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Preface

In the last number of years, the treatments for inflammatory bowel disease have
been rapidly evolving. With the emergence of biologic therapies as the more effec-
tive medications for the treatment of moderate to severe ulcerative colitis and
Crohn’s disease, understanding the best methods to effectively utilize them to
induce and maintain remission is critical for the practicing gastroenterologist. In
addition to antitumor necrosis (anti-TNF) agents (infliximab, adalimumab, golim-
umab, certolizumab) and anti-integrins (vedolizumab and natalizumab), the FDA
has recently approved biosimilar anti-TNF agents and ustekinumab, an anti-1L.12/
1L.23 inhibitor.

We are excited that this book, Treatment of Inflammatory Bowel Disease with
Biologics, provides the reader with expert reviews on important topics pertaining to
the use of biologics in inflammatory bowel disease as well their potential complica-
tions. The authors were carefully chosen for their expertise in the management of
inflammatory bowel disease and their ability to summarize the important concepts.

Drs Alan Moss, Scott Lee, and Byron Vaughn provide expert summaries on the
mechanisms of action of the various biologics and the use of anti-TNF therapy in
ulcerative colitis and Crohn’s disease. Drs Sarah Flier, Miguel Regueiro, Sunandra
Kane, and Bret Lashner review the use anti-TNF in special circumstances when
managing IBD: extraintestinal manifestations, postoperative Crohn’s disease, preg-
nancy and lactation, and the perioperative setting.

Drs Corey Siegel, Mark Osterman, and Cynthia Seow examine the critical topics
on the role of combination therapy, therapeutic drug monitoring, and the possible
discontinuation of biologics. Complications of biologic therapy are expertly sum-
marized by Drs Joshua Korzenik, Millie Long, and Raymond Cross.

Newer agents, including biosimilars, anti-integrins, and novel therapies, are
reviewed by Drs Asher Kornbluth, Francis Farraye, and Fernando Velayos. Finally,
Drs Gil Melmed and Jennifer Strople evaluate the quality of care and safety of bio-
logic therapy and use of biologics in pediatrics.
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We believe that this book will provide the reader with a thorough review of bio-
logic therapies in inflammatory bowel disease and inform the reader on how to
optimize patient care on these medications.

Boston, MA, USA Adam S. Cheifetz
Boston, MA, USA Joseph D. Feuerstein
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Chapter 1
Mechanism of Action and Pharmacokinetics
of Biologics

Alan C. Moss

Introduction

The pathological features of inflammatory bowel diseases (IBD) are characterized by
an infiltration of the lamina propria with lymphocytes, macrophages, and neutrophils
[1]. The cytokines released by these cells trigger a process of local cell death and
matrix damage, leading to the endoscopic appearance of ulcers, friability, and exu-
dates. The biologic agents approved, or in development, for IBD target specific steps
in this process. These mechanisms of action not only resolve local inflammation but
also account for some of the adverse events associated with the use of biologics. In
this chapter we will review the pharmacodynamics (physiological effects of drugs and
their mechanisms of their actions) and the pharmacokinetics (the fate of a drug within
the body) of currently approved biologics. Since the anti-TNFs were been the only
biologic class for 15 years, most of the independent laboratory data has tested these
agents, whereas published data on vedolizumab and ustekinumab is more limited.

Anti-TNFs

Role of Tumor Necrosis Factor (TNF) in IBD

Tumor necrosis factor (TNF) is an important mediator of inflammation in human
diseases. It is initially a transmembrane protein (mTNF) expressed by activated

A.C. Moss
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T lymphocytes, monocytes/macrophages, and natural killer (NK) cells but also non-
immune cells such as endothelial cells and fibroblasts [2]. In patients with IBD, an
increase in TNF-positive cells has been noted throughout the intestinal mucosa, and
high levels of TNF can be found in patients’ feces [3]. In the ileum of patients with
active Crohn’s disease, Paneth cells strongly express TNF, unlike Paneth cells in
normal tissue [4]. TNF on the surface of cells can be cleaved by a metalloprotease
to release soluble TNF (sTNF) into the circulation. Both forms of TNF exhibit their
destructive effects in the intestinal tract in IBD by their ability to induce cell death
(apoptosis) and cell activation (release of cytokines, chemokines, arachidonic acid,
and leukotrienes) via the TNF receptors (TNFR1 and 2). Epithelial cells bear the
brunt of this process, resulting in the characteristic mucosal ulceration, erythema,
and exudates noted in IBD. Complementary to its pro-inflammatory effects, TNF is
also directly cytotoxic to virus-infected cells, making it a potent antiviral molecule
[5]. It is also highly effective in activating cells in response to bacterial infection,
particularly B-cells and macrophages. Thus, the inhibition of TNF can be a double-
edged sword, leading to the efficacy of anti-TNFs in IBD and their adverse effects.

Pharmacodynamics of Anti-TNF's

The anti-TNF antibodies currently FDA approved for IBD are infliximab (Remicade,
Inflectra), adalimumab (Humira, Amjevita), certolizumab (Cimzia), and golimumab
(Simponi). Laboratory studies over the last 20 years have provided evidence that the
mechanism of action of these drugs in IBD is multifaceted and goes beyond simple
“mopping up” of TNF in circulation (Table 1.1). Based on preclinical data, all these
agents bind to soluble and membrane TNF with high affinity and specificity, thus
preventing TNF from binding to TNF receptors (TNFRs) on surrounding cells. This
mechanism of action is shared by all anti-TNFs but to a variable extent; certoli-
zumab pegol binds to TNF with a higher affinity than adalimumab and infliximab,
whereas etanercept has more potency in neutralizing soluble TNF-mediated signal-
ing than infliximab, adalimumab, and certolizumab [6]. Preliminary data with bio-
similar infliximab (CT-P13) and adalimumab (ABP501) also report comparable

Table 1.1 Comparative effects of anti-TNFs on molecular processes

Infliximab | Adalimumab | Certolizumab | Golimumab |CT-P13 | ABP501
sTNF binding | Y Y Y Y Y Y
mTNF binding | Y Y Y Y Y Y
mTNF reverse | Y Y ? Y Y ?
signaling
Inhibits Y Y Y ? Y Y
cytokine
production
Fc-mediated Y Y N Y Y Y
ADCC/CDC
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TNF binding to their reference products [7]. Regardless of the extent of TNF bind-
ing, this step prevents TNF from binding to TNFRs, thus limiting the downstream
expression of cytokines, including IL-6, IL-8, IL-1, and COX2, triggered by TNFRs
[8]. Although there are clear differences in the relative binding of anti-TNFs to TNF
in vitro, this has not translated to equivalent differences in clinical efficacy in vivo;
etanercept failed to meet its primary end point in clinical trials in Crohn’s disease,
despite a higher binding affinity to soluble TNF [9, 10].

