sensor or app
involved. First, the schema of each sensor needs to be mapped to an internal data
model in which, when available, the temporal, spatial and thematic dimensions are
pointed out. This guarantees the adoption of a common model within our system
(tough at this level we cannot guarantee the adoption of the same semantics).
Then, some operations are composed for filtering, combining, aggregating and
enhancing the data-streams produced by the sensors/apps in order to lead to the
specific calculus interested in the analysis. We remark that these operations are
specified at the logical level and the user does not bother where they are actually
executed.

Consider the situation described in our example, the IoT engineer has to
combine data in order to produce a flow concerning the physical activity about an
athlete. This athlete uses an electronic bracelet for gathering the heartbeat, the
number of steps and meters walked and a mobile app that registers the burned
calories and the kilometers traveled on foot or by bike. Fig. 3 presents the
StreamLoader interface and the case in which the six streams, three from the
bracelet and three from the mobile app, are managed. In Figure the rectangles
represent the streams and for each one is indicated the type of data (e.g., heartbeat,
distance, num. of steps) and in round brackets its unit of measure. On the bottom
of the screenshot is visualized further information about data source of the selected
stream (Bracelet_HR01 – Heartbeat Rate in Fig. 3).

First of all, the IoT manager has to transform the meters walked gathered
by the bracelet in kilometers. Then s/he has to combine, through the Union
operator, the kilometers walked that are retrieved by the two data-sources (for
example calculating the average in the same time window). Finally, s/he has to
join the streams in a unique data-flow that represents the athlete’s physical
activity. Then, the coach or trainer will create the rule needed to check when
the quantity of the distance covered (number of steps or kilometers traveled) in
combination with the heartbeat or the burned calories can be considered inten-
sive, moderate or light training activities. The Join operator is based on the
temporal dimension that is defined by using the detected timestamp according
to a given measurement unit of the sampling time. In the same way, it is
possible to produce other data-flows related to the nutrition behavior, quality of
sleep and mood status. Alternatively, it is also possible to handle the data in order
generate new information. For example, through Virtual property operation, the

422 S. Valtolina and B.R. Barricelli

data-stream related to the heartbeat could be enriched by adding a new property that
is used for describing the standard deviation that is, the amount of half-hourly varia-
tion or dispersion of the heartbeats.

The thematic of the data-flow generated in the StreamLoader, is provided by
the name used for creating a data-stream. For example, in Fig. 3, the name
“Physical Activity” is associated to the schema representing the final data-flow
and it is used for communicating the real meaning of the data-flow to deliver to the
Rule Editor. The semantic of the data-flows in an understandable way for the trainer
that has to take proper decisions and precautions according to the monitored data-
flows. The thematic can assist domain experts to select correct data-flows to provide
proper rules according to their needs.

4 Rules Design

The meta-design environment described earlier and used by IoT Engineers, constitu-
tes the base for providing coaches and trainers with the possibility to manipulate the
flow of events in order to monitor the physical activities or daily behavior of their
athletes. The design environment for manipulating these events aims at offering a
graphical visual strategy for exploiting the potentials of an IoT environment in the
deployment of rules.

Fig. 3 The meta-design system for dataflow design

42316 An End-User Development Framework to Support Quantified Self in Sport Teams

4.1 State of the Art of Visual Rule Editors

Systems like JBoss Drools,5 OpenRules,6 and IBM WebSphereJRules7 provide
platforms for supporting users in creating complex rules to trigger proper actions
when specific conditions occur. In these environments, the coding of complex
rules is generally performed by skilled technicians through ad-hoc Rule Engines.
Once specified, rules need first to be translated in executable code and then
enforced by means of Rule Engines. These engines offer different solutions for
editing, managing, and executing rules and in some cases they also provide func-
tions for graphically modeling the execution data-flows by applying a set of rules.
Nevertheless, what it missing is the possibility to graphically specify these rules.
Moreover, in real contexts of use, the definition of rules is performed by domain
experts that are not experienced technician and prefer to use natural language or
graphical notations. In order to offer an easier way for editing rules, in (Kaczor,
Nalepa, Łysik, & Kluza, 2011) the integration of Drools and the XTT2 rule repre-
sentation and the HQEd visual rule editor is proposed. The results of the modeling
are translated in Drools Language (DRL) files, which can be executed by the
Drools engine. However, the weakness of these approaches is that the XTT2
language has not been standardized and has several limitations as reported in
(Kaczor & Nalepa, 2012) despite the high expressivity of DRL. Another paper
presents a solution for graphical modelling of rules (Bona, Re, Aiello, Tamburo, &
Alessi, 2011) that are then automatically translated in the programming language
supported by the adopted rule engine. In this case, the graphical editor is integrated
in Drools Guvnor that provides a guided text editor for writing rules that are then
translated into the Drools rule engine compliant language. The expressivity of the
visual language, however, is reduced with respect to drools textual language espe-
cially for what concerns the specification and processing of complex events. Other
visual strategies typically used in IoT field for modelling Event-Condition-Action
rules can be described through the most famous systems that apply them: IFTTT,8

Atooma,9 and Yahoo’s Pipes.10 In (Lucci & Paternò, 2014) authors discuss how the
first two design strategies support users without programming knowledge to define
their context-dependent applications. In the paper, the design strategies provided by
such tools are investigated in term of their expressiveness and usability. These tools
allow users to define sets of desired behaviors in response to specific events. This is
made mainly through rules definition-wizards that rely on the sensors/devices
states. Rules can be typically chosen among existing ones or can be tweaked
through customization. These activities put in place a task automation layer across

5http://www.drools.org/
6http://openrules.com/
7http://www-01.ibm.com/software/integration/business-rule-management/jrules-family/
8https://ifttt.com
9http://www.atooma.com/
10https://pipes.yahoo.com/pipes

424 S. Valtolina and B.R. Barricelli

http://www.drools.org/
http://openrules.com/
http://www-01.ibm.com/software/integration/business-rule-management/jrules-family/
https://ifttt.com
http://www.atooma.com/
https://pipes.yahoo.com/pipes

all sensors/devices in the IoT environment. The visual strategy aims at creating
automated rules by using graphical notation for programming statements such as:
“IF this DO that” or “WHEN trigger THEN action.”

A second type of applications stems from the outstanding work done with
Yahoo’s Pipes. Such applications offer solutions based on graphical environments
for data transformation and mashup. The idea is to provide a visual pipeline genera-
tor for supporting end users in creating aggregation, filtering, and porting of data
originated by sources. The visual strategies adopted by following IFTTT or Yahoo’s
Pipes compliant solutions are promising techniques but, in our opinion, they present
some lacks. The former offers a very simple and easy to learn solution based on the
definition of ad hoc rules that can notify the end users when something happens –
e.g. when their favorite sites are updated, when they check-in in some places or their
friends do, or warn them when specific weather conditions are going to take place.
However, the language is not enough expressive for the specification of more
sophisticated rules based on time and space conditions. On the other hand, the latter
offers a too complex solution for supporting the end user in expressing their prefer-
ences. Pretending that end users can deal with APIs of several sensors/devices put at
risk the success of the visual approach. Moreover, events in each stream of an IoT
scenario, are time and space dependent and so the related rules need to take into
account these type of conditions. Nevertheless, in the described systems, time and
space dimensions are almost neglected.

4.2 Visual Rule Editor

Once the relevant events for a given analysis have been identified by IoT engi-
neers, rules should be defined for specifying the action to be actuated when speci-
fic events occur. All the possible events and the access to the data gathered via the
IoT devices connected to the SmartFit network are made available to the domain
expert in the Visual Rule Editor. They are ready to be used for creating rules and
in case the domain expert needs specific changes in the events, an asynchronous
communication tool is available. The objective of the Visual Dataflow Design
System is to generate a flow of events which is the result of IoT engineers’ activ-
ities aimed to collect, transform, and aggregate heterogeneous data streams coming
from different sensors. Instead, the Visual Rule Editor focuses on allowing domain
experts (coaches and trainers) to monitor such flow of events for detecting signifi-
cant situations by means of the specification of suitable rules.

The rules generated by domain experts using the Rule Editor extends the
IF-THIS-THEN-THAT approach and supports the definition of rules in a more
articulated way. Moreover, time and space dimensions are exploited and adopted
for expressing more loose rules in the statements. Specifically, the time dimension
allows domain experts to set rules that can be fired at some specific time, delayed
in case of certain conditions are verified, and may be repeated until some event
happens. The time dimension can also be used for creating temporal rules by using

42516 An End-User Development Framework to Support Quantified Self in Sport Teams

temporal operators that point out temporal correlations among spatio-temporal
events. In (Behrend, Dorau, & Manthey, 2009) the authors propose a set of func-
tionalities to be implemented with triggers written in SQL:1999 standard that
cover three types of temporal categories – absolute, periodic, and relative – and
allow to base delay or periodic repetition on valid time or transaction time events,
respectively. According to this proposal of functionalities, we can provide domain
experts with a new set of temporal operators opt ∈{before, after, when}. The dif-
ferent combinations of temporal conditions on rules that can be specified using
these temporal operators according to the Allen’s work on temporal logic (Allen,
1983). To implement the Drools rules editing in an interface would force the user
to select among a set of different type of presets that are not very recognizable
without effort. In fact, Drools has a set of 13 temporal operators: After, Before,
Coincides, During, Finishes, Finished by, Includes, Meets, Met by, Overlaps,
Overlapped by, Starts, and Started by. All 13 operators have different meaning but
some of them are not very distinguishable from one another. In our editor, we
only use the temporal operations Before, After and When and this reduces the
complexity of generation of temporal rules, in respect to typical rule languages as
the one used by Drools.

Let us propose an example for proving the reduced complexity in our Rule
Language is the creation of a complex temporal condition:

An event n starts from15 to 20 minutes before that the event m starts; the two
events are overlapped and n ends 2 minutes after m ends.

The sample rule in Drools can be expressed by the following instruction:
$n : n(this before[15m, 20m] $m) && $n : n(this finishes [2m] $m)
In our Rule Editor, the creation of such conditions not only can be performed

by using a less number of operators without to lose expressivity but, it takes place
by asking the user to select only a set of parameters so s/he can write the condi-
tions by adopting a more natural language. As explained later, by using the Rule
Editor interface the domain expert is driven in the composition of this rule:

The event n starts from 15 to 20 minutes before the event m and ends 2 minutes
after

The framed parameters are the only parts of the sentence customized by the
user by using a select widget. The writing of this sentence enables to trigger
proper temporal operations in order to execute the rule into the Rule Editor. The
interaction with the system is extremely easy, fast, and results in the creation of a
natural language sentence that is very easy for the user to understand, even if s/he
reads them a long time after it has been created. On the contrary, the same
temporal condition, if expressed in Drools, would force the user in understanding
which one of the available operators to use.

With regard to the space dimension, by exploiting the thesaurus of named loca-
tions, it is possible to create rules for specifying that an event happens in the same
place or close to a place where another event happens. The closeness is checkable
by comparing the coverage areas of each location as indicated in the thesaurus.
Say that an event happens within 300 m where another event happens, means that,
if the coverage areas are polygons, then the maximum distance between the closer

426 S. Valtolina and B.R. Barricelli

vertexes is less than 300 m. Instead, on case a coverage area is a circle, the
maximum distance is calculated from the geographical point of its center plus the
length of the radius.

4.3 Rule Editor Interface

The Rule Editor user interface leverages the issues required for expressing com-
plex conditions leading to a system that can be easily used by non-expert users.
As depicted in Fig. 4 the interface is based on select widgets that are populated by
using the attributes that characterize the JSON of the flow of events produced by
the IoT Engineers with the StreamLoader environment. Through a visual notation,
domain experts can specify conditions and temporal operations for implementing
the business rules that characterize their activities. The Rule Editor aims at
allowing non-technical people to specify rules by using simple drop-down menus.
The conditions can be composed by combining groups of statements connected by
using the AND/OR operators. The order of the conditions can be changed by the
user just by dragging and dropping the statements into the right position. Domain
experts can filter data on a certain period of time set by using the “validity interval”
parameter (see Fig. 4).

Fig. 4 Example of the composition of a rule named “Bad sleep” which aims at monitoring if the
hours of sleep are less than 7 AND the number of awakenings for night is greater than 5 AND
the minutes of restless sleep is greater than 90

42716 An End-User Development Framework to Support Quantified Self in Sport Teams

By considering the scenario presented in the previous section, an example of
Composite Rule creation is given in Fig. 4 where the trainer has defined a rule
named “Bad sleep” for monitoring the athletes’ quality of sleep. The creation starts
from taking into account the data-flow that concerns the quality of sleep and that
reports the 3 days average of the hours of sleep, number of awakenings for night,
and minutes of restless sleep. The created rule checks if the hours of sleep are less
than 7 AND the number of awakenings for night is greater than 5 AND the min-
utes of restless sleep is greater than 90. Another possible rule can check if at day
the burned calories are less than 1,000 and the caloric intake is greater than 1,500
in order to monitor an inadequate nutrition status.

An example of use of OR operator is presented in Fig. 5. In this case, the trainer
wants to check the athletes’ mood status. The rule “Bad Mood” is meet is the col-
lected mood is either “sad” or “angry” or “anxious.” Another possible example could
be used for detecting when a day is characterized by bad environment conditions,
that is, when the Wind Chill is less than –20 (that is, low temperature and a strong
wind) OR greater than 30 (that is, hot temperature and absence of wind). Finally, a
rule can be defined for checking a variable resting heart rate (Fig. 6). In this case,
the trainer has to define two rules on the base of these conditions: (i) minutes of
sedentary activities more than 50 minutes each hour (ii) standard deviation of the
heartbeats more than 10 each half-hour. However, the two rules have to be
connected by a temporal condition in order to monitor if the athlete has a variance
of the heart rate during resting time. In other word, we need to monitor the heart-
beat standard deviation WHEN the physical activities are low. Temporal condi-
tions are defined using the automatically assigned names of the Rules as elements
to be composed (e.g., E1, E2 in Fig. 6). An example of complex temporal condi-
tion can be E1 (sedentary activity duration more than 50 minutes) starts before

Fig. 5 Example of the composition of a rule named “Bad Mood” which aims at monitoring if
the athelte’s mood is either “sad” or “angry” or “anxious.”

