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Preface

The subject of particles in industrial, environmental and biomedical flows is a
challenging topic with many practical applications in everyday life. It’s a combi-
nation of fluid mechanics and solid body mechanics with various aspects of specific
applications that make this multidisciplinary area so hard to address without a deep
knowledge of a whole range of background topics.

The aim of this volume is to face the Particles in Flows from many different, but
essentially interconnected sides and points of view. Thus the selection of authors
and topics represented in the chapters ranges from deep mathematical analysis of
the associated models, through the techniques of their numerical solution, towards
real applications and physical implications.

The scope and structure of this book as well as the selection of authors is
motivated by the very successful summer course and workshop “Particles in Flows”
that was held in Prague in August 2014. This meeting has revealed a need for a
book of this type, and thus we hope that this work will find its way to the scientific
community dealing with this specific and challenging multidisciplinary subject.

The work on this book was partially supported by the Czech Science Foundation
under the grant No. 201-16-03230S and by the project RVO 67985840 through the
Institute of Mathematics of the Czech Academy of Sciences.

Prague, Czech Republic Tomáš Bodnár
Pittsburgh, PA, USA Giovanni Paolo Galdi
Prague, Czech Republic Šárka Nečasová
April 2017
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Chapter 1
A Maximal Regularity Approach to the Analysis
of Some Particulate Flows

D. Maity and M. Tucsnak

Abstract This work presents some recent advances in the mathematical analysis of
particulate flows. The main idea we want to emphasize is that, for a variety of fluid
models the corresponding coupled systems have a common structure, at least in the
linearized case. Within this framework, several model problems are considered and
studied in detail. This includes a simple toy model, motion of a piston in a heat
conducting gas, motion of a rigid body in a viscous incompressible fluid and motion
of a solid in a compressible fluid.

Keywords Compressible fluid • Existence • Fluid-structure interactions • Global
well-posedness • Heat conducting gas • Navier-Stokes • Uniqueness • Viscous
incompressible fluid
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1.1 Introduction and Hilbert Space Analysis of a Toy Model

1.1.1 The General Context

In the remaining part of this work the term particulate flows designs the coupled
motion of a collection of rigid bodies and of a fluid surrounding them. Such systems
occur, for instance, in aerodynamics (flow around an aircraft), medicine (blood flow
in vessels), zoology (swimming of aquatic animals). The mathematical study of

D. Maity
Institut de Mathématiques, Université de Bordeaux, Bordeaux INP, CNRS, 351 cours de la
Libération, F 33405 Talence, France
e-mail: debayan.maity@u-bordeaux.fr

M. Tucsnak (�)
Institut de Mathématiques de Bordeaux UMR 5251, Université de Bordeaux, 351, cours de la
Libération, F 33 405 Talence, France
e-mail: marius.tucsnak@u-bordeaux.fr

© Springer International Publishing AG 2017
T. Bodnár et al. (eds.), Particles in Flows, Advances in Mathematical
Fluid Mechanics, DOI 10.1007/978-3-319-60282-0_1

1

mailto:debayan.maity@u-bordeaux.fr
mailto:marius.tucsnak@u-bordeaux.fr


2 D. Maity and M. Tucsnak

these problems rises several challenges, the main one being due to the fact that the
domain filled by the fluid is one of the unknowns of the problem. Another difficulty
which has to be tackled is that the dynamics of the system couples equations of
different nature: ordinary differential or partial differential equations modeling the
solid with the partial differential equations (compressible or incompressible Navier-
Stokes) modeling the fluid.

A first important idea we want to develop in this work is that such a system
can be mathematically tackled as a perturbation (in an appropriate sense) of the
equations describing the fluid alone. More precisely, we see the coupled linearized
fluid-structure system like a boundary controlled fluid system, with the boundary
control given by an appropriate dynamic feedback which satisfies a “smallness”
condition. For the considered applications, this smallness condition follows from a
compactness type property of the operator describing the dynamic feedback. We first
apply this methodology to a toy problem and then to systems describing particulate
flows in a viscous compressible fluid. The incompressible case, apriori simpler,
seems more difficult to be included in the general framework we have constructed.
For this case we refer to the rich existing literature (see, for instance, Geissert et al.
[17] or Martín and Tucsnak [27] and references therein).

A second important idea is that we study the wellposedness of the considered
initial and boundary values problems in spaces of functions which are Lp with
respect to time and Lq with respect to the space variable, with arbitrary p; q > 1.
Most of the existing literature on the mathematical analysis of particulate flows
consider the Hilbert space setting, corresponding to p D q D 2. (The only
exceptions we are aware of are Geissert et al. [17] Hieber and Murata [19].) Quitting
the Hilbert space setting clearly complicates the analysis. This is essentially due to
the fact that the maximal regularity of the solutions of the linearized problems is
no longer implied by the analytic character of the associated semigroup. Instead,
a more sophisticated property of the generators, called R-sectoriality, has to be
investigated. One of the advantages of this approach is that the extra integrability
properties obtained by taking p; q > 2 allow us to avoid estimates on higher order
derivatives and also to correctly define the changes of variables which naturally
occur in the study of particulate flows (such as the equivalence of Eulerian and
Lagrangian formulations for compressible flows).

Let us first describe those basic equations which are independent of the properties
of the fluid. The domain occupied by the fluid and the particles is � � R

3, a
connected open bounded set with C2 boundary. Let m 2 N be the number of
particles let h1; h2; : : : ; hm be the (variable) positions of their centers of mass. For
every k 2 f1; 2 : : : ;mg we denote by Rk the proper orthogonal matrix (also a variable
one) giving the orientation of the kth particle, whose position is thus given by

S.hj;Rj/ D hj C Rj.S0;j � h0;j/ . j 2 f1; : : : ;mg/;

where S0;j and h0;j stand, for each j 2 f1; : : : ;mg for the set occupied by the jth solid,
respectively the position of its center of mass, at t D 0. The fluid is supposed to be
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incompressible, homogeneous with density � > 0 and it occupies the domain

F.h1;R1 : : : hm;Rm/ WD � n
m[

kD1
S.hk;Rk/:

Regardless the considered type of fluid, we know that the Cauchy equations hold
in fluid domain. More precisely, we have

� Œ Pv C .v � r/v� � div� D �b .t > 0; x 2 F.h1.t/;R1.t/; : : : ; hm.t/;Rm.t//;
(1.1)

v is the Eulerian velocity field of the fluid, � is its Cauchy stress field and b is the
density of exterior forces (supposed to be known). The equations of motion of the
solids are given by Newton’s laws and they can be written

Mj Rhj D �
Z

@S.hj.t/;Rj.t//
�n d� C

Z

S.hj.t/;Rj.t//
�jb dx; t > 0; j D 1; : : : ;m; (1.2)

d

dt
.Jj!j/ D �

Z

@S.hj.t/;Rj.t//
.x � hj/ � �n d�

C
Z

S.hj.t/;Rj.t//
.x � hj/ � �jb dx; t > 0; j D 1; : : : ;m; (1.3)

dRj

dt
.t/ D A.!j.t//Rj.t/ t > 0; j D 1; : : : ;m; (1.4)

where �j is the density of the solid S.hj.t/;Rj.t// (supposed to be a known constant),
!j.t/ is its angular velocity, the notation � stands for the usual vector product in R

3,
whereas n denotes the unitary normal vector field to @S.hj.t/;Rj.t// oriented towards
the interior of each solid. The skew symmetric matrix A.!/ is defined by

A.!/ D
0

@
0 �!3 !2

!3 0 �!1
�!2 !1 0

1

A for all ! 2 R
3: (1.5)

Moreover, for every j 2 f1; : : : ;mg, Mj stands for the mass of S.hj.t/;Rj.t// and
J.hj.t/;Rj.t// denotes the inertia matrix of S.hj.t/;Rj.t// defined by

J.hj.t/;Rj.t//a � b

D �j

Z

S.hj.t/;Rj.t//

�
a � .x � hj.t//

� � �b � .x � hj.t//
�

dx for all a; b 2 R
3:

(1.6)

In order to close the system, Eqs. (1.1)–(1.4) have to be supplemented with a
constitutive law for the fluid, with appropriate boundary conditions and with the
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initial conditions, valid jour j 2 f1; : : : ;mg,

v.x; 0/ D v0.x/ .x 2 F.h0;j;R0;j//; (1.7)

hj.0/ D h0;j; Phj.0/ D g0;j; Rj.0/ D R0;j; !j.0/ D !0;j (1.8)

The constitutive law and the boundary conditions in the case of a viscous
incompressible fluid will be introduced in the following sections.

The outline of this work is as follows. In the next subsection, in order to give a
flavour of the results to come, we introduce a toy model in one space dimension,
in which the Navier-Stokes system is replaced by the viscous Burgers equations.
The solid is replaced by a mass-point evolving under the action of the surrounding
“Burgers” fluid. In the remaining part of the first section we develop the existence
and uniqueness theory for the corresponding coupled PDE system, in a Hilbert
space framework. The second section is devoted to the introduction of several
more realistic models of fluid-structure interactions. More precisely we consider
the systems modelling the motion of a piston in a 1D viscous heat conducting gas,
then of a rigid body in a viscous incompressible fluid and finally the motion of
a rigid body in a three dimensional viscous compressible fluid filling a bounded
domain. Section 1.3 contains an introduction to the theory of maximal regularity for
evolution equations, namely those which are associated to R-sectorial operators.
Moreover, we make precise here the common structure of the linearized problems
for various particulate flow systems, and we prove a useful perturbation result.
Section 1.4 first revisits the analysis of the toy problem introduced in Chap. 1, this
time in an Lp � Lq setting. The last part of this chapter is devoted to local in time
existence results, still in an Lp � Lq setting, for the two other systems introduced in
Sect. 1.2.

1.1.2 Introduction of a Toy Model

The viscous Burgers equation is often used as a toy model for the Navier-Stokes
equations. In this section we consider a similar simplification for the system
describing the motion of a rigid body in a viscous fluid. Assuming that, instead of
the Navier-Stokes equations, the fluid is described by the one dimensional viscous
Burgers equation, the system writes

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

Pv.t; y/ � vyy.t; y/C v.t; y/vy.t; y/ D 0 t > 0; y 2 .�1; 1/; y ¤ h.t/;
v.t;�1/ D v.t; 1/ D 0 t > 0;
Ph.t/ D v.t; h.t// t > 0;
Rh.t/ D Œvy�.t; h.t// t > 0;

v.0; y/ D v0. y/ y 2 .�1; 1/;
h.0/ D h0; Ph.0/ D g0:

(1.9)
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In (1.9), v D v.t; y/ denotes the Eulerian velocity field of the fluid filling the interval
.�1; 1/, whereas h D h.t/ indicates the position of the point mass and the derivative
with respect to time is denoted by a dot. Moreover, the force exerted by the fluid
on the mass is given by the jump of the derivative of v when crossing the mass,
denoted by Œvy�.t; h.t//. For the sake of simplicity, we have assumed that the mass
of the body, the viscosity and the density of the fluid are equal to one.

The main result of this chapter reads as follows:

Theorem 1.1 Assume that v0 2 H1
0.�1; 1/, h0 2 .�1; 1/ and g0 2 R are such that

v0.h0/ D g0. Then the system (1.9) admits a unique solution

�
v

h

�
with

v 2 C.Œ0;1/IH1
0.�1; 1//\ H1

loc..0;1/IL2.�1; 1//; h 2 H2 ..0;T/; .�1; 1// ;

with the restriction of v to x 2 .�1; h0/ (respectively to .h0; 1/) in L2loc..0;1/I
H2.�1; h0// (respectively in L2loc..0;1/IH2.h0; 1//).

Note that the global character of the wellposedness result above implies that the
mass point does not reach the extremities of the interval, i.e. the solid will not touch
the boundary. The methodology used in next section extends to the case of several
point-masses and in this case we can show that the point-masses do not collide in
finite time.

1.1.3 Change of Variables

An important step in proving our wellposedness results is to use a change of
variables mapping the time dependent interval Œ�1; h.t/� (respectively Œh.t/; 1�) on
the fixed one Œ�1; h0� (respectively Œh0; 1�). More precisely, we set z.t; x/ D v .t; y/,
where

x D
(
.h0C1/yCh0�h.t/

h.t/C1 . y 2 Œ�1; h.t/�/;
.h0�1/yCh.t/�h0

h.t/�1 . y 2 Œh.t/; 1�/: (1.10)

It is easily checked that (1.10) can be rewritten as

y D .1 � kh.t//x � h0 C h.t/

1 � kh0
; k D sgn.x � h0/: (1.11)

The following proposition shows that by using the change of variable (1.10) the
system (1.9) is equivalent with a system written in a fixed spatial domain.

Proposition 1.2 Let T > 0, v0 2 L2Œ�1; 1�, h0 2 .�1; 1/, g0 2 R, and assume that

v 2 C.Œ0;T�IH1
0 .�1; 1//\ H1..0;T/IL2.�1; 1//; h 2 H2 ..0;T/; .�1; 1// ;
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Then

2

4
v

g
h

3

5 is a solution of (1.9) on Œ0;T� if and only if, the triplet

2

4
z
g
h

3

5, where

z.t; x/ D v .t; y/, with x given by (1.10), satisfies, for every t 2 Œ0;T�,
8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

Pz � zxx D k.h�h0/
1�kh

h
2C k.h�h0/

1�kh

i
zxx C 1�kx

1�khgzx � 1�kh0
1�kh zzx; x 2 .�1; 1/ n h0

z.t;�1/ D z.t; 1/ D 0

z.t; h0/ D g.t/
Pg � Œzx� .t; h0/ D .h � h0/

� kzx
1�kh

�
.t; h0/ t 2 .0;T/

Ph.t/ D g.t/
z.0; x/ D z0.x/ x 2 .�1; 1/
h.0/ D h0; g.0/ D g0:

(1.12)

Proof Using the change of variables (1.10)–(1.11), simple calculations show
that (1.9) can be rewritten, for t 2 Œ0;T�:
8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

.1� kh/Pz � .1�kh0/2

1�kh zxx � .1 � kx/gzx C .1 � kh0/zzx D 0; x 2 .�1; 1/ n h0
z.t;�1/ D z.t; 1/ D 0

z.t; h0/ D g.t/
mPg.t/ D �

1�kh0
1�kh zx

�
.t; h1/

Ph.t/ D g.t/
z.0; x/ D z0.x/; x 2 .�1; 1/;
h.0/ D h0; g.0/ D g0:

(1.13)

After some simple calculations we see that the above equations are equivalent to the
system (1.12). ut

1.1.4 Local in Time Existence and Uniqueness of Solutions

The main result in this section states as follows.

Proposition 1.3 Assume that v0 2 H1
0.�1; 1/, h0 2 .�1; 1/ and g0 2 R are such

that v0.h0/ D g0. Then there exists Tmax > 0 such that for every T 2 .0;Tmax/, the
system (1.9) admits a unique solution

v 2 C.Œ0;T�IH1
0 .�1; 1//\ H1..0;T/IL2.�1; 1//; h 2 H2 ..0;T/; .�1; 1// ;

(1.14)

with the restriction of v to x 2 .�1; h0/ (respectively to .h0; 1/) in L2..0;T/I
H2.�1; h0// (respectively in L2..0;T/IH2.h0; 1//). Moreover, for every t 2 Œ0;Tmax/
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we have

1

2

Z 1

�1
v2.t; y/dy C 1

2
.Ph.t//2 D �

Z t

0

Z 1

�1
vy.�; y/

2 dy d� �
Z t

0

Ph2.�/ d�: (1.15)

Finally, only one of the alternatives holds true

1. The solution is global, i.e. Tmax D 1.
2. We have either that inf

t2Œ0;Tmax/
.1 � h.t// D 0 (which means that the mass touches

the boundary) or that sup
t2Œ0;Tmax/

kv.t; �/kH10 .�1;1/ D 1.

An important role in the proof of the above proposition is played by a self-adjoint
operator which we introduce below. Consider the Hilbert space

H D L2.�1; 1/ � R;

endowed with the inner product

��
'1
p1

�
;

�
'2
p2

��
D
Z 1

�1
'1.x/'2.x/ dx C p1p2: (1.16)

We define the unbounded operator A0 W D.A0/ ! H,

D.A0/ D
8
<

:

�
'

p

�
2
H1
0.�1; 1/

�
R

ˇ̌
ˇ̌
ˇ̌
'j.�1;h0/ 2 H2.�1; h0/;
'j.h0;1/ 2 H2.h0; 1/;

'.h0/ D p

9
=

; : (1.17)

A0

�
'

p

�
D
� �'xx
�Œ'x�.h0/

� ��
'

p

�
2 D.A0/

	
: (1.18)

Proposition 1.4 The operator A0 is positive in H. Moreover, the corresponding

space H 1
2
(i.e., D.A

1
2

0 / endowed with the graph norm of A
1
2

0 ) is

H 1
2

D

�
'

p

�
2 H1

0.�1; 1/� R
ˇ̌
'.h1/ D p

�
; (1.19)

endowed with the inner product

��
'1
p1

�
;

�
'2
p2

��

1
2

D
Z 1

�1
'1;x.x/'2;x.x/ dx: (1.20)
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Proof We first check that A0 is symmetric. Indeed, for any ˆi D
�
'i
pi

�
2 D.A0/,

i D 1; 2, we have that

hA0ˆ1;ˆ2i D �
Z h1

�1
'1;xx.x/'2.x/ dx

�
Z 1

h1

'1;xx.x/'2.x/ dx � Œ'1;x�.h1/p2 � Œ'1;x�.h1/r2

D
Z 1

�1
'1x.x/'2x.x/ dx D hˆ1;A0ˆ2i: (1.21)

We next check that A0 is onto. For F D
�
f
g

�
2 H, the equation A0ˆ D F, of

unknownˆ D
�
'

p

�
2 D.A0/ writes

8
<

:

�'xx.x/ D f .x/ x 2 .�1; h1/[ .h1; 1/
'.a/ D p
�Œ'x�.h1/ D g:

Elementary considerations on the differential equation �'xx D f show that the

above system has a unique solution

�
'

p

�
2 D.A0/ so that A0 is onto. Since we

have already shown that A0 is symmetric, a classical result (see, for instance, [34,
Proposition 3.2.4]) implies that A0 is self-adjoint.

On the other hand, taking ˆ1 D ˆ2 D ˆ D
�
'

p

�
in (1.21) we see that,

hA0ˆ;ˆi D
Z 1

�1
'2x .x/ dx;

which implies (1.20). ut
As a consequence of the positivity A0 and of a classical result (see, for instance,

Lemma 3.3 and Theorem 3.1 of [4] ),we obtain:

Corollary 1.5 For every t0; t1 > 0, Y0 2 H and f 2 L2 .Œt0; t1�;H/ there exists a

unique Y 2 C
�
Œt0; t1�;H 1

2


\ L2 .Œt0; t1�;H1/ such that


 PY.t/C A0Y.t/ D f .t/ t 2 .t0; t1/
Y.t0/ D Y0:

(1.22)
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Moreover, there exists an absolute positive constant K such that, for every Y0 2 H 1
2

and f 2 L2.Œt1; t2�;H/, we have

kYk2C.Œt1;t2�;H1=2// C kA0Yk2L2.Œt1;t2�;H/

6 kA 1
2

0 Y0k2H C Kk fk2L2.Œt1;t2�;H/ .Y0 2 H1=2; f 2 L2 .Œt1; t2�;H//: (1.23)

Remark 1.6 In PDE terms the above corollary says that if T > 0, z0 2 H1
0.�1; 1/,

g0 2 R, f1 2 L2.Œ0;T�;L2.�1; 1// and f2 2 L2Œ0;T�, are such that v0.h0/ D g0 then

then the solution

�
z
g

�
of the system

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

Pz.t; x/ � zxx.t; x/ D f1.t; x/; x 2 .�1; h0/[ .h0; 1/; t 2 .0;T/;
z.t;�1/ D z.t; 1/ D 0; t 2 .0;T/;
z.t; h0/ D g.t/; t 2 .0;T/;
Pg.t/ � Œzx� .t; h0/ D f2.t/; t 2 .0;T/;
z.0; x/ D z0.x/; x 2 .�1; 1/;
g.0/ D g0;

(1.24)

satisfies

kzk2
C.Œ0;T�;H10 .�1;1// C kgk2CŒ0;T� C kzk2L2 Œ0;T�;H2.�1;h0// C kzk2L2Œ0;T�;H2.h0;1//

6 kz0k2H10 .�1;1/ C jg0j2 C K
�
k f1k2L2.Œ0;T�;L2 .�1;1// C k f2k2L2Œ0;T�


: (1.25)

Another important ingredient are the properties of the operators .Gk/
4
kD1 which

are defined (as suggested by the right hand side of (1.12)) by

G1
�
f1
f2

�
.t; x/ D k.h.t/ � h0/

1 � kh.t/

�
2C k.h.t/ � h0/

1� kh.t/

�
zxx.t; x/; (1.26)

G2
�
f1
f2

�
.t; x/ D 1 � kx

1 � kh.t/
g.t/zx.t; x/; (1.27)

G3
�
f1
f2

�
.t; x/ D � 1 � kh0

1 � kh.t/
z.x; t/zx.t; x/; (1.28)

G4
�
f1
f2

�
.t/ D .h.t/� h0/

�
kzx

1 � kh

�
.t; h0/; (1.29)

where z, g satisfy (1.24) and

h.t/ D h0 C
Z t

0

g.�/ d�: (1.30)
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We give below some of the properties of these operators.

Lemma 1.7 Let T > 0 and let Gk, with k 2 f1; 2; 3; 4g, be the operators
defined in (1.26)–(1.29). Then, for every k 2 f1; 2; 3g, the operator Gk maps
L2.Œ0;T�;L2Œ�1; 1�/ to L2.Œ0;T�;L2Œ�1; 1�/ , whereas G4 maps L2Œ0;T� to L2Œ0;T�.
Moreover, assume that

k f1k2L2.Œ0;T�;L2 Œ�1;1�/ C k f2k2L2.Œ0;T� 6 R2; kv0k2H10 .�1;1/ C jg0j2 6 M2; 1� jh0j > ";

(1.31)

for some R; M; " > 0. Then there exists a constant C D C."/ > 0 such that for
every T 6 "

2
p
M2CKR2

(with K being the constant in (1.25)) we have

����Gk

�
f1
f2

�����
L2.Œ0;T�;L2 Œ�1;1�/

6 TC."/ .M2 C KR2/ .k 2 f1; 2; 3g/; (1.32)

����G4
�
f1
f2

�����
L2Œ0;T�

6
p
TC."/

�
M2 C KR2

�
: (1.33)

Finally, if h is defined by (1.30) we have that

jh.t/j 6 1 � "

2
.t 2 Œ0;T�/: (1.34)

Proof In order to prove (1.34) it suffices to note that, using (1.25), we have

jh.t/j 6 jh0j C
Z T

0

jg.�/j d� 6 1 � "C T
p
M2 C KR2 6 1 � "

2
.t 2 Œ0;T�/:

The facts that G1; G2; G3 map L2.Œ0;T�;L2Œ�1; 1�/ to L2.Œ0;T�;L2Œ�1; 1�/ and
that G4 maps L2Œ0;T� to L2Œ0;T� follow from (1.25) and from simple Sobolev
embeddings.

In the remaining part of this proof we denote byeC."/ a generic positive constant
depending only on ".

In order to prove (1.32) we first note that (1.34) implies that

1

1 � kh.t/
6 2

2 � " .t 2 Œ0;T�/: (1.35)

By combining (1.26) and (1.35) it follows that

����G1
�
f1
f2

�����
L2.Œ0;T�;L2 Œ�1;1�/

6 TeC."/ kgkC.Œ0;T�;L2 Œ�1;1�/ kzxxkL2.0;T;L2.�1;1//:

Combining the last estimate with (1.25) we obtain that (1.32) holds for k D 1.
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In order to prove (1.32) holds for k D 2, we note that the definition of G2,
combined with (1.35) and the Cauchy-Schwarz inequality, imply that

����G2
�
f1
f2

�
.t; x/

����
L2Œ0;T�;L2 .�1;1//

6 eC."/kgkL2Œ0;T�kzxkL2.0;T;L2Œ�1;1�/

6 TeC."/kgkCŒ0;T�kzxkC.Œ0;T�;L2 Œ�1;1�/ 6 TeC."/
�
kgk2CŒ0;T� C kzxk2C.Œ0;T�;L2 Œ�1;1�/


:

The last estimate and (1.25) imply that (1.32) holds for k D 2.
The fact that (1.32) holds for k D 3 can be proved in a completely similar manner,

so we omit the details.
In order to prove (1.33) we note that the definition (1.29) of G4, estimate (1.35)

and a classical trace theorem imply that

ˇ̌
ˇ̌.h.t/� h0/

�
kzx

1 � kh

�
.t; h0/

ˇ̌
ˇ̌

6 eC."/
Z T

0

jg.t/j dt
�kz.t; �/kH2.�1;h0// C kz.t; �/kH2.h0;1//

�
:

The above estimate and (1.25) imply that

����.h.t/� h0/

�
kzx
1 � kh

�
.t; h0/

����
L2Œ0;T�

6
p
TeC."/

�
kgk2CŒ0;T� C kz.t; �/k2H2.�1;h0// C kz.t; �/k2H2.h0;1//


;

which, combined with (1.25), yields (1.33). ut
Lemma 1.8 With the notation and assumptions in Lemma 1.8, suppose thatef1; ef2 2
L2.Œ0;T�;L2Œ�1; 1�/ satisfy

kef1k2L2.Œ0;T�;L2 Œ�1;1�/ C kef2k2L2.Œ0;T� 6 R2; (1.36)

Then there exists a constant C D C."/ > 0 such that for every T 6 "

2
p
M2CKR2

(with
K being the constant in (1.25)) we have

�����Gk

"
f1
f2

#
� Gk

"
ef1
ef2

#�����
L2.Œ0;T�;L2Œ�1;1�/

6 TC."/
p
M2 C KR2

�k f1 �ef1kL2.Œ0;T�;L2Œ�1;1�/ C k f2 �ef2kL2Œ0;T�
�

.k 2 f1; 2; 3g/;
(1.37)
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����G4
�
f1
f2

�
� G4

�ef1
ef2

�����
L2Œ0;T�

6
p
TC."/

p
M2 C KR2

�k f1 �ef1kL2.Œ0;T�;L2 Œ�1;1�/ C k f2 �ef2kL2Œ0;T�
�
: (1.38)

Proof The proof is based on estimates which are very close to those used in proving
Lemma 1.7. More precisely, we first note that, estimate (1.35) for h and foreh implies
that

����G1
�
f1
f2

�
� G1

�ef1
ef2

�����
L2.Œ0;T�;L2 Œ�1;1�

6 eC."/kh�h0kL1 Œ0;T�kzxx�ezxxkL2.Œ0;T�;L2 Œ�1;1�/

CeC."/
��.h � h0/zxx.1 � keh/� .eh � h0/ezxx.1 � kh/

��
L2.Œ0;T�;L2 Œ�1;1�/ : (1.39)

Using the inequality

kh � h0kCŒ0;T� 6 TkgkCŒ0;T� ; (1.40)

together with (1.25) it follows that the first term in the right hand side of (1.39)
satisfies

kh � h0kL1 Œ0;T�kzxx �ezxxkL2.Œ0;T�;L2 Œ�1;1�/
6 T

p
M2 C KR2

�k f1 �ef1kL2.Œ0;T�;L2 Œ�1;1�/ C k f2 �ef2kL2Œ0;T�
�
: (1.41)

Concerning the second term in the right hand side of (1.39) we note that

��.h � h0/zxx.1 � keh/� .eh � h0/ezxx.1 � kh/
��
L2.Œ0;T�;L2 Œ�1;1�/

6 k.h � h0/zxxkL2.Œ0;T�;L2 Œ�1;1�/ kh �ehkL1 Œ0;T�

C k.h � h0/.1 � kh/kL1Œ0;T� kzxx �ezxxkL2.Œ0;T�;L2 Œ�1;1�/
C kezxx.1 � kh/kL2.Œ0;T�;L2 Œ�1;1�/ kh �ehkL1 Œ0;T�:

Using in the above inequality the fact that

kh �ehkL1 Œ0;T� 6 Tkg �egkL1 Œ0;T�; (1.42)

together with (1.42) and (1.25), we obtain that

��.h � h0/zxx.1 � keh/� .eh � h0/ezxx.1 � kh/
��
L2.Œ0;T�;L2 Œ�1;1�/

6 TeC."/
p
M2 C KR2

�k f1 �ef1kL2.Œ0;T�;L2 Œ�1;1�/ C k f2 �ef2kL2Œ0;T�
�
: (1.43)
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By combining (1.41) and (1.43) we obtain that (1.37) holds for k D 1. The proof
of (1.37) for k 2 f2; 3g is very similar (but quite tedious) so we omit it here.

In order to prove (1.38) we note that from the definition (1.29) of G4 and
from (1.35) it follows that

����G4
�
f1
f2

�
� G4

�ef1
ef2

�����
L2Œ0;T�

6 kh.t/� h0kCŒ0;T�
����
�
k.zx �ezx/
1 � kh

�
.t; h0/

����
L2Œ0;T�

C kh�ehkCŒ0;T�
����
� ezx/
1 � kh

�
.t; h0/

����
L2Œ0;T�

C �
p
Tkg�egkCŒ0;T� C

p
Tkh�ehkCŒ0;T�:

The above estimate, combined with (1.35), (1.40), (1.42) and (1.25), implies the
conclusion (1.38). ut

We are now in a proposition to prove the main result in this section.

Proof of Proposition 1.3 Let

X D L2.Œ0;T�;L2Œ�1; 1�/ � L2Œ0;T�;

and let N W X ! X be defined by

N D
�
G1 C G2 C G3

G4

�
;

where .Gk/16k64 have been defined in (1.26)–(1.29).
Let M > 0 be such that

kz0k2H10 .�1;1/ C jg0j2 6 M2; (1.44)

and let " > 0 such that

jh0j 6 1 � ": (1.45)

We denote by BM the ball in X of radius M. From Lemma 1.7 it follows that

����N
�
f1
f2

�����
X

6 .T C p
T/C."/.M2 C M C 1/

��
f1
f2

�	
2 BM/:

The last estimate implies that N maps BM into BM if

T 6
�
C."/M2

��1
: (1.46)
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By applying Lemma 1.8 it follows that

����N
�
f1
f2

�
� N

�ef1
ef2

�����
X

6
p
T
C."/.M2 C M C 1/

M

����
�
f1
f2

�
�
�ef1
ef2

�����
X

��
f1
f2

�
;

�ef1
ef2

�
2 BM

	
:

The last estimate implies that the restriction of N to BM is a strict contraction
provided that

T 6 1

2

�
C."/.M2 C M C 1/

M

��1
: (1.47)

Consequently, for every T satisfying (1.46) and (1.47) we have that N has a unique

fixed point

"
bf 1
bf 2

#
2 BM . Denoting by

�
bz
bg

�
the solution of (1.24) with f1 D bf 1 and

f2 Dbf 2 we clearly have that

�
v

h

�
with

v.t; �/ Dbz.t; �/; h.t/ D h0 C
Z t

0

g.�/ d� .t 2 Œ0;T�/; (1.48)

satisfy all the equations in (1.9), with the restriction of v to x 2 .�1; h0/ (respec-
tively to .h0; 1/) in L2.Œ0;T�IH2.�1; h0// (respectively in L2.Œ0;T�IH2.h0; 1//).
Moreover, according to (1.34) we have that h.t/ 2 .�1; 1/ for every t 2 Œ0;T�,

so that

�
v

h

�
is indeed the desired local in time solution of (1.9).

According to classical arguments, this solution can be extended to a solution
defined on Œ0;Tmax/.

Finally, assume that both assertions in the second alternative in Proposition 1.3
are false. Denoting

M D sup
t2Œ0;Tmax/

kv.t; �kH10 .�1;1/; " D inf
t2Œ0;Tmax/

.1 � jh.t/j/;

the first part of the proof shows that there exists ı D ı.";M/ > 0 such that for every
t 2 Œ0;Tmax/ the solution can be extended on Œt;T C ı�. This clearly implies that
Tmax D 1, i.e., that the solution is global. ut
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1.1.5 Proof of the Global Well-Posedness Result

The key estimates used to prove the above theorem are given in the result below.

Proposition 1.9 With the notation and assumptions in Proposition 1.3, let T 2
Œ0;Tmax/ and let

�
v

h

�
W Œ0;T� ! H1

0.�1; 1/�R be the local in time solution of (1.9)

constructed in Proposition 1.3. Moreover, assume that the initial data v0 satisfies
kv0kH1.�1;1/ 6 M, for some M > 0. Then there exists a constant K D K.M;T/ such
that

kv.t; �/kH10 .�1;1/ 6 K.M;T/ .t 2 Œ0IT�/: (1.49)

Z T

0

"Z h.t/

�1
v2yy.t; y/ dy C

Z 1

h.t/
v2yy.t; y/ dy C jRh.t/j2

#
dt 6 K.M;T/: (1.50)

Proof We follow step by step the method used in [36].
Multiplying the first equation in (1.9) vyy and integrating on .�1; h0/ and .h0; 1/,

we obtain that for every t 2 Œ0;T� we have

Z h.t/

�1
v2yy dy D �1

2

Z h.t/

�1
@

@t
.v2y / dy C Pv.t; h.t/ � 0/vy.t; h.t/ � 0/C

Z h.t/

�1
vvyvyy dy;

(1.51)
Z 1

h.t/
v2yy dy D �1

2

Z 1

h.t/

@

@t
.v2y / dy � Pv.t; h.t/C 0/vy.t; h.t/C 0/C

Z 1

h.t/
vvyvyy:

(1.52)

On the other hand, differentiating the third equation in (1.9) it follows that

Pv.t; h.t/˙ 0/ D Rh.t/ � Ph.t/vy.t; h.t/˙ 0/ .t > 0/;

so that

Pv.t; h.t/˙ 0/vy.t; h.t/˙ 0/ D Rh.t/vy.t; h.t/˙ 0/� Ph.t/v2y .t; h.t/˙ 0/: (1.53)

On the other hand

Z h.t/

�1
@

@t
.v2y / dy D d

dt

Z h.t/

�1
v2y dy � Ph.t/vy.t; h.t/ � 0/;

Z 1

h.t/

@

@t
.v2y / dy D d

dt

Z h.t/

�1
v2y dy C Ph.t/vy.t; h.t/C 0/;
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so that

�1
2

Z h.t/

�1
@

@t
.v2y / dy � 1

2

Z 1

h.t/

@

@t
.v2y / dy D �1

2

d

dt

Z 1

�1
v2y dy � 1

2
Ph.t/Œvy�.t; h.t//:

By combining the last formula with (1.51), (1.52) and (1.53) it follows that

Z h.t/

�1
v2yy dy C

Z 1

h.t/
v2yy dy D �1

2

d

dt

Z 1

�1
v2y dy � 1

2
Ph.t/Œvy�.t; h.t//

� Rh.t/Œvy�.t; h.t//C Ph.t/Œv2y �.t; h.t//C
Z h.t/

�1
vvyvyy dy C

Z 1

h.t/
vvyvyy dy:

In the second term of the right hand side of the above formula we use the fact that

Œvy�.t; h.t// D Rh.t/; (1.54)

and we obtain that

Z h.t/

�1
v2yy dy C

Z 1

h.t/
v2yy dy D �1

2

d

dt

Z 1

�1
v2y dy � 1

4

d

dt
Ph2.t/

� Rh2.t/C Ph.t/Œv2y �.t; h.t//C
Z h.t/

�1
vvyvyy dy C

Z 1

h.t/
vvyvyy dy: (1.55)

The last two terms in the right hand side of the above formula can be estimated,
using the Cauchy-Schwarz inequality, to give

ˇ̌
ˇ̌
ˇ

Z h.t/

�1
vvyvyy dy C

Z 1

h.t/
vvyvyy dy

ˇ̌
ˇ̌
ˇ

6 kv.t; �/ vy.t; �/kL2Œ�1;1�
�kvyy.t; �/kL2Œ�1;h.t/� C kvyy.t; �/kL2Œh.t/;1�

�
: (1.56)

Using the classical interpolation inequality

k kCŒ�1;1� 6 k 0k 1
2

L2Œ�1;1�k k 1
2

L2 Œ�1;1� . 2 H1
0.�1; 1//;

together with (1.15) it follows that

kv.t; �/ vy.t; �/kL2Œ�1;1� 6 Mkvy.t; �/k
3
2

L2Œ�1;1�:
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Inserting the last inequality into (1.56) we obtain that

ˇ̌
ˇ̌
ˇ

Z h.t/

�1
vvyvyy dy C

Z 1

h.t/
vvyvyy dy

ˇ̌
ˇ̌
ˇ 6 M2

2
kvy.t; �/k3L2Œ�1;1�

C 1

2

�
kvyy.t; �/k2L2Œ�1;h.t/� C kvyy.t; �/k2L2Œh.t/;1�


.t 2 Œ0;T�/: (1.57)

By combining the last inequality and (1.55), it follows that

d

dt

Z 1

�1
v2y dy C

Z h.t/

�1
v2yy dy C

Z 1

h.t/
v2yy dy C d

dt
jPh.t/j2 C jRh.t/j2C

6 K1
�
1C kvy.t; �/k3L2Œ�1;1� C Ph.t/Œv2y �.t; h.t//


.t 2 Œ0;T�/; (1.58)

with K1 depending only on M. In order to estimate the last term in the right hand
side of (1.58) we note that, for almost every t 2 Œ0;T�, we have

Ph.t/Œv2y �.h.t/; t/ D v.t; h.t//
�
v2y .t; h.t/C 0/� v2y .t; h.t/ � 0/

�

D
Z h.t/

�1
�
v.t; y/v2y .t; y/

�
y

dy C
Z 1

h.t/

�
v.t; y/v2y .t; y/

�
y

dy D
Z 1

�1
v3y .t; y/ dy

C 2

Z h.t/

�1
v.t; y/vy.t; y/vyy.t; y/ dy C 2

Z 1

h.t/
v.t; y/vy.t; y/vyy dy

Using (1.57) in the last inequality we deduce that

Ph.t/Œv2y �.h.t/; t/ 6
Z 1

�1
v3y .t; y/ dy C M2kvy.t; �/k3L2Œ�1;1�

C kvyy.t; �/k2L2Œ�1;h.t/� C kvyy.t; �/k2L2Œh.t/;1�:

Inserting the last inequality in (1.58) it follows that

d

dt

Z 1

�1
v2y dy C

Z h.t/

�1
v2yy dy C

Z 1

h.t/
v2yy dy C d

dt
jPh.t/j2 C jRh.t/j2

6 K2

�
1C kvy.t; �/k3L2Œ�1;1� C

Z 1

�1
v3y dy

	
.t 2 Œ0;T�/; (1.59)
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with K2 depending only on M. To estimate the last integral in the right-hand side of
the above formula we use the interpolation inequality (4.13) from [36] which asserts
the existence of a universal constant K > 0 that

kvykL1Œ�1;1�/ 6 K

�
kvyk

1
2

L2Œ�1;1�

�
kvyyk

1
2

L2Œ�1;h.t/� C kvyyk
1
2

L2Œh.t/;1�

	
C jRh.t/j

�
:

The above estimate, combined with Young’s inequality, implies that for every " > 0
there exists a constant c > 0 with

Z 1

�1
v3y dy 6 "jRh.t/j2 C "

 Z h.t/

�1
v2yy dy C

Z 1

h.t/
v2yy dy

!

C c

�Z 1

�1
v2y dy

	 5
3

C c

�Z 1

�1
v2y dy

	2
.t 2 Œ0;T�/:

Choosing " small enough and inserting the last inequality in (1.59) we obtain that

d

dt

Z 1

�1
v2y dy C

Z h.t/

�1
v2yy dy C

Z 1

h.t/
v2yy dy C d

dt
jPh.t/j2 C jRh.t/j2

6 K3

2

41C
�Z 1

�1
v2y dy

	 3
2

C
�Z 1

�1
v2y dy

	 5
3

C
�Z 1

�1
v2y dy

	2
3

5

6 K4

"
1C

Z 1

�1
v2y dy C

�Z 1

�1
v2y dy

	2#
; (1.60)

with K3 and K4 depending only on M. Integrating the above formula on Œ0; 	�, with
	 2 Œ0;T�, it follows that

Z 1

�1
v2y .	; y/ dy 6

Z 1

�1
v20;y. y/ dy

C K5

�
T C

Z 	

0

�
1C

Z 1

�1
v2y .t; y/ dy

	Z 1

�1
v2y .t; y/ dy dt

�
:

Using in the last estimate the fact, resulting from (1.15), that

Z 	

0

Z 1

�1
v2y .t; y/ dy dt 6 K6;

the conclusion (1.49) follows by applying Gronwall’s inequality.



1 Maximal Regularity of Systems Modelling FSI 19

In order to prove (1.50) it suffices to integrate (1.60) with respect to time and to
use (1.49). ut

We are now in a position to prove the main result of this section.

Proof of Theorem 1.1 It suffices to prove that both assertions in the second alterna-
tive of Proposition 1.3 are false. The fact that the assertion

lim
t!Tmax

kv.t; �/kH10 .�1;1/ D 1;

is false for every Tmax 2 Œ0;1/ is a direct consequence of Proposition 1.9. We show
below that the assertion saying that

lim
t!Tmax

jh.t/j D 1;

is false for every Tmax 2 Œ0;1/. To accomplish this goal, we first note that
from (1.49) and (1.50) it follows that v can be extended to a function, still denoted
by v, such that

v 2 C.Œ0;Tmax�;H
1
0.�1; 1//;

and v is Lipschitz with respect to x, uniformly with respect to t 2 Œ0;Tmax�. We use
now a contradiction argument . Indeed, assume that

lim
t!Tmax

h.t/ D 1:

This means that h can be extended to a function in C1Œ0;Tmax� such that

Ph.t/ D v.t; h.t// .t 2 Œ0;Tmax�/; h.Tmax/ D 1:

On the other hand the function eh.t/ D 1 for every t 2 R is also a solution of
the above initial value problem. By the Cauchy-Lipschitz theorem it follows that
h.t/ Deh.t/ D 1 for every t 2 Œ0;Tmax�, which is clearly a contradiction. ut

In order to study the concept of weak solution of (1.9) it is useful to note that
that the distance from the mass point to the boundary is bounded from below by
a function depending only on the initial kinetic energy of the fluid-mass particle
system and of the initial position of the particle.

Theorem 1.10 Let M > 0. We assume that v0; h0 and g0 satisfy the assumptions in
Theorem 1.1 and that

Z 1

�1
v20. y/ dy C g20 C jh0 � h1j2 6 M2:
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Let

�
v

h

�
be the corresponding solution of (1.9). Then there exist the positive

constants K0, which depends only on M, and K1, depending only on M and on h0,
such that

1C h.t/ > K1e
�tK0 .t > 0/: (1.61)

1 � h.t/ > K1e�tK0 .t > 0/; (1.62)

Proof We give below only the detailed proof of (1.62), since the proof of (1.61)
can be obtained with obvious adaptations. Moreover, we note that it suffices to
prove (1.61) only for the values of t for which h.t/ > 1

2
, i.e. for values of t such

that

h.t/ > 3

2
: (1.63)

Consider the function ' defined by

'.t; y/ D
(

1Cy
1Ch.t/ if y 2 Œ�1; h.t/�;
1�y
1�h.t/ if y 2 Œh.t/; 1�:

Then

Z h.t/

�1
Pv.t; y/'.t; y/ dy D

Z h.t/

�1
@

@t
.v.t; y/'.t; y// dy �

Z h.t/

�1
v.t; y/ P'.t; y/ dy

D d

dt

Z h.t/

�1
v.t; y/'.t; y/ dy�Ph2.t/C Ph.t/

.1C h.t//2

Z h.t/

�1
.1Cy/v.t; y/ dy .t > 0/;

�
Z h.t/

�1
vyy.t; y/'.t; y/ dy D Ph.t/

1C h.t/
� vy.t; h.t/ � 0/ .t > 0/:

Summing up the two above formulae it follows that

d

dt

Z h.t/

�1
v.t; y/'.t; y/ dy � Ph2.t/C

Ph.t/
.1C h.t//2

Z h.t/

�1
.1C y/v.t; y/ dy C

Ph.t/
1C h.t/

� vy.t; h.t/ � 0/C
Z h.t/

�1
v.t; y/vy.t; y/'.t; y/ dy D 0 .t > 0/: (1.64)
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Similar calculations show that

Z 1

h.t/
Pv.t; y/'.t; y/ dy

D d

dt

Z 1

h.t/
v.t; y/'.t; y/ dyC Ph2.t/�

Ph.t/
.1 � h.t//2

Z 1

h.t/
.1�y/v.t; y/ dy .t > 0/;

�
Z 1

h.t/
vyy.t; y/'.t; y/ dy D Ph.t/

1 � h.t/
C vy.t; h.t/C 0/ .t > 0/:

Summing up the last two formulae we obtain that

d

dt

Z 1

h.t/
v.t; y/'.t; y/ dy C Ph2.t/ � Ph.t/

.1 � h.t//2

Z h.t/

�1
.1 � y/v.t; y/ dy

C
Ph.t/

1 � h.t/
C vy.t; h.t/C 0/C

Z 1

h.t/
v.t; y/vy.t; y/'.t; y/ dy D 0 .t > 0/:

The above formula and (1.64) imply that

d

dt

Z 1

�1
v.t; y/'.t; y/ dy C Ph.t/

.1C h.t//2

Z h.t/

�1
.1C y/v.t; y/ dy

�
Ph.t/

.1 � h.t//2

Z 1

h.t/
.1 � y/v.t; y/ dy C 2Ph.t/

1 � h2.t/

C Rh.t/C
Z 1

�1
v.t; y/vy.t; y/'.t; y/ dy D 0 .t > 0/:

The last formula implies that

2Ph.t/
1 � h2.t/

D � d

dt

Z 1

�1
v.t; y/'.t; y/ dy � Rh.t/�

Ph.t/
.1C h.t//2

Z h.t/

�1
.1C y/v.t; y/ dy

C
Ph.t/

.1 � h.t//2

Z 1

h.t/
.1 � y/v.t; y/ dy �

Z 1

�1
v.t; y/vy.t; y/'.t; y/ dy .t > 0/:

It follows that

� 2Ph.t/
1 � h2.t/

6 d

dt

Z 1

�1
v.t; y/'.t; y/ dy C Rh.t/C jA1.t/j C jA2.t/j; (1.65)
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where

A1.t/ D �
Ph.t/

.1C h.t//2

Z h.t/

�1

.1C y/v.t; y/ dy C
Ph.t/

.1 � h.t//2

Z 1

h.t/
.1 � y/v.t; y/ dy .t > 0/;

A2.t/ D �
Z 1

�1

v.t; y/vy.t; y/'.t; y/ dy .t > 0/:

The expressions defined on the last two formulas can be estimated by

jA1.t/j 6 2jPh.t/jkvkL1.Œ0;T�;L2 Œ�1;1�/ 6 2MjPh.t/j 6 2M2 .t > 0/;

jA2.t/j 6
p
2kvy.t; �/k2L2Œ�1;1�k'kL1.Œ0;T��Œ�1;1�/ 6

p
2kvy.t; �/k2L2Œ�1;1� .t > 0/:

The last two estimates and (1.65) imply that

� 2Ph.t/
1 � h2.t/

6 d

dt

Z 1

�1
v.t; y/'.t; y/ dyCRh.t/C2M2Cp

2kvy.t�/k2L2Œ�1;1� .t > 0/:

(1.66)

Integrating (1.66) on Œ0; t� it follows that for every t > 0 we have

ln

�
1 � h.t/

1C h.t/

	
� ln

�
1 � h0
1C h0

	
6
Z 1

�1
v.t; y/'.t; y/ dy �

Z 1

�1
v.0; y/'.0; y/ dy

C Ph.t/ � g0 C 2M2t C p
2

Z t

0

kvy.�; �/k2L2Œ�1;1� d� 6 teK0.M/CeK1.M/:

The last estimate, combined with (1.63), implies the conclusion (1.61). ut

1.1.6 Bibliographical Notes

The first papers considering the coupling of viscous Burgers equation with Newton
laws as a simplified fluid-structure interaction system are Vázquez and Zuazua [35,
36], where global wellposedness and long time behavior have been investigated.
Similar models have been studied from a control theoretic viewpoint in Doubova
and Fernández-Cara [15], Liu et al. [25] and Cîndea et al. [6]. Our presentation
above follows [25] and [6].

1.2 Examples of Systems Modelling Fluid-Structure
Interactions

In this chapter we introduce some systems modelling the motion of particles in a
fluid, considering problems in one ore several space dimensions. We also describe
some change of variables allowing to consider the governing equations in a fixed
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spatial domain and we postpone to the next chapters the study of the corresponding
wellposedness results.

1.2.1 Motion of a Piston in a Heat Conducting Gas; a 1D
Model

We consider a one dimensional model for the motion of a particle (piston) in a
cylinder filled with a viscous compressible heat conducting gas. The extremities of
the cylinder are fixed. The gas is modelled by the 1D compressible Navier-Stokes-
Fourier equations, whereas the piston obeys Newton’s second law. We assume that
the piston is thermally conducting. More precisely, we consider the initial boundary
value problem

@t%C @
.%w/ D 0; .t > 0; 
 2 Œ�1; 1� n fh.t/g/
%
�
@tw C w@
w

� � @

w C @
.%#/ D 0; .t > 0; 
 2 Œ�1; 1� n fh.t/g/;
%
�
@t# C @
#w

� � @

# � �
@
w

�2 C %#@
w D 0; .t > 0; 
 2 Œ�1; 1� n fh.t/g/;
w.t; h.t/˙ 0/ D Ph.t/; #.t; h.t/˙ 0/ D Q.t/ .t > 0/;

(1.67)

mRh.t/ D Œ@
w � %#�.t; h.t//; PQ.t/ D Œ@
#�.t; h.t//; .t > 0/;

w.t;�1/ D 0 D w.t; 1/; @
#.t;�1/ D 0 D @
#.t; 1/; .t > 0/;

with the initial conditions

h.0/ D h0; Ph.0/ D g0; Q.0/ D Q0

w.0; 
/ D w0.
/; %.0; 
/ D �0.
/; #.0; 
/ D #0.
/ .
 2 Œ�1; 1� n fh0g/:
(1.68)

In the above equations, %.t; 
/ is the density, w.t; 
/ is velocity of the fluid, #.t; 
/
is the temperature of the fluid (all in Eulerian coordinates), m is the mass of the
particle and h is the trajectory of the mass point moving in the fluid. The symbol
Œ f �.
/ denotes the jump of f at 
 i.e.

Œ f �.
/ D f .
C/ � f .
�/:

We now rewrite the system (1.67)–(1.68) in Lagrangian mass coordinates. This
change of variables has been widely used in the literature devoted to the study of
one dimensional compressible flows (see, for instance, [3] and references therein).
One of the advantages of this change of coordinates is that the positions of the piston
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becomes fixed. We begin by introducing the characteristic lines �.tI �/ defined by

@t�.t; �/ D w.t; �.t; �//; �.0; �/ D � .� 2 Œ�1; 1�/: (1.69)

The first equation in (1.67) can be written

�0.�/ D �.t; �.t; �//
@�

@�
.t; �/ .t > 0; X 2 Œ�1; 1� n fh0g/: (1.70)

The Lagrangian mass change of coordinates consists in replacing the space variable

 in (1.67) by

x D ‰.t; 
/; ‰.t; 
/ D
Z 


h.t/
%.t; y/ dy .
 2 Œ�1; 1�/: (1.71)

From (1.70) and (1.71) it follows that

‰.t; �.t; �// D
Z �

h0

�0.Y/ dY .� 2 Œ�1; 1� n fh0g/: (1.72)

Using the facts that �.�t; 1/ D �1, �.t; 1/ D 1 and �.t; h.t// D 0, it follows that

‰.t;�1/ D �r1; ‰.t; 1/ D r2; .t > 0/; (1.73)

where

r1 D
Z h0

�1
�0.�/ d�; r2 D

Z 1

h0

�0.�/ d�:

On the other hand, using the fact that the right hand side of (1.72) is time
independent, together with (1.69), we obtain that

@t‰.t; 
/C @
‰.t; 
/w.t; 
/ D 0 .t > 0; 
 2 Œ�1; 1� n fh.t/g/;

so that

@t‰.t; 
/ D ��.t; 
/w.t; 
/ .t > 0; 
 2 Œ�1; 1� n fh.t/g/: (1.74)

Using the above properties, it follows that, for every t > 0, ‰.t; �/ is a diffeomor-
phism from Œ�1; 1� onto Œ�r1; r2�, with @
‰.t; 
/ D %.t; 
/ > 0 for every t > 0 and
for every 
 2 Œ�1; 1� n fh.t/g.
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For each t > 0 we denote by ˆ.t; �/ D ‰�1.t; �/. The specific volume in mass
lagrangian coordinates is defined by

v.t; x/ D 1

%.t; ˆ.t; x//
; %.t; 
/ D 1

v.t; ‰..t; 
//

.t > 0

x 2 Œ�r1; r2� n f0g; 
 2 Œ�1; 1� n fh.t/g/: (1.75)

Similarly, the velocity and temperature field in lagrangian mass coordinates writes

u.t; x/ D w.t; ˆ.t; x//; w.t; 
/ D u.t; ‰.t; 
//

.t > 0; x 2 Œ�r1; r2� n f0g; 
 2 Œ�1; 1� n fh.t/g/; (1.76)

�.t; x/ D #.t; ˆ.t; x//; #.t; 
/ D �.t; ‰.t; 
//

.t > 0; x 2 Œ�r1; r2� n f0g; 
 2 Œ�1; 1� n fh.t/g/ (1.77)

From (1.71) and (1.74) it follows that for every t > 0 and every 
 2 Œ�1; 1� n fh.t/g
we have

@
%.t; 
/ D � 1

v3.t; ‰..t; 
//
@xv.t; ‰.t; 
//; (1.78)

@t%.t; 
/ D � 1

v2.t; ‰..t; 
//
@tv.t; ‰.t; 
// C 1

v3.t; ‰..t; 
//
@xv.t; ‰.t; 
//u.t; ‰.t; 
//:

(1.79)

From (1.71) we have for every t > 0 and every 
 2 Œ�1; 1� n fh.t/g we have

@
w.t; 
/ D @xu.t; ‰.t; 
//%.t; 
/ D @xu.t; ‰.t; 
//

v.t; ‰.t; 
//
.
 2 Œ�1; 1� n fh.t/g/:

(1.80)

By combining (1.78), (1.79) and (1.80) it follows that for every t > 0 and every

 2 Œ�1; 1� n fh.t/g we have

@t%.t; 
/C@
 .%.t; 
/ w.t; 
// D � 1

v2.t; ‰..t; 
///
.@tv.t; ‰.t; 
// � @xu.t; ‰.t; 
/// :

Consequently, using Lagrangian mass coordinates, Eq. (1.67)1 writes

@tv.t; x/ � @xu.t; x/ D 0; .t > 0; x 2 Œ�r1; r2� n f0g/: (1.81)
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Using again (1.71) and (1.74), together with (1.80) it follows that

@

w.t; 
/ D @xxu.t; ‰.t; 
//

v2.t; ‰.t; 
//
� @xu.t; ‰.t; 
//@xv.t; ‰.t; 
//

v3.t; ‰.t; 
//
.
 2 Œ�1; 1�nfh.t/g/;

(1.82)

@tw.t; 
/ D @tu.t; ‰.t; 
// � 1

v.t; ‰.t; 
/
@xu.t; ‰.t; 
//u.t; ‰.t; 
//

.t > 0; x 2 Œ�r1; r2� n f0g: (1.83)

The derivatives of # and � satisfy formulas similar to those satisfied by those of w
and of u, that is

@
#.t; 
/ D @x�.t; ‰.t; 
//%.t; 
/ D @x�.t; ‰.t; 
//

v.t; ‰.t; 
//
.
 2 Œ�1; 1� n fh.t/g/;

(1.84)

@

#.t; 
/ D @xx�.t; ‰.t; 
//

v2.t; ‰.t; 
//
� @x�.t; ‰.t; 
//@xv.t; ‰.t; 
//

v3.t; ‰.t; 
//
.
 2 Œ�1; 1� n fh.t/g/;

(1.85)

@t#.t; 
/ D @t�.t; ‰.t; 
// � 1

v.t; ‰.t; 
/
@x�.t; ‰.t; 
//u.t; ‰.t; 
//

.
 2 Œ�1; 1� n fh.t/g/: (1.86)

By combining (1.78), (1.80), (1.82)–(1.84) we obtain that

%.t; 
/
�
@tw.t; 
/C w.t; 
/ @
w.t; 
/

� � @

w.t; 
/C @
 Œ%.t; 
/#.t; 
/�

D 1

v.t; ‰.t; 
//

�
@tu.t; ‰.t; 
// � @x

�
1

v
@xu � �

v

	
.t; ‰.t; 
//

�
:

Consequently, (1.67)2 can be written as

@tu.t; x/ � @x
�
@xu

v
� �

v

	
.t; x/ D 0 .t > 0; x 2 Œ�r1; r2� n f0g/: (1.87)

To write (1.67)3 in mass Lagrangian coordinates we combine (1.80), (1.84)–(1.86)
to get

�.t; 
/
�
@t#.t; 
/C @
#.t; 
/w.t; 
/

� � @

# � �
@
w

�2 C %.t; 
/#.t; 
/@
w

D 1

v.t; ‰.
; t/

�
@t�.t; ‰.t; 
// � @x

�
1

v
@x�

	
.t; ‰.t; 
// �

�
1

v
j@xuj2

	
.t; ‰.t; 
//

C
�
�

v
@xu

	
.t; ‰.t; 
//

�
:
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From the above formula, it follows that (1.67)3 is satisfied iff

@t�.t; x/�@x
�
1

v
@x�

	
.t; x/� 1

v
.@xu/

2��
v
@xu.t; x/ D 0; .t>0; x 2 Œ�r1; r2�nf0g/:

(1.88)
The fourth equation in (1.67) can obviously be rewritten as

u.t;˙0/ D Ph.t/; @�

@x
.t;˙0/ D Q.t/ .t > 0/: (1.89)

As for (1.67)5, using (1.80), we have

mRh.t/ D
�
1

v
@xu � �

v

�
.t; 0/; PQ.t/ D

�
1

v
@x�

�
.t; 0/ .t > 0/: (1.90)

Using (1.84), it is easily seen that (1.67)6 write in mass Lagrangian coordinates as

u.t;�r1/ D u.t; r2/ D 0;
@�

@x
.�r1; t/ D @�

@x
.r1; t/ D 0 .t > 0/: (1.91)

Putting together (1.81) and (1.87)–(1.90), it follows that the system (1.67) writes
in Lagrangian mass coordinates as

@tv � @xu D 0; .t > 0; x 2 Œ�r1; r2� n f0g/;

@tu � @x
�
1

v
@xu

	
C @x

�
�

v

	
D 0; .t > 0; x 2 Œ�r1; r2� n f0g/;

@t� � @x
�
1

v
@x�

	
� 1

v
.@xu/

2 C �

v
@xu D 0; .t > 0; x 2 Œ�r1; r2� n f0g/;

u.t;˙0/ D Ph.t/; �.t; 0˙/ D Q.t/; .t > 0/;

(1.92)

mRh.t/ D
�
1

v
@xu � �

v

�
.t; 0/; .t > 0/;

PQ.t/ D
�
1

v
@x�

�
.t; 0/; .t > 0/;

u.t;�r1/ D u.t; r2/ D 0; @x�.t;�r1/ D @x�.t; r2/ D 0; .t > 0/;

v.0; x/ D v0.x/; u.0; x/ D u0.x/; �.0; x/ D �0.x/; x 2 Œ�r1; r2� n f0g;
h.0/ D h0; Ph.0/ D g0;

where

v0.x/ WD 1

%0.ˆ.0; x//
; u0.x/ D w0.ˆ.0; x//; �0.x/ D #0.ˆ.0; x//: (1.93)
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1.2.2 Motion of a Rigid Body in a Viscous Incompressible
Fluid

In this section we describe the system modelling the motion of a rigid body
immersed in a viscous incompressible fluid. Let us assume that the fluid and the
rigid body are contained in a bounded domain with smooth boundary. At time t > 0,
the rigid body occupies a smooth domain�S.t/ � �. We assume that

d.�S.0/; @�/ > 0: (1.94)

We denote by �F.t/ D � n�S.t/ the domain occupied by the fluid. The motion of
the fluid is given by

@tu C .u � r/u � div �.u; p/ D 0; div u D 0; x 2 �F.t/; t 2 Œ0;T�; (1.95)

where the Cauchy stress tensor �.u; p/ is defined by

�.u; p/ D 2Du � pI3; Du D 1

2
.ru C ruT/;

and I3 is the identity matrix.
At time t > 0, let h.t/ 2 R

3, Q.t/ 2 M3�3.R/ and !.t/ 2 R
3 denote the position

of the center of mass, the orthogonal matrix giving the orientation of the solid and
the angular velocity of the rigid body. Therefore we have,

PQ.t/Q.t/�1y D A.!.t//y D !.t/ � y; 8y 2 R
3; (1.96)

where the skew-symmetric matrix A.!/ is given by

A.!/ D
0

@
0 �!3 !2
!3 0 �!1

�!2 !1 0

1

A ; ! 2 R
3:

Without loss of generality we can assume that

h.0/ D 0 and Q.0/ D I: (1.97)

At time t, the domain occupied by the structure�S.t/ is defined by

�S.t/ D �S.t; �S.0// (1.98)

where �S denotes the flow associated to the motion of the structure:

�S.t; y/ D h.t/C Q.t/y; 8y 2 �S.0/; 8t > 0; (1.99)
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For each t > 0, �S.t; �/ W �S.0/ 7! �S.t/ is invertible and

�S.t; �/�1.x/ D Q.t/�1.x � h.t//; 8x 2 �S.t/: (1.100)

Thus the Eulerian velocity uS of the structure is given by

uS.t; x/ D @t�S.t; �/ ı �S.t; �/�1.x/ D Ph.t/C PQ.t/Q.t/�1.x � h.t//; 8x 2 �S.t/:
(1.101)

Therefore

uS.t; x/ D Ph.t/C !.t/ � .x � h.t//; 8x 2 �S.t/: (1.102)

We also assume the continuity of velocities at the fluid-solid interface, i.e.,

u.t; x/ D Ph.t/C !.t/ � .x � a.t//; x 2 @�S.t/: (1.103)

On the boundary of� we prescribe no-slip boundary condition for fluid, i.e.,

u.t; x/ D 0; x 2 @�: (1.104)

We denote by m > 0 the mass of rigid structure and J.t/ 2 M3�3.R/ its tensor of
inertia at time t. This tensor is given by

J.t/a � b D
Z

�S.0/

�S. y/.a � Q.t/y/ � .b � Q.t/y/ dy; 8a; b 2 R
3; (1.105)

where �S > 0 is the density of the structure. One can check that

J.t/a � a > CJ jaj2 > 0; (1.106)

where CJ is independent of t > 0. The equation of the structure is given by

mRh D �
Z

@�S.t/
�.u; p/n d�;

J P! D .J!/ � ! �
Z

@�S.t/
.x � h.t// � �.u; p/n d� (1.107)

where n.t; x/ the unit normal to @�S.t/ at the point x directed toward the interior of
the rigid body. The above system is completed by the following initial conditions

u.0/ D u0; in �F.0/; h.0/ D 0; Ph.0/ D g0; !.0/ D !0: (1.108)
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1.2.3 Motion of a Solid in a Compressible Fluid

In this section, we consider a rigid structure immersed in a viscous compressible
fluid. In this case, we assume that, the fluid and the rigid body are contained in a
smooth bounded domain � � R

3. At time t > 0, the rigid body occupies a smooth
bounded domain�S.t/. We assume that

d.�S.0/; @�/ > 0: (1.109)

For any time t > 0, �F.t/ D � n �S.t/ denotes the region occupied by the fluid.
Let h.t/ 2 R

3, Q.t/ 2 M3�3.R/ and !.t/ 2 R
3 denote the position of the center

of mass, the orthogonal matrix giving the orientation of the solid and the angular
velocity of the rigid body satisfying (1.96) and (1.97). Let m denote the mass of the
rigid body and J.t/ 2 M3�3.R/ its tensor of inertia at time t given by (1.105). The
system modelling the motion of rigid body in a viscous compressible fluid can be
written as

@t� C div.�u/ D 0; t 2 .0;T/; x 2 �F; .t/

�.@tu C .u � r/u/� div �.u; p/ D 0; t 2 .0;T/; x 2 �F; .t/

u.t; x/ D Ph.t/C !.t/ � .x � a.t//; t 2 .0;T/; x 2 @�S.t/;

mRh D �
Z

@�S.t/
�.u; p/n d�; t 2 .0;T/ (1.110)

J P! D .J!/ � ! �
Z

@�S.t/
.x � h.t// � �.u; p/n d�

u.t; x/ D 0; t 2 .0;T/; x 2 @�;
�.0/ D �0; u.0/ D u0; in �F.0/;

h.0/ D 0; Ph.0/ D g0; !.0/ D !0;

where

�.u; p/ D 2�Du C .˛div u � p/I3; Du D 1

2
.ru C ruT/

� > 0 and ˛ C 2

3
� > 0; p D �� ; � > 1:

Now we rewrite the above system in fixed domain. Here we use Lagrangian
change of variable as it is well suited for the compressible fluids. We consider the
characteristics X associated to the velocity fluid u, that is the solution of the Cauchy
problem

(
@tX.t; y/ D u.t;X.t; y// .t > 0/;

X.0; y/ D y 2 �: (1.111)
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Assume that X.t; �/ is a C1-diffeomorphism from�F.0/ onto�F.t/ for all t 2 .0;T/
(see Lemma 1.60). For each t 2 .0;T/, we denote by Y.t; �/ D ŒX.t; �/��1 the inverse
of X.t; �/. We consider the following change of variables

Q�.t; y/ D �.t;X.t; y//; Qu.t; y/ D Q�1.t/u.t;X.t; y//; (1.112)

Qg.t/ D Q�1.t/Ph.t/; Q!.t/ D Q�1.t/!.t/; (1.113)

for .t; y/ 2 .0;T/ ��F.0/. In particular,

�.t; x/ D Q�.t;Y.t; x//; u.t; x/ D Q.t/Qu.t;Y.t; x//; (1.114)

for .t; x/ 2 .0;T/ ��F.t/. The system satisfied by . Q�; Qu; Q̀; Q!/ reads as follows

@t Q�C �0div Qu D F1; in .0;T/ ��F.0/;

@t Qu � �

�0
�Qu � ˛ C �

�0
r.div Qu/ D F2;1 C F2;2 in .0;T/ ��F.0/;

Qu D 0 on .0;T/ � @�; Qu D g C ! � y on .0;T/ � @�S.0/; (1.115)

m
d

dt
Qg D �

Z

�S.0/

�
�r Qu C �r Qu> C ˛div QuI� n d� C G1;

J.0/
d

dt
Q! D �

Z

�S.0/

y � ��r Qu C �r Qu> C ˛div QuI� n C G2;

Q�.0/ D �0; Qu.0/ D u0; in �F.0/;

Qg.0/ D g0; Q!0 D !0;

where

Q.t/ D I C
Z t

0

Q.s/. Q!.s/ � I/; QT D Q�1 (1.116)

X.t; y/ D y C
Z t

0

Q.s/Qu.s/ ds; and JY D J�1
X ; (1.117)

F1. Q�; Qu; Qg; Q!/ D �. Q� � Q�0/divQu � Q�.Q � I/r Qu W J>
Y � Q�r Qu W .J>

Y � I/;

(1.118)

F2;1. Q�; Qu; Qg; Q!/ D � Q�
�0

Q0.t/Qu � Q� � �0

�0
Q.t/@t Qu � .Q.t/ � I/@t Qu � � Q���1

�0
J>
Y r Q�

� �

�0
.Q � I/�Qu;
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.F2;2/i. Q�; Qu; Qg; Q!/ D �

�0

3X

j;k;lD1
@yl.@yk.QQu/iŒ.JY/kj � ıkj�/.JY/lj

C �

�0

3X

k;lD1
.@2ylyk.QQu/i/ Œ.JY/lk � ılk�

C ˛ C �

�0

3X

j;k;lD1
@yl .@yk.QQu/j

�
.JY/kj/ � ıkj

�
/.JY/li

C ˛ C �

�0

3X

l;jD1
.@2ylyj.QQu/j/ Œ.JY/li � ıli�C .Q> � I/ W @yir Qu;

(1.119)

F3. Q�; Qu; Qg; Q!/ D �m. Q! � Q̀/�
Z

�S.0/

Gn;

F4. Q�; Qu; Qg; Q!/ D J.0/ Q! � Q! �
Z

�S.0/

y � Gn;

G. Q�; Qu; Qg; Q!/ D .Q> � I/
�
�
�
Qr QuJY C J>

Y r Qu>Q>�C �
˛J>

Y W Qr Qu> � Qp� I� cofJX

C �
�
�
Qr QuJY C J>

Y r Qu>Q>�C �
˛J>

Y W Qr Qu> � Qp� I� .cofJX � I/

C �.Q � I/r QuJY C �r Qu.JY � I/C �.J>
Y � I/r Qu>Q> C �r Qu>.Q> � I/

C .˛.Q � I/r Qu W J>
Y /I C .˛r Qu W .J>

Y � I//I � Re�� I (1.120)

1.3 Short Introduction to R-Sectorial Operators

Let X be a Banach space and A be a closed, densely defined linear unbounded
operator in X with domain D.A/. We shall consider the abstract Cauchy problem

Pu.t/ D Au.t/C f .t/; t > 0; u.0/ D 0; (1.121)

where f W RC 7! X is a given function.

Definition 1.11 (Maximal Lp-Regularity) Let 1 < p < 1. The problem (1.121)
has maximal Lp-regularity on Œ0;T/, 0 < T 6 1, if for every f 2 Lp.Œ0;T/IX/,
there exists a unique u satisfying the above equation almost everywhere and such
that Pu 2 Lp.Œ0;T/IX/. In this case Au 2 Lp.Œ0;T/IX/ as well.

Remark 1.12 In the above definition we do not assume that u 2 Lp.0;TIX/. In fact,
if T < 1 or 0 2 �.A/, where �.A/ is the resolvent set of A, Pu 2 Lp.0;TIX/ can be
replaced by u 2 W1;p.0;TIX/ [13].
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Our aim is to give sufficient condition on the operator A so that the prob-
lem (1.121) has a maximal Lp-regularity. It is well known that, if (1.121) has a
maximal Lp-regularity, then A generates an analytic semigroup in X (see [9] and
[13]). On the other hand, if X is a Hilbert space, the above condition is enough
to obtain maximal Lp-regularity, i.e., if A generates an analytic semigroup in X,
then (1.121) has a maximal Lp-regularity (see de Simon [11] for more details). In
fact, De Simon used Plancherel’s theorem which is valid only in the Hilbert space
setting and cannot be generalized. Since then, there has been considerable work
in the general Banach space framework [10, 14, 20, 23, 24, 29]. We are interested
in the recent result obtained by Weis [37]. He obtained a necessary and sufficient
condition for maximal Lp-regularity when X is a UMD Banach space in terms of
R-boundedness of the operator A (for the precise definition of UMD spaces and
R-boundedness we refer to the next section). This result is very useful in order to
obtain maximal Lp � Lq regularity of linearized fluid structure interaction problem.

In this chapter we recall some basic definitions and results on R-sectorial
operators and we prove a lemma, which seems to be new, on the R sectoriality
of a class of matrices of linear operators.

1.3.1 Basic Definitions

In this section we recall some basic definitions and results concerning maximal
regularity and R-boundedness in Banach spaces. For detailed information on these
subjects we refer to [8, 12, 37] and references therein.

Definition 1.13 Let X be a Banach space. The Hilbert transform of a function f 2
S.RIX/, the Schwartz space of X-valued rapidly decreasing functions, is defined by

Hf .t/ D 1

�
lim
� 7!0

Z

jsj>�
f .t � s/

s
ds; t 2 R:

A Banach space X is said to be of class HT , if the Hilbert transform is bounded on
Lp.RIX/ for some (thus all) 1 < p < 1.

These spaces are also called UMD Banach spaces, where UMD stands for
unconditional martingale differences. Hilbert spaces, all closed subspaces and
quotient spaces of Lq.�/ with 1 < q < 1 are examples of UMD spaces. In fact,
X 2 HT implies that X is reflexive (see [1]). We next introduce the notion of R-
boundedness of family of operators and R-sectoriality of a densely defined linear
operator.

Definition 1.14 (R-Bounded Family of Operators) Let X and Y be Banach
spaces. A family of operators T � L.X;Y/ is called R-bounded on L.X;Y/, if
there exist constants C > 0 and p 2 Œ1;1/ such that for every n 2 N, fTjgnjD1 � T ,
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fxjgnjD1 � X and for all sequences frj.�/gnjD1 of independent, symmetric, f�1; 1g
valued random variables on Œ0; 1�, we have

������

nX

jD1
rj.�/Tjxj

������
Lp.Œ0;1�IY/

6 C

������

nX

jD1
rj.�/xj

������
Lp.Œ0;1�IX/

:

The smallest such C is called R-bound of T on L.X;Y/ and denoted by RL.X;Y/.T /.

Remark 1.15

(1) If T � L.X;Y/ is R-bounded then it is uniformly bounded with

sup fkTk j T 2 T g 6 RL.X;Y/.T /:

(2) If X D Y D Lq.�/ for some open set � � R
N , then T � L.X;Y/ is R-

bounded if and only if there exists a constant C > 0 such that for every n 2 N,
fTjgnjD1 � T , fxjgnjD1 � Lq.�/ the following estimate holds:

�������

0

@
nX

jD1

ˇ̌
Tjxj

ˇ̌2
1

A
1=2
�������
Lq.�/

6 C

�������

0

@
nX

jD1

ˇ̌
xj
ˇ̌2
1

A
1=2
�������
Lq.�/

:

(3) If X and Y are Hilbert spaces every set T bounded in L.X;Y/ is R-bounded.

For 0 < " 6 �=2, and � > 0 we define the sector †";� in the complex plane by

†";� D f� 2 C n f0g j jarg�j 6 � � "; j�j > �g: (1.122)

When � D 0, †";� will be denoted by †".

Definition 1.16 (R-Sectorial Operator) Let A be a densely defined closed linear
operator on a Banach space X with domain D.A/. Then A is R-sectorial operator
in X if †";� contained in the resolvent set �.A/ for some " 2 .0; �=2/; � > 0 and˚
�.�I � A/�1 j � 2 †";�

�
is R bounded on L.X/ with R-bound M. In this case, the

set
˚
A.�I � A/�1 j � 2 †";�

�
is R-bounded with R-bound at most 1C M.

We now state several useful propositions concerning R-boundedness.

Proposition 1.17

(1) Let X and Y be Banach spaces and let T and S be R-bounded families on
L.X;Y/. Then T C S is alsoR-bounded on L.X;Y/, and

RL.X;Y/.T C S/ 6 RL.X;Y/.T /C RL.X;Y/.S/:
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(2) Let X;Y and Z be Banach spaces and let T and S be R-bounded families on
L.X;Y/ and L.Y;Z/ respectively. Then ST isR-bounded on L.X;Z/, and

RL.X;Z/.ST / 6 RL.X;Y/.T /RL.Y;Z/.S/:

(3) Let q 2 .1;1/, let � be a bounded domain in R
n and let ƒ be a domain in

C. Let m.�/ be a bounded function defined on ƒ and let Mm.�/ 2 L.Lq.�//,
defined by Mm.�/f D m.�/f , for any f 2 Lq.�/. Then fMm.�/ j � 2 ƒg is
R-bounded and

RL.Lq.�//fMm.�/ j � 2 ƒg 6 Cn;q;�kmkL1.ƒ/: (1.123)

Proof The proof of first two statement follows easily from the definition of R-
boundedness. The proof of Proposition 1.17 (3) follows from Remark 1.15 (2). ut

1.3.2 Weis’ Theorem

In this section we will discuss Weis’ theorem concerning maximal Lp-regularity of
the Cauchy problem (1.121). First, we will prove a proposition due to Kunstmann
and Weis [22], which states that R-sectoriality is preserved by A small perturbations.

Proposition 1.18 Let A be a R-sectorial in a Banach space X with domain D.A/.
Assume that †"0;�0 � �.A/, for some "0 2 .0; �=2/; �0 > 0 and

RL.X/
� ˚

A.�I � A/�1 j � 2 †"0;�0
� �

6 a < 1: (1.124)

Let B be a linear operator such that D.A/ � D.B/ and

kBxk 6 ı1kAxk C ı2kxk; (1.125)

with ı1 < 1=a. Then there exists �1 > �0 such that

RL.X/
� ˚
�.�I � .A C B//�1 j � 2 †"0;�1

� �
< 1: (1.126)

Proof From the definition of R-boundedness, we have

RL.X/
˚
B.�I � A/�1

�
6 ı1RL.X/

˚
A.�I � A/�1

�C ı2RL.X/
˚
.�I � A/�1

�

6
�
ı1a C ı2a

j�j
	
:
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Thus there exists �1 > �0 such that

�
ı1a C ı2a

j�j
	

6 ı < 1 for � 2 †"0;�1 and hence

I � B.�I � A/�1 is invertible for � 2 †"0;�1 . Now

.�I � .A C B/�1 D .�I � A/�1
�
I � B.�I � A/�1

��1

D .�I � A/�1
1X

jD0

�
B.�I � A/�1

�j
:

By induction

R
�
�.�I � A/�1

�
B.�I � A/�1

�j 6 R
�
�.�I � A/�1

�
ıj

Therefore

RL.X/
� ˚
�.�I � .A C B//�1 j � 2 †"0;�1

� �
6 a

1 � ı
:

ut
The Theorem of Weis is the following:

Theorem 1.19 Let X be a Banach space of class HT , 1 < p < 1 and let A be a
closed, densely defined unbounded operator with domain D.A/. Let A generates a
bounded analytic semigroup on X, i.e.,

k�.�I � A/�1k 6 C; for � > 0:

Then the following statements are equivalent.

(i) The Cauchy problem (1.121) has maximal Lp-regularity.
(ii) The set

˚
�.� � A/�1 j � 2 †"

�
isR bounded for some " 2 .0; �=2/.

1.3.3 Abstract Framework Corresponding to Linear
Fluid-Solid Interaction Problems

In this section, we introduce an abstract framework which will correspond to the
linear fluid-solid interactions problems. The main idea in elaborating this approach
is that linearized fluid-solid interaction problems can be viewed as boundary
controlled fluid systems with dynamic boundary feedback. To this aim we first
recall, following [34, Chap. 10], some background on boundary control systems.
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Systems described by linear partial differential equations with nonhomogeneous
boundary conditions can be written in the form:

Pz.t/ D Lz.t/; Gz.t/ D u.t/: (1.127)

Often L is a differential operator and G is a boundary trace operator. In the sequel,
we assume that U;Z and X are reflexive Banach spaces such that

Z � X ;

with continuous embedding. We shall call U the input space, Z the solution space
and X the state space.

Definition 1.20 A boundary control system on U;Z and X is a pair of operators
.L;G/, where

L 2 L.Z;X/; G 2 L.Z;U/;

if there exists a ˇ 2 C such that the following properties hold:

(i) G is onto,
(ii) KerG is dense in X,

(iii) ˇI � L restricted to KerG is onto,
(iv) Ker.ˇI � L/ \ KerG D f0g.

With the assumptions of the last definition, we introduce the closed subspace X1
of Z and the operator A by

X1 D KerG ; A D LjX1 : (1.128)

Obviously, X1 is a closed subspace of Z and A 2 L.X1;X/. Condition (iii) means
that ˇI � A is onto. Condition (iv) means that Ker.ˇI � A/ D f0g. Thus, (iii) and
(iv) together are equivalent to the fact that ˇ 2 �.A/, where �.A/ is the resolvent set
of A, so that

.ˇI � A/�1 2 L.X/:

In fact, .ˇI � A/�1 2 L.X;X1/, so that the norm on X1 is equivalent to the norm

kzk1 D k.ˇI � A/zkX :

It is easy to see that k � kX1 on X1 is equivalent to the graph norm of A. Therefore, by
closed graph theorem, .X1; k � k1/ is complete. Also, for any ˇ0 2 �.A/, we have an
equivalent norm on X1. We define the space X�1 as the completion of X with respect
to the norm

kzk�1 D k.ˇI � A/�1zk:
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The space X�1 does not depend on the specific value of ˇ. We have X1 � X � X1,
with continuous and dense embedding. Then A has an extension, also denoted by A,
such that A 2 L.X;X�1/.

Let X0 denotes the dual of X. Let A� W D.A/� 7! X0 denotes the adjoint of the
operator .A;D.A//. We endow D.A�/ with the graph norm

kz�k1;� D k.ˇI � A�/z�kX0 ;

where ˇ 2 �.A/ D �.A�/. The following theorem holds (see [16, Chap. 2, Sect. 5]).

Theorem 1.21 Let X be a reflexive Banach space. Then X�1 is isomorphic to
D.A�/0.

Also, if X is reflexive and if .S.t//t>0 is a C0-semigroup on X with generator
A, then the adjoint semigroup .S.t/�/t>0 of .S.t//t>0 is a C0-semigroup on X0 with
generator A� ([28, Corollary 10.6]).

Proposition 1.22 Let .L;G/ be a boundary control system on U;Z and X. Let A and
X�1 be as introduced earlier. Then there exists a unique operator B 2 L.U;X�1/
such that

L D A C BG ; (1.129)

where A is regarded as an operator from X to X�1. For every ˇ 2 �.A/ we have that
.ˇI � A/�1B 2 L.U;Z/ and

G.ˇI � A/�1B D I ; (1.130)

so that in particular, B is bounded from below.

Proof Since G is onto, it has at least one bounded right inverse H 2 L.U;Z/. We
put

B D .L � A/H: (1.131)

From G.I � HG/ D 0 we see that the range of I � HG is in KerG D X1, so that
.L � A/.I � HG/ D 0. Thus we get that BG D .L � A/HG D L � A, as required
in (1.129). It is easy to see that B is unique. To prove (1.130), first we rewrite (1.131)
in the form

.ˇI � A/H � .ˇI � L/H D B:

If we apply .ˇI � A/�1 to both sides, we get

H � .ˇI � A/�1.ˇI � L/H D .ˇI � A/�1B;
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which shows that indeed .ˇI � A/�1B 2 L.U;Z/. Therefore, we can apply G to
both sides above and then the second term on the left-hand side disappears, due to
X1 D KerG. Since GH D I, we obtain (1.130). ut

When L;G;A and B are as in the above proposition, we say that A is the generator
of the boundary control system .L;G/ and B is the control operator of .L;G/.

Remark 1.23 The following fact is an easy consequence of Proposition 1.22 (we
use the notation of the proposition): For every v 2 U and every ˇ 2 �.A/, the vector
z D .ˇI � A/�1Bv is the unique solution of the “abstract elliptic problem”

Lz D ˇz ; Gz D v :

For many L and G, this problem has a well known solution, and it is easier to
describe z 2 X than to describe Bv 2 X�1, since X is usually a more “natural”
space than X�1 (see the other sections of this chapter).

We are now in a position to write a class of linearized fluid-structure interaction
problems as boundary control systems with dynamic feedback.

Let Z;X;U be reflexive Banach spaces of class HT . Let .L;G/ be a boundary
control system on U;Z and X. Let X1 and X�1 are defined as before. Let A D LjX1
generates a C0 semigroup in X. Let K be a densely defined, closed unbounded
operator in U with domain D.K/ and K generates a C0 semigroup in U. Finally,
let C 2 L.Z;U/. We consider the following abstract system

Pz D Lz; Gz D u;

Pu D Ku C Cz; (1.132)

z.0/ D z0; u.0/ D u0:

Let us introduce the operator .A;D.A// in X � U by

D.A/ D

�

z
u

�
2 Z � D.K/ j Gz D u

�
(1.133)

and

A
�
z
u

�
D
�

Lz
Ku C Cz

�
: (1.134)

Lemma 1.24 The map

�
z
u

�
7! kzkZ C kukD.K/:

is a norm on D.A/ equivalent to the graph norm.
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Proof For .z; u/ 2 D.A/, and ˇ 2 �.A/, we note that

kzkZ C kukD.K/
6 kz � .ˇI � A/�1BukX1 C k.ˇI � A/�1BukZ C kukU C kKukU
6 c.k.ˇI � A/z � BukX C kukU C kKukU/

6 c.kzkX C kAz C BukX C kukU C kKukU// 6 c

����
�
z
u

�����
D.A/

;

where c is a strictly positive constant, possibly depending on ˇ. Since the reverse
inequality is an obvious one, we obtain the claimed norm equivalence. ut

The theorem below shows that if the operator A from (1.128) is R-sectorial and
if the operator C from the second equation in (1.132) is “small” with respect to
A then the semigroup generator describing the system (1.132) is also R-sectorial.
In the applications we are interested in the first equation in (1.132) describes the
fluid, with some boundary input. The second equation describes the motion of the
structure. Our result below can be interpreted as asserting that, in some sense, the
fluid structure system can be seen as a perturbation of the equations describing the
fluid alone.

Theorem 1.25 Let Z;X;U be reflexive Banach spaces of class HT . Let .L;G/ be
a boundary control system on U;Z and X. Assume that A D LjX1 and K are R-
sectorial operators in X and U, respectively. More precisely, assume that there exists
"1; "2 2 .0; �=2/ and �1; �2 > 0 such that

RL.X/
˚
�.�I �A/�1 j � 2 †"1;�1

�
< 1; RL.U/

˚
�.�I �K/�1 j � 2 †"2;�2

�
< 1:

(1.135)

We also suppose that C 2 L.Z;U/ satisfies the following condition: for every ı > 0,
there exists C.ı/ > 0 such that

kCzkU 6 ıkzkZ C C.ı/kzkX .z 2 Z/: (1.136)

Then the operator .A;D.A// defined as in (1.134) isR-sectorial in X�U, i.e., here
exists "0 2 .0; �=2/ and �0 > 0 such that

RL.X�U/
˚
�.�I � A/�1 j � 2 †"0;�0

�
< 1: (1.137)

Proof To prove this theorem we write A in the form A D A1 C B, where

A1

�
z
u

	
D
�
Lz
Ku

	
; B

�
z
u

	
D
�
0

Cz

	
:
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We first show that .A1;D.A// is a R-sectorial operator in X � U. Observe that

.� � A1/

�
z
u

	
D
�
x
v

	

if and only if, �z � Az � Bu D x and �u � Ku D v. Thus, for � 2 †"1;�1 \†"2;�2 ,

u D .� � K/�1v and z D .� � A/�1.x C B.� � K/�1v/:

Fix ˇ 2 �.A/ and set D D .ˇI � A/�1B. Thus D 2 L.U;Z/. Therefore, for every
v 2 U,

.�I � A/�1Bv D .�I � A/�1.ˇI � A/Dv

D ��.�I � A/�1Dv C ˇ.�I � A/�1Dv C Dv:

This yields

�.�I � A1/
�1

D
�
�.�I � A/�1 .ˇ � �/.�I � A/�1D�.�I � K/�1 C D�.�I � K/�1

0 .�I � K/�1
	

Using Proposition 1.17 and (1.135), we can easily verify that, there exists "3 2
.0; �=2/ and �3 > 0, such that

RL.X�U/
˚
�.�I � A1/

�1 j � 2 †"3;�3
�
< 1;

RL.X�U/
˚
A1.�I � A1/

�1 j � 2 †"3;�3
�
< 1:

Now, Lemma 1.24 and (1.136) gives, for any ı > 0

����B
�
z
u

	����
X�U

6 Mı

����A1

�
z
u

	����
X�U

C C.ı/

����
�
z
u

	����
X�U

: (1.138)

Therefore, by Proposition 1.18, A is a R-sectorial operator in X � U and (1.137)
holds. ut

1.3.4 Bibliographical Notes

The importance of the maximal regularity property of linearized Navier-Stokes
type systems in order to obtain existence and uniqueness for the original nonlinear
problems is known for a long time (see Clément and Prüss [7] for an early
reference). As previously mentioned, in a Hilbert space setting, this property holds
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if A generates an analytic semigroup, see [11]. In a Banach space context, the
analyticity of the semigroup is no longer sufficient to guarantee the maximal
regularity property, see Kalton and Lancien [21]. In our notes we choose to remind
the important necessary and sufficient condition for maximal regularity on HT
spaces due to Weis [37]. In our approach, an important role in passing from the
maximal, regularity of linearized fluid problems to maximal regularity of associated
fluid-structure systems is played by perturbations methods. The main results we
have presented in this direction are Proposition 1.18, which is given in Kunstmann
and Weis [22] and Theorem 1.25, which seems to be new.

1.4 Existence and Uniqueness Results

1.4.1 Some Background

In this section we will prove local in time existence and uniqueness results for the
systems introduced in Sects. 1.1.2 and 1.2. The proofs of the local in time existence
and uniqueness results are based on Banach fixed point theorem which is applied to
the systems written in fixed spatial domain. In order to apply the Banach fixed point
theorem, we need to study the regularity of linear systems with nonhomogeneous
source term and non zero initial data on a compact time interval. In fact, to obtain
local in time existence and uniqueness of solution, it is important to obtain estimate
of solutions in terms of source term and initial data with precise dependence of the
continuity constant with respect to time. To this aim, we first recall some basic facts
about real interpolation spaces. The proofs can be found in [4, 18, 33].

Let X0 and X1 are two complex Banach spaces. The pair .X0;X1/ is called
interpolation couple if there is a linear, complex Hausdorff space Y such that
X0;X1 ,! Y with continuous embeddings.

Lemma 1.26 Let .X0;X1/ be an interpolation couple. Then X0 \ X1 with the norm

kxkX0\X1 D max .kxkX0 ; kxkX1 / ;

and X0 C X1 with the norm

kxkX0CX1 D inf
xDx0Cx1
xj2Xj

.kxkX0 C kxkX1 / ;

are Banach spaces.
We now introduce the real interpolation space .X0;X1/�;q via K method. Let

.X0;X1/ be an interpolation couple. Fot 0 < t < 1, x 2 X0 C X1,

K.t; x/ D K.t; x;X0;X1/ D inf
xDx0Cx1
xj2Xj

.kxkX0 C tkxkX1 / ;

is an equivalent norm in X0 C X1.
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Definition 1.27 Let .X0;X1/ be an interpolation couple. Let 0 < � < 1 and 1 <
q < 1. Then

.X0;X1/�;q D
(
x 2 X0 C X1 j kxk.X0;X1/�;q WD

�Z 1

0

.t��K.t; x//q
dt

t

	1=q
< 1

)
:

It is easy to verify that k � k.X0;X1/�;q is a norm and that .X0;X1/�;q is a linear
subspace of X0 C X1. We recall some important properties of the space .X0;X1/�;q

Proposition 1.28

(1) It holds that

.X0;X1/�;q D .X1;X0/1��;q:

(2) There exists a constant C�;q, 0 < � < 1, 1 < q < 1 such that for all
x 2 X0 \ X1

kxk.X0;X1/�;q 6 C�;qkxk1��X0 kxk�X1 :

Now we introduce another definition of interpolation spaces.

Definition 1.29 Let .X0;X1/ be an interpolation couple, ˛ 2 R and 1 < q < 1.
Then

W.q; ˛;X0;X1/ D
n
u.t/ j u.t/ locally integrable functions defined on .0;1/ with

values in X0 C X1 such that t˛u.t/ 2 Lq.0;1;X0/;

t˛ Pu 2 Lq.0;1;X1/
o
;

where the derivative Pu D du

dt
is the distributional derivative of u.

The space W.q; ˛;X0;X1/ endowed with the norm

kukW.q;˛;X0;X1/ WD kt˛ukLq.0;1IX0/ C kt˛ PukLq.0;1IX1/

is a Banach space. We define the space of traces as follows

Definition 1.30 Let .X0;X1/ be an interpolation couple. Let ˛ 2 R and 1 < q < 1
are such that 0 < ˛ C q�1 < 1. Then we define

T.q; ˛;X0;X1/ WD fx 2 X0 C X1 j there exists u 2 W.q; ˛;X0;X1/ with u.0/ D xg :

The space T.q; ˛;X0;X1/ endowed with the norm

kxkT.q;˛;X0;X1/ WD inf
˚kukW.q;˛;X0;X1/ j u.0/ D x

�
;
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is a Banach space. The following theorem shows the connection between the
interpolation spaces .X0;X1/�;q and T.q; ˛;X0;X1/. This theorem will help us to
determine the required space of initial conditions in order to obtain maximal Lp �Lq

regularity for linear systems.

Theorem 1.31 Let .X0;X1/ be an interpolation couple. Let ˛ 2 R and 1 < q < 1
are such that 0 < ˛ C q�1 < 1. Then we have

T.q; ˛;X0;X1/ Š .X0;X1/�;q: (1.139)

As discussed earlier in this chapter, we are now going to study the regularity
of linear systems with nonhomogeneous source term and non zero initial data. Let
0 < T < 1. We consider the initial value problem

Pu.t/ D Au.t/C f .t/; t 2 Œ0;T�; u.0/ D u0: (1.140)

As a consequence of Theorem 1.19, we have the following result:

Theorem 1.32 Let X be a Banach space of class HT , 1 < p < 1, and let A be
a closed, densely defined unbounded operator in X with domain D.A/. Let A be an
R-sectorial operator in X, i.e., there exists "0 2 .0; �=2/ and �0 > 0 such that

RL.X/
˚
�.� � A/�1 j � 2 †"0;�0

�
< 1: (1.141)

Then for every u0 2 .X;D.A//1�1=p;p and for every f 2 Lp.0;TIX/, (1.140) admits a
unique solution in Lp.0;TID.A//\ W1;p.0;TIX/. Moreover, there exists a constant
C independent of T such that the following estimate holds

kukLp.0;TID.A// C kukW1;p.0;TIX/
6 C.1C 2�0/e

2�0T
�ku0k.X;D.A//1�1=p;p C k fkLp.0;TIX/

�
: (1.142)

Proof Let us set

fT D
(
f if 0 6 t 6 T;

0 if t > T;

and

A�0 D A � 2�0I; f�0 .t/ D e�2�0tfT : (1.143)

Therefore, obviously we have

D.A�0/ D D.A/; RL.X/
˚
�.�I � A�0/

�1 j � 2 †"0
�
< 1
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and f�0 belongs to Lp.0;1IX/. Let us consider the problem

Pu�0.t/ D A�0u�0.t/C f�0 .t/; t > 0; u�0.0/ D u0: (1.144)

According to Theorem 1.31,

.X;D.A//1�1=p;p Š ˚
u.0/ j u 2 Lp.0;1ID.A//\ W1;p.0;1IX//� :

Therefore for every u0 2 .X;D.A//1�1=p;p, there exists u1 2 Lp.0;1ID.A// \
W1;p.0;1IX/ such that u1.0/ D u0 and Pu1 � A�0u1 belongs to Lp.0;1IX/. By
Theorem 1.19 and using the fact that 0 2 �.A�0/, we obtain existence and uniqueness
strong solution u2 2 Lp.0;1ID.A//\ W1;p.0;1IX/ to

Pu2 D A�0u2 C . f � Pu1 C A�0u1/; u2.0/ D 0:

Hence, u�0 D u1 C u2 belongs to Lp.0;1ID.A// \ W1;p.0;1IX/ and u�0
solves (1.144). By closed graph theorem, there exists a constant C > 0 such that

ku�0kLp.0;1ID.A// C ku�0kW1;p.0;1IX/ 6 C.k f�0kLp.0;1IX/ C ku0k.X;D.A//1�1=p;p/:
(1.145)

Define

u.t/ D e2�0tu�0.t/; 0 6 t 6 T:

Then u belongs to Lp.0;TID.A// \ W1;p.0;TIX/ and u solves (1.140). Moreover,

kukLp.0;TID.A// C kukW1;p.0;TIX/

6 .1C 2�0/e
2�0T.ku�0kLp.0;TID.A// C ku�0kW1;p.0;TIX//

6 .1C 2�0/e
2�0T.ku�0kLp.0;1ID.A// C ku�0kW1;p.0;1IX//:

Finally, by using the above estimate and (1.145), we obtain (1.142). ut
For a smooth bounded domain � � R

n, the Sobolev spaces of order s > 0 are
denoted by Ws;q.�/. Let m 2 N. For every 0 < s < m; 1 6 p < 1; 1 6 q < 1, we
define Besov spaces by real interpolation of Sobolev spaces

Bs
q;p.�/ D .Lq.�/;Wm;q.�//s=m;p: (1.146)

In particular if p D q D 2, then Bs
2;2.�/ D Ws;2.�/. We introduce the space

W2;1
q;p ..0;T/ ��/ WD Lp.0;TIW2;q.�// \ W1;p.0;TILq.�//; (1.147)
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and

kukW2;1
q;p ..0;T/��/ WD kukLp.0;TIW2;q.�// C kukW1;p.0;TILq.�//: (1.148)

We now state an important embedding theorem

Theorem 1.33 ([1, Theorem 4.10.2]) Let X0 and X1 are two Banach spaces such
that X1 is densely embedded in X0. Let 0 < T 6 1 and fix p 2 .1;1/. Then

Lp.Œ0;T/IX1/\ W1;p.Œ0;T/IX0/ ,! C.Œ0;T/I .X0;X1/1�1=p;p/:

As a consequence of the above theorem, we obtain the following proposition

Proposition 1.34 ([31, Proposition 4.2]) Let 1 < p; q < 1 and T be any positive
number. Let � be a smooth domain in Rn. Then for any u 2 W2;1

q;p ..0;T/ ��/,

sup
t2.0;T/

ku.t/k
B
2.1�1=p/
q;p .�/

6 C
�
ku.0/k

B
2.1�1=p/
q;p .�/

C kukW2;1
q;p ..0;T/��/


; (1.149)

where the constant C is independent of time T. In particular, if p D q D 2, then for
any u 2 L2.0;TIW2;2.�// \ W1;2.0;TIL2.�//

sup
t2.0;T/

ku.t/kW1;2.�/ 6 C
�ku.0/kW1;2.�/ C kukL2.0;TIW2;2.�// C kukW1;2.0;TIL2.�//

�
;

(1.150)

where the constant C is independent of T.

For any 1 < p < 1, p0 denotes the conjugate of p, i.e.,
1

p
C 1

p0 D 1. We recall

some basic embedding estimates

k fkLp.0;T/ 6 T1=p�1=rk fkLr.0;T/; for all f 2 Lr.0;T/; r > p

k fkL1.0;T/ 6 T1=p
0k fkW1;p.0;T/; for all f 2 W1;p.0;T/; f .0/ D 0: (1.151)

Let �.t/ be a time dependent domain. We define Sobolev spaces in the time
dependent domain�.t/ as follows.

Definition 1.35 We say that u 2 Ws1;p.0;TIWs2;q.�.�/// if for almost every t 2
.0;T/, u.t/ belongs to Ws2;q.�.t// and t 7! ku.t; �/kWs2;q.�.t// is in Ws1;p.0;T/.
Other type of Sobolev spaces in the time dependent domain �.t/ can be defined
similarly. Finally we recall the following useful lemma

Lemma 1.36 ([32, Chap. 3, Lemma 2.1]) Let Xi, i D 1; 2; 3 be Banach spaces
with continuous inclusions

X1 ,! X2 ,! X3:
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Assume that X1 is compactly embedded in X2. Then for any given � > 0, there exists
C.�/ > 0 such that for all x 2 X1

kxkX2 6 �kxkX1 C C.�/kxkX3 :

1.4.2 Back to the Toy Problem

In this section we consider again the toy problem (1.9), this time in a Lp � Lq

framework. The main result asserts the local in time existence and uniqueness of
solutions for system (1.9) in this context. Let us set �h.t/ D .�1; 1/ n fh.t/g and
�h0 D .�1; 1/ n fh0g. For every 1 < p < 1 and 1 < q < 1 the set Ip;q is defined
by

Ip;q D ˚
.z0; h0; g0/ j z0 2 B2.1�1=p/q;p .�h0 /; h0 2 .�1; 1/; g0 2 R

�
(1.152)

and

k.z0; h0; g0/kIp;q WD kz0kB2.1�1=p/q;p .�h0 /
C jh0j C jg0j:

For every p; q 2 .1;1/ satisfying the condition
1

p
C 1

2q
¤ 1, we introduce the

space of initial data

Icc
p;q D

(
Ip;q if 1

p C 1
2q > 1;˚

.z0; h0; g0/ 2 Ip;q j z0.h0/ D g0; z0.�1/ D z0.1/ D 0
�

if 1
p C 1

2q < 1:

(1.153)

The main result of this section states as follows.

Theorem 1.37 Let 1 < p; q < 1 satisfying the condition
1

p
C 1

2q
¤ 1. Assume

that .v0; h0; g0/ belongs to Icc
p;q. Then there exists a T > 0 such that the system (1.9)

admits a unique strong solution

v 2 Lp.0;TIW2;q.�h.�///\ W1;p.0;TILq.�h.�///\ C.Œ0;T�IB2.1�1=p/q;p .�h.�///;
h 2 W2;p.0;T/:

Moreover, h.t/ 2 .�1; 1/ for all t 2 Œ0;T�.
In view of Proposition 1.2, it is enough to show local in time existence and

uniqueness of solutions for system (1.12) which holds in a fixed spatial domain.
Therefore, in this section, we prove the following theorem



48 D. Maity and M. Tucsnak

Theorem 1.38 Let 1 < p; q < 1 satisfying the condition
1

p
C 1

2q
¤ 1. Assume

that .z0; h0; g0/ belongs to Icc
p;q. Then there exists a T > 0 such that the system (1.12)

admits a unique strong solution

z 2 Lp.0;TIW2;q.�h0 //\ W1;p.0;TILq.�h0 // \ C.Œ0;T�IB2.1�1=p/q;p .�h0 //;

h 2 W2;p.0;T/:

Moreover, h.t/ 2 .�1; 1/ for all t 2 Œ0;T�.
In order to prove the above theorem, we first rewrite (1.12) as follows

Pz � zxx D F1.z; g; h/; t 2 .0;T/; x 2 .�1; 1/ n h0;

z.t;�1/ D z.t; 1/ D 0; z.t; h0/ D g.t/; t 2 .0;T/ (1.154)

Pg D Œzx� .t; h0/C F2.z; g; h/; t 2 .0;T/
z.0; x/ D z0.x/ x 2 .�1; 1/; h.0/ D h0; g.0/ D g0:

where

h.t/ D h0 C
Z t

0

g.s/ ds;

F1.z; g; h/ D k.h � h0/

1 � kh

�
2C k.h � h0/

1 � kh

�
zxx C 1� kx

1 � kh
gzx � 1 � kh0

1 � kh
zzx;

F2.z; g; h/ D .h � h0/

�
kzx

1 � kh

�
.t; h0/: (1.155)

We consider the following linear system

Pz � zxx D f1; t 2 .0;T/; x 2 .�1; 1/ n h0;

z.t;�1/ D z.t; 1/ D 0; z.t; h0/ D g.t/; t 2 .0;T/ (1.156)

Pg D Œzx� .t; h0/C f2; t 2 .0;T/
z.0; x/ D z0.x/ x 2 .�1; 1/ n fh0g; g.0/ D g0:

We want to rewrite the above system as an evolution equation in an appropriate
Banach space. Let �h0 D .�1; 1/ n fh0g and q > 1. We introduce the following
spaces

Z D W2;q.�h0 / \ W1;q
0 .�1; 1/; X D Lq.�h0 /; U D R:

Let L 2 L.Z;X/, G 2 L.Z;U/ and C 2 L.Z;U/ are defined as follows

Lz D zxx; Gz D z.h0/; Cz D Œzx�.h0/ (1.157)
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Let us introduce the unbounded operator .A ;D.A/ in X � U by

D.A/ D f.z; g/ 2 X � U j Lz 2 X; Gz D gg (1.158)

and

A
�
z
g

	
D
�
Lz
Cz

	
(1.159)

Thus (1.156) can be written as

d

dt

�
z
g

	
D A

�
z
g

	
C
�
f1
f2

	
;

�
z.0/
g.0/

	
D
�
z0
g0

	
: (1.160)

Proposition 1.39 There exists " 2 .0; �=2/ and �0 > 0 such that

RL.X�U/
˚
�.� � A/�1 j � 2 †"0;�0

�
< 1: (1.161)

Proof Let us set X1 D KerG D fz 2 Z j z.h0/ D 0g, and A D LjX1 . Then, by Denk
et al. [12, Theorem 8.2], A is R-sectorial in X and there exists "0 and Q� > 0 such
that

RL.X/
˚
�.� � A/�1 j � 2 †"0;Q�

�
< 1: (1.162)

We also have, for s 2 .1=q; 1/

kCzkU 6 CkzxkWs;q.�h0 /
6 CkzkW1Cs.�h0 /

: (1.163)

Since W2;q.�h0 / ,!compact W1Cs;q.�h0 /, we obtain for any ı > 0, there exists

kzkW1Cs.�h0 /
6 ıkzkW2;q.�h0 /

C C.ı/kzkLq.�h0 /
;

holds for arbitrary small ı. This completes the proof of the proposition. ut
Combining the above proposition and Theorem 1.32, we obtain the following

result

Theorem 1.40 Let 1 < p; q < 1 and h0 2 .�1; 1/. Then for every .z0; g0/ 2
.Z;D.A//1�1=p;p and for every . f1; f2/ 2 Lp.0;TILq.�h0 // � Lp.0;T/, the sys-
tem (1.156) admits a unique strong solution satisfying

kzkLp.0;TIW2;q.�h0 //
C kzkW1;p.0;TILq.�h0 //

C kgkW1;p.0;T/

6 C.1C e2�0T/
�
k.z0; h0; g0/k.Z;D.A//1�1=p;p C k f1kLp.0;TILq.�h0 //

C k f2kLp.0;T/

:
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In order to prove our local in time existence and uniqueness result we combine
the above theorem with a fixed point procedure. In the above theorem, one requires
initial conditions from a real interpolation space between D.A/ and Z. In order to
identify this interpolation space, we prove the following lemma:

Lemma 1.41 Let p; q 2 .1;1/ satisfying the condition
1

p
C 1

2q
¤ 1. Let us assume

that h0 2 .�1; 1/ and .z0; g0/ belongs to .Z;D.A//1�1=p;p. Then .z0; h0; g0/ belongs
to Icc

p;q, where Icc
p;q, defined as in (1.153).

Proof For proof we refer to [33, Sect. 4.3.3] and [2, Theorem 2.2]. ut
Next for T > 0, we define

BT D
n
. f1; f2/ 2 Lp.0;TILq.�h0 // � Lp.0;T/ j

k f1kLp.0;TILq.�h0 //
C k f2kLp.0;T/ 6 1

o
: (1.164)

Proposition 1.42 Let p; q 2 .1;1/ satisfying the condition
1

p
C 1

2q
¤ 1. Assume

that .z0; h0; g0/ belongs to Icc
p;q. Let M > 0 be such that

k.z0; h0; g0/kIp;q 6 M: (1.165)

Then for every . f1; f2/ 2 BT, the system (1.156) admits a unique strong solution on
Œ0;T�. Moreover, there exists a constant C depending only on M such that

kzkLp.0;T
�

IW2;q.�h0 //
C kzkW1;p.0;T

�

ILq.�h0 //
C kgkW1;p.0;T

�

/ 6 C; (1.166)

kzkL1.0;T
�

ILq.�h0 //
6 C; kgkL1.0;T

�

/ 6 C; (1.167)

kzxkLp.0;T
�

IL1.�h0 //
6 CT.1�s/=2p� ; s 2 .1=q; 1/; (1.168)

holds for all T� 2 .0; 1�.
Proof The first estimate follows directly from Theorem 1.40. Notice that,

kz � z0kL1.0;TILq.�h0 //
6 T1=p

0kzkW1;p.0;TILq.�h0 //
;

which yields,

kzkL1.0;T
�

ILq.�h0 //
6 C; T� 2 .0; 1�: (1.169)

Similarly, we can show kgkL1.0;T
�

/ 6 C. Since 1 < q < 1, we have zx 2
Lp.0;T�;W1;q.�h0 // ,! Lp.0;T�;L1.�h0 //. Let us fix, s 2 .1=q; 1/. Therefore,
we have

kzx.t; �/kL1.�h0 /
6 Ckzx.t; �/kWs;q.�h0 /

6 Ckz.t; �/k.1Cs/=2
W2;q.�h0 /

kz.t; �/k.1�s/=2
Lq.�h0 /

:
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Thus, using (1.169) and Hölder’s inequality we get

kzxkLp.0;T
�

IL1.�h0 //
6 Ckzk.1�s/=2

L1.0;T
�

ILq.�h0 //

�Z T
�

0

kz.t; �/k.1Cs/p=2
W2;q.�h0 /

dt

	1=p

6 CT.1�s/=2p� :

ut
Lemma 1.43 Let p; q 2 .1;1/ satisfying the condition

1

p
C 1

2q
¤ 1. For

T� 2 .0; 1�, let BT
�

be the ball defined in (1.164). Let .z0; h0; g0/ and M as in
Proposition 1.42. Given . f1; f2/ 2 BT

�

, let .z; g/ be the solution of (1.156) on Œ0;T��
constructed in Proposition 1.42.

Then there exists a constant C > 0, depending only on M, such that

jh.t/� h.0/j 6 CT1=p
0

� ; t 2 Œ0;T��

kF1.z; g; h/kLp.0;T
�

ILq.�h0 //
6 C.T1=p

0

� C T.1�s/=2p
� /; s 2 .1=q; 1/ (1.170)

kF2.z; g; h/kLp.0;T
�

/ 6 CT1=p
0

� ;

where h;F1 and F2 have been defined in (1.155).

Proof Using (1.166), we get for all t 2 Œ0;T��,

jh.t/ � h0j 6
Z T

�

0

jg.s/j ds 6 T1=p
0

� kgkLp.0;T
�

/ 6 CT1=p
0

� : (1.171)

Using the above estimate it is easy to see that, for all t 2 Œ0;T��
ˇ̌
ˇ̌ 1

1 � �h

ˇ̌
ˇ̌ 6 C; (1.172)

where the constant C is independent of T�. Using (1.166), (1.171) and (1.172), the
first term of F1.z; g; h/ can be estimated as follows

����
k.h � h0/

1� kh

�
2C k.h � h0/

1 � kh

�
zxx

����
Lp.0;T

�

ILq.�h0 //

6 Cjh � h0jkzxxkLp.0;T
�

ILq.�h0 //
6 CT1=p

0

� : (1.173)

Using (1.167), (1.168) and (1.172), it is easy to see that the second term of F1 satisfy
the following estimate

����
1 � kx

1 � kh
gzx

����
Lp.0;T

�

ILq.�h0 //

6 CkgkL1.0;T
�

/kzxkLp.0;T
�

ILq.�h0 //

6 CkzxkLp.0;T
�

IL1.�h0 //
6 CT.1�s/=2p

� : (1.174)
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Similarly, using (1.167), (1.168) and (1.172), we obtain

����
1 � kh0
1 � kh

zzx

����
Lp.0;T

�

ILq.�h0 //

6 CkzkL1.0;T
�

ILq.�h0 //
kzxkLp.0;T

�

IL1.�h0 //

6 CT.1�s/=2p
� : (1.175)

Combining (1.173), (1.174) and (1.175), we get

kF1.z; g; h/kLp.0;T
�

ILq.�h0 //
6 C.T1=p

0

� C CT.1�s/=2p
� /:

Finally, using (1.166), (1.171) and (1.172), one has

kF2.z; g; h/kLp.0;T
�

/ D
����.h � h0/

�
kzx

1 � kh

�
.�; h0/

����
Lp.0;T

�

/

6 Ckh � h0kL1.0;T
�

/kzxkLp.0;T
�

IW1;q.�h0 //
6 CT1=p

0

� :

ut
Lemma 1.44 Let p; q 2 .1;1/ satisfying the condition

1

p
C 1

2q
¤ 1. For

T� 2 .0; 1�, let BT
�

be the ball defined in (1.164). Let .z0; h0; g0/ and M as in
Proposition 1.42. Given . f j1; f

j
2/ 2 BT

�

, for j D 1; 2, let .zj; gj/ be the solution
of (1.156) on Œ0;T�� constructed in Proposition 1.42.

Then there exist a constant C > 0 depending only on M and ı > 0 depending
only on p and q such that

jh1.t/ � h2.t/j C kF1.z1; g1; h1/ � F1.z2; g2; h2/kLp.0;T
�

ILq.�h0 //

C kF2.z1; g1; h1/� F2.z2; g2; h2/kLp.0;T
�

/

6 CTı�
�k f 11 � f 21 kLp.0;T

�

ILq.�h0 //
C k f 12 � f 22 kLp.0;T

�

/

�
(1.176)

where h;F1 and F2 have been defined in (1.155).
We are now in a position to prove our main theorem.

Proof of Theorem 1.38 We consider the map

8
ˆ̂<

ˆ̂:

N W BT
�

! BT
�

;

�
f1
f2

�
7!
�
F1
F2

�
;

where F1 and F2 have been defined in (1.155). We want to show N is a strict

contraction of BT
�

, with a Lipschitz constant
1

2
for small T�. We first note that from



1 Maximal Regularity of Systems Modelling FSI 53

Lemma 1.43 , we obtain, for all . f1; f2/ 2 BT
�

kN . f1; f2/kLp.0;T
�

ILq.�h0 //�Lp.0;T
�

/ 6 C.T1=p
0

� C T.1�s/=2p
� /;

where C is a constant depending only on M. Therefore by choosing T� 6 1 small
enough

kN . f1; f2/kLp.0;T
�

ILq.�h0 //�Lp.0;T
�

/ < 1: (1.177)

Therefore N maps BT
�

into BT
�

for small enough T�. Next from Lemma 1.44, there
exists C > 0, depending only on M such that

kN . f 11 ; f 12 /� N . f 21 ; f 22 /kLp.0;T�

ILq.�h0 //�Lp.0;T
�

/

6 C.T1=p
0

� C T.1�s/=2p
� /

��. f 11 ; f 12 /� . f 21 ; f
2
2 /
��
Lp.0;T

�

ILq.�h0 //�Lp.0;T
�

/
:

Thus by choosing T� small enough we obtain N is a strict contraction, which
implies the existence and uniqueness result.

