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Abstract. For a language family L, a syntactic complexity measure K
defined on languages of L, a number n ≥ 1, and an n-ary operation ◦
under which L is closed, we define gK◦ (m1,m2, . . . ,mn) as the set of all
integers r such that there are n languages Li, 1 ≤ i ≤ n, with

K(Li) = mi for 1 ≤ i ≤ n and K(◦(L1, L2, . . . , Ln)) = r.

In this paper we study these sets for the operation union, catenation, star,
complement, set-subtraction, and intersection and the measure number
of accepting states (defined for regular languages) as well as for reversal,
union, catenation, and star and the measures number of nonterminals,
productions, and symbols (defined for context-free languages).

Moreover, we discuss the change of these sets if one restricts to finite
languages, unary languages, and finite unary languages.

1 Introduction

The state complexity sc(L) of a regular language L is defined as the mini-
mal number of states that are sufficient and necessary for a deterministic finite
automaton to accept L. The study of the state complexity of regular languages
is a central topic in theoretical computer science, but it has also large impor-
tance in applied fields. The first important results by Lupanov, Moore, Meyer,
Fischer and others date back to the sixties and seventies, i.e., to the beginning
of theoretical computer science.

In the last three decades the following problem was intensively investigated:
Given a binary regularity preserving operation ◦ and two numbers m and n,
determine the maximal number k (denoted by fsc

◦ (m,n)) such that there are
languages Lm and Ln with sc(Lm) = m, sc(Ln) = n and sc(Lm ◦ Ln) = k (we
have introduced the concept for binary operations, but the concept can be used
for unary, ternary etc. operations as well). Summaries on the study of fsc

◦ can
be found in the papers [8,25].

As for other problems concerning the state complexity, one has noticed that
the behaviour of the complexity under operations can considerably change if one
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Operation Regular Finite Reg. unary Fin. unary

Union mn mn − (m + n) ∼mn max{m,n}
Intersection mn mn − 3(m + n) + 12 ∼mn min{m,n}
Complement m m m m

Kleene plus 2m−1 + 2m−2 − 1 m (m − 1)2 m

Reversal 2m O(2O(m)) m m

restricts to finite or unary or finite unary languages. This can be seen from the
following table.

We mention that there are also many papers where other subfamilies of the
family of regular languages have been studied, e.g., star-free languages, union-
free languages, languages closed under certain subword operations. Examples for
such results can be found in [12,18].

There are also some results where instead of the maximal number fsc
◦ the set

gsc◦ of all numbers k such that there are languages Lm and Ln with sc(Lm) = m,
sc(Ln) = n, and sc(Lm ◦ Ln) = k is determined. We mention here three such
results.

– Complement: gscC (m) = {m} for m ≥ 1,
– Union: [16] gsc∪ (m,n) = {1, 2, . . . ,mn} for m ≥ 2 and n ≥ 2

– Kleene star: [17] gsc∗ (m) =
{{1, 2} for m = 1

{1, 2, . . . , 2m−1 + 2m−2} for m ≥ 2 .

Obviously, the problem of the behaviour of syntactic measures of complexity
under operations can be discussed in other cases, too, where one can change the
complexity measure and/or the considered type of automaton. We mention here
the following approaches.

The most natural extension of deterministic finite automata are nondeter-
ministic finite automata. The operational behaviour of the (nondeterministic)
state complexity is studied in [14] and summarized in [15].

The number of transitions is not of interest for complete deterministic finite
automata, but the situation changes if one allows incomplete finite automata.
In the papers [9,19], one can find results on the behaviour of the number of
transitions under operations.

In order to cover XML structures one has to extend usual finite automata and
comes to nested word automata or visibly pushdown automata or input-driven
pushdown automata. The state complexity of these automata under operations
is studied in the papers [1,20,21].

Another natural extension of finite automata over strings is given by tree
automata. There are also some results for their operational state complexity
(see [22,23]).