428 S. Valtolina and B.R. Barricelli

of the E2 (standard deviation of the heartbeats more than 10) and ends after
E2 ends. In other words, the trainer wants to check if her/his athletes when they
do not do light, moderate or intense physical activities, have an anomalous
variable heart rate. Moreover, the trainer can add spatial conditions by specifying
that a rule is met only is the event happens in a given named location or if it
happens close (by indicating the distance) to the place where another event
happens. Once a set of basic rules are defined, the Rule Editor can provide trai-
ners with the possibility to compose different rules for specifying more complex
monitoring. Suppose to take the previous scenario in which the trainer wants to
monitor a possible anomalous situations related to onset of the overtraining syn-
drome. As said before, many factors can affect the onset of overtraining states,
including a variable resting heart rate, inadequate nutrition, sleep patterns, envir-
onmental conditions, and psychological stressor. By reusing the rules previously
specified for monitoring the bad quality of sleep, bad nutrition, bad mood, and
the occurrence of a variable resting heart rate, the trainer can define a new rule,
named “Overtraining,” for checking if all rules are met. Moreover, in this new
rule, the trainer has to specify that the bad environment check is a rule that must
not be met because the bad mood or the variability of the heartbeats should not
depend by unfavorable climatic conditions.

The rules: bad quality of sleep, bad nutrition, bad mood, and bad environment
conditions, are checked on data-flows collected once daily. Instead, the last factor,
the variable resting heart rate, is checked several times a day, that is, every time
the occurrence of sedentary activity happens when a high heartbeats standard

Fig. 6 Example of the composition of a rule named “a variable resting heart rate.” In the screenshot
the trainer is creating a temporal condition which aims at monitoring that the event E1(sedentary
activity duration more than 50 minutes) starts before of the event E2 (standard deviation of the
heartbeats more than 10) and ends after E2 ends

42916 An End-User Development Framework to Support Quantified Self in Sport Teams

deviation happens. In this case, the trainer can put in AND all the rules, specifying
that the bad environment conditions must not be met and that the last one has to
be met more than 3 times a day. Moreover, once a set of rules is created, it
is stored in a repository for further reuse or for sharing it among members of a
community of trainers and coaches.

Once the composition of a rule or a set of rules is carried out, a translator
module permits to translate the rules expressed by the visual specification in DRL
(the Drools Language) files. When the domain expert executes the rule, a request
is sent to a micro-service implemented in GO that translates a JSON file represent-
ing the rule into DRL so that it can be can be executed by the Drools engine.
Once the Drools engine detects that a rule is satisfied according to its conditions,
it sends a notification to the domain experts. The notification reports the rule and
the flow of events that meet the condition expressed in the rule.

5 Conclusions and Future Work

In our design model, we aim at involving multidisciplinary design teams in the
design of the network configuration of sensors and services by means of EUD
techniques. A key difference of our work with respect to standard data-flow man-
agement systems and their graphical interface is related with the need of handling
data streams. As reported in (Eckerson & White, 2003), the problem of extracting,
transforming data constitutes 60–80% of business intelligent projects. Now we are
working for setting up a user test evaluation for our eWellness system thanks to
collaboration with the Centro Sportivo Italiano (Italian Sport Centre).

A group of sport teams will be involved in order to perform a set of activities
concerning the design of data-flows and related rules from monitoring the athletes’
activities. What we want to study is how far our approach is able to offer new
possibilities both at the design and use time and to understand how the idea to
combine the design and end users’ environments appears to be successful and
effective solution for both domain and technical experts.

References

Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11), pp. 832–843.

Barricelli, B.R., & Valtolina, S. (2017). A visual language and interactive system for end-user
development of internet of things ecosystems. Journal of Visual Languages & Computing,
ISSN 1045-926X, doi:10.1016/j.jvlc.2017.01.004.

Barricelli, B.R., & Valtolina, S. (2016). End-user development for lifelogging and ewellness.
In Proceedings of the international working conference on advanced visual interfaces
(pp. 292–293, AVI ’16). New York, NY: ACM.

430 S. Valtolina and B.R. Barricelli

http://dx.doi.org/10.1016/j.jvlc.2017.01.004

Behrend, A., Dorau, C., Manthey, R. (2009). Sql triggers reacting on time events: an extension
proposal. In Advances in databases and information systems (pp. 179–193). Berlin, Heidelberg:
Springer.

Blackstock, M., & Lea, R. Toward a distributed data flow platform for the web of things (distrib-
uted node-red), in Proceedings of the 5th international workshop on web of things, WoT ’14,
(New York, NY), pp. 34–39, ACM, 2014.

Bona, D.D., Re, G.L., Aiello, G., Tamburo, A., Alessi, M. (2011). A methodology for graphical
modeling of business rules. In 2011 Fifth UKSim European symposium on computer modeling
and simulation (EMS) (pp. 102–106). Los Alamitos, CA: IEEE.

Budgett, R. (1990). Overtraining syndrome. British Journal of Sports Medicine, 24(4), pp. 231–236.
Casati, F. (2011). How end-user development will save composition technologies from their

continuing failures. Berlin: Springer pp. 4–6.
Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A. (2007, November). Visual interactive

systems for end-user development: a model-based design methodology. IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and Humans, 37, 1029–1046.

Eckerson, W., & White, C. (2003). Evaluating etl and data integration platforms. Seattle, WA;
The Data Warehousing Institute.

Fischer, G. Symmetry of igorance, social creativity, and meta-design, in Proceedings of the
3rd Conference on Creativity & Cognition, C&C ’99, (New York, NY), pp. 116–123,
ACM, 1999.

Fischer, G. (2000). Social creativity, symmetry of ignorance and meta-design. Knowledge-Based
Systems Journal, 13(7–8), pp. 527–537.

Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A. G., Mehandjiev, N. (2004, September).
Meta-design: a manifesto for end-user development. Communications of the ACM, 47,
pp. 33–37.

Gorawski, M., & Gorawska, A. (2014). Research on the stream etl process. In Beyond databases,
architectures, and structures (pp. 61–71). Cham: Springer.

Guinard, D., Trifa, V., Mattern, F., Wilde, E. (2011). From the internet of things to the web of
things: resource-oriented architecture and best practices. Berlin: Springer pp. 97–129.

Kaczor, K., & Nalepa, G.J. (2012). Critical evaluation of the xtt2 rule representation
through comparison with clips. Knowledge Engineering and Software Engineering (KESE8),
381, 46.

Kaczor, K., Nalepa, G. J., Łysik, Ł., Kluza, K. (2011). Visual design of drools rule bases using
the xtt2 method. In Semantic methods for knowledge management and communication
(pp. 57–66). Montpellier, France: Springer.

Lucci, G., & Paternò, F. (2014). Understanding end-user development of context-dependent
applications in smartphones. Berlin: Springer pp. 182–198.

Mesiti, M., & Valtolina, S. (2014). Towards a user-friendly loading system for the analysis of
big data in the internet of things. In Computer software and applications conference workshops
(COMPSACW), 2014 IEEE 38th international (pp. 312–317). Los Alamitos, CA: IEEE.

Mesiti, M., Valtolina, S., Ferrari, L., Dao, M., Zettsu, K. (2015). An editable live ETL system
for ambient intelligence environments. In WF-IoT (pp. 393–394). Los Alamos, CA: IEEE.

Namoun, A., Nestler, T., De Angeli, A. (2010). Conceptual and usability issues in the composable
web of software services. Berlin: Springer 396–407.

Ng, J.W. (2015). Task as a service: extending cloud from an application development platform to
a tasking platform. In 2015 IEEE World Congress on Services (SERVICES) (pp. 294–301).
Los Alamitos, CA: IEEE.

Petre, M., & Blackwell, A.F. (2007, September). Children as unwitting end-user programmers.
In IEEE symposium on visual languages and human-centric computing, 2007. VL/HCC 2007
(pp. 239–242). Los Alamos, CA: IEEE.

Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy
Sciences, 4(2), 155–169.

43116 An End-User Development Framework to Support Quantified Self in Sport Teams

Theodorou, V., Abelló, A., Thiele, M., Lehner, W. A framework for user-centered declarative
etl, in Proceedings of the 17th international workshop on data warehousing and OLAP,
DOLAP ’14, (New York, NY), pp. 67–70, ACM, 2014.

Vassiliadis, P., Simitsis, A., Skiadopoulos, S. (2002).Conceptual modeling for etl processes.
In Proceedings of the 5th ACM international workshop on Data Warehousing and OLAP
(pp. 14–21). New York, NY: ACM.

Zhou, H., Yang, D., Xu, Y. (2012). An ETL strategy for real-time data warehouse. Berlin:
Springer pp. 329–336.

Zhu, L., Mussio, P., Barricelli, B.R. Hive-mind space model for creative, collaborative design, in
Proceedings of the 1st DESIRE Network Conference on Creativity and Innovation in Design,
DESIRE ’10, (Lancaster), pp. 121–130, Desire Network, 2010.

432 S. Valtolina and B.R. Barricelli

Web Augmentation as a Promising Technology
for End User Development

Iñigo Aldalur, Marco Winckler, Oscar Díaz and Philippe Palanque

Abstract This chapter presents Web Augmentation (WA) technologies as tools
and techniques for end-user development. WA technologies differ from other web
development technologies as they target at improving existing Web pages and not
at creating new Web sites. These improvements can deeply alter the way users use
and interact with Web sites. This chapter revisits the concept of WA and provides
an overview of the main features that characterize WA technologies. This charac-
terization is used to position and compare the various contributions that have been
made in WA. To make things more concrete we provide an illustration of WA
technology through a case study using a dedicated tool called WebMakeup.
Despite all their advantages, WA technologies present some limitations that might
result in challenges on the user side. These aspects are also presented and dis-
cussed, highlighting directions for future work in that domain.

Keywords End-user development · web augmentation · web adaptation

1 Introduction

Nowadays, many applications which, formerly, would have been designed for the
desktop such as calendars, travel reservation systems, purchasing systems, library
card catalogs, maps viewers or even games have made the transition to the Web,

I. Aldalur · O. Díaz
University of the Basque Country (UPV/EHU), San Sebastián, Spain
e-mail: inigo.aldalur@ehu.eus

O. Díaz
e-mail: oscar.diaz@ehu.eus

M. Winckler (✉) · P. Palanque
University of Toulouse, Toulouse, France
e-mail: winckler@irit.fr

P. Palanque
e-mail: palanque@irit.fr

433© Springer International Publishing AG 2017
F. Paternò, V. Wulf (eds.), New Perspectives in End-User Development,
DOI 10.1007/978-3-319-60291-2_17

largely successfully. Many Web sites are created every day to help users to find
information and/or to provide services they need. However, there are cases where
rather than a new Web site, what users need is to combine information or services
that are already available but scattered on the WWW. Some examples follow:
(1) users who want to have additional links on a Web page to improve the naviga-
tion (for example to create a personalized menu that gathers in one location multi-
ple personal interests), (2) users who need to integrate contents from diverse Web
sites (for example to include a Google’s map into a Web page that originally only
shows addresses as flat text) in order to improve their performance in identifying
distance from their personal location or (3) simply to remove content from Web
pages (such as contact details they consider irrelevant) to improve reading and
selection performance as identified by Hick’s law (1952). Because these needs
might be perceived as idiosyncratic, volatile (being short-lived or occasional) or
dissenting with the interests of the Web site, they might well not be considered
(or even not known) by Web developers (Frajberg, Urbieta, Rossi, & Schwinger,
2016). This is because Web sites are, by definition, designed for the masses and
that at design time only few users are available.

Previous work on End-User Development (EUD) (Iturrioz, et al. 2014;
Lieberman, Paterno, & Wulf, 2005) has demonstrated that, if appropriate tools are
provided, end users might be able to create what they need (or at least define more
precisely part of what they need). DENIM is a pioneer example that illustrates
how tools can be used for involving users into the design of the Web sites to be
developed (Newman, Lin, Hong, & Landay, 2003). A more demanding scenario is
when the target is not in-home Web sites but Web pages that have already been
created by third parties. The options are here, either to redevelop what has already
been done by the third party or to try to convince the third party to tune its devel-
opment to fit a particular user need. This deeply collides with the principle of Web
development that target the masses and not the individual.

The term Web Augmentation (WA) is used to describe tools that can be used
to improve (hence the word “augment”) existing Web pages (found for instance
whilst browsing the Web) to create better fit user’s needs and activities. Some of
the most popular WA tools work by extending the functionalities of the Web
browser used by the user via plug-ins that can run client-side scripts to manipulate
the structure of Web pages loaded in the browser. In that case the augmentation
will be applied to all the visited Web page featuring specific characteristics. The
potential of WA techniques can be illustrated by some advanced applications such
as lightweight integration of information extracted from the Web, context-
sensitive navigation across diverse Web site, context-dependent multimodal adap-
tation (Ghiani, Manca, Paternò, & Porta, 2014) or refactoring Web sites for acces-
sibility (Garrido et al., 2013). Another example is a spellchecking plug-in that
would automatically check the text entered by the user on any Web page. The
degree of expertise required for using WA tools varies dramatically (Han &
Tokuda, 2010). For example, some tools only require basic knowledge of how to
install plug-ins in the Web browsers while others may require integrating sophisti-
cated scripting code created by the user.

434 I. Aldalur et al.

In this chapter, we examine the potential of WA technology for supporting
end-user development for the Web. In Sect. 2, we discuss the relationship between
WA and end-user development. Sect. 3, proposes a classification of WA technolo-
gies, positions existing tools with respect to this classification and provides a study
of research contributions for each main category of the classification. To make
things concrete, Sect. 4 illustrates how the WebMakeup WA tool relates to the
classification using a case study based on augmentation of the dblp computer
science researchers’ publications repository. In Sect. 5, we explain some of the
users and usage difficulties specific to the adaptation of Web applications. Sect. 6
concludes the paper and highlights possible directions for future work.