1.4.3 A More Realistic 1D Model

In this section, we shall prove local in time existence and uniqueness of solutions
for the system (1.67). Let us set �h.t/ D .�1; 1/ n fh.t/g and�h0 D .�1; 1/ n fh0g.
For every 1 < p < 1 and 1 < q < 1 the set Ip;q;�h0

is defined by

Ip;q;�h0
D
n
.%0;w0; #0; h0; g0;Q0/ j %0 2 W1;q.�h0 /; w0; #0 2 B2.1�1=p/

q;p .�h0 /;

h0 2 .�1; 1/; g0 2 R; Q0 2 R; min

2�h0

%0.
/ > 0
o
;

and

k.%0;w0; #0; h0; g0;Q0/kIp;q WD k%0kW1;q.�h0 /
C kw0kB2.1�1=p/q;p .�h0 /

C k#0kB2.1�1=p/q;p .�h0 /

Cjh0j C jg0j C jQ0j:

Let p and q satisfy one of the following conditions:

either 1 < q < 1 and 2 < p < 1 satisfying
1

p
C 1

2q
¤ 1 and

1

p
C 1

2q
¤ 1

2
;

or p D q D 2: (1.178)



54 D. Maity and M. Tucsnak

Let p; q satisfy the condition (1.178). We introduce the space of initial data

Icc
p;q;�h0

D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

Ip;q;�h0
if 1

p C 1
2q > 1;n

.%0;w0; #0; h0; g0;Q0/ 2 Ip;q;�h0
j w0.h0/D g0;

w0.�1/ D w0.1/ D 0; #0.h0/DQ0
o

if 1
2
< 1

p C 1
2q < 1;n

.%0;w0; #0; h0; g0;Q0/ 2 Ip;q;�h0
j w0.h0/D g0;

w0.�1/ D w0.1/ D 0; #0.h0/ D Q0;

@
#0.�1/D @
#0.1/ D 0
o

if 1
p C 1

2q <
1
2
:

(1.179)

We prove the following theorem

Theorem 1.45 Let p; q satisfy the condition (1.178). Assume that .%0;w0; #0; h0; g0;
Q0/ belongs to Icc

p;q;�h0
. Then there exists a T > 0 such that the system (1.67) admits

a unique strong solution

% 2 W1;p.0;TIW1;q.�h.�///\ C.Œ0;T�IW1;q.�h.�///
w; # 2 Lp.0;TIW2;q.�h.�///\ W1;p.0;TILq.�h.�///\ C.Œ0;T�IB2.1�1=p/q;p .�h.�///;

h 2 W2;p.0;T/; Q 2 W1;p.0;T/:

Moreover, h.t/ 2 .�1; 1/ for all t 2 Œ0;T� and min

2�h0

%.t; 
/ > 0 for all t 2 Œ0;T�,


 2 �h.t/.
Due to the change of variable introduced in Sect. 1.2.1, it is enough to prove local

in time existence and uniqueness for the system (1.92). To this aim, let us set

� D .�r1; r2/ n f0g:

Let p; q satisfy the condition (1.178). We introduce following space of initial
conditions for system (1.92),

Icc
p;q;� D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

Ip;q;� if 1
p C 1

2q > 1;n
.v0; u0; �0; h0; g0;Q0/ 2 Ip;q;� j u0.0/ D g0;

u0.�r1/ D u0.r2/ D 0; �0.0/ D Q0
o

if 1
2
< 1

p C 1
2q < 1;n

.v0; u0; �0; h0; g0;Q0/ 2 Ip;q;� j u0.0/ D g0;

u0.�r1/ D u0.r2/ D 0; �0.0/ D Q0;

@x�0.�r1/ D @x�0.r2/ D 0
o

if 1
p C 1

2q <
1
2
:

(1.180)
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In this section, we prove the following theorem

Theorem 1.46 Let p; q satisfy the condition (1.178). Assume that .v0; u0; �0; h0; g0;
Q0/ belongs to Icc

p;q;�. Then there exists a T > 0 such that the system (1.92) admits
a unique strong solution

v 2 W1;p.0;TIW1;q.�// \ C.Œ0;T�IW1;q.�//

u; � 2 Lp.0;TIW2;q.�// \ W1;p.0;TILq.�// \ C.Œ0;T�IB2.1�1=p/q;p .�//;

h 2 W2;p.0;T/; Q 2 W1;p.0;T/:

Moreover, h.t/ 2 .�r1; r2/ for all t 2 Œ0;T� and min
x2�

v.t; x/ > 0 for all t 2 Œ0;T�,

x 2 �.
To prove the above theorem, we rewrite (1.92) as follows

@tv � @xu D 0; .t > 0; x 2 Œ�r1; r2� n f0g/;

@tu � @x
�
1

v0
@xu

	
D F1.v; u; �/; .t > 0; x 2 Œ�r1; r2� n f0g/;

@t� � @x
�
1

v0
@x�

	
D F2.v; u; �/; .t > 0; x 2 Œ�r1; r2� n f0g/;

u.t;˙0/ D Ph.t/; �.t; 0˙/ D Q.t/; .t > 0/;

(1.181)

mRh.t/ D
�
1

v0
@xu

�
.t; 0/ C F3.v; u; �/; .t > 0/;

PQ.t/ D
�
1

v0
@x�

�
.t; 0/ C F4.v; u; �/; .t > 0/;

u.t;�r1/ D u.t; r2/ D 0; @x�.t;�r1/ D @x�.t; r2/ D 0; .t > 0/;

v.0; x/ D v0.x/; u.0; x/ D u0.x/; �.0; x/ D �0.x/; x 2 Œ�r1; r2� n f0g;
h.0/ D h0; Ph.0/ D g0;

where

F1.v; u; �/ D @x

��
1

v
� 1

v0

	
@xu

	
� @x

�
�

v

	

F2.v; u; �/ D @x

��
1

v
� 1

v0

	
@x�

	
C 1

v
.@xu/

2 � �

v
@xu (1.182)

F3.v; u; �/ D
��
1

v
� 1

v0

	
@xu � �

v

�
.t; 0/; F4.v; u; �/ D

��
1

v
� 1

v0

	
@x�

�
.t; 0/:
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We consider the following linear system

@tv � @xu D 0; .t > 0; x 2 Œ�r1; r2� n f0g/;

@tu � @x
�
1

v0
@xu

	
D f1; .t > 0; x 2 Œ�r1; r2� n f0g/;

@t� � @x
�
1

v0
@x�

	
D f2; .t > 0; x 2 Œ�r1; r2� n f0g/;

u.t;˙0/ D Ph.t/; �.t; 0˙/ D Q.t/; .t > 0/;

(1.183)

mRh.t/ D
�
1

v0
@xu

�
.t; 0/ C f3; .t > 0/;

PQ.t/ D
�
1

v0
@x�

�
.t; 0/ C f4; .t > 0/;

u.t;�r1/ D u.t; r2/ D 0; @x�.t;�r1/ D @x�.t; r2/ D 0; .t > 0/;

v.0; x/ D v0.x/; u.0; x/ D u0.x/; �.0; x/ D �0.x/; x 2 Œ�r1; r2� n f0g;
h.0/ D h0; Ph.0/ D g0:

We introduce the following spaces

Z1 DW2;q.�/ \ W1;q
0 .�r1; r2/; Z2 D ˚

� 2 �W2;q.�/ j @x�.�r1/D @x�.r2/D 0
�
;

Z DW1;q.�/ � Z1 � Z2; X DW1;q.�/ � Lq.�/ � Lq.�/; U D R
2:

Let L 2 L.Z;X/, G 2 L.Z;U/ and C 2 L.Z;U/ are defined as follows

L

2

4
v

u
�

3

5 D

2

664

0 @x 0

0 @x

�
1
v0
@x


0

0 0 @x

�
1
v0
@x



3

775

2

4
v

u
�

3

5 ; G

2

4
v

u
�

3

5 D
�
u.0/
�.0/

�
;

C

2

4
v

u
�

3

5 D
2

4m
�1
h
1
v0
@xu
i
.0/h

1
v0
@x�

i
.0/

3

5 (1.184)

Let us introduce the unbounded operator .A;D.A// in X � U by

D.A/ D ˚
.v; u; �; g;Q/ 2 Z � U j G.v; u; �/T D .g;Q/T

�
(1.185)
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and

A

0
BBBBB@

v

u
�

g
Q

1
CCCCCA

D

0
BBBBBBB@

L

2

4
v

u
�

3

5

C

2

4
v

u
�

3

5

1
CCCCCCCA

: (1.186)

Set Ph.t/ D g.t/. Then (1.183) can be written as

d

dt

0
BBBBB@

v

u
�

g
Q

1
CCCCCA

D A

0
BBBBB@

v

u
�

g
Q

1
CCCCCA

C

0
BBBBB@

0

f1
f2
f3
f4

1
CCCCCA
;

0
BBBBB@

v.0/

u.0/
�.0/

g.0/
Q.0/

1
CCCCCA

D

0
BBBBB@

v0

u0
�0
g0
Q0

1
CCCCCA
: (1.187)

Proposition 1.47 Let 1 < q < 1 and v0 belongs to W1;q.�/ such that v0. y/ > 0

for all y 2 Œ�r1; r2�. The operator .A;D.A// is R-sectorial in X � U, i.e., there
exists " 2 .0; �=2/ and �0 > 0 such that

RL.X�U/
˚
�.� � A/�1 j � 2 †"0;�0

�
< 1: (1.188)

Proof Let us set X1 D KerG D f.v; u; �/ 2 Z j u.0/ D 0 D �.0/g, and A D LjX1 .
We rewrite A as A D A1 C B, where

A1 D

0

B@
0 @x 0

0 1
v0
@xx 0

0 0 1
v0
@xx

1

CA ; B D

0

B@
0 0 0

0 � @xv0
v0
@x 0

0 0 � @xv0
v0
@x

1

CA (1.189)

By Denk et al. [12, Theorem 8.2], we first obtain that the operator A1 with D.A1/ D
X1 is R-sectorial in X�U. Next, using Lemma 1.36, it is easy to see that the operator
B with D.B/ D D.A1/ satisfies the condition (1.125). Thus, by Proposition 1.18, we
obtain A is R-sectorial in X � U. Again, using Lemma 1.36 one can check that, the
operator C satisfies the condition (1.136). Thus the R-sectoriality of the operator
.A;D.A// follows from Theorem 1.25. ut
Theorem 1.48 Let 1 < p; q < 1. Then for every .v0; u0; �0; g0;Q0/ 2
.Z;D.A//1�1=p;p and for every . f1; f2; f3; f4/ 2 Lp.0;TILq.�// � Lp.0;TILq.�// �
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Lp.0;T/ � Lp.0;T/, the system (1.183) admits a unique strong solution satisfying

kvkW1;p.0;TIW1;q.�// C kukW2;1
q;p ..0;T/��/ C k�kW2;1

q;p ..0;T/��/ C khkW2;p.0;T/

C kQkW1;p.0;T/ 6 C.1C e2�0T/
�
k.v0; u0; �0; g0;Q0/k.Z;D.A//1�1=p;p

C k f1kLp.0;TILq.�// C k f2kLp.0;TILq.�// C k f3kLp.0;T/ C k f4kLp.0;T/

;

where the constant C is independent of time T.
Now we are in a position to get estimates required for fixed point argument.

As before, at first we want to identify the space of initial conditions. We have the
following lemma.

Lemma 1.49 Let p; q satisfy the condition (1.178). Let us assume that .v0; u0; �0;
g0;Q0/ belongs to .Z;D.A//1�1=p;p. Then .v0; u0; �0; g0;Q0/ belongs to Icc

p;q;�,
where Icc

p;q;�, defined as in (1.180).

Proof For proof we refer to [33, Sect. 4.3.3] and [2, Theorem 2.2]. ut
For T > 0, we define the space BT as follows

BT D
n
. f1; f2; f3; f4/ 2 Lp.0;TILq.�// � Lp.0;TILq.�// � Lp.0;T/ � Lp.0;T/ j

k f1kLp.0;TILq.�// C k f2kLp.0;TILq.�// C k f3kLp.0;T/ C k f4kLp.0;T/ 6 1
o
:

(1.190)

Proposition 1.50 Let p; q satisfy the condition (1.178). Assume that .v0; u0; �0;
h0; g0;Q0/ belongs to Icc

p;q;�. Let M > 0 be such that

k.v0; u0; �0; h0; g0;Q0/kIp;q;� 6 M;
1

M
6 v0.x/ 6 M: (1.191)

Then for every . f1; f2; f3; f4/ 2 BT , the system (1.183) admits a unique strong
solution on Œ0;T�. Moreover, there exist eT 6 1 a constant C, both depending only
on M such that

kvkW1;p.0;T
�

IW1;q.�// C kvkL1.0;T
�

IW1;q.�// 6 C; (1.192)

1

C
6 v.t; x/ 6 C; t 2 .0;eT/; x 2 .�r1; r2/ (1.193)

kukW2;1
q;p ..0;T�

/��/ C k�kW2;1
q;p ..0;T�

/��// 6 C; (1.194)

kukL1.0;T
�

IW1;q.�// C k�kL1.0;T
�

IW1;q.�// 6 C; (1.195)
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kukLp.0;T
�

IL1.�// C k�kLp.0;T
�

IL1.�// 6 CT.2�s/=2p� ; s 2 .1=q; 1/; (1.196)

k@xukLp.0;T
�

IL1.�// C k@x�kLp.0;T
�

IL1.�// 6 CT.1�s/=2p
� ; s 2 .1=q; 1/; (1.197)

holds for all T� 2 .0;eT/.
Proof From Theorem 1.48, there exists a constant C depending only on M such that

kvkW1;p.0;TIW1;q.�// C kukW2;1
q;p ..0;T/��/ C k�kW2;1

q;p ..0;T/��/ 6 C; T� 2 .0; 1�:

Since 1 < q < 1, we also have

kvkW1;q.0;T
�

IL1.�// 6 CkvkW1;p.0;TIW1;q.�// 6 C; T� 2 .0; 1�:

Notice that, for every T� 2 .0; 1�

sup
t2.0;T

�

/

kv.t; �/ � v0kL1.�/ 6 T1=p
0

� kvkW1;q.0;T
�

IL1.�// 6 CT1=p
0

� : (1.198)

Thus there existeT 6 1 a constant C, both depending only on M such that

1

C
6 v.t; x/ 6 C; t 2 .0;eT/; x 2 .�r1; r2/:

To prove (1.195), note that W1;q.�/ ,! B2.1�1=p/q;p .�/ provided 2 < p < 1. Thus,
Proposition 1.34 yields (1.195). In view of (1.150), estimate (1.195) also holds
when p D q D 2. Proof of other estimates are similar to proof of estimates in
Proposition 1.42. ut
Lemma 1.51 Let p; q satisfy the condition (1.178). For T� 2 .0;eT�, where eT
is a constant in Proposition 1.50, let BT

�

be the ball defined in (1.190). Let
.v0; u0; �0; h0; g0;Q0/ and M as in Proposition 1.50. Given . f1; f2; f3; f4/ 2 BT

�

,
let .v; u; �; h;Q/ be the solution of (1.183) on Œ0;T�� constructed in Proposi-
tion 1.50.

Then there exist a constant C > 0 depending only on M and a constant ı
depending only on p and q, such that

kF1.v; u; �/kLp.0;T
�

ILq.�// C kF2.v; u; �/kLp.0;T
�

ILq.�//

C kF3.v; u; �/kLp.0;T
�

/ C kF4.v; u; �/kLp.0;T
�

/ 6 CTı:� (1.199)

where F1;F2;F3 and F4 have been defined in (1.182).
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Proof Using the estimates (1.192)–(1.197) and (1.198), we obtain the following
estimate of F1

kF1.v; u; �/kLp.0;T
�

ILq.�//

D
����@x

��
1

v
� 1

v0

	
@xu

	����
Lp.0;T

�

ILq.�//
C
����@x

�
�

v

	����
Lp.0;T

�

ILq.�//

6
����
v � v0
vv0

����
L1..0;T/��/

k@xxukLp.0;T
�

ILq.�//

C
 ����
@xv

v2
� @xv0

v20

����
L1.0;T

�

ILp.�//

!
k@xukLp.0;T

�

IL1.�//

C
����
1

v

����
L1.0;T

�

ILq.�//
k@x�kLp.0;T

�

IL1.�// C
����
@xv

v2

����
L1.0;T

�

ILq.�//
k�kLp.0;T

�

IL1.�//

6 C.T1=p
0

� C T.2�s/=2p
� C T.1�s/=2p

� /; s 2 .1=q; 1/:

Estimates of first and third term of F2 are similar to the above estimate.
Using (1.193), (1.194) and (1.197), it is easy to see that the second term of F2
satisfy the following estimate

����
1

v
.@xu/

2

����
Lp.0;T

�

ILq.�//

6
����
1

v

����
L1..0;T/��/

k@xukLp.0;T
�

IL1.�//k@xukL1.0;T
�

ILq.�//

6 CT.1�s/=2p� ; s 2 .1=q; 1/:

Thus there exist a constant C > 0 depending only on M and a constant ı depending
only on p and q, such that

kF2.v; u; �/kLp.0;T
�

ILq.�// 6 Tı�: (1.200)

Notice that
����
��
1

v
� 1

v0

	
@xu � �

v

�
.�; 0/

����
Lp.0;T

�

/

6 C

����
�
1

v
� 1

v0

	
@xu � �

v

����
Lp.0;T

�

IW1;q.�//

:

Therefore, from the estimate of F1 we obtain

kF3.v; u; �/kLp.0;T
�

/ 6 Tı�; (1.201)
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where C > 0 depends only on M and ı depends only on p and q. The estimate of F4
is similar. ut
Lemma 1.52 Let p; q satisfy the condition (1.178). For T� 2 .0;eT�, where eT
is a constant in Proposition 1.50, let BT

�

be the ball defined in (1.190). Let
.v0; u0; �0; h0; g0;Q0/ and M as in Proposition 1.50. Given . f i1; f

i
2; f

i
3; f

i
4/ 2 BT

�

,
i D 1; 2, let .vi; ui; � i; hi;Qi/ be the solution of (1.183) on Œ0;T�� constructed in
Proposition 1.50.

Then there exist a constant C > 0 depending only on M and a constant ı
depending only on p and q, such that

kF1.v1; u1; �2/� F1.v2; u2; �2/kLp.0;T
�

ILq.�//

C kF2.v; u; �/ � F2.v2; u2; �2/kLp.0;T
�

ILq.�//

C kF3.v; u; �/ � F3.v2; u2; �2/kLp.0;T
�

/ C kF4.v; u; �/ � F4.v2; u2; �2/kLp.0;T
�

/

6 CTı�
�
k f 11 � f 21 kLp.0;T

�

ILq.�// C k f 12 � f 22 kLp.0;T
�

ILq.�//

C k f 13 � f 23 kLp.0;T
�

C k f 14 � f 23 kLp.0;T
�


(1.202)

where F1;F2;F3 and F4 have been defined in (1.182).

Proof of Theorem 1.46 We consider the map

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

N W BT
�

! BT
�

;

2

664

f1
f2
f3
f4

3

775 7!

2

664

F1
F2
F3
F4

3

775 ;

where F1, F2;F3 and F4 have been defined in (1.182). From Lemmas 1.51 and
1.52 and by choosing T� 6 eT, small enough it is easy to see that N is a strict

contraction of BT
�

, with a Lipschitz constant
1

2
. This implies the existence and

uniqueness result.

1.4.4 Motion of a Solid in a Compressible Fluid

In this section, we prove local in time existence and uniqueness of solution for the
system (1.110). For every 1 < p < 1 and 1 < q < 1, the space Ip;q;�F.0/ is
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defined by

Ip;q;�F.0/ D
n
.�0; u0; #0; `0; !0/ j �0 2 W1;q.�F.0//\ L1.�F.0//;

u0 2 B2.1�1=p/q;p .�F.0//
3; g0 2 R

3; !0 2 R
3; min

y2�F.0/
�0. y/ > 0

o
;

(1.203)

and

k.�0; u0; #0; `0; !0/kIp;q;�F.0/
Dk�0kW1;q.�F.0// C ku0kB2.1�1=p/q;p .�F.0//

C kg0kR3 C k!0kR3 :

We now state our main result.

Theorem 1.53 Let 2 < p < 1 and 3 < q < 1. Assume that .�0; u0; g0; !0/
belongs to Ip;q;�F.0/ satisfying the compatibility condition

u0 D 0 on @�; u0 D g0 C !0 � y on @�S.0/: (1.204)

Let M > 0 be such that

k.�0; u0; g0; !0/kIp;q;�F.0/
6 M;

1

M
6 �0.x/ 6 M for x 2 �F.0/: (1.205)

Then, there exists T > 0 such that the system (1.110) admits a unique strong solution

� 2 W1;p.0;TIW1;q.�F.�///\ C.Œ0;T�IW1;q.�F.�///;
u 2 Lp.0;TIW2;q.�F.�//3/\ W1;p.0;TILq.�F.�//3/ \ C.Œ0;T�IB2.1�1=p/q;p .�F.�//3/;

h 2 W2;p.0;TIR3/; ! 2 W1;p.0;TIR3/:

Moreover, there exists a constant MT > 0 such that
1

MT
6 �.t; x/ 6 MT for all

t 2 .0;T/; x 2 �F.t/.
As before, we first prove our result for a equivalent system in a fixed spatial

domain.

Theorem 1.54 Let 2 < p < 1 and 3 < q < 1. Assume that .�0; u0; g0; !0/
belongs to Ip;q;�F.0/ such that (1.204)–(1.205) holds. Then, there exists T > 0 such
that the system (1.115)–(1.120) admits a unique strong solution

e� 2 W1;p.0; TIW1;q.�F.0/// \ C.Œ0; T�IW1;q.�F.0///;

eu 2 Lp.0; TIW2;q.�F.0//
3/ \ W1;p.0; TI Lq.�F.0//

3/ \ C.Œ0; T�IB2.1�1=p/q;p .�F.0//
3/;

eg 2 W1;p.0; TIR3/; e! 2 W1;p.0; TIR3/:
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Moreover, there exists a constant MT > 0, such that
1

MT
6 e�.t; y/ 6 MT, for all

t 2 .0;T/; y 2 �F.0/.
We start with the following linear system

@t Q�C �0div Qu D f1; in .0;T/ ��F.0/;

@t Qu � �

�0
�Qu � ˛ C �

�0
r.div Qu/ D f2 in .0;T/ ��F.0/;

Qu D 0 on .0;T/ � @�; Qu D g C ! � y on .0;T/ � @�S.0/; (1.206)

m
d

dt
Q̀ D �

Z

�S.0/

�
�r Qu C �r Qu> C ˛div QuI� n d� C f3; t 2 .0;T/;

J.0/
d

dt
Q! D �

Z

�S.0/

y � ��r Qu C �r Qu> C ˛div QuI� n C f4; t 2 .0;T/

Q�.0/ D �0; Qu.0/ D u0; in �F.0/;

Qg.0/ D g0; Q!0 D !0:

We introduce the following spaces

Z1 D
n
z 2 W2;q.�F.0//

3 j z D 0 on @�; 9`; k 2 R
3 such that

z D `C k � y on @�S.0/
o

Z D W1;q.�/ � Z1; X D W1;q.�/ � Lq.�/3; U D R
6:

Let L 2 L.Z;X/, G 2 L.Z;U/ and C 2 L.Z;U/ are defined as follows

L

�
e�
eu

�
D
2

4
0 �0div

0
�

�0
�C ˛ C �

�0
r.div/

3

5
�
e�
eu

�
; G

�
e�
eu

�
D
�
`

k

�
;

C

�
e�
eu

�
D

2

664
�m�1

Z

�S.0/

�
�r Qu C �r Qu> C ˛div QuI� n d�

�J.0/�1
Z

�S.0/

y � ��r Qu C �r Qu> C ˛div QuI� n

3

775 (1.207)

Let us introduce the unbounded operator .A;D.A// in X � U by

D.A/ D ˚
.e�;eu;eg;e!/ 2 Z � U j G.e�;eu/T D .eg;e!/T

�
(1.208)
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and

A

0

BB@

e�
eu
eg
e!

1

CCA D

0

BB@
L

�
e�
eu

�

C

�
e�
eu

�

1

CCA : (1.209)

Then (1.206) can be written as

d

dt

0

BB@

e�
eu
eg
e!

1

CCA D A

0

BB@

e�
eu
eg
e!

1

CCAC

0

BB@

f1
f2
f3
f4

1

CCA ;

0

BB@

e�.0/
eu.0/
eg.0/
e!.0/

1

CCA D

0

BB@

�0
u0
g0
!0

1

CCA : (1.210)

Proposition 1.55 Let 3 < q < 1 and �0 belongs to W1;q.�F.0// such that
�0. y/ > 0 for all y 2 �F.0/. The operator .A;D.A// is R-sectorial in X � U,
i.e., there exists " 2 .0; �=2/ and �0 > 0 such that

RL.X�U/
˚
�.� � A/�1 j � 2 †"0;�0

�
< 1: (1.211)

Proof The proof is similar to the proof of Proposition 1.47. ut
As a consequence of the above proposition and Theorem 1.32 we obtain the

following theorem

Theorem 1.56 Let 3 < q < 1 and 1 < p < 1. Then for every .�0; u0; g0; !0/ 2
.Z;D.A//1�1=p;p and for every . f1; f2; f3; f4/ 2 Lp.0;TILq.�F.0///

� Lp.0;TILq.�F.0/// � Lp.0;T/ � Lp.0;T/, the system (1.206) admits a unique
strong solution satisfying

ke� kW1;p.0;TIW1;q.�F.0/// C keukW2;1
q;p ..0;T/��F.0//

C kegkW1;p.0;T/ C ke!kW1;p.0;T/

6 C.1C e2�0T/
�
k.�0; u0; g0; !0/k.Z;D.A//1�1=p;p C k f1kLp.0;TILq.�F.0///

C k f2kLp.0;TILq.�F.0/// C k f3kLp.0;T/ C k f4kLp.0;T/

;

where the constant C is independent of time T.
Now we characterize the space of initial conditions. As before, using [33,

Sect. 4.3.3] and [2, Theorem 2.2] we obtain the following characterization of the
initial conditions.

Lemma 1.57 Let 3 < q < 1 and 2 < p < 1. Let us assume that .�0; u0; g0; !0/
belongs to .Z;D.A//1�1=p;p. Then .�0; u0; g0; !0/ belongs to Ip;q;�F.0/, where
Ip;q;�F.0/, defined as in (1.203) satisfying the compatibility condition (1.204).
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For T > 0, we define the space BT as follows

BT D
n
. f1; f2; f3; f4/ 2 Lp.0;TILq.�F.0/// � Lp.0;TILq.�F.0///� Lp.0;T/�

Lp.0;T/ j k f1kLp.0;TILq.�F.0/// C k f2kLp.0;TILq.�F.0///

C k f3kLp.0;T/ C k f4kLp.0;T/ 6 1
o
: (1.212)

Proposition 1.58 Let 3 < q < 1 and 2 < p < 1. Assume that .�0; u0; g0; !0/
belongs to Ip;q;�F.0/ such that (1.204)–(1.205) holds. Then for every . f1; f2; f3; f4/ 2
BT, the system (1.206) admits a unique strong solution Œ0;T�. Moreover, there exists
a constant C, depending only on M such that

ke�kW1;p.0;T
�

IW1;q.�F.0/// C keukW2;1
q;p ..0;T�

/��F.0//
6 C (1.213)

kegkW1;p.0;T
�

/ C ke!kW1;p.0;T
�

/ 6 C; (1.214)

ke� � �0kL1.0;T
�

IW1;q.�F.0/// 6 CT1=p
0

� ; ke� kLp.0;T
�

IW1;q.�F.0/// 6 CT1=p� ; (1.215)

keukL1.0;T
�

IW1;q.�F.0/// C kegkL1.0;T
�

/ C ke!kL1.0;T
�

/ 6 C; (1.216)

kukLp.0;T
�

IL1.�F.0/// 6 CT.2�s/=2p
� ; s 2 .3=q; 1/; (1.217)

kreukLp.0;T
�

IL1.�F.0///; kdiveukLp.0;T
�

IL1.�F.0/// 6 CT.1�s/=2p� ; s 2 .3=q; 1/;
(1.218)

kegkLp.0;T
�

/ C ke!kLp.0;T
�

/ 6 CT1=p� (1.219)

holds for all T� 2 .0; 1�.
Proof The proof is similar to the proof of Proposition 1.50. The main difference
here is W1;q.�F.0// ,! L1.�F.0// if 3 < q < 1. ut

Now we proof several lemmas required for fixed point argument.

Lemma 1.59 Let 3 < q < 1 and 2 < p < 1. For T� 2 .0; 1�, let BT
�

be
the ball defined in (1.212). Let .�0; u0; #0; a0; !0/ and M as in Proposition 1.58.
Given . f1; f2; f3; f4/ 2 BT

�

, let .e�;eu;eg;e!/ be the solution of (1.206) constructed in
Proposition 1.58. Let Q be defined as in (1.116). Then there exists a constant C > 0
depending only on M such that

kQkL1.0;T
�

/ 6 C; kQTkL1.0;T
�

/ 6 C;

kQ � IkL1.0;T
�

/ 6 CT1=p
0

� ; kQT � IkL1.0;T
�

/ 6 CT1=p
0

� ; (1.220)

k@tQkL1.0;T
�

/ 6 C: (1.221)



66 D. Maity and M. Tucsnak

Proof From (1.116) and Proposition 1.58, we have

jQ.t/j 6 1C C
Z t

0

jQ.s/j ds; for all t 2 .0;T��:

By Gronwall’s lemma, we have

jQ.t/j 6 eCt 6 eC for all t 2 .0;T��:

Similarly, from (1.116) and Proposition 1.58, we have

kQ � IkL1.0;T
�

/ 6 kQkL1.0;T
�

/

Z T
�

0

j.e!.s/ � Ijds 6 CT1=p
0

� :

ut
Lemma 1.60 Let 3 < q < 1 and 2 < p < 1. For T� 2 .0; 1�, let BT

�

be
the ball defined in (1.212). Let .�0; u0; #0; a0; !0/ and M as in Proposition 1.58.
Given . f1; f2; f3; f4/ 2 BT

�

, let .e�;eu;eg;e!/ be the solution of (1.206) constructed in
Proposition 1.58. Let X be defined as in (1.117). Then there exists a constant C > 0,
depending only on M such that

kJX � IkL1..0;T
�

/��F.0// 6 CT1=p
0

� : (1.222)

Moreover, there existseT 6 1 such that

kJX � IkL1..0;T
�

/��F.0/// 6 1

2
; .T� 2 .0;eT�/: (1.223)

Proof From the definition of X and Proposition 1.58, we obtain

sup
t2.0;T

�

/

kJX.t; �/� IkW1;q.�F.0// 6 C
Z T

�

0

kreukW1;q.�F.0// 6 CT1=p
0

� :

Therefore

kJX � IkL1..0;T
�

/��F.0/// 6 CkJX � IkL1.0;T
�

IW1;q.�F.0/// 6 CT1=p
0

� :

ut
Lemma 1.61 Let 3 < q < 1 and 2 < p < 1. For T� 2 .0;eT�, where eT is the
constant in Lemma 1.60, letBT

�

be the ball defined in (1.212). Let .�0; u0; #0; a0; !0/
and M as in Proposition 1.58. Given . f1; f2; f3; f4/ 2 BT

�

, let .e�;eu;eg;e!/ be the
solution of (1.206) constructed in Proposition 1.58. Let X be defined as in (1.117).
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Then there exists a constant C > 0 depending only on M such that

kJXkW1;p.0;T
�

IW1;q.�F.0/// C kJXkL1.0;T
�

IW1;q.�F.0/// 6 C;

kcofJXkW1;p.0;T
�

IW1;q.�F.0/// C kcofJXkL1.0;T
�

IW1;q.�F.0/// 6 C

kdetJXkW1;p.0;T
�

IW1;q.�F.0/// C kdetJXkL1.0;T
�

IW1;q.�F.0/// 6 C

kJYkW1;p.0;T
�

IW1;q.�F.0/// C kJYkL1.0;T
�

IW1;q.�F.0/// 6 C; (1.224)

Proof The estimate of JX in L1.0;T�IW1;q.�F.0/// norm follows from
Lemma 1.60. Next we have,

@tJX D Qreu:

Therefore @tJX 2 Lp.0;T�IW1;q.�F.0/// and the estimate follows. The esti-
mates of cofJX and detJX follows from the fact that W1;p.0;T�IW1;q.�F.0/// and
L1.0;T�IW1;q.�F.0/// are algebras for p > 2 and q > 3. In order to estimate the
norms of JY we use the following relation

JY D 1

detJX
cofJX:

ut
Lemma 1.62 Let 3 < q < 1 and 2 < p < 1. For T� 2 .0;eT�, where eT is the
constant in Lemma 1.60, letBT

�

be the ball defined in (1.212). Let .�0; u0; #0; a0; !0/
and M as in Proposition 1.58. Given . f1; f2; f3; f4/ 2 BT

�

, let .e�;eu;eg;e!/ be the
solution of (1.206) constructed in Proposition 1.58. Let bF1 be defined as in (1.118).
Then there exists a constant C > 0 depending only on M such that

kF1kLp.0;T
�

IW1;q.�F.0/// 6 CT1=p
0

� : (1.225)

Proof Let us recall

F1 D �.e� � �0/ diveu �e�.Q � I/reu W J>
Y �e�reu W .J>

Y � I/:

Notice that W1;q.�F.0// is an algebra for q > 3. Therefore, using Proposition 1.58,
Lemmas 1.59 and 1.61 we estimate the first term of F1 as follows

k.e� � �0/ diveukLp.0;T
�

IW1;q.�F.0///

6 Cke� � �0kL1.0;T
�

IW1;q.�F.0///kdiveukLp.0;T
�

IW1;q.�F.0///

6 CT1=p
0

� :
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Similarly, the second term of F1 can be estimated as follows

ke�.Q � I/reu W J>
Y kLp.0;T

�

IW1;q.�F.0///

6 Cke� kL1.0;T
�

IW1;q.�F.0///kQ � IkL1.0;T
�

/

keukLp.0;T
�

IW2;q.�F.0///kJ>
Y kL1.0;T

�

IW1;q.�F.0///

6 CT1=p
0

� :

The last term of F1 satisfies the following estimate

ke�reu W .J>
Y � I/kLp.0;T

�

IW1;q.�F.0///

6 Cke� kL1.0;T
�

IW1;q.�F.0///keukLp.0;T
�

IW2;q.�F.0///kJ>
Y � IkL1.0;T

�

IW1;q.�F.0///

6 CT1=p
0

� :

ut
Lemma 1.63 Let 3 < q < 1 and 2 < p < 1. For T� 2 .0;eT�, where
eT is the constant in Lemma 1.60, let BT

�

be the ball defined in (1.212). Let
.�0; u0; #0; a0; !0/ and M as in Proposition 1.58. Given . f1; f2; f3; f4/ 2 BT

�

, let
.e�;eu;eg;e!/ be the solution of (1.206) constructed in Proposition 1.58. Let F2;1 be
defined as in (1.119). Then there exist a constant C > 0 depending only on M and a
constant ı depending only on p and q such that

kF2;1kLp.0;T
�

ILq.�F.0/// 6 CTı�: (1.226)

Proof

F2;1 D � Q�
�0
@tQ.t/Qu � Q� � �0

�0
Q.t/@t Qu � .Q.t/ � I/@t Qu � �

Q���1

�0
J>
Y r Q�

Using Proposition 1.58 and Lemmas 1.59–1.61, we estimate the various terms of
F2;1 as follows

����
e�
�0
@tQeu

����
Lp.0;T

�

ILq.�F.0///

6 Cke�kL1.0;T
�

IW1;q.�F.0///k@tQkL1.0;T
�

/keukLp.0;T
�

ILq.�F.0///

6 CT1=p� keukL1.0;T
�

IW1;q.�F.0/// 6 CT1=p
0

� ;

����
e� � �0
�0

Q@teu
����
Lp.0;T

�

ILq.�F.0///

6 Cke� � �0kL1.0;T
�

IW1;q.�F.0///kQkL1.0;T
�

/k@teukLp.0;T
�

ILq.�F.0///

6 CT1=p
0

� ;
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k.Q � I/@teukLp.0;T
�

ILq.�F.0/// 6 kQ � IkL1.0;T
�

/keukW1;p.0;T
�

ILq.�F.0/// 6 CT1=p
0

� ;

�����
Q���1

�0
J>
Y r Q�

����
Lp.0;T

�

ILq.�F.0///

6 Cke�kL1.0;T
�

IW1;q.�F.0///kJ>
Y kL1..0;T

�

/��F.0//kr Q�kLp.0;T
�

ILq.�F.0/// 6 CT1=p� :

ut
Lemma 1.64 Let 3 < q < 1 and 2 < p < 1. For T� 2 .0;eT�, where
eT is the constant in Lemma 1.60, let BT

�

be the ball defined in (1.212). Let
.�0; u0; #0; a0; !0/ and M as in Proposition 1.58. Given . f1; f2; f3; f4/ 2 BT

�

, let
.e�;eu;eg;e!/ be the solution of (1.206) constructed in Proposition 1.58. Let F2;2 be
defined as in (1.119). Then there exist a constant C > 0 depending only on M and a
constant ı depending only on p and q such that

k.F2;2/ikLp.0;T
�

ILq.�F.0/// 6 CT1=p
0

� ; i D 1; 2; 3: (1.227)

Proof We have

.F2;2/i D �

�0

3X

j;k;lD1
@yl.@yk .QQu/iŒ.JY /kj � ıkj�/.JY/lj

C �

�0

3X

k;lD1
.@2ylyk.QQu/i/ Œ.JY/lk � ılk�

C ˛ C �

�0

3X

j;k;lD1
@yl.@yk .QQu/j

�
.JY/kj/� ıkj

�
/.JY/li

C ˛ C �

�0

3X

l;jD1
.@2ylyj.QQu/j/ Œ.JY/li � ıli�C .Q> � I/ W @yir Qu;

Let us notice that

.@ykJY/.0; �/ D 0:

Therefore, using the estimates in Lemma 1.61, we get

k@yk JYkL1.0;T
�

ILq.�F.0/// 6 T1=p
0

� k@yk JYkW1;p.0;T
�

ILq.�F.0/// 6 CT1=p
0

� : (1.228)
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The first term can be estimated as follows,

������
�

�0

3X

j;k;lD1
@yl.@yk .Qeu/iŒ.JY/kj � ıkj�/.JY /lj

������
Lp.0;T

�

ILq.�F.0///

6 C
3X

j;k;lD1

�
kŒ@ylyk .Qeu/i�Œ.JY /kj � ıkj�kLp.0;T

�

ILq.�F.0///

C kŒ@yk .Qeu/i�Œ@yl .JY/kj�kLp.0;T�

ILq.�F.0///



6 C
�
kQeukLp.0;T

�

IW2;q.�F.0///kJY � IkL1.0;T
�

IW1;q.�F.0///

C kQeukLp.0;T
�

IW2;q.�F.0///

3X

j;k;lD1
k@yl .JY/kjkL1.0;T

�

ILq.�F.0///



6 CT1=p
0

� :

Other terms in F2;2 can be estimated similarly. ut
Lemma 1.65 Let 3 < q < 1 and 2 < p < 1. For T� 2 .0;eT�, where eT is the
constant in Lemma 1.60, letBT

�

be the ball defined in (1.212). Let .�0; u0; #0; a0; !0/
and M as in Proposition 1.58. Given . f1; f2; f3; f4/ 2 BT

�

, let .e�;eu;eg;e!/ be the
solution of (1.206) constructed in Proposition 1.58.Let G be defined as in (1.120).
Then there exist a constant C > 0 depending only on M and a constant ı depending
only on p and q such that

kGkLp.0;T
�

IW1;q.�F.0/// 6 CT1=p
0

� : (1.229)

Proof The proof is similar to the proof of Lemma 1.62. The only thing is left to
check is the estimate cofJX � I in L1.0;T�IW1;q.�F.0/// norm. Since, .cofJX �
I/.0; �/ D 0, we have

kcofJX � IkL1.0;T
�

IW1;q.�F.0/// 6 T1=p
0

� kcofJX � IkW1;p.0;T
�

IW1;q/.�F.0//:

With the help of above estimate we can proceed as the proof of Lemma 1.62 to
complete the proof of this Lemma. ut
Lemma 1.66 Let 3 < q < 1 and 2 < p < 1. For T� 2 .0;eT�, where eT is the
constant in Lemma 1.60, letBT

�

be the ball defined in (1.212). Let .�0; u0; #0; a0; !0/
and M as in Proposition 1.58. Given . f1; f2; f3; f4/ 2 BT

�

, let .e�;eu;eg;e!/ be the
solution of (1.206) constructed in Proposition 1.58. Let F3 and F4 be defined as



1 Maximal Regularity of Systems Modelling FSI 71

in (1.120). Then there exists a constant C > 0 depending only on M such that

kF3kLp.0;T
�

/ 6 C.T1=p� C T1=p
0

� /

kF4kLp.0;T
�

/ 6 C.T1=p� C T1=p
0

� /: (1.230)

Proof Let us recall

F3 D �m. Q! � Q̀/ �
Z

�S.0/

Gn

Therefore

kF3kLp.0;T
�

/

6 C
�
ke!kLp.0;T

�

/kegkL1.0;T
�

/ C kGkLp.0;T
�

ILq.@�S.0///



6 C
�
T1=p

0

� C kGkLp.0;T
�

IW1;q.�F.0///



6 CT1=p
0

� :

The estimate of kF4kLp.0;T
�

/ is similar. ut
Proposition 1.67 Let 3 < q < 1 and 2 < p < 1. For T� 2 .0;eT�, whereeT is the
constant in Lemma 1.60, letBT

�

be the ball defined in (1.212). Let .�0; u0; #0; a0; !0/
andM as in Proposition 1.58. Given . f j1; f

j
2; f

j
3; f

j
4/ 2 BT

�

, j D 1; 2, let .e� j;eu j;eg j;e! j/

be the solution of (1.206) constructed in Proposition 1.58.
Let us set

F j
1 D F1.e� j;eu j;eg j;e! j/;F j

2;1 D F2;1.e� j;eu j;eg j;e! j/;F j
2;2 D F2;2.e� j;eu j;eg j;e! j/

F j
3 D F3.e� j;eu j;eg j;e! j/;F j

4 D F4.e� j;eu j;eg j;e! j/ for j D 1; 2:

(1.231)

Then there exists a constant C > 0 depending only on M such that

kF1
1 � F2

1kLp.0;T
�

IW1;q.�F.0/// C kF1
2;1 � F2

2;1kLp.0;T�

ILq.�F.0///

C kF1
2;2 � F2

2;2kLp.0;T�

ILq.�F.0/// C kF1
3 � F2

3kLp.0;T
�

/ C kF1
4 � F2

4kLp.0;T
�

/

6 CTı�
�
k f 11 � f 21 kLp.0;T

�

ILq.�F.0/// C k f 12 � f 22 kLp.0;T
�

ILq.�F.0///

C k f 13 � f 23 kLp.0;T
�

C k f 14 � f 23 kLp.0;T
�


(1.232)

where ı > 0 is a positive constant depending only on p and q.
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Now we give the proofs of main theorems of this section.

Proof of Theorem 1.54 We consider the map

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

N W BT
�

! BT
�

;

2

664

f1
f2
f3
f4

3

775 7!

2

664

F1
F2;1 C F2;2

F3
F4

3

775 ;

By virtue of Lemmas 1.62–1.66 and Proposition 1.67, it is easy to see that N is a

strict contraction of BT
�

, with a Lipschitz constant
1

2
for small T�. Thus the proof

follows from the Banach fixed point theorem.

Proof of Theorem 1.53 Let us assume that .�0; u0; g0; !0/ 2 Ip;q;�F.0/ satisfy-
ing (1.204)–(1.205). Let bT 6 eT be such that, .e�;eu;eg;e!/ be the solution to the
system (1.115)–(1.120) satisfying

e� 2 W1;p.0;bTIW1;q.�F.0///

eu 2 Lp.0;bTIW2;q.�F.0//
3/ \ W1;p.0;bTILq.�F.0//

3/

eg 2 W1;p.0;bTIR3/; e! 2 W1;p.0;bTIR3/:

SincebT 6eT , X.t; �/ is C1-diffeomorphism from�F.0/ into�F.t/. Therefore, there
is a unique Y.t; �/ from�F.t/ into �F.0/ such that Y.t; �/ D X�1.t; �/. We set

�.t; x/ D e�.t;Y.t; x//; u.t; x/ D Q.t/eu.t;Y.t; x//;
Ph.t/ D Q.t/eg.t/; !.t/ D Q.t/e!.t/; for all x 2 �F.t/; t > 0: (1.233)

We can easily check that .�; u; #; h; !/ satisfies the original system (1.110) and

� 2 W1;p.0;TIW1;q.�F.�///\ C.Œ0;T�IW1;q.�F.�///;
u 2 Lp.0;TIW2;q.�F.�//3/\ W1;p.0;TILq.�F.�//3/ \ C.Œ0;T�IB2.1�1=p/q;p .�F.�//3/;

h 2 W2;p.0;TIR3/; ! 2 W1;p.0;TIR3/:

The uniqueness for the solution of (1.110) follows from uniqueness of solution to
the system (1.115)–(1.120). This completes the proof of Theorem 1.53.
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1.4.5 Bibliographical Notes

As far as we know, the first mathematical analysis approach of piston problems
similar to the ones we have introduced in Sect. 1.4.3 was performed in Shelukhin
[30], where global in time existence and uniqueness of classical solutions have
been given. Less regular solutions, in a Hilbert space setting have been given in
Maity et al. [26], which was our main source in Sect. 1.4.3. Our approach of the
three dimensional case in Sect. 1.4.4 should be seen as a simplification of the
methodology proposed in Hieber and Murata [19], which is also considering the
Lp-Lq setting. Earlier results in a Hilbert space framework, which require more
derivability of the initial data, have been given in Boulakia and Guerrero [5].

Acknowledgements Many thanks to our Berhnard Haak and Takéo Takahashi for their help, via
discussions and suggestions, in improving these notes.
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Chapter 2
Time-Periodic Linearized Navier–Stokes
Equations: An Approach Based on Fourier
Multipliers

T. Eiter and M. Kyed

Abstract The Stokes and Oseen linearizations of the time-periodic Navier–Stokes
equations in the n-dimensional whole space for n � 2 are investigated. An approach
based on Fourier multipliers is introduced to establish Lq estimates and to identify
function spaces of maximal regularity for the corresponding operators. Moreover,
the representation of a solution in terms of a Fourier multiplier is used to introduce
the concept of a time-periodic fundamental solution. The main idea is to replace
the time axis by a torus group and to study the system in a setting of functions
defined on a locally compact abelian group G. For this purpose, we develop the
required formalism. More specifically, we introduce the space S .G/ of Schwartz-
Bruhat functions and investigate the Stokes and Oseen systems in the corresponding
space of tempered distributions S 0.G/. Moreover, we give a detailed proof of the
so-called Transference Principle, which enables us to employ Fourier multipliers in
a group setting in order to establish Lq estimates.

Keywords Fourier multipliers on LCA groups • Maximal regularity • Oseen
equations • Schwartz-Bruhat spaces • Stokes equations • Time-periodic funda-
mental solutions • Time-periodic solutions • Transference principle

MSC2010: 76D07, 35Q30, 76D05, 35B10, 35S30, 35A08

2.1 Introduction

Fourier multipliers play a significant role in the investigation of steady-state and
initial-value fluid flow problems. Arguments based on multiplier theorems are
typically used to establish Lq estimates of solutions to an appropriate linearization
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of the relevant equations of motion. For steady-state and initial-value problems
of parabolic type, such arguments have become part of the standard literature.
Recently, a technique has been developed by Kyed [12] to extend the approach based
on Fourier multipliers to the corresponding time-periodic problems. The main idea
behind the approach is to replace the time axis by a torus T and to reformulate the
equations on the locally compact abelian group G :D T � R

n. It is then possible
to express solutions in terms of Fourier multipliers with respect to the abstract
Fourier transform FG. In order for this approach to work, two tools from abstract
harmonic analysis are needed. First of all, a setting of Schwartz functions S .G/
and corresponding tempered distributions S 0.G/ are needed to reformulate the
differential equations on the group G in such a way that a multiplier expression
for the solution can be obtained by applying the Fourier transform FG. Secondly,
a multiplier theorem is needed to establish the desired Lq estimates based on the
characteristics of the multiplier. Although both tools have been available since the
1960s, they have only recently been combined in the analysis of partial differential
equations. The so-called Schwartz-Bruhat space S .G/ was introduced by Bruhat
[2]. The Transference Principle, which can be used to establish Lq estimates, was
originally introduced by de Leeuw [3] and later generalized by Edwards and Gaudry
[4]. In the following, a detailed description of the construction of Schwartz-Bruhat
spaces S .G/ and a rigorous proof of the Transference Principle shall be given. As
an application, we establish maximal Lq regularity for the time-periodic Stokes and
Oseen linearizations of the Navier–Stokes equations. Moreover, we use the Fourier
transform FG to introduce the concept of a time-periodic fundamental solution to
these systems. Integrability properties of the fundamental solutions are established
with the help of the Transference Principle.

The construction of Schwartz-Bruhat spaces S .G/ for general locally compact
abelian groups was only sketched by Bruhat in [2]. Although these spaces can be
used to investigate systems of partial differential equations where the unknowns are
periodic in one or more (even infinitely many) coordinates, apart from the recent
articles [12–15, 17, 20–22] there seems to be no applications of Schwartz-Bruhat
spaces in this direction. In fact, with the exception of the alternative characterization
of S .G/ by Osborne [18], a rigorous description of the construction is not available
anywhere in literature. We have therefore chosen to include such a description in the
following. The Schwartz-Bruhat space S .G/ on a general locally compact abelian
group is defined as an inductive limit of Schwartz-Bruhat spaces on elementary
groups R

n � T
p � Z

q � F, where F is a finite abelian group and n; p; q 2 N0.
In Sect. 2.4 we give a detailed explanation of this construction and show that the
Fourier transform is a homeomorphism as a mapping FGWS .G/ ! S .G/. We
shall then introduce the space of tempered distributions S 0.G/ and obtain, by
duality, that also FGWS 0.G/ ! S 0.G/ is a homeomorphism, which enables us
to study partial differential equations on G in terms of Fourier multipliers.

The Fourier multiplier corresponding to a linear differential operator (with
constant coefficients) on a group G is a function MWbG ! C defined on the dual
group bG. There is no multiplier theory available in this abstract setting that can
be used to determine directly from the characteristics of the multiplier M whether
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the operator u 7! F�1
G

�
MFG.u/

�
is bounded on Lq.G/. Instead, the Transference

Principle can be used. If ˆWbG ! bH is a continuous homomorphism between bG and
the dual group bH of some other locally compact abelian group H, the Transference
Principle states that if M D mıˆ for some Lq.H/multipliermWbH ! C, thenM is an
Lq.G/ multiplier. Provided therefore that one can find a continuous homomorphism
ˆWbG ! R

N such that M D mıˆ, it becomes possible to “transfer” the investigation
of a Fourier multiplier into the Euclidean setting, where a number of multiplier
theorems are available. As in the case of the Schwartz-Bruhat spaces, the Transfer-
ence Principle for general locally compact abelian groups has not been adapted into
standard literature and does not seem to be widely know. In the following Sect. 2.3,
we shall therefore provide a detailed proof of the Transference Principle.

Finally, in Sect. 2.5 we apply the theory to the linearized time-periodic Navier–
Stokes equations. More specifically, we fix a time-period T > 0, a constant � 2 R

and consider the system

8
ˆ̂<

ˆ̂:

@tu ��u � �@x1u C rp D f in R � R
n;

div u D 0 in R � R
n;

u.t; x/ D u.t C T ; x/;

(2.1)

which is a time-periodic Stokes system if � D 0, and a time-periodic Oseen system
if � ¤ 0. Here uWR � R

n ! R
n and pWR � R

n ! R denote the Eulerian velocity
field and pressure term, respectively. Data f WR � R

n ! R
n with the same period,

that is, f .t; x/ D f .tCT ; x/, are considered. Moreover, t 2 R and x 2 R
n denote the

time and spatial variable, respectively. Replacing in (2.1) the time axis R with the
torus R=T Z, we shall reformulate (2.1) in a setting of distributions S 0.G/ based
on the locally compact group G :D R=T Z � R

n. We can then express the solution
.u; p/ in terms of an FG multiplier, which we shall estimate with the help of the
Transference Principle. As a result, we can establish what is known as maximal Lq

regularity for the problem, that is, we can identify a Banach space Xq
per.R � R

n/ of
T -time-periodic functions such that for any vector field f in a T -time-periodic Lq

space Lq
per.R�R

n/n there is a unique solution .u; p/ 2 Xq
per.R�R

n/ to (2.1), which
satisfies

k.u; p/kXq
per.R�Rn/ � C k fkLq

per.R�Rn/: (2.2)

In other words, we identify a Banach space Xq
per.R � R

n/ that is mapped homeo-
morphically onto Lq

per.R � R
n/n by the differential operator on the left-hand side of

(2.1)1.
As another application, we use the Fourier transform on G to introduce the

concept of a time-periodic fundamental solution F to (2.1) in such a way that a
solution u to (2.1) can be expressed as a convolution F � f , where the convolution is
with respect to the group G. At the outset, F is defined as a tempered distribution in
S 0.G/. However, using the Transference Principle, we shall establish integrability
properties of F that allows us to identify it as a (locally) integrable function.
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2.2 Preliminaries

In this section we introduce some notation, which will be used throughout the whole
chapter. Moreover, we recall some results from Fourier analysis on locally compact
abelian groups. For a comprehensive overview we refer to [10, 11, 19].

General Vector Spaces

In the following, the symbol K shall always denote one of the fields R or C. For
n 2 N we equip the n-dimensional vector space K

n with the Euclidean norm j � j.
When we consider two vectors x; 
 2 R

n, we write x � 
 for their standard scalar
product.

For r > 0 and x 2 R
n we denote the n-dimensional open ball of radius r

with center x by Bn
r .x/, and for its closure we use the notation Kn

r .x/. For the n-
dimensional ball with radius 1, the constants n and !n denote its volume and its
surface area, respectively, where we equip R

n with the Lebesgue measure.
If V is a locally convex vector space, we denote its topological dual space by V 0.

In some cases we write h ; vi :D  .v/ for v 2 V and  2 V 0.
Let M be a set and X.M/ and Y.M/ be vector spaces of functions M ! K. Then

we will occasionally use the abbreviation X \ Y.M/ :D X.M/\ Y.M/.

Spaces of Continuous Functions

Let X and Y be topological spaces. We denote the set of all continuous functions
X ! Y by C.XIY/. In the case Y D K, equipped with the standard topology, we
always use the abbreviation C.X/ :D C.XIK/. Moreover, we write Cb.X/ for the
subset of bounded continuous functions, which is a Banach space when equipped
with the supremum norm k�k1. In this case we also define the subspaces

Cc.X/ :D f f 2 C.X/ W supp f compactg;
C0.X/ :D f f 2 C.X/ W 8" > 0 9K 	 X compact 8x 2 XnK W jf .x/j < "g:

Let n 2 N and k 2 N0 [ f1g. We denote the space of all functions f WRn ! K

that are k-times continuously differentiable by Ck.Rn/. Moreover, we introduce the
spaces

C1
c .R

n/ :D C1.Rn/\ Cc.R
n/;

C1
b .R

n/ :D f f 2 C1.Rn/ W D˛f 2 Cb.R
n/ for all ˛ 2 N

n
0g:
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Lebesgue Spaces

Let X be a topological space. Then B.X/ denotes the Borel �-algebra on X.
Moreover, we set

M.X/ :D f�WB.X/ ! C regular Borel measure with j�j.X/ < 1g;

where j�j denotes the total variation of the measure �. Then M.X/ is a normed
vector space if we define addition and scalar multiplication pointwise and the norm
on M.X/ by k�kM.X/ :D j�j.X/.

Let p 2 Œ1;1� and �WB.X/ ! Œ0;1� be a nonnegative Borel measure. Then
L p.X; �/ denotes the corresponding Lebesgue space, which is equipped with the
well-known Lebesgue norm k�kL p.X;�/. Moreover, we may identify L1.X; �/ with a
closed subspace of M.X/ via the isometric embedding f 7! �f , where

�f .B/ :D
Z

B
f .x/ d�.x/

for all B 2 B.X/.
If � is a regular Borel measure, the set Cc.X/ is a dense subspace of the Banach

space L p.X; �/ for all 1 � p < 1. This result will be very helpful in the following.
For p 2 Œ1;1� we let p0 WD p

p�1 denote the dual index, where 10 WD 1 and
10 WD 1. For 1 < p < 1 it is well known that the mapping

ˆW L p0

.X; �/ ! .L p.X; �//0; ˆ.g/. f / :D
Z

X
f .x/g.x/ d�.x/;

defines an isometric isomorphism. In all cases considered in the following, this
statement also holds for p D 1; see [19, Subsection E10] for more details.

The space of locally integrable functions is denoted by L1loc.X; �/, where we
identify functions that coincide �-almost everywhere.

Since in most cases it will be clear which measure we consider, we will usually
write L p.X/ and L1loc.X/ instead of L p.X; �/ and L1loc.X; �/, and we will sometimes
use k�kp instead of k�kL p.X/.

Locally Compact Abelian Groups

Let G be a locally compact abelian group, i.e., G is a topological and abelian group
such that each element of G possesses a compact neighborhood. We always assume
that such topological groups are Hausdorff spaces. If we equip R with the standard
topology and Z with the discrete topology, both are locally compact abelian groups.
Moreover, also the torus group T, which consists of all complex numbers with
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absolute value 1, equipped with the topology induced by the standard topology on
C, is a topological group of this kind. When we refer to topological properties of R,
Z and T, we always assume that they are equipped with these topologies.

We normally use the additive notation for the group operation on G. Therefore,
the neutral element is denoted by 0 in most cases. If A and B are subsets of G, then
we define

A C B :D fa C b W a 2 A; b 2 Bg;
A � B :D fa � b W a 2 A; b 2 Bg;

�A :D f�a W a 2 Ag:

Furthermore, for an element x 2 G, we set

A ˙ x :D A ˙ fxg and x ˙ A :D fxg ˙ A:

Moreover, we use the notation hAi for the subgroup of G generated by A.
We denote the dual group of G by bG. Recall that bG consists of all continuous

group homomorphisms � WG ! T, also called characters on G, and the group
operation is defined via .�1 C �2/.x/ :D �1.x/ � �2.x/ for all x 2 G and �1; �2 2
bG. Moreover, bG is equipped with the so-called compact-open topology (see [19,
Theorem 1.2.6]), which makes it a locally compact abelian group. The Pontryagin
Duality Theorem states that the dual group ofbG is isomorphic to G. For this reason,
we will identify these two groups in the following. This fact also justifies the
notation .x; �/ :D �.x/ for x 2 G, � 2 bG, which will often be used throughout
this chapter.

A locally compact abelian group G is compact if and only if bG is discrete and
vice versa. Additionally, one can show that the dual group of R is isomorphic to R

itself and that the dual group of T is isomorphic to Z and vice versa.

Haar Measure

Another important aspect in the treatment of locally compact abelian groups is
the existence of the Haar measure. If G is a locally compact abelian group, there
exists a nonvanishing regular Borel measure �GWB.G/ ! Œ0;1� that is translation-
invariant, i.e., �G.B C x/ D �G.B/ for all x 2 G and all B 2 B.G/. This measure
is called Haar measure, and one can show that it is unique up to a positive constant
factor. The Haar measure is reflection-invariant, i.e., it holds �G.B/ D �G.�B/
for all B 2 B.G/. Moreover, the Haar measure of a compact set is finite, and for
a nonempty open set U it holds �G.U/ > 0. Therefore, we may introduce the
following normalization convention: If G is a compact group, we choose �G such
that �G.G/ D 1, and in the case of a discrete group G, the condition �G.f0g/ D 1

shall be valid. We remark that these conditions may contradict each other if G is
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finite. For this reason, we do not demand any normalization assumptions in this
case. For simplicity, we often write � for the Haar measure on G, and we also
denote the Haar measure on bG by � when no confusion can arise.

Convolution

Now we may define convolution on the locally compact abelian group G. It is pos-
sible to define the convolution of two measures in M.G/; see [19, Subsection 1.3.1].
This general case will not be necessary in the following, but we will need the
convolution  � g of a measure  2 M.G/ with a function g 2 L p.G/ for some
p 2 Œ1;1�, which is given by

 � g.x/ :D g � .x/ :D
Z

G
g.x � y/ d. y/ (2.3)

for �-almost all x 2 G. This expression defines an element of L p.G/ with

k � gkL p.G/ � kkM.G/ kgkL p.G/I

see for example [11, Theorem 20.12]. Since we can interpret L1.G/ as a closed
subspace of M.G/, (2.3) also defines the convolution with integrable functions. If
we consider two functions f 2 L1.G/ and g 2 L p.G/ for some 1 � p � 1, we
observe that

f � g.x/ D g � f .x/ D
Z

G
f .x � y/g. y/ dy D

Z

G
g.x � y/f . y/ dy

for �-almost all x 2 G. The equality of the two integrals follows from the
translation-invariance of the Haar measure. Furthermore, Young’s inequality for
convolutions states that f � g 2 L p.G/ and

k f � gkL p.G/ � k fkL1.G/ kgkL p.G/:

Additionally, convolution is associative on L1.G/ and thus defines a continuous
multiplication on this space, which makes L1.G/ a commutative Banach algebra.
Moreover, we obtain

supp. f � g/ 	 supp f C supp g:

If we assume f 2 L p.G/ and g 2 L p0

.G/, the expression f � g.x/ does also exist for
�-almost all x 2 G by Hölder’s inequality, and it holds f � g 2 C0.G/; see also [19,
Subsection 1.1.6].
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Recall the following classical approximation statement: If 1 � p < 1, f 2
L p.G/ and " > 0, then there exists a neighborhood U of 0 in G such that

kg � f � fkL p.G/ < "

for all g 2 L1.G/ with kgkL1.G/ D 1 and suppg 	 U; see [11, Theorem 20.15].

Fourier Transform

For a regular finite Borel measure  2 M.G/, we define its Fourier transformbWbG !
C by

b.�/ :D
Z

G
.�x; �/ d.x/ for � 2 bG:

ThenbWbG ! C is a bounded and uniformly continuous function. Moreover, if we
again identify L1.G/ with a subspace of M.G/, the Fourier transform of f 2 L1.G/
is given by

bf .�/ D
Z

G
f .x/.�x; �/ dx for � 2 bG;

and it holdsbf 2 C0.bG/. In particular, the Fourier transform FGW L1.G/ ! L1.bG/,
f 7!bf , is a continuous linear operator with

kFGŒ f �kL1.bG/ � k fkL1.G/:

As one readily verifies, FGŒ f � g� Dbfbg as well as FGŒ � g� D bbg for all f ; g 2
L1.G/ and  2 M.G/.

It is possible to normalize the Haar measure �bG on bG such that for all f 2 L1.G/

withbf 2 L1.bG/ the so-called inversion formula

f .x/ D
Z

bG
bf .�/.x; �/ d�bG.�/

holds for �-almost all x 2 G. For this reason, the linear operator F�1
G W L1.bG/ !

C0.G/ with

F�1
G Œg�.x/ :D g_.x/ :D

Z

bG
g.�/.x; �/ d�bG.�/
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is called the inverse Fourier transform. In the following, we always assume that
this normalization condition is satisfied. The normalization we fixed for (infinite)
compact and discrete groups is compatible with this assumption. However, it is not
compatible with the standard Lebesgue-Borel measure � on R. Therefore, if G D R,
we choose the Haar measure given by .2�/�1� on bG D R in the following. Then
the inversion formula is also valid in this case.

Under the normalization assumptions above, Plancherel’s Theorem states that
the Fourier transform has an extension to an isometric isomorphism as a mapping
FGW L2.G/ ! L2.bG/. Clearly, an analogous statement holds for the operator F�1

G ,
which is the actual inverse of FG in this case. By the Riesz-Thorin Interpolation
Theorem, this yields also an extension to L p.G/ for all 1 < p < 2. As usual, we
keep the notationbf and FG for these extensions. Moreover, the Parseval formula is
valid. Two of its versions read as
Z

G
f .x/g.x/ dx D

Z

bG
bf .�/bg.�/ d� and

Z

G
f .x/g.x/ dx D

Z

bG
bf .�/bg.��/ d�

for all f ; g 2 L2.G/, and a third version is given by

Z

G
f .x/bg.x/ dx D

Z

bG
bf .�/g.�/ d�

for f 2 L2.G/ and g 2 L2.bG/. For the sake of convenience, we used the notation
bg D FbGŒg� here.

We sometimes leave out the index G and write F instead of FG if it is obvious
which group the Fourier transform relates to. Moreover, if X.G/ is some vector
space of objects on G for which the Fourier transform is well defined, we write

FX.bG/ :D F ŒX.G/� D
n
bf W f 2 X.G/

o
:

Finite Products

Consider finite products of locally compact abelian groups. Let G1 and G2 be such
groups and G :D G1 � G2 be the direct product of these groups equipped with
the product topology. Then G is also a locally compact abelian group, and a Haar
measure on G is given by the product measure of the Haar measures on G1 and
G2. Moreover, the dual group of G is isomorphic to bG1 � bG2. In this case we
always consider the corresponding product measures on G and bG. Then the Fourier
transform on G satisfies

FG D FG1FG2 D FG2FG1 and F�1
G D F�1

G1 F
�1
G2 D F�1

G2 F
�1
G1 ;



86 T. Eiter and M. Kyed

where, for instance, FG1 is applied to f 2 L p.G/ for 1 � p � 2 by fixing the
G2-variable.

Closed Subgroups and Quotient Groups

We recall some results on closed subgroups of locally compact abelian groups. Let
G be a locally compact abelian group, and let H be a closed subgroup of G and �
be a closed subgroup ofbG. Clearly, these are also locally compact abelian groups if
we equip them with the corresponding subspace topology. Moreover, this is also the
case for G=H and bG=� equipped with the quotient topology.

The annihilator of H is given by

H? :D ˚
� 2 bG W .x; �/ D 1 for all x 2 H

�
:

Analogously, the set

�? :D ˚
x 2 G W .x; �/ D 1 for all � 2 ��

is called the annihilator of � . One readily verifies that �? and H? are closed
subgroups of G and bG, respectively, and that .H?/? D H and .�?/? D � .
Furthermore, there exist isomorphisms such that

bH Š bG=H?; bH? Š G=H; b� Š G=�?; c�? Š bG=�

holds.
Now let K be a compact subgroup of G. We can normalize the Haar measures on

K and on G=K such that for all f 2 L1.G/ we have the identity

Z

G
f .x/ dx D

Z

G=K

Z

K
f .x C k/ dk dŒx�;

where Œx� is the coset of x 2 G under the quotient mapping G ! G=K. In the
following, we will always assume that the corresponding Haar measures are chosen
in this way. We remark that the inner integral really defines an integrable function
on G=K; see also [19, Subsection 2.7.3].

2.3 Transference Principle for Multipliers

In this section we give a proof of the Transference Principle for Fourier multipliers
on locally compact abelian groups. In the classical setting, where the group R

n is
considered, there are several ways to determine if a Fourier multiplier induces a



2 Time-Periodic Linearized Navier–Stokes Equations 87

bounded operator on L p.Rn/. For multipliers on general locally compact abelian
groups, however, there are only a very limited number of tools available that can
be used for this purpose. Instead, it is possible to “transfer” a multiplier from one
group setting into another in such a way that the question of L p boundedness can be
answered in the new setting. This procedure is known as the Transference Principle.

The Transference Principle was originally introduced by de Leeuw [3] as a way
to transfer Fourier multipliers between the torus group and R. The theorem of de
Leeuw was later generalized to multipliers on locally compact abelian groups by
Edwards and Gaudry [4, Theorem B.2.1]. The proof presented in the following is
based on the ideas in [4].

2.3.1 Basic Properties of Fourier Multipliers

Throughout this subsection we let G be a locally compact abelian group and bG its
dual group. We denote the Fourier transform on G by F . We start by recalling the
definition of Fourier multipliers on a Lebesgue space as they are introduced in [4,
Sect. 1.2].

Definition 2.1 Let 1 � p < 1 and m 2 L1.bG/. We call m an L p multiplier on G
if there exists a constant C > 0 such that

kF�1Œmbf �kL p.G/ � Ck fkL p.G/ (2.4)

for all f 2 L2 \ L p.G/. We define Mp.bG/ as the set of all L p multipliers on G.
Furthermore, for m 2 Mp.bG/ we define the multiplier norm of m by

kmk
Mp.bG/ :D inf

n
C > 0 W (2.4) holds for all f 2 L2 \ L p.G/

o
;

and we write Tm for the operator f 7! F�1Œmbf �.
The expression on the left-hand side of inequality (2.4) is well defined since

mbf 2 L2.bG/ for all f 2 L2.G/ by Plancherel’s Theorem and Hölder’s inequality.
Moreover, again by these two results, we see directly that M2.bG/ D L1.bG/.

Remark 2.2 Because the space L2 \ L p.G/ is dense in L p.G/, it follows from (2.4)
that the operator Tm on L2 \ L p.G/ can be uniquely extended to a continuous linear
operator L p.G/ ! L p.G/ with operator norm kTmkL p.G/!L p.G/ D kmk

Mp.bG/. In

general, it suffices to verify (2.4) for f in some other dense subset of L p.G/ in order
to show m 2 Mp.G/.

One readily verifies that Mp.bG/ is a vector space and k�k
Mp.bG/ is a norm on this

space for all 1 � p < 1. In addition, we have the following embedding properties.
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Proposition 2.3 Let 1 < p < 1 and p0 be its dual index. Then the normed vector
spaces Mp.bG/ and Mp0.bG/ coincide and are subsets of M2.bG/. Furthermore, the
estimate

kmk
M2.bG/ � kmk

Mp.bG/

holds for all m 2 Mp.bG/.

Proof Let f ; g 2 L p \ L p0

.G/ and m 2 Mp.bG/. Then it is clear that also the function
em, defined by em.�/ :D m.��/ for � 2 bG, is an element of Mp.bG/ with the same
multiplier norm as m. Since we also have f ; g 2 L2.G/, the functions Temf and Tmg
are well defined in L2.G/. Using Parseval’s formula, we obtain

Z

G
.Tem f /g dx D

Z

bG
em.��/bf .��/bg.�/ d� D

Z

bG
bf .��/m.�/bg.�/ d�

D
Z

G
f .Tmg/ dx

and thus
ˇ̌
ˇ̌
Z

G
f .Tmg/ dx

ˇ̌
ˇ̌ � kTem fkL p.G/kgkL p0

.G/ � kmk
Mp.bG/k fkL p.G/kgkL p0

.G/:

This implies Tmg 2 L p0

.G/ and the estimate

kTmgkL p0

.G/ � kmk
Mp.bG/kgkL p0

.G/:

Since the space L p\L p0

.G/ is dense in L p0

.G/, according to Remark 2.2, we obtain
m 2 Mp0.bG/ and

kmk
Mp0

.bG/ � kmk
Mp.bG/:

In total, if we exchange p and p0 in the above argumentation, we have shown the
identities Mp.bG/ D Mp0.bG/ and

kmk
Mp.bG/ D kmk

Mp0
.bG/

for all m 2 Mp.bG/ D Mp0.bG/. Now this implies that Tm can be extended to a
continuous linear operator L p.G/ ! L p.G/ as well as L p0

.G/ ! L p0

.G/. By
the Riesz-Thorin Interpolation Theorem, Tm also has an extension to a continuous
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operator L2.G/ ! L2.G/, and we obtain

kmk
M2.bG/ D kTmkL2.G/!L2.G/ � kTmk 1

2

L p.G/!L p.G/
kTmk 1

2

L p0

.G/!L p0

.G/

D kmk 1
2

Mp.bG/kmk 1
2

Mp0
.bG/

D kmk
Mp.bG/;

again by Remark 2.2. This completes the proof. ut
The Fourier transform of a regular finite measure is also an L p multiplier for each

1 � p < 1. This is subject of the next proposition.

Proposition 2.4 For 1 � p < 1 the inclusionFM.bG/ 	 Mp.bG/ holds.

Proof By Proposition 2.3 it suffices to consider the case 1 � p � 2. If m 2 FM.bG/,
there exists a measure  2 M.G/ with m D b. Therefore, for each f 2 L1 \ L2.G/
we have  � f 2 L1 \ L2.G/ and

.Tm f / D F�1Œbbf � D  � f :

This implies

kTm fkL p.G/ D k � fkL p.G/ � kkM.G/k fkL p.G/

for all f 2 L1 \ L2.G/. Since the space L1 \ L2.G/ is dense in L p.G/, Remark 2.2
yields m 2 Mp.bG/, and the assertion holds. ut

One can even show the equality FM.bG/ D M1.bG/; see for example [16,
Corollary 0.1.1]. We will not need this stronger result in the following.

2.3.2 Approximation Results

In this subsection we establish a number of approximation statements. Again let G
be a locally compact abelian group and bG its dual group. Furthermore, let � denote
the Haar measure on both G and bG.

Theorem 2.5 Let K be a compact subset of G and " > 0. Then there exists a Borel
set V in G such that its closure is compact and

�.K � V/ < .1C "/�.V/:

Proof A proof of this theorem relies on structure theory for locally compact abelian
groups and can be found in [19, Theorem 2.6.7]. ut
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Theorem 2.6 Let 1 < p < 1 with dual index p0, and let K be a compact subset of
G. For all " > 0, there exist compactly supported bounded functions f ; gWG ! R

such that

i. 0 � f � g � 1,
ii. f � g D 1 on K,
iii. k fkL p.G/ kgkL p0

.G/ < 1C ".

Proof Let " > 0. We define ı :D .1C "/p �1 > 0. By Theorem 2.5, there is a Borel
set V 	 G with compact closure such that �.K � V/ < .1C ı/�.V/. We set

f :D 1K�V ; g :D �.V/�11V :

Then we have f ; g 2 L1 \ L1.G/ and clearly 0 � f � g � 1. For y 2 K we obtain

f � g. y/ D 1

�.V/

Z

V
1K�V. y � x/ dx D 1

�.V/

Z

V
1 dx D 1;

which yields f � g D 1 on K. Furthermore, we get

k f kL p.G/
kgkL p0

.G/
D �.K � V/

1
p

1

�.V/
�.V/

1
p0 D

�
�.K � V/

�.V/

	 1
p

< .1C ı/
1
p D 1C ":

Consequently, f and g possess the desired properties. ut
Corollary 2.7 Suppose K is a compact subset of bG and " > 0. Then there exists a
function k 2 L1.G/ such thatbk D 1 on K,bk has compact support and kkkL1.G/ <

1C ".

Proof We apply Theorem 2.6 to the group bG and the compact set K. Then there
are compactly supported bounded functions f and g with the properties i. to iii. for
p D 2 and G replaced by bG. In particular, we have f � g 2 L1 \ L1.bG/ 	 L2.bG/,
and we may define k :D F�1Œ f � g� D F�1Œ f � � F�1Œg�. This leads to

kkkL1.G/ � kF�1Œ f � kL2.G/ � kF�1Œg� kL2.G/ D k fk
L2.bG/kgk

L2.bG/ < 1C ":

Since the other properties are clearly fulfilled, the proof is finished. ut
Lemma 2.8 A locally compact abelian group is compact if and only if its Haar
measure is finite.

Proof If G is a compact abelian group, then �.G/ is finite because each compact
set has finite Haar measure. Conversely, let �.G/ be finite. Then 1G 2 L1.G/ holds
and thusb1G 2 C0.bG/, but

b1G.�/ D �.G/1f0g.�/ (2.5)
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for all � 2 bG. This follows from

b1G.0/ D
Z

G
.�x; 0/ dx D

Z

G
1 dx D �.G/

and

b1G.�/ D
Z

G
.�x C x0; �/ dx D .x0; �/

Z

G
.�x; �/ dx D .x0; �/b1G.�/

for all x0 2 G and � 2 bG by the translation-invariance of the Haar measure. This
equality impliesb1G.�/ D 0 if � ¤ 0. Consequently,G is compact since the function
1f0gWbG ! C is continuous if and only if the dual groupbG is discrete. ut
Theorem 2.9 There exists a net .k˛/˛2A of integrable functions on G with

i. kk˛kL1.G/ � 1 for all ˛ 2 A,

ii. bk˛ 2 Cc.bG/ for all ˛ 2 A,
iii. .bk˛/˛2A converges to 1 locally uniformly on bG.

Proof At first we assume that G is discrete. Then bG is compact. We can therefore
define k :D F�1Œ1bG� because 1bG 2 L1.bG/. As in the proof of the previous lemma,

we see that k D 1f0g, where we assume that the Haar measure on bG is normalized.
Hence k 2 L1.G/ and kkkL1.G/ D 1. The remaining properties are trivially fulfilled
if we set k˛ :D k and let A be a singleton set.

Now assume that G is not discrete. Then bG is not compact. By Lemma 2.8 it
holds that �.bG/ is not finite. Since the Haar measure � is a regular Borel measure,
there exist compact sets with arbitrarily large Haar measure. We define the set

A :D ˚
K 	 bG W K is compact and �.K/ > 0

�
;

partially ordered by inclusion. By Corollary 2.7 for each K 2 A there is a function
 K 2 L1.G/ such that b K D 1 on K, b K 2 Cc.bG/ and k KkL1.G/ < 1 C �.K/�1.
Then we define the function kK WG ! C by

kK :D  K

1C �.K/�1
D �.K/

1C �.K/
 K :

The net .kK/K2A has the desired properties. Indeed, properties i. and ii. are
immediately clear. For the verification of iii., let K1 be an arbitrary compact subset
of bG and " > 0. As mentioned above, there exists a compact set K0 2 A with
K1 	 K0 and �.K0/ > "�1. For K 2 A with K0 	 K we obtain

ˇ̌
1 �bkK.�/

ˇ̌ D 1C �.K/ � �.K/b K.�/

1C �.K/
D 1

1C �.K/
� 1

�.K0/
< "
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for all � 2 K1 because b K.�/ D 1 in this case. Hence the net .kK/K2A converges to
1 locally uniformly, and the proof is finished. ut

Finally, we construct an approximative unit in the Banach algebra L1.G/
with specific properties. For the statement concerning L p functions, we proceed
analogously to the proof of Theorem 20.27 in [11].

Proposition 2.10 There exists a net .k˛/˛2A of functions in L1 \ L1.G/ with the
following properties. It holds kk˛kL1.G/ D 1 for all ˛ 2 A and for 1 � p < 1 the
equation

lim
˛2Ak f � f � k˛kL p.G/ D 0

is valid for all f 2 L p.G/. Furthermore, for f 2 C0.G/ it holds

lim
˛2Ak f � f � k˛kL1.G/ D 0:

Proof We define A as the set of all compact neighborhoods of 0 in G, directed by
K1 � K2 if K1 
 K2. For each K 2 A we consider the function kK :D �.K/�11K .
Clearly, then we have kK 2 L1 \ L1.G/ and kkKkL1.G/ D 1 for all K 2 A.

Furthermore, if 1 � p < 1 and f 2 L p.G/, for each " > 0 there exists an element
Kp 2 A such that

ku � f � fkL p.G/ < "

for all u 2 L1.G/ with kukL1.G/ D 1 and supp u 	 Kp. Since these conditions
are fulfilled for all functions kK with K 	 Kp, this yields the first of the desired
convergence statements.

Now let f 2 C0.G/ and " > 0 be arbitrary. Since f is uniformly continuous, see
[19, B.10], there exists K0 2 A such that

j f .x/ � f . y/j < "

for all x; y 2 G with x � y 2 K0. Therefore, for x 2 G arbitrary and K 2 A with
K 	 K0, we obtain

j f .x/ � .kK � f /.x/j D
ˇ̌
ˇ̌
Z

G

�
f .x/ � f .x � y/

�
kK. y/ dy

ˇ̌
ˇ̌

� 1

�.K/

Z

K
j f .x/� f .x � y/j dy

� sup
y2K0

ˇ̌
f .x/ � f .x � y/j � ";

which implies the second convergence result. ut
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2.3.3 Another Characterization of Multipliers

We shall now introduce a characterization of Fourier multipliers. Specifically, the
aim of this subsection is to establish the following theorem.

Theorem 2.11 Let 1 < p < 1 with dual index p0, and let m 2 L1.bG/. Then
m 2 Mp.bG/ holds if and only if there is a constant C > 0 such that

ˇ̌
ˇ̌
Z

bG
m.�/bf .�/bg.�/ d�

ˇ̌
ˇ̌ � Ck fkL p.G/kgkL p0

.G/ (2.6)

for all f ; g 2 L1.G/ with compactly supported Fourier transforms. In this case
kmk

Mp.bG/ is the smallest constant such that estimate (2.6) is valid.

The verification of Theorem 2.11 mainly relies on the fact that the set

A.G/ :D ˚
f 2 L1.G/ Wbf has compact support

�
(2.7)

is a dense subset of L p.G/ for 1 < p < 1 if G is a locally compact abelian group.
Since we need this density result, we have to exclude the case p D 1 because A.G/
is not dense in L1.G/. Indeed, if we consider a function f 2 A.G/, its Fourier
transform is continuous and compactly supported and thus an element of L1.bG/.
But then the Fourier inverse ofbf is also a continuous function, i.e., we have A.G/ 	
C0.G/. Hence A.G/ cannot be a dense subset of L1.G/, except for the case where
G is finite. Furthermore, this argumentation implies that A.G/ 	 L1.G/. Using the
standard interpolation inequality, we obtain A.G/ 	 L p.G/ for all 1 � p � 1.

Lemma 2.12 For each f 2 L2.G/ there exists a sequence . fn/ 	 L2.G/ such that
bf n is compactly supported for each n 2 N and . fn/ converges to f in L2.G/.

Proof For f 2 L2.G/ we havebf 2 L2.bG/ by Plancherel’s Theorem. Because Cc.bG/
is a dense subspace of L2.bG/, there is a sequence .gn/ 	 Cc.bG/ that converges
to the function bf in L2.bG/. We define fn :D F�1Œgn� for all n 2 N. Again by
Plancherel’s Theorem, we obtain that . fn/ has the desired properties because the
Fourier transform is an isometric isomorphism L2.G/ ! L2.bG/. ut
Lemma 2.13 The set A.G/ is a dense subset of L1.G/.

Proof Let f 2 L1.G/. Let g :D pj f j and h :D sgn. f /
pj f j. Then we have f D gh

and g; h 2 L2.G/. By Lemma 2.12, there are sequences .gn/; .hn/ 	 L2.G/ that
converge in L2.G/ to g and h, respectively, and such thatbgn andbhn are compactly
supported functions for each n 2 N. If we define fn :D gnhn, we have fn 2 L1.G/
by Hölder’s inequality andbf n Dbgn �bhn is compactly supported, i.e., fn 2 A.G/ for
each n 2 N. Furthermore, we obtain

k f � fnkL1.G/ � kgkL2.G/kh � hnkL2.G/ C khnkL2.G/kg � gnkL2.G/ ! 0

as n ! 1 because .hn/ is convergent and thus bounded in L2.G/. Consequently,
we have found a sequence in A.G/ that converges to f . ut
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Theorem 2.14 The set A.G/ is a dense subspace of L p.G/ for all 1 � p < 1.

Proof Let 1 � p < 1. Furthermore, let f 2 L p.G/ and " > 0 be arbitrary. Then
there exists ' 2 Cc.G/ with k f � 'kL p.G/ <

"
3
. Moreover, by Proposition 2.10

we may choose a function k 2 L1.G/ such that k' � ' � kkL p.G/ <
"
3
, and by

Lemma 2.13 there exists a function  2 A.G/ with kk �  kL1.G/ <
"
3C , where

C > 0 is a constant such that k'kL p.G/ � C. Because '; 2 L1.G/, we also have

' �  2 L1.G/. Furthermore, it holds b' 2 C0.bG/ and b 2 Cc.bG/, which implies
F Œ' �  � D b'b 2 Cc.bG/. Therefore, we have ' �  2 A.G/. Moreover, using
Young’s inequality we obtain the estimate

k f � ' �  kL p.G/ � k f � 'kL p.G/ C k' � ' � kkL p.G/ C k' � k � ' �  kL p.G/

� "

3
C "

3
C k'kL p.G/kk �  kL1.G/

< ":

Since we have already observed that A.G/ 	 L p.G/, this proves the assertion. ut
After these preparations, we finally come to the proof of Theorem 2.11.

Proof of Theorem 2.11 First assume that m 2 Mp.bG/. For f ; g 2 A.G/ we obtain

ˇ̌
ˇ̌
Z

bG
m.�/bf .�/bg.�/ d�

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
Z

G
Tm f .x/g.�x/ dx

ˇ̌
ˇ̌

� kTm fkL p.G/kgkL p0

.G/

� kmk
Mp.bG/k fkL p.G/kgkL p0

.G/;

where we used Parseval’s formula and Hölder’s inequality. Thus estimate (2.6) is
valid for a constant C � kmk

Mp.bG/. Conversely, assume there is a constant C > 0

such that inequality (2.6) holds for all f ; g 2 A.G/. Since we have

Z

G
Tm f .x/g.x/ dx D

Z

bG
m.�/bf .�/bg.��/ d�

by Parseval’s formula, we obtain

ˇ̌
ˇ̌
Z

G
Tm f .x/g.x/ dx

ˇ̌
ˇ̌ � Ck fkL p.G/kgkL p0

.G/

for all f ; g 2 A.G/. Since A.G/ is dense in L p.G/ and L p0

.G/ by Theorem 2.14, it
follows that TmW L p.G/ ! L p.G/ is a bounded operator, i.e., we have m 2 Mp.bG/
and kmk

Mp.bG/ � C. ut
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2.3.4 The Transference Principle

Theorem 2.15 (Transference Principle) Let G and H be locally compact abelian
groups and let ˆWbH ! bG be a continuous homomorphism. If 1 < p < 1 and
m 2 Mp \ C.bG/, then it holds m ıˆ 2 Mp.bH/ and

km ıˆk
Mp.bH/ � kmk

Mp.bG/: (2.8)

For the remainder of this subsection, G and H will always be locally compact
abelian groups.

Definition 2.16 Let ˆWbH ! bG be a continuous homomorphism. The function
b̂WG ! H that satisfies

8x 2 G; � 2 bH W .b̂.x/; �/ D .x; ˆ.�// (2.9)

is called the dual homomorphism of ˆ.
Observe that the dual homomorphism is well defined by Eq. (2.9) due to

Pontryagin’s Duality Theorem.

Proposition 2.17 (Generalized Parseval Formula) Let ˆWbH ! bG be a continu-
ous homomorphism. For m 2 FL1 \ L1.bG/ and E 2 FL1 \ L1.H/, it holds

Z

G
E.b̂.x//bm.x/ dx D

Z

bH
m.ˆ.�//bE.�/ d�:

Proof We define the measure WB.bG/ ! C by

.S/ :D
Z

ˆ�1.S/

bE.��/ d�:

Then  is a finite measure sincebE 2 L1.bH/. First we shall show that

Z

bG
f .�/ d.�/ D

Z

bH
f .ˆ.�//bE.��/ d� (2.10)

for all bounded Borel functions f WbG ! C. If we consider the function f D 1S for
some S 2 B.bG/, starting from the right-hand side of Eq. (2.10), we obtain

Z

bH
1S.ˆ.�//bE.��/ d� D

Z

ˆ�1.S/

bE.��/ d� D .S/ D
Z

bG
1S.�/ d.�/;

so that Eq. (2.10) holds for the characteristic function of any Borel set. By linearity
of the integral, this is also valid for simple functions on bG. Finally, Eq. (2.10) holds
for all bounded Borel functions f WbG ! C by the Monotone Convergence Theorem
since we can monotonously approximate these by simple functions.
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Now we consider x 2 G and define f WbG ! C by f .�/ D .�x; �/. Then we obtain
the equality

b.x/ D
Z

bG
.�x; �/ d.�/ D

Z

bH
.�x; ˆ.�//bE.��/ d�

D
Z

bH
.�b̂.x/; �/bE.��/ d� D

Z

bH
.b̂.x/; �/bE.�/ d�

D E.b̂.x//

by formula (2.10) and the Inversion Theorem, which is applicable due to the
assumption E 2 FL1 \ L1.H/. It follows that

Z

G
E.b̂.x//bm.x/ dx D

Z

G
b.x/bm.x/ dx D

Z

bG

Z

G
.�x; �/bm.x/ dx d.�/;

where we used Fubini’s Theorem. Using the inversion formula and equality (2.10)
again, we can further transform the right-hand side and obtain

Z

bG
m.��/ d.�/ D

Z

bH
m.�ˆ.�//bE.��/ d� D

Z

bH
m.ˆ.�//bE.�/ d�

by reflection-invariance of the Haar measure. In total, we have derived the equality
we intended to show. ut

We start with a special case of Theorem 2.15. Recall that L1.G/ can be identified
with a subspace of M.G/, and thus it holds FL1.bG/ 	 Mp \ C.bG/ according to
Proposition 2.4.

Lemma 2.18 Let the assumptions of Theorem 2.15 be fulfilled, and assume further
that m 2 FL1 \ L1.bG/ holds. Then m ıˆ 2 Mp.bH/ and estimate (2.8) is valid.

Proof By Theorem 2.11 the statement follows if we can show

ˇ̌
ˇ̌
Z

bH
m ıˆ.�/bh.�/bk.�/ d�

ˇ̌
ˇ̌ � kmk

Mp.bG/khkL p.H/kkkL p0

.H/ (2.11)

for all integrable functions h; kWH ! C with compactly supported Fourier
transforms. For this purpose, let h; k 2 L1.H/ such that bh and bk have compact
support. By the generalized Parseval formula, Proposition 2.17, we have the equality

Z

bH
m.ˆ.�//bh.�/bk.�/ d� D

Z

G
.h � k/.b̂.x//bm.x/ dx (2.12)

because h � k 2 L1.H/ and F Œh � k� Dbhbk 2 L1.bH/.
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Now let " > 0 be arbitrary. Since the integrand on the right-hand side of
Eq. (2.12) is an integrable function, we may choose a compact subset K of G such
that

Z

GnK
j.h � k/.b̂.x//bm.x/j dx � "

2
kmk

Mp.bG/khkL p.H/kkkL p0

.H/: (2.13)

Furthermore, by Theorem 2.6 we may choose compactly supported bounded
functions f ; gWG ! C with the properties

i. 0 � f � g � 1,
ii. f � g D 1 on K,

iii. k fkL p.G/kgkL p0

.G/ � 1C "
2
.

If we are able to show
ˇ̌
ˇ̌
Z

G
.h � k/.b̂.x// . f � g/.x/bm.x/ dx

ˇ̌
ˇ̌ �

�
1C "

2


kmk

Mp.bG/khkL p.H/kkkL p0

.H/;

(2.14)

inequality (2.11) follows, which finishes the proof. Indeed, Eq. (2.12) and the
estimates (2.13) and (2.14) lead to

ˇ̌
ˇ̌
Z

bH
m ıˆ.�/bh.�/bk.�/ d�

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
Z

G
.h � k/.b̂.x//bm.x/ dx

ˇ̌
ˇ̌

�
ˇ̌
ˇ̌
Z

G
.h � k/.b̂.x// . f � g/.x/bm.x/ dx

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌
Z

G
.h � k/.b̂.x// .1 � . f � g/.x//bm.x/ dx

ˇ̌
ˇ̌

�
�
1C "

2


kmk

Mp.bG/khkL p.H/kkkL p0

.H/ C
Z

GnK
j.h � k/.b̂.x//j jbm.x/j dx

� .1C "/kmk
Mp.bG/khkL p.H/kkkL p0

.H/

because we have 0 � 1 � f � g � 1. Since " > 0 was chosen arbitrarily, we obtain
the desired estimate (2.11). Therefore, it remains to show inequality (2.14). To do
so, for a function wWH ! C and an element u 2 H, we define the function 	uw by
	uw.x/ :D w.x � u/ for all x 2 H. By translation-invariance of the Haar measure,
we now obtain the equality

.h � k/.b̂.x// . f � g/.x/ D
Z

H
h.b̂.x/� u/ k.u/ du

Z

G
f .x � y/ g. y/ dy

D
Z

G

Z

H
h
�b̂.x/� b̂. y/ � u

�
k
�
u C b̂. y/

�
f .x � y/ g. y/ du dy
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D
Z

H

Z

G

h�
	uh ı b̂�f

i
.x � y/

h�
	�uk ı b̂� g

i
. y/ dy du

D
Z

H

h�
	uh ı b̂�f

i
�
h�
	�uk ı b̂�g

i
.x/ du;

where we used Fubini’s Theorem. Therefore, again by Fubini’s Theorem, we can
rewrite the left-hand side of inequality (2.14) as

ˇ̌
ˇ̌
Z

H

Z

G

h�
	uh ı b̂�f

i
�
h�
	�uk ı b̂�g

i
.x/ �bm.x/ dx du

ˇ̌
ˇ̌ :

By the (standard) Parseval formula, this is equal to

ˇ̌
ˇ̌
Z

H

Z

bG
m.�/F

h�
	uh ı b̂�f

i
.�/ � F

h�
	�uk ı b̂�g

i
.�/ d� du

ˇ̌
ˇ̌ ;

which can be estimated by

Z

H

ˇ̌
ˇ̌
Z

bG
m.�/F

h�
	uh ı b̂�f

i
.�/ � F

h�
	�uk ı b̂�g

i
.�/ d�

ˇ̌
ˇ̌ du:

Since m is an L p multiplier on G, see Proposition 2.4, we can use Theorem 2.11 in
order to obtain

Z

H
kmk

Mp.bG/
���	uh ı b̂�f��L p.G/

���	�uk ı b̂�g��L p0

.G/
du

as an upper bound for this term. By Hölder’s inequality we can estimate this term
by

kmk
Mp.bG/

�Z

H

���	uh ı b̂�f��p
L p.G/

du

	 1
p
�Z

H

���	�uk ı b̂�g��p0

L p0

.G/
du

	 1
p0

;

and Fubini’s Theorem implies that this is equal to

kmk
Mp.bG/k fkL p.G/khkL p.H/kgkL p0

.G/kkkL p0

.H/:

Summarizing these estimates and using property iii. of f and g, we obtain

ˇ̌
ˇ̌
Z

G
.h � k/.b̂.x//. f � g/.x/bm.x/ dx

ˇ̌
ˇ̌ �

�
1C "

2


kmk

Mp.bG/khkL p.H/kkkL p0

.H/;

i.e., we verified inequality (2.14), which finishes the proof. ut
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Lemma 2.19 If m 2 FL1.bG/ andˆWbH ! bG is a continuous homomorphism, then
m ıˆ 2 FM.bH/.

Proof By assumption there is a function f 2 L1.G/ with m Dbf . Hence we have

.m ıˆ/.�/ Dbf .ˆ.�// D
Z

G
.�x; ˆ.�//f .x/ dx D

Z

G
.�b̂.x/; �/ d�f .x/

D
Z

H
.�y; �/ d.�f ı b̂�1/. y/ D F Œ�f ı b̂�1�.�/

for all � 2 bH. Here �f is the measure on G which is given by

�f .S/ D
Z

S
f .x/ dx

for S 2 B.G/, and �f ı b̂�1 is the image measure of �f under b̂. Since f is an
integrable function, both of these measures are regular and finite, which implies the
claimed statement. ut

We can now establish Theorem 2.15 for multipliers m with compact support.

Lemma 2.20 Let the assumptions of Theorem 2.15 be fulfilled, and assume
additionally that m is compactly supported. Then mıˆ 2 Mp.bH/ and estimate (2.8)
is valid.

Proof Let m 2 Mp \ Cc.bG/. By Proposition 2.10 there exists an approximative unit
.k˛/˛2A 	 L1 \ L1.bG/ with kk˛k

L1.bG/ D 1 for all ˛ 2 A. Then we have

i. m � k˛ 2 FL1 \ L1.bG/ for all ˛ 2 A,
ii. .m � k˛/˛2A converges to m uniformly on bG,

iii. m � k˛ 2 Mp.bG/ and km � k˛k
Mp.bG/ � kmk

Mp.bG/ for all ˛ 2 A.

Property i. can be seen as follows. For ˛ 2 A it is clear that m � k˛ is integrable
since m and k˛ are so. In addition, F Œm � k˛� D bmbk˛ is also integrable, which
follows from m; k˛ 2 L1\L1.G/ 	 L2.bG/ by Hölder’s inequality and Plancherel’s
Theorem.

The validity of ii. follows directly from Proposition 2.10.
Because we can interpret L1.G/ as a subset of M.G/, the first statement of iii. is a

direct consequence of i. and Proposition 2.4. In order to show the claimed inequality,
we can use Theorem 2.11, i.e., it suffices to show

ˇ̌
ˇ̌
Z

bG
m � k˛.�/bf .�/bg.�/ d�

ˇ̌
ˇ̌ � kmk

Mp.bG/k fkL p.G/kgkL p0

.G/

for all integrable functions f ; gWG ! C with compactly supported Fourier
transforms. If we choose such functions f ; g and some �0 2 bG, we obtain, again
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by Theorem 2.11, that

ˇ̌
ˇ̌
Z

bG
m.� � �0/bf .�/bg.�/ d�

ˇ̌
ˇ̌ � kmk

Mp.bG/k fkL p.G/kgkL p0

.G/

because m and thus also m.� � �0/ is an L p multiplier on G. Together with Fubini’s
Theorem, this implies

ˇ̌
ˇ̌
Z

bG
m � k˛.�/bf .�/bg.�/ d�

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
Z

bG

Z

bG
m.� � �0/k˛.�0/bf .�/bg.�/ d�0 d�

ˇ̌
ˇ̌

�
Z

bG

ˇ̌
ˇ̌
Z

bG
m.� � �0/k˛.�0/bf .�/bg.�/ d�

ˇ̌
ˇ̌ d�0

�
Z

bG
jk˛.�0/j kmk

Mp.bG/k fkL p.G/kgkL p0

.G/ d�0

D kmk
Mp.bG/k fkL p.G/kgkL p0

.G/;

where we used Theorem 2.11 again. This yields statement iii.
Properties i. and iii. and Lemma 2.18 imply .m � k˛/ ıˆ 2 Mp.bH/ and

k.m � k˛/ ıˆk
Mp.bH/ � km � k˛k

Mp.bG/ � kmk
Mp.bG/

for all ˛ 2 A. Therefore, if we consider two integrable functions h; kWH ! C such
thatbh;bk are compactly supported we have, by Theorem 2.11,

ˇ̌
ˇ̌
Z

bH
.m � k˛/ ıˆ.�/bh.�/bk.�/ d�

ˇ̌
ˇ̌ � kmk

Mp.bG/khkL p.H/kkkL p0

.H/:

Because of property ii., the sequence ..m�k˛/ıˆ/˛2A converges to mıˆ uniformly
onbH. Since we havebh;bk 2 Cc.bH/, Hölder’s inequality implies that the left-hand side
of this inequality converges, and we get

ˇ̌
ˇ̌
Z

bH
m ıˆ.�/bh.�/bk.�/ d�

ˇ̌
ˇ̌ � kmk

Mp.bG/khkL p.H/kkkL p0

.H/:

Now another application of Theorem 2.11 yields the claim. ut
Finally, we can consider the general case and complete the proof of the

Transference Principle.

Proof of Theorem 2.15 Let m 2 Mp \ C.bG/ and let .k˛/˛2A be the net of integrable
functions on G constructed in Theorem 2.9, i.e., with the properties

i. kk˛kL1.G/ � 1 for all ˛ 2 A,

ii. bk˛ 2 Cc.bG/ for all ˛ 2 A,
iii. .bk˛/ converges to 1 locally uniformly on bG.
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Because we have m 2 Mp.bG/, Theorem 2.11 implies

ˇ̌
ˇ̌
Z

bG
m.�/bk˛.�/bf .�/bg.�/ d�

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
Z

bG
m.�/F Œk˛ � f �.�/bg.�/ d�

ˇ̌
ˇ̌

� kmk
Mp.bG/kk˛ � fkL p.G/kgkL p0

.G/

� kmk
Mp.bG/k fkL p.G/kgkL p0

.G/

for all integrable functions f ; gWG ! C with compactly supported Fourier
transforms and for all ˛ 2 A. Here we used Young’s inequality as well as the fact that
the function F Œk˛ � f � Dbk˛bf is compactly supported and kk˛kL1.G/ � 1. Together

with Theorem 2.11, this estimate yields mbk˛ 2 Mp.bG/ and

kmbk˛k
Mp.bG/ � kmk

Mp.bG/

for all ˛ 2 A. We also have mbk˛ 2 Cc.bG/. Therefore, it follows from the inequality
above and Lemma 2.20 that .mbk˛/ ıˆ 2 Mp.bH/ and

k.mbk˛/ ıˆk
Mp.bH/ � kmbk˛k

Mp.bG/ � kmk
Mp.bG/:

Using Theorem 2.11 once more, we get

ˇ̌
ˇ̌
Z

bH
�
.mbk˛/ ıˆ�.�/bh.�/bk.�/ d�

ˇ̌
ˇ̌ � kmk

Mp.bG/khkL p.H/kkkL p0

.H/ (2.15)

for all integrable functions h; kWH ! C with compactly supported Fourier
transforms. By property iii., the net

�
.mbk˛/ ı ˆ�

˛2A converges to m ı ˆ locally

uniformly on bH. Therefore, Hölder’s inequality implies that the left-hand side of
inequality (2.15) converges. We thus obtain the estimate

ˇ̌
ˇ̌
Z

bH
.m ıˆ/.�/bh.�/bk.�/ d�

ˇ̌
ˇ̌ � kmk

Mp.bG/khkL p.H/kkkL p0

.H/:

A final application of Theorem 2.11 yields m ı ˆ 2 Mp.bH/ and the validity of
estimate (2.8). This completes the proof. ut

2.4 The Schwartz-Bruhat Space

The Schwartz-Bruhat space S .G/ is a generalization of the classical Schwartz
space S .Rn/ to a setting of functions defined on a locally compact abelian group
G. Analogously to the classical case, this topological vector space and its dual space
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can be used to investigate partial differential equations with the help of the Fourier
transform.

The construction of Schwartz-Bruhat spaces is due to Bruhat, who first intro-
duced these spaces in 1961 [2, Sect. 9]. The construction in [2] is based on properties
of Lie groups. In order to give a more self-contained introduction to S .G/, we shall
avoid the notion of Lie groups below.

At first we will construct the Schwartz-Bruhat space for elementary groups, i.e.,
for the case that the group is isomorphic to R

n � T
p � Z

q � F, where F is a finite
abelian group and n; p; q 2 N0. In this case we will derive a number of results that
are completely analogous to the classical case. Subsequently, we will establish some
results concerning compactly generated subgroups and so-called good subgroups.
Finally, we will define the Schwartz-Bruhat space on an arbitrary locally compact
abelian group as an inductive limit of Schwartz-Bruhat spaces on elementary groups.
A space of tempered distributions S 0.G/ can then be defined as the topological dual
space to S .G/. We shall verify that the Fourier transform acts on S .G/ and S 0.G/
in the expected way.

2.4.1 Elementary Groups

Definition 2.21 A topological group G is called elementary if it is isomorphic to
R

n � T
p � Z

q � F for some n; p; q 2 N0, where F is a finite abelian group. In this
case we call the triple .n; p; q/ the type of G.

The type of an elementary group is unique. This can be seen by using [11,
Corollary 9.13], which tells us that the numbers n and q are unique. By the fact that
T
p � F consists of jFj many connected components, we also obtain the uniqueness

of p. For simplicity, in the rest of this subsection we identify an elementary group
of type .n; p; q/ directly with R

n � T
p � Z

q � F.
The occurring product space is equipped with the usual product topology.

Therefore, elementary groups are, in particular, locally compact abelian groups. Fur-
thermore, the dual group of an elementary group of type .n; p; q/ is an elementary
group of type .n; q; p/.

It is clear that not every locally compact abelian group is elementary, consider
T
N for example. But we will see later that we can approximate each such group by

elementary groups in a certain way. We shall use such an approximation to define
the Schwartz-Bruhat space on arbitrary locally compact abelian groups.

The definition of the Schwartz-Bruhat space on an elementary group is a
straightforward generalization of the classical case, i.e., of the case where the group
is Rn. We first define a differentiability structure on elementary groups. Let G be an
elementary group of type .n; p; q/ and f WG ! C. For each k 2 Z

q and each a 2 F,
we define the function

f .k;a/WRn � R
p ! C; f .k;a/.t; x/ :D f .x; Œt�; k; a/: (2.16)
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Here Œt� is the image of t under the quotient mapping R
p ! T

p Š .R=2�Z/p. We
define the set C1.G/ as the set of all f WG ! C such that f .k;a/ 2 C1.R � R

np/ for
all k 2 Z

q and all a 2 F. Hence for f 2 C1.G/ the derivative Dˇx D
�
t f for ˇ 2 N

n
0

and � 2 N
p
0 is a well-defined function and it is also an element of C1.G/. Now we

can define the expressions

�
S .G/
˛;ˇ;�;ı. f / :D �˛;ˇ;�;ı. f / :D sup

.t;x;k;a/2G
jx˛kıDˇx D�t f .t; x; k; a/j (2.17)

for each ˛; ˇ 2 N
n
0, � 2 N

p
0 and ı 2 N

q
0, which enable us to give the definition of

the Schwartz-Bruhat space in this setting.

Definition 2.22 Let G be an elementary group of type .n; p; q/. The Schwartz-
Bruhat spaceS .G/ on G is defined by

S .G/ :D ˚
f 2 C1.G/ W �˛;ˇ;�;ı. f / < 1 for all ˛; ˇ 2 N

n
0; � 2 N

p
0; ı 2 N

q
0

�

and equipped with the locally convex topology induced by the family f�˛;ˇ;�;ıg of
seminorms defined in (2.17).

Observe that the Schwartz-Bruhat space is not trivial. For example, the function

f WG ! C; f .t; x; k; a/ :D e�jxj2�jkj2 (2.18)

is an element of S .G/, which one may easily verify. Moreover, the Schwartz-Bruhat
space embeds continuously into Lr.G/.

Theorem 2.23 Let G be an elementary group and 1 � r � 1. Then S .G/ is
continuously embedded into Lr.G/.

Proof The case r D 1 is clear since we have k fkL1.G/ D �0;0;0;0. f / for all f 2
S .G/. Therefore, it remains to consider the case 1 � r < 1. Furthermore, we
assume n; q > 0 since the cases n D 0 and q D 0 are quite similar and less difficult.
Let f 2 S .G/ and define the sets

M1 :D Bn
1.0/ � T

p � f0gq � F;

M2 :D Bn
1.0/

c � T
p � f0gq � F;

M3 :D Bn
1.0/ � T

p � .f0gq/c � F;

M4 :D Bn
1.0/

c � T
p � .f0gq/c � F:

Then G is the disjoint union of the family fMi W i D 1; : : : ; 4g. By the normalization
assumptions, the set M1 has the Haar measure �.M1/ D n �F.F/, where �F is the
Haar measure on F. We obtain

Z

M1

j f .x/jrdx � �.M1/ � k fkr
L1.G/

D n�F.F/ � �0;0;0;0. f /r: (2.19)
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With the help of Fubini’s Theorem, on the set M4 we derive the estimate

Z

M4

j f .x/jr dx D
Z

M4

jxj�n�1 jkj�q�1 jxjnC1 jkjqC1 j f .t; x; k; a/jr d.t; x; k; a/

� �F.F/
Z

Bn
1.0/

c
jxj�n�1 dx �

X

k2Zq

k¤0

jkj�q�1 � sup
.t;x;k;a/2M4

jxjnC1 jkjqC1 j f .t; x; k; a/jr:

For the remaining integral, we have

Z

Bn
1.0/

c
jxj�n�1 dx D !n

Z 1

1

s�n�1sn�1 ds D !n

Z 1

1

s�2 ds D !n:

The occurring sum is also finite and thus equal to a constant cq > 0. Moreover, we
define n0 :D Œ nC1

r �C 1 and q0 :D Œ qC1
r �C 1. For the last factor we use that

jxjd � Cm;d

X

ˇ2Nm
0 ; jˇjDd

jxˇj

in order to obtain

jxj nC1
r jkj qC1

r j f .t; x; k; a/j � jxjn0 jkjq0 j f .t; x; k; a/j
� Cn;n0

X

j˛jDn0

jx˛jCq;q0

X

jıjDq0

jkıj j f .t; x; k; a/j

� Cn;n0Cq;q0

X

j˛jDn0

X

jıjDq0

�˛;0;0;ı. f /

for all .t; x; k; a/ 2 M4. In total, we have

Z

M4

j f .x/jr dx � Cn;q;F;r

0

@
X

j˛jDn0

X

jıjDq0

�˛;0;0;ı. f /

1

A
r

(2.20)

for some constant Cn;q;F;r > 0. For the sets M2 and M3 we proceed in a similar way.
Using the same estimates as before, on the one hand, we have

Z

M2

j f .x/jr dx D
Z

M2

jxj�n�1 jxjnC1 j f .t; x; k; a/jr d.t; x; k; a/

� �F.F/
Z

Bn
1.0/

c
jxj�n�1 dx � sup

.t;x;k;a/2M2

jxjnC1 j f .t; x; k; a/jr

� �F.F/ !n

 
Cn;n0

X

j˛jDn0

�˛;0;0;0. f /

!r
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and, on the other hand, we obtain

Z

M3

j f .x/jr dx D
Z

M3

jkj�q�1 jkjqC1 j f .t; x; k; a/jr d.t; x; k; a/

� �F.F/ n �
X

k2Zq

k¤0

jkj�q�1 � sup
.t;x;k;a/2M3

jkjqC1 j f .t; x; k; a/jr

� �F.F/ n cq

 
Cq;q0

X

jıjDq0

�0;0;0;ı. f /

!r

:

Putting these estimates together with the inequalities (2.19) and (2.20), we obtain
f 2 Lr.G/ and

k fkLr.G/ � C
X

j˛j�n0

X

jıj�q0

�˛;0;0;ı. f /

for some constant C > 0. Finally, this estimate yields also the continuity of the
embedding. ut

In particular, we have seen that elements of the Schwartz-Bruhat space are
integrable functions. Therefore, we can now investigate the Fourier transform F
as an operator on this space. For this purpose, for ˛ 2 N

n
0 we will simply write x˛

for both functions

G ! G; .t; x; k; a/ 7! x˛ and bG ! bG; .t; x; k; a/ 7! x˛:

Analogously, for � 2 N
p
0 and ı 2 N

q
0, the symbols kı and k� denote the functions

G ! G; .t; x; k; a/ 7! kı and bG ! bG; .t; x; k; a/ 7! k� ;

respectively.

Theorem 2.24 Let G be an elementary group of type .n; p; q/ and S .G/ the
Schwartz-Bruhat space on G. Then the following statements hold.

i. S .G/ is a Fréchet space.
ii. For ˛ 2 N

n
0, � 2 N

p
0 and ı 2 N

q
0, the mappings

f 7! D˛x f ; f 7! x˛f ;

f 7! D�t f ; f 7! kı f ;

define continuous functionsS .G/ ! S .G/, and we have the identities

F ŒD˛x f � D ij˛jx˛bf ; F Œx˛ f � D ij˛jD˛xbf ;
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F ŒD�t f � D ij� jk�bf ; F Œkı f � D ijıjDıtbf

for all f 2 S .G/.
iii. The Fourier transform is a topological isomorphismS .G/ ! S .bG/.

Proof By definition S .G/ is a locally convex Hausdorff space, whose topology
is induced by a countable family of seminorms. Therefore, for the proof of i., it
remains to show that S .G/ is complete. For this, let . fj/ be a Cauchy sequence in
S .G/. For all multi-indices ˛; ˇ 2 N

n
0, � 2 N

p
0 and ı 2 N

q
0, we define the functions

gj;˛;ˇ;�;ı WG ! C by

gj;˛;ˇ;�;ı.t; x; k; a/ :D x˛kıDˇx D
�
t fj.t; x; k; a/:

Then .gj;˛;ˇ;�;ı/j2N is a Cauchy sequence in Cb.G/ and thus converges uniformly to
a function g˛;ˇ;�;ı . With the notation introduced in Eq. (2.16), this implies that also

the sequence .g.k;a/j;˛;ˇ;�;ı/j2N 	 C1
b .R

n � R
p/ converges uniformly to g.k;a/˛;ˇ;�;ı for each

.k; a/ 2 Z
q � F. Now we define f :D g0;0;0;0. Since

g.k;a/j;˛;ˇ;�;ı.t; x/ D x˛kıDˇx D
�
t f
.k;a/
j .t; x/;

we obtain by uniform convergence that f .k;a/ 2 C1.Rn � R
p/ and

g.k;a/˛;ˇ;�;ı.t; x/ D x˛kıDˇx D
�
t f
.k;a/.t; x/

for each .k; a/ 2 Z
q � F. This yields f 2 S .G/ and f is the limit of . fj/ in S .G/.

Hence S .G/ is complete and thus a Fréchet space.
Now we continue with the proof of ii., where it is clear that for each f 2 S .G/

also the functions D˛x f ;D
�
t f and kıf are elements of S .G/. It follows directly from

Leibniz’s rule for higher derivatives of products that this is also the case for x˛f .
This also implies the continuity of the considered mappings S .G/ ! S .G/. The
remaining formulas follow directly from decomposing the Fourier transform on G
as FG D FRn FTp FZq FF and using the behavior of polynomials and derivatives
under the Fourier transform on R

n as well as on Z
q and T

p.
In order to show iii., let f 2 S .G/. For ˛ 2 N

n
0 and ı 2 N

q
0, we define

g˛;ı :D .�i/j˛jCjıjx˛kı f :

By ii. we obtain g˛;ı 2 S .G/ andbg˛;ı D D˛x D
ı
t
bf . Thus for ˇ 2 N

n
0 and � 2 N

p
0, we

have

xˇk�D˛x D
ı
t
bf D xˇk�bg˛;ı D .�i/jˇjCj� jF ŒDˇx D

�
t g˛;ı� 2 L1.bG/

since Dˇx D
�
t g˛;ı 2 S .G/ 	 L1.G/; see Theorem 2.23. Because the multi-indices

were chosen arbitrarily, this impliesbf 2 S .bG/.
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Now we shall show that the Fourier transform is also continuous as a mapping
S .G/ ! S .bG/. Let . fj/ 	 S .G/ be a convergent sequence with limit f 2 S .G/.
By statement ii., for each ˛; ˇ 2 N

n
0, � 2 N

p
0 and ı 2 N

q
0, the sequence .hj;˛;ˇ;�;ı/j2N

defined by

hj;˛;ˇ;�;ı.t; x; k; a/ :D Dˇx D
�
t

�
x˛kıfj.t; x; k; a/

�

is a sequence in S .G/ and converges in the topology of S .G/ to the function
h˛;ˇ;�;ı WG ! C given by

h˛;ˇ;�;ı.t; x; k; a/ :D Dˇx D
�
t

�
x˛kı f .t; x; k; a/

�
:

Since S .G/ is continuously embedded into L1.G/ by Theorem 2.23, this conver-
gence also holds in L1.G/. The continuity of the Fourier transform F as a mapping
F W L1.G/ ! L1.bG/ implies that the sequence .bhj;˛;ˇ;�;ı/j2N converges tobh˛;ˇ;�;ı in
L1.bG/. Because this holds for all multi-indices, the sequence .bf j/ converges tobf in
S .bG/.

In exactly the same way, we can derive that F�1WS .bG/ ! S .G/ is a
continuous mapping. Furthermore, the Inversion Theorem now implies that F�1
is the actual inverse of F and thus F is a topological isomorphism. This finishes
the proof. ut

The space C1
b .G/ on an elementary group G is defined as the space of all

functions f 2 C1.G/ such that f and all derivatives of f are bounded. In particular,
it holds S .G/ 	 C1

b .G/. For these functions we obtain the following result.

Proposition 2.25 Let G be an elementary group of type .n; p; q/. If u 2 C1
b .G/ and

f 2 L1.G/, then u � f 2 C1
b .G/ and D˛x D

ˇ
t .u � f / D .D˛x D

ˇ
t u/ � f for all ˛ 2 N

n
0

and ˇ 2 N
p
0.

Proof At first we consider derivatives in the R
n variables. For j 2 f1; : : : ; ng and

h > 0, the j-th difference quotient Dh
j is defined by

Dh
j u.t; x; k; a/ D 1

h

�
u.x C hej; t; k; a/ � u.t; x; k; a/

�

for all .t; x; k; a/ 2 G. With this notation, we obtain

Dh
j .u � f /.t; x; k; a/ D

Z

G
Dh

j u.x � y; t � s; k � l; a � b/f . y; s; l; b/ d. y; s; l; b/:

Since k@juk1f is an integrable upper bound to this integrand, we can take the
limit h ! 0 in this equation, and the Dominated Convergence Theorem yields the
existence of @j.u � f / and the formula @j.u � f / D .@ju/ � f .

The same argument leads to the analogous result for partial derivatives concern-
ing the T

p variables. Iterating this procedure, we obtain u � f 2 C1.G/ and the
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desired formula for the derivatives. Furthermore, by Young’s inequality we have

kD˛x Dˇt .u � f /k1 D k.D˛x Dˇt u/ � fk1 � kD˛x Dˇt uk1k fkL1.G/

and thus also u � f 2 C1
b .G/. ut

Proposition 2.26 Let G be an elementary group, u 2 S .G/ and f WG ! C a
compactly supported integrable function. Then we have u � f 2 S .G/.

Proof By Proposition 2.25 we have u� f 2 C1.G/. Now let ˛; ˇ 2 N
n
0, � 2 N

p
0 and

ı 2 N
q
0. Since f is compactly supported, we may choose a number N 2 N such that

supp f is contained in

M1 :D Œ�N;N�n � T
p � f�N;�N C 1; : : : ;N � 1;Ngq � F:

We define the set

M2 :D Œ�2N; 2N�n � T
p � f�2N;�2N C 1; : : : ; 2N � 1; 2Ngq � F;

which is a compact subset of G. Hence the continuous function x˛kıDˇx D
�
t .u � f /

is bounded on this set. Now let .t; x; k; a/ 2 Mc
2. Using Proposition 2.25 again, we

obtain

jx˛kıDˇx D�t .u � f /.t; x; k; a/j D jx˛kı.Dˇx D�t u/ � f .t; x; k; a/j

�
Z

M1

jx˛j jkıj jDˇx D�t u.x � y; t � s; k � l; a � b/j j f . y; s; l; b/j d. y; s; l; b/

�
Z

M1

2j˛jCjıjj.x � y/˛.k � l/ıj

� jDˇx D�t u.x � y; t � s; k � l; a � b/j j f . y; s; l; b/j d. y; s; l; b/

� 2j˛jCjıj�˛;ˇ;�;ı.u/ � k fkL1.G/;

where we used the estimate jcj � 2jc � dj for c; d 2 R with jcj � 2N and jdj � N.
Since the multi-indices were chosen arbitrarily, we have shown u � f 2 S .G/. ut

In order to derive density results, we will also need the existence of infinitely
differentiable functions with arbitrarily small support.

Proposition 2.27 Let G be an elementary group and U 	 G be a nonempty open
subset of G. Then there exists a function u 2 C1.G/, u ¤ 0, such that supp u 	 U.

Proof We define the function 'WRn � R
p ! C by

'.x; y/ D
(

e
1

1�jxj2 e
1

1�jyj2 ; if jxj < 1 and jyj < 1;
0; otherwise.
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It is well known that this defines an element of C1.Rn �R
p/ with compact support

Kn
1.0/ � Kp

1.0/. Since U is an open subset of G, there exist .x0; t0; k0; a0/ 2 U and
r 2 .0; 1/ such that V 	 U if we define

V :D Bn
r .x0/ � �.Bp

r .t
0
0// � fk0g � fa0g:

Here � denotes the quotient mapping R
p ! T

p Š .R=2�Z/p and t00 2 Œ��; �/p is
the unique representative of t0. We can now define the function uWG ! C by

u.t; x; k; a/ D
(
'.r�1x; r�1t0/; if .k; a/ D .k0; a0/;

0; otherwise,

where t0 is the unique representative in Œ��; �/p for t 2 T
p. Then u 2 C1.G/ and

we have supp u 	 V 	 U. Hence u possesses the desired properties. ut

2.4.2 Good and Compactly Generated Open Subgroups

In order to define the Schwartz-Bruhat space on a general locally compact abelian
group G and to investigate the action of the Fourier transform FG, we consider
certain pairs of subgroups and their behavior with regard to duality. We will see that
the quotient group of such a pair is elementary, which will enable us to apply the
results of the previous subsection.

Definition 2.28

i. We say that a topological group H has no small subgroups if there exists an
open neighborhood U of the zero element such that U contains no subgroup of
H but the trivial one.

ii. We call a subgroup K of G good if K is compact and G=K contains no small
subgroups.

iii. A subgroup � of G is called compactly generated if there exists a compact set
C in G with � D hCi.

iv. We define A as the set of all pairs .K; �/ of subgroups of G, where K is
good, � is compactly generated and open and K 	 � . The set bA denotes the
corresponding set of pairs of subgroups of bG.

The quotient group G=K is a locally compact abelian group if K is a closed
subgroup. Hence the condition that K is good is equivalent to the claim that K
is compact and G=K is a (finite-dimensional) Lie group; see [7]. Thus the above
definition of good subgroups coincides with the one given in [2].

In the following, we want to investigate the behavior of the annihilator operation
on the good and the compactly generated subgroups.
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Lemma 2.29 Let H be a subgroup of G. Then H is compact if and only if the
annihilator H? is open.

Proof H is compact if and only if its dual group bH is discrete. Since this group is
isomorphic to the quotient groupbG=H?, this is equivalent to the statement that H?
is an open subgroup. Hence we have proved the desired equivalence. ut

In the paper [2] by Bruhat, the theory of Lie groups was used in order to introduce
the good subgroups. In the following, we shall avoid the notion of Lie groups and
instead use the following lemma due to Osborne [18].

Lemma 2.30 The group G is compactly generated if and only if bG has no small
subgroups.

Proof For each compact subset C 	 G and r > 0, define the set

N.C; r/ :D
n
� 2 bG W j1 � .x; �/j < r for all x 2 C

o
:

The family of these sets is a neighborhood base of 0 in bG.
At first let G be compactly generated, i.e., G D hCi for some compact set C 	 G.

We take r > 0 such that U :D fz 2 T W j1� zj < rg contains no nontrivial subgroups
of T. For example, this is valid for r D 1. We consider the open set N.C; r/ and a
subgroup H of bG with H 	 N.C; r/. Then for all � 2 H the multiples of � are also
elements of N.C; r/, and thus we have �.x/k 2 U for all k 2 Z and all x 2 C. Since
these elements of T form a subgroup contained in U, we obtain �.x/ D 1 by the
choice of r. Because x 2 C was arbitrary, this implies that �.hCi/ D f1g and thus
� 2 hCi? D f0g. Hence H is the trivial group, and we have found an open set in bG
that contains no nontrivial subgroups. Therefore,bG has no small subgroups.

Conversely, assume that G is not compactly generated. Let V 	 bG be an open
neighborhood of 0. As we remarked above, there exists a compact set C 	 G and
some r > 0 such that N.C; r/ 	 V . If � 2 hCi?, we have .x; �/ D 1 for all
x 2 C, hence hCi? 	 N.C; r/ 	 V . Since G is not compactly generated, hCi? is
a nontrivial subgroup of bG. As V was an arbitrary open neighborhood of 0, bG has
small subgroups. ut

Now we are able to state the following duality result, which we will need for the
investigation of the Fourier transform on the Schwartz-Bruhat space.

Theorem 2.31 A pair .K; �/ of subgroups of G is an element ofA if and only if the
pair .�?;K?/ belongs to bA.

Proof Let H be a subgroup of G. By definition H is good if it is compact and G=H
has no small subgroups. By Lemma 2.29 the set H is compact if and only if H? is
open. Furthermore, using Lemma 2.30 and the Pontryagin Duality Theorem, G=H
has no small subgroups if and only if its dual group, which is isomorphic to H?, is
compactly generated. All in all, we have shown that an arbitrary subgroupH is good
if and only if H? is open and compactly generated. Applying this result to K and �
and using .�?/? D � completes the proof. ut
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Finally, we want to connect the results presented here with those of the previous
subsection and justify the special role the set A plays in our approach. At first we
examine the quotient �=K for .K; �/ 2 A.