In this paper we summarize results on the behaviour of some further non-
classical measures of descriptional complexity under operations.
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First we consider the number of accepting states instead of the number of (all)
states. For a regular language L, the number asc(L) is defined as the minimal
number of accepting states that are sufficient and necessary for a deterministic
finite automaton to accept L. We mention two points of interest in this measure:

– It was shown that, for two languages Lm and Ln with sc(Lm) = m and
sc(Ln) = n, the relation sc(Lm · Ln) ≤ m2n − asc(Lm) · 2n−1 holds for
m ≥ 2 and n ≥ 1, and that the bound is optimal. For the Kleene-closure and
the cut-operation, the complexity of the resulting language also depends on
the number of accepting states (see [6,8]).

– The complexity of algorithms for the minimization of Büchi automata and for
model checking based on Büchi automata depend on the number of accepting
states of the Büchi automaton (see [2,7]).

We determine the sets gasc◦ for union, complement, set-subtraction, Kleene
star, catenation, and intersection. Furthermore, we discuss variants of gasc◦ where
we restrict the sets Lm and Ln to be finite sets or regular unary sets and or
finite unary sets. The comparison shows that, for most operations, the situation
is similar for arbitrary regular, finite sets, and regular unary sets, whereas finite
unary sets show a completely different behaviour.

Some of these results were already published in [3].
Furthermore, we consider context-free languages and define their syntactic

complexity as the minimal number of nonterminals or productions or symbols
which is necessary to generate the language by context-free grammars. These
measures were introduced and studied by Gruska in [10,11]. We summarize some
results obtained in cooperation with Ralf Stiebe and Ronny Harbich (see [4,5,
13]) for the operational behaviour of these measures for arbitrary context-free
languages under reversal, union, catenation, and star. Moreover, we add results
for the case of finite, unary context-free, and finite unary languages. For the
number of variables, there is a large difference which comes from the fact that
the complexity for finite and unary context-free languages is bounded by one
or two. For the number of productions, it seems that the difference between
arbitrary and finite sets is essentially that we miss one or two “large” values.

2 Definitions and Notations

We assume that the reader is familiar with the basic notions of theory of
automata and formal languages; for details we refer to [24]. Essentially, we give
some notations and define the complexity measures of regular and context-free
languages which are considered in this paper.

By card(M), we denote the cardinality of a set M . The empty word is denoted
by λ. By N, we denote the set of all positive integers. If L is a language, then
we define the complement C(L) of L as the set of all words w ∈ V ∗ which are
not contained in L, where V is the minimal set (with respect to inclusion) with
L ⊆ V ∗.
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We specify a (deterministic) finite automaton as a tuple A = (Q,X, q0, F, δ)
where Q and X are finite sets of states and inputs, respectively, q0 ∈ Q is a
distinguished state (the initial state), F is a subset of Q (the set of accepting
states), and δ is a function from Q × X into Q. The language accepted by A is
denoted by L(A).

For a finite automaton A = (Q,X, q0, F, δ) and a regular language L, we set

asc(A) = card(F ),
asc(L) = min{asc(A) | L(A) = L}.

A context-free grammar is specified as a quadruple G = (N,T, P, S) where
N and T are two finite and disjoint sets, P is a finite subset of N × (v ∪ N)∗,
and S is a distinguished element of N . The elements of N , T , and P are called
nonterminals, terminals, and productions, respectively, and S is called the axiom.
We write A → w instead of (A,w) ∈ P . By L(G), we denote the language
generated by G.

For a context-free grammar G = (N,T, P, S), we set

Var(G) = card(N),
Prod(G) = card(P ), and

Symb(G) =
∑

A→w∈P

(|w| + 2).

Let K ∈ {Var,Prod,Symb}. For a context-free language L, we set

K(L) = min{K(G) | L(G) = L}.