2 Web Augmentation and End-User Development

Web Augmentation (WA) is not End-User Development (EUD) for the Web but
some of the features provided by WA tools can be used for that purpose. To high-
light similarities and differences, we revisit their definitions.

Many authors have tried to define precisely the term end-user programming
(Burnett & Scaffidi, 2011; Wulf, Paterno, & Lieberman, 2006). In this chapter, we
adhere to the definition provided by Ko et al. (2011) who state that end-user pro-
gramming is programming to achieve the result of program primarily for perso-
nal, rather than public use. That definition has many implications. First, it is
important to note the absence of any reference to an application domain and/or
technology highlighting the large scope for the use of EUD tools. Next, the term
“programming” refers to a general activity, which might encompass the develop-
ment of software from scratch and/or making modification to an existing software.
Finally, the term “end-user” does not refer to the user’s skills in so for as a profes-
sional developer is engaged in end-user programming when writing code to fulfill
a personal need, such as visualize the data structure to help diagnose a bug.
Moreover, even if the definition implies a particular intention behind the develop-
ment of the program, it does not exclude the possibility of sharing the program
with other users.

There are fewer attempts to define precisely the term Web Augmentation. This
term was originally coined by Bouvin (1999) to describe a tool that through inte-
gration with a Web browser, a HTTP proxy or a Web server adds content or con-
trols not contained within the Web pages themselves to the effect of allowing
structure to be added to the Web page directly or indirectly, or to navigate such
structure. The purpose of such a tool is help users organize, associate, or struc-
ture information found on the Web. This activity may be done by a single user or
in collaboration with others. More recently, Díaz, Arellano and Azanza (2013)
said that WA is to the Web what Augmented Reality is to the physical world: layer-
ing relevant content/layout/navigation over the existing Web to customize the user
experience. These definitions highlight WA as a non-intrusive approach: augmen-
tations are “layers” on top of an existing content. These augmentation layers might

43517 Web Augmentation as a Promising Technology for End User Development

be needed to cater for situational and idiosyncratic needs, difficult for designers to
foresee. Technically, augmentations do not need the participation of the Web sites
used for the augmentation since the augmentation occurs on the Web browser.
Web augmentation technology only acts on the user interaction and does not
change the original Web page stored on the Web server. It is interesting to note
that whilst Bouvin does not assign any particular intention for the use of WA
tools, Díaz explicitly mentions that augmentation layers might aim at improving
the user experience with the Web page.

For our purposes, WA describes tools that allow people to modify Web pages
to improve user performance and satisfaction. This definition connects WA to
EUD as EUD is programming to achieve the result of program primarily for per-
sonal, rather than public use. Indeed, WA realizes this vision in the web sphere as
far as it helps to support users’ needs that have not been originally been identified
or taken into account during the design of the Web site.

3 Overview of EUD Tools for the Web

The evolution of Web technology is changing the way users interact with Web
sites. At first, users could only consume contents provided by Web sites. Later,
users could actively contribute with content by using tools such as CMS and
wikis. More recently, WA tools empower people in different ways making these
tools real EUD tools: (1) to create their own web sites, (2) to combine information
from diverse Web sites into a single hub (using mashups), and even (3) to modify
Web pages created by others (using WA tools e.g. MADCOW (Bottoni et al.,
2004) and DiLAS (Agosti et al., 2005)). This highlights the broad range of
approaches that Web-centered EUD tools explore. Fig. 1 introduces a set of
dimensions to classify these tools while the positioning of existing tools with
respect to this classification is shown in Table 1.

Although the focus is on WA tools, we also introduce mashup tools because
this provides some elements of comparison between the existing approaches for
EUP of the Web.

Visual programming

Programming paradigm

Collaborative features

EUD features

Architecture

Web site integration

Subject of adaptation

Client side

Client and server side

Singleton web site

Combination of web sites

Content

Behaviour

Presentation

Proxy

Server side
Spreadsheet

By demonstration

Domain specific language

Collaborative development

Sharing

Personal use

Model-based

Fig. 1 Five EUD features of WA tools and their attributes

436 I. Aldalur et al.

T
ab

le
1

E
U
D
to
ol
s
fo
r
th
e
W
eb

po
si
tio

ne
d
w
ith

re
sp
ec
tt
o
th
e
cl
as
si
fi
ca
tio

n
in

F
ig
.1

To
ol

s
Y

ea
r

T
yp

e
A

rc
hi

te
ct

ur
e

Su
bj

ec
t

of
 a

da
pt

at
io

n
W

eb
 s

it
e

In
te

gr
at

io
n

C
ol

la
bo

ra
ti

on

fe
at

ur
es

P
ro

gr
am

in
g

P

ar
ad

ig
m

R
ef

.
C

S
P

C
o

B
e

P
r

M
ar

m
it

e
2
0
0
7

M
C

C
o

C
o
m

b
in

at
io

n
P

er
so

n
al

 u
se

V
is

u
al

 p
ro

g
ra

m
.

W
o
n
g
 a

n
d
 H

o
n
g
 (

2
0
0
7
)

M
A

R
G

M
A

SH
2
0
0
7

W
A

C
C

o
C

o
m

b
in

at
io

n
P

er
so

n
al

 u
se

B
y
 d

em
o
n
st

ra
ti

o
n

D
ía

z,
 P

ér
ez

 a
n
d
 P

az
 (

2
0
0
7
)

C
o
S

cr
ip

te
r

2
0
0
8

M
C

C
o

B
e

S
in

g
le

to
n

B

y
 d

em
o
n
st

ra
ti

o
n

L
es

h
ed

,
H

ab
er

,
M

at
th

ew
s

an
d

L
au

 (
2
0
0
8
)

R
ef

or
m

2
0
0
9

W
A

C
C

o
C

o
m

b
in

at
io

n
P

er
so

n
al

 u
se

B
y
 d

em
o
n
st

ra
ti

o
n

T
o
o
m

im
 e

t
al

.
(2

0
0
9
)

S
em

an
ti

cW
eb

P
ip

es
2
0
0
9

M
S

C
o

C
o
m

b
in

at
io

n
S

h
ar

in
g

V
is

u
al

 p
ro

g
ra

m
.

P
h
u
o
c,

 P
o
ll

er
es

,
H

au
sw

ir
th

,

T
u

m
-m

ar
el

lo
 a

n
d

 M
o

rb
id

o
n

i
(2

0
0

9
)

M
as

h
ro

o
m

2
0
0
9

M
C

C
o

C
o
m

b
in

at
io

n
P

er
so

n
al

 u
se

S
p
re

ad
sh

ee
ts

W
an

g
, Y

an
g
 a

n
d
 H

an
 (

2
0
0
9
)

D
ee

p
2
0
1
0

M
C

C
o

P
r

C
o
m

b
in

at
io

n
P

er
so

n
al

 u
se

B
y
 d

em
o
n
st

ra
ti

o
n

G
u
o
,
H

an
 a

n
d
 T

o
k
u
d
a

(2
0
1
0
)

M
as

h
S

h
ee

t
2
0
1
0

M
C

C
o

C
o
m

b
in

at
io

n
C

o
ll

ab
o
ra

ti
v
e

d
ev

.

S
p
re

ad
sh

ee
ts

H
o
an

g
,
P

ai
k
 a

n
d
 B

en
at

al
la

h

(2
0
1
0
);

 H
o
an

g
,
P

ai
k
 a

n
d
 D

o
n
g

(2
0
1
1
)

A
to

m
at

e
2
0
1
0

M
C

C
o

C
o
m

b
in

at
io

n
C

o
ll

ab
o
ra

ti
v
e

d
ev

.

K
le

ek
,

M
o
o
re

,
K

ar
g
er

, A
n
d
ré

 a
n
d

S
ch

ra
ef

el
 (

2
0
1
0
)

R
U

M
U

2
0
1
0

W
A

S
C

o
P

r
S

in
g
le

to
n

P
er

so
n
al

 u
se

V
is

u
al

 p
ro

g
ra

m
.

P
o
le

y
 (

2
0
1
0
)

C
SN

 f
ra

m
ew

or
k

2
0
1
1

W
A

C
C

o
B

e
C

o
m

b
in

at
io

n
S

h
ar

in
g

B
y
 d

em
o
n
st

ra
ti

o
n

F
ir

m
en

ic
h
,
W

in
ck

le
r

an
d
 R

o
ss

i

(2
0
1
1
)

O
n
to

C
o
m

p
o

2
0
1
1

M
C

C
o

B
e

S
in

g
le

to
n

P
er

so
n
al

 u
se

B
re

l,
 D

er
y
-P

in
n
a,

 R
en

ev
ie

r-

G
o
-n

in
 a

n
d
 R

iv
ei

ll
 (

2
0
1
1
)

M
ix

er
2
0
1
1

W
A

C
C

o
C

o
m

b
in

at
io

n

S
h
ar

in
g

B
y
 d

em
o
n
st

ra
ti

o
n

G
ar

d
in

er
,
T

o
m

as
ic

,
Z

im
m

er
m

an
,

A
zi

z
an

d
 R

iv
ar

d
 (

2
0
1
1
)

IV
O

2
0
1
1

M
C

S
C

o
B

e
S

in
g
le

to
n

S
h
ar

in
g

B
y
 d

em
o
n
st

ra
ti

o
n

R
ea

li
n
h
o
,
D

ia
s

an
d
 R

o
m

ão

(2
0
1
1
)

M
as

h
u
p
E

d
it

o
r

2
0
1
1

M
P

C
o

C
o
m

b
in

at
io

n
S

h
ar

in
g

B
y
 d

em
o
n
st

ra
ti

o
n

G
h
ia

n
i,

 P
at

er
n
ò
 a

n
d
 S

p
an

o

(2
0
1
1
);

 G
h
ia

n
i,

 P
at

er
n
ò
,
S

p
an

o

an
d
 P

in
to

ri
 (

2
0
1
6
)

D
as

h
M

as
h

2
0
1
1

M
C

/S
C

o
B

e
C

o
m

b
in

at
io

n
P

er
so

n
al

 u
se

V
is

u
al

 p
ro

g
ra

m
.

C
ap

p
ie

ll
o
,
D

an
ie

l,
 M

at
er

a,

P
ic

o
zz

i
an

d
 W

ei
ss

 (
2
0
1
1
);

C
ap

p
i-

el
lo

 e
t

al
.
(2

0
1
1
)

M
o
d
el

-b
as

ed

M
o
d
el

-b
as

ed

C
o
ll

ab
o
ra

ti
v
e

d
ev

.

(c
on
tin

ue
d)

43717 Web Augmentation as a Promising Technology for End User Development

T
ab

le
1

(c
on
tin

ue
d)

M
A

ID
L

2
0
1
1

M
C

/S
C

o
C

o
m

b
in

at
io

n
P

er
so

n
al

 u
se

B
y
 d

em
o
n
st

ra
ti

o
n

C
h
ai

sa
ti

en
,
P

ru
ts

ac
h
ai

n
im

m
it

 a
n
d

T
o
k
u
d
a

(2
0
1
1
)

V
is

P
ro

2
0
1
1

M
C

/S
C

o
B

e
C

o
m

b
in

at
io

n
P

er
so

n
al

 u
se

V
is

u
al

 p
ro

g
ra

m
.

B
o
tt

ar
o
 e

t
al

.
(2

0
1
1
)

S
O

A
4
A

ll
 S

tu
d
io

2
0
1
1

M
C

/S
C

o
B

e
C

o
m

b
in

at
io

n
S

h
ar

in
g

V
is

u
al

 p
ro

g
ra

m
.

W
aj

id
,
N

am
o
u
n
,
an

d
 M

eh
an

d
ji

ev

(2
0
1
1
)

C
ow

pa
th

2
0
1
2

W
A

C
B

e
C

o
m

b
in

at
io

n
S

h
ar

in
g

D
SL

D
ía

z,
 S

o
sa

, A
re

ll
an

o
 a

n
d
 T

ru
ji

ll
o

(2
0
1
2
)

W
eb

C
ry

st
al

2
0
1
2

W
A

C
C

o
P

r
C

o
m

b
in

at
io

n
P

er
so

n
al

 u
se

B
y
 d

em
o
n
st

ra
ti

o
n

C
h
an

g
 a

n
d
 M

y
er

s
(2

0
1
2
)

B
ay

a
2
0
1
2

M
C

C
o

C
o
m

b
in

at
io

n
S

h
ar

in
g

V
is

u
al

 p
ro

g
ra

m
.

C
h
o
w

d
h
u
ry

,
R

o
d
rí

g
u
ez

,
D

an
ie

l

an
d
 C

as
at

i
(2

0
1
2
);

 D
an

ie
l,

R
o
d
rí

g
u
ez

,
C

h
o
w

d
h
u
ry

,
N

ez
h
ad

an
d
 C

as
at

i
(2

0
1
2
)

R
es

E
v
al

 M
as

h
2
0
1
2

M
C

/S
C

o
C

o
m

b
in

at
io

n
S

h
ar

in
g

V
is

u
al

 p
ro

g
ra

m
.

Im
ra

n
 e

t
al

.
(2

0
1
2
)

C
ro

w
d
D

es
ig

n
2
0
1
2

M
C

/S
C

o
B

e
C

o
m

b
in

at
io

n
S

h
ar

in
g

V
is

u
al

 p
ro

g
ra

m
.

N
eb

el
in

g
,
L

eo
n
e

an
d
 N

o
rr

ie

(2
0
1
2
)

C
h
u
d
n
o
sk

y
y
 e

t
al

.
2
0
1
2

M
C

C
o

C
o
m

b
in

at
io

n
S

h
ar

in
g

V
is

u
al

 p
ro

g
ra

m
.