Proposition 2.32 Let K be a compact and� be an open subgroup of G with K 	 � .
Then .K; �/ 2 A if and only if �=K is compactly generated and has no small
subgroups.

Proof Let �W� ! �=K be the quotient mapping, and assume that .K; �/ 2 A.
Then there is a compact set C 	 � with � D hCi. As � is continuous, �.C/ is a
compact subset of �=K. Furthermore, since � is a homomorphism, we have

h�.C/i D �.hCi/ D �.�/ D �=K:

Hence �=K is compactly generated.
Now consider the canonical embedding �W�=K ! G=K, which is a continuous

homomorphism. By assumption, there is an open neighborhood V 	 G=K of 0 2
G=K which contains no nontrivial subgroups. Then ��1.V/ is an open neighborhood
of 0 2 �=K. If H 	 ��1.V/ is a subgroup of �=K, then �.H/ is a subgroup of V .
Hence �.H/ D f0g and, by the injectivity of �, we have H D f0g. Consequently,
�=K has no small subgroups.

Conversely, assume that �=K has no small subgroups, i.e., that there is an open
subset U 	 �=K which contains no subgroup but the trivial one. Since � is an open
subgroup of G, the quotient group �=K is an open subgroup of G=K. Therefore, U
is also an open subset of G=K. Hence G=K has no small subgroups and K is a good
subgroup of G.

If �=K is compactly generated, then there is a compact subset C 	 �=K such that
�=K D hCi. Then � is isomorphic to hCi � K, which is generated by the compact
set C � K. Thus � is also compactly generated. ut

The paper [2] by Bruhat contains the statement that .K; �/ 2 A implies
that �=K is a (compactly generated abelian) Lie group. Moreover, there exists
a characterization theorem for this kind of Lie groups, namely that they are
isomorphic to elementary groups. This result can, for instance, be found in [1,
Proposition 3, Sect. II.2]. A characterization theorem for compactly generated
groups without small subgroups can also be shown without the application of Lie
group theory. For instance, this is done in [25, Theorem 21.18], which we rephrased
below in order to make it fit in our setting.

Theorem 2.33 The elementary groups are exactly those locally compact abelian
groups that are compactly generated and have no small subgroups.

Proof We refer the reader to [25, Theorem 21.18]. ut
Combining this result with Proposition 2.32 directly leads us to the following

statement, which shows the connection between this subsection and the previous
one.
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Theorem 2.34 Let K be a compact and � be an open subgroup of G such that
K 	 � . Then .K; �/ 2 A if and only if �=K is an elementary group.

This theorem will be the key for the introduction of the Schwartz-Bruhat space
on an arbitrary locally compact abelian group because it enables us to expand the
definition from elementary groups.

Until now, we have not ensured that the set A is nonempty. In order to guarantee
the existence of good subgroups and compactly generated subgroups containing
them, we need the following theorem.

Theorem 2.35 Let � be an open compactly generated subgroup of G. Every
neighborhood U of 0 in � contains a compact subgroup K such that �=K is
elementary.

Proof See [11, Theorem 9.6]. ut
We remark that in the above setting each open subset of � is also an open subset

of G since � is open. Using Theorem 2.34, we can directly derive the following.

Corollary 2.36 Let � be an open compactly generated subgroup of G. Every
neighborhood U of 0 in � contains a good subgroup.

If we take a compact subset C of G with nonempty interior, for example, a
compact neighborhood of 0, we directly obtain that � :D hCi is an open compactly
generated subgroup of G. Together with Corollary 2.36, this yields the following
result.

Corollary 2.37 The set A is nonempty.
Later we will need another property of the set A, which is subject of the next

proposition.

Proposition 2.38 The set A is a directed set if we define the order on A by

.K1; �1/ � .K2; �2/ ” �1 	 �2 and K1 
 K2:

Proof It is clear that the relation � is a partial order on A. Let us consider
.K1; �1/; .K2; �2/ 2 A. We have to find .K; �/ 2 A such that .Kj; �j/ � .K; �/
for j D 1; 2. We set K :D K1 \ K2 and � :D �1 C �2 and have to show that these
elements form a pair in A. We see directly that � is an open subgroup of G. For
j D 1; 2 the group �j is compactly generated so that there is a compact set Cj 	 G
with �j D hCji. Hence � is generated by the set C1 C C2, which is again a compact
subset of G. Therefore, � is also compactly generated. Furthermore, K is a compact
subgroup of G. It remains to show that G=K has no small subgroups. We have seen
in Lemma 2.30 that this is the case if and only if K? D .K1 \ K2/? D K?

1 C K?
2 is

compactly generated. But this fact follows in the same way as above since K?
1 and

K?
2 are so, again by Lemma 2.30. Finally, we have shown .K; �/ 2 A. It is trivial

that this element is greater than .K1; �1/ and .K2; �2/. Thus the proof is complete.
ut
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2.4.3 The General Schwartz-Bruhat Space

We shall define the general Schwartz-Bruhat space as an inductive limit of function
spaces on G. To do so, we consider the Schwartz-Bruhat space for the groups of
the form �=K, where .K; �/ 2 A. Since this quotient is an elementary group, as
seen in Theorem 2.34, we have already defined and examined these spaces. They do
not consist of functions on the considered group G, but we can identify each such
function with a function on G, which is invariant under the subgroupK. Throughout
this subsection, let G be a locally compact abelian group and A the set of pairs as in
Definition 2.28.

Definition 2.39 Let .K; �/ 2 A and �W� ! �=K be the canonical quotient
mapping. We define the space S .K; �/ as the set of all functions f WG ! C for
which there exists a function uf 2 S .�=K/ such that

f .x/ D
(
uf .�.x//; if x 2 �;
0; otherwise.

(2.21)

The vector space S .K; �/ inherits the topology of S .�=K/ by defining V 	
S .K; �/ as open if and only if the set

˚
uf W f 2 V

�
is open in S .�=K/.

Note that S .K; �/ and S .�=K/ are isomorphic as topological vector spaces,
which is a direct consequence of the definition given above. Thus S .K; �/ is also
a Fréchet space and thus, in particular, a locally convex topological vector space.

If �=K is elementary of type .n; p; q/, we define

�
S .K;�/
˛;ˇ;�;ı . f / :D �˛;ˇ;�;ı. f / :D �

S .�=K/
˛;ˇ;�;ı .uf /

for f 2 S .K; �/ and ˛; ˇ 2 N
n
0, � 2 N

p
0 and ı 2 N

q
0, where uf is chosen as

in (2.21). We see that the topology on S .K; �/ is induced by the family
˚
�˛;ˇ;�;ı

�

of seminorms. Moreover, since the set � is an open and closed subset of G, the
spaces S .K; �/ consist of continuous functions.

We shall now show that Schwartz-Bruhat spaces corresponding to elements
.K; �/ in A are ordered by inclusion according to the order � on A defined in
Proposition 2.38.

Proposition 2.40 For .K1; �1/; .K2; �2/ 2 A with .K1; �1/ � .K2; �2/, the space
S .K1; �1/ is a topological linear subspace of S .K2; �2/.

Proof For j 2 f1; 2g we denote the canonical projection by �jW�j ! �j=Kj. Let
f 2 S .K1; �1/ and uf 2 S .�1=K1/ as in Definition 2.39. Furthermore, we consider
the mappinge� W�2=K2 ! �2=K1, x C K2 7! x C K1, which is well defined because
K2 	 K1. We define

vW�2=K2 ! C; v.x/ D
(
uf .e�.x//; if x 2 �1=K2;
0; otherwise.
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Since .e� ı �2/j�1 D �1, we obtain

f .x/ D
(
v.�2.x//; if x 2 �2;
0; otherwise.

In order to show f 2 S .K2; �2/, it remains to verify v 2 S .�2=K2/.
Since the subgroups �1; �2;K1;K2 of G are closed, we have

�2=K2 Š �2=�1 � �1=K1 � K1=K2

as an isomorphism of topological groups. �2=K2 is an elementary group, and closed
subgroups of elementary groups are elementary; see [25, Theorem 21.19]. Hence
�2=�1 and K1=K2 are also elementary. Because �1 is an open subset of �2, the
quotient�2=�1 is also discrete and thus isomorphic toZq0�F1 for some q0 2 N0 and
a finite abelian group F1. Moreover, K1 is a compact subgroup of G and, therefore,
K1=K2 is also compact and hence isomorphic to T

p0 � F2 for some p0 2 N0 and
a finite abelian group F2. By Theorem 2.34 we can identify �1=K1 with the group
R

n � T
p � Z

q � F for some n; p; q 2 N0 and a finite abelian group F. Using the
isomorphisms above, we obtain that �2=K2 is isomorphic to R

n�T
pCp0 �Z

qCq0�F0,
where F0 D F � F1 � F2.

In the following, in order to avoid unnecessary complicated notation, we identify
each of the considered quotient groups with the product group it is isomorphic to.
Then the mapping e� WRn � T

pCp0 � Z
qCq0 � F0 ! R

n � T
p � Z

qCq0 � F � F1 is
given by

e�.t; x; k; a/ D .x; Œt�; k; Œa�/;

where Œ.t1; t2/� D t1 for .t1; t2/ 2 T
pCp0 and Œ.a0; a1; a2/� D .a0; a1/ for

.a0; a1; a2/ 2 F0. With this notation, we obtain the identities

v.x C y; t; k; a/ � v.t; x; k; a/ D uf .x C y; Œt�; k; Œa�/ � uf .x; Œt�; k; Œa�/;

v.t; x C s; k; a/ � v.t; x; k; a/ D uf .x; Œt C s�; k; Œa�/ � uf .x; Œt�; k; Œa�/

for all x; y 2 R
n, t; s 2 T

pCp0 , k 2 Z
qCq0 and a 2 F0. Considering differential

quotients, we infer that v inherits the regularity properties of uf . Therefore, it holds
v 2 C1.�2=K2/. Moreover, for ˛ 2 N

n
0 and � D .�1; �2/ 2 N

pCp0
0 , we thus have

D˛x v D D˛x uf ıe�;

D�t v D
(
D�1t uf ıe�; if �2 D 0;

0; if �2 ¤ 0:
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Furthermore, for ˛; ˇ 2 N
n
0, � D .�1; �2/ 2 N

pCp0
0 and ı D .ı1; ı2/ 2 N

qCq0
0 , we

obtain the equality

�
S .K2;�2/
˛;ˇ;�;ı . f / D �

S .�2=K2/
˛;ˇ;�;ı .v/ D sup

.t;x;k;a/2�2=K2
jx˛kıDˇx D�t v.t; x; k; a/j

D sup
.t;x1;k1;a0/2�1=K1
.k2;a1/2�2=�1
.t2;a2/2K1=K2

jx˛kı11 kı22 Dˇx D�1t1 D�2t2 v.t; x1; t2; k1; k2; a0; a1; a2/j;

where we distinguish several cases. If �2 ¤ 0, we have

�
S .K2;�2/
˛;ˇ;�;ı . f / D 0

since D�2t2 v D 0, as we have already seen above. If ı2 ¤ 0, we have

�
S .K2;�2/
˛;ˇ;�;ı . f / D 0

since v (and all its derivatives) are supported in f.t; x; k1; k2; a/ 2 �2=K2 W k2 D 0g
by definition. But on this set the factor kı22 vanishes. If �2 D 0 and ı2 D 0, we have

�
S .K2;�2/
˛;ˇ;�;ı . f / D sup

.t;x1;k1;a0/2�1=K1
jx˛kı11 Dˇx D�1t1 uf .t; x1; k1; a0/j

D �
S .K1;�1/
˛;ˇ;�1;ı1

. f / < 1:

Therefore, we obtain f 2 S .K2; �2/, and the space S .K1; �1/ is a subspace of
S .K2; �2/ and is equipped with the subspace topology. Hence the claim is proved.

ut
After these preparations, we recall the definition of the inductive limit topology

for locally convex spaces.

Definition 2.41 Let .A;�/ be a directed set and fE˛ W ˛ 2 Ag be a family of locally
convex Hausdorff spaces. Furthermore, let E˛ be continuously embedded into Eˇ
for all ˛; ˇ 2 A such that ˛ � ˇ. Then the inductive limit topology on the vector
space E :D S

˛2A E˛ is defined as the finest locally convex topology for which each
of the embeddings �˛WE˛ ! E is continuous. We call the locally convex vector
space E the inductive limit of the family fE˛ W ˛ 2 Ag.

The following proposition will be very useful for the derivation of continuity
properties. Classically, it is called the universal property of the inductive limit.

Proposition 2.42 (Universal Property) Let fE˛ W ˛ 2 Ag be a family of locally
convex Hausdorff spaces as in Definition 2.41 with inductive limit E, and let F be
a locally convex space. A linear mapping vWE ! F is continuous if and only if the
restriction vjE˛ D v ı �˛ is continuous for each ˛ 2 A.
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Proof See [23, Subsection II.6.1]. ut
We can now introduce the general Schwartz-Bruhat space as an inductive limit

of Schwartz-Bruhat spaces on elementary groups.

Definition 2.43 The Schwartz-Bruhat space S .G/ on G is the inductive limit of
the family fS .K; �/ W .K; �/ 2 Ag, i.e.,

S .G/ :D
[

.K;�/2A
S .K; �/

equipped with the inductive limit topology of the family fS .K; �/ W .K; �/ 2 Ag.
We have seen in Theorem 2.24 and Proposition 2.40 that the conditions of

Definition 2.41 are fulfilled, and thus S .G/ is a well-defined locally convex
space. Analogously to the classical case, we can now define the space of tempered
distributions on the group G.

Definition 2.44 The space of tempered distributions S 0.G/ on G is defined as the
topological dual space of S .G/.

In order to utilize the space S 0.G/ in the theory of partial differential equations,
we also have to introduce derivatives of a tempered distribution. For a general
locally compact abelian group, we cannot distinguish between different directions.
Therefore, we are also not able to define partial derivatives. However, when we
consider an elementary group G and identify it with R

n � T
p � Z

q � F for a finite
abelian group F and n; p; q 2 N0, this problem does not occur and we have already
defined derivatives for functions in S .G/ at the beginning of Sect. 2.4.1. In the
same way as in the classical case, we can thus define derivatives by duality. For
 2 S 0.G/ and f 2 S .G/ we set

hD˛x Dˇt  ; f i :D .�1/j˛jCjˇjh ;D˛x Dˇt f i (2.22)

for ˛ 2 N
n
0 and ˇ 2 N

p
0. In the same way, partial derivatives can even be defined on

groups of the form R
n � T

N � Z
N � F, where ˛; ˇ 2 N

N

0 with j˛j, jˇj finite.

2.4.4 Embedding Results

For the extension of the Fourier transform on a locally compact abelian group to
each L p space, we proceed as in the classical case. To do so, we have to show that
these spaces can be embedded into the space of tempered distributions, where we
can define the Fourier transform via duality. Beforehand, we have to investigate the
Schwartz-Bruhat space further. As in the previous subsection, let G be a locally
compact abelian group.

Theorem 2.45 Let 1 � p � 1. Then the Schwartz-Bruhat space S .G/ is
continuously embedded into L p.G/.
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Proof Let f 2 S .G/. Then there is a pair .K; �/ 2 A with f 2 S .K; �/, and hence
there exists u 2 S .�=K/ such that

f .x/ D
(
u.�.x//; if x 2 �;
0; otherwise,

where �W� ! �=K is the quotient mapping. If p < 1, we get

Z

G
j f .x/jp dx D

Z

�

ju.�.x//jp dx D
Z

�=K

Z

K
ju.�.x C k//jp dk dŒx�

D
Z

�=K

Z

K
ju.Œx�/jp dk dŒx� D �.K/ � kukp

L p.�=K/
;

where � denotes the Haar measure on the group G. For p D 1, we have

ess sup
x2G

j f .x/j D ess sup
x2�

ju.�.x//j D kukL1.�=K/:

In total, we obtain f 2 L p.G/ and

k fkL p.G/ D �.K/
1
p kukL p.�=K/ (2.23)

for each p 2 Œ1;1�, where we set 1
1 :D 0. Since u is an element of the Schwartz-

Bruhat space on the elementary group �=K, we have u 2 L p.�=K/; compare
Theorem 2.23. Therefore, (2.23) implies S .G/ 	 L p.G/ for all 1 � p � 1. In
order to show continuity of this embedding, we can use the universal property from
Proposition 2.42. Hence it remains to show that the embedding S .K; �/ ,! L p.G/
is continuous for all .K; �/ 2 A. By using Theorem 2.23 and Eq. (2.23) again, this
follows directly and completes the proof. ut

We shall now show that the embedding above is dense. The case p D 1 must be
excluded (as in the classical setting).

Theorem 2.46 For 1 � p < 1 the spaceS .G/ is a dense subset of L p.G/.

Proof Let f 2 Cc.G/ and " > 0 be arbitrary, and let C 	 G be a compact set with
nonempty interior such that supp f 	 C. We define the group � :D hCi. Then � is
open and compactly generated. Since � is a locally compact abelian group, there is
an open neighborhood U 	 � of 0 (which is, in particular, an open neighborhood
of 0 in G) such that

k f � ' � fkL p.G/ D k f � ' � fkL p.�/
< "

for all ' 2 L1.G/ with supp' 	 U and k'kL1.G/ D k'kL1.�/ D 1. By
Corollary 2.36 there exists a good subgroup K of � with K 	 U. Hence we have
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.K; �/ 2 A. If �W� ! �=K denotes the usual quotient mapping, �.U/ is an open
neighborhood of 0 in �=K. Since �=K is elementary, by Proposition 2.27 there
exists a function u 2 C1.�=K/ with supp u 	 �.U/ and u ¤ 0. Moreover, we can
re-norm this function such that kukL1.�=K/ D �.K/�1. Now we define 'WG ! C by

'.x/ D
(
u.�.x//; if x 2 �;
0; otherwise.

Then ' 2 S .K; �/ because u 2 S .�=K/, and supp' 	 U. Furthermore, by
Eq. (2.23) we have

k'kL1.�/ D k'kL1.G/ D �.K/ kukL1.�=K/ D 1:

Therefore, we obtain k f�'�fkL p.G/ < ", and it remains to check that '�f 2 S .G/.
Since supp.' � f / 	 supp' C supp f 	 U C � D � , we have ' � f .x/ D 0 for
x 2 Gn� . For x 2 � we obtain

' � f .x/ D
Z

�

u.�. y//f .x � y/ dy D
Z

�=K

Z

K
u.�. y C k//f .x � . y C k// dk dŒ y�

D
Z

�=K
u.Œ y�/F.Œx� � Œ y�/ dŒ y� D .u � F/.�.x//;

where the functionseFW� ! C and FW�=K ! C are given by

eF.z/ :D
Z

K
f .z � k/ dk

and F.Œz�/ :D eF.z/. The question arises if these functions are well defined. Indeed,
since the function .z; k/ 7! f .z � k/ is integrable on � � K, the functioneF is also
measurable and integrable by Fubini’s Theorem. Furthermore, we have

eF.z C k0/ D
Z

K
f .z C k0 � k/ dk D

Z

K
f .z � k/ dk D eF.z/

for all k0 2 K and z 2 � by translation-invariance of the Haar measure. Therefore,
F is also a well-defined, integrable function on �=K. Hence u � F is well defined,
too.

Now let z 2 � with Œz� … �.C C K/. Then z … C C K, hence z � k … C for all
k 2 K and so

F.Œz�/ D eF.z/ D
Z

K
f .z � k/ dk D 0
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since supp f 	 C. Thus we have shown that suppF is contained in �.CCK/, which
is a compact set since C C K is a compact set and � is a continuous mapping.

Because it holds u 2 S .�=K/ and F is integrable and compactly supported,
we obtain u � F 2 S .�=K/ by Proposition 2.26. Thus we have ' � f 2
S .K; �/ 	 S .G/. Consequently, we have shown that each function in Cc.G/ can
be approximated by elements of S .G/ in L p.G/ for 1 � p < 1. By density of
Cc.G/ in L p.G/, we obtain the desired result. ut

The embedding of L p.G/ into S 0.G/ is defined in the same way as in the
classical case.

Theorem 2.47 Let 1 � p � 1. The mapping f 7!  f , where  f WS .G/ ! C is
given by

 f .'/ D
Z

G
f .x/'.x/ dx; (2.24)

defines a continuous embedding L p.G/ ,! S 0.G/.

Proof Let p; p0 2 Œ1;1�, where p0 is the dual index of p, and let f 2 L p.G/. By
Theorem 2.45 we have S .G/ 	 L p0

.G/. Using Hölder’s inequality, we obtain

j f .'/j �
Z

G
j f'j � k fkL p.G/k'kL p0

.G/: (2.25)

Hence  f is well defined and also a continuous linear functional on S .G/ since the
embedding S .G/ ,! L p0

.G/ is continuous; see Theorem 2.45. Furthermore, the
linearity of f 7!  f is clear, and it remains to show the continuity and the injectivity
of this mapping. The continuity follows directly from estimate (2.25). For the proof
of the injectivity, let f ; g 2 L p.G/ with  f D  g, i.e.,

Z

G
. f � g/' D 0

for all ' 2 S .G/. Since the space S .G/ is dense in Lq.G/ for any 1 � q < 1 by
Theorem 2.46, we obtain f � g D 0 almost everywhere and hence f D g as L p.G/
functions. This finishes the proof. ut

2.4.5 The Fourier Transform

We shall now investigate the Fourier transform on S .G/ and S 0.G/. We will
see that the continuity properties, which are well known in the classical case, still
hold in our generalized setting. Consequently, by using the results of the previous
subsection, the Fourier transform of an L p function is also well defined for any
p 2 Œ1;1�.
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Throughout this subsection, let G be a locally compact abelian group, and let A
be given as in Definition 2.28. Let F denote the Fourier transform on G. For the
sake of convenience, we also use the notationbf instead of F Œ f � if the latter is well
defined.

Lemma 2.48 Let .K; �/ 2 A. Then the Fourier transform on G is a topological
isomorphismF WS .K; �/ ! S .�?;K?/.

Proof In Theorem 2.45 we have already seen that S .K; �/ is a subspace of L1.G/.
Hencebf is well defined for any f 2 S .K; �/. At first we want to show thatbf is,
in fact, an element of S .�?;K?/. We denote the canonical quotient mapping by
�W� ! �=K. By definition, there is u D uf 2 S .�=K/ such that (2.39) is valid.
We thus obtain the equality

bf .�/ D
Z

G
f .x/.�x; �/ dx D

Z

�

u.�.x//.�x; �/ dx

for all � 2 bG. On the one hand, the identity

bf .�/ D
Z

�

u.�.x//.�x; �/ dx D
Z

�

u.�.x C k//.�.x C k/; �/ dx

D .�k; �/
Z

�

u.�.x//.�x; �/ dx D .�k; �/bf .�/

for any � 2 bG and any k 2 K implies that we havebf .�/ D 0 if .k; �/ ¤ 1, i.e.,
suppbf 	 K?. On the other hand, for all x 2 �; k 2 K; � 2 K?; �0 2 �?, we have
the equality

.x C k; � C �0/ D .x; �/.x; �0/.k; �/.k; �0/ D .x; �/:

Thus the identity .Œx�; Œ��/ D .x; �/ does not depend on the chosen representatives.
Here we set Œx� :D �.x/, and Œ�� denotes the coset in K?=�? containing � .
Therefore, for all � 2 K?, a direct computation yields

bf .�/ D
Z

�

u.�.x//.�x; �/ dx D
Z

�=K

Z

K
u.�.x C k//.�x � k; �/ dk dŒx�

D
Z

�=K

Z

K
u.Œx�/.�x; �/ dk dŒx� D �.K/

Z

�=K
u.Œx�/.�Œx�; Œ��/ dŒx�

D �.K/bu.Œ��/;
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where � denotes the Haar measure on G andbu :D F�=K Œu�. In total, we obtain the
equality

bf .�/ D
(
�.K/ �bu.b�.�//; if � 2 K?;
0; otherwise,

(2.26)

whereb�WK? ! K?=�? denotes the quotient mapping. Theorem 2.24 implies that
bu is a Schwartz-Bruhat function on the dual group of �=K, i.e., on K?=�?, and
hence we havebf 2 S .�?;K?/. Furthermore, we obtain that the Fourier transform
is continuous since the convergence of a sequence . fn/ 	 S .K; �/ to a function
f 2 S .K; �/ implies that the associated sequence .un/ 	 S .�=K/ converges to
the function u chosen as above. By continuity of the Fourier transform on S .�=K/,
compare Theorem 2.24, we obtain that the sequence .bun/ converges to bu. Now
equality (2.26) implies that .bf n/ converges tobf .

With the same argument, we obtain that the mapping F�1
G possesses the same

mapping properties and is, up to a constant, the inverse mapping to F . Since we
may modify the Haar measure and thus the Fourier transform on �=K by a constant
factor, we may omit this factor, and we have proved the statement. ut

Now we can consider the Fourier transform on the Schwartz-Bruhat space on G
and use the universal property of the inductive limit, compare Proposition 2.42, in
order to obtain its continuity.

Theorem 2.49 The Fourier transform F WS .G/ ! S .bG/ is a topological
isomorphism.

Proof For any f 2 S .G/ there exists a pair .K; �/ 2 A such that f 2 S .K; �/.
By Lemma 2.48 this implies that bf 2 S .�?;K?/ 	 S .bG/. Hence F maps
S .G/ to S .bG/ and F�1 is its actual inverse. It remains to show that these two
mappings are continuous. We have already seen that F WS .K; �/ ! S .�?;K?/ is
continuous for each pair .K; �/ 2 A. Furthermore, by the definition of the topology
on S .bG/, the embedding S .�?;K?/ ,! S .bG/ is continuous. Therefore, the
Fourier transform considered as a mapping S .K; �/ ! S .bG/ is also continuous.
By the universal property of the inductive limit, see Proposition 2.42, we obtain the
continuity of F WS .G/ ! S .bG/. The same argument leads to the analogous result
for F�1WS .bG/ ! S .G/. ut

As in the classical case, we can define the Fourier transform on the space of
tempered distributions via duality.

Definition 2.50 The Fourier transform on the space of tempered distributions is
defined by

F WS 0.G/ ! S 0.bG/; hF Œ �; f i :D hb ; f i :D h ;bf i;



122 T. Eiter and M. Kyed

and the inverse Fourier transform by

F�1WS 0.bG/ ! S 0.G/; hF�1Œ �; f i :D h ;F�1Œ f �i:

Observe that these mappings are well defined since F Œ f � 2 S .G/ for all
f 2 S .bG/ and vice versa by the previous theorem (and the Pontryagin Duality
Theorem). Furthermore, we can prove the following statement, which shows that
the mapping properties of F on S 0.G/ are the same as on S .G/.

Theorem 2.51 The Fourier transform F WS 0.G/ ! S 0.bG/ is a topological
isomorphism and its inverse is given byF�1.

Proof It follows directly from the definition that F is a linear mapping on S 0.G/.
We have to verify that it is continuous. Let . ˛/ 	 S 0.G/ be a convergent net with
limit  2 S 0.G/. We obtain

lim
˛

hF Œ ˛�; f i D lim
˛

h ˛;bf i D h ;bf i D hF Œ �; f i

for each f 2 S .bG/, and thus .b ˛/ converges to b , which yields continuity. The
same is true for F�1, and we have

hF�1F Œ �; f i D h ;FF�1Œ f �i D h ; f i

for all  2 S 0.G/ and all f 2 S .G/. ut
Since we have seen in Theorem 2.47 that we can embed the space L p.G/ into

S 0.G/ continuously for any 1 � p � 1, the restriction of the Fourier transform to
L p.G/ is also a continuous mapping L p.G/ ! S 0.bG/. The question arises if this
notion of Fourier transform is consistent to the already defined Fourier transform of
a function f 2 L p.G/ for p 2 Œ1; 2�. The next proposition gives a positive answer.

Proposition 2.52 Let 1 � p � 2. Then the equality

b f D  bf (2.27)

holds for all f 2 L p.G/, where  f is defined in Eq. (2.24).

Proof At first let f 2 S .G/ and ' 2 S .bG/. We obtain

hb f ; 'i D h f ;b'i D
Z

G
fb' D

Z

bG
bf' D h bf ; 'i;

where we applied Parseval’s formula. Hence Eq. (2.27) holds for all f 2 S .G/.
By Theorem 2.46 the set S .G/ is a dense subspace of L p.G/ for 1 � p � 2, and
the embedding L p.G/ ,! S 0.G/, f 7!  f is continuous by Theorem 2.47. Thus
equality (2.27) holds for all f 2 L p.G/. ut
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2.5 Time-Periodic Linearized Navier–Stokes Equations

We now return to the investigation of the linearized time-periodic Navier–Stokes
system (2.1). In the first step we replace the time axis by the torus group T :D
R=T Z, equipped with the quotient topology, and formulate (2.1) on the locally
compact abelian group G :D T � R

n as

(
@tu ��u � �@x1u C rp D f in G;

div u D 0 in G
(2.28)

with unknowns uWG ! R
n and pWG ! R, and data f WG ! R

n. Observe that in this
formulation the periodicity condition is not needed anymore. Indeed, all functions
defined on G are intrinsically T -time-periodic. We shall investigate (2.28) in the
setting of Schwartz-Bruhat distributions S 0.G/ and a posteriori reformulate the
results in a setting of classical periodic functions.

2.5.1 Maximal Regularity

The Transference Principle can be used to establish maximal Lq regularity, that is,
to identify a function space Xq.G/ such that the differential operator on the left-
hand side of (2.28)1 maps Xq.G/ homeomorphically onto Lq.G/n. For this purpose,
we shall need to decompose the problem into two parts, which will be analyzed
separately. We therefore introduce the projections

P WS 0.G/ ! S 0.G/; P f :D F�1
G

�
ıZ FG. f /

�
; (2.29)

P?WS 0.G/ ! S 0.G/; P? f :D F�1
G

�
.1 � ıZ/ � FG. f /

�
; (2.30)

where

ıZWbG ! C; ıZ.k; 
/ :D
(
1 if k D 0;

0 if k ¤ 0;

denotes the delta distribution. It is immediately clear that P and P? are comple-
mentary projections. Moreover, for any sufficiently regular function f WG ! R one
readily verifies that

P f .t; x/ D
Z

T

f .s; x/ ds: (2.31)

Since P f is independent of time, we call it the steady-state part of f and implicitly
treat it as a function that only depends on the spatial variable x 2 R

n. We call P? f
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the purely periodic part of f . It turns out that the steady-state part and the purely
periodic part of a solution to (2.28) have different regularity properties.

We define appropriate Sobolev spaces to characterize the maximal regularity of a
solution to (2.28). For this purpose, we recall that the Lq.G/ spaces are continuously
embedded into S 0.G/ by Theorem 2.47. Hence the derivatives of an Lq function are
well defined by (2.22). For q 2 .1;1/ we let

W1;2;q.G/ :D fu 2 Lq.G/ W @tu 2 Lq.G/; D˛x u 2 Lq.G/ 8j˛j � 2g;

kukW1;2;q.G/ :D kuk1;2;q :D
�

k@tukqq C
X

j˛j�2
kD˛x ukqq

	 1
q

;

and introduce the subspace

W1;2;q
�;? .G/ :D fu 2 W1;2;q.G/n W Pu D 0; div u D 0g

of purely periodic, solenoidal W1;2;q vector fields. Moreover, put

Lq
�;?.G/ :D fu 2 Lq.G/n W Pu D 0; div u D 0g:

As in the classical Euclidean case, one can employ “Bogovskiı̆’s formula” (see for
example [6]) in combination with a mollifier argument to show that the space of
compactly supported, smooth, solenoidal vector fields

C1
c;�;?.G/ :D ˚

u 2 C1
c .G/

n W Pu D 0; div u D 0
�

is dense in Lq
�;?.G/ and in W1;2;q

�;? .G/. In the following theorem, we establish

maximal Lq regularity for purely periodic data in Lq
�;?.G/.

Theorem 2.53 Let q 2 .1;1/. For any f 2 Lq
�;?.G/ there is a unique solution

u 2 P?S 0.G/n and p D 0 to (2.28). The solution u belongs to W1;2;q
�;? .G/ and

satisfies the estimate

kuk1;2;q � CP.�; T / k fkq; (2.32)

where P.�; T / > 0 is a polynomial in � and T , and C D C.n; q/ > 0.

Proof It suffices to establish the theorem for f 2 C1
c;�;?.G/. Clearly, we then have

f 2 S .G/n. Let

MWbG ! C; M.k; 
/ :D
�
1 � ıZ.k; 
/

�

i 2�T k C j
j2 � �i
1
:
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Observe that M is bounded since the numerator vanishes in a neighborhood of the
only zero .k; 
/ D .0; 0/ of the denominator j
j2 C i. 2�T k � �
1/. In fact, we have
M 2 C1.G/ \ L1.G/. Define

u :D F�1
G

�
M.k; 
/FG. f /

�
: (2.33)

Since f D P? f , we observe that FGŒ f � D �
1 � ıZ.k; 
/

�
FGŒ f �. It follows that

@tu ��u � �@x1u D F�1
G

��
i
2�

T k C j
j2 � �i
1
�
FGŒu�

�

D F�1
G

��
1 � ıZ.k; 
/

�
FGŒ f �

�
D f :

We obtain directly from (2.33) that div u D 0 and Pu D 0. Thus, u is a solution in
P?S 0.G/n to (2.28). If v 2 P?S 0.G/n is another solution, we have

�
i
2�

T k C j
j2 � �i
1
�
FGŒu � v� D 0:

We conclude that suppFGŒu � v� 	 f.0; 0/g. However, since ıZFGŒu � v� D
FGŒP.u � v/� D 0, we have .0; 0/ … suppFGŒu � v�. Consequently, suppFGŒu �
v� D ;. It follows that FGŒu � v� D 0 and thus u D v. Therefore, u is a
unique solution in P?S 0.G/n. It remains to show (2.32), for which we shall use
the Transference Principle. Let � be a “cut-off” function with

� 2 C1
c .RIR/; �.�/ D 1 for j�j � 1

2
; �.�/ D 0 for j�j � 1: (2.34)

Define

mWR � R
n ! C; m.�; 
/ :D 1 � �. T

2�
�/

j
j2 C i.� � �
1/
: (2.35)

We can consider R � R
n as a group H with addition as group operation. Endowed

with the Euclidean topological, H becomes a locally compact abelian group. It is
well known that the dual group bH can also be identified with R � R

n equipped
with the Euclidean topology. We can thus consider m as a mapping mWbH ! C. In
order to employ Theorem 2.15, we define ˆWbG ! bH, ˆ.k; 
/ :D . 2�T k; 
/. Clearly,
ˆ is a continuous homomorphism. Moreover, M D m ı ˆ. Consequently, if we
can show that m is a continuous Lq.R � R

n/ multiplier, we may conclude from
Theorem 2.15 that M is an Lq.G/ multiplier. We first observe that the only zero of
the denominator j
j2 C i.� � �
1/ in definition (2.35) of m is .�; 
/ D .0; 0/. Since
the numerator 1��� T

2�
�
�

in (2.35) vanishes in a neighborhood of .0; 0/, we see that
m is continuous; in fact m is smooth. We shall now apply Marcinkiewicz’s multiplier
theorem, see for example [8, Corollary 5.2.5] or [24, Chap. IV, §6], to show that m
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is an Lq.R � R
n/-multiplier. Note that Marcinkiewicz’s multiplier theorem can be

employed at this point since m is a Fourier multiplier in the EuclideanR�R
n setting.

To employ Marcinkiewicz’s multiplier theorem, we must verify that

sup
"2f0;1gnC1

sup
.�;
/2R�Rn

ˇ̌


"1
1 � � � 
"nn �"nC1@

"1
1 � � � @"nn @"nC1

� m.�; 
/
ˇ̌ � c0 (2.36)

for some constant c0 > 0. Since m is smooth, (2.36) follows if we can show that all
functions of type

.�; 
/ ! 

"1
1 � � � 
"nn �"nC1@

"1
1 � � � @"nn @"nC1

� m.�; 
/

stay bounded for j.�; 
/j ! 1. Because m is a rational function with nonva-
nishing denominator away from .0; 0/, this is easy to verify. Consequently, we
conclude (2.36). If we analyze the bound on the functions more carefully, we find
that c0 can be chosen such that c0 D P1.�; T / with P1.�; T / a polynomial in � and
T . By Marcinkiewicz’s multiplier theorem, see for example [8, Corollary 5.2.5] or
[24, Chap. IV, §6], m is an Lq.R� R

n/-multiplier. We now recall Theorem 2.15 and
conclude that M D m ıˆ is an Lq.G/-multiplier. Since u D F�1

G

�
M.k; 
/FG. f /

�
,

we thus obtain

kukq � c1 P1.�; T / k fkq; (2.37)

with c1 D c1.q; n/. Differentiating u in the equation u D F�1
G

�
M.k; 
/FG. f /

�
with

respect to time and space, we further obtain the identities

@tu D F�1
G

�
.i
2�

T k/M.k; 
/FG. f /

�

and

D˛x u D F�1
G

�
.i
/˛ M.k; 
/FG. f /

�
;

respectively. We can now repeat the argument above with .i 2�T k/M.k; 
/ in the role
of the multiplier M and .i 2�T �/m.�; 
/ in the role of m in order to conclude

k@tukq � c2 P2.�; T / k fkq; (2.38)

with c2 D c2.q; n/. Similarly, for j˛j � 2 we repeat the argument above with
.i
/˛M.k; 
/ in the role of M and .i
/˛m.�; 
/ in the role of m in order to obtain

kD˛x ukq � c3 P3.�; T / k fkq: (2.39)
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Collecting (2.37)–(2.39), we thus conclude u 2 W1;2;q
�;? .G/ with

kuk1;2;q � c4 P4.�; T /k fkq; (2.40)

where c4 D c4.q; n/. ut
Next, we consider data f in the subspace

Lq
�.G/ :D fu 2 Lq.G/n W div u D 0g:

of solenoidal Lq.G/n vector fields. It is easy to verify that P is a continuous
projection P W Lq

�.G/ ! Lq
� .G/. Since P f is time-independent, we can identify

PLq
�.G/ with Lq

� .R
n/. Consequently, P induces the decomposition

Lq
�.G/ D Lq

� .R
n/˚ Lq

�;?.G/: (2.41)

We can therefore combine the maximal regularity obtained in Theorem 2.53 for
data in Lq

�;?.G/ with a similar result for data in Lq
� .R

n/ to obtain maximal regularity
for data in Lq

� .G/. For data in Lq
� .R

n/, however, the system (2.28) reduces to the
steady-state Stokes (� D 0) or Oseen (� ¤ 0) system

( ��u � �@x1u C rp D f in R
n;

div u D 0 in R
n:

(2.42)

In order to characterize the space of maximal Lq regularity, we have to distinguish
between � D 0 and � ¤ 0. Moreover, the case n D 2 has to be treated separately.
For n � 3, � D 0, q 2 .1; n

2
/ put

Xq
�;Stokes.R

n/ :D ˚
v 2 L1loc.R

n/n W div v D 0; kvkq;Stokes < 1�
;

kvkq;Stokes :D kvk nq
n�2q

C krvk nq
n�q

C kr2vkq:

For n � 3, � ¤ 0, q 2 .1; nC1
2
/ put

Xq
�;Oseen.R

n/ :D ˚
v 2 L1loc.R

n/n W div v D 0; kvkq;�;Oseen < 1�
;

kvkq;�;Oseen :D j�j 2
nC1 kvk .nC1/q

nC1�2q
C j�j 1

nC1 krvk .nC1/q
nC1�q

C j�jk@1vkq C kr2vkq:

For n D 2, � ¤ 0, q 2 .1; 3
2
/ put

Xq
�;Oseen2D.R

2/ :D ˚
v 2 L1loc.R

2/2 W div v D 0; kvkq;�;Oseen2D < 1�
;

kvkq;�;Oseen2D :D j�j 23 kvk 3q
3�2q

C j�j 13 krvk 3q
3�q

C j�jk@1vkq C kr2vkq
C j�jkrv2kq C j�jkv2k 2q

2�q
:
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The two-dimensional Stokes problem, that is, the case n D 2, � D 0, is not well
posed in Lq

� .R
n/ for any q 2 .1;1/ in the sense that the kernel of operator on the

left-hand side in (2.42) is non-trivial; see [6, Lemma V.4.4]. This phenomenon is
also known as the Stokes Paradox. We shall not consider this case here. Recall the
following well-known result:

Theorem 2.54 Let

Xq
s .R

n/ :D Xq
�;Stokes.R

n/ if n � 3; � D 0; q 2
�
1;

n

2

	
; (2.43)

Xq
s .R

n/ :D Xq
�;Oseen.R

n/ if n � 3; � ¤ 0; q 2
�
1;

n C 1

2

	
; (2.44)

Xq
s .R

n/ :D Xq
�;Oseen2D.R

2/ if n D 2; � ¤ 0; q 2
�
1;
3

2

	
: (2.45)

For any f 2 Lq
� .R

n/ there is a unique solution u 2 Xq
s .R

n/ and p D 0 to (2.42). This
solution satisfies

kukXq
s .Rn/ � Ck fkq; (2.46)

where C D C.n; q/ > 0.

Proof See [6, Theorem IV.2.1] and [6, Theorem VII.4.1]. ut
In order to consider data f 2 Lq.G/n that are not necessarily divergence-free, we

introduce what is sometimes referred to as the Helmholtz projection:

PHWS .G/n ! S 0.G/n; PHf :D F�1
G

��
I � 
 ˝ 


j
j2
	
bf
�
:

Lemma 2.55 Let q 2 .1;1/. Then PH extends uniquely to a continuous projection
PHW Lq.G/n ! Lq.G/n. Moreover, PHLq.G/n D Lq

�.G/.

Proof Clearly,

F�1
G

��
I � 
 ˝ 


j
j2
	
bf
�

D F�1
Rn

��
I � 
 ˝ 


j
j2
	
FRn

�
f
��
:

The classical Helmholtz projection on Lq.Rn/n, which one recognizes on the right-
hand side, can be written as a sum of Riesz operators and is therefore bounded on
Lq.Rn/n. It follows directly that PH is also bounded on Lq.G/n. One readily verifies
that PH is a projection, and that divPHf D 0. Consequently, PHLq.G/n 	 Lq

� .G/
follows. On the other hand, since div f D 0 implies 
jbf j D 0, we have PHf D f for
all f 2 Lq

� .G/. Hence we conclude PHLq.G/n D Lq
� .G/. ut
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Since PH W Lq.G/n ! Lq.G/n is a continuous projection, it decomposes Lq.G/
into a direct sum

Lq.G/ D Lq
� .G/˚ G q.G/ (2.47)

of closed subspaces with

G q.G/ :D �
Id �PH

�
Lq.G/n: (2.48)

Theorem 2.56 Let q 2 .1; n/. Put

Xq
p.G/ :D fp 2 S 0.G/\ L1loc.G/ W kpkXq

p
< 1g;

kpkX
q
p

:D
�Z

T

kp.t; �/kqnq
n�q

dt C krpkqq
	1=q

:
(2.49)

Then

gradW Xq
p.G/ ! G q.G/; grad p :D rp (2.50)

is a homeomorphism. Moreover, kgrad�1k depends only on n and q.

Proof Clearly, grad is bounded. Consider p 2 ker grad. Then rp D 0 and it thus
follows that p.t; x/ D c.t/. Since kpkXq

p
< 1, we must have p D 0. Consequently,

grad is injective. To show that grad is onto, we consider the mapping

IWS .G/n ! S 0.G/; I. f / :D F�1
Rn

� nX

jD1


j

j
j2 FRn

�
fj
��
:

Observe that

rI. f / D �
Id �PH

�
f : (2.51)

Since I can be expressed as a Riesz potential composed with a sum of Riesz
operators, well-known properties of the Riesz potential (see for example [9,
Theorem 6.1.3]) and the Riesz operators (see for example [8, Corollary 4.2.8]) yield

1

T

Z T

0

kI. f /.t; �/kqnq
n�q

dt � c1
1

T

Z T

0

k f .t; �/kqq dt D c1 k fkqq (2.52)

with c1 D c1.n; q/. In combination with (2.51), (2.52) implies kI. f /kXq
p

� c2 k fkq.

By a density argument, we can extend I uniquely to a bounded map IW Lq.G/n !
Xq

p.G/ that satisfies (2.51) for all f 2 Lq.G/n. We can now show that grad is onto.
If namely f 2 G q.G/, then rI. f / D f . We conclude by the open mapping theorem
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that grad is a homeomorphism. In fact, the inverse is given by I, whence by (2.52)
kgrad�1k depends only on n and q. ut

We can finally combine Theorems 2.53, 2.54 and 2.56 to identify the function
spaces of maximal Lq regularity for (2.28).

Theorem 2.57 Let Xq
s .R

n/ be as in Theorem 2.54. For every f 2 Lq.G/n there is a
unique solution

.u; p/ D .v ˚ w; p/ 2
�

Xq
s .R

n/˚ W1;2;q
�;?

�
G
�	 � Xq

p

�
G
�

to (2.28). Moreover,

kvkXq
s

C kwk1;2;q C kpkXq
p

� C k fkq;

where C D C.�; T ; n; q/ > 0.

Proof Utilizing the decompositions (2.41) and (2.47) induced by P and PH ,
respectively, we deduce the statements directly from Theorems 2.53, 2.54 and 2.56.

ut
At this point we can abandon the abstract formalism and reformulate Theo-

rem 2.57 in a setting of classical Sobolev spaces of time-periodic functions. Let

C1
per.R � R

n/ :D ˚
u 2 C1.R � R

n/ W 8t 2 RW u.�; t C T / D u.�; t/�;
C1

c;per.R � R
n/ :D ˚

u 2 C1
per.R � R

n/ W u 2 C1
c .Œ0; T � � R

n/
�
:

By construction, the canonical quotient mapping �WR � R
n ! T � R

n induces, by
lifting, a homeomorphism between C1.G/ and C1

per.R � R
n/ as well as between

C1
c .G/ and C1

c;per.R � R
n/. Analogously to (2.31), we introduce the projection

P W C1
c;per.R � R

n/ ! C1
c;per.R � R

n/; P f .t; x/ D 1

T

Z T

0

f .s; x/ ds (2.53)

and observe that lifting by � also furnishes a homeomorphism between C1
c;�;?.G/

and the space

C1
c;per;?.R � R

n/ :D ˚
u 2 C1

c;per.R � R
n/n W div u D 0; Pu D 0

�
:

Consequently, W1;2;q
�;? .G/ and

W1;2;q
per;�;?.R � R

n/ :D C1
c;per;?.R � Rn/

k�k1;2;q
;

kuk1;2;q :D
�
1

T

Z T

0

Z

Rn
j@tujq C

X

j˛j�2
jD˛x ujq dxdt

	 1
q
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are homeomorphic via � by density. Similarly, Lq.G/ and

Lq
per.R � R

n/ :D C1
c;per.R � Rn/

k�kq
; kukq :D

�
1

T

Z T

0

Z

Rn
jujq dxdt

	 1
q

as well as Xq
p
�
G
�

and

Xq
p;per

�
R � R

n
�

:D fp 2 L1loc

�
R � R

n
� W kpkXq

p
< 1g;

kpkX
q
p

:D
�
1

T

Z T

0

kp.�; t/kqnq
n�q

C krp.�; t/kqq dt

	1=q

are homeomorphic via � . By construction of the differentiable structure on G, a
pair .u; p/ is a solution to (2.28) with data f if and only if .u ı �; p ı �/ is a solution
to (2.1) with data f ı� . Consequently, we can reformulate Theorem 2.57 as follows:

Theorem 2.58 Let Xq
s .R

n/ be as in Theorem 2.54. For every f 2 Lq
per.R � R

n/n

there is a unique solution

.u; p/ D .v ˚ w; p/ 2
�

Xq
s .R

n/˚ W1;2;q
per;�;?

�
R � R

n
�	 � Xq

p;per

�
R � R

n
�

to (2.1). Moreover,

kvkXq
s

C kwk1;2;q C kpkXq
p

� C k fkq;

where C D C.�; T ; n; q/ > 0.

2.5.2 Fundamental Solutions

In order to define a fundamental solution to (2.1), we employ the approach from
[15] and [5] and again consider the reformulation (2.28). In the setting of tempered
distributions S 0.G/, we can then define a fundamental solution F to (2.1) as a
tensor-field

F :D

0

BBB@

�TP
11 : : : �

TP
1n

:::
: : :

:::

�TP
n1 : : : �

TP
nn

� TP
1 : : : � TP

n

1

CCCA 2 S 0.G/.nC1/�n (2.54)



132 T. Eiter and M. Kyed

that satisfies1

(
@t�

TP
ij ���TP

ij � �@x1�
TP
ij C @i�

TP
j D ıijıG;

@i�
TP
ij D 0

(2.55)

in the sense of S 0.G/-distributions. Here, ıij and ıG denote the Kronecker delta and
delta distribution, respectively. A solution to the time-periodic system (2.1) is then
given by

�
u
p

	
:D F � f ; (2.56)

where the component-wise convolution is taken over the group G.
Similarly to the previous subsection, we split the fundamental solution into

a steady-state and a purely periodic part. More precisely, we shall identify a
fundamental solution F to (2.1) as the sum of a fundamental solution to the
corresponding steady-state system

( ���ij � �@x1�ij C @i�j D ıijıRn ;

@i�ij D 0;
(2.57)

and a second purely periodic part. Recall that in the Stokes case (� D 0) a
fundamental solution to (2.57) is given by (see for example [6, IV.2])

�S
ij.x/ :D

8
ˆ̂̂
<

ˆ̂̂
:

1

2!n

�
ıij log

�jxj�1�C xixj

jxj2
	

if n D 2;

1

2!n

�
ıij

1

n � 2 jxj2�n C xixj
jxjn

	
if n � 3:

(2.58)

In the Oseen case (� ¤ 0), a fundamental solution to (2.57) is given by (see for
example [6, VII.3])

�O
ij.x/ :D 1

�

�
ıij� � @xi@xj

� Z x1

0

Œ�L. y1; x2; : : : ; xn/�‰. y1; : : : ; xn/� dy1;

(2.59)

where

�L.x/ :D

8
ˆ̂<

ˆ̂:

� 1

2�
log jxj if n D 2;

1

.n � 2/!n
jxj2�n if n > 2;

1We make use of the Einstein summation convention and implicitly sum over all repeated indices.
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is the fundamental solution to the Laplace equation��L D ıRn in R
n and

‰.x/ :D � 1

2�

�
�

4�jxj
	 n�2

2

Kn�2
2

�
�

2
jxj
	

e� �
2 x1 :

Here K ,  2 C, denotes the modified Bessel function of the second kind. In both
the Stokes and Oseen case the pressure term in the fundamental solution is given by

�i.x/ :D 1

!n

xi
jxjn : (2.60)

In order to identify the second part of F, that is, the purely periodic part, we utilize
the Fourier transform FG on the group G. Similarly to the previous subsection, the
fact that FGWS 0.G/ ! S 0.bG/ is a homeomorphism allows us to express the purely
periodic part in terms of a Fourier multiplier defined on the dual groupbG D Z�R

n.
This representation enables us to establish integrability properties and pointwise
decay estimates.

Theorem 2.59 Let n � 2 and � 2 R. Put

� :D
(
�S if � D 0 (Stokes case);

�O if � ¤ 0 (Oseen case):

Then the elements ofS 0.G/ given by

�TP :D � ˝ 1T C �?; (2.61)

� TP :D � ˝ ıT; (2.62)

with

�? :D F�1
G

�
1 � ıZ.k/

j
j2 C i. 2�T k � �
1/
�
I � 
 ˝ 


j
j2
	�

2 S 0.G/n�n (2.63)

define a fundamental solution F 2 S 0.G/.nC1/�n to (2.55) of the form (2.54)
satisfying

8q 2
�
1;

n C 2

n

	
W �? 2 Lq.G/n�n; (2.64)

8q 2
�
1;

n C 2

n C 1

	
W @j�

? 2 Lq.G/n�n . j D 1; : : : ; n/; (2.65)
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8˛ 2 N
n
0 8r 2 Œ1;1/ 8" > 0 9C > 0 8jxj � " W kD˛x�?.�; x/kLr.T/

� C

jxjnCj˛j ;

(2.66)

8q 2 .1;1/ 9C > 0 8f 2 S .G/n W k�? � fkW1;2;q.G/ � C kfkLq.G/; (2.67)

where ıT 2 S 0.T/ denotes the delta distribution and 1T 2 S 0.T/ the constant 1
distribution.

Remark 2.60 Consider data f 2 Cc.G/
n. The integrability of �? obtained in (2.64)

implies, in combination with well-known integrability properties of the steady-state
fundamental solutions (2.58) and (2.59), that the solution u to (2.1) given by the
convolution (2.56) can be written in terms of classical integrals as

ui.t; x/ D �
� ˝ 1T

�
ij � fj.t; x/C �?

ij � fj.t; x/

D
Z

Rn
�ij.x � y/

Z

T

fj.s; y/ ds dy C
Z

G
�?
ij .t � s; x � y/fj.s; y/ d.s; y/

D: usi .x/C upi .t; x/

for i D 1; : : : ; n. Observe that us is a solution to a steady-state Stokes (� D 0)
or Oseen (� ¤ 0) problem. Consequently, the pointwise asymptotic structure at
spatial infinity of us is well known; see for example [6, Theorems V.3.2 and VII.6.2].
From (2.64) and (2.66) it follows that up.t; x/ D O.jxj�n/, which means that the
decay rate of up.t; x/ as jxj ! 1 is actually faster than the decay rate of the leading
term in the asymptotic expansion of us.x/. In other words, the leading term in an
asymptotic expansion of u coincides with the (known) leading term in the expansion
of us. This direct consequence of Theorem 2.59 is by no means trivial.

Proof of Theorem 2.59 In the proof of Theorem 2.53 we have already seen that the
function

MWbG ! C; M.k; 
/ :D 1 � ıZ.k/

j
j2 C i
�
2�
T k � �
1

� (2.68)

is an element of L1.G/. Thus (2.63) is a well-defined object in S 0.G/n�n. Since it
holds FRn Œ�� D �i 


j
j2 , we obtain

FGŒr� TP� D FRn Œr��˝ FTŒıT� D 
 ˝ 


j
j2 � 1Z:

Because we also have
�j
j2 � i�
1

� � FRn Œ�� D �
I � 
˝


j
j2
�
, we further deduce

�
j
j2 C i

�2�
T k � �
1

�	 � FGŒ� ˝ 1T� D
�
I � 
 ˝ 


j
j2
	
ıZ.k/;
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which finally leads us to

�
j
j2 C i

�2�
T k � �
1

�	 � FGŒ�
TP�C FGŒr� TP� D I:

Applying the inverse Fourier transformation to this equality, we conclude that
.�TP; � TP/ is, in fact, a fundamental solution to (2.55) since clearly div� D
div�? D 0.

For the proof of (2.66) we refer to [5]. We proceed with the derivation of (2.64).
Equation (2.63) leads to the representation

�?
jl D �

ıjl
�
RhRh

�� RjRl
� ı F�1

G

�
M0 � FG

�
F�1

G .K/
��
;

where Rj, j 2 f1; : : : ; ng, denotes the Riesz transformation

RjWS .G/ ! S 0.G/; Rj. f / :D F�1
Rn

�

j

j
jFRn. f /

�

and M0 and K are given by

M0WbG ! C; M0.k; 
/ :D
�
1 � ıZ.k/

�jkj 2
nC2
�
1C j
j2� n

nC2

j
j2 C i
�
2�
T k � �
1

�

and

KWbG ! C; K.k; 
/ :D �
1 � ıZ.k/

�jkj� 2
nC2
�
1C j
j2�� n

nC2 ;

respectively. It is well known that the Riesz operator Rj extends to a bounded linear
operator Lq.G/ ! Lq.G/ for all q 2 .1;1/; see for example [8, Corollary 4.2.8]. In
order to obtain that M0 is an Lq.G/ multiplier, we adapt the method from the proof
of Theorem 2.53. We again consider the locally compact abelian group H :D R�R

n

with dual group bH D R�R
n, and we introduce a “cut-off” function � 2 C1

c .RIR/
as in (2.34) and define

m0WR � R
n ! C; m0.�; 
/ :D �.�/j�j 2

nC2
�
1C j
j2� n

nC2

j
j2 C i
�
2�
T � � �
1

� :

Moreover, we define the natural homomorphism ˆWbG ! bH, ˆ.k; 
/ :D .k; 
/.
Observe that m0 is a continuous and bounded function since the numerator vanishes
in a neighborhood of 0, which is the only zero of the denominator. With the help
of Marcinkiewicz’s Multiplier Theorem (see for instance [8, Corollary 5.2.5]), one
readily verifies that m0 is an Lq.bH/ multiplier for all q 2 .1;1/. Additionally, we
haveM0 D m0ıˆ. Thus an application of the Transference Principle, Theorem 2.15,
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implies that M0 is an Lq.G/ multiplier for all q 2 .1;1/. Hence we obtain (2.63) if
we can show F�1

G .K/ 2 Lr.G/. If we identify T with the interval .� 1
2
T ; 1

2
T �, we

obtain

F�1
T

��
1 � ıZ.k/

�jkj� 2
nC2

�
.t/ D c0jtj� n

nC2 C h.t/

for some function h 2 C1.R=T Z/; see for instance [8, Example 3.1.19]. Further-
more, one can derive the estimate

ˇ̌
ˇF�1

Rn

��
1C j
j2�� n

nC2

�
.x/
ˇ̌
ˇ � c1

�
jxj� n2

nC2 �B2 .x/C e� jxj
2

	
I

see for example [9, Proposition 6.1.5]. Therefore, we conclude

F�1
G .K/ D F�1

T

��
1 � ıZ.k/

�jkj� 2
nC2

�
˝ F�1

Rn

��
1C j
j2�� n

nC2

�
2 Lr.G/

for all r 2 �1; nC2
n

�
, and we have verified (2.64). In order to show (2.65), we proceed

in a similar way. We consider the identity

@m�
?
jl D �

ıjl
�
RhRh

� � RjRl
� ı F�1

G

�
Mm � FG

�
F�1

G .J /
��
;

where

MmWbG ! C; Mm.k; 
/ :D
�
1 � ıZ.k/

�jkj 1
nC2
�
1C j
j2� n

2.nC2/ i
m

j
j2 C i
�
2�
T k � �
1

�

and

J WbG ! C; J .k; 
/ :D �
1 � ıZ.k/

�jkj� 1
nC2
�
1C j
j2�� n

2.nC2/ :

With the same arguments as above, we conclude @m�? 2 Lr.G/ for all r 2 �1; nC2
nC1

�
.

In particular, this yields @m�? 2 L1loc.G/, which finally leads to @m�? 2 L1.G/ by
the asymptotic behavior from (2.66). Consequently, we have also shown (2.65).

The convolution �? � f can be expressed in terms of a Fourier multiplier

�? � f D F�1
G

�
M.k; 
/

�
I � 
 ˝ 


j
j2
	
FGŒ f �

�
;

with M given by (2.68). In the same way as in the proof of Theorem 2.53, one readily
verifies that the function M 2 L1.bG/ as well as the functions .k; 
/ 7! .i
/˛M.k; 
/
for j˛j � 2 and .k; 
/ 7! ik M.k; 
/ are Lq.G/ multipliers for all q 2 .1;1/. This
directly yields (2.67) and finishes the proof. ut
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Chapter 3
Motion of a Particle Immersed in a Two
Dimensional Incompressible Perfect Fluid
and Point Vortex Dynamics

F. Sueur

Abstract In these notes, we expose some recent works by the author in collabo-
ration with Olivier Glass, Christophe Lacave and Alexandre Munnier, establishing
point vortex dynamics as zero-radius limits of motions of a rigid body immersed in
a two dimensional incompressible perfect fluid in several inertia regimes.

Keywords 2D incompressible perfect fluid • Motion of an immersed rigid body •
Point vortex dynamics • Zero-radius limit

MSC2010: 35Q31, 35Q35, 35Q70, 76D99, 34E05, 34E15, 70E99

3.1 Introduction

The rigid body is assumed to be only accelerated by the force exerted by the fluid
pressure on its boundary according to the Newton equations, the fluid velocity and
pressure being given by the incompressible Euler equations. The equations at stake
then read:

@u

@t
C .u � r/u C r� D 0 and div u D 0; (3.1)

mh00.t/ D
Z

@S.t/
�n ds and J r0.t/ D

Z

@S.t/
.x � h.t//? � �n ds: (3.2)
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Here

• u D .u1; u2/ and � respectively denote the velocity and pressure fields (the fluid
is supposed to be homogeneous, of density 1 in order to simplify the notations),

• m > 0 and J > 0 denote respectively the mass and the momentum of inertia of
the body,

• h0.t/ is the velocity of the center of mass h.t/ of the body and r.t/ is the angular
velocity. The body rigidly moves so that at times t it occupies a domain S.t/
which is isometric to its initial position S0 which is supposed to be a simply
connected smooth compact subset of R2. Indeed, there exists a rotation matrix

R.�.t// WD
�

cos �.t/ � sin �.t/
sin �.t/ cos �.t/

	
(3.3)

such that

S.t/ D fh.t/C R.�.t//x; x 2 S0g:

Furthermore, the angle satisfies � 0.t/ D r.t/:
• when x D .x1; x2/ the notation x? stands for x? D .�x2; x1/,
• n denotes the unit normal vector pointing outside the fluid domain, which of

course depends on the solid position.

We assume that the boundary of the solid is impermeable so that the fluid cannot
penetrate into the solid and we assume that there is no cavitation as well. The natural
boundary condition at the fluid-solid interface is therefore

u � n D
�
h0.t/C r.t/.x � h.t//?


� n for x 2 @S.t/: (3.4)

Let us emphasize that this condition extends the usual condition u � n D 0 on
a fixed boundary and involves only the normal part of the fluid velocity. As usual
with perfect fluids no pointwise boundary condition needs to be prescribed for the
tangential part of the fluid velocity. However because the domain occupied by the
solid is a hole in the fluid domain there is a global condition on the tangential part
of the fluid velocity involving the circulation � defined as

� D
Z

@S0
u � 	 ds

where u is the fluid velocity and 	 the unit counterclockwise tangential vector
so that n D 	?. Indeed when considering a fluid velocity u which has a good
enough regularity, what we will always do in these notes, the so-called Kelvin’s
theorem applies and � is preserved over time. The circulation somehow encodes
the amount of vorticity hidden in the particle from the fluid viewpoint. Indeed by
Green Theorem the circulation can be recast as the integral over S0 of the vorticity
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curl u D @1u2 � @2u1 of any smooth vector field u in S0 such that u � 	 D u � 	 on
@S0. Therefore the limit where the body radius converges to zero corresponds to a
singular perturbation problem (in space) for the fluid velocity when this latter has to
accommodate with a condition of non-vanishing � around a shrinking solid. Indeed
it is well understood since the works [15] and [22] that for a solid obstacle held fixed
in a perfect incompressible fluid, with a nonzero given circulation and with possibly
nonzero vorticity in the fluid, in the limit where the obstacle shrinks into a fixed
pointwise particle, the Euler equation driving the fluid evolution has to be modified:
in the Biot-Savart law providing the fluid velocity generated by the fluid vorticity, a
Dirac mass at the fixed position of the pointwise obstacle with an amplitude equal to
the circulation has to be added to the fluid vorticity. We will refer to the background
fluid velocity in the sequel and we will denote it by ubd. The genuine fluid vorticity
! (that is without the Dirac mass) is convected by the background fluid velocity ubd.
In the case of a moving body one may wonder if the divergence of the fluid velocity
has to be modified in the zero-radius limit as well in order to accommodate with the
non-homogeneous condition (3.4). In the sequel we will consider some cases where
the solid radius " shrinks to 0 with .h0; "� 0/ bounded so that the limit fluid velocity
is divergence free including in the region where the solid has disappeared.1 Still
the analysis of the dynamics of immersed rigid particles requires a more precise
analysis, in particular because it is driven by the fluid pressure, a quantity which
depends in a non linear and non local way on the fluid velocity. Hence to understand
the limit dynamics one has to precisely evaluate the pressure field on the boundary
of the solid, that is, where the singularity is concentrated.

One main goal of this line of research is prove another derivation of the point
vortex dynamics as motions of immersed particles. In particular we will consider,
in some appropriate settings, the limit of the dynamics of an immersed rigid body
when its size and its mass go to zero and recover the equation of a point vortex.
Let us recall that the point vortex system is a classical model which goes back to
Helmholtz [12], Kirchhoff [16], Poincaré [26], Routh [27], Kelvin [30], and Lin
[20, 21]. In these works it was thought as an idealized fluid model where the vorticity
of an ideal incompressible two-dimensional fluid is discrete. Although it does not
constitute a solution of the incompressible Euler equations, even in the sense of
distributions, point vortices can be viewed as Dirac masses obtained as limits of
concentrated smooth vortices which evolve according to the Euler equations. In
particular in the case of a single vortex moving in a bounded and simply-connected
domain this was proved by Turkington in [31] and an extension to the case of several
vortices, including in the case where there is also a part of the vorticity which is

1Let us observe that since
Z

@S.t/

�
h0.t/C r.t/.x � h.t//?


� n ds D 0;

see (3.25) below, should the behaviour of the solid velocity with " be worse the resulting singularity
would be rather a dipole than a Dirac mass.
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absolutely continuous with respect to Lebesgue measure (the so-called wave-vortex
system), was given by Marchioro and Pulvirenti, see [23]. Let us also mention that
Gallay has recently proven in [3] that the point vortex system can also be obtained as
vanishing viscosity limits of concentrated smooth vortices evolving according to the
incompressible Navier-Stokes equations. Our main goal is to prove that this classical
point vortex motion can also be viewed as the limit of the dynamics of a solid,
shrinking into a pointwise massless particle with fixed circulation, in free motion.
Indeed, our analysis also covers the case where the mass is kept fixed positive in the
limit, one then obtains a second-order ordinary differential equation for the particle’s
position, that we will refer to as a “massive” point vortex system.

Let us precise more the two kinds of inertia regimes we are going to consider in
the small radius limit with the following definitions.

Definition 3.1 (Massive and Massless Particles) We define

• a massive particle as the limit of a rigid body when its radius " goes to 0 with
its mass m" and its momentum of inertia J " respectively satisfying m" D m and
J " D "2J ;

• a massless particle as the limit of a rigid body when its radius " goes to 0 with its
mass m" and its momentum of inertia J " respectively satisfying m" D "˛ m and
J " D "˛C2 J ,

where ˛ > 0, m > 0 and J > 0 are fixed independent of ".
Five remarks are in order:

• it is understood that we consider a self-similar shrinking of the rigid body into its
center of mass. Choosing the origin 0 of the frame as the center of mass of S0 it
means that we will as initial domain, for every " 2 .0; 1�,

S"0 WD "S0; (3.5)

• one observes, of course, that the case of a massive particle corresponds to the
limit case ˛ D 0,

• the scaling of momentum of inertia J " may look surprising at first sight, but it is
quite natural since it corresponds to a second order moment whereas the mass is
a zeroth order moment of the body’s density,

• it is understood that the circulation �" around the body satisfies �" D � , where
� is fixed. The amount of circulation is therefore supposed to be independent of
the size of the body in our problem. Moreover we assume that � ¤ 0 in the case
of a massless particle.

• the case where S0 is a homogeneous disk is the most simple whereas the case
where S0 is a non-homogeneous disk involves some adapted tools in particular in
order to deal with the case where ˛ � 2. We refer to [11] for a detailed treatment
of these cases and we will consider only here the case where S0 is not a disk.

Let us have a deeper look at Newton’s equations (3.2) and anticipate that in
the case of a massless particle the prefactor m and J in front of the second-order
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time derivative converge to zero in the zero radius limit so that one faces a singular
perturbation problem in time of a non linear dynamics. We will make use of geodesic
and gyroscopic features of the system in order to overcome this difficulty. Let us
mention from now on that the use of the geodesic structure is more subtle that one
may expect at first glance. Indeed the full system “fluid + rigid body” is conservative
and enjoy a geodesic structure as a whole in the sense that if on a time interval .0;T/
the initial and final configurations are prescribed, then the PDE’s system “fluid +
rigid body” is satisfied on .0;T/ if and only if the couple of flow maps associated
with the fluid and solid velocities is a critical point of the action obtained by time
integration of the total kinetic energy, cf. [4]. This gives some credit to the belief
that the energy conservation drives the dynamics of the system, still some important
transfers of energy from one phase to another may occur and this lead to a lack
of bound of the solid velocity in the case of a light body. Since the fluid velocity
corresponding to a point vortex is not square integrable a renormalization of the
energy is necessary in the zero radius limit. Indeed one main feature of the point
vortex equation is that the self-induced velocity of the vortex is discarded, or more
precisely the self-induced velocity as if the point vortex was alone in the plane.
Let us therefore introduce KR2 Œ�� the Biot-Savart law in the full plane that is the
operator which maps any reasonable scalar function ! to the unique vector field
KR2 Œ!� vanishing at infinity and satisfying divKR2 Œ!� D 0 and curlKR2 Œ!� D ! in
R
2, which is given by the convolution formula

KR2 Œ!� WD 1

2�

Z

R2

.x � y/?

jx � yj2 !.t; y/ dy: (3.6)

We believe that the following statement is true in a very general setting.

Conjecture (C) A massive particle immersed in a two dimensional incompressible
perfect fluid moves according to Newton’s law with a gyroscopic force orthogonally
proportional to its relative velocity and proportional to the circulation around the
body. A massless particle immersed in a two dimensional incompressible perfect
fluid with non-vanishing circulation moves as a point vortex, its vortex strength
being given by the circulation. More precisely, the position h.t/ of a massive
(respectively massless) particle satisfies the equation

mh00 D �
�
h0 � ud.h/

�?
(resp. h0 D ud.h//; (3.7)

with2 ud.h/ D �
ubd �KR2 Œ�ıh�

�
.h/ where ubd denotes the background fluid velocity

hinted above. On the other hand the genuine fluid vorticity ! is convected by the
background fluid velocity ubd.

2The index “d” of ud can be either interpreted as drift or desingularized as it is obtained from ubd

by removing its orthoradial singular part in h.
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Let us mention that in [2, Chap. 3] Friedrichs already evoked a similar conjecture
with a massive point vortex system in the case of two point vortices in the whole
plane under the terminology of bound vortices (as opposed to free vortices). The
gyroscopic force appearing in the right hand side of the first equation in (3.7) is a
generalisation of the Kutta-Joukowski lift force which attracted a huge interest at
the beginning of the twentieth century during the first mathematical investigations
in aeronautics, and which will be recalled in Sect. 3.2.

Observe that the conjecture above does not mention any sensitivity to the body’s
shape. Indeed it is expected that a more accurate description of the asymptotic
behaviour thanks to a multi-scale asymptotic expansion of the body’s dynamics in
the limit " ! 0 will reveal an influence of the body’s shape on some corrector terms
which appears as subprincipal in the limit " ! 0 for coarse topologies.

Indeed this conjecture has already been proved in a few cases and this is precisely
the goal of these notes to give an account of these results.

• In Sect. 3.2, we will start with a review of the case, well-known since more than
one century, of the motion of one single rigid body immersed in an irrotational
fluid filling the rest of the plane. In this setting the equations at stake are the
incompressible Euler equations (3.13) on the fluid domain F.t/ WD R

2 n S.t/,
the Newton equations (3.14), the interface condition (3.4) and the following
condition of decay at infinity: limjxj!1 ju.t; x/j D 0. Regarding the initial
conditions we observe that there is no loss of generality in assuming that the
center of mass (respectively rotation angle) of the solid coincides at the initial
time with the origin .0; 0/ (resp. 0) and we therefore prescribe some initial
position and velocity of the solid of the form .h; h0; �; � 0/.0/ D .0; `0; 0; r0/.
On the other hand we prescribe the initial value of the velocity ujtD0 D u0 in
the initial domain F0 D F.0/ D R

2 n S0 occupied by the fluid. Of course since
we aim at considering smooth solutions we assume that the fluid and solid initial
data are compatible. We may therefore consider that the solid translation and
rotation velocities `0 and r0 are arbitrarily given and that the fluid velocity u0 is
the unique vector field compatible in the sense of the following definition.

Definition 3.2 (Compatible Initial Fluid Velocity) Given the initial domain
S0 occupied by the body, `0 and r0 respectively in R

2 and R, and � in R, we
say that a vector field u0 on the closure of F0 D R

2 n S0 with values in R
2 is

compatible if it is the unique vector field satisfying the following div/curl type
system:

div u0 D 0 and curlu0 D 0 in F0;

u0 � n D
�
`0 C r0x

? � n for x 2 @S0;
Z

@S0
u0 � 	 ds D �;

lim
x!1 u0 D 0:
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Indeed the vanishing vorticity condition propagates from t D 0 according
to Helmholtz’s third theorem so that at any time t > 0 the fluid velocity
u.t; �/ can indeed be recovered from the solid’s dynamics by an elliptic-type
problem similar to the one given above for the initial data. Since time appears
only as a parameter rather than in the differential operators, the fluid state may
be seen as only solving an auxiliary steady problem rather than an evolution
equation. The Newton equations can therefore be rephrased as a second-order
differential equation whose coefficients are determined by the auxiliary fluid
problem. In particular the prefactor of the translation and angular accelerations
is the sum of the inertia of the solid and of the so-called “added inertia”
which is a symmetric positive-semidefinite matrix depending only on the body’s
shape and which encodes the amount of incompressible fluid that the rigid
body has also to accelerate around itself. Remarkably enough in the case
where the circulation is 0 it turns out that the solid equations can be recast
as a geodesic equation associated with the metric given by the total inertia.
Unlike the geodesic structure of the full system “fluid + rigid body” hinted
above, the configuration manifold only encodes here the solid’s dynamics and is
therefore of finite dimensions. This echoes that the equations of motion of point
vortices embedded in incompressible flow are usually thought as a reduction
of an infinite-dimensional dynamical system, namely the incompressible Euler
equation, to a finite-dimensional system. Another celebrated feature of the body’s
dynamics is due to a gyroscopic force, proportional to the circulation around the
body, known as the Kutta-Joukowski lift force. In order to make these features
appear, cf. Theorem 3.12, and to make as explicit as possible the quantities
genuinely involved in this ODE two approaches were followed in the literature:
the first one dates back to Blasius, Kutta, Joukowski, Chaplygin and Sedov,
cf. for instance [28], and relies on complex analysis whereas the second one
is real-analytic and was initiated by Lamb, cf. [19]. We will report here these
two methods.3 A trivial consequence of this reformulation is that a global-in-

3On the one hand the presentation of the complex-analytic method is extracted from the use we
made of it in our first investigations of the rotational case, cf. Sect. 3.4 which reports the results of
[8, 9]. On the other hand the presentation of the real-analytic method is extracted from the use we
made of it in our investigation of the case where fluid-solid system occupies a bounded domain,
cf. Sect. 3.3 which reports the results of [11]. Arguably the length comparison and the temporary
occurrence of Archimedes’ type quantities (like the volume of the body, its geometric center..)
in some intermediate computations leading to Lemma 3.23 (where they cancel out) emphasize
the superiority of Lamb’s method for our purposes. Indeed in our forthcoming paper [10] Lamb’s
approach is extended to tackle the general case where several bodies move in a bounded rotational
perfect flow when some of the rigid bodies shrink to pointwise particles, some of them with
constant mass, the others with vanishing mass. Still the complex-analytic method is known to
be useful to deal with the case of a body whose boundary has singularities thanks to conformal
mapping. It could be that it appears relevant as well to investigate the motion of a rigid curve
resulting from an anisotropic shrinking. In this direction let us mention the paper [17] which deals
with the influence of a fixed curve on the fluid around.
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time smooth solution to the Cauchy problem exists and is unique. Therefore in
Sect. 3.2 (cf. below Proposition 3.14) we will prove the following classical result.

Theorem 3.3 Given the initial domain S0 occupied by the body, the initial
solid translation and rotation velocities .`0; r0/ in R

2 � R, the circulation
� in R, and u0 the associated compatible initial fluid velocity (according to
Definition 3.2), there exists a unique smooth global-in-time solution to the
problem compound of the incompressible Euler equations (3.1) on the fluid
domain, of the Newton equations (3.2), of the interface condition (3.4), of
the condition at infinity: limjxj!1 ju.t; x/j D 0, and of the initial conditions
.h; h0; �; � 0/.0/ D .0; `0; 0; r0/ and ujtD0 D u0.

Moreover the structure of the reduced ODE hinted above allows to investigate
the zero-radius limit quite easily and to obtain the following result.

Theorem 3.4 Let be given a rescaled initial domain S0 occupied by the body,
some initial solid translation and rotation velocities .`0; r0/ in R

2 � R and a
circulation � in R in the case of a massive particle and in R

� in the case
of a massless particle, all of them independent of ". Let, for each " > 0,
u"0 the associated compatible initial fluid velocity associated (according to
Definition 3.2) with the initial solid domain S"0 defined by (3.5), .`0; r0/ and
� ; and consider the corresponding solution given by Theorem 3.3. Then in the
zero radius limit " ! 0, with the inertia scaling described in Definition 3.1,
one respectively obtains for the position h.t/ of the pointwise limit particle the
equations mh00 D �.h0/? in the massive limit and h0 D 0 in the massless limit.

Therefore, in this historical setting, Conjecture .C/ is validated with ud D 0.
Of course Theorem 3.4 is a quite informal statement put here for sake of
exposition, we will provide a rigorous statement in Sect. 3.2, cf. Theorem 3.26.

• In Sect. 3.3, we consider the case where the fluid-solid system occupies a
bounded domain �, still in the irrotational case. We assume that � is a bounded
open regular connected and simply connected domain � of R

2 and that the
center of mass of the solid coincides at the initial time with the origin 0 which is
assumed to be in �:

Again the fluid velocity can be recovered from the solid’s dynamics by
an elliptic-type problem for which time is only a parameter and the Newton
equations can therefore be rephrased as a second-order differential equation with
geodesic and gyroscopic features involving some coefficients determined by this
auxiliary fluid problem.

Still some extra difficulties show up in this process. In particular the way
the fluid domain depends on the body motion is more intricate and so are the
variations of the added inertia and therefore of the metric given by the total
inertia. Indeed even in the case where the circulation � is zero the reformulation
of the system as an geodesic equation was proven only recently in [24]. The
general case, with nonzero � is obtained in [8]. One another main new feature
with respect to the unbounded case is that the Kutta-Joukowski lift force is
superseded by a more sophisticated force term which has the form of the
Lorentz force in electromagnetism. Indeed the magnetic part of the Lorentz force,
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being gyroscopic and proportional to the circulation around the body, is a quite
natural extension of the Kutta-Joukowski lift force of the unbounded case. Still
it depends on the body position in a more subtle way. On the other hand the
electric-type force which may seem very damaging in order to obtain uniform
estimates in the zero-radius limit as it does not disappear in an energy estimate.

At least for fixed radius we will be able to infer straightforwardly from this
reformulation the local-in-time existence and uniqueness of smooth solution to
the Cauchy problem. Unlike the unbounded case of Sect. 3.2, cf. Theorem 3.3,
the result is only local-in-time since collision of the body with the external may
occur in finite time (at least as far as it concerns smooth solutions), see [13, 14]
for some examples of collisions of a disk moving in a potential flow (that is in the
case where the circulation � satisfies � D 0) with the fixed external boundary of
the fluid domain. Indeed an energy argument, cf. Corollary 3.36, proves that the
life-time of such a smooth solution can only be limited by a collision. In order
to obtain smooth solutions, even for small time, it is necessary to consider some
compatible initial data. We therefore adapt the notion of compatible initial fluid
velocity introduced in Definition 3.2 to the bounded case.

Definition 3.5 (Compatible Initial Fluid Velocity) Given the open regular
connected and simply connected bounded cavity � and the initial closed regular
domain S0 � � occupied by the body, `0 and r0 respectively in R

2 and R, and �
in R, we say that a vector field u0 on the closure of F0 D � n S0 with values in
R
2 is compatible if it is the unique vector field satisfying the following div/curl

type system:

div u0 D 0 and curlu0 D 0 in F0;

u0 � n D
�
`0 C r0x

? � n for x 2 @S0;
Z

@S0
u0 � 	 ds D �;

u0 � n D 0 for x 2 @�:

Therefore in Sect. 3.3 we will prove the following.

Theorem 3.6 Given the open regular connected and simply connected bounded
cavity�, the initial closed domain S0 � � occupied by the body, the initial solid
translation and rotation velocities .`0; r0/ in R2 � R, the circulation � in R, and
u0 the associated compatible initial fluid velocity (according to Definition 3.5),
there exists a unique smooth local-in-time solution to the problem compound
of the incompressible Euler equations (3.1) on the fluid domain, of the Newton
equations (3.2), of the interface condition (3.4), of the impermeability condition
u � n D 0 on @�, and the initial conditions .h; h0; �; � 0/.0/ D .0; `0; 0; r0/ and
ujtD0 D u0. Moreover the life-time of such a smooth solution can only be limited
by a collision.
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This result by itself belongs to the mathematical folklore.4 Here it will be
easily deduced from the normal form hinted above in order to introduce the
solutions which will be tackled in the zero radius limit and because this normal
form is precisely the first step of our strategy in order to tackle the singular
features of the body’s dynamics in the zero radius limit.

Then we expand the coefficients of the previous normal form in the zero-
radius limit and repeatedly use Lamb’s lemma to reformulate under an asymp-
totic normal form closer to the one of the unbounded case where the leading
terms of the electric-type force are absorbed in the other terms by a modulation
of the unknown. Indeed we will consider in particular as new unknown a quantity
obtained by subtracting a drift velocity given by the leading terms of the electric-
type potential from the translation velocity. This will allow to extend to this case
the vanishingly small limit, still in both cases of a limit pointwise particle which
is massive or massless. Indeed we will obtain both the massive point vortex
system and the classical point vortex system in a cavity as limit equations for
respectively a massive and a massless particle, that is from the dynamics of a
shrinking solid in the inertia regime mentioned above.

Let us recall that the Kirchhoff-Routh velocity u� is defined as u� WD r? �,
where r? WD .�@2; @1/ and where the Kirchhoff-Routh stream function  � is
defined as  �.x/ WD 1

2
 0.x; x/, where  0.h; �/ is the solution to the Dirichlet

problem: � 0.h; �/ D 0 in �,  0.h; �/ D � 1
2�

ln j � �hj on @�. Let us now
introduce the limit equation for the case of a massive particle.

mh00 D �
�
h0 � �u�.h/

�?
on Œ0;T/; with .h; h0/.0/ D .0; `0/: (3.8)

The existence of the maximal solution .h;T/ follows from classical ODE
theory. Moreover it follows from the conservation of the energy 1

2
mh0 � h0 �

�2 �.h/ for any h 2 C1.Œ0;T�I�/ satisfying (3.8), and from the continuity
of the Kirchhoff-Routh stream function  � in � that T is the time of the first
collision of h with the outer boundary @� of the fluid domain. If there is no
collision, then T D C1.

Let us also recall the point vortex equation:

h0 D �u�.h/ for t > 0; with h.0/ D 0: (3.9)

It is well-known that the solution h is global in time, and in particular that
there is no collision of the vortex point with the external boundary @�. This
follows from the conservation of the energy �2 �.h/ for any h 2 C1.Œ0;T�I�/
satisfying (3.9), and the fact that  �.h/ ! C1 when h comes close to @�.

Next result states the convergence of h" to the solutions to these Eqs. (3.8)
and (3.9).

4Indeed a stronger result has been obtained in [7], where the rotational case (with curl u0 in L1)
is handled with pure PDE’s methods.
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Theorem 3.7 Let S0 � �, .`0; r0/ 2 R
2�R, and .m;J / 2 .0;C1/�.0;C1/.

Let, in the case of a massive (respectively massless) particle, � in R (resp.
in R

�). Let .h;T/ be the maximal solution to (3.8) (resp. h be the global
solution to (3.9)). For every " 2 .0; 1� small enough to ensure that the set S"0
defined by (3.5) satisfies S"0 � �, we consider u"0 the associated compatible
initial fluid velocity associated (according to Definition 3.5) with the initial
solid domain S"0 defined by (3.5), �, .`0; r0/ and � , and we denote T" the
life-time of the associated smooth solution .h"; �"; u"/ given by Theorem 3.6,
with the inertia scaling described in Definition 3.1 and the initial conditions
.h"; .h"/0; �"; .�"/0/.0/ D .0; `0; 0; r0/ and u"jtD0 D u"0. Then in the zero radius
limit " ! 0, there holds lim infT" > T (resp. lim infT" ! C1) and h" �* h
in W2;1.Œ0;T�IR2/ weak-? (resp. W1;1.Œ0;T�IR2/ weak-?).

Therefore, in this setting, Conjecture .C/ is also true with ud D �u� (and a
easy byproduct of the analysis is that ubd D K�Œ�ıh� where K� denotes the Biot-
Savart law associated with the simply connected domain �). Theorem 3.7 will
be proven as a consequence of Theorems 3.32 and 3.37. This result was obtained
in [11].

• In Sect. 3.4, we will consider the motion of a rigid body immersed in a two
dimensional incompressible perfect fluid with vorticity. In order to focus on
the interaction between the rigid body and the fluid vorticity we go back to
the unbounded setting of Sect. 3.2 so that the fluid-solid system occupies again
the whole plane. We first recall a result obtained in [8] establishing a global
in time existence and uniqueness result similar to the celebrated result [32] by
Yudovich about the case of a fluid alone. Yudovich’s theory relies on the transport
of the fluid vorticity in particular to the preservation of L1-in space bound of
the vorticity when time proceeds and we therefore extend Definition 3.2 to this
setting.

Definition 3.8 (Compatible Initial Fluid Velocity) Given the initial domain
S0 occupied by the body, the initial solid velocities `0 and r0 respectively in R

2

and R, an initial fluid vorticity !0 in L1
c .R

2 n f0g/ and � in R, we say that a
vector field u0 on the closure of F0 D R

2 n S0 with values in R
2 is compatible if

it is the unique vector field in C0.F0IR2/ satisfying the following div/curl type
system:

div u0 D 0 and curl u0 D !0 in F0;

u0 � n D
�
`0 C r0x

?


� n for x 2 @S0;
Z

@S0
u0 � 	 ds D �;

lim
x!1 u0 D 0:

We are now ready to state the existence and uniqueness result with bounded
vorticity.

Theorem 3.9 For any .`0; r0/ 2 R
2 � R, !0 2 L1

c .F0/, there exists a unique
solution to the problem compound of the incompressible Euler equations (3.1) on
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the fluid domain, of the Newton equations (3.2), of the interface condition (3.4),
of the condition at infinity: limjxj!1 ju.t; x/j D 0, and of the initial conditions
.h; h0; �; � 0/.0/ D .0; `0; 0; r0/ and ujtD0 D u0, with u0 the compatible initial
velocity associated with `0, r0 and !0 by Definition 3.8. Moreover .h; �/ 2
C2.RCIR2 � R/ and for all t > 0, !.t/ WD curl u.t/ 2 L1

c .F.t//.
A key of Yudovich’s approach is that a L1-in space bound of the vorticity is

enough to control the log-Lipschitz regularity of the fluid velocity.5 We will see
in Sect. 3.4 that this is still true for the case with an immersed body. Moreover
this amount of regularity is sufficient in order to insure convenient a priori bounds
regarding the solid motion. We refer to [5, 6, 29] for some other results regarding
the existence of solutions with less regularity. Indeed we will slightly modify the
proof of Theorem 3.9 given in [8] regarding the a priori estimates of the rigid
body’s acceleration. We will use here an argument from [6, 29] which requires
pretty much only a L2 type a priori estimate of the fluid velocity.

This setting will allow to investigate the zero radius limit. In [8] and [9] we
have obtained respectively the following results corresponding to the massive and
massless cases.

Theorem 3.10 Let be given a circulation � in R in the case of a massive particle
and in R

� in the case of a massless particle, .`0; r0/ 2 R
3, !0 in L1

c .R
2 n f0g/

and consider as initial fluid velocity u"0 is then defined as the unique vector field
u"0 compatible with S"0 , `0, r0, � and!"0 WD !0jF "

0
. For any " 2 .0; 1�, let us denote

.h"; r"; u"/ the corresponding solution of the system.Then in the zero radius limit
" ! 0, with the inertia scaling described in Definition 3.1, one respectively
obtains the following equation for the position h.t/ of the pointwise limit particle:

mh00.t/ D �
�
h0.t/ � KR2 Œ!.t; �/�.h.t//

?
; (3.10)

in the massive limit and

h0.t/ D KR2 Œ!.t; �/�.h.t//; (3.11)

in the massless limit. Regarding the fluid state, one obtain at the limit the
following transport equation for the fluid vorticity:

@!

@t
C div

�
!KR2 Œ! C �ıh�

� D 0: (3.12)

Therefore, in the bounded setting, Conjecture .C/ is also true with ud D
KR2 Œ!� and ubd D KR2 Œ! C �ıh�.

5Indeed the uniqueness part of the result above has to be understood to hold in the class of solutions
with such a regularity.
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The fluid equation (3.12) is the same whether the body shrinks to a massive
or a massless pointwise particle. Equation (3.12) describes the evolution of the
vorticity of the fluid: it is transported by a velocity obtained by the usual Biot-
Savart law in the plane, but from a vorticity which is the sum of the fluid
vorticity and of a point vortex placed at the (time-dependent) position h.t/ where
the solid shrinks, with a strength equal to the circulation � around the body.
Equation (3.12) and its corresponding initial condition hold in the sense that for
any test function  2 C1

c .Œ0;T/ � R
2/ we have

Z 1

0

Z

R2

 t! dx dt C
Z 1

0

Z

R2

rx � KR2 Œ! C �ıh�! dx dt

C
Z

R2

 .0; x/!0.x/ dx D 0:

The uniqueness of the solution to the massive limit system (3.10)–(3.12) is
an interesting question. Observe that a putative uniqueness result would entail
the convergence of the whole sequence. This is the case for the massless limit
system (3.11)–(3.12) for which uniqueness does hold according to a result due to
Marchioro and Pulvirenti, cf. [23] and revisited by Lacave and Miot, cf. [18].

We will take advantage of the approach developed in [10] and exposed in
Sect. 3.3 to provide a sketch of a more simple proof of the results claimed in
Theorem 3.10 than the ones achieved in [8] for the massive case and most
of all in [9] for the massless case. In order to do so we will start with an
exact reformulation of the body’s dynamics for fixed radius into an ODE with
a geodesic feature, a Lorentz type force of the same form than the one mentioned
above in the irrotational case, but with an extra dependence to the fluid vorticity,
and a new term describing a somehow more direct influence of the vorticity but
which does not enjoy much structure, cf. Theorem 3.49. Then we expand the
coefficients of the previous ODE in the zero-radius limit using in particular an
irrotational approximation of the fluid velocity on the body’s boundary in order to
use Lamb’s lemma. This provides in particular the leading terms in the expansion
of the Lorentz type force with less effort than by the complex-analytic method
used in [8] and [9]. Another simplification comes from the extra term encoding a
direct influence of the vorticity to the body’s dynamics which is more simple to
estimate than its counterpart in [9].6 We thus obtain an asymptotic normal form
once again close to the one of Sect. 3.2 where the leading terms of the electric-
type force are absorbed in the other terms by a modulation of the solid translation
velocity by a drift velocity of the particle under the influence of the fluid vorticity.
This will allow to extend to this case the vanishingly small limit, still in both cases
of a limit pointwise particle which is massive or massless. Indeed Theorem 3.10
will be proven in Sect. 3.3.6 as a consequence of Theorem 3.50.

6In particular it avoids again the temporary occurrence of Archimedes’ type quantities.
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We aim at extending this analysis to the case where both interactions of a body
with an external boundary and with the fluid vorticity are considered in the same
time, for several massive and massless particles, which will provide a positive
answer to Conjecture .C/ in a wide setting, cf. the ongoing work [10].

3.2 Case of an Unbounded Irrotational Flow

In this section we assume that the system “fluid + solid” is unbounded so that the
domain occupied by the fluid at time t is F.t/ WD R

2 n S.t/ starting from the initial
domain F0 WD R

2 n S0. The equations at stake then read :

@u

@t
C .u � r/u C r� D 0 and div u D 0 for x 2 F.t/; (3.13)

mh00.t/ D
Z

@S.t/
�n ds and J � 00.t/ D

Z

@S.t/
.x � h.t//? � �n ds; (3.14)

u � n D
�
h0.t/C r.t/.x � h.t//?


� n for x 2 @S.t/; (3.15)

lim
jxj!1

ju.t; x/j D 0; (3.16)

ujtD0 D u0 for x 2 F0 and .h; h0; �; � 0/.0/ D .0; `0; 0; r0/: (3.17)

3.2.1 Reduction to an ODE: Statement of Theorem 3.12

In the irrotational case, the system above can be recast as an ODE whose unknowns
are the degrees of freedom of the solid, namely h and � . In particular the motion
of the fluid is completely determined by the solid position and velocity. In order to
state this, let us introduce the variable q WD .h; �/ 2 R

3: Since the fluid and solid
domains only depend on t through the solid position, we will rather denote them
respectively F.q/ and S.q/ instead of F.t/ and S.t/.

Let us gather the mass and moment of inertia of the solid into the following
matrix:

Mg WD
0

@
m 0 0

0 m 0

0 0 J

1

A : (3.18)

Observe that Mg is diagonal and in the set SCC
3 .R/ of the real symmetric positive

definite 3 � 3 matrices. As already mentioned in the introduction the reformulation
relies on the phenomenon of added mass, which, loosely speaking, measures how
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much the surrounding fluid resists the acceleration as the body moves through it.
This will be encoded by a matrix Ma in the set SC

3 .R/ of the real symmetric
positive-semidefinite 3 � 3 matrices. The index a refers to “added”, by opposition
to the genuine inertia Mg. This matrix Ma depends on the shape of the domain
occupied by the solid and therefore on the solid position. Still since the system
“fluid + solid” occupies the full plane the added inertia is invariant by translation
and therefore only depends on � . In order to measure its variations let us denote by
BL.R3 � R

3IR3/ the space of bilinear mappings from R
3 � R

3 to R
3.

Definition 3.11 (a-Connection) Given a C1 mapping � 2 R 7! Ma; � 2 SC
3 .R/,

we say that the C1 mapping � 2 R 7! �a;� 2 BL.R3 � R
3IR3/ is the associated

a-connection if for any p 2 R
3,

h�a;� ; p; pi WD
0

@
X

16i;j63
.�a;� /

k
i;jpipj

1

A

16k63

2 R
3; (3.19a)

with for every i; j; k 2 f1; 2; 3g and for any q D .h; �/,

.�a;� /
k
i;j.q/ WD 1

2

�
.Ma;� /

i
k;j C .Ma;� /

j
k;i � .Ma;� /

k
i;j


.q/; (3.19b)

where .Ma;� /
k
i;j denotes the partial derivative with respect to qk of the entry of

indexes .i; j/ of the matrix Ma;� , that is

.Ma;� /
k
i;j WD @.Ma;� /i;j

@qk
: (3.19c)

As already mentioned in the introduction another celebrated feature of the body’s
dynamics in the case of an unbounded irrotational flow is the Kutta-Joukowski force.
This force also depends on the shape of the domain occupied by the solid and in
particular on the solid position through � only. Since this force is gyroscopic, i.e.
orthogonal to the velocity q0 (which gathers both translation and rotation velocities),
and proportional to the circulation around the body, it will be encoded by a vector
B� in R

3.
The first main result of this section is the following reformulation of Eqs. (3.13)–

(3.16) into an ODE for the degrees of freedom of the solid only.

Theorem 3.12 There exists a C1 mapping � 2 R 7! �
Ma;� ;B�

� 2 SC
3 .R/ � R

3

depending only on S0 such that Eqs. (3.13)–(3.16) are equivalent to the following
ODE for q D .h; �/:

.Mg C Ma;� / q
00 C h�a;� ; q

0; q0i D �q0 � B� ; (3.20)

where �a;� denotes the a-connection associated withMa;� , the fluid velocity u being
given with respect to q and q0 D .h0; � 0/ as the unique solution to the following
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div/curl type system:

div u D 0 and curl u D 0 in F.q/;

u � n D
�
h0 C � 0.x � h/?


� n for x 2 @S.q/;

Z

@S.q/
u � 	 ds D �;

lim
x!1 u D 0:

Indeed the matrix Ma; � , its associated a-connection �a;� and B� will be given
by some precise formulas in the next section, cf. (3.27), (3.29) and (3.36). Let us
already mention here that the dependence on � of

�
Ma;� ;B�

�
is quite simple since

Ma;� D R.�/Ma;0R.�/t and B� D R.�/B0;

where we associate the 3 � 3 rotation matrix

R.�/ WD
�
R.�/ 0
0 1

	
2 SO.3/ (3.21)

with the 2 � 2 rotation matrix R.�/ defined in (3.3).

Remark 3.13 Let us emphasize that the coefficients .�a;� /
k
i;j defined in (3.19b) are

not the Christoffel symbols associated with Ma;� nor Mg C Ma; � . Indeed, one
should multiply by .Mg C Ma; � /

�1 the column vector of the .�a;� /
k
i;j indexed by k

to get the standard Christoffel symbols:

�
�k
i;j.q/



k2f1;2;3g D .Mg C Ma; � /
�1�.�a;� /

k
i;j.q/



k2f1;2;3g; (3.22)

for any i; j 2 f1; 2; 3g. The reason for deviating from the standard notations
is that we want to keep track of the two types of inertia for the subsequent
asymptotic analysis of the zero-radius limit. Observe that the a-connection only
involves the added inertia. Still it is worth highlighting that should its right hand
side vanish (3.20) would be the geodesic equation associated with the metric
Mg C Ma; � :

.qk/00 C �k
i;j.q/.q

i/0.q j/0 D 0;

where the �k
i;j are the standard Christoffel symbols defined in (3.22) and where

Einstein summation notation is used.
We will prove Theorem 3.12 in the sequel but we first deduce and prove the

following result.
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Proposition 3.14 Given some initial data .q; q0/.0/ D .0; `0; 0; r0/ there exists a
unique global solution q 2 C1.Œ0;C1/IR3/ to (3.20). Moreover the quantity

1

2
.Mg C Ma;� / q

0 � q0 (3.23)

is conserved.
Theorem 3.3 is then a consequence of Theorem 3.12 and Proposition 3.14.

Remark 3.15 The quantity (3.23) corresponds to the sum of the kinetic energy of
the solid associated with its genuine inertia and of the one associated with the added
inertia. It will become apparent in the sequel, cf. Sect. 3.2.3, that the kinetic energy
associated with the added inertia of the rigid body can be also interpreted as a
renormalization of the kinetic energy of the fluid by retaining only the potential
contribution and discarding the term due to the circulation around the body.

Proof Local existence and uniqueness follow from classical ODE theory. Global
existence would be a consequence of the energy conservation. Indeed defining for
any � in R, for any p in R

3, the matrix

Sa;� . p/ WD
 
X

1�i�3
.�a;� /

k
i;jpi

!

1�k;j�3
so that h�a;� ; p; pi D Sa;� . p/p;

then, an explicit computation proves that for any � in R, for any p in R
3,

1

2

@Ma;�

@q
.�/ � p � Sa;� . p/ is skew-symmetric.

Therefore for any � in R, for any p in R
3,

h�a;� ; p; pi � p D �
Sa;� . p/p

� � p D 1

2

�@Ma;�

@q
.�/p

� � p;

so that taking the inner product of (3.20) with q0 yields on the one hand

.Mg C Ma;� / q
00 � q0 D 1

2

�
.Mg C Ma;� / q

0 � q0�0 � 1

2

�@Ma;�

@q
.�/ q0� � q0

and on the other hand

h�a;� ; q
0; q0i � q0 D 1

2

�@Ma;�

@q
.�/q0� � q0;

Therefore when doing the energy estimate the term coming from the a-connection
exactly compensates the term coming from the commutation of one time derivative
in the acceleration term, and the conservation of the energy follows by observing
that the contribution of the right hand side of (3.20) is 0. ut
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3.2.2 Explicit Definition of the ODE Coefficients Ma; � , �a;�

and B�

In this section we are going to provide some precise formulas for the matrix Ma; �

(and for its associated a-connection �a;� as well) and for the vector B� thanks to
some elementary flows corresponding respectively to potential and circulatory type
flows. Indeed we will see in Sect. 3.2.3 (in a different frame, moving with the body)
that the real flow can be decomposed thanks to these elementary flows.

Kirchhoff Potentials

The following so-called Kirchhoff potentialsˆ WD .ˆi/iD1;2;3 will play a major role.
They are defined as the solutions of the following problems:

��ˆi D 0 in F0; ˆi �! 0 when x ! 1;
@ˆi

@n
D Ki on @F0; (3.24)

where .K1; K2; K3/ WD .n1; n2; x? � n/. The compatibility condition for this
Neumann Problem is satisfied i.e. we check that

Z

@S0
Ki ds D 0; (3.25)

for i D 1; 2; 3, which is obvious by the Stokes formula :

Z

@S0
n1 ds D �

Z

S0
div.e1/ dx D 0 and similarly

Z

@S0
n2 ds D 0;

whereas
Z

@S0
x? � n ds D �

Z

S0
div.x?/ dx D 0:

Above e1 and e2 are the unit vectors of the canonical basis of R2.
We have that for all i D 1; 2; 3:

ˆi.x/ D O
�
1

jxj
	

and rˆi.x/ D O
�
1

jxj2
	

as jxj ! C1; (3.26)

and consequently that rˆi are in L2.F0/.
For instance in the case where S0 is a disk one hasˆ1.x/ D � x1

jxj2 ,ˆ2.x/ D � x2
jxj2

andˆ3.x/ D 0. If S0 is not a disk then these three functions are linearly independent;
this can be easily be proved by using a smooth arc length parameterization of the
boundary and the usual Frenet equations, see for instance Lemma 6.1. of [25].



3 Motion of a Particle in a 2D Perfect Flow 157

Added Inertia

Let us define the matrices

Ma WD �
mi;j

�
i;j2f1;2;3g and Ma;� WD R.�/MaR.�/t; (3.27)

where for i; j 2 f1; 2; 3g

mi;j WD
Z

F0

rˆi � rˆj dx; (3.28)

and R.�/ is the 3� 3 rotation matrix defined in (3.21). Let us mention from now on
that the matrix Ma;� is positive definite if and only S0 is not a disk. When S0 is a
disk then Ma;� has the form diag.ma;ma; 0/with ma > 0. The case where S0 is disk
is therefore peculiar, indeed by combining the translation and rotation equations on
observe that J � 00 D mh00 � .hc � h/?, where hc denotes of the position of the center
of the disk S.q/, which can be different from h if the body is not homogeneous. As a
consequence, in this case where S0 is a disk, a particular reduction of the dynamics
is possible and is indeed very helpful in order to tackle the case of massless particles.
In the sequel we will focus on the case where S0 is not a disk, and we refer to [11]
for a full treatment of the case where S0 is a disk.

Added Inertia Connection

Let us define for p D .`; r/t,

h�a;� ; p; pi WD �
�
Pa; �

0

	
� p � rMa; �

�
0

`?
	
; (3.29)

where Pa; � are the two first coordinates of Ma; � p. A tedious computation reveals
that �a;� is the a-connection associated with Ma; � .

Harmonic Field

To take the velocity circulation around the body into account, we introduce the
following harmonic field: let H be the unique solution vanishing at infinity of

divH D 0 and curlH D 0 in F0; H � n D 0 on @S0;
Z

@S0
H � 	 ds D 1:

The vector field H admits a harmonic stream function‰H.x/:

H D r?‰H ;
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which vanishes on the boundary @S0, and behaves like 1
2�

ln jxj as x goes to infinity.
One way to get more information on the far-field behaviour of H is to use a little bit
of complex analysis. We identify C and R

2 through

.x1; x2/ D x1 C ix2 D z: (3.30)

We also use the notation

bf D f1 � if2 for any f D . f1; f2/: (3.31)

The reason of this notation is the following: if f is divergence and curl free if and
only ifbf is holomorphic. In particular the function bH is holomorphic (as a function
of z D x1 C ix2), and can be decomposed in Laurent Series :

bH.z/ D 1

2i�z
C O.1=z2/ as z ! 1: (3.32)

Coming back to the variable x 2 R
2, the previous decomposition implies

H.x/ D O
�
1

jxj
	

and rH D O
�
1

jxj2
	
: (3.33)

Moreover, we deduce from (3.32) that

x? � H D 1

2�
C O

�
1

jxj
	

and .H/? � x? � rH D O
�
1

jxj2
	
:

Conformal Center

The harmonic field H allows to define the following geometric constant, known as
the conformal center of S0:


1 C i
2 WD
Z

@S0
zbH dz; (3.34)

which depends only on S0. In the particular case of a disk, the harmonic field H is
given by 1

2�
x?

jxj2 so that the conformal center 
 of a disk is obviously 0. In the general
case one proves the following real-analytic characterization.

Proposition 3.16 There holds:


 D
Z

@S0

�
H � 	�x ds: (3.35)
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In order to prove Proposition 3.16 we will use the following result which relates
the integral

R
C
bf dz associated with a tangent vector field f to its flux and its

circulation.

Lemma 3.17 Let C be a smooth Jordan curve, f WD . f1; f2/ a smooth vector fields
on C:

Z

C
bf dz D

Z

C
f � 	 ds � i

Z

C
f � n ds:

Proof of Lemma 3.17 Denoting by � D .�1; �2/ a arc-length parametrization of C
then 	 D .� 0

1; �
0
2/=j� 0j, n D .�� 0

2; �
0
1/=j� 0j, ds D j� 0.t/jdt and dz D .� 0

1.t/ C
i� 0
2.t//dt. Hence the conclusion follows from

Z

C
. f1 � if2/ dz D

Z
. f1�

0
1 C f2�

0
2/ dt � i

Z
.�f1�

0
2 C f2�

0
1/ dt:

ut
Proof of Proposition 3.16 Observe that z.H1 � iH2/ D f1 � if2 with f1 D x � H and
f2 D x? � H so that applying Lemma 3.17 we have that

Z

@S0
zbH dz D

Z

@S0
g ds; with g WD

�
x � H
x? � H

	
� 	 � i

�
x � H
x? � H

	
� n:

Moreover, for x 2 @S0, we have

g D .x1H1 C x2H2/	1 C .�x2H1 C x1H2/	2

�i.x1H1 C x2H2/n1 � i.�x2H1 C x1H2/n2

D x1.H1	1 C H2	2/C x2.H2	1 � H1	2/

�ix1.H1n1 C H2n2/� ix2.H2n1 � H1n2/;

and using that .n1; n2/ D .�	2; 	1/, we deduce that g D z.H � 	/ � iz.H � n/: It is
then sufficient to recall that H � n D 0 to conclude. ut

Kutta-Joukowski Field

Then the vector field B� is defined by the following formula:

B� WD R.�/
�

?
�1
	
: (3.36)
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Observe that the corresponding force in the left hand side of (3.20) is therefore

q0 � B� D
�
.h0/? � � 0R.�/
?

R.�/
 � h0
	
:

3.2.3 Reformulation as an ODE in the Body Frame: Statement
of Theorem 3.18

In order to transfer the equations in the body frame we apply the following isometric
change of variable:

8
<

:

v.t; x/ D R.�.t//T u.t;R.�.t//x C h.t//;
Q�.t; x/ D �.t;R.�.t//x C h.t//;
`.t/ D R.�.t//T h0.t/;

(3.37)

where we recall that R.�.t// is the 2 � 2 rotation matrix defined in (3.3) so that
Eqs. (3.13)–(3.17) become

@v

@t
C �

.v � ` � rx?/ � r� v C rv? C r Q� D 0 and div v D 0 for x 2 F0;
(3.38)

m`0.t/ D
Z

@S0
Q�n ds � mr`? and J r0.t/ D

Z

@S0
x? � Q�n ds; (3.39)

v � n D �
`C rx?� � n for x 2 @S0; (3.40)

v.0; x/ D v0.x/ for x 2 F0 and .`; r/.0/ D .`0; r0/; (3.41)

where r.t/ D � 0.t/.
In order to state recast the system above as an ODE in the body frame we are

going to introduce now a few objects. Let �g W R3�R
3 ! R

3 and�a W R3�R
3 ! R

3

be the bilinear symmetric mappings defined, for all p D .`

r/ 2 R
3, by

h�g; p; pi D mr

�
`?
0

	
and h�a; p; pi D

�
r.M[`/

?
`? � M[`

	
C rp � �; (3.42)

where

� WD
0

@
m1;3
m2;3
0

1

A and M[ WD �
mi;j

�
i;j2f1;2g : (3.43)
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Note that

8p 2 R
3; h�g; p; pi � p D 0 and h�a; p; pi � p D 0; (3.44)

and that �a is depending only on S0. Because of (3.44) we will refer to the quadratic
mappings �g and �a as gyroscopic terms.

One will deduce Theorem 3.12 from the following result by going back in the
original frame.

Theorem 3.18 Equations (3.38)–(3.39) are equivalent to the following ODE for
p WD .`; r/T :

�
Mg C Ma

�
p0 C h�g; p; pi C h�a; p; pi D �p � B; (3.45)

the fluid velocity v being given as the unique solution to the following div/curl type
system:

div v D 0 and curl v D 0 in F0; (3.46)

v � n D �
`C rx?� � n on @S0;

Z

@S0
v � 	 ds D �; (3.47)

lim
x!1 v D 0: (3.48)

Let us recall that Mg and Ma are respectively the genuine and added inertia,
see (3.27) and (3.18), and that B is a fixed vector defined in (3.36).

Observe that one may also obtain from this formulation the conservative feature
of the system since it suffices to multiply (3.45) by p, to use the symmetry of the
matrices Mg and Ma and the properties (3.44) to deduce that the total energy 1

2
p ��

Mg C Ma
�
p is conserved along time.

The rest of the section is devoted to the proof of Theorem 3.18. Indeed after a
slight reformulation of the solid equations and the decomposition of the velocity
into several pieces corresponding to the various sources in the right hand sides of
the system (3.46)–(3.48), we will compare two methods, one based on complex
argument and the other one on real analysis only.

Reformulation of the Solid Equations

The first step of the proof of Theorem 3.18 uses the Euler equations and the
Kirchhoff potentials in order to get rid of the pressure and to make appear the added
inertia.

Lemma 3.19 Equations (3.39) can be rewritten in the form

.MgCMa/p
0Ch�g; p; pi D �.1

2

Z

@S0
jvj2Ki ds�

Z

@S0
.`Crx?/�vKi ds/i; (3.49)
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where i runs over the integers 1; 2; 3.

Proof Using the following equality for two vector fields a and b in R
2:

r.a � b/ D a � rb C b � ra � .a? curl b C b? curl a/; (3.50)

Eq. (3.38) can be written as

@v

@t
C 1

2
r.v2/ � r..`C rx?/ � v/C r Q� D 0: (3.51)

We use this equation do deduce the force/torque acting on the body:

�Z

@S0
Q�n ds;

Z

@S0
Q�x? � n ds

	
D
�Z

F0

r Q� � rˆi dx

	

iD1;2;3
:

One can check that the above integration by parts is licit by using the decay proper-
ties of v and rˆi. Using an integration by parts, the boundary condition (3.40) and
another integration by parts, one observes that the contribution of @tv is

Z

F0

@tv � rˆi.x/ dx D Ma

�
`

r

	0
; (3.52)

and one obtains the result. ut

Decomposition of the Velocity Field

Finally, for ` in R
2, r and � in R given, there exists a unique vector field v

verifying (3.46)–(3.48) and it is given by the law:

v D �H C `1rˆ1 C `2rˆ2 C rrˆ3; (3.53)

We will denote by

Qv WD v � �H: (3.54)

the part without circulation, that we will decomposed sometimes into

Qv D v# C rrˆ3; (3.55)

with

v# WD `1rˆ1 C `2rˆ2; (3.56)
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in order to analyse separately the effects of the body translation and of the body
rotation.

Observe that in the particular case the fluid velocity is assumed to be globally a
gradient (the so-called potential case corresponding to � D 0) it may be expanded
with respect to the Kirchhoff potentials only.

Another crucial observation is that the first term in the right hand side of (3.49)
is quadratic in v and that v is decomposed into a potential part and a circulatory
part, cf. (3.53). Roughly speaking the a-connection (the last term in the right hand
side of (3.45)) will result from the quadratic self-interaction of the potential part and
the Kutta-Joukowski term (the left hand side of (3.45)) from the crossed interaction
between the potential part and the circulatory part. There will be a cancellation of
the quadratic self-interaction of the circulatory part, cf. (3.81) and Lemma 3.25.
Indeed this cancellation echoes the renormalization hinted in Remark 3.15. The
kinetic energy of the fluid should be 1

2

R
F0
v2 dx but the term 1

2
.Ma;� q0/ �q0 included

in (3.23) is equal to 1
2

R
F0

Qv2 dx. Since Qv and H are orthogonal in L2.F0/ this
renormalization therefore formally consists in discarding the contribution to the
fluid kinetic energy due to the fluid velocity associated with the circulation around
the body. Observe that this contribution is infinite because of the slow decay at
infinity of this part of the fluid velocity but depends only on the body’s shape, not
on its position or velocity.

3.2.4 A Complex-Analytic Proof of Theorem 3.18

We will follow here a strategy based on complex analysis after Blasius, Kutta,
Joukowski, Chaplygin and Sedov. A key lemma is the following Blasius formula
about tangent vector fields where we use the identifications (3.30) and (3.31).

Lemma 3.20 Let C be a smooth Jordan curve, f WD . f1; f2/ and g WD .g1; g2/ two
smooth tangent vector fields on C. Then

Z

C
. f � g/n ds D i

�Z

C
bfbg dz

	�
; (3.57)

Z

C
. f � g/.x? � n/ ds D Re

�Z

C
zbfbg dz

	
: (3.58)

Above.�/� denotes the complex conjugation.

Proof of Lemma 3.20 Thanks to the polarization identity, it is sufficient to consider
the case where f D g. Let us consider � D .�1; �2/ W Œ0; 1� ! R

2 a smooth arc
length parameterization of the Jordan curve C. On one side, one has

Z

C
. f � f /n ds D

Z 1

0

�
f1.�.t//

2 C f2.�.t//
2
� ��� 0

2.t/
� 0
1.t/

	
dt: (3.59)
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On the other side, one has
Z

C
. f1.z/ � if2.z//

2 dz

D
Z 1

0

�
f1.�.t// � if2.�.t//

h�
f1.�.t//� if2.�.t//

�
.� 0
1.t/C i� 0

2.t//
i
dt:

But since f is tangent to C, one sees that the expression inside the brackets above is
real, and hence is equal to its complex conjugate. It follows that

Z

C
. f1.z/� if2.z//

2 dz D
Z 1

0

ˇ̌
f1.�.t// � if2.�.t//

ˇ̌2
.� 0
1.t/ � i� 0

2.t// dt;

and (3.57) follows.
The proof of (3.58) is analogous: using again

. f1.�.t// � if2.�.t///.�
0
1.t/C i� 0

2.t// D . f1.�.t//C if2.�.t///.�
0
1.t/ � i� 0

2.t//;

we deduce
Z

C
. f1.z/ � if2.z//

2z dz

D
Z 1

0

j f1.�.t// � if2.�.t//j2.�1.t/C i�2.t//.�
0
1.t/ � i� 0

2.t// dt;

so that

Re

�Z

C
. f1.z/� if2.z//

2z dz

	

D
Z 1

0

�
f1.�.t//

2 C f2.�.t//
2
�
�1.t/�

0
1.t/C �2.t/�

0
2.t/

�
dt

D
Z

C
. f � f /.x? � n/ ds:

ut
The idea of the complex-analytic approach of the computation of the terms in

the right hand side of the equation in Lemma 3.19 is to decompose them in order to
make appear some vector fields tangent to the boundary @S0, to use Blasius’ lemma
and then Cauchy’s residue theorem.

In this process of computing the residue we will use the Laurent series of brˆi.
Because of the decay property at infinity in (3.24) the Laurent series of brˆi has to
start at least with a term in O.1=z/, and this term is

1

2i�

Z

@S0
brˆi dz:
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Thanks to Lemma 3.17 we get that
R
@S0
brˆi dz D 0 since the circulation of a

gradient around @S0 vanishes and the flux as well according to (3.25).
Moreover Lemma 3.17 also allows to compute the second term in the Laurent

series:

Corollary 3.21 Let C be a smooth Jordan curve, f WD . f1; f2/ a smooth vector fields
on C:

Z

C
zbf dz D

Z

C

�
x � f
x? � f

	
� 	 ds � i

Z

C

�
x � f
x? � f

	
� n ds

D
Z

C
.x1 C ix2/. f � 	/ ds � i

Z

C
.x1 C ix2/. f � n/ ds:

Proof To apply the previous lemma, we have to identify a function g such that
z. f1 � if2/ D g1 � ig2. Hence, to get the first equality, it is sufficient to check that

.x1 C ix2/. f1 � if2/ D .x1 f1 C x2 f2/� i.�x2 f1 C x1 f2/ D .x � f /� i.x? � f /:

To obtain the second equality, we simply use .n1; n2/ D .�	2; 	1/:
�
x � f
x? � f

	
� 	 � i

�
x � f
x? � f

	
� n D .x1 f1 C x2 f2/	1 C .�x2 f1 C x1 f2/	2

�i.x1 f1 C x2 f2/n1 � i.�x2 f1 C x1 f2/n2

D x1. f1	1 C f2	2/C x2. f2	1 � f1	2/

�ix1. f1n1 C f2n2/� ix2. f2n1 � f1n2/

D x1. f1	1 C f2	2/C x2. f2n2 C f1n1/

�ix1. f1n1 C f2n2/� ix2.�f2	2 � f1	1/

D .x1 C ix2/. f1	1 C f2	2/

�i.x1 C ix2/. f1n1 C f2n2/

which ends the proof. ut
Replacing x2 by �x2 in the previous proof, we note that we obtain

Z

C
Nzbf dz D

Z

C
.x1 � ix2/. f � 	/ ds � i

Z

C
.x1 � ix2/. f � n/ ds: (3.60)
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We apply the previous results to the function rˆi:

Lemma 3.22 One has:
Z

@S0
zbrˆi dz D �.mi;2 C jS0jıi;2/C i.mi;1 C jS0jıi;1/; for i D 1; 2I

Z

@S0
zbrˆ3 dz D �.m3;2 C jS0jxG;1/C i.m3;1 � jS0jxG;2/I

where mi;j is defined in (3.28).