The net consequences of binding of anti-TNF antibodies to mTNF and sTNF are
to limit their ongoing effects on immune responses on patients. Treatment with
infliximab, for example, leads to a decrease in neutrophil growth factors (GM-CSF),
lamina propria polymorphonuclear cells, and the pro-inflammatory cytokines IL-1
beta, IFN-y, IL-13, IL-17A, IL-6, and MMP9 [11]. Anti-TNF treatment also alters
the balance of pro- to anti-inflammatory cell phenotypes of the immune system.
Infliximab has been shown to restore functional deficits in regulatory T-cells (Tregs),
reflected in an increased expression of FoxP3 and in an increase in the suppressive
activity of CD4+/CD25+ T-cells [12, 13]. Beyond T-cells, a range of beneficial
effects have been reported in epithelial cells, regulator macrophages, and myofibro-
blasts in response to anti-TNF exposure [11].

When anti-TNF antibodies bind to membrane TNF (mTNF), they can also trig-
ger “reverse signaling” via mTNF, which shuts down intracellular signaling path-
ways and induces apoptosis [14, 15]. Both infliximab and adalimumab induce
apoptosis in peripheral blood cells, but etanercept and certolizumab do not [16].
Interestingly, infliximab and adalimumab have also been shown to induce cell cycle
arrest, as a separate mechanism for suppression of immune cells [17]. The induction
of apoptosis of T lymphocytes and CD14* macrophages in patients with IBD occurs
via TNFR2 [18]. A related potential mechanism of action is the induction of
antibody-dependent cell-mediated cytotoxicity (ADCC) by anti-TNFs that can
engage with IgG Fc receptors (FcR). Lysis of mTNF-expressing cells and PBMCs
could be induced by infliximab and adalimumab more potently than etanercept,
whereas certolizumab pegol did not show any effect (it lacks the Fc domain) [6].
Complement-dependent cytotoxicity (CDC) of cell lines in vitro is a third mecha-
nism though which anti-TNFs could disrupt pro-inflammatory cell populations
in vivo [19]. It is unclear at this time if this pathway is relevant in their mechanism
of action in patients with IBD [9]. Both currently approved biosimilars show similar
ability to induce both ADCC and CDC in cell lines assays [7].

Despite these well-documented alterations in cytokines, cell survival, and pheno-
types in response to anti-TNF treatment, their association with the typical measures
of clinical response in patients has been lacking. This reflects the gaps between the
artificial scenario of cell lines and transfected cells in vitro, the complex cellular
matrix of the lamina propria in patients, and the disconnect between symptoms and
objective indices of mucosal inflammation. Associations between baseline biomark-
ers and subsequent clinical outcomes of anti-TNF therapy have yet to be validated
in prospective cohorts [20]. One promising approach requires quantification of
mucosal mTNF-positive cells using a confocal laser endomicroscope but reported a
70% differential in clinical response rates based on baseline mTNF levels [18].
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Pharmacokinetics of Anti-TNFs

Pharmacokinetics (pK) describes the effects of the body’s physiological processes
on an administered drug. For monoclonal antibodies (IgGs), adequate concentra-
tions of the drug need to be achieved in the circulation for it to obtain its intended
effects on circulating and intestinal mucosal cells. Individuals’ differences in bio-
availability and pK have been associated in IBD with lack of clinical response and
mucosal healing. Intravenous administration of anti-TNFs, such as infliximab,
allows for administration of large volumes, rapid central distribution, and low vari-
ability in bioavailability; peak serum concentrations are attained almost immedi-
ately post-infusion [21]. In contrast, subcutaneous anti-TNFs can only be given in
low-volume doses and are taken up by lymphatic drainage and paracellular move-
ment, leading to slower absorption into the vascular compartment. For adalimumab,
peak serum concentrations are reached approximately 5 days after a single 40 mg
dose, with average bioavailability around 65% [21]. Once in the circulation, extrava-
sation of anti-TNFs occurs primarily via receptor-mediated endocytosis into vascu-
lar endothelial cells. The volume of distribution of anti-TNFs is ~0.1 L/kg, suggesting
these drugs are mainly distributed within the extracellular fluid [22]. Preliminary
data with biosimilar infliximab (CT-P13) and adalimumab (ABP501) also report
comparable pK profiles to their reference products in rheumatological diseases [7].

Elimination of monoclonal antibodies occurs mostly via proteolytic catabolism
by phagocytic cells of the reticuloendothelial system [23]. The reported serum
half-life of infliximab ranges from 7 to 12 days in patients with Crohn’s disease, in
both those in remission and those with active disease [24, 25]. There is also the
phenomenon of the “antigen sink” whereby internalization of anti-TNFs by their
binding to mTNF can lead to their clearance from the extracellular space. This may
explain the variability in clearance associated with inflammatory burden in patients
with ulcerative colitis [26]. Balancing this process is the recycling of intact mono-
clonal antibodies back into the circulation, leading to the long serum half-life of
IgGs (~23 days) and the slow systemic clearance of about 11-15 mL/h [25]. This
system is disrupted by the presence of anti-drug antibodies (ADAs); ADAs congre-
gate anti-TNFs into multimeric antibody complexes that are retained and degraded,
but not recycled, by reticuloendothelial cells [27]. As an example of the impact of
these ADAs on clearance, the clearance of infliximab increases threefold in patients
with ADAs as compared with patients without ADAs [28]. The development of
ADAs in patients with IBD is influenced by many factors, including genotype,
trough drug levels, and concomitant medications [29]. Finally, fecal loss of anti-
TNFs has been described as a particular problem to patients with active IBD. In
patients with severe IBD, infliximab was noted in a greater proportion of patients
failing therapy, compared to those with a clinical response [30]. It is unclear
whether the drug leakage caused the loss of response or whether ongoing mucosal
inflammation led to drug leakage.