C
h
u
d
n
o
v
sk

y
y
 e

t
al

.,
 2

0
1
2

M
O

W
A

2
0
1
3

W
A

C
C

o
C

o
m

b
in

at
io

n
S

h
ar

in
g

M
o
d
el

-b
as

ed
C

h
al

li
o

l,
 F

ir
m

en
ic

h
,
B

o
se

tt
i,

G
o
rd

il
lo

,
&

 R
o
ss

i,
 2

0
1
3

St
ic

kl
et

2
0
1
3

W
A

C
C

o
C

o
m

b
in

at
io

n
S

h
ar

in
g

D
SL

A
re

ll
an

o
 &

 D
ía

z,
 2

0
1
3
;

D
ía

z
et

 a
l.

,
2
0
1
3

So
ci

al
 O

ve
rl

ay
s

2
0
1
3

W
A

C
C

o
P

r
S

in
g
le

to
n

S
h
ar

in
g

V
is

u
al

 p
ro

g
ra

m
.

D
o
n
g
, A

ck
er

m
an

,
N

ew
m

an
 a

n
d

P
ar

u
th

i
(2

0
1
3
)

op
en

H
T

M
L

2
0
1
3

W
A

S
C

o
P

r
S

in
g
le

to
n

C
o
ll

ab
o
ra

ti
v
e

d
ev

.

B
y
 d

em
o
n
st

ra
ti

o
n

P
ar

k
,
S

ax
en

a,
 J

ag
an

n
at

h
,

W
ie

d
en

-b
ec

k
 a

n
d
 F

o
rt

e
(2

0
1
3
)

A
rd

it
o
 e

t
al

.
(a

)
2
0
1
3

M
S

C
o

P
r

C
o
m

b
in

at
io

n
S

h
ar

in
g

V
is

u
al

 p
ro

g
ra

m
.

A
rd

it
o
 e

t
al

.
(2

0
1
3
)

M
o
b
iM

as
h

2
0
1
3

M
S

C
o

B
e

C
o
m

b
in

at
io

n
P

er
so

n
al

 u
se

V
is

u
al

 p
ro

g
ra

m
.

C
ap

p
ie

ll
o
,
M

at
er

a
an

d
 P

ic
o
zz

i

(2
0
1
3
)

D
ir

eW
o
lf

2
0
1
3

M
S

C
o

B
e

C
o
m

b
in

at
io

n
C

o
ll

ab
o
ra

ti
v
e

d
ev

.

V
is

u
al

 p
ro

g
ra

m
.

K
o
v
ac

h
ev

,
R

en
ze

l,
 N

ic
o
la

es
cu

an
d
 K

la
m

m
a

(2
0
1
3
)

R
an

a
et

 a
l.

2
0
1
3

M
S

C
o

C
o
m

b
in

at
io

n
P

er
so

n
al

 u
se

V
is

u
al

 p
ro

g
ra

m
.

R
an

a,
 M

o
rs

h
ed

,
an

d
 S

y
n
n
es

(2
0
1
3
)

To
ol

s
Y

ea
r

T
yp

e
A

rc
hi

te
ct

ur
e

Su
bj

ec
t

of
 a

da
pt

at
io

n
W

eb
 s

it
e

In
te

gr
at

io
n

C
ol

la
bo

ra
ti

on

fe
at

ur
es

P
ro

gr
am

in
g

P
ar

ad
ig

m
R

ef
.

C
S

P
C

o
B

e
P

r

(c
on
tin

ue
d)

438 I. Aldalur et al.

T
ab

le
1

(c
on
tin

ue
d)

C
ap

V
ie

w
2
0
1
3

M
S

C
o

B
e

C
o
m

b
in

at
io

n
P

er
so

n
al

 u
se

V
is

u
al

 p
ro

g
ra

m
.

R
ad

ec
k
,
B

li
ch

m
an

n
 a

n
d
 M

ei
ß
n
er

(2
0
1
3
)

W
eb

M
ak

eu
p

2
0
1
4

W
A

C
C

o
B

e
P

r
C

o
m

b
in

at
io

n
S

h
ar

in
g

V
is

u
al

 p
ro

g
ra

m
.

D
ía

z,
 A

re
ll

an
o
, A

ld
al

u
r,

 M
ed

in
a

an
d
 F

ir
m

en
ic

h
 (

2
0
1
4
)

C
ro

w
d
M

o
ck

2
0
1
4

W
A

C
C

o
B

e
C

o
m

b
in

at
io

n
C

o
ll

ab
o
ra

ti
v
e

d
ev

.

V
is

u
al

 p
ro

g
ra

m
.

F
ir

m
en

ic
h
,
F

ir
m

en
ic

h
,
R

iv
er

o
 a

n
d

A
n
to

n
el

li
 (

2
0
1
4
)

A
rd

it
o
 e

t
al

.
(b

)
2
0
1
4

M
S

C
o

C
o
m

b
in

at
io

n
S

h
ar

in
g

V
is

u
al

 p
ro

g
ra

m
.

A
rd

it
o
 e

t
al

.
(2

0
1
4
);

 A
rd

it
o
,

C
o
st

ab
il

e,
 D

es
o
ld

a,
 L

at
zi

n
a

an
d

M
at

er
a

(2
0
1
5
)

M
u
lt

iM
as

h
er

2
0
1
4

M
S

C
o

C
o
m

b
in

at
io

n
S

h
ar

in
g

V
is

u
al

 p
ro

g
ra

m
.

H
u
sm

an
n
,
N

eb
el

in
g
,
P

o
n
g
el

li
 a

n
d

N
o
rr

ie
 (

2
0
1
4
)

N
at

u
ra

lM
as

h
2
0
1
4

M
C

S
C

o
C

o
m

b
in

at
io

n
S

h
ar

in
g

B
y
 d

em
o
n
st

ra
ti

o
n

A
g
h
ae

e
an

d
 P

au
ta

ss
o
 (

2
0
1
4
)

S
m

ar
tC

o
m

p
o
si

ti
o
n

2
0
1
4

M
C

S
C

o
C

o
m

b
in

at
io

n
S

h
ar

in
g

M
o
d
el

-b
as

ed
K

ru
g
,
W

ie
d
em

an
n
 a

n
d
 G

ae
d
k
e

(2
0
1
4
)

T
ay

eh
 e

t
al

.
2
0
1
4

W
A

C
C

o
S

in
g
le

to
n

P
er

so
n
al

 u
se

V
is

u
al

 p
ro

g
ra

m
.

T
ay

eh
 a

n
d
 S

ig
n
er

 (
2
0
1
4
,
2
0
1
5
)

F
ac

eM
as

h
u
p

2
0
1
5

M
S

C
o

S
in

g
le

to
n

P
er

so
n
al

 u
se

V
is

u
al

 p
ro

g
ra

m
.

M
as

sa
 a

n
d
 S

p
an

o
 (

2
0
1
5
)

IW
C

2
0
1
5

M
S

C
o

B
e

C
o
m

b
in

at
io

n
S

h
ar

in
g

B
y
 d

em
o
n
st

ra
ti

o
n

N
ic

o
la

es
cu

 a
n
d
 K

la
m

m
a

(2
0
1
5
)

M
A

M
S

A
A

S
2
0
1
5

M
S

C
o

C
o
m

b
in

at
io

n
S

h
ar

in
g

V
is

u
al

 p
ro

g
ra

m
.

W
an

g
 a

n
d
 W

ai
n
er

 (
2
0
1
5
)

E
as

y
A

p
p

2
0
1
6

M
C

S
C

o
B

e
C

o
m

b
in

at
io

n
P

er
so

n
al

 u
se

V
is

u
al

 p
ro

g
ra

m
.

Z
h
ai

 e
t

al
.
(2

0
1
6
)

M
O

W
A

/W
O

A
2
0
1
6

W
A

C
C

o
B

e
P

r
C

o
m

b
in

at
io

n
C

o
ll

ab
o
ra

ti
v
e

d
ev

.

B
y
 d

em
o
n
st

ra
ti

o
n

B
o
se

tt
i,

 F
ir

m
en

ic
h
,
R

o
ss

i
an

d

W
in

ck
le

r
(2

0
1
6
);

 F
ir

m
en

ic
h
,

B
o
se

tt
i,

 R
o
ss

i,
 W

in
ck

le
r

an
d

B
ar

b
ie

ri
 (

2
0
1
6
)

M
ij

án
 e

t
al

.
2
0
1
6

W
A

C
C

o
B

e
S

in
g
le

to
n

S
h
ar

in
g

V
is

u
al

 p
ro

g
ra

m
.

M
ij

án
,
G

ar
ri

g
ó
s,

 a
n
d
 F

ir
m

en
ic

h

(2
0
1
6
)

M
:
M
as
hu
p;

W
A
:
W
A
;
C
:
cl
ie
nt

si
de
;
S
:
se
rv
er

si
de
;
C
/S
:
bo
th

cl
ie
nt

an
d
se
rv
er

si
de
s;

P
:
pr
ox
y;

C
o:

co
nt
en
t;
B
e:

be
ha
vi
or
;
P
r:
pr
es
en
ta
tio

n;
D
S
L
:
do
m
ai
n

sp
ec
ifi
c
la
ng
ua
ge
.

43917 Web Augmentation as a Promising Technology for End User Development

Mashup technology is an interesting alternative for final users to combine existing
resources and services in a new Web application (Aghaee & Pautasso, 2011).
Mashups are often very specialized and only operate with specific types of contents
(quite often structured data sources). For example, FaceMashup (Massa & Spano,
2015) is a EUD tool for mashup that allows users to manipulate social network
APIs to combine data and sharing them with other users through the social networks.
It is interesting to notice that some WA tools such as CSN Framework (Firmenich
et al., 2011) borrow from mashups the ability to integrate contents but they are even
more flexible allowing to compose any kind of DOM element from a Web page.

Tool wise, Fig. 2 highlights how mashups (66%) have received more attention
throughout w.r.t. WA tools (34%). This seems to suggest that integrating different
data sources is being considered more important than customizing existing Web
sites. Though this might be true in a general sense, when it comes to empowering
end-users, data integration might be more costly and hence, more difficult to end
users to achieve. By contrast, WA is not so demanding, and hence more affordable
to end-users. This makes WA tools more likely to be adopted by end users.

The rest of this section explains the classification presented in Fig. 1 and pro-
vides examples of the corresponding Web technology.

3.1 Architecture

Tools might rest on the client side, the server side or both. Client-side tools are
executed as Web browsers’ extensions (or plug-ins) and processing happens on

2007

1

1 1

1

1

2

7

Accumulated results

Type

Mashup Web Augmentation

10

9

8

7

6

5

4

3

2

1

0

Mashup
66%

2

4

4

3

5

4
3

2

1
2

3

2008 2009 2010 2011 2012 2013 2014 2015 2016

Web
Augmentation

34%

Fig. 2 Contributions presenting tools: Mashup versus WA technology

440 I. Aldalur et al.

the user’s local computer. Common programming languages used to implement
client-side applications include HTML, CSS, and Javascript. Conversely, server side
technology runs on a remote machine, and only the outcome of the execution returns
to the user’s local computer. Common programming languages include Ruby,
Python, PHP, C# … Server side technologies can store persistent data. However,
data can only be accessed than through HTTP requests for a particular URL.

Miján et al. (2016) and WebCrystal (Chang & Myers, 2012) illustrate the
client-side approach. WebCrystal is a Firefox plug-in that allows the inspection
of code corresponding to visual objects. WebCrystal provides users feedback
using a textual description and a customized code snippet that can be copied-and-
pasted to rebuild the user-selected properties. Additionally, Miján et al. resort to a
set of personalization rules to be applied in the client-side with minimum altera-
tions defined without requiring either advanced programming skills or advanced
configuration.

Whilst Web browsers can store data in the local cache, server-side technology
is used by many tools such as DireWolf (Kovachev et al., 2013), FaceMashup
(Massa & Spano, 2015), Ardito et al. (2013) and MultiMasher (Husmann et al.,
2014) as a means to support data persistence. DireWolf provides several extensible
components for adapting Web sites and it implements a service for data persis-
tence such as user device profiles and shared application states.

As for client-server tools, most requests a kept in the client with sporadic calls
to the server. For example, DashMash (Cappiello et al., 2011) has a client-side
module for mashup creation and a server module responsible for integrating
and storing data from different types of services. In the mobile world, IVO
(Realinho et al., 2011) follows a similar architecture. For mashups, MashupEditor
(Ghiani et al., 2011, 2016) allows for adaptations to be created on the client (using
a dedicated editor). Next, a proxy server store those adaptations that can be later
reused during the creation of the mashup.

From the accumulated results in Fig. 3, it is clear that the client-side approach
is the most popular architecture (49%). The Client-server option (21%) boosted in
2011, presumably due to the popularity of the Web 2.0 and the focus on sharing
and the need to have common repositories. The server-side option (28%) rose
from 2013 onwards, arguably on the search for a business model for mashup
platforms.

3.2 Subject of Adaptation

Web sites might be adapted in different ways: including brand-new content, chan-
ging the behavior associated to DOM elements or altering the appearance (style and
layout). Most tools provide functions to add/remove/replace contents. Adding con-
tent from other sources is often used as a means for making information readily
available whilst removing content is useful to improve focus, preventing users from
distraction. Mixer resorts to WA to improve the organization of Web pages simply

44117 Web Augmentation as a Promising Technology for End User Development

by letting users to move contents around and include/exclude contents needed.
Mashups are also used to add content from different websites. SmartComposition
(Krug et al., 2014) is another content-based approach that is primarily used to build
mashups but it also features unique functions that allow to reorganize contents to fit
into different screen sizes. Chudnovskyy et al. (2012) take a step forward by assist-
ing users with recommendations and automatic composition.

Whilst modifying CSS code (color, font, etc.) is relatively simple, few tools
account for this kind of adaptation. RUMU (Poley, 2010) is a web-based
WYSIWYG editor that resorts to a semantic language to change the page style
and simplifying web design. OpenHTML (Park et al., 2013) is also a web editor
to introduce laymen into HTML and CSS.