For a language family L, a syntactic complexity measure K defined on lan-
guages of L, a number n ≥ 1, and an n-ary operation ◦ under which L is closed,
we define gK◦ (m1,m2, . . . ,mn) as the set of all integers r such that there are
n languages Li, 1 ≤ i ≤ n, with

K(Li) = mi for 1 ≤ i ≤ n and K(◦(L1, L2, . . . , Ln)) = r.

If we additional require that the languages Li, 1 ≤ i ≤ n, are finite or unary or
finite unary, we use the notations gK,f

◦ (m1,m2, . . . ,mn), gK,u
◦ (m1,m2, . . . ,mn),

and gK,f,u
◦ (m1,m2, . . . ,mn).

3 Number of Accepting States

In this section we only consider regular languages; therefore we omit the adjective
“regular”.

With respect to the measure number of accepting states, we consider
the operations complement, union, set-substraction, catenation, star, and
intersection.

We start with complement.
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Theorem 1. The following relations hold for the operation complement:

gascC (m) = gasc,uC

⎧⎨
⎩

{1} for m = 0
{0} ∪ N for m = 1
N for m ≥ 2

gasc,fC (m) = gasc,f,uC (m) =
{{1} for m ∈ {0}
N for m ≥ 2 .

We see that the only difference is that 0 is not in gasc,fC (1) and not in
gasc,f,uC (1). This difference comes from the following observations:

– asc(∅) = 0 holds, and asc(L) ≥ 1 iff L is not empty.
– the complement of the empty set is the non-finite set V ∗ of all words (and
asc(V ∗) = 1).

We now give the results for union, set-subtraction, and star and compare
them afterwards.

Theorem 2. The following relations hold for the operation union:

gasc∪ (m,n) = gasc,u∪ (m,n) =

⎧⎨
⎩

{m} for n = 0,m ≥ 0
{n} for m = 0, n ≥ 0
N for m ≥ 1, n ≥ 1

,

gasc,f∪ (m,n) =

⎧⎪⎪⎨
⎪⎪⎩

{m} for n = 0,m ≥ 0
{n} for m = 0, n ≥ 0
N for m = n = 1
N \ {1} for m ≥ 1, n ≥ 1, m + n ≥ 3

,

gasc,f,u∪ (m,n) = {max{m,n},max{m,n} + 1, . . . , m + n}.

Theorem 3. The following relations hold for the operation set-subtraction:

gasc\ (m,n) = gasc,u\ =

⎧⎨
⎩

{0} for m = 0, n ≥ 0
{m} for n = 0,m ≥ 0
N ∪ {0} for m ≥ 1, n ≥ 1

,

gasc,f\ (m,n) =

⎧⎪⎪⎨
⎪⎪⎩

{0} for m = 0, n ≥ 0
{m} for n = 0,m ≥ 0
{0, 1} for m = 1, n ≥ 1,
N ∪ {0} for m ≥ 2, n ≥ 1

,

gasc,f,u\ (m,n) = {m,m − 1, . . . ,m − n}.

Theorem 4. The following relations hold for the operation star:

gasc∗ (m) = gasc,u∗ (m) =
{{1} for m = 0
N for m ≥ 1 ,

gasc,f∗ (m) = gasc,f,u∗ (m) =
{{1} for m ∈ {0, 1}
N for m ≥ 2 .
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First we mention that, for all these three operations union, set-subtraction,
and star, there is no difference between the situations for arbitrary sets and
arbitrary unary sets.

Moreover, for all these three operations, a difference between allowing arbi-
trary sets and restricting to finite sets only occurs for m = 1. In all cases,
essentially, it comes from the following lemma.

Lemma 1. Let L be a finite language. Then asc(L) = 1 if and only if L is
prefix-free (i.e., no prefix of w ∈ L, which is different from w, is in L).

If we now assume that asc(L ∪ L′) = 1, then Lm ∪ Ln is prefix-free, and
consequently Lm and Ln are prefix-free, too, which gives asc(L) = asc(L′) = 1.