Much study has been undertaken in recent years on the association between pK
and clinical response to anti-TNFs and will be covered in detail in another chapter
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of this book. For many drugs, response is dependent on drug concentrations or drug
exposure (the AUC), and therefore drug concentration-guided individualized ther-
apy can be important [24]. For infliximab, for example, a meta-analysis concluded
that patients who achieved an infliximab level >2 pg/mL were more three times
more likely to be in clinical remission or achieve endoscopic remission than patients
with levels <2 pg/mL [31]. This concentration-effect relationship has also been
described for adalimumab, certolizumab, and golimumab [21].

Anti-integrins

Two anti-integrins are currently FDA approved for use in IBD: natalizumab and
vedolizumab. Natalizumab is a humanized monoclonal antibody against the cell
adhesion molecule o4-integrin. Although approved to treat Crohn’s disease, its
association with progressive multifocal leukoencephalopathy (PML) has limited its
use in IBD, particularly since the approval of vedolizumab. Vedolizumab is a
humanized monoclonal antibody which acts against a4f37 integrin heterodimer and
blocks the interaction of a4p7 integrin with MAdCAM-1. Other anti-integrins
remain in clinical development, such as etrolizumab and the anti-MAdCAM anti-
body PF-00547659. Since vedolizumab is the only currently approved and widely
used anti-integrin, this section will primarily discuss this agent.

Pharmacodynamics of Vedolizumab

Infiltration of the intestinal lamina propria by T lymphocytes is an established com-
ponent of the pathogenic process in IBD, through molecular mechanisms unique to
the intestinal tract [32]. Adhesion and signaling molecules on the surface of T lym-
phocytes (selectins, integrins, chemokine receptors) interact with ligands on the
endothelium to instigate the migration process [33]. T lymphocytes utilize the a47
integrin to bind to mucosal addressin cell adhesion molecule 1 (MAdCAM-1) on
endothelial cells [34]. Vedolizumab binds to the a4p7 integrin on peripheral blood
lymphocytes and inhibits adhesion of the lymphocyte to MAdCAM-1. In addition
to circulating mononuclear cells, vedolizumab also binds to mononuclear cells in
the lymphoid tissues, intestinal tract, and bladder [35]. The highest level of binding
by vedolizumab was observed on the a4f7+ population of memory CD45RO+
CD4+ T lymphocytes but also to B lymphocytes, naive CD8 T lymphocytes, Th17
cells, natural killer cells, and basophils. After administration of vedolizumab, almost
100% of MAdCAM-1-Fc receptors are saturated immediately, and this effect wears
off around 20 weeks after the last dose [36, 37]. These data suggest potent inhibition
of trafficking of a number of pro-inflammatory immune cells to the intestinal tract
after vedolizumab is administered.
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In addition to its effects on effector (pro-inflammatory) T-cells (Teff), f7 integrin
is a component of migration of regulatory T-cells. Mice lacking 7 integrin exhibit
depleted colonic regulatory T (Treg) cells and excessive macrophage infiltration in
the colon, thereby exacerbating DSS-induced colitis [38]. Additionally, in patients
with UC, Treg homing to the gut was suppressed significantly by vedolizumab, and
this led to a decrease in the ratio between Teff and Treg cells in the peripheral circula-
tion [39]. It is unclear whether this has implications for the protective role of Tregs
and CD4+ cells in immune surveillance. Clinical trial data reported a greater risk of
serious infections in patients treated with vedolizumab (6% vs. 3%), and a recent case
series reported a significantly higher rate of surgical site infections with vedolizumab
than in patients receiving anti-TNF agents [40, 41]. Further analysis of tissue T-cells
will be required to determine the mucosal impact of limiting T-cell migration.

Pharmacokinetics of Vedolizumab

Like the anti-TNFs, vedolizumab is a humanized immunoglobulin G1 (IgGl)
monoclonal antibody, and therefore it shares many pK properties with them. In
patients with UC, serum concentrations increased linearly with increasing doses of
vedolizumab and declined linearly after the last dose [36]. A population pharmaco-
kinetic analysis that included data from phase II studies suggested that disease type
(UC or CD) had no impact on the pharmacokinetics of vedolizumab [37]. Linear
clearance was 0.15 L/day for patients with UC and CD, and the terminal elimination
half-life (t1/2) was 26 days. Extreme low albumin concentrations (<3.2 g/dL) and
extreme high weight values (>120 kg) were both associated with higher drug clear-
ance of vedolizumab in these studies. In contrast, fecal calprotectin, CDAI score,
disease activity scores, age, prior anti-TNF exposure, ADA status, and concomitant
therapy use had no clinically relevant effects on vedolizumab clearance [37]. In this
pK model, patients with an endoscopic subscore of 3 after induction therapy had on
average 25% higher clearance than patients with an endoscopic subscore of 0, high-
lighting the importance of the “tissue sink” noted with anti-TNFs. Eleven (28%)
vedolizumab-treated participants were persistently positive for ADAs, and clear-
ance of vedolizumab was 12% greater than in participants in the same dose group
who were not persistently ADA positive [42]. Surprisingly, o437 receptor saturation
was maintained at vedolizumab concentrations considered subtherapeutic (1 pg/
mL), raising the question of whether receptor saturation alone is sufficient for clini-
cal efficacy (vedolizumab concentrations above 15 pg/mL) [37].

Anti-11L-12/23

The cytokines IL-12 and IL-23 are secreted heterodimeric cytokines, which both
contain a p40 protein subunit. IL-12 is primarily produced by phagocytic and den-
dritic cells in response to microbial stimulation and drives cell-mediated immunity
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by inducing lymphokine-activated killer cells and activation of natural killer (NK)
cells and T lymphocytes, particularly Th1 populations [43]. IL-23 drives a popula-
tion of T-cells (Th17) that produce IL-17, IL-6, and TNF [44]. In IBD, genome-
wide association studies revealed that variants of the gene encoding the IL-23
receptor, and the p40 chain, conferred genetic risk for developing IBD. IL-17
mRNA expression is increased in the colon of patients with active UC and CD, cor-
relating with the density of CD4+ T-cells [45]. IL-17 production by isolated lamina
propria CD4+ T-cells from patients with UC is significantly increased by IL-23
[46]. IL-17 appears to play a role in IBD pathogenesis, as it can stimulate innate
immune cells and epithelial cells to produce IL-1, IL-6, and IL-8, which induce
increased neutrophil recruitment and other pro-inflammatory signals [47]. However,
it should be noted that there is also evidence that IL-17 plays a role in mucosal
homeostasis, with protective effects on the intestinal epithelium, and generation of
antimicrobial peptides [13].