Finally, changing the behavior of Web sites is far from trivial. It often requires
adding some Javascript code to DOM elements like show or hide web nodes, click
on certain button, change the content of an element, etc. Changing the behavior
of web sites might be necessary, for example, for automating repetitive tasks. Inter-
Widget Communication (IWC) (Nicolaescu & Klamma, 2015) is a semi-automatic,
end-user friendly approach to extend widgets employing the programming-by-
demonstration paradigm. IWC is built by composing interactive widgets. IWC
leaves users with the tedious task of manual wiring widgets to create mashups.
SOA4All (Wajid et al., 2011) is a visual development environment that addresses
adaptation of Web applications through the connection of different service compo-
nents into an assembly line.

2007

2
1 1 1 1

3 3

5

Accumulated results

Architecture

Server Proxy Client-server Client

10

9

8

7

6

5

4

3

2

1

0

Server
28% Proxy

2%

Client-
server
21%

Client
49%

4

3

6

3
2

1

2

2 2

2
3

2008 2009 2010 2011 2012 2013 2014 2015 2016

Fig. 3 Distribution over the years of tools and what part of the Web architectures they were
exploiting

442 I. Aldalur et al.

3.3 Web Site Integration

This dimension tells if users work with one (singleton) or more (combination of)
Web sites in a single project. Whilst many EUD tools are designed to augment a
particular type of singleton Web site (e.g. OpenHTML), some tools allow to mix
content from diverse Web sites.

Mashups tools like Baya (Chowdhury et al., 2012), Deep (Guo et al., 2010),
MamSaas (Wang & Wainer, 2015) and Marmite (Wong & Hong, 2007) are typical
examples of tools that allow to extract data from different Web sites and recom-
bine them in a form that better fulfill user’s needs. Nonetheless, other strategies
combine Web sites that don’t necessarily involve structured data sets. For exam-
ple, Ardito et al. (2015) is a platform for end users to compose personal informa-
tion spaces by assembling pieces of information from different sources. Such
personal information spaces can be enacted in different devices and shared with
other users. MamSaas is a layered architecture to deploy and identify mashup
components as well as link and execute mashups for quick application develop-
ment. MOWA (Bosetti et al., 2016) is another EUD tool for WA that enables end
users to create a custom guided tour of a city based on contents collected from
diverse Web sites. Its aim is to augment existing Web applications with mobile
features. Using MOWA end users can pinpoint in a map content from a different
Web site and then generate a custom script. This mobile Web application prompts
the users add points of their interests while they move around the city.

Finally, CrowdDesign (Nebeling et al., 2012) can also be classified as a EUD
tool in so far as it supports mashup based on the integration of scripts coming
from diverse sources. CrowdDesign works as a storage for scripts and user inter-
face components shared by a community of developers. CrowdDesign also fea-
tures a visual authoring environment that allows users to combine contents and
scripts available at the platform to create a more personal version of Web sites.

3.4 Collaborative Features

Whilst a WA strategy can be adopted only for personal purposes, sharing is an
important aspect of end-user development (Lieberman et al., 2005; Repenning
et al., 2011). We distinguish between sharing and collaborative development.

Sharing. Some tools focus on personal use, i.e. results cannot be reused and/or
shared with other users. Tayeh and Signer (2014) is a case in point. These authors
provide a tool for the linking and the integration of arbitrary documents and multi-
media content dynamically. Rana et al. (2013) and EasyApp (Zhai et al., 2016) are
also tools for personal use. Both tools provide a systematic way of designing,
developing and deploying personalized apps. Reform is a Firefox extension that
contributes with architecture for web enhancement that allows end users to inte-
grate existing enhancements with new websites. Despite the fact that it allows end
users to communicate with developers for requesting new features, they do not

44317 Web Augmentation as a Promising Technology for End User Development

allow sharing developments. CapView (Radeck et al., 2013) is a mashup platform
that provides instant feedback for user development actions. CapView helps non-
programmers form components with recommendations provided by the system
and it manipulates a mashup through visually composing component features.

Moving away for the personal realm, Social Overlays (Dong et al., 2013) and
the CSN framework (Firmenich et al., 2011) illustrate the use of repositories for
script sharing. Social Overlays focuses on repairing either the behavior or the
appearance of Web sites. Updates made by individuals are visible to the commu-
nity which use a voting mechanism to decide if the updates are relevant and if so,
be incorporated as part of the Web site offerings. CSN features a plug-in that
allows users to adapt Web pages by triggering different types of scripts. It has dif-
ferent features depending on the user profile: developer or end user. Developers
can write new augmentation scripts to extend the set of original sets of scripts
available in the framework. Such scripts can then be obtained by other users who
on their turn can execute them to adapt the Web sites. Finally, it is interesting to
notice that a few tools allow to publish the code in social networks (e.g. Sticklet
Arellano & Díaz, 2013; Díaz et al., 2013) whilst others allow to export files for
personal use on an individual basis (e.g. WebMakeup).

Collaborative development. CrowdMock (Firmenich et al., 2014) does not
provide a voting mechanism but it permits to amend/complete augmentation script
by people other than the author. CoScripter (Leshed et al., 2008) resorts to pro-
gramming by demonstration to enable users to record all the information related to
user interaction to edit a Website. The outcome is a script macro that can be auto-
matically stored in a Web server from where they can be delivered to other users
and they can use a collaborative scripting environment for recording, automating,
and sharing web-based processes.

Fig. 4 helps to apprehend differences and similitudes between WA and mash-
ups as for “collaboration features” and “subject of adaptation” support. As for the

Tool type

Web
Augmentation3 8 5 6 6 15

4 15 12 12
Mashup

Collaboration
features

Collaborative dev. Sharing Personal use Behaviour Presentation Content

Subject of
adptation

2 31

Fig. 4 Mapping WA tools and Mashups across “Collaboration features” and “Subject of
adaptation”

444 I. Aldalur et al.

former, both scenarios (i.e. WA and mashups) pay attention to the idiosyncratic
scenario (“Personal use”), while the potential of reuse (i.e. sharing) is felt to be
more intensive for mashups than for WA developments. Also, mashups and WA
coincide in their interest in handling content (31 vs. 15) while WA underscores in
addressing presentation concerns (2 vs. 6). This is according to expectations since
WA adapts existing web sites whose presentation might need to be tuned to better
meet users’ needs. By contrast, behavior modification has received more attention
in the mashup realm.

3.5 Programming Paradigm

EUD tools resort to diverse programming paradigm: visual languages, spread-
sheets, programming by demonstration, domain specific languages (DSL) and
model-based automation (Aghaee & Pautasso, 2011).

Visual programming is mainly found in mashup tools that allow drag-and-drop
to connect components to create a mashup. Examples include VisPro (Bottaro
et al., 2011), ResEval Mash (Imran et al., 2012), MobiMash (Cappiello et al.,
2013), SemanticWeb Pipes (Phuoc et al., 2009) and WebMakeup (Arellano &
Díaz, 2013; Díaz et al., 2014). VisPro creates mashups by dragging and dropping
widgets from a library. ResEval Mash is a domain-specific mashup tool that
explores dedicated mashuping, in this case in the domain of research evaluation.
MobiMash resorts to visual notations to create mobile mashups. The particularity
of SemanticWeb Pipes is to blend mashups and the Semantic Web. Here, ontolo-
gies are used for better matching widgets parameters that build up the mashup.
WebMakeup is an editor that delivers Chrome plugs-in for augmentation pur-
poses. A DSL is defined that sets the expressiveness of the augmentation.
WebMakeup helps construct DSL expressions on top of the page being augmen-
ted. Once constructed, WebMakeup generates and installs the corresponding
Chrome extension.

Programming by demonstration is most popular for data extraction and visuali-
zation, where service composition and orchestration play an ancillary role.
NaturalMash (Krug et al., 2014), WOA (Firmenich et al., 2016), Margmash (Díaz
et al., 2007) and MAIDL (Chaisatien et al., 2011) illustrate this approach

NaturalMash is a WYSIWYG mashup tool. NaturalMash stands out for its for-
mative support where the tool is able to collect user feedback. WOA enables users
to create/extract Web contents in the form of objects that they can manipulate to
create Personal Web experiences. Margmash creates augmentations out of perso-
nalized information, which are gathered from diverse Web sites. Margmash
behaves as a lightweight wrapper that guides end users on both data gathering and
data recombination. MAIDL permits the rapid creation of mobile mashup out of
components.

Model-based Automation is concerned with the automatic creation of mashups
out of knowledge about the user and the context of use. This technique’s weakness

44517 Web Augmentation as a Promising Technology for End User Development

is the risk of generating irrelevant mashups w.r.t. the given requirements.
Ontocompo (Brel et al., 2011) and Atomate (Kleek et al., 2010) illustrate this
approach. Ontocompo makes use of an ontology to generate new applications
based on existing ones. Atomate is a personal information assistant engine that
automatically carries out tasks for the user. Atomate combine RSS/ATOM feeds
from social networking into a simple RDF model representing people, places
and things.

DSLs strive to abstract from general-purpose programming language. The chal-
lenge here is to find a compromise between expressiveness and learnability. DSLs
in the augmentation realm can be illustrated by Cowpath (Díaz et al., 2012) and
Sticklet (Díaz et al., 2013). Cowpath focuses on “Web trails”, i.e. recurring navi-
gation paths across distinct Web sites. Rather than switching between tabs and
typing once and again the same URLs, Cowpath augments the affected websites
with additional hyperlinks that “pave the way” of these Web trails. On the other
hand, Sticklet explores the use of a dedicated assistant that help users to come
with Sticklet expressions to augment Web sites.

Spreadsheets-like programming are often considered ease-of-use, intuitive and
with enough expressive power to represent and manage complex data. When it
comes to mashups, Mashroom (Wang et al., 2009) and MashSheet (Hoang et al.,
2010, 2011) explore this approach. Mashroom builds Web applications by com-
bining content coming from different Web sites. To this end, it resorts to an
expressive data structure and a set of defined mashup operators. The data structure
allows users to express complex data objects while mashup operators are visua-
lized in the formula bar. MashSheet extends conventional spreadsheet paradigms
to facilitate Web services “mashup” in a spreadsheet environment. MashSheet is a
collection of operators that supports orchestrating Web services, manipulating and
visualizing data created by the services.

Fig. 5 depicts the distribution of research contributions with respect to the “pro-
gramming paradigm” feature over the years. Visual programming is by far the
most popular approach (53%), where the other approaches fall behind: program-
ming by demonstration (30%), Model-based (9%), DSL (4%) and spreadsheets
(4%). Worth mentioning, the boost of programming-by-demonstration in 2011
although it faded over the years.

4 Web Augmentation: A Case Study with WebMakeup

This section illustrates WA at work using WebMakeup (Díaz et al., 2014). This
tool supports the modification of the content, the presentation, and the behavior of
Web pages. Moreover, it also supports the integration of dynamic content from
other web sites. So far, WebMakeup only work for the Chrome browser. A video
is available at https://vimeo.com/204338864.

446 I. Aldalur et al.

https://vimeo.com/204338864

4.1 Architecture

WebMakeup is a plug-in freely available at the Chrome Web Store1. Once
installed, it can be activated at any time by selecting the icon in the top-right side
of the address bar as shown by Fig. 6a. By selecting the option “New” from the
pop-up menu, two vertically aligned tabs called “Piggy Bank” and “Patterns”
appear (see Fig. 6b).

WebMakeup is a client-side application developed using JavaScript. Scripts
created by the user are stored in the Web browser, so persistence can be ensured
as far as the user does not clear the local cache.

4.2 Subject of Adaptation

WebMakeup allows users to modify the contents, the presentation and the beha-
vior of existing Web pages through the manipulation of the DOM elements that

2007

11 1

11

1

1

3

1

5

Accumulated results

Programming paradigm

By demonstration

Spreadsheets

DSL

Visual program.

Model-based

10

9

8

7

6

5

4

3

2

1

0

Visual
program.

53%

By
demonst-

ration
30%

DSL
4%

Spread-
sheets

4%

Model-
based

9%

4

6

22

1

1

1

1

1

1

1

1

1 1

5

1

1

2008 2009 2010 2011 2012 2013 2014 2015 2016

Fig. 5 “Programming paradigm” in research contributions over the years

1Available at: https://chrome.google.com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj

44717 Web Augmentation as a Promising Technology for End User Development

https://chrome.google.com/webstore/detail/alnhegodephpjnaghlcemlnpdknhbhjj

conform the Web page. Only after selecting a DOM element, it is possible to
manipulate it: remove, re-arrange or change its behavior.

4.2.1 Selecting DOM Elements in a Web Page

As shown in Fig. 7a) WebMakeup highlights the underlying DOM through two
visual elements: the pointer, which becomes a small camera, and the background
color, which is turned into green. By clicking on the green zone, the correspond-
ing DOM element is selected and transformed into a widget. Widgets are framed

Fig. 6 WebMakeup main menus. (a) Launching WebMakeup to create a new augmentation
layer on top of DBLP. (b) Tab menus vertically aligned at right-side (collapsed)

448 I. Aldalur et al.

by “decorators,” i.e. frames that include three button (see Fig. 7b): the red-circle
button removes the DOM element at hand; the green-circle button changes the vis-
ibility of the DOM element from hide to show, and vice versa; finally, the yellow-
circle button unselects the DOM element, removing the decorator frame.

In this way, users can remove elements from Web pages to accomplish diverse
personalization needs. For example, removing short papers from the DBLP page
might help highlight other types of publications. However, the red-circle button
(see Fig. 7b) only removes the corresponding DOM element from the current

Fig. 7 Selection of the DOM element using WebMakeup. (a) Selection of DOM elements using
mouse over operation on a Web page. (b) DOM element selected (after click) showing options
for inspecting it

44917 Web Augmentation as a Promising Technology for End User Development

session. For changes to become permanent (i.e. enforceable in future visits to the
DBLP Web site), users should “deploy” the WebMakeup script by clicking on the
namesake option in the scrollable menu (third item at Fig. 6a).

4.2.2 Re-arranging Contents around the Web Page

Another way to highlight content is to place it in a more suitable position. Fig. 8
provides an example. Here, the DOM elements accounting for the coauthor index
is moved upwards from the bottom section of the page. This operation is achieved
by selecting the corresponding DOM node (see Fig. 8a), click on the MOVE
legend and next drag & drop to the new position (see the resulting page at
Fig. 8b). The new position might prevent scrolling for users that mind co-authors.

