Chapter 1
A Maximal Regularity Approach to the Analysis
of Some Particulate Flows

D. Maity and M. Tucsnak

Abstract This work presents some recent advances in the mathematical analysis of
particulate flows. The main idea we want to emphasize is that, for a variety of fluid
models the corresponding coupled systems have a common structure, at least in the
linearized case. Within this framework, several model problems are considered and
studied in detail. This includes a simple toy model, motion of a piston in a heat
conducting gas, motion of a rigid body in a viscous incompressible fluid and motion
of a solid in a compressible fluid.

Keywords Compressible fluid  Existence ¢ Fluid-structure interactions * Global
well-posedness ¢ Heat conducting gas * Navier-Stokes ¢ Uniqueness * Viscous
incompressible fluid
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1.1 Introduction and Hilbert Space Analysis of a Toy Model

1.1.1 The General Context

In the remaining part of this work the term particulate flows designs the coupled
motion of a collection of rigid bodies and of a fluid surrounding them. Such systems
occur, for instance, in aerodynamics (flow around an aircraft), medicine (blood flow
in vessels), zoology (swimming of aquatic animals). The mathematical study of
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these problems rises several challenges, the main one being due to the fact that the
domain filled by the fluid is one of the unknowns of the problem. Another difficulty
which has to be tackled is that the dynamics of the system couples equations of
different nature: ordinary differential or partial differential equations modeling the
solid with the partial differential equations (compressible or incompressible Navier-
Stokes) modeling the fluid.

A first important idea we want to develop in this work is that such a system
can be mathematically tackled as a perturbation (in an appropriate sense) of the
equations describing the fluid alone. More precisely, we see the coupled linearized
fluid-structure system like a boundary controlled fluid system, with the boundary
control given by an appropriate dynamic feedback which satisfies a “smallness”
condition. For the considered applications, this smallness condition follows from a
compactness type property of the operator describing the dynamic feedback. We first
apply this methodology to a toy problem and then to systems describing particulate
flows in a viscous compressible fluid. The incompressible case, apriori simpler,
seems more difficult to be included in the general framework we have constructed.
For this case we refer to the rich existing literature (see, for instance, Geissert et al.
[17] or Martin and Tucsnak [27] and references therein).

A second important idea is that we study the wellposedness of the considered
initial and boundary values problems in spaces of functions which are [/ with
respect to time and L? with respect to the space variable, with arbitrary p, g > 1.
Most of the existing literature on the mathematical analysis of particulate flows
consider the Hilbert space setting, corresponding to p = g = 2. (The only
exceptions we are aware of are Geissert et al. [17] Hieber and Murata [19].) Quitting
the Hilbert space setting clearly complicates the analysis. This is essentially due to
the fact that the maximal regularity of the solutions of the linearized problems is
no longer implied by the analytic character of the associated semigroup. Instead,
a more sophisticated property of the generators, called R-sectoriality, has to be
investigated. One of the advantages of this approach is that the extra integrability
properties obtained by taking p, ¢ > 2 allow us to avoid estimates on higher order
derivatives and also to correctly define the changes of variables which naturally
occur in the study of particulate flows (such as the equivalence of Eulerian and
Lagrangian formulations for compressible flows).

Let us first describe those basic equations which are independent of the properties
of the fluid. The domain occupied by the fluid and the particles is Q C R?, a
connected open bounded set with C? boundary. Let m € N be the number of
particles let Ay, hy, ..., h, be the (variable) positions of their centers of mass. For
every k € {1,2...,m} we denote by Ry, the proper orthogonal matrix (also a variable
one) giving the orientation of the kth particle, whose position is thus given by

S(hj, Rj) = hj + R;(So,; — ho,) (edfl,....m}),

where Sy ; and hoj stand, foreach j € {1, ..., m} for the set occupied by the jth solid,
respectively the position of its center of mass, at t = 0. The fluid is supposed to be
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incompressible, homogeneous with density p > 0 and it occupies the domain
F(hi,Ri ... hp,Ry) := Q\ US(hkka)-
k=1

Regardless the considered type of fluid, we know that the Cauchy equations hold
in fluid domain. More precisely, we have

plo + @ -V —dive = pb  (t=0, x€F(hi(),Ri(0), ..., hw(), Ru(D)),
(1.1)

v is the Eulerian velocity field of the fluid, o is its Cauchy stress field and b is the
density of exterior forces (supposed to be known). The equations of motion of the
solids are given by Newton’s laws and they can be written

M,-}i,:—/ ondF+/ pibdx, t=0,j=1,....m, (1.2)
aS(hj(1),R; (1)) S(hj(1).R;(1))

d
(Jjwy) = —/ (x—hj) x ondl’
dr 3 (hy (1) R; (1)
+/ (x—h)x pbdx, 1=0,j=1,....m, (1.3)
S(hi(1) R (1))

d(ﬁj (t) = A(a)j(l))Rj(t) t=0,j=1,...,m, (1.4)

where p; is the density of the solid S(h;(), R;(f)) (supposed to be a known constant),
wj(¢) is its angular velocity, the notation x stands for the usual vector product in R3,
whereas n denotes the unitary normal vector field to dS(%;(z), R;(¢)) oriented towards
the interior of each solid. The skew symmetric matrix A(w) is defined by

0 —w3 Wy
A)=| w3 0 —o forall w e R>. (1.5)
—wy Wi 0

Moreover, for every j € {1,...,m}, M; stands for the mass of S(%;(¢), R;(f)) and
J(hj(1), Rj(t)) denotes the inertia matrix of S(h;(z), R;(¢)) defined by

J(hj(0), Rj(D)a - b
= pj/ [a X (x — hj(t))] . [b X (x — hj(t))] dx forall a,beR>.
S(h;(1).R;(1))
(1.6)

In order to close the system, Eqgs.(1.1)-(1.4) have to be supplemented with a
constitutive law for the fluid, with appropriate boundary conditions and with the
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initial conditions, valid jourj € {1,...,m},
v(x,0) = vo(x) (x € F(hoj, Ro,)), (1.7)
hi(0) = hoj, 1;(0) = go,. R;j(0) = Ry, ;(0) = wo, (1.8)

The constitutive law and the boundary conditions in the case of a viscous
incompressible fluid will be introduced in the following sections.

The outline of this work is as follows. In the next subsection, in order to give a
flavour of the results to come, we introduce a toy model in one space dimension,
in which the Navier-Stokes system is replaced by the viscous Burgers equations.
The solid is replaced by a mass-point evolving under the action of the surrounding
“Burgers” fluid. In the remaining part of the first section we develop the existence
and uniqueness theory for the corresponding coupled PDE system, in a Hilbert
space framework. The second section is devoted to the introduction of several
more realistic models of fluid-structure interactions. More precisely we consider
the systems modelling the motion of a piston in a 1D viscous heat conducting gas,
then of a rigid body in a viscous incompressible fluid and finally the motion of
a rigid body in a three dimensional viscous compressible fluid filling a bounded
domain. Section 1.3 contains an introduction to the theory of maximal regularity for
evolution equations, namely those which are associated to R-sectorial operators.
Moreover, we make precise here the common structure of the linearized problems
for various particulate flow systems, and we prove a useful perturbation result.
Section 1.4 first revisits the analysis of the toy problem introduced in Chap. 1, this
time in an L” — L7 setting. The last part of this chapter is devoted to local in time
existence results, still in an L7 — L7 setting, for the two other systems introduced in
Sect. 1.2.

1.1.2 Introduction of a Toy Model

The viscous Burgers equation is often used as a toy model for the Navier-Stokes
equations. In this section we consider a similar simplification for the system
describing the motion of a rigid body in a viscous fluid. Assuming that, instead of
the Navier-Stokes equations, the fluid is described by the one dimensional viscous
Burgers equation, the system writes

U(t,y) —vy(t,y) + v, y)vy(ty) =0 120, ye(=11),y7#h@),
v(t,—1) =v(,1) =0 t=0,

h(t) = v(t, h(r) t=0,

h(t) = [v,](t, k(1)) t=0,

v(0,y) = vo(y) ye(=11),

h(0) = ho, h(0) = go.

(1.9
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In (1.9), v = v(t,y) denotes the Eulerian velocity field of the fluid filling the interval
(=1, 1), whereas i = h(t) indicates the position of the point mass and the derivative
with respect to time is denoted by a dot. Moreover, the force exerted by the fluid
on the mass is given by the jump of the derivative of v when crossing the mass,
denoted by [v,](t, A(t)). For the sake of simplicity, we have assumed that the mass
of the body, the viscosity and the density of the fluid are equal to one.

The main result of this chapter reads as follows:

Theorem 1.1 Assume that vy € Hé (—=1,1), hp € (—1,1) and gy € R are such that

vo(ho) = go. Then the system (1.9) admits a unique solution |:Zi| with

v e C([0,00); H (—1,1)) N HL ((0,00); LX(—1,1)),  he H*((0,T),(~1,1)),

with the restriction of v to x € (—1, hy) (respectively to (hy, 1)) in LIZOC((O, 00);
H?(—1, hy)) (respectively in LIZOC((O, 00); H?(hy, 1))).

Note that the global character of the wellposedness result above implies that the
mass point does not reach the extremities of the interval, i.e. the solid will not touch
the boundary. The methodology used in next section extends to the case of several
point-masses and in this case we can show that the point-masses do not collide in
finite time.

1.1.3 Change of Variables

An important step in proving our wellposedness results is to use a change of
variables mapping the time dependent interval [—1, i(7)] (respectively [a(), 1]) on
the fixed one [—1, hy] (respectively [hg, 1]). More precisely, we set z(f, x) = v (t,y),
where

ho+1)y+ho—h
e (v e =L A@)),

_ | i 1.10
T 0T (e . 1), o

It is easily checked that (1.10) can be rewritten as

g = (L= KO = ho + (o)

k= — hy). 1.11
1~ kho , sgn(x — ho) (1.1D)

The following proposition shows that by using the change of variable (1.10) the
system (1.9) is equivalent with a system written in a fixed spatial domain.

Proposition 1.2 Let T > 0, vy € L*[—1,1], ho € (—1,1), go € R, and assume that

v e C([0,T); Hy(—1,1)) N H'((0,T); L*(—1, 1)), heH*(0,7),(-1,1)),



6 D. Maity and M. Tucsnak

v <
Then | g | is a solution of (1.9) on [0, T) if and only if, the triplet | g |, where
h h

7(t,x) = v (¢,y), with x given by (1.10), satisfies, for every t € [0, T],

= za =10 24 M0 |au+ 1 Thez - e x e (<1 D)\ g
2(t,=1)==z(t,1) =0
z(t, ho) = g(1)

§— [ (t,ho) = (h—ho) [ 5,1 (t, ho) te(0.7)
h(t) = g(1)
2(0,x) = zo(x) xe(=1,1)

h(0) = ho, g(0) = go.
(1.12)

Proof Using the change of variables (1.10)—(1.11), simple calculations show
that (1.9) can be rewritten, for ¢ € [0, T7:

(1 — khyz — 17K 2 (1 — k)gz + (1 — khg)zze = 0, x € (=1, 1) \ I
2t~ =21, 1) =0

z(t, ho) = g(1)

mi(t) = [\492,] (t. )

h(1) = g(1)

2(0,x) = zo(x), xe (—=1,1),
h(0) = ho, 8(0) = go.

(1.13)

After some simple calculations we see that the above equations are equivalent to the
system (1.12). ]

1.1.4 Localin Time Existence and Uniqueness of Solutions

The main result in this section states as follows.

Proposition 1.3 Assume that vy € Hé (—=1,1), hy € (—1,1) and gy € R are such
that vo(hg) = go. Then there exists Ty, > 0 such that for every T € (0, Tyyax), the
system (1.9) admits a unique solution

v e C([0,T); Hy(—1,1)) N H'((0,T); L*(—1, 1)), heH*(0,7),(-1,1)),
(1.14)

with the restriction of v to x € (—1,hg) (respectively to (ho,1)) in L*((0,T);
H?(—1, ho)) (respectively in L*((0, T); H*(ho, 1))). Moreover, for everyt € [0, Tmax)
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we have

1 t 1 t
1/ v2(t, y)dy + 1(h(t))2=—// vy(cr,y)zdyda—/ W(o)do. (1.15)
2 /. 2 0o J-1 0

Finally, only one of the alternatives holds true

~

The solution is global, i.e. Ty, = 0.
2. We have either that [(i)nf )(1 — h(t)) = 0 (which means that the mass touches
1€[0,T,,

the boundary) or that - sup [[v(t,")|| 1 _; 1) = 0.
1€10, Tonar) o

An important role in the proof of the above proposition is played by a self-adjoint
operator which we introduce below. Consider the Hilbert space

H=1*-1,1) xR,

endowed with the inner product

1
<[‘”l} : [‘”D = / 01092 () dx + p1pa. (1.16)
P1 P2 -1

We define the unbounded operator A : D(Ag) — H,

@ H(l)(_ls 1) (pl(—l,h()) € Hz(—l,ho),
D(Ay) = |:P:| € X .1y € H?(ho, 1), . (1.17)
R ¢(ho) =p

wfl=lein]  (Glema)- o

Proposition 1.4 The operator Ag is positive in H. Moreover, the corresponding

1 1
space Hy (i.e., D(A]) endowed with the graph norm of Aj ) is

Hy = {m € Hy(—=1,1) x R| ¢(hy) :p} , (1.19)

endowed with the inner product

1
<[““H‘ﬂ> = / 012092, (x) dx. (1.20)
P1 P2 -1

1
2
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Proof We first check that A is symmetric. Indeed, for any ®; = |:§0i:| € D(Ay),
Di

i = 1,2, we have that

h

(A1, ) = — / P () de

1
- /h 1 (02(6) dx — [911(h)p2 — o1 (i)

1
=/ O1x(X) P2 (x) dx = (D1, A D). (1.21)
—1

We next check that Ay is onto. For F = |:f } € H, the equation Ag®d = F, of
8

unknown & = [(p} € D(Ap) writes
p

—@xe(x) = f(x) x € (=1,h) U (h,1)
pla) =p
—lex(h1) = g.
Elementary considerations on the differential equation —¢,, = f show that the

above system has a unique solution [(p:| € D(Ap) so that Ay is onto. Since we
p

have already shown that Ay is symmetric, a classical result (see, for instance, [34,
Proposition 3.2.4]) implies that Ay is self-adjoint.

On the other hand, taking ®; = &, = ¢ = |:¢:| in (1.21) we see that,
p

1
(A9®, D) = /_ P

which implies (1.20). O
As a consequence of the positivity Ag and of a classical result (see, for instance,
Lemma 3.3 and Theorem 3.1 of [4] ),we obtain:

Corollary 1.5 For every ty,t, > 0, Yo € H and f € L? ([to, t1], H) there exists a
unique Y € C ([to, tl],Hé) N L? ([to, t1], Hy) such that

{ Y(t) +A0Y(t) :f(t) re (t(),ll) (1 22)
Y(ty) = Y. '
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Moreover, there exists an absolute positive constant K such that, for every Yo € H !
andf € L*([t, 2], H), we have

2 2
||Y||C([,l,,2],Hl/2)) + ”AOY”LZ([tl,tz],H)
1
< ”Aé YO”%—I + K”f”é([,l’,z]ﬂ) (YO € Hl/2s f € L2 ([tls lz], H)) (123)

Remark 1.6 In PDE terms the above corollary says that if T > 0, 7 € HOl (-1,1),
go € R, fi € L2([0,T],L*(—1,1)) and o € L?[0, T), are such that vy(hy) = go then

then the solution | © | of the system

i(LX) _Zxx(LX) :fl(tvx)7 X e (—1,]’10) U (h()v 1)7 re (0’ T)7
z(t,—1) = z(t,1) =0, te(0,7),
z(t, ho) = g(2), te(0,7), 104
&) = [2] (. ho) = (0, 1€ (0.7, (129
2(0,x) = zo(x), x€(=1,1),
g(0) = go,

satisfies

2 2 2 2
”Z”C([O,T],Hé(—l,l)) + ”g”C[O,T] + |IZ||L2[0,T],H2(_1,/10)) + ”Z”LZ[O,T],HZ(hO,l))
2 2 2 2
S ”ZOHH(I)(—I,I) + |g0| +K (”fl ||L2([0,T],L2(—1,1)) + ||f2||L2[O,T]) . (125)

Another important ingredient are the properties of the operators (Gy);_, which
are defined (as suggested by the right hand side of (1.12)) by

! _ k(h(®) = ho) k(h(t) — ho)
& [fj 9=y [2 =k }Z"x(t’ %), (1.26)
1 — kx
Gy B‘j (t,x) = 1_ kh(t)g(t)zx(t, x), (1.27)
. [fj 2=~ 11—_ k/;h(j) 2, Dzt %), (1.28)
1 _ kzx
Ga [fj (1) = (h(2) — ho) [1 - kh} (. ho), (1.29)

where z, g satisfy (1.24) and

h(t) = ho + / g(o) do. (1.30)
0
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We give below some of the properties of these operators.