Pharmacodynamics of Ustekinumab

Ustekinumab is a human IgG1 monoclonal antibody developed to bind to IL-12 and
later discovered to bind specifically to the p40 protein subunit of this cytokine [48].
After ustekinumab was developed, it was subsequently established that the cytokine
IL-23 contains a p40 subunit, to which ustekinumab also binds. This dual specificity
was unique in approved biologics but provides challenges by engaging an unin-
tended pathway (IL-17). Ustekinumab binding to the p40 subunits of these cyto-
kines prevents IL-12 and IL-23 from binding to the IL-12Rp1 receptor and IL-23
(IL-12RP1/23R) receptor complexes on the surface of NK and T-cells [49]. It can
only bind to free cytokines, not receptor-bound complexes, and is thus unlikely to
mediate Fc effector functions, such as ADCC or CDC (see anti-TNFs). Binding to
ustekinumab neutralizes IL-12/23-mediated responses, including production of
IFNy, IL-17A, IL-17F, and IL-22. It is important to note that while ustekinumab
will effectively neutralize IL-12- and IL-23-mediated functional responses, it will
not affect immune responses stimulated through other cytokines or cellular activi-
ties, e.g., Th2 cytokines.

Pharmacokinetics of Ustekinumab

Ustekinumab was FDA approved in two formulations for Crohn’s disease: as an
IV infusion for the loading dose and as a fixed-dose subcutaneous injection for
maintenance therapy. The pharmacokinetic (PK) behavior of ustekinumab is typi-
cal of other IgG-based therapeutic monoclonal antibodies, such as anti-TNFs. It
demonstrates linear pharmacokinetics following either single-dose intravenous
(IV) administration (0.09-4.5 mg/kg) or subcutaneous (SC) administration (0.27—
2.7 mg/kg) in patients with psoriasis [50]. Given its absolute bioavailability of
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approximately 57%, the volume of distribution of ustekinumab is approximately
8.9 L, consistent with confinement to the circulatory system with limited extra-
vascular tissue distribution. The median half-life (t1/2) of ustekinumab was esti-
mated to be 22, supporting the infrequent dosing of every 8 weeks in patients with
IBD [50]. Clearance in patients was increased modestly in patients with higher
body weight, and those with diabetes, but no effect was seen from concomitant
immunosuppresants in these studies. Exposure-efficacy modeling identified a
trend of lower exposure to ustekinumab in partial responders and nonresponders
compared with responders with psoriasis [51]. In the UNITI studies in Crohn’s
disease, median serum levels of ustekinumab were associated with clinical
remission. The incidence of anti-drug antibodies at week 44 was low (2%) in
these trials [52].

Conclusions

The data reviewed in this chapter provide an overview of the mechanisms of action,
and pharmacokinetics, of currently approved biologics used to treat IBD. It should
be apparent that many of the unintended immunological consequences of these anti-
bodies have both contributed to their efficacy and their risks. An appreciation of the
role of exposure-efficacy dynamics has led to a “late” adoption of therapeutic drug
monitoring and individualized doses and schedules beyond the labeled ones. It is
likely that novel biologics will benefit from these discoveries in both their clinical
development and practical use in the clinic.
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Chapter 2
Antitumor Necrosis Factor Agents
in Ulcerative Colitis

Kindra Clark-Snustad, Ives Hot, and Scott Lee

Introduction

Ulcerative colitis (UC) is an autoimmune inflammatory bowel disease (IBD) that
results in ulceration of the colonic mucosa, resulting in symptoms that classi-
cally include abdominal pain, diarrhea, and hematochezia. UC has a relapsing,
remitting natural history, and active UC increases the risk of stricture formation,
dysplasia, colorectal cancer, and a poor quality of life when disease is not ade-
quately controlled. While the majority of UC patients are managed with medical
therapies, 20-30% of UC patients undergo colectomy for medically refractory
disease [1, 2]. Treatment paradigms for UC are based on disease severity and the
extent of disease involvement. Biologic therapies, including those that antago-
nize tumor necrosis factor alpha (anti-TNFa), are indicated to treat moderately
to severely active UC. These therapies are frequently prescribed in combination
with other medications with the goal of steroid-free clinical and endoscopic
remission. Anti-TNFa therapies currently approved for the treatment of UC
include infliximab (Remicade®), adalimumab (Humira®), and golimumab
(Simponi®). Biosimilars are now available and FDA approved, and biologics
with an alternative mechanism of action are available; however neither of these
will be discussed in this chapter.
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Currently, biologic therapies including anti-TNFo agents, utilized with or
without concomitant immunomodulators, are considered the most effective medi-
cal therapies for moderately to severely active UC. Clinical trials support the effi-
cacy of anti-TNFa therapies, suggesting that approximately two thirds of patients
achieve clinical response after treatment with the first anti-TNFoa medication, one
third attain clinical remission, and one third are refractory or intolerant to the
medication [3]. Anti-TNFa therapies are generally well tolerated, but potential
adverse effects include injection site and infusion reactions, infection, autoimmu-
nity, neutropenia, cutaneous reactions, malignancy, and worsening of existing
demyelinating disease or heart failure. This chapter will review the use of anti-
TNFa therapies in UC including the indication, goals of therapy, and the safety
and efficacy for individual agents. Also discussed will be the treatment of older
adults, general monitoring for safety and efficacy, factors that influence choice of
anti-TNFa agent, information regarding switching agents, and important topics
for patient education.