4.2.3 Creating New Behaviors

WebMakeup allows supporting new behaviors (e.g. setting blink relationships
between DOM elements). As an example, consider the Amazon page of the book
“A Game of Thrones.” Two widgets are created after two DOM nodes: the title
DOM and a widget with information of the book price and how it can be bought.

Fig. 8 Moving DOM elements around the Web page using WebMakeup. (a) Initial position of
the co-author index. (b) Final position of the co-author index

450 I. Aldalur et al.

Both widgets joined through the yellow point from the triggering widget to the
triggered widget (see Fig. 9a). It is possible to choose which event (ex. click, dou-
bleclick and mouseEnter) will trigger the show/hide behavior. At the end, the user
can decide if the current book will be bought and clicking on the triggering

Fig. 9 Behavior definition in WebMakeup joining different widgets with wires. (a) Associating
between widgets. (b) Resulting web site after deploying the adaptation

45117 Web Augmentation as a Promising Technology for End User Development

element (the book title), the triggered widget will show the desired information
(see Fig. 9b). Clicking on the book title again, the triggered element will be
hidden.

4.3 Collaborative Features

WebMakeup scripts are stored locally in the Web browser. WebMakeup does not
support collaborative development. Nonetheless, users can export scripts into a
file and next share them through email or other means. Consumers should have
WebMakeup installed and use the “import” option (Fig. 6a). Also in the scrollable
menu, the entry “CarryOn” permits consumers to tune imported scripts to their
own likes.

4.4 Programming Paradigm

WebMakeup does not require users to write a single line of code to modify Web
pages. All programming is achieved through selecting DOM elements and inter-
acting with widget decorators. For that, WebMakeup is classified as visual pro-
gramming. Fig. 10 highlight this and other EUD features of WebMakeup, w.r.t.
those presented at Fig. 1, by shadowing those not covered.

5 User and Usage Challenges with WA Tools

Each tool cited in this chapter has its own idiosyncrasies and their use will
reveal very specific challenges. But beyond the use of a particular tool, WA
challenges users to revise what they know about the web and how to program

Visual programming

Programming paradigm

Collaborative features

EUD features

WebMakeup

Architecture

Web site integration

Subject of adaptation

Client side

Client and server side

Singleton web site

Combination of web sites

Content

Behaviour

Presentation

Proxy

Server side
Spreadsheet

By demonstration

Domain specific language

Collaborative development

Sharing

Personal use

Model-based

Fig. 10 Summary of WebMakeup with respect to the classification presented in Fig. 1

452 I. Aldalur et al.

applications. When it comes to WA, users should be aware of a number of
aspects, namely:

• WA is mainly a browser-based technology. Regardless of the technology
employed to store and run the augmentation scripts, the adaptation only affects
how a web site is displayed in the user’s personal machine. Users must under-
stand that their adaptation is personal and that will not be visible by other visi-
tors of the same web site.

• WA is mainly a single browse technology. Changes performed by the user will
only occur on the browser where the augmentation has been performed. The same
user performing the same actions on another computer will not see the augmenta-
tion. It thus requires replication of the augmentation multiple times if the users are
using multiple execution platforms (e.g. desktop computers, smartphones.

• Similar to other EUD technologies, WA require the adaption of the code pro-
duced by someone else. This has multiple implications for assessing the code
of Web pages before to adapt them (Gross & Kelleher, 2010; Gross, Yang, &
Kelleher, 2011).

• WA is constricted within the DOM hierarchy. Users should be aware of manip-
ulation of DOM elements imposes a certain order of access to contents. For
instance, elements might appear visually together but be arranged in separated
DOM nodes. This might imply having different ancestors. This, in turn, pre-
vents these “alongside elements” from being selected as a single DOM element.
This constrain is imposed by the DOM element hierarchy (Bosetti et al., 2016).
Notice that the DOM hierarchy itself does not need to be made visible but
manipulated through metaphors and witty interactive tools. But no matter the
tool, it is constricted within the DOM hierarchy.

• WA is fragile upon Web-site upgrades. Web sites evolve overtime and with the
evolution of a web site some elements resulting from the augmentations may
disappear and/or be replaced by other elements that directly affect the way WA
scripts operate. Thus, whilst some scripts will be resilient to maintenance of
web sites, other scripts will stop working once a Web site is upgraded. This
makes the use of WA a more suitable technique when user’s needs are volatile
(Frajberg et al., 2016). WebMakeup illustrates the feasibility of having dynamic
updates for contents but the bindings between WA scripts and the web site
remain fragile and prone to become obsolete when the underlying web site
evolves. This a major challenge as, by definition, web applications are meant to
evolve. Beyond, as the users do not own the web application, the loss of a web
augmentation is not predictable.

• WA does not create brand-new applications but enhances existing ones. The
inclusion of contents from other web sites raises some pragmatic questions
about the type of relationship created between web sites (Firmenich, Firmenich,
Winckler, Rossi, & Distante, 2015). The simplest approach is the clone&own
of elements. This implies that changes in the source element will not propagate
to its clones. Alternatively, it is also possible to keep a dynamic binding with
the source element so that changes in the source ripple throughout its clones.

45317 Web Augmentation as a Promising Technology for End User Development

6 Conclusion

This chapter has presented the principles behind Web Augmentation and highlighted
how this technology shares multiple similar objectives as End User Development.
Indeed, as it allows users to recycle, reuse and exploit material that can be obtained
from other web sites it supports the construction (by the end users themselves) of more
usable and more adapted web application. One of the biggest challenges is how treat
dynamic states of Web applications, which means contents that evolves over time.
Whilst this remains an unsolved issue that should be addressed by future research, it is
possible to envisage various copy and paste strategies to address the problem.

In our study of WA tools, we have observed a prominence of tools that run
exclusively on the client side. This is not surprising as one of the advantages of
using a client-side approach is the faster execution that has a huge impact on the
user performance while interacting with the web application making it possible to
provide immediate feedback to the users. Moreover, users do not need to under-
stand sever side functioning and to deal with complex installations on a remote
web server (for which they, most of the time, have no access rights). Whilst
client-side approach is not a panacea, we suggest that this is still a suitable strategy
for giving end users more autonomy on the scripts they want to develop.

As demonstrated in the chapter, there are multiple technologies for performing
web augmentation. We have presented some precise examples through the use of
a particular tool called WebMakeup. For sake of simplicity, we have only pro-
vided here simple examples that can be easily reproduced. Nonetheless, we have
demonstrated that using such simple adaptation of contents, behavior and presen-
tation, web sites can be profoundly modified to better fit with users’ needs.

Despite our efforts, it is important to note that none of the references provided
refer to studies with a large number of users. Because of that, we cannot measure
the impact of such as a strategy on the end-user community. Nonetheless, the tools
we have presented are functional and a dedicated community maintains most of
them. We believe that these WA tools deserve more publicity and that a wider and
more systematic communication towards end users would deeply impact usability
of web application and, more generally, of the Web as a whole.

Acknowledgements This work is co-supported by the Spanish Ministry of Education, and
the European Social Fund under contract TIN2014-58131-R and the stay scholarship EEBB-I-
16-11126. Aldalur has a doctoral grant from the Spanish Ministry of Science & Education. This
project is also supported by the STIC AmSud project WAMAW-OUR.

References

Aghaee, S., & Pautasso, C. (2011). End-user programming for web mashups – open research chal-
lenges. In Current trends in web engineering – workshops, doctoral symposium, and tutorials,
held at ICWE 2011, Paphos, Cyprus, June 20–21, 2011. Revised Selected Papers (pp. 347–351).

454 I. Aldalur et al.

Aghaee, S., & Pautasso, C. (2014). End-user development of mashups with naturalmash. Journal
of Visual Languages and Computing, 25(4), 414–432.

Agosti, M., Albrechtsen, H., Ferro, N., Frommholz, I., Hansen, P., Orio, N., Panizzi, E.,
Pejtersen, A. M., and Thiel, U. DiLAS: a Digital Library Annotation Service. Proceedings of
the International Workshop on Annotation for Collaboration – Methods, Tools and Practices
(IWAC 2005), La Sorbonne, Paris, France, November 23–24 2005, pages 91–101.

Ardito, C., Bottoni, P., Costabile, M.F., Desolda, G., Matera, M., Piccinno, A., et al. (2013).
Enabling end users to create, annotate and share personal information spaces. In End-user
development – 4th international symposium, IS-EUD 2013, Copenhagen, Denmark, June
10–13, 2013. Proceedings (pp. 40–55).

Ardito, C., Costabile, M. F., Desolda, G., Lanzilotti, R., Matera, M., Piccinno, A., et al. (2014).
User-driven visual composition of service-based interactive spaces. Journal of Visual
Languages and Computing, 25(4), 278–296.

Ardito, C., Costabile, M.F., Desolda, G., Latzina, M., Matera, M. (2015). Hands-on actionable
mashups. In End-user development – 5th international symposium, IS-EUD 2015, Madrid,
Spain, May 26–29, 2015. Proceedings (pp. 295–298).

Arellano, C., & Díaz, O. (2013). Lightweight end-user software sharing. In End-user development –
4th international symposium, IS-EUD 2013, Copenhagen, Denmark, June 10–13, 2013.
Proceedings (pp. 241–246).

Bosetti, G., Firmenich, S., Rossi, G., Winckler, M. (2016). Web Objects Ambient: an integrated
platform supporting new kinds of Personal Web experiences. In Proceedings of the
International Conference of Web Engineering (ICWE 2016), Lugano, Switzerland, June 6–9,
2016. Proceedings (pp. 563–566). Heidelberg: Springer Verlag. Lecture Notes in Computer
Science 9671, ISBN 978-3-319-38790-1.

Bottaro, A., Marino, E., Milicchio, F., Paoluzzi, A., Rosina, M., Spini, F. (2011). Visual pro-
gramming of location-based services. In Human interface and the management of informa-
tion. interacting with information – Symposium on human interface 2011, held as part of
HCI international 2011, Orlando, FL, USA, July 9–14, 2011, Proceedings, Part I (pp. 3–12).

Bottoni, P., Civica, R., Levialdi, S., Orso, L., Panizzi, E., Trinchese, R. (2004). MADCOW: a
multimedia digital annotation system. In Proceedings of the working conference on Advanced
visual interfaces (AVI ’04) (pp. 55–62). New York: ACM. doi:10.1145/989863.989870.

Bouvin, N.O. (1999). Unifying strategies for WA. In Proceedings of the 10th ACM conference
on hypertext and hypermedia.

Brel, C., Dery-Pinna, A., Renevier-Gonin, P., Riveill, M. (2011). Ontocompo: a tool to enhance appli-
cation composition. In Human-computer interaction – INTERACT 2011 – 13th IFIP TC 13 inter-
national conference, lisbon, Portugal, September 5–9, 2011, Proceedings, Part IV (pp. 588–591).

Burnett, M.M., & Scaffidi, C. (2011). End-user development. In Mads Soegaard and Rikke Friis
Dam (Eds.), Encyclopedia of human-computer interaction. http://www.interaction-design.org/
encyclopedia/end-user_development.html.

Cappiello, C., Daniel, F., Matera, M., Picozzi, M., Weiss, M. (2011). Enabling end user develop-
ment through mashups: Requirements, abstractions and innovation toolkits. In End-user
development – third international symposium, IS-EUD 2011, Torre Canne (BR), Italy, June
7–10, 2011. Proceedings (pp. 9–24).

Cappiello, C., Matera, M., Picozzi, M. (2013). End-user development of mobile mashups.
In Design, user experience, and usability. web, mobile, and product design – Second interna-
tional conference, DUXU 2013, held as part of HCI international 2013, Las Vegas, NV,
USA, July 21–26, 2013, Proceedings, Part IV (pp. 641–650).

Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci, C. (2011).
Dashmash: a mashup environment for end user development. In Web engineering – 11th
international conference, ICWE 2011, Paphos, Cyprus, June 20–24, 2011 (pp. 152–166).

Chaisatien, P., Prutsachainimmit, K., Tokuda, T. (2011). Mobile mashup generator system for
cooperative applications of different mobile devices. In Web Engineering – 11th international
conference, ICWE 2011, Paphos, Cyprus, June 20–24, 2011 (pp. 182–197).

45517 Web Augmentation as a Promising Technology for End User Development

http://dx.doi.org/10.1145/989863.989870
http://www.interaction-design.org/encyclopedia/end-user_development.html
http://www.interaction-design.org/encyclopedia/end-user_development.html

Challiol, C., Firmenich, S., Bosetti, G.A., Gordillo, S.E., Rossi, G. (2013). Crowdsourcing
mobile web applications. In Current trends in web engineering – ICWE 2013 international
workshops ComposableWeb, QWE, MDWE, DMSSW, EMotions, CSE, SSN, and PhD
Symposium, Aalborg, Denmark, July 8–12, 2013. Revised Selected Papers (pp. 223–237).

Chang, K.S., & Myers, B.A. (2012). Webcrystal: understanding and reusing examples in web
authoring. In CHI conference on human factors in computing systems, CHI ’12, Austin, TX,
USA – May 05–10, 2012 (pp. 3205–3214).

Chowdhury, S.R., Rodríguez, C., Daniel, F., Casati, F. (2012). Baya: assisted mashup develop-
ment as a service. In Proceedings of the 21st world wide web conference, WWW 2012, Lyon,
France, April 16–20, 2012 (Companion Volume) (pp. 409–412).

Chudnovskyy, O., Nestler, T., Gaedke, M., Daniel, F., Fernández- Villamor, J.I., Chepegin, V.I.,
et al. (2012). End-user-oriented telco mashups: the OMELETTE approach. In Proceedings of
the 21st world wide web conference, WWW 2012, Lyon, France, April 16–20, 2012
(Companion Volume) (pp. 235–238).