Lemma 1.7 Let T > 0 and let G, with k € {1,2,3,4}, be the operators
defined in (1.26)—(1.29). Then, for every k € {1,2,3}, the operator G, maps
L2([0, T], L*[—1,1]) to L*([0, T), L*[—1,1]) , whereas G4 maps L*[0, T] to L*[0, T].
Moreover, assume that

”fl ”22([0’7-]112[_1!1]) + ||f2||22([0!T] < RZ, ”vO”iI(l)(—l,l) + |g0|2 < Mza - |h0| = E,
(1.31)

for some R, M, ¢ > 0. Then there exists a constant C = C(g) > 0 such that for

every T < > SRR (with K being the constant in (1.25)) we have

f
Hgk [f2:|

< TC(e) (M* + KR*) (ke {1,2,3}), (1.32)
L2([0,T],L2[-1,1])

o[

Finally, if h is defined by (1.30) we have that

< VTC(e) (M? + KR?). (1.33)
12(0.7]

()] < 1-— ; (t € [0, T)). (1.34)

Proof In order to prove (1.34) it suffices to note that, using (1.25), we have
T €
[h(D)] < |ho| +/ 13(0)|do <1—e+TVM2+KR2<1— 5 (t €[0,7)).
0

The facts that G, G», G3 map L*([0, T], L*[—1, 1]) to L*([0, T], L*[—1, 1]) and
that G, maps L2[0,T] to L?[0, T] follow from (1.25) and from simple Sobolev
embeddings.

In the remaining part of this proof we denote by E(s) a generic positive constant
depending only on ¢.

In order to prove (1.32) we first note that (1.34) implies that

1 2

iy S 2—e (t € [0, T)). (1.35)

By combining (1.26) and (1.35) it follows that

fi
Hgl |:f2:|

Combining the last estimate with (1.25) we obtain that (1.32) holds for k = 1.

<TC(e) ||g||C([o,T],L2[—1,1]) ||Zxx||L2(o,T,L2(—1,1))-
L2([0,T],L2[=1,1])
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In order to prove (1.32) holds for k = 2, we note that the definition of G,
combined with (1.35) and the Cauchy-Schwarz inequality, imply that

1
‘ gZ |:f2:| (tvx)

< 1C@ lgllcwnlzleqpn ey < TCE (Ielon + 12l -

< C@) gl lzllzo.7.20-117)
L2[0,7],L2(—1,1))

The last estimate and (1.25) imply that (1.32) holds for k = 2.

The fact that (1.32) holds for k = 3 can be proved in a completely similar manner,
so we omit the details.

In order to prove (1.33) we note that the definition (1.29) of G4, estimate (1.35)
and a classical trace theorem imply that

a0 - |, e

T
< C(E)/O lg ()] dz (|lz(z, M ez=100)) + ll2(2, ')||H2(h0,1)))-

The above estimate and (1.25) imply that

oo -m[ %, ]

L2[0.7]
< VT (Igldon + 120 My + 120 e 1))

which, combined with (1.25), yields (1.33). O
Lemma 1.8 With the notation and assumptions in Lemma 1.8, suppose that?l, ]72 S
L2([0, T], L*[—1, 1)) satisfy

”fl ”iz([O,T],LZ[—l,l]) + ”fZ”iZ([()'T] S RZ’ (136)

Then there exists a constant C = C(g) > 0 such that for every T < (with

&
2+/M2+KR?
K being the constant in (1.25)) we have

1

4= ]

< TC@e) VM2 + KR (I fi —Fil 2oy + 15 —Blizpen) (ke tl,2,3)),
(1.37)

L2([0,T].L2[—1,1])
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Ao 7
Hg4 [fj s [fj

< VTC(e)VM? + KR? (Ifi =Fillzqorzery + 1A =Flzpn) - (1.38)

12[0,7]

Proof The proof is based on estimates which are very close to those used in proving
Lemma 1.7. More precisely, we first note that, estimate (1.35) for 4 and for 4 implies

that
< C(&)||h—ho|l oo .1 |2 = Zx 220, 71.021=1.17)

fi fi
i3] 3
H : 1 : fa L2([0,T].L2[—1,1]

+ C(e) || (h = ho)zee(1 = kh) = (h = hoJZu(l = k)| oo myoery - (1:39)

Using the inequality
A — hollco.n < Tlgllcro.m, (1.40)

together with (1.25) it follows that the first term in the right hand side of (1.39)
satisfies

12— hollLoofo.n |z — Zaell 2o, 19.02 =11
< T VM2 + KR (I =Fillzqoneeiy + 16 =Flepn) . (14D

Concerning the second term in the right hand side of (1.39) we note that

| (h = ho)zu(1 = Kkh) = (R = hoJZue(l = k1) | 2 0. 1122111
< [ = ho)zexll 2 o, 11.020-117) 172 —hllzoopo.m)
+ [(h = ho)(1 = k) || poopo 17 N2ee = Zecll 20122 (=117
+ 2 (X = k) 2 0. 7122 1=1.17) 12 ~hllzeo 0.1

Using in the above inequality the fact that
Ik =Rl ooy < Tllg —Zzoopo.my. (1.42)

together with (1.42) and (1.25), we obtain that

[ (h = ho)zae(1 = Ki) = (= ho)Z (1 = kB | 2 0 112211

< TC(e) VM2 + KR (1A _%”LZ([O,T],LZ[—I,I]) + —?2||L2[0,T]) : (1.43)
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By combining (1.41) and (1.43) we obtain that (1.37) holds for k = 1. The proof
of (1.37) for k € {2, 3} is very similar (but quite tedious) so we omit it here.

In order to prove (1.38) we note that from the definition (1.29) of G4 and
from (1.35) it follows that

Ao IF o H[k(zx—m} .
H@M an L CCRRTIETE | vt (01

%)
[1 - kh:| & o)

The above estimate, combined with (1.35), (1.40), (1.42) and (1.25), implies the
conclusion (1.38). O
We are now in a proposition to prove the main result in this section.

+yVTllg=Zlcon + VTIh=hllcon.
L2]0.7]

+ A=Al coom

Proof of Proposition 1.3 Let
X = L*([0,T], L*[-1,1]) x L*[0, T],

andlet N : X — X be defined by

N = |:g1+gz+g3:|’
N

where (Gy)1<k<4 have been defined in (1.26)—(1.29).
Let M > 0 be such that

lz0ll7 1) + 1g0l” < M2, (1.44)
and let ¢ > 0 such that
lho|l < 1 —¢. (1.45)

We denote by By, the ball in X' of radius M. From Lemma 1.7 it follows that

h
L,

The last estimate implies that A" maps By, into By, if

< (T + NT)Ce)(M* + M + 1) ([flzD € By).

T < [Ce)M?] . (1.46)
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By applying Lemma 1.8 it follows that

P ll-~

C(e)(M?> + M + 1) f1:| B [};}
<VT Y H |:f2 z

o () =)

The last estimate implies that the restriction of N to By is a strict contraction
provided that

-1
< 1 [C(g)(M2+M+ 1)} . (147)

T2 M

Consequently, for every T satisfying (1.46) and (1.47) we have that N has a unique

~ e

fixed point |:§\1:| € By. Denoting by |:,Z{| the solution of (1.24) with fj = fl and
8

2

Hh= /f\z we clearly have that [Z:| with

v(t.) =2(t.).  h(t) = ho + / tg(a)d(f (t € [0, 7)), (1.48)
0

satisfy all the equations in (1.9), with the restriction of v to x € (—1, k) (respec-
tively to (ho, 1)) in L2([0, T); H*(—1, hg)) (respectively in L>([0, T); H?(ho, 1))).
Moreover, according to (1.34) we have that h(z) € (—1,1) for every t € [0,T],

so that |:Zi| is indeed the desired local in time solution of (1.9).

According to classical arguments, this solution can be extended to a solution
defined on [0, T ).

Finally, assume that both assertions in the second alternative in Proposition 1.3
are false. Denoting

M= su v(t, g1, €= inf (1—|h()]),
te[o.,TEan | 1. teo,Tmo( @D

the first part of the proof shows that there exists § = 8(e, M) > 0 such that for every
t € [0, T,ax) the solution can be extended on [z, T + §]. This clearly implies that
Tax = 00, i.e., that the solution is global. O
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1.1.5 Proof of the Global Well-Posedness Result

The key estimates used to prove the above theorem are given in the result below.
Proposition 1.9 With the notation and assumptions in Proposition 1.3, let T €
[0, Tax) and let [Zi| 20,7 — Hé (—=1,1) X R be the local in time solution of (1.9)

constructed in Proposition 1.3. Moreover, assume that the initial data vy satisfies
lvoll gt (—1.1) < M, for some M > 0. Then there exists a constant K = K(M, T) such
that

100t gt 1y < KMLT) (2 € [0:T)). (1.49)

h(t

T h(t) 1 .
/ [ / i (1, y) dy + / va, (1, y) dy + |h(t)|2] dr < K(M.T). (1.50)
0 )

Proof We follow step by step the method used in [36].
Multiplying the first equation in (1.9) v,y and integrating on (—1, o) and (ho, 1),
we obtain that for every ¢ € [0, T] we have

h(r) , 1 rh0 3 , ) h(?)
/_1 vdy=—, /_1 at(vy)dy—i—v(t,h(t)—O)Uy(t,h(t)—O)—}—/_l v,y dy,
(1.51)

1

! 1 (' 9
/ vf,y dy = — (v}z,) dy — v(z, h(t) + 0)v,(t, h(2) + 0) + / VVyVyy.
h) 2 Jnq Ot h)
(1.52)

On the other hand, differentiating the third equation in (1.9) it follows that
O(t, h(t) £ 0) = h(t) — h(t)vy(t, h() £ 0) (t=0),
so that
Ot h(t) £ 0)vy(t. h(t) £ 0) = h(D)vy(t. h(1) £ 0) — h(t)v} (1. k() £0).  (1.53)

On the other hand
h(t) 9 5 d h(1) 5 .
)dy = “dy — h(t)v,(t, h(t) — 0),
[ peha= g [ ion o -o

I d [ro ]
[ aehar= g [ i ho +o)
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so that

1 h(1) 9 ) 1 1 P 1d 1 1.
— dy — 2 dv = — Zd A ’ h ‘
2/—1 oY Z/h(t) oY 2dt/_1 vy &y =, MO A(D)

By combining the last formula with (1.51), (1.52) and (1.53) it follows that

h(t) ) 1 ) 1d 1 ) 1.
/ v, dy + / v, dy = — / v2dy— (0]t h(1)
» . 2 dr 2

(1) —1
h(?)

— ) 0,]0 h0) + RO RO) + /

1
VVyyy dy+/ VVyUyy dy.
-1 h(7)

In the second term of the right hand side of the above formula we use the fact that

[y](t, h(t)) = h(2), (1.54)

and we obtain that

oo by ld ', 1d,
~d ~dy = — “dy — he(t
/_1 iy y+/h(,)vw Y 2dt/_1Uy V=gt

. : o !
— (1) 4+ h(®)[v;](1. h(D) + / VUV, dy + / VU Uy dy.  (1.55)
-1 h(t)

The last two terms in the right hand side of the above formula can be estimated,
using the Cauchy-Schwarz inequality, to give

h(r) 1
/ VUyVyy dy + / VVyVyy dy
-1 h(r)

< @) vyt ) 2= oy (8 ) 2= 1m0 + 10y E ) 2pe 1) - (1.56)

Using the classical interpolation inequality

1

1
Wlerin < IV 1 g IV lai,, € Hi=1.1).

together with (1.15) it follows that

3
o) vyt Mlz2i—1.y < Mlvy @) 2y
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Inserting the last inequality into (1.56) we obtain that

h(r) 1
/ VUyVyy dy + / VVyVyy dy
-1 h(r)

1 2 2
+ 2 (”Uyy(tv .)”Lz[—l,h(t)] + ”vyy(ta ')”Lz[h(t),l]) (t S [O, T])

M? 3
S 2 ”v}’(t’ ‘)”Lz[—l,l]

By combining the last inequality and (1.55), it follows that

d 1 h(t) 1 d . .
/ vyz. dy+/ vyz.y dy+/ vyz.y dy +  |h@)]> + |h()|*+
dr J—y -1 h(t) dr

<K (14 10 )y +AORAGR®)) (€ [0, T)),

17

(1.57)

(1.58)

with K| depending only on M. In order to estimate the last term in the right hand

side of (1.58) we note that, for almost every ¢ € [0, T], we have

h(D)[v71(h(1). 1) = v(t. h(2)) [v; (1. h(2) + 0) — v} (1. h(1) — 0)]

h(t)
= [ Cenien), o+ [ penden), o= [

-1 h(r) -

1 1

1

0
+2/ v@wwmw%mw®+zl

—1 (t

Using (1.57) in the last inequality we deduce that

1
Mm@mmﬁs[;@mw®+Mwwmwgﬂu

v3(1,y) dy
1

: v(t, y)vy(ts y)vyy dy

+ ”Uyy(tv ')”22[_1’;4,)] + ”Uyy(ts ')”iz[h(t),l]'

Inserting the last inequality in (1.58) it follows that

d [t " O
df/—lvy y+/—1 " y+/h(r)v” v g MOF + )

1

<k (141l + [ o) e,
-1

(1.59)
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with K, depending only on M. To estimate the last integral in the right-hand side of
the above formula we use the interpolation inequality (4.13) from [36] which asserts
the existence of a universal constant K > 0 that

1 1 1 .
Ioisiery < KWl (e + Poolln ) + 501

The above estimate, combined with Young’s inequality, implies that for every € > 0
there exists a constant ¢ > 0 with

1 . h(t) 1
/ vff dy < elh(n)|]® + ¢ (/ v}z,y dy + / v}z,y dy)
-1 -1 h(1)
1 3 1 2
+c(/ vf,dy) +c(/ vf,dy) (r €0, 7).
—1 —1

Choosing ¢ small enough and inserting the last inequality in (1.59) we obtain that
d 1 ) h(t) ) 1 2 d . 2 . 2
d d d h(t h(t
g e [ havs [ e o + o)
1 > 1 3 1
i ([ 0) ([ 0) ([ 0
-1 -1 ~1
1 1 2
<K, 1+/ vf,dy+(/ vf,dy) . (1.60)
-1 -1

with K3 and K, depending only on M. Integrating the above formula on [0, 7], with
T € [0, T, it follows that

2

1 1
/lvyz.(t,y)dy$ /lvé,y(y)dy

T 1 1
+ K5 |:T+/0 (1 +/—1 vyz(t,y)dy) /—1 vyz.(t,y)dydti|.

Using in the last estimate the fact, resulting from (1.15), that

T 1
| [ venausk.
0 —1

the conclusion (1.49) follows by applying Gronwall’s inequality.
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In order to prove (1.50) it suffices to integrate (1.60) with respect to time and to
use (1.49). ]
We are now in a position to prove the main result of this section.

Proof of Theorem 1.1 1t suffices to prove that both assertions in the second alterna-
tive of Proposition 1.3 are false. The fact that the assertion

t—1>1¥,:a,\- llv(, ')”H(‘)(—l,l) = o0,

is false for every T4 € [0, 00) is a direct consequence of Proposition 1.9. We show
below that the assertion saying that

lim |h()] = 1,

t—=>Tnax

is false for every T, € [0,00). To accomplish this goal, we first note that
from (1.49) and (1.50) it follows that v can be extended to a function, still denoted
by v, such that

v € C([0, Tmax). Hy(—1, 1)),
and v is Lipschitz with respect to x, uniformly with respect to ¢ € [0, Trax]. We use
now a contradiction argument . Indeed, assume that

lim h(r) = 1.
t—=>Tinax

This means that / can be extended to a function in C![0, Tmax] such that

h(t) = U(l, h(t)) (t € [O, Tmax])s h(Tmax) =1

On the other hand the function z(t) = 1 for every t € R is also a solution of
the above initial value problem. By the Cauchy-Lipschitz theorem it follows that
h(t) = %(t) = 1 for every t € [0, Tmax], Which is clearly a contradiction. O

In order to study the concept of weak solution of (1.9) it is useful to note that
that the distance from the mass point to the boundary is bounded from below by
a function depending only on the initial kinetic energy of the fluid-mass particle
system and of the initial position of the particle.

