
Chapter 1
A Maximal Regularity Approach to the Analysis
of Some Particulate Flows

D. Maity and M. Tucsnak

Abstract This work presents some recent advances in the mathematical analysis of
particulate flows. The main idea we want to emphasize is that, for a variety of fluid
models the corresponding coupled systems have a common structure, at least in the
linearized case. Within this framework, several model problems are considered and
studied in detail. This includes a simple toy model, motion of a piston in a heat
conducting gas, motion of a rigid body in a viscous incompressible fluid and motion
of a solid in a compressible fluid.

Keywords Compressible fluid • Existence • Fluid-structure interactions • Global
well-posedness • Heat conducting gas • Navier-Stokes • Uniqueness • Viscous
incompressible fluid
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1.1 Introduction and Hilbert Space Analysis of a Toy Model

1.1.1 The General Context

In the remaining part of this work the term particulate flows designs the coupled
motion of a collection of rigid bodies and of a fluid surrounding them. Such systems
occur, for instance, in aerodynamics (flow around an aircraft), medicine (blood flow
in vessels), zoology (swimming of aquatic animals). The mathematical study of
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these problems rises several challenges, the main one being due to the fact that the
domain filled by the fluid is one of the unknowns of the problem. Another difficulty
which has to be tackled is that the dynamics of the system couples equations of
different nature: ordinary differential or partial differential equations modeling the
solid with the partial differential equations (compressible or incompressible Navier-
Stokes) modeling the fluid.

A first important idea we want to develop in this work is that such a system
can be mathematically tackled as a perturbation (in an appropriate sense) of the
equations describing the fluid alone. More precisely, we see the coupled linearized
fluid-structure system like a boundary controlled fluid system, with the boundary
control given by an appropriate dynamic feedback which satisfies a “smallness”
condition. For the considered applications, this smallness condition follows from a
compactness type property of the operator describing the dynamic feedback. We first
apply this methodology to a toy problem and then to systems describing particulate
flows in a viscous compressible fluid. The incompressible case, apriori simpler,
seems more difficult to be included in the general framework we have constructed.
For this case we refer to the rich existing literature (see, for instance, Geissert et al.
[17] or Martín and Tucsnak [27] and references therein).

A second important idea is that we study the wellposedness of the considered
initial and boundary values problems in spaces of functions which are Lp with
respect to time and Lq with respect to the space variable, with arbitrary p; q > 1.
Most of the existing literature on the mathematical analysis of particulate flows
consider the Hilbert space setting, corresponding to p D q D 2. (The only
exceptions we are aware of are Geissert et al. [17] Hieber and Murata [19].) Quitting
the Hilbert space setting clearly complicates the analysis. This is essentially due to
the fact that the maximal regularity of the solutions of the linearized problems is
no longer implied by the analytic character of the associated semigroup. Instead,
a more sophisticated property of the generators, called R-sectoriality, has to be
investigated. One of the advantages of this approach is that the extra integrability
properties obtained by taking p; q > 2 allow us to avoid estimates on higher order
derivatives and also to correctly define the changes of variables which naturally
occur in the study of particulate flows (such as the equivalence of Eulerian and
Lagrangian formulations for compressible flows).

Let us first describe those basic equations which are independent of the properties
of the fluid. The domain occupied by the fluid and the particles is � � R

3, a
connected open bounded set with C2 boundary. Let m 2 N be the number of
particles let h1; h2; : : : ; hm be the (variable) positions of their centers of mass. For
every k 2 f1; 2 : : : ;mg we denote by Rk the proper orthogonal matrix (also a variable
one) giving the orientation of the kth particle, whose position is thus given by

S.hj;Rj/ D hj C Rj.S0;j � h0;j/ . j 2 f1; : : : ;mg/;

where S0;j and h0;j stand, for each j 2 f1; : : : ;mg for the set occupied by the jth solid,
respectively the position of its center of mass, at t D 0. The fluid is supposed to be
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incompressible, homogeneous with density � > 0 and it occupies the domain

F.h1;R1 : : : hm;Rm/ WD � n
m[

kD1
S.hk;Rk/:

Regardless the considered type of fluid, we know that the Cauchy equations hold
in fluid domain. More precisely, we have

� Œ Pv C .v � r/v� � div� D �b .t > 0; x 2 F.h1.t/;R1.t/; : : : ; hm.t/;Rm.t//;
(1.1)

v is the Eulerian velocity field of the fluid, � is its Cauchy stress field and b is the
density of exterior forces (supposed to be known). The equations of motion of the
solids are given by Newton’s laws and they can be written

Mj Rhj D �
Z

@S.hj.t/;Rj.t//
�n d� C

Z

S.hj.t/;Rj.t//
�jb dx; t > 0; j D 1; : : : ;m; (1.2)

d

dt
.Jj!j/ D �

Z

@S.hj.t/;Rj.t//
.x � hj/ � �n d�

C
Z

S.hj.t/;Rj.t//
.x � hj/ � �jb dx; t > 0; j D 1; : : : ;m; (1.3)

dRj

dt
.t/ D A.!j.t//Rj.t/ t > 0; j D 1; : : : ;m; (1.4)

where �j is the density of the solid S.hj.t/;Rj.t// (supposed to be a known constant),
!j.t/ is its angular velocity, the notation � stands for the usual vector product in R

3,
whereas n denotes the unitary normal vector field to @S.hj.t/;Rj.t// oriented towards
the interior of each solid. The skew symmetric matrix A.!/ is defined by

A.!/ D
0

@
0 �!3 !2

!3 0 �!1
�!2 !1 0

1

A for all ! 2 R
3: (1.5)

Moreover, for every j 2 f1; : : : ;mg, Mj stands for the mass of S.hj.t/;Rj.t// and
J.hj.t/;Rj.t// denotes the inertia matrix of S.hj.t/;Rj.t// defined by

J.hj.t/;Rj.t//a � b

D �j

Z

S.hj.t/;Rj.t//

�
a � .x � hj.t//

� � �b � .x � hj.t//
�

dx for all a; b 2 R
3:

(1.6)

In order to close the system, Eqs. (1.1)–(1.4) have to be supplemented with a
constitutive law for the fluid, with appropriate boundary conditions and with the
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initial conditions, valid jour j 2 f1; : : : ;mg,

v.x; 0/ D v0.x/ .x 2 F.h0;j;R0;j//; (1.7)

hj.0/ D h0;j; Phj.0/ D g0;j; Rj.0/ D R0;j; !j.0/ D !0;j (1.8)

The constitutive law and the boundary conditions in the case of a viscous
incompressible fluid will be introduced in the following sections.

The outline of this work is as follows. In the next subsection, in order to give a
flavour of the results to come, we introduce a toy model in one space dimension,
in which the Navier-Stokes system is replaced by the viscous Burgers equations.
The solid is replaced by a mass-point evolving under the action of the surrounding
“Burgers” fluid. In the remaining part of the first section we develop the existence
and uniqueness theory for the corresponding coupled PDE system, in a Hilbert
space framework. The second section is devoted to the introduction of several
more realistic models of fluid-structure interactions. More precisely we consider
the systems modelling the motion of a piston in a 1D viscous heat conducting gas,
then of a rigid body in a viscous incompressible fluid and finally the motion of
a rigid body in a three dimensional viscous compressible fluid filling a bounded
domain. Section 1.3 contains an introduction to the theory of maximal regularity for
evolution equations, namely those which are associated to R-sectorial operators.
Moreover, we make precise here the common structure of the linearized problems
for various particulate flow systems, and we prove a useful perturbation result.
Section 1.4 first revisits the analysis of the toy problem introduced in Chap. 1, this
time in an Lp � Lq setting. The last part of this chapter is devoted to local in time
existence results, still in an Lp � Lq setting, for the two other systems introduced in
Sect. 1.2.

1.1.2 Introduction of a Toy Model

The viscous Burgers equation is often used as a toy model for the Navier-Stokes
equations. In this section we consider a similar simplification for the system
describing the motion of a rigid body in a viscous fluid. Assuming that, instead of
the Navier-Stokes equations, the fluid is described by the one dimensional viscous
Burgers equation, the system writes

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

Pv.t; y/ � vyy.t; y/C v.t; y/vy.t; y/ D 0 t > 0; y 2 .�1; 1/; y ¤ h.t/;
v.t;�1/ D v.t; 1/ D 0 t > 0;
Ph.t/ D v.t; h.t// t > 0;
Rh.t/ D Œvy�.t; h.t// t > 0;

v.0; y/ D v0. y/ y 2 .�1; 1/;
h.0/ D h0; Ph.0/ D g0:

(1.9)
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In (1.9), v D v.t; y/ denotes the Eulerian velocity field of the fluid filling the interval
.�1; 1/, whereas h D h.t/ indicates the position of the point mass and the derivative
with respect to time is denoted by a dot. Moreover, the force exerted by the fluid
on the mass is given by the jump of the derivative of v when crossing the mass,
denoted by Œvy�.t; h.t//. For the sake of simplicity, we have assumed that the mass
of the body, the viscosity and the density of the fluid are equal to one.

The main result of this chapter reads as follows:

Theorem 1.1 Assume that v0 2 H1
0.�1; 1/, h0 2 .�1; 1/ and g0 2 R are such that

v0.h0/ D g0. Then the system (1.9) admits a unique solution

�
v

h

�
with

v 2 C.Œ0;1/IH1
0.�1; 1//\ H1

loc..0;1/IL2.�1; 1//; h 2 H2 ..0;T/; .�1; 1// ;

with the restriction of v to x 2 .�1; h0/ (respectively to .h0; 1/) in L2loc..0;1/I
H2.�1; h0// (respectively in L2loc..0;1/IH2.h0; 1//).

Note that the global character of the wellposedness result above implies that the
mass point does not reach the extremities of the interval, i.e. the solid will not touch
the boundary. The methodology used in next section extends to the case of several
point-masses and in this case we can show that the point-masses do not collide in
finite time.

1.1.3 Change of Variables

An important step in proving our wellposedness results is to use a change of
variables mapping the time dependent interval Œ�1; h.t/� (respectively Œh.t/; 1�) on
the fixed one Œ�1; h0� (respectively Œh0; 1�). More precisely, we set z.t; x/ D v .t; y/,
where

x D
(
.h0C1/yCh0�h.t/

h.t/C1 . y 2 Œ�1; h.t/�/;
.h0�1/yCh.t/�h0

h.t/�1 . y 2 Œh.t/; 1�/: (1.10)

It is easily checked that (1.10) can be rewritten as

y D .1 � kh.t//x � h0 C h.t/

1 � kh0
; k D sgn.x � h0/: (1.11)

The following proposition shows that by using the change of variable (1.10) the
system (1.9) is equivalent with a system written in a fixed spatial domain.

Proposition 1.2 Let T > 0, v0 2 L2Œ�1; 1�, h0 2 .�1; 1/, g0 2 R, and assume that

v 2 C.Œ0;T�IH1
0 .�1; 1//\ H1..0;T/IL2.�1; 1//; h 2 H2 ..0;T/; .�1; 1// ;
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Then

2

4
v

g
h

3

5 is a solution of (1.9) on Œ0;T� if and only if, the triplet

2

4
z
g
h

3

5, where

z.t; x/ D v .t; y/, with x given by (1.10), satisfies, for every t 2 Œ0;T�,
8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

Pz � zxx D k.h�h0/
1�kh

h
2C k.h�h0/

1�kh

i
zxx C 1�kx

1�khgzx � 1�kh0
1�kh zzx; x 2 .�1; 1/ n h0

z.t;�1/ D z.t; 1/ D 0

z.t; h0/ D g.t/
Pg � Œzx� .t; h0/ D .h � h0/

� kzx
1�kh

�
.t; h0/ t 2 .0;T/

Ph.t/ D g.t/
z.0; x/ D z0.x/ x 2 .�1; 1/
h.0/ D h0; g.0/ D g0:

(1.12)

Proof Using the change of variables (1.10)–(1.11), simple calculations show
that (1.9) can be rewritten, for t 2 Œ0;T�:
8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

.1� kh/Pz � .1�kh0/2

1�kh zxx � .1 � kx/gzx C .1 � kh0/zzx D 0; x 2 .�1; 1/ n h0
z.t;�1/ D z.t; 1/ D 0

z.t; h0/ D g.t/
mPg.t/ D �

1�kh0
1�kh zx

�
.t; h1/

Ph.t/ D g.t/
z.0; x/ D z0.x/; x 2 .�1; 1/;
h.0/ D h0; g.0/ D g0:

(1.13)

After some simple calculations we see that the above equations are equivalent to the
system (1.12). ut

1.1.4 Local in Time Existence and Uniqueness of Solutions

The main result in this section states as follows.

Proposition 1.3 Assume that v0 2 H1
0.�1; 1/, h0 2 .�1; 1/ and g0 2 R are such

that v0.h0/ D g0. Then there exists Tmax > 0 such that for every T 2 .0;Tmax/, the
system (1.9) admits a unique solution

v 2 C.Œ0;T�IH1
0 .�1; 1//\ H1..0;T/IL2.�1; 1//; h 2 H2 ..0;T/; .�1; 1// ;

(1.14)

with the restriction of v to x 2 .�1; h0/ (respectively to .h0; 1/) in L2..0;T/I
H2.�1; h0// (respectively in L2..0;T/IH2.h0; 1//). Moreover, for every t 2 Œ0;Tmax/
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we have

1

2

Z 1

�1
v2.t; y/dy C 1

2
.Ph.t//2 D �

Z t

0

Z 1

�1
vy.�; y/

2 dy d� �
Z t

0

Ph2.�/ d�: (1.15)

Finally, only one of the alternatives holds true

1. The solution is global, i.e. Tmax D 1.
2. We have either that inf

t2Œ0;Tmax/
.1 � h.t// D 0 (which means that the mass touches

the boundary) or that sup
t2Œ0;Tmax/

kv.t; �/kH10 .�1;1/ D 1.

An important role in the proof of the above proposition is played by a self-adjoint
operator which we introduce below. Consider the Hilbert space

H D L2.�1; 1/ � R;

endowed with the inner product

��
'1
p1

�
;

�
'2
p2

��
D
Z 1

�1
'1.x/'2.x/ dx C p1p2: (1.16)

We define the unbounded operator A0 W D.A0/ ! H,

D.A0/ D
8
<

:

�
'

p

�
2
H1
0.�1; 1/

�
R

ˇ̌
ˇ̌
ˇ̌
'j.�1;h0/ 2 H2.�1; h0/;
'j.h0;1/ 2 H2.h0; 1/;

'.h0/ D p

9
=

; : (1.17)

A0

�
'

p

�
D
� �'xx
�Œ'x�.h0/

� ��
'

p

�
2 D.A0/

	
: (1.18)

Proposition 1.4 The operator A0 is positive in H. Moreover, the corresponding

space H 1
2
(i.e., D.A

1
2

0 / endowed with the graph norm of A
1
2

0 ) is

H 1
2

D

�
'

p

�
2 H1

0.�1; 1/� R
ˇ̌
'.h1/ D p

�
; (1.19)

endowed with the inner product

��
'1
p1

�
;

�
'2
p2

��

1
2

D
Z 1

�1
'1;x.x/'2;x.x/ dx: (1.20)
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Proof We first check that A0 is symmetric. Indeed, for any ˆi D
�
'i
pi

�
2 D.A0/,

i D 1; 2, we have that

hA0ˆ1;ˆ2i D �
Z h1

�1
'1;xx.x/'2.x/ dx

�
Z 1

h1

'1;xx.x/'2.x/ dx � Œ'1;x�.h1/p2 � Œ'1;x�.h1/r2

D
Z 1

�1
'1x.x/'2x.x/ dx D hˆ1;A0ˆ2i: (1.21)

We next check that A0 is onto. For F D
�
f
g

�
2 H, the equation A0ˆ D F, of

unknownˆ D
�
'

p

�
2 D.A0/ writes

8
<

:

�'xx.x/ D f .x/ x 2 .�1; h1/[ .h1; 1/
'.a/ D p
�Œ'x�.h1/ D g:

Elementary considerations on the differential equation �'xx D f show that the

above system has a unique solution

�
'

p

�
2 D.A0/ so that A0 is onto. Since we

have already shown that A0 is symmetric, a classical result (see, for instance, [34,
Proposition 3.2.4]) implies that A0 is self-adjoint.

On the other hand, taking ˆ1 D ˆ2 D ˆ D
�
'

p

�
in (1.21) we see that,

hA0ˆ;ˆi D
Z 1

�1
'2x .x/ dx;

which implies (1.20). ut
As a consequence of the positivity A0 and of a classical result (see, for instance,

Lemma 3.3 and Theorem 3.1 of [4] ),we obtain:

Corollary 1.5 For every t0; t1 > 0, Y0 2 H and f 2 L2 .Œt0; t1�;H/ there exists a

unique Y 2 C
�
Œt0; t1�;H 1

2


\ L2 .Œt0; t1�;H1/ such that


 PY.t/C A0Y.t/ D f .t/ t 2 .t0; t1/
Y.t0/ D Y0:

(1.22)
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Moreover, there exists an absolute positive constant K such that, for every Y0 2 H 1
2

and f 2 L2.Œt1; t2�;H/, we have

kYk2C.Œt1;t2�;H1=2// C kA0Yk2L2.Œt1;t2�;H/

6 kA 1
2

0 Y0k2H C Kk fk2L2.Œt1;t2�;H/ .Y0 2 H1=2; f 2 L2 .Œt1; t2�;H//: (1.23)

Remark 1.6 In PDE terms the above corollary says that if T > 0, z0 2 H1
0.�1; 1/,

g0 2 R, f1 2 L2.Œ0;T�;L2.�1; 1// and f2 2 L2Œ0;T�, are such that v0.h0/ D g0 then

then the solution

�
z
g

�
of the system

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

Pz.t; x/ � zxx.t; x/ D f1.t; x/; x 2 .�1; h0/[ .h0; 1/; t 2 .0;T/;
z.t;�1/ D z.t; 1/ D 0; t 2 .0;T/;
z.t; h0/ D g.t/; t 2 .0;T/;
Pg.t/ � Œzx� .t; h0/ D f2.t/; t 2 .0;T/;
z.0; x/ D z0.x/; x 2 .�1; 1/;
g.0/ D g0;

(1.24)

satisfies

kzk2
C.Œ0;T�;H10 .�1;1// C kgk2CŒ0;T� C kzk2L2 Œ0;T�;H2.�1;h0// C kzk2L2Œ0;T�;H2.h0;1//

6 kz0k2H10 .�1;1/ C jg0j2 C K
�
k f1k2L2.Œ0;T�;L2 .�1;1// C k f2k2L2Œ0;T�


: (1.25)

Another important ingredient are the properties of the operators .Gk/
4
kD1 which

are defined (as suggested by the right hand side of (1.12)) by

G1
�
f1
f2

�
.t; x/ D k.h.t/ � h0/

1 � kh.t/

�
2C k.h.t/ � h0/

1� kh.t/

�
zxx.t; x/; (1.26)

G2
�
f1
f2

�
.t; x/ D 1 � kx

1 � kh.t/
g.t/zx.t; x/; (1.27)

G3
�
f1
f2

�
.t; x/ D � 1 � kh0

1 � kh.t/
z.x; t/zx.t; x/; (1.28)

G4
�
f1
f2

�
.t/ D .h.t/� h0/

�
kzx

1 � kh

�
.t; h0/; (1.29)

where z, g satisfy (1.24) and

h.t/ D h0 C
Z t

0

g.�/ d�: (1.30)
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We give below some of the properties of these operators.

Lemma 1.7 Let T > 0 and let Gk, with k 2 f1; 2; 3; 4g, be the operators
defined in (1.26)–(1.29). Then, for every k 2 f1; 2; 3g, the operator Gk maps
L2.Œ0;T�;L2Œ�1; 1�/ to L2.Œ0;T�;L2Œ�1; 1�/ , whereas G4 maps L2Œ0;T� to L2Œ0;T�.
Moreover, assume that

k f1k2L2.Œ0;T�;L2 Œ�1;1�/ C k f2k2L2.Œ0;T� 6 R2; kv0k2H10 .�1;1/ C jg0j2 6 M2; 1� jh0j > ";

(1.31)

for some R; M; " > 0. Then there exists a constant C D C."/ > 0 such that for
every T 6 "

2
p
M2CKR2

(with K being the constant in (1.25)) we have

����Gk

�
f1
f2

�����
L2.Œ0;T�;L2 Œ�1;1�/

6 TC."/ .M2 C KR2/ .k 2 f1; 2; 3g/; (1.32)

����G4
�
f1
f2

�����
L2Œ0;T�

6
p
TC."/

�
M2 C KR2

�
: (1.33)

Finally, if h is defined by (1.30) we have that

jh.t/j 6 1 � "

2
.t 2 Œ0;T�/: (1.34)

Proof In order to prove (1.34) it suffices to note that, using (1.25), we have

jh.t/j 6 jh0j C
Z T

0

jg.�/j d� 6 1 � "C T
p
M2 C KR2 6 1 � "

2
.t 2 Œ0;T�/:

The facts that G1; G2; G3 map L2.Œ0;T�;L2Œ�1; 1�/ to L2.Œ0;T�;L2Œ�1; 1�/ and
that G4 maps L2Œ0;T� to L2Œ0;T� follow from (1.25) and from simple Sobolev
embeddings.