Moreover, if asc(L) = 1 and thus L is prefix-free, we get that L \ L′ is
prefix-free for all languages L′. Therefore, we get

asc(L \ L′) =
{

0 if L ⊆ L′

1 otherwise .

However, we see that there are differences between the situations for finite
sets and finite unary sets at one hand and arbitrary unary sets and finite unary
sets at the other hand. These differences come from the fact that, for a unary
finite set L with n elements, we have asc(L) = n, from which the statements for
finite unary sets follow.

We now turn to catenation where we have no results – except for some trivial
cases – for unary sets.

Theorem 5. The following relations hold for the operation catenation:

gasc· (m,n) = gasc,u· (m,n) =
{{0} for min{m,n} = 0
N for m ≥ 1, n ≥ 1 ,

gasc,f· (m,n) = {0} for min{m,n} = 0
gasc,f· (m,n) ⊇ {n + k | k ≥ 0} for m ≥ 2, n ≥ 1

gasc,f,u· (m,n) =
{{0} for min{m,n} = 0

{k | m + n − 1 ≤ k ≤ m · n} for m ≥ 1, n ≥ 1 .

Note that we do not know whether there is a difference for arbitrary and
finite sets, since gasc,f. is not completely determined.

For all the preceding operations ◦, gasc◦ (m,n) was almost the set of all positive
integers. This changes completely, if we consider intersection. Let L and L′ be
two regular sets accepted by the finite automata A and A′, respectively. Then the
standard construction of an automaton B accepting L∩L′ gives an upper bound
asc(A)·asc(A′) for asc(L∩L′). Hence gasc∩ (m,n) contains only numbers ≤ m·n.

Theorem 6. The following relation holds for the operation intersection: For
m ≥ 0 and n ≥ 0,

gasc∩ (m,n) ⊇ {(m − k)(n − l) + s | 0 ≤ k ≤ m, 0 ≤ l ≤ n, 0 ≤ s ≤ min{k, l}}.
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We mention some easy consequences:

– gasc∩ (0, n) = gasc∩ (m, 0) = {0} for m ≥ 0 and n ≥ 0,
– m · n ∈ gasc∩ (m,n) for m ≥ 0 and n ≥ 0,
– for m ≥ 0, we have gasc∩ (m,m) ⊇ {r | 0 ≤ r ≤ 4m

9 }, i.e., a large section of
small numbers is in gasc∩ (m,m).

For the unary case and intersection, we have the following statements:

Theorem 7. The following relation holds for the operation intersection: For
m ≥ 0 and n ≥ 0,

gasc,u∩ (m,m) ⊇ {(m − k)(m − k) + s | 0 ≤ k ≤ m, 0 ≤ s ≤ k} (1)

and
gasc,f,u∩ (m,n) = {0, 1, . . . ,min{m,n}}.

By the proof of (1), one can give an extension for m �= n and numbers k and l
with 0 ≤ k ≤ m and 0 ≤ l ≤ n, but one has to use in the formulation min{m,n}
and min{k, l} which makes the formulae a little bit hard to read.

We have no useful result for gasc,f∩ (m,n).
We have seen above that there are differences if we considered in general case

or the unary case. Thus it is a natural question if there are further differences
if we restrict the size of the underlying alphabet, i.e., if we consider the binary,
ternary etc. case. We mention that all results presented above for arbitrary
regular languages and finite languages already hold for alphabets with at least
two letters. Therefore it is not necessary to distinguish by the size of the alphabet.

4 Syntactic Complexity Measures for Context-Free
Languages

In this section we only consider context-free languages; therefore we omit the
adjective “context-free”.