Theorem 1.10 Let M > 0. We assume that vy, hy and go satisfy the assumptions in
Theorem 1.1 and that

1
/ v2(y)dy + g5 + |ho — hi|* < M.
—1
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Let [Z:| be the corresponding solution of (1.9). Then there exist the positive
constants Ky, which depends only on M, and K;, depending only on M and on hy,
such that
1+ h(t) = Kje o (t=0). (1.61)
1 —h(r) = Kje o (t=0), (1.62)
Proof We give below only the detailed proof of (1.62), since the proof of (1.61)
can be obtained with obvious adaptations. Moreover, we note that it suffices to

prove (1.61) only for the values of ¢ for which h(f) = ;, i.e. for values of ¢ such
that

3
h(t) = 5" (1.63)
Consider the function ¢ defined by

olt.y) = { LB ye L),

Ly i v e [, 1]

Then

h(t)

h(t) ) B h(t) 9 )
[ ieeena = [ L wenpnn o= [ e

d [ . A h(r)
= dt/_1 (6, y)e(1,y) dy—hz(t)—i‘(l +(}?(t))2 /—1 (I+yvt,y)dy  (t=0),

h(r)

1+ h(o) —vy(t, h(t) — 0) (t=0).

h(r)
~ [ et ay =
—1

Summing up the two above formulae it follows that

d [ ., () h) ()
ol veeena—ito+ S0 [ Caemen e 1

h(t)
—uy(t, h(r) — 0) + /—1 v(t,y)v,(t,y)e(t,y)dy =0 (r=0). (1.64)
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Similar calculations show that

1

/h() v(t, y)e(t, y) dy
_dr N (G R
_dt/h(r)v(t,y)w(t,y)dwrh(t) (1 — h()? h(r)(l yoty)dy (= 0),

1 i
_ /h Y o)ty dy = —(Z(t) +0,(t,h(H) +0) (1= 0).

Summing up the last two formulae we obtain that

d " B o
o[ veneemariro- 0 M0

] 1
+ MO ) +0) + /
h

1 —h(7) ) v(t, vy, y)e(r.y) dy = 0 (r=0).

(1

The above formula and (1.64) imply that

d 1 h h(?)
dtf_lv(t’y)(p(t’y)dy+ a Jr(l?(t))2 /_1 (vl dy

() ! 2h(t)
T A= h) fTOVEI D gy

1
L) + /_ O =0 (12 0)

The last formula implies that

2h(y  d (! . h() ()
e == | e a—io= 0 [T a e

h(t) !
SR RCERECOETS /_

1
1 v(t, y)vy(t, y)e(t,y) dy (t=0).

It follows that

2h d ! )
T _;E?a) S ar /_1 V(@) dy + i) + A O] + 4@ (1.65)
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where

_ kM ho ! -
A0 == e [ armenars B[ o e e o2 0,

A = [ veneend oo,
The expressions defined on the last two formulas can be estimated by
|AL(D)] < 2[h@] V]l geo o112 111 < 2MIA@D)| < 2M* (1= 0),
A O] < V2l0y( ) By el qomxiotay < V200, )y, (@ 0).

The last two estimates and (1.65) imply that

2h d ! .
— }EZ)(t) <4 /_1 v(t.y)e(t.y) dy+h(t)+2M2+x/2||vy(l')||iz[_1,1] (t = 0).
(1.66)

Integrating (1.66) on [0, 7] it follows that for every ¢ = 0 we have

1—h(1) L=ho\ _ [ |
1n(1+h(t))_1n(1 +h0) ~ /—1 U(ts)’)</’(ts)’)dy—/_l U(O,y)(p(O,y)dy

t
+ (1) — go + 2M*t + \/2/0 1,0, )12y do < 1Ko(M) + Ki(M).

The last estimate, combined with (1.63), implies the conclusion (1.61). O

1.1.6 Bibliographical Notes

The first papers considering the coupling of viscous Burgers equation with Newton
laws as a simplified fluid-structure interaction system are Vazquez and Zuazua [35,
36], where global wellposedness and long time behavior have been investigated.
Similar models have been studied from a control theoretic viewpoint in Doubova
and Fernandez-Cara [15], Liu et al. [25] and Cindea et al. [6]. Our presentation
above follows [25] and [6].

1.2 Examples of Systems Modelling Fluid-Structure
Interactions

In this chapter we introduce some systems modelling the motion of particles in a
fluid, considering problems in one ore several space dimensions. We also describe
some change of variables allowing to consider the governing equations in a fixed
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spatial domain and we postpone to the next chapters the study of the corresponding
wellposedness results.

1.2.1 Motion of a Piston in a Heat Conducting Gas; a 1D
Model

We consider a one dimensional model for the motion of a particle (piston) in a
cylinder filled with a viscous compressible heat conducting gas. The extremities of
the cylinder are fixed. The gas is modelled by the 1D compressible Navier-Stokes-
Fourier equations, whereas the piston obeys Newton’s second law. We assume that
the piston is thermally conducting. More precisely, we consider the initial boundary
value problem

30 + 0 (ow) = 0, (t=0,§ e [-1L 1]\ {h®})
0 (3w + wdgw) — dgew + 9z (09) = 0, (t=0,§ € [-1L 1]\ {r®}),

0 (39 + 8:0w) — e — (9gw)” + 090w =0, (1= 0,€ € [-1, 1]\ {h(1)}),

w(t, h(t) £ 0) = h(r), 9(t, h(r) £ 0) = Q(7) (t=0),

(1.67)
mh(t) = [dgw — 09](t. h(1)), Q1) = [3](t. h(1)), (t=0),
wt,—1) =0 =w(, 1), 0, —1)=0= 23 1), (r=0),

with the initial conditions

h0) = ho,  h(0) =go, Q0) = Qo

w(0,8) =wo(§), 0(0,§) = po(§). (0.6) =o(§) (€ €[-1 1]\ {ho}).
(1.68)

In the above equations, o(z, £) is the density, w(z, £) is velocity of the fluid, 9 (z, §)
is the temperature of the fluid (all in Eulerian coordinates), m is the mass of the
particle and 4 is the trajectory of the mass point moving in the fluid. The symbol
[f1(§) denotes the jump of f at £ i.e.

[f1¢) =f(E+) —f(E-).

We now rewrite the system (1.67)—(1.68) in Lagrangian mass coordinates. This
change of variables has been widely used in the literature devoted to the study of
one dimensional compressible flows (see, for instance, [3] and references therein).
One of the advantages of this change of coordinates is that the positions of the piston
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becomes fixed. We begin by introducing the characteristic lines y(z; ) defined by

dx.m) =wt. x@m),  xO.n=n (@el[-1.1]). (1.69)
The first equation in (1.67) can be written

ad
po(n) = p(t, x(t. 1)) 32 tn) (20, Xe[-1L1]\ {ho}). (1.70)

The Lagrangian mass change of coordinates consists in replacing the space variable
& in (1.67) by

3
X = W(LE), W@@=[LMWNy & [-1.1)). (171)
From (1.70) and (1.71) it follows that
n
W@X@@)ZL/MUdY (€ =1 1]\ {ho). (1.72)

Using the facts that y(—z,1) = —1, (¢, 1) = 1 and y(z, h(r)) = 0, it follows that
‘IJ(tv _1) = I, ‘I’(tv 1) =1, (t = 0)5 (173)

where

ho 1
nzflmmm, mzAAMNn
0

On the other hand, using the fact that the right hand side of (1.72) is time
independent, together with (1.69), we obtain that

W (t.§) + 0 V(. E)w(r.§) =0 (¢=0.§ € [-1.1]\{h(D)}),

so that

V(1. 8) = —p.Hw(t.§)  (=0.§ e [=L 1]\ {h()}). (1.74)

Using the above properties, it follows that, for every ¢t = 0, W(z, ) is a diffeomor-
phism from [—1, 1] onto [—ry, 2], with d¢ W (2, §) = o(,§) > O for every t = 0 and
forevery & € [—1, 1]\ {h()}.
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For each ¢ > 0 we denote by ®(,-) = W~!(¢,-). The specific volume in mass
lagrangian coordinates is defined by

1 1
o o) °UY T v ey

=0
x € [=r1, ]\ {0}, § € [-1 1]\ {r(n}).  (1.75)

v(t,x) =

Similarly, the velocity and temperature field in lagrangian mass coordinates writes

u(t,x) = w(t, ®(t,x)), w(t, &) = u(t, ¥(t,£))
(t=0, x € [-r,n]\{0}, § € [-1, 1]\ {n(®)}),  (1.76)

0(1.x) = O (1, @(1.x)), ¥(t.£) = O(t. V(1))
(=0, x € [=ri,n]\{0}, § € [=L1]\{h())  (1.77)

From (1.71) and (1.74) it follows that for every = 0 and every & € [—1, 1] \ {A(?)}
we have

deo(t,§) = dv(t, V(1. £)), (1.78)

1
V3, (1, 8))

d0(1,§) = dv(r, W(t.§)) + O (e, W (t, §))u(t, V(1. £)).

(1.79)

1 1
028, U ((t, §)) v3(r, W((1,£))

From (1.71) we have for every = 0 and every £ € [—1, 1] \ {A(z)} we have

dxu(t, V(1. §))

Iw(t,£) = doult, W £)o(0.6) = =, )

e [-1L, 1]\ {h(®}).
(1.80)

By combining (1.78), (1.79) and (1.80) it follows that for every ¢+ = 0 and every
£ e [-1,1]\ {h(r)} we have

9:0(t.§)+0: (0(1.§) w(z,§)) = (B0(z, W(t,§)) — dxu(t, V(1. §))) .

1
02, (1, 8)))

Consequently, using Lagrangian mass coordinates, Eq. (1.67); writes

ov(t, x) — du(t,x) =0, (t=0, xe[—r,rn]\{0}). (1.81)
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Using again (1.71) and (1.74), together with (1.80) it follows that

et (1, W (2, 8))  Bu(t, W(2,6))0,v(2, W(2.§))

vz(t, W(t, £)) U3(l‘, (1, £)) & € [-1, 11\{r(®)}),

(1.82)

Deew(t,8) =

dw(r,§) = du(t, V(1. §)) — deu(t, W(t,§))u(t, V(1. £))

1
v(t, (&)
(t=0, x €[—r, ]\ {0} (1.83)

The derivatives of ¥ and 6 satisfy formulas similar to those satisfied by those of w
and of u, that is

0:0(1, W(z.§))

(t, U(1,£)) € € [-L 1\ {h®)}).

(1.84)

00 (1,§) = 0:0(1. W(t.§))o(1.§) =

00, W (1, 8))  0:0(1. W(1.§))0v(t, V(1. §))

v2(r, (1, £)) N V31, U (1, £)) ¢ € [-1L, 1]\ {r(®)}),

(1.85)

Dee? (1, 6) =

1
9,9(1,§) = 9,0(t, ¥(1,§)) — o (. W(1. E) 0x0(t, W (1, §))u(r, W(1,£))
¢ e[-1L1J\{r®}.  (1.86)
By combining (1.78), (1.80), (1.82)—(1.84) we obtain that
0(1,8) (Bw(t.§) + w(t.§) dew(1,§)) — deew(t.§) + dlo(t. §)V (1. £)]

1 1 0
= o(6. U (1. £)) I:B,u(t, W(t, &) — 0 (v Oxu — v) (1, w(t, 5)):| .

Consequently, (1.67), can be written as
du 0
dyu(t, x) — 0y - (t,x) =0 (t=0, xe[-r,n]\{0}). (1.87)
v v

To write (1.67); in mass Lagrangian coordinates we combine (1.80), (1.84)—(1.86)
to get

Pt E) (30 (1.€) + 0D (1. E)W(1.6)) — Deed — (dew)” + 0(1, E)P (1, ) dew
1

— B 1 (! )
= L V(ED |:8,0(t,\11(t, €)) — 0x (v3x9) ¥ 8) (v |0xu| )(t,\I/(t, £))

+ (i 8xu) (t, W(t, E))i| .
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From the above formula, it follows that (1.67); is satisfied iff

1 1 0
0:0(t, x)— 0y ( 8x9) (t.x)— (Qu)’— du(t,.x) =0, (t=0, x € [—r1, ] \{0}).
v v v
(1.88)
The fourth equation in (1.67) can obviously be rewritten as

. 0
u(t, £0) = h(z), 2 (r, £0) = Q(r) (r=0). (1.89)
X
As for (1.67)s, using (1.80), we have
. 1 0 . 1
mh(1) = [ Oxut — } (¢,0), Q@) = [ 3x9} (t,0)  (t=0). (1.90)
v v v
Using (1.84), it is easily seen that (1.67) write in mass Lagrangian coordinates as
u(t,—ry)) = u(t,rn) =0, 99 (=r1,0) = 99 (ri,n) =0 (t=0). (1.91)
ox ox

Putting together (1.81) and (1.87)—(1.90), it follows that the system (1.67) writes
in Lagrangian mass coordinates as

v — 0 =0, (t=0, x €[—r,rn]\{0}),

8tu—3x(11}3m) +ax(i) 0, (120, x€l-r.r]\{0).
1 1 , 0

3,0 — 0, ( axe) — (O + =0, (t=0, x€[=rr]\{0}).
v v v

u(t, £0) = h(r), 0(t,0+) = 0(1), (t=0),

(1.92)

mh(t) = |:18xu— 9} (,0), (t=0),
v v

an=[bﬁ]mm, (t>0),

u(t,—ry) =u(t,r) =0, 09,0, —r) =090(r) =0, (t=0),

v(0,x) = vo(x), u(0,x) = up(x), 6(0,x) = Op(x), x € [—r1, ] \ {0},

h0) = hy,  (0) = g,

where

1

00(®(0. )" up(x) = wo(P(0,x)), 6Ho(x) = Fo(P(0,x)). (1.93)

U()(x) =
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1.2.2 Motion of a Rigid Body in a Viscous Incompressible
Fluid

In this section we describe the system modelling the motion of a rigid body
immersed in a viscous incompressible fluid. Let us assume that the fluid and the
rigid body are contained in a bounded domain with smooth boundary. At time ¢ > 0,
the rigid body occupies a smooth domain Qg(f) C 2. We assume that

d(Qs(0), 3Q) > 0. (1.94)

We denote by Qr(f) = Q2 \ Qs(¢) the domain occupied by the fluid. The motion of
the fluid is given by

du+ (u-Vu—divo(u,p) =0, divu=0, xeQr(r),tel0,T], (1.95)

where the Cauchy stress tensor o (&, p) is defined by
1 T
o(u,p) = 2vDu—pl3, Du= 2(Vu + Vu'),

and /3 is the identity matrix.

Attime t > 0, let h(t) € R?, Q(f) € M3x3(R) and w(f) € R? denote the position
of the center of mass, the orthogonal matrix giving the orientation of the solid and
the angular velocity of the rigid body. Therefore we have,

00~y =A@y = w(t) xy, VYyeR’, (1.96)

where the skew-symmetric matrix A(w) is given by

0 —w3 Wy
Aww)=| w3 0 —w |, w e R
—wy Wi 0

Without loss of generality we can assume that
h(0)=0 and Q(0)=1. (1.97)
At time ¢, the domain occupied by the structure Q24(¢) is defined by
Qs() = xs(, 25(0)) (1.98)
where ys denotes the flow associated to the motion of the structure:

xs(t,y) = h(t) + Q(t)y, Vye Qs(0), V>0, (1.99)
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Foreacht > 0, ys(t,-) : Qs(0) — Qg(¢) is invertible and

xs(6,)7H@) = 0( T (x— h(r),  Vx € Qs(0). (1.100)

Thus the Eulerian velocity ug of the structure is given by

us(t, %) = 3 xs(t,-) o xs(t,) ™' (¥) = h(t) + QOO (x = h(1)),  Vx € Qs(0).