Daniel, F., Rodríguez, C., Chowdhury, S.R., Nezhad, H.R.M., Casati, F. (2012). Discovery and
reuse of composition knowledge for assisted mashup development. In Proceedings of the
21st world wide web conference, WWW 2012, Lyon, France, April 16–20, 2012 (Companion
Volume) (pp. 493–494).

Díaz, O., Arellano, C., Aldalur, I., Medina, H., Firmenich, S. (2014). End-user browser-side
modification of web pages. In Web information systems engineering – WISE 2014 – 15th
international conference, Thessaloniki, Greece, October 12–14, 2014, Proceedings, Part I
(pp. 293–307).

Díaz, O., Arellano, C., Azanza, M. (2013). A language for end-user WA: caring for producers
and consumers alike. TWEB, 7(2), 9.

Díaz, O., Pérez, S., Paz, I. (2007). Providing personalized mashups within the context of existing
web applications. In Web information systems engineering WISE 2007, 8th international con-
ference on web information systems engineering, Nancy, France, December 3–7, 2007,
Proceedings (pp. 493–502).

Díaz, O., Sosa, J.D., Arellano, C., Trujillo, S. (2012). Web-based tool integration: a WA
approach. In Web engineering – 12th international conference, ICWE 2012, Berlin,
Germany, July 23–27, 2012. Proceedings (pp. 431–434).

Dong, T., Ackerman, M.S., Newman, M.W., Paruthi, G. (2013). Social overlays: collectively
making websites more usable. In Human-computer interaction – INTERACT 2013 – 14th
IFIP TC 13 international conference, Cape Town, South Africa, September 2–6, 2013,
Proceedings, Part IV (pp. 280–297).

Firmenich, S., Bosetti, G., Rossi, G., Winckler, M., Barbieri, T. (2016). Abstracting and structuring
web contents for supporting personal web experiences. In Web Engineering – 16th interna-
tional conference, ICWE 2016, Lugano, Switzerland, June 6–9, 2016. Proceedings (pp. 77–95).

Firmenich, D., Firmenich, S., Rivero, J.M., Antonelli, L. (2014). A platform for WA require-
ments specification. In Web engineering, 14th international conference, ICWE 2014,
Toulouse, France, July 1–4, 2014. Proceedings (pp. 1–20).

Firmenich, D., Firmenich, S., Winckler, M., Rossi, G., Distante, D. (2015). User interface adapta-
tion using WA techniques: towards a negotiated approach. In International conference on
web engineering 2015 (ICWE) LNCS (vol. 9114, pp. 147–164). Heidelberg: Springer Verlag.

Firmenich, S., Winckler, M., Rossi, G. (2011). A framework for concern-sensitive, client-side
adaptation. In Web engineering – 11th international conference, ICWE 2011, Paphos,
Cyprus, June 20–24, 2011 LNCS (vol. 6757, pp. 198–213). Heidelberg: Springer Verlag.

Firmenich, S., Winckler, M., Rossi, G., Gordillo, S. (2011). A crowdsourced approach for
concern-sensitive integration of information across the web. Journal of Web Engineering
(JWE), 10(4), 289–315. Rinton Press.

Frajberg, D., Urbieta, M., Rossi, G., Schwinger, W. (2016). Volatile functionality in action:
methods, techniques and assessment. In Proceedings of the international conference of web
engineering (ICWE 2016), Lugano, Switzerland, June 6–9, 2016. Proceedings (pp. 59–76).

456 I. Aldalur et al.

Heidelberg: Springer Verlag. ISBN 978-3-319-38790-1, Lecture Notes in Computer Science
9671.

Gardiner, S., Tomasic, A., Zimmerman, J., Aziz, R., Rivard, K. (2011). Mixer: mixed-initiative
data retrieval and integration by example. In Human-computer interaction – INTERACT
2011 – 13th IFIP TC 13 international conference, Lisbon, Portugal, September 5–9, 2011,
Proceedings, Part I (pp. 426–443).

Garrido, A., Firmenich, S., Rossi, G., Grigera, J., Medina-Medina, N., Harari, I. (2013).
Personalized web accessibility using client-side refactoring. IEEE Internet Computing, 17(4),
58–66.

Ghiani, G., Manca, M., Paternò, F., Porta, C. (2014). Beyond responsive design: context-
dependent multimodal augmentation of web applications. In MobiWIS, LNCS (vol. 8640, pp.
71–85). Heidelberg: Springer Verlag.

Ghiani, G., Paternò, F., Spano, L.D. (2011). Creating mashups by direct manipulation of existing
web applications. In End-user development – Third international symposium, IS-EUD 2011,
Torre Canne (BR), Italy, June 7–10, 2011. Proceedings (pp. 42–52).

Ghiani, G., Paternò, F., Spano, L. D., Pintori, G. (2016). An environment for end-user develop-
ment of web mashups. International Journal of Human-Computer Studies, 87, 38–64.
Elsevier.

Gross, P. A., & Kelleher, C. (2010). Non-programmers identifying functionality in unfamiliar
code: strategies and barriers. Journal of Visual Languages and Computing, 21(5), 263–276.

Gross, P.A., Yang, J., Kelleher, C. (2011). Dinah: an interface to assist nonprogrammers with
selecting program code causing graphical output. In Proceedings of the international confer-
ence on human factors in computing systems, CHI 2011, Vancouver, BC, Canada, May 7–12,
2011 (pp. 3397–3400).

Guo, J., Han, H., Tokuda, T. (2010). Towards flexible mashup of web applications based on
information extraction and transfer. In Web information systems engineering – WISE 2010 –
11th international conference, Hong Kong, China, December 12–14, 2010. Proceedings
(pp. 602–615).

Han, H., & Tokuda, T. (2010). Towards flexible and lightweight integration of web applications
by end-user programming. IJWIS, 6(4), 359–373.

Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of Experimental
Psychology, 4(1), 11–26. doi:10.1080/17470215208416600.

Hoang, D.D., Paik, H., Benatallah, B. (2010). An analysis of spreadsheet based services mashup.
In Database technologies 2010, twenty-first australasian database conference (ADC 2010),
Brisbane, Australia, 18–22 January, 2010, Proceedings (pp. 141–150).

Hoang, D.D., Paik, H., Dong, W. (2011). Mashsheet: mashups in your spreadsheet. In Web infor-
mation system engineering – WISE 2011 – 12th international conference, Sydney, Australia,
October 13–14, 2011. Proceedings (pp. 332–333).

Husmann, M., Nebeling, M., Pongelli, S., Norrie, M. C. (2014). Multimasher: providing architectural
support and visual tools for multi-device mashups. In Web information systems engineering –
WISE 2014 – 15th international conference, Thessaloniki, Greece, October 12–14, 2014,
Proceedings, Part II (pp. 199–214).

Imran, M., Soi, S., Kling, F., Daniel, F., Casati, F., Marchese, M. (2012). On the systematic
development of domain-specific mashup tools for end users. In Web engineering – 12th
international conference, ICWE 2012, Berlin, Germany, July 23–27, 2012. Proceedings
(pp. 291–298).

Iturrioz, J., Azpeitia, I., Díaz, O. (2014). Generalizing the “like” button: empowering websites
with monitoring capabilities. In Proceedings of the 29th annual ACM symposium on applied
computing (SAC ’14) (pp. 743–750). New York: ACM.

Kleek, M.V., Moore, B., Karger, D.R., André, P., Schraefel, M.C. (2010). Atomate it! End-user
context-sensitive automation using heterogeneous information sources on the web. In
Proceedings of the 19th International Conference on World Wide Web, WWW 2010, Raleigh,
North Carolina, USA, April 26–30, 2010 (pp. 951–960).

45717 Web Augmentation as a Promising Technology for End User Development

http://dx.doi.org/10.1080/17470215208416600

Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., et al. (2011). The
state of the art in end-user software engineering. ACM Computing Surveys, 43(3), Article 21,
44 pages.

Kovachev, D., Renzel, D., Nicolaescu, P., Klamma, R. (2013). Direwolf – distributing and migrat-
ing user interfaces for widget-based web applications. In Web engineering – 13th international
conference, ICWE 2013, Aalborg, Denmark, July 8–12, 2013. Proceedings (pp. 99–113).

Krug, M., Wiedemann, F., Gaedke, M. (2014). Smartcomposition: a component based approach
for creating multi-screen mashups. In Web engineering, 14th international conference, ICWE
2014, Toulouse, France, July 1–4, 2014. Proceedings (pp. 236–253).

Leshed, G., Haber, E.M., Matthews, T., Lau, T.A. (2008). Coscripter: automating & sharing
how-to knowledge in the enterprise. In Proceedings of the 2008 Conference on Human
Factors in Computing Systems, CHI 2008, 2008, Florence, Italy, April 5–10, 2008
(pp. 1719–1728).

Lieberman, H., Paterno, F., Wulf, V. (Eds.) (2005). End-user development. Human-Computer
Interaction Series, Kluwer/Springer.

Massa, D., & Spano, L.D. (2015). Facemashup: enabling end user development on social net-
works data. In End-user development – 5th international symposium, IS-EUD 2015, Madrid,
Spain, May 26–29, 2015. Proceedings (pp. 204–210).

Miján, J.L., Garrigós, I., Firmenich, I. (2016). Supporting personalization in legacy web sites
through client-side adaptation. In Web engineering – 16th international conference, ICWE
2016, Lugano, Switzerland, June 6–9, 2016. Proceedings (pp. 588–592).

Nebeling, M., Leone, S., Norrie, M. C. (2012). Crowdsourced web engineering and design. In
Web engineering – 12th international conference, ICWE 2012, Berlin, Germany, July 23–27,
2012. Proceedings (pp. 31–45).

Newman, M. W., Lin, J., Hong, J. I., Landay, J. A. (2003). DENIM: an informal web site design
tool inspired by observations of practice. Human—Computer Interaction, 18(3), 259–324.

Nicolaescu, P., & Klamma, R. (2015). A methodology and tool support for widget based web
application development. In Engineering the web in the big data era – 15th international
conference, ICWE 2015, Rotterdam, The Netherlands, June 23–26, 2015, Proceedings
(pp. 515–532).

Park, T.H., Saxena, A., Jagannath, S., Wiedenbeck, S., Forte, A. (2013). Openhtml: designing a
transitional web editor for novices. In 2013 ACM SIGCHI conference on human factors in
computing systems, CHI ’13, Paris, France, April 27 – May 2, 2013, Extended Abstracts
(pp. 1863–1868).

Phuoc, D.L., Polleres, A., Hauswirth, M., Tummarello, G., Morbidoni, C. (2009). Rapid proto-
typing of semantic mash-ups through semantic web pipes. In Proceedings of the 18th interna-
tional conference on world wide web, WWW 2009, Madrid, Spain, April 20–24, 2009
(pp. 581–590).

Poley, E. (2010). RUMU editor: a non-wysiwyg web editor for non-technical users. In
Proceedings of the 28th international conference on human factors in computing systems, CHI
2010, extended abstracts volume, Atlanta, Georgia, USA, April 10–15, 2010 (pp. 4357–4362).

Radeck, C., Blichmann, G., Meißner, K. (2013). Capview – functionality aware visual mashup
development for non-programmers. In Web engineering – 13th international conference,
ICWE 2013, Aalborg, Denmark, July 8–12, 2013. Proceedings (pp. 140–155).

Rana, J., Morshed, S., Synnes, K. (2013). End-user creation of social apps by utilizing web-based
social components and visual app composition. In 22nd international world wide web conference,
WWW ’13, Rio de Janeiro, Brazil, May 13–17, 2013, Companion Volume (pp. 1205–1214).

Realinho, V., Dias, A.E., Romão, T. (2011). Testing the usability of a platform for rapid develop-
ment of mobile context-aware applications. In Human-computer interaction – INTERACT
2011 – 13th IFIP TC 13 international conference, Lisbon, Portugal, September 5–9, 2011,
Proceedings, Part III (pp. 521–536).

Repenning, A., Ahmadi, N., Repenning, N., Ioannidou, A., Webb, D.C., Marshall, K.S.
(2011). Collective programming: making end-user programming (more) social. In End-user

458 I. Aldalur et al.

development – third international symposium, IS-EUD 2011, Torre Canne (BR), Italy, June
7–10, 2011. Proceedings (pp. 325–330).

Tayeh, A.A.O., & Signer, B. (2014). Open cross-document linking and browsing based on a
visual plug-in architecture. In Web information systems engineering – WISE 2014 – 15th
international conference, Thessaloniki, Greece, October 12–14, 2014, Proceedings, Part II
(pp. 231–245).

Tayeh, A.A.O., & Signer, B. (2015). A dynamically extensible open cross document link service.
In Web information systems engineering – WISE 2015 – 16th international conference,
Miami, FL, USA, November 1–3, 2015, Proceedings, Part I (pp. 61–76).

Toomim, M., Drucker, S.M., Dontcheva, M., Rahimi, A., Thomson, B., Landay, J.A. (2009).
Attaching UI enhancements to websites with end users. In Proceedings of the 27th interna-
tional conference on human factors in computing systems, CHI 2009, Boston, MA, USA,
April 4–9, 2009 (pp. 1859–1868).

Wajid, U., Namoun, A., Mehandjiev, N. (2011). Alternative representations for end user compo-
sition of service-based systems. In End-user development – third international symposium,
IS-EUD 2011, Torre Canne (BR), Italy, June 7–10, 2011. Proceedings (pp. 53–66).

Wang, G., Yang, S., Han, Y. (2009). Mashroom: end-user mashup programming using nested
tables. In Proceedings of the 18th international conference on world wide web, WWW 2009,
Madrid, Spain, April 20–24, 2009 (pp. 861–870).

Wang, S., & Wainer, G.A. (2015). A mashup architecture with modeling and simulation as a ser-
vice. In Web information systems engineering – WISE 2015 – 16th international conference,
Miami, FL, USA, November 1–3, 2015, Proceedings, Part I (pp. 247–261).

Wong, J., & Hong, J.I. (2007). Making mashups with marmite: towards end-user programming
for the web. In Proceedings of the 2007 conference on human factors in computing systems,
CHI 2007, San Jose, California, USA, April 28 – May 3, 2007 (pp. 1435–1444).