We start with the remark that, Var(L) ≤ 1 for any finite language L (the
set consisting of the words w1, w2, . . . , wn is generated by a grammar with the
rules S → w1, S → w2, . . . S → wn) and Var(L) ≤ 2 for any unary context-
free language (L = {an1 , an2 , . . . , ans

} ∪ ap{am1 , am2 , . . . , amt} is generated by
a grammar with the rules S → an1 , S → an2 , . . . , S → ans

, S → S′, S′ → apS′,
S′ → am2S′ → am1 , . . . , S′ → amt). Thus, the sets gVar,f

◦ (m,n) are not defined
if m ≥ 2 or n ≥ 2, and the sets gVar,u

◦ (m,n) are not defined if m ≥ 3 or n ≥ 3.
We now present the results for the reversal operation.

Theorem 8. For K ∈ {Var,Prod,Symb} and all permissible m ∈ N ∪ {0},

gKR (m) = {m}, gK,f
R (m) = {m}, gK,u

R (m) = {m}, gK,f,u
R (m) = {m}.



40 J. Dassow

From commutativity of union and Theorem8, it follows that, for the measures
K ∈ {Var,Prod,Symb},

gK∪ (m,n) = gK∪ (n,m) and gK· (m,n) = gK· (n,m)

and the corresponding relations also hold if we restrict to finite languages, unary
languages, and finite unary languages. Therefore we can assume without loss of
generality that m ≥ n, if we discuss union or product.

We have the following results concerning operations and the number of
variables.

Theorem 9. The behaviour of Var under union is shown in Fig. 1.

arbitrary gVar
∪ (m,n) = {1, 2, . . . ,m + n + 1} for m ≥ 1, n ≥ 1

finite gVar,f
∪ (1, 0) = gVar,f

∪ (0, 1) = gVar,f
∪ (1, 1) = {1}, gVar,f

∪ (0, 0) = {0}

unary gVar,u
∪ (m,n) = {1, 2} for 1 ≤ m ≤ 2, 1 ≤ n ≤ 2

gVar,u
∪ (1, 0) = gVar,u

∪ (0, 1) = {1}, gVar,u
∪ (0, 0) = {0}

finite unary gVar,f,u
∪ (1, 0) = gVar,f,u

∪ (0, 1) = gVar,f,u
∪ (1, 1) = {1}, gVar,f,u

∪ (0, 0) = {0}

Fig. 1. Behaviour of the number of variables under union

Theorem 10. The behaviour of Var under catenation is shown in Fig. 2.

arbitrary gVar
· (m,n) ⊇ {1} ∪ {max{m,n},max{m,n} + 1, . . . ,m + n + 1}

for m ≥ 1, n ≥ 1

finite gVar,f
∪ (1, 1) = {1}, gVar,f

· (1, 0) = gVar,f
· (0, 1) = gVar,f

∪ (0, 0) = {0}

unary gVar,u
· (m,n) = {1, 2} for 1 ≤ m ≤ 2, 1 ≤ n ≤ 2

gVar,u
· (1, 0) = gVar,u

· (0, 1) = gVar,u
· (0, 0) = {0}

finite unary gVar,f,u
∪ (1, 1) = {1}, gVar,f,u

· (1, 0) = gVar,f,u
· (0, 1) = gVar,f,u

∪ (0, 0) = {0}

Fig. 2. Behaviour of the number of variables under catenation

Theorem 11. The behaviour of Var under Kleene star is shown in Fig. 3.

We see that there is a large difference between arbitrary regular languages
on the one side and finite or unary sets on the other hand, but the difference
only originates from the restricted domain of gVar,f

◦ and gVar,u
◦ . Between finite

and finite unary sets, there is no difference.
We now consider the number of productions.
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arbitrary gVar
∗ (n) = {1, 2, . . . , n + 1} for n ≥ 1

finite gVar,f
∗ (1) = gVar,f

∗ (0) = {1},

unary gVar,u
∗ (1) = gVar,u

∗ (2) = {1}, gVar,u
∗ (0) = {1}

finite unary gVar,f,u
∗ (1) = gVar,f,u

∗ (0) = {1},

Fig. 3. Behaviour of the number of variables under star

Theorem 12. Let m ≥ n ≥ 2.