(1.101)
Therefore
ug(t,x) = h(t) + w(t) x (x — h(r)), Vx € Q(7). (1.102)
We also assume the continuity of velocities at the fluid-solid interface, i.e.,
u(t,x) = h(t) + o) x (x —a(t)), x e IQs(). (1.103)

On the boundary of 2 we prescribe no-slip boundary condition for fluid, i.e.,
u(t,x) =0, xe€dQ. (1.104)

We denote by m > 0 the mass of rigid structure and J(f) € M3x3(R) its tensor of
inertia at time . This tensor is given by

J(a-b = / ps(N@x 0y - (bx 0y dy,  Ya.b R, (1.105)
Q5(0)
where psg > 0 is the density of the structure. One can check that

J(t)a-a = Cylal* > 0, (1.106)

where C; is independent of r > 0. The equation of the structure is given by

mh = —/ o(u,p)ndy,
0Q2s5(1)

Jo = (Jw) xw — / (x—h(@) xo(u,p)ndy (1.107)
3Qs(1)

where n(z, x) the unit normal to dQ25(#) at the point x directed toward the interior of
the rigid body. The above system is completed by the following initial conditions

u(0) = up, in Qp(0), h(0) =0, h0)=go ()= wp. (1.108)
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1.2.3 Motion of a Solid in a Compressible Fluid

In this section, we consider a rigid structure immersed in a viscous compressible
fluid. In this case, we assume that, the fluid and the rigid body are contained in a
smooth bounded domain  C R3. At time ¢ > 0, the rigid body occupies a smooth
bounded domain 25(7). We assume that

d(Q25(0),98) > 0. (1.109)

For any time 7 = 0, Qp(f) = Q \ Qs(?) denotes the region occupied by the fluid.
Let h(f) € R?, Q(f) € M3x3(R) and w(r) € R? denote the position of the center
of mass, the orthogonal matrix giving the orientation of the solid and the angular
velocity of the rigid body satisfying (1.96) and (1.97). Let m denote the mass of the
rigid body and J(7) € M;3x3(R) its tensor of inertia at time ¢ given by (1.105). The
system modelling the motion of rigid body in a viscous compressible fluid can be
written as

d;p 4+ div(pu) =0, t€(0,7),x € QF, (?)
pu+ (u-Vyu)—divo(u,p) =0, t€(0,7),x € Qp,(f)
u(t,x) = h(t) + o(t) x (x —a(r)), 1€ (0,7T),x € (1),

mh = —/ o(u,p)ndy, te(0,T) (1.110)
aQs(1)

Jo = (Jw) xw — /BQ ()(x—h(t)) x o(u,p)ndy

u(t,x) =0, te(0,T),xe R,
p(0) = po, u(0) =uo, in2p(0),
h(O) =0, h(O) = 80, CU(O) = o,

where

1
o(u,p) = 2uDu + (adivu — p)lz, Du= 2(Vu + Vul)

2
,uZOandoz+3,u>0, p=p’, y=1

Now we rewrite the above system in fixed domain. Here we use Lagrangian
change of variable as it is well suited for the compressible fluids. We consider the
characteristics X associated to the velocity fluid u, that is the solution of the Cauchy
problem

0 X(t.y) = u@t.X(1,y)) (> 0),

(1.111)
X(0,y) =yeQ.
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Assume that X(t, -) is a C!-diffeomorphism from £2(0) onto Qx(z) forall ¢ € (0, T)
(see Lemma 1.60). For each t € (0, T), we denote by Y(z,-) = [X(t,-)]! the inverse
of X(¢,-). We consider the following change of variables

plt.y) = p(t,X(1,)), u(t,y) = 0~ (u(t, X(1,)), (1.112)
g0 = 07 h(r), (1) = 07w (), (1.113)
for (1, y) € (0,T) x Qr(0). In particular,
p(t,x) = p(t, Y(1,%),  u(t,x) = Q@)a(t, Y (1, %), (1.114)
for (t,x) € (0, T) x Qp(t). The system satisfied by (7, iz, £, @) reads as follows
3:p + podivit = F,  in (0,T) x Qr(0),

8yii — ;‘ A= THY@ivay = Foy + Fan in (0.7) x 24(0),
0

Po
#=0 on(0,7)x0Q, w=g+wxy on(0,T)xdR2s(0), (1.115)
d
m g:-/ (LVii + pVi" +adivid)ndy + G,
dt Q5(0)

d
JO) &= —/ y X (pLVit—l—,uVﬁT—}—adiv itl)n—}—gz,
dt 25(0)

p(0) = po, u(0) =uo, inQr(0),

g(o) = gOs(Z)O = o,

where
00 =1+ / 0()(@(s) x 1), O = 0! (L116)
0

Xty =y+ / QO(s)ii(s) ds, and Jy =Jy', (1.117)
0

Fi(p.it. 3. &) = —(p — po)divit — p(Q — DVi : J) — pVie : (J) —1I),

(1.118)

oo~~~ 15 FeN ﬁ — Po ~ ~ o - T
Fri(p,u.g. @) =—" Q)u— 0)9,ut — (Q(1) — 0yt — y Jy Vp
Lo Lo Po

- M-naa,
Lo
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3
(F22)i(p, u, 8, @) = Z Ay, 3y, (Qi):i[(Jy)kj — 8] Uy )y

+ ¥ Z (@2, (0):) [y — 84

kll

3
+ 4TS g 00,00 [Un)) — ] U

Po =1

Lot Z(ay,y, (0iy) [ — 8l + (@7 = 1) : 8,V

lj=1
(1.119)

F3(p,i,8.@) = —m(® x £) — Gn,
Q5(0)

Fip.in.3) = J(O0)d x & — / ¥ x Gn,
Q5(0)

G(p.i1,8.®) = (QT —I) (1 (QVitdy + Jy Vi  QT) + (aJy : QVii" —p) ) cofix
+ (n(QVidy + Jy Vi Q) + (aJy : QVii' —p) 1) (coflx — 1)
+ w(Q = DVidy + uVa(Jy —I) + u(Jy —DVi' QT + uVia' (QT -1
+ (@(Q—=DVii: J)I + (@Vi: (Jy =) —Rp"I  (1.120)

1.3 Short Introduction to R-Sectorial Operators

Let X be a Banach space and A be a closed, densely defined linear unbounded
operator in X with domain D(A). We shall consider the abstract Cauchy problem

() = Au(t) + (1), t>0, u(0)=0, (1.121)

where f : RT > X is a given function.

Definition 1.11 (Maximal .”-Regularity) Let 1 < p < oo. The problem (1.121)
has maximal [P-regularity on [0,T), 0 < T < oo, if for every f € LP([0,T); X),
there exists a unique u satisfying the above equation almost everywhere and such
that iz € L7([0, T); X). In this case Au € L7 ([0, T); X) as well.

Remark 1.12 1In the above definition we do not assume that u € [7(0, T; X). In fact,
if T < ocoor0 € p(A), where p(A) is the resolvent set of A, it € LP(0,T; X) can be
replaced by u € W''*(0, T; X) [13].
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Our aim is to give sufficient condition on the operator A so that the prob-
lem (1.121) has a maximal L”-regularity. It is well known that, if (1.121) has a
maximal LP-regularity, then A generates an analytic semigroup in X (see [9] and
[13]). On the other hand, if X is a Hilbert space, the above condition is enough
to obtain maximal LP-regularity, i.e., if A generates an analytic semigroup in X,
then (1.121) has a maximal L”-regularity (see de Simon [11] for more details). In
fact, De Simon used Plancherel’s theorem which is valid only in the Hilbert space
setting and cannot be generalized. Since then, there has been considerable work
in the general Banach space framework [10, 14, 20, 23, 24, 29]. We are interested
in the recent result obtained by Weis [37]. He obtained a necessary and sufficient
condition for maximal L”-regularity when X is a UMD Banach space in terms of
R-boundedness of the operator A (for the precise definition of UMD spaces and
R-boundedness we refer to the next section). This result is very useful in order to
obtain maximal I — L7 regularity of linearized fluid structure interaction problem.

In this chapter we recall some basic definitions and results on R-sectorial
operators and we prove a lemma, which seems to be new, on the R sectoriality
of a class of matrices of linear operators.

1.3.1 Basic Definitions

In this section we recall some basic definitions and results concerning maximal
regularity and R-boundedness in Banach spaces. For detailed information on these
subjects we refer to [8, 12, 37] and references therein.

Definition 1.13 Let X be a Banach space. The Hilbert transform of a function f €
S(R; X), the Schwartz space of X-valued rapidly decreasing functions, is defined by

EE

T >0 Jlsj>e S

t e R.

A Banach space X is said to be of class 7T, if the Hilbert transform is bounded on
L7 (R; X) for some (thus all) 1 < p < oo.

These spaces are also called UMD Banach spaces, where UMD stands for
unconditional martingale differences. Hilbert spaces, all closed subspaces and
quotient spaces of L7(2) with 1 < g < oo are examples of UMD spaces. In fact,
X € HT implies that X is reflexive (see [1]). We next introduce the notion of R-
boundedness of family of operators and R-sectoriality of a densely defined linear
operator.

Definition 1.14 (R-Bounded Family of Operators) Let X and Y be Banach
spaces. A family of operators 7 C L(X,Y) is called R-bounded on L(X,Y), if
there exist constants C > 0 and p € [1, 00) such that forevery n € N, {Tj}7_; C T,
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{x;}’—; C X and for all sequences {r;(-)}}—; of independent, symmetric, {—1, 1}
valued random variables on [0, 1], we have

n n

>_rOT < C|2_n0

= D ([0.13;Y) = (0,11:%)
The smallest such C is called R-bound of 7 on L(X, Y) and denoted by R £x,y) (7).
Remark 1.15
(1) If T C L(X,Y) is R-bounded then it is uniformly bounded with

sup{[T|l | T € T} < Rewy)(T).

(2) If X = Y = L) for some open set 2 C RY, then T C L(X,Y) is R-
bounded if and only if there exists a constant C > 0 such that for every n € N,
{TY_) C T, {xh=, C LY(S) the following estimate holds:

1/2 1/2
n n

> Tl >l

=1 j=1
L9() L9()

/A

(3) If X and Y are Hilbert spaces every set 7 bounded in £(X, Y) is R-bounded.

For 0 < & < /2, and y = 0 we define the sector X, in the complex plane by
Y., ={A€eC\{0} | |argA| < m —e, [A]|> vy} (1.122)

When y = 0, X, , will be denoted by ;.

Definition 1.16 (R-Sectorial Operator) Let A be a densely defined closed linear
operator on a Banach space X with domain D(A). Then A is R-sectorial operator
in X if 3, contained in the resolvent set p(A) for some ¢ € (0,7/2),y = 0 and
{A(/U —-A)7 e ZE,),} is R bounded on £(X) with R-bound M. In this case, the
set {A(AI —A) M de Ew} is R-bounded with R-bound at most 1 + M.

We now state several useful propositions concerning 7R-boundedness.

Proposition 1.17
(1) Let X and Y be Banach spaces and let T and S be R-bounded families on
LX,Y). Then T + S is also R-bounded on L(X,Y), and

Reaxn (T +S8) S Rexn)(T) + Rexn(S).
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(2) Let X,Y and Z be Banach spaces and let T and S be R-bounded families on
L(X,Y) and L(Y, Z) respectively. Then ST is R-bounded on L(X,Z), and

Rexz(ST) € Reyy(TRewyz(S).

(3) Let g € (1,00), let Q be a bounded domain in R" and let A be a domain in
C. Let m(A) be a bounded function defined on A and let M,,(A) € L(L1(R2)),
defined by M,,(A\)f = m(L)f, for any f € L1(RQ). Then {M,,(A) | A € A} is
R-bounded and

Rewa@niMn(A) | A € A} < Cugallmllzeea). (1.123)

Proof The proof of first two statement follows easily from the definition of R-
boundedness. The proof of Proposition 1.17 (3) follows from Remark 1.15 (2). 0O

1.3.2 Weis’ Theorem

In this section we will discuss Weis’ theorem concerning maximal L”-regularity of
the Cauchy problem (1.121). First, we will prove a proposition due to Kunstmann
and Weis [22], which states that TR-sectoriality is preserved by A small perturbations.

Proposition 1.18 Let A be a R-sectorial in a Banach space X with domain D(A).
Assume that Ty, ,, C p(A), for some gy € (0, 7/2), yo = 0 and

Reoon({AAI—A)7" L e B0} ) € a < . (1.124)
Let B be a linear operator such that D(A) C D(B) and
[1Bx|| < 81 [|Ax]| + 82 ]lx]l. (1.125)
with §; < 1/a. Then there exists y; = yo such that
Reoo({AQAI—(A+B)™' A€ Xy} ) < o0 (1.126)
Proof From the definition of R-boundedness, we have

R {B(AI —A)_l} < 6iRex) {A(/\I—A)_l} + R {(AI —A)_l}

52&
<6 .
(‘” |A|)
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8
Thus there exists y; = yp such that (81a + |/2;|l) <8 < 1forid € X, ,, and hence

I — B(M — A)~!is invertible for A € X, ,,. Now
M—@A+B)" =@ —A)"" (I-BM-4)")"

= -4 Y (B AT

J=0

By induction
R (/\(/\I—A)“ (B(/\I—A)_l)j) <R(AM -4 5

Therefore

a

Reoo({AAI = (A+B) ™' [ € 2y} ) < s

The Theorem of Weis is the following:

Theorem 1.19 Let X be a Banach space of class HT, 1 < p < oo and let A be a
closed, densely defined unbounded operator with domain D(A). Let A generates a
bounded analytic semigroup on X, i.e.,

A —A) 7| < C, for A > 0.

Then the following statements are equivalent.

(i) The Cauchy problem (1.121) has maximal L?-regularity.
(ii) The set {)L()k —A)7 e Eg} is R bounded for some ¢ € (0, 7/2).

1.3.3 Abstract Framework Corresponding to Linear
Fluid-Solid Interaction Problems

In this section, we introduce an abstract framework which will correspond to the
linear fluid-solid interactions problems. The main idea in elaborating this approach
is that linearized fluid-solid interaction problems can be viewed as boundary
controlled fluid systems with dynamic boundary feedback. To this aim we first
recall, following [34, Chap. 10], some background on boundary control systems.
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Systems described by linear partial differential equations with nonhomogeneous
boundary conditions can be written in the form:

z(t) = Lz(2), Gz(t) = u(r). (1.127)

Often L is a differential operator and G is a boundary trace operator. In the sequel,
we assume that U, Z and X are reflexive Banach spaces such that

ZCX,
with continuous embedding. We shall call U the input space, Z the solution space
and X the state space.
Definition 1.20 A boundary control system on U,Z and X is a pair of operators
(L, G), where
Le L(ZX), Ge L(ZU),

if there exists a 8 € C such that the following properties hold:

(i) G is onto,

(ii) KerG is dense in X,
(iii) BI — L restricted to KerG is onto,
(iv) Ker(BI — L) N KerG = {0}.

With the assumptions of the last definition, we introduce the closed subspace X;
of Z and the operator A by

X, =KerG, A=1Lly, . (1.128)

Obviously, X is a closed subspace of Z and A € L(X, X). Condition (iii) means
that B — A is onto. Condition (iv) means that Ker(8I — A) = {0}. Thus, (iii) and
(iv) together are equivalent to the fact that 8 € p(A), where p(A) is the resolvent set
of A, so that

(BI —A)"" € L(X).
In fact, (BI —A)~! € L(X,X}), so that the norm on X is equivalent to the norm

llzlls = (BT = A)zlix -

It is easy to see that || - || x, on X is equivalent to the graph norm of A. Therefore, by
closed graph theorem, (X1, || - ||1) is complete. Also, for any 8’ € p(A), we have an
equivalent norm on X;. We define the space X_; as the completion of X with respect
to the norm

Izl = (BT = A)~"z].
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The space X_; does not depend on the specific value of 8. We have X; C X C X,
with continuous and dense embedding. Then A has an extension, also denoted by A,
such that A € L(X, X—)).

Let X’ denotes the dual of X. Let A* : D(A)* + X’ denotes the adjoint of the
operator (A, D(A)). We endow D(A™*) with the graph norm

Izl = 1(BI = A™)z" [1x,

where 8 € p(A) = p(A*). The following theorem holds (see [16, Chap. 2, Sect. 5]).