Proof We use the previous corollary with f D rˆi:
Z

@S0
zbrˆi dz D

Z

@S0
.x1 C ix2/@	ˆi ds � i

Z

@S0
.x1 C ix2/@nˆi ds:

We can integrate by part in the first integral:
Z

@S0
.x1 C ix2/@	ˆi ds D �

Z

@S0
@	 .x1 C ix2/ˆi ds

D �
Z

@S0
.	1 C i	2/ˆi ds

D �
Z

@S0
.n2 � in1/ˆi ds

D �
Z

F0

rˆ2 � rˆi ds C i
Z

F0

rˆ1 � rˆi ds

D �mi;2 C imi;1:

The second integral can be computed thanks to the boundary condition and (3.66):
Z

@S0
xj@nˆi ds D

Z

@S0
xjni ds D �ıi;jjS0j for i; j D 1; 2;

Z

@S0
x1@nˆ3 ds D

Z

@S0
x1.x

? � n/ ds D jS0jxG;2 and

Z

@S0
x2@nˆ3 ds D

Z

@S0
x2.x

? � n/ ds D �jS0jxG;1:

ut
Using (3.60), we can reproduce exactly the previous proof to establish that:

Z

@S0
Nzbrˆi dz D .�mi;2 C jS0jıi;2/C i.�mi;1 C jS0jıi;1/; for i D 1; 2I

Z

@S0
Nzbrˆ3 dz D .�m3;2 C jS0jxG;1/� i.m3;1 C jS0jxG;2/:
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We are now almost ready to start the proof by itself. The last preparation consists
in using the decomposition (3.54) to deduce from Lemma 3.19 that Eq. (3.39) can
be rewritten in the form

.Mg C Ma/p
0 C h�g; p; pi D �.Ai C Bi C Ci/iD1;2;3; (3.61)

where for i D 1; 2; 3,

Ai WD 1

2

Z

@S0
j Qvj2Ki ds �

Z

@S0
.`C rx?/ � QvKi ds;

Bi WD �

Z

@S0
. Qv � .`C rx?// � HKi ds; (3.62)

Ci WD �2

2

Z

@S0
jHj2Ki ds: (3.63)

We start with the computation of the terms .Ai/iD1;2;3.

Lemma 3.23

�
A1
A2

	
D r2

��m3;2
m3;1

	
C r

�
M[`

?
(3.64)

and

A3 D `?M[` � r` �
��m3;2

m3;1

	
: (3.65)

Proof We start with the following observation:

Ai D 1

2

Z

@S0
j Qv � .`C rx?/j2Ki ds � 1

2

Z

@S0
j`C rx?j2Ki ds;

which makes appear at least one term with the wished tangence property. Since
Blasius’ lemma is different for the torque, we replace Qv by the decomposition (3.55)
to get

Ai D 1

2

Z

@S0
jv# � `j2Ki ds C 1

2

Z

@S0
jr.rˆ3 � x?/j2Ki ds

C
Z

@S0
r.v# � `/ � .rˆ3 � x?/Ki ds � 1

2

Z

@S0
j`C rx?j2Ki ds

DW Ai;a C Ai;b C Ai;c C Ai;d:
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The first three terms have a form appropriated for the strategy mentioned above. One
may worry above the last one but it benefits from a special structure resembling the
Archimedes’ force (despite the absence of gravity in our setting). Let us see first
how this term can be simply computed thanks to the Stokes formula so that we will
then be serene to implement the complex-analytic approach to the three other terms.

An Archimedes’ Type Term In order to compute the term Ai;d we first expand

Z

@S0
j`C rx?j2Ki ds D j`j2

Z

@S0
Ki ds � 2`1r

Z

@S0
x2Ki ds

C2`2r
Z

@S0
x1Ki ds C r2

Z

@S0
jxj2Ki ds:

Thanks to the Stokes formula:
Z

@S0
xjni ds D �

Z

S0
div.xjei/ dx D �ıi;jjS0j; for i; j D 1; 2I (3.66a)

Z

@S0
x1.x

? � n/ ds D�
Z

S0
div.x1x?/ dx D �

Z

S0
.�x2/ dx D jS0jxG;2I (3.66b)

Z

@S0
x2.x

? � n/ ds D �
Z

S0
div.x2x?/ dx D �

Z

S0
x1 dx D �jS0jxG;1I (3.66c)

and
Z

@S0
jxj2ni ds D �

Z

S0
div.jxj2ei/ dx D �

Z

S0
2xi dx

D �2xG;ijS0j; for i D 1; 2I (3.67a)
Z

@S0
jxj2x? � n ds D �

Z

S0
div.jxj2x?/ dx D 0; (3.67b)

where jS0j is the Lebesgue measure of S0 and xG D .xG;1; xG;2/ is the position of
the geometrical center of S0 (which can be different of the mass center 0 if the solid
is not homogenous):

xG WD 1

jS0j
Z

S0
x dx: (3.68)

Then, using also (3.25), we check easily that

�
Ai;d



iD1;2 D �r`?jS0j C r2xGjS0j and A3;d D �r.` � xG/jS0j: (3.69)
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Computation of the Three Other Terms Recalling the definition (3.56) and using
the notation (3.31) we first remark that

1v# � `.z/ D �`1 C i`2 C `1brˆ1 C `2brˆ2: (3.70)

Computation of Ai;a We compute separately the case where i D 1; 2 and the case
where i D 3.

• As v# � ` is tangent to the boundary, we can apply the Blasius formula (see
Lemma 3.20), (3.70), Cauchy’s residue theorem, to obtain

�
Ai;a



iD1;2 D 0: (3.71)

• We proceed in the same way for i D 3:

A3;a D 1

2

Z

@S0
jv# � `j2K3 ds D 1

2
Re

�Z

@S0
z.1v# � `/2 dz

	

D Re

 h
.�`1/ � i.�`2/

i Z

@S0
z
�
`1brˆ1 C `2brˆ2


dz

!
:

so that, thanks to Lemma 3.22,

A3;a D.�`1/
h

� `1m1;2 � `2.m2;2 C jS0j/
i

C .�`2/
h
`1.m1;1 C jS0j/C `2m2;1

i

which finally can be simplified as follows:

A3;a D `?M[`: (3.72)

Computation of Ai;b Once again we distinguish the case where i D 1; 2 and the
case where i D 3.

• As rˆ3�x? is tangent to the boundary, we can write for i D 1; 2 by Lemma 3.20
and by Cauchy’s residue theorem:

�
Ai;b



iD1;2 D r2

2

Z

@S0
jrˆ3 � x?j2n ds D ir2

2

�Z

@S0
.
4rˆ3 � x?/2 dz

	�

D ir2

2

�Z

@S0
2iNzbrˆ3 dz �

Z

@S0
Nz2 dz

	�
;
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where we have noted that �cx? D iNz. Let us observe that
Z

@S0
Nz2 dz D

Z
.�1 � i�2/

2.� 0
1 C i� 0

2/

D
Z
.�21 �

0
1 � �22 � 0

1 C 2�1�2�
0
2/C i

Z
.�21 �

0
2 � �22 � 0

2 � 2�1�2� 0
1/

D �
Z

@S0

�
2x1x2
x22

	
� n ds � i

Z

@S0

�
x21
2x1x2

	
� n ds

D
Z

S0
div

�
2x1x2
x22

	
dx C i

Z

S0
div

�
x21
2x1x2

	
dx

D 4jS0jxG;2 C 4ijS0jxG;1:

Therefore thanks to Lemma 3.22 we state that:
�
Ai;b



iD1;2 D ir2
�
i.�m3;2 C jS0jxG;1/C .m3;1 C jS0jxG;2/

�2.jS0jxG;2 C ijS0jxG;1/
�

D r2
�
.�m3;2 � jS0jxG;1/C i.m3;1 � jS0jxG;2/



D r2
���m3;2

m3;1

	
� jS0jxG


;

and thus
�
Ai;b



iD1;2 D 0: (3.73)

• For i D 3, we have that:

A3;b D
Z

@S0
jrˆ3 � x?j2.x? � n/ ds

D
Z

@S0
jrˆ3j2x? � n ds � 2

Z

@S0
.rˆ3 � x?/.x? � n/ ds C

Z

@S0
jxj2x? � n ds

D
Z

F0

div.jrˆ3j2x?/ dx � 2
Z

F0

r.rˆ3 � x?/ � rˆ3 dx �
Z

S0
div.jxj2x?/ dx;
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where there is no boundary term at infinity because rˆ3 D O.1=jxj2/. Next we
use the general relation (3.50) to obtain that

r.rˆ3 � x?/ � rˆ3 D
h
.rˆ3 � r/x? C .x? � r/rˆ3

i
� rˆ3

D �.rˆ3/? � rˆ3 C 1

2
.x? � r/jrˆ3j2 D 1

2
div.x?jrˆ3j2/:

Hence,

A3;b D 0: (3.74)

Computation of Ai;c

• We use again the Blasius formula together with (3.70) and the Cauchy’s residue
theorem:

�
Ai;c



iD1;2 D
Z

@S0
r.v# � `/ � .rˆ3 � x?/n ds

D ir

�Z

@S0
.1v# � `/.brˆ3 C iNz/ dz

	�

D ir

 
i
�

� `1 C i`2
 Z

@S0
Nz dz C i`1

Z

@S0
brˆ1Nz dz C i`2

Z

@S0
brˆ2Nz dz

!�
:

Let us observe that
Z

@S0
Nz dz D

Z
.�1 � i�2/.�

0
1 C i� 0

2/ D
Z
.�1�

0
1 C �2�

0
2/C i

Z
.�1�

0
2 � �2� 0

1/

D �i
Z

@S0

�
x1
x2

	
� n ds

D i
Z

S0
div

�
x1
x2

	
dx D 2ijS0jI (3.75)

Z

@S0
jzj2 dz D

Z
.�21 C �22 /.�

0
1 C i� 0

2/

D
Z

@S0

�
0

x22

	
� n ds � i

Z

@S0

�
x21
0

	
� n ds

D �
Z

S0
div

�
0

x22

	
dx C i

Z

S0
div

�
x21
0

	
dx

D �2jS0jxG;2 C 2ijS0jxG;1: (3.76)
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Therefore, it suffices to write the value obtained in Lemma 3.22 to get:

�
Ai;c



iD1;2 Dr
h
.�`2/2jS0j � `1m1;2 C `2.�m2;2 C jS0j/

i

C ir
h
`12jS0j � `1.�m1;1 C jS0j/C `2m2;1

i
;

which can be simplified as

�
Ai;c



iD1;2 D r

"
.M[ C jS0jI2/`

?
#
: (3.77)

• For i D 3, Lemma 3.20, (3.70) and Cauchy’s residue theorem imply that

A3;c D
Z

@S0
r.v# � `/ � .rˆ3 � x?/K3 ds

DrRe

�Z

@S0
z.1v# � `/.brˆ3 C iNz/ dz

	

DrRe

"�
� `1 C i`2

 Z

@S0
.zbrˆ3 C ijzj2/ dz

C `1i
Z

@S0
brˆ1jzj2 dz C `2i

Z

@S0
brˆ2jzj2 dz

#
:

Now applying Lemma 3.17 to .jzj2@1ˆi; jzj2@2ˆi/ we have

Z

@S0
jzj2.@1ˆi � i@2ˆi/ dz D

Z

@S0
jxj2@	ˆi ds � i

Z

@S0
jxj2@nˆi ds

where we easily verify that

Z

@S0
jxj2@	ˆi ds D �

Z

@S0
ˆi2x � 	 ds D �

Z

@S0
ˆi2.x

? � n/ ds D �2mi;3:

The value of
R
@S0 jxj2@nˆi ds has already been computed in (3.67). We therefore

obtain:
Z

@S0
jzj2brˆi dz D �2mi;3 C 2ijS0jxG;i for i D 1; 2 and

Z

@S0
jzj2brˆ3 dz D �2m3;3:
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Hence, we deduce from this, (3.76) and Lemma 3.22 that

A3;c Dr

"
� .�`1/.m3;2 C jS0jxG;1 C 2jS0jxG;1/

.�`2/.m3;1 � jS0jxG;2 � 2jS0jxG;2/

� `12jS0jxG;1 � `22jS0jxG;2
#
;

so that

A3;c D �r` �
���m3;2

m3;1

	
� jS0jxG


: (3.78)

Conclusion Gathering (3.69), (3.71)–(3.74), (3.77) and (3.78) we obtain (3.64)
and (3.65). This ends the proof of Lemma 3.23. ut

Let us continue with the term Bi. Let us prove the following.

Lemma 3.24 One has
�
B1
B2

	
D ��`? C �r
 and B3 D �� 
 � `; (3.79)

where 
 was defined in (3.34).

Proof Putting the decomposition (3.55) in the definition of Bi, we write:

Bi D �

Z

@S0
.v# � `/ � HKi ds C �

Z

@S0
r.rˆ3 � x?/ � HKi ds:

Concerning the second integral, as v# � ` and H are tangent to the boundary,
we apply the Blasius formula (see Lemma 3.20), then we compute by (3.70) and
Cauchy’s residue theorem and (3.32):

�
�

Z

@S0
.v# � `/ � HKi ds

	

iD1;2
D�

Z

@S0
.v# � `/ � Hn ds

Di�

�Z

@S0

2.v# � `/bH dz

	�

Di�

 �
� `1 C i`2

 Z

@S0
bH dz

!�

Di�

 �
� `1 C i`2

!�

D � �`?:
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For i D 3, we compute by Lemma 3.20 and the Cauchy’s residue theorem that

�

Z

@S0
.v# � `/ � HK3 ds D�Re

�Z

@S0
z.1v# � `/bH dz

	

D�Re

��
� `1 C i`2

 Z

@S0
zbH dz

	

D�Re
��

� `1 C i`2

.
1 C i
2/



D � �` � 
:

For the last term, we use that rˆ3 � x? and H are tangent to the boundary, and
we write by Lemma 3.20 and by the Cauchy’s residue theorem:

�
�r
Z

@S0
.rˆ3 � x?/ � HKi ds

	

iD1;2
D i�r

�Z

@S0
.4rˆ3 � x?/bH dz

	�

D i�r

�
i
Z

@S0
NzbH dz

	�

D �r

�Z

@S0
NzbH dz

	�
D �r
;

where we have used that �cx? D iNz and

�Z

@S0
NzbH dz

	�
D
Z

@S0
zbH dz; (3.80)

the latter being easily shown by using a parametrization. For i D 3, we have that:

�r
Z

@S0
.rˆ3 � x?/ � HK3 ds D �rRe

�Z

@S0
z.4rˆ3 � x?/bH dz

	

D �rRe

�
i
Z

@S0
zNzbH dz

	
D 0;

which can also be shown by using a parametrization. Gathering the equalities above
yields (3.79). This ends the proof of Lemma 3.24. ut

We now turn to Ci (see (3.63)). From Lemma 3.20, (3.32) and Cauchy’s Residue
Theorem, we deduce that

C1 D C2 D C3 D 0: (3.81)

Indeed, we can verify that
R
@S0 z.

bH/2 dz D �i=.2�/ is purely imaginary.
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Plugging (3.64), (3.65), (3.79) and (3.81) in (3.61) and using that for any pa WD
.`a; !a/ and pb WD .`b; !b/ in R

2 � R, pa � pb D . !a `
?
b � !b `

?
a ; `

?
a � `b/,

yields (3.45). This ends the complex-analytic proof of Theorem 3.18.

3.2.5 A Real-Analytic Proof of Theorem 3.18

We now consider another approach which dates back to Lamb. We therefore go
back to Lemma 3.19 and provide an alternative real-analytic end of the proof of
Theorem 3.18. Of crucial importance is the following identity which we will use
instead of Blasius’ lemma though to different terms.

Let

�1.x/ WD e1; �2.x/ WD e2 and �3.x/ WD x?:

denote the elementary rigid velocities. The following lemma seems to originate from
Lamb’s work.

Lemma 3.25 For any pair of vector fields .u; v/ in C1.R2 n S0IR2/ satisfying
• div u D div v D curl u D curl v D 0,
• u.x/ D O.1=jxj/ and v.x/ D O.1=jxj/ as jxj ! C1,

one has, for any i D 1; 2; 3,

Z

@S0
.u � v/Kids D

Z

@S0
�i �
�
.u � n/v C .v � n/u


ds: (3.82)

Proof of Lemma 3.25 Let us start with the case where i D 1 or 2. Then

Z

@S0
.u � v/Kids D

Z

@S0

�
.u � v/�i

� � nds D
Z

R2nS0
div

�
.u � v/�i

�
dx; (3.83)

by using that u.x/ D O.1=jxj/ and v.x/ D O.1=jxj/ when jxj ! C1. Therefore

Z

@S0
.u �v/Kids D

Z

R2nS0
�i � r.u �v/ dx D

Z

R2nS0
�i � .u � rvCv � ru/ dx; (3.84)

using that curl u D curl v D 0. Now, integrating by parts, using that div u D div v D
0 and once again that u.x/ D O.1=jxj/ and v.x/ D O.1=jxj/ as jxj ! C1, we
obtain (3.82) when i D 1 or 2.

We now tackle the case where i D 3. We follow the same lines as above, with
two precisions. First we observe that there is no contribution at infinity in (3.83)
and (3.84) when i D 3 as well. Indeed �3 and the normal to a centered circle
are orthogonal. Moreover there is no additional distributed term coming from the
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integration by parts in (3.84) when i D 3 since
Z

R2nS0
v � .u � rx�i/C u � .v � rx�i/ dx D

Z

R2nS0
.v � u? C u � v?/ dx D 0:

ut
As a consequence, using Lamb’s lemma and the boundary conditions (3.40) we

obtain for any i D 1; 2; 3,

1

2

Z

@S0
jvj2Ki ds D

Z

@S0
.v � n/.v � �i/ ds

D
Z

@S0

�
.`C rx?/ � n��v � �i

�
ds

D
Z

@S0

�
.`C rx?/ � n��v � n�Ki ds

C
Z

@S0

�
.`C rx?/ � n��v � 	���i � 	� ds

so that the right hand side of (3.49) can be recast as follows:

1

2

Z

@S0
jvj2Ki ds �

Z

@S0
.`C rx?/ � vKi ds

D �
Z

@S0

�
.`C rx?/ � 	��v � 	�Ki ds C

Z

@S0

�
.`C rx?/ � n��v � 	���i � 	� ds

D
X

k

pk

Z

@S0

�
v � 	�Œ��i � 	�Kk � �

�k � 	�Ki� ds;

for any i D 1; 2; 3, where the sum runs for k over 1; 2; 3 and p D .`; r/T .

Computation of the Brackets

We now compute the brackets Œ
�
�i � 	�Kk � �

�k � 	�Ki�, for i; k D 1; 2; 3, in order to
make explicit the previous integrals.

• For i D 1, we therefore obtain that

1

2

Z

@S0
jvj2Ki ds �

Z

@S0
.`C rx?/ � vKi ds D

p2

Z

@S0

�
v � 	�Œ��1 � 	�K2 � �

�2 � 	�K1� ds

Cp3

Z

@S0

�
v � 	�Œ��1 � 	�K3 � �

�3 � 	�K1� ds:
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Using that
�
�1 � 	�K2 � �

�2 � 	�K1 D �
�1 � 	���2 � n� � �

�2 � 	���1 � n�

D �
�2 � n�2 C �

�2 � 	�2

D 1

and
�
�1 � 	���3 � n�� �

�3 � 	���1 � n� D �
�2 � n���3 � n�C �

�3 � 	���2 � 	�

D �2 � �3;
we infer, using the decomposition (3.53) and (3.35), that

1

2

Z

@S0
jvj2Ki ds �

Z

@S0
.`C rx?/ � vKi ds D �`2 C �r�2 � 
?

Cr
3X

jD1
pj �2 �

Z

@S0

�rˆj � 	�x? ds:

• For i D 2,

1

2

Z

@S0
jvj2Ki ds �

Z

@S0
.`C rx?/ � vKi ds D

p1

Z

@S0

�
v � 	�Œ��2 � 	�K1 � �

�1 � 	�K2� ds

Cp3

Z

@S0

�
v � 	�Œ��2 � 	�K3 � �

�3 � 	�K2� ds

But
�
�2 � 	�K1 � �

�1 � 	�K2 D ���2 � 	�2 � �
�1 � 	�2 D �1;

and
�
�2 � 	�K3 � �

�3 � 	�K2 D ���1 � n���3 � n� � �
�3 � 	���1 � 	� D ��1 � �3;

so that

1

2

Z

@S0
jvj2Ki ds �

Z

@S0
.`C rx?/ � vKi ds D ��`1 � �r�1 � 
?

�r
3X

jD1
pj �1 �

Z

@S0

�rˆj � 	�x? ds:
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Moreover, by an integration by parts,

Z

@S0

�rˆj � 	�x? ds D �
Z

@S0
ˆj � n ds D ��

Z

@S0
ˆj@nˆi ds/i D ��mi;j

�
i
;

where i runs over 1; 2, so that

��1
2

Z

@S0
jvj2Ki ds �

Z

@S0
.`C rx?/ � vKi ds

�
iD1;2 D �r

�
M[`C r

�
m1;3
m2;3

	 �?

C��`? � r

�
:

• Proceeding in the same way for i D 3 and using the definitions (3.42) and (3.43)
we finally arrive at (3.45). This ends the real-analytic proof of Theorem 3.18.

3.2.6 Zero Radius Limit

We now assume that, for every " 2 .0; 1�, the domain occupies (3.5) and for every
q D .h; �/ 2 R

3,

S".q/ WD R.�/S"0 C h and F ".q/ D R
2 n NS".q/: (3.85)

We will treat at once both the massive and massless cases. The following statement
implies Theorem 3.4.

Theorem 3.26 Let a rescaled initial domain S0 occupied by the body, some initial
solid translation and rotation velocities .`0; r0/ and a circulation � in R in the case
of a massive particle and in R

� in the case of a massless particle, all independent
of ". Let, for each " > 0, the solution h" associated with an initial solid domain
S"0 defined by (3.5) with the inertia scaling described in Definition 3.1, and initial
data q.0/ D 0 and q0.0/ D .`0; r0/, given by Proposition 3.14. Then for all T > 0,
as " ! 0 one has in the case of massive particle (respectively massless particle)
h" �* h in W2;1.Œ0;T�IR2/ weak-? (resp. W1;1.Œ0;T�IR2/ weak-?) and "�" �*
0 in W2;1.Œ0;T�IR/ weak-? (resp. W1;1.Œ0;T�IR/ weak-?) . Moreover the limit
time-dependent vector h satisfies the equations mh00 D �.h0/? (resp. h0 D 0).

Proof In order to compare the influence of the circulation and of the solid velocity
on the dynamics in the zero-radius limit we first consider the harmonic field H"

and the Kirchhoff potentials .rˆ"i /iD1;2;3 associated with the rigid body S".0/ as
the harmonic field H and the Kirchhoff potentials .rˆi/iD1;2;3 were associated with
the rigid body S0 in Sect. 3.2.2. They satisfy the following scaling law H".x/ D
"�1H .x="/, whereas the Kirchhoff potentials obey:ˆ"i .x/ D "ˆ1i .x="/ for i D 1; 2,
ˆ"3.x/ D "2ˆ13.x="/. Therefore the harmonic field H" is more singular than the
Kirchhoff potentials rˆ"i .x/ in the vanishingly small limit. On the other hand we
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deduce that the added inertia is given by the following matrix

M"
a;� D "2 I"Ma;� I"; (3.86)

where I" is the diagonal matrix I" WD diag .1; 1; "/. This has to be compared with
the genuine inertia matrix which, according to Definition 3.1, scales as follows:

M"
g WD diag .m";m";J "/ D "˛I"MgI"; (3.87)

where the matrix Mg is given in terms of m > 0 and J > 0 by (3.18). Recall that
˛ > 0, m > 0 and J > 0 are defined in Definition 3.1 and fixed independent of ".

Two remarks are in order.

• First we observe from the comparison of (3.86) and (3.87) that the physical case
˛ D 2 appears as critical.

• Secondly because of the matrix I" in the right hand sides of the two inertia
matrices M"

g and M"
a;� , it is natural to introduce the vector p" D ..h"/0; ".�"/0/t.

Hence the natural counterpart to .h"/0 for what concerns the angular velocity is
rather ".�"/0 than .�"/0. This can also be seen on the boundary condition (3.91d):
when x belongs to @S".t/, the term .�"/0.x � h"/? is of order ".�"/0 and is added
to .h"/0.

Examining how the other terms scale with " one obtains:

."˛Mg C "2Ma; �"/ . p
"/0 C "h�a;�" ; p

"; p"i D �p" � B�" : (3.88)

The energy associated with this scaling is twice ."˛Mg C "2Ma; �" /p" � p" and its
conservation provides that p" is bounded uniformly with respect to " on the time
interval Œ0;C1/, whatever is ˛. Now our goal is to pass to the limit in (3.88). Let
T > 0. Computing the right-hand-side of (3.88) gives

."˛Mg C "2Ma; �" / . p
"/0 C "h�a;�" ; p

"; p"i D �

�
..h"/0/? � ".�"/0R.�"/


R.�"/
 � .h"/0
	
:

(3.89)

We start with the massive case for which ˛ D 0. Using the equation we deduce
some uniform W2;1 bounds on h" and "�" and this entails the existence of a
subsequence of .h"; "�"/ converging to .h; ‚/ in W2;1 weak-?. Moreover the left
hand side of (3.89) (with ˛ D 0) converges to Mg.h00; ‚00/t in L1 weak-?, and
using that

".�"/0R.�"/
 D "
�
R.�" � �=2/
�0 (3.90)

converges in W�1;1 weak-? up to a subsequence and that the weak-? convergence
in W2;1 entails the strong W1;1 one, we get from the two first lines of (3.89) that
mh00 D �.h0/? and

�
h.0/; h0.0/

� D �
0; `0

�
. In order to prove that ‚ D 0 one may

use a stationary phase argument, cf. Lemma 10 in [8] for more on this.
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In the massless case, that is when ˛ > 0, a few modifications in the arguments
are in order. First, thanks to the energy estimate, "Ma; �" is bounded in W1;1 and
since Mg is constant and . p"/0 is bounded uniformly with respect to " in W�1;1,
we can conclude that the left hand side of (3.89) converges to 0 in W�1;1 due to the
extra powers of ". Next, concerning the right hand side, the term "h�a;�" ; . p"/; . p"/i
converges to 0 in L1 since the terms inside the brackets are bounded. As before
the last term in the two first lines of Eq. (3.89), converges weakly to 0 in W�1;1
Hence we infer that .h"/0 converges weakly-? to 0 in W�1;1. Due to the a priori
estimate, this convergences occurs in L1 weak-?. Again this is sufficient to deduce
the strong convergence of h" towards some h in L1, and that h0 D 0 and h.0/ D 0.
This concludes the proof of Theorem 3.26. ut

3.3 Case of a Bounded Domain

We consider now the case where the system fluid-solid occupies a bounded open
regular connected and simply connected domain� of R2. We assume that the body
initially occupies the closed domain S0 � �, so that the domain of the fluid is
F0 D � n S0 at the initial time, and (without loss of generality) that the center of
mass of the solid coincides at the initial time with the origin and that 0 2 �: Let
be given the initial solid translation and rotation velocities .`0; r0/ in R

2 � R, the
circulation � in R, and u0 the associated compatible initial fluid velocity (according
to Definition 3.5). We therefore still consider the case without any initial vorticity
that it follows from Definition 3.5 that the initial fluid velocity u0 is assumed to
satisfy curl u0 D 0 in F0. The domain of the fluid is denoted by F.t/ D � n S.t/
at time t > 0. The fluid-solid system is governed by the following set of coupled
equations:

@u

@t
C .u � r/u C r� D 0 in F.t/; (3.91a)

div u D 0 in F.t/; (3.91b)

mh00 D
Z

@S.t/
�n ds and J � 00 D

Z

@S.t/
.x � h.t//? � �n ds; (3.91c)

u � n D �
`C r.� � h/?

� � n on @S.t/; (3.91d)

u � n D 0 on @�; (3.91e)

utD0 D u0 in F0 and .h; h0; �; � 0/.0/ D .0; `0; 0; r0/: (3.91f)

Here again on the one hand the fluid velocity remains irrotational for every time,
that is

curl u.t; �/ D 0 in F.t/; (3.92)
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according to Helmholtz’s theorem and on the other hand the circulation around the
body is constant in time equal to � according to Kelvin’s theorem. Since the domains
S.t/ and F.t/ depend on q WD .h; �/ 2 R

3: Only, we shall rather denote them S.q/
and F.q/ in the sequel. Since we will not consider any collision here, we introduce:
Q WD fq 2 R

3 W d.S.q/; @�/ > 0g, where d.A;B/ denotes for two sets A and B
in the plane that is d.A;B/ WD min fjx � yjR2 ; x 2 A; y 2 Bg: Above the notation
stands j � jRd for the Euclidean norm in R

d. Since S0 is a closed subset in the open
set � the initial position q.0/ D 0 of the solid belongs to Q.

As in the unbounded case of the previous section, our analysis here will rely
on a reformulation of the system above as an second-order differential ODE for q
together with an auxiliary div-curl type system for the fluid velocity. Indeed, here
again, the solid drives the dynamics of the coupled system as a consequence of
the added inertia phenomenon. However in the case where the system occupies a
bounded domain the matrix Ma encoding the added inertia depends not only on �
but on the three components of q. We therefore extend Definition 3.11 to this new
setting.

Definition 3.27 (a-Connection) Given a C1 mapping q 2 Q 7! Ma.q/ 2
SC
3 .R/, we say that the C1 mapping q 2 Q 7! �a.q/ 2 BL.R3 � R

3IR3/ is
the a-connection associated with this mapping if for any p 2 R

3,

h�a.q/; p; pi WD
0

@
X

16i;j63
.�a.q//

k
i;jpipj

1

A

16k63

2 R
3; (3.93)

with for every i; j; k 2 f1; 2; 3g,

.�a.q//
k
i;j.q/ WD 1

2

�
.Ma.q//

i
k;j C .Ma.q//

j
k;i � .Ma.q//

k
i;j


.q/; (3.94)

where .Ma.q//ki;j denotes the partial derivative with respect to qk of the entry of
indexes .i; j/ of the matrix Ma.q/, that is

.Ma.q//
k
i;j WD @.Ma.q//i;j

@qk
: (3.95)

Remark 3.13 is still in order for the definition above.

3.3.1 Reduction to an ODE in the Case Where � D 0:
Munnier’s Theorem

Let us start with the case where the circulation � is zero. Then the initial fluid
velocity and therefore the velocity at any time is potential (that is a gradient globally
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on F.q/). The following result was proven surprisingly only recently, by Munnier
in [24]. This result consists in a reformulation of the system (3.91) in terms of an
ordinary differential equation for the motion of the rigid body which corresponds to
geodesics associated with the Riemann metric induced on Q by the matrix Mg C
Ma.q/, where we recall that Mg is the genuine inertia defined in Definition 3.18.
This reformulation therefore establishes an equivalence of the Newtonian and the
Lagrangian points of view in the potential case.

Theorem 3.28 Let be given the open regular connected and simply connected
bounded cavity �, the initial closed domain S0 � � occupied by the body, the
initial solid translation and rotation velocities .`0; r0/ in R

2 � R. Assume that the
circulation � is 0. Let u0 be the associated compatible initial fluid velocity according
to Definition 3.5. Then there exists a C1 mapping q 2 Q 7! Ma.q/ 2 SC

3 .R/,
depending only on S0 and �, such that up to the first collision, System (3.91) is
equivalent to the second order differential equation:

.Mg C Ma.q//q
00 C h�a.q/; q

0; q0i D 0;

with Cauchy data q.0/ D 0 2 Q; q0.0/ D .`0; r0/ 2 R
2 � R, where �a is the

a-connection associated with Ma by Definition 3.27. For any q 2 Q the fluid
velocity u.q; �/ is the unique solution of the div-curl type system in the doubly-
connected domain F.q/, constituted of (3.91b), (3.92), (3.91d), (3.91e), together
with the prescription of zero circulation.

Indeed we are going to provide a quite explicit expression of Ma.q/. Consider
the functions �j, for j D 1; 2; 3, defined for q D .h; �/ 2 Q and x 2 F.q/, by
the formula �j.q; x/ WD ej; for j D 1; 2 and �3.q; x/ WD .x � h/?. Above e1 and e2
are the unit vectors of the canonical basis. We introduce ˆ WD .ˆ1;ˆ2;ˆ3/

t where
the Kirchhoff’s potentials ˆj.q; �/, for j D 1; 2; 3, are the unique (up to an additive
constant) solutions in F.q/ of the following Neumann problem:

�ˆj D 0 in F.q/; @ˆj

@n
.q; �/ D n � �j.q; �/ on @S.q/; @ˆj

@n
.q; �/ D 0 on @�:

(3.96)
We can now define the added inertia

Ma.q/ WD
Z

@S.q/
ˆ.q; �/˝ @ˆ

@n
.q; �/ds D

� Z

F.q/
rˆi � rˆjdx



16i;j63
: (3.97)

The added inertia matrix Ma.q/ is symmetric positive-semidefinite.

3.3.2 Proof of Munnier’s Result: Theorem 3.28

The first step of the proof of Theorem 3.28 consists in a trade of the fluid pressure
against the fluid velocity and its first order derivatives in the body’s dynamics.
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Indeed we start with the observation that Eqs. (3.91c) can be summarized in the
variational form:

mh00 � `� C J � 00r� D
Z

@S.q/
�.r�.x � h/? C `�/ � nds; 8 p� D .`�; r�/ 2 R

3:

(3.98)

Let us associate with .q; p�/ 2 Q�R
3, with p� D . p�

1 ; p
�
2 ; p

�
3 /, the potential vector

field

u� WD r.ˆ.q; �/ � p�/ D r.
3X

jD1
ˆj.q; �/p�

j /; (3.99)

which is defined on F.q/. The pressure � can be recovered by means of Bernoulli’s
formula which is obtained by combining (3.91a) and (3.92), and which reads:

r� D �
�
@u

@t
C 1

2
r.u2/

	
in F.q/: (3.100)

According to Bernoulli’s formula (3.100) and upon an integration by parts, iden-
tity (3.98) can be turned into:

mh00 � `� C J � 00r� D �
Z

F.q/

�
@u

@t
C 1

2
r.u2/

	
� u�dx; 8 p� D .`�; r�/ 2 R

3:

(3.101)

So far we have only used that the fluid velocity u is irrotational. Let us now use
that it is potential and therefore reads as u D u1 with u1 as follows:

u1.q; �/ WD r.ˆ.q; �/ � q0/ D r.
3X

jD1
ˆj.q; �/q0

j/; (3.102)

where q 2 Q. For any q 2 Q this vector field u1.q; �/ is the only solution
to the div-curl type system in the doubly-connected domain F.q/, constituted
of (3.91b), (3.92), (3.91d), (3.91e), together with the prescription of zero circulation.
Observe that besides the dependence with respect to S0, to � and to the space
variable, u1 depends on q and linearly on q0.

Then Theorem 3.28 will follow from the following lemma.

Lemma 3.29 For any smooth curve q.t/ in Q and every p� D .`�; r�/ 2 R
3, the

following identity holds:

mh00 � `� C J � 00r� C
Z

F.q/

�
@u1
@t

C 1

2
rju1j2

	
� u�dx (3.103)

D .Mg C Ma.q//q
00 � p� C h�a.q/; q

0; q0i � p�;
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where u� is given by (3.99), u1 is given by (3.102), Ma.q/ and �a.q/ are defined
in (3.97) and Definition 3.27.

Proof of Lemma 3.29 We start with observing that, under the assumptions of
Lemma 3.29,

mh00 � `� C J � 00r� D Mg q
00 � p�: (3.104)

Now in order to deal with the last term of the left hand side of (3.103) we use a
Lagrangian strategy. For any q in Q and every p D . p1; p2; p3/ in R

3, let us denote

E1.q; p/ WD 1

2

Z

F.q/
jr.ˆ.q; �/ � p/j2dx: (3.105)

Thus E1.q; p/ denotes of the kinetic energy of the potential part of the flow
associated with a body at position q with velocity p. It follows from classical shape
derivative theory that E1 2 C1�Q � R

3I Œ0;C1/
�
.

Lemma 3.30 For any smooth curve t 7! q.t/ in Q , for every p� 2 R
3, we have:

Z

F.q/

�
@u1
@t

C 1

2
rju1j2

	
� u�dx D EL (3.106)

where u1 is given by (3.128), u� is given by (3.99) and EL denotes the time-
dependent smooth real-valued function:

EL WD
� d
dt

�@E1
@p
.q.t/; q0.t//

� � @E1
@q
.q.t/; q0.t//


� p�: (3.107)

The name of the function EL refers to Euler and Lagrange. For sake of simplicity
below we will simply denote

EL D
�
d

dt

@E1
@p

� @E1
@q

	
� p�:

Let us also introduce a slight abuse of notations which simplifies the presentation
of the proof of Lemma 3.30. For a smooth function I.q; p/, where .q; p/ is running
into Q � R

3, and a smooth curve q.t/ in Q let us denote

�
@

@q

d

dt
I.q; p/

	
.t/ WD .

@

@q
J/
�
q.t/; q0.t/; q00.t//

�
;

where, for .q; p; r/ in Q � R
3 � R

3,

J.q; p; r/ D p
@I

@q
.q; p/C r

@I

@p
.q; p/: (3.108)
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Observe in particular that

d

dt

�
I.q.t/; q0.t//

� D J
�
q.t/; q0.t/; q00.t//

�
;

and

d

dt

�
@I

@q
.q.t/; q0.t//

	
D
�
@

@q

d

dt
I.q; p/

	
.t/: (3.109)

Below, in such circumstances, it will be comfortable to write

@

@q

�
J
�
q.t/; q0.t/; q00.t//

��
instead of

�
@J

@q

	 �
q.t/; q0.t/; q00.t//

�
;

and it will be understood that J is extended from
�
q.t/; q0.t/; q00.t//

�
to general

.q; p; r/ by (3.108).

Proof of Lemma 3.30 We start with computing the right hand side of (3.106). On
the one hand the linearity of u1 with respect to p and then an integration by parts
leads to:

@E1
@p

� p� D
Z

F.q/
u1 � u�dx D

Z

@S.q/
.ˆ � p/.u� � n/ ds:

Then, invoking Reynold’s transport theorem, we get:

@E1
@p

� p� D @

@q

�Z

F.q/
.ˆ � p/ dx

	
� p� �

Z

F.q/
.
@ˆ

@q
� p/ � p�dx: (3.110)

On the other hand, again using Reynold’s formula, we have:

@E1
@q

� p� D
Z

F.q/

�
@u1
@q

� p�
	

� u1 dx C 1

2

Z

@S.q/
ju1j2.u� � n/ ds: (3.111)

Differentiating (3.110) with respect to t, we obtain:

d

dt

@E1
@p

�p� D d

dt

@

@q

�Z

F.q/
.ˆ � p/ dx

	
�p�� d

dt

�Z

F.q/
.
@ˆ

@q
� p/ � p�dx

	
: (3.112)

With the abuse of notations mentioned above we commute the derivatives involved
in the first term of the right hand side, so that the identity (3.112) can be rewritten
as follows:

d

dt

@E1
@p

�p� D @

@q

d

dt

�Z

F.q/
.ˆ � p/ dx

	
�p�� d

dt

�Z

F.q/
.
@ˆ

@q
� p/ � p�dx

	
: (3.113)
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Moreover, using again Reynold’s formula, we have:

d

dt

�Z

F.q/
.ˆ � p/ dx

	
D
Z

F.q/
@t.ˆ � p/ dx C

Z

@S.q/
.ˆ � p/.u1 � n/ ds (3.114)

D
Z

F.q/
@t.ˆ � p/ dx C 2E1.q; p/; (3.115)

by integration by parts.
We infer from (3.113) and (3.114), again with the abuse of notations mentioned

above, that:

EL D@E1
@q

C @

@q

�Z

F.q/
@t.ˆ � p/ dx

�
� p� � d

dt

�Z

F.q/
.
@ˆ

@q
� p/ � p�dx

	
:

(3.116)

Thanks to Reynold’s formula, we get for the second term of the right hand side

@

@q

�Z

F.q/
@t.ˆ � p/ dx

�
�p� D

Z

F.q/

@

@q
.@t.ˆ �p// �p� dxC

Z

@S.q/
@t.ˆ �p/.u� �n/ ds;

(3.117)
and for the last one:

d

dt

�Z

F.q/

�
@ˆ

@q
� p
	

� p�dx

	
D
Z

F.q/
@t

��
@ˆ

@q
� p
	

� p�
	

dx

C
Z

@S.q/

��
@ˆ

@q
� p
	

� p�
	
.u1 � n/ ds: (3.118)

Using again (3.109) for the first term and integrating by parts the second one, we
obtain:

d

dt

�Z

F.q/

�
@ˆ

@q
� p
	

� p�dx

	
D
Z

F.q/

@

@q

�
@t.ˆ � p/� � p� dx (3.119)

C
Z

F.q/

�
@u1
@q

� p�
	

� u1 dx:

Plugging the expressions (3.111), (3.117) and (3.119) into (3.116) and simplifying,
we end up with:

EL D
Z

@S.q/

�
@t.ˆ � p/C 1

2
ju1j2

�
.u� � n/ ds:

Upon an integration by parts, we recover (3.106) and the proof is then completed.
ut
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Now, we observe that E1.q; p/, as defined by (3.105), can be rewritten as:

E1.q; p/ D 1

2
Ma.q/p � p; (3.120)

where Ma.q/ is defined by (3.97). Indeed this allows us to prove the following
result.

Lemma 3.31 For any smooth curve q.t/ in Q, for every p� 2 R
3, we have:

EL D Ma.q/q
00 � p� C h�a.q/; q

0; q0i � p�: (3.121)

Proof of Lemma 3.31 Using (3.120) in the definition (3.107) of EL we have

EL D Ma.q/q
00 � p� C

��
DMa.q/ � q0�q0 � p� � 1

2

��
DMa.q/ � p��q0 � q0:

Then

EL D Ma q
00 � p� C

X
.Ma/

k
i;j q

0
kq

0
jp

�
i � 1

2

X
.Ma/

k
i;j q

0
iq

0
jp

�
k ;

where the sums are over 1 6 i; j; k 6 3. Let us recall the notation .Ma/
k
i;j.q/

in (3.95). A symmetrization with respect to j and k of the second term and an
exchange of i and k in the last sum of the right hand side above leads to the result.

ut
Then Lemma 3.29 straightforwardly results from the combination of (3.104),

Lemmas 3.30 and 3.31. ut

3.3.3 Reduction to an ODE in the General Case: Statement of
Theorem 3.32

Now let us deal with the general case of a nonzero circulation � . Next result,
obtained in [8], extends Theorem 3.28 and establishes a reformulation of the system
in terms of an ordinary differential equation in the general case of a circulation
� 2 R.

Theorem 3.32 Let be given the open regular connected and simply connected
bounded cavity �, the initial closed domain S0 � � occupied by the body, the
initial solid translation and rotation velocities .`0; r0/ in R2�R, the circulation � in
R, and u0 the associated compatible initial fluid velocity according to Definition 3.5.
There exists F in C1.Q � R

3IR3/ depending only on S0; � and �, and vanishing
when � D 0, such that, up to the first collision, System (3.91) is equivalent to the
second order ODE:

.Mg C Ma.q//q
00 C h�a.q/; q

0; q0i D F.q; q0/; (3.122)
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with Cauchy data q.0/ D 0 2 Q; q0.0/ D .`0; r0/ 2 R
2 � R, where

Ma.q/ and its associated a-connection �a.q/ are given by Theorem 3.28. For
a solid position q 2 Q the fluid velocity u.q; �/ is uniquely determined as the
solution of a div-curl type system in the doubly-connected domainF.q/, constituted
of (3.91b), (3.92), (3.91d), (3.91e), together with the prescription of the circulation
� .

The local-in-time existence and uniqueness of smooth solutions stated in The-
orem 3.6 therefore simply follows from Theorem 3.32 and the Cauchy-Lipschitz
theorem. That the life-time of such a smooth solution can only be limited by a
collision will follow from an energy argument below, cf. Sect. 3.3.5.

Indeed we are going to provide a rather explicit definition of the force term
F.q; q0/. Let us first introduce a normalized stream function for the circulation term:
for every q 2 Q, there exists a unique C.q/ in7

R such that the unique solution
 .q; �/ of the Dirichlet problem:

� .q; �/ D 0 in F.q/  .q; �/ D C.q/ on @S.q/  .q; �/ D 0 on @�;
(3.123a)

satisfies
Z

@S.q/

@ 

@n
.q; �/ds D �1: (3.123b)

Observe that for any q 2 Q, C.q/ < 0 and that C 2 C1.QI .�1; 0// and
depends on S0 and�. Eventually, we define:

B.q/ WD
Z

@S.q/

�
@ 

@n

�
@ˆ

@n
� @ˆ

@	

		
.q; �/ ds; (3.124)

E.q/ WD �1
2

Z

@S.q/

 ˇ̌
ˇ̌@ 
@n

ˇ̌
ˇ̌
2
@ˆ

@n

!
.q; �/ ds; (3.125)

and, for .q; p/ in Q � R
3, the force term

F.q; p/ WD �2E.q/C � p � B.q/: (3.126)

The notations E and B are chosen on purpose to highlight the analogy with the
Lorentz force acting on a charged particle moving under the influence of a couple
of electromagnetic fields E and B.

7The function C.q/ is actually the opposite of the inverse of the condenser capacity of S.q/ in�.
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3.3.4 Proof of Theorem 3.32

As mentioned above (3.101) only relies on the fact that the fluid velocity is
irrotational and is therefore still granted. However the fluid velocity u.q; �/
now involves an extra term due to the non-vanishing circulation. Indeed, for
any q 2 Q, one obtains, using (3.123) and (3.96), that the solution u.q; �/
to the div-curl type system in the doubly-connected domain F.q/, constituted
of (3.91b), (3.92), (3.91d), (3.91e), together with the prescription of circulation �
takes the form:

u.q; �/ D u1.q; �/C u2.q; �/; (3.127)

where u1.q; �/ is given by (3.102) as in the potential case and the new contribution
u2.q; �/ is defined by

u2.q; �/ WD �r? .q; �/: (3.128)

So besides the dependence with respect to S0, to � and to the space variable, u2
depends on q and linearly on � . Therefore plugging the decomposition (3.127)
into (3.101) leads to

m`0 � `� C J r0r� C
Z

F.q/

�@u1
@t

C 1

2
rju1j2


� u�dx D �

Z

F.q/

�1
2

rju2j2
� � u�dx

�
Z

F.q/

�@u2
@t

C 1

2
r.u1 � u2/

� � u�dx; (3.129)

for all p� WD .`�; r�/ 2 R
3, with u� given by (3.99).

By a simple integration by parts, on obtains that the first term in the right hand
side above satisfies:

�
Z

F.q/

�
1

2
rju2j2

	
� u�dx D �2E.q/ � p�; (3.130)

where E.q/ defined in (3.125).
Then the reformulation of Eqs. (3.91g–h) mentioned in Theorem 3.32 will follow

from (3.129), (3.130), Lemma 3.29 and from the following identity:

�
Z

F.q/

�
@u2
@t

C r.u1 � u2/
	

� u�dx D �
�
q0 � B.q/

� � p�; (3.131)

where B.q/ is defined in (3.124). We refer to [11] for the proof of (3.131).
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3.3.5 The Role of the Energy

An important feature of the system (3.122) is that it is conservative. Let us denote
for any .q; p/ in Q � R

3,

E.q; p/ WD 1

2
.Mg C Ma.q//p � p � 1

2
�2C.q/; (3.132)

with C.q/ given by (3.123). Indeed one can prove that for any q 2 Q,

E.q/ D 1

2
DC.q/; (3.133)

where the notation DC.q/ stands for the derivative of C.q/ with respect to q,
cf. Lemma 2:4 in[11] for a proof, so that the second term in the right-hand-side
of (3.132) can be seen as a potential energy related to the first term in the right-
hand-side of (3.126). Observe that E.q; p/ is the sum of two positive terms and that
in addition to its dependence on q and p, the energy E depends on S0;m;J ; � and
�. Next result proves that E.q; q0/ is indeed the natural total kinetic energy of the
“fluid+solid” system.

Proposition 3.33 For any q D .h; �/ 2 C1.Œ0;T�IQ/ satisfying (3.122), as far as
there is no collision,

E.q; q0/ D 1

2

Z

F.q/
u.q; �/2 dx C 1

2
m.h0/2 C 1

2
J .� 0/2:

Proof First we have by integrations by parts that

1

2

Z

F.q/
u22 dx D �1

2
�2C.q/ and

Z

F.q/
u1 � u2 dx D 0:

Then we use (3.120) and the decomposition (3.127) to conclude. ut
The following result is therefore very natural.

Proposition 3.34 For any q 2 C1.Œ0;T�IQ/ satisfying (3.122), as far as there is
no collision, E.q; q0/ is constant in time.

Proof Let us give a proof of Proposition 3.34 which uses the ODE formula-
tion (3.122). We start with the observation that the energy E.q; q0/ as defined
in (3.132) has for time derivative

�
E.q; q0/

�0 D .Mg C Ma.q//q
00 � q0 C 1

2
.DMa.q/ � q0/q0 � q0 � 1

2
�2DC.q/ � q0:

(3.134)

Now, thanks to (3.122) and (3.126), we have

.Mg C Ma.q//q
00 � q0 D �h�a.q/; q

0; q0i � q0 C F.q; q0/ � q0; (3.135)
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and

F.q; q0/ � q0 D �2E.q/ � q0: (3.136)

We introduce the matrix

Sa.q; q
0/ WD

 
X

16i63
.�a/

k
i;j.q/q

0
i

!

16k;j63

; (3.137)

so that

h�a.q/; q
0; q0i D Sa.q; q

0/q0: (3.138)

Combining (3.134)–(3.138) we obtain

�
E.q; q0/

�0 D �2
�
E.q/ � 1

2
DC.q/

� � q0 C �1
2
DMa.q/ � q0 � Sa.q; q

0/
�
q0 � q0:

The first term of the right hand side vanishes thanks to (3.133) and the proof of
Proposition 3.34 then follows from the following result.

Lemma 3.35 For any .q; p/ 2 Q �R
3, the matrix 1

2
DMa.q/ � p� Sa.q; p/ is skew-

symmetric.

Proof of Lemma 3.35 We start with the observation that DMa.q/ � p is the 3 � 3

matrix containing the entries

X

16k63
.Ma/

k
i;j.q/ pk; for 1 6 i; j 6 3:

On the other hand, the 3 � 3 matrix Sa.q; p/ contains the entries

1

2

X

16k63

�
.Ma/

k
i;j C .Ma/

j
i;k � .Ma/

i
k;j


.q/ pk;

for 1 6 i; j 6 3. Therefore, the 3 � 3 matrix DMa.q/ � p � Sa.q; p/ contains the
entries

cij.q; p/ D �1
2

X

16k63

�
.Ma/

j
i;k � .Ma/

i
k;j


.q/ pk;

for 1 6 i; j 6 3. Using that the matrix Ma.q/ is symmetric, we get that cij.q; p/ D
�cji.q; p/ for 1 6 i; j 6 3, which ends the proof. ut
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This ends the proof of Proposition 3.34.8 ut
If we assume that the body stays at distance at least ı > 0 from the boundary we

may infer from Proposition 3.34 a bound of the body velocity depending only on the
data and on ı. Indeed we have the following immediate corollary of Proposition 3.34
and of the regularity properties of the functions C.q/ and Ma.q/. We denote Qı WD
fq 2 R

3 W d.S.q/; @�/ > ıg.

Corollary 3.36 Let S0 � �, p0 2 R
3 and .�;m;J / 2 R � .0;C1/ � .0;C1/;

ı > 0; q 2 C1.Œ0;T�IQı/ satisfying (3.122) with the Cauchy data .q; q0/.0/ D
.0; p0/. Then there exists K > 0 depending only on S0;�; p0; �;m;J ; ı such that
jq0jR3 6 K on Œ0;T�.

This entails in particular that the life-time of a smooth solution to (3.122) can
only be limited by a collision and therefore completes the proof of Theorem 3.6.

3.3.6 Zero Radius Limit

Let us now turn our attention to the limit of the dynamics when the size of the
solid goes to 0 that is considering an initial domain for the body of the form (3.5)
with the inertia scaling described in Definition 3.1. This aims to extend the analysis
performed in Sect. 3.2.6 to the case where the “fluid+solid” system occupies a
bounded domain rather than the whole plane.

Below, we will use the following notation: for S0 � �; p0 D .`0; r0/ 2 R
3,

.m;J / 2 .0;C1/ � .0;C1/, � in R (resp. in R
�) in the case of a massive

(respectively massless) particle, for every " 2 .0; 1� small enough to ensure that
the set S"0 defined by (3.5) satisfies S"0 � �, we denote .q";T"/ the maximal
solution to (3.122) associated with the coefficients M", �"a and F" which are
themselves associated with S"0 ;m";J " and � (as M, �a and F were associated with
S0;m;J and � ) where m";J " are given in Definition 3.1, and with the initial data
.q"; .q"/0/.0/ D .0; p0/:

Theorem 3.37 Let S0 � �; p0 D .`0; r0/ 2 R
3, .m;J / 2 .0;C1/ � .0;C1/, �

inR (resp. inR�) in the case of a massive (respectively massless) particle. Let .h;T/
be the maximal solution to (3.8) (resp. h be the global solution to (3.9)). Then, as
" ! 0, lim infT" > T (resp. T" �! C1) and h" �* h in W2;1.Œ0;T 0�IR2/ (resp.
in W1;1.Œ0;T 0�IR2/) weak-? for all T 0 2 .0;T/ (resp. for all T 0 > 0). Furthermore
in the case a massive particle, one also has that "�" �* 0 in W2;1.Œ0;T 0�IR/
weak-? for all T 0 2 .0;T/.

8It is also possible to achieve an alternative proof of Proposition 3.34 thanks to the original
PDE formulation of the “fluid+solid” system, relying on the equivalence between the ODE and
PDE formulations obtained in Theorem 3.32 and on the reformulation of the energy obtained in
Proposition 3.33.
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In the statement above it is understood that q" was decomposed into q" D
.h"; �"/. It follows from Theorem 3.32 that Theorem 3.37 implies Theorem 3.7.

Let us provide a scheme of proof of Theorem 3.37.

Scheme of Proof of Theorem 3.37 Using that for the inertia regimes considered in
Definition 3.1 the genuine inertia matrix scales as in (3.87), the equation for q"

reads:
�
"˛I"MgI" CM"

a.q
"/

.q"/00 C h�"a.q"/; .q"/0; .q"/0i D �2E".q"/C �.q"/0 �B".q"/;

(3.139)

where the added inertia matrix M"
a, the a-connection �"a and the electric and

magnetic type terms E" and B" are associated with the body of size " as mentioned
above. Here one crucial step in passing to the limit in (3.139) is to find some
uniform bounds in ". The energy is of course a natural candidate in order to get
such estimates. In particular one may turn toward an appropriate modification of
Corollary 3.36 in the zero radius limit. A difficulty is that the potential part of
the energy (corresponding to the last term in (3.132)) diverges logarithmically
as " ! 0C. However such a contribution can be discarded from the energy
conservation since it does not depend on the solid position and velocity. Indeed
an appropriate renormalization of the energy provides an uniform estimate of
"min.1; ˛2 / j.h"/0; ".�"/0/jR3 at least till the solid stays away from the external bound-
ary. Unfortunately in the massless case the coefficient ˛ satisfies ˛ > 0 and the
previous estimate is not sufficient.9

One then turns toward the search for an asymptotic normal form of (3.139)
with the hope that more structure shows up in the zero radius limit and reveals
another candidate in order to obtain some uniform bounds in ". In order to do so
we first establish some expansions in the limit " ! 0 of M"

a, �
"
a , E" and B". These

expansions are obtained by a multi-scale analysis of the Kirchhoff potentials and
of the stream functions and repeated use of Lamb’s lemma, that is Lemma 3.25.
More precisely these expansions involve two scales corresponding respectively to
variations over length O.1/ and O."/ respectively on @� and @S".q/. The profiles
appearing in these expansions are obtained by successive corrections, considering
alternatively at their respective scales the body boundary from which the external
boundary seems remote and the external boundary from which the body seems tiny,
so that good approximations are given respectively by the case without external
boundary and without the body. We refer to [11] for more details on this intricate
process and sum up the results below. The leading term of the expansions of M"

a,
�"a and B" in the zero-radius limit are given, up to an appropriate scaling, by the
terms obtained in the case where the rigid body is of size " D 1 and is immersed in
a fluid filling the whole plane, that is in the case tackled in Theorem 3.12. On the

9Indeed the case where ˛ � 2 is the most delicate and we will focus on it.
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other hand the leading term of the expansion of E" in the zero-radius limit is given,
up to an appropriate scaling, by the field

E0.q/ WD �
�

u�.h/?
u�.h/ � R.�/


	
; where q D .h; �/: (3.140)

We recall that u� and 
 were defined respectively above (3.8) and in (3.34). Given
ı > 0 and "0 in .0; 1/, we define the open set of the shrinking body positions at
distance ı from the boundary for a radius of order " with 0 < " < "0:

Qı;"0 WD f."; q/ 2 .0; "0/ � R
3 = d.S".q/; @�/ > ıg:

Proposition 3.38 Let ı > 0. There exists "0 in .0; 1/, E1.q/ and B1.q/ in
L1.QıIR3/, Mr in L1.Qı;"0 IR3�3/, �r in L1.Qı;"0 IBL.R3 � R

3IR3//, and Er

and Br in L1.Qı;"0 IR3/ such that, for all ."; q/ inQı;"0 , with q D .h; �/,

M"
a.q/ D "2I"

�
Ma;� C "2Mr."; q/


I"; (3.141)

h�"a.q/; �; �i D "I"
�h�a;� ; I"�; I"�i C "2h�r."; q/; I"�; I"�i

�
; (3.142)

E".q/ D I"
�
E0.q/C "E1.q/C "2Er."; q/


; (3.143)

B".q/ D "I�1
"

�
B� C "B1.q/C "2Br."; q/


: (3.144)

We recall that Ma;� and B� are given by Theorem 3.12 as associated with the
rigid body of size " D 1 and as if the body was immersed in a fluid filling the
whole plane, �a;� denotes the a-connection associated with Ma;� , I" is the diagonal
matrix I" WD diag .1; 1; "/ and let us avoid any confusion by highlighting that the �
in (3.142) stands for the application to any p in R

3 (which determines completely
the bilinear symmetric mapping). Let us also recall that quite explicit expressions of
Ma;� , B� and �a;� are given in Sect. 3.2.2.

Therefore, using (3.143), (3.144), (3.140) and (3.36), one obtains that the leading
part of the expansion of the right hand side of (3.139) is

I"
�
�2E0.q

"/C �
�
I".q

"/0
� � B�"


D I"

�
� Op" � B�"


; (3.145)

for any Op" of the form

Op" D ..h"/0 � �u�.h"/; ".�"/0/t C �B�" ; (3.146)

with � in R.

An Instructive Digression The identities (3.145) and (3.146) remind a well-known
modulation strategy used by Berkowitz and Gardner, cf. [1], in order the tackle the
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zero-mass limit of the following dynamics of a light particle in a smooth electro-
magnetic field:

"2q00 D E.q/C q0 � B.q/ with the condition E.q/ � B.q/ D 0: (3.147)

Here we have dropped the index " of q for sake of clarity and we will assume that
the fields E.q/ and B.q/ (which actually stand here for electric and magnetic fields)
smoothly depend on its argument q but not on " otherwise. The setting of [1] is
slightly more general but the toy-system above will be sufficient for the exposition
of the gain obtained by modulation in the analysis. The starting point is that a
naive application of the Cauchy-Lipschitz theorem does only provide existence of
a solution over a time which may vanish as " converges to 0. The difficulty resides
within the lack of sign or structure of the E.q/ term which prevents from obtaining
straightforwardly some uniform estimates by energy. To overcome this difficulty
Berkowitz and Gardner introduced the modulated variable:

Qp D q0 � u.q/ where u.q/ satisfies E.q/C u.q/� B.q/ D 0: (3.148)

Observe that the existence for any q of such a vector u.q/ is guaranteed by the
conditionE.q/�B.q/ D 0 and that the set of such vectors is an one-dimensional affine
space. Indeed in [1] Berkowitz and Gardner makes use of the following explicit field

u.q/ WD jB.q/j�2 E.q/� B.q/; (3.149)

which does satisfy the condition in (3.148) and which turns to be the actual physical
drift velocity for this system.

Using the chain-rule, one obtains Qp0 D q00 �q0 �ru.q/, and then, by using (3.147)
and (3.148),

"2 Qp0 D E.q/C q0 � B.q/� "2q0 � ru.q/ D Qp � B.q/� "2.Qp C u.q// � ru.q/:

Therefore, one obtains the following gyroscopic normal form:

Qp0 D 1

"2
Qp � B.q/� .Qp C u.q// � ru.q/ (3.150)

Now that the E.q/ has been absorbed by the choice of the modulated variable, the
only factor with a singular (i.e. negative) power of " is in front of the B.q/ term
and this term disappears when taking the inner product of (3.150) with p in an
energy-type estimate. Some Gronwall estimates on (3.150) and (3.148) then provide
uniforms bound of q and q0. In particular the second Gronwall estimate relies on the
fact that the modulation is a term of lower order in term of time derivative with
respect to q0.

Let us now go back to our search for an asymptotic normal form of (3.139) and
let see how to extend the analysis performed above. We first observe that the drift
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velocity (naively) computed as in (3.149) with E0.q"/ and B�" instead of E.q/ and
B.q/ corresponds to a nonzero � in (3.146). Still in the case of (3.145) one observes
as we already did in the proof of Theorem 3.26 that the natural counterpart to .h"/0
for what concerns the angular velocity is rather ".�"/0 than .�"/0. Moreover we will
benefit from the fact that the contribution due to ".�"/0 in the first two coordinates
of the result of the cross product in the right hand side of (3.145) provides the
term (3.90) whose special structure somehow allows to gain one factor ". It turns
out that the leading part of the relevant drift velocity in order to pass to the limit
in (3.139) is given by (3.146) with � D 0, that is by

Op" D ..h"/0 � �u�.h
"/; ".�"/0/t: (3.151)

Still the leading terms of the inertia matrix "˛I"MgI" CM"
a.q

"/ in front of .q"/00
in (3.139) is10 I"."˛MgC"2Ma;� /I", and therefore, in order to cover the case where
˛ � 2, one has to investigate further the structure of the other terms of Eq. (3.139),
and to hope that a recombination as nice as in (3.145) occurs at the next order. This
is actually why we had expanded up to order "2 in Proposition 3.38. One observes in
particular from (3.142) that at order " the a-connection �"a comes into play. Indeed
combining the previous expansions of �"a , E" and B" one obtains

�2E".q"/C �.q"/0 � B".q"/� h�"a.q"/; .q"/0; .q"/0i (3.152)

D I"
h
� Op" � B�"

C"
�
�2E1.q

"/C � I".q
"/0 � B1.q

"/� h�a;�" ; I".q
"/0; I".q"/0i


C O."2/

i
;

Above and thereafter the notation O."2/ holds for a term of the form "2F."; q"; Op"/
where F is a vector field which is weakly nonlinear in the sense that there exists
ı > 0, "0 2 .0; 1/ and K > 0 such that for any ."; q; p/ in Qı;"0 � R

3,
jF."; q; p/jR3 � K.1C jpjR3 C "jpj2

R3
/. Indeed the way (3.152) has to be understood

is even more intricate because among the terms hidden in the O."2/ there is a term
for which one obtains such an order only when performing a Gronwall estimate for
an energy-type method. More precisely one term abusively included in the notation
O."2/ in (3.152) is of the formO."/F.q"/, whereF is a vector field in C1.R��IR3/
weakly gyroscopic in the sense that for any ı > 0 and "0 2 .0; 1/ there exists K > 0
depending on S0, �, � and ı such that for any smooth curve q.t/ D .h.t/; �.t//
in fx 2 � = d.x; @�/ > ıg � R, we have, for any t � 0 and any " 2 .0; "0/,
j R t
0

Qp � F.q/j � "K.1C t C R t
0

jQpj2
R3
/, with Qp D .h0 � �u�.h/; "� 0/t.

A striking and crucial phenomenon is that some subprincipal contributions (that
is, of order ") of the right hand side of (3.152) can be gathered into an a-connection

10Observe that one recovers the same inertia for the leading terms ( for which the hierarchy depends
on whether ˛ � 2 or ˛ � 2) than in Sect. 3.2.6 for the case where the “fluid+solid” system occupies
the full plane, cf. (3.86).



3 Motion of a Particle in a 2D Perfect Flow 197

term involving the bilinear mapping �"a obtained in the case where the rigid body is
of size " D 1 and is immersed in a fluid filling the whole plane, but applied to the
modulated variable as follows11:

�2E1.q
"/C � I".q

"/0 � B1.q
"/� h�a;�" ; I".q

"/0; I".q"/0i
D �h�a;�" ; Op"; Op"i C �.uc.q

"/; 0/t � B�" C O."/; (3.153)

where Op" is given by (3.151), uc is a smooth vector field on Q with values in R
2

which depends on � and S0. Indeed a quite explicit expression can be given by
uc WD r?

h

�
Dh �.h/ � R.�/
�, where Dh denotes the derivative with respect to h.

We refer here again to [11] for a proof of (3.153); it relies on explicit computations
of the profiles E1.q/ and B1.q/ thanks to geometric quantities and some tedious
algebraic computations.

Next the second term in the right hand side of (3.153) can be absorbed by the
principal term in the right hand side of (3.152) up to a modification of size " of the
arguments that is, thanks to the following second order modulation:

Qp" WD �
h0
" � �Œu�.h"/C "uc.q"/�; "#

0
"

�t
: (3.154)

Observe also that, as long as the solid does not touch the boundary, the drift term
in the velocity of the center of mass is bounded. Indeed one may easily proves that
there exists ı > 0, "0 in .0; 1/ and K > 0 such that for any ."; q/ in Qı;"0 with
q D .h; �/, ju�.h/C "uc.q/jR3 � K.

Thus we deduce from (3.152) and (3.153) that

�2E".q"/C �.q"/0 � B".q"/� h�"a.q"/; .q"/0; .q"/0i
D I"

h
� Qp" � B�" � "h�a;�" ; Qp"; Qp"i C O."2/

i
; (3.155)

Using now (3.141) and a few further tedious manipulations Eq. (3.139) can now
be recast into the following geodesic-gyroscopic normal form:

�
"˛Mg C "2Ma;�"


Qp0
" C "h�a;�" ; Qp"; Qp"i D � Qp" � B�" C O."min.2;˛//: (3.156)

Observe how (3.156) is close to (3.88): the only two differences are the modulation
of p" into Qp" and the remainder O."min.2;˛//, which actually suffers from the same
abuse of notation than the term O."2/ described below (3.152). At least till the solid

11As for (3.145), this relation is algebraic, in the sense that it does not rely on the fact that q"

satisfies (3.122).
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stays away from the external boundary one may take advantage of this normal form
to obtain an estimate of the modulated energy

1

2

�
"˛Mg C "2Ma;�"


Qp" � Qp";

thanks to a Gronwall estimate. This provides uniform bounds of j..h"/0; ".�"/0/jR3 .
This estimate in turn allows to pass to the limit proceeding as in the proof of
Theorem 3.26. The issue of a possible collision is then tackled in a bootstrapping
argument thanks to the behavior of the limit systems.

More precisely we first prove that the lifetime T" of the solution q", which can
be only limited by a possible encounter between the solid and the boundary @�,
satisfies the following: there exist "0 > 0, T > 0 and ı > 0, such that for any " in
.0; "0/, we have T" � T and moreover on Œ0;T�, one has ."; q"/ 2 Qı;"0 .

Then, using again the uniform estimates obtained thanks to the asymptotic
geodesic-gyroscopic normal form (3.156) one establishes the desired convergence
on any time interval during which we have a minimal distance between S".q/ and
@�, uniform for small ". This consists in passing to the weak limit, with the help
of all a priori bounds, in the two first components of each term of (3.156). It finally
only remains to extend the time interval on which the above convergences are valid
to any time interval. ut

3.4 Case of an Unbounded Flow with Vorticity

In this section we investigate the case of a rigid body immersed in an unbounded
flow with vorticity.

3.4.1 Statement of an Existence and Uniqueness Theorem à la
Yudovich in the Body Frame

For the Cauchy problem it is more convenient to consider the body frame which
does not depend on time, as we did in Sect. 3.2. We will therefore start back from
Eqs. (3.38)–(3.39). In the sequel we will use an abuse of notation and still denote by
! the vorticity in the body frame given by !.t; x/ WD curl v.t; x/: Taking the curl of
Eq. (3.38) we get

@t! C �
.v � ` � rx?/ � r�! D 0 for x 2 F0: (3.157)

Due to the equation of vorticity (3.157) the following quantities are conserved as
time proceeds, at least for smooth solutions: for any t > 0, for any p in Œ1;C1�,

k!.t; �/kLp.F0/ D k!0kLp.F0/: (3.158)
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In the case of a fluid alone, the conservation laws (3.158) allowed Yudovich, and
DiPerna and Majda to construct some global-in-time solutions of the 2d Euler
equations in the case of a velocity with finite local energy and Lp initial vorticity,
with p > 1. In the case p D C1 Yudovich also obtained a uniqueness result using
in particular that the corresponding fluid velocity is in the space LL.F0/ of log-
Lipschitz R

2-valued vector fields on F0, that is the set of functions f 2 L1.F0/
such that

k fkLL.F0/ WD k fkL1.F0/ C sup
x 6Dy

j f .x/ � f .y/j
j.x � y/.1C ln� jx � yj/j < C1: (3.159)

These results can be adapted to the case where there is a rigid body. In these notes
we will focus on a result of global in time existence and uniqueness similar to the
celebrated result by Yudovich about a fluid alone.

Let us first give a global weak formulation of the problem by considering ( for
the solution as well as for test functions) a velocity field on the whole plane, with
the constraint to be rigid on S0. We introduce the following space

H WD
n
‰ 2 L2loc.R

2/
.

div‰ D 0 in R
2 and D‰ D 0 in S0

o
;

where D‰ WD r‰ C .r‰/T . It is classical that the space H can be recast thanks to
the property:

9.`‰; r‰/ 2 R
2 � R; 8x 2 S0; ‰.x/ D `‰ C r‰x

?: (3.160)

More precisely, H D
n
‰ 2 L2loc.R

2/
.

div‰ D 0 in R
2 and satisfies (3.160)

o
,

and the ordered pair .`‰; r‰/ above is unique. Let us also introduce

QH WD
n
‰ 2 H

.
‰jF0

2 C1c .F0/
o
;

where ‰jF0
denotes the restriction of ‰ to the closure of the fluid domain. We also

introduce for T > 0, QHT WD C1.Œ0;T�I QH/: When .u; v/ 2 H � QH, we denote by

< u; v >WD m `u � `v C J ru rv C
Z

F0

u � v dx;

where we use the notations u and v for the restrictions of u and v to F0. Our
definition of a weak solution is the following.
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Definition 3.39 (Weak Solution) Let us be given v0 2 H and T > 0. We say that
v 2 C.Œ0;T�IH � w/ is a weak solution to (3.38)–(3.41) in Œ0;T� if for any test
function‰ 2 QHT ,

< ‰.T; �/; v.T; �/ > � < ‰.0; �/; v0 >�D
Z T

0

<
@‰

@t
; v > dt

C
Z T

0

Z

F0

v � ��v � `v � rvx
?� � r�‰ dx dt �

Z T

0

Z

F0

rv v
? �‰ dx dt

�
Z T

0

mrv `
?
v � `‰ dt: (3.161)

We say that v 2 C.Œ0;C1/IH �w/ is a weak solution to (3.38)–(3.41) in Œ0;C1/

if it satisfies (3.161) for all T > 0.
Definition 3.39 is legitimate since a classical solution to (3.38)–(3.41) in Œ0;T�

is also a weak solution. This follows easily from an integration by parts in space
which provides the identity on Œ0;T�:

< @tv;‰ >D
Z

F0

v � ��v � `v � rvx
?� � r�‰ dx �

Z

F0

rv v
? �‰ dx � mrv `

?
v � `‰;
(3.162)

and then from an integration by parts in time.
In the sequel we will often drop the index of `v and rv and we will therefore rather

write ` and r. We will equivalently say that .`; r; v/ is a weak solution to (3.38)–
(3.41).

One has the following result of existence of weak solutions for the above system,
the initial position of the solid being given.

Theorem 3.40 For any v0 2 H with the restriction of curl0 to F0 in L1
c .F0/, there

exists a unique weak solution v 2 C.Œ0;C1/IH � w/ to (3.38)–(3.41) in Œ0;C1/.
Moreover .`; r/ is in C1.RCIR2 � R/, v is in L1.RCILL.F0// and curl v is in
L1.RCIL1

c .F0//.
Going back to the original frame Theorem 3.40 implies Theorem 3.9. Regarding

the initial data, let us observe that with any .`0; r0/ 2 R
2 � R, !0 2 L1

c .F0/, one
may associate v0 2 H by setting v0 D `0 C r0x? in S0 and v0 D u0, where u0 is the
compatible initial velocity associated with `0, r0 and !0 by Definition 3.8.

3.4.2 Proof of Theorem 3.40

In order to take into account the velocity contribution due to the vorticity we
consider the Green’s function G.x; y/ of F0 with Dirichlet boundary conditions.
We also introduce the function K.x; y/ D r?G.x; y/ known as the kernel of the
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Biot-Savart operatorKŒ!� which therefore acts on ! 2 L1
c .F0/ through the formula

KŒ!�.x/ D
Z

F0

K.x; y/!.y/ dy:

It is classical that KŒ!� is in LL.F0/, divergence-free, tangent to the boundary and
satisfies curlKŒ!� D ! and KŒ!�.x/ D O

�jxj�2� as x ! 1, (so that it is square-
integrable), and its circulation around @S0 is given by

R
@S0 KŒ!� � 	 ds D � RF0

! dx:

Then, given ! in L1
c .F0/, ` in R

2, r and � in R, there is a unique solution v in
LL.F0/ to the following system:

div v D 0 and curl v D ! for x 2 F0;

v � n D �
`C rx?� � n for x 2 @S0 and

Z

@S0
v � 	 ds D �;

v �! 0 as x ! 1:

Moreover v is given by

v D Qv C ˇH; (3.163)

with Qv WD KŒ!�C `1rˆ1 C `2rˆ2 C rrˆ3 and ˇ WD � C
Z

F0

! dx:

We start with looking for some a priori estimates that is to some estimates satisfied
by smooth solutions to (3.38)–(3.41). From Kelvin’s theorem and the vorticity
equation (3.157) we deduce, at least for smooth solutions, the estimates (3.158),
the conservation of the total vorticity and

� D
Z

@S0
v0 � 	 ds and

Z

F0

!.t; x/ dx D
Z

F0

!0.x/ dx:

In particular it follows from these two conservation laws that the coefficient ˇ
in (3.163) is constant in time. Regarding the energy observe that Qv is in L2.F0/
whereas v is not12 unless ˇ D 0. Still we have the following result.

Proposition 3.41 There exists a constant C > 0 (depending only on S0, m and
J ) such that for any smooth solution .`; r; v/ of the problem (3.38)–(3.41) on the
time interval Œ0;T�, with compactly supported fluid vorticity, the energy-like quantity
defined by:

QE.t/ WD 1

2

�
mj`.t/j2 C J r.t/2 C

Z

F0

Qv.t; �/2dx
	
;

12It is interesting to compare the decomposition above with the one used in Sect. 3.2, cf. (3.54).
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satisfies the inequality QE.t/ 6 QE.0/eCjˇjt:

Remark 3.42 In the case where ˇ D 0, that is, when the solution is of finite energy,
the energy is conserved.

Proof We start by recalling that a classical solution satisfies (3.162), and we use the
decomposition (3.163) in the left hand side. One has for all t:

Qv D O
�
1

jxj2
	

and r Qv D O
�
1

jxj3
	

as x ! 1: (3.164)

We use an integration by parts for the first term of the right hand side of (3.162) to
get that for any test function ‰ 2 QHT ,

m `0 � `‰ C J r0r‰ C
Z

F0

@t Qv �‰ dx D �
Z

F0

‰ � ��v � ` � rx?� � r� v dx

�
Z

F0

rv? �‰ dx � mr`? � `‰:

Then, using a standard regular truncation process, we obtain that the previous
identity is still valid for the test function ‰ defined by ‰.t; x/ D Qv.t; x/ for .t; x/
in Œ0;T� � F0 and ‰.t; x/ D `.t/C r.t/x? for .t; x/ in Œ0;T� � S0. Hence we get:

QE 0.t/ D �
Z

F0

Qv � ��v � ` � rx?� � r� v dx �
Z

F0

rv? � Qv dx

D �
Z

F0

Qv �
�
.v � ` � rx?/ � r Qv


dx � ˇ

Z

F0

Qv � .. Qv � r/H/ dx

Cˇ
Z

F0

Qv � ..` � r/H/ dx � ˇr
Z

F0

Qv � .H? � .x? � r/H/ dx

�ˇ2
Z

F0

Qv � ..H � r/H/ dx

DW I1 C I2 C I3 C I4 C I5:

Integrating by parts we infer that I1 D 0, since v�`�rx? is a divergence free vector
field, tangent to the boundary. Let us stress that there is no contribution at infinity
because of the decay properties of the various fields involved, see (3.164).

On the other hand, using the smoothness and decay at infinity of H, we get that
there exists C > 0 depending only on F0 such that

jI2j C jI3j C jI4j 6 Cjˇj
�Z

F0

Qv2 dx C j`j2 C r2
	
:
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Let us now turn our attention to I5. We first use that H being curl free, we have

Z

F0

Qv � ..H � r/H/ dx D 1

2

Z

F0

. Qv � r/jHj2 dx;

and then an integration by parts and (3.40) to obtain

Z

F0

Qv � ..H � r/H/ dx D 1

2

Z

@S0
. Qv � n/jHj2 ds

D 1

2
` �
Z

@S0
jHj2n ds C 1

2
r
Z

@S0
jHj2x? � n ds:

We make use of Blasius’ lemma and Cauchy’s residue Theorem to obtain that I5 D
0.

Collecting all these estimates it only remains to use Gronwall’s lemma to
conclude. ut
Proposition 3.41 provides in particular some a priori estimates of the solid velocity.
We aim now at finding an a priori bound of the body acceleration.

Proposition 3.43 There exists a constant C > 0 depending only on S0, m, J ,
ˇ and QE.0/ such that any classical solution to (3.38)–(3.41) satisfies the estimate
k.`0; r0/kL1.0;T/ 6 C.

Proof Again, after a regular truncation procedure, we can use (3.162) with, as test
functions, the functions .‰i/iD1;2;3 defined by ‰i D rˆi in F0 and ‰i D ei, for
i D 1; 2 and ‰3 D x? in S0. We observe that the left hand side of (3.162) can
be recast in terms of the acceleration of the body only thanks to the added mass
phenomenon:

�
< @tv;‰i >

�
iD1;2;3 D Mg

�
`

r

	0
.t/C .

Z

F0

@tv � rˆi dx/iD1;2;3

D �
Mg C Ma

� �`
r

	0
;

using (3.52) (observe that the new contribution in the velocity due to the vorticity
does not modify this identity). We recall that Mg and Ma were respectively given
by (3.18) and (3.27). Therefore we infer from (3.162) that

.Mg C Ma/

�
`

r

	0
D
��mr`?

0

	
(3.165)

C
�R

F0
v � �..v � ` � rx?/ � r/rˆi

�
dx � R

F0
rv? � rˆi dx



i2f1;2;3g :
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It then suffices to use the decomposition (3.163), Proposition 3.41 and the decay
properties of rˆi and H to obtain a bound of `0 and r0. ut

With these a priori estimates in hand there are several classical ways to infer
the local in time existence of a weak solution to (3.38)–(3.41) as promised in the
statement of Theorem 3.40. In order to produce directly weak solutions (without
any knowledge regarding the existence of smooth solutions) one method is to apply
the following Schauder’s fixed point theorem.

Theorem 3.44 Let E denotes a Banach space and let C be a nonempty closed
convex set in E. Let F W C 7! C be a continuous map such that F.C/ � K, where K
is a compact subset of C. Then F has a fixed point in K.

Theorem 3.44 is applied to an operator F which maps .!; `; r/ to . Q!; Q̀; Qr/ as
follows:

@t Q! C �
.v � ` � rx?/ � r� Q! D 0 in F0;

.Mg C Ma/

� Q̀
Qr
	0

D
�R

F0

�
v � �..v � ` � rx?/ � r/rˆi

� � rv? � rˆi


dx


i2f1;2;3g

C
��mr`?

0

	
;

where v is given by (3.163), with some appropriate sets C and K of functions
.!; `; r/ defined on a time interval .0;T/ with T small enough. We thus observe
that a fixed point of F verifies (3.157) and (3.165). Moreover the previous a priori
bounds can be adapted to the system above and this allows to apply Schauder’s
fixed point theorem. In particular the compactness for the .`; r/-part is given by an
appropriate extension of Proposition 3.43 to weak solutions.

The global in time existence follows then from global a priori estimates in
particular of the vorticity.

On the other hand the uniqueness part of Theorem 3.40 relies on Yudovich’s
method for the case of a fluid alone. Suppose that we have two solutions .`1; r1; v1/
and .`2; r2; v2/ with the same initial data (observe that in this part of the proof
the indices do not stand for the components). In particular, they share the same
circulation � and initial vorticity w0. As a consequence, despite the fact that v1
and v2 are not necessarily in L2.F0/, their difference v1 � v2 does belong to
L1.0;TIL2.F0// with13

v1 � v2 D O
�
1

jxj2
	

and r.v1 � v2/ D O
�
1

jxj3
	

as jxj ! C1: (3.166)

Moreover `1, `2, r1, r2 belong to W1;1.0;T/. As a consequence, one can prove that
rq1 and rq2 belong to L1.0;TIL2.F0//. Then defining M̀ WD `1 � `2, Mr WD r1 � r2,

13Recall that both v1 and v2 are harmonic for jxj large enough and converge to 0 at infinity.
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Mv WD v1 � v2 and Mq D q1 � q2, we deduce from (3.38) that

@ Mv
@t

C �
.v1 � `1 � r1x

?/ � r� MvC
h
. Mv � M̀ � Mrx?/ � r

i
v2 C r1 Mv? C Mrv?

2 C r Mq D 0:

We multiply by Mv, integrate over F0 and integrate by parts (which is permitted
by (3.166) and by the regularity of the pressure), and deduce:

1

2

d

dt
k Mvk2L2 C

Z

F0

Mv �
h
. Mv � M̀ � Mrx?/ � rv2

i
dx C Mr

Z

F0

Mv � v?
2 dx C

Z

@F0

Mq Mv � n D 0:

For what concerns the last term,

Z

@F0

Mq Mv � n D M̀ �
Z

@F0

Mqn C Mr
Z

@F0

Mqx? � n

D m M̀ � � M̀0 C Mr`?
1 C r2 M̀?�C J MrMr0

D mMr M̀ � `?
1 C m M̀ � M̀0 C J MrMr0:

Using .x? � r/v2 D r.x? � v2/� v?
2 � x?!2, and an integration by parts, one has

Z

F0

Mv � Œ.x? � r/v2� dx D
Z

S0
.x? � v2/Œ. M̀ C Mrx?/ � n� ds C

Z

F0

Mv � .�v?
2 � x?!2/ dx:

Hence using the boundedness of v2 and !2 in L1.0;TIL1.F0//, the boundedness
of `1 and the one of Supp .!2/, we arrive to

d

dt

�k Mvk2L2 C k M̀k2 C kMrk2� 6 C
�
k Mvk2L2 C k M̀k2 C kMrk2 C krv2kLpk Mv2kLp0


;

for p > 2. Here, the various constants C may depend on S0 and on the solutions
.`1; r1; v1/ and .`2; r2; v2/, but not on p. Hence using elliptic regularity and
interpolation, we obtain that for p large,

d

dt

�k Mvk2L2 C k M̀k2 C kMrk2� 6 C
�
k Mvk2L2 C k M̀k2 C kMrk2


C QCpk Mv2kLp0

6 C
�
k Mvk2L2 C k M̀k2 C kMrk2


C QCpk Mvk

2
p0

L2
k Mv2k

1
p

L1

:

For some constant K > 0, we have on Œ0;T�: k Mvk2
L2

C k M̀k2 C kMrk2 6 K, so for some
C > 0 one has in particular

d

dt

�k Mvk2L2 C k M̀k2 C kMrk2� 6 Cp
�
k Mvk2L2 C k M̀k2 C kMrk2

1=p0

:
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Now the unique solution to y0 D Nyı and y.0/ D " > 0 for ı 2 .0; 1/ and N > 0 is

given by y.t/ D
h
.1 � ı/Nt C "1�ı

i 1
1�ı
: Hence a comparison argument proves that

k Mvk2
L2

C k M̀k2 C kMrk2 6 .Ct/p: We conclude that Mv D 0 for t < 1=C by letting p
converge to C1.

3.4.3 Energy Conservation

Despite the energy-type bound obtained in Proposition 3.41 turned out to be
sufficient in order to deal with the Cauchy problem, one may wonder if even in the
case where ˇ ¤ 0 (for which the kinetic fluid energy is infinite, see the discussion
above Proposition 3.41) there is a renormalized energy which is exactly conserved at
least for regular enough solutions to the problem (3.38)–(3.41). Another motivation
is that the constant C which appears in Proposition 3.41 depends on the body
geometry in such a way that the corresponding estimate is not uniform in the zero
radius limit. One may hope that an exactly conserved quantity overcomes this lack
of uniformity. For any p in R

3 and for any ! 2 L1
c .F0/ we define

E. p; !/ WD 1

2
p � .Mg C Ma/p � 1

2

Z

F0�F0

GH.x; y/!.x/!.y/ dx dy (3.167)

��
Z

F0

!.x/‰H.x/ dx;

where ‰H is defined in Sect. 3.2.2 and GH is the so-called hydrodynamic Green
function defined by

GH.x; y/ WD G.x; y/C‰H.x/C‰H.y/; (3.168)

where G is the standard Dirichlet Green’s function defined at the beginning of
Sect. 3.4.2. We recall that Mg and Ma were respectively given by (3.18) and (3.27).
Observe that in the irrotational case where ! is vanishing on F0 the energy E. p; 0/
is equal to the quantity (3.23) which was proved to be conserved in Proposition 3.14.
Indeed the three terms in the right hand side of (3.167) can therefore be respectively
interpreted as the kinetic energy of the rigid body with its total inertia included its
genuine inertia and the added inertia due to the incompressible fluid around, the
self-interaction energy of the fluid vorticity and the interaction between the fluid
vorticity and the circulation around the body.

The following energy conservation property can therefore be interpreted as an
extension of Proposition 3.14 to the rotational case.
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Proposition 3.45 For any smooth solution .`; r; v/ of the problem (3.38)–(3.41)
with compactly supported vorticity, the quantity E.`; r; curl v/ is conserved along
the motion.

Proof We will proceed in two steps. We first give another form of (3.167). Let us
prove that

E.`; r; curl v/ D 1

2
p � Mg p C 1

2

Z

F0

.j Qvj2 C 2ˇ Qv � H/ dx; (3.169)

with Qv and ˇ given by the decomposition (3.163). Observe that the right hand side
above can be obtained formally by expanding the natural total kinetic energy of the
“fluid+solid” system Eg.p/C 1

2

R
F0

jv.t; �/j2 dx thanks to the decomposition (3.163)

and discarding the infinite term 1
2
ˇ2
R
F0

jHj2 dx associated with the circulation
around the body. Note in particular that Qv.x/ D O.1=jxj2/ as jxj ! C1, so
that the last integral in the right hand side of (3.169) is well-defined. Let us highlight
that a difference with the irrotational case discussed in Sect. 3.2.3 is that KŒ!� and H
being not orthogonal in L2.F0/ there is a crossed term, given by the contribution of
the last summand of the last term of (3.169), and which encompasses a dependence
on � , through ˇ.

In order to simplify the proof of (3.169) we introduce a few notations. Let us
denote ‰.x/ WD R

F0
G.x; y/!.y/dy which is a stream function of KŒ!� vanishing

on the boundary S0, so that KŒ!� D r?‰. Let us also denote rˆ WD `1rˆ1 C
`2rˆ2 C rrˆ3, so that Qv D r?‰ C rˆ. Then we compute

Z

F0

j Qvj2dx D
Z

F0

r?‰ � Qv C
Z

F0

r?‰ � rˆC
Z

F0

rˆ � rˆ: (3.170)

First, integrating by parts yields

Z

F0

r?‰ � Qv D �
Z

F0�F0

G.x; y/!.x/!.y/ dx dy; (3.171)

Z

F0

r?‰ � rˆ D 0 and
Z

F0

Qv � H D �
Z

F0

!.x/‰H.x/dx: (3.172)

There is no boundary terms since ‰ and ‰H vanish on the boundary S0, and rˆ
and Qv decrease also like 1=jxj2 at infinity.

Also, by definition, we have

1

2

Z

F0

rˆ � rˆ D 1

2
p � Map: (3.173)
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Thus combining (3.170)–(3.173) we obtain that

1

2

Z

F0

.j Qvj2 C 2ˇ Qv � H/ dx D 1

2
p � Map � 1

2

Z

F0�F0

G.x; y/!.x/!.y/ dx dy

�ˇ
Z

F0

!.x/‰H.x/ dx:

This entails (3.169) thanks to Fubini’s theorem, (3.163) and (3.168).
Now by taking the time derivative of (3.169), using the definition of Mg given

in (3.18), (3.163) and that the coefficient ˇ in (3.163) is constant in time, one
obtains:

d

dt

�
E.`; r; curl v/


D m` � `0.t/C J rr0.t/C

Z

F0

@tv � v: (3.174)

Using now the fluid equation (3.38) one deduces from (3.174) that d
dt

�
E.`; r; curl v/



D I1 C I2 C I3, where where

I1 WD m` � `0.t/C J rr0.t/ �
Z

F0

rq � v;

I2 WD �
Z

F0

.v � `/ � rv � v and I3 WD �r
Z

F0

Œv? � .x? � r/v� � v:

One easily justifies from the decay properties of H and Qv that each integral above
is convergent. This allows to integrate by parts both I1 and I2. Using the interface
condition (3.40) and then Newton’s equations for the body’s dynamics, we obtain
that I1 D 0. For what concerns I2 we get that

I2 D �1
2

Z

@S0
jvj2.v � `/ � n:

For what concerns I3, we consider R > 0 large in order that S0 � B.0;R/, and
consider the same integral as I3, over F0 \ B.0;R/. Integrating by parts we obtain

Z

F0\B.0;R/
Œv? � .x? � r/v� � v D �

Z

@S0
.x? � n/ jvj2

2
�
Z

S.0;R/
.x? � n/ jvj2

2
;

where we denote by n also the unit outward normal on the circle S.0;R/. Of course
x? � n D 0 on S.0;R/, so letting R ! C1, we end up with

I3 D 1

2

Z

@S0
.rx? � n/jvj2:



3 Motion of a Particle in a 2D Perfect Flow 209

Using (3.40) we deduce I2 C I3 D 0, so in total we get d
dt

�
E.`; r; curl v/


D 0. ut

One difficulty with the quantity E is that both its form (3.167) and (3.169) are not
the sum of positive terms. However one may extirpate some information from the
conservation of E thanks to the support of vorticity. The basic idea can be exhibited
thanks to the following technical lemma, having in mind that the hydrodynamic
Green function GH.x; y/ behaves like 1

2�
ln jx � yj at infinity.

Lemma 3.46 Let f in L1.R2/ \ L1.R2/. We denote by �f WD inf fd >

1 = Supp. f / � B.0; d/g. Then there exists C > 0 such that or any y 2 B.0; �f /,

Z

R2

ˇ̌
ˇ ln jx � yj f .x/

ˇ̌
ˇ dx 6 Ck fkL1 C ln.2�f /k fkL1 :

Proof It is sufficient to decompose the integral depending on whether jx � yj > 1

or not. ut
As a consequence we have the following result.

Corollary 3.47 One has the following estimate for some positive constant C
depending only on m, J , k!0kL1\L1 , j`0j, jr0j, j� j; �.0/, and the geometry:
j`.t/jCjr.t/j 6 CŒ1Cln.�.t//�, where �.t/ WD inffd > 1 = Supp.!.t; �// � B.0; d/g.

3.4.4 A Macroscopic Normal form Tailored
for the Zero-Radius Limit

We define the set

B WD [q2R3 fqg � R
3 � R � L1.F.q/IR/:

The following result is deduced, by going back to the original frame, from the
existence and uniqueness result established in Sect. 3.4.2 for the div/curl type system
satisfied by the velocity in the body frame.

Proposition 3.48 For any .q; p; �; !/ in B with p D .`; r/ in R
2 � R, there exists a

unique U.q; p; �; !/ in the space LL.F.q// such that

divU.q; p; �; !/ D 0 and curlU.q; p; �; !/ D ! for x 2 F.q/;

U.q; p; �; !/ � n D �
`C rx?� � n for x 2 @S.q/ and

Z

@S.q/
U.q; p; �; !/ � 	 ds D �;

U.q; p; �; !/ �! 0 as x ! 1:

In order to prepare the asymptotic analysis of the rigid body’s dynamics in
the zero radius limit, we first establish here an exact normal form of the Newton
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equations for the solid motion for a fixed radius. It follows the analysis performed
in Sect. 3.3 so that we will adopt here the real-analytic approach developed in [11]
rather than the complex-analytic approach performed in [9]. This will simplify the
study of the zero radius limit in the next subsection.

Theorem 3.49 There exists a mapping F in C.BIR3/ depending only on � and S0
such that Eqs. (3.13)–(3.16) are equivalent to the following system:

.Mg C Ma;� / q
00 C h�a;� ; q

0; q0i D F.q; q0; �; !/; (3.175)

@!

@t
C div

�
!U.q; q0; �; !/

� D 0 for x 2 F.q.t//; (3.176)

whereMa;� is given by Theorem 3.12 and �a;� denotes the a-connection associated
with Ma;� by Definition 3.11.

Above it is understood that the equivalence concerns Yudovich type solutions.
One observes that the left hand side of (3.175) is the same than the one of (3.20).

On the other hand the right hand side of (3.175) is more intricate. Indeed we are
going to provide a rather explicit definition of the force term F. In order to do so we
split, for .q; p; �; !/ in B, the vector field U.q; p; �; !/ into

U.q; p; �; !/ D U1.q; p/C U2.q; �; !/; (3.177)

where U1.q; p/ denotes the potential part that is the unique solution in the space
LL.F.q// to the following system:

divU1.q; p/ D 0 and curlU1.q; p/ D 0 for x 2 F.q/;

U1.q; p/ � n D �
`C r.x � h/?

� � n for x 2 @S.q/ and
Z

@S.q/
U1.q; p/ � 	 ds D 0;

U1.q; p/ �! 0 as x ! 1;

where q D .h; �/ and p D .`; r/, and U2.q; �; !/ therefore denotes the unique
solution in the space LL.F.q// to the following system:

divU2.q; �; !/ D 0 and curlU2.q; �; !/ D ! for x 2 F.q/;

U2.q; �; !/ � n D 0 for x 2 @S.q/ and
Z

@S.q/
U2.q; �; !/ � 	 ds D �;

U2.q; �; !/ �! 0 as x ! 1:

Observe that the vector fields U1.q; p/ and U2.q; �; !/ are respectively linear with
respect to p and .�; !/ whereas their dependence on q is encoded into the change of
variable (3.37) (since their counterpart in the body frame do not depend on q).
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Eventually, we define for .q; p; �; !/ in B, three vector in R
3, by

B.q; �; !/ WD �
Z

@S.q/
U2.q; �; !/ � 	

�
.U1.q; ei/ � n/i � .U1.q; ei/ � 	/i


ds;

(3.178)

E.q; �; !/ WD �1
2

� Z

@S.q/
jU2.q; �; !/j2U1.q; ei/ � n ds

�
i; (3.179)

D.q; p; �; !/ WD ��
Z

F.q/
!U.q; p; �; !/? � U1.q; ei/ dx

�
i; (3.180)

where the index i runs over 1; 2; 3 and the ei stands for the canonical basis of R3.
We will prove Theorem 3.49 with the mapping F given, for .q; p; �; !/ in B, by

F.q; p; �; !/ WD �2E.q; �; !/C � p � B.q; �; !/C D.q; p; �; !/: (3.181)

Observe that the vector fields B.q; �; !/ and E.q; �; !/ above have the same form
than the vector fields B.q/ and E.q/ used in Sect. 3.3, see (3.124) and (3.125) except
that they also encompass a contribution due to the vorticity through the vector fields
U2. The last term in (3.181) is a direct contribution of the vorticity, in the sense that
it intervenes explicitly inside an integral over the fluid domain. In particular this
term may be nonzero even if � D 0 unlike the two first terms.

Proof First of all (3.176) simply recasts the transport of the fluid vorticity by
the fluid velocity characterized by Proposition 3.48. The proof of Theorem 3.49
therefore reduces to prove the equivalence of Newton’s equations for the solid
motion with (3.175). In a perhaps surprising way it seems more convenient not to use
the reformulation (3.38)–(3.39) of the system in the body frame. Instead we rather
proceed as in Sect. 3.3 with a few modifications due to the fact that we now deal
with a non-vanishing vorticity ! D curl u. In particular one has to modify (3.100)
into

r� D �
�
@u

@t
C 1

2
rju2j C !u?

	
in F.q/:

and therefore (3.101) becomes

mh00 � `� C J � 00r� D �
Z

F.q/

�
@u

@t
C 1

2
r.u2/

	
� U1.q; p�/dx

�
Z

F.q/
!u? � U1.q; p�/dx; for all p� D .`�; r�/ 2 R

3:
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Then we use that u D U.q; q0; �; !/ D U1.q; q0/ C U2.q; �; !/ to obtain, for all
p� WD .`�; r�/ 2 R

3,

m`0 � `� C J r0r� C
Z

F.q/

�@U1.q; q0/
@t

C 1

2
rjU1.q; q0/j2


� U1.q; p�/dx

D �
Z

F.q/

�1
2

rjU2.q; �; !/j2
� � U1.q; p�/dx

�
Z

F.q/

�@U2.q; �; !/
@t

C 1

2
r.U1.q; q0/ � U2.q; �; !//

� � U1.q; p�/dx

�
Z

F.q/
!U.q; q0; �; !/? � U1.q; p�/dx: (3.182)

Using Theorem 3.12 in the case where � D 0 yields that the left hand side of (3.182)
is equal to inner product of the left hand side of (3.175) with p�. By integration by
parts one obtains that the first term in the right hand side of (3.182) is equal to
inner product of �2E.q; �; !/ with p�. By adapting the proof of (3.131) one proves
that the second term in the right hand side of (3.182) is equal to inner product of
� q0 � B.q; �; !/ with p�. It follows from the linearity of U1.q; p/ with respect to p
that the last term of (3.182) is equal to inner product of D.q; q0; �; !/ with p�, and
this concludes the proof of Theorem 3.49. ut

3.4.5 Zero Radius Limit

We now investigate the zero radius limit and therefore assume that, for every " 2
.0; 1�, the solid domain occupies (3.5) where S0 is a fixed simply connected smooth
compact subset of R

2. We consider p0 D .`0; r0/ 2 R
3, m > 0, J > 0, � in

R (respectively in R
�) in the case of a massive (resp. massless) particle. Let !0

in L1
c .R

2 n f0g/ Then for every " 2 .0; 1�, combining Theorems 3.9 and 3.49, we
obtain that there exists a unique global solution .h"; �"; !"/with Yudovich regularity
(in particular with bounded vorticity) to Eqs. (3.175)–(3.176) with some coefficients
M"

g, M"
a, �

"
a and F" associated with S"0 , m";J " given in Definition 3.1 and � , and

with the initial data .q"; .q"/0/.0/ D .0; p0/ and !"jtD0 D !0jF "
0
. In the massless

case with ˛ � 2, we will consider only here the case where S0 is not a disk. As
already mentioned in the fifth remark after Definition 3.1 the case where S0 is a
non-homogeneous disk requires a few adaptations and can be tackled as in [11] for
the irrotational bounded case (whereas this case was actually omitted in [8, 9]). Our
results then read as follows.

Theorem 3.50 Let be given a circulation � in R in the case of a massive particle
and in R

� in the case of a massless particle. Let be given .`0; r0/ 2 R
3, !0 in

L1
c .R

2 nf0g/. For any " 2 .0; 1�, let us denote .h"; �"; !"/ the solution to the system
associated with S"0 , m";J ", `0, r0, � and !0jF "

0
as above. Then in the zero radius
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limit " ! 0, with the inertia scaling described in Definition 3.1, one has, in the
case of a massive (respectively massless) particle, that for any T > 0, up to a subse-
quence (resp. for the whole sequence), h" converges to h weakly-� in W2;1.0;TIR2/
(resp. in W1;1.0;TIR2/), "�" converges to 0 weakly-� in W2;1.0;TIR/ !"
(extended by 0 inside the solid) converges to ! in C0.Œ0;T�IL1.R2/ � weak-?/.
Moreover one has (3.12) in Œ0;T� � R

2, respectively (3.10) in the massive limit
and (3.11) in the massless limit, with the initial conditions !jtD0 D !0; h.0/ D
0; h0.0/ D `0 (resp. !jtD0 D !0; h.0/ D 0/.

Remark 3.51 Note that the convergence of h" cannot be strong in W1;1.0;TIR2/
in general, as this would entail that

`0 D 1

2�

Z

R2

.h0 � y/?

jh0 � yj2 !0.y/ dy:

Theorem 3.10 is a consequence of Theorem 3.50.

Proof We will proceed as in the proof of Theorem 3.37 with a few modifications.
First using p" D ..h"/0; ".�"/0/t we obtain that the solid equations are of the form

."˛Mg C "2Ma; �" / . p
"/0 C "h�a;�" ; p

"; p"i (3.183)

D �2 QE".q"; �; !"/C � p" � QB".q"; �; !"/C QD".q"; p"; �; !"/;
where QE", QB" and QD" are respectively deduced from E, B and D defined
in (3.178), (3.179) and (3.180) by some appropriate scalings. Here again the crucial
issue is to obtain some bounds uniformly in " in order to pass to the limit in (3.183).
First we look for an appropriate modification of Corollary 3.47 in the zero radius
limit thanks to an appropriate renormalization of the energy (3.167) as " ! 0C by
discarding some terms which are logarithmically divergent in the limit but which
do not bear any information on the state of the system.14 This provides an uniform
estimate of "min.1; ˛2 / j.h"/0; ".�"/0/jR3 at least till the vorticity is neither too far from
the solid nor too close. Unfortunately in the massless case the coefficient ˛ satisfies
˛ > 0 and the previous estimate is not sufficient. In order to get some improved
estimates, we expand the coefficients in (3.183) as " ! 0C using in particular an
irrotational approximation of the fluid velocity on the body’s boundary in order
to use Lamb’s lemma. Some cancellations similar to (3.152) and (3.153) allow in
particular to absorb the leading orders of the term QE" into the leading part of the
expansions of the terms involving �a;�" and QB" thanks to the following modulation
of the velocity:

Q̀".t/ WD .h"/0.t/ � KR2 Œ!
".t; �/�.h"/� "rKR2 Œ!

".t; �/�.h"/ � R.�"/
;

14Observe that the quantity (3.167) was already obtained from the natural total kinetic energy of
the “fluid+solid” system by a renormalization at infinity. Here the renormalization rather tackles
some undesired concentrations at the center of mass of the shrinking particle.
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where 
 is the conformal center of S0, cf. (3.34). On the other hand the term QD"
turns out to be smaller at least till the vorticity stays supported at distance of order
1 of the solid. Next we introduce the notation Qp" WD . Q̀"; ".�"/0/. We thus obtain the
following asymptotic normal form.

Proposition 3.52 Let us fix � > 0. There exists C > 0 such that if for a given T > 0
and an " 2 .0; 1/ one has for all t 2 Œ0;T�:

d.h".t/; Supp .!".t/// > 1=� and Supp .!".t// � B.h".t/; �/; (3.184)

then there exist a function G D G."; t/ W .0; 1/� Œ0;T� ! R
3 satisfying

ˇ̌
ˇ̌
Z t

0

Qp".s/ � G."; s/ ds
ˇ̌
ˇ̌ 6 "C

�
1C t C

Z t

0

jQp".s/j2 ds
	
; (3.185)

and a function F D F."; t/ W .0; 1/� Œ0;T� ! R
3 satisfying

jF."; t/j 6 C
�
1C jQp".t/j C "jQp".t/j2� ; (3.186)

such that one has on Œ0;T�:

�
"˛Mg C "2Ma;�"

�
.Qp"/0 C "h�a;�" ; Qp"; Qp"i (3.187)

D � Qp" � B�" C "�G."; t/C "min.˛;2/F."; t/:

From this normal form, we deduce the following modulated energy estimates.

Lemma 3.53 Let � > 0. There exists C > 0 such that if for a given T > 0 and an
" 2 .0; 1/ one has that (3.184) is valid on Œ0;T�, then one has j.h"/0j C "j.�"/0j 6 C
on Œ0;T�:

Proof Let � > 0 and let C > 0 be given by Proposition 3.52. Let T > 0 and an
" 2 .0; 1/ one has that (3.184) is valid on Œ0;T�. Then according to Proposition 3.52
one has (3.187) on Œ0;T�. It is then sufficient to multiply (3.187) by Qp", to deal with
the right hand side as in Proposition 3.14, to use the assumption on the initial data
and finally to apply two Gronwall type estimates15 to conclude. ut
Let us now tackle the passage to the limit. In a first time, we obtain the convergence
stated in Theorem 3.50 on a small interval Œ0;T�, and only in a second time
obtain this convergence on any time interval. We consider T" the supremum of the
positive real number 	 for which one has for any t 2 Œ0; 	�, d.h".t/;Supp!".t// >
1=.2�T/ and Supp!".t/ � B.h".t/; 2�T/: For any " > 0 small enough such that
d.Supp!0;S"0/ > 2�T=3, we have of course T" > 0. Using Proposition 3.53, we
deduce that there exists "0 > 0 and T > 0 such that inf"2.0;"0/ T" > T :

15The second one being devoted to deduce some estimates for .h"/0 from the ones on the modulated
velocities.
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Thanks to a compactness argument using these estimates, the uniqueness of the
solutions in the limit and Proposition 3.52 this allows to prove the convergence
claimed in Theorem 3.50 locally in time, that is h" converges to h weakly-? in
W1;1.0;TIR2/ and !" converges to ! in C0.Œ0;T�IL1.R2/� weak-?/. Finally we
obtain the solid part of Theorem 3.50 by a sort of continuous induction argument.
Moreover, with the previous uniform estimates, passing to the limit in the fluid
equation is routine. ut
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Chapter 4
Stability of Permanent Rotations and Long-Time
Behavior of Inertial Motions of a Rigid Body
with an Interior Liquid-Filled Cavity

G.P. Galdi

Abstract A rigid body, with an interior cavity entirely filled with a Navier-
Stokes liquid, moves in absence of external torques relative to the center of
mass of the coupled system body-liquid (inertial motions). The only steady-state
motions allowed are then those where the system, as a whole rigid body, rotates
uniformly around one of the central axes of inertia (permanent rotations). Objective
of this article is twofold. On the one hand, we provide sufficient conditions for
the asymptotic, exponential stability of permanent rotations, as well as for their
instability. On the other hand, we study the asymptotic behavior of the generic
motion in the class of weak solutions and show that there exists a time t0 after that
all such solutions must decay exponentially fast to a permanent rotation. This result
provides a full and rigorous explanation of Zhukovsky’s conjecture, and explains,
likewise, other interesting phenomena that are observed in both lab and numerical
experiments.

Keywords Center manifold • Liquid-filled cavity • Navier-Stokes • Rigid
body • Stability

MSC2010: 35B35; 35B41; 35Q35; 74F10

4.1 Introduction

The problem of the motion of the coupled system constituted by a rigid body with an
interior cavity that is entirely filled with a liquid has represented, over the centuries,
one of the main focuses of theoretical and applied research. As a matter of fact, the
first mathematical analysis of such a problem can be traced back to the pioneering

G.P. Galdi (�)
Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 607
Benedum Engineering Hall, Pittsburgh, PA 15621, USA
e-mail: galdi@pitt.edu

© Springer International Publishing AG 2017
T. Bodnár et al. (eds.), Particles in Flows, Advances in Mathematical
Fluid Mechanics, DOI 10.1007/978-3-319-60282-0_4

217

mailto:galdi@pitt.edu


218 G.P. Galdi

work of Stokes concerning the motion of a rectangular box filled with an inviscid
liquid [31, §13].

One of the main reasons why this topic received all along increasing attention
is because it was rather immediately recognized that the dynamics of the rigid
body can be substantially and drastically affected by the presence of the liquid, in
several different and major aspects. In these regards, the finding of Lord Kelvin
(W. Thomson) [33] can be considered a true cornerstone. Actually, it was well
known from both a theoretical viewpoint—basically, by Lagrange [20, Part 2, §9]
and Poisson [28]—and practical one—after the use of gyroscopes in navigation
since the early 1740s—that uniform rotations occurring around either the shorter or
the longer axis of a spheroid, in absence of external torques (inertial motions), are
both stable. However, Kelvin’s experiment showed that if a thin-walled spheroidal
gyroscope is filled up with water (“liquid gyrostat”), it would be stable when set in
rotation around its shorter axis, whereas it would be unstable otherwise, no matter
how large the magnitude of the initial angular velocity. Notice that the shorter axis
is the one with respect to which the moment of inertia of the system is a maximum
The mathematical explanation of Kelvin’s experiment was the object of studies
by several prominent mathematicians, including Poincaré [27]—who considered
the more general case of an elastic container—and Basset [13], who analyzed
the homogeneous vortex motion of a liquid in an ellipsoidal cavity. However, the
outcome of these investigations provided only approximate or incomplete answers.

Another fundamental insight to the problem is due to N.Y. Zhukovsky. In his
thorough analysis [34], Zhukovsky puts forward a completely unexpected property
of the coupled system body-liquid, S , in the case when the liquid filling the
cavity is viscous and S moves by inertial motion. More precisely, on the basis
of a straightforward energy analysis, he envisages that the liquid should produce a
substantial stabilizing effect on the motion of the body in a way that the terminal
state should be one where S moves as a single rigid body by uniform, rotational
motion around one of the central axes of inertia [34, §38]. This dynamical behavior
is entirely at odds with the one that the body might perform with an empty cavity,
where the unsteady motion is much more complicated and, of course, far from
reaching any steady-state configuration (e.g., [21, §4]). It must be emphasized, at
this point, that Zhukovsky’s argument is altogether of heuristic nature and, therefore,
lacks of sound mathematical rigor. As a result, even though the above property is
often referred to (especially in the Russian literature, e.g., [25, p. 98], [4, p. 3])
as “Zhukovsky’s theorem”, it is more precise to call it, instead, “Zhukovsky’s
conjecture.” However, despite the absence of a rigorous analysis, the use of interior
cavities filled with liquid as dampers in rigid and elastic structures is a common
procedure, adopted since the mid 1960s [5] in different branches of applied sciences,
especially space technology (e.g., [3]) and civil engineering (e.g., [1]).

Coming to the mathematical analysis and interpretation of the phenomena
described above and, more generally, the generic motion of a rigid body with
a liquid-filled cavity, the classical literature includes a very large number of
contributions. However, this body of work, probably also due to the strong influence
of the seminal articles of Rumyantsev [30] and Chernousko [4] on the entire field, is



4 Stability of Permanent Rotations and Long-Time Behavior of Inertial. . . 219

only seldom of rigorous nature, and mostly based on a simplified set of equations—
that at times reduces to ordinary differential equations—and/or special shapes of
the body and cavity. Since it would be hopeless to cite all the relevant literature, we
refer the reader to the monographs [2, 4, 18, 19, 25] and the bibliography there cited.

Very recently, the present author, jointly with his associates, has started a
systematic study of the motion of a rigid body with a liquid-filled cavity [6, 10–
12, 23, 24]. In these papers, one main objective, among others, was to provide a
mathematically rigorous explanation of Kelvin’s experiment and a likewise solid
proof of Zhukovsky’s conjecture. The outcome of this effort has been remarkably
successful [6] though, however, not entirely satisfactory. In fact, on the one hand,
Kelvin’s experiment is only partially recovered. Actually, just in the case of systems
such as prolate spheroids entirely filled with a liquid, in [6, Theorem 6(e)] it is
shown, in particular, that permanent rotations around the longer axis are unstable,
but not that those around the shorter axes are indeed stable, as demonstrated by
Kelvin’s finding. On the other hand, in [6, Theorem 4] Zhukovsky’s conjecture is
rigorously proved for all types of body-liquid systems, with the exception of those
whose mass distribution is such that two central moments of inertia coincide and
are strictly greater than the third one. This happens, for example, in cylindrically-
shaped containers filled with liquid, when the radius of the base is shorter than
the height (like in a soda can). Finally, the results presented in [6] are not able
to explain another interesting phenomenon that both lab [14] and numerical [6,
Sect. 9.1] experiments strongly suggest. More precisely, it is observed that after a
finite interval of time, whose length mostly depends on the viscosity of the liquid
and the size of the initial conditions, the coupled system almost abruptly reaches a
uniform terminal state. In fact, both experiments indicate that once the viscosity of
the liquid has reduced its motion “sufficiently close” to the (relative) rest, the rate of
decay to the terminal state appears be of exponential type.

The main goal of this article is to analyze in details the stability properties of
uniform rotations (“permanent rotations”) and long-time behavior of motions of
a rigid body with an interior cavity entirely filled with a viscous liquid around its
center of mass G, in absence of external torques relative to G (“inertial motions”).
In doing so, we shall, in particular, provide a positive answer to all problems left
open in [6] and mentioned above. Besides C2-smoothness of the cavity, we do not
make any other assumption about its shape or the shape of the body.

Our approach is quite different than the one adopted in [6], which is based on
(appropriately modified) tools borrowed from classical dynamical system theory.
Instead, the method we use here relies upon a detailed study of the spectrum of
the relevant linear operator, L, obtained by linearizing the full nonlinear operator
around a given permanent rotation, s0, of S . As is well known, this rotation may
only occur about an axis, e, coinciding with one of the eigenvectors, e1; e2, and e3,
of the inertia tensor of S relative to G (central axes of inertia). Let A;B, and C
denote, in the order, the associated eigenvalues (central moments of inertia), and for
� 2 fA;B;Cg, by S.�/ the corresponding eigenspace. Without loss of generality, we
take A � B � C. We then show (Lemma 4.3) that, for any given s0, the spectrum
�.L/ of L is purely discrete with eigenvalues clustering only at infinity. Furthermore,
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0 is always an eigenvalue with algebraic multiplicity m D dim .S.�// 2 f1; 2; 3g.
This implies, in particular, the existence of a center manifold, C , in our problem.
However, we show (Proposition 4.6) that C is “slow”, namely, 0 is the only point
of �.L/ on the imaginary axis. In addition, we prove that 0 is semisimple and this
allows us to characterize the sign of ReŒ�.L/�nf0g in terms of the central moments
A;B, and C and the direction e (Proposition 4.6). We then employ this information
along with a form of the “generalized linearization principle” [29] to show that if the
uniform rotation s0 occurs around an axis with maximum moment of inertia, then
it is asymptotically exponentially stable; see Proposition 4.10 and Theorem 4.11.
By this we mean that s0 is stable in the sense of Lyapunov (in appropriate norms),
and, moreover, every motion starting in a suitable neighborhood of s0 will converge
exponentially fast to a terminal state that is still a uniform rotation around e; see
Definition 4.8. The latter, however, will in general be different from s0, due to
the conservation of total angular momentum for S ; see Remark 4.9. Conversely,
we show that if s0 occurs around an axis of minimum moment of inertia, then it
is unstable (Proposition 4.10 and Theorem 4.11), and so furnishing, in particular, a
full explanation of the outcome of Kelvin’s experiment; see Remark 4.12.

The spectral properties of L mentioned earlier on also enable us to give a rigorous
proof of the “abrupt” decay of the coupled system body-liquid to the terminal state
of uniform rotation. In fact, also with the help of the results already established in
[6], we prove that there is a time t0 > 0 after that all solutions possessing finite
kinetic energy at time t D 0 (weak solutions) must decay exponentially fast to
their terminal state. This result provides a full proof of Zhukovsky’s conjecture;
see Theorem 4.17. Finally, we investigate the question of around which central axis
the terminal uniform rotation will take place (attainability problem). Again with the
help of the results established in [6] we show that, for an open set of initial data, all
corresponding weak solution after some time t0 > 0 will converge at an exponential
rate to a rotation around the axis with respect to which the moment of inertia is a
maximum; see Theorem 4.18. The norm in which this convergence is established is
quite strong, since it involves first time derivatives and second spatial derivatives of
the velocity field of the liquid, and angular velocity and acceleration of the body.

The plan of the paper is as follows. In Sect. 4.2 we give the mathematical
formulation of inertial motions of a body with an interior cavity entirely filled
with a Navier-Stokes liquid. We then show that the associated perturbation problem
can be formulated as an abstract evolution equation in a suitable Hilbert space
and show, by using a classical semigroup approach, that the initial-value problem
possesses a unique smooth solution, at least locally in time. Section 4.2 is devoted
to the study of the spectrum of the relevant linear operator L, for which we
show the properties reported earlier on. These results are then employed in the
following Sect. 4.4 to show, on the one hand, that the local solution constructed in
Sect. 4.2 can be made global in time for sufficiently “small” data, and, on the other
hand, to provide sufficient conditions for the exponential stability and instability
of permanent rotations. In Sect. 4.5 we investigate the long-time behavior of the
generic motion and show that, under suitable assumptions on the central moments
of inertia, any weak solution after some time t0 must converge exponentially fast to
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a permanent rotation (Zhukovsky’s conjecture). A crucial role in the proof is played
by Lemma 4.15 that ensures that the velocity field of any weak solution must decay
to 0, as times diverges, in higher-order spatial norms. The final Sect. 4.6 is dedicated
to the problem of attainability of permanent rotations.

4.2 Formulation of the Problem and Local Existence Theory

The motion of the coupled system body-liquid, S , is governed by the following set
of equations (e.g., [6]):

vt C v � rv C P! � x C 2! � v D �v � rp
div v D 0

�
in C � .0;1/

v.x; t/ D 0 at @C
(4.1)

and

PM C ! � M D 0 ; M WD I � ! C
Z

C
x � v : (4.2)

Here, v, �p (with � constant density of the liquid that, without loss of generality,
will be taken to be 1 for simplicity) and  are velocity, (modified) pressure, and
kinematic viscosity of the liquid, ! is the angular velocity of the body, and C is the
domain of R3 occupied by the liquid. Throughout this paper we shall assume that
C is of class C2. Moreover, I denotes the inertia tensor of the coupled system S .
We finally notice that the vector function M represents the total angular momentum
of S .

Equations (4.1)–(4.2) are written in a body-fixed frame, F with the origin at the
center of mass, G, of S . We choose F � fG; eig where feig, are eigenvectors of
the inertia tensor I (central axes of inertia). Moreover, we denote by A;B, and C
the central moments of inertia, namely, the eigenvalues of I corresponding to the
eigenvectors e1; e2, and e3, respectively. Without loss of generality, we shall assume
A � B � C.

For � 2 fA;B;Cg we let S.�/ be the eigenspace associated to �. If we pick a unit
vector e 2 S.�/ it is immediately verified that

s0 D .v0 � 0;!0 D !0e/ ; !0 2 R � f0g ; (4.3)

is a (non-trivial) steady-state solution to (4.1)–(4.2) representing a permanent
rotation performed by the coupled system as a single rigid body. In fact, permanent
rotations are the only steady-state motions allowed for the coupled system S , and,
as is well known, can only occur around a central axis of inertia.

Even though of rather trivial proof, for the relevance acquired later on, we would
like to single out the following result in the form of a lemma.
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Lemma 4.1 Suppose !0 2 S.�/ � f0g. Then, ! 2 R
3 is a solution to

!0 � I � ! C ! � I � !0 D 0 : (4.4)

if and only if ! 2 S.�/.