Indication for Use of TNFa Therapy in Ulcerative Colitis

Approach to therapy in UC is based on the endoscopic extent and clinical severity
of disease presentation. Endoscopic extent can include disease limited to the rectum
(ulcerative proctitis), involvement of the entire colon (pan-colitis), or any extent
between. Severity can be categorized as mild, moderate, severe, or fulminant and
guides therapeutic intervention [4]. Anti-TNFa agents are reserved for those patients
refractory to first-line therapies (discussed in another chapter) or who are systemi-
cally ill. Patients with mildly to moderately active extensive colitis who are steroid
refractory and steroid dependent and/or those who have failed adequate mesalamine
or thiopurine therapy are candidates for anti-TNFa therapy. If patients respond to
the anti-TNFa induction regimen, then maintenance therapy with that agent is indi-
cated to maintain remission. Anti-TNFa therapies are contraindicated for patients
with active infection, untreated latent tuberculosis, moderate-to-severe congestive
heart failure, demyelinating disorders, or malignancies.

Goals of TNFa Therapy

Goals of UC therapy include (1) inducing and maintaining steroid-free remission,
(2) preventing disease-related complications, and (3) improving quality of life and
minimizing adverse events [5]. However, goals in the treatment of UC have evolved
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in recent years. While resolution of patient symptoms was historically utilized as a
primary goal of therapy, recent studies suggest that achieving endoscopic or muco-
sal improvement is associated with higher rates of sustained clinical remission,
corticosteroid-free clinical remission, decreased hospitalization, and improved
quality of life [6-9]. A systematic review and meta-analysis suggests that mucosal
healing is associated with higher rates of clinical remission, colectomy avoidance,
sustained mucosal healing, and likely corticosteroid-free clinical remission [10].
While mucosal healing is considered an important goal of therapy for UC, the defi-
nition of this outcome is not standardized.

Anti-TNFa Agents

Introduction

TNFa, a key pro-inflammatory cytokine in the pathogenesis of Crohn’s disease, is
also found in increased concentrations in the blood, colonic tissue, and stool of
patients with UC [11-13]. The mechanism of action for anti-TNFa agents is to
bind free and membrane-bound TNFa, which prevents TNFa from binding to its
receptor sites and neutralizes its biological activity. Three anti-TNFa agents to date
have been studied for the induction and maintenance of clinical remission in UC
(Tables 2.1 and 2.2). One of these agents, infliximab, is administered intravenously
(IV), while adalimumab and golimumab are administered as subcutaneous (SC)
injections. There are currently no head-to-head studies comparing the safety and
efficacy of these agents; however, placebo-controlled trials have evaluated each
therapy individually.

Infliximab
Induction and Maintenance Clinical Trials

Infliximab is an IV-administered, chimeric monoclonal antibody against TNFa for
the treatment of UC, as well as rheumatoid arthritis, ankylosing spondylitis, plaque
psoriasis, psoriatic arthritis, and Crohn’s disease [14]. In the UC population, the
Active Ulcerative Colitis Trials 1 and 2 (ACT 1 and ACT 2) found patients with
moderately to severely active UC who received infliximab were more likely to have
a clinical response than those receiving placebo. Each study was a double-blind,
placebo-controlled trial evaluating infliximab at a dose of 5-10 mg/kg of body
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Table 2.2 Summary of FDA-approved induction and maintenance dosing for anti-TNFa
medications for UC

Anti-TNFa

medication Induction dosing Maintenance dosing

Infliximab 5 mg/kg IV weeks 0, 2, and 6 5-10 mg/kg IV q 8 weeks

Adalimumab 160 mg SC day 1 and 80 mg SC day 15 Day 29 initiate 40 mg SC q
-OR- 80 mg SC day 1, day 2, and day 15 2 weeks

Golimumab 200 mg SC day 1 and 100 mg SC day 15 100 mg SC q 4 weeks

weight or placebo administered at weeks 0, 2, and 6 and then every 8 weeks through
week 22 in ACT 2 and week 46 in ACT 1 [15]. TNFa-naive patients with active
moderate-to-severe UC who had failed or were intolerant to conventional therapies
were included. Concomitant medication remained stable throughout each study,
except for corticosteroid therapy, which was tapered after week 8. The primary end-
point of each trial was clinical response at week 8.

In ACT 1, 69.4% of patients receiving 5 mg/kg (84 of 121) and 61.5% of patients
receiving 10 mg/kg (75 of 122) had a clinical response at week 8, compared with
37.2% of patients receiving placebo (45 of 121, P < 0.001 for both comparisons). In
ACT 2, 64.5% of patients receiving 5 mg/kg (78 of 121) and 69.2% of patients receiv-
ing 10 mg/kg (83 of 120) had a clinical response at week 8, compared with 29.3% of
patients receiving placebo (36 of 123, P < 0.001 for both comparisons). Clinical remis-
sion and mucosal improvement occurred in a higher proportion of patients treated with
infliximab compared with placebo in both ACT 1 and ACT 2 trials at weeks 8, 30, and
54 and weeks 8 and 30, respectively (P < 0.009 for all comparisons). Incidence of
infliximab antibody formation at week 54 in ACT 1 was 6.1% (14 of 229 patients) and
6.4% (12 of 188 patients) at week 30 in ACT 2. In ACT 1, infusion reactions occurred
in 10.7% (13 patients) in placebo group, 9.9% (12 patients) of 5 mg/kg group, and
12.3% (15 patients) of 10 mg/kg group (P = 1.00). In ACT 2, incidence of infusion
reactions was 8.1% (10 patients) in placebo group, 11.6% (14 patients) in the 5 mg/kg
group, and 11.7% (14 patients) of the 10 mg/kg group (P = 0.37). At week 54 in ACT
1, 35.4% of patients with anti-infliximab antibodies had an infusion reaction compared
with 9.8% of patients with negative or inconclusive antibody testing (5 of 14 and 21 of
215, respectively). At week 30 in ACT 2, 50% of patients with anti-infliximab antibod-
ies had an infusion reaction compared with 9.7% of patients with inconclusive or lack
of antibodies (6 of 12 and 17 of 176, respectively), suggesting that patients with posi-
tive tests for antibodies were more likely to develop infusion reactions than those
without antibodies. Infliximab was generally well tolerated, and incidence of adverse
events and infections was similar for both patients treated with drug and placebo.