Theorem 1.21 Let X be a reflexive Banach space. Then X_y is isomorphic to
D(A™*)'.

Also, if X is reflexive and if (S(¢));>o is a C°-semigroup on X with generator
A, then the adjoint semigroup (S(£)*);=0 of (S(1));>0 is a C°-semigroup on X’ with
generator A* ([28, Corollary 10.6]).

Proposition 1.22 Let (L, G) be a boundary control system on U, Z and X. Let A and
X_1 be as introduced earlier. Then there exists a unique operator B € L(U,X_;)
such that

L=A+BG, (1.129)

where A is regarded as an operator from X to X_. For every 8 € p(A) we have that
(BI —A)"'Be L(U,Z) and

GBI-A)"'B=1, (1.130)

so that in particular, B is bounded from below.

Proof Since G is onto, it has at least one bounded right inverse H € L(U,Z). We
put

B=(L-A)H. (1.131)
From G(I — HG) = 0 we see that the range of I — HG is in KerG = X, so that
(L—A)(I — HG) = 0. Thus we get that BG = (L — A)HG = L — A, as required
in (1.129). It is easy to see that B is unique. To prove (1.130), first we rewrite (1.131)
in the form
(Bl — A)H — (B — L)H = B.
If we apply (81 — A)~! to both sides, we get

H— (BI—A)""(B1 —L)H = (BI — A)"'B,
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which shows that indeed (81 — A)~'B € L(U,Z). Therefore, we can apply G to
both sides above and then the second term on the left-hand side disappears, due to
X1 = KerG. Since GH = I, we obtain (1.130). O

When L, G, A and B are as in the above proposition, we say that A is the generator
of the boundary control system (L, G) and B is the control operator of (L, G).

Remark 1.23 The following fact is an easy consequence of Proposition 1.22 (we
use the notation of the proposition): For every v € U and every 8 € p(A), the vector
7z = (BI — A)~'Bv is the unique solution of the “abstract elliptic problem”

Lz = Bz, Gz=wv.

For many L and G, this problem has a well known solution, and it is easier to
describe z € X than to describe Bv € X_, since X is usually a more “natural”
space than X_| (see the other sections of this chapter).

We are now in a position to write a class of linearized fluid-structure interaction
problems as boundary control systems with dynamic feedback.

Let Z, X, U be reflexive Banach spaces of class H7T. Let (L, G) be a boundary
control system on U, Z and X. Let X; and X_; are defined as before. Let A = L|x,
generates a C° semigroup in X. Let K be a densely defined, closed unbounded
operator in U with domain D(K) and K generates a C° semigroup in U. Finally,
let C € L(Z, U). We consider the following abstract system

z=1Lz, Gz=u,
= Ku+ Cz, (1.132)

2(0) = z9, u(0) = ug.

Let us introduce the operator (A, D(A)) in X x U by
D(A) = { m e ZxD(K) | Gz = u} (1.133)

and

z| Lz
A[’J = |:Ku+ Cz] (1.134)

Lemma 1.24 The map

<
2] etz + o,

is a norm on D(A) equivalent to the graph norm.
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Proof For (z,u) € D(A), and B € p(A), we note that

lzllz + llullp)
< llz— (BI = A)~'Bullx, + (BI — A)~'Bullz + ully + |Kully
< c((BI = A)z = Bul|x + |[ullv + [|[Kullv)
B
u

where c is a strictly positive constant, possibly depending on . Since the reverse
inequality is an obvious one, we obtain the claimed norm equivalence. O

The theorem below shows that if the operator A from (1.128) is R-sectorial and
if the operator C from the second equation in (1.132) is “small” with respect to
A then the semigroup generator describing the system (1.132) is also R-sectorial.
In the applications we are interested in the first equation in (1.132) describes the
fluid, with some boundary input. The second equation describes the motion of the
structure. Our result below can be interpreted as asserting that, in some sense, the
fluid structure system can be seen as a perturbation of the equations describing the
fluid alone.

Theorem 1.25 Let Z,X, U be reflexive Banach spaces of class HT. Let (L, G) be
a boundary control system on U,Z and X. Assume that A = Ll|x, and K are R-
sectorial operators in X and U, respectively. More precisely, assume that there exists
€1,82 € (0,/2) and y1, y2 = 0 such that

< c(llzllx + lAz + Bullx + [lullv + [|Kullv)) < ¢

3

D(A)

RL(X) {A(AI—A)_I | Ae ESI,VI} < 00, Rg(U) {A(AI—K)_I I A€ 282,),2} < 0.
(1.135)

We also suppose that C € L(Z, U) satisfies the following condition: for every § > 0,
there exists C(8) > 0 such that

ICzllu < 8llzllz + C(S)lzllx (ze2). (1.136)

Then the operator (A, D(A)) defined as in (1.134) is R-sectorial in X x U, i.e., here
exists gy € (0, 7w/2) and yy = 0 such that

Reooxwy AAL = A7 [ A € By 5} < 0. (1.137)

Proof To prove this theorem we write A in the form A = A, + B, where

A=) 5()=(2)
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We first show that (A;, D(A)) is a R-sectorial operator in X x U. Observe that

(=)

if and only if, Az — Az — Bu = x and Au — Ku = v. Thus, for A € X, ,, N X, 5,,
u=MA—-K) and z=@A—-A)"'(x+BAL-K)" ).

Fix B € p(A) and set D = (BI — A)~'B. Thus D € L(U,Z). Therefore, for every
veU,

(M —A)"'Bv = (Al —A)""(BI — A)Dv
=AM —A)"'Dv + B —A)"'Dv + Dv.

This yields
A — A~
_ ()L()LI —A) V(B =)A= A)'DAA —K)"' + DA — K)—l)
N 0 (M —K)™!

Using Proposition 1.17 and (1.135), we can easily verify that, there exists &3 €
(0, /2) and y3 > 0, such that

RL(XXU) {A(/XI— Al)_l | A€ Esg,y:;} < 00,
Rexwy LA — A)7' |4 € Zgy 04} < 00

Now, Lemma 1.24 and (1.136) gives, for any § > 0

P = G, e )

Therefore, by Proposition 1.18, A is a R-sectorial operator in X x U and (1.137)
holds. O

(1.138)

sM(S'

XxU XxU

1.3.4 Bibliographical Notes

The importance of the maximal regularity property of linearized Navier-Stokes
type systems in order to obtain existence and uniqueness for the original nonlinear
problems is known for a long time (see Clément and Priiss [7] for an early
reference). As previously mentioned, in a Hilbert space setting, this property holds
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if A generates an analytic semigroup, see [11]. In a Banach space context, the
analyticity of the semigroup is no longer sufficient to guarantee the maximal
regularity property, see Kalton and Lancien [21]. In our notes we choose to remind
the important necessary and sufficient condition for maximal regularity on H7T
spaces due to Weis [37]. In our approach, an important role in passing from the
maximal, regularity of linearized fluid problems to maximal regularity of associated
fluid-structure systems is played by perturbations methods. The main results we
have presented in this direction are Proposition 1.18, which is given in Kunstmann
and Weis [22] and Theorem 1.25, which seems to be new.

1.4 Existence and Uniqueness Results

1.4.1 Some Background

In this section we will prove local in time existence and uniqueness results for the
systems introduced in Sects. 1.1.2 and 1.2. The proofs of the local in time existence
and uniqueness results are based on Banach fixed point theorem which is applied to
the systems written in fixed spatial domain. In order to apply the Banach fixed point
theorem, we need to study the regularity of linear systems with nonhomogeneous
source term and non zero initial data on a compact time interval. In fact, to obtain
local in time existence and uniqueness of solution, it is important to obtain estimate
of solutions in terms of source term and initial data with precise dependence of the
continuity constant with respect to time. To this aim, we first recall some basic facts
about real interpolation spaces. The proofs can be found in [4, 18, 33].

Let Xy and X; are two complex Banach spaces. The pair (Xp,X;) is called
interpolation couple if there is a linear, complex Hausdorff space Y such that
Xo, X1 < Y with continuous embeddings.

Lemma 1.26 Let (Xy, X1) be an interpolation couple. Then Xy N X with the norm

”-x“X()ﬁXl = max (”-x”Xov ||x||X1) s
and Xy + X, with the norm

Ixlxo+x = _inf (llxllx, + lIxllx,)
x=x0+x]

XjGXj

are Banach spaces.
We now introduce the real interpolation space (Xo,X1)e, via K method. Let
(X0, X1) be an interpolation couple. Fot 0 < 1 < oo, x € Xy + X1,

K0 = KxXo X)) = _inf (s + i)

X €X;

is an equivalent norm in Xy + X.
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Definition 1.27 Let (Xo, X)) be an interpolation couple. Let 0 < 8 < 1l and 1 <
q < oo. Then

(XO’XI)QJI =\X€ XO + Xl | ”-x”(X(),Xl)@q = (/ (t_ K([, X))q ; ) < 00y .
0

It is easy to verify that | - [[(x,.x)y, i @ norm and that (Xo, X1)g, is a linear
subspace of X, + X;. We recall some important properties of the space (Xo, X1)a,4

Proposition 1.28
(1) It holds that

(X0, X1)o,g = (X1, X0)1-0,4-

(2) There exists a constant Cgy, 0 < 6 < 00, | < q < 00 such that for all
x € XoNX;

1-6 0
Iell oty %130 < Cogllxllx,” [1¥lx, -

Now we introduce another definition of interpolation spaces.

Definition 1.29 Let (X, X;) be an interpolation couple, « € Rand 1 < g < oo.
Then

W(q, a, Xo, X)) = {u(t) | u(z) locally integrable functions defined on (0, co) with
values in Xy + X; such that #*u(z) € L(0, oo, Xp),
i e L9(0, oo,Xl)},

where the derivative i1 = is the distributional derivative of u.

t
The space W(g, , Xo, X1) endowed with the norm

el wigexox)) = 1%ullLa.00:x0) + 1#71t]| 22 (0.005x1)

is a Banach space. We define the space of traces as follows

Definition 1.30 Let (X, X;) be an interpolation couple. Let € Rand 1 < ¢ < oo
are such that 0 < @ + g~ < 1. Then we define

T(q,o,Xo, X)) :={x € Xo + X1 | there exists u € W(q, o, Xo, X1) with u(0) = x}.
The space T'(q, o, Xo, X1) endowed with the norm

”'x”T(q,lX,X(),Xl) = inf{”u”W(q,a,X(),Xl) | M(O) = -x} )
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is a Banach space. The following theorem shows the connection between the
interpolation spaces (Xo,X1)s4 and T(q, o, Xo, X;). This theorem will help us to
determine the required space of initial conditions in order to obtain maximal P — L4
regularity for linear systems.

Theorem 1.31 Let (Xy, X,) be an interpolation couple. Let @ € R and 1 < g < 00
are such that 0 < o + g~' < 1. Then we have

T(q. 0. Xo.X1) = (Xo. X1)og- (1.139)

As discussed earlier in this chapter, we are now going to study the regularity
of linear systems with nonhomogeneous source term and non zero initial data. Let
0 < T < oo. We consider the initial value problem

i(t) = Au(d) + £(1), t€[0,T]. u(0) = up. (1.140)

As a consequence of Theorem 1.19, we have the following result:

Theorem 1.32 Let X be a Banach space of class HT, 1 < p < oo, and let A be
a closed, densely defined unbounded operator in X with domain D(A). Let A be an
R-sectorial operator in X, i.e., there exists €y € (0, 7/2) and yy = 0 such that

Rea {AA—A) " [ A € By} < 00. (1.141)
Then for every uy € (X, D(A))1—1/p, and for every f € [7(0,T; X), (1.140) admits a

unique solution in L7 (0, T; D(A)) N W'?(0, T X). Moreover, there exists a constant
C independent of T such that the following estimate holds

lullzr 0.7:00a)) + Nlullwiro.7:x)

< C(1+270)e™" (lluollx. by —py + 1 lr07:3) - (1.142)

Proof Letus set

f f0<t<T,
0 ift>T,

fr=

and
Ay =A =2y, f,(t) = e ' fy. (1.143)
Therefore, obviously we have

D(AV()) = D(A), Rﬁ(X) {/\(AI_AV())_I | A€ 280} <0
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and f,,, belongs to L7 (0, 0o; X). Let us consider the problem
iy, (1) = Ay () + £ (D), t20, 1, (0) = uo. (1.144)
According to Theorem 1.31,

(X.DA))1_1/p, = {u(0) | u € L(0,00: D(A)) N W'P(0, 001 X))} .
Therefore for every ug € (X,D(A))1-1/pp, there exists u; € LP(0,00;D(A)) N
W'?(0, 00; X) such that u;(0) = ug and it; — Ayyu; belongs to LF(0, 0o; X). By
Theorem 1.19 and using the fact that 0 € p(A,,), we obtain existence and uniqueness
strong solution uy € L7(0, 00; D(A)) N W' (0, 00; X) to

iy = Ayo”Z +(f— i +Ayoul)s u>(0) = 0.

Hence, u,, = u; + u> belongs to L”(0,00;D(A)) N W“’(O, 00; X) and uy,
solves (1.144). By closed graph theorem, there exists a constant C > 0 such that

[ty 127 0.00:04)) F Nty lwir0.00:%) < CUlfyo 22 0.003%) + U0l .y —1)p,)-
(1.145)

Define
u(t) = e'u, (1), 0<t<T.
Then u belongs to L7 (0, T; D(A)) N W'(0, T; X) and u solves (1.140). Moreover,
lullzr 0.7:0(a)) + Nlullwiro,7:x)

2
< (14 2y0)e™" (luyy L 0750040 + ity llwiro.7:x))

2
< (14 290)€" ([luyy |l 0.00:04)) + ity w1 0.00:))-

Finally, by using the above estimate and (1.145), we obtain (1.142). O

For a smooth bounded domain 2 C R”, the Sobolev spaces of order s > 0 are
denoted by W*4(2). Letm € N. Forevery 0 <s <m,1 < p <o0,1 < g < oo, we
define Besov spaces by real interpolation of Sobolev spaces

B () = (L1(Q2), W™ (Q))s/mp- (1.146)
In particular if p = g = 2, then B} ,(Q2) = W*2(2). We introduce the space

Wi ((0,T) x Q) 1= LP(0, T; W>4(2)) N W' (0, T; L)), (1.147)
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and
||M||W§>'I}((()’T)XQ) = llullporw2aq) + lullwirore@)- (1.148)

We now state an important embedding theorem

Theorem 1.33 ([1, Theorem 4.10.2]) Let Xy and X are two Banach spaces such
that X, is densely embedded in Xy. Let 0 < T < oo and fixp € (1,00). Then

([0, 7); X1) N W' ([0, T); Xo) <= C([0, T); (Xo. X1)1=1/p.p)-

As a consequence of the above theorem, we obtain the following proposition

Proposition 1.34 ([31, Proposition 4.2]) Let 1 < p,q < oo and T be any positive
number. Let Q2 be a smooth domain in R". Then for any u € Wi’; ((0,T) x 2),

t:(‘éPT) ||“(f)||33_<;71/m(m <C (”“(O)”Bﬁ.(fW)(Q) + ||“||W§>}}((0,T)XQ)) , (1.149)

where the constant C is independent of time T. In particular, if p = q = 2, then for
any u € L*(0,T; W»2(Q)) N W'2(0, T; L2(Y)

S(‘(J)P) u(@®)llwi2@) < C ([lu(0) lwrzq)y + lull2o.rwe2@) + lullwizorzq) -
t€(0,T

(1.150)
where the constant C is independent of T.
1 1
For any 1 < p < oo, p’ denotes the conjugate of p,ie., + , = 1. We recall
p P

some basic embedding estimates

I £lor < TPV flron, forallf € L'(0,T),r > p

Il < TV | fllwiory,  forall f € W'(0,T),£(0) = 0. (1.151)

Let () be a time dependent domain. We define Sobolev spaces in the time
dependent domain €2(¢) as follows.