Proof By assumption,

I � !0 D �!0 : (4.5)

Now, if ! 2 S.�/, we also have

I � ! D �! :

so that, by (4.5),

!0 � I � ! C ! � I � !0 D � .!0 � ! C ! � !0/ D 0 :

Conversely, from (4.4) and (4.5) we get

I � ! � �! D � !0 some � 2 R :

Dot-multiplying both sides of this equation by !0 and using the symmetry of I along
with (4.5), we deduce � j!0j2 D 0, which is possible if and only if � D 0.

�
One of our main objectives is to determine necessary and sufficient conditions

for the stability of the steady-state solution (4.3), in a sense made precise later on in
Definition 4.8. To this end, denoting by .v; p;!0 C !/ a generic solution to (4.1)–
(4.2) with !0 2 S.�/, we deduce that the “perturbation” .v; p;!/ must satisfy the
following system

vt C P! � x C 2!0 � v � �v � rp D �2! � v � v � rv

div v D 0

�
in C � .0;1/

v.x; t/ D 0 at @�
(4.6)

and

I � P! � I � PaC !0 � I � ! C ! � I � !0 � !0 � I � a D �! � I � ! C ! � I � a ; (4.7)

where

a WD �I
�1 �

Z

C
x � v : (4.8)
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We shall now rewrite (4.6)–(4.7) in a suitable abstract form. To this end, we
introduce the Hilbert space1

H WD L2� .C/˚ R
3 D ˚

u D .v;!/> W v 2 L2� .C/; ! 2 R
3
�
;

where

L2� .C/ D fv 2 L2.�/ W div v D 0 in C ; and v � nj@C D 0g ;

and n is the unit exterior normal on @C. The scalar product of two elements ui D
.vi;!i/

>, i D 1; 2, in H is defined by

hu1;u2i WD
Z

C
v1 � v2 dC C !1 � !2 ;

with associated norm

kuk WD hu;ui 12 :

We next define the following operators

I W u 2 H 7! Iu WD
�
v C P .! � x/; I � .! � a/


> 2 H ;

A W u 2 D.A/ WD ŒW2;2.C/ \ W1;2
0 .C/ \ L2� .C/�˚ R

3 � H
7! Au WD � �  P�v ; !/> 2 H ;

B W u 2 H 7! Bu WD
�
2P .!0 � v/ ; !0 � I � ! C ! � I � !0 � !0 � I � a � !


> 2 H

N W u 2 D.A/ � H 7! Nu WD
�

� 2P .! � v/ � P .v � rv/ ; �! � I � .! � a/


> 2 H

(4.9)

where P is the Helmholtz projection from L2.C/ onto L2� .C/. As a consequence, the
system of equations (4.6)–(4.7) can be formally written as the following evolution
equation in the Hilbert space H

d

dt
Iu C Au C Bu D Nu : (4.10)

We shall now state some important properties of the above operators. In the first
place, we observe that, by well known results on the Stokes operator, A0 WD
�P�, with

D.A0/ D W2;2.C/\ W1;2
0 .C/\ L2� .C/ ;

1The notation used in this article is quite standard; see e.g. [7].
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it follows that A is selfadjoint, positive and with compact inverse. For ˛ 2 .0; 1/, its
fractional powers are given by

A˛u WD .A˛0v ; !/> ; A�˛ WD .A�1/˛ :

Moreover, the operator B is, obviously, linear and bounded. Furthermore, in [18,
§6.2.3] it is shown that the bounded operator I is positive and invertible. In addition,
it is easy to check that I is symmetric, namely,

hIu1;u2i D hu1; Iu2i ; u1;u2 2 H ;

so that I is also selfadjoint. Finally, by using classical embedding theorems, one can
easily check that N is well defined. As a result, setting

A WD I�1A ; B WD I�1B ; N WD I�1N : (4.11)

Equation (4.10) is equivalent to the following one

du
dt

C Au C Bu D Nu in H : (4.12)

From the properties of I and A, it readily follows that the operator A, with D.A/ D
D.A/, is sectorial [13, Definition 1.3.1] and has a purely discrete, positive spectrum.

By employing classical methods, it is now rather straightforward to prove local
in time existence and uniqueness of “strict” solutions to (4.12), corresponding to
appropriate initial data. More precisely, we have the following

Lemma 4.2 Let ˇ 2 Œ 4
3
; 1/, and u0 2 D.Aˇ/. Then, there exists t� 2 .0;1� and a

unique function u D u.t/ defined for all t 2 Œ0; t1�, t1 < t�, such that

u 2 C.Œ0; t1�ID.Aˇ// \ C..0; t1�ID.A// \ C1..0; t1�IH/ ;

solving (4.12) (or, equivalently, (4.10)) for all t 2 .0; t1�, with u.0/ D u0. Moreover,
if t� < 1, then kA˛u.t/k ! 1 as t ! t�.

Proof The proof is quite standard (see, e.g., [17, Lemma 5.1] and [26, Theorem 3.1
in Chap. 6]) and we shall only sketch it here. Observing that A, being sectorial, is
the generator of the analytic semigroup e�A t, we begin to consider the following
integral equation

w.t/ D e�A tw0 C
Z t

0

Aˇe�A .t�s/G.w/ ds ; G.w/ WD �B.A�ˇw/C N.A�ˇw/ :
(4.13)

with w0 D Aˇu0. By a classical result [16, Lemma 3] it follows that

kP.v1 � rv1 � v2 � rv2/k2 � c1 .kAˇ0v1k2 C kAˇ0v2k2/ kAˇ0 .v1 � v2/k2: (4.14)
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Also, since I�1 is bounded, we have (Heinz inequality),

kA˛uk � c2 kA˛uk � c3 kA˛uk ; ˛ 2 Œ0; 1� : (4.15)

From these two properties, we then easily show that

kG.w1/� G.w2/k � c4kw1 � w2k ; all w1;w2 2 H in a neighborhood of w D 0 :
(4.16)

It then follows (e.g., [26, pp. 196–197]) that (4.13) has one and only one solution
w D w.t/, t 2 Œ0; t�/ for some t� > 0, with w 2 C.Œ0; t1�IH/, all t1 2 .0; t�/. As a
result, the field u WD A�ˇw is in C.Œ0; t1�ID.Aˇ// and is a mild solution to (4.12),
namely,

u.t/ D e�A tu0 C
Z t

0

e�A .t�s/Œ�Bu C Nu� ds : (4.17)

However, again by standard arguments (e.g., [26, p. 198]), from (4.17) one shows
that, in fact, u 2 C1..0; t1�IH/ \ C..0; t1�ID.A//, so that u is a “strict” solution
to (4.12) and is unique. Finally, it is clear that the above procedure can be extended
to provide a solution beyond any time 	 2 Œt1; t�/ if kAˇu.	/k < 1, whereas, if
t� < 1, it will fail if and only if limt!t� kAˇu.t/k D 1.

�

4.3 The Spectrum of the Linearized Operator

Let

L WD A C B ; D.L/ D D.A/ � D.A/: (4.18)

The spectral properties of the operator L will play a primary role in establishing
stability of the steady-state motion (4.3) and the long-time behavior of solutions to
the nonlinear problem (4.12) [or, equivalently, (4.10)]. To this end, we begin to show
the following preliminary result.

Lemma 4.3 The spectrum, �.L/, of L consists of eigenvalues of finite multiplicity
that can cluster only at infinity. Moreover, 0 is an eigenvalue with corresponding
eigenspace

NŒL� D ˚
u.0/ 2 H W u.0/ D .v � 0;!.0//>; for some !.0/ 2 S.�/

�
;

and

dim .NŒL�/ D dim .S.�// D m ; 1 � m � 3: (4.19)
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In addition, the range of L, RŒL�, is closed and the following decomposition holds,

H D NŒL�˚ RŒL� ; (4.20)

namely, 0 is a semisimple eigenvalue.

Proof Since B is bounded and A is positive definite, all � 2 R with � sufficiently
negative are in the resolvent set of L. For one of these values of � and for a given
g 2 H, consider the equation

Lu � � u D g : (4.21)

Taking into account that (u := complex conjugate)

hAu;ui D krvk22 C j!j2 ; c1kuk2 � hIu;ui � c0kuk2 ;

by first applying the operator I to both sides of (4.21) and then taking the scalar
product with u, it follows that

krvk22 C j!j2 � c0.� C kBk/kuk2 � c1kgk kuk :

From the latter expression, by means of the Poincaré inequality, we easily show that,
for � < �kBk,

kvk1;2 C j!j � c2kgk

which, in turn, by the compact embedding W1;2.C/ � L2.C/, implies that L
has a compact resolvent. The first part of the lemma is then a consequence
of [15, Theorem 6.29]. To show the second part, we observe that, taking into
account (4.9), (4.11) and (4.18), the equation

Lu D 0

is equivalent to the system

��v C 2!0 � v D �rp ; div v D 0 ; in C I v D 0 at @C
!0 � I � ! C ! � I � !0 � !0 � I � a D 0

for some p 2 W1;2.C/. Dot-multiplying both sides of the first equation by v and
integrating by parts over C, with the help of the second and third equation we show
krvk2 D 0, which furnishes v � 0. Replacing this information back into the last
equation, we get

!0 � I � ! C ! � I � !0 D 0 ;
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which, by Lemma 4.1, furnishes ! 2 S.�/. Therefore, an eigenvector u.0/

associated to the eigenvalue 0 must be of the form u.0/ D .v � 0;!.0//>,
with !.0/ 2 S.�/. This property also implies (4.19). We next show that L is an
(unbounded) Fredholm operator of index 0. Actually, since D.A/ is, obviously,
dense in H, the same property holds for D.L/. Moreover, by well-known results
concerning the Stokes operator, we have NŒA� D f0g and RŒA� D H, so that
ind.A/ D 0. It is easy to see that B is A-compact, namely, if fung is a sequence
such that

kunk C kAunk � C

with C independent of n, there is u 2 H such that

lim
n!1 kBun � Buk D 0 :

This property is an elementary consequence of the classical inequality (e.g. [8,
Theorem IV.6.1])

kA0vk2 � 3
1
2 kvk2;2 � � kA0vk2 ; � D �.C/ > 0 ; (4.22)

the compact embedding W2;2 � L2, and the definition of B given in (4.9)3.
Therefore, A C B is Fredholm of index 0. Since I�1 is a homeomorphism, by
the product property, we find that also L is Fredholm of index 0. Now, assume
dimS.�/ D 1. By what we have already shown, dim.NŒL�/ D 1 as well, which,
by the Fredholm property of L, implies codim.RŒL�/ D 1. Let us prove that

RŒL� \ NŒL� D f0g : (4.23)

In fact, suppose there is u.0/ D .0;!.0//> 2 NŒL� such that

Lu D u.0/ ;

or, equivalently,

.A C B/u D Iu.0/ :

Recalling (4.9), this equation can be rewritten as follows

��v C 2!0 � v D �rp C !.0/ � x ; div v D 0 ; in C I v D 0 at @C
!0 � I � ! C ! � I � !0 � !0 � I � a D I � !.0/ :

(4.24)
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Taking into account that I �!0 D �!0 and that, by assumption, !.0/ D ˛!0, ˛ 2 R,
from (4.24) we get, in particular,

!0 � �I � ! � �! � I � a� D �˛!0 ;

which implies !.0/ D 0, namely, u.0/ D 0, and as a result we conclude (4.23).
Likewise, if dim .S.�// � dim .NŒL�/ D 3, we have .I/ij D � ıij, so that the last
equation in (4.24) furnishes

!.0/ � a D 0 : (4.25)

On the other side, by dot-multiplying both sides of the first equation in (4.24) by v,
integrating by parts over C, and recalling (4.8), we show

krvk22 D !.0/ � a

which in view of (4.25) implies v � 0. Replacing this information into (4.24)1
entails

!.0/ � x D rp ; (4.26)

so that, by operating with curl on both sides, we conclude, also in this case, u.0/ D 0

and the validity of (4.23). Let us, finally, consider the case m D 2. In this regard, we
begin to notice that from (4.24)4 it follows !0 �!.0/ D 0. To fix the ideas, we assume
� � A D B .< C/, the case B D C .> A/ being treated in an entirely similar way.
Thus, taking (for instance)

!0 D !0 e1 ; !.0/ D !.0/ e2 ; (4.27)

Eq. (4.24)4 becomes

!0 � Œ.C � A/!� D !0 � I � a C A!.0/ WD F ;

where ! D ! e3. Since F � !0 D 0, this equation is solvable for ! and we get

! D F � !0

!20 .C � A/
: (4.28)

Observing that

F � !0 D !20 I � a � .!0 � I � a/!0 C A!.0/ � !0 ;

from (4.27) and (4.28) we deduce that the condition ! � !.0/ D 0 implies

!.0/ � I � a D 0 : (4.29)
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However, if we dot-multiply both sides of (4.24)1 by v, integrate by parts over C and
use (4.24)2;3 and (4.8), we get

krvk22 D !.0/ � I � a;

which, combined with (4.29) furnishes v � 0. Replacing the latter in (4.24)1 entails
again (4.26) that, as shown previously, implies !.0/ D 0 and the proof of (4.23)
is completed. Now, since codim.RŒL�/ D m, there exists at least one S�H such
that H D S ˚ RŒL�, with S \ RŒL� D f0g. However, dim .S/ D dim .NŒL�/ D m
and (4.23) holds, so that we may take S D NŒL�, as claimed.

�
Let Q and P be the spectral projections according to the spectral sets

�0.L/ WD f0g ; �1.L/ WD �.L/n�0.L/ ;

which are well defined in view of Lemma 4.3. Thus, setting

H0 WD Q.H/ ; H1 WD P.H/ ; (4.30)

we have the following decomposition

H D H0 ˚ H1 (4.31)

that completely reduces L into L D L0 ˚ L1 with

L0 WD QL D LQ ; L1 WD PL D LP ; (4.32)

and �.L0/ � �0.L/, �.L1/ � �1.L/ (e.g., [32, Theorems 5.7-A,B]).
A fundamental issue in the proof of the nonlinear results that we shall present

later on, is the identification of the subspace H0 with NŒL�. In general, this is not
true and we only have NŒL� 	 H0, whereas RŒL� 
 H1. However, if (and only if)
the decomposition (4.20) holds, then this property is valid and the above subspaces
coincide (e.g. [22, Proposition A.2.2]). Thus, Lemma 4.3 implies the next one.

Lemma 4.4 The following characterization holds

H0 D NŒL� ; H1 D RŒL� :

Remark 4.5 It is worth noticing that one can show that the ortho-complement of
NŒL� does not coincide with RŒL�. Therefore, under the assumption of Lemma 4.4,
the decomposition (4.31) is not orthogonal.

The next result provides a complete characterization of the distribution of the
eigenvalues of L1 in terms of the central moments of inertia of S and of the axis
where the permanent rotation occurs.
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Proposition 4.6 Let s0 be given by (4.3). Then,

�1.L/\ fiRg D ;: (4.33)

Moreover, we have

ReŒ�1.L/� � .0;1/ : (4.34)

whenever at least one of the following conditions holds.

(i) A D B D C, arbitrary e;
(ii) A � B < C, e � e3 ;

(iii) A < B D C, e D �1e2 C �2e3, with � � .�1; �2/ 2 S1 .

Conversely, if any of the following conditions are met

(iv) A < B � C, e � e1 ;
(v) A < B < C, e � e2 ;

(vi) A D B < C, e � �1e1 C �2e2 with � D .�1; �2/ 2 S1 .

Then

ReŒ�1.L/� \ .�1; 0/ ¤ ; : (4.35)

Proof Consider the linear problem

du
dt

C Lu D 0 ; u.0/ D u0 2 H : (4.36)

We begin to notice that, being a bounded perturbation of the operatorA, the operator
L is the generator of an analytic semigroup (e.g., [26, Theorem 2.1 in Chap. 3]). As
a consequence, the solution to (4.36) is unique and smooth for all t 2 .0;1/. In
particular, the map

u0 7! u.tIu0/

with u. � Iu0/ solution to (4.36) corresponding to the initial data u0, defines a
dynamical system in H. Now, the abstract equation (4.36) is equivalent to the
following system

vt C P! � x C 2!0 � v � �v � rp D 0

div v D 0

�
in C � .0;1/ ;

v.x; t/ D 0 at @� ;
I � . P! � Pa/C !0 � I � ! C ! � I � !0 � !0 � I � a D 0 ;

(4.37)
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where, we recall, a is defined in (4.8). Next, for a given vector h 2 R
3, we write

h D h? C hk, where hk D hk e, and h? � e D 0. Clearly, h? 2 S.�/? if and only if
dimS.�/ D 1. Since

!0 � I � !k C !k � I � !0 D 0;

from (4.37)4, we deduce

I � . P!? � Pa?/C !0 � I � !? C !? � I � !0 � !0 � I � a? D 0

P!k D Pak :
(4.38)

Setting !� WD !? � a? and taking into account (4.38)2 we can then rewrite (4.37)
in the following equivalent way:

vt C Pa � x C P!� � x C 2!0 � v � �v � rp D 0

div v D 0

�
in C � .0;1/ ;

v.x; t/ D 0 at @� ;
I � P!� C !0 � I � !� C .!� C a?/ � I � !0 D 0 ;

P!k D Pak :

(4.39)

If we dot-multiply (4.39)1 by v, integrate by parts over C and take into
account (4.39)2;3, we obtain

dE

dt
C krvk22 D P!� � I � a? ; (4.40)

where

E WD 1

2
.kvk22 � a � I � a/ : (4.41)

Due to [19, §§ 7.23, 7.2.4], we know that there is c0 2 .0; 1/ such that

c0kvk22 � 2E � kvk22 : (4.42)

We next dot-multiply (4.39)4 one time by !� and a second time by a? to get

!� � I � P!� C !0 � I � !� � !� C .!� C a?/ � I � !0 � !� D 0

P!� � I � a? C !0 � I � !� � a? C .!� C a?/ � I � !0 � a? D 0 ;

from which we show

P!� � I � a? D �!� � I � P!� � !0 � I � !� � .!� C a?/ :
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Replacing the latter into (4.40) produces

d

dt

�
E C 1

2
!� � I � !�

�C krvk22 D �!0 � I � !� � .!� C a?/ : (4.43)

On the other hand, if we dot-multiply both sides of (4.39)4 by I � !� and recall that
I � !0 D �!0, for some � 2 fA;B;Cg, we show

1

2

d

dt
.I � !�/2 D ��!0 � I � .!� C a?/ :

The latter, in conjunction with (4.43) allows us to conclude

d

dt

�
2E C !� � I � !� � 1

�
.I � !�/2

�C 2krvk22 D 0 : (4.44)

This equation is the fundamental tool in our proof, In fact, let us begin to
show (4.33). Assuming the contrary would imply that (4.36) has (at least) one non-
trivial, smooth solution u D .v;!/> such that

u.T/ D u.0/ ;
Z T

0

u.t/ D 0 ; some T > 0: (4.45)

Integrating both sides of (4.44) over Œ0;T� and using (4.45) would then produce

Z T

0

krv.t/k22 D 0 ;

namely,

v � 0 in Œ0;T�: (4.46)

If we replace this information back in (4.39), we get, in particular,

P!� � x D rp ; I � P!� C !0 � I � !� C !� � I � !0 D 0 : (4.47)

Operating with curl on both sides of the first of these equations we deduce !� D
const:. This condition combined with (4.45), (4.46) and (4.39)5 implies !.t/ � 0,
so that the latter and, again, (4.46) provide that there is no non-trivial solution u
to (4.36) satisfying (4.45), and (4.33) is thus established. With the help of this result
and Lemma 4.3 we then infer that �1.L/ must satisfy either (4.34) or (4.35). We
next prove the second property stated in the proposition. To this end, we observe
that if (4.34) is not true, then there exists at least one solution to (4.36) that becomes
unbounded in H as t ! 1. Thus, in order to show our stability claim it is sufficient
to show that, under any of the assumptions (i)–(iii), all solutions to (4.36) are
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bounded. In turn, in view of (4.39)5, this amounts to show that there is a constant
M > 0, depending on the data, such that

kv.t/k2 C j!?.t/j � M ; all t � 0: (4.48)

Set

G WD !� � I � !� � 1

�
.I � !�/2

and consider the three different cases (i)–(iii) stated in the proposition. If A D B D
C, we get G D 0, so that from (4.42), (4.44) and Poincaré inequality, we deduce

dE

dt
� ��E ; � D const: > 0

that in turn, again by (4.42), implies that kv.t/k2 is uniformly bounded in time.
Since in this case !? D 0, (4.48) is proved, and, with it, the proposition in case (i).
In case (ii), we get

G D A!2�1 C B!2�2 � 1

C

�
A2!2�1 C B2!2�2

� D ˛ !2�1 C ˇ !2�2 ;

where

˛ WD 1

C
A.C � A/ ; ˇ WD 1

C
B.C � B/ > 0 :

So, under the given assumptions, G is a positive definite quadratic form in the
components of !�. This property along with (4.42) and (4.44) implies that there
exists a constant M > 0 such that

kv.t/k22 C j!�.t/j2 � M ; all t � 0;

which proves condition (4.48). We next consider the case (iii). Without loss of
generality (we can always rotate e2 and e3 appropriately) we take e � e3. We thus
deduce

G D A!2�1 C B!2�2 � 1

B
.A2!2�1 C B2!2�2/ D A

B
.B � A/!2�1 ;

which with the help of (4.42) and (4.44) entails, for some constant M > 0,

kv.t/k2 C j!1.t/j � M ; all t � 0 : (4.49)

However, taking the projection of (4.36) along the subspace H0 and recalling
Lemma 4.4, we also obtain !2.t/ D const:, so that (4.48) follows from the latter
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and (4.49). Finally, we prove the last claim in the proposition. If (4.35) were not
true, then all solutions to (4.36) must be uniformly bounded in time, so that, in
particular, they must satisfy (4.48). We shall then show that, in such a case, the
following relation holds

2

Z 1

0

krv.s/k22ds D 2E.0/C G.0/ : (4.50)

To this end, by integrating both sides of (4.44) and using (4.48) we deduce that

Z 1

0

krv.t/k22 < 1 ;

which, by Poincaré inequality, entails

Z 1

0

kv.t/k22dt � M : (4.51)

Now, (4.48) along with (4.39)4, furnishes

j P!�.t/j � M1 all t > 0;

for another constant M1 > 0. Replacing this information on the right-hand side
of (4.40) and using (4.42) and Schwarz and Poincaré inequalities, we show

dE

dt
C c1 E � c2 E

1
2 ;

which, by a generalized form of Gronwall’s lemma [11, Lemma 2.1] and (4.42),
(4.51) implies

lim
t!1 kv.t/k2 D 0 : (4.52)

From (4.39)5, (4.48) and (4.52) we infer that the orbits generated by the solutions
to (4.36) through any initial data u0 are compact and, therefore, the !-limit set is
not empty and, in particular, invariant. By (4.52), v � 0 on this set so that by taking
the curl of both sides of (4.39)1 (with v � 0) we derive !� D ! D const:, which
once replaced in (4.39)4 entails that ! must satisfy

!0 � I � ! C ! � I � !0 D 0 :

From Lemma 4.1 and the latter we thus deduce

! 2 S.�/: (4.53)
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At this point, let us first discuss the cases (iv) and (v) stated in the proposition. Then,
in both situations, ! must also belong to S.�/?, which produces ! D 0. Therefore,
by definition of !-limit set, we conclude

lim
t!1 j!�.t/j D 0 : (4.54)

If we now integrate both sides of (4.44) from 0 to t and then let t ! 1, with the
help of (4.52), (4.42) and (4.54) we show (4.50). Now, assume condition (iv). In that
case, we have !� D !�2e2 C !�3e3. Therefore

G D B

A
.A � B/ !2�2 C C

A
.A � C/ !2�3 (4.55)

Thus, from (4.55) and (4.50), we deduce

0 � 2E.0/C B

A
.A � B/ !2�2.0/C C

A
.A � C/ !2�3.0/

which, in view of the assumptions on A;B; and C cannot be true if we pick initial
data such that

2E.0/ <
B

A
.B � A/ !2�2.0/C C

A
.C � A/ !2�3.0/ :

Thus, (4.35) is established. Likewise, in the case (v), we have

G D A

B
.B � A/ !2�1 C C

B
.B � C/ !2�3 ;

and, arguing as before, from (4.50) we deduce

0 � 2E.0/C A

B
.B � A/ !2�1.0/C C

B
.B � C/ !2�3.0/ ;

which cannot hold if we choose (for example)

2E.0/ <
C

B
.C � B/ !2�3.0/ ; !�1.0/ D 0 :

We now turn to the case (vi), and begin to show that also in this case (4.50) holds.
To this end, without loss of generality (it is enough to rotate e1 and e2 appropriately)
we assume e D e1. Therefore, we have

G D A!2�2 C C!2�3 � 1

A
.A2!2�2 C C2!2�3/ D C

A
.A � C/!2�3 : (4.56)
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On the other hand, from (4.53) we deduce !3 D 0, which gives

lim
t!1!�3.t/ D 0 : (4.57)

Thus, integrating both sides of (4.44) from 0 to t, letting t ! 1, and using (4.56)
and (4.57) we establish (4.50) also in the case (vi). As a consequence, from (4.50)
we obtain a contradiction if we choose initial data such that

E.0/ <
C

A
.C � A/!2�3.0/ :

The proof of the proposition is completed.
�

Remark 4.7 In physical terms, Proposition 4.6 may be restated by saying that a
permanent rotation is “linearly stable” if and only if it occurs around an axis of
maximum moment of inertia. This is in total agreement with Kelvin’s experiment.

4.4 Global Existence and Stability of Permanent Rotations:
A Full Explanation of Kelvin’s Experiment

The main objective of this section is to use the results established in the previous
one, to prove necessary and sufficient conditions for the stability of the permanent
rotation (4.3). To this purpose, we give the following definition.

Definition 4.8 The permanent rotation s0 in (4.3) is called stable if for any " > 0

there is ı D ı."/ > 0 such that

kAˇu0k < ı H) sup
t�0

kAˇu.t/k < "

for some ˇ 2 Œ0; 1� and all solutions u D u.t/ to (4.10) with u.0/ D u0. Also, s0
is called unstable if it is not stable. Furthermore, s0 is asymptotically stable, if it is
stable and there exist �0 > 0 such that

kAˇu0k < �0 H) lim
t!1 kAˇu.t/ � u.0/k D 0 ;

for some u.0/ D .0;!.0//> 2 H with !.0/ 2 S.�/. Finally, s0 is exponentially stable
if it is asymptotically stable and there are constants C; � > 0 such that

kAˇu.t/ � u.0/k � C kAˇu.0/k e�� t ; all t � 0:
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Remark 4.9 Because of conservation of total angular momentum for S , in the
asymptotic stability definition, we cannot expect u.0/ D 0, due to the fact that s0
in (4.3) is non-trivial. As a matter of fact, u.0/ D 0 if and only if the initial data
u0 WD .v.0/;!.0//> satisfy [6, Remark 5]

I � .!.0/C !0/C
Z

C
x � v.0/ D 0 ;

a non-generic condition that is physically irrelevant.
The next result provides a suitable “linearization principle” for the equa-

tion (4.10).

Proposition 4.10 Let s0 be given by (4.3). The following stability properties are
valid.

(a) If (4.34) holds, then there exists �0 > 0 such that if for some ˇ 2 Œ 3
4
; 1/

kAˇu0k < �0 ;

the unique solution u to (4.12) [or, equivalently, (4.10)] constructed in
Lemma 4.2 exists for all t > 0 (namely, we can take t� D 1). Moreover,
s0 is exponentially stable.

(b) Conversely, if (4.35) holds then s0 is unstable.

Proof In view of Lemma 4.4, for any u WD .v;!/> 2 H, the spectral projections
Q;P satisfy

Qu WD u.0/ � .0;!.0//> 2 N ŒL� � H0 ; Pu WD u.1/ � .v;!.1//> 2 R ŒL� � H1 :

Applying Q and P on both sides of (4.12) and taking into account (4.32) we
easily show

du.1/

dt
C L1u.1/ DPI�1M.u.1/;u.0//

du.0/

dt
C L0u.0/ DQ I�1M.u.1/;u.0// ;

where

M.u.1/;u.0// WD N.u.1/ C u.0// : (4.58)
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Moreover, observing that L0u.0/ D 0, the previous equations simplify to the
following ones

du.1/

dt
C L1u.1/ DPI�1M.u.1/;u.0//

du.0/

dt
DQ I�1M.u.1/;u.0// :

(4.59)

In view of Lemma 4.3 we know that (4.59) has one and only one solution—in the
class specified there—in the time interval Œ0; t�/, which can be extended to a global
solution provided we show the existence of � > 0 such that

sup
t2Œ0;t�/

kAˇu.t/k � � : (4.60)

In this regard, we begin to observe that since the operator L is the generator of an
analytic semigroup in H, so is L1 in H1. Thus, for all t 2 Œ0; t�/ from (4.59)1 we
have

u.1/.t/ D e�L1tu.1/0 C
Z t

0

e�L1.t�s/ŒPI�1M.u.1/.s/;u.0/.s//�ds : (4.61)

Also, by assumption and Lemma 4.3, there is � > 0 such that

ReŒ�.L1/� > � > 0 ; (4.62)

which implies that the fractional powers L˛1 , ˛ 2 .0; 1/, are well defined in H1.
Thus, setting

w WD ebtLˇ1u
.1/ ; 0 < b < � ;

from (4.61) we get

w.t/ D ebte�L1tLˇ1u
.1/
0 C

Z t

0

ebtLˇ1 e�L1.t�s/ŒPI�1M.e�bsL�ˇ
1 w.s/;u.0/.s//�ds :

(4.63)
We now make the obvious but crucial observation that

!.0/ � I � !.0/ D 0 :

So, from (4.58) and (4.9)4, we obtain

M.u.1/;u.0// D
�
� P Œ2.!.1/ C !.0// � v C v � rv� ;

�!.1/ � I � .!.0/ C !.1//� !.0/ � I � !.1/ C .!.0/ C !.1// � I � a
>

:

(4.64)



4 Stability of Permanent Rotations and Long-Time Behavior of Inertial. . . 239

With the help of (4.14), we show

kM.u.1/;u.0//k � c
�
.j!.1/j C j!.0/j/.kvk2 C j!.1/j/C kAˇ0vk2�

� c
�
.ku.1/k C ku.0/k/ku.1/k C kbAˇu.1/k2� ; (4.65)

where bT denotes the restriction of the operator T to H1. Since B is a bounded
operator, from the definition (4.18) we have (e.g. [13, Theorem 1.4.6])

kbA˛uk � c1 kL˛1uk � c2 kbA˛uk ; ˛ 2 Œ0; 1� ;

which, by (4.15), implies

kbA˛uk � c1 kL˛1uk � c2 kbA˛uk ; ˛ 2 Œ0; 1� : (4.66)

Consequently, from (4.65) and the latter we derive

kPI�1M.e�bsL�ˇ
1 w.s/;u.0/.s//k � c3 e�bs

�
.kwkCku.0/k/kwkCkwk2� : (4.67)

Next, observing that, in H1, it is kL˛1e�L1tk � C˛ t�˛e�� t, ˛ 2 Œ0; 1�, from (4.63),
and (4.67) we deduce

kw.t/k � C0 e�.��b/tkLˇ1u.1/0 k
Cc3

Z t

0

e�.��b/.t�s/

.t � s/ˇ
Œ.kw.s/k C ku.0/.s/k/kw.s/k C kw.s/k2� :

(4.68)

From Lemma 4.2 we know that the pair .w;u.0// is continuous with values in H, and
so for any given � > 0 there exists an interval of time Œ0; 	�, 	 < t�, such that

sup
t2Œ0;	 �

.kw.t/k C ku.0/.t/k/ < � ; (4.69)

provided kw.0/k C ku.0/.0/k < 1
2
� (say). Thus, observing that

Z t

0

e�.��b/.t�s/

.t � s/ˇ
ds �

Z 1

0

e�.��b/t

tˇ
dt WD c0 < 1

from (4.68) we get

.1 � c3c0�/kw.t/k � kLˇ1u.1/0 k ; t 2 Œ0; 	� : (4.70)
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We now go back to (4.59)2, which, with the help of (4.65), furnishes

ku.0/.t/k � ku.0/.0/kCc4

Z t

0

�
.ku.1/.s/kCku.0/.s/k/ku.1/.s/kCkbAˇu.1/.s/k2� ds :

Thus, if we restrict to t 2 Œ0; 	�, choose � D 1=.2c3c0/ and use (4.66), (4.69)
and (4.70), the preceding inequality furnishes

ku.0/.t/k � ku.0/.0/k C c5

Z t

0

kAˇu.s/k ds � ku.0/.0/k C c6

Z t

0

e�b skw.s/k ds
� c7 kAˇu0k ; t 2 Œ0; 	� :

(4.71)

Combining (4.70) with (4.71) and again recalling (4.66), we conclude in particular

kAˇu.t/k � c8 kAˇu0k ; (4.72)

for all t 2 Œ0; 	�, namely, for as long as kAˇu.t/k < �. However, by (4.72) and
a standard argument one can show that if we choose kAˇu0k sufficiently small,
Aˇu.t/ will never reach the boundary of the ball of radius �, implying that (4.72)
must hold for all t > 0. The proof of global existence is thus completed. Obviously,
from (4.72) (valid now for all t � 0), it also follows that s0 is stable, in the sense
of Definition 4.8. We shall now show the asymptotic behavior. From what we have
just proved, under the stated condition on the data and with the above choice of �,
from (4.70) and (4.66) we find

kbAˇu.1/.t/k � c9 e�btkbAˇu.1/.0/k ; all t > 0 : (4.73)

Moreover, integrating (4.59)2 between arbitrary t1; t2 > 0 using (4.73) and reasoning
in a way similar to what we did to obtain (4.71) we infer

ku.0/.t1/� u.0/.t2/k � c10

Z t2

t1

kbAˇu.1/.s/kds � c11 kbAˇu.1/.0/k
Z t2

t1

e�bsds ;

(4.74)
from which we deduce that there exists u.0/ 2 S.�/ such that

lim
t!1 ku.0/.t/ � u.0/k D 0 :

Plugging this information back into (4.74) with t2 D 1, t1 D t we infer

ku.0/.t/ � u.0/k � c12kbAˇu.1/.0/k e�bt;

which, once combined with (4.73), proves the exponential rate of decay. It remains
to show the instability statement. To this end we observe that, in view of the
properties of the spectrum and the estimate of the nonlinearity showed in (4.14),
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it is easy to check that all conditions of [13, Theorem 5.1.3] are satisfied, so that
our statement follows from that theorem. The proof of the proposition is thus
accomplished. �

Combining the results of Propositions 4.6 and 4.10 we may conclude with the
following result that furnishes necessary and sufficient conditions for the stability
of permanent rotations.

Theorem 4.11 Let � 2 fA;B;Cg, and let s0 be the permanent rotation (4.3) with
!0 2 S.�/�f0g. Then, if any of the conditions (i)–(iii) in Proposition 4.6 is satisfied,
s0 is stable. Moreover, there exists �0 > 0 such that if for some ˇ 2 Œ 3

4
; 1/

kAˇu0k < �0 ;

then there is u.0/ � .0;!.0//, !.0/ 2 S.�/, such that all solutions to the perturbation
equation (4.10) corresponding to such initial data satisfy

kAˇu.t/ � u.0/k � C kAˇu0k e�� t ; all t � 0 ;

for some constants C; � > 0. Conversely, if any of the conditions (iv)–(vi) in
Proposition 4.6 holds, the permanent rotation s0 is unstable.

Remark 4.12 The result of Theorem 4.11 provides, in particular, a sharp and
rigorous explanation of Lord Kelvin’s experiment, mentioned in the introductory
section. Actually, this experiment shows that rotations occurring around the shorter
axis (= maximum moment of inertia) of a prolate spheroid filled with water are
stable, while those around the other central axes are unstable. As a matter of fact, our
result implies a much more general phenomenon, namely, that whatever the shape
of the body and cavity, the only stable rotations are those occurring along the axis
with respect to which the moment of inertia is a maximum, all others being unstable.

4.5 Asymptotic Behavior for Large Data: A Full Proof
of Zhukovsky Conjecture

In view of Theorem 4.11 we may deduce that under any of the assumptions (i)–
(ii) stated in Proposition 4.6 all solutions to (4.1)–(4.2) that belong to a suitable
function class and with initial data “sufficiently close” to a permanent rotation (4.6)
in the eigenspace S.�/ must converge exponentially fast to (another) permanent
rotation that lies in the same eigenspace. Objective of this section is to show that, in
fact, the same conclusion holds in the more general class of weak solutions to (4.1)–
(4.2) and for data that not only are less regular, but also not necessarily “close” to
a permanent rotation. These results provide, in particular, a positive answer to an
important question that was left open in [6], thus providing a completely affirmative
answer to the Zhukovsky conjecture mentioned in the introduction.
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We begin to recall the definition of weak solution.

Definition 4.13 A pair .v;!/ is a weak solution to (4.1)–(4.2) if it satisfies the
following properties

(i) v 2 Cw.Œ0;1/IL2� .C//\ L1.0;1IL2� .C//\ L2.0;1IW1;2
0 .C// ;

(ii) ! 2 C.Œ0;1// , .! � a/ 2 W1;1..0;1// ;
(iii) Strong energy inequality:

E.t/C 

Z t

s
krv.	/k22 � E.s/

for s D 0, for a.a. s > 0 and all t � s, where

E WD 1

2

�kvk22 C ! � I � ! � 2a � I � !
�
;

and, we recall, a is defined in (4.8);
(iv) .v;!/ obey (4.1)–(4.2) in the sense of distribution .

Remark 4.14 Employing the important property that E is positive definite in the
variables .v;!/, one can show [23, §3.2] that the class, Cw, of weak solutions is not
empty. Moreover, any .v;!/ 2 Cw is unique in the class of those .w;$/ 2 Cw such
that w 2 Lq.0; 	 ILr.C//, 3r�1 C 2q�1 D 1 [23, §3.4].

We need the following preliminary result.

Lemma 4.15 Let .v;!/ be a weak solution to the problem (4.1)–(4.2) correspond-
ing to data .v0;!0/ 2 L2� .C/ � R

3. Then, there exists t0 > 0 such that for all t > t0
the solution becomes regular and, in particular, satisfies the following conditions,

v 2 W1;1.t0;1IL2� .C//\ C.Œt0;1/IW1;2
0 .C//\ L1.Œt0;1/IW2;2.C// ;

! 2 C1.Œt0;1/IR3/ :
(4.75)

Moreover,

lim
t!1 kA˛0v.t/k2 D 0 ; for all ˛ 2 Œ0; 1/ : (4.76)

Proof Setting

!1 WD ! � a ; (4.77)

we have that the governing equations (4.1)–(4.2) can be rewritten as follows

vt C v � rv C . P!1 C Pa/ � x C 2.!1 C a/ � v D �v � rp
div v D 0

�
in C � .0;1/

v.x; t/ D 0 at @�
(4.78)
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and

I � P!1 C .!1 C a/ � I � !1 D 0 : (4.79)

From [6, Proposition 1] we know already that, for any given weak solution .v;!1/
to (4.78)–(4.79) there is t0 > 0 such that for all t � t0 the solution becomes strong.
Precisely, for all T > 0:

v 2 C.Œt0;1/IW1;2
0 .C//\ L2.t0; t0 C TIW2;2.C// ;

vt 2 L2.t0; t0 C TIL2.C// ; !1 2 C1.Œt0;1/IR3/ ; (4.80)

and there exists p 2 L2.t0; t0 C TIW1;2.C//, such that .v; p;!1/ satisfy (4.78)–
(4.79), a.e. in C � .0;1/. Finally,

lim
t!1 kv.t/k1;2 D 0: (4.81)

In view of (4.80)1, and (4.81) we deduce that for any � > 0 there exists some time
t0 � t0 such that the W2;2-norm of v is finite at t0, while the W1;2-norm is less than �
for all t � t0. Without loss of generality, we may take t0 D t0 and shall thus suppose

kv.t0/k2;2 < 1 ; kv.t/k1;2 < � ; for all t � t0: (4.82)

Our next goal is to construct a solution to (4.78)–(4.79) for t � t0, corresponding
to the initial data .v.t0/;!1.t0//. It will be achieved by an argument analogous to
that presented in [9, Theorem 4.1]. To this end, we will prove some basic a priori
estimates for solutions to (4.78)–(4.79). Taking the time-derivative of both sides
of (4.78), then dot-multiplying the resulting equation by vt and integrating by parts
over C, we get (formally)

1

2

d

dt

�kvtk22 � Pa � I � Pa�Ckrvtk22 D �.vt �rv; vt/C R!1 �I� Pa�2.. P!1 C Pa/�v; vt/ :

(4.83)
Moreover, from [6] we know that .v;!1/ satisfy the energy balance equation
(energy equality)

1

2

d

dt

�kvk22 � a � I � a C !1 � I � !1
�C krvk22 D 0 : (4.84)

From (4.79) it follows that

j P!1j � c1 .j!1j2 C kvk22/ ; (4.85)
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so that

j2.. P!1 C Pa/ � v; vt/j � c1
�
.j!1j2 C kvk22/kvtk2 C kvk2kvtk22

�
: (4.86)

Furthermore, taking the time-derivative of both sides of (4.79) and dot-multiplying
the resulting equation by Pa produces

R!1 � I � Pa D � P!1 � I � !1 � Pa � .!1 C a/ � I � P!1 � Pa :
Therefore, employing (4.85) we show

j R!1 � I � Paj � c2
�
.j!1j2 C kvk22/.j!1j C kvk2/kvtk2 : (4.87)

Now, from (4.84) we obtain rather simply

kv.t/k2 C j!1.t/j � D ; (4.88)

where D, here and in the following, denotes a constant depending only on the initial
data. Using (4.88) and (4.86) we then deduce

j2.. P!1 C Pa/ � v; vt/j � c3.1C kvk2kvtk22/ (4.89)

with c3 depending on D. Furthermore, employing in (4.87) the bound (4.88) and the
Cauchy-Schwarz inequality, we show for arbitrary " > 0

j R!1 � I � Paj � c4 C "kvtk22 (4.90)

with c4 depending on D; ". Furthermore, by Cauchy-Schwarz inequality and
Sobolev embedding theorem, it follows that

j.vt �rv; vt/j � kvtk24krvk2 � krvtk
3
2

2 kvtk
1
2

2 krvk2 � " krvtk22Cc5 kvtk22krvk42 :
(4.91)

whereas, by (4.84), (4.85) and (4.88), we also show

krvk22 � c4.kvtk2 C 1/ : (4.92)

As a result, combining (4.83), (4.89)–(4.92), and by choosing " D =2 in (4.91),
we infer

d

dt

�kvtk22 � Pa � I � Pa�C krvtk22 � c5.1C kvtk42/ : (4.93)

If we now set

E1 WD 1

2
.kvtk22 � Pa � I � Pa/
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from (4.40) we deduce

c0kvtk22 � 2E1 � kvtk22: (4.94)

Thus (4.93) furnishes, in particular,

d

dt
E1 � c6 .1C E1/

4 :

Integrating this inequality and taking into account (4.94), we easily show that
there exists

	 � c7=.kvt.t0/k2 C 1/3 ; (4.95)

and continuous functions Hi, i D 1; 2, in Œt0; t0 C 	/ such that

kvt.t/k2 � H1.t/ ;
Z t

t0

krvs.s/k22 � H2.t/ t 2 Œt0; t0 C 	/ : (4.96)

Using (4.78)1 and proceeding exactly as in [9, Theorem 4.1] we can prove that

kvt.t0/k2 � c8 ŒP.kv.t0/k2;2/C 1� (4.97)

where P.r/ is a polynomial in r with P.0/ D 0. Thus, in view of (4.82) and (4.95),
this implies, on the one hand, that kvt.t0/k2 is well defined and, on the other hand
the following estimate on 	

	 � c=.P.kv.t0/k2;2/C 1/3: (4.98)

Estimates (4.96) along with (4.92) allow us to establish by the classical Faedo-
Galerkin method the existence of a solution .ev;e!/ to (4.78)–(4.79) in the time
interval Œt0; t0 C 	/ with the following properties valid for all t1 2 .0; 	/

ev 2 W1;1.Œt0; t1�/IL2.C//\ L1.t0; t1IW1;2.C// ;
evt 2 L2.t0; t1IW1;2.C// ; e!1 2 C1.Œt0; t1�/IR3/ I

for details, see [23, Chap. 4]. By the uniqueness result recalled in Remark 4.14,
we must have .ev;e!/ D .v;!/ in Œt0; t0 C 	/. Using (4.98) and arguing in a way
entirely analogous to [9, Theorem 4.1], one can then show that either 	 D 1, or else
kv.t/k2;2 becomes unbounded in a (left) neighborhood of 	 . In view of (4.22), the
above is equivalent to say that kA0v.t/k2 becomes unbounded. We shall prove that

sup
t2Œt0;t0C	/

kA0v.t/k2;2 � M < 1 ; (4.99)
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and thus conclude 	 D 1. To secure (4.99), we go back to (4.83) and employ the
estimates (4.89)–(4.91) on its right-hand side. We thus obtain

d

dt
E1 C krvtk22 � c9 C " kvtk21;2 C c10 .kvk22 C krvk42/kvtk22

Observing that, by Poincaré inequality and (4.94),

krvtk22 � c11 kvtk22 � 2c11E1 ; (4.100)

we may take " sufficiently small to obtain

d

dt
E1 C c12E1 � c9 C 2c10 .kvk22 C krvk42/E1

However, by (4.82), � can be chosen in such a way that

2c10 .kvk22 C krvk42/ <
1

2
c12 ;

so that the preceding inequality becomes

d

dt
E1 C c13E1 � c9

Integrating this differential equation between t0 and t < 	 , and taking into
account (4.97), (4.82) we show

kvt.t/k2 � D ; t 2 Œt0; 	/ : (4.101)

Next, dot-multiplying both sides of (4.78) by P�v and using Schwarz inequality,
we also show

kA0v.t/k2 � c14 Œkvt.t/k2 C .j!1.t/j C kv.t/k2/kv.t/k2
Cj P!1.t/j C kv.t/ � rv.t/k2� : (4.102)

The following inequality is well known (e.g., [9, Eq. (3.22)])

kv � rvk2 � c14krvk32 C " kA0vk2
with arbitrary " > 0 and c14 ! 1 as " ! 0. Thus, using the latter with " D
1=.2c14/ into (4.102) delivers

kA0v.t/k2 � 2c14
�kvt.t/k2 C .j!1.t/j C kv.t/k2/kv.t/k2 C j P!1.t/j C krv.t/k32

�
;

(4.103)
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which, by virtue of (4.82), (4.85), (4.88), and (4.101) allows us to show (4.99). As
a result, (4.99) holds with 	 D 1, namely

sup
t�t0

kA0v.t/k2 � M : (4.104)

This property, in conjunction with (4.80) and (4.101), shows that .v;!/ is in the
class (4.75). Finally, we recall the well-known inequality (e.g., [13, p. 28])

kA˛0v.t/k2 � kA0v.t/k˛2kv.t/k1�˛2 ; ˛ 2 Œ0; 1�

which, with the help of (4.81) and (4.104) implies (4.76). The proof is completed.
�

Remark 4.16 We wish to observe that, by using arguments similar to those
employed in the proof of the previous lemma, one can show that the weak solution
possesses regularity properties, in the time variable, even stronger than that stated
in (4.75)1. More precisely, one can show v 2 Wk;2..t0;T/IW2;2.C//, for all k � 1

and T > 0 (e.g., [7, Lemma 5.5]).
We are now in a position to prove the main result of this section that gives a

complete and positive answer to Zhukovsky’s conjecture.

Theorem 4.17 Let s WD .v;!/ be a weak solution to (4.1)–(4.2) corresponding to
initial data .v.0/;!.0// 2 L2� .C/�R

3. Then, there exists t0 D t0.s/ such that, for all
t � t0, s becomes smooth and, precisely, lies in the function class defined by (4.78).
Moreover,

lim
t!1 kA˛0v.t/k2 D 0; (4.105)

for all ˛ 2 Œ0; 1/, and there exists ! 2 R
3 such that

lim
t!1 j!.t/ � !j D 0 : (4.106)

the rate of decay in both (4.105) and (4.106) being exponential.

Proof The first part of the theorem that includes (4.105), has been proved in
Lemma 4.15. Concerning the property related to (4.106), in [6, Theorem 4] it is
shown that it is always true with ! D 0 in the (physically irrelevant) case that the
initial total angular momentum M.0/ vanishes [see (4.2)]. If, however, M.0/ ¤ 0

(which necessarily implies ! ¤ 0/, in [6, loc.cit.] the above property is secured
only when either A � B < C or A D B D C. Thus, the case A < B D C is left open.
In fact, in such circumstance it is only shown that either, for some ! 2 R,

lim
t!1 j!.t/ � !e1j D 0 ;
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in which case (4.106) is proved, or else

lim
t!1 dist.!.t/;S.�// D 0 ; (4.107)

with � � B D C. Therefore, in the occurrence of (4.107), we cannot assert the
validity of (4.106). However, with the help of Theorem 4.11 we will now show that
also in the case (4.107) there must be ! (¤ 0) for which (4.106) holds. Actually,
from (4.107) it follows that we can find !0 2 S.�/, !0 ¤ 0, and an unbounded
sequence of times ftng such that

lim
n!1 j!.tn/ � !0j D 0 :

In view of the latter and (4.105), there is 	0 � t0 such that

kAˇ0v.	0/k2 C j!.	0/� !0j < �0 ;

where ˇ and �0 are the constants introduced in Theorem 4.11. Because of the
uniqueness property (see Remark 4.14), our weak solution will then coincide with
the solution of that theorem. In particular, since the assumption A < B D C is
exactly case (ii) of Proposition 4.6, from Theorem 4.11 we conclude the existence
of ! 2 S.�/ for which (4.106) holds. The exponential decay rate, in all cases, is
ensured by (4.105), (4.106) and Theorem 4.11. The proof is completed. �

4.6 Attainability of Permanent Rotations

One of the significant questions posed by Theorem 4.17 concerns around which
central axis the terminal permanent rotation will occur. Notice that this problem is
further reinforced by the fact that, since we are dealing with weak solutions for
which uniqueness is not known, it may happen, in principle, that two solutions
corresponding to the same initial data may converge, eventually, to permanent
rotations occurring around two different central axes.

The above question has been analyzed in some detail in [6, Sect. 8], where
it is shown for an open set of “large” data that, provided A � B < C, the
terminal permanent rotation, r0, will take place around the e3-axis, namely, the axis
with maximum moment of inertia. However, this result leaves open two important
aspects. In the first place, it does not allow us to draw an analogous conclusion if
A < B D C, that is, r0 will occur around an axis spanned by fe2; e3g, as somehow
expected on the basis of Theorem 4.17. Moreover, it does not provide any rate of
decay. In this regard, both lab [14] and numerical [6, Sect. 9.1] experiments show
that, after a transient interval of time, whose length depends (inversely) on the
kinematic viscosity coefficient, the motion of the coupled system almost abruptly
converges to a permanent rotation.
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Objective of this section is to fill these two gaps. In particular, we shall show that
when the (relative) velocity of the liquid becomes “sufficiently small” and the angu-
lar velocity of the body is “sufficiently close” to that of the corresponding terminal
permanent rotation, both quantities must decay exponentially fast to their respective
limits, which thus also explains the “abrupt” convergence mentioned before.

Theorem 4.18 Let .v;!/ be a weak solution in the sense of Definition 4.8,
corresponding to data .v0;!0/, and let E D E.t/ the functional defined in (4.41).
The following properties hold.2

(a) If A D B < C, assume

E.0/ � .C � A/C

2A
!203.0/ ;

whereas, if A < B < C, assume

E.0/C A

2B
.B � A/!201.0/ � C

2B
.C � B/!203.0/ ;

E.0/ � B

2A
.B � A/!202.0/C C

2A
.C � A/!203.0/ :

Then, there exists ! 2 S.C/ � f0g such that

lim
t!1

�kA˛0v.t/k2 C j!.t/ � !j� D 0 ; all ˛ 2 Œ0; 1/ : (4.108)

(b) If A < B D C, assume

E.0/ � B.B � A/

2A
.!202.0/C !203.0// : (4.109)

Then, (4.108) holds for some ! 2 S.B/ .� S.C// � f0g.
(c) Under the assumptions stated in (a) and (b), there exist positive constants t0;C

and � , depending at most on ; C;A;B;C and .v0;!0/, such that

kvt.t/k2 C kv.t/k2;2 C j P!.t/j C j!.t/ � !j � C e�� t ; for all t � t0:

Proof We begin to prove the statement in (a). Under the given assumptions on the
initial data, in [6, Theorem 5] it is shown that

lim
t!1 j!.t/ � !j D 0 :

2We assume M.0/ ¤ 0, otherwise the motion of the coupled system is physically irrelevant; see
Remark 4.9.
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The claim then follows from Lemma 4.15. In [6, Theorem 5] it has also proved that
if (4.109) holds, necessarily

lim
t!1 j!1.t/j D 0 :

As a result, by Theorem 4.17 we deduce that !.t/ must converge, as t ! 1, to
some ! 2 S.B/ .� S.C//, which proves the statement in (b). We shall next show
(c). From Theorem 4.11 we already know, in particular, that

kv.t/k1;2 C j!.t/ � !j � C e��t ; for all t � t0 ; (4.110)

where, here and in what follows, C denotes a generic constant whose value may
change from line to line, that depends, at most, on ; C, the central moments of
inertia of the coupled system body-liquid and the initial data. Observing that ! � I �
! D 0, from (4.79) we have

I � P!1 D �.w C a/ � I � !1 � ! � I � w ; (4.111)

with w WD !1 � !. Therefore, from (4.88), (4.110), and (4.88) we conclude

j P!1.t/j � C e��t ; t � t0 : (4.112)

By Schwarz inequality, (4.110) and (4.112), we show

j2.. P!1 C Pa/ � v; vt/j � 2j P!1j kvk2kvtk2 C Ckvk2kvtk22
� j P!1j2kvk2 C C kvk2kvtk22
� C e��t.1C kvtk22/ :

(4.113)

Moreover, taking the time-derivative of both sides of (4.111) and dot-multiplying
the resulting equation by Pa, we get

R!1 � I � Pa D � Pw � I � !1 � Pa � .w C a/ � I � P!1 � Pa � ! � I � P!1 � Pa :

Thus, employing in this relation Cauchy-Schwarz inequality along with (4.110)
and (4.112) we obtain

j R!1 � I � Paj � C e��t.1C kvtk22/ : (4.114)

We next observe that, in view of Theorem 4.11 and Lemma 4.15, the generic weak
solution becomes smooth for sufficiently large t (see also Remark 4.16). Therefore,
in particular, (4.83) holds for all such instant of times. Now, the latter in conjunction
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with (4.91) (with " D =2) , (4.110), (4.113) and (4.114), entails that the weak
solution satisfies, for all large t, the following inequality

d

dt

�kvtk22 � Pa � I � Pa�C  krvtk22 � C e��t.1C kvtk22/ :

By Poincaré inequality and (4.94), this relation allows us to conclude that for all
t > ��1 ln.2C=/ WD 	 , we must have

d

dt
E1 C � E1 � C e��t ; (4.115)

for suitable constant � D �.;�/ > 0. Notice that, without loss of generality, we
can assume � < �, because if (4.115) holds for some � , it continues to hold for
�1 < � . If we integrate (4.115) from 	 to t > 	 , we show

E1.t/ � E1.	/ e�� t C C e�� t
Z t

	

e�.���/sds ; t � 	

from which, with the help of (4.94) and observing that � > � , we deduce

kvt.t/k22 � C e�� t (4.116)

If we now consider inequality (4.103) and estimate its right-hand side with the help
of (4.110), (4.112) and (4.116). we arrive at

kA0v.t/k2 � C e�� t ;

which by (4.22) allows us to conclude

kv.t/k2;2 � C e�� t :

The statement in part (c) then follows from the latter, (4.111), (4.112), (4.116), and
the theorem is completely proved. �
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Chapter 5
Dissipative Particle Dynamics: Foundation,
Evolution, Implementation, and Applications

Z. Li, X. Bian, X. Li, M. Deng, Y.-H. Tang, B. Caswell, and G.E. Karniadakis

Abstract Dissipative particle dynamics (DPD) is a particle-based Lagrangian
method for simulating dynamic and rheological properties of simple and complex
fluids at mesoscopic length and time scales. In this chapter, we present the
DPD technique, beginning from its original ad hoc formulation and subsequent
theoretical developments. Next, we introduce various extensions of the DPD method
that can model non-isothermal processes, diffusion-reaction systems, and ionic
fluids. We also present a brief review of programming algorithms for constructing
efficient DPD simulation codes as well as existing software packages. Finally, we
demonstrate the effectiveness of DPD to solve particle-fluid problems, which may
not be tractable by continuum or atomistic approaches.

Keywords Coarse-Graining • Computational biology • Fluctuating hydrodynam-
ics • Fluid mechanics • Lagrangian approach • Mesoscopic method • Multiscale
simulation • Particle-based method • Soft matter • Stochastic simulation • Ther-
mostat
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5.1 Introduction

In many applications to soft matter and biological systems, despite of the sustained
fast growth of computing power during the past few decades, it is still computation-
ally prohibitive or impractical to simulate dynamics for long temporal scales and
large spatial scales with brute-force atomistic simulations [82]. The reason is that
the atomistic approaches are limited by the number of atoms/molecules that can be
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included in the simulation, typically 104�108 corresponding to a length-scale on the
order of tens of nanometers, and the maximum time step in atomistic simulations is
limited by the smallest oscillation period of the fastest atomic motions in a molecule,
which is typically several femtoseconds (10�15 s). However, if only mesoscopic
structures of molecules or their collective behavior are of practical interest, it
may be unnecessary to explicitly take into account all of the atomistic details of
materials [110]. To this end, the mesoscopic approach drastically simplifies the
atomistic dynamics by eliminating fast degrees of freedom while preserving the
behavior of slow entities, and provides an economical simulation path to capture the
correct dynamics of complex fluids on larger spatial and temporal scales beyond
the capability of conventional atomistic simulations [78]. In recent years, with
increasing attention to the research of soft matter and biophysics, mesoscopic
modeling has become a rapidly expanding methodology [98] with applications
to material science [81, 95], polymer physics [40, 59, 70], rheology of complex
fluids [10, 88] and computational biology [55, 56, 93].

Dissipative particle dynamics (DPD) is currently one of the most popular
mesoscopic methods [71]. In DPD, a single coarse-grained (CG) particle represents
an entire cluster of molecules, with unresolved degrees of freedom approximated
by stochastic dynamics [61, 64]. Similar to the molecular dynamics (MD) method,
a DPD system consists of many interacting particles with their dynamics computed
by time integration of Newton’s equation of motion. However, in contrast to MD,
DPD has soft interaction potentials allowing for larger integration time steps. As
a bottom-up mesoscopic approach, the DPD method smoothly bridges the gap
between the microscopic and macroscopic worlds. On the one hand, DPD has
its roots in microscopic dynamics as its governing equations can be rigorously
derived from the microscopic dynamics by applying the Mori-Zwanzig projection
operator [61]. On the other hand, the framework of DPD can be derived from the
fluctuating Navier-Stokes equation [25]. The interactions between DPD particles
are pairwise so that the total momentum of the DPD system is strictly conserved.
By using the Fokker-Planck equation and applying the Mori projection operator,
Español [22] and Marsh et al. [77] showed that the hydrodynamic equations of a
DPD system recover the continuity and Navier-Stokes equations. Therefore, the
DPD method can be considered as a particle-based Lagrangian representation of
the continuity and momentum equations at the mesoscopic level.

In this chapter, we will revisit the theory, algorithms and applications of the
DPD method. In Sect. 5.2 we consider its theoretical formulation. Beginning with
the statistical mechanics behind the DPD method, both bottom-up and top-down
derivations of its governing equations as well as the parameterizations will be
presented. Next, in Sect. 5.3 we review several extensions of DPD that have been
developed in recent years for tackling the challenges in diverse multi-physics
applications beyond the capability of the classical DPD method. In Sect. 5.4 we
introduce some useful algorithms for computer implementation of DPD simulations.
Finally, we present some selected applications in Sect. 5.5 and end with a brief
summary in Sect. 5.6.
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5.2 Theoretical Formulation and Parameterization

The DPD method was invented intuitively by Kolemann and Hoggerbrugee [39, 44]
to study hydrodynamic phenomena at the mesoscale. In the original formulation,
DPD has only two types of pairwise forces: dissipative and random forces. Later
on Español and Warren [26] further introduced the pairwise conservative force.
Meanwhile they also derived the stochastic differential equations (SDE) as the
equation of motion (EoM) for the particles. This is a fundamental step putting DPD
on a firm physical ground, where the equilibrium invariant distribution of a DPD
system is the canonical ensemble of Gibbs if the fluctuation-dissipation theorem
(FDT) is satisfied by the DPD inputs. In Sect. 5.2.1, we will introduce the detailed
derivations of the FDT for DPD systems.

Furthermore, we describe the projection technique (the Mori projection) in
the first part of Sect. 5.2.2, which establishes the correspondence between DPD
parameters and thermodynamic properties and transport coefficients of the fluids
from the continuum point of view. This is indicated as route A in Fig. 5.1. To connect
DPD with a continuum description, one may also interpret DPD as a Lagrangian
discretization of the Landau-Lifshitz-Navier-Stokes equation. In this case, it is
named as Smoothed DPD or SDPD for brevity. This will be explained in detail
in the second part of Sect. 5.2.2, which corresponds to route B in Fig. 5.1. We may
further apply the method of BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon)
hierarchy to obtain a kinetic equation for the single particle distribution and then
solve it to recover the Navier-Stokes’ transport coefficients, as will be explained
in Sect. 5.2.3. This corresponds also to the route A in Fig. 5.1. Another simpler
alternative to predict the transport coefficients of DPD is by assuming the continuum
limit within the cut off radius and take a continuum integral of the DPD parameters
as indicated also as the route A in Fig. 5.1. The continuum integral approach together
with parameterization of thermodynamic properties (compressibility) are both
explained in Sect. 5.2.4. Finally, in Sect. 5.2.5, we revisit some representative work
on the fundamental basis for coarse-graining the underlying system of molecular
dynamics, including again the projection technique. This time it is the Zwanzig
projection instead of the Mori projection. This corresponds to route C in Fig. 5.1.

5.2.1 Fokker-Planck Equation and Fluctuation-Dissipation
Theorem

Rather than the discrete form from the original DPD paper [39], Español and
Warren [26] formulated an EoM for DPD particles as continuous stochastic
differential equations (SDE)

Pri D Ppi=m;

Ppi D Fi D
X

j¤i

Fij D
X

j¤i

�
FC
ij C FD

ij C FR
ij

�
; (5.1)
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Fig. 5.1 Sketch of the current developments of the dissipative particle dynamics (DPD) method

where ri and pi are the position and momentum of particle i. Particle index i ranges
from 1 to the total number of particles N. The mass m for each particle is taken an
identical constant. For Galilean invariance, the forces are postulated to depend only
on relative position rij D ri�rj and relative velocity vij D vi�vj of two particles. To
preserve linear momentum, forces are antisymmetric and satisfy Newton’s third law,
that is, Fij D �Fji. To preserve angular momentum, forces between two particles
always lie along the line of centers eij D rij=rij. Therefore, the three types of forces
are expressed as [26, 35]

FC
ij D awC.rij/eij;

FD
ij D ��wD.rij/.eij � vij/eij;

FR
ij D �wR.rij/
ijeij;

(5.2)

in which a, � and � are the strengths of individual forces. Weighting functions wC ,
wD, and wR are isotropic and depend only on the relative distance rij D jrijj of two



5 Dissipative Particle Dynamics: Foundation, Evolution, Implementation, and. . . 259

particles. 
ij D 
ji is a Gaussian white noise with

< 
ij.t/ > D 0;

< 
ij.t/
kl.t
0/ > D �

ıikıjl C ıilıjk
�
ı.t � t0/;

(5.3)

where ıij is the Kronecker delta and ı.t � t0/ is the Dirac delta function [26]. If we
replace the forces in Eq. (5.1) by Eq. (5.2), we can write the Langevin equations in
a mathematically well-defined form of SDE

dri D pi

mi
dt;

dpi D
0

@
X

j¤i

FC
ij C

X

j¤i

FD
ij

1

A dt C
X

j¤i

�wR.rij/eijdWij;

(5.4)

where dWij D dWji are independent increments of the Wiener process and the Itô
calculus rule is assumed. Therefore,

dWijdWkl D �
ıikıjl C ıilıjk

�
dt: (5.5)

In continuum mechanics [46], we know that the conservation law can be
expressed as the continuity equation in the differential form as

@f .x; t/
@t

C r � ŒPxf .x; t/� D 0; (5.6)

which states that in an infinitesimal volume the rate of change of density
(e.g., mass density, momentum density, . . . ) is balanced by the divergence of
the corresponding flux. In phase space the relevant coordinate becomes 6N
dimensional as x D .r1; r2; : : : ; r3N ; p1; p2; : : : ; p3N/. Accordingly, the velocity
in phase space is then Px D .Pr1; Pr2; : : : ; Pr3N ; Pp1; Pp2; : : : ; Pp3N/, and so f .x; t/ is
the probability density function (PDF) in phase space [32]. Now we may
substitute the derivatives in SDE of Eq. (5.4) into Eq. (5.6). By applying the
gradient operator r applied on 6N dimensions, that is, @=@ri and @=@pi, and
after some algebraic manipulations, we obtain the Fokker-Planck equation (FPE)
as [26]

@f .x; t/
@t

D Lf .x; t/ D LCf .x; t/C LDf .x; t/C LRf .x; t/; (5.7)
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where the Fokker-Planck operator L decomposes into three operators LC , LD and
LR. The individual operators are defined as follows

LC � �
0

@
X

i

pi

m
� @
@ri

C
X

i;j

0FC
ij � @

@pi

1

A ;

LD �
X

i;j

0eij � @

@pi

�
�wD.rij/.eij � vij/

�
;

LR �
X

i;j

0eij � @

@pi

�
�2

2
w2R.rij/eij �

�
@

@pi
� @

@pj

	�
;

(5.8)

where
P 0 � PP

with i ¤ j. The FPE for the DPD system is an extension
of the Kramers equation for the Langevin equation of a single particle under an
external potential. The FPE is also an extension of the Liouville’s equation for the
Hamiltonian system of many particles.

We note that the evolution of PDF in the FPE is already averaged so that no
random variable appears in Eq. (5.8). The operator LC is the classical Liouville
operator for a Hamiltonian system interacting with conservative forces FC alone,
where FC is simply the negative gradient of a potential. For a conservative system
of particles, it can be shown that the divergence of the PDF is zero, that is, the PDF
is incompressible and divergence of velocity in Eq. (5.6) is zero. However, due to the
dissipative and random forces FD and FR in DPD, the PDF is generally compressible
and these effects are taken into account by the operators LD and LR. We wish to find
the steady state solution of Eq. (5.7) for @f=@t D 0, and in particular, the solution is
expected to be the Gibbs canonical ensemble:

f eq.x/ D 1

Z
exp Œ�ˇH.x/� : (5.9)

Here ˇ D .kBT/�1 and the Hamiltonian is the sum of the potential energy and

kinetic energy of the system, that is, H D V.r/ C P
i

p2i
2mi

. The negative gradient

of the potential V gives rise to the conservative force FC. The partition function
Z is there for normalization and is not particularly relevant in this context. Since
the canonical ensemble is the equilibrium solution for a conservative system, it is
straightforward to obtain LCf eq D 0. Furthermore, LDf eq C LRf eq D 0 can also be
satisfied by postulating two relations as

wD.r/ D ŒwR.r/�
2;

�2 D 2�kBT:
(5.10)

This is the celebrated fluctuation-dissipation theorem first derived by Español and
Warren [26], which is of fundamental importance for a DPD system. With the FDT
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as a constraint on the input model parameters, the canonical ensemble of the DPD
system is warranted in the continuum limit, i.e., dt ! 0.

Another operator QL related to the Fokker-Planck operator proves to be important
later and we shall also briefly introduce it. Given an arbitrary function of phase space
coordinates, that is, a.x/, we can write down its differential as

da D
X

i

�
@a

@ri
� dri C @a

@pi
� dpi

	

C 1

2

X

i;j

�
@2a

@ri@rj
dridrj C @2a

@ri@pj
dridpj C @2a

@pi@pj
dpidpj

	

C O.dt3=2/

D QLadt C
X

i;j

0�wR.rij/eij
@a

@pi
dWij C O.dt3=2/;

(5.11)

where QL is defined as

QL �
0

@
X

i

pi

m

@

@ri
C
X

i;j

0FC
ij

@

@pi

1

A

C
X

i;j

0�wD.rij/

�
�.eij � vij/eij � @

@pi

�

C
X

i;j

0 �2

2
w2R.rij/eij �

�
@

@pi
� @

@pj

	
:

(5.12)

The SDE of Eq. (5.4) and the Itô calculus rule in Eq. (5.5) were applied to
derive Eqs. (5.11) and (5.12). We will need QL to compute the time derivatives of
hydrodynamic variables due to the property of Eq. (5.11)

d<a>

dt
D < QLa>; (5.13)

in which “<>” means ensemble average. It is also noteworthy that DPD satisfies
the detailed balance

Lf eqa D f eq QL�a; (5.14)

where operator QL� is defined by reversing the sign of velocities in QL.
For practical purposes, besides the FDT in Eq. (5.10) on the input parameters, we

did not specify the actual values of a, � and � , nor did we talk about the functional
forms of wC, wR and wR. These discussions are presented in Sects. 5.2.4 and 5.2.5.
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In the following section we shall discuss how these input parameters determine the
hydrodynamic properties of a DPD system.

5.2.2 Bottom-Up and Top-Down Derivations

Since a DPD system respects Galilean invariance, it only allows for isotropic
interactions while preserving conservations of mass and momentum. The equation
to be expected to govern on a large spatial-temporal scale is the continuum Navier-
Stokes system. This intuitive argument can be put on firm ground by applying the
projection operator techniques of Zwanzig and Mori [80, 112, 113]. The projection
formalism not only yields the hydrodynamic equations for a DPD system, but also
establishes an explicit correspondence between the sound speed and viscosities
of the Navier-Stokes and the model parameters of DPD. To this end, the time-
independent projection operator of Mori [80] was generalized by Español [22]
for the non-Hamiltonian system of DPD to derive a linear generalized Langevin
equation, from which he obtained the linearized hydrodynamic equations.

We shall revisit a few key steps of the derivations [22]; more details on the
technical aspects may be found in [33, 80, 113]. To start with a simplest example,
we present the essential idea of projection upon a two dimensional system, that is,
two coupled ordinary different equations (ODE).

Projection in a Nutshell

Given a system of two ODEs as follows [113]

dp

dt
D A11p C A12q; (5.15a)

dq

dt
D A21p C A22q: (5.15b)

Suppose that our interest is on p, not q. Then, by solving Eq. (5.15b) for q we have

q.t/ D eA22q.0/C
Z t

0

eA22.t�	/A21p.	/d	: (5.16)

Inserting Eq. (5.16) back into Eq. (5.15a), we have

dp

dt
D A11p C A12

Z t

0

eA22.t�	/A21p.	/d	 C A12e
A22tq.0/

D A11p C
Z t

0

K.t � 	/p.	/d	 C R.t/;

(5.17)
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which has the form of the generalized Langevin equation (GLE). Furthermore, the
memory kernel and noise terms are defined as

K.t/ D A12e
A22tA21;

R.t/ D A12e
A22tq.0/:

(5.18)

If we are not interested in a specific initial condition q.0/, but only in an ensemble
of q.0/, which has certain statistical distribution, it makes sense to name R.t/ as
the noise term. In general, given a set of N variables and we are only interested in a
subset of them or a set of functions of the N variables, after projection or substitution
we are left with equations for the dynamics of a few relevant variables. However,
the eliminated variables leave their footprints within the memory kernel and random
term.

Next we shall introduce the linear projection adopted by Mori and introduce
the concepts of relevant variables and relevant probability density. Subsequently,
we apply the Mori formalism to obtain the hydrodynamic equations of DPD. This
corresponds to the route A in Fig. 5.1.

The Mori Formalism

First we introduce a scalar product between two functions of phase space coordi-
nates,

.�;  / �
Z

f eq.x/�.x/ .x/dx � tr Œ f eq� � : (5.19)

The technique of projection operators, requires the identification of variablesAi.x; t/
relevant to the macroscopic properties of the system, and subscript i is a free
index. In our case, the Ai are hydrodynamic variables to be defined later, with zero
equilibrium averages. A relevant ensemble has the following form,

f .x; t/ D 1

Z
exp Œ�ˇH C ˇ�i.t/Ai.x; t/� ; (5.20)

where the Einstein convention is assumed on the repeated index i. The thermo-
dynamic parameters �i are functions of time to be selected in such a way that
the average of Ai performed with the relevant ensemble agrees with the average
performed with the original ensemble from the solution of the FPE of Eq. (5.7).
Mathematically, this means that the time-dependent average is

<Ai.t/> D tr Œ f .t/Ai.t/� D tr
�
f .t/Ai.t/

�
; (5.21)

where the x arguments are omitted for brevity. We further assume that the system is
not far from equilibrium, which implies a linear response in Eq. (5.20). This allows
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us to keep the first two terms of a Taylor expansion,

f .x; t/ D 1

Z
exp Œ�ˇH� exp Œˇ�i.t/Ai.x/� � f eq.x/ Œ1C ˇ�i.t/Ai.x/� : (5.22)

The linear departures from equilibrium of the two ensembles are defined by,

f .x; t/ D f eq.x/ Œ1C‰.x; t/� ;

f .x; t/ D f eq.x/
�
1C‰.x; t/

�
;

(5.23)

where the ‰.x; t/ is constructed in accord with Eq. (5.20) as,

‰.x; t/ D ˇ�i.t/Ai.x; t/: (5.24)

From Eq. (5.21) we can now calculate the average either by use of the original
ensemble as

<Ai.t/> D tr Œ f .x; t/Ai� D
Z

f .x; t/Ai.x; t/dx

D
Z

f eq.x/ Œ1C‰.x; t/�Ai.x; t/dx

D
Z

f eq‰.x; t/Ai.x; t/dx

D .Ai; ‰/ ;

(5.25)

or by use of the relevant ensemble as

<Ai.t/> D tr
�
f .x; t/Ai

� D
Z

f .x; t/Ai.x; t/dx

D
Z

f eq.x/
�
1C‰.x; t/

�
Ai.x; t/dx

D
Z

f eq‰.x; t/Ai.x; t/dx

D �
Ai; ‰

�
;

(5.26)

where in both Eqs. (5.25) and (5.26) the equilibrium averages vanish,

Z
f eq.x/Ai.x; t/dx D 0;
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and the scalar product definition Eq. (5.19) has been used. Therefore,

<Ai.t/> D .Ai; ‰/ D �
Ai; ‰

� D
Z

f eq‰.x; t/Ai.x; t/dx

D
Z

f eqˇ�j.t/Aj.x; t/Ai.x; t/dx

D ˇ�j.t/
Z

f eqAj.x; t/Ai.x; t/dx

D ˇ�j.t/.Ai;Aj/;

(5.27)

where the definitions of the scalar produce and the departure from equilibrium of the
relevant ensemble, Eqs. (5.19), (5.24) respectively, are employed. Finally, we have

ˇ�j.t/ D .Ai;Aj/
�1<Ai.t/> D .Ai;Aj/

�1 .Ai; ‰/ ;

‰.x; t/ D ˇ�j.t/Ai D Ai.Ai;Aj/
�1 .Ai; ‰/ � P‰.x; t/;

(5.28)

here P is a projection operator that extracts the relevant part of the original
ensemble. Accordingly, Q‰.x; t/ � .1 � P/‰.x; t/ is the irrelevant part.

From the FPE in Eq. (5.7), we have

@f .x; t/
@t

D Lf .x; t/;

@f f eq.x/ Œ1C‰.x; t/�g
@t

D Lf f eq.x/ Œ1C‰.x; t/�g;
@ Œf eq‰.x; t/�

@t
D Lf eq‰.x; t/;

f eq
@‰.x; t/
@t

D f eq QL�‰.x; t/;
@‰.x; t/
@t

D QL�‰.x; t/;

(5.29)

where detailed balance in Eq. (5.14) is employed. The formal solution to Eq. (5.29)
is

‰.x; t/ D exp. QL�t/‰.x; 0/; (5.30)

in which the operator exp. QL�t/ is defined in terms of its Taylor expansion. However,
if we first solve Eq. (5.29) for the irrelevant part Q‰.x; t/, and then substitute its
solution back into the system to obtain the relevant part, we then get

@‰.x; t/
@t

D P QL�‰.x; t/C
Z t

0

d	P QL� exp
�
Q QL�.t � 	/�Q QL�‰.x; 	/: (5.31)
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Also from Eq. (5.29), we obtain an evolution equation for the relevant variables as

d<Ai.x; t/>
dt

D � QLAi; ‰
�C

Z t

0

d	
�
exp

� QLQft � 	g� QLAi;Q QL�Aj
�
ˇ�j.	/;

(5.32)

which is exact. However, in practice Eq. (5.32) is difficult to apply so that one often
tries to further simplify the complex memory kernel by searching for proper relevant
variables. With a clear time separation between the memory kernel (fast) and the
relevant variables (slow) the Markovian approximation can be invoked so that the
equation reads

d<Ai.x; t/>
dt

D � QLAi; ‰
�C


Z t

0

d	
�
exp

� QLQ	� QLAi;Q QL�Aj
��
ˇ�j.t/: (5.33)

Furthermore, it is also extremely difficult to generate the projected dynamics, and
in practice, one often approximates the projected dynamics with the real dynamics
as exp. QLQ	/ � exp. QL	/, which can be justified only a posteriori.

Hydrodynamics

If we apply Dirac’s ı function to define the relevant variables as those which appear
in Navier-Stokes (NS) equations, we have

ı�.r; t/ D
X

i

mı Œr � ri.t/� � �0;

g.r; t/ D
X

i

piı Œr � ri.t/� ;
(5.34)

here �0 is the equilibrium density so that both the averages of ı�r and gr vanish at
equilibrium. Since the energy was not defined as a relevant variable which would
appear in the Fourier equations, the classical DPD applies only to isothermal fluids
and their flows, in which the energy varies instantaneously and can not be taken as
a slow relevant variable.

On following through with the Mori projection introduced previously on these
relevant variables, the equation of continuity takes the form

@ı�.r; t/
@t

D � @

@r
� g.r; t/; (5.35)
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and the momentum equations is [22]

@g.r; t/
@t

D �
‰; QLg.r; t/

�
(5.36)

C
Z t

0

d	
Z

V
dr0 �exp

� QLQ.t � 	/� QLg.r; t/;Q QL�g.r0; t/
�
ˇv.r0; t/;

where V is the special volume and v.r; t/ is the velocity field. The momentum
equation can then be cast into the form of

@g.r; t/
@t

D �c2srı�.r; t/C �r2v.r; t/C
�
� � 2�

3

	
rr � v.r; t/; (5.37)

in which the isothermal sound speed cs D @p=@�jT and it is only determined by
FC
ij [22]. With the super-indices C and D to denote the contributions of conservative

and dissipative forces respectively the shear viscosity � D �C C �D and bulk
viscosity � D �C C �D. Each term is further defined as

�C D ˇ

Z 1

0

1

V

"
CX

�

.	/;Q
CX

�

#
d	;

�
�C � 2

3
�C
	

D ˇ

Z 1

0

1

V

"
CX

��

.	/;Q
CX

��

#
d	;

�D D ˇ

Z 1

0

1

V

"
DX

�

.	/;Q
DX

�

#
d	;

�
�D � 2

3
�D
	

D ˇ

Z 1

0

1

V

"
DX

��

.	/;Q
DX

��

#
d	:

(5.38)

In these summations � ¤  with no summation on repeated indices. Moreover, the
stress tensor contributions are given as

CX
D
X

i

pi

m
pi C

X

i;j

�
ri � rj

�
FC
ij ;

DX
D
X

i;j

�
ri � rj

�
FD
ij ;

(5.39)

which follows the identification of the conservative and the dissipative force
contributions to the shear and the bulk viscosities respectively.



268 Z. Li et al.

Such formal derivations via the Mori projection on the SDE of the DPD
system provide further insight and support for understanding why DPD satisfies
the hydrodynamic equations at large spatial-temporal scales. However, in practice it
is not possible to quantify a priori the sound speed and viscosities of a DPD system
from the given input parameters without actually running DPD simulations.

Fluctuating Hydrodynamics

To circumvent the difficulty of specifying a priori the equation of state and the
transport coefficients of classical DPD, an alternative approach is smooth particle
hydrodynamics (SPH) which begins with the Lagrangian discretization of Naiver-
Stokes or in general Landau-Lifshitz-Navier-Stokes (LLNS) equations [25]. Given
the governing differential equations of NS in Lagrangian form

d�

dt
D ��r� v; (5.40a)

�
dv
dt

D �rP C �r2v C
�
� C �

3


rr � v; (5.40b)

where d=dt is the substantial derivative (or material derivative), which describes
how quantities such as, density field �.r; t/, and velocity field v.r; t/, evolve with
time along the trajectory of a point particle r at time t. Intensive variables, such
as the pressure field P D Peq Œ�.r; t/�, are determined by an equation of state
under the local equilibrium assumption. For simplicity the shear (dynamic) and bulk
viscosities �, � are taken as input constants.

The NS equations are discretized by following the methodology of SPH [79]. An
arbitrary function A.r/ can be formulated in an integral form by convolution with
the Dirac ı function as

A.r/ D
Z

A.r0/ı.r0 � r/dr0: (5.41)

The essence of SPH consists of two steps to evaluate Eq. (5.41): first a kernel
approximation to replace the Dirac ı.r/ function, and second a particle summation
to approximate the integration. In the end, an arbitrary function A.r/ is expressed in
terms of values at a set of N discrete disordered points—the SPH particles.

In SPH, a normalized smoothing function W.r0 � r; h/ is used as the kernel with
h as its smoothing length such that in the limit h ! 0W.r0 � r; h/ tends to the Dirac
ı function,

Z
W.r0 � r; h/dr D 1; lim

h!0
W.r0 � r; h/ D ı.r0 � r/: (5.42)
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Note that W.r0 � r; h/ is bell-shaped and radially-symmetric. Therefore, it can be
written as a function of a scalar variable: W.r0 � r; h/ � W.jr0 � rj; h/ � 1

hD
w.s/,

where D is the dimension of the problem and s D jr0 � rj=h D r=h. Here we shall
not specify any kernel and for practical flow problems different kernels may have
different properties. Equations (5.40a) and (5.40b) require the gradient of the kernel
function derived from,

rW.r0 � r; h/ D �.r0 � r/G.jr0 � rj; h/; (5.43)

with G � 0, the physical meaning of G will be clarified below.
The volume Vi is defined as the inverse of the number density di, which, in turn,

is related to mass mi and mass density �i as

1

Vi
D di D �i

mi
D
X

j

W.jri � rjj/ D
X

j

Wij: (5.44)

Recall the hydrodynamic Eqs. (5.40a) and (5.40b), which can now be given in their
discrete forms as

P�i D ��i .r � v/i ; (5.45a)

mi Pvi D � .rP/i
di

C �.r2v/i
di

C � .rr � v/i
3di

; (5.45b)

where any quantity associated with particle i is denoted with a sub-index i and “P” is
an abbreviation for the total (Lagrangian) time derivative.

According to Eqs. (5.44) and (5.45a), we have the following equivalent continuity
equations

P�i D ��i .r� v/i

” Pdi D �di .r� v/i

” PVi D Vi .r� v/i :

(5.46)

In the Lagrangian description, each particle moves according to

Pri D vi: (5.47)

Therefore, the time derivative of Eq. (5.44) is given as

Pdi D
X

j

PW.jri � rjj/ D
X

j

�rW.jri � rjj/ � .vi � vj/
�
: (5.48)
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If we define notations

rij D ri � rj;

vij D vi � vj;

�Gijrij D rWij D rW.jri � rjj/;
(5.49)

then Eq. (5.48) becomes

Pdi D
X

j

�
Gijrij � vij

�
: (5.50)

By comparing Eq. (5.50) with Eq. (5.46), we get a SPH representation for the
divergence operator of velocity

.r� v/i D 1

di

X

j

�
Gijrij � vij

�
: (5.51)

The extensive variables of the system are as follows,

M D
X

i

mi;

E D
X

i

�
mv2i
2

C Ei

	
;

(5.52)

where the total mass M is a sum of the individual masses. The total energy E is sum
of the individual kinetic energy mv2i =2 and internal energy Ei of each particle i.

Each particle i has the same constant mass mi D m; hence conservation of total
mass is PM D 0. Ei is a prescribed function of the particle’s own mass mi, and volume
Vi

Ei D Eeq.mi;Vi/: (5.53)

Its time derivative is given by

PEi D @Eeq

@mi
Pmi C @Eeq

@Vi

PVi: (5.54)

The thermodynamics equation of state [14] yields the pressure as

Pi D �@E
eq

@Vi
: (5.55)
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Therefore, Eq. (5.54) with constant mi becomes

PEi D �Pi PVi: (5.56)

As required by the first and second laws of thermodynamics, the SPH representation
of an isolated system must satisfy

PE D
X

i

�
mvi � vi C PEi

� D 0; (5.57a)

PS D
X

i

PSi � 0: (5.57b)

• Reversible dynamics: Suppose we deal with an inviscid Euler flow with � D 0

and � D 0, we have

PE D
X

i

�
mPvi � vi C PEi

�
with Eqs. (5.45b) and (5.56)

D
X

i

�
� .rP/i

di
� vi � Pi PVi

�
with Eq. (5.46)

D
X

i

�
� .rP/i

di
� vi � Pi

di
.r � v/i

�

D 0;

(5.58)

which is required by Eq. (5.57a). This leads to

X

i

�
� .rP/i

di
� vi

�

D
X

i

�
Pi

di
.r � v/i

�
with Eq. (5.51)

D
X

i

2

4Pi

d2i

X

j

�
Gijrij � vij

�
3

5

D
X

i

2

4Pi

d2i

X

j

�
Gijrij � vi

�
3

5 �
X

i

2

4Pi

d2i

X

j

�
Gijrij � vj

�
3

5

D
X

i

2

4Pi

d2i

X

j

�
Gijrij � vi

�
3

5C
X

j

"
Pj

d2j

X

i

�
Gijrij � vi

�
#

D
X

i

X

j

" 
Pi

d2i
C Pj

d2j

!
Gijrij � vi

#
:

(5.59)
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Therefore, a physically faithful SPH representation of pressure gradient operator
is proposed as

.rP/i
di

D
X

i

" 
Pi

d2i
C Pj

d2j

!
Gijrij

#
: (5.60)

Hence, in the SPH representation, a pairwise conservative force from pressure
gradient can be written as

FC
ij D

 
Pi

d2i
C Pj

d2j

!
Gijrij: (5.61)

In summary, by the density definition in Eq. (5.44) and the position evolution
of the Lagrangian description in Eq. (5.47), we get a divergence operator of SPH
for velocity in Eq. (5.51) so that continuity equation is accounted for. The velocity
divergence operator Eq. (5.51) generates a pressure gradient operator Eq. (5.60)
which ensures the total energy of an inviscid fluid to be constant. Further note
that using a variational approach, it can be shown that Eqs. (5.44) and (5.60) are
also variationally consistent [12].

• Irreversible dynamics: Using the kernel approximation, we have the following
identity [25]

Z
dr0 �A.r0/� A.r/

�
G.jr0 � rj/

�
5
.r0 � r/˛.r0 � r/ˇ

.r0 � r/2
� ı˛ˇ

�

D r˛rˇA.r/C O.r4Ah2/;

(5.62)

where we have assumed that A.r/ is sufficiently smooth on the scale of h. Taking
the trace of Eq. (5.62) leads to

2

Z
dr0 �A.r0/� A.r/

�
G.jr0 � rj/ D r � rA.r/C O.r4Ah2/: (5.63)

Note that
Z

dr0 !
X

j

Vj D
X

j

1

dj
: (5.64)

The second derivatives in SPH are discretized as

.r2v/i
di

D �2
X

j

�
Gij

didj
vij

	
;

.rr � v/i
di

D �
X

j

�
Gij

didj

�
5eij � vijeij � vij

��
;

(5.65)
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where we have introduced the notation

eij D ri � rj
jri � rjj D rij

rij
: (5.66)

Finally, the pairwise dissipative force is

FD
ij D �

�
5�

3
� �

	
Gij

didj
vij � 5

�
� C �

3

 Gij

didj

�
eij � vijeij

�
: (5.67)

One may go ahead and apply the SPH methodology to discretize the random
stress part of LLNS, but it is difficult to impose thermodynamic consistency by
this route. Although the original stochastic partial different equation (SPDE) of
LLNS is thermodynamically consistent, a separate discretization of the viscous and
random stresses does not guarantee the same consistency at the discrete level. This
inconsistency is avoided by the creation directly at the discrete level of a random
force FR

ij consistent with FD
ij , as was first done by Español and Revenga [25].

One could also extend the continuous FPE introduced in Sect. 5.2.1 to a discrete
version, and so derive a consistent form of FR

ij . An elegant alternative is to apply
the GENERIC (general equation for the nonequilibrium reversible-irreversible
coupling) [84] method, which imposes thermodynamic consistency on any discrete
mesoscopic model without the need to involve derivations in phase space directly.
Consequently, in GENERIC, all operations and constraints are simply algebraic.
Without further derivations, we shall simply provide the pairwise random force as

FR
ij D

X

j

�
AijdWij C Bij

3
trŒdWij�

	
� eij; (5.68)

where dWij is matrix of independent increments of the Wiener process, dWij is the

symmetric part of it, and dWij is the traceless symmetric part of it. They are given
explicitly by

dWij D �
dWij C dWT

ij

�
=2;

dWij D dWij � trŒdWij�I=3;

trŒdWij� D
X

˛

dW˛˛:

(5.69)

Furthermore, the magnitude of noise is given as

Aij D
�
4kBT

�
5�

3
� �

	
Gij

didj

�1=2
;

Bij D
�
4kBT

�
5�

3
C 8�

	
Gij

didj

�1=2
:

(5.70)
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From the SPH discretization of the Navier-Stokes equation and the introduction
of the random force corresponding to the fluctuating hydrodynamic equations
known as LLNS [46], we get a version of DPD named SDPD. In contrast to
the DPD method, the equation of state and transport coefficients are explicitly
specified a priori in SDPD. This may avoid some of the difficulties associated
with the original DPD mentioned above. This also corresponds to the top-down
view of DPD, or the route B on Fig. 5.1. However, from this version of DPD,
one cannot expect more than the continuum behavior of the system. Whereas
in the original DPD designed by coarse-graining or parameterization, small
scale behavior is expected to arise that corresponds to some underlying physical
process.

5.2.3 Transport Coefficients from Kinetic Theory

Besides the Mori projection, we may also formulate the transport coefficients of
DPD by deriving its kinetic equations. This also corresponds to the route A in
Fig. 5.1. Let us introduce the �-space density, single-particle and pair distribution
functions as [76, 77]

Of .x; t/ D
X

i

ı.x � xi/;

f s.x; t/ D
*
X

i

ı.x � xi/

+
D
DOf .x; t/

E
;

f 2.x; x0; t/ D
*
X

i;j

0ı.x � xi/ı.x � xj/

+
:

(5.71)

We apply Eqs. (5.11)–(5.71) and neglect the conservative force (corresponding to
the high � limit), we get

@f s.x; t/
@t

D � r �
*
X

i

viı.x � xi/

+

C �
@

@v
�
*
X

i;j

0ı.x � xi/w
D.rij/.eij � vij/eij

+

C �2

2

@2

@v@v
W
*
X

i;j

0ı.x � xi/w
D.rij/eijeij

+
;

(5.72)
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where the contraction “W” of tensors is defined as AWB D P
ij AijBji and r D @=@r.

We perform the integrals over all variables except xi and xj,

@f s.x; t/
@t

C v � f s.x; t/

D �

Z
dv0

Z
dR OR ORwD. OR/W



@

@v
.v � v0/C �2

2�

@2

@v@v

�
f 2.x; x0; t/;

(5.73)

where x D .r; v/, x0 D .r0; v0/, R D r � r0 and OR D R=jRj. This is the first
equation of the BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hierarchy [37].
Note that the difference here is we apply the Fokker-Planck operator for a dissipative
system instead of the Louville operator for a Hamiltonian system. If we assume
molecular chaos to be

f 2.x; x0; t/ � f s.x; t/f s.x0; t/; (5.74)

then we arrive at a nonlinear integro-partial differential equation,

@f s.x; t/
@t

C v � f s.x; t/ (5.75)

D �

Z
dv0

Z
dR OR ORwD. OR/f .r0; v0; t/W



@

@v
.v � v0/C �2

2�

@2

@v@v

�
f .r; v; t/:

Following the Chapman-Enskog method, we solve Eq. (5.75) as a power series in
a small parameter � on the hydrodynamic scale, i.e., f D f0 C �f1 C : : :; then,
we define a mean free time as t0 D 1=.�nrc/, where n is the number density of
a DPD system, and define a mean thermal velocity as v0 D p

kBT=m. Hence, the
small parameter is � D t0v0r, essentially  1=� in the high friction limit. The first
two terms f0 and f1 suffice to estimate the Navier-Stokes transport coefficients as
follows,

�K D dkBT

2Œw��
; �K D kBT

�Œw�
; (5.76)

where subscript “K” denotes the kinetic contributions. From the contribution of the
dissipative force we have

�D D m�n2Œr2cwg0�

2d.d C 2/
; �D D m�n2Œr2cwg0�

2d2
; (5.77)

where the square brackets mean a spatial integral as Œ: : :� D R
: : : dr.
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5.2.4 Parameterization

The parameterization of input parameters for a particular DPD simulation falls
generally into two approaches: one approach is to solve an inverse problem and
the other approach is to directly coarse-grain from an underlying MD system. The
first approach generally initiates a loop of processes involving trial simulations
and tuning input parameters until the desired properties are simulated by the
DPD system. Although not accurately, the kinetic equations (neglecting conser-
vative force) from the last section indeed provide a guideline of tuning the DPD
parameters. We may also apply the kinetic equations further here to provide a
guideline for selecting the finite time step �t of DPD. This part largely follows the
methodologies introduced in [75]. Furthermore, we shall also present the continuum
integral approximation [35], which provides an alternative reference to tune the
input parameters. Nevertheless, with either the kinetic equations or the continuum
integral approximation, one may need a few trial simulations to solve the inverse
problem. This can be done systematically by applying the Bayesian framework, but
this topic is beyond the scope of this chapter.

The direct or forward way of coarse-graining will be presented in Sect. 5.2.5.

Timestep for a Constant Temperature and Noise Level

In Sect. 5.2.1, we learnt that, at�t ! 0, the temperature is well defined if the input
parameters of DPD satisfy the FDT given by Eq. (5.10). Here we try to find out how
the finite time step �t affects the temperature, since one advantage of DPD is the
use of a larger time step than that of MD.

We define the one-particle distribution function for DPD as

f .1/.x; t/ D
X

i

Z
dxı.r � ri.t//ı.p � pi.t//f .x; t/; (5.78)

where f .x; t/ is the distribution function in the 6N phase-space introduced above.
For simplicity, if we ignore the conservative force in DPD as is in the original form
introduced by Hoogerbrugge and Koelman [39], the equilibrium distribution is the
Gibbs distribution for the momentum

f eq.p/ D 1

Z
exp

 
�ˇ

X

i

p2i
2m

!
: (5.79)

In a simulation with a discrete time step �t, the changes in position and
momentum for particle i are �ri.t/ and �pi.t/, then the change in f .1/.x; t/ from
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t to t C�t is

�f .1/.t/

D f .1/.x; t C�t/ � f .1/.x; t/

D
X

i

Z
dx Œı.r � ri ��ri/ı.p � pi ��pi/� ı.r � ri/ı.p � pi/� f .x/;

(5.80)

where t is suppressed in the last expression to save space. We can expand the terms
under the integral of Eq. (5.80) by Taylor series. Keeping only up to second partial
derivatives, we can have an expression for the differential �f .1/. The first moment
of �f .1/ is

�

Z
dp
Z

drf .1/p D
Z

dp
Z

dr

 
X

i

Z
dxf eqı.r � ri/ı.p � pi/�pi

!

D 0;

(5.81)

which follows from the momentum conservation of DPD. The second moment of
�f .1/ is

�

Z
dp
Z

drf .1/p2

D �2��tkBTn ŒwD�C �2�t
�
w2R
�C kBT�2�t2

m

(
2n
�
w2D
�C n2 ŒwD�

2

d

)
;

(5.82)

where d is the number of space dimensions and the square brackets denote the
integral

Œw.r/� D
Z

drw.r/: (5.83)

To have an invariant one-particle distribution, Eq. (5.82) must be zero, therefore,

mkBT D A3
A1.2 � A1n�t/� A2�t

; (5.84)

where

A1 D �

md
ŒwD� ; A2 D 2�2

m2d

�
w2D
�
; A3 D �2

d

�
w2R
�
: (5.85)



278 Z. Li et al.

For the distribution function in Eq. (5.79), higher moments are related to lower ones
as

Z
dpf .1/pnC2 /

Z
dpf .1/pn; (5.86)

and so if the first and second moments remain constant then all moments are
constant.

We shall briefly discuss the implications of Eq. (5.85) as follows [75].

• For a special case of Eq. (5.85) with �t D 0, we then have mkBT D A3=.2A1/.
This recovers Eq. (5.10), which was obtained from the equilibrium solutions of
Fokker-Planck equation correspond to the SDE of DPD.

• For a given set of input parameters of DPD (�; �;wD;wR; n), the measured tem-
perature of the system will increase as the time step becomes larger. Furthermore,
1=.kBT/ is a linearly monotonic function of�t. For example, one way to measure
the equilibrium temperature is to calculate the averaged kinetic energy of the
particles. Then, from the equipartition theorem one obtains temperature as

kBT D ˝
v2
˛
=3: (5.87)

• For a given set of input parameters, if �t > �tc, the denominator of Eq. 5.85
becomes negative and the system will become unstable, where

�tc D .2A1/=.nA
2
1 C A2/: (5.88)

• Once a value of �t is selected, the density can not exceed a critical density

nc D .2A1 � A2�t/=.A21�t/; (5.89)

for a stable simulation.
• The choice of larger � (and �) will amplify the effects of a finite �t.

The analysis above ignored the conservative force for the simplification of the
equilibrium solution of f eq.x/. To select a proper �t for a practical simulation
with conservative force, one may draw similar conclusions by running actual trial
simulations and measure the temperature by Eq. (5.87). Depending on the level of
the artificial temperature increase we are willing to accept in the simulation we can
then pick the appropriate�t.

In our experience with random number generation, there is no statistical differ-
ence between using uniform-distributed and Gaussian-distributed random numbers.
In practice the uniform distribution is preferred for the random forces, as it is
computationally less expensive. From Eq. (5.85), it is also clear that the temperature
increases as the noise level as �2. But the value of � does not change the range
of �t over which the system is stable. However, with higher � , � is larger due to
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the FDT (5.10) and this accelerates the process of a DPD system changing from a
deviated temperature kBT 0 to the target temperature kBT.

Repulsive Parameter in the Conservative Force

For modeling a correct thermodynamic state of a liquid, a DPD system must have the
correct fluctuations, which are determined by the compressibility of the liquid [37].
Therefore, the repulsive force parameter a in Eq. (5.2) is selected to recover the
compressibility of realistic fluids [35]. By applying the virial theorem, we obtain
the pressure of a DPD system as

p D �kBT C 1

3V

*
X

i<j

.ri � rj/ � fi

+

D �kBT C 1

3V

*
X

i<j

.ri � rj/ � Fc
ij

+

D �kBT C 2�

3
�2
Z rc

0

rf .r/g.r/r2dr;

(5.90)

where g.r/ is the radial distribution function of DPD particles, � the number density
of DPD particles and rc the cutoff radius beyond which f .r/ vanishes. For a wide
range of parameters, the pressure can be approximated for high densities (� > 2) as

p D �kBT C ˛a�2.˛ D 0:101˙ 0:001/: (5.91)

The compressibility of a DPD fluid is computed by ��1
c D .@p=@�/T=kBT. To match

the compressibility of a DPD fluid to that of a realistic fluid, the dimensionless
compressibility is defined by

��1
c D ŒL�3

�kBTˇT
; (5.92)

where ˇT is the isothermal compressibility of the fluid of interest and ŒL� the length
scale and � the number of DPD particles in a volume of ŒL�3. For example, the
liquid water at 300K has a thermal energy of kBT D 4:142� 10�21 kg m2 s�2 and a
compressibility of ˇT D 4:503�10�10 m s2=kg. Let � D 3 be the number density of
a DPD system where one DPD particle represents a water molecule, a length scale
ŒL� D 0:448 nm is determined so that the DPD system matches the number density
of water molecule. Substituting these values into Eq. (5.92) gives ��1

c D 16:0.
Therefore, the repulsive force parameter is a D kBT.��1

c � 1:0/=2˛� � 75:0kBT=�
with ˛ D 0:101˙0:001 for liquid water [35]. It is worth notable that the expression
a D 75:0kBT=� is obtained based on a choice of ŒL� D 0:448 nm. Whenever the
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coarse-graining level or the length scale ŒL� is changed, aij should be modified
accordingly to recover the correct compressibility of the fluid. Otherwise, the value
of ��1

c will be underestimated, and hence the DPD fluid’s sound speed will be lower
than expected.

Dissipative Coefficient

We consider a fluid undergoing uniform linear flow v˛ D e˛ˇrˇ . From the Irving-
Kirkwood formula [41], we know that the stress has contributions from both a
kinetic part due to particle transfer across streamlines and a dynamic part due to
inter-particle forces. We first consider the second part due to forces. In particular,
the one arising from the dissipative force is

�˛ˇ D 1

V

*
X

i>j

rij˛FD
ijˇ

+
; (5.93)

where the expression for FD
ij is given in Eq. (5.2). If we assume a uniform density

without a particular structure for the particles, that is, g.r/ D 1, we can then replace
the summation by an integral as

�˛ˇ D 2���2

15

Z 1

0

drr4�wD.r/
�
e˛ˇ C eˇ˛ C ıˇ˛e��

�
: (5.94)

Therefore, the viscosity due to dissipative contribution is

�D D 2���2

15

Z 1

0

drr4wD.r/: (5.95)

For any specific weight function wD.r/ chosen, the viscosity can be calculated in a
straightforward way.

Next we derive the kinetic contribution to viscosity due to the diffusion of the
particles. The Langevin equation for a single particle without conservative forces
reads as,

dvi

dt
D
X

j¤i

FD
ij C

X

j¤i

FR
ij : (5.96)

Since the friction force is linear in the velocity difference, we may write

dvi

dt
C vi

	
D FR; (5.97)
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where

1

	
D
X

j¤i

�wD.rij/
Orij � Orij
3

; FR D
X

j¤i

�wR.rij/�ij Orij: (5.98)

We further replace the sum by integral and get

1

	
D 4���

3

Z 1

0

drr2wD.r/;

˝
FR
˛ D 0;

˝
FR.t/ � FR.t0/

˛ D 4��2�

Z 1

0

drr2 ŒwR.r/� ı.t � t0/:

(5.99)

We can solve the Langevin equation Eq. (5.96) straightforwardly to obtain the time
correlation of velocity as

hvi.0/ � vi.t/i D 3kBT exp .�t=	/ : (5.100)

Thereafter, the diffusion coefficient is obtained as

D D 1

3

Z 1

0

dt hvi.0/ � vi.t/i D 	kBT: (5.101)

According to the kinetic theory, the viscosity contribution due to the particle
diffusion reads

�K D �
˝
v2
˛
	=3: (5.102)

The total viscosity is simply the sum of �D and �K . Therefore, given Eqs. (5.95)
and (5.102), one may estimate the input parameters to achieve a desired viscosity of
a DPD system.

5.2.5 The Zwanzig Formalism for Coarse-Graining

We have applied the Mori formalism in Sect. 5.2.2 to get the linear GLE or the
linearized hydrodynamic equations, where the correspondence between thermody-
namic response and transport coefficients of the NS equations and DPD parameters
are established. Here we introduce another projection adopted by Zwanzig [38, 43,
50, 61, 112, 113], from which a non-linear GLE is obtained. It can be shown that
Zwanzig’s approach is more general and in fact Mori’s approach is an approximation
to Zwanzig’s near equilibrium [33].



282 Z. Li et al.

We shall introduce the microdynamics described by a Hamiltonian, which has
Gibbsian statistics. Furthermore, we derive two equivalent ways of projection.
Firstly, we work on the relevant density adopted by Zwanzig [111]. Secondly, we
work on the relevant variables directly [38].

Microdynamics

Given N particles (atoms or molecules) of a Hamiltonian system, a phase space
point is defined as Z.t/ D ŒZ1.t/; : : : ;Z6N.t/� D Œr1.t/; : : : ; rN.t/;p1.t/; : : : ;pN.t/�
where ri and pi are the position and momentum of ith particle in three dimensions.
The dynamics of N atoms is governed by Hamilton’s equations of motion

Pri D @H
@pi

; Ppi D �@H
@ri
; (5.103)

where H is the Hamiltonian of the system defined as the sum of kinetic energy and
potential energy of the particles

H.r1; : : : ; rN ;p1; : : : pN/ D K.p1; : : : pN/C V.r1; : : : rN/; (5.104)

where K D PN
i

p2i
2m with m as the particle mass, and V is yet to be specified. In

particular, given the initial condition Z.0/ D z, the evolution of dynamics for Z.t/
is determined.

Generally, we are not interested in Z.t/ per se, but in a set of M functions defined
on the phase space A.Z.t// � ŒA1.Z.t//; : : : ;AM.Z.t//� � a.t; z/, where a is
introduced to indicate the explicit dependence on initial condition z. The evolution
of dynamics of a is

@a.t; z/
@t

D La.t; z/; (5.105)

in which L is the Liouville operator defined in Sect. 5.2.2, and it was referred to
as LC in the context of a dissipative system. Here we simply omit the subscript C
without ambiguity. The formal solution to Eq. (5.105) is

a.t; z/ D expftLga.0; z/ D expftLgA.z/; (5.106)

where the exponential operator is defined via its Taylor expansions. Inserting
Eq. (5.106) into Eq. (5.105) we get

@a.t; z/
@t

D La.t; z/ D L expftLgA.z/ D expftLgLA.z/; (5.107)

where L and expftLg commute.
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We have also the Liouville equation for the PDF of particle microdynamics as

i
@f .t/

@t
D LCf .t/; (5.108)

which has the formal solution as f .t/ D exp .�iLt/. Note that the PDF here
describes the microdynamics of a Hamiltonian system, in contrast to the PDF for
the dissipative system of DPD particles in Sect. 5.2.1.

The Zwanzig Formalism: Relevant Density

We introduce an operator P [111], which is used to divide an ensemble density f .t/
into a relevant part f1.t/ D P f .t/ and an irrelevant part f2.t/ D .1 � P/f .t/,

f .t/ D f1.t/C f2.t/: (5.109)

Here P is a linear operator and time-independent so that P and @=@t commute.
Therefore, the Liouville’s equation can be decomposed into a pair of equations

P Œi .@f=@t/� D i.@f1=@t/ D PL.f1 C f2/;

.1 � P/Œi .@f=@t/� D i .@f2=@t/ D .1 � P/L.f1 C f2/:
(5.110)

The second equation is a first-order inhomogeneous equation and can be solved in
terms of f2.0/ and f1.t/ in a straightforward manner [113] to obtain:

f2.t/ D exp Œ�it.1 � P/L� f2.0/

� i
Z t

0

ds exp Œ�is.1 � P/L� .1 � P/Lf1.t � s/:
(5.111)

Substitute f2.t/ into the first equation we get

i
@f1.t/

@t
DPLf1.t/

� i
Z t

0

dsPL exp Œ�is.1 � P/L� .1 � P/Lf1.t � s/

C PL exp Œ�it.1 � P/L� f2.0/;

(5.112)

which is the evolution equation for the relevant density.

The Zwanzig Formalism: Relevant Variable

More specifically, if we are interested in the statistical properties of A.a.t; z// �
A.Z.t//, with initial condition Z.0/ D z satisfying A.z/ D ˛. That is, the
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initial condition of z is distributed according to the equilibrium density f eq.z/,
such as f eq.z/ D ��1

0 ı.H.z/ � E/ in the microcanonical ensemble and �0 is the
normalization factor, and meanwhile f eq.z/ is conditional on the initial condition
A.z/ D ˛. Zwanzig’s approach allows us to write an exact integro-differential
equation with random coefficients and when the equation is solved with different
realizations, the ensemble of A.Z.t// is generated.

We introduce a conditional expectation operator P˛, whose action to an arbitrary
phase-space function F.z/ at A.z/ D ˛ gives the conditional equilibrium expecta-
tion of F.z/ as [38]

P˛F.z/ D 1

�.˛/

Z
F.z/f eq.z/ı.A.z/� ˛//dz; (5.113)

where the probability density of A.z/ is defined as

�.˛/ D
Z

f eq.z/ı.A.z/� ˛/dz: (5.114)

Let QA.z/ D 1 � PA.z/ and insert 1 into Eq. (5.107) we get

@a.t; z/
@t

D expftLgLA.z/ D expftLgPA.z/LA C expftLgQA.z/LA: (5.115)

Recall the Duhamel-Dyson identity as already applied in Sect. 5.2.2

expftLg D expftQA.z/Lg C
Z t

0

ds expf.t � s/LgPA.z/L expfsQA.z/Lg; (5.116)

which can be verified by differentiation [33, 113]. If we apply Eq. (5.116) to replace
the second term in Eq. (5.115), we get

@a.t; z/
@t

D expftLgPA.z/LA C
Z t

0

ds expf.t � s/LgPA.z/L QR.s; �/C QR.t; z/;
(5.117)

with

QR.t; z/ D expftQA.z/LgLA D QA expftQA.z/LgLA: (5.118)

Equation (5.117) is the evolution equation for relevant variables. Lei et al. [50] have
applied it to derive a set of equations of motion for mesoscopic particles, each
of which represents a cluster of constrained MD particles. The resultant equation
of motion has the same form as DPD. Hijón et al. [38] and Li et al. [61] also
applied the Mori-Zwanzig formalism to coarse-grain a system of homogeneous
star polymer melts, where each DPD particle represents the center of mass of
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individual star polymer. In the context of coarse-graining, the parameters such as
a, � (�) and weighting functions wC, wD (wR) for DPD depend on the properties
of the underlying MD system at a specific state point performed. Typically,
we have numerical values for DPD input parameters obtained from the MD
values.

5.3 Extensions of Dissipative Particle Dynamics

The classical DPD model was initially proposed as a minimal working version
for mesoscopic simulation of fluids. It only considers the momentum equation
governing the evolution of flow field, which precludes the classical DPD method
from modeling some specific problems, e.g., liquid-vapor coexistence in one-
component multiphase fluid systems, heat flow in non-isothermal systems and
diffusion-reaction process in biological systems. To this end, several extensions of
the DPD method have been developed in recent years for tackling the challenges in
diverse applications involving multiple physical fields (i.e., flow field, thermal field
and concentration field), which are beyond the capability of classical DPD model.

In this section, we will introduce some of them, including the many-body DPD
(mDPD) model for multiphase flows [85], the energy-conserving DPD (eDPD)
model for non-isothermal systems [6, 23] and the transport DPD (tDPD) model for
advection-diffusion-reaction processes [66], as shown by the “DPD Alphabet” in
Fig. 5.2. The eDPD model is the first extension of DPD proposed by Avalos et al. [6]

Fig. 5.2 State of the art of the DPD method (“DPD Alphabet”), in which the classical DPD model
is widely used for studying hydrodynamics of isothermal fluid systems while various extensions of
DPD have been developed for modeling different phenomena in multiphysics applications
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and Español [23] independently in 1997, the mDPD model is another extension
of DPD initialized by Pagonabarraga and Frenkel [85] in 2001 and subsequently
specified by Warren [106] in 2003, and the tDPD model was developed by
Li et al. [66] in 2015.

5.3.1 Energy-Conserving DPD (eDPD) for Non-Isothermal
Systems

The dissipative force or force of friction between DPD particles reduces their
velocity difference and thus dissipates the thermal kinetic energy of the system,
while the random force generates a stochastic force on each DPD particle that
inputs kinetic energy into the system. In the classical DPD model, the dissipative
and random forces together satisfy the fluctuation-dissipation theorem and so act as
a thermostat to maintain the system at a constant temperature [26]. The evolution
equation for the macroscopic energy density in a DPD system does not have the
form of a local conservation equation [77], but contains source and sink terms
corresponding to the random and dissipative forces, respectively, and hence the total
energy of the system is not conserved [6]. As a result, the classical DPD method is
limited to isothermal systems and can neither sustain temperature gradients nor can
it model heat transfer [23].

To extend the isothermal DPD equations to modeling heat transport in non-
isothermal fluid systems, energy conservation is satisfied in DPD by introducing
the internal energy as an additional property of the system [23, 96]. Therefore,
an energy-conserving DPD model was developed and is known in the literature
as eDPD [62, 95]. As in classical DPD, each eDPD particle is considered to
be coarse-grained representation of a group of molecules rather than individual
atoms. The time evolution of an eDPD particle i with mass mi is governed by the
conservation of momentum and energy, which is described by the following set of
equations [23, 62]:

mi
d2ri
dt2

D mi
dvi

dt
D Fi D

X

i¤j

.FC
ij C FD

ij C FR
ij/; (5.119a)

Cv
dTi
dt

D qi D
X

i¤j

.qCij C qVij C qRij/; (5.119b)

where t, ri, vi and Fi denote time, and position, velocity, force vectors, respectively,
Ti the temperature, Cv the thermal capacity of eDPD particles and qi the heat flux
between particles. The summation of forces is carried out over all other particles
within a cutoff radius rc, beyond which the forces are considered to be zero.

The three components of Fi, including the conservative force FC
ij , dissipative

force FD
ij and random forces FR

ij , are given by Eq. (5.2) [35]. For an eDPD system
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in local thermodynamic equilibrium, a Fokker-Planck equation, mathematically
identical to the stochastic equations of Eqs. (5.119a) and (5.119b), can now be
derived [23]. The solution of the FPE gives the relationship between the dissipative
force and random force, which requires �2ij D 4�ijkBTiTj=.Ti C Tj/ and wD.r/ D
w2R.r/. The key aspect of eDPD is that the temperature Ti is defined on each
particle, and the fluctuation-dissipation theorem is applied locally based on the
particle temperature Ti rather than the thermodynamic temperature of the system.
As a result, eDPD allows temperature gradients and can be used in non-isothermal
problems, where thermal transport plays a critical role.

The heat fluxes between particles accounting for the thermal conduction qC,
viscous heating qV , and random heat flux qR are given by Qiao and He [95] and
Li et al. [62]:

qCi D
X

j¤i

kijwCT.rij/
�
T�1
i � T�1

j

�
;

qVi D 1

2Cv

X

j¤i

n
wD.rij/

h
�ij
�
eijvij

�2 � �2ij=mi

i
� �ijwR.rij/eijvij�ij

o
;

qRi D
X

j¤i

ˇijwRT.rij/

e
ij;

(5.120)

where the expression of thermal conduction qC contains T�1 rather than T because
the thermodynamic quantity conjugated to the internal energy is the inverse of
the temperature rather than the temperature itself [35]. The parameters kij and
ˇij determine the strength of the thermal conduction and the random heat flux,
respectively. In particular, kij plays the role of a thermal conductivity given
as kij D C2v�.Ti C Tj/2=4kB in which � is interpreted as a mesoscale heat
friction coefficient [95, 96], and ˇ2ij D 2kBkij. The weight functions wCT .r/ and
wRT.r/ in Eq. (5.120) are given as wCT.r/ D w2RT.r/ D .1 � r=rct/

sT in which
sT is the exponent of the weight functions and rct is a cutoff radius for heat
fluxes. The case of sT D 2:0 corresponds to the typical quadratic weighting
function [35].

For an eDPD particle, the characteristic scale of the kinetic energy related to its
momentum is kBT, while the characteristic scale of the internal energy related to its
temperature is CvT. To convert the kinetic energy into the internal energy, we need
a scaling factor kBT=CvT. Therefore, the viscous heating qVi given by Eq. (5.120)
has a factor 1=Cv when the kinetic energy kBT has been rescaled into the unit. Also,
the factor 2 in the denominator means that the heat generated by non-conservative
interactions is distributed evenly to both particles of a pair. By performing practical
eDPD simulations, Li et al. [62] verified the energy conservation of the eDPD
system.

The transport properties including diffusivity and viscosity of the eDPD fluid
are output properties instead of input parameters. Groot and Warren [35] and
Marsh et al. [77] have investigated the expressions of the diffusivity and the viscosity
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in terms of DPD parameters. With the interaction between particles described by
Eq. (5.2), they are given by Groot and Warren [35] and Marsh et al. [77]

D D kBT

�
4���

3

Z 1

0

r2g.r/wD.r/dr

	�1
;

 D D

2
C 2���

15

Z 1

0

r4g.r/wD.r/dr;

(5.121)

where g.r/ is the radial distribution function of DPD particles. A rough analytical
prediction of the diffusivity and the kinematic viscosity can be obtained by assuming
g.r/ D 1:0 corresponding to ideal gases [35]. Substituting wD.r/ D w2R.r/ D
.1 � r=rc/

s into Eq. (5.121), the diffusivity and kinematic viscosity of the eDPD
fluid can be approximated by:

D D 3kBT.s C 1/.s C 2/.s C 3/

8���r3c
;

 D 3kBT.s C 1/.s C 2/.s C 3/

16���r3c
C 16���r5c
5.s C 1/.s C 2/.s C 3/.s C 4/.s C 5/

:

(5.122)

Equation (5.122) indicates that both the diffusivity D and the kinematic viscosity 
of the eDPD fluid increase with the increase of temperature when other variables
in Eq. (5.122) are kept constant. However, for most of the simple liquids such as
water, ethanol and glycerin, the diffusivity increases but the kinematic viscosity
decreases with increasing temperature. In order to simulate the flow dynamics of
such liquids, at least one of the parameters �, rc, � and s should be function of
temperature so that the eDPD model can reproduce the correct dynamic behavior of
non-isothermal fluid systems. After studying the sensitivity of D and , the exponent
of the weighting function s is defined as a function of temperature for modeling
the temperature-dependent diffusion and viscosity of eDPD fluids. For details on
choosing the function for s, readers are referred to [52, 62].

In addition, if the variation of fluid density with temperature is also considered,
a temperature-dependent conservative coefficient a.T/ is required to capture the
effect of temperature on the fluid density. More specifically, let both the fluid
density �.T/ and compressibility ��1

c .T/ be functions of temperature obtainable
from experimental data. The temperature-dependent conservative coefficient is
determined by a.T/ D kBT.��1

c .T/ � 1/=2˛�.T/ in which ˛ D 0:101 ˙ 0:001.
For example, the density of a DPD fluid with constant a is invariant with respect
to temperature, while a.T/ D 75kBT=� yield a linear dependence of density on
temperature [62].