Long-Term Safety and Efficacy
Long-term infliximab maintenance therapy for UC was evaluated during the ACT

1 and ACT 2 extension studies, in which patients who achieved a benefit from
infliximab continued to receive up to three additional years of therapy [16]. Of
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484 infliximab-treated patients in ACT 1 and ACT 2, 229 patients continued to
receive infliximab in the extension studies. Of the 229 patients in the infliximab
group, 70 (30.6%) discontinued infusions: 24 (10.5%) due to an adverse event, 11
(4.8%) due to lack of efficacy, 1 (0.4%) required colectomy, and 34 (14.8%) for
other reasons. The primary intent of the efficacy analysis was to evaluate mainte-
nance of efficacy. At week 0 of the extension study, 42.4% (97 of 229 patients)
had no disease activity, and at week 152, 54.6% (125 of 229 patients) had no
disease activity. For patients with mild or no disease activity, the proportion was
76.9% (176 of 229 patients) at week 0 and 89.5% (205 of 229 patients) at week
152. Based on these results from the intention-to-treat analysis, efficacy was
maintained in both subgroups. Of note, patients who discontinued the study due
to trial termination or for other reasons had the last available observation carried
forward.

Safety was reported as events per 100 patient-years, for any patient who received
at least one infusion of infliximab (N = 230), with a mean treatment duration of
1.99 years in the extension studies. Overall rates of adverse events were 506 per
100 patient-years, and infliximab was discontinued secondary to an adverse event
at a rate of 4.63 patients per 100 patient-years of therapy. Infusion reactions
occurred at a rate of 7.25 patients per 100 patient-years (36 of 230 patients). Only
three patients experienced serious infusion reactions. Five malignancies were diag-
nosed during the extension studies, including adenocarcinoma of the lung, breast
cancer, prostate cancer, basal cell carcinoma, and skin cancer of the nose and fore-
arm (1.01 patients per 100 patient-years of therapy). No new or unexpected safety
data compared to previous data on safety of infliximab was reported during the
extension studies.

Adalimumab
Induction and Maintenance Clinical Trials

Adalimumab is a SC-administered, recombinant human antibody against TNFo
approved for the treatment of UC, in addition to rheumatoid arthritis, juvenile
idiopathic arthritis, hidradenitis suppurativa, ankylosing spondylitis, plaque pso-
riasis, psoriatic arthritis, and Crohn’s disease [17]. The first trial to evaluate the
safety and efficacy of adalimumab in UC was the Ulcerative Colitis Long-Term
Remission and Maintenance with Adalimumab (ULTRA 1). This 8-week, multi-
center, randomized, double-blind, placebo-controlled study assessed adalim-
umab for the induction of clinical remission in anti-TNFa-naive patients with
moderate-to-severe UC despite concurrent therapy with corticosteroids and/or
immunomodulators [18]. A second multicenter, randomized, double-blind, pla-
cebo-controlled clinical trial, ULTRA 2, was performed to further evaluate the
efficacy and safety of adalimumab in patients with moderate-to-severe UC and
gather long-term data [19].
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The ULTRA 1 study protocol originally included one adalimumab group of
patients receiving adalimumab 160 mg at week 0, 80 mg at week 2, 40 mg at weeks
4 and 6 (ADA160/80), and placebo. However, the study protocol was amended to
include a second induction group of adalimumab 80 mg at week 0 and 40 mg at
weeks 2, 4, and 6 (ADA80/40). Patients in the study continued to receive adalim-
umab 40 mg SC every 2 weeks through week 52 in an open-label phase. There were
two intention-to-treat analyses, one including patients under the amended study
protocol (ITT-A3, N = 390) and a second intention-to-treat population including all
patients under the original protocol and amendments (ITT-E, N = 575). In the ITT-
A3 population, 18.5% of patients in the ADA160/80 arm, 10% of patients in the
ADAS80/40 arm, and 9.2% of patients in placebo arm achieved primary efficacy
endpoint of clinical remission at week 8 (P = 0.031, P = 0.833 versus placebo,
respectively). Adalimumab treatment was generally well tolerated at both induction
doses, and overall safety profile was comparable to placebo. The findings of ULTRA
1 trial demonstrated that ADA160/80 was safe and effective for induction of remis-
sion of moderate-to-severe UC.

The ULTRA 2 trial randomized 494 patients with moderate-to-severe active UC
despite concurrent corticosteroid and/or immunomodulator therapy to adalimumab
or placebo. Unlike ULTRA 1, prior treatment with infliximab was allowed if it had
been discontinued due to loss of response or drug intolerance for greater than 8
weeks, and approximately 40% of the total study population had prior infliximab
exposure. Patients were randomized 1:1 to ADA160/80 or placebo after stratifica-
tion by prior anti-TNFa exposure. The primary efficacy endpoint was rate of clini-
cal remission at weeks 8 and 52. At week 8, 16.5% of patients treated with
adalimumab achieved clinical remission compared with 9.3% receiving placebo
(P = 0.019). Similarly, at week 52 patients treated with adalimumab achieved a
significantly higher rate of clinical remission (17.3% versus 8.5%, P = 0.004). At
week 52, both anti-TNFa-naive and experienced patients achieved clinical remis-
sion at significantly higher rates compared with placebo arms (22% versus 12.4%,
P =0.029 and 10.2% versus 3%, P = 0.039, respectively). Whereas, at week 8 only
patients who were anti-TNFa naive had a statistically significant rate of clinical
remission compared with placebo group (21.3% versus 11%, P =0.017). In second-
ary endpoint analyses, significantly more patients treated with adalimumab com-
pared with placebo achieved clinical response at week 8 (50.4% versus 34.6%,
P < 0.001) and week 52 (30.2% versus 18.3%, P = 0.002). Adalimumab-treated
patients also achieved mucosal improvement more often than placebo-treated
patients (week 8, 41.1% versus 31.7%, P =0.032, and week 52, 25% versus 15.4%,
P =0.009). Overall, adalimumab treatment had a similar safety profile to placebo.