Definition 1.35 We say that u € W*'»(0, T; W*24(€2(-))) if for almost every ¢ €
(0, T), u(r) belongs to W*24(2(1)) and 1 — ||u(t, -) [|wa(qy) is in W*(0, T).
Other type of Sobolev spaces in the time dependent domain €2(¢) can be defined
similarly. Finally we recall the following useful lemma

Lemma 1.36 ([32, Chap.3, Lemma 2.1]) Ler X;, i = 1,2,3 be Banach spaces
with continuous inclusions

X — X, < Xj.
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Assume that X, is compactly embedded in X,. Then for any given € > 0, there exists
C(€) > 0 such that for all x € X,

Ixllx, < €llxllx, + C(e)lx]lx,-

1.4.2 Back to the Toy Problem

In this section we consider again the toy problem (1.9), this time in a [/ — L7
framework. The main result asserts the local in time existence and uniqueness of
solutions for system (1.9) in this context. Let us set ,(f) = (—1,1) \ {4(r)} and
Qpy = (=1,1) \ {ho}. Forevery 1 < p < ooand 1 < g < oo the set Z,, is defined
by

Tpq = {(z0.ho. 80) | 20 € B\ ™7 (Qy). ho € (—=1,1), 80 € R} (1.152)
and
1Gzo. ho. 80) 17, := llzoll 2= g, ) + lhol +Igol-

1 1
For every p,q € (1,00) satisfying the condition + ) # 1, we introduce the
p q

space of initial data

w _VDoa if;+;q>1,
P {20 ho, 80) € Ty | 20(ho) = g0, 20(=1) = 29(1) =0} i | + )} <1.
(1.153)

The main result of this section states as follows.

1 1
Theorem 1.37 Let 1 < p,q < oo satisfying the condition — + ) # 1. Assume
that (vo, ho. 80) belongs to L. Then there exists a T > 0 such that the system (1.9)
admits a unique strong solution
v € LP(0, T; W*(Q,(-))) N W' (0, T: LY (Qu(-))) N C([0, T]: B20 ™7 (Q4())).
h e W?P(0,T).

Moreover, h(t) € (—1,1) forallt € [0,T).

In view of Proposition 1.2, it is enough to show local in time existence and

uniqueness of solutions for system (1.12) which holds in a fixed spatial domain.
Therefore, in this section, we prove the following theorem
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1 1

Theorem 1.38 Ler 1 < p,q < oo satisfying the condition —+ 5 # 1. Assume
p

that (29, ho, go) belongs to 1,5, Then there exists a T > 0 such that the system (1.12)

admits a unique strong solution

2 € (0. T: W>1(Qu,)) N W' (0, T: LU(Q,)) N C([0. T): B2S ™7 (Qny)).
he W*(0,T).

Moreover, h(t) € (—1,1) forallt € [0, T)].
In order to prove the above theorem, we first rewrite (1.12) as follows

Z—zw = Fi1(z,8,h), t€(0,T), xe (—1,1)\ ho,

2(t,—1) =2z(t,1) =0, z(t,ho) = g(@®), te(0,7) (1.154)
§ = [zl (1, ho) + Fa(z.8,h).1 € (0,7)

2(0,x) = z0(x) x € (—1,1), h(0) = hy, £(0) = go.

where

h@=%+£§@m

k(h — ho) k(h — ho) 1 — kx 1 — kho
]: ’ ’h = 2 XX S X
1@eh="1_ 4 [ | —kh kS - ™
kz,
Fale.g. )= (h—ho)| = |t ho). (1.155)

We consider the following linear system

i—za=fi. 1€(0.7), x € (=1.1)\ ho,

2(t,—1) =2z(t,1) =0, z(t,ho) =g, te€(0,7) (1.156)
g =lz] @ ho) + /2.1 € (0.7)

2(0,x) = z0(x) x € (=1, 1) \{ho}.  g(0) = go.

We want to rewrite the above system as an evolution equation in an appropriate
Banach space. Let Q2,, = (—1,1) \ {ho} and ¢ > 1. We introduce the following
spaces

Z = WH(Qu) N WU (=1,1), X =L%Q,), U=R.
LetL € £(Z,X),G € L(Z,U) and C € L(Z, U) are defined as follows

Lz =z, Gz =1z(hy), Cz=[z](ho) (1.157)
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Let us introduce the unbounded operator (<7, D(A) in X x U by

D(A) ={(z.¢) eXxU|Lze X, Gz =g} (1.158)
z Lz
= 1.159
A (g) (CZ) ( )
Thus (1.156) can be written as

d(z\_ ,(z ﬁ) (2(0)):(20)
dr(g) A(g)*(/z’ ) " \go) (1.160)

Proposition 1.39 There exists ¢ € (0, /2) and yo > 0 such that

and

Reooxoy AA —A) T A € Sy, < 00 (1.161)
Proof Letus set X; = KerG = {z € Z | z(hy) = 0}, and A = L|x,. Then, by Denk
et al. [12, Theorem 8.2], A is R-sectorial in X and there exists g and y = 0 such
that

Reo {AA—A)" [ € B, 5} < o0 (1.162)

We also have, for s € (1/¢, 1)

ICzllu < Cllzellwsaiuy) < Cllzllwi+s,)- (1.163)
Since Wz’q(QhO) > compact W1+‘“‘1(§Zho), we obtain for any § > 0, there exists

Izllwi+s @) < Sllzllwaac,y) + COllzllLou,)-

holds for arbitrary small §. This completes the proof of the proposition. O

Combining the above proposition and Theorem 1.32, we obtain the following
result

Theorem 1.40 Let 1 < p,q < oo and hg € (—1,1). Then for every (z9,g0) €
(Z,D(A))1-1/pp and for every (fi.fo) € LP(0,T;L4(R2p,)) x LP(0,T), the sys-
tem (1.156) admits a unique strong solution satisfying

”Z”U’(O,T;WZ-‘I(QhO)) + ”Z”Wl-l’(O,T;L‘I(QhO)) + llgllwiro.n)

<C(+ EZYOT)(”(Zo,ho,g0)||(z,D(A))1_1/I,,I, + 1 fillroria@i) + ||f2||l!’(0,T))-
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In order to prove our local in time existence and uniqueness result we combine
the above theorem with a fixed point procedure. In the above theorem, one requires
initial conditions from a real interpolation space between D(A) and Z. In order to
identify this interpolation space, we prove the following lemma:

1 1
Lemma 1.41 Letp, g € (1, o0) satisfying the condition ~—+ 5 # 1. Let us assume
P 2q

that ho € (—1,1) and (20, 80) belongs to (Z, D(A))1—1/pp. Then (2o, ho, go) belongs
to I;’ii, where I;’ii, defined as in (1.153).

Proof For proof we refer to [33, Sect.4.3.3] and [2, Theorem 2.2]. O
Next for T > 0, we define

Br = {(fi.) € L(O.T5L9(Sy)) x /(0. T) |

il oy + I Alvon < 1. (1.164)
o o .1 1
Proposition 1.42 Let p, g € (1, 00) satisfying the condition —+ 5 %+ 1. Assume
p q
that (20, ho, go) belongs to I, Let M > 0 be such that

| (z0, ho, g0) llz,, < M. (1.165)

Then for every (fi1,f2) € By, the system (1.156) admits a unique strong solution on
[0, T]. Moreover; there exists a constant C depending only on M such that

Izllr . 70sw20(20)) + N2llwie . 10s20(240)) + IglWe070) < C, (1.166)

lzllzeo0.1sz0(210) < €5 lIgllzoe0.1s) < C, (1.167)
1=5)/2

zxll2r 0. 75250 (2240)) < ™", se(1/q.1). (1.168)

holds for all T« € (0, 1].
Proof The first estimate follows directly from Theorem 1.40. Notice that,
llz— Z0||L°°(0,T;L'7(S2h0)) < T ”Z”WLP(O,T;L‘I(QhO))’
which yields,
lzllzoe 0. 7529(240)) < €5 T € (0, 1]. (1.169)

Similarly, we can show | g|lz©r,) < C. Since 1 < g < oo, we have z, €
LP(0, To, WH9(R2)) < L17(0, T, L%°(24,)). Let us fix, s € (1/g, 1). Therefore,
we have

1+s5)/2 1—s)/2
et M@y < Cllast.Mwsacay) < Clat ) iaton 120 o).
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Thus, using (1.169) and Holder’s inequality we get

T 1/p
(1—s)/2 (1+s)p/2
||Zx||U(0,T*;L°°(Q/,0)) S C||Z||L00(0,T*;Lq(9h0)) (/(; llz(z, ')”Wz () dt)

< T,
O

1 1
Lemma 143 Let p,q € (1,00) satisfying the condition  + 5 # 1. For

T« € (0,1), let Br, be the ball defined in (1.164). Let (z(),l;zo,go)qand M as in
Proposition 1.42. Given (fi,f2) € Br,, let (z, g) be the solution of (1.156) on [0, Tx]
constructed in Proposition 1.42.

Then there exists a constant C > 0, depending only on M, such that

Ih(t) — h(0)| < CTY"' . t€10.T.]
1F1 (2 & W) | rsts@ny < CTE + TS se(1/q.1) (1.170)
172z & W) lro.r.) < cri’”,

where h, F1 and F, have been defined in (1.155).
Proof Using (1.166), we get for all ¢ € [0, Tx],

T / /
Ih(e) — ho| < / 18)] ds < TV gl < CTY. (1L171)
0

Using the above estimate it is easy to see that, for all 7 € [0, T]

‘ 1
(1.172)

SCa
1—«h

where the constant C is independent of 7. Using (1.166), (1.171) and (1.172), the
first term of F(z, g, h) can be estimated as follows

k(h — ho) k(h—ho)
H 1 —kh [ 1 —kh } -

L7 (0.T5;L9 ()
l 4
< Clh = holl|zawxllr 0. 7529 (240)) < cr.”. (1.173)

Using (1.167), (1.168) and (1.172), it is easy to see that the second term of JF; satisfy
the following estimate

< Cliglree .10 lzellr 0, 7s19(24 )

H 1 —kx
L2(0.T43L9(Q)

1—kn®*

< Cllzdlpores @,y < CTE . (1.174)
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Similarly, using (1.167), (1.168) and (1.172), we obtain

1 — kho
H | < Cllzllzoo ©.7wswa@upn 122 | 70705250 (224))
- LP(O.T45L9(2ng)
< =%, (1.175)

Combining (1.173), (1.174) and (1.175), we get

[ F1(z, 8 Wl ©.10519(200) < C(Ty? + +17/),
Finally, using (1.166), (1.171) and (1.172), one has

kz,

8. h =|(h—nh
176 Dllar = |-t | |55

i| ('v hO)

12(0,T+)

1 /
< Cllh = hollzee .10 zell 0.1 wra (@) < cr.”.
O

Lemma 1.44 Let p,q € (1,00) satisfying the condition ! + 21 # 1. For
T« € (0,1), let Br, be the ball defined in (1.164). Let (z(),l;zo,go)qand M as in
Proposition 1.42. Given (f{,fé) € Br,, forj = 1,2, let (Z,g/) be the solution
of (1.156) on [0, T«] constructed in Proposition 1.42.

Then there exist a constant C > 0 depending only on M and § > 0 depending
only on p and q such that

W' (@) — R0 + | Fi g kYY) = Fu (@ & ) |l orm@i)
+ | B g hY — B & ) o)
< CTL (1A = Filvors@y + 1 —Flror))  (1.176)

where h, F1 and F, have been defined in (1.155).
We are now in a position to prove our main theorem.

Proof of Theorem 1.38 We consider the map
N BT* — BT*,
- =)
f2 Fa

where F; and JF, have been defined in (1.155). We want to show N is a strict

. . . . 1
contraction of By, , with a Lipschitz constant _ for small 7. We first note that from
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Lemma 1.43 , we obtain, for all (fi,/>) € Br,

1y 1—s)/2,
IN (1)l ©.70:00(20 512 0.70) < C(Ty? + 1797,

where C is a constant depending only on M. Therefore by choosing Tx < 1 small
enough

IN (1)l 1510 (@i pxer©.1) < 1. (1.177)

Therefore N maps By, into By, for small enough 7. Next from Lemma 1.44, there
exists C > 0, depending only on M such that

INA LD = N D0 1asta@ugnxir0.1.)

1/p (1=5)/2p 1 gl 2 2
< C(T* + Ty ) ” (fl ’fz) - (fl ’fZ)”U(O,T*;L‘I(Qho))xlf’(O,T*) .

Thus by choosing Ty small enough we obtain A is a strict contraction, which
implies the existence and uniqueness result.

1.4.3 A More Realistic 1D Model

In this section, we shall prove local in time existence and uniqueness of solutions
for the system (1.67). Let us set 2,(¢) = (—1,1) \ {h(¥)} and Q2p,, = (—1, 1) \ {ho}.
Forevery 1l <p <ocoand1 < g < oothesetZ,,q, isdefined by

Logy = {(Qogwo, 8o, ho, 80 Qo) | 00 € WH9(Q,),  wo, Do € Big_l/m(ﬂho),

hoe(-11), geR QyeR  min o) >0},

§€Qp,

and

||(QO?W07 1907h07 80, QO)”Ip,q = ||QO||W1"7(Q/,O) + ||W0||B‘21$_1/1’)(Qho) + ||190||B(21.(p1_1/”)(9h0)

+lho| + |gol + 1Qol.

Let p and q satisfy one of the following conditions:

1
27

1 1 1 1
either | < g <ooand?2 < p < oo satisfying  + #land + #*
P 2q P 2q
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Let p, g satisfy the condition (1.178). We introduce the space of initial data

Lp.q.u, if )+ 5, > 1,
{(QOJ’VOa Do, ho, 80, Qo) € Ly g0, | wolho) = go.
wo(=1) =wo(1) = 0. %o(ho) =Qo} it} <)+, <.
{(Qmwo, Do. ho. 80, Qo) € Iy g0, | wolho) = go.
wo(—=1) = wo(1) = 0, Fo(ho) = Qo,
:90(—1) = dedo(1) = 0 it <l
(1.179)

cc

Iﬁsq,Qho =

We prove the following theorem

Theorem 1.45 Let p, q satisfy the condition (1.178). Assume that (0o, wo, %o, ho, &0,

Qo) belongs to I;fé*gho' Then there exists a T > 0 such that the system (1.67) admits

a unique strong solution

0 € W'P(0,T; WH(24(-))) N C([0, T]; W (24()))
w, 9 € (0, T: W4(Q,(-)) N W' (0, T: L1(2,())) N C([0, T): B P (Q())).
heW>0,T), Qe W"(0,T).

Moreover, h(t) € (—1,1) forallt € [0,T] and min o(t,§) > 0 forall t € [0,T],

&8y
€ € Qu(1).
Due to the change of variable introduced in Sect. 1.2.1, it is enough to prove local
in time existence and uniqueness for the system (1.92). To this aim, let us set

Q = (=r, )\ {0}.

Let p,q satisfy the condition (1.178). We introduce following space of initial
conditions for system (1.92),

Tpyg if )+ 5, > 1,
{0 0. 60. . 80. 00) € Ty | 40(0) = g0,

wo(—r1) = wo(r2) =0, 60(0) = Qo) if } < |+ 4 <1,
{(Uo,uo, 0. ho, 80, Qo) € Lp 4.0 | uo(0) = go,

ug(=r1) = uo(r2) = 0, 6p(0) = Qo.
0.60(—n) = Db (r2) = O} it <.
(1.180)

cC —
Ip,q.ﬂ -
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In this section, we prove the following theorem

Theorem 1.46 Let p, g satisfy the condition (1.178). Assume that (vo, uo, 6y, ho, go,
Qo) belongs to Ipchqﬂ. Then there exists a T > 0 such that the system (1.92) admits
a unique strong solution

v e W0, T; WH(Q)) N C([0, T]; WH(Q))
u.0 € (0. T; W>(Q)) N W'¥(0,T: L1(Q)) N C([0. T]: B\ P (Q)).
heW*(0,T), Qe W"(0,T).