In the remaining part of this proof we denote byeC."/ a generic positive constant
depending only on ".

In order to prove (1.32) we first note that (1.34) implies that

1

1 � kh.t/
6 2

2 � " .t 2 Œ0;T�/: (1.35)

By combining (1.26) and (1.35) it follows that

����G1
�
f1
f2

�����
L2.Œ0;T�;L2 Œ�1;1�/

6 TeC."/ kgkC.Œ0;T�;L2 Œ�1;1�/ kzxxkL2.0;T;L2.�1;1//:

Combining the last estimate with (1.25) we obtain that (1.32) holds for k D 1.
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In order to prove (1.32) holds for k D 2, we note that the definition of G2,
combined with (1.35) and the Cauchy-Schwarz inequality, imply that

����G2
�
f1
f2

�
.t; x/

����
L2Œ0;T�;L2 .�1;1//

6 eC."/kgkL2Œ0;T�kzxkL2.0;T;L2Œ�1;1�/

6 TeC."/kgkCŒ0;T�kzxkC.Œ0;T�;L2 Œ�1;1�/ 6 TeC."/
�
kgk2CŒ0;T� C kzxk2C.Œ0;T�;L2 Œ�1;1�/


:

The last estimate and (1.25) imply that (1.32) holds for k D 2.
The fact that (1.32) holds for k D 3 can be proved in a completely similar manner,

so we omit the details.
In order to prove (1.33) we note that the definition (1.29) of G4, estimate (1.35)

and a classical trace theorem imply that

ˇ̌
ˇ̌.h.t/� h0/

�
kzx

1 � kh

�
.t; h0/

ˇ̌
ˇ̌

6 eC."/
Z T

0

jg.t/j dt
�kz.t; �/kH2.�1;h0// C kz.t; �/kH2.h0;1//

�
:

The above estimate and (1.25) imply that

����.h.t/� h0/

�
kzx
1 � kh

�
.t; h0/

����
L2Œ0;T�

6
p
TeC."/

�
kgk2CŒ0;T� C kz.t; �/k2H2.�1;h0// C kz.t; �/k2H2.h0;1//


;

which, combined with (1.25), yields (1.33). ut
Lemma 1.8 With the notation and assumptions in Lemma 1.8, suppose thatef1; ef2 2
L2.Œ0;T�;L2Œ�1; 1�/ satisfy

kef1k2L2.Œ0;T�;L2 Œ�1;1�/ C kef2k2L2.Œ0;T� 6 R2; (1.36)

Then there exists a constant C D C."/ > 0 such that for every T 6 "

2
p
M2CKR2

(with
K being the constant in (1.25)) we have

�����Gk

"
f1
f2

#
� Gk

"
ef1
ef2

#�����
L2.Œ0;T�;L2Œ�1;1�/

6 TC."/
p
M2 C KR2

�k f1 �ef1kL2.Œ0;T�;L2Œ�1;1�/ C k f2 �ef2kL2Œ0;T�
�

.k 2 f1; 2; 3g/;
(1.37)
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����G4
�
f1
f2

�
� G4

�ef1
ef2

�����
L2Œ0;T�

6
p
TC."/

p
M2 C KR2

�k f1 �ef1kL2.Œ0;T�;L2 Œ�1;1�/ C k f2 �ef2kL2Œ0;T�
�
: (1.38)

Proof The proof is based on estimates which are very close to those used in proving
Lemma 1.7. More precisely, we first note that, estimate (1.35) for h and foreh implies
that

����G1
�
f1
f2

�
� G1

�ef1
ef2

�����
L2.Œ0;T�;L2 Œ�1;1�

6 eC."/kh�h0kL1 Œ0;T�kzxx�ezxxkL2.Œ0;T�;L2 Œ�1;1�/

CeC."/
��.h � h0/zxx.1 � keh/� .eh � h0/ezxx.1 � kh/

��
L2.Œ0;T�;L2 Œ�1;1�/ : (1.39)

Using the inequality

kh � h0kCŒ0;T� 6 TkgkCŒ0;T� ; (1.40)

together with (1.25) it follows that the first term in the right hand side of (1.39)
satisfies

kh � h0kL1 Œ0;T�kzxx �ezxxkL2.Œ0;T�;L2 Œ�1;1�/
6 T

p
M2 C KR2

�k f1 �ef1kL2.Œ0;T�;L2 Œ�1;1�/ C k f2 �ef2kL2Œ0;T�
�
: (1.41)

Concerning the second term in the right hand side of (1.39) we note that

��.h � h0/zxx.1 � keh/� .eh � h0/ezxx.1 � kh/
��
L2.Œ0;T�;L2 Œ�1;1�/

6 k.h � h0/zxxkL2.Œ0;T�;L2 Œ�1;1�/ kh �ehkL1 Œ0;T�

C k.h � h0/.1 � kh/kL1Œ0;T� kzxx �ezxxkL2.Œ0;T�;L2 Œ�1;1�/
C kezxx.1 � kh/kL2.Œ0;T�;L2 Œ�1;1�/ kh �ehkL1 Œ0;T�:

Using in the above inequality the fact that

kh �ehkL1 Œ0;T� 6 Tkg �egkL1 Œ0;T�; (1.42)

together with (1.42) and (1.25), we obtain that

��.h � h0/zxx.1 � keh/� .eh � h0/ezxx.1 � kh/
��
L2.Œ0;T�;L2 Œ�1;1�/

6 TeC."/
p
M2 C KR2

�k f1 �ef1kL2.Œ0;T�;L2 Œ�1;1�/ C k f2 �ef2kL2Œ0;T�
�
: (1.43)
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By combining (1.41) and (1.43) we obtain that (1.37) holds for k D 1. The proof
of (1.37) for k 2 f2; 3g is very similar (but quite tedious) so we omit it here.

In order to prove (1.38) we note that from the definition (1.29) of G4 and
from (1.35) it follows that

����G4
�
f1
f2

�
� G4

�ef1
ef2

�����
L2Œ0;T�

6 kh.t/� h0kCŒ0;T�
����
�
k.zx �ezx/
1 � kh

�
.t; h0/

����
L2Œ0;T�

C kh�ehkCŒ0;T�
����
� ezx/
1 � kh

�
.t; h0/

����
L2Œ0;T�

C �
p
Tkg�egkCŒ0;T� C

p
Tkh�ehkCŒ0;T�:

The above estimate, combined with (1.35), (1.40), (1.42) and (1.25), implies the
conclusion (1.38). ut

We are now in a proposition to prove the main result in this section.

Proof of Proposition 1.3 Let

X D L2.Œ0;T�;L2Œ�1; 1�/ � L2Œ0;T�;

and let N W X ! X be defined by

N D
�
G1 C G2 C G3

G4

�
;

where .Gk/16k64 have been defined in (1.26)–(1.29).
Let M > 0 be such that

kz0k2H10 .�1;1/ C jg0j2 6 M2; (1.44)

and let " > 0 such that

jh0j 6 1 � ": (1.45)

We denote by BM the ball in X of radius M. From Lemma 1.7 it follows that

����N
�
f1
f2

�����
X
6 .T C p

T/C."/.M2 C M C 1/

��
f1
f2

�	
2 BM/:

The last estimate implies that N maps BM into BM if

T 6
�
C."/M2

��1
: (1.46)
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By applying Lemma 1.8 it follows that

����N
�
f1
f2

�
� N

�ef1
ef2

�����
X

6
p
T
C."/.M2 C M C 1/

M

����
�
f1
f2

�
�
�ef1
ef2

�����
X

��
f1
f2

�
;

�ef1
ef2

�
2 BM

	
:

The last estimate implies that the restriction of N to BM is a strict contraction
provided that

T 6 1

2

�
C."/.M2 C M C 1/

M

��1
: (1.47)

Consequently, for every T satisfying (1.46) and (1.47) we have that N has a unique

fixed point

"
bf 1
bf 2

#
2 BM . Denoting by

�
bz
bg

�
the solution of (1.24) with f1 D bf 1 and

f2 Dbf 2 we clearly have that

�
v

h

�
with

v.t; �/ Dbz.t; �/; h.t/ D h0 C
Z t

0

g.�/ d� .t 2 Œ0;T�/; (1.48)

satisfy all the equations in (1.9), with the restriction of v to x 2 .�1; h0/ (respec-
tively to .h0; 1/) in L2.Œ0;T�IH2.�1; h0// (respectively in L2.Œ0;T�IH2.h0; 1//).
Moreover, according to (1.34) we have that h.t/ 2 .�1; 1/ for every t 2 Œ0;T�,

so that

�
v

h

�
is indeed the desired local in time solution of (1.9).

According to classical arguments, this solution can be extended to a solution
defined on Œ0;Tmax/.

Finally, assume that both assertions in the second alternative in Proposition 1.3
are false. Denoting

M D sup
t2Œ0;Tmax/

kv.t; �kH10 .�1;1/; " D inf
t2Œ0;Tmax/

.1 � jh.t/j/;

the first part of the proof shows that there exists ı D ı.";M/ > 0 such that for every
t 2 Œ0;Tmax/ the solution can be extended on Œt;T C ı�. This clearly implies that
Tmax D 1, i.e., that the solution is global. ut
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1.1.5 Proof of the Global Well-Posedness Result

The key estimates used to prove the above theorem are given in the result below.

Proposition 1.9 With the notation and assumptions in Proposition 1.3, let T 2
Œ0;Tmax/ and let

�
v

h

�
W Œ0;T� ! H1

0.�1; 1/�R be the local in time solution of (1.9)

constructed in Proposition 1.3. Moreover, assume that the initial data v0 satisfies
kv0kH1.�1;1/ 6 M, for some M > 0. Then there exists a constant K D K.M;T/ such
that

kv.t; �/kH10 .�1;1/ 6 K.M;T/ .t 2 Œ0IT�/: (1.49)

Z T

0

"Z h.t/

�1
v2yy.t; y/ dy C

Z 1

h.t/
v2yy.t; y/ dy C jRh.t/j2

#
dt 6 K.M;T/: (1.50)

Proof We follow step by step the method used in [36].
Multiplying the first equation in (1.9) vyy and integrating on .�1; h0/ and .h0; 1/,

we obtain that for every t 2 Œ0;T� we have

Z h.t/

�1
v2yy dy D �1

2

Z h.t/

�1
@

@t
.v2y / dy C Pv.t; h.t/ � 0/vy.t; h.t/ � 0/C

Z h.t/

�1
vvyvyy dy;

(1.51)
Z 1

h.t/
v2yy dy D �1

2

Z 1

h.t/

@

@t
.v2y / dy � Pv.t; h.t/C 0/vy.t; h.t/C 0/C

Z 1

h.t/
vvyvyy:

(1.52)

On the other hand, differentiating the third equation in (1.9) it follows that

Pv.t; h.t/˙ 0/ D Rh.t/ � Ph.t/vy.t; h.t/˙ 0/ .t > 0/;

so that

Pv.t; h.t/˙ 0/vy.t; h.t/˙ 0/ D Rh.t/vy.t; h.t/˙ 0/� Ph.t/v2y .t; h.t/˙ 0/: (1.53)

On the other hand

Z h.t/

�1
@

@t
.v2y / dy D d

dt

Z h.t/

�1
v2y dy � Ph.t/vy.t; h.t/ � 0/;

Z 1

h.t/

@

@t
.v2y / dy D d

dt

Z h.t/

�1
v2y dy C Ph.t/vy.t; h.t/C 0/;
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so that

�1
2

Z h.t/

�1
@

@t
.v2y / dy � 1

2

Z 1

h.t/

@

@t
.v2y / dy D �1

2

d

dt

Z 1

�1
v2y dy � 1

2
Ph.t/Œvy�.t; h.t//:

By combining the last formula with (1.51), (1.52) and (1.53) it follows that

Z h.t/

�1
v2yy dy C

Z 1

h.t/
v2yy dy D �1

2

d

dt

Z 1

�1
v2y dy � 1

2
Ph.t/Œvy�.t; h.t//

� Rh.t/Œvy�.t; h.t//C Ph.t/Œv2y �.t; h.t//C
Z h.t/

�1
vvyvyy dy C

Z 1

h.t/
vvyvyy dy:

In the second term of the right hand side of the above formula we use the fact that

Œvy�.t; h.t// D Rh.t/; (1.54)

and we obtain that

Z h.t/

�1
v2yy dy C

Z 1

h.t/
v2yy dy D �1

2

d

dt

Z 1

�1
v2y dy � 1

4

d

dt
Ph2.t/

� Rh2.t/C Ph.t/Œv2y �.t; h.t//C
Z h.t/

�1
vvyvyy dy C

Z 1

h.t/
vvyvyy dy: (1.55)

The last two terms in the right hand side of the above formula can be estimated,
using the Cauchy-Schwarz inequality, to give

ˇ̌
ˇ̌
ˇ

Z h.t/

�1
vvyvyy dy C

Z 1

h.t/
vvyvyy dy

ˇ̌
ˇ̌
ˇ

6 kv.t; �/ vy.t; �/kL2Œ�1;1�
�kvyy.t; �/kL2Œ�1;h.t/� C kvyy.t; �/kL2Œh.t/;1�

�
: (1.56)

Using the classical interpolation inequality

k kCŒ�1;1� 6 k 0k 1
2

L2Œ�1;1�k k 1
2

L2 Œ�1;1� . 2 H1
0.�1; 1//;

together with (1.15) it follows that

kv.t; �/ vy.t; �/kL2Œ�1;1� 6 Mkvy.t; �/k
3
2

L2Œ�1;1�:
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Inserting the last inequality into (1.56) we obtain that

ˇ̌
ˇ̌
ˇ

Z h.t/

�1
vvyvyy dy C

Z 1

h.t/
vvyvyy dy

ˇ̌
ˇ̌
ˇ 6

M2

2
kvy.t; �/k3L2Œ�1;1�

C 1

2

�
kvyy.t; �/k2L2Œ�1;h.t/� C kvyy.t; �/k2L2Œh.t/;1�


.t 2 Œ0;T�/: (1.57)

By combining the last inequality and (1.55), it follows that

d

dt

Z 1

�1
v2y dy C

Z h.t/

�1
v2yy dy C

Z 1

h.t/
v2yy dy C d

dt
jPh.t/j2 C jRh.t/j2C

6 K1
�
1C kvy.t; �/k3L2Œ�1;1� C Ph.t/Œv2y �.t; h.t//


.t 2 Œ0;T�/; (1.58)

with K1 depending only on M. In order to estimate the last term in the right hand
side of (1.58) we note that, for almost every t 2 Œ0;T�, we have

Ph.t/Œv2y �.h.t/; t/ D v.t; h.t//
�
v2y .t; h.t/C 0/� v2y .t; h.t/ � 0/

�

D
Z h.t/

�1
�
v.t; y/v2y .t; y/

�
y

dy C
Z 1

h.t/

�
v.t; y/v2y .t; y/

�
y

dy D
Z 1

�1
v3y .t; y/ dy

C 2

Z h.t/

�1
v.t; y/vy.t; y/vyy.t; y/ dy C 2

Z 1

h.t/
v.t; y/vy.t; y/vyy dy

Using (1.57) in the last inequality we deduce that

Ph.t/Œv2y �.h.t/; t/ 6
Z 1

�1
v3y .t; y/ dy C M2kvy.t; �/k3L2Œ�1;1�

C kvyy.t; �/k2L2Œ�1;h.t/� C kvyy.t; �/k2L2Œh.t/;1�:

Inserting the last inequality in (1.58) it follows that

d

dt

Z 1

�1
v2y dy C

Z h.t/

�1
v2yy dy C

Z 1

h.t/
v2yy dy C d

dt
jPh.t/j2 C jRh.t/j2

6 K2

�
1C kvy.t; �/k3L2Œ�1;1� C

Z 1

�1
v3y dy

	
.t 2 Œ0;T�/; (1.59)
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with K2 depending only on M. To estimate the last integral in the right-hand side of
the above formula we use the interpolation inequality (4.13) from [36] which asserts
the existence of a universal constant K > 0 that

kvykL1Œ�1;1�/ 6 K

�
kvyk

1
2

L2Œ�1;1�

�
kvyyk

1
2

L2Œ�1;h.t/� C kvyyk
1
2

L2Œh.t/;1�

	
C jRh.t/j

�
:

The above estimate, combined with Young’s inequality, implies that for every " > 0
there exists a constant c > 0 with

Z 1

�1
v3y dy 6 "jRh.t/j2 C "

 Z h.t/

�1
v2yy dy C

Z 1

h.t/
v2yy dy

!

C c

�Z 1

�1
v2y dy

	 5
3

C c

�Z 1

�1
v2y dy

	2
.t 2 Œ0;T�/:

Choosing " small enough and inserting the last inequality in (1.59) we obtain that

d

dt

Z 1

�1
v2y dy C

Z h.t/

�1
v2yy dy C

Z 1

h.t/
v2yy dy C d

dt
jPh.t/j2 C jRh.t/j2

6 K3

2

41C
�Z 1

�1
v2y dy

	 3
2

C
�Z 1

�1
v2y dy

	 5
3

C
�Z 1

�1
v2y dy

	2
3

5

6 K4

"
1C

Z 1

�1
v2y dy C

�Z 1

�1
v2y dy

	2#
; (1.60)

with K3 and K4 depending only on M. Integrating the above formula on Œ0; ��, with
� 2 Œ0;T�, it follows that

Z 1

�1
v2y .�; y/ dy 6

Z 1

�1
v20;y. y/ dy

C K5

�
T C

Z �

0

�
1C

Z 1

�1
v2y .t; y/ dy

	Z 1

�1
v2y .t; y/ dy dt

�
:

Using in the last estimate the fact, resulting from (1.15), that

Z �

0

Z 1

�1
v2y .t; y/ dy dt 6 K6;

the conclusion (1.49) follows by applying Gronwall’s inequality.
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In order to prove (1.50) it suffices to integrate (1.60) with respect to time and to
use (1.49). ut

We are now in a position to prove the main result of this section.

Proof of Theorem 1.1 It suffices to prove that both assertions in the second alterna-
tive of Proposition 1.3 are false. The fact that the assertion

lim
t!Tmax

kv.t; �/kH10 .�1;1/ D 1;

is false for every Tmax 2 Œ0;1/ is a direct consequence of Proposition 1.9. We show
below that the assertion saying that

lim
t!Tmax

jh.t/j D 1;

is false for every Tmax 2 Œ0;1/. To accomplish this goal, we first note that
from (1.49) and (1.50) it follows that v can be extended to a function, still denoted
by v, such that

v 2 C.Œ0;Tmax�;H
1
0.�1; 1//;

and v is Lipschitz with respect to x, uniformly with respect to t 2 Œ0;Tmax�. We use
now a contradiction argument . Indeed, assume that

lim
t!Tmax

h.t/ D 1:

This means that h can be extended to a function in C1Œ0;Tmax� such that

Ph.t/ D v.t; h.t// .t 2 Œ0;Tmax�/; h.Tmax/ D 1:

On the other hand the function eh.t/ D 1 for every t 2 R is also a solution of
the above initial value problem. By the Cauchy-Lipschitz theorem it follows that
h.t/ Deh.t/ D 1 for every t 2 Œ0;Tmax�, which is clearly a contradiction. ut

In order to study the concept of weak solution of (1.9) it is useful to note that
that the distance from the mass point to the boundary is bounded from below by
a function depending only on the initial kinetic energy of the fluid-mass particle
system and of the initial position of the particle.