The ULTRA 2 trial was designed to permit patients with inadequate response to
initial treatment to switch to open-label adalimumab 40 mg every other week at
week 12 or later and weekly adalimumab 40 mg for patients who continued to dem-
onstrate inadequate response. After week 12, 31.7% (39 of 123) of week 8 respond-
ers and 61.6% (77 of 125) of week 8 nonresponders switched to open-label
adalimumab. Furthermore, 16.3% (20 of 123) and 38.4% (48 of 125) escalated to
weekly adalimumab for responders and nonresponders, respectively [20]. Remission,
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response, and mucosal improvement rates at week 52 for prior week 8 responders
were 20%, 45%, and 45%, respectively, compared with 2.1%, 25%, and 29.2%,
respectively, for prior week 8 nonresponders. These results indicate that escalation to
weekly adalimumab dosing may be beneficial for both patients who initially respond
to induction dosing and then lose response, as well as patients who are primary non-
responders. Weekly dosing was not associated with a greater risk of adverse events.

Long-Term Safety and Efficacy

Efficacy and safety data for long-term use of adalimumab was reported for patients
enrolled in the ULTRA 1 and 2 trials. Colombel et al. evaluated 600 of the 1094
patients enrolled in ULTRA 1 and 2 who received at least one dose of adalimumab
(ADA Randomized Set) and found that 199 patients remained on adalimumab at
week 208 [21]. Long-term remission rates and mucosal improvement rates over time
were analyzed using nonresponder imputation (NRI), whereby patients with missing
data were assumed not to have achieved the endpoint. For the ADA Randomized Set,
rate of remission per partial Mayo score was 24.7% (148 of 600 (NRI)), and mucosal
improvement was 27.7% (166 of 600 (NRI)) at year 4. Authors also evaluated the
maintenance efficacy of adalimumab through week 156, for 588 patients who enrolled
in the open-label extension, ULTRA 3, from ULTRA 1 and 2 (ADA Extension Set).
Three hundred and sixty patients remained on adalimumab through week 156 in
ULTRA 3. Long-term remission with mucosal improvement per partial Mayo score
was 63.6% (NRI) at week 156 (of 242 patients who entered in remission) and 59.9%
(NRI) at week 144 (of 409 patients who entered with mucosal improvement).

Safety data was reported for patients receiving at least one dose of adalimumab
in ULTRA 1, 2, and 3 (V= 1010 patients or 2338 patient-years of exposure). Rates
of serious adverse events per 100 patient-years of exposure were similar to or lower
than that observed in prior studies. The overall rate was 30.7 events per 100 patient-
years for week 52 of ADA 160/80/40 compared with a rate of 17.7 events per 100
patient-years for all ADA. During the ULTRA 3 study, three events of B-cell lym-
phoma occurred; however all patients had prior or current thiopurine use. Serious
adverse events included, but were not limited to, two cases of cytomegalovirus coli-
tis, one serious tuberculosis infection, one cardiorespiratory arrest, and one right
ventricular failure. No new or unexpected safety data compared to previous data on
safety of adalimumab was reported during the extension studies.

Golimumab
Induction and Maintenance Clinical Trials
Golimumab is a fully humanized, SC-administered antibody against TNFa that is

approved for the treatment of UC and also for rheumatoid arthritis, ankylosing
spondylitis, and psoriatic arthritis [22-27]. In the UC population, the Program of
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Ulcerative Colitis Research Studies Utilizing an Investigational Treatment-
Subcutaneous (PURSUIT-SC) study evaluated the safety and efficacy of induction
therapy with SC golimumab [28]. This multicenter, randomized, double-blind,
placebo-controlled trial concluded that induction with SC golimumab 200/100 mg
and 400/200 mg at weeks 0 and 2 was effective in inducing clinical response, clini-
cal remission, and mucosal improvement in patients with moderately to severely
active UC. The study also found that induction therapy was well tolerated with a
safety profile consistent with other anti-TNFa therapies.

Specifically, this integrated phase 2 and 3 clinical trial enrolled patients with mod-
erate-to-severe UC who were intolerant or refractory to oral 5-aminosalicylates, oral
corticosteroids, azathioprine, and/or 6-mercaptopurine but naive to anti-TNFa
antagonists. In the phase 2 dose-finding portion of the trial, 169 subjects were ran-
domized 1:1:1:1 to SC placebo or golimumab 100/50 mg, 200/100 mg, or 400/200 mg
at weeks 0 and 2. In the phase 3 study, 774 subjects were randomized 1:1:1 to receive
SC placebo, golimumab 200/100 mg, or 400/200 mg at weeks O and 2. At week 6,
51.0% and 54.9% of the golimumab 200/100 mg and 400/200 mg patients were in
clinical response, compared to 30.3% of placebo patients. This result was statisti-
cally significant and met the primary endpoint of the study (P < 0.0001). Additionally,
significantly more patients on golimumab 200/100 mg or 400/200 mg reached clini-
cal remission as compared to placebo (17.8%, 17.9%, and 6.4% respectively,
P < 0.0001). Significantly more patients on golimumab 200/100 mg or 400/200 mg
also attained mucosal improvement. 42.3% on golimumab 200/100 mg (P < 0.0014),
45.1% on golimumab 400/200 mg (P < 0.0001), and 28.7% on placebo had mucosal
improvement. Golimumab was generally well tolerated with an adverse event profile
similar to placebo. Serious adverse events and serious infections were rare [28].

One thousand, two hundred and twenty eight patients completing one of two
induction studies were then enrolled in a phase 3, multicenter, placebo-controlled,
double-blind, and randomized-withdrawal study to evaluate SC golimumab mainte-
nance therapy [29]. Patients received either golimumab 50 mg and 100 mg or pla-
cebo every 4 weeks through week 52. Results of the primary analysis population
(N = 456) showed that significantly more patients treated with golimumab 100 mg
or 50 mg maintained clinical response as compared to placebo (49.7%, 47.0%,
31.2%; P < 0.001 and P = 0.010, respectively); thus the study achieved the primary
endpoint. For clinical response through week 52, the numbers needed to treat were
5 and 6, respectively, for the 100 mg and 50 mg golimumab groups. Significantly
more patients on golimumab 100 mg were in clinical remission at weeks 30 and 54
compared to placebo (27.8%, 15.6%, respectively, P = 0.004). Clinical remission
rates in the golimumab 50 mg SC group were numerically superior, but not statisti-
cally significant. The number needed to treat to attain clinical remission for the
100 mg group was 8. Analysis suggests that the incidence of anti-golimumab anti-
body formation is 2.9% after 54 weeks of therapy; subgroup analysis revealed those
receiving concomitant immunomodulators had a 1.1% (4 of 362) incidence of anti-
drug antibody formation compared to 3.8% (28 of 741) of those receiving golim-
umab alone [29]. The overall safety profile in the maintenance clinical trial was
consistent with the known safety profile of golimumab and included increased risk
of rare serious infections, tuberculosis, malignancies, and antidrug antibodies [29].
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Long-Term Safety and Efficacy Data