Similar to the diffusivity and the kinematic viscosity, the thermal conductivity is
also an output property. For an eDPD system whose transport of energy is dominated
by the dissipative interactions of Eq. (5.120), the macroscopic thermal conductivity
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� can be calculated by Mackie et al. [74]:

� D 2�

3

�2

T2

Z rc

0

r4kwCT.r/g.r/dr; (5.123)

where k D C2v�T
2=kB and wCT.r/ the weight function used in Eq. (5.120). Given

wCT.r/ D .1 � r=rc/
sT an analytical estimate for the thermal conductivity � can be

obtained by assuming the radial pair distribution function g.r/ D 1:0 corresponding
to ideal gases, and it is given as:

� D 16��2�C2vr
5
c

kB.sT C 1/.sT C 2/.sT C 3/.sT C 4/.sT C 5/
: (5.124)

In particular, when the typical quadratic weight function .1 � r=rc/
2 is employed

for wCT.r/ with sT D 2:0, then Eq. (5.124) becomes

� D 2��2

315kB
�C2vr

5
c : (5.125)

The definition of the Prandtl number is Pr D �Cv=�, which is a temperature-
dependent dimensionless number and its value can be obtained from available
experimental data. After replacing � by Pr in Eq. (5.125), we have a formula for
determining the mesoscale heat friction � for the eDPD system given by:

� D 315kB

2��Cvr5c

1

Pr
; (5.126)

where  is the kinematic viscosity which can be roughly approximated by
Eq. (5.121) or given by the computed kinematic viscosity. The expression of
Eq. (5.126) is obtained from the typical quadratic weight function wCT.r/ D
.1 � r=rc/

2 and a similar formula can be derived from Eq. (5.123) when a different
weight function is employed.

By including the energy equation in the DPD framework, the eDPD method
has been successfully used in diverse applications involving thermal fields. For
example, Li et al. [62] considered the coupling of the flow and the thermal fields,
where an eDPD simulation of a Poiseuille flow confined between a hot wall and
a cold wall was performed. Since the hotter fluid is less viscous than the colder
fluid, the variation of the viscosity perpendicular to the flow direction leads to an
asymmetric velocity profile. As a result, the peak of the velocity profile shifts to
the hotter side, as shown in Fig. 5.3a. Li et al. [65] also applied the eDPD method
to modeling of thermoresponsive polymers. Because of the energy conservation
in eDPD, they demonstrated that eDPD simulations are able to correctly capture
not only the transient behavior of polymer precipitation from solvent induced by
temperature changes, as shown in Fig. 5.3b, but also the energy variation associated
with the phase transition process. Moreover, natural convection in microchannels [1]



290 Z. Li et al.

Fig. 5.3 (a) An eDPD simulation [62] of the Poiseuille flow combined with the heat conduction
between a cold wall TC and a hot wall TH . (b) eDPD modeling of thermoresponsive microgels [65].
Lines show the evolution of gyration radius Rg and (b1–b4) show cross sections of their transient
microstructure corresponding to the changes of Rg during heating. Images (b) is adapted with
permissions from [65]

and in eccentric annulus [15], thermal conduction of nanofluids [95] and doubly
thermoresponsive self-assemblies [102], to name but a few, have been also studied
using eDPD simulations.

5.3.2 Many-Body DPD (mDPD) for Multiphase Flows

The conservative force between particles i and j is given as FC
ij D awc.rij/eij in

the classical DPD model, where a is a repulsive force parameter and wc.rij/ is a
soft and unspecific weight function. A common choice of the weight function is
wc.rij/ D 1 � rij=rc for rij � rc and vanishes beyond the cutoff radius rc. For a
single-component DPD fluid with a purely repulsive conservative force, the equation
of state (EOS) of the system can be computed by Groot and Warren [35]

p D �kBT C 1

3V

*
X

j>i

.ri � rj/ � FC
ij

+

D �kBT C a�2 � 2�
3

Z 1

0

wc.r/g.r/r
3dr;

(5.127)

where g.r/ is the RDF, and � is the number density of DPD particles. The first term
in the EOS is an ideal gas term, and the second term is the excess pressure. In the
mean-field theory, Eq. (5.127) can be simplified by employing the RDF of the idea
gas g.r/ D 1,

p D �kBT C ˛MFa�
2; (5.128)



5 Dissipative Particle Dynamics: Foundation, Evolution, Implementation, and. . . 291

where ˛MF D 2�
3

R1
0 wc.r/r3dr. Given a weighting function wc.r/ D 1 � r=rc

with a cutoff radius rc D 1, we arrive at ˛MF D �=30. The realistic EOS of a
DPD fluid can be computed by performing a series of DPD simulations at various
densities. The computed EOS of DPD fluids is in the form of p � �kBT C ˛a�2

with a coefficient ˛ D 0:101 ˙ 0:001 very close to the mean-field prediction
˛MF D �=30 D 0:1047, which is perfectly quadratic in the density [35]. This
monotonic function of EOS does not have a van der Waals loop and excludes the
possibility of modeling phenomena involving vapor-liquid coexistence and free-
surfaces of single-component fluids. To this end, Pagonabarraga and Frenkel [85]
defined the free energy  of an inhomogeneous system with density �.r/ as
 D R

�.r/'.� .r// dr, where '.�/ is the local free energy per particle associated
to the local configuration of particles rather than a mechanical potential energy. If
the free energy determines the relevant energy for a given configuration of DPD
particles, then the force acting on each particle can be derived as the variation
of such energy when the corresponding particle is displaced. However, the ideal
contribution to the free energy of the system has already been accounted for by the
dissipative and random forces. Therefore, only the excess free energy is involved
in the conservative interaction between DPD particles. Let  ex.�/ be the excess
component of the total free energy  .�/, the conservative force acting on a particle
i is written as Fi D � @

@ri

P
j  ex.�j/ D P

j Fij. Then, the conservative force between
a pair of particles i and j depends not only on their relative positions, but also on
their local densities. This defines the many-body DPD (mDPD) model [106].

Let �.�/ be an unspecified function of density, the density-dependent conserva-
tive force is written as,

FC
ij D 1

2

�
�.�i/C �.�j/

�
wc.rij/eij; (5.129)

for a one-component fluid. The local density �i of a particle i is taken to be
the instantaneously weighted average �i D P

i¤j w�.rij/ with a weight function
w�.rij/ D 15.1 � rij=rc/2=.2�r3c/, which is normalized so that

R1
0

d3rw�.r/ D 1.
It is obvious that if �.�/ � a, the method with Eq. (5.129) reduces exactly to
the classical DPD model. By the mean-field theory, the modified force law of
Eq. (5.129) should give an EOS

pMF D �kBT C ˛MF�.�/�
2; (5.130)

where ˛MF D �=30 for the standard choice of wc.r/. Since �.�/ is an unspecified
function of density, in principle, an arbitrary dependence of EOS on density can
be recovered. However, having a van der Waals loop in the EOS is not sufficient
to stabilize the vapor-liquid interface. Pagonabarraga and Frenkel [85] discussed
that a simple many-body DPD model with a single interaction range may not yield
a stable interface. To simulate the vapor-liquid coexistence with mDPD, one must
also give consideration to the ranges of interactions. In the approach developed by
Warren [106], the density-dependent conservative force is introduced empirically
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with a different cut-off radius rd, and can be written as,

FC
ij D Awc.rij/eij C B.�i C �j/wd.rij/eij; (5.131)

where the first term with a negative coefficient A < 0 stands for an attractive force
within an interaction range rc, and the second term with B > 0 is the density-
dependent repulsive force within an interaction range rd. Then, the mean-field
EOS is

pMF D �kBT C ˛MF.A�
2 C 2Br4d�

3/: (5.132)

Thus, given A < 0 and B > 0, this EOS has the potential to contain a van der Waals
loop for modeling vapor-liquid coexistence.

Using numerical experiments, Warren [106] explored a wider parameter space
for the mDPD model with the conservative force given by Eq. (5.131). By defining
a function ˆ D .p � �kBT � ˛A�2 � 2˛Br4d�

3/=Br4d, the data of the mDPD fluids
collapse onto a straight line, as shown in Fig. 5.4a. The computed EOS can be
fitted by

p D �kBT C ˛A�2 C 2˛Br4d.�
3 � c�2 C d/; (5.133)

where ˛ D 0:101 ˙ 0:001, c D 4:16 ˙ 0:02, and d D 18 ˙ 1. Let �V and �L be
vapor and liquid coexistence densities, respectively, then a phase separation can be
observed in a range of densities �V < � < �L. In principle, integration of the EOS
gives the free-energy density from which predictions can be made about �V and

Fig. 5.4 (a) Data collapse of pressure against density for �L < � � 8;A D �40 � �20;B D
25 or 40; kBT D rc D 1; rd D 0:75. The ordinate is the function ˆ D .p � �kBT � ˛A�2 �
2˛Br4d�

3/=Br4d . The straight line is a fit to data given by Eq. (5.133). (b) Pressure as a function of
density for the two selected parameter sets A D �40;B D 40 or 25; rd D 0:75; kBT D rc D 1:0.
The lines are the predictions of the fitted EOS in the form of Eq. (5.133). Data are from [106]
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�L. Unfortunately, the EOS must deviate from the above fitted form of Eq. (5.133)
for � � 1. Therefore, the vapor phase is inadequately characterized. If the case
�L � 1 in coexistence with a very dilute vapor is of practical interest, it would be
easier to use the EOS to predict the point where the pressure vanishes as an estimate
of the coexisting liquid phase density, i.e., p.�L/ D 0. Using this, the numerical
experiments performed by Warren [106] obtained the liquid densities of the order
�L  5 for �A  B  30. Figure 5.4b plots the computed EOS of two DPD fluids
with parameters A D �40;B D 40 or 25; rd D 0:75; kBT D rc D 1:0. The two
parameter sets are distinguished by the different values of the liquid densities, i.e.,
�L D 5:08 ˙ 0:01 for B D 40 and �L D 6:05 ˙ 0:01 for B D 25, as indicated in
Fig. 5.4b by p.�L/ D 0. The coexisting vapor density �L � 1, so these parameters
are suitable for free-surface simulations.

Ever since its inception, the mDPD model has been applied to simulations of
various wetting phenomena and multiphase flows. For example, Arienti et al. [5]
investigated the performance of the mDPD model at vapor/liquid and liquid/solid
interfaces and simulated the dynamics of droplets entering an inverted Y-shaped
fracture junction, as shown in Fig. 5.5a. Li et al. [60] performed mDPD simulations
of the manipulation of a liquid droplet on solid surfaces driven by a linear
gradient of wettability. They explored the internal three-dimensional velocity field
with transverse flow in a moving droplet, as shown in Fig. 5.5b. Li et al. [58]
also studied droplet oscillations in AC electrowetting using mDPD simulations.
Wang and Chen [105] used mDPD to simulate droplets sliding across micropillars
and investigated how the pillars with different intrinsic wettability influence the
movement of droplets, as shown in Fig. 5.5c, which describes the evolution of the
advancing and receding contact angle with time as well as five snapshots of the
droplet sliding across multiple micropillars.

The essential concept of the mDPD model is to construct a density-dependent
conservative force, which yields EOS with a van der Waals loop for modeling vapor-
liquid coexistence. In the strategy proposed by Warren, an empirical expression of
the conservative force is first introduced, and then the mDPD model is calibrated to
determine the true EOS and thermodynamic properties of the mDPD fluid. Alter-
natively, following the original formulations of mDPD proposed by Pagonabarraga
and Frenkel [85], Tiwari and Abraham [103] used an opposite strategy to construct
the conservative force for the mDPD model. They started from a van der Waals
equation of state and formulated the conservative force in the context of the mean-
field theory.

Using the mean-field approximation for intermolecular attraction, the free energy
per particle is given by

 D
Z

r>�
uatt.r/�.r/dr; (5.134)

where uatt.r/ is the attractive component of the interaction potential, r the separation
distance of particles and � the diameter of particles for excluded volume. Expanding
�.r/ in Eq. (5.134) about r and assuming that the gradient of � is small, only the even
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Fig. 5.5 (a) mDPD simulations of droplets with different sizes entering an inverted Y-shaped
fracture junction. (b) Three-dimensional velocity field inside a moving droplet, where the vector
V denotes the direction of movement. (c) Advancing and receding contact angle evolution versus
time for a droplet sliding over pillars. Images (a), (b) and (c) are adapted with permissions from
[5, 60, 105]

derivatives of density survive and the leading two terms are

 D ��� � �r2�; (5.135)

in which � D � Rr>� uatt.r/dr and � D � 1
6

R
r>� r

2uatt.r/dr. The parameters � and
� arise due to the long-range attractive forces and give rise to the weak attraction
and surface tension, respectively, between the mDPD particles at the coarse-grained
level. Then, the form of the conservative force FC, which gives rise to phase
segregation and surface tension in a liquid-vapor system, is given by

FC D �r ex C FS; (5.136)
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with  ex being the excess part of the free energy  . FS D �rr2� represents
the surface tension component that comes from the second term in Eq. (5.135).
Here, only the contribution from the excess part is considered in the conservative
force because the ideal part has already been considered through the random and
dissipative forces. If the EOS of the mDPD fluids is described by the van der Waals
equation of state, then

p D �kBT

1 � b�
� a�2; (5.137)

where a and b are the parameters for the EOS. More specifically, the parameter a
accounts for the long-range attractive behavior, while the parameter b is responsible
for excluded volume effects. Then, the free energy  of particles can be derived
from Eq. (5.137) by p D �@ =@v where p is the pressure and v D ��1 the specific
volume,

 D  ex C kBT ln � D �kBT ln.1 � b�/� a�C kBT ln �; (5.138)

where the first term is responsible for repulsion between the particles, the second
term originates from the attractive part of interaction potential, and the last term is
the ideal gas part. Substituting the excess free energy ex into Eq. (5.136), we obtain

FC D �r ŒkBT ln.1 � b�/C a��C �rr2�: (5.139)

It is clear that the conservative force in the form of Eq. (5.139) is also density-
dependent. For mDPD system consisting of discrete particles, the density in the
vicinity of a particle i is computed as a weighted average of contributions from
its neighbors, i.e., �i D P

j w�.rij/, where the weighting function w�.rij/ can be
the widely used smoothing kernels in the smoothed particle hydrodynamics (SPH)
method [79]. For example, the Lucy kernel reads

w�.r; rc/ D
(
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16�r3c

�
1C 3r

rc

 �
1 � r

rc

3
; r � rc

0: r > rc
(5.140)

Let w.1/� .r/ and w.3/� .r/ be the first and third derivatives of the weight function of
Eq. (5.140) with respect to the particle separation r. Then, the conservative force for
a pair of particles i and j takes the final form

FC
ij D



�
�

bkBT

1 � b�i
C bkBT

1 � b�j
� 2a

	
w.1/� .rij/C �w.3/� .rij/

�
eij: (5.141)

With parameters a D 3:012�10�3; b D 2:5�10�2; kBT D 2:1�10�2 and rc D 1:11

in DPD units, Tiwari and Abraham [103] successfully validated the mDPD model
with the two-dimensional Young–Laplace equation�p D pin � pout D �lv=R where
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Fig. 5.6 (a) Validation of the mDPD model with the two-dimensional Young–Laplace equation
�p D pin � pout D �lv=R. The inset shows the setup of mDPD simulations for a two-dimensional
droplet in a periodic box. (b) Snapshots of large-amplitude oscillations of liquid cylinder with an
initial aspect ratio of 5. (a) and (b) are adapted with permission from [103]

�lv is the liquid-vapor interfacial tension and R the equilibrium radius of the droplet,
as shown in Fig. 5.6a, and simulated large-amplitude oscillations of liquid cylinders,
as shown in Fig. 5.6b.

Surface tension is one of the most important fluid properties relevant to the liquid-
vapor coexistence. Although the magnitude of surface tension is determined by
the interactions between mDPD particles, it is an output property of the mDPD
system rather than an input parameter. The exact value of the surface tension
needs to be computed from mDPD simulations. Several methods can be applied
to compute the surface tension of a mDPD fluid. The first one is to compute the
pressure difference between the inside and the outside of a droplet for various radii.
According to the Young–Laplace equation, i.e., �p D pin � pout D 2�lv=R for
three-dimensional droplets, the surface tension �lv is determined by the slope of
the line �p  R�1, as shown in Fig. 5.6a. The second one is the pendant drop
method, which is also widely used in experimental tensiometers. To set up the
pendant droplet in mDPD simulations, a vertical cylindrical column of fluid at a
density close to the equilibrium liquid density is equilibrated. A “support” needs
to be constructed by “freezing” particles at the top of the column as a solid wall.
By applying a gravitational body force onto each mDPD particle, the liquid forms
a pendant droplet after the system reaches equilibrium. Then, a numerical fit of the
theoretical drop shape to the shape obtained by mDPD simulations eventually yields
the surface tension [106]. The third method is the easiest one that only needs a thin
liquid film in a periodic computational box. The surface tension is computed from
the standard mechanical definition of the pressure tensor using the Irving–Kirkwood
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expression,

�lv D
Z �

pzz � 1

2
.pxx C pyy/

�
dz; (5.142)

where pxx; pyy and pzz are the three diagonal components of the pressure tensor, with
x and y parallel to the planar interface and z normal to it. More practically, let ƒ be
the surface area of the planar surface of the liquid film, then the surface tension is
computed by

�lv D
*
1

2ƒ

X

i¤j

�
rij;xFij;x � 1

2
.rij;yFij;y C rij;zFij;z/

�+
; (5.143)

where the factor 2 in the denominator accounts for the fact that the liquid film has
two interfaces, rij;ˇ and Fij;ˇ are the ˇ-component (ˇ is x; y or z) of rij and Fij,
respectively.

In the last decade, the mDPD model proposed by Warren [106] has been
more widely used in diverse applications than Tiwari’s mDPD model [103]. The
reason may lie in the convenience of Warren’s approach in modeling solid-liquid
interfacial tensions. More specifically, Warren employed empirical expressions of
the conservative force in Eq. (5.131), where the coefficients A and B can be defined
as species-dependent parameters. For instance, let All and Bll be the coefficients
for liquid-liquid interaction while Asl and Bsl for solid-liquid interaction, the solid-
liquid interfacial tension can be easily changed just by varying Asl and Bsl, which
generates various wetting phenomena of droplets on solid substrates. However,
Tiwari’s mDPD model starts from the van der Waals equation of state, which
does not easily model solid-liquid interfaces. Moreover, the van der Waals model
describes vapor-liquid equilibrium over very limited ranges of temperature. The
famous loops provide only a qualitative representation of the two-phase boundary
in PVT space. Therefore, Warren’s approach has been successfully applied to
various wetting problems involving solid-liquid interfacial tensions, while Tiwari’s
approach has been only applied to fluids in periodic boxes.

5.3.3 Transport DPD (tDPD) for Advection-Diffusion-Reaction

The classical DPD system has only equations governing the evolution of density
and velocity fields but no evolution equations for describing the concentration
field, which precludes the classical DPD method from modeling diffusion-reaction
processes, i.e., two of the most fundamental processes in biological systems [21].
More specifically, proteins in an aqueous solution diffuse in a living cell due to
Brownian motion, and some collisions of appropriate proteins may lead to chemical
reactions. Moreover, most biological functions depend highly on the concentrations
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of specific proteins, ions or other biochemical factors [4], whose transports at the
cellular and subcellular levels are crucial to corresponding biological processes in
living systems. Therefore, it is important to include the advection-diffusion-reaction
(ADR) equation in the DPD model when diffusion and reactions are involved. To
this end, Li et al. [66] developed a transport dissipative particle dynamics model
named tDPD for mesoscopic problems involving ADR processes.

Similar to classical DPD method, in tDPD each particle is associated with extra
variables for carrying concentrations in addition to other quantities such as position
and momentum. The transport of concentration is modeled by a Fickian flux and
a random flux between tDPD particles. More specifically, the time evolution of a
tDPD particle i with unit mass mi � 1 is governed by the conservation of momentum
and concentration, which is described by the following set of equations

d2ri
dt2

D dvi

dt
D Fi D

X

i¤j

.FC
ij C FD

ij C FR
ij/C Fext

i ;

dCi

dt
D Qi D

X

i¤j

.QD
ij C QR

ij/C QS
i ;

(5.144)

where t, ri, vi and Fi denote time, and position, velocity, force vectors, respectively.
Fext
i is the force on particle i from an external force field. Just as in the standard

DPD model, the pairwise interaction between tDPD particles i and j consists of
the conservative force FC

ij D aijwC.rij/eij, dissipative force FD
ij D ��ijwD.rij/.eij �

vij/eij and random force FR
ij D �ijwR.rij/
ijeij. Ci represents the concentration of

one species defined as the number of a chemical species carried by a tDPD particle
i and Qi the corresponding concentration flux. The total concentration flux on a
particle i accounts for the Fickian flux QD

ij , the random flux QR
ij and a source term

QS
ij due to chemical reactions. Since tDPD particles have unit mass, this definition

of concentration is equivalent to the concentration in terms of chemical species per
unit mass. Then, the volume concentration, i.e. chemical species per unit volume,
is �Ci where � is the number density of tDPD particles. We note that Ci can be a
vector Ci containing N components i.e. fC1;C2; : : : ;CNgi when N chemical species
are considered.

The driving force for diffusion of each species is the gradient of chemical
potential Q D �DCr�=RT in which D is the diffusion coefficient, R the universal
gas constant, T the absolute temperature and � the chemical potential given by
� D �0 C RT lnC for dilute solutions [83]. By substituting the chemical potential
into the expression of driving force, we find that the diffusion driving force is
proportional to the concentration gradient rC, which corresponds to a concentration
difference between two neighboring tDPD particles. It follows that the Fickian flux
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QD
ij and random flux QR

ij in the tDPD model are given by

QD
ij D ��ijwDC.rij/

�
Ci � Cj

�
; (5.145a)

QR
ij D �ijwRC.rij/
ij; (5.145b)

where �ij and �ij determine the strength of the Fickian and random fluxes, and 
ij
is the Gaussian white noise [26]. wDC.r/ and wRC.r/ are weight functions with
a cutoff radius rcc. The Fickian friction parameter � plays the analogous role for
concentration differences between tDPD particles as � does for momentum. In
general, the concentration friction � is a N�N matrix when the interdiffusivities ofN
different chemical species are involved. However, consideringN chemical species in
dilute solution and neglecting the interdiffusivities of different species, the system is
then reduced to a set of uncoupled diffusion equations with independent diffusivities
between species, and hence � becomes a diagonal matrix [8].

By applying the local-equilibrium assumption to the tDPD system, the random
term QR

ij is related to the dissipative term QD
ij by satisfying the fluctuation-dissipation

theorem [66, 83]

�2ij D m2s�ij�.Ci C Cj/; wDC.rij/ D w2RC.rij/; (5.146)

where ms the mass of a single solute molecule, Ci and Cj are the concentrations
on particle i and j, respectively. For detailed derivations for obtaining Eq. (5.146),
readers are referred to [66]. In general, the mass of a single solute molecule ms is
much smaller than the mass of a tDPD particle m, which is chosen as mass unit.
Consequently, the magnitude of � is small at ms � m, which indicates that the
contribution of the random flux QR

ij to the total diffusion coefficient D is negligible
unless ms becomes comparable to m in nanoscale systems.

The macroscopic properties including viscosity and diffusivity of a tDPD system
are output properties rather than input parameters. Since the stochastic forces on
tDPD particles yield random movements, the effective diffusion coefficient D is the
result of contributions from the random diffusionD
 and the Fickian diffusionDF . In
general, the random contribution D
 is a combined result of the random movements
of tDPD particles and random flux QR

ij in Eq. (5.145b). However, the variance of
random flux QR

ij has a small prefactor m2s as given by Eq. (5.146). In practical

applications, the contribution of the random flux QR
ij to D
 is negligible, which has

been confirmed by Kordilla et al. [45] Thus, in the mathematical derivations in this
section, we consider that D
 is due to the random movements of tDPD particles. In
particular, for a tDPD system in thermal equilibrium, the diffusion coefficient D


induced by the random movements of tDPD particles can be calculated by Groot
and Warren [35]

D
 D 3kBT

4��� � R rc
0
r2wD.r/g.r/dr

; (5.147)
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where rc is the cutoff radius for forces. Also, the macroscopic diffusion coefficient
DF due to the Fickian flux can be computed by Mackie et al. [74]

DF D 2���

3

Z rcc

0

r4wDC.r/g.r/dr; (5.148)

in which � is the Fickian friction coefficient and rcc is the cutoff radius for
concentration flux. Let wD.r/ D .1 � r=rc/s1 and wDC.r/ D .1 � r=rcc/s2 be the
weight functions of the dissipative force FD

ij and of the Fickian flux QD
ij , respectively.

When the radial distribution function of ideal gas g.r/ D 1:0 is employed, both D


and DF can be evaluated analytically

D DD
 C DF

D3kBT.s1 C 1/.s1 C 2/.s1 C 3/

8���r3c

C 16���r5cc
.s2 C 1/.s2 C 2/.s2 C 3/.s2 C 4/.s2 C 5/

;

(5.149)

where s1 and s2 are the exponents of wD.r/ and wDC.r/. Equation (5.149) provides
a relationship between the macroscopic effective diffusion coefficient D (which can
be experimentally measured) and parameters in the tDPD model. Equation (5.149)
indicates that the effective diffusion coefficient D is a linear function of the
parameter �, and the minimum value of the effective diffusion coefficient Dmin D
D
 is obtained at � D 0. Since the radial distribution function g.r/ D 1

corresponding to the ideal gas is used, Eq. (5.149) provides a rough prediction of
the effective diffusion coefficient D. The accurate value of D can only be obtained
by computations in tDPD simulations.

Li et al. [66] proposed a numerical diffusivity benchmark to compute the accurate
value of D of tDPD systems, which shares the same strategy of reverse Poiseuille
flow as a numerical viscometer [7] and computation of the thermal conductivity in
eDPD [62]. For a tDPD fluid with constant diffusion coefficient, the ADR equation
is given by dC=dt D Dr2CCQS whereD is the diffusion coefficient andQS a source
term. For steady state problems, the ADR equation is simplified to Dr2C D �QS,
which is the same as the governing equation of Poiseuille flow driven by a body
force �r2V D �g. To obtain the accurate value of the effective diffusion coefficient,
one needs to perform a tDPD simulation in a computational domain with periodic
boundary conditions. Let z D 0 be a plane subdividing the fluid system into two
equal domains in z-direction. A small concentration source CQS is applied in the
domain of z > 0 while a concentration sink with same magnitude �QS is applied
in the other domain z < 0, as shown in Fig. 5.7a. Because of the periodic boundary
conditions, the concentration of the tDPD fluid is constrained to be invariable at the
plane z D 0. When the diffusion coefficient D is constant, the steady state solution
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Fig. 5.7 (a) Schematic geometry for the numerical diffusivity meter using fully periodic boundary
conditions. (b) Concentration profiles obtained by running tDPD simulations for different Fickian
friction coefficients �. (b) is adapted with permission from [66]

of the concentration profile is given by

C.z/ D QSz

2D
.d � jzj/C C0; (5.150)

where QS is the source term, C0 the initial concentration of the tDPD system, and
d the half length of the computational domain in z-direction. The concentration
profiles can be easily obtained by running the tDPD simulation to the steady
state. Figure 5.7b shows the concentration profiles obtained from tDPD simulations
for different Fickian friction coefficients �, in which the lines are the best-fitting
parabolas for each case. Then, the effective diffusion coefficient can be determined
by fitting the concentration profile with the analytical solution given by Eq. (5.150).
It is obvious that the effective diffusion coefficient D can be significantly changed
by varying the Fickian friction coefficient �.

Boundary conditions are crucial for the investigation of diffusion-reaction pro-
cesses in wall-bounded systems. Usually, defining stationary particles to represent
solid objects is a common treatment in classical DPD simulations [108]. However,
those solid walls made up by discrete frozen particles induce unwanted temperature
and density fluctuations in the vicinity of the walls [90]. Alternatively, Li et al. [66]
used effective boundary fluxes to impose Dirichlet and Neumann boundary condi-
tions for concentration in the tDPD systems.

Dirichlet Boundary Condition

Since the fluid particles do not penetrate into wall boundaries, the random move-
ments of fluid particles do not have any contributions to the boundary concentration
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flux. Therefore, the effective boundary concentration flux is induced only by the
Fickian flux. For a fluid particle i in the vicinity of a wall boundary, the effective
Fickian concentration flux on particle i from the wall can be calculated [66] by

QW
D;i.h/ D 2��

Z rcc

zDh

Z p
rcc2�z2

xD0
QD.r/g.r/xdxdz

D 2��

Z rcc

zDh

Z p
rcc2�z2

xD0
�� � wDC.r/ � z

h
.Ci � Cw/ � g.r/xdxdz

D 2��� .Cw � Ci/ � '.h/;

(5.151)

where Ci is the concentration of particle i, Cw the expected concentration at the wall
surface, and h the distance of the particle i away from the wall surface. Here, '.h/
is a function of h, which is defined as

'.h/ D
Z rcc

zDh

Z p
rcc2�z2

xD0
wDC.r/g.r/

zx

h
� dx � dz: (5.152)

Equation (5.151) reveals that the boundary concentration flux is determined by the
concentration difference between particle i and the wall, and also their distance.
Given a radial distribution function g.r/ and the weight function wDC.r/, the
function '.h/ can be evaluated through Eq. (5.152). As the distance h approaches
to zero, the magnitude of '.h/ goes to infinity. In practical tDPD simulations, a
truncation of '.h/ at small distances can be used to stabilize the simulation, i.e.,
setting '.h < 0:01rcc/ D '.0:01rcc/.

Neumann Boundary Condition

To consider the effective flux along the normal direction of wall surface, we integrate
the effect of concentration flux from the wall boundary and define a distance
dependent function given by

ˆ.h/ D
Z rcc

zDh

Z p
rcc2�z2

xD0
wDC.r/g.r/

zx

r
dxdz: (5.153)

The normalized ˆ.h/ is defined as ˆ.h/ D ˆ.h/=
R rcc
0
ˆ.x/dx. Then, the integral

of ˆ.h/ is equal to one. Using the computed g.r/ and the expression of wDC.r/,
the function ˆ.h/ can be obtained through Eq. (5.153). To impose a Neumann
boundary condition dC=dn D ƒ at a wall boundary, it is equivalent to applying
a concentration flux QW D Dƒ across the boundary. In practice, the flux QW is
distributed onto the fluid particles in the vicinity of the wall weighted by ˆ.h/.
Let � be the number density of the fluid particles, the volume concentration is �C
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because the concentration C in tDPD is defined as the number of a chemical species
per particle. Then, any fluid particle i close to the wall receives a concentration flux
from the wall boundary given by

QW
i .h/ D Dƒ� �ˆ.h/: (5.154)

One-dimensional test cases have been performed in [66] to check the effective-
ness and the accuracy of using the effective boundary fluxes for implementation
of the Dirichlet and Neumann boundary conditions. Figure 5.8(a1) illustrates the
initial condition C.x; 0/ D 0 and the boundary conditions for the test case of
the Dirichlet boundary condition. By solving a one-dimensional diffusion equation
dC=dt D Dr2C with boundary conditions of C.0; t/ D 0 and C.Lx; t/ D C0, an
analytical solution for the transient concentration profile can be obtained [66]

C.x; t/ D C0x

Lx
C

1X

nD1

2C0
n�

.�1/n sin .ˇnx/ exp
��Dˇ2n t

�
; (5.155)

where ˇn D n�=Lx with Lx being the length of the computational domain
in the x-direction, D the diffusion coefficient. Figure 5.8(b1) shows a compar-
ison between the concentration profiles obtained using tDPD and theoretical
solution Eq. (5.155) at several times including the steady state solution. The
results are in good agreement, which validates the effective boundary flux of
Eq. (5.151) for imposing the correct Dirichlet boundary condition in the tDPD
simulation.

Figure 5.8(a2) shows a similar setup as the previous test case but different
wall boundary conditions for the Neumann boundary condition. Considering a

Fig. 5.8 Initial condition and boundary conditions for the one-dimensional diffusion with (a1)
the Dirichlet boundary condition and (a2) the Neumann boundary condition. The corresponding
transient concentration profiles and comparison with theoretical solutions are shown in (b1) and
(b2). These plots are adapted with permission from [66]
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concentration flux at the left wall x D 0, we apply the a Neumann boundary
condition dC=dn D ƒ at x D 0. Also, the right wall at x D Lx has a fixed
concentration C.100; t/ D 0. By solving a one-dimensional diffusion equation
dC=dt D Dr2C with boundary conditions of dC.0; t/=dx D ƒ and C.Lx; t/ D 0, we
have the theoretical solution for the transient concentration profile given by Li et al.
[66]

C.x; t/ D ƒ.x � Lx/C 4ƒ

Lx

1X

nD1;odd

ˇ�2
n sin2.

n�

4
/ cos .ˇnx/ exp

��Dˇ2n t
�
;

(5.156)

where ˇn D n�=.2Lx/ with Lx being the length of the computational domain in
the x-direction, D the diffusion coefficient. Figure 5.8(b2) compares the transient
concentration profiles obtained using tDPD with the theoretical solution Eq. (5.156).
The excellent agreement between the tDPD results and the theoretical solution
confirms the validity of the effective boundary flux of Eq. (5.154) for imposing the
correct Neumann boundary condition.

The particle-based tDPD method satisfies the conservation of concentration
automatically and provides an economical way to solve ADR equations with
a large number of species. It has been reported [66] that the tDPD solution
of a 25-species coagulation model is only twice as computationally expensive
as the conventional DPD simulation of hydrodynamics alone, unlike the con-
tinuum model requiring more than 20 Poisson/Helmholtz solvers making the
computational cost over ten times higher than the Navier-Stokes solver. This low
additional cost for solving ADR equations indicates the promising potential of
tDPD in biological applications involving multiple biochemical species at the
mesoscale.

5.3.4 Other Extensions

In addition to eDPD, mDPD and tDPD models, there are some other extensions of
DPD developed for different purposes. Examples include:

1. Fluid particle model (FPM): It is a generalization of the classical DPD method
developed by Español [24]. FPM considers both linear and angular momenta of
the particles and includes both central and noncentral forces between particles,
while the classical DPD method considers only linear momentum and includes
only central forces. By introducing torques and angular velocities of the particles,
both linear and angular momenta of FPM are conserved.

2. Single-particle DPD model: It is based on FPM with modified colloid-solvent
pairwise potentials [86]. In this model, each spherical colloidal particle can be
represented by a single FPM particle rather than a cluster of particles. As a result,
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it shows high computational efficiency in studying the dynamical and rheological
properties of colloidal suspensions in simple fluid solvents.

3. Anisotropic single-particle DPD model (aDPD): It is a further development of
the single-particle DPD model [20]. By introducing a shape matrix indicating
the particle size and shape, aDPD formulates the conservative and dissipative
interactions between anisotropic DPD particles using a linear mapping from the
original single-particle DPD model of isotropic spherical particles, while the
random forces are properly formulated by satisfying the fluctuation-dissipation
theorem. Consequently, aDPD enables the DPD method to efficiently model the
colloidal ellipsoids under the effect of thermal fluctuation. Examples include
the orientation-dependent diffusion of an anisotropic particle, and the isotropic-
nematic transition in an ellipsoidal suspension induced by the changes of volume
fraction or the aspect ratio of ellipsoid particles.

4. Charged DPD model (cDPD): It was developed by Deng et al. [19] based on
tDPD for simulating mesoscopic electrokinetic phenomena governed by the
stochastic Poisson-Nernst-Planck and the Navier-Stokes equations. By introduc-
ing extra degrees of freedom for the ionic concentration and the electrostatic
potential associated with each DPD particle, cDPD models the diffusion of ionic
species driven by the ionic concentration gradient, electrostatic potential gradient
and thermal fluctuations through pairwise fluxes between DPD particles, while
the electrostatic potential is obtained by solving the Poisson equation on the
moving DPD particles iteratively at each time-step. Since both the fluctuations of
momentum and ionic concentration are systematically included in cDPD without
any grid-based algorithms, it is a flexible and powerful method in studying
complex fluids with electrostatic interactions at the micro- and nano-scales.

5. Smoothed DPD (SDPD) model: It is a top-down approach [25] developed from
smoothed particle hydrodynamics (SPH). SDPD starts from continuum equations
while other DPD models are bottom-up approaches starting from microscopic
dynamics. As a matter of fact, SDPD is a Lagrangian discrete model for simulat-
ing Navier-Stokes hydrodynamics that includes thermal fluctuations consistently.
Unlike these bottom-up DPD methods, the parameters in the governing equations
of SDPD have clear physical meanings. Its inputs are the viscosity, equation of
state, temperature and other parameters required by the fluctuating Navier-Stokes
equations. However, since the constitutive equations and macroscale properties
of the system must be given as inputs, SDPD works well with simple fluids but
loses its effectiveness in modeling complex fluids and materials, which may not
have a known constitutive equation.

Motivated by tackling different challenges in the mesoscopic modeling, the
various extensions of DPD have been developed and constitute the “DPD Alphabet”,
as shown in Fig. 5.2. These new developed DPD models dramatically extend the
capability of the DPD simulations beyond the classical DPD, which makes DPD a
more promising mesoscopic method for diverse applications.
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5.4 Computer Implementation

A DPD program shares the structure with an atomistic molecular dynamics simula-
tor, and iterates over a time stepping loop consists of four stages: force evaluation,
position/velocity update, parallel communication, and data collection.

5.4.1 Pairwise Search

Due to the short-range nature of the DPD pairwise force, the evaluation is usually
assisted with the use of a spatial searching algorithm, which loops over all pairs
of particles that are within the cutoff distance rc. One of the classical approaches
used by the most DPD software, as well as many other existing MD software, is to
use a Verlet list, which is essentially a table storing the indices of particles within a
given distance rv for each particle in the system. rv is usually chosen to be slightly
larger than rc such that the list does not need to be updated for every time step. As a
trade-off the list will contain some extra particles which are not within rc.

The Verlet list can be constructed naively by a O.N2/ pairwise search, but more
efficiently with the help of a cell list. The cell list algorithm makes use of a uniform
lattice to partition the system into many nearly-cubic cells, and stores the indices of
the particles that are located within each cell. The cells are numbered consecutively
along the axes, allowing the index of cell that each particle belongs to be determined
by simply dividing the particle’s coordinate by the length of the cells and then
flooring to the nearest integer.

Given a system of N particles occupying a volume of Lx � Ly � Lz, a Verlet list
can be constructed from a cell list using O.N/ time and storage by looping over
each particle, first finding the cell that the particle belongs to, and then comparing
against other particles in this cell as well as particles in all 26 immediate neighboring
cells. The cell list itself takes O.LxLyLz C N/ storage and O.N/ time to construct as
shown by Algorithm 1. Alternatively, the cell list can be used directly for computing
the pairwise force [97] and may delivery better performance on massively parallel
processors where memory bandwidth is more precious than computing power.

5.4.2 Force Computation

The conservative force is usually defined directly using a weight function, or
through the differentiation of a potential function. The computation of the conserva-
tive force is relatively straightforward because it only affects static properties such as
radial distribution function and compressibility. In fact, several splitting integration
schemes evaluate the dissipative and random force separately from the conservative
force.
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Algorithm 1 The cell list algorithm

Method RectilinearCelllist( Np: integer,
ncell: integer[3],
cell_size: integer[3],
coord: real[N][3] )

Ncell = ncell[0] * ncell[1] * ncell[2]
bin_size = zeros[Ncell] # O(L^3) space
local_seq = integer[N] # O(N) space
cid = integer[N] # O(N) space

# Get cell id and cell-local index for each particle
# Count cell size
for i = 0:N

# operator ./: element-wise division
cell_xyz = floor( coord[i] ./ cell_size )
cid[i] = cell_xyz[0] + cell_xyz[1] * ncell[0] + cell_xyz[2] * ncell[1] *
ncell[2]
local_seq[i] = bin_size[ cid[i] ]
++bin_size[ cid[i] ]

# O(N) prefix sum for the starting index of each cell
bin_start = zeros[Ncell] # O(L^3) space
for i = 1:Ncell

bin_start[i] = bin_start[i-1] + bin_size[i-1]

# Scatter particle indices into corresponding cell
cell_list = integer[N] # O(N) space
for i = 0:N

cell_list[ bin_start[ cid[i] ] + local_seq[i] ] = i

return cell_list, bin_start

The dissipative force is usually evaluated together with the random force, due
to the common arithmetics for computing the weight function as dictated by
the fluctuation-dissipative theorem. However, the most prevalent and convenient
approach is to still evaluate the dissipative and random force alongside the con-
servative force, because this saves the work for the pairwise searching, a dominant
workload in DPD simulations.

It is a common practice in molecular dynamics simulation to omit the pairwise
interactions between particles that are connected by bonds. For example, in the
CHARMM force field the pairwise interaction between atoms separated by less
than three bonds are not computed, because the interaction is assumed to be already
considered by the bonded potential. The same principle could be applied to DPD,
but a careful consideration must be made on whether to also exclude the dissipative
and random terms. The decision to include the dissipative and random force can be
justified by noting that the conservative bonded force may only serve the role of
the DPD conservative force. The friction and random effects thus are still needed
between particles that are bonded, but may be based on different weight functions
or coefficients.
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The random force in DPD need to be handled carefully for distributed-memory
parallelization, which is usually done with a domain decomposition scheme that
divides the simulation box into non-overlapping subregions. The force on particles
within each subregion can be computed locally on each processor. The force
between subregions can be computed with the help of ghost particles, which are
the local images of remote particles from neighboring processors that are within
the cutoff of each subregion. A forward communication is responsible for the
exchange of the ghost particles. A backward communication process is necessary
if we are to take advantage of the Newton’s 3rd law of action and reaction,
which is widely used in serial DPD programs to speed up the force computation.
The extra communication stages may actually compromise parallel efficiency on
massively parallel clusters due to the overhead for sending and synchronizing over
the messages. The computation for pairwise interactions across subregions can be
duplicated in order to eliminate the backward communication stage. This overhead
does not incur network communication and should be negligible as long as the area-
to-volume ratio of the subregion remains reasonably large. However, the random
term need to be handled carefully in this case because the reproduction of the same
random number between the a pair of particles spanning two processors is necessary
to ensure momentum conservation. This is usually handled by using a stateless
random number generator that crunches in situ a global random variable, which
changes over time steps but remains the same across all processors within a time
step, with some per-particle signature that is persistent on each particle [2, 89, 101].
As long as the same signature is presented, the same random number can be
recovered for each of the particles on two different processors. A common choice for
the signature is the id of the particle. Alternatively, the signature may be computed
from a blend of the highly volatile bits of the particles’ degrees of freedom such as
position and velocity, which serves as a source of entropy.

5.4.3 Numerical Optimization

In [26], the random numbers between pairs of particles are assumed to be delta-
correlated, symmetric Gaussian i.i.d. random variables with zero mean and unit
variance. However, the generation of Gaussian random numbers is less straightfor-
ward and more expensive, despite the existence of highly efficient algorithms such
as the Box-Muller method. The non-compact nature of the Gaussian distribution
makes it possible for extremely large forces to occur regardless of magnitude.
This can cause numerical instability in practice and hence requires treatment
such as re-generation or truncation. However, due to the law of large numbers,
any random variable with the same mean and variance could lead to the same
stochastic differential equation for DPD and thus can lead to the same invariant
distribution indistinguishable from that driven by a Gaussian term. This observation
liberates us to use much cheaper random number generators, e.g. one that generates
numbers uniformly distributed on Œ�p

3;
p
3/. Other possibilities include the arcsin
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distribution on Œ�p
2;

p
2/, which can be generated using the logistic map with

only floating point operations. This fits better to the architectural characteristics of
general purpose graphics processing units with less integer arithmetic throughput.

An effective approach to achieve high Schmidt number in DPD simulation is
to increase the power s of the dissipative weight function wD.rij/ D .1 � rij=rc/s

in Eq. (5.2). If the power is non-integral, a general transcendental function that
evaluates the result of ws is needed. This function is among one of the slowest
math functions in every programming language, because it has to be evaluated as
ws D es�lnw using the identity x D elnx, and in turn involves the evaluation of
the natural logarithm and exponential function. In order to conform to the IEEE
floating point standard, a generic implementation of the functions as provided in
most programming languages has to deal with the full range of inputs as well
as possible exceptions, which triggers instruction branching and reduced CPU
efficiency. The process, however, can be sped up by exploiting the limited range
of the weight function and the power. The possibility that the base or the exponent
being 0 can be precluded by the cutoff testing prior to the function call; it is also
unlikely that the base or the exponent would be NaN or Inf unless there are serious
problems in the underlying physics of the model. As such, both the logarithm
and exponential component of the power function can be implemented using a
Chebyshev polynomial expansion with accuracy up to the last digit of the floating
point number [101].

5.4.4 Time Integration

The velocity Verlet (VV) algorithm is the most commonly used algorithm for
integrating DPD systems due to their symplecticity, numerical stability, and ease of
implementation. It integrates position using half-step values of velocity. The form
most frequently used in molecular dynamics simulations is:

v.t C �t

2
/ D v.t/C �t

2
t � a.t/;

r.t C�t/ D r.t/C�t � v.t C �t

2
/;

a.t C�t/ D F.r.t C�t//;

v.t C�t/ D v.t C �t

2
/C �t

2
� a.t C�t/:

(5.157)
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However, due to the dependence of the dissipative force on particle velocity, the
scheme in DPD is of the form:

v.t C �t

2
/ D v.t/C �t

2
t � a.t/;

r.t C�t/ D r.t/C�t � v.t C �t

2
/;

a.t C�t/ D F
h
r.t C�t/; v.t C �t

2
/
i
;

v.t C�t/ D v.t C �t

2
/C �t

2
� a.t C�t/:

(5.158)

There is a temporal misalignment between the position and velocity used for the
force. As such, the modified velocity Verlet algorithm aims to improve the stability
of the integrator by using an extrapolated version of the velocity for the force
evaluation [35]:

v.t C �t

2
/ D v.t/C �t

2
t � a.t/;

r.t C�t/ D r.t/C�t � v.t C �t

2
/;

a.t C�t/ D F
h
r.t C�t/; v.t/C � ��t � a.t/

i
;

v.t C�t/ D v.t C �t

2
/C �t

2
� a.t C�t/;

(5.159)

where � 2 Œ0; 1� is a parameter that depends on the specific choice of DPD
parameter, and need to be tuned case-by-case. There also exist more advanced time
integrators that are based on iterative or splitting techniques, such as DPD-VV [9],
Shardlow splitting scheme [99], the pairwise Noose-Hoover-Langevin method [53],
and the pairwise adaptive Langevin method [54].

5.5 Applications

The DPD method was invented more than two decades ago for simulating com-
plex fluids at the mesoscale [39]. Ever since its inception, DPD modeling has
found a wide spectrum of applications including simple fluids hydrodynamics,
polymer solutions and melts, biological membranes, colloidal suspensions and
blood flow [34, 72]. This section will briefly introduce a few examples of DPD
applications.
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5.5.1 Single-Phase Fluid Flow

DPD provides the correct hydrodynamic behavior of fluids at the mesoscale,
which is of fundamental importance for particles in flow and colloidal/polymer
suspensions. In the following, we briefly introduce the implementation of boundary
conditions for wall-bounded flows in DPD, and present two examples of single-
phase fluid flow.

No-Slip Boundary Condition in DPD

In fluid dynamics, the tangential component of the fluid velocity at the solid bound-
ary is always equal to that of the solid boundary, thus, the no-slip boundary condition
is usually used in modeling of wall-bounded flows. When one performs DPD
simulation of Couette flow or Poiseuille flow in a microchannel or microtube, the
soft repulsion between two particles cannot prevent fluid particles from penetrating
solid boundaries, and thus extra effort is required to impose the no-slip boundary
condition.

To impose a wall boundary condition in DPD, layers of particles at the solid
walls are usually frozen (velocity of these particles are set to zero) to model
solid walls. To prevent the penetration of fluid particles into the solid walls, a
proper reflection, such as bounce-back reflection, specular reflection, or Maxwellian
reflection, at the fluid-solid interface are usually implemented. In order to enforce
the no-slip boundary condition at the fluid–solid interface, the DPD repulsive
forces from wall particles are adjusted appropriately according to the wall density
nw [90],

FW D ae
�
0:0303n2w C 0:5617nw � 0:8536

�
: (5.160)

In this implementation, the average force acting on the DPD particles from
the solid wall in the near-wall region is equal to the average force from the
fluid.

In addition, interaction of liquids with solid walls causes layering of the fluid,
which is responsible for the large density fluctuations near the wall. These fluctu-
ations are physical and thus desirable in simulations, but they may be erroneous
in some other simulations; for example, spurious density fluctuations have been
observed in particle systems such as stochastic rotational dynamics, MD and DPD
simulations. Thus, one needs to control the density fluctuations in wall-bounded
DPD systems.

An adaptive boundary condition (ABC) [91] has been developed and applied to
fluid particles in the vicinity of the walls in order to control fluid density fluctuations
near the solid walls. In the ABC method, the magnitude of the adaptive force,
FW.ib/, depends on the distance of the fluid particles to the solid walls and is
update simultaneously during the simulations according to the estimated density
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fluctuations,

FW
new.ib/ D FW

old.ib/C CW

 Pib
iDia

�s.i/
Pib

iDia
�d.i/

� 1
!
; (5.161)

where CW is a weighting factor.
The no-slip boundary condition in shear flow can also be implemented by

numerical periodicity, such as the use of Lees–Edwards boundary conditions [47].
Instead of including physical wall boundary, Lees and Edwards [47] proposed a
simple and ingenious modification to the standard periodic boundary condition for
particle-based simulations of shear flow. In particular, particles is considered as
being embedded in a fluid which has a constant velocity gradient to maintain the
system under a shear stress in a steady state. Once a particle leaves the simulation
box in the direction parallel to the velocity gradient, it will be reintroduced into the
box from the opposite boundary with a displacement and a velocity shift in the flow
direction. Although the Lees–Edwards boundary conditions have been successfully
used in many MD and DPD simulations [3, 87], it can only be applied to fluid
systems in steady states with constant shear rates.

Couette Flow

In fluid dynamics, Couette flow is a simple shear flow of a viscous fluid between two
parallel walls, one of which is moving relative to the other. The constitutive relation
for Couette flow can be expressed as,

	yx D ��du

dy
; (5.162)

where 	yx is the shear stress, and du=dy is the velocity gradient in the y direction,
and � the dynamic viscosity. In DPD, the friction between the fluid and the moving
wall particles causes the fluid to shear. Figure 5.9a shows the simulation results of
transient development to the steady-state Couette flow. The DPD results agree well
with the analytical solution for different times. A notable aspect of this simple shear
flow is that the shear stress is constant throughout the flow domain. Thus, Couette
flow is frequently used to measure the viscosity of a fluid.

Poiseuille Flow

Poiseuille flow is a steady viscous fluid flow driven by an effective pressure gradient
established between the two ends of a long duct, usually a pipe, of uniform circular
cross-section. For a fluid flow through a pipe of radius R and length L, in the
presence of a uniform pressure gradient�P=L, the velocity of the fluid at a specified
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Fig. 5.9 Time evolution of the velocity profiles in (a) Couette and (b) Poiseuille flows, in which
	 denotes the DPD time unit

distance r from the center of the pipe, v(r), is given by,

v.r/ D �P

4L�
.R2 � r2/; (5.163)

in which � is the fluid viscosity. In DPD, Poiseuille flow can be obtained by
applying a body force to the DPD fluid. Figure 5.9b shows the simulation results
of development of Poiseuille flow. The fluid velocity in a pipe changes from zero
at the wall surface because of the no-slip condition to a maximum vmax at the pipe
center.

In DPD modeling of Poiseuille flow, it is also worth to mention the periodic
(or reverse) Poiseuille flow method developed by Backer et al. [7], which is also
commonly used to estimate the viscosity of the DPD fluid. The method produces
counter-flowing Poiseuille flows by uniform body forces in opposite directions
along two-halves of a computational domain. The absence of density artifacts makes
this method useful for studying the bulk Poiseuille flow.

5.5.2 Blood Flow

Blood is a complex fluid exhibiting intriguing dynamic and its rheology depends on
the flowrate and volume fraction of suspending particles especially the red blood
cells (RBCs). In recent years, particle-based RBC models have attracted increasing
attention in multiscale modeling of blood flows. In particle-based approaches, the
motion of particles is flow governed by the interactions between discrete particles.
Early attempts focused on simulating blood flow with RBC being an elastic
particle, whose inner skeleton is represented by a rectangular lattice connected by
elastic springs. More recently, DPD was employed in a systematic coarse-grained
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procedure for modeling RBCs [92], which served as a basis of a general multiscale
RBC (MS-RBC) model that included membrane viscosity and external/internal fluid
viscosity contrast [28]. In the MS-RBC model, the membrane of RBC is represented
by a two-dimensional triangulated network with a collection of DPD particles, while
constraints on the area and volume conservation of RBC are imposed to mimic the
area–preserving lipid bilayer and the incompressible interior fluid. Specifically, the
elastic part of bond is represented by

Vs D
X

j21:::Ns

"
kBTlm.3x2j � 2x3j /

4p.1� xj/
C kp
.n � 1/ln�1

j

#
; (5.164)

where lj is the length of the spring j, lm is the maximum spring extension, xj D lj=lm,
p is the persistence length, kBT is the energy unit, kp is the spring constant, and n is
a specified exponent. The membrane viscosity is imposed by introducing a viscous
force on each spring. The bending resistance of the RBC membrane is modeled by

Vb D
X

j21:::Ns

kb
�
1 � cos.�j � �0/

�
; (5.165)

in which kb is the bending constant, �j is the instantaneous angle between two
adjacent triangles having the common edge j, and �0 is the spontaneous angle. In
addition, the RBC model includes the area and volume conservation constraints,
which mimic the area-incompressibility of the lipid bilayer and the incompressibil-
ity of the interior fluid, respectively. The corresponding energy is given by

VaCv D
X

j21:::Nt

kd.Aj � A0/2

2A0
C ka.A � Atot

0 /
2

2Atot
0

C kv.V � Vtot
0 /

2

2Vtot
0

; (5.166)

where Nt is the number of triangles in the membrane network, A0 is the triangle
area, and kd, ka and kv are the local area, global area and volume constraint
coefficients, respectively. The terms Atot

0 and Vtot
0 are the specified total area and

volume, respectively.
The MS-RBC model is multiscale, as the RBC can be represented on the

spectrin level, where each spring in the network corresponds to a single spectrin
tetramer with the equilibrium distance between two neighboring actin connections
of 75 nm. On the other hand, for more efficient computation, the RBC network can
also be highly coarse-grained with the equilibrium spring lengths of up to 500 
600 nm. The RBC membrane interacts with the fluid particles through DPD forces,
and the temperature of the system is controlled through the DPD thermostat. The
internal and external fluids are modelled by collections of free DPD particles and
their separation is enforced by bounce-back reflections of these particles at the RBC
membrane surface. The MS-RBC has been successfully applied in RBC simulations,
such as RBC dynamics in Poiseuille flow [28], RBC thermal fluctuations [29] and
RBCs in diseases like malaria [31] and sickle cell disease [49, 68].
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Modeling Blood Flow in Health

DPD simulations have proven effective in modeling the collective dynamics and
microrheology of RBCs in shear flow. The simulations for shear flow can accurately
predict the dependence of blood viscosity on shear rate, see Fig. 5.10a. A novel
feature is the inclusion of attractive cell–cell interactions which allows to investigate
cell aggregation and formation of rouleaux. Simulations in larger tubes with
diameters ranging from 10 to 40�m successfully reproduced several hemodynamic
phenomena, including cell migration towards the flow centerline, cell-free layer
near the wall and blunt velocity profile [51]. Recently, more complex geometries
have been considered, e.g. the blood flow in a bifurcating microfluidic channel or
complex arterial network [57, 73]. The results quantify the effect of branch location
and bifurcation angle variation on blood-plasma separation, which is agreement with
experiment.

An important characteristic of the dynamics of an individual RBC in shear
flow is the tank-treading frequency. Simulations with continuum models suggest
that the membrane viscosity needs to be accounted for in order to agree with
the experiments. Indeed, the MS-RBC model with membrane viscosity captures
this effect [28]. More recently, the simulations with a two-component RBC model
have been demonstrated to capture the observed dependency between TT frequency
and shear rate for RBCs with different degrees of confinement [63]: it follows a
linear relationship for a narrow channel but a nonlinear one for a wide channel.
The simulations also probed the apparent bilayer–cytoskeleton slip for a defective
membrane in hereditary spherocytosis and elliptocytosis.

Modeling Blood Flow in Malaria

Malaria is one of the most prevalent human infections worldwide. In malaria,
RBCs are hosts of Plasmodium parasites which change the cell biomechanical
properties. Progression through the parasite development from ring to trophozoite
then to schizont stages leads to Pf -RBCs loss of their deformability with a relative
membrane stiffening more than tenfold in comparison to healthy ones. Moreover,
at the final stage (schizont) of the parasite development, the Pf -RBCs often show
near-spherical shapes due to the formation of intracellular parasitophorous vacuoles,
which further impaires cell deformability. These changes can greatly affect the
dynamic and rheological properties of Pf -RBCs, alter blood flow and may even
cause occlusions of small capillaries. Quantifying cell deformability for various
stages of Pf -RBCs is significant. Recent efforts have been directed towards this
end. For example, Bow et al. [13] employed a MS-RBC model to study the
biomechanical properties of Pf -RBCs. They investigated a progressive stiffening
of Pf -RBCs with parasite growth. Ye et al. [109] simulated the flow dynamics of
Pf -RBCs in shear flow. They found that malaria parasites can perturb blood flow,
causing Pf -RBCs move towards blood vessel wall and adhere to the subendothelial
surface. Recently, Chang et al. [16] developed a two-step multiscale framework
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Fig. 5.10 Predicting human blood viscosity in-silico. (a) Shear viscosity of normal blood as a
function of shear rate; Adapted from [30]. (b) Shear viscosity of sickle cell suspension with
different cell morphology at different shear rate. Adapted from [68]
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for RBC modeling. Using this two-step multiscale framework, they predicted the
altered biomechanical properties of RBCs associated with their pathophysiological
states, including malaria. They investigated the influence of the nanoscale knob
density on RBC deformability and found a decrease in elongation index for
Pf -RBCs at trophozoite and schizont stages with the increase of knob density,
indicating that the nanoscale knobs, being rigid, contribute to cell membrane
stiffness.

Modeling Blood Flow in Sickle Cell Anemia (SCA)

SCA is a genetic blood disorder exhibiting heterogeneous cell morphology and
abnormal rheology under hypoxic conditions [17, 42]. In sickle cell disease,
mechanically fragile but rather stiff RBCs contribute to impaired blood flow and
other pathophysiological aspects of the disease. When the flow of blood is relatively
slow, cellular reactions occur that lead to adhesion of sickle RBCs to vascular
endothelium, resulting in vaso–occlusion and consequent clinical manifestations
such as organ damage, pain, and even death. Using the same DPD-based RBC
model, Li et al. [68] performed simulations of blood flow in sickle cell disease.
The simulation results confirmed the previous experimental measurements that the
sickle cell blood exhibit different levels of viscosity for different cell morphologies
(Fig. 5.10b): the granular RBC suspension is the most viscous, while the shear
viscosity of sickle RBC suspensions containing elongated RBCs shows a dramatic
decrease. Moreover, it is known that the origin of SCA can be traced to a common
molecular basis, but individual patients with SCA have a highly variable clinical
phenotype. For these reasons, Li et al. [68] have recently developed a predictive
patient-specific model of SCA. Through the simulations they were able to reveal the
role of approved drugs like hydroxyurea on the blood viscosity, which has remained
a mystery for a long time.

DPD-based RBC models have also been used to quantify the adhesive properties
of sickle RBCs and probe vaso-occlusion phenomena in SCA (Fig. 5.11) [49].
Given the same “adhesive potential”, their results validate the hypothesis that
heterogeneous cell adhesive dynamics is mainly due to the different cell rigidities
and peculiar cell morphologies (Fig. 5.11a) [48]. They also quantified the specific
physiological conditions triggering the vaso-occlusion crisis. Under physiological
conditions, their simulations show that the interplay of deformable SS2 cells
and ISCs can potentially trigger full blood occlusion. In addition, they also
employed a DPD-based white blood cell (WBC) model to probe its effect to
blood vaso-occlusion. They found that the blood flow undergoes slow down
due to the WBC recruitment and the moderate sickle RBC–WBC interaction
leads to multiple sickle RBC trapped on the WBCs and the full occlusion
(Fig. 5.11b).
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Fig. 5.11 Vaso-occlusion in post-capillaries. (a) Instantaneous mean velocity of blood flow in a
cylindrical tube of D D 10�m infused with different sickle RBC suspensions. The red curve
represents the resultant velocity infused with SS2 and ISC cell groups. The inset plots represent the
instantaneous snapshots where SS2 cells adhere to vessel wall, consequently trapping the ISCs and
resulting in cell blockage. The green curve represents the blood velocity infused with SS2 and ISC
cell groups, where adhesive interaction is only applied to the ISC group. The inset plot represents
a snapshot where transient adhesion is established between ISC and the tube wall. Steady flow
is recovered due to the detachment of the cell from the tube wall. The blue curve represents the
instantaneous velocity of blood flow infused with SS2 and healthy cell groups. Blood flow exhibits
a slow down but not a full occlusion. (b) Effect of WBCs: instantaneous mean velocity of the blood
flow in a tube of D D 13:4�m. The inset snapshots represent blood cells in free motion, WBC
adhesion and blood occlusion states. Reproduced from [49], by permission

5.5.3 Dynamics of Polymers in Shear Flow

A polymer is a large molecule composed of many repeated subunits bonded
together. The dynamics of a polymer in shear flow is of central importance in
biomolecular engineering, materials science, and medicine. Therefore, it is not
surprising that the polymer behavior in shear flow has become a subject of intensive
experimental, theoretical, and computational studies.

Through the DPD approach, a polymer can be represented by linking collections
of DPD particles into chains with appropriate forces arising from different combi-
nations of the following types [100]:

• Harmonic spring model: It is one of the most popular polymer models. In the
spring model, the consecutive particles in the polymer chain are connected by
harmonic springs,

FS
ij D kS.1 � rij=r0/; (5.167)

with kS being the spring constant, and r0 the equilibrium bond length.
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• Wormlike chain (WLC) model: It is a continuous model used to characterize the
behavior of a semi-flexible polymer.

FWLC
ij D �kBT

4�P

��
1 � rij

LSP

	�2
C 4rij

LSP
� 1

�
; (5.168)

where �P is an effective persistence length, and LSP is the maximum length of
the spring.

• Finitely extensible nonlinear elastic (FENE) model: It simplifies the chain of
monomers by connecting a sequence of beads with nonlinear springs, which can
capture the finite extensibility of a polymer chain. For the FENE chain, the force
on particle i due to particle j is,

FFENE
ij D � Hrij

1 � .rij=r2max/
; (5.169)

in which H is the spring constant, and rmax is the maximum length of the spring.
• Lennard-Jones chain (LJC) model: The force for each pair of particles is given

by a truncated Lennard-Jones potential,

ULJ D 4�

��
L

rij

	12
�
�
L

rij

	6
C 1

4

�
; (5.170)

where � is the depth of the potential well, and L is the finite distance at which the
inter-particle potential is zero.

Industrial and biological applications based on the dynamics of polymer in
microfluidic and nanofluidic channels are ubiquitous in past decades. Recent works
have focused on the dynamics and flow behaviors of polymers in fluidic channels.
Such studies deepen our understanding of the detailed conformational changes of
polymers inside the fluidic channels. Dynamic simulation and modeling help in
predicting how polymers will behave in fluidic flows and channels. For example,
Wijmans and Smit [107] simulate tethered polymers in shear flow using DPD. They
found that the polymer chains are able to stretch in the flow direction with respect
to the shear rate. Symeonidis and Karniadakis [100] employed DPD to study the
�-phage DNA under shear flow. They presented comparison of WLC models under
shear with experimental results and demonstrated the correct static scaling laws for
the radius of gyration. Fan et al. [27] simulated the dynamics of macromolecular
solutions in shear flow. They found that the velocity profiles of FENE polymer chain
suspensions can be fitted using the power-law model.

Dynamics of the translocation of polymers through a narrow channel or a narrow
pore is significant in the understanding of several chemical and biological processes
such as the transport of protein through membrane channels, motion of DNA and
RNA across narrow pores, and infection of virus into the cell nucleus. Therefore,
the translocation dynamics of polymer in shear flow have received increasing
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Fig. 5.12 Translocation event produced by a polymer molecule passing through the fluidic
channel in single-file conformations in the simulation at (a) t D 110, (b) t D 160, (c) t D 180,
and (d) t D 220. Adapted with permission from [36]

attention in past decades. In the process of polymer translocation through a narrow
channel, the number of available configurations of polymer molecules decreases,
resulting in an effective entropy barrier for polymer molecules. Therefore, an
external driving force such as an external electric field, chemical potential gradient,
or a direct pulling force, is needed to overcome this entropy barrier and hasten the
translocation. In DPD, an applied pressure gradient, which generates a fluid flow in
narrow channel, can drive polymer chains through the narrow channel.

The DPD simulation provides a reliable approach to investigate the conforma-
tional changes and dynamic behaviors of polymers in the translocation processes.
For example, Guo et al. [36] employed DPD to simulate the dynamics of flow-
induced translocation of polymers through a fluidic channel. They found that there
are three stages in the translocation process of linear polymer molecule (Fig. 5.12):
(1) drift diffusion; (2) capture; and (3) translocation. These simulations can help
in clearly understanding the detailed conformational, dynamical, and transport
properties of polymer molecules and the events taking place inside the fluidic
channels during the process of the polymer translocation.

5.6 Concluding Remarks

Dissipative particle dynamics, as a coarse-grained molecular dynamics method
that can be rigorously derived through the Mori-Zwanzig formalism, has been
demonstrated to be a powerful and flexible mesoscopic method for simulating the
mesoscopic dynamics of complex fluids and various mesoscopic phenomena in soft
matter systems. In the past decade, the classical DPD method and its extensions
have already been applied successfully to a wide range of problems occurring at the
mesoscale. However, there still remain many open questions both in the foundation
of DPD and in its applications.
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An open question of DPD’s foundation is the theoretical derivation of meso-
scopic principle from molecular dynamics simulations of unbonded atoms. Unlike
bonded atoms in polymers and proteins, unbonded atoms does not move as a
group and cannot be packed into a coarse-grained entity. Consequently, the coarse-
grained representation of unbonded atoms does not have clear physical definition.
Although constraints can be applied to enforce unbonded atoms to move as
a group in molecular dynamics simulations for coarse-graining [50, 94], these
constraints significantly change the dynamical behavior of the unbonded atoms;
hence, these constrained molecular dynamics systems can no longer represent the
correct solvents. Therefore, the theoretical derivation of mesoscopic principles for
unconstrained and unbonded solvents is an open question.

Another interesting relevant problem of DPD is that memory effects should be
included in mesoscopic modeling when the Markovian property breaks down. The
classical DPD model was constructed with Gaussian white noise, which assumes
that the typical time scales of resolved dynamics and unresolved dynamics are well-
separated. However, at small coarse-grained levels, it is expected that the time scale
of unresolved dynamics is comparable with that of resolved dynamics, where the
correlation of random force cannot simply be replaced by the Dirac delta function.
Then, we need to consider non-Markovian dynamics by including memory effects.
So far there have been several attempts to include non-Markovian memory into
mesoscopic modeling, such as introduction of additional internal variables [104],
computing a time-convolution for friction directly [64], using a set of fictitious
particles [18], or coupling to the Ornstein-Uhlenbeck process [69].

Finally, DPD application to diverse practical problems requires the development
of fast time-evolution algorithms for large-scale simulations and useful boundary
methods for modeling biological systems. To this end, many attempts have been
made to enhance the capability of DPD simulations. Examples include the open
source GPU-accelerated DPD simulators [11, 101] for large-scale simulations, the
efficient time-integrators allowing for larger time steps [53, 54], an inflow/outflow
boundary method for blood flows [73] and a local detection boundary method for
arbitrarily complex geometries [67].
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Chapter 6
Numerical Methods for Dispersed Multiphase
Flows

M. Sommerfeld

Abstract This article gives an overview of numerical methods for the calculation
of dispersed multi-phase flows. At the beginning, a brief introduction is given
on the different flow regimes observed for multi-phase flows in general. Then
a characterisation and classification of dispersed multi-phase flows is introduced
based on inter-particle spacing and volume fraction. As an introduction to the
subject, the numerical methods used for single-phase flows are briefly described
based on the turbulent scales being resolved by the numerical grid. Since even
dispersed multi-phase flows are extremely complex, the hierarchy of the different
numerical methods is highlighted ranging from macro-scale numerical simulations
for an entire industrial process down to micro-scale simulations required for
analysing particle scale phenomena. Due to constraints in computational power
and storage availability, macro-scale simulations can only be done with a limited
grid resolution and the assumption of particles being treated as point-masses.
Consequently, all transport phenomena occurring on scales smaller than the grid
cell and on the scale of the particle have to be considered through additional
closures and models. Therefore, essential elements in this multi-scale problem are
direct numerical simulations that fully resolve the particles and the flow around
them. The different methods for such resolved simulations are briefly described.
The major part of this article is focused on the modelling of dispersed multi-
phase flows relying on the point-particle assumption. The multi-fluid method
or Euler/Euler model is briefly described in order to demark its applicability
and limitations. The hybrid Euler/Lagrange approach based on tracking a large
number of point particles and its different variants are introduced in more detail,
emphasising the two-way coupling approaches for unsteady flows. The importance
of accurately modelling particle-scale phenomena is highlighted and an estimate for
the significance of particle-wall and inter-particle collisions is given. Finally, three
application examples are introduced, emphasising the potential of Euler/Lagrange
simulations. For a particle-laden swirling flow the semi-unsteady approach is used
for analysing unsteady particle roping phenomena. The simulations of particle

M. Sommerfeld (�)
Institut für Verfahrenstechnik, Otto-von-Guericke Universität (OvGU) Magdeburg,
Zeppelinstraße 1, 06130 Halle (Saale), Germany
e-mail: martin.sommerfeld@ovgu.de

© Springer International Publishing AG 2017
T. Bodnár et al. (eds.), Particles in Flows, Advances in Mathematical
Fluid Mechanics, DOI 10.1007/978-3-319-60282-0_6

327

mailto:martin.sommerfeld@ovgu.de


328 M. Sommerfeld

suspension in a stirred vessel highlight the importance of inter-particle collisions
even at relatively low volume fractions up to 5%. Finally, it is demonstrated that the
Euler/Lagrange approach may also be used to study an industrial filtration process
where it allows the prediction of particle deposits and filter cake formation. In this
respect extensions are possible which provide more information on the internal filter
cake structure.

Keywords Application examples • Characterisation of multi-phase flows •
Dispersed multi-phase flows • DNS • Euler/Euler method • Euler/Lagrange
approach • Filter cake formation • Fluid particles • Four-way coupling •
Horizontal blade filter • Inter-particle collisions • LES • Modelling dispersed
flows • Modelling particle-scale phenomena • Multi-scale effects • Numerical
methods • Particle deposition • Particle dispersion in stirred vessel • Point-
particle approximation • RANS • Resolved particle-scale simulations • Rigid
particles • Two-way coupling • Turbulence modelling • Unsteady swirling flow •
Wall collisions

MSC2010: 76F25, 76F65, 76T10, 76T15, 76T20, 82C22, 97R20, 82C80, 70S05

6.1 Introduction to Multi-Phase Flows

The simultaneous presence of several different phases in external or internal
flows consisting of combinations of gas, liquid and solid is found in daily life,
environment and numerous industrial processes. These types of flows are termed
multi-phase flows, which may exist in different forms depending on the respective
phase distribution. Examples are gas-liquid transportation, crude oil recovery, spray
cans, sediment transport in rivers, pollutant transport in the atmosphere, cloud
formation, fuel injection in engines, bubble column reactors, mixing vessels and
spray driers for food processing, to name only a few. This demonstrates the huge
importance of multi-phase flows, which might occur even more frequently than
single-phase flows. Because of the interactions between the different phases, such
flows are rather complicated and very difficult to describe theoretically. For the
design and optimisation of such multi-phase systems, a detailed understanding of the
interfacial transport phenomena is essential. For single-phase flows, computational
fluid dynamics (CFD) already has a long history and nowadays is standard in the
developments for aeronautical and automotive industries using different commer-
cially available CFD-tools. Due to the complex physics involved in multi-phase
flow, the application of CFD in this area is rather young (probably 30–40 years).
The different methods applied for the numerical calculation of multi-phase flows
are summarised below. This chapter is devoted first to the classification of multi-
phase flows and their characterisation by integral properties in order to provide an
idea of their complexity.
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Fig. 6.1 Different regimes of two-phase flows, (a) transient two-phase flow with transition from
liquid to vapour flow, (b) separated or segregated two-phase flow with large regions of gas, (c)
dispersed two-phase flow with gas bubbles (or liquid droplets) dispersed in a liquid or solid
particles or droplets dispersed in gas

Multi-phase flows may be encountered in various forms in industrial practice
and technology depending on the involved phases (Fig. 6.1). These are, exemplarily,
transitional flows with development from pure liquid to a vapour flow as a result
of external heating (e.g. heat pipe), separated or segregated flows (i.e. stratified
flows, slug flows, or annular flows), and dispersed two-phase flows where one phase
is present in the form of particles, droplets, or bubbles dispersed in a continuous
carrier phase (i.e. gas or liquid). Note that in the following the term particles will
be often used also for droplets and bubbles. In all these different types of multi-
phase flows, different interfacial transport mechanisms are relevant. Consequently,
the application of different numerical approaches is required. Transient multi-phase
flows may be found in steam generators of boilers, where the heat addition results
in nucleation and the formation of dispersed vapour bubbles, which further grow
in size and will coalesce, yielding larger vapour slugs and eventually a pure vapour
flow is established. Further evaporation results in annular two-phase flow with small
droplets being dispersed in the core region of the pipe. Stratified and slug flows are
for example found in transportation pipes for crude oil recovery or other liquids,
where the observed flow regime depends of course on the superficial velocities and
also on the orientation of the pipelines, e.g. horizontal, vertical or inclined (see for
example [44]). This kind of gas liquid flows may also be highly unsteady.
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Table 6.1 Summary of two-phase flow systems and important industrial and technical processes

Continuous-dispersed phase Industrial and technical application

Gas-solid flows Pneumatic conveying, particle separation in cyclones and filters,
fluidised beds

Liquid-solid flows Hydraulic conveying, liquid-solid separation, particle dispersion
in stirred vessels

Gas-droplet flows Spray drying, spray cooling, spray painting, spray scrubbers

Liquid-droplet flows Mixing of immiscible liquids, liquid-liquid extraction

Liquid-gas flows Bubble columns, aeration of sewage water, flotation

Dispersed two-phase flows are encountered in numerous technical and industrial
processes, as for example in particle technology (i.e. production and transportation
of solid particles), chemical engineering, and biotechnology. Dispersed two-phase
flows may be classified in terms of the different phases being present as summarised
in Table 6.1 together with some of the most important industrial processes.

Additionally, numerous processes may involve more than one dispersed phase
(i.e. multi-phase flows), as for example in a spray scrubber where droplets and
solid particles are dispersed in a gas flow and the aim is collecting the particles by
the droplets through collisions. Another example is a bubble column reactor with
catalyst particles.

In dispersed two-phase flows the transport of the particles by the fluid phase and
their response is essential. Depending on the concentration of particles this transport
will be affected by fluid dynamic interactions, collisions and other phenomena as for
example coalescence of droplets or bubbles and agglomeration of particles. These
issues will be discussed below, focusing on dispersed two-phase flows only.

6.2 Characterisation of Dispersed Multi-Phase Flows

For the characterisation of dispersed two-phase flows different integral properties
are used, which are briefly summarised below (see for example [17]). The volume
fraction of the dispersed phase is the volume occupied by particles, droplets or
bubbles in a unit volume. Hence, this property is given by:

˛P D
P

i NiVPi

V
(6.1)

where Ni is the number of all particles in the size fraction i, having the particle
volume VPi D �D3Pi

=6. The particle diameter DPi in this context is the volume
equivalent diameter of a sphere in case non-spherical particles are considered. Note
that several volume fractions may be defined depending on the number of dispersed
phases. Since the sum of the volume fraction of the dispersed phases and the
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continuous phase is unity, the continuous phase volume fraction is:

˛F D 1 �
X

n

˛P ;n (6.2)

The bulk density or mass concentration of the dispersed phase is the mass of
particles per unit volume and hence given by:

�P D cP D mP;tot

V
D ˛P�P (6.3)

where �P is the particle density, i.e. particle weight divided by its volume. Here
one has to distinguish between particle density �P and particle material density �s
(index s for solid) which is of course different for porous particles (i.e. �P < �s).
Correspondingly, the bulk density of the continuous phase is:

�F D .1 � ˛P/�F (6.4)

The sum of both bulk densities is called mixture density:

�m D �F C �P D .1 � ˛P/�F C ˛P�P (6.5)

Often the particle concentration is also expressed by the number of particles per unit
volume, as for example in clean-room technology:

nP D NP

V
(6.6)

Especially in gas-solid flows for example in pneumatic conveying the mass loading
is frequently used, which is defined as the total mass flux of the dispersed phase to
that of the fluid phase:

� D PmP

PmF

D ˛P�PUP

.1 � ˛P/�FUF

; (6.7)

where PmP is the dispersed phase mass flow rate and PmF the continuous mass flow
rate, both in Œkg=s�. The velocities for particles UP and fluid UF are averaged
velocities in a considered cross-section. The mass fraction is the mass of one
component divided by the total mass of the system.

The mass flux is defined as the mass of particles flowing through a unit area per
unit time. It should be noted that the mass flux is a vector quantity (i.e. a mass flux
can be defined for each velocity direction) which therefore also can be defined as a
local property.

The proximity of particles in a two-phase flow system may be estimated from the
inter-particle spacing, which can be easily determined for regular arrangements of
the particles. For a cubic arrangement, the inter-particle spacing, i.e. the distance



332 M. Sommerfeld

Fig. 6.2 Regimes of
dispersed two-phase flows as
a function of particle volume
fraction and inter-particle
spacing for a regular cubic
arrangement of particles and
coupling regimes

between the centres of particles, is obtained from the definition of the volume
fraction [119]:

L

DP

D
�
�

6˛P

	1=3
(6.8)

The result is depicted in Fig. 6.2 by comparing inter-particle spacing and dispersed
phase volume fraction. For a volume fraction of 1% the spacing is 3.74 diameters
and for 10% only 1.74. Hence, for such high volume fractions the particles cannot be
treated to move isolated, since fluid dynamic interactions become of importance. In
many practical fluid-particle systems however, the particle volume fraction is much
lower. Consider for example a gas-solid flow (particle density �P D 2500 kg=m3,
gas density of �F D 1:18 kg=m3) with a mass loading of one (i.e. � D 1) and assume
no slip between the phases, then the volume fraction is about 0.05% (i.e. ˛P D 5 �
10�4). This results in an inter-particle spacing of about 10 particle diameters; hence,
under such a condition a fluid dynamic interaction may be neglected. In industrial
bubble columns the gas volume fraction can have values of 40% or even more. This
yields an inter-bubble spacing of 1.1 bubble diameters and will in such a highly
turbulent flow result in a large collision rate and hence bubble coalescence will
occur.

Elghobashi [28] suggested a classification of dispersed two-phase flows con-
cerning the importance of interaction mechanisms and turbulence modulation
(dissipation or enhancement by the particles). Generally, one may distinguish
between dilute and dense two-phase flows as mentioned above (Fig. 6.2) and shown
in Fig. 6.3. A two-phase system may be regarded as dilute for volume fractions up to
˛P D 5�10�4 (i.e. L=DP � 10). In this regime, the influence of the particle phase on
the fluid flow may be however only neglected for ˛P < 5� 10�7 (i.e. L=DP � 100).
This regime is termed one-way coupling where the particles are transported by the
flow, but have no remarkable influence on the flow (i.e. mean flow and turbulence).
For higher volume fractions the influence of the particles on the fluid flow, which
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Fig. 6.3 Regimes of dispersed two-phase flows in terms of transport phenomena; left: dilute
flow dominated by fluid-dynamic transport of particles, inter-particle spacing larger than 10
(see Fig. 6.2); middle: dense flow regime dominated by inter-particle collision with inter-particle
spacing between 2 and 10; right: dense flow regime that is particle contact dominated with averaged
inter-particle spacing less than 2

is often referred to as two-way coupling, needs to be accounted for. In the dilute
regime, fluid dynamic forces and possibly existing external forces dominate the
transport of particles in a flow (see Fig. 6.3 left). Thereupon, interactions between
particles (i.e. collisions and fluid dynamic interactions between particles) become
of importance in the dense regime (i.e. for ˛P > 5 � 10�4, L=DP � 10). Hence,
this regime is characterised by the so-called four-way coupling, which comprises
fluid-dynamic interactions and collisions between the particles (Fig. 6.3 middle).
Three-way coupling is only associated with fluid-dynamic interactions between
particles (Chap. 13 in [15]). Such a mode however may be difficult to observe since
relative particle motion always is associated with collisions. With further increasing
solid volume fraction the importance of interactions among particles is becoming
more and more dominant in comparison to the fluid dynamic transport. Eventually,
the contact-dominated regime is reached at very high volume fractions, i.e. ˛P > 0:1

[17]. It should be noted that also contact dominated flows with solid particles are
referred to as dispersed two-phase flows as for example occurring in dense fluidised
beds. The maximum attainable particle volume fraction of systems with mono-
sized spherical particles is depending on their packing structure, i.e. cubic packing:
˛P D 0:524; hexagonal packing ˛P D 0:605, tetragonal packing ˛P D 0:698 and
rhombohedral packing ˛P D 0:74.

The particle velocity or momentum response time is very important for charac-
terising the capability of particles to follow sudden velocity changes in fluid flows,
occurring for example in flows with curvature, large scale vortex structures [124] or
turbulent eddies. In order to derive the particle response time the equation of motion
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(Newton’s law of motion) is used by only considering the drag force:

mP

duP

dt
D �F

2

�

4
D2

P
CDjuF � uP j.uF � uP/ (6.9)

where mP , uP and DP are the particle properties, mass, velocity and diameter, �F
and uF are fluid density and velocity. The drag coefficient CD in dependence of the
particle Reynolds number, defined as the ratio of inertial force to viscous force (�F

is the dynamic viscosity),

ReP D �FDP.uF � uP/

�F

(6.10)

is obtained by the correlation of Schiller and Naumann [90], which fits the
experimental data up to a particle Reynolds number of ReP D 1000 reasonably
well:

CD D 24

ReP

�
1C 0:15Re0:687

P

� D 24

ReP
fD (6.11)

In the Newton regime between 1000 < ReP < 2:5 � 105 the drag coefficient is
almost constant with CD � 0:44.

Dividing by the particle mass and introducing the particle Reynolds number
gives:

duP

dt
D 18�FCDReP

�PD2P24
.uF � uP/ (6.12)

The term CDReP=24 corresponds to the non-linear term in the drag coefficient fD
(Eq. (6.11)) and the first term of Eq. (6.12) has the dimension of a reciprocal time,
the particle response time:

	P D �PD
2
P

18�F fD
(6.13)

This time scale shall be mainly used for particle-laden gas flows where the particle
to fluid density is rather high. In other situations as for example liquid flows with
solid particles, droplets or bubbles where the fluid to particle density ratio is much
smaller the particle response time scale has to be extended with an added mass term
and one obtains:

	B D .�B C 0:5�F /D
2
B

18�F fD
(6.14)
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Fig. 6.4 Graphical
illustration of the particle
response time, a sudden fluid
velocity jump of uF

accelerates the particle until
the fluid velocity is reached

Hence, the equation of motion becomes:

duP

dt
D 1

	P
.uF � uP/ (6.15)

The solution of this equation for a simplified case, namely a jump of the fluid
velocity from zero to uF and an initial particle velocity of zero is:

uP D uF

�
1 � exp

�
� t

	P

		
(6.16)

From this equation, it is obvious that 	P is the time required for a particle, released
with zero velocity into a flow with uF , to reach 63.2% of the flow velocity as
illustrated in Fig. 6.4.

In the Stokes-regime ReP < 1, where fD is unity, the response time for solid
particles in air becomes:

	P D �PD
2
P

18�
(6.17)

The Stokes number is the ratio of the particle response time to a characteristic time
scale of the flow or a system time scale and characterises the particle response
behaviour:

St D 	P
	F

(6.18)

Considering particle motion in a turbulence field the fluid flow time scale cor-
responds to the time scale of the energetic eddies, i.e. the integral time scale of
turbulence, TL � k=" (where k is the turbulent kinetic energy and " its dissipation
rate). In the case of particle motion in large scale vortices (occurring for example
in a shear layer) the eddy passage time across a fixed point in space is the relevant
fluid time scale [124]. Here it was shown that particles with St < 1 follow the
vortex structure very well and are almost homogeneously distributed. On the other
hand, very inertial particles, St � 1, are not able to respond to the fluid flow and
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pass almost straight through the vortices. Particles with St � 1 accumulate near the
edges of the vortices due to increasing importance of inertial effects. For particles
with St � 1 the effect of particle accumulation (or preferential concentration) in
regions of low vorticity and high strain rates of turbulent flows was observed (see
for example [31, 120]).

6.3 Numerical Approaches for Single-Phase Flows

The numerical calculation of single-phase flows may be broadly separated into
three classes depending on their spatial resolution as illustrated in Fig. 6.5. An
introduction to these methods may be found in [35] together with details about dis-
cretisation schemes and solution procedures. The first approach, Direct Numerical
Simulations (DNS) should resolve all relevant flow scales down to the Kolmogorov-
scales (i.e. the dissipation scales). Consequently, the numerical grid should be
smaller than this scale to ensure a proper resolution. This however implies that
the size of the computational domain is limited due to the restricted number of

Fig. 6.5 Numerical methods (CFD) for turbulent single-phase flows indicating the respective
resolution of eddies and turbulence; the spectrum of eddies ranges from the system induced large
scales down to the Kolmogorov scales; direct numerical simulations (DNS) resolving the small
turbulent scales up to the large scales in the order of the domain size; large eddy simulations (LES)
resolving all scales up to the dissipation length scale (filter size); calculations based on Reynolds-
averaged Navier-Stokes (RANS) equations resolving only large-scale structures, small scales are
described by turbulence models (introduced by Bakker [3])
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numerical control volumes that can be handled by today’s computers. Consequently,
DNS is not able to resolve the entire spectrum of vortex scales or wave numbers
and hence there is a cut-off at larger scales. Moreover, the ratio of macro-scale
vortices to the Kolmogorov-scale is proportional to Re3=4. As a result, also the
flow Reynolds number which may be considered in DNS has a limitation; typically
the maximum is between 5000 and 10,000. Therefore, the application of DNS is
limited to simple flow conditions, such as, homogeneous isotropic turbulence, shear
flows and channel or pipe flows. Nevertheless, DNS is very helpful in analysing and
understanding basic phenomena in turbulence research.

The second class of numerical methods, which is rapidly growing in importance,
are Large Eddy Simulations (LES) where the filtered Navier-Stokes equations are
solved (Fig. 6.5). Hence, the numerical grid may be much coarser compared to DNS,
however, requiring a sub-grid-scale (SGS) turbulence model. With such a coarse
grid also processes with larger dimensions can be simulated which may be even very
close to industrial or technical scale. Hence, the vortex spectrum is fully resolved
except for the dissipation regime (i.e. Kolmogorov-scale). These unresolved scales
(SGS) are however close to being isotropic and therefore require only quite simple
turbulence modelling (see for example [37, 62]).

The third class of numerical methods is based on the Reynolds-averaged Navier-
Stokes (RANS) equations combined with an appropriate turbulence model. A
number of turbulence models have been developed in the past [133] with a variety of
derivatives and improvements. Most of them are based on the solution of additional
transport equations such as the well-known two-equation k�" and k�! turbulence
models, as well as the full Reynold-stress turbulence model. A turbulence model
is based on the integration of the entire energy spectrum. The k � " model solves
additional transport equations for the turbulent kinetic energy k and its dissipation
rate " which is related to the Kolmogorov scale. These values provide the turbulent
viscosity that is introduced in the transport equations. In the Reynolds stress model 7
additional transport equations have to be solved, making this method more complex
and sometimes it is difficult to obtain converged results. However, such an approach
is suggested for complex anisotropic flows, such as swirling flows in combustors or
cyclones or flows with recirculations and separations.

6.4 Hierarchy of Numerical Methods for Multi-Phase Flows

From the introduction the complexity of multi-phase flows became obvious. There-
fore, it is also not possible to use only one kind of numerical method that allows
a complete numerical prediction of industrial processes. Whether separated or
dispersed multi-phase flows (Fig. 6.1) are considered, requires different numerical
approaches and the consideration of various physical phenomena. Naturally, also a
mix of separated and dispersed two-phase flow may occur due to the entrainment of
fine droplets from the liquid as typical for annular flows. In addition, the liquid
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fraction in separated flows may include droplets, bubbles or solid particles as
for example in oil and gas recovery. For a numerical calculation of such rather
complex and mostly time-dependent multi-phase flows, different methods need to
be combined. The most complex type of multi-phase flow is the transient multi-
phase flow (Fig. 6.1a) which goes from pure liquid to pure vapour for example, with
different multi-phase flow states in-between calling for different numerical methods.
On the other hand, more simple one-dimensional methods may be used for large-
scale technical equipment, supported by numerous correlations and closures as for
example needed for long pipelines in oil and gas transportation (see for example
[50, 51, 73]). For the numerical calculation of separated and slug-type multi-phase
flow one may use a two-fluid approach including an appropriate treatment of
the interfaces wherefore different numerical methods may be used. These will be
described briefly below in the frame of particle-scale simulations.

For dispersed flows of industrial scale including bubbles or droplets, an interface
resolving simulation is, even with today’s computational power, not possible.
Therefore, these kind of two- or multi-phase flows in a technical or industrial
scale are calculated numerically by treating the dispersed phase elements as point-
particles or point-masses using appropriate correlations for describing their fluid
dynamic transport as for example drag or lift coefficients. In most technical cases,
the particle Reynolds number is larger than unity so that a theoretical derivation of
such correlations is not possible and therefore experimental based correlations are
mostly used [17, 102]. In addition a large number of other particle-scale phenomena
influence dispersed two-phase flows, such as inter-particle collisions, agglomera-
tion, wall collisions, coalescence and break-up of bubbles and droplets, to name only
a few. In a point-particle approach, all these elementary processes need additional
modelling and closures. This is the most important task in the development of
macro-scale numerical methods for industrial and technical processes.

Therewith one strikes the so-called “multi-scale phenomenon” which is espe-
cially important for multi-phase flows (Fig. 6.6). Industrial-scale processes can
only be simulated with a limited number of grids and dispersed particles, even if
treated as point-masses. This is illustrated in Fig. 6.6(left) for an industrial-scale
fluidised bed simulated by a two-fluid approach [82]. Using a too coarse mesh,
which however yields a reasonable computational time, the fine-scale structures
of particle clustering during their transport through the riser cannot be resolved.
This can only be achieved with a very fine mesh, which consequently results
in unrealistically high computational time and storage requirements. Therefore,
a sub-grid-scale drift velocity model was developed to allow for coarser meshes
[49, 83]. This shows that all phenomena on scales smaller than the numerical
grid require modelling which is first of all turbulence modelling for the fluid flow
using RANS or LES methods, briefly summarized above. Such models however
need extensions to account for two-way coupling. The modelling of particle scale
phenomena was previously mainly based on detailed experiments, for example
collisions of droplets. However, due to the increasing computational power, more
and more fully resolved DNS methods (i.e. resolving particles or bubbles and
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Fig. 6.6 Illustration of multiscale approach for the numerical calculation of dispersed two-
phase flows; left: industrial-scale fluidised bed simulation by a two-fluid approach with different
grid resolution (see e.g. [82, 83]), middle: analysis of particle segregation and accumulation in
homogeneous isotropic turbulence accounting for inter-particle collisions using LBM [31]; right:
hydrodynamic interaction between colliding solid particles simulated by the LBM in the frame of
agglomeration studies [30, 32]

droplets by the numerical grid including the flow around them) are being used for
evaluating models to be applied for point-particle approximations. Such simulations
may be termed micro-scale simulations as shown in Fig. 6.6(right). Here the
hydrodynamic interaction between colliding solid particles was simulated by the
Lattice-Boltzmann method (LBM) in the frame of agglomeration studies [30, 32].
In the middle of Fig. 6.6 meso-scale simulations are shown, again conducted by
LBM, but considering particles as point masses [31]. Here different measures
were used for characterising particle segregation in homogeneous isotropic tur-
bulence, accounting for inter-particle collisions. In this category fall for example
DNS and LES considering point-particles for analysing particle clustering or
particle transport in channels or pipes. In the case of DNS such simulations
can be conducted for simple geometries up to flow Reynolds numbers of about
5000 to 10,000. LES of course allows for considering much more complex
multi-phase flows due to the coarser grid resolution compared to DNS, but the
dispersed phase is still treated by the point-particle approximation (see for example
reviews Dhotre et al. [24] for bubbly flows and by Kuerten [55] for particle-laden
flows).
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6.5 Particle-Scale Simulation Methods

As mentioned above, fully resolved simulations, which are feasible for a small
group of particles, may considerably support modelling particle-scale phenomena
needed for macro-scale simulations. The requirements for such kind of resolved
simulations first depend on the type of particles considered. Resolved simulations
for rigid solid particles (as illustrated in Fig. 6.6 right) do not need any special
treatment of the interface and just require a no-slip wall boundary condition on
the surface. Special interpolation methods are often needed if the particle moves
across a fixed Eulerian grid or one may also use adaptive grids that follow the
resolved particles. A special type of method is the immersed boundary method,
which is computationally very efficient. Here the no-slip boundary condition is not
explicitly enforced, but mimicked through a source term distribution in the region
of the particle. The second class of particles are those with non-rigid interface and
internal flows, namely droplets or bubbles. Here the major problem is resolving
the state jumps across the interface accurately. Mostly the flow inside and outside
the particle is calculated with a one-field formulation with appropriate boundary or
jump conditions at the interface.

6.5.1 Resolved Rigid Particles

Numerical simulations of the flow around resolved rigid particles, which are either
stationary in space or immersed in a certain flow system require that a no-slip
condition at the particle surface is fulfilled. For such kind of simulations, referred
to as PR-DNS (particle-resolved DNS) several numerical approaches may be used
(see for example [72, 125]). Finite element methods with body-fitted numerical
grids require a re-generation of the grid each time-step as the particles are moving
through the flow (see e.g. [48]). Such an approach is numerically very costly and
therefore limited to systems with only a few particles or even only feasible for two-
dimensional simulations (Fig. 6.7a). However, there exists a broad range of different
methods which are based on a structured Eulerian grid for calculating the fluid flow.
With respect to treating the particle these methods may be classified in the following
way:

• Methods using an overlay grid attached to the particles and a structured base-grid
for the flow simulations. These methods requires interpolation of the flow field
between both grids.

• Methods using a structured grid for the flow simulation and enforcing the no-
slip condition on the particle surface by introducing some kind of force field
distribution in the region of the particle object. All these methods may be grouped
under the term “fictitious domain methods” each using different approaches for
emulating the presence of the particles and enforcing the no-slip condition on the
surface.
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Fig. 6.7 Illustration of the different methods for conducting fully resolved particle simulations; (a)
finite element methods with body-fitted numerical grid [48]; (b) overlay grid fitted to the surface
of a particle [9]; (c) grid refinement around an agglomerate for LBM; (d) curved wall boundary
condition in the bounce-back method for LBM simulations [26]

• The Lattice-Boltzmann method (LBM) normally uses a regular base-grid and
embedded solid bodies or particles are considered as being rigid with a bounce-
back boundary condition on the surface.

An overlay grid may perfectly fit the surface of a particle (Fig. 6.7b), but the results
between base-grid and particle grid have to be interpolated (see [9, 130]). Such
a method is suitable for a few fixed particles which might even have a complex
geometry (e.g. non-spherical particles or agglomerates), but becomes more difficult
to handle if these particles move and may interact and collide.

In the fictitious domain method a field of Lagrange multipliers is applied over the
particle volume so that the no-slip boundary condition is enforced on the particle
surface (see [40]). This approach allows handling many particles and also collisions
between them. At that time, they considered for example the two-dimensional
sedimentation of 6400 particles and the fluidization of 1204 particles in a small
domain having the thickness of the particle diameter.

The force coupling method allows the coupling between resolved particles and
fluid flow by adding a finite and localized (in the region of the particle) forcing
to the Navier-Stokes equations as a spatially distributed source term [12, 70]. The
particles are tracked in a Lagrangian way based on the interaction force between
fluid and particle and any external forces being relevant. Therefore, such a method
does not need a numerical grid fitted to the surface of the particle and the two-phase
system may be simulated on a regular grid.
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The immersed boundary method (IBM), which goes probably back to the work
of Peskin [84], is also an approximate method to account for the presence of any
stationary or moving object in fluid flows using a regular Cartesian grid. The no-
slip boundary condition on the surface of the object is realized by introducing a
localized force field, which appears in the fluid momentum equation as a source
term distribution. The immersed boundary method is nowadays very popular in
any flow system with fluid-solid boundaries, moving or stationary. Therefore, it
has numerous applications summarized for example by Mittal and Iaccarino [76].
This method was adapted for allowing simulations for a large number of resolved
solid particles (in the order of 1000) by Uhlmann [127]. Also forces acting on
non-spherical particles may be obtained by this method [136]. The big advantage
of the IBM is its conceptually simple structure which is easy to implement and
numerically quite efficient. Like all the other fictitious domain methods, a flow field
is also produced inside rigid objects.

A very powerful method, which also allows simulations of resolved particles
moving in a flow, is the Lattice-Boltzmann method (LBM). Here not the Navier-
Stokes equations are solved, but the Lattice-Boltzmann equation describing the
change of state of a fluid through a probability distribution function. This approach
is numerically very efficient and easy to parallelise however has limitation in the
maximum flow Mach number to be considered since an incompressible flow is
considered. Normally, this method uses an equidistant regular grid for discretising
flow domain and particles. However, also a local grid refinement in several steps
may be used to improve spatial resolution [25, 36] as illustrated in Fig. 6.7c.
The LBM has been applied to numerous problems in particle-laden flows and for
studying the flow around non-spherical particles [46] and agglomerates [25, 26],
because of its numerical efficiency and good spatial resolution. The interaction of a
flow with imbedded objects is realised by using a bounce-back boundary condition
on the real surface of the particle (Fig. 6.7d) by applying an extrapolation method
[43]. Consequently, the fluid dynamic forces acting on complex aggregate structures
are directly obtained through the bounce-back boundary condition of the LBM
simulations.

Also moving particles in turbulent [38] and laminar flows [32] have been studied
by LBM. Here the resolved particles move across a regular Eulerian grid through the
forces and moments acting on the particles. Hence, fluid nodes in front of the particle
are switched to solid nodes and solid nodes behind the particle to fluid nodes by an
extrapolation approach. In the work of Ernst et al. [33] the agglomeration of resolved
sedimenting particles and the evolving structures were analysed and in the second
study additionally agglomeration in a shear flow was considered [32], emphasising
the effect of hydrodynamic interaction on agglomeration. Naturally, there will be
a problem if the gap between contacting particles becomes smaller than the mesh
size. Therefore, some nodes inside contacting particles were switched to fluid nodes
using the equilibrium distribution function together with the known particle velocity.
In these agglomeration studies contacting particles were assumed to stick together;
however, one also may account for interaction forces between contacting resolved
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particles, for example by a square well potential as done by Derksen [22] for the
analysis of resolved particle agglomeration in homogeneous isotropic turbulence.
Here also the LBM was used in combination with the immersed boundary method
to mimic the presence of solid particles.

6.5.2 Resolved Particles with Fluid Interfaces

With such kind of methods, the motion of deformable droplets or bubbles may be
studied in order to derive for example correlations for the fluid dynamic forces
acting on these particles under certain flow conditions or in a swarm. Moreover,
the direct interaction and collision of droplets or bubbles, which may result in
coalescence, is an important issue for providing appropriate modelling approaches.
For the numerical treatment of deformable fluid interfaces between two immiscible
fluids two classes of approaches are being used, namely [135]:

• surface methods or interface tracking methods,
• volume methods or interface capturing methods.

Both methods are mostly used in connection with a one-fluid formulation of the
Navier-Stokes equations including a source term at the interface in order to account
for the surface tension force [85]. Additionally, differential equations have to be
solved (also across the interface) for the change of fluid density and viscosity. For an
interface tracking method, the interface is marked with particles or an interface grid
and advected according to the local fluid velocity [128]. Interface tracking methods
are very accurate regarding the conservation of the interface structure and sharpness,
but cannot easily handle topological changes of the grid which are for example
needed to analyse coalescence.

The volume methods do not explicitly track the interface but it is reconstructed
from the solution of an indicator function f :

@f

@t
C Eu � rf D 0 (6.19)

In the well-known VOF (volume of fluid) method the indicator function may be
understood as the volume fraction of one phase. Hence, across an interface it varies
between zero to one and the interface is assumed to be located for example at
0.5. One of the outstanding advantages of VOF is that it is mass conserving and
allows for topological changes occurring for example during bubble break-up and
coalescence. The latter however implies that coalescence always occurs if bubbles
come close together. A major challenge of the VOF is the required geometrical
reconstruction of the interface in order to ensure a smooth topology of the interface.
There are several options for interface reconstruction as summarised by Rudman
[87], which define the interface location within a grid for example to be parallel
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or oblique to the mesh. The initial approach was using a Simple Line Interface
Calculation (SLIC) where the interface is parallel to the grid line for each of the
advection steps. More advanced and still used today is the PLIC (Piecewise Linear
Interface Construction) method (see e.g. [135]).

Another volume tracking method is the Level set Method (LSM) were also a
similar marker function (called level-set function) is solved (as in VOF) however
with the conditions ' > 1 fluid 1 and ' < 1 fluid 2, so that the interface is located
at ' D 0. Consequently, the level set function basically defines the distance to the
interface and is advected by:

@'

@t
C Eu � r' D 0 (6.20)

The LSM does not require any geometrical reconstruction of the interface and the
transition from one fluid to the other occurs smoothly over several cells [85]. Also
interface normal vector and interface curvature are obtained accurately which is
important for the determination of the surface tension force. However, in order
to avoid overshoots in the gradient of the level-set function near the interface a
re-initialisation of the level-set function is required. Consequently, the LSM is
very robust and rather simple to realise, but faces the problem of being not mass
conservative [85]. Therefore, the level-set approach is very often coupled with other
methods such as VOF and ghost fluid method [13, 23, 75].

6.6 Modelling of Dispersed Multi-Phase Flows

For the numerical computation of technically relevant turbulent multi-phase flow
systems two approaches are commonly applied, namely, the two-fluid or Euler/Euler
approach and the Euler/Lagrange method [17, 71, 119]. Note that here the focus is
only on dispersed multi- or two-phase flows as defined above. Hence, both methods
have to be regarded as being complementary and have the same important limitation,
namely the particles must be much smaller than the grid dimensions. Otherwise, the
point-particle assumption is violated. Both methods rely on the Reynolds-averaged
conservation equations (often referred to as RANS: Reynolds-averaged Navier-
Stokes equations) in connection with an appropriate turbulence model to close
the set of equations. For most of the technical applications, the standard k � " or
k � ! turbulence models are used because they are very economic and yield good
convergence rate. Especially for strongly anisotropic turbulent flows (e.g. channel
or pipe flows and swirling flows), also multiple-scale k � " turbulence models and
different formulations of Reynolds-stress models are developed for two-phase flow
computations [93]. In recent years also the application of LES is extended towards
simulations of industrial scale processes using the filtered Navier-Stokes equations
and an appropriate sub-grid-scale turbulence model which however may be much
simpler as turbulence on this scale is more close to isotropic [37, 62].
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In order to account for the interaction between phases, i.e. momentum exchange
and heat as well as mass transfer, the conservation equations of the continuous phase
have to be extended by appropriate source/sink terms resulting from the dispersed
phase. This coupling method is referred to as two-way coupling (Fig. 6.2).

In the two-fluid approach, both phases are considered as interacting continua.
Hence, properties such as the mass of particles per unit volume are considered
as a continuous property and the particle velocity is the averaged velocity over
an averaging volume (i.e. the control volume or computational cell). Also the
interfacial transfer of mass, momentum, or energy requires averaging over the
control volumes. Especially in turbulent flows, the closures for the dispersed phase
Reynolds-stresses (or kinetic stresses) and the fluid-particle correlation terms are
associated with more or less sophisticated modelling approaches (see e.g. [86, 93]).
The consideration of a particle size distribution requires the solution of a set of
basic equations for each size class to be considered. Hence the computational effort
increases with the number of size classes. Another possibility of accounting for
a particle size distribution is the coupling with a population balance which can
account for particle enlargement (coalescence and agglomeration) and destruction
(see e.g. [10, 53]). The two-fluid method is however preferable for dense dispersed
two-phase flows, as for example found in fluidised beds [4, 122] or in bubble
columns [137]. As one may expect, there exists a vast number of publications
related to the development of the two-fluid approach. Some of the key earlier work
is mentioned here. Enwald et al. [29] published an early review on developments
of Eulerian models for predicting fluidisation processes. Also van Wachem et
al. [129] did a comparison of several CFD models for dense gas-solid flows.
Pioneering developments were also done in the group of Simonin at IMFT (Institute
de Mécanique des Fluides de Toulouse) who presented the continuum modelling
of turbulent reactive particulate flows based on the probability density function
kinetic equation [5, 93]. Also the pioneering works of Gidaspow [39] and Ding
and Gidaspow [27] on modelling granular flows should be emphasised.

The efforts in improving two fluid models especially for fluidisation of solids and
bubbly flows have even further increased until today because of the big advantages
in simulating industrial processes at full scale at reasonable computational cost.
Regarding the simulation of fluidised beds at industrial scale still the problem
of required grid resolution and modelling of a subgrid-scale drift velocity is an
important issue [49, 83, 91]. Moreover, inter-particle collisions and wall collisions
need to be modelled properly [34] and not to forget the old problem of appropriate
swarm drag forces which account in an averaged way for fluid dynamic interactions
between particles [69], which is called three-way coupling [15]. For calculating
bubbly flows by the Euler/Euler approach recent efforts focus on correct modelling
of interfacial forces, such as drag, lift and wall forces [54, 132] as well as mass
transfer, coalescence and break-up [65, 134].

The hybrid Euler/Lagrange approach is only applicable to dispersed two-phase
flows and is based on a coupled computation of fluid flow and particle phase. The
term dispersed implies that all regimes shown in Fig. 6.3 can be calculated by a
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Lagrangian method. There is no physical limitation on the volume fraction (as very
often stated in the literature) as long as all physical phenomena are reproduced
correctly, as for example particle collisions in the dense regime or multi-particle
contacts in the contact dominated regime. The dispersed phase is modelled by
tracking a large number of representative point-particles through the flow field
by solving the equations of motion accounting for all relevant forces acting on
the particles. Local average properties such as dispersed phase density or velocity
are obtained by ensemble and time averaging for each control volume in the
computational domain. An essential advantage of this method is that the discrete
nature of the dispersed phase particles is accounted for. Moreover, physical effects
influencing the particle motion, such as particle-turbulence interaction, particle-wall
collisions, and collisions between particles including coalescence or agglomeration
can be modelled on the basis of first physical principles (e.g. [42, 96]). Additionally,
a particle size distribution may be easily considered by randomly drawing the size
of the injected particles from a given distribution function [94].

Essential for a reliable application of both methods is an appropriate modelling
of relevant physical mechanisms affecting the particle motion, as summarised
above. In some cases the physical phenomena are far too complex for allowing a
derivation of the models from basic principles of physics (e.g. impact of droplets on
a wall or coalescence of bubbles). Therefore, detailed experiments or fully resolved
direct numerical simulations (DNS) are often required to analyse the considered
phenomenon and to derive appropriate empirical or semi-empirical models. In order
to validate the models, the results of the numerical predictions need to be compared
with bench mark test cases (i.e. validation) featuring the considered phenomenon
(see for example [101, 103, 104]).

6.6.1 Two-Fluid or Euler/Euler Approach

As briefly summarised above, the two-fluid approach (mostly referred to as
Euler/Euler method) relies on the assumption of interpenetrating continua. This
implies that a control volume is shared by both phases according to the respective
volume fractions. The conservation equations for the mean properties of both
phases are derived by applying certain averaging approaches. Depending on the
multi-phase system considered different averaging methods are being used [17].
The resulting conservation equations for both phases have a similar structure and
include the interfacial exchange terms (coupling between the phases or two-way
coupling) for mass, momentum and heat. For closing the set of equations different
closure assumptions may be used, which again depend on the multi-phase system
considered. For dispersed multi-phase flows two concepts are possible; the mixture
or homogeneous approach and the two- or multi-fluid method. In the mixture model,
the conservation equations for the mixture are solved implying that no interfacial
transfer terms appear in these equations. The mixture model can be further divided
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into the homogeneous mixture model where both phases share the same velocity
and a model where a relative or slip velocity is considered using algebraic slip
formulations [131, 140]. Both mixture approaches are however only applicable for
systems with small particles where the mass loading is small or in bubbly flows
with very low volume fraction.

Besides that, a “full” two-fluid approach has to be chosen where a set of
conservation equations for each phase has to be solved accounting for the coupling
through pressure and interfacial exchange. In case turbulent multi-phase flows are
considered there are two options. Transport equations for turbulence are only solved
for the carrier phase and the fluctuating motion of the dispersed phase is linked to
the continuous phase turbulence through analytic correlations. In the second case,
also transport equations for the dispersed phase fluctuating motion (kinetic stresses)
are solved including additional closures for the turbulent transport of the dispersed
phase [93].

As an example, the two-fluid approach where the dispersed phase fluctuating
motion is linked to fluid turbulence will be briefly described [92]. It should be
emphasised that this approach is only applicable to dispersed two-phase flows as
defined above. Restricting to a two-phase flow without heat and mass transfer
between the phases one obtains for the continuity equations of both phases:
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here ui and uPi are the mean velocity components of fluid and dispersed phase and
�F and �P are the mean mixture densities of both phases as defined by Eq. (6.22).
Both properties can be expressed in terms of the dispersed phase volume fraction:
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The momentum equations for both phases including the interfacial exchange
through the fluid dynamic forces acting on the particles are:
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The interfacial force to be considered depends on the type of two-phase flow system
(i.e. gas-solid, liquid-gas or liquid-liquid) and the ratio of fluid to particle density
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[17, 119]. When considering gas-solid flows with reasonably small particles, the
dominating interfacial force is the drag force:

FP;i D 18�f fD
�PD2P
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˚
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�
(6.25)

It should be noted that here transverse lift forces due to shear flow and particle
rotation [102] are neglected. The term .ui � uP;i/ is the slip velocity between
the phases. The drift velocity VP;i accounts for the transport of the particles by
turbulence (often referred to as turbulent dispersion) and may be expressed in terms
of a binary turbulent diffusion tensor and the gradient of the volume fractions of
both phases:
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The binary diffusion tensor for the dispersed phase depends on numerous properties,
such as particle size and turbulence structure. Using a semi-empirical analysis the
diffusion tensor is expressed in terms of the correlation between fluid and particle
fluctuations and a fluid-particle characteristic turbulent time scale:
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0
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(6.27)

The time scale 	fP of fluid turbulence viewed by a particle along its trajectory can be
related to the integral time scale of turbulence TL computed along the trajectory. This
time scale is affected mainly by the relative drift between particle and fluid caused
by external forces. It may be split in two components parallel and perpendicular to
the mean relative velocity [18]:
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For the simple situation of homogeneous isotropic turbulence, an assumption which
is often made in turbulence, the kinetic stresses of the dispersed phase (or the
fluctuating energy of the dispersed phase) can be related to the Reynolds stresses of
the carrier phase through a response function �r . This function depends on the ratio
of fluid turbulent integral time scale viewed by the particle to the particle response
or relaxation time 	P (see Eq. (6.13)). The latter defines the time the particle would
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need to follow any sudden change of fluid velocity.
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In a similar way the correlation between particle and fluid fluctuation components
can be related to the Reynolds stresses.
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This model was also evaluated for particle dispersion in a turbulent shear layer
by Horender and Hardalupas [47]. For more details the reader is referred to the
literature cited above and the work of Simonin [92, 93].

6.6.2 Hybrid Euler/Lagrange Approach

The hybrid Euler/Lagrange approach is only applicable to dispersed two-phase
flows and accounts for the discrete nature of individual particles being tracked
trough the flow field based on the relevant forces. First the flow field is calculated
on the basis of the Reynolds-averaged conservation equations in connection with
an appropriate turbulence model if necessary. The dispersed phase is modelled by
tracking a large number of particles through the beforehand computed flow field
in solving the equations of motion accounting for all relevant forces acting on
the particles [102] and heat as well as mass transfer if required [17, 115, 119].
Generally, the particles are considered as point-particles, i.e. the finite dimension
of the particles is not considered and the flow around individual particles is not
resolved. An essential consequence of this approach is that the particles need to be
considerably smaller than the dimensions of the numerical grid or control volume.

Physically, there is no limitation in the maximum particle volume fraction to be
considered, as long as all relevant elementary processes are accounted for. Hence,
applications of this method range from the dilute to the dense regime (see Fig. 6.3),
as for example in fluidised beds. However, there are some different forms of the
Lagrangian particle tracking methods suggesting a classification as summarised in
Fig. 6.8. For dilute two-phase flows normally the classical Lagrangian approach
considering parcels is adopted (Fig. 6.8 left), whereas in the dense regime both
the discrete particle method or DPM (e.g. [63, 64]) as well as the DEM (discrete
element method) are being applied (e.g. [138]). Both methods, DPM and DEM, rely
on tracking all real particles in the system, wherefore the system size is limited. The
difference between these two methods is the treatment of inter-particle collisions
(see e.g. [21]). In DPM a hard sphere collision model is used (Fig. 6.8 middle),
which is more realistic, however, imposes strong limitations on the tracking time
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Fig. 6.8 Illustration of the classification of Lagrangian particle tracking methods. LPC Lagrangian
parcel concept, DPM discrete particle method, DEM discrete particle method

step in order to guarantee only binary collisions. Therefore, this kind of method is
also called event driven. Binary collisions only last for a very small time period
and are described by the impulse equations in connection with Coulombs law of
friction, so that the only model parameters are normal restitution ratio and friction
coefficient. On the other hand in the DEM (Fig. 6.8 right) multiple and overlapping
particle contacts (called soft-sphere collisions) are allowed, often modelled by a
“spring, dashpot and friction slider element” according to Tsuji et al. [126] and
the pioneering work of Cundall and Strack [19]. This approach uses constant time
steps (time-driven) which have to be properly chosen as it determines the possible
overlap. In this method naturally all real particles need to be tracked. Still today,
the computers determine the available storage and available computational time,
whereby the number of the considered particles and the equipment size has strong
limits; considering larger facilities also requires larger particles to be used, as the
particle number is limited. Due to the modelling of multiple contacts DEM of course
allows the consideration of much denser systems than DPM.

In the case of fine particles, for example in a spray, the tracking of all real
particles in the system is even today computationally not affordable. Therefore, in
the classical Lagrangian approach the parcel concept (LPC, Fig. 6.8 left) is utilised,
where the computational particles mostly called parcels represent a certain number
of real particles with the same properties (i.e. size, velocity and temperature). This
procedure also ensures that the correct particle mass flux into the system is realised.
In stationary flows a sequential or simultaneous tracking of the parcels may be
adopted, while in unsteady flows all parcels need to be tracked simultaneously on
the same time level. Local average properties such as dispersed phase concentration,
number density and velocities are obtained by ensemble averaging for each control
volume in the computational domain, coupled with time averaging in a stationary
flow. For three-dimensional flows, statistically reliable results for each computa-
tional cell require the tracking of typically between 100,000 and 1,000,000 parcels,
depending on the considered flow geometry.
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Essential for the hybrid Euler/Lagrange approach is the coupling between the
phases. For very low particle phase volume fraction (let’s say below 10�6) a one-
way coupled calculation is sufficient, implying that the particles are tracked only
once through the previously calculated and fully converged flow field (see Fig. 6.2)
and their properties are sampled. For higher volume fractions the influence of the
particle phase on the flow field and turbulence properties has to be taken into account
(i.e. so called two-way coupling). The associated computational approach was first
introduced by Crowe et al. [16] and was called “Particle-Source-In-Cell” method.
Here, particles are tracked in the flow field predicted by the flow-solver and the
particle phase properties as well as the source terms in each computational cell of
the flow domain are sampled. The source terms are sampled for kinetic interaction
(i.e. for the momentum equations and the transport equations for the turbulence
properties) as well as for heat and mass transfer across the phase boundaries, if
required. A converged solution of the coupled system is obtained by successive
computation of flow field (Eulerian) and particle phase (Lagrangian). Normally
an under-relaxation procedure is required for the source terms in order to avoid
divergence and instabilities [52, 57]. The number of coupling iterations depends
on the degree of coupling between the phases (i.e. particle concentration) and the
under-relaxation factor. However, convergence problems may still be encountered
for very dense two-phase systems. The term four-way coupling is used when in
connection with two-way coupling also inter-particle collisions and fluid-dynamic
interaction upon collision are taken into account, which is necessary for particle
volume fractions larger than about 10�3 (see Fig. 6.2). Hence, the particle phase
properties are not only influenced by the modified flow field, but also by the
alteration of the particle phase properties through inter-particle collisions.

The Euler/Lagrange approach described here is based on the three-dimensional
Reynolds-averaged conservation equations in connection with the well-established
k � " turbulence model [61]. Although this turbulence model has some limitations
in its applicability, it allows however an efficient solution to most engineering
problems. The general form of the conservation equations for an incompressible,
unsteady and three-dimensional flow with dispersed phase heat and mass transfer
[115] is given by:
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The continuity equation results with � D 1 and the momentum equations with
� D Ui where Ui (i 2 Œ1; 2; 3�) are the three velocity components. The fluid
temperature equation is obtained with � D T and also different species conservation
equations may be considered (e.g. gas phase and vapour phase). The conservation
equations for the turbulent kinetic energy k and the dissipation rate " are obtained
with � D k and � D ", respectively. The diffusion coefficients for all the
conservation equations are given in Table 6.2 together with the fluid phase source
terms S� .
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Table 6.2 Summary of the
variables, �, the fluid source
terms, S� , and the effective
transport tensor, �� , in
Eq. (6.32) and constants of
the k � " turbulence model
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Table 6.3 Summary of particle phase source terms for the different fluid flow conservation
equations (middle column: interfacial momentum and heat transfer; right column: interfacial mass
transfer)
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For evaporation: ua; va;wa D uk; vk;wk

For condensation: ua; va;wa D u; v;w
Y1: air; Y2: water

The particle phase source terms S�;P;m account for the effect of the particles on
mean flow and turbulence due to interfacial momentum transfer and S�;P;ev is the
transfer caused by particle/droplet evaporation or condensation. The source terms
for the dispersed phase are summarised in Table 6.3 for the different flow variables.
The middle column provides the source terms due to interfacial momentum and heat
transfer and the right column those resulting from droplet evaporation, i.e. mass
transfer [115, 119]. In this case, two gaseous species are considered, e.g. air and
water vapour. It should be noted that momentum transfer due to evaporation occurs
with the particle velocity and in the case of condensation the instantaneous fluid
velocity seen by the particle has to be used. The summation of the source terms has
to be performed along all particle trajectories (index k) passing through a considered
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control volume. The gathering procedure for obtaining these source terms from the
particle trajectory calculations will be described below in more detail.