Theorem 1.10 Let M > 0. We assume that v0; h0 and g0 satisfy the assumptions in
Theorem 1.1 and that

Z 1

�1
v20. y/ dy C g20 C jh0 � h1j2 6 M2:
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Let

�
v

h

�
be the corresponding solution of (1.9). Then there exist the positive

constants K0, which depends only on M, and K1, depending only on M and on h0,
such that

1C h.t/ > K1e
�tK0 .t > 0/: (1.61)

1 � h.t/ > K1e�tK0 .t > 0/; (1.62)

Proof We give below only the detailed proof of (1.62), since the proof of (1.61)
can be obtained with obvious adaptations. Moreover, we note that it suffices to
prove (1.61) only for the values of t for which h.t/ > 1

2
, i.e. for values of t such

that

h.t/ > 3

2
: (1.63)

Consider the function ' defined by

'.t; y/ D
(

1Cy
1Ch.t/ if y 2 Œ�1; h.t/�;
1�y
1�h.t/ if y 2 Œh.t/; 1�:

Then

Z h.t/

�1
Pv.t; y/'.t; y/ dy D

Z h.t/

�1
@

@t
.v.t; y/'.t; y// dy �

Z h.t/

�1
v.t; y/ P'.t; y/ dy

D d

dt

Z h.t/

�1
v.t; y/'.t; y/ dy�Ph2.t/C Ph.t/

.1C h.t//2

Z h.t/

�1
.1Cy/v.t; y/ dy .t > 0/;

�
Z h.t/

�1
vyy.t; y/'.t; y/ dy D Ph.t/

1C h.t/
� vy.t; h.t/ � 0/ .t > 0/:

Summing up the two above formulae it follows that

d

dt

Z h.t/

�1
v.t; y/'.t; y/ dy � Ph2.t/C

Ph.t/
.1C h.t//2

Z h.t/

�1
.1C y/v.t; y/ dy C

Ph.t/
1C h.t/

� vy.t; h.t/ � 0/C
Z h.t/

�1
v.t; y/vy.t; y/'.t; y/ dy D 0 .t > 0/: (1.64)
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Similar calculations show that

Z 1

h.t/
Pv.t; y/'.t; y/ dy

D d

dt

Z 1

h.t/
v.t; y/'.t; y/ dyC Ph2.t/�

Ph.t/
.1 � h.t//2

Z 1

h.t/
.1�y/v.t; y/ dy .t > 0/;

�
Z 1

h.t/
vyy.t; y/'.t; y/ dy D Ph.t/

1 � h.t/
C vy.t; h.t/C 0/ .t > 0/:

Summing up the last two formulae we obtain that

d

dt

Z 1

h.t/
v.t; y/'.t; y/ dy C Ph2.t/ � Ph.t/

.1 � h.t//2

Z h.t/

�1
.1 � y/v.t; y/ dy

C
Ph.t/

1 � h.t/
C vy.t; h.t/C 0/C

Z 1

h.t/
v.t; y/vy.t; y/'.t; y/ dy D 0 .t > 0/:

The above formula and (1.64) imply that

d

dt

Z 1

�1
v.t; y/'.t; y/ dy C Ph.t/

.1C h.t//2

Z h.t/

�1
.1C y/v.t; y/ dy

�
Ph.t/

.1 � h.t//2

Z 1

h.t/
.1 � y/v.t; y/ dy C 2Ph.t/

1 � h2.t/

C Rh.t/C
Z 1

�1
v.t; y/vy.t; y/'.t; y/ dy D 0 .t > 0/:

The last formula implies that

2Ph.t/
1 � h2.t/

D � d

dt

Z 1

�1
v.t; y/'.t; y/ dy � Rh.t/�

Ph.t/
.1C h.t//2

Z h.t/

�1
.1C y/v.t; y/ dy

C
Ph.t/

.1 � h.t//2

Z 1

h.t/
.1 � y/v.t; y/ dy �

Z 1

�1
v.t; y/vy.t; y/'.t; y/ dy .t > 0/:

It follows that

� 2Ph.t/
1 � h2.t/

6 d

dt

Z 1

�1
v.t; y/'.t; y/ dy C Rh.t/C jA1.t/j C jA2.t/j; (1.65)
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where

A1.t/ D �
Ph.t/

.1C h.t//2

Z h.t/

�1

.1C y/v.t; y/ dy C
Ph.t/

.1 � h.t//2

Z 1

h.t/
.1 � y/v.t; y/ dy .t > 0/;

A2.t/ D �
Z 1

�1

v.t; y/vy.t; y/'.t; y/ dy .t > 0/:

The expressions defined on the last two formulas can be estimated by

jA1.t/j 6 2jPh.t/jkvkL1.Œ0;T�;L2 Œ�1;1�/ 6 2MjPh.t/j 6 2M2 .t > 0/;

jA2.t/j 6
p
2kvy.t; �/k2L2Œ�1;1�k'kL1.Œ0;T��Œ�1;1�/ 6

p
2kvy.t; �/k2L2Œ�1;1� .t > 0/:

The last two estimates and (1.65) imply that

� 2Ph.t/
1 � h2.t/

6 d

dt

Z 1

�1
v.t; y/'.t; y/ dyCRh.t/C2M2Cp

2kvy.t�/k2L2Œ�1;1� .t > 0/:

(1.66)

Integrating (1.66) on Œ0; t� it follows that for every t > 0 we have

ln

�
1 � h.t/

1C h.t/

	
� ln

�
1 � h0
1C h0

	
6
Z 1

�1
v.t; y/'.t; y/ dy �

Z 1

�1
v.0; y/'.0; y/ dy

C Ph.t/ � g0 C 2M2t C p
2

Z t

0

kvy.�; �/k2L2Œ�1;1� d� 6 teK0.M/CeK1.M/:

The last estimate, combined with (1.63), implies the conclusion (1.61). ut

1.1.6 Bibliographical Notes

The first papers considering the coupling of viscous Burgers equation with Newton
laws as a simplified fluid-structure interaction system are Vázquez and Zuazua [35,
36], where global wellposedness and long time behavior have been investigated.
Similar models have been studied from a control theoretic viewpoint in Doubova
and Fernández-Cara [15], Liu et al. [25] and Cîndea et al. [6]. Our presentation
above follows [25] and [6].

1.2 Examples of Systems Modelling Fluid-Structure
Interactions

In this chapter we introduce some systems modelling the motion of particles in a
fluid, considering problems in one ore several space dimensions. We also describe
some change of variables allowing to consider the governing equations in a fixed
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spatial domain and we postpone to the next chapters the study of the corresponding
wellposedness results.

1.2.1 Motion of a Piston in a Heat Conducting Gas; a 1D
Model

We consider a one dimensional model for the motion of a particle (piston) in a
cylinder filled with a viscous compressible heat conducting gas. The extremities of
the cylinder are fixed. The gas is modelled by the 1D compressible Navier-Stokes-
Fourier equations, whereas the piston obeys Newton’s second law. We assume that
the piston is thermally conducting. More precisely, we consider the initial boundary
value problem

@t%C @	.%w/ D 0; .t > 0; 	 2 Œ�1; 1� n fh.t/g/
%
�
@tw C w@	w

� � @		w C @	.%#/ D 0; .t > 0; 	 2 Œ�1; 1� n fh.t/g/;
%
�
@t# C @	#w

� � @		# � �
@	w

�2 C %#@	w D 0; .t > 0; 	 2 Œ�1; 1� n fh.t/g/;
w.t; h.t/˙ 0/ D Ph.t/; #.t; h.t/˙ 0/ D Q.t/ .t > 0/;

(1.67)

mRh.t/ D Œ@	w � %#�.t; h.t//; PQ.t/ D Œ@	#�.t; h.t//; .t > 0/;

w.t;�1/ D 0 D w.t; 1/; @	#.t;�1/ D 0 D @	#.t; 1/; .t > 0/;

with the initial conditions

h.0/ D h0; Ph.0/ D g0; Q.0/ D Q0

w.0; 	/ D w0.	/; %.0; 	/ D �0.	/; #.0; 	/ D #0.	/ .	 2 Œ�1; 1� n fh0g/:
(1.68)

In the above equations, %.t; 	/ is the density, w.t; 	/ is velocity of the fluid, #.t; 	/
is the temperature of the fluid (all in Eulerian coordinates), m is the mass of the
particle and h is the trajectory of the mass point moving in the fluid. The symbol
Œ f �.	/ denotes the jump of f at 	 i.e.

Œ f �.	/ D f .	C/ � f .	�/:

We now rewrite the system (1.67)–(1.68) in Lagrangian mass coordinates. This
change of variables has been widely used in the literature devoted to the study of
one dimensional compressible flows (see, for instance, [3] and references therein).
One of the advantages of this change of coordinates is that the positions of the piston
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becomes fixed. We begin by introducing the characteristic lines 
.tI �/ defined by

@t
.t; �/ D w.t; 
.t; �//; 
.0; �/ D � .� 2 Œ�1; 1�/: (1.69)

The first equation in (1.67) can be written

�0.�/ D �.t; 
.t; �//
@


@�
.t; �/ .t > 0; X 2 Œ�1; 1� n fh0g/: (1.70)

The Lagrangian mass change of coordinates consists in replacing the space variable
	 in (1.67) by

x D ‰.t; 	/; ‰.t; 	/ D
Z 	

h.t/
%.t; y/ dy .	 2 Œ�1; 1�/: (1.71)

From (1.70) and (1.71) it follows that

‰.t; 
.t; �// D
Z �

h0

�0.Y/ dY .� 2 Œ�1; 1� n fh0g/: (1.72)

Using the facts that 
.�t; 1/ D �1, 
.t; 1/ D 1 and 
.t; h.t// D 0, it follows that

‰.t;�1/ D �r1; ‰.t; 1/ D r2; .t > 0/; (1.73)

where

r1 D
Z h0

�1
�0.�/ d�; r2 D

Z 1

h0

�0.�/ d�:

On the other hand, using the fact that the right hand side of (1.72) is time
independent, together with (1.69), we obtain that

@t‰.t; 	/C @	‰.t; 	/w.t; 	/ D 0 .t > 0; 	 2 Œ�1; 1� n fh.t/g/;

so that

@t‰.t; 	/ D ��.t; 	/w.t; 	/ .t > 0; 	 2 Œ�1; 1� n fh.t/g/: (1.74)

Using the above properties, it follows that, for every t > 0, ‰.t; �/ is a diffeomor-
phism from Œ�1; 1� onto Œ�r1; r2�, with @	‰.t; 	/ D %.t; 	/ > 0 for every t > 0 and
for every 	 2 Œ�1; 1� n fh.t/g.
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For each t > 0 we denote by ˆ.t; �/ D ‰�1.t; �/. The specific volume in mass
lagrangian coordinates is defined by

v.t; x/ D 1

%.t; ˆ.t; x//
; %.t; 	/ D 1

v.t; ‰..t; 	//

.t > 0

x 2 Œ�r1; r2� n f0g; 	 2 Œ�1; 1� n fh.t/g/: (1.75)

Similarly, the velocity and temperature field in lagrangian mass coordinates writes

u.t; x/ D w.t; ˆ.t; x//; w.t; 	/ D u.t; ‰.t; 	//

.t > 0; x 2 Œ�r1; r2� n f0g; 	 2 Œ�1; 1� n fh.t/g/; (1.76)

�.t; x/ D #.t; ˆ.t; x//; #.t; 	/ D �.t; ‰.t; 	//

.t > 0; x 2 Œ�r1; r2� n f0g; 	 2 Œ�1; 1� n fh.t/g/ (1.77)

From (1.71) and (1.74) it follows that for every t > 0 and every 	 2 Œ�1; 1� n fh.t/g
we have

@	%.t; 	/ D � 1

v3.t; ‰..t; 	//
@xv.t; ‰.t; 	//; (1.78)

@t%.t; 	/ D � 1

v2.t; ‰..t; 	//
@tv.t; ‰.t; 	// C 1

v3.t; ‰..t; 	//
@xv.t; ‰.t; 	//u.t; ‰.t; 	//:

(1.79)

From (1.71) we have for every t > 0 and every 	 2 Œ�1; 1� n fh.t/g we have

@	w.t; 	/ D @xu.t; ‰.t; 	//%.t; 	/ D @xu.t; ‰.t; 	//

v.t; ‰.t; 	//
.	 2 Œ�1; 1� n fh.t/g/:

(1.80)

By combining (1.78), (1.79) and (1.80) it follows that for every t > 0 and every
	 2 Œ�1; 1� n fh.t/g we have

@t%.t; 	/C@	 .%.t; 	/ w.t; 	// D � 1

v2.t; ‰..t; 	///
.@tv.t; ‰.t; 	// � @xu.t; ‰.t; 	/// :

Consequently, using Lagrangian mass coordinates, Eq. (1.67)1 writes

@tv.t; x/ � @xu.t; x/ D 0; .t > 0; x 2 Œ�r1; r2� n f0g/: (1.81)
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Using again (1.71) and (1.74), together with (1.80) it follows that

@		w.t; 	/ D @xxu.t; ‰.t; 	//

v2.t; ‰.t; 	//
� @xu.t; ‰.t; 	//@xv.t; ‰.t; 	//

v3.t; ‰.t; 	//
.	 2 Œ�1; 1�nfh.t/g/;

(1.82)

@tw.t; 	/ D @tu.t; ‰.t; 	// � 1

v.t; ‰.t; 	/
@xu.t; ‰.t; 	//u.t; ‰.t; 	//

.t > 0; x 2 Œ�r1; r2� n f0g: (1.83)

The derivatives of # and � satisfy formulas similar to those satisfied by those of w
and of u, that is

@	#.t; 	/ D @x�.t; ‰.t; 	//%.t; 	/ D @x�.t; ‰.t; 	//

v.t; ‰.t; 	//
.	 2 Œ�1; 1� n fh.t/g/;

(1.84)

@		#.t; 	/ D @xx�.t; ‰.t; 	//

v2.t; ‰.t; 	//
� @x�.t; ‰.t; 	//@xv.t; ‰.t; 	//

v3.t; ‰.t; 	//
.	 2 Œ�1; 1� n fh.t/g/;

(1.85)

@t#.t; 	/ D @t�.t; ‰.t; 	// � 1

v.t; ‰.t; 	/
@x�.t; ‰.t; 	//u.t; ‰.t; 	//

.	 2 Œ�1; 1� n fh.t/g/: (1.86)

By combining (1.78), (1.80), (1.82)–(1.84) we obtain that

%.t; 	/
�
@tw.t; 	/C w.t; 	/ @	w.t; 	/

� � @		w.t; 	/C @	 Œ%.t; 	/#.t; 	/�

D 1

v.t; ‰.t; 	//

�
@tu.t; ‰.t; 	// � @x

�
1

v
@xu � �

v

	
.t; ‰.t; 	//

�
:

Consequently, (1.67)2 can be written as

@tu.t; x/ � @x
�
@xu

v
� �

v

	
.t; x/ D 0 .t > 0; x 2 Œ�r1; r2� n f0g/: (1.87)

To write (1.67)3 in mass Lagrangian coordinates we combine (1.80), (1.84)–(1.86)
to get

�.t; 	/
�
@t#.t; 	/C @	#.t; 	/w.t; 	/

� � @		# � �
@	w

�2 C %.t; 	/#.t; 	/@	w

D 1

v.t; ‰.	; t/

�
@t�.t; ‰.t; 	// � @x

�
1

v
@x�

	
.t; ‰.t; 	// �

�
1

v
j@xuj2

	
.t; ‰.t; 	//

C
�
�

v
@xu

	
.t; ‰.t; 	//

�
:
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From the above formula, it follows that (1.67)3 is satisfied iff

@t�.t; x/�@x
�
1

v
@x�

	
.t; x/� 1

v
.@xu/

2��
v
@xu.t; x/ D 0; .t>0; x 2 Œ�r1; r2�nf0g/:

(1.88)
The fourth equation in (1.67) can obviously be rewritten as

u.t;˙0/ D Ph.t/; @�

@x
.t;˙0/ D Q.t/ .t > 0/: (1.89)

As for (1.67)5, using (1.80), we have

mRh.t/ D
�
1

v
@xu � �

v

�
.t; 0/; PQ.t/ D

�
1

v
@x�

�
.t; 0/ .t > 0/: (1.90)

Using (1.84), it is easily seen that (1.67)6 write in mass Lagrangian coordinates as

u.t;�r1/ D u.t; r2/ D 0;
@�

@x
.�r1; t/ D @�

@x
.r1; t/ D 0 .t > 0/: (1.91)

Putting together (1.81) and (1.87)–(1.90), it follows that the system (1.67) writes
in Lagrangian mass coordinates as

@tv � @xu D 0; .t > 0; x 2 Œ�r1; r2� n f0g/;

@tu � @x
�
1

v
@xu

	
C @x

�
�

v

	
D 0; .t > 0; x 2 Œ�r1; r2� n f0g/;

@t� � @x
�
1

v
@x�

	
� 1

v
.@xu/

2 C �

v
@xu D 0; .t > 0; x 2 Œ�r1; r2� n f0g/;

u.t;˙0/ D Ph.t/; �.t; 0˙/ D Q.t/; .t > 0/;

(1.92)

mRh.t/ D
�
1

v
@xu � �

v

�
.t; 0/; .t > 0/;

PQ.t/ D
�
1

v
@x�

�
.t; 0/; .t > 0/;

u.t;�r1/ D u.t; r2/ D 0; @x�.t;�r1/ D @x�.t; r2/ D 0; .t > 0/;

v.0; x/ D v0.x/; u.0; x/ D u0.x/; �.0; x/ D �0.x/; x 2 Œ�r1; r2� n f0g;
h.0/ D h0; Ph.0/ D g0;

where

v0.x/ WD 1

%0.ˆ.0; x//
; u0.x/ D w0.ˆ.0; x//; �0.x/ D #0.ˆ.0; x//: (1.93)
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1.2.2 Motion of a Rigid Body in a Viscous Incompressible
Fluid

In this section we describe the system modelling the motion of a rigid body
immersed in a viscous incompressible fluid. Let us assume that the fluid and the
rigid body are contained in a bounded domain with smooth boundary. At time t > 0,
the rigid body occupies a smooth domain�S.t/ � �. We assume that

d.�S.0/; @�/ > 0: (1.94)

We denote by �F.t/ D � n�S.t/ the domain occupied by the fluid. The motion of
the fluid is given by

@tu C .u � r/u � div �.u; p/ D 0; div u D 0; x 2 �F.t/; t 2 Œ0;T�; (1.95)

where the Cauchy stress tensor �.u; p/ is defined by

�.u; p/ D 2Du � pI3; Du D 1

2
.ru C ruT/;

and I3 is the identity matrix.
At time t > 0, let h.t/ 2 R

3, Q.t/ 2 M3�3.R/ and !.t/ 2 R
3 denote the position

of the center of mass, the orthogonal matrix giving the orientation of the solid and
the angular velocity of the rigid body. Therefore we have,

PQ.t/Q.t/�1y D A.!.t//y D !.t/ � y; 8y 2 R
3; (1.96)

where the skew-symmetric matrix A.!/ is given by

A.!/ D
0

@
0 �!3 !2
!3 0 �!1

�!2 !1 0

1

A ; ! 2 R
3:

Without loss of generality we can assume that

h.0/ D 0 and Q.0/ D I: (1.97)

At time t, the domain occupied by the structure�S.t/ is defined by

�S.t/ D 
S.t; �S.0// (1.98)

where 
S denotes the flow associated to the motion of the structure:


S.t; y/ D h.t/C Q.t/y; 8y 2 �S.0/; 8t > 0; (1.99)
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For each t > 0, 
S.t; �/ W �S.0/ 7! �S.t/ is invertible and


S.t; �/�1.x/ D Q.t/�1.x � h.t//; 8x 2 �S.t/: (1.100)

Thus the Eulerian velocity uS of the structure is given by

uS.t; x/ D @t
S.t; �/ ı 
S.t; �/�1.x/ D Ph.t/C PQ.t/Q.t/�1.x � h.t//; 8x 2 �S.t/:
(1.101)

Therefore

uS.t; x/ D Ph.t/C !.t/ � .x � h.t//; 8x 2 �S.t/: (1.102)

We also assume the continuity of velocities at the fluid-solid interface, i.e.,

u.t; x/ D Ph.t/C !.t/ � .x � a.t//; x 2 @�S.t/: (1.103)

On the boundary of� we prescribe no-slip boundary condition for fluid, i.e.,

u.t; x/ D 0; x 2 @�: (1.104)

We denote by m > 0 the mass of rigid structure and J.t/ 2 M3�3.R/ its tensor of
inertia at time t. This tensor is given by

J.t/a � b D
Z

�S.0/

�S. y/.a � Q.t/y/ � .b � Q.t/y/ dy; 8a; b 2 R
3; (1.105)

where �S > 0 is the density of the structure. One can check that

J.t/a � a > CJ jaj2 > 0; (1.106)

where CJ is independent of t > 0. The equation of the structure is given by

mRh D �
Z

@�S.t/
�.u; p/n d�;

J P! D .J!/ � ! �
Z

@�S.t/
.x � h.t// � �.u; p/n d� (1.107)

where n.t; x/ the unit normal to @�S.t/ at the point x directed toward the interior of
the rigid body. The above system is completed by the following initial conditions

u.0/ D u0; in �F.0/; h.0/ D 0; Ph.0/ D g0; !.0/ D !0: (1.108)
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1.2.3 Motion of a Solid in a Compressible Fluid

In this section, we consider a rigid structure immersed in a viscous compressible
fluid. In this case, we assume that, the fluid and the rigid body are contained in a
smooth bounded domain � � R

3. At time t > 0, the rigid body occupies a smooth
bounded domain�S.t/. We assume that

d.�S.0/; @�/ > 0: (1.109)

For any time t > 0, �F.t/ D � n �S.t/ denotes the region occupied by the fluid.
Let h.t/ 2 R