Authors published long-term safety and efficacy data on SC golimumab in 2016
[30]. 1240 anti-TNFa-naive patients with moderate-to-severe UC from the phase 3
PURSUIT maintenance study were randomized to receive placebo or golimumab
50, 100, or 200 mg for 52 weeks in the maintenance study and then continued to
receive treatment in the long-term extension study through week 104 [30]. At week
104 researchers noted that 86% of included patients had inactive or mildly active
disease activity. Additionally, of the 174 patients who were corticosteroid-free at
week 54, 88.5% remained corticosteroid-free at week 104.

For patients receiving at least one dose of golimumab (1664.0 patient-years),
the safety profile was similar to that observed in earlier studies. Rates of serious
adverse events per 100 patient-years of exposure were similar for exposure through
weeks 54 and 104 (19.65% and 11.10%, respectively), as were adverse events that
lead to discontinuation of golimumab (12.72% and 5.98%, respectively). Authors
reported that tuberculosis, opportunistic infection, and malignancy rates were low;
during the trial two nonmelanoma skin cancers, one metastatic colon cancer, and
two deaths (biventricular heart dysfunction, sepsis) occurred between weeks 54
and 104 [30].

Treating Adults Over the Age of 60 with Anti-TNFo Therapy

In the United States, an estimated 10-15% of IBD patients are newly diagnosed
after the age of 60, with an incidence of 6—8/100,000/year [31]. Additionally, aging
patients who have been diagnosed earlier in life add to the growing population of
older adults with IBD. While limited data exists to evaluate safety and efficacy of
anti-TNFa biologics in older adults, the indication to use anti-TNFa medications in
older populations is similar to that of younger patients [32]. Nonetheless, treatment
decisions for older adults with UC are complicated by the lack of trials evaluating
safety and efficacy of medications in this population. Additionally, older adults have
a higher incidence of comorbid diseases and polypharmacy, complicating therapy.
Furthermore, physiologic changes associated with aging increase the risk of mor-
bidity and mortality; one study reports that 25% of IBD hospitalizations are for
patients over the age of 65 [33].

Few studies have evaluated the safety and efficacy of anti-TNFa therapy in adults
over the age of 65; in fact older adults are routinely excluded from clinical trial
enrollment [5, 34]. In 2011, a retrospective study evaluated an Italian cohort of 95
IBD patients over the age of 65 of whom 78 patients (36 with UC and 58 with
Crohn’s disease) were treated with anti-TNFa agents with or without concomitant
immunomodulators. Retrospective evaluation revealed 22 of 37 (59%) UC patients
and 38 of 58 (65%) CD patients achieved clinical remission. Of patients receiving
anti-TNFa therapy, 11% developed severe infections, 3% developed neoplasms,
and 10% died, as compared to matched controls of whom 0.5% reported severe
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infections, 2% developed neoplasms, and 2% died [33]. Although results suggest
higher risk in older populations, the retrospective study design limited comparabil-
ity, and patients treated with anti-TNFa therapy may have had more severe disease
than the control group which may have significantly biased outcomes.

Another observational and retrospective study in 2015 compared 66 IBD patients
over the age of 65 receiving anti-TNFa therapy, 112 IBD patients under the age of
65 receiving anti-TNFo therapy, and 61 anti-TNFa-naive patients. Authors reported
an increased risk of serious adverse events in the greater-than-65 anti-TNF-treated
cohort as compared to those under the age of 65 treated with anti-TNFa therapy
(RR =4.7; P <0.001). This risk was also higher as compared to those greater than
65 not treated with anti-TNFa therapies (RR =3.09; P = 0.0008) [35]. Authors also
reported that patients greater than 65 years old had significantly lower clinical
response after 10 weeks of anti-TNFa therapy, as compared to patients less than 65
treated with anti-TNFa therapies; however, no difference in clinical response was
noted between the groups after 6 months of therapy. Importantly, this assessment
was limited by retrospective study design, and clinical response was based on clini-
cal assessment only, not endoscopic evaluation [35].

Another consideration relevant to older populations with IBD treated with anti-
TNFa therapies is the known risks of complications and adverse events. For exam-
ple, anti-TNFa agents are contraindicated in moderate-to-severe New York Heart
Association class IIT or I'V heart failure [36], a comorbidity more common in older
populations. Additionally, an increased risk of melanoma and nonmelanoma skin
cancers has been associated with IBD. This will be discussed further in another
chapter, but given the increased risk in older populations, appropriate screening is
warranted [37]. Furthermore, the risk of lymphoproliferative disorders in the IBD
population is thought to be similar to or slightly higher than the general population;
however thiopurine therapy is associated with a four- to sixfold increased relative
risk. The absolute risk is higher in adults over the age of 70 as compared to younger
patients, with the absolute risk thought to be 1 in 4000-5000 for patients aged 20-29
and 1 in 300400 in those over 70 [38]. While we feel that this risk is not an absolute
contraindication to utilizing thiopurine therapy in conjunction with anti-TNFa ther-
apy, this increased risk should be considered in this specific population. The true
risk associated with anti-TNFoa monotherapy is unclear as many patients treated
with anti-TNF therapy are treated concomitantly with immunomodulators; this will
be discussed further in a subsequent chapter.

While consideration should be given to potentially higher risk of complications,
older adults with UC may present with severe disease, and, when indicated, these
patients should be offered the most effective therapy, including anti-TNFo agents
when appropriate. The assessment of risk in this population should compare the
alternative therapies available including other classes of biologics, the inherent risk
of patients being on steroids, and the risk of surgery which is also higher in the
elderly population. Without the benefit of prospective controlled trials in this popu-
lation, given a potential for higher rates of complications, it is important to try and
reduce complications. Currently guidelines for an