(i) The number 1 and all numbers k with k > m+n+2 are not in gProd
∪ (m,n).

(ii) If n ≥ 7, then {k | 6 ≤ k ≤ m + n + 2} ⊆ gProd
∪ (m,n).

(iii) If n ∈ {5, 6}, then {k | 4 ≤ k ≤ m + n + 2} ⊆ gProd
∪ (m,n).

(iv) If n = 4, then {2} ∪ {k | 4 ≤ k ≤ m + n + 2} ⊆ gProd
∪ (m,n).

(v) If n ∈ {2, 3}, then {k | 2 ≤ k ≤ m + n + 2} = gProd
∪ (m,n).

Theorem 13. (i) For all numbers m with m ≥ 2, the number 1 and all num-
bers k with k > m + 2 are not in gProd

∪ (m, 1).
(ii) For m ≥ 2, we have {k | n ≤ k ≤ m + 2} ⊆ gProd

∪ (m, 1).
For m ≥ 5, the relation n − 1 ∈ gProd

∪ (m, 1) holds.
For n ≥ 6, we have n − 2 ∈ gProd

∪ (m, 1).
Moreover, gProd

∪ (1, 1) = {1, 2} is valid.

We notice that the open problems concern only small numbers, i.e., it is open
whether or not the following relations hold:

– 2, 3 ∈ gProd
∪ (m, 1) for m ∈ {4, 5} and 2, 3, . . . ,m − 2 ∈ gProd

∪ (m, 1) for m ≥ 6,
– 3 ∈ gProd

∪ (m, 4) for m ≥ 4,
– 2, 3 ∈ gProd

∪ (m, 5) for m ≥ 5,
– 2, 3, 4 ∈ gProd

∪ (m, 6) for m ≥ 6,
– 2, 3, 4, 5 ∈ gProd

∪ (m,n) for m ≥ n ≥ 7.

Theorem 14. (i) For all numbers m ≥ 1 and n ≥ 1, the number 1 and all
numbers k with k > m + n are not in gProd,f

∪ (m,n).
(ii) If m ≥ n ≥ 1, then {m,m + 1, . . . ,m + n} ⊆ gProd,f

∪ (m,n).
(iii) If m ≥ n ≥ 3, then {n, n + 1, . . . m + n} ⊆ gProd,f

∪ (m,n).
(iv) If m ≥ 6 and m ≥ n ≥ 4, then {6, 7, . . . ,m + n} ⊆ gProd,f

∪ (m,n).

Theorem 15. (i) For all numbers m ≥ 1 and n ≥ 1, the number 1 and all
numbers k with k > m + n + 2 are not in gProd,u

∪ (m,n).
(ii) If m ≥ n ≥ 1, then {m,m + 1, . . . m + n} ⊆ gProd,u

∪ (m,n).
(iii) If m ≥ n ≥ 3, then {n, n + 1, . . . m + n} ⊆ gProd,u

∪ (m,n).

The essential differences between the cases of arbitrary, finite, and unary sets
are:
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– If we restrict to finite sets, then m+n+1 and m+n+2 are not in gProd,f
∪ (m,n)

and not in gProd,f,u
∪ (m,n).

– If we restrict to the unary case we only know that the numbers k ≥
min{m,n} are in gProd,u

∪ (m,n) and gProd,f,u
∪ (m,n); for “small” numbers we

miss constructions.

For the star operation, we have the following results.

Theorem 16. The following relations hold:

(i) gProd
∗ (0) = gProd,f

∗ (0) = {1},
(ii) gProd

∗ (1) = gProd,f
∗ (1) = {1, 2},

(iii) For n ≥ 2, gProd
∗ (n) = {2, 3, . . . , n + 2} and gProd,f

∗ (n) = {2, 3, . . . , n + 1}.
We see that the only difference between arbitrary context-free and finite sets

is that n + 2 is not contained in gProd,f
∗ (n).