3, Q.t/ 2 M3�3.R/ and !.t/ 2 R
3 denote the position of the center

of mass, the orthogonal matrix giving the orientation of the solid and the angular
velocity of the rigid body satisfying (1.96) and (1.97). Let m denote the mass of the
rigid body and J.t/ 2 M3�3.R/ its tensor of inertia at time t given by (1.105). The
system modelling the motion of rigid body in a viscous compressible fluid can be
written as

@t� C div.�u/ D 0; t 2 .0;T/; x 2 �F; .t/

�.@tu C .u � r/u/� div �.u; p/ D 0; t 2 .0;T/; x 2 �F; .t/

u.t; x/ D Ph.t/C !.t/ � .x � a.t//; t 2 .0;T/; x 2 @�S.t/;

mRh D �
Z

@�S.t/
�.u; p/n d�; t 2 .0;T/ (1.110)

J P! D .J!/ � ! �
Z

@�S.t/
.x � h.t// � �.u; p/n d�

u.t; x/ D 0; t 2 .0;T/; x 2 @�;
�.0/ D �0; u.0/ D u0; in �F.0/;

h.0/ D 0; Ph.0/ D g0; !.0/ D !0;

where

�.u; p/ D 2�Du C .˛div u � p/I3; Du D 1

2
.ru C ruT/

� > 0 and ˛ C 2

3
� > 0; p D �� ; � > 1:

Now we rewrite the above system in fixed domain. Here we use Lagrangian
change of variable as it is well suited for the compressible fluids. We consider the
characteristics X associated to the velocity fluid u, that is the solution of the Cauchy
problem

(
@tX.t; y/ D u.t;X.t; y// .t > 0/;

X.0; y/ D y 2 �: (1.111)
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Assume that X.t; �/ is a C1-diffeomorphism from�F.0/ onto�F.t/ for all t 2 .0;T/
(see Lemma 1.60). For each t 2 .0;T/, we denote by Y.t; �/ D ŒX.t; �/��1 the inverse
of X.t; �/. We consider the following change of variables

Q�.t; y/ D �.t;X.t; y//; Qu.t; y/ D Q�1.t/u.t;X.t; y//; (1.112)

Qg.t/ D Q�1.t/Ph.t/; Q!.t/ D Q�1.t/!.t/; (1.113)

for .t; y/ 2 .0;T/ ��F.0/. In particular,

�.t; x/ D Q�.t;Y.t; x//; u.t; x/ D Q.t/Qu.t;Y.t; x//; (1.114)

for .t; x/ 2 .0;T/ ��F.t/. The system satisfied by . Q�; Qu; Q̀; Q!/ reads as follows

@t Q�C �0div Qu D F1; in .0;T/ ��F.0/;

@t Qu � �

�0
�Qu � ˛ C �

�0
r.div Qu/ D F2;1 C F2;2 in .0;T/ ��F.0/;

Qu D 0 on .0;T/ � @�; Qu D g C ! � y on .0;T/ � @�S.0/; (1.115)

m
d

dt
Qg D �

Z

�S.0/

�
�r Qu C �r Qu> C ˛div QuI� n d� C G1;

J.0/
d

dt
Q! D �

Z

�S.0/

y � ��r Qu C �r Qu> C ˛div QuI� n C G2;

Q�.0/ D �0; Qu.0/ D u0; in �F.0/;

Qg.0/ D g0; Q!0 D !0;

where

Q.t/ D I C
Z t

0

Q.s/. Q!.s/ � I/; QT D Q�1 (1.116)

X.t; y/ D y C
Z t

0

Q.s/Qu.s/ ds; and JY D J�1
X ; (1.117)

F1. Q�; Qu; Qg; Q!/ D �. Q� � Q�0/divQu � Q�.Q � I/r Qu W J>
Y � Q�r Qu W .J>

Y � I/;

(1.118)

F2;1. Q�; Qu; Qg; Q!/ D � Q�
�0

Q0.t/Qu � Q� � �0

�0
Q.t/@t Qu � .Q.t/ � I/@t Qu � � Q���1

�0
J>
Y r Q�

� �

�0
.Q � I/�Qu;
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.F2;2/i. Q�; Qu; Qg; Q!/ D �

�0

3X

j;k;lD1
@yl.@yk.QQu/iŒ.JY/kj � ıkj�/.JY/lj

C �

�0

3X

k;lD1
.@2ylyk.QQu/i/ Œ.JY/lk � ılk�

C ˛ C �

�0

3X

j;k;lD1
@yl .@yk.QQu/j

�
.JY/kj/ � ıkj

�
/.JY/li

C ˛ C �

�0

3X

l;jD1
.@2ylyj.QQu/j/ Œ.JY/li � ıli�C .Q> � I/ W @yir Qu;

(1.119)

F3. Q�; Qu; Qg; Q!/ D �m. Q! � Q̀/�
Z

�S.0/

Gn;

F4. Q�; Qu; Qg; Q!/ D J.0/ Q! � Q! �
Z

�S.0/

y � Gn;

G. Q�; Qu; Qg; Q!/ D .Q> � I/
�
�
�
Qr QuJY C J>

Y r Qu>Q>�C �
˛J>

Y W Qr Qu> � Qp� I� cofJX

C �
�
�
Qr QuJY C J>

Y r Qu>Q>�C �
˛J>

Y W Qr Qu> � Qp� I� .cofJX � I/

C �.Q � I/r QuJY C �r Qu.JY � I/C �.J>
Y � I/r Qu>Q> C �r Qu>.Q> � I/

C .˛.Q � I/r Qu W J>
Y /I C .˛r Qu W .J>

Y � I//I � Re�� I (1.120)

1.3 Short Introduction to R-Sectorial Operators

Let X be a Banach space and A be a closed, densely defined linear unbounded
operator in X with domain D.A/. We shall consider the abstract Cauchy problem

Pu.t/ D Au.t/C f .t/; t > 0; u.0/ D 0; (1.121)

where f W RC 7! X is a given function.

Definition 1.11 (Maximal Lp-Regularity) Let 1 < p < 1. The problem (1.121)
has maximal Lp-regularity on Œ0;T/, 0 < T 6 1, if for every f 2 Lp.Œ0;T/IX/,
there exists a unique u satisfying the above equation almost everywhere and such
that Pu 2 Lp.Œ0;T/IX/. In this case Au 2 Lp.Œ0;T/IX/ as well.

Remark 1.12 In the above definition we do not assume that u 2 Lp.0;TIX/. In fact,
if T < 1 or 0 2 �.A/, where �.A/ is the resolvent set of A, Pu 2 Lp.0;TIX/ can be
replaced by u 2 W1;p.0;TIX/ [13].
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Our aim is to give sufficient condition on the operator A so that the prob-
lem (1.121) has a maximal Lp-regularity. It is well known that, if (1.121) has a
maximal Lp-regularity, then A generates an analytic semigroup in X (see [9] and
[13]). On the other hand, if X is a Hilbert space, the above condition is enough
to obtain maximal Lp-regularity, i.e., if A generates an analytic semigroup in X,
then (1.121) has a maximal Lp-regularity (see de Simon [11] for more details). In
fact, De Simon used Plancherel’s theorem which is valid only in the Hilbert space
setting and cannot be generalized. Since then, there has been considerable work
in the general Banach space framework [10, 14, 20, 23, 24, 29]. We are interested
in the recent result obtained by Weis [37]. He obtained a necessary and sufficient
condition for maximal Lp-regularity when X is a UMD Banach space in terms of
R-boundedness of the operator A (for the precise definition of UMD spaces and
R-boundedness we refer to the next section). This result is very useful in order to
obtain maximal Lp � Lq regularity of linearized fluid structure interaction problem.

In this chapter we recall some basic definitions and results on R-sectorial
operators and we prove a lemma, which seems to be new, on the R sectoriality
of a class of matrices of linear operators.

1.3.1 Basic Definitions

In this section we recall some basic definitions and results concerning maximal
regularity and R-boundedness in Banach spaces. For detailed information on these
subjects we refer to [8, 12, 37] and references therein.

Definition 1.13 Let X be a Banach space. The Hilbert transform of a function f 2
S.RIX/, the Schwartz space of X-valued rapidly decreasing functions, is defined by

Hf .t/ D 1

�
lim
� 7!0

Z

jsj>�
f .t � s/

s
ds; t 2 R:

A Banach space X is said to be of class HT , if the Hilbert transform is bounded on
Lp.RIX/ for some (thus all) 1 < p < 1.

These spaces are also called UMD Banach spaces, where UMD stands for
unconditional martingale differences. Hilbert spaces, all closed subspaces and
quotient spaces of Lq.�/ with 1 < q < 1 are examples of UMD spaces. In fact,
X 2 HT implies that X is reflexive (see [1]). We next introduce the notion of R-
boundedness of family of operators and R-sectoriality of a densely defined linear
operator.

Definition 1.14 (R-Bounded Family of Operators) Let X and Y be Banach
spaces. A family of operators T � L.X;Y/ is called R-bounded on L.X;Y/, if
there exist constants C > 0 and p 2 Œ1;1/ such that for every n 2 N, fTjgnjD1 � T ,
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fxjgnjD1 � X and for all sequences frj.�/gnjD1 of independent, symmetric, f�1; 1g
valued random variables on Œ0; 1�, we have

������

nX

jD1
rj.�/Tjxj

������
Lp.Œ0;1�IY/

6 C

������

nX

jD1
rj.�/xj

������
Lp.Œ0;1�IX/

:

The smallest such C is called R-bound of T on L.X;Y/ and denoted by RL.X;Y/.T /.

Remark 1.15

(1) If T � L.X;Y/ is R-bounded then it is uniformly bounded with

sup fkTk j T 2 T g 6 RL.X;Y/.T /:

(2) If X D Y D Lq.�/ for some open set � � R
N , then T � L.X;Y/ is R-

bounded if and only if there exists a constant C > 0 such that for every n 2 N,
fTjgnjD1 � T , fxjgnjD1 � Lq.�/ the following estimate holds:

�������

0

@
nX

jD1

ˇ̌
Tjxj

ˇ̌2
1

A
1=2
�������
Lq.�/

6 C

�������

0

@
nX

jD1

ˇ̌
xj
ˇ̌2
1

A
1=2
�������
Lq.�/

:

(3) If X and Y are Hilbert spaces every set T bounded in L.X;Y/ is R-bounded.

For 0 < " 6 �=2, and � > 0 we define the sector †";� in the complex plane by

†";� D f� 2 C n f0g j jarg�j 6 � � "; j�j > �g: (1.122)

When � D 0, †";� will be denoted by †".

Definition 1.16 (R-Sectorial Operator) Let A be a densely defined closed linear
operator on a Banach space X with domain D.A/. Then A is R-sectorial operator
in X if †";� contained in the resolvent set �.A/ for some " 2 .0; �=2/; � > 0 and˚
�.�I � A/�1 j � 2 †";�

�
is R bounded on L.X/ with R-bound M. In this case, the

set
˚
A.�I � A/�1 j � 2 †";�

�
is R-bounded with R-bound at most 1C M.

We now state several useful propositions concerning R-boundedness.

Proposition 1.17

(1) Let X and Y be Banach spaces and let T and S be R-bounded families on
L.X;Y/. Then T C S is alsoR-bounded on L.X;Y/, and

RL.X;Y/.T C S/ 6 RL.X;Y/.T /C RL.X;Y/.S/:
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(2) Let X;Y and Z be Banach spaces and let T and S be R-bounded families on
L.X;Y/ and L.Y;Z/ respectively. Then ST isR-bounded on L.X;Z/, and

RL.X;Z/.ST / 6 RL.X;Y/.T /RL.Y;Z/.S/:

(3) Let q 2 .1;1/, let � be a bounded domain in R
n and let ƒ be a domain in

C. Let m.�/ be a bounded function defined on ƒ and let Mm.�/ 2 L.Lq.�//,
defined by Mm.�/f D m.�/f , for any f 2 Lq.�/. Then fMm.�/ j � 2 ƒg is
R-bounded and

RL.Lq.�//fMm.�/ j � 2 ƒg 6 Cn;q;�kmkL1.ƒ/: (1.123)

Proof The proof of first two statement follows easily from the definition of R-
boundedness. The proof of Proposition 1.17 (3) follows from Remark 1.15 (2). ut

1.3.2 Weis’ Theorem

In this section we will discuss Weis’ theorem concerning maximal Lp-regularity of
the Cauchy problem (1.121). First, we will prove a proposition due to Kunstmann
and Weis [22], which states that R-sectoriality is preserved by A small perturbations.

Proposition 1.18 Let A be a R-sectorial in a Banach space X with domain D.A/.
Assume that †"0;�0 � �.A/, for some "0 2 .0; �=2/; �0 > 0 and

RL.X/
� ˚

A.�I � A/�1 j � 2 †"0;�0
� �

6 a < 1: (1.124)

Let B be a linear operator such that D.A/ � D.B/ and

kBxk 6 ı1kAxk C ı2kxk; (1.125)

with ı1 < 1=a. Then there exists �1 > �0 such that

RL.X/
� ˚
�.�I � .A C B//�1 j � 2 †"0;�1

� �
< 1: (1.126)

Proof From the definition of R-boundedness, we have

RL.X/
˚
B.�I � A/�1

�
6 ı1RL.X/

˚
A.�I � A/�1

�C ı2RL.X/
˚
.�I � A/�1

�

6
�
ı1a C ı2a

j�j
	
:
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Thus there exists �1 > �0 such that

�
ı1a C ı2a

j�j
	
6 ı < 1 for � 2 †"0;�1 and hence

I � B.�I � A/�1 is invertible for � 2 †"0;�1 . Now

.�I � .A C B/�1 D .�I � A/�1
�
I � B.�I � A/�1

��1

D .�I � A/�1
1X

jD0

�
B.�I � A/�1

�j
:

By induction

R
�
�.�I � A/�1

�
B.�I � A/�1

�j 6 R
�
�.�I � A/�1

�
ıj

Therefore

RL.X/
� ˚
�.�I � .A C B//�1 j � 2 †"0;�1

� �
6 a

1 � ı
:

ut
The Theorem of Weis is the following:

Theorem 1.19 Let X be a Banach space of class HT , 1 < p < 1 and let A be a
closed, densely defined unbounded operator with domain D.A/. Let A generates a
bounded analytic semigroup on X, i.e.,

k�.�I � A/�1k 6 C; for � > 0:

Then the following statements are equivalent.

(i) The Cauchy problem (1.121) has maximal Lp-regularity.
(ii) The set

˚
�.� � A/�1 j � 2 †"

�
isR bounded for some " 2 .0; �=2/.

1.3.3 Abstract Framework Corresponding to Linear
Fluid-Solid Interaction Problems

In this section, we introduce an abstract framework which will correspond to the
linear fluid-solid interactions problems. The main idea in elaborating this approach
is that linearized fluid-solid interaction problems can be viewed as boundary
controlled fluid systems with dynamic boundary feedback. To this aim we first
recall, following [34, Chap. 10], some background on boundary control systems.
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Systems described by linear partial differential equations with nonhomogeneous
boundary conditions can be written in the form:

Pz.t/ D Lz.t/; Gz.t/ D u.t/: (1.127)

Often L is a differential operator and G is a boundary trace operator. In the sequel,
we assume that U;Z and X are reflexive Banach spaces such that

Z � X ;

with continuous embedding. We shall call U the input space, Z the solution space
and X the state space.

Definition 1.20 A boundary control system on U;Z and X is a pair of operators
.L;G/, where

L 2 L.Z;X/; G 2 L.Z;U/;

if there exists a ˇ 2 C such that the following properties hold:

(i) G is onto,
(ii) KerG is dense in X,

(iii) ˇI � L restricted to KerG is onto,
(iv) Ker.ˇI � L/ \ KerG D f0g.

With the assumptions of the last definition, we introduce the closed subspace X1
of Z and the operator A by

X1 D KerG ; A D LjX1 : (1.128)

Obviously, X1 is a closed subspace of Z and A 2 L.X1;X/. Condition (iii) means
that ˇI � A is onto. Condition (iv) means that Ker.ˇI � A/ D f0g. Thus, (iii) and
(iv) together are equivalent to the fact that ˇ 2 �.A/, where �.A/ is the resolvent set
of A, so that

.ˇI � A/�1 2 L.X/:

In fact, .ˇI � A/�1 2 L.X;X1/, so that the norm on X1 is equivalent to the norm

kzk1 D k.ˇI � A/zkX :

It is easy to see that k � kX1 on X1 is equivalent to the graph norm of A. Therefore, by
closed graph theorem, .X1; k � k1/ is complete. Also, for any ˇ0 2 �.A/, we have an
equivalent norm on X1. We define the space X�1 as the completion of X with respect
to the norm

kzk�1 D k.ˇI � A/�1zk:
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The space X�1 does not depend on the specific value of ˇ. We have X1 � X � X1,
with continuous and dense embedding. Then A has an extension, also denoted by A,
such that A 2 L.X;X�1/.

Let X0 denotes the dual of X. Let A� W D.A/� 7! X0 denotes the adjoint of the
operator .A;D.A//. We endow D.A�/ with the graph norm

kz�k1;� D k.ˇI � A�/z�kX0 ;

where ˇ 2 �.A/ D �.A�/. The following theorem holds (see [16, Chap. 2, Sect. 5]).

Theorem 1.21 Let X be a reflexive Banach space. Then X�1 is isomorphic to
D.A�/0.

Also, if X is reflexive and if .S.t//t>0 is a C0-semigroup on X with generator
A, then the adjoint semigroup .S.t/�/t>0 of .S.t//t>0 is a C0-semigroup on X0 with
generator A� ([28, Corollary 10.6]).

Proposition 1.22 Let .L;G/ be a boundary control system on U;Z and X. Let A and
X�1 be as introduced earlier. Then there exists a unique operator B 2 L.U;X�1/
such that

L D A C BG ; (1.129)

where A is regarded as an operator from X to X�1. For every ˇ 2 �.A/ we have that
.ˇI � A/�1B 2 L.U;Z/ and

G.ˇI � A/�1B D I ; (1.130)

so that in particular, B is bounded from below.

Proof Since G is onto, it has at least one bounded right inverse H 2 L.U;Z/. We
put

B D .L � A/H: (1.131)

From G.I � HG/ D 0 we see that the range of I � HG is in KerG D X1, so that
.L � A/.I � HG/ D 0. Thus we get that BG D .L � A/HG D L � A, as required
in (1.129). It is easy to see that B is unique. To prove (1.130), first we rewrite (1.131)
in the form

.ˇI � A/H � .ˇI � L/H D B:

If we apply .ˇI � A/�1 to both sides, we get

H � .ˇI � A/�1.ˇI � L/H D .ˇI � A/�1B;
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which shows that indeed .ˇI � A/�1B 2 L.U;Z/. Therefore, we can apply G to
both sides above and then the second term on the left-hand side disappears, due to
X1 D KerG. Since GH D I, we obtain (1.130). ut

When L;G;A and B are as in the above proposition, we say that A is the generator
of the boundary control system .L;G/ and B is the control operator of .L;G/.

Remark 1.23 The following fact is an easy consequence of Proposition 1.22 (we
use the notation of the proposition): For every v 2 U and every ˇ 2 �.A/, the vector
z D .ˇI � A/�1Bv is the unique solution of the “abstract elliptic problem”

Lz D ˇz ; Gz D v :

For many L and G, this problem has a well known solution, and it is easier to
describe z 2 X than to describe Bv 2 X�1, since X is usually a more “natural”
space than X�1 (see the other sections of this chapter).

We are now in a position to write a class of linearized fluid-structure interaction
problems as boundary control systems with dynamic feedback.

Let Z;X;U be reflexive Banach spaces of class HT . Let .L;G/ be a boundary
control system on U;Z and X. Let X1 and X�1 are defined as before. Let A D LjX1
generates a C0 semigroup in X. Let K be a densely defined, closed unbounded
operator in U with domain D.K/ and K generates a C0 semigroup in U. Finally,
let C 2 L.Z;U/. We consider the following abstract system

Pz D Lz; Gz D u;

Pu D Ku C Cz; (1.132)

z.0/ D z0; u.0/ D u0:

Let us introduce the operator .A;D.A// in X � U by

D.A/ D

�

z
u

�
2 Z � D.K/ j Gz D u

�
(1.133)

and

A
�
z
u

�
D
�

Lz
Ku C Cz

�
: (1.134)

Lemma 1.24 The map

�
z
u

�
7! kzkZ C kukD.K/:

is a norm on D.A/ equivalent to the graph norm.
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Proof For .z; u/ 2 D.A/, and ˇ 2 �.A/, we note that

kzkZ C kukD.K/
6 kz � .ˇI � A/�1BukX1 C k.ˇI � A/�1BukZ C kukU C kKukU
6 c.k.ˇI � A/z � BukX C kukU C kKukU/

6 c.kzkX C kAz C BukX C kukU C kKukU// 6 c

����
�
z
u

�����
D.A/

;

where c is a strictly positive constant, possibly depending on ˇ. Since the reverse
inequality is an obvious one, we obtain the claimed norm equivalence. ut

The theorem below shows that if the operator A from (1.128) is R-sectorial and
if the operator C from the second equation in (1.132) is “small” with respect to
A then the semigroup generator describing the system (1.132) is also R-sectorial.
In the applications we are interested in the first equation in (1.132) describes the
fluid, with some boundary input. The second equation describes the motion of the
structure. Our result below can be interpreted as asserting that, in some sense, the
fluid structure system can be seen as a perturbation of the equations describing the
fluid alone.