In the Lagrangian approach the trajectories of the parcels moving through the
flow field are calculated by solving ordinary differential equations for the parcel
location, and the linear and angular velocity components. The change of particle
linear velocity components is obtained by considering all relevant forces acting on
the particle which depends on the flow system considered [102, 119]. The change of
the angular velocity along the particle trajectory results from the viscous interaction
with the fluid (i.e. the torque). Hence, the equations of motion for the particles in
vector form are given by:
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where mP D .�=6/�PD
3
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is the particle mass and IP D 0:1mPD
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P

is its moment of
inertia for a sphere. The different forces acting on the particle are fluid dynamic
forces and external forces; e.g. gravity, buoyancy and electrical forces. The fluid
dynamic forces acting on the particle surface are drag, added mass, pressure force,
Basset force and transverse lift forces due to shear and particle rotation. In technical
applications the particle Reynolds number is mostly larger than unity so that
appropriate correlations for the resistance coefficients (e.g. drag and lift coefficients)
have to be used. A summary of the forces and the resistance coefficients as well as
their relevance depending on the two-phase flow system considered, i.e. gas-solid,
liquid-solid, sprays and bubbly flows, is provided by Sommerfeld et al. [119] and
Sommerfeld [102].

The consideration of the rotational motion of particles is especially of importance
in case of wall bounded flows where wall collisions induce high angular velocity
or it is modified due to wall collisions. Also in cases with strong changes in fluid
vorticity the particle angular velocity should be considered, where the viscous
torque of course will reduce the angular slip. In the non-equilibrium situation (i.e.
high angular slip) the slip-rotation lift force or often called Magnus force should
be considered [96]. It should be emphasised here, that the different forces and the
torque (Eqs. (6.34) and (6.35)) include the instantaneous fluid velocity seen (or
experienced) by the particles. In case LES or RANS are used for the calculation
of the fluid velocity field these instantaneous fluid velocities are not available, only
the Reynolds averaged velocities or the filtered velocities. Therefore, the respective
fluid fluctuating velocities have to be generated from the turbulent kinetic energy or
from the sub-grid-scale turbulence. The respective models should describe the effect
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of turbulence on particle motion (turbulent dispersion of particles) and should also
respect the crossing trajectory effect induced by external forces [119].

The generation of the instantaneous fluid velocity along the particle trajectory can
be based on several stochastic approaches, as for example the simple “eddy-lifetime
model” [41], the single-step correlated model based on the Langevin equation [74,
116, 139] or the multi-step correlated model [6]. The principles of these methods
were summarised for example by Gouesbet and Berlemont [42] and Crowe [15].
Essential for all these schemes is the estimation of the relevant time and length
scales of turbulence, which is not a simple task in complex anisotropic flows. A
thorough comparison and validation of a modified eddy-lifetime and the single-step
Langevin model was conducted by Sommerfeld [96]. A brief summary of the above-
mentioned models is also provided in [119]. Also in the frame of LES for particle-
laden flows the developed sub-grid-scale turbulent transport model was based on the
single-step Langevin model [67].

If dispersed multi-phase flows with heat and mass transfer between the phases
are considered two additional partial differential equations for the change of particle
diameter and temperature have to be solved (see e.g. [88]):
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In order to calculate the particle evaporation process a model for the determination
of the evaporation rate Pmev and the heat flux PQL is needed. For the determination
of the limiting gas-side heat and mass transfer a number of assumptions need to be
made, such as spherical symmetry, and film thickness around the droplet based on
film theory [2, 119]. There are mainly two approaches regarding the temperature
distribution inside the droplet; namely the infinite conductivity model assuming
constant temperature inside the droplet and the finite thermal conductivity model
(see e.g. [89]) which numerically resolves the temperature distribution inside the
droplet.

The time step for the particle tracking calculation should be automatically
adjusted along the trajectory by considering all local relevant time scales which
also are changing throughout the flow field:

• the time required for a particle to cross a control volume tCV ,
• the particle response time 	P ,
• the integral time scale of turbulence TL ,
• the average time between binary particle collisions 	c.

The limitation of the time step by the inter-particle collision time scale is required in
order to insure that only binary collisions may occur during a Lagrangian tracking
time step. Hence, the time step �t must be a fraction of the minimum of these time
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scales for accurate calculations, for example 20%:

�t D 0:2 � min.tCV ; 	P ;TL ; 	c/: (6.38)

In order to account for the influence of the particle phase on the fluid flow a
consecutive solution of the Eulerian and Lagrangian part is required. The calculation
starts with the solution of the fluid flow by not accounting for the source terms
of the dispersed phase. After having reached a certain degree of convergence for
the single phase flow (inner fluid iterations), the particle trajectories are calculated
and the particle phase properties (i.e. concentration and particle velocities) as
well as the source terms are sampled for each control volume. In case a particle
size distribution is considered, also the local particle size distributions and the
size-velocity correlations should be determined. A detailed description of possible
two-way coupling procedures is given below.

6.6.3 Euler/Lagrange Coupling Approaches

Because of the hybrid nature of the Euler/Lagrange approach (i.e. continuum
assumption for the carrier phase and discrete particle method for the dispersed
phase) special attention has to be taken in the two-way coupling approach. This
means from the particle tracking in the beforehand calculated flow field the particle
phase properties and the source terms for the continuous phase equations have to be
evaluated by statistical averaging. Depending on the requirements for the temporal
resolution of the flow and the coupling between both phases, different approaches
may be used.

For stationary flows, only the terminal coupled solution of the two-phase system
at t �! 1 is of interest. Therefore, particle tracking may be done simultaneously
or sequentially (i.e. one particle after the other) for a sufficiently large number
of parcels. The solution procedure is illustrated in Fig. 6.9 [57, 119] and may be
summarised as follows:

• Solve the fluid flow without particles until convergence is reached.
• Track a large number of parcels for a sufficient statistical averaging of particle

properties and source terms in all computational cells.
• In this calculation mode, source term evaluation is based on temporal and

ensemble averaging (see Fig. 6.10a).
• The momentum coupling is determined based on the change of particle velocity

within a numerical cell, subtracting however external forces. Thereby, the
influence of all forces considered to act on the particle is accounted for. This
approach is numerically much more efficient compared to the summation of all
fluid dynamic forces acting on all particles (see below).

• Under-relaxation of source terms is suggested for smoothly approaching a
converged solution of the coupled system [52, 57]
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Fig. 6.9 Flow chart of coupling iteration procedure for the hybrid Euler/Lagrange approach in the
case of stationary flows

Fig. 6.10 Illustration of the averaging procedure for different two-way coupling methods; (a)
steady-state approach with temporal and ensemble averaging or semi-unsteady approach; (b) full
unsteady calculations based on instantaneous fluid dynamic forces on all particles in a numerical
cell
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• Re-calculate the flow field with the new source terms being obtained from
Eq. (6.42) with a pre-set under-relaxation factor. The under-relaxation factor
depends on the degree of coupling between the phases (e.g. particle concentra-
tion).

• Recalculate the Lagrangian part since the flow field has changed and perform
averaging.

• This sequential calculation of Euler and Lagrange program modules has to be
repeated until the coupled system is converged. This should preferably be decided
based on the evolution of some fluid property in the computational domain (see
[57, 96]).

Consequently, the momentum source terms are determined by [52]:
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In this equation the sum over n implies a time-space averaging along the particle
trajectory and the sum over all parcels ktot passing the considered control volume
is an ensemble averaging. Therefore, to obtain statistically reliable source terms a
sufficient number of parcels need to pass the control volumes. The source terms in
the conservation equation of the turbulent kinetic energy k are obtained from the
Reynolds-averaging procedure:
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The source term in the "-equation is modelled following in the following way:
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As demonstrated by Squires and Eaton [121] the constant C";3 is not universal, but
depends on the particle response time and concentration. For many situations a value
of C";3 D 1:1 may be used.

Thereafter, the continuous phase is re-calculated by accounting for the particle
phase source terms (Fig. 6.9). In order to avoid convergence problems, an under-
relaxation procedure should be applied using the following equation [52]:

Snew�;P D .1 � �/Sold�;P C �Ssamp�;P
(6.42)

where Snew�;P are the source terms used to calculate the new flow field, Sold�;P are the
source terms used in the previous Eulerian calculation and Ssamp�;P

are the new source
terms sampled in the Lagrangian calculation.

The under-relaxation factor depends on the degree of coupling (i.e. on the particle
concentration and their size) and is selected accordingly in the range between zero
and one (see for example: [52, 57]). After a certain number of Eulerian iterations
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or after a certain degree of convergence is reached for the fluid flow, the particle
tracking is performed again since the flow field has changed due to the two-way
coupling (i.e. the influence of the particles on the flow field). With the sampled new
source terms the continuous phase is solved again and so forth until convergence is
reached for the coupled system (Fig. 6.9). The overall convergence is decided based
on the evolution of a certain reference value (see [52]), as for example the fluid
velocity at a monitoring location.

In the numerical calculations of a horizontal particle-laden pipe flow Lain and
Sommerfeld [57] demonstrated the convergence behaviour of a four-way coupled
simulation. The residuals showed strong peaks after each introduction of the under-
relaxed source terms and then decayed again. This behaviour was maintained
throughout the simulation until convergence was reached. However, profiles of
the fluid properties showed a continuous approach towards the converged solution
which was reached after 27 coupling iterations.

The next coupling mode should be used if the temporal evolution of the flow field
needs to be fully resolved. For such unsteady multi-phase flows, the timescales of
flow and particle tracking are in the same range, namely �tE � �tL . This solution
procedure applies mainly for DNS and implies that Eulerian and Lagrangian
modules are sequentially solved with the same time steps. The minimum of all
relevant time scales should be selected here. The special features of this solution
approach are:

• All particles or parcels need to be tracked simultaneously.
• The averaging of particle phase properties and the source terms is based on all

parcels residing in the computational cells at one instant of time (Fig. 6.10b).
• This requires a very large number of particles to be tracked for obtaining reliable

particle phase properties and source terms.
• Moreover, the momentum source terms need to be determined from the instan-

taneous values of all fluid dynamic forces acting on the particles within a cell
(Fig. 6.10b).

• Under-relaxation is not suitable for the full-unsteady approach.

Additionally, there are many unsteady situations where the required Eulerian time
step �tE is much larger than the expected Lagrangian time steps �tL . However by
using a common time step, this will be very often dictated by the particle response
time. A typical Eulerian time step for URANS or LES simulations may be found
between �tE D Œ10�4 s; 10�2 s� and Lagrangian time steps may lay in the range
�tL D Œ10�8 s; 10�3 s�, depending on the type of particle considered. Especially
for very small particles, their response time is rather low and hence limiting the
Lagrangian time step. For such a situation a so-called semi-unsteady approach may
be used which was probably first introduced by Sommerfeld et al. [117] and has the
following features:

• The flow field is calculated with �tE starting from a certain initial condition.
Here �tE determines the temporal resolution of the flow field and may be pre-
determined.
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Fig. 6.11 Illustration of the time-lines for a semi-unsteady Euler/Lagrange simulation [66, 68]
with �tE > �tL (At the end of the Eulerian calculation the “frozen” flow field (FF) is used for
particle tracking; the particle-phase source terms are coupled back to the fluid flow for the next
Eulerian simulation steps (PST))

• Then simultaneous particle tracking is conducted in this “frozen” flow field
until the actual time level of the flow is reached for all particles. The particle
tracking time step is dynamically adapted for each particle according to the
locally relevant time scales (see Eq. (6.38)). During each Eulerian time step,
several thousands of computational particles are randomly injected.

• Now the particle phase source terms and the particle properties are averaged
over the time sequence �tE and additionally ensemble averaging is done (see
Fig. 6.10a), similar to the steady-state approach.

• Under-relaxation of source terms shall not be applied in this situation.
• The new source terms are introduced into the fluid flow equations which are then

solved for the next Eulerian time step.

This semi-unsteady approach is illustrated in Fig. 6.11, where the upper line shows
the fluid timeline and the lower one the particle tracking timeline for several particles
exemplarily. This approach is numerically very efficient compared to a full unsteady
simulation, since mostly the particle time scales are very small and hence would
dictate the Eulerian time step. Such a method was proposed by Sommerfeld et al.
[117] for URANS simulations of a locally aerated bubble column and later on used
by Lipowsky and Sommerfeld [67] for simulating small particle separation in a gas
cyclone.

6.6.4 Modelling of Particle-Scale Processes

For the above introduced point-particle approaches all sub-grid-scale and particle-
scale phenomena need additional models. The observed particle-scale phenomena
are first depending on the type of particles considered, i.e. solid particles, droplets
or bubbles. Consequently, processes such as particle motion dynamics (i.e. oscil-
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lations), particle-wall collisions and inter-particle collisions need more or less
complicated models. Considering for example wall collisions for solid particles,
they will be mostly rebound with a change of state (i.e. translational and rotational
velocity). They however also might be depositing on the walls due to adhesion
forces or even be fragmented. If droplets are considered, then they may be rebound,
deposited or splashed [77]. Bubbles will probably only deform, lose momentum
and change their direction of motion. Inter-particle collisions of solids result in
rebound, but may also yield agglomeration if there exist strong enough adhesion
forces. Considering liquid particles (i.e. droplets or bubbles), a collision might result
in a number of different outcomes, such as bouncing, coalescence or separation with
satellite formation. In the case of liquid particles one also may observe break-up due
to the action of shear flows.

This brief survey shows that the modelling of particle-scale phenomena is quite
extensive and may be very important for the development of a multi-phase flow pro-
cess. If possible, the developed models should be based on first principles of physics
and theoretical derivations in order to be generally applicable. This however, is not
always possible if the particle-scale process is too complex such as droplet wall
collisions. In such a case models are being derived from experiments and integrated
in the computations in the form of empirical correlations [78]. Therefore, sometimes
very extensive experiments are needed for model derivation as for example in the
case of droplet collisions where a large parameter space determines the outcome
of such collisions (see for example [107]). Indeed, particle-resolved simulations
are becoming more and more important in today’s model development, but they
also require enormous computational resources and sometimes also sophisticated
numerical approaches [11]. In the following it is tried to provide an estimate under
which conditions particle-wall and inter-particle collisions are important and have
to be modelled appropriately.

Particle-wall collisions become of importance in confined flows, such as pneu-
matic conveying or particle separation in cyclones. In pneumatic conveying, for
example, the momentum loss of particles caused by an inelastic wall impact is
associated with a required re-acceleration of the particles by the fluid after rebound.
Hence, momentum is extracted from the fluid phase for this acceleration causing the
additional pressure loss. This pressure loss depends on the average wall collision
frequency or mean free path between subsequent particle-wall collisions. The wall
collision frequency is mainly determined by the following parameters:

• particle mass loading,
• dimensions of the confinement, e.g. pipe diameter in pneumatic conveying,
• particle response time or response distance,
• conveying velocity and turbulence intensity,
• particle shape and wall roughness,
• combination of particle and wall material.

A simple estimate of the importance of particle-wall collisions may be based on the
ratio of the particle response distance �p to the dimension of the confinement, e.g.
the diameter of the pipe D. The particle response distance can be estimated from the
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following equation:

�P D �PD
2
P

18�F fD
wt (6.43)

where wt is the terminal velocity of the particles. For the case �P > D (the particle
response distance is larger than the dimension of the confinement), the particles are
not able to respond to the flow before they collide with the opposite wall, hence
their motion is dominated by wall collisions. In addition to the above mentioned
effects the wall collision process may be affected by hydrodynamic interaction
between particle and wall which eventually causes a deceleration of the particle
before impact. This effect however is only of importance for viscous fluids and
hence small particle Reynolds numbers. Other effects relevant for solid particle wall
collisions are the wall roughness structure [95, 106] and a possible adhesion and
deposition of the particles. Numerous simulations have been done in the past on
pneumatic conveying in pipe systems, emphasising the huge importance of wall
roughness and the proper modelling by a statistical approach [56, 58, 98, 108, 109].

In the following the importance of inter-particle collisions in turbulent fluid-
particle flows is discussed. The inter-particle collision probability depends mainly
on the particle concentration, the particle size, and the fluctuating motion of the
particles. A classification of particle-laden flows in terms of the importance of inter-
particle collisions and the boundary between dilute and dense systems may be based
on the ratio of particle response time 	P to the averaged time between collisions 	c
[14]. In dilute two-phase flows the particle motion will be mainly governed by fluid
dynamic transport effects, i.e. drag force, lift forces, and turbulence. On the other
hand dense flows are characterised by high collision frequencies between particles
and hence their motion is dominantly influenced by inter-particle collisions. Fluid
dynamic transport effects are of minor importance. Therefore, the two regimes are
characterised by the following time scale ratios:

dilute two-phase flow: 	P < 	c H) 	P
	c
< 1 (6.44)

dense two-phase flow: 	P > 	c H) 	P
	c
> 1 (6.45)

This implies that in dense two-phase flows the time between particle-particle
collisions is smaller than the particle response time, whereby the particles are not
able to completely respond to the fluid flow between successive collisions. This
regime may occur when either very large particles at a low number density are
present in the flow or in the case of small particles when the number density is
large. In dilute two-phase flows collisions between particles may also occur and
influence the particle motion to a certain degree, but the time between successive
inter-particle collisions is larger than the particle response time, whereby the fluid
dynamic transport of the particles is the dominant transport effect.
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In the following section an estimate of the boundary between the two regimes will
be given for turbulent particle-laden flows by introducing some simplifications. The
average time between successive inter-particle collisions results from the average
collision frequency:

	c D 1

fc
(6.46)

The collision frequency of one particle (i.e. ni D 1) with diameter Di and
instantaneous velocity ui with all other particle classes (i.e. Nclass ) with diameter
Dj and velocity uj can be calculated according to kinetic theory of gases from:

fc D Nij

ni
D

NclassX

jD1

�

4
.Di C Dj/

2jEui � Eujjnj (6.47)

The main assumptions associated with the use of Eq. (6.14) are the following:

• The particle number concentration is small enough that the occurrence of binary
collisions prevails.

• On the other hand, the particle number concentration must be large enough to
allow a statistical treatment.

• The velocities of the colliding particles are not correlated, for example due to
turbulence.

An analytic solution of Eq. (6.47) is only possible for relatively simple cases. For the
estimation of the collision frequency, the derivation of Abrahamson [1] is followed,
yielding a collision rate solely determined by turbulence. Furthermore, a mono-
disperse particle phase is considered, whereby the mean fluctuating velocity is a
constant. Hence the collision frequency is obtained as a function of the particle
diameter, DP , the total particle number concentration nP and the mean fluctuating
velocity of the particles �P :

fc D 4�1=2nPD
2
P
�P (6.48)

Introducing the volume fraction of the particles, ˛P D .�=6/D3
P
nP , one obtains after

some re-arrangements:

fc D 24

�1=2
˛P�P

DP

(6.49)

or, similarly, the collision frequency can be expressed as a function of the mass
loading � D PmP= PmF , which is often used to characterise gas-solid flows:

fc D 24

�1=2
�F
�P

��P

DP

(6.50)
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Fig. 6.12 Regimes of dilute (left of the curves) and dense (right of the curves) gas-solid flows
in dependence of mass loading (and volume fraction) and particle diameter for different particle
velocity fluctuations �P (�F D 1:15 kg=m3, �P D 2500 kg=m3, �F D 18:4 � 10�6 kg=.m s/); the
dilute regime is left of the curves and the dense regime in the right

By introducing the collision frequency and the Stokesian particle response time into
Eqs. (6.49) and (6.50), the limiting particle diameter for a dilute two-phase flow can
be determined as a function of volume fraction or mass loading, respectively:

DP <
3

4
�1=2

�F

˛P�P�P

(6.51)

DP <
3

4
�1=2

�F

˛P�P�P

(6.52)

Considering a gas-solid flow with the properties (�F D 1:15 kg=m3, �P D
2500 kg=m3, �F D 18:4 � 10�6 kg=.m s/) the limiting particle diameter which
separates dilute and dense two-phase flow is calculated as a function of volume
fraction and mass loading with the particle velocity fluctuation as a parameter. The
result is given in Fig. 6.12 where the dilute two phase flow domain is on the left
of the individual lines and the dense flow regime is on the right hand side. With
increasing particle diameter associated with higher particle inertia (larger 	P), the
range of dilute flow is shifted towards lower volume fractions and mass loading.
With increasing velocity fluctuation of the particles the boundary line between dilute
and dense two-phase flow is shifted to the left, i.e. to smaller mass loading of the
dispersed phase. From Eq. (6.48) it is obvious that the collision frequency increases
with the velocity fluctuation of the particles.

Modelling of inter-particle collisions in the frame of the Euler/Lagrange method
for the numerical calculation of two-phase flows has been based mainly on two
approaches, a direct deterministic simulation and a stochastic model based on
concepts of the kinetic theory of gases. The most straight forward approach to
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account for inter-particle collisions is the deterministic simulation approach. This
requires that all the particles (or in most cases parcels which represent a number
of real particles with the same properties) are tracked simultaneously through the
flow field. Thereby, the occurrence of collisions between any pair of particles can
be judged based on their positions and relative motion during one time step [31].
Once a collision occurs, the change in translational and angular particle velocities
can be determined by solving the impulse equations together with Coulombs law
of friction. This approach is however very time consuming, since at each time
step it requires to search for a possible collision partner among the surrounding
particles (see for example [123]). If NP parcels are transported in the computational
domain then NP.NP � 1/=2 examinations of particle pairs are needed for finding
collision partners. For that reason, collision partner search is only done within a
computational control volume whereby however collisions from particles at the rim
of this control volume with particles in one of the neighbouring cells may be missed.
Consequently, such an approach would yield collision results which are depending
on grid size, which is of course not acceptable. Therefore, mostly independent
collision search volumes are defined (i.e. different from the numerical grid used
for flow calculations) which reduce the error of grid dependence.

In order to avoid this problem and for having a numerically more efficient
algorithm for collision detection the stochastic inter-particle collision model was
developed going back to the work of Sommerfeld and Zivkovic [114] and Oesterle
and Petitjean [81]. Here a collision partner is not searched, but generated from the
local population of particles being represented by size and velocity distributions
as well as their correlations. This approach therefore requires information on the
particle phase properties in each control volume of the computational domain. The
correlation of the velocities of colliding particles is respected in the fictitious particle
generation. This stochastic inter-particle collision model is described in detail by
Sommerfeld [99], including a thorough validation. Extensions of the stochastic
collision model have been done for spray droplets [88], bubbly flows [118] and
the agglomeration of fine particles where also the impact efficiency was accounted
for [45, 113].

6.7 Application Examples of Euler/Lagrange Approach

As a result of the special features of the Euler/Lagrange approach in considering
the discrete nature of the dispersed phase numerous technical and fundamental
applications were realised in the past. Three application examples will be introduced
below. Besides that, a number of other applications were considered, such as a
detailed simulation of pneumatic conveying in channels and pipes including the
effect of wall roughness and inter-particle collisions [56–58, 109]. A detailed
validation based on experiments was conducted in all these studies. Recently, in
the same pipe configuration the erosion of the pipe bend was modelled and analysed
with respect to the influence of particle mass loading and coupling effects [110].
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Also spraying systems are an ideal problem for the application of the Euler/
Lagrange approach. In early times several experimental test cases were provided
for validation of spray computations [97, 98] including evaporating sprays (with
different operational conditions, see [115]), spray interaction with a turbulent flow
analysing the effect of droplet collisions [88] and spray interaction with a solid cone
modelling droplet-wall impacts [78]. Another important application of spray flows
was electrostatic powder coating where the particle behaviour strongly affects the
powder deposit layer thickness [7].

Moreover, bubbly flows are an important field of application for the
Euler/Lagrange approach. Since normally bubbles are rather large, turbulence
production through bubble wakes is an important phenomenon to be modelled. Such
a Lagrangian wake turbulence model was developed by Lain et al. [59] and validated
against measurements. Another important issue is bubble coalescence whereby the
bubble size distribution is modified. A Lagrangian stochastic coalescence model
based on the film drainage approach was developed and validated [118].

A very interesting technical process are three-phase bubble columns where the
hydrodynamics is strongly affected by the interaction between bubbles and solid
particles. This interaction causes the bubble rise to be hindered and the solid
particles to be drafted upward. In comparison to measurements, the numerical
results showed that bubble/particle interaction is very important in correctly pre-
dicting the solids volume fraction along the column. The two models considered,
namely bubble/particle collisions using the stochastic model and an Eulerian
drafting/hindering model through drag coefficient modifications showed basically
the same result [8].

Also in the pharmaceutical field the application of the Euler/Lagrange approach
has a huge potential in optimising production processes and dosage devices such as
inhalers [112].

In the following three examples are described, each having certain features, such
as, unsteady swirling flow with dust rope formation, particle dispersion in stirred
vessel emphasizing the importance of inter-particle collisions and liquid solid flow
with particle deposition and filter cake formation.

6.7.1 Unsteady Swirling Flow

This study examines the behaviour of a particle-laden swirling flow through a
sudden pipe expansion. This kind of flow is relevant for a number of industrial
processes, as for example for pulverised coal burners. It was observed that due
to the establishment of the flow recirculation in front of the injection pipe (or
burner mouth) a central recirculation region develops [111] which is responsible
for the highly unsteady nature of such flows. Consequently, dust ropes (regions of
high particle concentration) will develop, that rotate downward with the flow. The
numerical prediction of such effects, and possibly the prediction of the characteristic
frequencies of oscillations or rope behaviour, needs an unsteady approach, which
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was therefore developed in the frame of the Euler/Lagrange approach using a
Reynolds-stress turbulence closure [67]. The main problem for such a transient
calculation lies in the very different timescales required for Eulerian and Lagrangian
calculations. Consequently, here multiple Lagrangian time steps were used in one
Eulerian time step (here referred to semi-unsteady method). A fully unsteady
simulation on the other hand would lead to large computational times.

The present study concerns a swirling two-phase flow through a pipe expansion,
where the gas particle mixture is injected through the central jet and the swirling
air stream enters through the annulus. This geometry of the test section resembles
a typical swirl burner with two concentric inlets, as shown in Fig. 6.13 which was
already used previously [111]. The non-swirling flow laden with particles enters
through the central pipe with an inner diameter of 36 mm and the clean annular
swirling inflow has an inner diameter of W D 40mm and the outer diameter is 1:6 �
W D 64mm. The diameter of the test section is 200mm and the considered length
is 500mm. Two flow conditions were considered with different mean velocities and
swirl numbers as listed in Table 6.4. This configuration produces very complex flow

Fig. 6.13 Configuration of
the pipe expansion geometry
with details of inlet for
particle-laden jet and annular
swirling flow with
dimensions (W D 40mm)

Table 6.4 Flow conditions at the injection into the swirl chamber for the two considered cases
with different swirl number S

Condition

Axial mean
velocity in
central pipe [m/s]

Axial mean
velocity in annulus
inlet [m/s]

Swirl number S
with test section
diameter [–]

Particle mass
fraction at inlet
[kg/kg]

C1 (case 1) 4.5 10.0 0.76 0.19

C2 (case 2) 7.8 18.2 2.01 0.04
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fields with a central recirculation zone in front of the entrance. This recirculation
zone moves towards the inlet with increasing swirl intensity. The carrier phase is air
at a pressure of p D 105 Pa, a density of �F D 1:2 kg=m3 and a dynamic viscosity
of � D 18 � 10�6 Pa s. The particle phase consists of spherical glass beads with
a density of �P D 2950 kg=m3 and a size spectrum between 5 and 70�m having
a mean of dP;m D 45�m. During each Eulerian time step several thousands of
parcels were injected with randomly selected initial location and velocity from the
pre-defined PDFs.

The numerical computations of the swirling flows through the pipe expansion
were conducted according to the domain shown in Fig. 6.13, which was discretised
by 234.660 control volumes. The computational domain includes the inlet geometry
so that for the annular swirling flow radial and tangential velocities were specified
as plug flows and for the central jet the mean axial velocities were specified for gas
and particles initially without slip (see Table 6.4). Hence, in the calculations the
flow developed through the inlet geometry and then entered the test section. The
calculated inlet profiles reasonably matched the measurements.

The averaged quasi-steady-state flow structure developing in the pipe expansion
is illustrated in Figs. 6.14, 6.15, and 6.16 comparing the low (left) and high (right)
swirl case in each of the figures. For the low swirl number a closed central
recirculation is observed shown in Fig. 6.14 (please note that negative velocities are

Fig. 6.14 Averaged
quasi-steady airflow field,
here stream-wise velocity,
with two different swirl
numbers: left part S D 0:76,
right part S D 2:01 (vertical
coordinate z in [m], radial
coordinate y in [m])
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Fig. 6.15 Averaged
quasi-steady airflow field,
here tangential velocity, with
two different swirl numbers:
left part S D 0:76, right part
S D 2:01 (see Table 6.4),
(vertical coordinate z in [m],
radial coordinate y in [m])

downward and positive values upward). When drastically increasing the tangential
velocity at the injection (see Table 6.4 and Fig. 6.15) the flow expands much stronger
and hence the central recirculation is shifted upward (Fig. 6.14). Thereby, the
recirculation also extends further downstream until the outlet. The higher swirl and
hence higher flow velocities at the injection also drastically increase the turbulent
kinetic energy for S D 2:01 as shown in Fig. 6.16.

The main interest in the present study was related to the highly unsteady
behaviour of the particle phase in such swirling flows and whether the unsteady
simulations capture the experimentally observed rope formation, which moves
spirally downward the test section. The simulated temporal evolution of the particle
concentration distribution within inlet and test section is shown in Fig. 6.17 at
low swirl for three instants of time. From these results the typical particle rope
formation may be identified which is rotating and moves spirally downward. It
should be noted that this result was obtained without triggering any instabilities at
the inlet. Naturally, also the underlying gas flow was continuously fluctuating, which
is expected from such a swirling flow. When looking at the case with very high swirl,
such a nice rope formation at the top end of the recirculation region is not observed
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Fig. 6.16 Averaged quasi-steady airflow field, here turbulent kinetic energy, with two different
swirl numbers: left part S D 0:76, right part S D 2:01 (see Table 6.4) (vertical coordinate z in [m],
radial coordinate y in [m])

Fig. 6.17 Temporal evolution of particle concentration for Case 1 with swirl number S D 0:76 at
three arbitrary instants of time (the colour represents iso-levels of the particle concentration)



370 M. Sommerfeld

Fig. 6.18 Temporal evolution of particle concentration for Case 2 with swirl number S D 2:01 at
three arbitrary instants of time (the colour represents iso-levels of the particle concentration)
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Fig. 6.19 Simulated temporal development of particle mass fraction at a near-wall location,
300mm downstream the inlet and 4mm away from the wall; (a) Case 1 with swirl number
S D 0:76; (b) Case 2 with swirl number S D 2:01

(Fig. 6.18). Rather, the particle concentration is more random, but still regions of
concentrated lumps of particles exist (Fig. 6.18). For quantifying the fluctuations in
particle concentration or mass fraction, a location 300mm downstream of the inlet
and 3mm away from the wall was selected where these values were recorded over
time. The result is shown in Fig. 6.19 for both swirl numbers. It is obvious, that
the low swirl yields very high particle concentration fluctuations with distinct low
frequency oscillations but also having rather strong high frequency fluctuations. On
the other hand, high swirl, as already mentioned, shows concentrations that are more
random distributed with much lower fluctuations. These recordings do also not show
such a nice regular distribution as for the low swirl case. From these concentration
signals a FFT (Fast-Fourier-Transformation) was made to identify the characteristic
frequencies (see Fig. 6.20). For the low swirl a number of peaks may be identified,
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Fig. 6.20 FFT of the temporal development of calculated particle mass fraction at a near-wall
location, 300mm downstream the inlet and 4mm away from the wall for both swirl numbers (see
Fig. 6.19)

however, the strongest one is observed at 7:5Hz followed by another one at 15Hz.
As to be expected from the concentration signal, high swirl results in a noisier
FFT amplitude with only one recognisable peak at 10Hz (Fig. 6.20). This higher
frequency at large swirl of course results from the larger tangential velocity in this
case. Although the experiments visually showed the rope formation, the measured
particle concentration signal was much noisier and the resulting FFTs did not show
comparable peaks. Nevertheless, the presented scheme for semi-unsteady flows is
applicable in many unsteady two-phase flows and allows for numerically efficient
simulations.

6.7.2 Particle Dispersion in Stirred Vessel

In the following, computations for a stirred vessel (diameter 400mm) with curved
bottom, four baffles and a pitched blade impeller with six blades will be introduced
(Fig. 6.21). The three-dimensional Reynolds-averaged conservation equations were
solved in connection with the standard k � " turbulence model [61]. The set of
conservation equations was solved using a finite-volume discretisation scheme with
collocated grid arrangement, which implies the solution of the integral form of the
conservation equations. As a solver for the fluid flow the code FASTEST-3D was
used, which is based on non-orthogonal block-structured grids with block-wise free
topology. The diffusive terms are discretised by central differences, while a hybrid
scheme combining upwind- and central differencing is used for the convective terms
(�CD indicated the percentage of central differencing). It was found that a high degree
of central differencing (blending factor �CD D 0:95) is required to yield a good
agreement with measurements [105].
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Fig. 6.21 Geometry and numerical grid of the 400mm stirred vessel with curved bottom applying
the multiple frame of reference (MFR) method with full discretisation of impeller and baffles (the
orange area was calculated in the rotating frame of reference)

In order to resolve both, the geometry of the impeller and the baffled tank, the
multiple frame of reference (MFR) method was used. For simplicity the blades and
baffles are considered to be infinitesimal thin. Due to the symmetry of the stirred
vessel a 180ı segment was considered by applying periodic boundary conditions
in the circumferential direction (Fig. 6.21). At the walls of vessel, baffles and
stirrer appropriate wall boundary conditions are specified for all variables. The free
surface was treated as a plane wall, since also in the experiments the surface was
covered with a thin lid. For analysing the effect of grid resolution on the results,
three different meshes with 30,636 (G1), 245,088 (G2) and 1,960,704 (G3) control
volumes were considered in the computations. The rotating domain around the
impeller extended from 0 < r < 116mm in the radial direction and in the range
30mm < x < 180mm for the vertical direction. This selection ensured almost
stationary flow conditions at the outer border of this region, a prerequisite of the
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MFR-technique. The vessel was filled with water (density: �F D 1000 kg=m3,
dynamic viscosity: �F D 10�3 Pa s) up to a level of 400mm.

The effect of grid size and number of control volumes on the numerically
calculated fluid properties, especially turbulent kinetic energy and its dissipation rate
was already discussed before [105]. Moreover, it was shown that the determination
of the Newton number should be done by integrating pressure and shear stress
distribution over impeller and shaft and not by using the average dissipation rate
throughout the vessel. Nevertheless, an accurate determination of the Newton
number requires a huge number of cells for discretising the vessel correctly.

Here the emphasis relates to analysing the importance of inter-particle collisions
on the dispersion of solid particles in the stirred vessel for still moderate overall
particle volume fraction of up to 5%. These calculations were conducted based on
the Euler/Lagrange approach using full two-way coupling for momentum exchange
and turbulence modification using appropriate under-relaxation (see [20]). The
particle phase simulations were conducted for the two coarser grids, namely G1 and
G2. These relatively coarse grids were a compromise between achievable spatial
resolution and computational time requirements for particle tracking. A finer grid
resolution requires of course much more parcels to be tracked for obtaining the
same statistical accuracy of particle properties and source terms. The particle phase
was simulated by tracking for each coupling iteration 20,000 parcels simultaneously
over a time period of 10 s. Hence, sufficient averaging of particle properties and
source terms is guaranteed through a long averaging time period.

Particle motion was calculated using all relevant forces, such as drag, added
mass, gravity/buoyancy, transverse lift forces due to shear and rotation [100], as well
as centrifugal and Coriolis force in the rotating domain. Particle turbulent dispersion
was modelled using a Langevin approach [116]. In addition, inter-particle collisions
were considered through the stochastic approach [99], since they have a drastic
effect on the particle concentration distribution already for relatively low overall
solids volume fractions as will be demonstrated below. In the calculations spherical,
mono-sized glass beads with diameters of 100, 200 and 500�m and a solids density
of 2:5 g=cm3 were used. The volume fraction of solids was varied between 1 and
3%.

A typical result for an impeller speed of 300 1=min is shown in Fig. 6.22
comparing vertical planes midway between two baffles for the calculated normalised
fluid velocity modulus and typical trajectories of 200�m particles where the colour
coding represents the normalised magnitude of particle velocity. The particles of this
size, which follow the toroidal vortex flow very well, are accelerated downward by
the impeller, turn around at the bottom and are lifted upward with the flow against
gravity almost completely and reach the surface. Then they move downwards again
towards the impeller supported by their gravity. The lifting of the particles from the
bottom towards the surface against gravity is responsible for the additional power
consumption in mixing of suspensions. Interestingly, some particles also circulate
in the counter-rotating stagnation point vortex underneath the impeller.

Essential in the application of the hybrid Euler/Lagrange approach with two-way
coupling is the decision about when a converged solution of the coupled system is
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Fig. 6.22 Illustration of calculated flow field (left: modulus of fluid velocity normalised by the
impeller tip speed) and particle trajectories (right: trajectories colour coded with the normalised
modulus of particle velocity) in vertical planes between baffles: � D 90ı (�CD D 0:95, n D
300 1=min, particle diameter 200�m, mean volume fraction 1%)

attained. In single-phase flow the residuals of the different fluid properties are nor-
mally used to find the required inner fluid iterations for reaching the converged state.
For coupled Euler/Lagrange calculations these residuals are uninformative, as they
continuously fluctuate [57], wherefore fluid properties at characteristic locations
should be used instead. The normalised residuals for the vertical component of the
fluid velocity and the turbulent kinetic energy demonstrate this behaviour (Fig. 6.23)
for DP D 100�m and 'P D 0:01. In the two-phase calculations, the number of
inner fluid iterations was fixed with 1000, regardless of the values of the residuals.
Initially, the residuals rapidly decrease down to values of 10�3 to 10�4, as one would
expect. However, when particle-phase source terms are introduces, also with under-
relaxation the residuals jump up again. This fluctuation is maintained up to the end
of the calculation with 160 Euler/Lagrange couplings. Only the lower bounds of the
residuals may be somehow used to judge convergence and they oscillate around
10�4. For particle dispersion in stirred vessels, the mixing quality, which is for
example the local particle volume fraction, should eventually approach a quasi-
steady-state value. Therefore, the averaged particle volume fraction in the upper part
of the vessel (here between 0:85 < x3=H < 0:9) was used to decide convergence.
In this region, stirrer-induced fluctuations are rather small. This spatially averaged
and normalised volume fraction is shown in Fig. 6.24 together with the standard
deviation. Please note that here DP D 200�m and 'P D 0:02 are considered.
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Fig. 6.23 Development of the residuals for vertical fluid velocity component (left) and turbulent
kinetic energy (right) in dependence of the number of coupling iterations including the behaviour
during the inner fluid iterations; blue line indicates the lower bound of residuals (n D 300 1=min,
DP D 100�m, mean volume fraction and 'P D 0:01)
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Fig. 6.24 Development of averaged and normalised particle volume fraction in the vessel between
0:85 < x3=H < 0:9 and associated normalised standard deviation in dependence of the number of
coupling iterations (n D 300 1=min, DP D 200�m, mean volume fraction and 'P D 0:02)

In the upper part of the vessel, the particle volume fraction increases with some
fluctuations towards a quasi-steady-state value which is reached only after about 200
coupling iterations. On the other hand, the standard deviation decreases as a result
of a lower spread of particle volume fraction with increasing coupling iterations,
implying an improvement of mixing quality.

The dispersion of particles with different diameter is illustrated in Fig. 6.25 for
calculations with inter-particle collisions and for a rate of revolution of 300 1=min.
It is obvious, that the small 100�m particles are almost homogeneously distributed
throughout the vessel; only in the core of the toroidal vortex the particle volume
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Fig. 6.25 Comparison of numerically calculated distributions of normalised particle volume
fraction (mean volume fraction 1%) for different particle sizes accounting for inter-particle
collisions; (a) 100�m, (b) 200�m, (c) 500�m (vertical plane between two baffles: � D 90ı,
n D 300 1=min)



6 Numerical Methods for Dispersed Multiphase Flows 377

fraction is lower since the particles are centrifuged out of the vortex core. With
increasing particle size, a continuous reduction of the particle volume fraction in the
vortex core is observed due to their increasing inertia and the associated centrifuging
effect. The largest particles considered (i.e. 500�m) are not anymore completely
suspended and a large particle free region develops near the surface and in the core
of the vessel. This implies that the power input is not sufficient to completely lift-
up the particles and centrifugal effects are responsible for the very low particle
concentration in the core of the vessel, as well as the core of the toroidal vortex.
Because of that, the particles also accumulate near the outer wall of the vessel. Also
near the bottom a region of high volume fraction develops which is close to the
stagnation region between the large toroidal vortex and the contour-rotating vortex
underneath the impeller (see Fig. 6.22).

The main objective of the present study was related to analysing the importance
of inter-particle collisions on particle mixing characteristics in stirred vessels. This
influence is especially visible for the particle volume fraction distributions that are
shown in Fig. 6.26 for vertical planes through the vessel and in Fig. 6.27 for two
horizontal planes; one in the plane of the impeller and the other one close to the
surface. The particle size is 200�m and their average volume fraction 2%, hence
inter-particle collisions should be pronounced. Without inter-particle collisions
a remarkable accumulation of particles is observed in the recirculation region

Fig. 6.26 Comparison of numerically calculated distributions of normalised particle volume
fraction in vertical planes (mean volume fraction 2%) for 200�m particles, comparing simulations
without (left) and with (right) inter-particle collisions (vertical plane between two baffles: � D 90ı,
n D 300 1=min, grid spacing in vertical direction 100mm see also Fig. 6.21)
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Fig. 6.27 Comparison of numerically calculated cross-sectional profiles of normalised particle-
phase volume fraction (mean volume fraction 2%), in the plane of the impeller (x3 D 120mm) and
near the surface (x3 D 360mm) for 200�m particles, comparing simulations without (left) and
with (right) inter-particle collisions (n D 300 1=min)

underneath the impeller. Here inter-particle collisions occur with a high probability
due to the large relative velocity between particles; here are particles moving around
in the recirculation zone and additionally the impeller pumps particles downward.
Also near the outer vessel wall inter-particle collisions modify the concentration
field; the high particle concentration at the end of the bottom part is reduced and the
high concentration region about 100mm from the surface is shifted upwards.

From the cross-sectional contour plots (Fig. 6.27) it is found that the particle
volume fraction behind the impeller blades slightly increases due to inter-particle
collisions. Please note that the impeller rotates counter-clockwise. In the region
outside the impeller, the particle volume fraction becomes more diffuse due to
collisions between particles. The high particle concentration regions appearing in
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Fig. 6.28 Numerically calculated vertical profiles of the cross-sectional averaged volume fraction
normalised by the total mean particle volume fraction, comparing calculations without source
terms and without inter-particle collisions (no PST, no PPC), with source terms and without inter-
particle collisions (PST, no PPC) and with source terms and inter-particle collisions (PST, PPC) at
higher mean particle volume fraction ('av D 0:02, n D 300 1=min)

front of the baffles in the upper region of the vessel are only marginally modified,
here particles are trapped and cannot be “kicked” out by inter-particle collisions as
the main flow is directed towards the baffles. Consequently, particles moving along
with the flow towards the baffles collide with particles circulating in the stagnation
region and hinder their re-dispersion into the main flow. This effect is similar to the
observation in a pipe bend, where the developing rope is also more concentrated
with inter-particle collisions [109].

A quantitative comparison of the effect of two-way coupling and inter-particle
collisions on vertical profiles of particle concentration is provided in Figs. 6.28
and 6.29. Here the normalised particle volume fraction averaged in the cross-
sectional planes is plotted versus the normalised height. Vertical profiles for the
200�m particles at a mean volume fraction of 2% are compared for different
simulation conditions (Fig. 6.28). Without the influence of the particles on the flow
and neglecting inter-particle collisions, the particles are relatively homogeneously
distributed throughout the vessel with the typical minimum at the impeller location
(i.e. z=H � 0:3). In this region the particle velocities are highest due to the
acceleration by the impeller yielding the lowest residences here and consequently
the lowest volume fractions (Fig. 6.28). However, the particles are completely lifted
up to the surface and show some higher volume fraction near the bottom. Now
when considering two-way coupling the particles have to be carried by the flow,
especially when being lifted upward, which of course requires additional energy
or power input. Since however power input is identical (i.e. same impeller speed),
the particles cannot be lifted up to the same height due to gravity and the volume
fraction maximum now appears at z=H � 0:72 (Fig. 6.28). In the impeller region
the two-way coupled results show the lowest volume fraction (i.e. about 60% of the
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Fig. 6.29 Numerically calculated vertical profiles of the cross-sectional averaged volume fraction
normalised by the total mean particle volume fraction for different particle sizes, comparing
calculations without source terms and inter-particle collisions ('av D 0:00) with those with
two-way coupling and inter-particle collisions at different mean particle volume fraction (n D
300 1=min); (a) DP D 100�m, (b) DP D 200�m, (c) DP D 500�m

mean value) since gravity of the particles acts downward, accelerating the liquid
flow in this region. Thereby the residence time is further reduced and so the volume
fraction. Near the bottom a very high volume fraction is found since the particles
damp flow velocity and cannot be lifted upward. In the third case with two-way
coupling and inter-particle collisions the high particle concentration near the bottom
is further reduced (see also Fig. 6.26) as the particles are re-entrained into the flow
by collisions. This improves particle dispersion in the vessel flow and also increases
volume fraction in the impeller region. Finally the particles are slightly better lifted
upward when accounting for inter-particle collisions (Fig. 6.28).

In Fig. 6.29 the vertical profiles of particle volume fraction for the three
considered particle sizes are provided. The results shown for 'av D 0:00 represent
calculations without two-way coupling as well as neglecting inter-particle collisions
and the others are calculations including both effects at different solid volume
fractions. In accordance with Fig. 6.25, the dispersion of 500�m particles is very
poor even at this low mean volume fraction ('av D 0:01) and accounting for inter-
particle collisions (Fig. 6.29c). The power required is not sufficient to completely
disperse the particles when respecting their influence on the fluid flow. A much



6 Numerical Methods for Dispersed Multiphase Flows 381

better dispersion is of course achieved for the smallest particles (100�m) and
the difference between calculations neglecting two-way coupling and inter-particle
collisions and those accounting for both effects is marginal (Fig. 6.29a). Near the
bottom however particle accumulation is avoided by inter-particle collisions. For
the 200�m particles the vertical profiles of normalized particle volume fraction are
shown for several mean volume fractions (Fig. 6.29b). This result shows that with
increasing mean volume fraction particles are more poorly dispersed and lifted for
the same rate of revolution due to the limited power available. However, again near
the bottom concentration is reduced due to inter-particle collisions, which of course
occur more frequent with increasing mean volume fraction.

Another important issue in the prediction of particle suspension in stirred vessels
is the resulting Newton number in dependence of particle size and average volume
fraction. First the two-way coupling behaviour of the combined Euler/Lagrange
calculations is illustrated including inter-particle collision effects. Here the Newton
number obtained from the averaged dissipation rate normalised with the respective
single phase values is plotted over the number of coupling iterations for different
average particle volume fractions (Fig. 6.30a). In this case the 200�m-particles are
considered. Hence, the results indicate the percentage of additional power required
for dispersing the particles. The result reveals that all the calculations for the
different particle volume fractions converge towards a limiting value, illustrating
that the normalised Newton number increases with volume fraction as expected.
However, the number of coupling iteration increases with average volume fraction
from about 100 for 'av D 0:01 to more than 200 for 'av D 0:03. This is of course
associated with an increase of computational time, which is a disadvantage of the
Euler/Lagrange approach. On the other hand however, this method allows a much
more refined modelling of all the relevant elementary processes affecting the particle
motion, such as inter-particle collisions.
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the single-phase Newton number as a function of coupling iterations; (a) with the mean particle
volume fraction as a parameter (DP D 200�m, n D 300 1=min); (b) with the particle diameter as
a parameter ('av D 1%, n D 300 1=min)
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In Fig. 6.30b the normalised Newton number as a function of coupling iterations
is shown for different particle diameters at an average volume fraction of 'av D 1%.
Again, all computations approach a limiting value indicating that convergence
is reached in all cases. Interestingly the number of required coupling iterations
increases with a reduction of particle size. Moreover, the Newton number is reduced
when the particle size increases. Both effects can be explained by the observation
that with increasing particle size the quality of dispersion is reduced (see Fig. 6.25).
This implies that less particle mass is circulated with the bulk of the flow, requiring
less power consumption.

A realistic calculation of aerated stirred vessels becomes even more sophisticated
since the bubble size distribution needs to be considered along with the effects
of bubble break-up and coalescence. Bubble volume fraction and mean diameters
within a vessel agitated by a Rushton turbine were calculated by Lane et al. [60]
using a two-fluid approach. For this purpose an additional transport equation for the
bubble number density was solved accounting for convective and turbulent transport
of the bubbles as well as bubble coalescence and break-up. The coalescence rate
was calculated using the collision rate of kinetic theory of gases and assuming the
relative velocity between bubbles upon collision being identical to that of the liquid
for the inertial subrange of turbulence. The bubble break-up rate was determined
on the basis of a critical Weber number and the interaction frequency of bubbles
with turbulent eddies. It should be emphasised that this approach can only predict
a local bubble mean diameter, but not a bubble size distribution as observed in an
experiment. Unfortunately, the computations were not compared with experiments,
whereby no judgement on the quality of the computations can be made here.

Also the Euler/Lagrange approach was already extended for the calculation
of aerated stirred vessels, however, restricting to the phenomenon of bubble
break-up [79]. Although the agreement of computed and measured bubble Sauter
diameter distribution within the vessel was not yet satisfactorily, the potential of
the Euler/Lagrange approach in considering bubble coalescence and break-up was
demonstrated.

For more reliable and satisfactory computations of two-phase flows in stirred
vessels, however, both approaches (i.e. two-fluid and Euler/Lagrange) need con-
siderable further developments regarding the modelling of the essential two-phase
elementary processes in stirred vessels. Until today, especially droplet and bubble
coalescence constitute a huge modelling challenge when starting with first prin-
ciples, since also the molecular scale is relevant due to the very thin fluid films
developing between collision partners.

6.7.3 Application: Horizontal Blade Filter

Clarifying a liquid by pre-coat blade filters is an important process in the beverage
industry. Such a process requires that a homogeneous bed of pre-coat particles, for
example using fine kieselguhr particles, is produced on a coarse filter medium or
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Fig. 6.31 Illustration of the
entire horizontal pre-coat
filter with 13 blade filter
elements, inflow of the
suspension and outflow of the
filtrate, principle of Schenk
Filterbau [80]

sieve. Then, during the actual filtration process an actual filter layer already exists,
which effectively removes the turbidity of the beverage, for example the yeast in a
beer. The principle of this filtration process is a deep bed filtration in the initial
stage followed by a cake filtration period. Essential for an effective filtration is
a homogeneous thickness of the pre-coat layer. In the present study a stack of
revolvable blade filters is considered (Fig. 6.31) which is mounted in a large filter
vessel. Through a central pipe the beverage is introduced into the filter system and
distributed homogeneously to all the blade filter elements. The inflow for each
filter element is realised by a small annular slit underneath the upper filter blade
(Fig. 6.32). Then the liquid flows outward across the circular blade filter elements
and continuously moves downward through the filter medium to the filtrate outlet
that is realised by a central pipe system, which is also used to fix all the circular
filter blades. During the pre-coat period a suspension consisting of water and the
kieselguhr particles is pumped through the filter apparatus to form the pre-coat layer
homogeneously in the radial direction on all filter blades. As one may expect this is
not an easy task due to the radial expansion of the flow and the involved pressure
drops. However, a homogeneous pre-coat layer is essential for an effective filtration
of beverages.

Computational fluid dynamics (CFD) is an effective way to analyse and optimise
the pre-coat process, especially with regard to the homogeneity of the pre-coat layer.
For that purpose the Euler/Lagrange approach was used to perform time-dependent
simulations. As the flow may be turbulent in the inner region of the filter element,
the standard k�" turbulence model was used. The momentum equations of the fluid
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Fig. 6.32 Details of the flow across one filter blade during the filtration process with inflow and
outflow gaps, the filter cake consists of the pre-coat and the turbidity

phase were extended by source terms resulting from the coarse filter medium and
the temporarily developing pre-coat layer thickness based on Darcy’s law. Since,
except for the filter cake, particle concentration was very low, two-way coupling
could be neglected without error. Naturally, not the entire filter apparatus was
numerically calculated, but only one filter element. Therefore, the problem could be
treated to be two-dimensional and axisymmetric. A large number of particles were
tracked after each Eulerian time interval �tE by accounting for drag, gravity and
buoyancy. Although the density ratio �P=�W is not very large (�P D 2400 kg=m3

and �W D 1000 kg=m3) all other forces such as added mass, pressure term and
Basset force were neglected and also all transverse lift forces were not considered.
The time step of particle tracking was adapted according to the local limiting time
scales such as particle response time and integral time scale of turbulence [119].
All particles reaching the initial filter sieve plane are assumed to deposit and the
locally accumulated particle mass is summarised for determining the filter loading
and the cake thickness that is used to determine the cake resistance source term in the
momentum equation of normal fluid velocity component. Since the cake resistance
was not known for the kieselguhr particles, these values were obtained by a simple
measurement in dependence of cake thickness and the undisturbed through flow
velocity.

The numerical grid used for two-dimensional axisymmetric calculations is shown
in Fig. 6.33, together with details of the inlet and outlet geometry. The whole domain
was discretised by 6898 control volumes separated in 5 blocks (block-structured
grid). This grid resolution was found to be sufficient for calculating the features of
the flow correctly. The filter sieve was located at x D 0:034m and was assumed
to have a thickness of zero, extending from r D 0:169m to r D 0:724m. The
inflow to the filter element is considered to be an annular gap with a height of h D
0:9mm being located at r D 0:206m (Fig. 6.33b). The inflow was assumed to have
a parabolic profile with a mean velocity of 0:57m=s. Thereby, the inflow Reynolds
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Fig. 6.33 Two-dimensional numerical grid for one filter element with 6898 control volumes (a)
and details of the discretised inflow geometry (b) indicating also the filter sieve (all dimensions in
[m])

number is 500, with �W D 998 kg=m3 and � D 1:0 � 10�3 Pa s. The outflow was
also discretised by an annular gap at the inner side of the filter element (i.e. r D
0:163m) ranging from 0:035m < x < 0:052m (Fig. 6.33b). The opening of the
filter element towards the filter vessel (Figs. 6.32 and 6.33) was considered to be
closed by a wall, since also in practice there exist only low velocities since the
vessel is completely filled with stagnant liquid. As mentioned before, the pre-coat
medium are fine kieselguhr particles having a size distribution ranging up to about
128�m. The number mean diameter is only 0:60 �m and the mass mean diameter is
35�m. For particle injection at the inlet, the number based particle size distribution
was of course used.

The time-dependent simulations were conducted in the following way. The
conservation equations of the fluid flow were solved with an Eulerian time step
of 0:1 s. At the beginning only the fluid flow was calculated for 20 s to establish
a quasi-stationary starting solution. Then the starting time was set to zero and 45
computational particles (or parcels) were injected randomly in space and time at
each Eulerian time step with the local fluid velocity. The particle mass flow rate
was set to Pmk D 5:557 � 10�3 kg=s which is the same value as in real process
conditions. During each Eulerian time step, the particles experience of course a
frozen flow field. The entire pre-coat time of the filter and particle injection was
420 s. Thereafter, the simulations were continued for another 500 s so that all
particles could deposit on the filter medium or filter cake. The temporal change of
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Fig. 6.34 Temporal evolution of the streamlines in a blade filter element as a result of the
continuous deposition of the pre-coat particles (t D 420 s is the end of particle injection), (axis
scale in [m], the small letters indicate the values of the stream-functions)

the flow field of course only results from the increasing pressure drop across newly
deposited particles.

For understanding the particle behaviour during this simulation period, stream-
lines and instantaneous particle positions with their velocity vectors (due to the scale
not always visible) are analysed (Figs. 6.34 and 6.35). Initially a clear short-cut of
the flow is visible where the fluid coming out of the inlet gap turns around and
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Fig. 6.35 Temporal evolution of particle positions (shown with their velocity vectors) in a blade
filter (at t D 420 s particle injection is terminated), (axis scale in [m])

goes immediately to the outflow because this is the path with the lowest resistance.
Thereby also a large recirculation region is initiated. Naturally, the particles follow
this flow reversal and begin to deposit in the inner part of the filter medium. Quite
large fractions of particles also circulate with the flow recirculation for some time
before they deposit. Due to centrifuging, no particles are found in the core of this
recirculation region. The growing filter cake in this region of course raises the
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pressure drop whereby the flow is forced to move more radially outward until it
goes through the filter medium. Consequently, also the particles are transported
further in the radial direction and deposit at a larger radius (see Fig. 6.35). Hence,
the continuous growth of the deposition in radial direction forces the flow to go
further outward before it can pass through the filter medium. In Fig. 6.34 the radial
movement of the point of flow return is clearly visible coupled of course with
the particle transport (Fig. 6.35). Interestingly, only one large circulation region
develops in the inner part of the filter element, which is quite stable. Also in a later
stage, no other circulation region develops in the outer blade filter area. However,
underneath the inlet gap, very close to the exit, a small counter rotating recirculation
develops which also carries particles.

With these simulations, it is also possible to analyse the temporal evolution
of the filter loading by the pre-coat particles (Fig. 6.36). The filter loading (also
proportional to the filter cake thickness of the pre-coat if a porosity of the filter
cake is assumed) of course grows continuously in time from the inside to the
outside. Hence, the final pre-coat thickness decreases from the inside to the outside
showing characteristic peaks caused by the developing flow structure. The location
of the highest filter loading is just in the first part of the inner circulation at about

Fig. 6.36 Temporal evolution of the filter loading during the pre-coating of a blade filter element
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r D 0:25m and the subsequent minimum is found at its end where a stagnation
region develops. As the particles easily follow the flow the particles spread out
before the stagnation point (see Fig. 6.35, t D 170 s). From about r D 0:40m
regular peaks of the filter loading are visible which have a separation of about 55mm
again induced by the flow structure, being however not visible in the streamlines
(Fig. 6.34).

In conclusion, the pre-coating of the filter medium is not very homogeneous
whereby the filtration efficiency for the product liquid or suspension also will not be
constant across the filter blade. In addition, it was found that a size separation takes
place; in the outer filter region smaller particles are deposited; whereby the pre-coat
filter cake structure and hence filtration efficiency will be affected. Naturally, the
Lagrangian particle tracking approach may be further extended to account for more
details in particle deposition modelling, as for example the relevant adhesion forces
and the development of filter cake structure (see for example [26]).

6.8 Conclusions and Outlook

This article gives an overview of numerical methods for the calculation of dispersed
multi-phase flows. After an introduction to the characteristic features of multi-phase
flows, the numerical methods to be used for the different scales of multi-phase pro-
cesses are introduced. The numerical calculation of large-scale industrial processes
requires numerous assumptions regarding particle-scale phenomena and processes
occurring on sub-grid scales since the number of control volumes for discretising
the process is limited. Only then such large systems can be numerically simulated
within an affordable and acceptable computational time. Hence, the dispersed
phase particles need to be considered as point-masses in both the Euler/Euler and
Euler/Lagrange approach. All transport phenomena not resolved by the numerical
grid need additional models or closures. Besides detailed experiments also particle-
resolved simulations may support such model development. The available particle-
resolved simulation methods were briefly summarized.

Following that the concepts of modelling approaches for macro-scale simulations
of dispersed multi-phase flows are introduced, namely the two-fluid (or Euler/Euler)
and the Euler/Lagrange method. Based on the particle volume fraction or inter-
particle spacing, different flow regimes may be identified in dispersed multi-phase
flows, requiring other coupling strategies of fluid and particle phase. The main focus
of this article is related to the hybrid Euler/Lagrange approach. Details are provided
especially regarding the two-way coupling procedure for steady and unsteady flows.
Very often, an efficient solution of unsteady dispersed multi-phase flows can be
realized through the semi-unsteady approach using different temporal discretization
(i.e. time steps) for the Eulerian and Lagrangian calculations. An essential feature
of the Euler/Lagrange approach is the consideration of the discrete nature of the
particle phase, allowing a much more detailed modelling of all relevant particle-
scale phenomena, such as for example particle-wall and inter-particle collisions.
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Estimates for the importance of these two phenomena are provided. Moreover,
the Lagrangian approach can easily handle particle size distributions that exist as
an inlet condition for the particle phase or are produced during the process under
consideration through agglomeration or coalescence.

Finally three application examples are introduced which highlight the special
features of the Euler/Lagrange approach; an unsteady swirling flow with dust rope
formation, particle dispersion in a stirred vessel emphasizing the importance of
inter-particle collisions and a liquid-solid filtration process where information on
the structure of filter cake formation is obtained.

In the multi-phase community, there is an ever continuing discussion of the
pros and cons of the Euler/Euler and Euler/Lagrange approaches. On a first glance,
the two-fluid approach seems to be numerically much more efficient and therefore
provides a quick answer to any engineering problem at hand. Very often however,
this is at the cost of neglecting essential transport processes and phenomena such as
particle size distributions or other of the above mentioned particle-scale processes.
The two-fluid method may be extended to consider a spectrum of particle sizes,
called multi-fluid approach, but this will dramatically increase computational time
since for each size class a set of conservation equations has to be solved. Processes
like agglomeration and coalescence may be effectively modelled by population
balances, which however apply very often only empirical information.

In this respect the Euler/Lagrange approach has huge advantages since particle-
scale phenomena can be modelled in a more descriptive way on the basis of
first principles of physics. Hence, particle-scale phenomena are resolved in a
much more accurate way compared to the multi-fluid approach including the
respective closures. In addition, since computational power still continues to grow,
the Euler/Lagrange approach may be extended with more and more sophisticated
particle-scale phenomena such as for example the prediction of agglomerate struc-
ture [113]. In addition particle-resolved simulations will increase in importance,
not only for supporting model and closure development, but also to simulate larger
systems than only a hand full of particles.
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Chapter 7
Path Instabilities of Axisymmetric Bodies
Falling or Rising Under the Action of Gravity
and Hydrodynamic Forces in a Newtonian Fluid

J. Dušek

Abstract The chapter deals with the effect of instabilities on the paths of sedi-
menting or rising bodies in Newtonian fluids. To separate the effect of shape, we
focus on axisymmetric objects. Spheres, discs, oblate spheroids and flat cylinders
are all expected to follow vertical trajectories with axisymmetry axis aligned with
the trajectory. This is, indeed, the case, however, this regime remains stable only
if viscous effects are sufficiently strong. The loss of stability of the vertical regime
leads to a large variety of trajectories depending on the details of shape, namely
their flatness (expressed by aspect ratio for cylinders or spheroids), their inertia and
viscous effects (expressed by some equivalent of Reynolds number). Defined in this
manner, the problem is basically that of axisymmetry breaking.

Since a significant part of dynamics is expected to arise in the wake, we first focus
on axisymmetry breaking of wakes of fixed axisymmetric bodies, the sphere being
considered as a prototypical case. We show that the scenario is dominated by two
bifurcations following systematically, with increasing Reynolds number, in the order
of the regular one as primary and a Hopf one as secondary. The weakly non-linear
analysis points out the relevance of Fourier azimuthal decomposition serving as an
optimal numerical tool for all presented simulations. Next, the free body degrees
of freedom are accounted for. The interplay of the regular and Hopf bifurcations
still dominates, however, the scenario is significantly different for spheres and flat
objects. The presented parametric study shows that trajectories of spheres become
very rapidly chaotic. As an example of flat object, nominally infinitely thin disc is
investigated. In this case the Hopf bifurcation is the primary one. The scenario is
remarkable by strong subcritical effects due to the significant role of inertia of the
combined motion of the solid and of the surrounding fluid.
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7.1 Introduction

The understanding of the motion of a single body driven by gravity and buoyancy in
a quiescent fluid is fundamental for all problems involving a free motion of particles
in laminar and turbulent flows. Intuitively, a sphere or a flat axisymmetric body
(disc, flat cylinder or an oblate spheroid) is expected to fall vertically with its axis
also oriented vertically. To predict its terminal velocity, the knowledge of the drag
is sufficient. This simple picture considerably changes with the onset of instabilities
in the solid–fluid system in which the 6 degrees of motion of the solid body interact
with the surrounding fluid. As soon as instabilities set in, many counter-intuitive
phenomena appear not only in a system of a single particle in quiescent fluid but
also in the particle interaction with turbulent flow and in multi-particle systems.

To evidence non vertical trajectories of discs, there is no need of sophisticated
experiments. Figure 7.1 shows the behavior of a plastic shopping cart token dropped
in water. Similarly, in a laboratory set up, we registered [13, 14] trajectories of
buoyant spherical polypropylene balls of about 2.5 mm of diameter freely rising
in water. As seen in Fig. 7.2, non-vertical trajectories were observed.

Fig. 7.1 Six snapshots of a half period of the zig-zagging motion of a plastic disc falling in water
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Fig. 7.2 Example of non vertical trajectories of spheres rising in water (The temperature of water
was used to control the viscosity and thus the Galileo number)

It easily seen that the vertical motion is closely linked to the axisymmetry of
the surrounding flow. The loss of stability of the axisymmetric flow (axisymmetry
breaking) generates a lift force responsible for a horizontal drift of the body. In
what follows, we shall see that, in general, the fluid and the solid body degrees of
freedom interact to determine the onset and the aspect of the symmetry breaking.
Since the same phenomenon also concerns wakes of fixed objects, we shall start
by explaining the loss of axisymmetry of the wake of a fixed bodies. In systems
coupling the motion of the fluid with the motion a body driven by gravity and
buoyancy, the instabilities result in changes of the form of the trajectories. They are
therefore called “path instabilities” although the fluid strongly participates in their
mechanism. An exhaustive understanding of various possibilities how axisymmetry
breaks in such systems can be obtained by a simple theory describing the interplay
of two bifurcations. Specific scenarios will then be illustrated using direct numerical
simulations in the case of ideally spherical bodies, and ideally flat discs. The motion
of flat cylinders and oblate spheroids of intermediate aspect ratio is not the topic of
this chapter but, as indicated by available results, the presented extreme cases of a
sphere and infinitely flat disc are helpful in its understanding.
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7.2 Wake of Fixed Bodies

7.2.1 Loss of Axisymmetry in Wakes

Assuming a sphere placed in a uniform flow of a Newtonian fluid of density � and
kinematic viscosity  (or an arbitrary axisymmetric body with its axis aligned with
the flow direction), it is possible to define a system of cylindrical coordinates as
depicted in Fig. 7.3. It is usual to use the imposed scales to define the inflow velocity
U1 as velocity scale, and the diameter of the body cross section d as a length scale.
Expressing, further the pressure in units defined as �U21 we arrive at the following
non-dimensional form of Navier-Stokes equations

r � v D 0; (7.1)

@v
@t

C Œv � r�v C rp � 1

Re
r2v D 0: (7.2)

in which the viscosity is replaced by the Reynolds number Re D U1d=, the single
physical parameter of the problem. v stands for the flow velocity (w.r.t. the body)
and p for the pressure. The ‘no-slip’ condition at the solid body surface amounts to
the Dirichlet boundary condition v D 0.

Introducing cylindrical coordinates, Eqs. (7.1) and (7.2) can be written in more
detail as system of four equations for three cylindrical velocity components u; v;w,

P(z,r,θ)

8

θ

r
z

x

y

U

Fig. 7.3 Schematic view of a configuration (flow past a sphere) presenting an axisymmetric
solution for the flow. U

1

—uniform inflow velocity (defining the symmetry axis) 0z, z—projection
onto the axis, r distance from the axis, �—azimuthal angle
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Fig. 7.4 Axisymmetric flow past a fixed sphere at Re D 215. Top: axial velocity, middle: radial
velocity, bottom: pressure. See [9]

where u; v;w stand, respectively, for the axial, radial and azimuthal velocity
components, and the pressure p. All involved fields are functions of z; r and � .
Obviously, due to the axisymmetry of configuration an axisymmetric solution
(solution independent of �) exists whatever the Reynolds number value. Assuming
further that the body does not rotate, the azimuthal velocity of such solution is zero
(non swirling axisymmetric flow). Figure 7.4 shows the axisymmetric solution for
Re D 215.

The stability of the axisymmetric solution is a very important issue. Though,
mathematically, the axisymmetric solution exists whatever the Reynolds number,
only a stable solution will be observed in the reality due to the ambient noise. The
stability issue is about the decay of disturbances. There are situations where the
amplitude of the disturbances is of importance (see the cases of multiple stability),
the most fundamental question consists, however, in testing the stability with respect
to infinitely small perturbations. The assumption of infinitesimality of perturbations
leads to a linear problem.
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7.2.2 Linear Stability Analysis of an Axisymmetric Flow

The linear stability analysis consists in investigating the unsteady and non axisym-
metric solutions of the form

v D V C v0I v0 D v0.z; r; �; t/ (7.3)

p D P C p0I p0 D p0.z; r; �; t/ (7.4)

where V D .U.z; r/;V.z; r/; 0/ and P.z; r/ stand for the (known) axisymmetric
(non swirling) solution and the perturbations v0 are assumed small enough for all
non-linear terms to be neglected. The so obtained linear problem reduces to the
eigenvalue problem

�ˆC LŒV�ˆC grad… D 0;

divˆ D 0: (7.5)

predicting the exponential behavior of the projection of the perturbation onto the
eigen-subspace associated to the eigenvalue �

Proj�.v0/ D ˛e�tˆC c:c: (7.6)

Proj�.p
0/ D ˛e�t…C c:c: (7.7)

where “c:c:” stands for complex conjugate and ˆ and … are the velocity and
pressure components of the eigenfunction associated to �. LŒV� stands for the
linearized Navier-Stokes operator. The most convenient way how to handle a 3D
flow field in cylindrical coordinates consists in replacing the radial and azimuthal
components by complex fields [18] v 0̇ D v0 ˙ iw0 (with the redundancy v0� D v0C).
The assumption of axisymmetry amounts to the commutation

LŒV� @
@�

D @

@�
LŒV� (7.8)

allowing us to project the eigenvalue problem (7.5) onto separate sub-spaces
associated to azimuthal wavenumber m D 0;˙1;˙2; : : : . The eigenfunctions are
thus expressed as

ˆ.z; r; �/ D �m.z; r/ e
�im� (7.9)

….z; r; �/ D �m.z; r/ e
�im� (7.10)

where �m.z; r/ is written in the representation of [18]. The projection of the
eigenvalue problem onto the m-subspace becomes

�m�m CƒmŒV��m C rm�m D 0

r�
m�m D 0 (7.11)
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with

r2
m2 D @2

@z2
C 1

r

@

@r

�
r
@

@r

	
� m2

r2
(7.15)

and  D 1=Re. It appears that the obtained equations are invariant with respect
to change of the sign of m (i.e., physically, with respect to the sign of helicity of
perturbations) which means that the eigenvalues �m in Eq. (7.14) depend only on
the absolute value of m (�m D �jmj).

The results of the eigenvalue problems in individual azimuthal subspaces must be
summed up by seeking globally the least stable eigenvalue that will cross from the
left to right complex half-plane. The following table sums up all four possibilities:

m D 0 m ¤ 0

Imag(�m) D 0 Steady and Steady,

axisymmetric non-axisymmetric

Imag(�m) ¤ 0 Unsteady Unsteady

axisymmetric non-axisymmetric

If the least stable eigenvalue is real and becomes positive, the bifurcation is
commonly called regular, a bifurcation at which a complex eigen-pair crosses the
imaginary axis is a Hopf bifurcation. In wakes (as well as for path instabilities)
the least stable azimuthal subspace is always m > 0, mostly m D 1. However,
axisymmetry breaking in m > 1 sub-spaces was also evidenced. It was in the
wake of a heated in the ‘assisting flow’ configuration—see Fig. 7.5. Since the
problem (7.2) depends only on the Reynolds number, the ‘onset’ of the bifurcation
is meant in terms of increasing Reynolds number. For sufficiently low Reynolds
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Ri = 0.2, Re = 400 Ri = 0.6, Re = 1100 Ri = 0.7, Re = 1300

Fig. 7.5 Steady non axisymmetric flow in the wake of a heated sphere in the configuration of
‘assisting flow’. In assisting flow, the flow comes from below, i.e. the convection assists the flow.
(In the picture, the vertical axis is placed horizontally.) Nondimensional Richardson and Prandtl
numbers are defined as Ri D ˇg.Ts�T

1

/d
U2

1

and Pr D 
�

D 0:72. Boussinesq forcing term: ˇ.T �
T

1

/g. For more details, see [15]

Table 7.1 Examples of
primary bifurcation
thresholds of wakes

Body Recrit
Sphere 212

Thin disc 117

Cylinder d=h D 3 160

numbers (sufficiently viscous flows) the axisymmetric solution is stable. There
exists an upper limit of stability, expressed in terms of the critical Reynolds number
Recrit, at which the least stable eigenvalue becomes unstable (its real part becomes
positive). Since other bifurcations usually follow, this first bifurcation is called
primary. The primary bifurcation of unheated axisymmetric solids is always regular
and in the m D 1 subspace. However the critical Reynolds number (threshold of
the bifurcation) depends relatively strongly on the body shape. Three examples are
given in Table 7.1.

7.2.3 Weakly Non-linear Theory

The linear stability analysis shows that the axisymmetric state becomes unstable but
does not provide any information on the new state to which the system settles after
the onset of the bifurcation. For this purpose, non-linear effects must be considered.
The weakly non-linear theory has also an important implication on the choice of the
numerical method to be used for direct numerical simulations of 3D flows arising
from axisymmetry breaking.

The linear theory of the previous sub-section showed that the eigenfunc-
tions (7.9), (7.10) correspond to terms of azimuthal Fourier expansion. A general
three-dimensional flow-field can be written as a Fourier series

v.z; r; � I t/ D
1X

mD�1
vm.z; rI t/ e�im� I v�m D vm

p.z; r; � I t/ D
1X

mD�1
pm.z; rI t/ e�im� I p�m D pm: (7.16)
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An axisymmetric flow has only one term (m D 0). For cold wakes, the
leading mode of the perturbation is v1.z; rI t/, i.e. the projection onto the m D 1

azimuthal subspace. Using the spectral basis of eigenfunctions, we can characterize
the instability by stating that the projections onto all eigen-subspaces decay
exponentially except that onto the subspace associated to the unstable eigenvalue.
After a sufficient time, any small perturbation becomes expressed by only two
(independent) terms of expansion (7.16) corresponding to m D 0;˙1 and, as
long as the linear approximation holds, the term v1.z; rI t/ is proportional to the
eigenfunction �1;�, associated to the unstable eigenvalue �. Since the linear theory
predicts an exponential growth of this term, the linear approximation will become
inaccurate at some moment and v1.z; rI t/will have projections onto the stable eigen-
subspaces of the m D 1 azimuthal subspace corresponding to other eigenvalues
of the operator (7.14). To define an instability amplitude A.t/ we shall use the
projection onto the unstable subspace:

Proj�1;�v1.z; rI t/ D A.t/ �1;� (7.17)

Separating the perturbation from the axisymmetric base flow, assuming all terms
of the Fourier expansion (7.16) to be analytical functions of A.t/, inserting into the
full Navier-Stokes equations and comparing terms of the same order of A we can
show that

vm  Ajmj; (7.18)

i.e. that the convergence of the series is exponential (in terms of m) and is
especially fast close to the bifurcation threshold. The lowest order non-linear model
of the dynamics is obtained by truncating at the third order of the bifurcation
amplitude. If the bifurcation is of Hopf type, we get the well known Landau model.
Considering the case of regular bifurcation common for unheated wakes and many
free falling/rising axisymmetric bodies, the eigenvalue � is real and the associated
eigenfunction �1;� can also be defined as real. This results in a Landau model for a
regular bifurcation having the form:

dA

dt
D �A � CjAj2A; Im.�/ D 0 (7.19)

where the constant C is real, whereas the amplitude A is complex. Equation (7.19)
is clearly invariant with respect to rotations in the complex plane. Assuming the
bifurcation to be supercritical (i.e. C > 0), the asymptotic solution is

p
�=Cei˛

the phase ˛ being arbitrary and determined by the initial condition. Similarly as
for a standard Hopf bifurcation, Fig. 7.6 represents the corresponding bifurcation
diagram. In contrast with the Hopf bifurcation, the circle does not represent a loop
but a set of asymptotic points in the complex plane to which the solution can settle
depending on initial perturbation as indicated by the two dash-dotted lines given as
two examples. To understand the implication of this result on the asymptotic state
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Fig. 7.6 Bifurcation diagram of a regular bifurcation

of the non-axisymmetric perturbation, let us insert it into Eq. (7.16). Considering,
say, only the axial velocity component we get:

u1.z; r; � I t/ D A�1;�;ze
�i� C c:c: D 2

p
�=C�1;�;z.z; r/ cos.� � ˛/ (7.20)

where �1;�;z.z; r/ stands for the axial components of the eigenfunction �1;�.
Equation (7.20) shows that the perturbation has a symmetry plane � D ˛. The
theoretical implication of the weakly non-linear theory can be summed up by stating
that a supercritical regular bifurcation leads to a new steady state which has a planar
symmetry with respect to an arbitrarily oriented plane containing the symmetry axis.

The practical implication consists in the fast convergence of the azimuthal
Fourier expansion. The numerical implementation using the azimuthal Fourier
decomposition was used (see [1, 9]) for direct numerical simulation of the wake of
a sphere and was generalized for configurations involving freely moving axisym-
metric bodies that will discussed later on. The principle of the method can be
understood from Fig. 7.7. The computational domain is assumed to be a cylinder,
the sphere being placed at the cylinder axis. The so obtained configuration remains
axisymmetric and a truncated Fourier expansion can be used to express the flow
field. Each Fourier coefficient is function of only two variables z and r and be
discretized on an arbitrary 2D mesh. We systematically use spectral elements for
their accuracy and flexibility allowing a local refinement. All differential operations
are applied to Fourier components (in spectral space). For simulations where the
truncation was very short, the non-linear terms could be computed as convolutions
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Fig. 7.7 Spectral element decomposition of the axial-radial plane of a cylindrical domain around
a sphere placed in a uniform flow, combined with Fourier expansion in the azimuthal direction

Fig. 7.8 Pressure field in sphere wake represented by iso-surface corresponding to a negative
pressure value at Re D 400. The contributions of modes 0–3 are represented separately. The last
figure shows the resulting field

directly in the spectral space [9], otherwise the standard switching between spectral
and physical space using a discrete (fast) Fourier transformation is used. The
differential operations performed in the spectral space allow us to handle easily
the symmetry axis using the complex coordinates [18] reducing all singularities at
the axis to removable ones. The efficiency of this spectra–spectral element approach
is illustrated in Fig. 7.8 where the pressure in the chaotic sphere wake at Re D 400

is represented in terms of pressure iso-surfaces. The relatively complicated flow
structures are actually well reproduced by truncating the Fourier series as low as at
mode m D 3 which is given by the fact that the fine structures arise rather in the z; r
plane than in the azimuthal direction.
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7.2.4 Some Examples of Bifurcation Scenarios in Wakes

Direct numerical simulations make it possible to investigate relatively easily the
sequence of bifurcations preceding the onset of chaos (see e.g. [1]). It has become
usual to include axisymmetric stages of attached and detached flow in the descrip-
tion of the transition scenario, but the primary bifurcation is the most important
milestone. We have already seen that in all unheated flows it results in a steady
non-axisymmetric flow having an arbitrarily selected symmetry plane. The primary
bifurcation is followed by a secondary bifurcation of Hopf type. It can be said that
the transition scenario is dominated by a real eigenvalue and a complex eigen-pair.
In unheated wakes of fixed objects the first eigenvalue to become unstable is always
real. However, in general the order can be inverted. An interesting illustration is the
opposing flow past a heated sphere [15]. The same holds also for flat freely moving
bodies. The discussion of the theoretical implication of the interplay between a real
eigenvalue and a complex eigen-pair dominating a transition scenario will be done
in the framework of the description path instabilities.

Figure 7.9 sums up the scenario in the wake of a fixed sphere. The streamlines
in the first two figures show an attached axisymmetric flow below Re D 20 and
an onset of recirculation above Re D 20. The threshold of the primary bifurcation
has already been mentioned (Re D 212). The steady non-axisymmetric flow can

Fig. 7.9 Transition scenario in a fixed sphere wake
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be very well represented by the axial vorticity. A plot of vorticity iso-surfaces at
opposite levels of vorticity evidences two characteristic counter-rotating vortices
easily observable also in experiments using dye injection. The secondary, Hopf
bifurcation, sets in at Re D 274. It brings about a loss of stationarity. The
symmetry plane of the flow remains, however, conserved. The vorticity is now shed
periodically with alternating sign. The non axisymmetry of the flow results in a
non zero lift, the vector of which lies in the symmetry plane. When the periodic
oscillation sets in, the lift oscillates, its projection describing a segment marking the
intersection of the symmetry plane with the flow cross-section. The two enlarged
figures of the periodic wake show the up and down dissymmetry resulting in a non
zero mean lift. Above Re D 300, the periodicity gives way to quasi-periodicity due
to a secondary Hopf bifurcation. The new frequency is about 3.5 times smaller and
can be observed as beatings. The symmetry plane resists also to this second Hopf
bifurcation. In the interval between Re D 325 and 356, an increasingly complicated
time behavior of a still planar symmetric flow could be observed. The dynamics
seems to undergo additional subharmonic transitions witnessing of the progressive
loss of correlation in vortex shedding. At the end of this process (with increasing
Reynolds number), the flow eventually loses its planar symmetry and becomes
completely three-dimensional which results in the lift describing a chaotic path
in the cross-section plane. It is well known that the classical bifurcation theory of
low dimensional dynamical systems defines chaos solely on the basis of the time
behavior using the notions of Lyapunov exponents and Hausdorff dimension to
characterize the stretching and folding. These theoretical characteristics are already
difficult to quantify for as simple models as the Lorentz or Roessler ones and are,
of course, inapplicable to results of direct numerical simulations of 3D flows. For
this reason, we consider as chaotic all flows having lost all obvious periodicity
and symmetry. This definition is certainly not mathematically rigorous but remains
practically applicable provided sufficiently long simulations are available.

It not necessary to investigate the latest stages of transition to chaos to evidence a
different scenario if very flat cylinders, very flat oblate spheroids or, in extreme case,
an ideal infinitely thin disc are considered. As shown in the upper Fig. 7.10 for an
oblate spheroid of aspect ratio d=.2a/ D 6, d being the diameter and a the half axis,
(see also [3]), the secondary (Hopf) bifurcation does not conserve the symmetry of
the flow at its onset. Instead of shedding alternate vortices as it is the case for the
sphere, the wake twists periodically which results in a lift oscillating perpendicularly
to the symmetry plane selected at the primary instability. As the Reynolds number
increases the twisting transforms progressively to vortex shedding but in a plane
perpendicular to that selected at the primary bifurcation. The plot of the lift shows
that the lift oscillates perpendicularly to its mean deviation visible in the upper figure
and that the mean value of the lift is zero. This is visible on the wake as an up/down
symmetry of the vortex shedding.
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periodic state without symmetry and non zero mean lift

periodic state with symmetry plane and zero mean lift

Fig. 7.10 Unsteady periodic wake of a an oblate spheroid of aspect ratio 6 represented in terms
of axial vorticity. Upper two figures: Re D 145, lower two figures: Re D 183. Small figures on the
right: paths of the lift vector
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Fig. 7.11 Disc with symmetry axis inclined by 4ı with respect to the flow direction. Left figure:
Re D 120, steady flow. Right figure: Re D 140, periodic flow

It is interesting to note that experiments aiming to evidence this scenario failed.
A joint experimental and numerical work [5] provided the explanation showing
that even a very small imperfection in the axisymmetry of the experimental setup
makes a disc wake recover the scenario of a sphere. Of course, the axisymmetry
breaking corresponds, strictly speaking, to an imperfect bifurcation without exact
threshold but the effect of strong amplification of the steady vorticity threads
remains observable. The symmetry plane is imposed by the setup. The vortex
shedding conserves this symmetry plane and is asymmetric resulting in a significant
non-zero mean lift. Figure 7.11 illustrates that a relatively small inclination is
sufficient to switch to the sphere-like scenario in the wake of a disc. The paper
[5] shows that this effect arises starting with a 2ı inclination. In an experimental
setup, it is not only difficult to assure a perfectly perpendicular position of the disc
but already the disc holding itself perturbs the axisymmetry of the flow.

The last mentioned example shows that the agreement between numerical
simulations and experimental is very often difficult to obtain.
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7.3 Path Instabilities of Free Axisymmetric Bodies

7.3.1 Problem Formulation for a Homogeneous Spherical
Body

The problem of motion of a single sphere moving in an unconfined quiescent
Newtonian fluid under the action of gravity and buoyancy is the best suited for the
generalization of the spectral–spectra-element method [9] described in the previous
section. The idea of the simulation consists in accompanying the sphere with a
vertical cylindrical domain. If the motion remains vertical, the fixed wake and
the free-body configurations are equivalent, the only difference consisting in the
choice of reference frame for the velocity field and the necessity to couple the
flow velocity with the balance of the drag and the resultant of the weight and
buoyancy. With decreasing viscous effects, the Reynolds number will increase. A
somewhat simplified and not totally accurate conclusion consists in expecting that,
when the Reynolds number reaches the critical value of 212 evidenced in the fixed
body wake, the axisymmetric solution will lose its stability giving way to a steady
non-axisymmetric flow field. The loss of axisymmetry of the flow will result in
a lift making the sphere drift in the horizontal direction. At the same time, the
difference in the shear on opposite sides of the intersection of the sphere surface
with the symmetry plane of the flow will drive a rotation. Neither of these two effects
necessitates a modification of the geometry of the computational domain since the
latter can be translated in a any direction and, due to the sphericity of the body, any
rotation can be accounted for merely by the boundary condition at the body surface
without modifying the domain geometry. The schematic view of the configuration is
thus basically identical to Fig. 7.3. Only the question of the reference frame and of
the boundary conditions at sphere surface is to be raised (see also [14]). Figure 7.12
can be considered as referring to a rising sphere but, to account for a falling one,
it is sufficient to turn it upside down. The velocity field will be referred to a fixed
frame. This has the advantage of avoiding inertial acceleration terms arising in the
non inertial moving frame. The motion of the computational domain is accounted
for as moving mesh. The formulation of the problem requires to write both the flow
and solid body motion equations.

The non-dimensionalization (choice of units) of flow equations follows the same
lines as in Sect. 7.2.1. The basic difference consists in the absence of predefined
velocity scale. Assuming the ambient fluid to be homogeneous of constant density �,
the hydrostatic pressure gradient will be extracted from the equations by introducing
the buoyancy force in the solid motion equations. As the result, a characteristic
acceleration can be defined as

geff D
ˇ̌
ˇ̌�s
�

� 1
ˇ̌
ˇ̌ g (7.21)
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Fig. 7.12 Schematic view of
the configuration involving a
free sphere. The Ofixzfix axis
of the fixed (laboratory)
frame is vertical and points in
the direction in which the
sphere is driven by gravity
and buoyancy. The Oxyz
frame translates with the
sphere center and the vertical
Oz axis points in the direction
of the wake

where �s is the solid body density. The acceleration scale can be used to define a
velocity scale as

U D
sˇ̌
ˇ̌�s
�

� 1
ˇ̌
ˇ̌ gd: (7.22)

Given the velocity scale U, the non-dimensionalization of the flow equations is the
same as in Sect. 7.2.1 and results in equations

@v
@t

C Œ.v � u/ � r�v D �rp C 1

G
r2v (7.23)

r � v D 0; (7.24)

differing from Eqs. (7.1), (7.2) only in two points. (1) The advective terms account
for the velocity of the mesh which is uniform and equal to translation velocity of the
sphere denoted u. (2) The Reynolds number, the inverse of which represented the
non-dimensional viscosity in Eq. (7.2), is replaced by the Galileo number

G D

rˇ̌
ˇ �s� � 1

ˇ̌
ˇ gd3


(7.25)

where  stands, again, for the fluid kinematic viscosity. The advantage of this choice
is that the so defined Galileo number remains close to the Reynolds number based
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on the terminal velocity u1 of the sphere. Indeed, considering the balance between
the drag and the force driving the motion we get

�

6
d3j�s � �jg D Cd

�

8
d2�u21; (7.26)

where Cd is the drag coefficient, which results in the relation

Re1 D u1d


D
s

4

3Cd
G: (7.27)

Knowing that, in the regimes we are interested in, the drag coefficient varies between
1 and 0.5, the factor multiplying the Galileo number, which is actually equal to the
non-dimensional value of the terminal velocity, will not exceed 1.6.

Unlike in Fig. 7.7, the flow velocity is zero far from the body in the present
formulation. That is, the inflow boundary condition is now a zero velocity. The
motion of the sphere is accounted for by a Dirichlet boundary condition at the sphere
surface

vjS D u C� � rS (7.28)

where � is the angular velocity vector of the sphere rotation and rS is the position
vector at the sphere surface.

The boundary condition at the sphere surface couples the flow equation with solid
body motion equations

�s

�

du
dt

D 6

�
Ff l.v; p/ � iI Ff l D

Z

S
� � n dS (7.29)

�s

�

d�

dt
D 60

�
Mf l.v; p/I Mf l D

Z

S
rS � � � n dS (7.30)

� D �p1 C 1

G

�rv C rvT
�

(7.31)

where i D .1; 0; 0/T stands for the driving acceleration term. As indicated in
Eqs. (7.29)–(7.31), the hydrodynamic force and torque are computed by integrating
the pressure and the viscous shear over the sphere surface.

The spatial discretization of the flow equations has been described in Sect. 7.2.3.
An additional difficulty arises in implementing a time discretization applicable to
all density ratios �s=� including very small ones corresponding to light ascending
spheres. It is easily seen that, in the extreme case of �s D 0, Eqs. (7.29), (7.30)
reduce to constraints imposed to the current flow field, which makes the use of
explicit treatment impossible. The difficulty can be partly avoided by introducing
the added mass (equal to 0.5 times the mass of the displaced fluid), however the
added mass effect accounts only for pressure and not viscous effects which are
about of the same order in the considered regimes. An accurate implicit treatment
is described in [12].
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7.3.2 Primary Path Instability of a Sphere

The problem of a freely moving sphere summed up by Eqs. (7.29)–(7.31) depends
on two parameters defined as the Galileo number and the solid fluid density ratio.
The full parametric study of the transition scenario thus involves variation of both
parameters. In particular, the thresholds of the bifurcations expressed as critical
Galileo numbers is to be expected to depend on the density ratio.

In [13] the onset of the primary instability was investigated with special focus on
light spheres of density smaller than one. Given that the axisymmetric base flow is
steady, the Reynolds number is well defined by the constant terminal velocity and
the found threshold can be expressed in terms of both the Galileo and the Reynolds
number. In agreement with expectations, the primary instability was found to be
regular (as well as that of a fixed sphere wake). Its threshold lies, however, slightly
below that of the fixed sphere wake: Recrit D 205 (Gcrit D 156) instead of 212.
There is an easy argument explaining why the critical Reynolds number is different.
The formal structure of the linear stability problem can be represented as

�Y D M Y (7.32)

Y �
�

v0
Z

�
; M �

�
K H
B 0

�
: (7.33)

where v0 stands for the solenoidal flow perturbation (r:v0 D 0), Z � .u;�/T for
the 6 degrees of freedom of the solid body and K for the linearized Navier-Stokes
operator (projected onto the subspace of solenoidal flow fields). The additional
degrees of freedom modify the eigenvalue problem. Since the new system has a
larger number of degrees of freedom, it can be expected to become more easily
unstable. This intuitive expectation is confirmed in the present case of a spherical
body, however a mathematical proof has been given (see [7]) that the free body
degrees of freedom can have both a destabilizing and stabilizing effect on the
regular bifurcation. The stabilizing effect was found for flat cylinders. This was
also confirmed by direct numerical simulation in [4]. In the paper [13], the critical
Reynolds number of 205 was erroneously interpolated with the value of 212
obtained in the fixed sphere wake and considered to apply to spheres of very large
density ratio. This conjecture is, however, false since, if the bifurcation is regular,
the density ratio does not influence this threshold as was noted in [7] and is obvious
from Eqs. (7.29), (7.30) in which the time-derivative on LHS vanishes. As expected,
the loss of axisymmetry of the flow results, initially in a lift. However, since the
asymptotic state is steady, the velocity of the sphere is constant and thus no resultant
force acts on free body. I.e., the non axisymmetry of the flow is compensated by the
horizontal motion of the sphere letting the lift vanish. The sphere follows a straight
oblique trajectory. The regime is called steady oblique. At the onset of the secondary
bifurcation the horizontal velocity attains about 10% of the vertical one, i.e. the
angle of the trajectory with respect to vertical direction is about 6ı. This inclination
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is easily observable experimentally since, because of the stability of the regime, the
straight trajectories can be very long and the horizontal drift very significant.

The secondary bifurcation is of Hopf type and the flow past the sphere presents
similar features as those described in Sect. 7.2.4, i.e., the symmetry plane is con-
served and vortex shedding with planar symmetry sets in. However, the unsteadiness
makes the effects of the density ratio very significant. As the Galileo number
increases, a large variety of trajectories is observed necessitating some classification.
The latter can be provided by theoretical considerations based on a third order
weakly non linear theory involving a real eigenvalue and a complex eigen-pair.

7.3.3 Weakly Non-linear Theory of the Interplay of a Regular
and a Hopf Bifurcation

When a secondary bifurcation sets in, the non-linear effects may have already so
strongly modified the base flow of the primary bifurcation that the linear analysis of
the primary base flow is of no value. This is the case, e.g., of the infinite cylinder
for which the primary (Hopf) bifurcation sets in at Re D 46. This arising periodic
oscillating regime is linearly stable until Re D 188:5 at which no new frequency
appears but the spatial structure of the wake becomes three-dimensional. Given
the large difference of the flow at Re D 46 and at Re D 188:5, the onset of
three-dimensionality can not be predicted by a linear analysis of steady wake. This
not the case for the sphere and other axisymmetric bodies. The secondary Hopf
bifurcation of the sphere wake was predicted for the first time in [17] using a linear
analysis of the axisymmetric wake by evidencing a complex eigen-pair following
the leading real eigenvalue in crossing the imaginary axis. The prediction of the
secondary instability threshold of [17] Recrit D 277:5 which is quite close to the
exact value (of about 273) accounting for the fact that the base flow of the secondary
bifurcation is no longer axisymmetric. This leads to the conclusion that the non-
linear effects remain limited and that description of both bifurcations can be well
approximated within a common weakly non-linear approximation. For light spheres,
the secondary instability threshold is still closer to the primary one. While the
critical Galileo number of the primary (regular) bifurcation) is 156, the secondary
(Hopf) bifurcation sets in as early as for G D 167 for an infinitely light (�s=� D 0)
sphere.

Instead of assuming that the linear unstable perturbation is proportional to a
single eigenfunction as in Eq. (7.17), we consider that both a real eigenvalue �
and a complex eigen-pair � ˙ i! become unstable almost simultaneously so that
the perturbation is driven by the three eigenvalues. In Eq. (7.17), the subscript 1
referred to the azimuthal subspace m D 1. The considerations are based on the
assumption that both eigenvalues� and� have been obtained in the same sub-space.
Since for the path instabilities the subspace is always m D 1, we drop this subscript
in what follows. The velocity field is no longer a full characteristic of the state. In
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Eq. (7.33) we made it clear that the state is characterized, in addition, by six velocity
components. The perturbation is thus fully expressed by the array Y depending on
three bifurcation amplitudes A;B˙:

Y D A.t/�r C BC.t/�C C B�.t/�� (7.34)

where �r is associated to the real eigenvalue � and �˙ are associated to the complex
eigen-pair � ˙ !. To understand the dynamics, it is not necessary to use the full
information of the Y array. Instead, the representation of the two horizontal compo-
nents of the translational velocity of the sphere, conveys a sufficient idea. To keep a
scalar representation, a complex velocity uC D ux C iuy will be used. (This choice
is actually in line with the formalism [18] used in the code.) Normalizing the eigen-
functions so that their uC velocity component be equal to 1, Eq. (7.34) reduces to

uC D ux C iuy D A.t/C BC.t/C B�.t/; (7.35)

i.e. the complex horizontal velocity is directly the sum of instability amplitudes.
Recalling the arbitrariness of the selection of the symmetry plane at the regular
bifurcation, we can consider, without loss of generality, that the amplitude A.t/
is real. A third order weakly non-linear model describing the dynamics can be
found in e.g. in [6] or in [16]. (For a more fundamental mathematical background
see [10].) The details go beyond the scope of this presentation, moreover, some
frequently observed regimes would require a higher order model to be entirely
explained. For these reasons we present only a non exhaustive list of possible stable
states expressed in terms of amplitudes (7.35).

• BC D B� D 0, A ! A1: ux D const:: steady oblique regime
• A ! A1, BC ! B1ei!1

t, B� D BC: oblique oscillating planar regime
• A1 D 0, BC ! B1ei!1

t, B� D BC: planar oscillating trajectory, vertical in the
average (zig-zagging regime)

• A1 D 0, BC ! B1ei!1

t, B� D 0 (or the same with opposite helicity) purely
helical regime with positive or negative helicity

• A1 D 0, jBCj ¤ jB�j: a general case of states with non zero helicity. A third
order weakly non-linear model is insufficient to model such states, however,
usually, higher order effects are present so that such states are relatively frequent.

Another purpose of Eq. (7.35) is to emphasize the interest of the path of the
complex velocity uC in the complex plane for the classification of the trajectories.

7.4 Transition Scenario of a Free Sphere

In this and the following sections we comment the results of direct numerical simu-
lations for spheres, discs and oblate spheroids. The purpose of the investigations is
to provide an exhaustive information on the regimes the dynamics of freely moving
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solid bodies can undergo in the transition from steady vertical fall or rise to a fully
chaotic motion as viscous effects decrease.

The transition scenario of a falling or rising sphere was first investigated in [14].
In view of the interest of this prototypical configuration for benchmarking of multi-
particle codes as well as of later experimental results [11, 20], a more accurate
investigation focusing also on the problem of characterization of chaotic regimes
was published in [21].

As shown in Sect. 7.3.1 an exhaustive information can be obtained by investigat-
ing the trajectories and flow regimes in the two parameter space of the solid/fluid
density and Galileo number. The up-to-date information [21] is summed up in the
state diagram of Fig. 7.13.

Fig. 7.13 State diagram in the G � �s=� parameter space. Thresholds of bifurcations are
represented by lines, different colors represent regimes indicated in the figure. Overlapping areas
mean bi-stability. The overlapping of the chaotic area with zones of high and low frequency oblique
oscillating regimes (labeled as “planar or rotating”) is an area of bi-stability of states with fixed
and slowly rotating symmetry axis. The symbols represent the simulated trajectories (in cases of
coexistence of two or three regimes the symbols are artificially shifted). Meaning of symbols. Plus:
vertical regime, black right pointing triangle: steady oblique, green right pointing triangle: low
frequency oblique oscillating, green down pointing triangle: low frequency quasi-periodic oblique
oscillating, yellow right pointing triangle: high frequency oblique oscillating, cyan open circle:
perfect or slightly oblique zig-zag, cyan down pointing triangle: intermittent zig-zag, blue open
circle: vertical oscillating planar, blue down pointing triangle: vertical quasi-periodic, blue right
pointing triangle: periodic planar slightly inclined, blue filled circle: helical, pink diamond: chaotic
(or rotating plane in the bi-stability domain)



418 J. Dušek

7.4.1 Early Stages

The first two bifurcating states arising due the first two instabilities can be
considered as early stages of the transition. In Fig. 7.13 the primary instability is
recognized as the leftmost vertical line separating the vertical and steady oblique
states. As has already been explained, the primary bifurcation being regular, the
threshold must be independent of the density ratio. In [21], the critical Galileo
number was found to be 155.8. The secondary bifurcation follows relatively close to
the primary one. It is a Hopf bifurcation giving rise to the already discussed oblique
oscillating regime. Both the primary and secondary bifurcations are supercritical.
The horizontal complex velocity describes a segment of straight line passing through
the origin but the segment is centered off the origin. As the result, the trajectory
remains planar, the mean horizontal velocity is non zero (yielding a mean horizontal
drift) and the oscillations are very accurately periodic. The most remarkable feature
of the secondary bifurcation is its dependence on the density ratio. Its characteristics
are given in Table 7.2 reproduced from [21]. It is seen that the critical Galileo
number significantly increases for density ratios increasing from 0 to 2.5, whereas
starting from �s=� D 2:5 the threshold is practically constant. This difference
is related to the fact that actually two different Hopf bifurcations set in. Below
�s=� D 2:5 the resulting frequency is about 2.3–2.6 times smaller than above. At
the secondary bifurcation threshold, the separation between both frequencies is quite
accurately at 2.5 as can be seen from the table showing that at this density ratio both
frequencies were evidenced. The state diagram (Fig. 7.13) shows, however, that the
high frequency state can be found at as low a density ratio as 1.3 at a higher Galileo
number (215).

The physical reason of the two different frequencies can be understood from
Figs. 7.14 and 7.15. Figure 7.14a represents the stream-wise vorticity in the wake
of a sphere of density ratio 3 and Galileo number 199 in terms of iso-surfaces of

Table 7.2 Critical Galileo
number Gcrit, horizontal
velocity uh, vertical velocity
uz, angular velocity of
rotation !h and frequency f at
the onset of oblique
oscillating regime

�s=� Gcrit uh uz !h f

0 167:18 0:0969 1:3355 0:0149 0.0701

0.2 169:23 0:1031 1:3388 0:0151 0.0667

0.5 172:52 0:1108 1:3443 0:0150 0.0644

1 178:55 0:1224 1:3544 0:0139 0.0672

1.3 182:5 0:1275 1:3622 0:0129 0.0677

1.7 187:35 0:1327 1:3704 0:0112 0.0711

2 190:69 0:1356 1:3763 0:0099 0.0729

2.5 196:08 0:1387 1:3859 0:0077 0.076/0.175a

3 195:19 0:1383 1:3843 0:0081 0.1741

4 195:18 0:1383 1:3842 0:0081 0.1751

10 195:06 0:1384 1:3838 0:0082 0.1771
aFor the density ratio of 2.5 both frequencies are present even
at the threshold of unsteadiness
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Fig. 7.14 (a) High
frequency (fluid) mode
(G D 199; �s=� D 3,
stream-wise vorticity levels:
˙0:15). (b) Fixed sphere
wake (frozen translation
velocity of a), no rotation,
Re D 277:9, same vorticity
levels: ˙0:15 as in a. (c) Low
frequency (solid) mode
(G D 196; �s=� D 2,
vorticity levels: ˙0:05)
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Fig. 7.15 Comparison of
amplitudes of oscillations of
the low frequency regime
�s=� D 2, G D 196 (full blue
line) and high frequency
regime �s=� D 3, G D 199

(dashed red line). Note that
the mean values are
comparable
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opposite levels ˙0:15. Figure 7.14c provides analogous information for a sphere of
density ratio 2 at a similar Galileo number (196). The difference of the length of
vortical structures (shorter in Fig. 7.14a than in Fig. 7.14c) is related to the lower
vortex shedding frequency in the wake of the lighter sphere. More importantly, to
have a similar picture, the levels of the vorticity used for plotting Fig. 7.14c had to
be taken three times lower (˙0:05) than in Fig. 7.14a. I.e. the stream-wise vorticity
generated in the wake of the lighter sphere is much smaller than that of the denser
one. In contrast, Fig. 7.15, comparing the oscillations of the horizontal velocities of
both spheres, shows that the oscillation amplitude is much larger for the light sphere.
The presence of modes characterized by large and small amplitude of oscillations of
the free body was recently predicted by linear analysis [19]. The modes where the
free body strongly interacts with the fluid were called ‘solid’, whereas those where
the solid presents few motion were called ‘fluid’. Clearly, the low frequency mode
is a solid one and the high frequency mode a fluid one. This statement is further
confirmed by Fig. 7.14b representing the vorticity at the same levels as in Fig. 7.14a
for a sphere the translation velocity of which has been frozen and the rotation
inhibited. This fixed sphere configuration presents the same vorticity structures. The
notion of fluid and solid (a more accurate designation would be solid-fluid) modes
is also very important for the understanding of some regimes of discs, flat cylinders
and oblate spheroids.

The two primary bifurcating states (oblique and oblique oscillating) are easy
to observe in experiments (see Fig. 7.2 and references [20] and [11]). They are,
however, limited to a narrow interval of Galileo numbers. A further investigation
of what happens at higher Galileo numbers is thus necessary to understand the
transition scenario.
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Table 7.3 Estimates of critical Galileo numbers Gcrit and corresponding mean vertical velocities
at the onset of chaos

�s=�f 0 0.2 0.5 1 1.3

Gcrit1 171 175 179 192 202

uz1 1.350 1.356 1.361 1.381 1.392

�s=�f 1.7 2 2.5 3 4 10

Gcrit1 228 224 228 230 234 240

Gcrit2 212 216 215 215 213 219

uz1 1.429 1.424 1.430 1.436 1.439 1.447

uz2 1.409 1.410 1.413 1.413 1.412 1.417

For subcritical transition two values (upper and lower limit of bi-stability) are provided

7.4.2 Onset of Chaos

Table 7.3 presents some critical Galileo numbers at which chaotic behavior sets in.
It is clearly seen that the way how chaos sets in is different for ‘light’ and ‘dense’
spheres. The same is also hinted in the state diagram (Fig. 7.13) by representing a
patch of early chaotic states of light spheres in cyan color.

Light Spheres

In the early paper [14] it was observed that the amplitude of oscillations of
the oblique oscillating regime of buoyant spheres could become large enough to
compensate the mean value of the horizontal velocity. When this happens the sphere
rises temporarily vertically. In the somewhat coarse parametric study of [14], it
happened that at the investigated point �s=� D 0:5;G D 180, the trajectory kept
its planarity and each time the horizontal velocity became zero the sphere started
to drift in the opposite direction of the vertical axis. This resulted in a perfect
zig-zagging motion (see Fig. 7.16 which was erroneously considered to exist in a
whole region of the parameter space). Such perfectly periodic planar trajectory is
an exception among a large variety of non planar non-periodic trajectories some
samples of which are represented in Figs. 7.17, 7.18, 7.19, 7.20, and 7.21. It can
be seen that the temporary verticality of the trajectory brings about a situation
of an arbitrary selection of the symmetry plane of the wake we described in
Sect. 7.2.3. Various cases are possible: planar trajectory but intermittent selection
of the drift direction (Fig. 7.17) and a large variety of non planar trajectories due to
a selection of a different symmetry plane after the vertical stage. Such trajectories
are zig-zagging on short time scales but globally three-dimensional and aperiodic
(Fig. 7.18), intermittent and zig-zagging in an oblique plane (Figs. 7.19 and 7.20)
or characterized by a completely arbitrary angle of selection of the new symmetry
plane resulting in chaotic three-dimensional paths. The common feature of all
these cases is the small scale order interrupted by intermittence during the vertical
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Fig. 7.16 Perfect zigzagging trajectories of spheres �s=� D 0:5, G D 180. (a), (b) Horizontal
velocities as a function of time, (c) projection of the velocity vectors onto the horizontal plane, (d)
trajectory

stages. Such behavior can be qualified as chaotic intermittent. There is no bistability
at the onset of chaos of light spheres (the oblique oscillation regime re-appears
at the same critical Galileo number when the Galileo number is decreased back),
the thresholds in the first part of Table 7.3 are easily determined by detecting the
vanishing horizontal velocity. Since the paths are chaotic starting at the critical
Galileo numbers of Table 7.3 the cyan area of the state diagram (Fig. 7.13) is not
separated from fully chaotic states by any well defined threshold. The choice to
make a difference was given by the small scale regularity of the trajectories making
them appear as regular in too short simulations. With increasing Galileo numbers
even the short scale regularity disappears.

Dense Spheres

The different secondary bifurcating state for denser spheres has a significant impact
on the scenario of onset of chaos. For density ratios �s=� � 1:7 there is a region
of bistability of planar quasi-periodic paths and helical trajectories. The critical
Galileo number Gcrit1 in Table 7.3 corresponds to the loss of stability of planar



7 Path Instabilities of Axisymmetric Bodies Falling or Rising Under the. . . 423

900 1000 1100 1200 1300 1400
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

t

uh

(a)

0 1 2 3 4
0

100

200

300

400

500

600

700

800

x

z   

(b)

Fig. 7.17 Horizontal velocity and trajectory of very light spheres at �s=� D 0:2, G D 180. (a)
Velocity as a function of time and (b) trajectory
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Fig. 7.18 Velocities and trajectories of very light spheres at �s=� D 0:2, G D 190, (a) horizontal
velocities as function of time (vertical axis), (b) trajectory, (c),(d) zoom on last 50 time units of
figures (a) and (b)

trajectories (becoming suddenly chaotic). When, the Galileo number is decreased,
the chaotic trajectories become oscillating and helical. The critical Galileo number
Gcrit2 indicates when these helical trajectories stop to rotate to return to oblique
oscillating regime.
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Fig. 7.19 Velocities and trajectories of heavier but still buoyant spheres. Left column: horizontal
velocities as a function of time, right column: trajectory. (a),(b) �s=� D 0:5, G D 190 (last six
periods), (c),(d) �s=� D 0:65, G D 195

Both thresholds are also represented in the state diagram (Fig. 7.13). See the
green full line delimiting the “low frequency quasi-periodic oblique oscillating”
states on the right (Gcrit1) representing the upper limit of stability of planar
trajectories and the full magenta line to the left of it (Gcrit2) indicating the lower
limit of existence of three-dimensional (helical) trajectories. The scenario can be
described in the following way. Consider e.g. a density ratio of 3. At G D 215,
the stable state still corresponds to the high frequency fluid mode described in
Sect. 7.4.1. See Fig. 7.22. Recall that the trajectory is planar and oblique oscillating.
When the Galileo increases, first the upper limit of stability of the purely periodic
fluid mode (full yellow line) is reached and the low frequency of the solid mode
appears. This results, in general, in quasi-periodic dynamics except when both
frequencies lock in with the integer ratio of 3. This is what actually happens at
G D 220 where we observe a periodic oscillation with frequency 0.06 strongly
marked by a third harmonic. At G D 225 the dynamics is quasi-periodic with
two incommensurate frequencies. What happens when the critical Galileo number
Gcrit1 is reached is seen in Fig. 7.23 representing a simulation for a density ratio
2 starting from a planar quasiperiodic regime at G D 230, i.e. above the critical
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Fig. 7.20 Quasi-periodic zigzagging trajectories of heavier spheres at �s=� D 0:5, G D 200

(last six periods). (a), (b) Horizontal velocities as a function of time, (c) projection of the velocity
vectors onto the horizontal plane, (d) trajectory

Galileo number of 224 (see Table 7.3). The graph of Fig. 7.23a, representing the
horizontal velocity as function of time, shows the initial planar quasiperiodic regime
becoming completely chaotic. This makes the originally oblique oscillating path
become chaotic and three-dimensional (Fig. 7.23b).

In the paper [14], it has already been noted that the chaotic trajectories of dense
spheres have a strong resemblance with helices. If the Galileo number is lowered
back from a chaotic regime, the trajectories progressively become perfect helices
with superimposed oscillations. As can be seen in Figs. 7.24 and 7.25, the latter are
of the same nature for planar trajectories (low and high frequency, quasi-periodic).
The difference is given by the very regular rotation of the plane of oscillations,
i.e. of the symmetry plane of the vortex shedding. Figures 7.24a, c and 7.25a,
c show how the thresholds Gcrit2 were determined. In Figs. 7.24a and 7.25a the
rotation exponentially decays whereas in Figs. 7.24c and 7.25c the rotating state
is still clearly stable. For the density ratio 10 and G D 220, the helix has especially
large diameter and pitch which is due to the very large period of rotation (more 200
times larger than the period of oscillation). In the state diagram (Fig. 7.13), the sub-
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Fig. 7.21 Horizontal velocities (a) and trajectory (b) of heavier but still marginally buoyant
spheres at �s=� D 1, G D 195.

domain of slowly rotating states is represented in light gray between the lines of
the critical Galileo numbers Gcrit2 (magenta line) and Gcrit1 (green line). It overlaps
not only with the region of quasi-periodic planar oblique oscillating trajectories but
even partly with that of periodic high frequency oblique oscillating states. This
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Fig. 7.22 (a) Horizontal velocity for the density ratio �s=� D 3. Solid blue line: periodic low
frequency oscillations at G D 220; dashed black line: high frequency oblique oscillating state at
G D 215 (frequency: 0.186); dash-dotted red line: quasi-periodic state at G D 225. (b) Power
spectrum of horizontal velocity for G D 220 (solid blue line) and G D 225 (dash-dotted line)



7 Path Instabilities of Axisymmetric Bodies Falling or Rising Under the. . . 429

−0.2

0

0.2

−0.2−0.100.10.2

0

100

200

300

400

uy

ux

t  

(a)

−40

−20

0

51015202530

−800

−600

−400

−200

0

y

x

z  

(b)

Fig. 7.23 Loss of stability of the symmetry plane at �s=� D 2 and G D 230. (a) Horizontal
velocity components as a function of time in a false 3D plot, (b) trajectory

typically subcritical feature was absent in early stages of transition of the sphere
but is omnipresent for flat bodies.

7.4.3 Order in the Chaos: Vertical Oscillating Paths
and Helical Paths

The chaotic trajectories also significantly differ depending on the problem param-
eters. Since by definition no simulation of chaotic trajectory can be repeated,
their quantitative characterization requires a statistical treatment. Some statistical
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Fig. 7.24 Velocities and trajectories of spheres of density ratio �s=� D 4 on the rotating bi-
stability branch. (a) G D 212: Settling to oblique oscillating state. (b–d) G D 214: slowly rotating
symmetry plane and periodic low frequency oscillations, (b) horizontal velocity components as a
function of time, (c) projection of the velocity vectors onto a horizontal plane, (d) trajectory

quantities were suggested and tested in [21]. In this section we limit ourselves
to mentioning two regular regimes representing what might be considered as
windows of order in the chaotic domain. Some other isolated ordered states are
also mentioned in the caption of Fig. 7.13 but, since they have a minor importance,
we invite the interested reader to consult [21] for more details.

Vertical Oscillating Regime

The domain of vertical oscillating trajectories represents a remarkable feature of
the state diagram (Fig. 7.13). It is completely embedded in the chaotic domain
delimited roughly by Galileo numbers ranging from 250 and 300 and intermediate
density ratios between 0.5 and 2. Some of the neighboring chaotic states present
a very slow intermittent behavior difficult to capture unless simulation over very
long time are executed. The erroneous conclusion to be avoided is that theses states



7 Path Instabilities of Axisymmetric Bodies Falling or Rising Under the. . . 431

0 0.05 0.1 0.15

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

ux

uy

(a)

3200 3400 3600 3800 4000 4200 4400 4600 4800
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

t

ux, uy

ux, uy

(b)

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.1

−0.05

0

0.05

0.1

ux

uy

(c)

−40
−20

0
20

40

−40
−20

0
20

−2000

−1500

−1000

−500

0

x
y

z    

(d)

3500 3600 3700 3800 3900 4000 4100 4200 4300
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

t
(e)

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.1

−0.05

0

0.05

0.1

ux

uy

(f)

Fig. 7.25 Velocities and trajectories of spheres of density ratio �s=� D 10 on the rotating
bi-stability branch. (a) Settling to oblique oscillating state at G D 215, (b–d) slowly rotating
symmetry plane and periodic high frequency oscillation at G D 220 (same types of figures
as Fig. 7.24b–d), (e) horizontal velocity components as a function of time, (f) projection of the
velocity vectors onto a horizontal plane in the case of quasi-periodic oscillation at G D 225

are bi-stable: vertical oscillating and chaotic. Very long simulations allowed to
discard all such bi-stable cases except three on the side of lower Galileo numbers.
A typical vertical oscillating trajectory represented in Fig. 7.26a, b at �s=� D 0:5
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Fig. 7.26 Vertical oscillating regime at �s=� D 0:5, G D 260. (a) Horizontal velocity in the
trajectory plane as a function of time, (b) trajectory in its plane. (c) vortical structure of the wake
at �s=� D 0:5 and G D 250. The represented levels of vorticity are ˙0:25

and G D 260 is very accurately vertical. Figure 7.26a shows that the oscillation
amplitude of the velocity barely exceeds 0.1 (0.105), the period of oscillation is
about 7, more accurately, the frequency is 0.1416. The high frequency (not much
lower than the frequency of the high frequency oblique oscillating regime—0.18)
and the relatively small horizontal velocity amplitude (as compared to chaotic
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fluctuations of neighboring chaotic states) yields a small amplitude of oscillations
of the trajectory with respect to the vertical direction (see Fig. 7.26b): 0.12 of
the sphere diameter. The vertical oscillating regime is characterized by very small
and fast oscillations and its planarity and verticality are remarkably accurate. This
behavior is due to a symmetric vortex shedding analogous to planar oscillating
state of a fixed spheroid of aspect ratio 6 represented in lower Fig. 7.10. Indeed,
the typical wake structure represented in Fig. 7.26c is very similar.

It can be considered that the effect of the primary bifurcation is overridden by the
rapid oscillations forcing an almost axisymmetric wake. As the result, the flow wake
dynamics is driven essentially by the pair of complex eigenvalues. Interestingly
enough, already in the early paper [14], the mentioned frequency of 0.14 was
identified as corresponding to the imaginary part of the complex eigenvalue of
the Navier-Stokes operator linearized with respect to axisymmetric flow, found,
indeed, unstable at Galileo numbers and density ratios corresponding to the vertical
oscillating regimes.

Helical States

Helical states represent another type of ordered state deep inside the chaotic domain.
Several case have been evidenced for spheres of very small density ratio and higher
Galileo numbers (see the filled blue circles in Fig. 7.13). Similarly as the vertical
periodic ones, they correspond to one of the prototypical states enumerated in
Sect. 7.3.3.