Wulf, V., Paterno, F., Lieberman, H. (2006). End user development. Rotterdam: Kluwer/
Springer.

Zhai, Z., Cheng, B., Wang, Z., Liu, X., Liu, M., Chen, J. (2016). Design and implementation:
the end user development ecosystem for cross-platform mobile applications. In Proceedings
of the 25th international conference on world wide web, WWW 2016, Montreal, Canada,
April 11–15, 2016, Companion volume (pp. 143–144).

45917 Web Augmentation as a Promising Technology for End User Development

	Preface – New Perspectives in End-User Development: Elaborating Upon a New Research Paradigm
	References

	Contents
	Contributors
	Making End User Development More Natural
	1 Introduction
	2 Whyline
	3 Topes
	4 InterState
	5 Gneiss
	6 Azurite
	7 Variolite
	8 Sugilite
	9 Lessons Learned and Implications for the Future
	10 Conclusions and Future Work
	Acknowledgements
	References

	A Practice-Oriented Paradigm for End-User Development
	1 Introduction
	2 EUD and the Gentle Slope of Complexity
	3 Social Aspects of EUD: Appropriation and Infrastructuring
	4 An Extended Conceptual Framework for EUD in Practice
	5 Conclusion and Outlook
	References

	A Design Space for End User Development in the Time of the Internet of Things
	1 Introduction
	2 Metaphors and Programming Styles
	2.1 Metaphors
	2.2 Programming styles

	3 Design Space
	4 Conclusions
	References

	Revisiting and Broadening the Meta-Design Framework for End-User Development
	1 Introduction
	2 End-User Development: From Creating Technologies to Transforming Cultures
	2.1 Meta-Design: Framing and Supporting EUD as a Cultural Transformation
	2.2 Integrating and Relating Meta-Design with other Frameworks
	2.3 Methodologies and Models Extending the Meta-Design Framework

	3 Exploring Applications in Different Domains from a Meta-Design Perspective
	3.1 E-government
	3.2 Mash-ups
	3.3 Electronic Patient Records
	3.4 Supporting People with Cognitive Disabilities
	3.5 Physical rehabilitation
	3.6 Virtual worlds

	4 New Conceptual Developments
	4.1 Cultures of Participation
	4.2 Rich Ecologies of Participation
	4.3 EUD Taxonomy
	4.4 Co-evolution Model

	5 Identifying Design Drawbacks and Trade-Offs Associated with Meta-Design
	5.1 Standardization versus Improvisation
	5.2 Transcending Consumer Cultures versus Information and Participation Overload
	5.3 Lack of Continuity and Lack of Synergy
	5.4 Usability of EUD Products versus Flexibility of EUD Tools
	5.5 Utility versus Usability of EUD Products

	6 Design Guidelines
	7 Conclusion
	Acknowledgements
	References

	A Three-Layer Meta-Design Model for Addressing Domain-Specific Customizations
	1 Introduction
	2 Background and Related Work
	2.1 Meta-Design to Foster EUD
	2.2 User-Driven Innovation by Web Mashup

	3 A Three-Layer Meta-Design Model for a Mashup Platform
	3.1 The Three-Layer Meta-Design Model
	3.2 Architecture for Mashup Platforms Implementing the Meta-Design Model

	4 Customization to Specific Application Domains
	4.1 Customization in a CH Context
	4.2 Customization in a TEL Context
	4.3 Discussion

	5 Conclusion
	Acknowledgments
	References

	End-User Developers – What Are They Like?
	1 Introduction
	2 Because They Like It … Motivation in End-User Development
	2.1 Bricolage
	2.2 Artistry
	2.3 Technophilia

	3 Because They Find It Useful … Rational Choice in End-User Development
	4 Because They Believe They Will Be Good At It … Self-Efficacy and End-User Development
	5 Summary
	References

	Malleability in the Hands of End-Users
	1 Introduction
	2 What We Mean by Malleability
	2.1 The Sociotechnical Dimension of EUD
	2.2 The Features of Malleability

	3 The Conceptual Framework: The Logic of Bricolage
	4 The Conceptual Architecture
	5 Where the Logic of Bricolage Came From
	5.1 The Requirements and Their Technical Probes
	5.1.1 About the Information Structure
	5.1.2 Augmenting the Work Artifacts
	5.1.3 Linking the Work Artifacts to Their Context

	6 The AdHoc Platform
	7 Conclusions and Future Work
	References

	End User Development and Infrastructuring – Sustaining Organizational Innovation Capabilities
	1 Introduction
	2 Innovation, End-User Development, and Infrastructuring
	2.1 Democratized Innovation in the Organization
	2.2 End-User Development
	2.3 IT Infrastructures and Infrastructuring
	2.4 Summary

	3 Research Methods
	3.1 Meta-Analysis
	3.2 Trustworthiness

	4 The Two Cases
	4.1 Telecom Case: Innovating for Changing Business Practices
	4.1.1 Methods of Original Research
	4.1.2 Need for Change
	4.1.3 Flexible Technologies as Enablers
	4.1.4 Collaboration Between End-User Developers and IT Professionals
	4.1.5 Empowered Users
	4.1.6 Organizational Structures and Processes

	4.2 The UN University Case: Infrastructuring in a Knowledge Organization
	4.2.1 Methods of Original Research and Analysis for This Chapter
	4.2.2 Need for Change
	4.2.3 Flexible Technologies as Enablers
	4.2.4 Collaboration Between End-User Developers and IT Professionals
	4.2.5 Empowered Users
	4.2.6 Organizational Structures and Processes: Participatory IT Management

	4.3 Summary

	5 Discussion
	5.1 Need for Change and Innovation
	5.2 Sustainable End-User Development
	5.3 Organizational Structures and Processes
	5.4 Innovation Capabilities

	6 Conclusion
	References

	EUD Survival “in the Wild”: Evaluation Challenges for Field Deployments and How to Address Them
	1 Introduction
	2 Related Work
	3 Defining “Success” in Field Deployments of End User Development Technology
	3.1 What Makes EUD Special?
	3.2 How to Define “Success” of EUD?

	4 Evaluating TagTrainer
	4.1 TagTiles and TagTrainer

	5 Evaluation of TagTrainer
	5.1 Success Criteria
	5.2 Methodology
	5.3 Measures
	5.4 Reflection on the Case Studies

	6 A Structured Literature Survey
	6.1 Inclusion/exclusion Criteria
	6.2 Search Keywords
	6.3 Results
	6.4 Evaluating EUD Deployments

	7 Discussion
	7.1 How to Best Capture Evidence of the Success of an EUD Deployment?
	7.2 The Role of New Technology in EUD Deployments

	8 Conclusion
	References

	Toward Theory-Based End-User Software Engineering
	1 Introduction
	1.1 Theory: What It Is and How It Can Help
	1.2 Overview of This Chapter: Three Examples of Theory-Based Research

	2 Explanatory Debugging
	2.1 End Users Personalizing (“Debugging”) Machine Learning: Foundations
	2.2 The Explainability Principles
	2.3 The Correctability Principles
	2.4 EluciDebug: A Prototype of Explanatory Debugging in Action
	2.5 Evaluation

	3 Gender HCI and GenderMag
	3.1 A GenderMag Foundation: Self-Efficacy Theory
	3.2 A GenderMag Foundation: Information Processing Theory
	3.3 GenderMag: A Theory-to-Practice Method
	3.3.1 The GenderMag Method
	3.3.2 Evaluation: GenderMag in the Field

	4 The Idea Garden
	4.1 The Idea Garden’s Foundations
	4.2 The Idea Garden in Action
	4.2.1 CoScripter
	4.2.2 Gidget
	4.2.3 Cloud9

	4.3 The Idea Garden’s Principles
	4.4 Evaluation

	5 Discussion and Concluding Remarks
	Acknowledgements
	References

	Semiotic Engineering: A Cohering Theory to Connect EUD with HCI, CMC and More
	1 Introduction
	2 Semiotic Engineering
	2.1 A Specifically Defined Object of Investigation
	2.2 An Ontology and Theory-Specific Methodology

	3 Social Communication Through Software Programming
	3.1 AgentSheets
	3.2 PoliFacets
	3.3 SideTalk

	4 On the Potential Contributions of Semiotic Engineering for Increasing EUD’s Scientific Impact
	5 Concluding Remarks
	Acknowledgements
	References

	End-User Development and Social Big Data – Towards Tailorable Situation Assessment with Social Media
	1 Introduction
	2 Big Data, Social Media and End-User Development
	2.1 Big Data, Social Media and Data Analysis
	2.2 The End-User Development Perspective in Data Analysis
	2.3 Existing Approaches in EUD and Emergency Management

	3 EUD in Social Big Data Gathering and Assessment
	3.1 Pre-Study: Social Media Assessment by Emergency Services
	3.2 EUD in Social Big Data Gathering
	3.2.1 Key Challenges and Concept
	3.2.2 Implementation of a Cross-Platform Social Media API
	3.2.3 Tailorability: Filtering Data during Gathering and Post-Processing

	3.3 EUD in Social Big Data Assessment
	3.3.1 Key Challenges and Concept
	3.3.2 Implementation of Social-QAS
	3.3.3 Tailorability: Integration of Social-QAS into a Web Application

	4 Evaluation: Tailorable Quality Assessment
	4.1 Methodology
	4.2 Results I: How Much Tailoring? Quality Assessment Criteria
	4.3 Results II: Broad Information Basis and Information Overload
	4.4 Results III: Automatic and Tailorable Quality Assessment Necessary

	5 Discussion and Conclusion
	Acknowledgements
	References

	End-User Development and Learning in Second Life: The Evolving Artifacts Framework with Application
	1 Introduction
	2 The Evolving Artifacts Framework (EAF)
	2.1 Evolving Artifacts in End-User Development: Frameworks, Tools, and Techniques
	2.1.1 Meta-Design
	2.1.2 End-User Tailoring and Direct Activation
	2.1.3 Appropriation

	2.2 Evolving Artifacts and Human Learning
	2.2.1 The Genetic Law of Cultural Development (Duality of Learning)
	2.2.2 Piaget’s Adaptation: Assimilation, Accommodation and Equilibration
	2.2.3 Duality of Adaptation: Technology Versus Knowledge

	2.3 Constructionism

	3 Designing the Learning Environment: Buildings & Activities
	3.1 Designing Virtual Buildings
	3.2 Designing Learning Activities and Tools

	4 Methods and Research Design
	5 Data Extracts and Findings
	5.1 Data Extract 1: Creating a Box and Personalize the Learning Activity
	5.2 Data Extract 2: Customizing the Box for Content Sharing
	5.3 Data Extract 3: Exploring Online Scaffolding
	5.4 Data Extract 4: Using Domain-Specific Concepts in Planning a Roleplay
	5.5 Data Extract 5: Using Domain-Specific Concepts in Skills Practice
	5.6 Summary of Findings

	6 Discussion
	6.1 How Do the Multiple Functionalities of the SL “Box” Support End-User Development?
	6.2 What Is the Role of EUD in the Learning Activity?
	6.2.1 Appropriation Versus Evolving Artifacts
	6.2.2 The SL Box as Evolving Artifact
	6.2.3 Domain-Specific Skills Practice as Evolving Artifact

	7 Conclusions, Shortcomings, and Directions for Further Research
	7.1 Theoretical and Methodological Shortcomings
	7.2 Technology Improvements

	Acknowledgements
	References

	End-User Development for Serious Games
	1 Introduction
	2 Related Work
	2.1 Serious Games
	2.2 EUD for Digital Games
	2.2.1 Research
	2.2.2 Development
	2.2.3 Reflections

	3 Case Study
	3.1 First Intervention – Design of APE
	3.2 Second Intervention – Evaluation of APE

	4 Analysis
	4.1 Simplify the Semantics
	4.2 Balance the Syntax
	4.3 Support the Understanding of Errors (and Recover from Them)
	4.4 Provide a Small and Orthogonal Set of Feature
	4.5 Design a Coherent System
	4.6 Balance the Abstraction Level
	4.7 Balance between Difficulty and Motivation
	4.8 Provide a Complete Documentation

	5 Discussion
	5.1 Limitations

	6 Conclusion
	References

	Integrating End Users in Early Ideation and Prototyping: Lessons from an Experience in Augmenting Physical Objects
	1 Introduction
	2 Context and Related Works
	2.1 Co-design Tools
	2.2 Prototyping Augmented Experiences

	3 The Co-design Process with Codice-Ecce
	3.1 Ideation and Design with CoDICE
	3.2 Early Prototyping with ECCE

	4 Using Codice-ECCE To Ideate and Design Smart Objects
	4.1 Procedure
	4.2 Data Collection and Findings
	4.3 Lessons Learnt

	5 Conclusions
	Acknowledgements
	References

	An End-User Development Framework to Support Quantified Self in Sport Teams
	1 Introduction
	2 Design Model
	3 Dataflow Design
	3.1 State of the Art for Visual Design of ETL Operators
	3.2 Visual Dataflow Design System

	4 Rules Design
	4.1 State of the Art of Visual Rule Editors
	4.2 Visual Rule Editor
	4.3 Rule Editor Interface

	5 Conclusions and Future Work
	References

	Web Augmentation as a Promising Technology for End User Development
	1 Introduction
	2 Web Augmentation and End-User Development
	3 Overview of EUD Tools for the Web
	3.1 Architecture
	3.2 Subject of Adaptation
	3.3 Web Site Integration
	3.4 Collaborative Features
	3.5 Programming Paradigm

	4 Web Augmentation: A Case Study with WebMakeup
	4.1 Architecture
	4.2 Subject of Adaptation
	4.2.1 Selecting DOM Elements in a Web Page
	4.2.2 Re-arranging Contents around the Web Page
	4.2.3 Creating New Behaviors

	4.3 Collaborative Features
	4.4 Programming Paradigm

	5 User and Usage Challenges with WA Tools
	6 Conclusion
	Acknowledgements
	References