Theorem 1.25 Let Z;X;U be reflexive Banach spaces of class HT . Let .L;G/ be
a boundary control system on U;Z and X. Assume that A D LjX1 and K are R-
sectorial operators in X and U, respectively. More precisely, assume that there exists
"1; "2 2 .0; �=2/ and �1; �2 > 0 such that

RL.X/
˚
�.�I �A/�1 j � 2 †"1;�1

�
< 1; RL.U/

˚
�.�I �K/�1 j � 2 †"2;�2

�
< 1:

(1.135)

We also suppose that C 2 L.Z;U/ satisfies the following condition: for every ı > 0,
there exists C.ı/ > 0 such that

kCzkU 6 ıkzkZ C C.ı/kzkX .z 2 Z/: (1.136)

Then the operator .A;D.A// defined as in (1.134) isR-sectorial in X�U, i.e., here
exists "0 2 .0; �=2/ and �0 > 0 such that

RL.X�U/
˚
�.�I � A/�1 j � 2 †"0;�0

�
< 1: (1.137)

Proof To prove this theorem we write A in the form A D A1 C B, where

A1

�
z
u

	
D
�
Lz
Ku

	
; B

�
z
u

	
D
�
0

Cz

	
:
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We first show that .A1;D.A// is a R-sectorial operator in X � U. Observe that

.� � A1/

�
z
u

	
D
�
x
v

	

if and only if, �z � Az � Bu D x and �u � Ku D v. Thus, for � 2 †"1;�1 \†"2;�2 ,

u D .� � K/�1v and z D .� � A/�1.x C B.� � K/�1v/:

Fix ˇ 2 �.A/ and set D D .ˇI � A/�1B. Thus D 2 L.U;Z/. Therefore, for every
v 2 U,

.�I � A/�1Bv D .�I � A/�1.ˇI � A/Dv

D ��.�I � A/�1Dv C ˇ.�I � A/�1Dv C Dv:

This yields

�.�I � A1/
�1

D
�
�.�I � A/�1 .ˇ � �/.�I � A/�1D�.�I � K/�1 C D�.�I � K/�1

0 .�I � K/�1
	

Using Proposition 1.17 and (1.135), we can easily verify that, there exists "3 2
.0; �=2/ and �3 > 0, such that

RL.X�U/
˚
�.�I � A1/

�1 j � 2 †"3;�3
�
< 1;

RL.X�U/
˚
A1.�I � A1/

�1 j � 2 †"3;�3
�
< 1:

Now, Lemma 1.24 and (1.136) gives, for any ı > 0

����B
�
z
u

	����
X�U

6 Mı

����A1

�
z
u

	����
X�U

C C.ı/

����
�
z
u

	����
X�U

: (1.138)

Therefore, by Proposition 1.18, A is a R-sectorial operator in X � U and (1.137)
holds. ut

1.3.4 Bibliographical Notes

The importance of the maximal regularity property of linearized Navier-Stokes
type systems in order to obtain existence and uniqueness for the original nonlinear
problems is known for a long time (see Clément and Prüss [7] for an early
reference). As previously mentioned, in a Hilbert space setting, this property holds
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if A generates an analytic semigroup, see [11]. In a Banach space context, the
analyticity of the semigroup is no longer sufficient to guarantee the maximal
regularity property, see Kalton and Lancien [21]. In our notes we choose to remind
the important necessary and sufficient condition for maximal regularity on HT
spaces due to Weis [37]. In our approach, an important role in passing from the
maximal, regularity of linearized fluid problems to maximal regularity of associated
fluid-structure systems is played by perturbations methods. The main results we
have presented in this direction are Proposition 1.18, which is given in Kunstmann
and Weis [22] and Theorem 1.25, which seems to be new.

1.4 Existence and Uniqueness Results

1.4.1 Some Background

In this section we will prove local in time existence and uniqueness results for the
systems introduced in Sects. 1.1.2 and 1.2. The proofs of the local in time existence
and uniqueness results are based on Banach fixed point theorem which is applied to
the systems written in fixed spatial domain. In order to apply the Banach fixed point
theorem, we need to study the regularity of linear systems with nonhomogeneous
source term and non zero initial data on a compact time interval. In fact, to obtain
local in time existence and uniqueness of solution, it is important to obtain estimate
of solutions in terms of source term and initial data with precise dependence of the
continuity constant with respect to time. To this aim, we first recall some basic facts
about real interpolation spaces. The proofs can be found in [4, 18, 33].

Let X0 and X1 are two complex Banach spaces. The pair .X0;X1/ is called
interpolation couple if there is a linear, complex Hausdorff space Y such that
X0;X1 ,! Y with continuous embeddings.

Lemma 1.26 Let .X0;X1/ be an interpolation couple. Then X0 \ X1 with the norm

kxkX0\X1 D max .kxkX0 ; kxkX1 / ;

and X0 C X1 with the norm

kxkX0CX1 D inf
xDx0Cx1
xj2Xj

.kxkX0 C kxkX1 / ;

are Banach spaces.
We now introduce the real interpolation space .X0;X1/�;q via K method. Let

.X0;X1/ be an interpolation couple. Fot 0 < t < 1, x 2 X0 C X1,

K.t; x/ D K.t; x;X0;X1/ D inf
xDx0Cx1
xj2Xj

.kxkX0 C tkxkX1 / ;

is an equivalent norm in X0 C X1.
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Definition 1.27 Let .X0;X1/ be an interpolation couple. Let 0 < � < 1 and 1 <
q < 1. Then

.X0;X1/�;q D
(
x 2 X0 C X1 j kxk.X0;X1/�;q WD

�Z 1

0

.t��K.t; x//q
dt

t

	1=q
< 1

)
:

It is easy to verify that k � k.X0;X1/�;q is a norm and that .X0;X1/�;q is a linear
subspace of X0 C X1. We recall some important properties of the space .X0;X1/�;q

Proposition 1.28

(1) It holds that

.X0;X1/�;q D .X1;X0/1��;q:

(2) There exists a constant C�;q, 0 < � < 1, 1 < q < 1 such that for all
x 2 X0 \ X1

kxk.X0;X1/�;q 6 C�;qkxk1��X0 kxk�X1 :

Now we introduce another definition of interpolation spaces.

Definition 1.29 Let .X0;X1/ be an interpolation couple, ˛ 2 R and 1 < q < 1.
Then

W.q; ˛;X0;X1/ D
n
u.t/ j u.t/ locally integrable functions defined on .0;1/ with

values in X0 C X1 such that t˛u.t/ 2 Lq.0;1;X0/;

t˛ Pu 2 Lq.0;1;X1/
o
;

where the derivative Pu D du

dt
is the distributional derivative of u.

The space W.q; ˛;X0;X1/ endowed with the norm

kukW.q;˛;X0;X1/ WD kt˛ukLq.0;1IX0/ C kt˛ PukLq.0;1IX1/

is a Banach space. We define the space of traces as follows

Definition 1.30 Let .X0;X1/ be an interpolation couple. Let ˛ 2 R and 1 < q < 1
are such that 0 < ˛ C q�1 < 1. Then we define

T.q; ˛;X0;X1/ WD fx 2 X0 C X1 j there exists u 2 W.q; ˛;X0;X1/ with u.0/ D xg :

The space T.q; ˛;X0;X1/ endowed with the norm

kxkT.q;˛;X0;X1/ WD inf
˚kukW.q;˛;X0;X1/ j u.0/ D x

�
;
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is a Banach space. The following theorem shows the connection between the
interpolation spaces .X0;X1/�;q and T.q; ˛;X0;X1/. This theorem will help us to
determine the required space of initial conditions in order to obtain maximal Lp �Lq

regularity for linear systems.

Theorem 1.31 Let .X0;X1/ be an interpolation couple. Let ˛ 2 R and 1 < q < 1
are such that 0 < ˛ C q�1 < 1. Then we have

T.q; ˛;X0;X1/ Š .X0;X1/�;q: (1.139)

As discussed earlier in this chapter, we are now going to study the regularity
of linear systems with nonhomogeneous source term and non zero initial data. Let
0 < T < 1. We consider the initial value problem

Pu.t/ D Au.t/C f .t/; t 2 Œ0;T�; u.0/ D u0: (1.140)

As a consequence of Theorem 1.19, we have the following result:

Theorem 1.32 Let X be a Banach space of class HT , 1 < p < 1, and let A be
a closed, densely defined unbounded operator in X with domain D.A/. Let A be an
R-sectorial operator in X, i.e., there exists "0 2 .0; �=2/ and �0 > 0 such that

RL.X/
˚
�.� � A/�1 j � 2 †"0;�0

�
< 1: (1.141)

Then for every u0 2 .X;D.A//1�1=p;p and for every f 2 Lp.0;TIX/, (1.140) admits a
unique solution in Lp.0;TID.A//\ W1;p.0;TIX/. Moreover, there exists a constant
C independent of T such that the following estimate holds

kukLp.0;TID.A// C kukW1;p.0;TIX/
6 C.1C 2�0/e

2�0T
�ku0k.X;D.A//1�1=p;p C k fkLp.0;TIX/

�
: (1.142)

Proof Let us set

fT D
(
f if 0 6 t 6 T;

0 if t > T;

and

A�0 D A � 2�0I; f�0 .t/ D e�2�0tfT : (1.143)

Therefore, obviously we have

D.A�0/ D D.A/; RL.X/
˚
�.�I � A�0/

�1 j � 2 †"0
�
< 1



1 Maximal Regularity of Systems Modelling FSI 45

and f�0 belongs to Lp.0;1IX/. Let us consider the problem

Pu�0.t/ D A�0u�0.t/C f�0 .t/; t > 0; u�0.0/ D u0: (1.144)

According to Theorem 1.31,

.X;D.A//1�1=p;p Š ˚
u.0/ j u 2 Lp.0;1ID.A//\ W1;p.0;1IX//� :

Therefore for every u0 2 .X;D.A//1�1=p;p, there exists u1 2 Lp.0;1ID.A// \
W1;p.0;1IX/ such that u1.0/ D u0 and Pu1 � A�0u1 belongs to Lp.0;1IX/. By
Theorem 1.19 and using the fact that 0 2 �.A�0/, we obtain existence and uniqueness
strong solution u2 2 Lp.0;1ID.A//\ W1;p.0;1IX/ to

Pu2 D A�0u2 C . f � Pu1 C A�0u1/; u2.0/ D 0:

Hence, u�0 D u1 C u2 belongs to Lp.0;1ID.A// \ W1;p.0;1IX/ and u�0
solves (1.144). By closed graph theorem, there exists a constant C > 0 such that

ku�0kLp.0;1ID.A// C ku�0kW1;p.0;1IX/ 6 C.k f�0kLp.0;1IX/ C ku0k.X;D.A//1�1=p;p/:
(1.145)

Define

u.t/ D e2�0tu�0.t/; 0 6 t 6 T:

Then u belongs to Lp.0;TID.A// \ W1;p.0;TIX/ and u solves (1.140). Moreover,

kukLp.0;TID.A// C kukW1;p.0;TIX/

6 .1C 2�0/e
2�0T.ku�0kLp.0;TID.A// C ku�0kW1;p.0;TIX//

6 .1C 2�0/e
2�0T.ku�0kLp.0;1ID.A// C ku�0kW1;p.0;1IX//:

Finally, by using the above estimate and (1.145), we obtain (1.142). ut
For a smooth bounded domain � � R

n, the Sobolev spaces of order s > 0 are
denoted by Ws;q.�/. Let m 2 N. For every 0 < s < m; 1 6 p < 1; 1 6 q < 1, we
define Besov spaces by real interpolation of Sobolev spaces

Bs
q;p.�/ D .Lq.�/;Wm;q.�//s=m;p: (1.146)

In particular if p D q D 2, then Bs
2;2.�/ D Ws;2.�/. We introduce the space

W2;1
q;p ..0;T/ ��/ WD Lp.0;TIW2;q.�// \ W1;p.0;TILq.�//; (1.147)



46 D. Maity and M. Tucsnak

and

kukW2;1
q;p ..0;T/��/ WD kukLp.0;TIW2;q.�// C kukW1;p.0;TILq.�//: (1.148)

We now state an important embedding theorem

Theorem 1.33 ([1, Theorem 4.10.2]) Let X0 and X1 are two Banach spaces such
that X1 is densely embedded in X0. Let 0 < T 6 1 and fix p 2 .1;1/. Then

Lp.Œ0;T/IX1/\ W1;p.Œ0;T/IX0/ ,! C.Œ0;T/I .X0;X1/1�1=p;p/:

As a consequence of the above theorem, we obtain the following proposition

Proposition 1.34 ([31, Proposition 4.2]) Let 1 < p; q < 1 and T be any positive
number. Let � be a smooth domain in Rn. Then for any u 2 W2;1

q;p ..0;T/ ��/,

sup
t2.0;T/

ku.t/k
B
2.1�1=p/
q;p .�/

6 C
�
ku.0/k

B
2.1�1=p/
q;p .�/

C kukW2;1
q;p ..0;T/��/


; (1.149)

where the constant C is independent of time T. In particular, if p D q D 2, then for
any u 2 L2.0;TIW2;2.�// \ W1;2.0;TIL2.�//

sup
t2.0;T/

ku.t/kW1;2.�/ 6 C
�ku.0/kW1;2.�/ C kukL2.0;TIW2;2.�// C kukW1;2.0;TIL2.�//

�
;

(1.150)

where the constant C is independent of T.

For any 1 < p < 1, p0 denotes the conjugate of p, i.e.,
1

p
C 1

p0 D 1. We recall

some basic embedding estimates

k fkLp.0;T/ 6 T1=p�1=rk fkLr.0;T/; for all f 2 Lr.0;T/; r > p

k fkL1.0;T/ 6 T1=p
0k fkW1;p.0;T/; for all f 2 W1;p.0;T/; f .0/ D 0: (1.151)

Let �.t/ be a time dependent domain. We define Sobolev spaces in the time
dependent domain�.t/ as follows.

Definition 1.35 We say that u 2 Ws1;p.0;TIWs2;q.�.�/// if for almost every t 2
.0;T/, u.t/ belongs to Ws2;q.�.t// and t 7! ku.t; �/kWs2;q.�.t// is in Ws1;p.0;T/.
Other type of Sobolev spaces in the time dependent domain �.t/ can be defined
similarly. Finally we recall the following useful lemma

Lemma 1.36 ([32, Chap. 3, Lemma 2.1]) Let Xi, i D 1; 2; 3 be Banach spaces
with continuous inclusions

X1 ,! X2 ,! X3:
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Assume that X1 is compactly embedded in X2. Then for any given � > 0, there exists
C.�/ > 0 such that for all x 2 X1

kxkX2 6 �kxkX1 C C.�/kxkX3 :

1.4.2 Back to the Toy Problem

In this section we consider again the toy problem (1.9), this time in a Lp � Lq

framework. The main result asserts the local in time existence and uniqueness of
solutions for system (1.9) in this context. Let us set �h.t/ D .�1; 1/ n fh.t/g and
�h0 D .�1; 1/ n fh0g. For every 1 < p < 1 and 1 < q < 1 the set Ip;q is defined
by

Ip;q D ˚
.z0; h0; g0/ j z0 2 B2.1�1=p/q;p .�h0 /; h0 2 .�1; 1/; g0 2 R

�
(1.152)

and

k.z0; h0; g0/kIp;q WD kz0kB2.1�1=p/q;p .�h0 /
C jh0j C jg0j:

For every p; q 2 .1;1/ satisfying the condition
1

p
C 1

2q
¤ 1, we introduce the

space of initial data

Icc
p;q D

(
Ip;q if 1

p C 1
2q > 1;˚

.z0; h0; g0/ 2 Ip;q j z0.h0/ D g0; z0.�1/ D z0.1/ D 0
�

if 1
p C 1

2q < 1:

(1.153)

The main result of this section states as follows.

Theorem 1.37 Let 1 < p; q < 1 satisfying the condition
1

p
C 1

2q
¤ 1. Assume

that .v0; h0; g0/ belongs to Icc
p;q. Then there exists a T > 0 such that the system (1.9)

admits a unique strong solution

v 2 Lp.0;TIW2;q.�h.�///\ W1;p.0;TILq.�h.�///\ C.Œ0;T�IB2.1�1=p/q;p .�h.�///;
h 2 W2;p.0;T/:

Moreover, h.t/ 2 .�1; 1/ for all t 2 Œ0;T�.
In view of Proposition 1.2, it is enough to show local in time existence and

uniqueness of solutions for system (1.12) which holds in a fixed spatial domain.
Therefore, in this section, we prove the following theorem
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Theorem 1.38 Let 1 < p; q < 1 satisfying the condition
1

p
C 1

2q
¤ 1. Assume

that .z0; h0; g0/ belongs to Icc
p;q. Then there exists a T > 0 such that the system (1.12)

admits a unique strong solution

z 2 Lp.0;TIW2;q.�h0 //\ W1;p.0;TILq.�h0 // \ C.Œ0;T�IB2.1�1=p/q;p .�h0 //;

h 2 W2;p.0;T/:

Moreover, h.t/ 2 .�1; 1/ for all t 2 Œ0;T�.
In order to prove the above theorem, we first rewrite (1.12) as follows

Pz � zxx D F1.z; g; h/; t 2 .0;T/; x 2 .�1; 1/ n h0;

z.t;�1/ D z.t; 1/ D 0; z.t; h0/ D g.t/; t 2 .0;T/ (1.154)

Pg D Œzx� .t; h0/C F2.z; g; h/; t 2 .0;T/
z.0; x/ D z0.x/ x 2 .�1; 1/; h.0/ D h0; g.0/ D g0:

where

h.t/ D h0 C
Z t

0

g.s/ ds;

F1.z; g; h/ D k.h � h0/

1 � kh

�
2C k.h � h0/

1 � kh

�
zxx C 1� kx

1 � kh
gzx � 1 � kh0

1 � kh
zzx;

F2.z; g; h/ D .h � h0/

�
kzx

1 � kh

�
.t; h0/: (1.155)

We consider the following linear system

Pz � zxx D f1; t 2 .0;T/; x 2 .�1; 1/ n h0;

z.t;�1/ D z.t; 1/ D 0; z.t; h0/ D g.t/; t 2 .0;T/ (1.156)

Pg D Œzx� .t; h0/C f2; t 2 .0;T/
z.0; x/ D z0.x/ x 2 .�1; 1/ n fh0g; g.0/ D g0:

We want to rewrite the above system as an evolution equation in an appropriate
Banach space. Let �h0 D .�1; 1/ n fh0g and q > 1. We introduce the following
spaces

Z D W2;q.�h0 / \ W1;q
0 .�1; 1/; X D Lq.�h0 /; U D R:

Let L 2 L.Z;X/, G 2 L.Z;U/ and C 2 L.Z;U/ are defined as follows

Lz D zxx; Gz D z.h0/; Cz D Œzx�.h0/ (1.157)
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Let us introduce the unbounded operator .A ;D.A/ in X � U by

D.A/ D f.z; g/ 2 X � U j Lz 2 X; Gz D gg (1.158)

and

A
�
z
g

	
D
�
Lz
Cz

	
(1.159)

Thus (1.156) can be written as

d

dt

�
z
g

	
D A

�
z
g

	
C
�
f1
f2

	
;

�
z.0/
g.0/

	
D
�
z0
g0

	
: (1.160)

Proposition 1.39 There exists " 2 .0; �=2/ and �0 > 0 such that

RL.X�U/
˚
�.� � A/�1 j � 2 †"0;�0

�
< 1: (1.161)

Proof Let us set X1 D KerG D fz 2 Z j z.h0/ D 0g, and A D LjX1 . Then, by Denk
et al. [12, Theorem 8.2], A is R-sectorial in X and there exists "0 and Q� > 0 such
that

RL.X/
˚
�.� � A/�1 j � 2 †"0;Q�

�
< 1: (1.162)

We also have, for s 2 .1=q; 1/

kCzkU 6 CkzxkWs;q.�h0 /
6 CkzkW1Cs.�h0 /

: (1.163)

Since W2;q.�h0 / ,!compact W1Cs;q.�h0 /, we obtain for any ı > 0, there exists

kzkW1Cs.�h0 /
6 ıkzkW2;q.�h0 /

C C.ı/kzkLq.�h0 /
;

holds for arbitrary small ı. This completes the proof of the proposition. ut
Combining the above proposition and Theorem 1.32, we obtain the following

result

Theorem 1.40 Let 1 < p; q < 1 and h0 2 .�1; 1/. Then for every .z0; g0/ 2
.Z;D.A//1�1=p;p and for every . f1; f2/ 2 Lp.0;TILq.�h0 // � Lp.0;T/, the sys-
tem (1.156) admits a unique strong solution satisfying

kzkLp.0;TIW2;q.�h0 //
C kzkW1;p.0;TILq.�h0 //

C kgkW1;p.0;T/

6 C.1C e2�0T/
�
k.z0; h0; g0/k.Z;D.A//1�1=p;p C k f1kLp.0;TILq.�h0 //

C k f2kLp.0;T/

:
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In order to prove our local in time existence and uniqueness result we combine
the above theorem with a fixed point procedure. In the above theorem, one requires
initial conditions from a real interpolation space between D.A/ and Z. In order to
identify this interpolation space, we prove the following lemma:

Lemma 1.41 Let p; q 2 .1;1/ satisfying the condition
1

p
C 1

2q
¤ 1. Let us assume

that h0 2 .�1; 1/ and .z0; g0/ belongs to .Z;D.A//1�1=p;p. Then .z0; h0; g0/ belongs
to Icc

p;q, where Icc
p;q, defined as in (1.153).