The most striking feature of the helical regime is the high regularity of the
trajectory despite the high Galileo numbers, i.e. also the Reynolds number (750
for �s=� D 0:1 and G D 500). The characteristics of a typical trajectory
(�s=� D 0:1 and G D 500) are represented in Fig. 7.27a–c. Figure 7.27d shows
the typical twisted wake. The helical regime stands out for an exceptionally large
horizontal velocity. While the typical horizontal velocity represents less than 10%
of the vertical one in oblique regimes, the same ratio amounts to 30% for the
massless sphere and 20% for the sphere of density ratio 0.1. The helical shape
of the trajectory is not very far from an ideal spiral having a circular horizontal
projection (Fig. 7.27b). The norm of the velocity vector is practically constant
(within about 1%). The horizontal projection turns regularly with less than 2%
r.m.s. fluctuations, the vertical component is constant with about a half percent
accuracy. The large horizontal velocity is correlated with a drop of vertical velocity.
The helical paths present some common features with the planar vibrating states
reported in experiments [11]. They are perfectly vertical in the average, the pitch
is very similar to the reported wavelength of the vibrating states, the radius is
in qualitative correspondence with the r.m.s. of the horizontal projection of the
vibrating trajectories and they are very accurately periodic. However, numerical
experiments showed that planar trajectories are strongly unstable in the same region
of parameter plane and that the vertical velocity is considerably higher.
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Fig. 7.27 Five periods of helical trajectory for �s=� D 0:1 and G D 500. (a) Horizontal velocity
components as functions of time, (b) path of the horizontal velocity vector, (c) trajectory. (b) Shows
the very small deviations from periodicity and from circular form. (d) Represents iso-surfaces of
stream-wise vorticity at levels ˙1 at the end of the time interval of (a)

7.4.4 Conclusion

The above presentation focused essentially on ordered states of falling or rising
spheres and on the way how chaos sets in this system. The most important
feature of the transition scenario of spheres is the very fast onset of chaos. This,
together with the difficulty of assuring a perfect sphericity and homogeneity of
experimental spheres, is very likely at the origin of disagreements between the
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numerical simulations and experimental observations as soon as the regimes leave
the restricted domain of primary and secondary bifurcation states. It is interesting to
note that all the theoretically predicted regimes listed in Sect. 7.3.3 can, actually, be
evidenced as stable ordered states. This will also be the case for flat bodies but in a
different order and within a totally different scenario.

7.5 Homogeneous Thin Disc

As shown in Fig. 7.1, path instabilities of flat bodies, namely of very flat cylinders
considered approximately as nominally infinitely thin discs, are very easy to
observe. An experimental Nature paper [8] from late nineties, sums up experimental
observations of paths of falling discs found to depend on the relative solid/fluid
inertia and the reached Reynolds number. A more rigorous choice of problem
parameters is necessary to formulate the problem mathematically. Moreover, the
numerical method described in Sects. 7.2.3 and 7.3.1 needs to be generalized to
account for the arbitrary disc inclination.

7.5.1 Mathematical Formulation and Numerical Method

Since our numerical method is limited to axisymmetric geometry, the computational
domain is decomposed into a spherical subdomain with polar axis defined by
the revolution axis of the body (in the present case of the disc) and into a
remaining vertical cylindrical domain. The numerical configuration is schematized
in Fig. 7.28 with indications concerning the choice of numerical parameters defining
the domain geometry. The spherical sub-domain is allowed to rotate with respect
to the cylindrical one. The reconnection uses a spherical function expansion and
corresponding rotation matrices (see [2] for technical details). The choice of the
domain decomposition was stimulated by the physics of the configuration requiring
to capture an essentially vertical far wake together with the boundary layer and the
detached flow close to the body. In both subdomains, the velocity field is defined
with respect to a fixed frame. In the rotated spherical subdomain, the velocity vector
is projected onto the rotating frame attached to the body axis.

In order to allow for the limit case of infinitely flat bodies, we can no longer
keep the density ratio as a convenient parameter. We replace it by the non-
dimensionalized mass

m� D m

�d3
: (7.36)

where d is the diameter of disc (or more generally of the projection onto a plane
perpendicular to the axis of revolution) and m is the mass of the body. For a given



436 J. Dušek

Fig. 7.28 Geometry of the
problem. geff : vertical vector
of effective gravity oriented
downward or upward for
falling or ascending bodies,
.xfix; yfix; zfix/: fixed reference
frame, .xc; yc; zc/: vertically
translated frame, and
.xs; ys; zs/: frame of the
spherical sub-domain rotating
with the body. Numerical
parameters: radius of the
spherical sub-domain Rs D d,
Rc D 8d, Lu D 12d,
Ld D 25d

body shape, an equivalent choice consists in considering the non-dimensionalized
moment of inertia with respect to an axis perpendicular to the axis of revolution of
the body (see [8]) I� D I=.�d5/. For a disc, I� D m�=16. For the same reason,
the velocity scale is more conveniently defined using the resultant of the weight and
buoyancy:

U D
p

jm� � V�jgd (7.37)

where V� D V=d3. The flow equations then write

@v
@t

C Œ.v � u � ! � r/ � r�v C ! � v D �rp C 1

G
r2v (7.38)

and

r � v D 0 (7.39)
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where u is the translation velocity of the body center and ! is the angular velocity
of the rotating spherical sub-domain. The Galileo number G appearing in Eq. (7.38)
is given by

G D Ud


D

pjm� � V�jgd3


D
p
m�geff d3


: (7.40)

The solid body motion equations are:

m�
�
du
dt

C ! � u
	

D Ff l.v; p/C kfix; (7.41)

˛I� d�3

dt
D Mf lz; (7.42)

I�
�
d�C
dt

� i˛�C�3

	
D Mf lC (7.43)

where kfix is the vertical unit vector pointing downward or upward for falling
or ascending bodies, respectively. Equations (7.42) and (7.43) are written for
complex coordinates [18] of angular velocity �C D �x C i�y and torque
Mf lC D Mf lx C iMf ly. The angular velocity vector of the spherical sub-domain

has the components ! D �
�x; �y; 0

�
. Due to the axisymmetry of the body, the

body fitted mesh is not required to follow the rotation about its axis. As already
mentioned, for a homogeneous disc, the non-dimensionalized moment of inertia
is equal to m�=16, in general the ratio I�=m� is given by the body shape and the
mass distribution and appears as an additional external parameter of the problem.
For a disc, the full system of Navier-Stokes equations (7.38) and (7.39) and of
motion equations (7.41)–(7.43) depends only on two dimensionless parameters and
a similar two parameter investigation as for the sphere is sufficient to characterize
all its possible regimes.

7.5.2 Description of Regimes of Falling Discs

Depending not only on the choice of external parameters G and m� but, due to
sub-critical effects and many cases of bistability or even multiple stability, also on
initial conditions, a variety of trajectories has been evidenced. We start with their
description before situating them in a comprehensive state diagram.

Periodic Flutter

Periodic flutter is the regime of Fig. 7.1. Since ‘flutter’ refers rather to a relatively
fast oscillating motion it is also called zig-zagging. “Flutter” originates from the
motion of confetti or cards in the air. The physical time-scale is, however, irrelevant



438 J. Dušek

190 195 200 205 210
−3

−2

−1

0

1

2

3

t

u h

190 195 200 205 210
−2.5

−2

−1.5

−1

−0.5

0

t

u z

190 195 200 205 210
−50

0

50

t

φ  
[o ]

Fig. 7.29 m� D 0:1, G D 200. (Top) Horizontal component of the velocity; (middle) Vertical
component of the velocity; (bottom) inclination of the disc defined as an angle between the disc
axis and the vertical direction

in the non-dimensional formulation. The important features of this regime are
planar, vertically oscillating trajectories accompanied by a significant amplitude
of inclination of the disc. A quantitative idea of typical dynamics is provided by
Fig. 7.29. In the represented case the horizontal motion dominates, similarly as
in Fig. 7.1. The amplitude of the horizontal velocity is larger than the maximal
value of the vertical one. The mean value is strictly zero which results in a vertical
trajectory. Twice by period, the disc flies horizontally, i.e. its vertical velocity is
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Fig. 7.30 Fluttering periodic
state, m� D 0:1, G D 200,
z—vertical position,
x; y—horizontal positions as
multiples of d. The red
dashed line represents a
half-axis of the disc

practically zero. This happens when the disc is not far from a horizontal position
(zero inclination angle). The maximal inclination of the disc exceeds 40ı. At this
moment, the disc falls the fastest. Qualitatively, the motion is visualized by the
kino-gram of Fig. 7.30. The flutter is a solid (solid-fluid) mode where the motion
of the fluid strongly interacts with that of the solid body. For an infinitely flat disc,
the fluid modes are rare and limited to very small non-dimensionalized masses. In
these regimes, the motion of the solid is almost invisible (see the next paragraph).
For the purpose of demonstrating the difference between the flutter and a periodic
fluid mode we use the example of a flat spheroid of aspect ratio d=.2a/ (a—small of
half axis of elliptical section). The right Fig. 7.31 is very similar to that of Fig. 7.30.
The left Fig. 7.31 shows the vortex shedding influenced by the motion of the solid.
Figure 7.32 represents the streamwise vorticity and kino-gram of a fluid mode. The
oscillations of the body are very small but the vorticity in the wake is almost as
intensive as for the solid mode. Some quantitative data is given in Table 7.4. The
maximum inclination angle of the disc in this regime is at least 20ı and reaches 90ı
when the intermittently tumbling regime sets in. The frequency expressed in terms
of Strouhal number is high (higher than characteristic frequencies of the sphere
scenario) for very light discs but considerably decreases with growing inertia (as
can be expected from motion equations). The “flying” described above, concern
discs of moderate non-dimensionalized mass for high enough Galileo numbers. As
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Fig. 7.31 Vorticity structures and trajectory of a flutter of spheroid of aspect ratio 10 at m� D
0:25; G D 115; sin max D 0:75, vorticity level !z D ˙0:8

soon as inertia becomes larger the flutter is replaced by the intermittent and tumbling
regimes.

Quasi-Vertical States (Fluid Modes)

For an infinitely flat disc, the fluid modes have been evidenced as primary
bifurcation states in a very narrow range of small non-dimensionalized masses
m� � 0:05. They become very rapidly chaotic as the Galileo number increases. The
typical trajectories are thus rather chaotic deviating very few from vertical direction
and accompanied by a small inclination of the disc (see Fig. 7.33). Such a chaotic
motion was attributed to experimental noise in experiments and the trajectories were
considered as vertical. This lead to the conclusion that the free body degrees of
freedom have a very strong stabilizing effect on the primary instability. Actually,
the primary bifurcation threshold can be slightly shifted upward for flat cylinders
but the effect is very limited (see the discussion in [4]). It is interesting to note that,
unlike for spheres, the fluid modes of discs have a much smaller frequency than
the flutter. The Strouhal number of oscillations characteristic for the quasi-vertical
states (main peak of spectra of velocity of chaotic trajectories) atm� D 0 is about 0.1
whereas, the Strouhal number of the flutter grows from 0.4 (at G D 140) to 0.6 (at
G D 500) for the same infinitely small non-dimensionalized mass (see Table 7.4).
The amplitude of oscillation of the disc is very small from all viewpoints, vertical
and horizontal velocity, angular velocity and inclination (not more than 1ı).
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Fig. 7.32 Vorticity structures and trajectory of vertical periodic state (fluid mode) of spheroid of
aspect ratio 10 at m� D 0:25; G D 100 (sin max D 0:1, vorticity level: !z D ˙0:4)

Tumbling State

The trajectories of the tumbling states are planar like for the flutter. The tumbling
regime can be understood as resulting from the flutter when the inclination angle
exceeds 90ı due to the increase of inertia (m�) or decrease of viscous effects
(increase of G). In that case, the disc tumbles over edge and continues rotating in the
same direction. This results in a globally oblique trajectory with horizontal transla-
tion and angular velocities which do not change the sign. A kino-gram conveying
the idea of the motion is represented in Fig. 7.34. Quantitative information on the
translation and rotation velocities can be obtained from Fig. 7.35. For the relatively
‘light’ disc of Figs. 7.34 and 7.35, the angular velocity presents strong oscillations
(between zero and 2). The regime lies at the threshold of stable tumbling states in the
state diagram (Fig. 7.40). The rotation almost stops once per period. With growing
inertia the fluctuations decrease and, at m� D 10, the disc rotates almost with a
constant angular velocity.

Some quantitative data is provided in Table 7.5. It can be seen that the Strouhal
number is much less sensitive to inertia which is easily understood considering that
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Fig. 7.33 Chaotic quasi-vertical trajectory for m� D 0 at G D 140. Left figure: inclination along
the horizontal x-axis as a function of time. Right figure: horizontal projection of the trajectory

the frequency is that of a rotating and not oscillating motion. The inertia reduces
unsteady fluctuations. The latter tend to zero for large non-dimensionalized masses
and the rotation tends be uniform. The average trajectory is oblique. Its average
inclination can be inferred from the ratio of the mean horizontal, uh, and vertical,
uz, velocity. The inclination angle varies between 20ı and 40ı.

Intermittent State

The flutter and tumbling are separated by a region of regimes where the disc
‘hesitates’ between both. This results in mostly non periodic trajectories presenting
intermittent switching between tumbling in two opposite directions. In some cases
the switching becomes periodic. In that case, the disc tumbles the same number
times in the same direction before the sense of the rotation changes. Such trajectories
still have a zig-zagging aspect and there mean direction is vertical. A non periodic
intermittent state is represented in Figs. 7.36 and 7.37.

Non Planar, Three-Dimensional Trajectories

The zig-zagging (flutter), tumbling and intermittent states represent a specificity of
flat bodies. Their shape makes them interact strongly with the flow in the manner
of a propeller. In all the three mentioned regimes, the trajectories remain planar in
a large interval of Galileo numbers, i.e. the wake keeps a fixed symmetry plane. We
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Table 7.4 Some quantitative data for selected periodic fluttering and quasi-vertical (fluid modes—
marked by �) regimes of a disc

m� G uz �uz �uh �!h �sh=d St �maxŒrad�

0� 90 �1.439 0:003 0:046 0:019 0:043 0:105 0:019

0� 100 �1.444 0:004 0:055 0:030 0:061 0:100 0:022

0 150 �1.374 0:307 1:109 1:467 0:287 0:437 0:392

0 200 �1.363 0:401 1:380 1:649 0:328 0:477 0:415

0 300 �1.343 0:476 1:682 1:712 0:370 0:528 0:407

0 500 �1.292 0:546 2:035 1:693 0:411 0:598 0:380

0.1 80 �1.250 0:408 0:991 1:648 0:370 0:304 0:685

0.1 100 �1.232 0:502 1:181 1:759 0:427 0:306 0:731

0.1 200 �1.199 0:972 2:097 1:863 0:797 0:292 0:962

0.1 300 �1.255 1:333 2:778 1:876 1:199 0:246 1:102

0.1 500 �1.339 1:839 3:759 1:826 1:974 0:190 1:227

0.25 90 �1.347 0:924 1:602 2:213 0:749 0:182 1:362

0.5 38 �1.166 0:106 0:343 0:865 0:209 0:208 0:555

0.5 50 �1.254 0:365 0:737 1:626 0:410 0:184 1:057

0.75 45 �1.271 0:284 0:595 1:482 0:379 0:154 1:040

0.75 50 �1.377 0:432 0:774 1:791 0:527 0:131 1:340

1 40 �1.222 0:160 0:396 1:107 0:287 0:160 0:867

2 34 �1.165 0:043 0:173 0:568 0:165 0:137 0:532

2 38 �1.243 0:095 0:267 0:856 0:251 0:123 0:822

10 45 �1.250 0:006 0:050 0:173 0:094 0:067 0:332

Meaning of symbols: uz mean vertical velocity, �uz; �uh; �!h amplitude of oscillation of vertical
and horizontal velocity and of angular velocity, �sh maximum horizontal displacement, St—
Strouhal number and �max—maximal inclination

have, however, seen that the stability of the symmetry plane was quite weak for a
spherical body. For discs, except for the particular case of chaotic quasi-vertical
paths, the symmetry plane is relatively stable. Nevertheless, at sufficiently high
Galileo numbers the flow symmetry also gets lost. The flutter loses its symmetry
due to the loss of stability of states characterized by equal amplitudes B˙ in
Eqs. (7.34) and (7.35) in favor of purely helical states with only one of the two
helical components. This results in spiral trajectories of the type represented in
Fig. 7.38. For tumbling regimes, the symmetry plane starts to rotate in a similar
manner as for spheres. The rotation velocity is constant, the trajectories remain very
regular and assume a globally helical shape, albeit with a large rotation period, large
radius and pitch (see Fig. 7.39). The onset of non-zero helicity could be observed
also for intermittent states. Interestingly enough, up to Galileo number of 500, we
did not evidence any truly chaotic paths except for quasi-vertical trajectories. The
strong solid–fluid interaction has obviously a stabilizing effect.
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Fig. 7.34 Kino-gram of the tumbling state at m� D 0:5, G D 160. The red dashed line represents
a half-axis of the disc

7.5.3 Transition Scenario of Discs

A comprehensive picture of the transition scenario for thin discs is provided by the
state diagram of Fig. 7.40. As can be seen at first glance, there is practically no
common feature with Fig. 7.13 referring to a spherical body. The differences can be
summed up as follows.

The vertical trajectories are much less stable than for a sphere. To make this
statement clear, it is necessary to mention the Reynolds numbers at the primary
instability threshold represented by the thick black line in Fig. 7.40. The non-
dimensionalization defining the Galileo number (7.40) was chosen so that the
non-dimensional vertical velocity remains close to one. It varies roughly between
1.2 and 1.4 as can be seen in Table 7.4. The highest value of critical Galileo number
(78) was found for the onset of quasi-vertical regime at m� D 0 and 0.05. Given
the vertical velocity 1.44, this yields a critical Reynolds of 112, slightly less than
for a fixed disc placed perpendicularly to the flow (117—see [3]). This, about half
as high, value than for a sphere is explained by the sharp edges of the disc and
the strongly detached flow. At higher non-dimensionalized masses (m� � 0:1), the
primary bifurcation is of Hopf type yielding directly an oscillating regime. The latter
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Fig. 7.35 m� D 0:5, G D 160. Top: horizontal component of the velocity; second row: vertical
component of the velocity; third row: angular velocity; bottom: inclination of the disc defined as
an angle between the disc axis and the vertical direction over three periods of rotation. The dotted
lines in the bottom figure mark the rotation by k� , where k D 1; 2; ::

has a strongly destabilizing effect, making the threshold drop to a minimum critical
Galileo of 30 (at m� D 2). The corresponding Reynolds number is only 33. This
extremely low critical Reynolds number appears to be specific for very thin bodies.
Oblate spheroids of as large aspect ratio as 10 have a minimum critical Reynolds
number of primary instability of 115 (m� D 1:5). The explanation comes certainly
from a very small drag of a horizontally moving disc, with only skin friction and no
pressure drag.

On the other hand, as has already been mentioned, virtually no chaotic regimes
were evidenced in spite of relatively large Reynolds numbers (about 800) corre-
sponding to the highest Galileo number (500) considered in the parametric study.
The explanation is, again, easily at hand. Both for light and massive discs, when
viscous effects become weak, the inertia of the organized oscillation (for light discs)
or rotation (for massive discs) prevents the system from becoming chaotic. In the
case of light discs the inertia is that of the moving fluid but the final effect is similar.
Only when the motion of the disc is very small, chaotic behavior is possible, as it is
the case for the quasi-vertical chaotic states.

Strictly speaking, intermittency is a form of chaos so that the intermittent regime
may also be qualified as chaotic. The main difference consists, however, in the
fact that the trajectories remain planar. The existence of the intermittent regime
can be rather linked to the subcritical effects characterizing the whole scenario. A
subcritical bifurcation leads to coexistence of two (or more) stable states. The loss
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Table 7.5 Some quantitative data for selected tumbling states

m� G uz �uz uh �uh !h �!h St

0.75 90 �1.224 0:504 �0:929 0:351 1:292 0:721 0:315

0.75 100 �1.202 0:534 �0.929 0:349 1:317 0:689 0:333

0.75 200 �1.067 0:461 �0.941 0:347 1:533 0:538 0:443

0.75 300 �1.014 0:451 �0.939 0:343 1:599 0:502 0:490

0.75 400 �0.987 0:449 �0.937 0:344 1:626 0:487 0:515

1 80 �1.267 0:424 �0.631 0:203 0:875 0:477 0:283

1 100 �1.213 0:397 �0.858 0:270 1:259 0:570 0:320

1 150 �1.139 0:367 �0.863 0:264 1:389 0:479 0:381

1 200 �1.099 0:359 �0.861 0:259 1:463 0:441 0:418

1 300 �1.059 0:352 �0.858 0:257 1:529 0:423 0:458

1 400 �1.035 0:353 �0.859 0:258 1:552 0:418 0:476

2 50 �1.412 0:283 �0.690 0:167 0:865 0:595 0:176

2 54 �1.399 0:280 �0.702 0:165 0:894 0:563 0:187

2 58 �1.374 0:264 �0.712 0:163 0:921 0:534 0:199

5 40 �1.497 0:158 �0.499 0:104 0:600 0:421 0:113

10 50 �1.474 0:079 �0.459 0:056 0:565 0:219 0:118

10 80 �1.419 0:061 �0.538 0:044 0:765 0:141 0:170

10 150 �1.330 0:047 �0.584 0:035 1:035 0:088 0:246

10 200 �1.297 0:045 �0.594 0:033 1:143 0:076 0:279

For the meaning of symbols, see Table 7.4

Fig. 7.36 Intermittent state,
m� D 0:25, G D 110. (Top)
Horizontal component of the
velocity; (bottom) the angular
velocity !h
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of stability of the subcritical state does not correspond to that of the super-critical
one (for the bifurcation parameter evolving in opposite sense), which can remain
stable below the bifurcation threshold. The intermittent subdomain corresponds to
an opposite situation where neither of the neighboring ordered states is stable.

In all other cases, the typical subcritical overlapping is observed. Already the
primary bifurcation was found subcritical in the interval 0:05 � m� � 2. For
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Fig. 7.37 Kino-gram of
intermittent state, m� D 0:25,
G D 110. The red dashed
line represents a half-axis of
the disc

Fig. 7.38 m� D 0:05,
G D 300; Spiral state

these intermediate non-dimensionalized masses, the vertical state loses its stability
at settles immediately to a developed flutter with significant amplitude of oscillation.
This state remains stable, albeit in a limited interval of Galileo number, when the
Galileo number drops again under the critical value. A similar bi-stability was
observed at the transition from the quasi-vertical chaotic regime to the flutter for
very light discs. The rotation makes the tumbling very stable, able to resist to a
considerable increase of viscous effects (decrease of Galileo number) as soon as
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Fig. 7.39 m� D 0:5, G D 400; spiral tumbling state. (a) The disc is enlarged by a factor of 2. (b)
Detail of figure (a). The disc is on the scale in this figure

the inertia of the solid body sufficiently exceeds that of the fluid (m� > 1). This
explains the disappearing of the intermittent regime and overlapping not only with
the oscillating regime (flutter) but also partly with the vertical one at high m�.

It must, of course, be expected that for very high Galileo numbers (outside the
scope of our investigation) turbulence ends up by dominating the dynamics and
makes the trajectories chaotic. The loss of planarity resulting in helical trajectories
mentioned in Sect. 7.5.2 of the trajectories can be considered as initial stage of this
transition. Non planar (helical) fluttering, intermittent and tumbling trajectories are
marked by filled markers in the state diagram (Fig. 7.40).
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Fig. 7.40 State diagram for infinitely thin disc. Meaning of symbols: red triangles: tumbling;
green squares: intermittent; blue circles: flutter; black crosses: vertical. Filled symbols: helical
trajectories. Magenta symbols: (dots and diamonds) periodic and chaotic quasi-vertical states

7.5.4 Conclusion

The vertical trajectories of discs give way to an oscillating regime. The trajec-
tory remains vertical in the average but, except for very light discs, the disc
oscillates with significant inclination amplitude. This amplitude grows mostly due
to increasing inertia of the body. When the inclination of 90ı is reached, the
disc starts to tumble over edge. Initially, the tumbling itself and its direction are
intermittent. For higher inertia, it becomes perfectly periodic and results in an
oblique trajectory accompanied by a regular rotation of the body. The importance
of inertia is particularly obvious for Galileo numbers exceeding 200 when the
separation between these three regimes becomes practically independent of the
Galileo number. In spite of the early onset of non-vertical trajectories, the transition
to chaos is considerably delayed due to the inertia of body rotation.
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7.6 General Conclusion and Perspectives

The significant difference between the transition scenario of a sphere and of a disc
raises the question of behavior of less idealized bodies. Some results concerning flat
cylinders [4, 19] are available and show the importance of the aspect ratio of the
body. To shed more light on this effect and to establish a clear relation between an
ideally flat disc and an ideally spherical body a detailed parametric investigation of
spheroids of aspect ratio decreasing from infinity (ideally flat spheroid) to almost
one (sphere) has been performed and will be published in the near future. Recently,
also prolate spheroids were brought to the spotlight due to applications concerning
the sedimentation of fibers. Since the prolate spheroids (and long cylinders) fall with
horizontal revolution axis in the fundamental vertical state of trajectory, the early
stages of transition are no longer about characterized by axisymmetry breaking and
are thus outside the scope of the described approach.

Another topic involving axisymmetry breaking concerns the motion of drops and
bubbles in quiescent ambient fluid. Gas bubbles in liquids have dynamics mainly
driven by the free surface with negligible effect of the gas motion. An ideal bubble
can be modeled as a void in a liquid delimited by a deformable surface at which
a free surface boundary condition can be imposed. A numerical treatment of the
problem is complicated by the dynamically changing, potentially three-dimensional
geometry, however the physical background is still given by axisymmetry breaking
and only two external parameters are sufficient. Extensive experimental effort to
investigate the dynamics of freely ascending bubbles showed a large variety of
non-vertical trajectories. The instabilities giving rise to non-vertical ascension have,
however, not yet been clearly identified in spite of the availability of numerical tools.
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Chapter 8
Microbubbles: Properties, Mechanisms
of Their Generation

V. Tesař

Abstract This chapter discusses microbubbles—small gas bubbles in liquid
medium of diameter less than 1 mm. Although they were known to offer a number
of advantages, until recently they could be generated only by methods energetically
inefficient. New horizons became open by the discovery of generation by aerators
provided with an oscillator in their gas supply. Chapter provides in particular an
information about no-moving-part fluidic oscillators, recently already almost forgot-
ten but now demonstrated to offer benefits like low manufacturing cost, reliability,
long life and absence of maintenance. The empirical fact that small bubbles cannot
be obtained simply by making small passages in the aerator is here explained
by conjunction of several microbubbles. Because the velocity of bubble motion
decreases with decreasing size, small microbubbles tend to dwell near the aerator
exits. They then coalesce there into a much larger single bubble (the effect promoted
by the latter possessing lower surface energy). The fact that the oscillator prevents
this conjunction and thus keeps the microbubbles small has been explained by
high-speed camera images which show the effect of oscillatory motions.

Keywords Bubble conjunction • Fluidic oscillators • Fluidics • Instability •
Microbubbles • Shape oscillation • Surface tension
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Microbubbles gained recently an importance in many areas of chemical and
process engineering, biotechnology, and other industrial as well as medical applica-
tions. Their mathematical description typically follows similar principles as when
dealing with heavy particles in liquids, but there remain several characteristic
aspects of bubbles and especially microbubbles where a specific approach has to
be adopted. The aim of this chapter is to provide phenomenological description of
generation and initial stages of existence of microbubbles—as well as description
of oscillators recently introduced to generate them. It should serve as a an overview
and motivation for future theoretical investigations in this area.
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8.1 Basics of Gas Bubbles

8.1.1 Importance of Microbubbles

Small bubbles of gas in a liquid may not seem to be of any particular use—
perhaps just an object of idle observation of their rising motion in one’s drink.
Yet they are actually an objects of very serious scientific investigations—and of
substantial importance in a large number of branches of practical engineering.
Especially important are sub-millimetre sized microbubbles, the main subject of
discussion in this chapter, Fig. 8.1. The limiting definition of 1 mm diameter is
admittedly somewhat arbitrary, but it actually quite well represents the size scale
below which the tiny bubbles can exhibit a behaviour in some aspects quite
different from the processes in larger bubbles. At the other, small size end of the
scale is a similar definition limit, also associated with qualitative difference in
behaviour. Smaller than 1�m are nanobubbles—e.g. [26, 60]. Immediately apparent
extraordinary property of nanobubbles is the longevity of their existence in the
liquid. While bubbles and microbubbles exist only for the time it takes to rise
to the surface, nanobubbles can stay for days and even months. Their practically
non-existent rising—which is overtaken by omnidirectional Brownian motion—is
remarkable, but some other properties are even more strange. Nevertheless, they are
not discussed here since it would require a whole monograph of its own.

The subject of the present chapter are the less enigmatic microbubbles. Tes-
timony to their importance is the number of publications presented in Fig. 8.2,
recently increasing in exponential manner. Prior to about the year 1995 they were
a little known subject and the term “microbubble” was mentioned worldwide in
scientific publications at a small, rather constant rate, on average  30 times per
year. Even though their potential advantages were then already known, applications
were limited by ineffectiveness of then existing methods of microbubble generation
(e.g., by ultrasonic generators). It was the idea of using the fluidic oscillators

Fig. 8.1 Size scales of bubbles. Discussion topic in this chapter are microbubbles, of diameter
less than 1 mm. They are difficult to generate—standard aerators produce larger bubbles. Current
interest in microbubbles is due to discovery of conjunction-suppressing effect of fluidic oscillators
placed into gas inlet
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Fig. 8.2 Increasing importance of microbubbles both in practical engineering applications and in
theoretical studies is reflected in the exponential growth of the numbers of publications devoted to
this subject

generating flow pulsation in the aerator passages that changed the situation. Today
the studies of microbubbles appear with exponential growth rate characterised by
the doubling every 4.66 years (Fig. 8.2).

The engineering application developments based on the use of microbubbles are
nowadays in several not infrequent cases described as literary revolutionary. To
provide a rough idea about them (far from complete), some present-day uses may
be mentioned as follows:

(a) An important application area is that part of chemical engineering and bio-
chemistry, in which the performed operations and reactions depend on diffusion
transport of gas into liquid. The large total collective surface of small microbub-
bles, together with their slow ascent velocity (which rapidly decreases with
decreasing size) and hence long time of travel to the surface, can intensify
the transfer rate substantially. A typical example that benefited from the use of
microbubbles is transfer of oxygen into processed waste water [35] or delivering
CO2 to unicellular algae grown in a bioreactor [59].

(b) Important increase in effectiveness of the process is offered by microbubbles in
separation of substances by flotation. By their strong clinging to contaminants
like oil or grease the microbubbles made possible environmentally friendly
removal of such contaminants from processed water. Microbubbles also exhibit
a remarkable washing effect [51] without chemical detergents. In paper [56] is
discussed typical successful use of microbubbles in de-contamination of silicon
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wafers. Their current high yield losses, over 50%, are mainly caused by micro-
contamination which may be removed by treating them with microbubbles.
In fact, microbubbles were demonstrated [47] to be able to perform efficient
medical disinfection.

(c) In food industry microbubbles can extend shelf-life of products of foamy
character—whipped cream, ice-cream, sorbets and mousses—in addition giving
them interesting taste properties. Microbubble foam was demonstrated to
remain stable for up to a year. Also of interest for food industry is water
evaporation ability of microbubbles [61] without the applied heat reaching the
dried product.

(d) Hydrodynamic resistance of ships and boats may be reduced by air microbub-
bles injected into boundary layers. McCormick and Bhattacharya [20] demon-
strated a 30% reduction in the frictional resistance. Lack of further progress
was due to their method of generation of hydrogen microbubbles by electrolyz-
ing. This consumed more energy than was saved. The problem of suitable
microbubble generation at the required large scale plagued also other attempts
at ship improvement, including those able to show reductions up to 80%—i.e.
decrease to only one fifth of the original value [3, 18]. Recent ship tests with
microbubbles are now already made with very large models [15, 18, 21, 52],
very near to the practical use (such as Indonesian Navy fast patrol boat
described in [57]). For process engineers may be of importance the analogous
decrease of friction factor of flow in tubes and pipes [25, 31].

(e) A wide spectrum of microbubble uses has been found in medicine. Microbub-
bles can convert energy of ultrasonic vibration into a local thermal therapeutic
effect [11]. Streaming effect on microbubbles in ultrasonic field can destroy
cancer cells [13] and can cause permeability of cell membranes for drugs [22]—
in particular, the anti-cancer ones [53]. Microbubbles were also demonstrated
to make possible measuring absolute values of blood pressure [46].

(f) Many currently developed techniques of using microbubbles aim at microfluidic
scale. A use was found in gene manipulation [33], in biosensors [14], mixing
of reactants [16] or sorting [48]. Important progress is expected in optofluidics,
where ordered arrays of microbubbles can create tuneable optical components
[2, 9].

8.1.2 The Main Reason for Desirable Small Scale

Although bubbles—especially larger ones—are not of exactly spherical shape,
everyday experience documents a strong tendency towards sphericity. Thus a useful
model for working with bubbles in first approximation is the following dependence
between diameter d and the bubble surface area F (m2).

F D �d2 (8.1)
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Fig. 8.3 Single bubble decomposed into small bubbles of equal total volume. Surface decreases
with decreased diameter less rapidly than volume—resulting in more efficient diffusion across the
total surface

There are many engineering processes involving gas transport by diffusion from
the bubbles across their boundary into the surrounding liquid. The available total
collective surface area often provides the limiting factor to effectiveness of the
process. As a consequence of the non-linearity of Eq. (8.1) this limitation may be
overcome by dividing the available gas volume V (m3) into a larger number of
smaller bubbles. Gas volume in the spherical bubble model is

V D �

6
d3 (8.2)

Let us now assume a distribution of the available gas volume V—as presented in
Fig. 8.3-left—into n smaller bubbles, each having the surface below the intersection
M as presented in Fig. 8.3-right.

Division of volume V of gas into n bubbles increases the total surface across
which the gas diffuses from the bubbles into liquid. Since diffusion transport
depends on the surface size, bubbles smaller than the intersection M of the two
curves exhibit more intensive total transport across their boundaries.

Assuming also the ability to make the resultant ensemble of small bubbles
isometric—i.e. with all the bubbles of the same diameter dsm.

dsm D 3

r
6V

�n
(8.3)

then equating V in Eqs. (8.2) and (8.3) results in the relation between the number n
of small bubbles and their size

dsm
d

D 3

r
1

n
(8.4)
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Fig. 8.4 Dependence of the relative size (left) and relative total surface (right) of isometric (equal
diameter) bubbles on their number n, when they are all produced from the same given gas volume.
Note the semi-logarithmic character of this presentation

Using the expression Eq. (8.1) for the surface area F converts the diagram shown in
Fig. 8.4-left, into the dependence of the total surface on the number n of resultant
small (isometric) bubbles. This is presented in Fig. 8.4-right.

It shows that division of a single large bubble into, e.g., n  1000 microbubbles
increases the total transport area 10-times. No doubt this is a welcome improvement.
In addition, as discussed in the next Sect. 8.1.3, a significant increase in the total
diffusion transport is also obtained due to the fact that smaller bubbles move slowly.
This increases the time during which the bubbles are available for the transport
across their boundaries.

On the other hand, the beneficial effect of small bubbles is not obtained at no cost.
Distribution of the gas volume into small bubbles is associated with increase of total
surface energy. This energy must be supplied from an external source. Fortunately,
in contrast to earlier approaches, fluidic oscillators—the main subject discussed
here—can deliver this energy with remarkable effectiveness.

8.1.3 Another Reason: Velocity

Because the specific volume of the gas inside the bubbles is much larger—roughly
by three decimal orders of magnitude—than that of the surrounding liquid, bubbles
tend to move upwards in the gravitational field of the Earth. If the available height
is sufficient, they finally reach a constant rising speed, the terminal velocity. It is
determined by difference between Archimedes’ lift and steady-flow hydrodynamic
resistance. For small bubbles the resistance is nearly the same as if it were a motion
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of a solid body, governed by the Stokes law. There are actually influences of various
secondary effects, mainly varying somewhat the conditions on the surface. They are
discussed in numerous publications—e.g. references [54, 55] identify, besides the
obvious and expected influence of Reynolds number, also the influences of other
non-dimensional criterial parameters like the Weber, Eötvös, Morton, and Tadaki
numbers. The velocity thus slightly depends, e.g., on chemical composition and
purity of the liquid. For the present purpose of discussing microbubbles and their
role in generation of biofuels, these effects may be practically neglected. An idea of
the magnitudes of terminal velocities may be gained from the data in Fig. 8.5. It is a
collection of experimental values from references [8, 17, 23, 24, 34, 55]. There are
two important facts.

The first is the general trend of the velocity decreasing significantly with
decreasing bubble or microbubble diameter d. The smaller are the bubbles, the more
they are available for the gas transport. In the microbubble range d < 1mm the
terminal rising velocity is more or less exactly proportional to the second power of
the bubble diameter. This is in agreement with the Stokes law.

The other fact is the evident change in the character of the motion at the
microbubble size upper limit d D 1mm. This limit was introduced as a more or

Fig. 8.5 Measured terminal rising velocity of gas bubble in a liquid in dependence on its diameter
d. There is some dependence on chemical compositions, but it is rather weak and may be neglected
in this discussion. Much more important is the change of the character at the microbubble limit
boundary at d � 1mm



460 V. Tesař

less simple and convenient value, nevertheless the remarkable change at this limit
is apparent. It is one of the examples of the general fact that microbubbles do not
behave in the qualitatively same manner as larger bubbles. Other examples of similar
analogous behaviour change are more complicated. As an example may be named
the change in evaporation dynamics [61]. The transitions in Fig. 8.5 at d D 1mm of
the overall character of the flowfield past slowly moving objects is due to formation
of the wake vortices as well as the shear-stress deformation of the bubble shape. The
behaviour is governed by the magnitude of Reynolds number

Re D wd


(8.5)

—where w (m/s) is the velocity and  (m2/s) is (kinematic) viscosity of the liquid.
Presented in the next Fig. 8.6 is the Reynolds number dependence on microbubble
size (sub-millimetre diameter in stationary regime) for the case of main interest,
the transport of carbon dioxide into water. Evident is the extremely rapid Re values
decrease, especially below d D 0:2mm, i.e. in the viscosity-dominated creeping
flows.

Fig. 8.6 Reynolds numbers of steady upwards motion of microbubbles decrease substantially with
decreasing bubble size d. The flowfield at small Re is of creeping-motion character, dominated by
viscous effects
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8.1.4 Surface Tension

Character as well as size of gas bubbles in a liquid are significantly influenced by
the phenomena taking place on the boundary between the gas and liquid—i.e. on
the surface of each bubble. There seems to be an extremely thin layer, behaving as
if it were made of additional elastic material spread on the surface. This apparent
elasticity causes a tendency of the bubble to assume minimum surface area. In reality
there is no such foreign material. Observed effects are a consequence of missing
molecular cohesion forces on the gas side of the boundary, cf. Figs. 8.7 and 8.8.

Water moleculesWater molecules

Oxygen
atom

Water
molecule

 ... and its four neighbours
    temporarily held by attractive
    hydrogen bonds

Hydrogen
atomHydrogen bonds

Termal motion limits duration
of the attraction effect to
mere picoseconds

Temporarily acting
intermolecular
attractive forces

Fig. 8.7 Left: Non-uniform distributions of electric charge on water molecule generates temporary
cohesion forces between the residual charge in oxygen atom of a molecule and hydrogen atoms in
its neighbour. Right: Molecule of water can attract four neighbours

Fig. 8.8 Shape of bubbles is determined by uncompensated forces on molecules at the interface.
Inside the liquid are intermolecular cohesion forces balanced but on the boundary the balancing
cohesion force on the gas side is missing
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Fig. 8.9 What seems to behave as an elastic layer at the surface of a liquid is particularly apparent
if a new surface is formed e.g. by cutting the liquid-filled volume into two halves. The work
done and converted into the surface energy in creation of new gas/liquid interface is a particularly
important factor in generating bubble at the exit from an aerator

This missing force effect is found whenever a new liquid surface is formed,
Fig. 8.9-left. The case in this illustration, i.e. making a new surface by cutting a
liquid column, is easy to understand but in practice rarely encountered. It should be
considered, however, that in principle the same creation of additional new liquid
surface takes place at the initial formation stage of generated bubble, as shown
schematically in Fig. 8.9-right.

For setting up a mathematical model and it is useful to introduce the idea of
surface tension � (N/m),—defined as the force S (N) acting on the unit transversal
length l (m) of the surface.

� D S

l
(8.6)

Here is this definition of surface tension � (N/m) that characterises physical
properties of the liquid and gas demonstrated on a model of constant-width strip
elongated by action of force S. Magnitude of S is proportional to the strip width l.
The surface energy increases with the product of S and the traveled distance dX.
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Fig. 8.10 Basic law of surface tension, formulated independently by Young and Laplace in 1806.
The pressure difference between both sides of an interface is inversely proportional to the interface
curvature radius r. Surface of a bubble exposed to a force field (e.g. due to gravity) is not spherical.
The Young-Laplace law has to be in that case re-arranged in terms of principal radii

This idea is particularly useful for interpretation of the basic Young and Laplace
law

�P D P1 � P2 D 2�

r
(8.7)

defining the pressure difference between both sides of a spherical surface cap
segment dependent on the surface tension � and curvature radius r of the spherical
surface shown in Fig. 8.10. Since the pressure difference is inversely proportional
to the radius, it is obvious that inside microbubbles with small radii the gas is
under quite large pressure—which may explain the diffusion transport away from
the bubble.

The sphericity condition assumed in Eq. (8.7) is on a free bubble (not in contact
with other objects) satisfied only on the top (apex) and antapex (bottom) points.
Elsewhere the conditions are more complex and it is there necessary to adapt the
Young-Laplace law to the form with two principal radii, as shown in Fig. 8.10-right.
This is also the case of surfaces of bubbles exposed to a force field (e.g. due to
gravity), having a non-spherical shape, exhibiting at general surface point different
principal radii. The Young-Laplace law (8.7) adapted in terms of principal radii to
account for this fact is.

�P D �

�
1

r1
C 1

r2

	
(8.8)

Magnitudes of the surface tension depend predominantly on the chemical composi-
tion of the liquid. Values for first-approximation calculations-not including thermal
effects-are listed in the diagram in Fig. 8.11 (note the logarithmic vertical scale).
More precise calculations have to account apart from temperature dependences also
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Fig. 8.11 Values of the
surface tension � as the
proportionality factor in the
Young-Laplace law here
listed for the case of air
bubbles in various liquids

Fig. 8.12 Traditional method
of air input into the liquid. It
is simple and inexpensive, but
generated bubbles are large
(typical diameter for air in
clean water is d � 4–10 mm).
The aeration is also
ineffective due to large
bubbles moving fast to the
surface, providing not enough
time for diffusion transport

influence of pressure. For applications in microfluidics were developed devices [36]
employing also surface tension dependences e.g. on applied electric field.

8.1.5 Bubbles Generated by An Aerator

Bubbles may be generated extremely simply, by inserting an end of gas supplying
tube or pipe into the liquid. The drawing Fig. 8.12 presents a solution of a technically
higher standard. However, in most applications this approach, without any attempt
at limiting the bubble size, would generate too large bubbles, of the order of
millimetres. Typically, such simple designs are used, e.g. in waste-water processing.
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Actual decomposition of the contaminants is performed by bacteria. The aerobic
ones need oxygen from the air bubbles—the waste water containing almost none—
but the air transport into the fast moving large bubbles is so ineffective that the
bacteria often die. To keep them and letting them doing their job puts so high
demands on the electric energy to drive the air compressors that their running costs
typically represent the largest percentage of the operating cost of the whole facility.

The inefficiency of the solution from Fig. 8.12 did not escape attention. An
improvement in the bubble size has been often sought in making the air exit channels
very narrow—in a belief that the bubbles will be correspondingly small. To produce
the required total gas throughput, it is necessary to provide a large number of the
small channels. They are usually arranged in parallel in a submerged body called
aerator, Fig. 8.13. The channels through which the gas is percolated are results of
sintering the aerator body from small solid particles. As long as the mechanical
stressing due to gas pressure difference across the channels allows it, the aerator
is preferably made in the form of a rather thin porous barrier or membrane. Even
with a thin sintered barrier, the length of air paths relative to their small transversal
dimensions is large. High hydraulic losses in them are inevitable, adding to the
generally low overall energetic efficiency.

What may be surprising to a newcomer, the idea of generation of small bubbles
by the percolation method is always a failure. In fact, no really better idea occurred
even to professionals, as demonstrated by the fact that the percolation-type aerators

Fig. 8.13 Photograph of a typical present-day aerator in operation. Despite the equivalent
diameter of the exits in this case only 0.12 mm, the produced bubbles are more than an order
of magnitude larger. Note that only small minority of pore channels actually produce the bubbles.
This is a consequence of instability of parallel bubble formation, Sect. 8.2.3



466 V. Tesař

are still manufactured and supplied commercially in large numbers. Apart from
the operational problems caused by the small channels becoming easily clogged,
the device does not do what it is expected: the bubbles are not small. Note in the
photograph of an example in Fig. 8.13, that only few from the available passages
actually do produce the bubbles at their exits.

The typical example of present-day aerator photographed in Fig. 8.13 was found
to use for bubble generation only less than 40% of its upper sintered membrane
surface. It is immediately apparent that the generated bubbles are much larger than
the passages cross sections—the average bubble size in this case was 5.7 mm. This
discrepancy is the consequence of a phenomenon called instability of parallel bubble
formation discussed in the next part of this chapter.

8.1.6 Bubble Shapes

When the bubble (and the surrounding liquid) is exposed to an acceleration, it is
elongated—or compressed—in the direction of the acting force. Let us investigate
the case of stationary bubble in gravitation field, still attached according to Fig. 8.14
to the exit from either upwards or downwards directed aerator passage at which
it was formed. The two configurations in Fig. 8.14 differ only in the sign of the
acting gravitation. Geometry of the problem is shown in Fig. 8.15. The bubble is
rotationally symmetric with respect to the vertical axis. Because of the symmetry,
position of a typical point P (coloured red in Fig. 8.15) on the bubble surface is
determined by only two Cartesian co-ordinates, X1 and X2. Their origin is located
in the apex point. The co-ordinate X1 is the radial distance from the symmetry
axis while X2 is the vertical distance from the apex. The law governing the bubble
shape is Eq. (8.8) and to use it, it is necessary to evaluate the magnitudes if the two

Fig. 8.14 Shapes of gas bubbles are influenced by hydrostatic lift force. In the case of vertical
orientation of the exit channel (either up or down) the shape is axisymmetric and computation of
its contour simplifies to solution of ordinary differential equations
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Fig. 8.15 Bubble sessile at
the exit of aerator channel at
which it was generated (with
one quarter removed for
access to the co-ordinates and
curvature radii). Investigation
of the bubble shape starts
from the simple conditions
(r1 D r2) prevailing in the
apex point

principal radii r1 and r2. It should be noted that they are equal only in the apex point,
where they are

r1 D r2 D rA (8.9)

To determine r2, it is useful to use spherical coordinates, radius r2 and angle ',
where

X1 D r2 sin ' (8.10)

so that Eq. (8.8) becomes

�P D �

�
1

r1
C sin '

X1

	
(8.11)

The pressure difference �P consists of two parts. The first one is the value �Papex

in the apex, Eq. (8.7)

�Papex D 2�

rA
(8.12)

and the second one is the difference in hydrostatic pressures increasing with the
depth below the apex. Hydrostatic pressures are evaluated as

�Phydro D gh

v
(8.13)

where g D 9:81m/s2 is the gravitational acceleration, h (m) is the depth, in the
present case h D X2 and v (m3/kg) is the specific volume of the liquid. In Eq. (8.4)
there is the difference between the hydrostatic increase on both liquid and gas sides.
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Of course, on the gas side it is practically negligible, but it is included into the
equation so easily that it may be left. Thus the governing Eq. (8.11) is re-written as

�P D �

�
1

r1
C sin'

X1

	
D 2�

rA
C
�

g

vw
� g

vo

	
X2 (8.14)

—where vw is the specific volume of the liquid (water) and vo is the specific volume
of the gas. The result may be converted into two first-order ordinary differential
equations

dX1
d'

D �X1 cos'

�� sin ' C .g=vw � g=vo/C�PapexX1
(8.15)

dX1
d'

D �X1 sin '

�� sin ' C .g=vw � g=vo/C�PapexX1
(8.16)

These equations are non-linear and their analytic solution is not known. They may
be solved numerically for any particular combination of the parameters, but this does
not provide an overall universal picture of the solutions. It is useful, for obtaining
some degree of universality, to convert them into introduced dimensionless vari-
ables. The key factor is the capillary length scale

lcap D
r

�

g=vw � g=vo
(8.17)

The other is the pressure parameter

p D �Papex

.g=vw � g=vo/lcap
(8.18)

This means the apex pressure difference related to difference of hydrostatic pressure
values at the depth lcap. The Cartesian co-ordinates of the bubble surface are thus
converted into non-dimensional

x D X1=lcap (8.19)

y D X2=lcap (8.20)

In these co-ordinates, the surface shape equations to be solved are

dx

d'
D x cos'

xy C xp � sin '
(8.21)

dy

d'
D x sin '

xy C xp � sin '
(8.22)
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Fig. 8.16 Numerical solution of Eqs. (8.21) and (8.22) in the “sessile” bubble case. Solution starts
in the apex point on top and progresses down with gradually increasing principal radius r2. Of
interest is the largest diameter D, found in the location where the radial distance x reaches its
maximum

Fig. 8.17 The numerical solution of the “pendant” case. The solution starts at the antapex and
progresses upwards

Author performed numerical solutions (by the Runge-Kutta method) of the pair
of simultaneous Eqs. (8.21), (8.22), following the ideas presented in Figs. 8.16
and 8.17. The pictures in this picture pair differs in the orientation of the acting
accelerations. They may be called “sessile” (Fig. 8.16) and “pendant” (Fig. 8.17)—
the terms which were originally introduced for the two basic orientations of attached
liquid drops and do not perfectly fit the character of attached bubble (Figs. 8.18,
8.19, and 8.20).
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Fig. 8.18 Computed bubble shapes according to Fig. 8.17. This is a single-parameter family of
solutions, each for a certain numerical value of the pressure parameter defined in Eq. (8.18)

rA :0.50 mn

X2 / l cap

X1 / l cap

P = 10.83
P = 7.224
P = 5.418
P = 4.334
P = 3.612
P = 3.096
P = 2.709
P = 2.408

Apex
radius

Pressure
parameter

rA :0.75 mn
rA :1.00 mn
rA :1.25 mn
rA :1.50 mn
rA :1.75 mn
rA :2.00 mn
rA :2.25 mn

Fig. 8.19 From the practical point of view more important solutions of the sessile cases, cf.
Fig. 8.16
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Fig. 8.20 In this author’s series of numerical “sessile” bubble solutions (Figs. 8.16 and 8.19) was
evaluated the dependence of the relative magnitude of the diameter D (cf. Fig. 8.19) on the pressure
parameter

8.1.7 Shape Oscillation

Problems associated with generation of microbubbles are clearly seen in the typical
Fig. 8.13. It is the inefficient use of most passages in the aerator and, more
importantly, generation of too large bubbles out of any proportion to the passages
cross section. The solution of the problem by oscillating the gas flow into the aerator
was discovered by a chance and the mechanism of the improvement was initially not
recognised. It benefited from existing previous positive experience with available
fluidic oscillator, the properties of which were the crucial factor. Since the oscillator
in the original tests was designed for use in a different application, it soon became
necessary to design and build a new one.

The starting point in designing any oscillator is the oscillation frequency at
which it is going to operate. In the case discussed here, the choice of frequency
depends upon the basic idea of what the oscillation actually does with the bubbles.
Observations of the rapid decrease of bubble size once the oscillator was switched
on has led quite naturally to idea of the oscillator causing fragmentation of the
bubbles. It seemed that an initially large bubble was by the acting pulsation
decomposed into a group of smaller ones. Such decomposition, of course, would
request very high amplitudes of the oscillatory motion. This can be achieved in
practice only by pulsating the initial bubble in some higher-mode, using its natural
resonant frequency. The oscillation was to be at least in the second mode, i.e. with
two alternatively appearing amplitude maxima at the bubble surface (Fig. 8.22). In
that case the initial bubble would decompose into two smaller daughter bubbles.
Considering the desirable small scale of the microbubbles, it was immediately
apparent that the natural frequency is likely to be quite high. A higher bubble
oscillation mode, with decomposition into more than only two daughter bubbles,
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would be, of course, better—but it was obvious that this would necessitate an even
higher frequency. With fluidic oscillators this might be a problem.

It should be emphasised that the shape oscillations discussed here are different
from the volume oscillation involving the gas compressibility, which was studied
already as long ago as in 1917 by Rayleigh [28]. This oscillation, mainly in
association with the cavitation problem of importance in pumps and ship propellers,
was since then often studied and the original equation derived by Rayleigh gradually
improved by later authors. The present case of shape oscillation is obviously
different. The pressure amplitude levels are very much smaller than those necessary
for producing a significant compression of the bubble.

To obtain a first-hand information about the much less studied shape oscillation,
present author performed an independent study [42]. The oscillation under investi-
gation was transitional, following a sudden formation of a bubble by conjunction
of two bubbles in a bubble chain rising from the exit of a single passage, as
seen in images presented in Fig. 8.21. Since the bubbles (in this case indeed
microbubbles) at the aerator passage exit were very small, they moved upwards
rather slowly (cf. Fig. 8.5). It was no problem to adjust conditions so that the
follower bubble (generated later) came into conjunction with its predecessor bubble.
Such conjunction produced a very strong shape disturbance, from which the
resultant bubble recovers in oscillation driven by the released excess surface energy.
It finally assumed its spherical shape as seen in the images presented in Fig. 8.21,
recorded by a high-speed camera. In the images was chosen a reference point on the
bubble, the instantaneous position of which was manually measured in the camera
images. In this case the reference was the bottom antapex of the oscillating bubble.
Evidently—as seen in Fig. 8.22—the oscillation studied was of the second mode,
with two amplitude maxima taking alternatively place at the bubble top and bottom
(there were some small sideways motions, but these were neglected as unimportant).
Camera provided to each image the precise time which the image was recorded (it is
written at the bottom of Fig. 8.21). Plotted instantaneous positions of the reference
point as a function of the time instants were fitted by a continuous line. This was
fitted with a sixth power polynomial. The result was then differentiated to provide
the instantaneous velocity w of the reference point movements. This recording and
evaluation of the vertical velocity was repeated six times under slightly different

Fig. 8.21 High-speed camera images of conjunction of two microbubbles (extreme left) and
subsequent oscillatory motions of the resultant larger microbubble
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Fig. 8.22 Bubbles behave in the studied oscillation as if they were elastic incompressible objects.
The easiest excitation of constant-volume oscillation is obviously in the lowest axisymmetric
mode m D 2. This (apart from some skewness caused by the generated bubbles slowly moving
horizontally) was found in the images of the oscillation in Fig. 8.21

Fig. 8.23 Oscillatory motions after the conjunction—Typical fit to velocities computed from
measured positions of the bottom reference point in data points in images similar to Fig. 8.21

conditions. One of the six velocity diagrams obtained is presented in Fig. 8.23.
Even though the oscillation was rather strongly damped—it practically disappears
in less than 10�s (Fig. 8.23)—in the first approximation it was possible to neglect
the damping. Thus the governing equation of the oscillatory movements could be
written, as shown in Fig. 8.24, with only two terms. It was the inertial term, with
inertance J, and the accumulation term, with capacitance C. Natural frequency of
such oscillation is

f D 1p
JC

(8.23)
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Fig. 8.24 Fluidic model of undamped oscillating bubble. Capacitance C may be evaluated from
surface energy variations of measured bubble deformation, Fig. 8.25. The frequency f is measured
in a diagram similar to Fig. 8.23. Thus the only not directly measurable quantity was the inertance
J representing inertia of the liquid

ΔE ∼= 4πσ

c
x2

Esph = 4πr2σ

C =
c

σ

Fig. 8.25 Capacitance of the bubble oscillating as an elastic body between the oblate and prolate
ellipsoid shape was evaluated by computed surface area directly proportional to surface energy (the
excess of which the bubble tends to minimise)

From these two known variables (f and C) in Eq. (8.23) it was possible to determine
the missing quantity J (Figs. 8.25 and 8.26).

8.1.8 Oscillation Frequency

Dynamics of fluid mechanical processes involving a boundary between gas and
liquid is characterised by Weber number We, a dimensionless parameter

We D w2d

2�
(8.24)
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Fig. 8.26 Inertance evaluated as the missing parameter of the model in Fig. 8.23 made possible
estimating how thick boundary layer of liquid is associated with the motion of an oscillating bubble

introduced in 1919 [54]. It is apparent in Eq. (8.24) that We is defined as a ratio of
specific kinetic energy w2=2 of the fluid flow and specific surface energy, which
is the ratio of bubble surface energy Eq. (8.42) and �d3=V , the mass of the liquid
volume occupied by the bubble.

While We was introduced and has been used earlier for steady bubbles, in analysis
of the bubble oscillation, discussed here, this author has introduced a closely related
parameter for oscillatory processes at frequency f . For the oscillating bubbles of
diameter d this parameter is

Weo D f 2d3

2�
(8.25)

Available numerical data obtained in the analysis of the six shape oscillation
experiments were inserted into the definition Eq. (8.25), with the result presented
in Fig. 8.27. Evidently, the bubble oscillation is characterised by a constant Weo
value, in these experiments the average

Weo D 1:27 (8.26)

The corresponding frequency is plotted in the next diagram, Fig. 8.28. The most
important conclusion obtained is the fluidic oscillator for excitation of the lowest
m D 2 mode for generation of microbubbles by fragmentation microbubbles has to
oscillate at a frequency of the order of kilohertzs. This is a demanding requirement,
especially if the oscillator is requested to generate considerable output power—and
hence it has to be not very small.
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Fig. 8.27 Author’s measurements of oscillatory Weber number Weo in high-speed camera images
like those in Fig. 8.21. The values are nearly constant, which justifies evaluating their average value

Fig. 8.28 Natural frequency of photographed microbubbles as a function of their diameter d, using
the average result in Fig. 8.27. The frequencies are above 1 kHz, very high for generation by typical
standard fluidic oscillators

8.2 Problems and Solutions

8.2.1 Gas Diffusion from the Bubble

Most gases can in a significant measure dissolve in liquids. Aquatic animals, after
all, are known to depend on the oxygen dissolved in water. The case of main interest
here is carbon dioxide which, in addition to its dissolution, reacts with water and
forms carbonic acid. In most engineering processes working with bubbles the aim
is to transport the gas into the liquid.

Exact solutions of the problem of diffusion transport from a bubble moving in the
liquid are very difficult. It may be, however, useful to apply a simplified approximate
analysis to obtain some knowledge of magnitudes of parameters and variables.
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Let us assume small bubble of surface F (m2), across which the gas molecules
propagate away. The law governing this spatial transport is one of two expressions
derived by Fick in 1855 [6]. One is the law which governs the time dependences and
may be neglected in the present discussion which assumes quasi-steady regime—
since the diffusion transport from a bubble is a quite slow process. It is the other
law, on spatial distributions, which is here applied. Its basic idea is dependence of
the intensity of the transport of an ith component in a multi-component mixture on
the local spatial gradient of its concentration. The concentrations considered here
are

mi D Mi=M (8.27)

where Mi (kg) is the mass of the investigated gas, the specific volume of which is vi
(m3/kg), while the total mass of the mixture in the same volume is M (kg).

Let us consider a spherical bubble of diameter d (m) and surface area F (m2) It
moves in the direction of axis X. It is a creeping motion, so slow that it is acceptable
to neglect the resultant deformation of the concentration field. Thus the problem
may be reduced to a one-dimensional one—with all variables varying only along
the axis X, measured from the bubble surface. Inside this bubble the concentration
of the studied ith gas is mib. The bubble exists in liquid in which the concentration
of this gas (at sufficiently large distance from any bubbles) is lower, mie. Due to the
general tendency toward the same concentration everywhere, molecules of the ith
component gas diffuse and move away. Thus results in the concentration field with
most changes taking place in the rather thin boundary layer (Fig. 8.30) surrounding
the bubble surface.

Total intensity of the transport is evaluated as the mass flow rate PMi (kg/s) of the
ith gas from the bubble. It is also acceptable to use for this purpose the volume flow
rate PVi (m3/s),

PVi D PMivi (8.28)

In the approximation here applied, variations of the specific volume may be
neglected, so that the two approaches differ only by a multiplication constant. With
the one-dimensionality assumption also the intensity of transport is the same over
the whole surface area F (m2).

The Fick’s law of transport intensity dependence on the local spatial concentra-
tion gradient dmi

dX assumes the simplest, linear dependence, so that it may be written
as

Vi  � dmi

dX
F (8.29)

The negative sign is there to remind the fact that the diffusion transports the
gas towards the region with lower concentration, attempting to equalise the con-
centration mi everywhere. Of course, the intensity of the transport also depends
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Fig. 8.29 Diffusivity � was introduced as the factor characterising influence of fluid chemical
composition in diffusion problems

on the properties of the gas. This, is expressed by introducing a multiplicative
constant, at any rate necessary for proper units of the quantities. The constant in
the proportionality is diffusivity � (m2/s).

There is practically no way how to find value of this quantity other than
by performing experiments with various gases and liquids. In real situations the
introduction of diffusivity is used to cover various other effects nor expressed in
the transport intensity equation—and as a result � may be not a simple constant.
Nevertheless in the discussed problem of slow laminar flow past the moving bubble
the assumption of its invariance is acceptable. Diagram in Fig. 8.29 presents a
number of values for diffusion of fluids (mainly gases) into water.

The complete expression for the Fick’s law is thus

Mi D � dmi

dX

�i

vi
F (8.30)

It may be useful in problems of convective transport to compare the mass diffusivity
� with the viscosity  (m2/s), which has the same role in momentum transport in the
liquid—both have the same dimensions. Their ratio

Sc D �i


(8.31)

—is called Schmidt number [30].
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Concentration
of gas i inside
the bubble Concentration

in the liquid

mib = 1

X

Bubble boundary

mie

d

Fig. 8.30 Assumption of one-dimensional distribution of the gas concentration outside the bubble
surface

A simplified version of the transport equation (8.30) is based on the idea of
thickness ı of the boundary layer (Fig. 8.30) and the corresponding effective mean
gradient .mib � mie/=ı.

The aim of most investigations of diffusion problems is determining the mass
transport rate Eq. (8.30). Especially in experimental determination the basic com-
plication is unknown spatial distribution of the concentration. This is circumvented
by working with the mean gradient above:

Mi  � mib � mie

ı

�i

vi
F (8.32)

Again, the proportionality (8.32) becomes equation by introducing the mass trans-
port factor ˛m (m/s)

Mi D .mie � mib/
˛m

vi
F (8.33)

and for the spherical boundary, [Eq. (8.1)],

Mi D .mie � mib/
˛m

vi
�d2 (8.34)

It is useful to transform the factor ˛m into non-dimensional Sherwood number
Sw [32]

Sw D ˛md

�i
(8.35)

It may be interesting to view the physical meaning of ˛m from comparison of
Eqs. (8.30) and (8.33):

˛m D �i

ı
(8.36)
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—so that the inverse of Sherwood number in Eq. (8.35) expresses the effective
thickness of the boundary layer related to the diameter d of the bubble

1

Sw
D ı

d
(8.37)

The solution of the transport problems concentrates on determination of ˛m—
usually sought in its dimensionless form Eq. (8.35). Other variables in Eq. (8.35) are
usually known, so that the diffusion mass flow rate PMi from the bubble is determined
by evaluating Sw. The influence of the liquid flow on Sw is characterised by the
magnitude of Reynolds number Re, Eq. (8.5). According to recent investigators,
e.g. Aissa et al. [1], it is now accepted that the diffusion from moving bubbles is
described, with accuracy sufficient for engineering purposes, by the Ranz–Marshall
[27] correlation

Sw D 2C 0:6Re1=2Sc1=3 (8.38)

Some consequences of Eq. (8.38), computed using the known microbubble rising
velocity above in Fig. 8.5, are presented in Figs. 8.31 and 8.32 as the dependence on
the microbubble diameter of the diffusion transport factor ˛m and of the Sherwood
number.

Fig. 8.31 Magnitudes of the
gas diffusion transport factor
˛m depend very strongly
(note the logarithmic scale)
on the bubble size
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Fig. 8.32 Reynolds and
Sherwood numbers of the
derived approximate solution
of the diffusion problem for
very slowly rising CO2
microbubble in water

8.2.2 Surface Energy

Why it is difficult to generate very small bubbles? And also, why the small bubbles,
when we finally manage to produce them, tend to coalesce into a single large
bubble? One of the reasons is very fundamental. It is a consequence of general
trend of processes in Nature towards the lowest accessible energetic potential.

Derivation of the energy stored in the bubble during its formation begins by
considering the definition of the surface tension � (N/m), in Eq. (8.6). Shown there
is an element of the bubble surface in the form of a strip of constant width l. The
strip is elongated by the force S that moves in the direction X perpendicular to l. The
magnitude of the force is S D � l. In the course of the movement by the distance
increment dX, the force does an infinitesimal work—which is equal to infinitesimal
increase of the stored energy dE. It is evaluated as the product of the force and
distance

dE D S dX D � l dX (8.39)

while the increase of the surface area is

F D l dX (8.40)

so that

dE D � dF (8.41)
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Fig. 8.33 Alternative interpretation of the meaning of the surface tension � (N/m) that may be
useful for solution of some problems. It may be thought of as the local value of the surface energy
per unit area. Here the surface energy is evaluated for the simple case of perfectly spherical bubble

Fig. 8.34 Left: Conjunction of two gas bubbles of the same diameter dj into a single larger bubble
of diameter dc is due to the decrease of resultant total surface energy—and the fact that all processes
in Nature tend to reach the energetic minimum. Right: An example of conjunction in a chain of
rising microbubbles. Note the very short time difference between images. The energy released
during the conjunction is dissipated by damped high-speed oscillation (Fig. 8.23)

—evidently, the surface tension � has now another physical interpretation. It is
� D dE=dF (J/m2) energy of cohesion of surface molecules per unit of bubble
surface. Because of the almost complete spherical symmetry of microbubbles,
magnitude of � on their surface is everywhere the same, so that the result of
integrating Eq. (8.41) over the whole liquid/gas interface is simply (Fig. 8.33)

E D �F D �d2� (8.42)

Let us now consider the conjunction of two bubbles as they are presented in
Fig. 8.34-left, both of the same diameter dj in a bubble chain, rising to the liquid
surface above from the exit of aerator passage. Images taken by high-speed camera
before, during, and after the actual conjunction of two neighbour microbubbles in
the chain are presented in Fig. 8.34. It explains how the used high intensity LED
source illuminated the bubbles from above so that their “spherical lens” shapes
focused the light onto the bottom parts of microbubbles. The indicated time in
Fig. 8.34 at which the images were taken show how fast is the conjunction process.
It starts and is finished in mere fractions of a millisecond.
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Prior to their merger, the combined surface of the two pre-conjunction bubbles
was

Ftotal D 2�d2j (8.43)

so that their total surface energy Etotal considering Eq. (8.42) was

Etotal D 2�d2j � (8.44)

Volume of each of the bubbles assuming spherical shape was Eq. (8.2)

V D �

6
d3j (8.45)

The resultant large bubble after the conjunction is of diameter dc and volume

Vc D �

3
d3j D �

6
d3c (8.46)

and hence surface area

Fc D �d2c D 22=3�d2j (8.47)

This is smaller than the original Ftotal

Fc D 2�1=3Ftotal D 0:794Ftotal (8.48)

In the same proportion is decreased the surface energy. The difference between
Eqs. (8.43) and (8.47),—the energy released in the conjunction process, is

�E D .2 � 22=3/�d2j � (8.49)

—which is dissipated by the oscillation inside the much larger volume of the
stationary liquid surrounding the resultant bubble (of course, the bubble oscillates
as well, but the energy of its motion is very much smaller.

This negative energetic balance of the conjunction is also reflected in the
opposite, energy increase that must be input into each bubble if it is desired to
fragment it and make smaller. Since this means an extremely larger number of
bubbles—and perhaps smaller in size than obtained by mere halving—this explains
many of the difficulties so far met in all attempts at producing microbubbles.

8.2.3 Instability of Parallel Bubble Formation

Although it has been known for quite a long time that the desirable generation
of small bubbles cannot be achieved by making exits from aerator passages
more narrow, there are many aerator designers still believing in that approach
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and maintaining that the success must be within sight. The failure of these
hopes is demonstrated by the example photograph of contemporary commercially
available aerator in Fig. 8.13. This does not mean the narrow-passages in aerator
are useless—they generate bubbles visibly smaller than what can be expected
by simple submerged end of a large-diameter pipe (Fig. 8.12). Nevertheless the
steady percolation of air through sub-millimetre passages makes the desired goal
of microbubbles inaccessible. Another closely associated problem is the most of
the aerator surfaces—typically more than 60%—being visibly inactive, the bubbles
being produced by only remaining active aerator exits.

A complicating fact is that there is not only a single cause. Why the bubble
generation is unevenly distributed over the aerator outer surface could not be
explained by comparing the geometry of the active and inactive passages. What the
observations show is the effect of inactivity generally becomes more pronounced if
the aerator passages, in an attempt to decrease the hydraulic friction losses in the
aerator passages, are made short in the flow direction. The explanation at least of
one of the problems is actually simple: this reason is a direct result of the very basic
Laplace-Young’s law of surface tension, Fig. 8.10. It is called instability of parallel
bubble formation [36].

Presented in Fig. 8.35-left are two stages of bubble (and microbubble) generation.
Both show the situation with the gas supplied from below into the formed bubble.
The gas flow causes gradual increase in the bubble volume (coloured blue) of the
yet “pre-natal” bubble—i.e. a bubble still attached to the aerator passage exit. The
left-hand side of the illustration shows an earlier stage, with the interface radius
of curvature r gradually decreasing from the starting situation at which the radius
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Fig. 8.35 Bubble formation at an exit from the aerator passage. According to the Young-Laplace
law, Fig. 8.10, the pressure difference �P between the gas inside the exit and the outer liquid
makes stable the initial phase of bubble growth. Stability is lost when the bubble surface attains the
hemispherical shape r D d=2
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is practically infinite. This condition of decreasing radius is short lived while the
bubble is still attached to the aerator exit. As shown in the right-hand side of the
illustration, representative of a later stage, the still sessile bubble grows with the
interface radius of curvature r increasing.

The limiting situation between the two stages shown in Fig. 8.35, presenting
a diagram of pressure difference across the liquid/gas interface as a function of
volume of growing bubble. In the initial stages, when the surface curvature radius
r is less than one half of the exit orifice diameter d, is stable. The increasing gas
volume in the bubble meets the increasing opposing pressure. Once, however, the
hemispherical limit state is reached, the unstable conditions cause the growing
bubble to decrease its internal pressure. Entering gas meets less opposition to its
flow. Thus is grows faster, up to the separation condition in which the surface tension
on the bubble base ceases to hold in its vertical position the hydrostatic lift inside
the bubble.

The differences in behaviour may be now observed in the generation of bubbles in
two neighbour parallel orifices—the model shown in Fig. 8.36. As soon as one of the
bubbles increases, perhaps by some chance disturbance, beyond the hemispherical
shape r D d=2, its further volume growth is assisted by the continuous decrease in
the pressure difference�P that is to be overcome by the supplied gas (air). Because
of the instability, such a bubble grows fast at the expense of the other bubble at the
parallel passage, which stops growing or even experiences a opposing pressure force
that pushes the generated bubble back, into the passage.

This instability is less effective if the aerodynamic resistance of the passages is
high in relation to the Laplace-Young pressure. This resistance makes the conditions
nearer to equal, i.e. may even cease to produce the unstable condition. This is the
reason why the problem of parallel bubble instability is more pronounced in the case
of thin aerator walls (i.e. with short passages). Typical is its presence in those cases
where the aerator is formed—in an attempt at decreasing the necessary gas driving
power—from metal textile, made by weaving thin wires.

Fig. 8.36 Formation of two bubbles from the same air flow source in two parallel exits. It is
impossible to generate in the two exits bubbles of identical radii r. As was seen in the photograph
Fig. 8.13 of generated bubbles, some channels that started forming the bubble later do not produce
any bubble at all—while others generate bubbles out of any proportion to the channel diameter
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8.2.4 Conjunction of Microbubbles

The instability discussed in the previous section is not the only reason for the
observed large size of bubbles—so large to make impossible generating, by aerator
percolation, the desirable microbubbles. An interesting bubble growing mechanism
acting at the small, microbubble size scale very near to the aerator exits was
discovered only recently—and seems to remain unrecognised until the publications
of [39]. It is the growth by repeated conjunctions with bubbles formed later in the
same aerator passage exit. It escaped attention due to two reasons. First, because it is
a high frequency phenomenon impossible to follow by naked eyes. Second, it takes
place at very small distances above the exit. Mostly it is seen in camera images at
heights above the aerator exits less than  0:3mm. This very small distance makes
the observation and photography very difficult because of the light diffraction on
various nearby aerator walls and edges. At the distances > 1mm, where bubbles
are normally accessible for being observed and measured, the effect cannot be seen
at all. What is visible there are the quite large bubbles produced at not very high
repetition frequency. Only by using a very high speed camera with special optics
was discovered the fact that these values are a result of a quite complex process.

The conjunctions are due to the very small rising velocities of microbubbles.
They linger near the exit in which they were made and easily come into contact
with subsequently produced microbubbles. An example obtained with this camera
is presented in Fig. 8.37. It is a diagram of bubble centre height (on vertical axis)
dependence on time (on horizontal axis). In this case the final bubbles consist

h ... Height of microbubble centers
above aerator exit[mm]

[ms]

tTime

1.5

1

0.5

0

Primary microbubbles
of diameter d = 0.243 mm
leave the aerator pas-
sage exit every 2. 65 ms
i.e. with repetition
frequency f = 378 mm

Diameter of bubbles
leaving the aerator
at h > 1 mm

0.47 mm

0 10 20 30 40 50

Fig. 8.37 Height/time history of growth of larger bubbles from microbubbles by conjunction. Note
the very small heights h
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of seven coalesced primary microbubbles. They were leaving the same particular
aerator at the period 2.65�s. Their diameter was d D 0:243mm. The microbubbles
at this size, as shown in Fig. 8.5, rise so slowly that their vertical distance above
the aerator at the appearance of the next bubble from the same exit is comparable
with the bubble diameter. As a result of this proximity, the two microbubbles touch
and then coalesce, forming a larger bubble. The surface energy released in this
conjunction causes the resultant bubble to oscillate—and the oscillation increases
the hydrodynamic resistance. This practically stops or slows down the natural
upwards motion of the resultant bubble. Its remaining near the exit at the time of
appearance of third primary bubble causes another, second conjunction—and later
third and other repeated conjunctions.

Another example history of the repetitive conjunctions, again presented by
showing the height/time trajectories, is in the next Fig. 8.38. In this case there

Fig. 8.38 Details of experimentally investigated repetitive conjunctions, in this case making the
final bubble from five primary microbubbles. Top: the height vs time trajectories, bottom: images
of the primary bubbles 1, 2, 3, and 4 prior to the conjunction recorded by high-speed camera
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were only five primary microbubbles. The improved lighting (which is usually the
limiting factor for high-speed camera recording) made possible better resolution of
the positions and speed of motions than was the case above in Fig. 8.37. The primary
microbubbles produced at the aerator exit were now of diameter d D 0:187mm.
Apart from the trajectories, in the bottom part of Fig. 8.38 there are also high-
speed camera images of the microbubbles, taken at the critical times just before the
conjunctions. The primary microbubbles are in this picture numbered from 1 to 5
(the microbubble 1 was one that appeared first while the microbubble 5 was the last
one) that finally left the near-exit space and thus finished the cycle. These numbers
correspond to the numbered trajectories in the height/time diagram. The four images
in the bottom part of Fig. 8.38 are labeled A,B,C, and D and the same letters indicate
above, under the diagram, the appearance of additional primary microbubbles in the
aerator exit.

(A) This image was recorded just prior the first conjunction—that of the two
primary microbubbles, which are visible in the bottom part of the image. Also
seen in the image is the ascending large bubble P which is the result of the
previous cycle.

(B) The same photographed scene as in precious image A was here recorded
after elapsed period lasting 6.2 ms. The microbubble 2 created by the previous
conjunction is visibly larger than the primary microbubble (or the microbubbles
in the image A). Note how the large—and therefore faster rising—bubble P has
in the meantime already ascended to the top part of the image while the bubble
2, because of its shape oscillation, still remains at practically the same height
as the microbubble 1 in the image A.

(C) Taken after another 6.2 ms time increment. Another primary microbubble
emerges from the aerator exit and will soon coalesce with the bubble 3. The
bubble P has moved so fast that it has already left the scene (only its bottom is
seen at the top of the image). Note that bubble 3 is already significantly larger
than the microbubble 2 in previous image B.

(D) At the total time 19.2 ms after the first conjunction A of this cycle. The
microbubble 4 has already ascended to the height (0.25 mm above the aerator
exit) at which the subsequent conjunction D becomes the last one in the series.

8.2.5 Microbubbles with Fluidic Oscillation

After the discovery of the growth by repetitive conjunctions, the essential question
remained not fully answered. It was the question of the role actually played
by the oscillation generated by the fluidic oscillator. After all, the capability of
the oscillation—under some conditions—to produce microbubbles was clearly
demonstrated at the very beginning of this study.

At that time it was believed that the pulsation somehow causes fragmentation of
the bubbles. This would need applying the oscillation at the natural frequencies of
the microbubbles. As demonstrated by the measurements the results of which were
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presented above in Fig. 8.28, these frequencies are very high, typically between 1
and 2 kHz. These values are high above the typical frequencies of fluidic oscillators,
which—with air, dependent on the lengths of the feedback loops and flow rate—
are in the range from 50 to 300 Hz. In accordance with the universal trend in
Nature—high frequency associated with small size of the device—author devoted
considerable effort to development of extra high frequency oscillators. Figure 8.62
in the Sect. 8.3.5 demonstrates achieving frequency near to 2 kHz with quite large
oscillator, of 2 mm supply nozzle width. Unfortunately, no visible reduction of
generated bubbles could be observed with this oscillator.

After the failure of unequivocal experiences with the fragmentation idea, another
explanation—and consequent development direction—was sought in suppressing
the instability of parallel formation [36]. It was considered quite possible that the
oscillation allows the bubble growth only during one half of the oscillation period.
This means the bubbles stay within their stable regime, i.e. not growing past the
hemispherical stability limit discussed in the Sect. 8.2.3. The weak point of this
idea is how these hemispherical bubbles separate from their aerator exit. A proviso
explanation was in the flip-flop character of the oscillation. The sudden switching of
the jet attachment to the attachment walls can apply a strong sudden airflow pulse,
causing the bubble separation.

The discovery of the growth by repetitive conjunctions made the problem
of microbubbles visible in a new perspective. The it became apparent that the
oscillatory motion with suitably adjusted parameters can prevent the contact and
coalescence between freshly formed microbubbles. To investigate validity of this
idea, author’s study [40] was made again with the high-speed camera and a
slightly scaled up (0.6 mm exits) model aerator which could be adjusted to generate
d D 0:6mm diameter microbubbles. In contrast to standard sintered glass dust
aerators with stochastic geometry of the passages, the passages in this aerator model
were made regular, by drilling them arranged in line.

The immediately apparent fact that was really not expected was the back-and-
forth motion of the bubbles, as seen in the photograph in Fig. 8.39. The bubbles
that were formed in the first part of the oscillation period are, after their completed
separation from the exit, in the subsequent part of the period pulled back into the
aerator passage. Of course, once they were there, they became protected from the
conjunctions. The dynamics of their motions was evaluated again from the height
vs. time trajectories, by measuring positions of bubble centres manually in camera
images. Results of this data processing are plotted in the diagram in Fig. 8.39.

Instead of being pushed, after formation, towards mutual proximity, the
microbubbles are moved away from one another. The suction is a short-range
effect. It influences the nearby freshly formed microbubble while the microbubble
formed in the previous cycle is no more influenced—in fact it is moved away,
together with ejected water.

Understanding the motion of water during the oscillation period is very impor-
tant. The well visible bubbles attract attention, but really crucial is the water which
has much more mass and hence much more inertia. In the next three illustrations,
from Figs. 8.40, 8.41, and 8.42, show schematic representation of the conditions
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Fig. 8.39 Left: High-speed photograph of 0.6 mm dia microbubbles formed at exits from passages
in model aerator. Conjunction of microbubbles at the passage exit is here prevented by fluidic
oscillator causing suction return motion of the bubble. Right: Height/time trajectories of the
microbubbles. In the suction part of oscillation period the motion of the nearest bubble reverses
while the bubble formed previously is accelerated away

Fig. 8.40 In stage A the flow is just past its reversal. Because the bubble is quite far, the suction
pulls into the passage the surrounding water. At B the microbubble has returned into the passage
and closes the water column

at and near to the flow reversal. Five points in the trajectories from Fig. 8.38 were
chosen for the analysis, labeled A, B, C, D, and E and at the left-hand side of the
pictures are shown positions of the freshly made bubble in space in addition with
hand-drawn water flowpaths.

In the first drawing, Fig. 8.40, the bubble in the position A just begun moving
back (i.e. opposite to the general upwards motion). The downwards suction moves
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Fig. 8.41 In the stage C the microbubble is protected from conjunctions inside the aerator passage.
Secondary water column is formed. In the next stage D both the microbubble and water columns
are expulsed. Momentum of the water columns plays decisive role in moving the microbubble
away

Fig. 8.42 The stage E at which starts the formation of the next microbubble. Note the separation
height s from the bubble formed previously. It is moved away from the aerator by the accelerated
water columns
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into the aerator passage water, especially the water that is near to the suction
mouth—and with it, also the freshly formed bubble. Inside the aerator passage the
water forms a liquid column. The drawing, Fig. 8.40, marks as B the situation when
the returning bubble reaches the passage. There it forms the upper lid of the water
column below.

The accelerated water at and above the bubble continues mowing down. Thus
the bubble reaches the point C shown in Fig. 8.41. Being inside the passage, it is
inaccessible for any contact with bubbles formed earlier. No conjunction hence can
take place. Very soon after the point C, however, comes another reversal of the flow
direction. Both water columns (primary below the bubble as well the secondary
above it) start moving upwards. The microbubble operates as a piston. Illustration
Fig. 8.41 represents the state D in which the aerator passage is emptied by its
contents moving upwards.

Especially the primary water column is accelerated by the air “piston”. While the
bubble itself, due to its small and indeed almost negligible mass, would not posses
any significant inertia, with the liquid columns it is different. The inertia of their
upwards motion affects also the bubble. In Fig. 8.42, when the subsequent bubble is
formed and is already seen in its starting hemi-spherical shape, the originally studied
bubble has moved into the position E which, due to the water inertia, is at the large
vertical distance “e”.

Real fluidically generated oscillations are expected to operate under different
conditions than the above discussed scaled up model. The conditions, however,
have to fulfil the request of constancy of some dimensionless criterial parameters.
Especially the criteria for initial formation of the bubble will be important and this
is the reason why they were evaluated for the successful case from Fig. 8.39. The
local slopes of the time/height diagram trajectories make it quite easy—by fitting a
tangent to selected data points—to evaluate the bubble motion velocity. The heavy
black straight line in Fig. 8.43 was evaluated to obtain the velocity

bw D 0:297m=s (8.50)

Fig. 8.43 Parameters of the
initial bubble formation
driven by the gas pressure.
Low Reynolds number
indicates laminar character of
the flowfield
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Compared with the general expression for Reynolds numbers, Eq. (8.5), the aerator
exit Reynolds number for this case

bRe D bwd


(8.51)

Its numerical value is

bRe D 178:4 (8.52)

Evaluated from the same velocity Eq. (8.50) was also Strouhal number

bSh D fd

bw
(8.53)

—the numerical value of which was

bSh D 0:121 (8.54)

The same role of similarity as the Reynolds number of steady flows plays in the
periodic oscillation flows Stokes number

Sk D fd2


(8.55)

In the above analysed experiment its value was

Sk D 21:6 (8.56)

Finally, it may be interesting and at the same time useful to evaluate the
oscillatory-motion Weber number, Eq. (8.25) which in the shape oscillation bubble
motions had the value Weo D 1:27, Eq. (8.26). Now in the generation of microbub-
bles by the oscillatory flows in aerator passage, the value is very much smaller

Weo D 0:0054 (8.57)

8.2.6 Consequences of the Discovered Effects

Critical aspect of the discussed problem is understanding the mechanism of
microbubble formation in the exits of aerator passages, supplied by airflow with
flip/flow oscillation. It is not a trivial problem and it has to be admitted that full
understanding is still missing. Generating microbubbles is a demonstrated fact, but
it is still not possible to say in advance whether and at what combination of oscillator
parameters the desirable phenomenon will be achieved.
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The very basic parameter upon which there is so far no agreement is the
oscillation frequency. Initially the development effort concentrated of achieving—
in a not very small body—very high frequencies. This direction, however, has been
deserted. The successful model study discussed in Sect. 8.2.5 has demonstrated,
that the desirable performance will most probably need the protection by bubble
flow reversal, including the back-and-forth bubble movement. These somewhat
complicated motions cannot be done at high frequencies. To the very opposite,
the new fluidic oscillator principles had to be developed at frequencies lower than
previously expected.

8.3 Fluidic Oscillators

8.3.1 Development History of Fluidics

Fluidics is technique of generating and handling fluid flows. In its broad general
meaning the term may be applied to activities that have been there since time
immemorial. Man always had to handle fluids (i.e. either liquids or gases—and
their two-phase mixtures) and control their flows. Initially distinguished were terms
“hydraulics” for handling liquids and “pneumatics” when the handled medium
was gas. The unifying term fluidics for both is nowadays used in a narrow sense,
applied to devices without mechanical parts. Earlier devices operating with moved
or deformed components are now described as mechano/fluidic ones. Devices with
mechanical components are generally easier to design—while pure fluidic action
requires a deeper knowledge about sensitive spots in flowfields. Nevertheless, apart
from being expensive (they are made separately and inserted in an additional
assembly operation) mechanical components can cause problems in operation. They
may be broken, get stick or become loose—and may need maintenance (oiling,
tightening the seals). Most importantly, because of their inertia, they limit the
speed of response. In pure fluidic devices that were invented in the middle of the
last century the absence of such components thus brought obvious advantages.
Particularly apparent were the advantages in the key devices of control systems—in
the no-moving-part fluidic amplifiers. These are capable of operating in a similar
manner as vacuum-tube electric amplifiers, which at that time still had to grapple
with the competition of earlier moving-part relays. Vacuum tubes won by being
capable of operating at very high frequencies, but were so unreliable that they had
to be used in sockets for easy replacement. Only the later invented transistors has
solved the painstaking reliability problems. By a direct analogy with electronic
amplifiers were then invented fluidic relaxation oscillators [58] and feedback-
loop oscillators [49]. More attention, however, was then paid to fluidic binary
counters and other digital circuits (as discussed, e.g., in [7]). In the competition
with electronics has fluidics lost because of its two drawbacks: (1) size of fluidic
devices cannot be decreased so much as it is possible with transistors (because of
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the adverse effects of low resultant Reynolds numbers and also the need of smooth
channel shapes)—and (2) upper limit of operating frequency in fluidics is the speed
of sound, incomparably lower than the speed of light of moving electrons in electric
circuits. Some of these former drawbacks could be recently solved or by-passed by
the emerging microfluidics [37]. Nevertheless, the speed limit prevented building
large systems which became necessary for solving many control tasks. Of course,
the universally valid history of inventions, with the “ditch of disillusion” , was also
a factor. As a result, fluidics became at about two decades ago practically forgotten.

It was at that time of near-extinction that a remarkably useful application was
found for the fluidic oscillators. They were employed to generation of pulsation in
the fluid flow passing through various devices. Compared with steady flows the agi-
tation improves the efficiency—and compared with traditional oscillation generating
methods, fluidic oscillators are easy to manufacture, reliable and maintenance-free.
Their use in generation of microbubbles has a revolutionary consequences in a
number of process engineering tasks.

8.3.2 The Key Component: Amplifier

Although there are oscillations in fluid flows the action principle of which may
be difficult to recognise and identify, deeper analysis always shows that all fluidic
oscillators contain two essential components:

1. a fluidic amplifier—device generating a flowfield that can be changed substan-
tially in response to a weak input flow signal, and

2. feedback loop bringing a part of the output flow to the input. It must be a
negative type of feedback, suppressing the action by which it was previously
generated.

Schematic block-diagram representation of the amplifier is presented in Fig. 8.44.
The two variants shown there differ in absence or presence of their venting of

Fig. 8.44 Schematic block-diagram of simple fluidic amplifier with supply S, control inlet X, and
single output terminal Y. In many device types there must be also the vent V—as the alternative
exit path
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internal cavities (opening them into the outside atmosphere, if the fluid is air). The
device has three essential terminals. By the first of them, the supply terminal S,
enters into the device the working fluid. It passes through and leaves at controlled
variable intensity through the output terminal Y. It is this terminal to which is
connected the process or object influenced by the fluid flow. The amplification
property means that the powerful output flow in Y is controlled by a much weaker
input flow applied in the control terminal X.

At first sight, the presence of the vent may be not necessary. The unvented
amplifier (top in Fig. 8.44) may suffice. After all, its electronic analogue, transistor,
also suffices with only three terminals. The output flow in the terminal Y of the
amplifier varies in dependence on the intensity of the control flow in X. Closer
examination, of course, shows two problems. The supply flow is normally expected
to stay constant. If there were no vent, however, its constancy is impossible as it
has to vary also in response to the control signal in X. Second and more important
fact is the limited extent of amplifier flow rate in the unvented device. Evidently,
if the flow rate through S decreases to zero, as a consequence disappears the very
hydrodynamic phenomenon upon which the amplification effect is dependent. No
flow rate means no flowfield—and no amplification effect. In fact, with gradually
decreasing flow the hydrodynamic mechanism would stop working much earlier
because of the inevitable dominance of viscous friction at low Reynolds numbers.

The other configuration, vented amplifier in Fig. 8.44, avoids these problems. The
supply flow remains constant—and the control action may remain effective even in
zero output flow in Y. The device may be described as a diverter. Through the vent
terminal V leaves the fluid diverted by the control action from entering the outputY.
Of course, the cavities inside the amplifier have to be designed so that the venting
does not mean loosing the working fluid when it is needed in Y.

The most popular amplifiers currently used are based on the diverter principle
using the deflected jet, as presented in Fig. 8.45. The jet flow is generated by
letting the supplied fluid to issue from a nozzle into a more or less free space
(A in Fig. 8.45). Typical feature of nozzles is the cross section of the flowpath
decreasing in the flow direction. Thus the fluid pressure is converted in a nozzle
into its increased kinetic energy. The control acting on the jet is provided by control
nozzle, usually oriented perpendicular to the jet as shown in the case B in Fig. 8.45.
This deflecting effect employs the jet sensitivity to actions applied at the nozzle
exit. The output terminal Y is connected to the collector placed opposite the nozzle,
C in Fig. 8.45. Its task is to capture there the jet fluid. Deflection by the control
flow varies the captured amount—and this varies the output flow in the terminal
Y. The collector is usually shaped as a diffuser, performing an effect which is the
reverse to that taking place in the nozzle. The flow velocity in the diffuser decreases
in the flow direction and the kinetic energy of the jet is used in Y to increase the
fluid pressure. One of the reasons for these pressure conversions are the losses in
connecting channels bringing the fluid into the amplifier and out of it. Very roughly,
the losses in channels are proportional to the square of velocity. It is therefore
desirable to keep the velocity in them at a minimum. There are other reasons for
the conversions to be discussed in the following Sect. 8.3.5.
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Fig. 8.45 The most popular mechanism employed in fluidic amplifiers is the fluid jet A issuing
from a nozzle. Acting in its sensitive spot near the nozzle exit, the control flow deflects it, B. This
may be used to controlled decrease of the output flow C, the device becoming an amplifier. Issuing
into stagnant surrounding fluid causes an entrainment, D. If there is a suitably oriented nearby wall,
the jet attaches to it deflected by the pressure difference between its two sides, E

Early researchers who investigated the idea of jet-deflection amplifiers were
disappointed by an unpleasant effect. Instead of the expected jet deflection con-
tinuously increased with increasing control flow, some jets became instantly fully
deflected, with the control flow having no influence. These jets attached to a nearby
wall of the interaction cavity and remained there deflected even when the control
flow stopped completely. It was recognised as manifestation of the effect described
in a patent filed by Coanda in 1936 [5]. It is a consequence of the jet-pumping
effect—the entrainment of surrounding fluid (D in Fig. 8.45). Presence of the wall
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Fig. 8.46 If there are two attachment walls symmetrically located on both sides of the jet path, the
flow can attach alternatively to one of them and may be switched to the other one by a short flow
pulse applied in the corresponding control nozzle

at one side of the jet limits there the removal of the fluid by entrainment. The
jet-pumping suction decreases pressure on that side of the jet. The permanent full
deflection (the Coanda effect E in Fig. 8.45) is due to the pressure difference acting
between both sides of the jet.

Rather than a nuisance, the Coanda effect was soon found useful. Layouts
with its use in fact dominate current jet-type amplifiers. They are operated not in
the continuous mode but as bistable devices, with the jet switched between two
attachment walls, Fig. 8.46. The switching control action needs only short flow
pulses. The captured flow in the collector—as well as in Y and the downstream
devices connected to it—has character of a train of rectangular pulses. These
rapid changes are beneficial for the agitation of the fluid in the devices connected
downstream.

If there is only a single attachment wall, the amplifier exhibits monostability.
This means the jet with control action absent attaches always to this single wall. As
is apparent from the schematically represented transfer characteristics in Fig. 8.47,
the configurations with attachment are typical by the presence of hysteresis loop in
their characteristic curves.

There are two possibilities how to control the jet attachment, presented as A and
B in Fig. 8.48—shown there on the examples of monostable amplifiers. In the much
more often used case A, the separation from the attachment wall is obtained by the
control flow acting on the main flow at the location where the main flow leaves
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Fig. 8.47 Depending on the presence or absence of the attachment walls, the jet may be controlled
as shown in the transfer characteristics at right. The response may be continuous (no attachment
wall), monostable, or bistable (as in Fig. 8.46)

Fig. 8.48 Control of output flow in a jet-deflection fluidic amplifier by a weak input flow.
Separation of the jet from the attachment wall switches the character of the flowfield. There are
two control action alternatives, A and B, the former used much more often
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Fig. 8.49 Typical planar bistable amplifier and its schematic representation

the supply nozzle—as in the case B of Fig. 8.45. The other switching mechanism,
case B in Fig. 8.48, is based upon the idea of making it difficult for the main flow
to pass through the output terminal. This switching mechanism may be caused by
connecting the terminal to a downstream device called load. The Coanda attachment
to the wall simply is not strong enough if the output is blocked by flow-restricting
load. This is why this control effect is called load switching.

8.3.3 Bistable Diverter with Jet Deflection Control

The most common symmetric version of a jet-deflection amplifier based on the
bistable Coanda effect is presented in Fig. 8.49—both as a drawing of its cavities
in the left part of the picture and the schematic representation in the right part.
This representation stresses the difference between nozzles (triangular symbols
filled black) and the diffusers downstream from the collector (triangular symbols
not filled). Also represented in the schematic symbol of the amplifier are the two
attachment walls, indicating the use of Coanda effect. While the continuously
operating as well as the monostable amplifier versions may have only single control
nozzle, the bistable amplifier must have two control nozzles. Each can separate the
jet from the attachment wall on its side (note how in Fig. 8.49 the flow pulse in X1

switches the main flow into Y1).
As is generally known, the streamwise increase in the cross section area in a

diffuser must be smooth and gradual. If the area were increased suddenly, the flow
would separate from the diffuser walls—and the diffuser effect would be lost. No
such danger is there in the nozzles, in which the streamwise cross-section change
can be quite rapid. It is thus a characteristic feature of fluidic jet-type amplifiers
that most of their layout is occupied by the long diffusers. Quite upstream in the
amplifier body are the nozzles and the interaction cavity into which the nozzle exits
are oriented.
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Bistable amplifiers are always symmetric (otherwise they would tend to behave in
the monostable manner). There may be, however, asymmetry in the outputs loading.
For example the case in Fig. 8.49 may be used with only one output terminal Y1

while the other terminal Y2, on the opposite side, has then the role of a vent. The
control action tends to be by differential pressure (or to the same effect by difference
in control flow rates). Thus the switching effect of control nozzles X1 and X2 in the
bottom part of Fig. 8.47 may be achieved by the differential control signal �X D
X1 � X2. Similarly, the resultant output signal may be the difference �Y D Y1 �
Y2. The operation with the differential signals may at first sight appear to be an
unnecessary complication, but it is actually very convenient with differential-type
loads and also with amplifier cascades, as is the case in the schematically drawn
Fig. 8.50.

The planar configuration example in the left part of Fig. 8.49, with the constant-
depth cavities for fluid flow made in a planar material, is quite common. Another
example are the amplifiers photographed in Fig. 8.51. In this shown case they were
made by numerically controlled laser light cutting in a teflon plate (for operation
with hot air). The following Fig. 8.52, shows another case. In the upper right
corner of the picture is a larger amplifier version made by the 3D printing, with

Fig. 8.50 The differential input signal in X1 and X2 as well as the differential output in Y1 and Y2

are suitable for amplification cascades—here in the continuous version without Coanda attachment.
Overall gain of the cascade is the product of the amplification gains in A1 and A2

Fig. 8.51 Popular method of manufacturing fluidic devices is numerically controlled laser light
cutting in a planar material
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Fig. 8.52 Character of the flowfield in bistable amplifiers as it was obtained by numerical solutions

constant thickness walls surrounding the internal cavities. The other two images
in Fig. 8.52 show typical results of numerical flowfield computations—flowpath
trajectories and coloured contours of computed pressure field. Usual amplifier
size and flow velocities are of magnitudes at which the Reynolds number values
tend to be within the region of transition into turbulence. This complicates the
computations by difficulties in turbulence modelling. It is necessary to use modified
turbulence models, with additional constants (usually not known in advance) and
not particularly reliable model equations. This is why the computation procedures
in amplified development, Fig. 8.52 have to be usually supported by experiments.
Experimental data consisting of the flow rates and pressure levels in the terminals
may not suffice and really useful results for comparisons with the computation
may need investigation of the whole internal flowfield. While the flows may be
visualised, as shown in Fig. 8.53, equally important pressure measurements need
making pressure tap holes in the laboratory model body. Reading there the pressure
values using a manometer is shown in Fig. 8.54. This may be neither easy nor fast
done. Sometimes the discovered flow phenomena do not agree with expectations.
As discussed above, the starting point in design of an amplifier was idea of increase
of pressure in the nozzle and its subsequent rise in diffusers. Figure 8.54 shows the
surprising fact that the pressure rise in the tested diffuser between the beginning
B and end Y is unexpectedly small—and there is an unexplained significant rise
between the points A and B at the diffuser entrance. Fluidic amplifiers may seem to
be simple and easy to design. The opposite is true. In fact, it was the underestimation
of the associated time and effort that were one of the reasons behind some of the
failures in fluidics.
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Fig. 8.53 Example of laboratory experiments with jet-deflection amplifier models. Trajectories of
tiny particles carried with the fluid (here liquid) visualised by laser light are recorded by camera,
processed by PIV software and compared with numerical computations

Fig. 8.54 Another example of author’s laboratory investigations of a fluidic amplifier models.
Pressure measurements in small drilled tap holes—connected by the small diameter tubes to digital
manometer—were performed in attempts to understand the pressure recovery mechanism
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8.3.4 The Feedback

Schematic representation in Fig. 8.55 in comparison with Fig. 8.44 shows how
the amplifier becomes an oscillator. The change is by addition of a feedback. In
oscillating flowfields, like the vortex street downstream from a blunt body, the
feedback effect may be a result of an impulse carried by vortices. In the present
case of fluidic circuit built from individual devices the term “feedback” describes
cavity or channel connecting the output terminal Y with the control terminal X.
The diverted part of the output flow is brought through X as a control flow into the
interaction cavity of the amplifier. The feedback causing oscillation has to act there
in a negative sense—it causes the flow in Y to decrease. An important factor in this
configuration is the phase shift taking place in the feedback, Fig. 8.55. If it were not
present, the configuration would finish as a steady flow regime. With the delay, the
amplifier can for a brief time remain in one of its two regimes before the feedback
action switches it to the other regime.

The oscillator presented in Fig. 8.56 corresponds to the schematic representation
in Fig. 8.55. It is drawn so that even the locations of its terminals are in agreement
with the scheme in Fig. 8.55. The amplifier is a monostable one—which means it
is switched between two regimes of which only one is stable. The working fluid
enters this oscillator through the supply terminal S. It issues from the supply nozzle
and forms a jet. Downstream from the nozzle exit there is an asymmetric interaction
cavity. On the upper side of the jet there is the attachment wall p. It is located near
the jet so that it can easily attach to the latter. On the opposite, bottom side of the jet
there is a larger space. This is also bounded by a wall, but this wall is quite far from

Fig. 8.55 Fluidic oscillator:
the vented variant of a simple
amplifier shown in Fig. 8.44
is provided with the feedback
connection from Y to X

Fig. 8.56 An example of a
monostable jet-deflection
amplifier converted into the
self-excitation oscillator. The
configuration corresponds to
the schematic representation
in Fig. 8.55



8 Microbubbles: Properties, Mechanisms of Their Generation 505

jet flowpath. Thus in this monostable amplifier the jet not acted upon by the control
effect always adheres to the attachment wall p. From it the jet may be separated by
the fluid flow coming through the control terminal X. When the jet is separated from
p, the fluid leaves the amplifier body through the vent V.

In the oscillator, the two terminals X and Y are mutually connected by the
feedback loop channel (the channel is made at a different level of the oscillator
body and therefore in Fig. 8.56 not drawn in detail). The Y end of the feedback
channel is at the end of the diffuser. Thus the fluid flowing through it is at this
end at a higher pressure level than the interaction cavity. This pressure difference
generates the feedback flow fromY to X. Because of the inertia of the fluid inside the
feedback channel, it takes some time before this feedback flow reaches a significant
intensity. This is the phase shift effect as presented schematically in the feedback
loop in Fig. 8.55. When after the phase shift time the necessary intensity is reached,
the jet is separated from the attachment wall p. It is then diverted into V. This jet
deflection stops the flow in the diffuser and thus eliminates the source of fluid driven
through the feedback loop. The control flow in X then ceases. The jet can return to
its attachment wall p—and then the whole jet deflection process can be repeated.
The result in the terminal Y are repeated flow pulses.

The example as presented in Fig. 8.56, with the monostable amplifier, was
chosen for simplicity of explanation and does not correspond to typical oscillator
configurations as they are used in practice. Experience has shown that monostable
amplifiers are not easy to tune into proper operation. They are also sensitive to
various disturbances. Typical configuration used with positive experience has the
bistable amplifier. This corresponds to the Warren’s design [50] patented in 1962
and presented in the left part of Fig. 8.57 (the picture is the original drawing from

Fig. 8.57 The most popular fluidic oscillator configuration invented by Warren in 1962: a bistable
jet-deflection amplifier with two feedback loops [50]. Sufficient phase shift is due to finite flow
velocity in the loop (indicated by the thick red arrow line). The frequency may be decreased by
incorporating the camber filling in the QC sub-circuit
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the US Patent). In principle this configuration may be thought of as a pair of
monostable amplifiers, with common supply nozzle but each with its attachment
wall and its feedback loop. Thus the flow processes may be studied following the
above description of monostable case.

If the feedback loop channels are short, as is the case in Fig. 8.57, then the
generated oscillation frequency may be quite high. There are situation where
high frequency pulses are not welcome. They may be strongly damped or there
may be other reason for demanding lower frequency. The right-hand side of
Fig. 8.57 presents an example of feedback with frequency decrease. Included into
the feedback loop (or loops) is a cavity C in which the fluid pressure increases by
fluid flow at a magnitude restricted by a fluidic restrictor Q (a local decrease of the
flowpath cross-section area). The time needed to fill the initially empty cavity C
increases the phase shift in the loop and thus decreases the frequency.

8.3.5 Other Oscillators: Usual and Unusual

Some popularity have gained fluidic oscillators with the bistable diverter amplifiers
having only single feedback loop as shown in Fig. 8.58. They may be somewhat
difficult to adjust proper operating conditions, but the existence of only single
loop channel may be an advantage simplifying the control circuit. Inventor of this
oscillator configuration was also Warren, who patented the ides in 1960, i.e. 2
years earlier than the two-loop version [49]. The single feedback loop channel here

Fig. 8.58 The single-loop oscillator, with the flow in the tube generated by the pressure difference
between the two sides of the jet deflected. Invented by Warren in 1960 [49]
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Fig. 8.59 Most popular
oscillator principles use the
bistable jet-deflection
amplifier. At left are the
alternative loop
configurations from Figs. 8.57
and 8.58. At right is the
recent high-frequency
oscillator based on pressure
pulse reflection and
propagation in a resonator
channel

connects the control nozzles, X1 and X2. The pressure difference driving the flow
in the loop is the same difference between sides of the jet that is responsible for
Coanda effect attachment, Fig. 8.45.

Yet another, relatively new feedback idea—Tesař, Zhong and Fayaz, 2013
[45]—is shown at the right-hand side of Fig. 8.59. This oscillator operates with
compressible fluid, usually air. One of the control nozzles of the bistable amplifier
is open to atmosphere. To the other one is connected a resonator pipe. The pulses
switching the jet in the amplifier are derived from the travelling compression and
expansion waves in the resonator, reflected from its open end. Typical property
of this oscillator is the practically constant oscillation frequency, dependent on the
resonator length and velocity of pressure signal propagation—but not varying with
supplied flow rate. On the other hand, both single-loop and two-loops oscillators,
shown at the left-hand side of Fig. 8.59, have their oscillation frequency increasing
in linear proportion with increasing flow. An example of this proportionality is
shown in Fig. 8.60. The planar geometries of the three tested laser-cut single-loop
oscillators differ solely in their size. One of them, the smallest, differed in generating
oscillation at the second harmonic—and also by exhibiting a range of constant
frequency. This was certainly a consequence of resonance and propagating pressure
wave effect in the feedback loop. Similar locking to resonance in feedback loop was
found also in [44].

The rather complex internal geometry of the amplifier—and hence also of
the oscillator—cavities provides an opportunity and freedom for detail design.
Discussing some accumulated examples may provide useful guidance for future
designs. Eight oscillator examples found in literature are presented in Fig. 8.61. All
of them are of the planar configuration—with cavities of constant depth everywhere
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Fig. 8.60 Author’s three oscillators with the single loop feedback. They differ only in size—and
yet the behaviour of the smallest one differs, locking to a constant-frequency resonator behaviour
over a range of flow velocities

made by removal of the material from a thin plate. The geometry of the first example
A is the original Warren’ s two-loop geometry from Fig. 8.57. Note the smooth
course of the feedback channels, certainly beneficial for keeping the oscillation on
even at small flow rates. What has to be said against this design of the amplifier
is lack of understanding the meaning and importance of the pressure recovery
downstream from collectors. This recovery is to take place in diffusers characterised
by channel cross-section increasing in the flow direction. Such channels are in
example A missing. Obviously, some recovery was present, most probably due to
the rise A–B shown above in Fig. 8.54. Better understanding of the processes inside
the jet-deflection amplifier is demonstrated in the next B of Fig. 8.61 by Markland
et al. [19], patented in 1986 for the purpose of using it in fluidic digital flowmeters.
At least there are, downstream from the collectors, visible diffuser shapes—though
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Fig. 8.61 Several examples of oscillators in the configuration with bistable amplifiers: A—The
original Warren’s (1962) Patent [50] geometry of two-loop version; B—Markland et al., 1986 [19]
layout for fluidic flowmeters; C—Ries et al., 2009 [29], obviously with cavalier disregard for flows
past smooth contours; D—Cerretelli and Kirtley 2009 [4], oscillator for turbine blade flow control;
E—Tesař 2014 [43] vortex cavities replacing feedback channels; F—Koklu 2013 [12], US Patent
for NASA; flow control by a sweeping jet actuator; G—Warren’s 1960 [49] single-loop version is
the oldest known fluidic oscillator

they are obviously too short for any efficient pressure rise. Also, the entrances into
the diffusers are there too far downstream and thus the diffusers cannot produce the
desirable pressure rise for driving the feedback flows.

What is no doubt the worst among the designs in this collection in Fig. 8.61 is
the oscillator C, by Ries et al. [29], discussed as used for control of flow separation
in low-pressure stage of a turbine. Since this design was published as late as 2009,
after widespread existence of efficient designs, it is very difficult indeed to find
out what has led the authors to the horrible geometry with the sharp corners and
outputs connected as an afterthought at right angles to the feedback channels. Very
probably there was in their turbine stage enough available pressure difference for
brute force pushing the fluid into the strangely positioned output terminals despite
the inescapable huge losses that are evident at first sight.

Perhaps some more understanding for the need of fluid flows is manifested in
Fig. 8.61 in the case D. This, however, applies only to the design of the smooth-
contoured feedback loop channels. There is, as in the oscillator case C, a visible
disregard for efficiency of the fluid flow into the output terminals. There may be
some, nevertheless extremely small, diffuser effect in the outputs, evidently negated
by the flow direction change at almost right angle at the inlet into the “diffuser”.
The lack of diffuser effect upstream from the entry into the feedback channels is
here circumvented by placing the feedback entrances opposite to the supply nozzle
and generating thus in them an impingement effect.
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The unusual features of the geometry in the case E of Fig. 8.61 are a result of
a change made with what was originally a quite conventional configuration. The
geometry shown is the result of removing the “ islands” on the inner side of the
two feedback channels, present in all two-loop designs. The removal of “islands”
means elimination not only of the feedback channels, but also of the essential feature
of the Coanda-effect amplifiers—the attachment walls. To a general surprise this
configuration not only did not stop oscillating, but actually [41] managed to generate
oscillation at very high frequencies, then called for. Example of properties found by
laboratory investigations is in Fig. 8.62. The diagram of oscillation frequency as a
function of mass flow rate shows the frequency of generated pulsation as high as
reaching nearly to f D 2 kHz—and with very small dependence on the flow rate.

The configuration F in Fig. 8.61 was intended to a different mode of flow control
past bodies. The configurations like C or D above were employed for this task in
the usual mode of flow alternatively switched between the two outlets. In the case F
there is only a single outlet through which the flow issues at constant intensity—but
at direction varying in each oscillation period by approximately by 90ı forth and
back. Finally in configuration G of Fig. 8.61 is a single-loop oscillator Fig. 8.58.
This particular geometry shows typical design errors: too short diffusers of too wide
angle and the quadratic feedback channel shape with sharp turns in the corners.
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Fig. 8.63 Jet flow impinging
on a blunt target body
generates strong and
particularly regular
oscillation, making this
configuration popular for use
in fluidic digital flowmeters
[10]. Its configuration may be
seen as a gradual
development from the
standard two-loops oscillators
a A and B to C

Special class of fluidic oscillators represent those intended for use in digital
flowmeters. The frequency of generated oscillation must be in these cases strictly
linearly dependent on the supplied fluid flow rate down to very low Reynolds
numbers. Their typical geometries are characterised by a blunt-body target opposite
to the nozzle—and empty spaces on the both sides of jet flowpath, very similar same
as in the geometry of the case E of Fig. 8.61. In the picture Fig. 8.63 is suggested
the gradual development from the standard geometry of two-loop oscillator.

8.3.6 Relaxation Oscillators

There is a little known family of fluidic oscillators characterised by gradual increase
of pressure (usually in QC sub-circuit, Fig. 8.57) followed, upon reaching a limit,
by sudden discharge in the rest of the oscillation period. Typical representative may
be the earliest fluidic oscillator of them all, patented in the US in December 1959
[58]. It is shown in Fig. 8.64 where it is obvious that the basic idea came from
elsewhere—from the flow separation on the upper surface of an airplane wing as a
response to a spoiler. The flow from the nozzle in the upper part of Fig. 8.64 is a jet
which attaches to the top surface of the “wing” body and continues into a collector.
This is connected directly to an accumulation chamber—with the accumulation
of air made possible by its compressibility. Pressure in the chamber gradually
increases until it equals to the dynamic pressure of the jet. At that moment the
opposition to the jet flow causes a sudden change. The jet then separates from the
“wing” surface and becomes directed away from the collector. The pressure in the
vicinity of the collector then becomes so low that the air flows from the chamber.
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Fig. 8.64 The first pure fluidics oscillator patented by Zalmanzon in December 1959 [58]. It uses
relaxation principle for which it did not found followers

Its collision with the jet flow from the nozzle supports keeping the separated flow
regime. This regime lasts for the rest of the period until the reversal flow from the
chamber ceases and the jet re-attaches to the “wing”. Despite the old history, this
relaxation oscillator design did find practically no followers. Possible explanation
is the very small compression capacitance values obtainable with reasonably sized
accumulation vessels or chambers. Compared with the frequency formula presented
above in Fig. 8.23, it was obvious that the Zalmanzon’s oscillator inevitably operated
at inconveniently large frequencies.

The bottom part of Fig. 8.64 shows the configuration drawn using the standard
symbols for fluidics. Obviously, the upper surface of the “wing” functions as the
Coanda-effect attachment wall. The whole fluidic valve is thus equal to a monostable
configuration, which in the standard fluidic device manufacturing technique would
correspond to the device shown at right in Fig. 8.65. This valve has no control
inlet—instead, the flow is switched—separated from the attachment wall—by
the load-switching (cf. Fig. 8.48). Useful load-switched valves developed in [38],
have output characteristic as schematically represented in the next Fig. 8.66. Its
intersections with the load characteristic curve labelled Load A determine the
instantaneous flow rate and output pressure. Increasing load is in this diagram
represented by more steep characteristics, like the curve labelled Load B—and
finally this progress reaches the load-switching point at which the flowfield suddenly
changes to the main flow deflected away from the attachment wall.

The results summarised in Sect. 8.2.3 lead to the obvious conclusion that the
goal of generating microbubbles by blowing gas through the passages in aerator
requires a fluidic oscillator operating at much lower frequencies than was expected
earlier. Also desirable, for practical reasons, is compactness of the design. Standard
oscillator designs do not fulfil these requirements. It is true that the single-loop
standard configuration oscillator discussed in [44] was demonstrated to be capable
of operating at periods lasting as long as 358 ms, i.e. frequency slightly below 3 Hz
(at f D 2:79Hz), but this was achieved with feedback formed by a Tygon tube of
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Fig. 8.65 Monostable diverter valve with flow controlled by the load-switching (the case B in
Fig. 8.48). The jet attaches in unloaded regime to the wall that leads it to the output terminal Y.
Increased fluidic resistance of the connected load causes initially a spillover flow into V and finally
a separation from the wall

Fig. 8.66 Loading characteristic of the valve shown in Fig. 8.65. It is the red curve with two
intersection points with characteristics (gray) of two different loads connected to Y

inner diameter 10 mm and length 50 m. The very volume of this tube shows that any
compactness is out of question. Also economy of handling the compressed air must
be poor, because of the inevitable friction-type losses in so long tubes. It was thus
concluded that because of these limitations of standard designs—and also because
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of the advantages of potential patent protection—it was desired to develop a new
oscillator concept for microbubble generation purposes.

The desirable operating frequency was estimated to be at or near to f D 3Hz.
For the sake of compactness, the design was chosen to be based on the so far little
known relaxation principle, with the load-switching. Because of the requirement of
low frequency, the monostable principle of Figs. 8.64 and 8.65 was to be replaced
by bistable, symmetric version—which means achieving roughly twice the period,
i.e. one half of the frequency magnitude.

The key problem was finding a suitable load, characterised by gradual increase of
pressure drop. Solution was found in the vortex diode, shown in Fig. 8.67. It is a flat
cylindrical cavity with tangential inlet and central exit. In the CLOSED direction,
the inlet flow gradually increases the intensity of fluid rotation until it reaches the
magnitude at which it is difficult to overcome the centrifugal force. In the other,
OPEN flow direction there is no rotation and the negative pressure drop is small.
According to Fig. 8.68, the vortex diodes are placed at the two exits from the load-
switched diverter. The red line shows the starting flow into the vortex chamber with
initially non-rotating fluid. The tangential direction of the inlet forces the fluid to
spin up. On the opposite side, the jet-pumping effect into the main flow, together
with the small flow resistance in the OPEN direction, generates the return flow
which is required for moving the microbubble back into its protected position inside
the aerator passage. As the rotation intensity inside the vortex chamber increases, the
centrifugal force makes it increasingly difficult for the fluid to get into the exit in the
chamber centre. Finally the difficulty becomes to effective that the Coanda effect no
more manages keeping the jet attached. It switches to the opposite attachment wall
and the spin-up process now becomes taking place in the other chamber. That this
principle really works and makes it possible to obtain the desirable frequency near
to f D 3Hz is demonstrated by the measured spectrum in Fig. 8.69.

Fig. 8.67 Behaviour of vortex chamber depends upon the direction of flow. In the OPEN regime
the overall hydraulic resistance is quite low and constant. If the flow direction changes into the
CLOSED regime, then the resistance gradually increases as the fluid inside the chamber spins
up—and finally can reach high values since the flow is opposed by centrifugal force
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Fig. 8.68 Author’s recently invented double-relaxation oscillator (Patent: Tesař [43]) developed
for operation at very low oscillation frequencies. The diverter is load-switched when fluid rotation
in the vortex chamber develops high enough centrifugal resistance

Fig. 8.69 An example of frequency spectrum of pulsation in one of the output terminals of the
relaxation oscillator shown in Fig. 8.68. The capability of oscillating at low frequencies is obvious.
The higher harmonics f2 and f3 determine the shape of oscillation pulses
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8.4 Conclusions

Subject of this chapter, sub-millimetre gas bubbles in liquids, were until recently not
of particular interest—because methods of their generation then known were ener-
getically inefficient. Standard aerator-generated bubbles are an order of magnitude
larger than the size of microbubbles. A new era begun by discovery of microbubble
generation by oscillation of the supplied gas—especially by using for the task
no-moving-part fluidic oscillators. This opened roads towards many microbubble
applications with considerable advantages so that interest in this matter is increasing
exponentially. For a considerable time, however, the oscillator-driven generation of
microbubbles was led by the wrong idea of fragmentation. As demonstrated here,
the main problem was elsewhere. It was the slow velocity motion (decreasing with
decreasing bubble size) that has led to small distances between the microbubbles.
They get into contact and coalesce—an effect supported by the fact that the
conjunction decreases the overall surface energy. The role of the fluidic oscillation
was thus elucidated as preventing the coagulation and this way keeping the bubbles
small.

The chapter discusses the basics of bubble formation, such as explanation of
surface tension by uncompensated inter-molecular forces. Also presented is solution
of bubble shape, instability of parallel bubble formation, and mechanism of shape
oscillation. In its next part, the chapter presents a survey of the nearly forgotten art
of making fluidic oscillators.

The main reason behind the present interest in oscillator-generated microbubbles
are the potential geopolitical consequences of renewable liquid fuel. The problem
of worldwide distribution of crude oil sources different from locations where the
fuel is needed has been recently demonstrated solvable by generating biofuel from
primitive green plants—mainly algae. These can produce combustible liquids (or
precursors) using only minimal input substances. What they need for their growth by
photosynthesis are merely water and CO2 (the latter, of course, from atmosphere).
The energy driving this process is obtained from sunshine. The main advantage
of the primitive plants is their extremely rapid growth. There are arid areas where
sunshine and even water (the latter perhaps with salt and thus unsuitable for
agriculture) are plentiful. The reason why mankind is as yet not employing algae at
a massive scale is the fossil fuel, imported mostly from politically unstable regions,
is at present significantly cheaper. To make liquid fuel from algae economically
competitive needs improving efficiency of all production steps. In two steps,
cultivation and harvesting, a considerable efficiency improvement may be obtained
by using the properties of microbubbles. CO2 transport intensification was already
demonstrated to increase the algae growth quite rapidly when using microbubbles—
at the same time also stripping from the liquid medium the oxygen generated as a
by-product in photosynthesis (which at a higher concentration blocks the growth).
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