We do not have non-trivial results for gProd,u
∗ and gProd,f,u

∗ .
We now discuss the concatenation and restrict to the general case, because

all our proofs require infinite languages and languages over an alphabet with at
least two letters (i.e., we cannot present results on gProd,f

· , gProd,u
· , and gProd,f,u

· ).

Theorem 17. (i) For all numbers m ≥ n ≥ 1, the number 0 and all numbers
k with k ≥ m + n + 1 are not in gProd

· (m,n). Moreover, if m ≥ 2, then
m + 2 /∈ gProd

· (m, 1) and 1 /∈ gProd
· (m,n).

(ii) We have {1} = gProd
· (1, 1).

(iii) We have {2, 3, 4, 5} = gProd
· (2, 2) and {m,m+1,m+2,m+3} ⊆ gProd

· (m, 2)
for m ≥ 2.

(iv) We have {m + n − 1,m + n,m + n + 1} ⊆ gProd
· (m,n) for m,n ∈ {3, 4}.

(v) We have {n + 2, n + 3, . . . m + n + 1} ⊆ gProd
· (m,n) for m ≥ n ≥ 5.

With respect to the number of symbols the situation is not very clear for
small numbers n and m. We only give the results for “large” numbers; for a
proof and further facts we refer to [13].

Theorem 18. (i) For all numbers m ≥ 23 and n ≥ 23, we have

{k | k ≥ m + n + 7} ∩ gSymb
∪ (m,n) = ∅ and

{23, 24, . . . , n} ∪ {n + 3, n + 4, . . . ,m + n − 2} ∪ {m + n + 6} ⊆ gSymb
∪ (m,n).

(ii) For all numbers m ≥ 8 and n ≥ 5 with m ≥ n we have

{k | k ≥ m + n + 5} ∩ gSymb
· (m,n) = ∅ and

{n + 4, n + 5 . . . ,m + n − 2} ∪ {m + n + 4} ⊆ gSymb
· (m,n).

(iii) For all numbers m ≥ 10, we have

{k | k ≥ m + 7} ∩ gSymb
∗ (m) = ∅ and {10, 11, . . . ,m} ∪ {m + 6} ⊆ gSymb

∗ (m).
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5 Conclusion

We have presented a summary of result concerning the operational complexity
of the number of accepting states for regular languages and of the number of
nonterminals, productions, and symbols for context-free languages.

For the number of accepting states and the operations union, set-subtraction,
complement, and star, the results are complete, and we see that there are –
essentially – no differences between arbitrary, finite, and unary sets. However,
the finite unary sets behave completely differently. With respect to catenation,
the situation can be the same, but, for a proof, a complete determination of
gasc,f· is necessary (and missing at present). For the intersection, we have not
enough information in order to make a statement on the comparison.

The situation is different for the syntactic measures of context-free languages.
Concerning the number of nonterminals, we have a difference between arbitrary
context-free languages and the restricted versions, but it comes from the very
limited domain (of the variables m and n in the case of restrictions). If we restrict
to “large” arguments (say m ≥ n ≥ 50, which can be justified by practical
reasons), we have a good situation for the number of productions with respect
to union and star since the difference between arbitrary context-free sets and
finite sets is only in two or one “large” values. For the comparison of unary and
finite unary languages, we need more information.

In order to get a more complete picture, it is necessary to determine the sets
gProd,f

· , gProd,u
· , and all sets with a restriction and the measure Symb.

Finally, we mention that it remains open to determine the sets gasc◦ and
their restricted versions for further operations as reversal (LR) or squaring (L2),
quotients, etc. as well as the sets gK◦ with K ∈ {Var,Prod,Symb} for operations
as squaring, quotients, etc.
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