Proof For proof we refer to [33, Sect. 4.3.3] and [2, Theorem 2.2]. ut
Next for T > 0, we define

BT D
n
. f1; f2/ 2 Lp.0;TILq.�h0 // � Lp.0;T/ j

k f1kLp.0;TILq.�h0 //
C k f2kLp.0;T/ 6 1

o
: (1.164)

Proposition 1.42 Let p; q 2 .1;1/ satisfying the condition
1

p
C 1

2q
¤ 1. Assume

that .z0; h0; g0/ belongs to Icc
p;q. Let M > 0 be such that

k.z0; h0; g0/kIp;q 6 M: (1.165)

Then for every . f1; f2/ 2 BT, the system (1.156) admits a unique strong solution on
Œ0;T�. Moreover, there exists a constant C depending only on M such that

kzkLp.0;T
�

IW2;q.�h0 //
C kzkW1;p.0;T

�

ILq.�h0 //
C kgkW1;p.0;T

�

/ 6 C; (1.166)

kzkL1.0;T
�

ILq.�h0 //
6 C; kgkL1.0;T

�

/ 6 C; (1.167)

kzxkLp.0;T
�

IL1.�h0 //
6 CT.1�s/=2p� ; s 2 .1=q; 1/; (1.168)

holds for all T� 2 .0; 1�.
Proof The first estimate follows directly from Theorem 1.40. Notice that,

kz � z0kL1.0;TILq.�h0 //
6 T1=p

0kzkW1;p.0;TILq.�h0 //
;

which yields,

kzkL1.0;T
�

ILq.�h0 //
6 C; T� 2 .0; 1�: (1.169)

Similarly, we can show kgkL1.0;T
�

/ 6 C. Since 1 < q < 1, we have zx 2
Lp.0;T�;W1;q.�h0 // ,! Lp.0;T�;L1.�h0 //. Let us fix, s 2 .1=q; 1/. Therefore,
we have

kzx.t; �/kL1.�h0 /
6 Ckzx.t; �/kWs;q.�h0 /

6 Ckz.t; �/k.1Cs/=2
W2;q.�h0 /

kz.t; �/k.1�s/=2
Lq.�h0 /

:
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Thus, using (1.169) and Hölder’s inequality we get

kzxkLp.0;T
�

IL1.�h0 //
6 Ckzk.1�s/=2

L1.0;T
�

ILq.�h0 //

�Z T
�

0

kz.t; �/k.1Cs/p=2
W2;q.�h0 /

dt

	1=p

6 CT.1�s/=2p� :

ut
Lemma 1.43 Let p; q 2 .1;1/ satisfying the condition

1

p
C 1

2q
¤ 1. For

T� 2 .0; 1�, let BT
�

be the ball defined in (1.164). Let .z0; h0; g0/ and M as in
Proposition 1.42. Given . f1; f2/ 2 BT

�

, let .z; g/ be the solution of (1.156) on Œ0;T��
constructed in Proposition 1.42.

Then there exists a constant C > 0, depending only on M, such that

jh.t/� h.0/j 6 CT1=p
0

� ; t 2 Œ0;T��

kF1.z; g; h/kLp.0;T
�

ILq.�h0 //
6 C.T1=p

0

� C T.1�s/=2p
� /; s 2 .1=q; 1/ (1.170)

kF2.z; g; h/kLp.0;T
�

/ 6 CT1=p
0

� ;

where h;F1 and F2 have been defined in (1.155).

Proof Using (1.166), we get for all t 2 Œ0;T��,

jh.t/ � h0j 6
Z T

�

0

jg.s/j ds 6 T1=p
0

� kgkLp.0;T
�

/ 6 CT1=p
0

� : (1.171)

Using the above estimate it is easy to see that, for all t 2 Œ0;T��
ˇ̌
ˇ̌ 1

1 � �h

ˇ̌
ˇ̌ 6 C; (1.172)

where the constant C is independent of T�. Using (1.166), (1.171) and (1.172), the
first term of F1.z; g; h/ can be estimated as follows

����
k.h � h0/

1� kh

�
2C k.h � h0/

1 � kh

�
zxx

����
Lp.0;T

�

ILq.�h0 //

6 Cjh � h0jkzxxkLp.0;T
�

ILq.�h0 //
6 CT1=p

0

� : (1.173)

Using (1.167), (1.168) and (1.172), it is easy to see that the second term of F1 satisfy
the following estimate

����
1 � kx

1 � kh
gzx

����
Lp.0;T

�

ILq.�h0 //

6 CkgkL1.0;T
�

/kzxkLp.0;T
�

ILq.�h0 //

6 CkzxkLp.0;T
�

IL1.�h0 //
6 CT.1�s/=2p

� : (1.174)



52 D. Maity and M. Tucsnak

Similarly, using (1.167), (1.168) and (1.172), we obtain

����
1 � kh0
1 � kh

zzx

����
Lp.0;T

�

ILq.�h0 //

6 CkzkL1.0;T
�

ILq.�h0 //
kzxkLp.0;T

�

IL1.�h0 //

6 CT.1�s/=2p
� : (1.175)

Combining (1.173), (1.174) and (1.175), we get

kF1.z; g; h/kLp.0;T
�

ILq.�h0 //
6 C.T1=p

0

� C CT.1�s/=2p
� /:

Finally, using (1.166), (1.171) and (1.172), one has

kF2.z; g; h/kLp.0;T
�

/ D
����.h � h0/

�
kzx

1 � kh

�
.�; h0/

����
Lp.0;T

�

/

6 Ckh � h0kL1.0;T
�

/kzxkLp.0;T
�

IW1;q.�h0 //
6 CT1=p

0

� :

ut
Lemma 1.44 Let p; q 2 .1;1/ satisfying the condition

1

p
C 1

2q
¤ 1. For

T� 2 .0; 1�, let BT
�

be the ball defined in (1.164). Let .z0; h0; g0/ and M as in
Proposition 1.42. Given . f j1; f

j
2/ 2 BT

�

, for j D 1; 2, let .zj; gj/ be the solution
of (1.156) on Œ0;T�� constructed in Proposition 1.42.

Then there exist a constant C > 0 depending only on M and ı > 0 depending
only on p and q such that

jh1.t/ � h2.t/j C kF1.z1; g1; h1/ � F1.z2; g2; h2/kLp.0;T
�

ILq.�h0 //

C kF2.z1; g1; h1/� F2.z2; g2; h2/kLp.0;T
�

/

6 CTı�
�k f 11 � f 21 kLp.0;T

�

ILq.�h0 //
C k f 12 � f 22 kLp.0;T

�

/

�
(1.176)

where h;F1 and F2 have been defined in (1.155).
We are now in a position to prove our main theorem.

Proof of Theorem 1.38 We consider the map

8
ˆ̂<

ˆ̂:

N W BT
�

! BT
�

;

�
f1
f2

�
7!
�
F1
F2

�
;

where F1 and F2 have been defined in (1.155). We want to show N is a strict

contraction of BT
�

, with a Lipschitz constant
1

2
for small T�. We first note that from
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Lemma 1.43 , we obtain, for all . f1; f2/ 2 BT
�

kN . f1; f2/kLp.0;T
�

ILq.�h0 //�Lp.0;T
�

/ 6 C.T1=p
0

� C T.1�s/=2p
� /;

where C is a constant depending only on M. Therefore by choosing T� 6 1 small
enough

kN . f1; f2/kLp.0;T
�

ILq.�h0 //�Lp.0;T
�

/ < 1: (1.177)

Therefore N maps BT
�

into BT
�

for small enough T�. Next from Lemma 1.44, there
exists C > 0, depending only on M such that

kN . f 11 ; f 12 /� N . f 21 ; f 22 /kLp.0;T�

ILq.�h0 //�Lp.0;T
�

/

6 C.T1=p
0

� C T.1�s/=2p
� /

��. f 11 ; f 12 /� . f 21 ; f
2
2 /
��
Lp.0;T

�

ILq.�h0 //�Lp.0;T
�

/
:

Thus by choosing T� small enough we obtain N is a strict contraction, which
implies the existence and uniqueness result.

1.4.3 A More Realistic 1D Model

In this section, we shall prove local in time existence and uniqueness of solutions
for the system (1.67). Let us set �h.t/ D .�1; 1/ n fh.t/g and�h0 D .�1; 1/ n fh0g.
For every 1 < p < 1 and 1 < q < 1 the set Ip;q;�h0

is defined by

Ip;q;�h0
D
n
.%0;w0; #0; h0; g0;Q0/ j %0 2 W1;q.�h0 /; w0; #0 2 B2.1�1=p/

q;p .�h0 /;

h0 2 .�1; 1/; g0 2 R; Q0 2 R; min
	2�h0

%0.	/ > 0
o
;

and

k.%0;w0; #0; h0; g0;Q0/kIp;q WD k%0kW1;q.�h0 /
C kw0kB2.1�1=p/q;p .�h0 /

C k#0kB2.1�1=p/q;p .�h0 /

Cjh0j C jg0j C jQ0j:

Let p and q satisfy one of the following conditions:

either 1 < q < 1 and 2 < p < 1 satisfying
1

p
C 1

2q
¤ 1 and

1

p
C 1

2q
¤ 1

2
;

or p D q D 2: (1.178)
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Let p; q satisfy the condition (1.178). We introduce the space of initial data

Icc
p;q;�h0

D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

Ip;q;�h0
if 1

p C 1
2q > 1;n

.%0;w0; #0; h0; g0;Q0/ 2 Ip;q;�h0
j w0.h0/D g0;

w0.�1/ D w0.1/ D 0; #0.h0/DQ0
o

if 1
2
< 1

p C 1
2q < 1;n

.%0;w0; #0; h0; g0;Q0/ 2 Ip;q;�h0
j w0.h0/D g0;

w0.�1/ D w0.1/ D 0; #0.h0/ D Q0;

@	#0.�1/D @	#0.1/ D 0
o

if 1
p C 1

2q <
1
2
:

(1.179)

We prove the following theorem

Theorem 1.45 Let p; q satisfy the condition (1.178). Assume that .%0;w0; #0; h0; g0;
Q0/ belongs to Icc

p;q;�h0
. Then there exists a T > 0 such that the system (1.67) admits

a unique strong solution

% 2 W1;p.0;TIW1;q.�h.�///\ C.Œ0;T�IW1;q.�h.�///
w; # 2 Lp.0;TIW2;q.�h.�///\ W1;p.0;TILq.�h.�///\ C.Œ0;T�IB2.1�1=p/q;p .�h.�///;

h 2 W2;p.0;T/; Q 2 W1;p.0;T/:

Moreover, h.t/ 2 .�1; 1/ for all t 2 Œ0;T� and min
	2�h0

%.t; 	/ > 0 for all t 2 Œ0;T�,

	 2 �h.t/.
Due to the change of variable introduced in Sect. 1.2.1, it is enough to prove local

in time existence and uniqueness for the system (1.92). To this aim, let us set

� D .�r1; r2/ n f0g:

Let p; q satisfy the condition (1.178). We introduce following space of initial
conditions for system (1.92),

Icc
p;q;� D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

Ip;q;� if 1
p C 1

2q > 1;n
.v0; u0; �0; h0; g0;Q0/ 2 Ip;q;� j u0.0/ D g0;

u0.�r1/ D u0.r2/ D 0; �0.0/ D Q0
o

if 1
2
< 1

p C 1
2q < 1;n

.v0; u0; �0; h0; g0;Q0/ 2 Ip;q;� j u0.0/ D g0;

u0.�r1/ D u0.r2/ D 0; �0.0/ D Q0;

@x�0.�r1/ D @x�0.r2/ D 0
o

if 1
p C 1

2q <
1
2
:

(1.180)
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In this section, we prove the following theorem

Theorem 1.46 Let p; q satisfy the condition (1.178). Assume that .v0; u0; �0; h0; g0;
Q0/ belongs to Icc

p;q;�. Then there exists a T > 0 such that the system (1.92) admits
a unique strong solution

v 2 W1;p.0;TIW1;q.�// \ C.Œ0;T�IW1;q.�//

u; � 2 Lp.0;TIW2;q.�// \ W1;p.0;TILq.�// \ C.Œ0;T�IB2.1�1=p/q;p .�//;

h 2 W2;p.0;T/; Q 2 W1;p.0;T/:

Moreover, h.t/ 2 .�r1; r2/ for all t 2 Œ0;T� and min
x2�

v.t; x/ > 0 for all t 2 Œ0;T�,

x 2 �.
To prove the above theorem, we rewrite (1.92) as follows

@tv � @xu D 0; .t > 0; x 2 Œ�r1; r2� n f0g/;

@tu � @x
�
1

v0
@xu

	
D F1.v; u; �/; .t > 0; x 2 Œ�r1; r2� n f0g/;

@t� � @x
�
1

v0
@x�

	
D F2.v; u; �/; .t > 0; x 2 Œ�r1; r2� n f0g/;

u.t;˙0/ D Ph.t/; �.t; 0˙/ D Q.t/; .t > 0/;

(1.181)

mRh.t/ D
�
1

v0
@xu

�
.t; 0/ C F3.v; u; �/; .t > 0/;

PQ.t/ D
�
1

v0
@x�

�
.t; 0/ C F4.v; u; �/; .t > 0/;

u.t;�r1/ D u.t; r2/ D 0; @x�.t;�r1/ D @x�.t; r2/ D 0; .t > 0/;

v.0; x/ D v0.x/; u.0; x/ D u0.x/; �.0; x/ D �0.x/; x 2 Œ�r1; r2� n f0g;
h.0/ D h0; Ph.0/ D g0;

where

F1.v; u; �/ D @x

��
1

v
� 1

v0

	
@xu

	
� @x

�
�

v

	

F2.v; u; �/ D @x

��
1

v
� 1

v0

	
@x�

	
C 1

v
.@xu/

2 � �

v
@xu (1.182)

F3.v; u; �/ D
��
1

v
� 1

v0

	
@xu � �

v

�
.t; 0/; F4.v; u; �/ D

��
1

v
� 1

v0

	
@x�

�
.t; 0/:
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We consider the following linear system

@tv � @xu D 0; .t > 0; x 2 Œ�r1; r2� n f0g/;

@tu � @x
�
1

v0
@xu

	
D f1; .t > 0; x 2 Œ�r1; r2� n f0g/;

@t� � @x
�
1

v0
@x�

	
D f2; .t > 0; x 2 Œ�r1; r2� n f0g/;

u.t;˙0/ D Ph.t/; �.t; 0˙/ D Q.t/; .t > 0/;

(1.183)

mRh.t/ D
�
1

v0
@xu

�
.t; 0/ C f3; .t > 0/;

PQ.t/ D
�
1

v0
@x�

�
.t; 0/ C f4; .t > 0/;

u.t;�r1/ D u.t; r2/ D 0; @x�.t;�r1/ D @x�.t; r2/ D 0; .t > 0/;

v.0; x/ D v0.x/; u.0; x/ D u0.x/; �.0; x/ D �0.x/; x 2 Œ�r1; r2� n f0g;
h.0/ D h0; Ph.0/ D g0:

We introduce the following spaces

Z1 DW2;q.�/ \ W1;q
0 .�r1; r2/; Z2 D ˚

� 2 �W2;q.�/ j @x�.�r1/D @x�.r2/D 0
�
;

Z DW1;q.�/ � Z1 � Z2; X DW1;q.�/ � Lq.�/ � Lq.�/; U D R
2:

Let L 2 L.Z;X/, G 2 L.Z;U/ and C 2 L.Z;U/ are defined as follows

L

2

4
v

u
�

3

5 D

2

664

0 @x 0

0 @x

�
1
v0
@x


0

0 0 @x

�
1
v0
@x



3

775

2

4
v

u
�

3

5 ; G

2

4
v

u
�

3

5 D
�
u.0/
�.0/

�
;

C

2

4
v

u
�

3

5 D
2

4m
�1
h
1
v0
@xu
i
.0/h

1
v0
@x�

i
.0/

3

5 (1.184)

Let us introduce the unbounded operator .A;D.A// in X � U by

D.A/ D ˚
.v; u; �; g;Q/ 2 Z � U j G.v; u; �/T D .g;Q/T

�
(1.185)
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and

A

0
BBBBB@

v

u
�

g
Q

1
CCCCCA

D

0
BBBBBBB@

L

2

4
v

u
�

3

5

C

2

4
v

u
�

3

5

1
CCCCCCCA

: (1.186)

Set Ph.t/ D g.t/. Then (1.183) can be written as

d

dt

0
BBBBB@

v

u
�

g
Q

1
CCCCCA

D A

0
BBBBB@

v

u
�

g
Q

1
CCCCCA

C

0
BBBBB@

0

f1
f2
f3
f4

1
CCCCCA
;

0
BBBBB@

v.0/

u.0/
�.0/

g.0/
Q.0/

1
CCCCCA

D

0
BBBBB@

v0

u0
�0
g0
Q0

1
CCCCCA
: (1.187)

Proposition 1.47 Let 1 < q < 1 and v0 belongs to W1;q.�/ such that v0. y/ > 0

for all y 2 Œ�r1; r2�. The operator .A;D.A// is R-sectorial in X � U, i.e., there
exists " 2 .0; �=2/ and �0 > 0 such that

RL.X�U/
˚
�.� � A/�1 j � 2 †"0;�0

�
< 1: (1.188)

Proof Let us set X1 D KerG D f.v; u; �/ 2 Z j u.0/ D 0 D �.0/g, and A D LjX1 .
We rewrite A as A D A1 C B, where

A1 D

0

B@
0 @x 0

0 1
v0
@xx 0

0 0 1
v0
@xx

1

CA ; B D

0

B@
0 0 0

0 � @xv0
v0
@x 0

0 0 � @xv0
v0
@x

1

CA (1.189)

By Denk et al. [12, Theorem 8.2], we first obtain that the operator A1 with D.A1/ D
X1 is R-sectorial in X�U. Next, using Lemma 1.36, it is easy to see that the operator
B with D.B/ D D.A1/ satisfies the condition (1.125). Thus, by Proposition 1.18, we
obtain A is R-sectorial in X � U. Again, using Lemma 1.36 one can check that, the
operator C satisfies the condition (1.136). Thus the R-sectoriality of the operator
.A;D.A// follows from Theorem 1.25. ut
Theorem 1.48 Let 1 < p; q < 1. Then for every .v0; u0; �0; g0;Q0/ 2
.Z;D.A//1�1=p;p and for every . f1; f2; f3; f4/ 2 Lp.0;TILq.�// � Lp.0;TILq.�// �
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Lp.0;T/ � Lp.0;T/, the system (1.183) admits a unique strong solution satisfying

kvkW1;p.0;TIW1;q.�// C kukW2;1
q;p ..0;T/��/ C k�kW2;1

q;p ..0;T/��/ C khkW2;p.0;T/

C kQkW1;p.0;T/ 6 C.1C e2�0T/
�
k.v0; u0; �0; g0;Q0/k.Z;D.A//1�1=p;p

C k f1kLp.0;TILq.�// C k f2kLp.0;TILq.�// C k f3kLp.0;T/ C k f4kLp.0;T/

;

where the constant C is independent of time T.
Now we are in a position to get estimates required for fixed point argument.

As before, at first we want to identify the space of initial conditions. We have the
following lemma.

Lemma 1.49 Let p; q satisfy the condition (1.178). Let us assume that .v0; u0; �0;
g0;Q0/ belongs to .Z;D.A//1�1=p;p. Then .v0; u0; �0; g0;Q0/ belongs to Icc

p;q;�,
where Icc

p;q;�, defined as in (1.180).