Moreover, h(t) € (—ry, 1) forall t € [0,T] and minv(t,x) > 0 for all t € [0, T),
XEQ

x € Q.
To prove the above theorem, we rewrite (1.92) as follows

v — 0 =0, (t=0, x €[—r,rn]\{0}),
Ot — 0y (vl 3xu) = Fi(v,u,0), t=0, xe[-r,rn]\{0}),
0
9,0 — 9, (v1 8x9) = 5, u,b), (t=0, x€[-r,rn]\{0}),
0
u(t, £0) = h(r), 0(t,0+) = 0(), (t=0),
(1.181)
mh(f) = |:vl axui| (,0) + F3(v,u,0), (t=0),
0
o) = [vl 3x9] (#,0) + Fy(v,u, 0), (t=0),
0
u(t,—ry) =u(t,r) =0, 9,0, —r) =090(r) =0, (t=0),
v(0,x) = vo(x), u(0,x) = up(x), 6(0,x) = Op(x), x € [—r1, ] \ {0},

h0) = hy,  (0) = g,

where
Aot =a(( - au) - (*)

Fo(v,u, ) = 0, ((i — vlo) axe)) + i(axu)2 — iaxu (1.182)
Fi(v,u,0) = [(3} —~ vlo) du — ﬂ (t,0), Fi(v,u,0) = [(i —~ vlo) axe)} (t,0).
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We consider the following linear system

v — 0 =0, (t=0, x €[—r,rn]\{0}),

Ot — 0y (vl 3xu> =fi, t=0, xe€[-r,rn]\{0}),
0

0,0 — 9, (vl 8x9) =f, t=0, xe[-r,rn]\{0}),
0

u(t, £0) = h(r), 6(r,0+) = Q). (t=0),

(1.183)

mh(t) = [UI 3xu] (t,0) +f3, (t=0),
0

o) = [ : axe} (t,0) + fa, (t=0),

Vo
u(t,—ry) = u(t,r) =0, 0,0(t,—r) = 9,0(t,rn) =0, (t=0),
v(0,x) = vo(x), u(0,x) = up(x), 6(0,x) = Gy(x), x € [—-r1,r] \ {0},

h(0) = ho,  7(0) = g.
We introduce the following spaces

Zi = W2UQ) N Wy (=1, r),  Zo=1{0 € xWU(Q) | 3,0(~r) = 3,0(r2) =0},
Z=WM(Q) X Z xZ,, X=W"(Q)xLI(Q) xLI(Q), U=R.

LetL € L(Z,X),G € L(Z,U) and C € L(Z, U) are defined as follows

A o a 0 . . o
Llul =100 Ulo 0x 0 ul, Glu|= [u :| )
Lj 0 (0 ) TN L} Lj oo

vo

v m~! UIOBXM 0)
AR

Let us introduce the unbounded operator (A, D(A)) in X x U by

D(A) = {(v,u,6,8,0) € Zx U | G(v,u,0)" = (g,0)"} (1.185)
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and
o]
v Llu
; 0
Alo | = :v: . (1.186)
8
Clu
) 0]
Set (1) = g(r). Then (1.183) can be written as
v v 0 v(0) Vo
a1 u N u(0) Uo
i ol=Al0|+1r]. 0) | =16 |- (1.187)
8 8 f3 8(0) 80
o 0 4 0(0) Qo

Proposition 1.47 Let 1 < g < oo and v belongs to W"4(2) such that vy(y) > 0
for all y € [—ry, ). The operator (A, D(A)) is R-sectorial in X x U, i.e., there
exists € € (0,7/2) and yy > 0 such that

Reooxey AA —A) T | A € Sy, < 00 (1.188)

Proof Let us set X; = KerG = {(v,u,0) € Z | u(0) =0 = 6(0)}, and A = L|y,.
We rewrite A as A = A; + B, where

0 3 O 0 0 0
Ar=10 03 0 |, B= o—aggoax 0 (1.189)
0 0 'a, 0 0 —hwy

vo Vo

By Denk et al. [12, Theorem 8.2], we first obtain that the operator A; with D(A;) =
X is R-sectorial in X x U. Next, using Lemma 1.36, it is easy to see that the operator
B with D(B) = D(A)) satisfies the condition (1.125). Thus, by Proposition 1.18, we
obtain A is R-sectorial in X x U. Again, using Lemma 1.36 one can check that, the
operator C satisfies the condition (1.136). Thus the R-sectoriality of the operator
(A, D(A)) follows from Theorem 1.25. O

Theorem 148 Let 1 < p,q < oo. Then for every (vo,ug, 0,80, Qo) €
(Z,D(A))1—1/pp and for every (f1.f2.f3.f2) € LP(0,T; L9(2)) x LF(0,T; L1(2)) x
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LP(0,T) x LP(0,T), the system (1.183) admits a unique strong solution satisfying
lvllwir©.r;wia@)) + ||u||W§;,}((()’T)XQ) + ||0||W§",}((()’T)XQ) + [1llw2r 0.7
+ ICllwiron < CA + ezyoT)(H(Um uo, 0o, 80, Qo) l(z.D(A)1—1/p,
+ 1 fillrorsea@) + 2l oriw) + 1 Blrorn + ||f4||U(o,T)),

where the constant C is independent of time T.

Now we are in a position to get estimates required for fixed point argument.
As before, at first we want to identify the space of initial conditions. We have the
following lemma.

Lemma 1.49 Let p, g satisfy the condition (1.178). Let us assume that (v, ug, o,
80, Qo) belongs to (Z,D(A))i1-1/pp. Then (vo,uo, 6o, g0. Qo) belongs to 1,9
where I[‘,',‘;]’Q, defined as in (1.180).

Proof For proof we refer to [33, Sect.4.3.3] and [2, Theorem 2.2]. O
For T > 0, we define the space Br as follows

Br = {(fifofoufi) € L(O.T:L(R)) x (0. T: LU(R) x I (0.7) x L' (0.7) |

I fillrorzae) + 1 2lpor@) + 1 Bllwon + 1 fallon < 1}.
(1.190)

Proposition 1.50 Let p, g satisfy the condition (1.178). Assume that (vo, ug, 6,
ho, go, Qo) belongs to I;’Cqﬂ. Let M > 0 be such that

1
| (vo, uo, 6o, ko, g0, Qo) Iz, .0 <M, Y <wolx) <M. (1.191)

Then for every (fi.f2.f3.f1) € Br, the_system (1.183) admits a unique strong
solution on [0, T|. Moreover, there exist T < 1 a constant C, both depending only
on M such that

lvllwie 0.1 wra@)) + 1Vlloo 0.1 wra)) < C, (1.192)
1 ~

c <vu(tx) <C, t€(0,7T),x € (—r, 1) (1.193)
lell w2 (0. rxy F 191wz (0.rxey < 6 (1.194)

lull oo 0.7, ;w1 a(@)) + 10100 0,1 w19(02)) < C (1.195)
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TLZ—J) /2p

lullzr0.175:200 ) + 10llr 07520 (2)) < C . s€(l/q.1), (1.196)

19sull 0. izo0@y) + 10010y < CTL ™. se(1/q. D). (1.197)

holds for all Ty € (0,T).

Proof From Theorem 1.48, there exists a constant C depending only on M such that

”U”Wl»l’(O,T;leq(Q)) + ”M”Wg_;((()j)xg) + ||0||W§:[}((()’T)XQ) <C, Tx€ (Ov 1]

Since 1 < g < oo, we also have

lvllwieorero@) < Clvllwieorwia)y < C. Tk € (0,1].

Notice that, for every T« € (0, 1]

1/p 1/p
sup lu(t,-) = vollzso@y < TP vllwraqors ooy < CTH" . (1.198)
1€(0,Tx)

Thus there exist 7 < 1 a constant C, both depending only on M such that
1 _
C$v(t,x)$C, t€(0,7), x € (—r, ).

To prove (1.195), note that W9(Q2) < B?,,(,}_l/p) (2) provided 2 < p < oo. Thus,
Proposition 1.34 yields (1.195). In view of (1.150), estimate (1.195) also holds
when p = g = 2. Proof of other estimates are similar to proof of estimates in
Proposition 1.42. O

Lemma 1.51 Let p, g satisfy the condition (1.178). For Ty € (0,7], where T
is a constant in Proposition 1.50, let Br, be the ball defined in (1.190). Let
(vo, ug, 6o, ho, g0, Qo) and M as in Proposition 1.50. Given (fi,f>,f3.f1) € Br,,
let (v,u,0,h,Q) be the solution of (1.183) on [0, Tx] constructed in Proposi-
tion 1.50.

Then there exist a constant C > 0 depending only on M and a constant §
depending only on p and g, such that

| F1 (v, u, D)1 0.1s20(2)) + 1F2(0, 4, 0) |12 0.1520(2))
+ 1 F5 . u, )l + IFa . 0) .1, < CTY (1.199)

where F1, F», F3 and F4 have been defined in (1.182).
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Proof Using the estimates (1.192)—(1.197) and (1.198), we obtain the following
estimate of F

I F1 (v, u, H)HU’(O,T*;L‘I(Q))

(- 0))

V— 1V

+
L(0.Tw;L9(R))

()

L(0.Tw;L9(R))

| Oxxttl 20,7529 (2))
Lo ((0,T)x2)

/A

VVo

o

+

0,V 0,V
2 .2
v V5

) 102t 10,7 ;100 (92))
L09(0,T4312(2))

1
v

0,V
, 1017 ©.1::20 (@)
L VA (N 2] (o))

106l r (0,120 (2)) +
L1090, T;L4(R2))

<O 4 TE L TPy se(1/0.1).

Estimates of first and third term of JF, are similar to the above estimate.
Using (1.193), (1.194) and (1.197), it is easy to see that the second term of F,
satisfy the following estimate

1
(9xu)?
v 1P(0,Ts;L9(R))
1
< 1024l 20 0,7 ;150 () | Oxtt ]| Lo0 (0,7 :20(22))
U |l Loo((0.1)x )

< T se(1/q,1).

Thus there exist a constant C > 0 depending only on M and a constant § depending
only on p and ¢, such that

1 F2 (v, u, 0) |10, 0002)) < T°. (1.200)

Notice that

[G-a)metJeol, ., <elCm)oums

Therefore, from the estimate of F; we obtain

17 (0.Ts; WHa(R))

|75 (v, u, O)llpo.r,) < To (1.201)
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where C > 0 depends only on M and § depends only on p and g. The estimate of F4
is similar. O

Lemma 1.52 Let p, q satisfy the condition (1.178). For Ty € (0,7], where T
is a constant in Proposition 1.50, let Br, be the ball defined in (1.190). Let
(vo, 1o, 6o, ho, g0, Qo) and M as in Proposition 1.50. Given (fl’,fz’,f_,i,fi) e Br,,
i = 1,2 let (Vi,ul, 0", ki, Q") be the solution of (1.183) on [0, Tx] constructed in
Proposition 1.50.

Then there exist a constant C > 0 depending only on M and a constant §
depending only on p and q, such that

[F1 ' ut, 0%) — Fi(w? u?, 0% o r.@)
+ 1P u, 0) — Fo (v, u?, 0| 0.1, 09 (2))
+ ”]:3(1)7 u, 9) - ]:3(1)25 u2’ HZ)HU(O,T*) + ”]:4(1)7 u, 9) - ]:4(1)25 u2’ HZ)HU(O,T*)

< i (I = o rasan + 15 = Floruy
+1ff ~Rlwor. + I1fi —Flrer) (1202

where F1, F», F3 and F4 have been defined in (1.182).
Proof of Theorem 1.46 We consider the map

N . BT* g BT*s
h Fi
Ll |2 7
f F3
Ja F4

where Fi, F,, F3 and Fu ha\E been defined in (1.182). From Lemmas 1.51 and
1.52 and by choosing Tx < T, small enough it is easy to see that N is a strict

contraction of Br,, with a Lipschitz constant 5" This implies the existence and

uniqueness result.

1.4.4 Motion of a Solid in a Compressible Fluid

In this section, we prove local in time existence and uniqueness of solution for the
system (1.110). Forevery 1 < p < ocoand 1 < g < oo, the space 7, ;a,(0) is
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defined by

Tyqsr = {(po, o, Bo. Lo, w0) | po € WH(S21(0)) N L(24(0)),

uo € BU71P(Q1(0)), g0 € R, g € R, min_ po(3) > o},
YEQLF

(1.203)

and

1Gpos w0, Do, Lo, @0) 17, 20 =NP0llwraeroy + luoll 21-1m g, o))
+ llgollrs + llwo|rs-

‘We now state our main result.

Theorem 1.53 Let 2 < p < oo and 3 < g < oo. Assume that (po, Uo, o, W)
belongs to 1, 4 a,(0) satisfying the compatibility condition

up =00n 0, uy = go+ wo Xy on dQ2s(0). (1.204)

Let M > 0 be such that

1
Cpo, 0. g0, @0) 17, 40y SMs < pox) < M for x € Qr(0), (1.205)
Then, there exists T > 0 such that the system (1.110) admits a unique strong solution

p e W0, T:WH(Qr(-) N C(0, T); WM (Qr())),
u € (0, T: W>(Qp())*) N W0, T: L1(Qr(-))*) N C(0. T]: BY~/P(Qr())),
he W?0,T;R?), e W!'"(0,T;R%.

1
Moreover, there exists a constant My > 0 such that M < p(t,x) < Mr for all
T

te(0,7),x € Qp().
As before, we first prove our result for a equivalent system in a fixed spatial
domain.

Theorem 1.54 Let 2 < p < oo and 3 < g < oo. Assume that (pg, Uo, o, W)
belongs to I, 4 o, 0) such that (1.204)—(1.205) holds. Then, there exists T > 0 such
that the system (1.115)—(1.120) admits a unique strong solution

e WP (0, T; WH(Q£(0))) N C([0, T]; WH(Q£(0))),
We 20, T; W*(Qr(0)°) N WH(0, T; L(2£(0))*) N C([0, T]:ij,i“/”)(QF(O)f),
Te WY, T;RY, @ e W'"(,T;R?).
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1 ~
Moreover, there exists a constant My > 0, such that Iy < p(t,y) < My, for all

T
te (0,7),y € Qr(0).
We start with the following linear system

3.5+ podivii =fi, in (0,T) x Q(0),

dii— P an— YT Y@ivig =f  in(0.7) x Q4(0),
Po Po
=0 on(0,7)xdQ, w=g+wxy on(0,7T)xdQs(0), (1.206)
d ~
m £ = —/ (Vi + pVia' +adival)ndy +f, t€(0,T),
dt Qs(0)

d
10 %% = _/ yx (uVi+ pVi' +odival)n+fi. 1€ (0.T)
dt Qs(0)

5(0) = po,  @(0) = up,  in Qp(0),
g(0) = go, @o = wy.

We introduce the following spaces
7 = {z € W2(Q(0))* | z = 00on %2, 3¢, k € R’ such that
z=£+kxyonaszs(0)}
Z=WQ)xZ, X=WQ)xL(Q)? U=R°

LetL € £(Z,X),G € L(Z,U) and C € L(Z, U) are defined as follows

0 podiv
ol _ p ol _ ¢
L[?]_ 0 " a+ Ty [?] GQ‘M
Po Po

—m™! / (Vi + pVa' + adival)ndy
Q5(0)

c m = (1.207)
u —J(0)™! yx (uVii+ puVi' + adival)n
Q5(0)

Let us introduce the unbounded operator (A, D(A)) in X x U by

D(A) = (FTE.D) € Zx U | GED' = @.d)) (1.208)
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and
(A
AlZ =1 4. (1.209)
8 C P
@ u
Then (1.206) can be written as
[z o fi p(0) Po
"l=all+ . e = (1.210)
dr| g g f 5(0) 80
@ @, 4 w(0) @o

Proposition 1.55 Let 3 < g < oo and py belongs to W"(Qr(0)) such that
po(y) > 0 forally € Qp(0). The operator (A, D(A)) is R-sectorial in X x U,
i.e., there exists ¢ € (0, /2) and yo > 0 such that

Reooxy A — A7 A € Zyy ) < 00. (1.211)

Proof The proof is similar to the proof of Proposition 1.47. O
As a consequence of the above proposition and Theorem 1.32 we obtain the
following theorem

Theorem 1.56 Let3 < g < coand 1 < p < oo. Then for every (po, ug, g0, wo) €

(Z,D(A))1—1/pp and for every (fi.f2./3.fs) € LP(0,T; L1(2r(0)))
x LP(0,T; L1(2r(0))) x LP(0,T) x LP(0,T), the system (1.206) admits a unique
strong solution satisfying

10 lwir0.1:w1 a2 0)) + ”’I:[”Wé'[}((()’T)XQF(O)) + iglwiror + 1@lwir o)
<Cc(l+ ezy"T)(H(Pm uo, 80> @0) |l z.p(Ay 1 p, T If1llr 0152027 0))
+ I 2llro.ra@roy + 1 Blron + ||f4||U(o,T)),

where the constant C is independent of time T.

Now we characterize the space of initial conditions. As before, using [33,
Sect.4.3.3] and [2, Theorem 2.2] we obtain the following characterization of the
initial conditions.