Proof For proof we refer to [33, Sect. 4.3.3] and [2, Theorem 2.2]. ut
For T > 0, we define the space BT as follows

BT D
n
. f1; f2; f3; f4/ 2 Lp.0;TILq.�// � Lp.0;TILq.�// � Lp.0;T/ � Lp.0;T/ j

k f1kLp.0;TILq.�// C k f2kLp.0;TILq.�// C k f3kLp.0;T/ C k f4kLp.0;T/ 6 1
o
:

(1.190)

Proposition 1.50 Let p; q satisfy the condition (1.178). Assume that .v0; u0; �0;
h0; g0;Q0/ belongs to Icc

p;q;�. Let M > 0 be such that

k.v0; u0; �0; h0; g0;Q0/kIp;q;� 6 M;
1

M
6 v0.x/ 6 M: (1.191)

Then for every . f1; f2; f3; f4/ 2 BT , the system (1.183) admits a unique strong
solution on Œ0;T�. Moreover, there exist eT 6 1 a constant C, both depending only
on M such that

kvkW1;p.0;T
�

IW1;q.�// C kvkL1.0;T
�

IW1;q.�// 6 C; (1.192)

1

C
6 v.t; x/ 6 C; t 2 .0;eT/; x 2 .�r1; r2/ (1.193)

kukW2;1
q;p ..0;T�

/��/ C k�kW2;1
q;p ..0;T�

/��// 6 C; (1.194)

kukL1.0;T
�

IW1;q.�// C k�kL1.0;T
�

IW1;q.�// 6 C; (1.195)
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kukLp.0;T
�

IL1.�// C k�kLp.0;T
�

IL1.�// 6 CT.2�s/=2p� ; s 2 .1=q; 1/; (1.196)

k@xukLp.0;T
�

IL1.�// C k@x�kLp.0;T
�

IL1.�// 6 CT.1�s/=2p
� ; s 2 .1=q; 1/; (1.197)

holds for all T� 2 .0;eT/.
Proof From Theorem 1.48, there exists a constant C depending only on M such that

kvkW1;p.0;TIW1;q.�// C kukW2;1
q;p ..0;T/��/ C k�kW2;1

q;p ..0;T/��/ 6 C; T� 2 .0; 1�:

Since 1 < q < 1, we also have

kvkW1;q.0;T
�

IL1.�// 6 CkvkW1;p.0;TIW1;q.�// 6 C; T� 2 .0; 1�:

Notice that, for every T� 2 .0; 1�

sup
t2.0;T

�

/

kv.t; �/ � v0kL1.�/ 6 T1=p
0

� kvkW1;q.0;T
�

IL1.�// 6 CT1=p
0

� : (1.198)

Thus there existeT 6 1 a constant C, both depending only on M such that

1

C
6 v.t; x/ 6 C; t 2 .0;eT/; x 2 .�r1; r2/:

To prove (1.195), note that W1;q.�/ ,! B2.1�1=p/q;p .�/ provided 2 < p < 1. Thus,
Proposition 1.34 yields (1.195). In view of (1.150), estimate (1.195) also holds
when p D q D 2. Proof of other estimates are similar to proof of estimates in
Proposition 1.42. ut
Lemma 1.51 Let p; q satisfy the condition (1.178). For T� 2 .0;eT�, where eT
is a constant in Proposition 1.50, let BT

�

be the ball defined in (1.190). Let
.v0; u0; �0; h0; g0;Q0/ and M as in Proposition 1.50. Given . f1; f2; f3; f4/ 2 BT

�

,
let .v; u; �; h;Q/ be the solution of (1.183) on Œ0;T�� constructed in Proposi-
tion 1.50.

Then there exist a constant C > 0 depending only on M and a constant ı
depending only on p and q, such that

kF1.v; u; �/kLp.0;T
�

ILq.�// C kF2.v; u; �/kLp.0;T
�

ILq.�//

C kF3.v; u; �/kLp.0;T
�

/ C kF4.v; u; �/kLp.0;T
�

/ 6 CTı:� (1.199)

where F1;F2;F3 and F4 have been defined in (1.182).
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Proof Using the estimates (1.192)–(1.197) and (1.198), we obtain the following
estimate of F1

kF1.v; u; �/kLp.0;T
�

ILq.�//

D
����@x

��
1

v
� 1

v0

	
@xu

	����
Lp.0;T

�

ILq.�//
C
����@x

�
�

v

	����
Lp.0;T

�

ILq.�//

6
����
v � v0
vv0

����
L1..0;T/��/

k@xxukLp.0;T
�

ILq.�//

C
 ����
@xv

v2
� @xv0

v20

����
L1.0;T

�

ILp.�//

!
k@xukLp.0;T

�

IL1.�//

C
����
1

v

����
L1.0;T

�

ILq.�//
k@x�kLp.0;T

�

IL1.�// C
����
@xv

v2

����
L1.0;T

�

ILq.�//
k�kLp.0;T

�

IL1.�//

6 C.T1=p
0

� C T.2�s/=2p
� C T.1�s/=2p

� /; s 2 .1=q; 1/:

Estimates of first and third term of F2 are similar to the above estimate.
Using (1.193), (1.194) and (1.197), it is easy to see that the second term of F2
satisfy the following estimate

����
1

v
.@xu/

2

����
Lp.0;T

�

ILq.�//

6
����
1

v

����
L1..0;T/��/

k@xukLp.0;T
�

IL1.�//k@xukL1.0;T
�

ILq.�//

6 CT.1�s/=2p� ; s 2 .1=q; 1/:

Thus there exist a constant C > 0 depending only on M and a constant ı depending
only on p and q, such that

kF2.v; u; �/kLp.0;T
�

ILq.�// 6 Tı�: (1.200)

Notice that
����
��
1

v
� 1

v0

	
@xu � �

v

�
.�; 0/

����
Lp.0;T

�

/

6 C

����
�
1

v
� 1

v0

	
@xu � �

v

����
Lp.0;T

�

IW1;q.�//

:

Therefore, from the estimate of F1 we obtain

kF3.v; u; �/kLp.0;T
�

/ 6 Tı�; (1.201)
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where C > 0 depends only on M and ı depends only on p and q. The estimate of F4
is similar. ut
Lemma 1.52 Let p; q satisfy the condition (1.178). For T� 2 .0;eT�, where eT
is a constant in Proposition 1.50, let BT

�

be the ball defined in (1.190). Let
.v0; u0; �0; h0; g0;Q0/ and M as in Proposition 1.50. Given . f i1; f

i
2; f

i
3; f

i
4/ 2 BT

�

,
i D 1; 2, let .vi; ui; � i; hi;Qi/ be the solution of (1.183) on Œ0;T�� constructed in
Proposition 1.50.

Then there exist a constant C > 0 depending only on M and a constant ı
depending only on p and q, such that

kF1.v1; u1; �2/� F1.v2; u2; �2/kLp.0;T
�

ILq.�//

C kF2.v; u; �/ � F2.v2; u2; �2/kLp.0;T
�

ILq.�//

C kF3.v; u; �/ � F3.v2; u2; �2/kLp.0;T
�

/ C kF4.v; u; �/ � F4.v2; u2; �2/kLp.0;T
�

/

6 CTı�
�
k f 11 � f 21 kLp.0;T

�

ILq.�// C k f 12 � f 22 kLp.0;T
�

ILq.�//

C k f 13 � f 23 kLp.0;T
�

C k f 14 � f 23 kLp.0;T
�


(1.202)

where F1;F2;F3 and F4 have been defined in (1.182).

Proof of Theorem 1.46 We consider the map

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

N W BT
�

! BT
�

;

2

664

f1
f2
f3
f4

3

775 7!

2

664

F1
F2
F3
F4

3

775 ;

where F1, F2;F3 and F4 have been defined in (1.182). From Lemmas 1.51 and
1.52 and by choosing T� 6 eT, small enough it is easy to see that N is a strict

contraction of BT
�

, with a Lipschitz constant
1

2
. This implies the existence and

uniqueness result.

1.4.4 Motion of a Solid in a Compressible Fluid

In this section, we prove local in time existence and uniqueness of solution for the
system (1.110). For every 1 < p < 1 and 1 < q < 1, the space Ip;q;�F.0/ is
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defined by

Ip;q;�F.0/ D
n
.�0; u0; #0; `0; !0/ j �0 2 W1;q.�F.0//\ L1.�F.0//;

u0 2 B2.1�1=p/q;p .�F.0//
3; g0 2 R

3; !0 2 R
3; min

y2�F.0/
�0. y/ > 0

o
;

(1.203)

and

k.�0; u0; #0; `0; !0/kIp;q;�F.0/
Dk�0kW1;q.�F.0// C ku0kB2.1�1=p/q;p .�F.0//

C kg0kR3 C k!0kR3 :

We now state our main result.

Theorem 1.53 Let 2 < p < 1 and 3 < q < 1. Assume that .�0; u0; g0; !0/
belongs to Ip;q;�F.0/ satisfying the compatibility condition

u0 D 0 on @�; u0 D g0 C !0 � y on @�S.0/: (1.204)

Let M > 0 be such that

k.�0; u0; g0; !0/kIp;q;�F.0/
6 M;

1

M
6 �0.x/ 6 M for x 2 �F.0/: (1.205)

Then, there exists T > 0 such that the system (1.110) admits a unique strong solution

� 2 W1;p.0;TIW1;q.�F.�///\ C.Œ0;T�IW1;q.�F.�///;
u 2 Lp.0;TIW2;q.�F.�//3/\ W1;p.0;TILq.�F.�//3/ \ C.Œ0;T�IB2.1�1=p/q;p .�F.�//3/;

h 2 W2;p.0;TIR3/; ! 2 W1;p.0;TIR3/:

Moreover, there exists a constant MT > 0 such that
1

MT
6 �.t; x/ 6 MT for all

t 2 .0;T/; x 2 �F.t/.
As before, we first prove our result for a equivalent system in a fixed spatial

domain.

Theorem 1.54 Let 2 < p < 1 and 3 < q < 1. Assume that .�0; u0; g0; !0/
belongs to Ip;q;�F.0/ such that (1.204)–(1.205) holds. Then, there exists T > 0 such
that the system (1.115)–(1.120) admits a unique strong solution

e� 2 W1;p.0; TIW1;q.�F.0/// \ C.Œ0; T�IW1;q.�F.0///;

eu 2 Lp.0; TIW2;q.�F.0//
3/ \ W1;p.0; TI Lq.�F.0//

3/ \ C.Œ0; T�IB2.1�1=p/q;p .�F.0//
3/;

eg 2 W1;p.0; TIR3/; e! 2 W1;p.0; TIR3/:
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Moreover, there exists a constant MT > 0, such that
1

MT
6 e�.t; y/ 6 MT, for all

t 2 .0;T/; y 2 �F.0/.
We start with the following linear system

@t Q�C �0div Qu D f1; in .0;T/ ��F.0/;

@t Qu � �

�0
�Qu � ˛ C �

�0
r.div Qu/ D f2 in .0;T/ ��F.0/;

Qu D 0 on .0;T/ � @�; Qu D g C ! � y on .0;T/ � @�S.0/; (1.206)

m
d

dt
Q̀ D �

Z

�S.0/

�
�r Qu C �r Qu> C ˛div QuI� n d� C f3; t 2 .0;T/;

J.0/
d

dt
Q! D �

Z

�S.0/

y � ��r Qu C �r Qu> C ˛div QuI� n C f4; t 2 .0;T/

Q�.0/ D �0; Qu.0/ D u0; in �F.0/;

Qg.0/ D g0; Q!0 D !0:

We introduce the following spaces

Z1 D
n
z 2 W2;q.�F.0//

3 j z D 0 on @�; 9`; k 2 R
3 such that

z D `C k � y on @�S.0/
o

Z D W1;q.�/ � Z1; X D W1;q.�/ � Lq.�/3; U D R
6:

Let L 2 L.Z;X/, G 2 L.Z;U/ and C 2 L.Z;U/ are defined as follows

L

�
e�
eu

�
D
2

4
0 �0div

0
�

�0
�C ˛ C �

�0
r.div/

3

5
�
e�
eu

�
; G

�
e�
eu

�
D
�
`

k

�
;

C

�
e�
eu

�
D

2

664
�m�1

Z

�S.0/

�
�r Qu C �r Qu> C ˛div QuI� n d�

�J.0/�1
Z

�S.0/

y � ��r Qu C �r Qu> C ˛div QuI� n

3

775 (1.207)

Let us introduce the unbounded operator .A;D.A// in X � U by

D.A/ D ˚
.e�;eu;eg;e!/ 2 Z � U j G.e�;eu/T D .eg;e!/T

�
(1.208)
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and

A

0

BB@

e�
eu
eg
e!

1

CCA D

0

BB@
L

�
e�
eu

�

C

�
e�
eu

�

1

CCA : (1.209)

Then (1.206) can be written as

d

dt

0

BB@

e�
eu
eg
e!

1

CCA D A

0

BB@

e�
eu
eg
e!

1

CCAC

0

BB@

f1
f2
f3
f4

1

CCA ;

0

BB@

e�.0/
eu.0/
eg.0/
e!.0/

1

CCA D

0

BB@

�0
u0
g0
!0

1

CCA : (1.210)

Proposition 1.55 Let 3 < q < 1 and �0 belongs to W1;q.�F.0// such that
�0. y/ > 0 for all y 2 �F.0/. The operator .A;D.A// is R-sectorial in X � U,
i.e., there exists " 2 .0; �=2/ and �0 > 0 such that

RL.X�U/
˚
�.� � A/�1 j � 2 †"0;�0

�
< 1: (1.211)

Proof The proof is similar to the proof of Proposition 1.47. ut
As a consequence of the above proposition and Theorem 1.32 we obtain the

following theorem

Theorem 1.56 Let 3 < q < 1 and 1 < p < 1. Then for every .�0; u0; g0; !0/ 2
.Z;D.A//1�1=p;p and for every . f1; f2; f3; f4/ 2 Lp.0;TILq.�F.0///

� Lp.0;TILq.�F.0/// � Lp.0;T/ � Lp.0;T/, the system (1.206) admits a unique
strong solution satisfying

ke� kW1;p.0;TIW1;q.�F.0/// C keukW2;1
q;p ..0;T/��F.0//

C kegkW1;p.0;T/ C ke!kW1;p.0;T/

6 C.1C e2�0T/
�
k.�0; u0; g0; !0/k.Z;D.A//1�1=p;p C k f1kLp.0;TILq.�F.0///

C k f2kLp.0;TILq.�F.0/// C k f3kLp.0;T/ C k f4kLp.0;T/

;

where the constant C is independent of time T.
Now we characterize the space of initial conditions. As before, using [33,

Sect. 4.3.3] and [2, Theorem 2.2] we obtain the following characterization of the
initial conditions.

Lemma 1.57 Let 3 < q < 1 and 2 < p < 1. Let us assume that .�0; u0; g0; !0/
belongs to .Z;D.A//1�1=p;p. Then .�0; u0; g0; !0/ belongs to Ip;q;�F.0/, where
Ip;q;�F.0/, defined as in (1.203) satisfying the compatibility condition (1.204).
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For T > 0, we define the space BT as follows

BT D
n
. f1; f2; f3; f4/ 2 Lp.0;TILq.�F.0/// � Lp.0;TILq.�F.0///� Lp.0;T/�

Lp.0;T/ j k f1kLp.0;TILq.�F.0/// C k f2kLp.0;TILq.�F.0///

C k f3kLp.0;T/ C k f4kLp.0;T/ 6 1
o
: (1.212)

Proposition 1.58 Let 3 < q < 1 and 2 < p < 1. Assume that .�0; u0; g0; !0/
belongs to Ip;q;�F.0/ such that (1.204)–(1.205) holds. Then for every . f1; f2; f3; f4/ 2
BT, the system (1.206) admits a unique strong solution Œ0;T�. Moreover, there exists
a constant C, depending only on M such that

ke�kW1;p.0;T
�

IW1;q.�F.0/// C keukW2;1
q;p ..0;T�

/��F.0//
6 C (1.213)

kegkW1;p.0;T
�

/ C ke!kW1;p.0;T
�

/ 6 C; (1.214)

ke� � �0kL1.0;T
�

IW1;q.�F.0/// 6 CT1=p
0

� ; ke� kLp.0;T
�

IW1;q.�F.0/// 6 CT1=p� ; (1.215)

keukL1.0;T
�

IW1;q.�F.0/// C kegkL1.0;T
�

/ C ke!kL1.0;T
�

/ 6 C; (1.216)

kukLp.0;T
�

IL1.�F.0/// 6 CT.2�s/=2p
� ; s 2 .3=q; 1/; (1.217)

kreukLp.0;T
�

IL1.�F.0///; kdiveukLp.0;T
�

IL1.�F.0/// 6 CT.1�s/=2p� ; s 2 .3=q; 1/;
(1.218)

kegkLp.0;T
�

/ C ke!kLp.0;T
�

/ 6 CT1=p� (1.219)

holds for all T� 2 .0; 1�.
Proof The proof is similar to the proof of Proposition 1.50. The main difference
here is W1;q.�F.0// ,! L1.�F.0// if 3 < q < 1. ut

Now we proof several lemmas required for fixed point argument.

Lemma 1.59 Let 3 < q < 1 and 2 < p < 1. For T� 2 .0; 1�, let BT
�

be
the ball defined in (1.212). Let .�0; u0; #0; a0; !0/ and M as in Proposition 1.58.
Given . f1; f2; f3; f4/ 2 BT

�

, let .e�;eu;eg;e!/ be the solution of (1.206) constructed in
Proposition 1.58. Let Q be defined as in (1.116). Then there exists a constant C > 0
depending only on M such that

kQkL1.0;T
�

/ 6 C; kQTkL1.0;T
�

/ 6 C;

kQ � IkL1.0;T
�

/ 6 CT1=p
0

� ; kQT � IkL1.0;T
�

/ 6 CT1=p
0

� ; (1.220)

k@tQkL1.0;T
�

/ 6 C: (1.221)
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Proof From (1.116) and Proposition 1.58, we have

jQ.t/j 6 1C C
Z t

0

jQ.s/j ds; for all t 2 .0;T��:

By Gronwall’s lemma, we have

jQ.t/j 6 eCt 6 eC for all t 2 .0;T��:

Similarly, from (1.116) and Proposition 1.58, we have

kQ � IkL1.0;T
�

/ 6 kQkL1.0;T
�

/

Z T
�

0

j.e!.s/ � Ijds 6 CT1=p
0

� :

ut
Lemma 1.60 Let 3 < q < 1 and 2 < p < 1. For T� 2 .0; 1�, let BT

�

be
the ball defined in (1.212). Let .�0; u0; #0; a0; !0/ and M as in Proposition 1.58.
Given . f1; f2; f3; f4/ 2 BT

�

, let .e�;eu;eg;e!/ be the solution of (1.206) constructed in
Proposition 1.58. Let X be defined as in (1.117). Then there exists a constant C > 0,
depending only on M such that

kJX � IkL1..0;T
�

/��F.0// 6 CT1=p
0

� : (1.222)

Moreover, there existseT 6 1 such that

kJX � IkL1..0;T
�

/��F.0/// 6
1

2
; .T� 2 .0;eT�/: (1.223)

Proof From the definition of X and Proposition 1.58, we obtain

sup
t2.0;T

�

/

kJX.t; �/� IkW1;q.�F.0// 6 C
Z T

�

0

kreukW1;q.�F.0// 6 CT1=p
0

� :

Therefore

kJX � IkL1..0;T
�

/��F.0/// 6 CkJX � IkL1.0;T
�

IW1;q.�F.0/// 6 CT1=p
0

� :

ut
Lemma 1.61 Let 3 < q < 1 and 2 < p < 1. For T� 2 .0;eT�, where eT is the
constant in Lemma 1.60, letBT

�

be the ball defined in (1.212). Let .�0; u0; #0; a0; !0/
and M as in Proposition 1.58. Given . f1; f2; f3; f4/ 2 BT

�

, let .e�;eu;eg;e!/ be the
solution of (1.206) constructed in Proposition 1.58. Let X be defined as in (1.117).
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Then there exists a constant C > 0 depending only on M such that

kJXkW1;p.0;T
�

IW1;q.�F.0/// C kJXkL1.0;T
�

IW1;q.�F.0/// 6 C;

kcofJXkW1;p.0;T
�

IW1;q.�F.0/// C kcofJXkL1.0;T
�

IW1;q.�F.0/// 6 C

kdetJXkW1;p.0;T
�

IW1;q.�F.0/// C kdetJXkL1.0;T
�

IW1;q.�F.0/// 6 C

kJYkW1;p.0;T
�

IW1;q.�F.0/// C kJYkL1.0;T
�

IW1;q.�F.0/// 6 C; (1.224)

Proof The estimate of JX in L1.0;T�IW1;q.�F.0/// norm follows from
Lemma 1.60. Next we have,

@tJX D Qreu:

Therefore @tJX 2 Lp.0;T�IW1;q.�F.0/// and the estimate follows. The esti-
mates of cofJX and detJX follows from the fact that W1;p.0;T�IW1;q.�F.0/// and
L1.0;T�IW1;q.�F.0/// are algebras for p > 2 and q > 3. In order to estimate the
norms of JY we use the following relation

JY D 1

detJX
cofJX:

ut
Lemma 1.62 Let 3 < q < 1 and 2 < p < 1. For T� 2 .0;eT�, where eT is the
constant in Lemma 1.60, letBT

�

be the ball defined in (1.212). Let .�0; u0; #0; a0; !0/
and M as in Proposition 1.58. Given . f1; f2; f3; f4/ 2 BT

�

, let .e�;eu;eg;e!/ be the
solution of (1.206) constructed in Proposition 1.58. Let bF1 be defined as in (1.118).
Then there exists a constant C > 0 depending only on M such that

kF1kLp.0;T
�

IW1;q.�F.0/// 6 CT1=p
0

� : (1.225)

Proof Let us recall

F1 D �.e� � �0/ diveu �e�.Q � I/reu W J>
Y �e�reu W .J>

Y � I/:

Notice that W1;q.�F.0// is an algebra for q > 3. Therefore, using Proposition 1.58,
Lemmas 1.59 and 1.61 we estimate the first term of F1 as follows

k.e� � �0/ diveukLp.0;T
�

IW1;q.�F.0///

6 Cke� � �0kL1.0;T
�

IW1;q.�F.0///kdiveukLp.0;T
�

IW1;q.�F.0///

6 CT1=p
0

� :
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Similarly, the second term of F1 can be estimated as follows

ke�.Q � I/reu W J>
Y kLp.0;T

�

IW1;q.�F.0///

6 Cke� kL1.0;T
�

IW1;q.�F.0///kQ � IkL1.0;T
�

/

keukLp.0;T
�

IW2;q.�F.0///kJ>
Y kL1.0;T

�

IW1;q.�F.0///

6 CT1=p
0

� :

The last term of F1 satisfies the following estimate

ke�reu W .J>
Y � I/kLp.0;T

�

IW1;q.�F.0///

6 Cke� kL1.0;T
�

IW1;q.�F.0///keukLp.0;T
�

IW2;q.�F.0///kJ>
Y � IkL1.0;T

�

IW1;q.�F.0///

6 CT1=p
0

� :

ut
Lemma 1.63 Let 3 < q < 1 and 2 < p < 1. For T� 2 .0;eT�, where
eT is the constant in Lemma 1.60, let BT

�

be the ball defined in (1.212). Let
.�0; u0; #0; a0; !0/ and M as in Proposition 1.58. Given . f1; f2; f3; f4/ 2 BT

�

, let
.e�;eu;eg;e!/ be the solution of (1.206) constructed in Proposition 1.58. Let F2;1 be
defined as in (1.119). Then there exist a constant C > 0 depending only on M and a
constant ı depending only on p and q such that

kF2;1kLp.0;T
�

ILq.�F.0/// 6 CTı�: (1.226)

Proof

F2;1 D � Q�
�0
@tQ.t/Qu � Q� � �0

�0
Q.t/@t Qu � .Q.t/ � I/@t Qu � �

Q���1

�0
J>
Y r Q�

Using Proposition 1.58 and Lemmas 1.59–1.61, we estimate the various terms of
F2;1 as follows

����
e�
�0
@tQeu

����
Lp.0;T

�

ILq.�F.0///

6 Cke�kL1.0;T
�

IW1;q.�F.0///k@tQkL1.0;T
�

/keukLp.0;T
�

ILq.�F.0///

6 CT1=p� keukL1.0;T
�

IW1;q.�F.0/// 6 CT1=p
0

� ;

����
e� � �0
�0

Q@teu
����
Lp.0;T

�

ILq.�F.0///

6 Cke� � �0kL1.0;T
�

IW1;q.�F.0///kQkL1.0;T
�

/k@teukLp.0;T
�

ILq.�F.0///

6 CT1=p
0

� ;
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k.Q � I/@teukLp.0;T
�

ILq.�F.0/// 6 kQ � IkL1.0;T
�

/keukW1;p.0;T
�

ILq.�F.0/// 6 CT1=p
0

� ;

�����
Q���1

�0
J>
Y r Q�

����
Lp.0;T

�

ILq.�F.0///

6 Cke�kL1.0;T
�

IW1;q.�F.0///kJ>
Y kL1..0;T

�

/��F.0//kr Q�kLp.0;T
�

ILq.�F.0/// 6 CT1=p� :

ut
Lemma 1.64 Let 3 < q < 1 and 2 < p < 1. For T� 2 .0;eT�, where
eT is the constant in Lemma 1.60, let BT

�

be the ball defined in (1.212). Let
.�0; u0; #0; a0; !0/ and M as in Proposition 1.58. Given . f1; f2; f3; f4/ 2 BT

�

, let
.e�;eu;eg;e!/ be the solution of (1.206) constructed in Proposition 1.58. Let F2;2 be
defined as in (1.119). Then there exist a constant C > 0 depending only on M and a
constant ı depending only on p and q such that

k.F2;2/ikLp.0;T
�

ILq.�F.0/// 6 CT1=p
0

� ; i D 1; 2; 3: (1.227)

Proof We have

.F2;2/i D �

�0

3X

j;k;lD1
@yl.@yk .QQu/iŒ.JY /kj � ıkj�/.JY/lj

C �

�0

3X

k;lD1
.@2ylyk.QQu/i/ Œ.JY/lk � ılk�

C ˛ C �

�0

3X

j;k;lD1
@yl.@yk .QQu/j

�
.JY/kj/� ıkj

�
/.JY/li

C ˛ C �

�0

3X

l;jD1
.@2ylyj.QQu/j/ Œ.JY/li � ıli�C .Q> � I/ W @yir Qu;

Let us notice that

.@ykJY/.0; �/ D 0:

Therefore, using the estimates in Lemma 1.61, we get

k@yk JYkL1.0;T
�

ILq.�F.0/// 6 T1=p
0

� k@yk JYkW1;p.0;T
�

ILq.�F.0/// 6 CT1=p
0

� : (1.228)
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The first term can be estimated as follows,

������
�

�0

3X

j;k;lD1
@yl.@yk .Qeu/iŒ.JY/kj � ıkj�/.JY /lj

������
Lp.0;T

�

ILq.�F.0///

6 C
3X

j;k;lD1

�
kŒ@ylyk .Qeu/i�Œ.JY /kj � ıkj�kLp.0;T

�

ILq.�F.0///

C kŒ@yk .Qeu/i�Œ@yl .JY/kj�kLp.0;T�

ILq.�F.0///



6 C
�
kQeukLp.0;T

�

IW2;q.�F.0///kJY � IkL1.0;T
�

IW1;q.�F.0///

C kQeukLp.0;T
�

IW2;q.�F.0///

3X

j;k;lD1
k@yl .JY/kjkL1.0;T

�

ILq.�F.0///



6 CT1=p
0

� :

Other terms in F2;2 can be estimated similarly. ut
Lemma 1.65 Let 3 < q < 1 and 2 < p < 1. For T� 2 .0;eT�, where eT is the
constant in Lemma 1.60, letBT

�

be the ball defined in (1.212). Let .�0; u0; #0; a0; !0/
and M as in Proposition 1.58. Given . f1; f2; f3; f4/ 2 BT

�

, let .e�;eu;eg;e!/ be the
solution of (1.206) constructed in Proposition 1.58.Let G be defined as in (1.120).
Then there exist a constant C > 0 depending only on M and a constant ı depending
only on p and q such that

kGkLp.0;T
�

IW1;q.�F.0/// 6 CT1=p
0

� : (1.229)

Proof The proof is similar to the proof of Lemma 1.62. The only thing is left to
check is the estimate cofJX � I in L1.0;T�IW1;q.�F.0/// norm. Since, .cofJX �
I/.0; �/ D 0, we have

kcofJX � IkL1.0;T
�

IW1;q.�F.0/// 6 T1=p
0

� kcofJX � IkW1;p.0;T
�

IW1;q/.�F.0//:

With the help of above estimate we can proceed as the proof of Lemma 1.62 to
complete the proof of this Lemma. ut
Lemma 1.66 Let 3 < q < 1 and 2 < p < 1. For T� 2 .0;eT�, where eT is the
constant in Lemma 1.60, letBT

�

be the ball defined in (1.212). Let .�0; u0; #0; a0; !0/
and M as in Proposition 1.58. Given . f1; f2; f3; f4/ 2 BT

�

, let .e�;eu;eg;e!/ be the
solution of (1.206) constructed in Proposition 1.58. Let F3 and F4 be defined as
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in (1.120). Then there exists a constant C > 0 depending only on M such that

kF3kLp.0;T
�

/ 6 C.T1=p� C T1=p
0

� /

kF4kLp.0;T
�

/ 6 C.T1=p� C T1=p
0

� /: (1.230)

Proof Let us recall

F3 D �m. Q! � Q̀/ �
Z

�S.0/

Gn

Therefore

kF3kLp.0;T
�

/

6 C
�
ke!kLp.0;T

�

/kegkL1.0;T
�

/ C kGkLp.0;T
�

ILq.@�S.0///



6 C
�
T1=p

0

� C kGkLp.0;T
�

IW1;q.�F.0///



6 CT1=p
0

� :

The estimate of kF4kLp.0;T
�

/ is similar. ut
Proposition 1.67 Let 3 < q < 1 and 2 < p < 1. For T� 2 .0;eT�, whereeT is the
constant in Lemma 1.60, letBT

�

be the ball defined in (1.212). Let .�0; u0; #0; a0; !0/
andM as in Proposition 1.58. Given . f j1; f

j
2; f

j
3; f

j
4/ 2 BT

�

, j D 1; 2, let .e� j;eu j;eg j;e! j/

be the solution of (1.206) constructed in Proposition 1.58.
Let us set

F j
1 D F1.e� j;eu j;eg j;e! j/;F j

2;1 D F2;1.e� j;eu j;eg j;e! j/;F j
2;2 D F2;2.e� j;eu j;eg j;e! j/

F j
3 D F3.e� j;eu j;eg j;e! j/;F j

4 D F4.e� j;eu j;eg j;e! j/ for j D 1; 2:

(1.231)

Then there exists a constant C > 0 depending only on M such that

kF1
1 � F2

1kLp.0;T
�

IW1;q.�F.0/// C kF1
2;1 � F2

2;1kLp.0;T�

ILq.�F.0///

C kF1
2;2 � F2

2;2kLp.0;T�

ILq.�F.0/// C kF1
3 � F2

3kLp.0;T
�

/ C kF1
4 � F2

4kLp.0;T
�

/

6 CTı�
�
k f 11 � f 21 kLp.0;T

�

ILq.�F.0/// C k f 12 � f 22 kLp.0;T
�

ILq.�F.0///

C k f 13 � f 23 kLp.0;T
�

C k f 14 � f 23 kLp.0;T
�


(1.232)

where ı > 0 is a positive constant depending only on p and q.
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Now we give the proofs of main theorems of this section.

Proof of Theorem 1.54 We consider the map

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

N W BT
�

! BT
�

;

2

664

f1
f2
f3
f4

3

775 7!

2

664

F1
F2;1 C F2;2

F3
F4

3

775 ;

By virtue of Lemmas 1.62–1.66 and Proposition 1.67, it is easy to see that N is a

strict contraction of BT
�

, with a Lipschitz constant
1

2
for small T�. Thus the proof

follows from the Banach fixed point theorem.

Proof of Theorem 1.53 Let us assume that .�0; u0; g0; !0/ 2 Ip;q;�F.0/ satisfy-
ing (1.204)–(1.205). Let bT 6 eT be such that, .e�;eu;eg;e!/ be the solution to the
system (1.115)–(1.120) satisfying

e� 2 W1;p.0;bTIW1;q.�F.0///

eu 2 Lp.0;bTIW2;q.�F.0//
3/ \ W1;p.0;bTILq.�F.0//

3/

eg 2 W1;p.0;bTIR3/; e! 2 W1;p.0;bTIR3/:

SincebT 6eT , X.t; �/ is C1-diffeomorphism from�F.0/ into�F.t/. Therefore, there
is a unique Y.t; �/ from�F.t/ into �F.0/ such that Y.t; �/ D X�1.t; �/. We set

�.t; x/ D e�.t;Y.t; x//; u.t; x/ D Q.t/eu.t;Y.t; x//;
Ph.t/ D Q.t/eg.t/; !.t/ D Q.t/e!.t/; for all x 2 �F.t/; t > 0: (1.233)

We can easily check that .�; u; #; h; !/ satisfies the original system (1.110) and

� 2 W1;p.0;TIW1;q.�F.�///\ C.Œ0;T�IW1;q.�F.�///;
u 2 Lp.0;TIW2;q.�F.�//3/\ W1;p.0;TILq.�F.�//3/ \ C.Œ0;T�IB2.1�1=p/q;p .�F.�//3/;

h 2 W2;p.0;TIR3/; ! 2 W1;p.0;TIR3/:

The uniqueness for the solution of (1.110) follows from uniqueness of solution to
the system (1.115)–(1.120). This completes the proof of Theorem 1.53.
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1.4.5 Bibliographical Notes

As far as we know, the first mathematical analysis approach of piston problems
similar to the ones we have introduced in Sect. 1.4.3 was performed in Shelukhin
[30], where global in time existence and uniqueness of classical solutions have
been given. Less regular solutions, in a Hilbert space setting have been given in
Maity et al. [26], which was our main source in Sect. 1.4.3. Our approach of the
three dimensional case in Sect. 1.4.4 should be seen as a simplification of the
methodology proposed in Hieber and Murata [19], which is also considering the
Lp-Lq setting. Earlier results in a Hilbert space framework, which require more
derivability of the initial data, have been given in Boulakia and Guerrero [5].

Acknowledgements Many thanks to our Berhnard Haak and Takéo Takahashi for their help, via
discussions and suggestions, in improving these notes.
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6. N. Cîndea, S. Micu, I. Rovenţa, M. Tucsnak, Particle supported control of a fluid-particle
system. J. Math. Pures Appl. (9) 104(2), 311–353 (2015)

7. P. Clément, J. Prüss, Global existence for a semilinear parabolic Volterra equation. Math. Z.
209(1), 17–26 (1992)

8. P. Clément, J. Prüss, An operator-valued transference principle and maximal regularity on
vector-valued Lp-spaces, in Evolution Equations and Their Applications in Physical and Life
Sciences (Bad Herrenalb, 1998). Lecture Notes in Pure and Applied Mathematics, vol. 215
(Dekker, New York, 2001), pp. 67–87

9. T. Coulhon, D. Lamberton, Régularité Lp pour les équations d’évolution, in Séminaire
d’Analyse Fonctionelle 1984/1985. Publications mathématiques de l’Université Paris VII,
vol. 26 (Université Paris VII, Paris, 1986), pp. 155–165

10. G. Da Prato, P. Grisvard, Sommes d’opérateurs linéaires et équations différentielles opéra-
tionnelles. J. Math. Pures Appl. (9) 54(3), 305–387 (1975)

11. L. de Simon, Un’applicazione della teoria degli integrali singolari allo studio delle equazioni
differenziali lineari astratte del primo ordine. Rend. Sem. Mat. Univ. Padova 34, 205–223
(1964)



74 D. Maity and M. Tucsnak

12. R. Denk, M. Hieber, J. Prüss, R-boundedness, Fourier multipliers and problems of elliptic and
parabolic type. Mem. Am. Math. Soc. 166(788), viii+114 (2003)

13. G. Dore, Lp regularity for abstract differential equations, in Functional Analysis and Related
Topics, 1991 (Kyoto). Lecture Notes in Mathematics, vol. 1540 (Springer, Berlin, 1993), pp.
25–38

14. G. Dore, A. Venni, On the closedness of the sum of two closed operators. Math. Z. 196(2),
189–201 (1987)

15. A. Doubova, E. Fernández-Cara, Some control results for simplified one-dimensional models
of fluid-solid interaction. Math. Models Methods Appl. Sci. 15(5), 783–824 (2005)

16. K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Graduate
Texts in Mathematics, vol. 194 (Springer, New York, 2000). With contributions by S. Brendle,
M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli
and R. Schnaubelt

17. M. Geissert, K. Götze, M. Hieber, Lp-theory for strong solutions to fluid-rigid body interaction
in Newtonian and generalized Newtonian fluids. Trans. Am. Math. Soc. 365(3), 1393–1439
(2013)

18. P. Grisvard, Identités entre espaces de traces. Math. Scand. 13, 70–74 (1963)
19. M. Hieber, M. Murata, The Lp-approach to the fluid-rigid body interaction problem for

compressible fluids. Evol. Equ. Control Theory 4(1), 69–87 (2015)
20. M. Hieber, J. Prüss, Heat kernels and maximal Lp-Lq estimates for parabolic evolution

equations. Commun. Partial Differ. Equ. 22(9–10), 1647–1669 (1997)
21. N.J. Kalton, G. Lancien, A solution to the problem of Lp-maximal regularity. Math. Z. 235(3),

559–568 (2000)
22. P.C. Kunstmann, L. Weis, Perturbation theorems for maximal Lp-regularity. Ann. Scuola Norm.

Sup. Pisa Cl. Sci. (4), 30(2), 415–435 (2001)
23. O.A. Ladyženskaja, V.A. Solonnikov, N.N. Ural’ceva, Linear and Quasilinear Equations

of Parabolic Type. Translated from the Russian by S. Smith. Translations of Mathematical
Monographs, vol. 23 (American Mathematical Society, Providence, RI, 1968)

24. D. Lamberton, Équations d’évolution linéaires associées à des semi-groupes de contractions
dans les espaces Lp. J. Funct. Anal. 72(2), 252–262 (1987)

25. Y. Liu, T. Takahashi, M. Tucsnak, Single input controllability of a simplified fluid-structure
interaction model. ESAIM Control Optim. Calc. Var. 19(1), 20–42 (2013)

26. D. Maity, T. Takahashi, M. Tucsnak, Analysis of a system modelling the motion of a piston in
a viscous gas. J. Math. Fluid Mech., 1–29 (2016). doi:10.1007/s00021-016-0293-2

27. J.S. Martín, M. Tucsnak, Mathematical analysis of particulate flows, in Fundamental Trends in
Fluid-Structure Interaction. Contemporary Challenges in Mathematical Fluid Dynamics and
its Applications, vol. 1 (World Scientific Publishing, Hackensack, NJ, 2010), pp. 201–260

28. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations.
Applied Mathematical Sciences, vol. 44 (Springer, New York, 1983)

29. J. Prüss, H. Sohr, On operators with bounded imaginary powers in Banach spaces. Math. Z.
203(3), 429–452 (1990)

30. V.V. Shelukhin, Motion with a contact discontinuity in a viscous heat conducting gas. Dinamika
Sploshn. Sredy 57, 131–152 (1982)

31. Y. Shibata, M. Murata, On the global well-posedness for the compressible Navier-Stokes
equations with slip boundary condition. J. Differ. Equ. 260(7), 5761–5795 (2016)

32. R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, With an appendix by F.
Thomasset, 3rd edn. (North-Holland Publishing, Amsterdam, 1984)

33. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. (Johann
Ambrosius Barth, Heidelberg, 1995)

34. M. Tucsnak, G. Weiss, Observation and Control for Operator Semigroups. Birkhäuser
Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks]
(Birkhäuser Verlag, Basel, 2009)



1 Maximal Regularity of Systems Modelling FSI 75

35. J.L. Vázquez, E. Zuazua, Large time behavior for a simplified 1D model of fluid-solid
interaction. Commun. Partial Differ. Equ. 28(9–10), 1705–1738 (2003)

36. J.L. Vázquez, E. Zuazua, Lack of collision in a simplified 1-dimensional model for fluid-solid
interaction. Math. Models Methods Appl. Sci. 16(5), 637–678 (2006)

37. L. Weis, Operator-valued Fourier multiplier theorems and maximal Lp-regularity. Math. Ann.
319(4), 735–758 (2001)


	1 A Maximal Regularity Approach to the Analysis of Some Particulate Flows
	1.1 Introduction and Hilbert Space Analysis of a Toy Model
	1.1.1 The General Context
	1.1.2 Introduction of a Toy Model
	1.1.3 Change of Variables
	1.1.4 Local in Time Existence and Uniqueness of Solutions
	1.1.5 Proof of the Global Well-Posedness Result
	1.1.6 Bibliographical Notes

	1.2 Examples of Systems Modelling Fluid-Structure Interactions
	1.2.1 Motion of a Piston in a Heat Conducting Gas; a 1DModel
	1.2.2 Motion of a Rigid Body in a Viscous IncompressibleFluid
	1.2.3 Motion of a Solid in a Compressible Fluid

	1.3 Short Introduction to R-Sectorial Operators 
	1.3.1 Basic Definitions
	1.3.2 Weis' Theorem
	1.3.3 Abstract Framework Corresponding to Linear Fluid-Solid Interaction Problems
	1.3.4 Bibliographical Notes

	1.4 Existence and Uniqueness Results
	1.4.1 Some Background
	1.4.2 Back to the Toy Problem
	1.4.3 A More Realistic 1D Model
	1.4.4 Motion of a Solid in a Compressible Fluid
	1.4.5 Bibliographical Notes

	References