Lemma 1.57 Let3 < g < coand 2 < p < oo. Let us assume that (po, uo, o, @o)
belongs to (Z,D(A))1-1/pp.- Then (po,uo, 8o, wo) belongs to I,,q.©), where
1y.q.9r0) defined as in (1.203) satisfying the compatibility condition (1.204).
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For T > 0, we define the space By as follows

Br = {(fl,fz,fg,,ﬂ) e I7(0,T; L1(RQF(0))) x LP(0, T; L1(R2r(0))) x LP(0, T)x
20, 7) | | fillzro.rszaron + 12 llro.me@r0))

+ I plson + Ifillpon 1) (1212)

Proposition 1.58 Ler3 < g < coand 2 < p < o0. Assume that (po, uo, o, @o)
belongs to I, ; ar(0) such that (1.204)—(1.205) holds. Then for every (fi.f2./3.f3) €
Br, the system (1.206) admits a unique strong solution [0, T|. Moreover; there exists
a constant C, depending only on M such that
”’ﬁ“Wl-ﬂ(O,T*;Wl-fl(QF(O))) + ”fﬁ”W;‘g((O,T*)XQF(O)) s<C (1.213)
Igllwiro.r,) + l@llwiror,) < C. (1.214)

~ 1y i~ 1
10" = pollzec 0.1 swha(@r ) < cr” |1 0.1 w0 @r0)) < crd?,  (1.215)

%l o0 0.7 swra (@ 0y + 1'€llzoe0.10) + @]l 0.7y < C. (1.216)
2-9)/2,
el 07420 2k 0))) < T, se(B/q 1), (1.217)

- e 1=5)/2,
| V8| 2 (0.75:200 @k 0)))» 1diVEL]| 2 0,75 ;10 @k (0))) < T se (3/q.1),
(1.218)

12l + 1@lwor) < CTY? (1.219)

holds for all T« € (0, 1].

Proof The proof is similar to the proof of Proposition 1.50. The main difference
here is W'4(Q£(0)) — L*®(£(0)) if 3 < ¢ < oco. ]
Now we proof several lemmas required for fixed point argument.

Lemma 1.59 Ler3 < g < coand2 < p < oo. For T« € (0,1, let By, be
the ball defined in (1.212). Let (po, uo, V9, ao, wo) and M as in Proposition 1.58.
Given (f1,/2.f3.f1) € Br,, let (p,u,’g, @) be the solution of (1.206) constructed in
Proposition 1.58. Let Q be defined as in (1.116). Then there exists a constant C > 0
depending only on M such that

10l .1y < C. 1@ Iz .1y < C.
1O — Iz 0.1.) < CTi/p . lo" - I|zoo0,1) < CTi/P , (1.220)
[0:Qllroo0.1.) < C. (1.221)
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Proof From (1.116) and Proposition 1.58, we have

0] <1+ c/ 10(s)| ds, forall z € (0, Ty].
0

By Gronwall’s lemma, we have
|0(1)] < e <e©  forallz e (0, Ty].

Similarly, from (1.116) and Proposition 1.58, we have

Ts ,
10 — Ilimorsy < 1Ql ) / @ (s) x I\ds < CT" .
0

|

Lemma 1.60 Ler3 < g < coand2 < p < oo. For T« € (0,1, let By, be
the ball defined in (1.212). Let (po, uo, U9, ao, wo) and M as in Proposition 1.58.
Given (f1,/2.f3.f1) € Br,, let (p,u,’g, @) be the solution of (1.206) constructed in
Proposition 1.58. Let X be defined as in (1.117). Then there exists a constant C > 0,
depending only on M such that

7% — Illzoe (0, 75)x 2 (0) < cri’ . (1.222)

Moreover, there exists T < 1 such that

1 ~
1x = Tl o.roxarom < 5. (T« € (0.7)). (1.223)
Proof From the definition of X and Proposition 1.58, we obtain

T.

l 7

sup [Jx () = Ilwra@po) < C/ Vil wraeion < CT4”
1€(0.T%) 0

Therefore

4

|
7% — Il|oo (0.10)x2r0)) < Clx — 0o 0,7, w1925 0))) cr”

O

Lemma 1.61 Let3 < g < ocoand2 < p < oo. For Ty € (0,7], where T is the
constant in Lemma 1.60, let Br, be the ball definedin (1.212). Let (po, uo, Do, ao, wp)
and M as in Proposition 1.58. Given (f1,/>.f3.f1) € Br,, let (0,u,g,®) be the
solution of (1.2006) constructed in Proposition 1.58. Let X be defined as in (1.117).
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Then there exists a constant C > 0 depending only on M such that

17x w0, 1:wra @) T+ Mxllzoo 0,70 wr a2 0)) < C
lcofdx|lwiro.1uswra(@r ) + I1€0tx |l oo 0.7, w1 a0 < C

[ detUx lw1r .1, ;wr a0y + detUx oo 1, wia@p0y) < C

17y lwio0.1wra@ro)) + My oo 010 wra@roy)) < C. (1.224)

Proof The estimate of Jx in L*®(0,Tx; W'9(Q£(0))) norm follows from
Lemma 1.60. Next we have,

arJX == QVI:[.

Therefore 9,Jxy € LP(0,Ty; W'9(Qpr(0))) and the estimate follows. The esti-
mates of cofJy and detJy follows from the fact that W' (0, Tx; WH9(Q£(0))) and
L®(0, Ty; WH4(Q£(0))) are algebras for p > 2 and ¢ > 3. In order to estimate the
norms of Jy we use the following relation

!
Iy = £y
YT ety 0K

O

Lemma1.62 Let3 < g < ocoand2 < p < o0. For Ty € (0,7], where T is the
constant in Lemma 1.60, let Br, be the ball definedin (1.212). Let (po, uo, Do, ao, wp)
and M as in Proposition 1.58. Given (f1,f>.f3.f1) € Br,, let (0,u,g,®) be the
solution of (1.206) constructed in Proposition 1.58. Let ./7-\'1 be defined as in (1.118).
Then there exists a constant C > 0 depending only on M such that

4

1 F1 2 0,70 w1 920 0))) cr.”. (1.225)
Proof Let us recall
Fi=—@—po) divi—p(Q—DVu:Jy —pVi: (Jy —1).

Notice that W'¢(25(0)) is an algebra for g > 3. Therefore, using Proposition 1.58,
Lemmas 1.59 and 1.61 we estimate the first term of F; as follows

(0 — po) div ’LTHU(O,T*;WL‘I(QF(O)))

< C||F— /00||L°°(0,T*;W1-4(QF(0)))||diV7||U(0,T*;Wl-q(QF(O)))

<cr”,
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Similarly, the second term of F; can be estimated as follows

~ ~. 4T
10(Q — DVU : Jy |0, 15w 9 2 0)))
< ClIp oo 0.7, wra @r o) 12 — Tllzo00.74)
~ T
|| M||U(0,T*;W2~q(m~(0)))||Jy ||L°°(O,T*;W1-‘I(QF(O)))

<cn”.
The last term of F; satisfies the following estimate

~o~. T
oVu: Uy —Dllpor:waeo
~ ~ T
< Cllp Moo 0.1, wra(r o) | Wl 0.7 w2 a0 My — Tl o0 0,10 w1 925 0))
<cr”,

O

Lemmal.63 Let 3 < g < coand 2 < p < o0. For Ty € (0,7"], where
T is the constant in Lemma 1.60, let Br, be the ball defined in (1.212). Let
(po, 1o, Do, ag, wy) and M as in Proposition 1.58. Given (fi,f2,f3.fs) € Br,, let
(p,u,’g, @) be the solution of (1.206) constructed in Proposition 1.58. Let F, 1 be
defined as in (1.119). Then there exist a constant C > 0 depending only on M and a
constant § depending only on p and q such that

[ F2.1 |l 0.70509@00))) < CTS. (1.226)

Proof

- ~ —1
Far=—"0,000-""""0wai- @0 -ndi—y" IIVp
Po Po Po

Using Proposition 1.58 and Lemmas 1.59-1.61, we estimate the various terms of
F2.1 as follows

< ClIPll oo (0,1 swr a0 1011250 0,70 [l 2 (0.7 2921 (0)))

P o0
Lo

L7 (0.T;L9(2£(0)))

1/p 1~ 1/p’
< CT*/p”u||L°°(0,T*;W1~‘I(QF(0))) <cn”,

Hp_pOQaﬂ

Lo

‘U(O,T*;Lq(QF(O)))
< ClIP = pollzoe 0.1 wra@p o 12Nl .20 19l 0725002001

s CTi/‘D/ ,
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(@ — Dosttll r 0.1, s192r0)) < N1Q — Il zocors) [Ellwir 0.1, :19(200)) < cry”,
<1

[

o
Lo Y

D O.TLU(Q(0)
T - 1
< Cllpllzse o w7 i roxerop I VAl resnaron < CTL”.

O

Lemma1.64 Let 3 < q < oo and 2 < p < oo. For Tx € (0,7], where
T is the constant in Lemma 1.60, let By, be the ball defined in (1.212). Let
(po, 1o, Do, ag, wy) and M as in Proposition 1.58. Given (fi,f2,f3.fs) € Br,, let
(p,w,’g, @) be the solution of (1.206) constructed in Proposition 1.58. Let F, 5 be
defined as in (1.119). Then there exist a constant C > 0 depending only on M and a
constant § depending only on p and q such that

1(F22)illr 0 70sL02r0)) < cTy” i=1,23. (1.227)

Proof We have

(Faadi= Z 3y, (0, (Q)i[(Jy)ig — 8ig]) (Iy)y

JokiI=1

+ Z @2, (Q)) [k — 8u]

kll

3
+ TS g 0000 [U)) — ] U

PO =1

4 oTH Z(a},} (0)) [(Jy)i — 6] + (@7 — 1) : 8, Vi,

lj=1

Let us notice that
(0y,Jy)(0,:) = 0.

Therefore, using the estimates in Lemma 1.61, we get

1/p 1/p
10y, Ty |0 (0.TsL0(2(0))) T./" 10y Ty lwir 0752020 (0))) < CT” . (1.228)
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The first term can be estimated as follows,

3
;f) 3 0, (0 (G U )y — S DUy

JokI=1 LP(0.T%;L9(2F(0)))

<C <|| [0y, (QW)i][(Jy)ij — Siilll e 0,732 (0))

=
3
=1

Jik,l

+ 19y (G, )il 070200 )

< C(”QEHU’(O,T*;WZ-‘I(QF(O))) Iy — 1l o0 0,7, ;w19 (2 0)))

3

+ 10Ul 0.7, ;w2020 (0)) Z ”a}’l(JY)kj”Loo(OsT*;Lq(QF(O))))
=1

<cr”,

Other terms in J, » can be estimated similarly. O

Lemma 1.65 Let3 < g < ocoand2 < p < oo. For Ty € (0,7"], where T is the
constant in Lemma 1.60, let Br, be the ball definedin (1.212). Let (po, uo, Do, ao, wp)
and M as in Proposition 1.58. Given (f1,f>.f3.f1) € Br,, let (0,u,g,®) be the
solution of (1.206) constructed in Proposition 1.58.Let G be defined as in (1.120).
Then there exist a constant C > 0 depending only on M and a constant § depending
only on p and q such that

7

1
G127 0.7 wra(2r0)) < cT” . (1.229)

Proof The proof is similar to the proof of Lemma 1.62. The only thing is left to
check is the estimate cof/y — I in L®(0, Tx; W"4(£(0))) norm. Since, (cof/y —
1)(0,-) = 0, we have

||COfJX — I”LOO(O,T*;WI.(I(QF(O))) < Ti/p/ ”COfJX — I”WI-P(O,T*;WI-‘/)(Q[:(O))'

With the help of above estimate we can proceed as the proof of Lemma 1.62 to
complete the proof of this Lemma. O

Lemma 1.66 Let3 < g < ocoand?2 < p < oo. For Ty € (0,7], where T is the
constant in Lemma 1.60, let Br, be the ball definedin (1.212). Let (po, ug, ¥, ao, wp)
and M as in Proposition 1.58. Given (fi,f2.f3.f1) € Br,, let (p,u,g,®) be the
solution of (1.206) constructed in Proposition 1.58. Let F3 and F, be defined as
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in (1.120). Then there exists a constant C > 0 depending only on M such that

| Fsllror < CTY7 + TV

I Fallpor) < CTP + 127, (1.230)
Proof Let us recall
Fy=—m(@x{) — Gn
Qs(0)
Therefore
1 F31lr 0.7)
< (1@l Blsor0 + 1910 rmmmas0n )
< C(Tl/p + G101 qu(szp(om)
<cr”,
The estimate of || F4]|1r0,7,) i8 similar. O

Proposition 1.67 Let3 < g < oocand?2 < p < oo. For Ty € (0,7"], where T is the
constant in Lemma 1.60, let Br, be the ball definedin (1.212). Let (po, uo, Do, ao, wo)
and M as in Proposition 1.58. Given (f{,fé,f;,fi) € Br,,j=1,2let (o7, W, g, @)
be the solution of (1.206) constructed in Proposition 1.58.

Let us set

Fl=R@ W30, F, = Fn(@ W, 3., F, = Fa(0,@0,3, @)

Fl = F@0F.).F = F@ 03,9 forj = 1.2.
(1.231)

Then there exists a constant C > 0 depending only on M such that
17l = F7 + 1 F2 = Foul ;
1 1P (0, T ;W4 (Q£(0))) 2,1 2,1 1117 (0,T;L9(S2£(0)))
1 2 2 1 2
+ 172, = Faallvorasmeroy + 1F; = Filvory + 1F = Fllvor)
§
< CT*(”fll ~fillroras@ion + 1 —Hlvori@ron

+ 1A ~Flvor. + 1 =Alver)  (1232)

where § > 0 is a positive constant depending only on p and q.
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Now we give the proofs of main theorems of this section.

Proof of Theorem 1.54 We consider the map

N : BT* g BT*v
f Fi
bi3 . Fa1+ Fan ,
Ve F3
fa Fiu

By virtue of Lemmas 1.62-1.66 and Proposition 1.67, it is easy to see that A/ is a

strict contraction of By, , with a Lipschitz constant ) for small 7. Thus the proof

follows from the Banach fixed point theorem.

Proof of Theorem 1.53 Let us assume that (po, o, g0, w0) € I, q0r0) satisfy-

ing (1.204)~(1.205). Let T < T be such that, (5,7, 2, @) be the solution to the
system (1.115)—(1.120) satisfying

o€ W (0,T; W (£ (0)))
e LP(0,T; W*(Qr(0)%) N WP (0, T; L1(2£(0))%)
TeW'P0,T;R?), @eW'"(0,T;R%.

Since 7 < T, X (t,-) is C'-diffeomorphism from Q(0) into Q2x(). Therefore, there
is a unique Y (¢, -) from Q () into Q£(0) such that Y(z,-) = X~!(z,-). We set

p(t.x) = p(t. Y(1,x), u(t.x) = Q()u(t, Y(,x)),
(@) = 0()3(), w(r) = Q()@(r), forall x € Qp(r), t = 0. (1.233)
We can easily check that (p, u, 9, h, w) satisfies the original system (1.110) and
p € WP, Ts WH(QE(-) N C(0, T]; WH (R (),
u € (0, T; W>(Q())Y) N W0, T; LI(Q())%) N €10, T); B2 (Q£())?),
heW>(0,T;R*), weW'"(0,T;R%.

The uniqueness for the solution of (1.110) follows from uniqueness of solution to
the system (1.115)—(1.120). This completes the proof of Theorem 1.53.
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1.4.5 Bibliographical Notes

As far as we know, the first mathematical analysis approach of piston problems
similar to the ones we have introduced in Sect. 1.4.3 was performed in Shelukhin
[30], where global in time existence and uniqueness of classical solutions have
been given. Less regular solutions, in a Hilbert space setting have been given in
Maity et al. [26], which was our main source in Sect. 1.4.3. Our approach of the
three dimensional case in Sect. 1.4.4 should be seen as a simplification of the
methodology proposed in Hieber and Murata [19], which is also considering the
L[7-L7 setting. Earlier results in a Hilbert space framework, which require more
derivability of the initial data, have been given in Boulakia and Guerrero [5].

Acknowledgements Many thanks to our Berhnard Haak and Takéo Takahashi for their help, via
discussions and suggestions, in improving these notes.
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