
2-State 2-Symbol Turing Machines with Periodic
Support Produce Regular Sets

Turlough Neary(B)

Institute of Neuroinformatics, University of Zürich and ETH Zürich,
Zürich, Switzerland

tneary@ini.phys.ethz.ch

Abstract. We say that a Turing machine has periodic support if there
is an infinitely repeated word to the left of the input and another infi-
nitely repeated word to the right. In the search for the smallest universal
Turing machines, machines that use periodic support have been signif-
icantly smaller than those for the standard model (i.e. machines with
the usual blank tape on either side of the input). While generalising
the model allows us to construct smaller universal machines it makes
proving decidability results for the various state-symbol products that
restrict program size more difficult. Here we show that given an arbi-
trary 2-state 2-symbol Turing machine and a configuration with periodic
support the set of reachable configurations is regular. Unlike previous
decidability results for 2-state 2-symbol machines, here we include in our
consideration machines that do not reserve a transition rule for halting,
which further adds to the difficulty of giving decidability results.

1 Introduction

The search for Turing machines with small states-symbol products has received
attention for a number of different variations of the model [2,8,12,13]. The vari-
ant that has received the most attention is what we call here the standard
model [1,5,6,11] (single-tape Turing machines with the usual blank symbol and
a specially reserved halt instruction). As one might expect if we generalise the
standard model or the type of encoding it may use we can give machines with
smaller state-symbol products. One generalisation used in the literature is to
allow periodic support (an infinitely repeated word to the left of the input and
another infinitely repeated word to the right). Universal machines that use such
a generalisation are call weakly universal. Watanabe gave a number of small
semi-weakly universal machines [13] (a repeated word only appears on one side
of the input). Later, Cook [2] gave small weakly universal machines that simulate

This work is supported by Swiss National Science Foundation grant numbers 200021-
153295 and 200021-166231. The author thanks the anonymous reviewers for their
careful reading of the paper and their helpful comments.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 274–286, 2017.
DOI: 10.1007/978-3-319-60252-3 22

2-State 2-Symbol Turing Machines 275

the cellular automaton Rule 110, and these were improved upon in [7] to give
weakly universal machines for the state-symbol pairs of (6, 2), (3, 3) and (2, 4).

For the standard model a number of authors have given lower bounds on the
size of the smallest possible universal Turing machines by proving the halting
problem decidable for machines with the following state-symbol pairs: (2, 2) [4,9],
(3, 2) [10], (2, 3) (claimed by Pavlotskaya [9]), (1, n) [3] and (n, 1) (trivial), where
n � 1. Unfortunately, these results do not provide lower bounds relevant to
the weak and semi-weak machines mentioned above, and while generalising the
encoding can simplify the task of finding machines with smaller state-symbol
products the task of giving decidability results becomes more difficult. In this
work we give decidability results for 2-state 2-symbol machines with periodic
support. Our main result is as follows:

Theorem 1. Given an arbitrary 2-state, 2-symbol, single-tape Turing machine
with periodic support, the set of reachable configurations from an arbitrary con-
figuration is regular.

This result implies the decidability of many questions for 2-state 2-symbol
machines with periodic support such as (1) Will a computation halt? (2) Does
word w appear on the tape during a computation? (3) Given a number x does
a computation enter a repeating sequence of configurations of length x? The
halting property in question 1 is the standard way of signaling the end of a
computation in Turing machines. Each of the properties in (2) and (3) above
have been used as a means to signal the end of a computation in universal
machines [2,12]. The weakly universal machines in [2,7] use the appearance of
a special word to simulate a halting Turing machine and so our results show
that there exists no 2-state 2-symbol weakly universal machine that ends its
computation in this way. Our proof does not assume that there is a transition
rule reserved for halting which further adds to the difficulty when compared to
previous decidability proofs for 2-state 2-symbol machines.

The layout of the paper is as follows: In Sect. 2 we explain notation and give
some definitions including definitions for two types of computation, periodic
and semi-periodic, and we then show that if a computation is periodic or semi-
periodic the set of reachable configurations is regular. In Sect. 3 we reduce the
number of cases to be considered leaving the cases only in Fig. 1 to be solved,
and in Sect. 4 we solve the Fig. 1 cases to prove Theorem 1.

2 Turing Machines with Periodic Support

Definition 1. A Turing machine with periodic support is a tuple M =
(Q,Σ, f, l, r). Here Q = {q1, . . . q|Q|} and Σ are the finite sets of states and
tape symbols respectively, and l, r ∈ Σ∗ are the left and right blank words
respectively, where |r| > 0 and |l| > 0. The transition function is of the form
f : Q × Σ → Σ × {L,R} × Q.

276 T. Neary

We write f as a list of transition rules. Each transition rule is a quintuple
(qx, σ1, σ2, d, qy), with initial state qx, read symbol σ1 ∈ Σ, write symbol σ2 ∈ Σ,
move direction d ∈ {L,R} and next state qy.

Definition 2. A configuration c of a Turing machine with periodic support has
the form c = uqxα v where qx is the current state, the tape head is reading the
symbol α, and the words u, v ∈ Σ∗.

For a machine with periodic support, when the tape head moves to the right of
v the word r is appended to the right of v and when the tape head moves to the
left of u the word l is prepended to the left of u. When l = r = 0 we have the
classic Turing machine with blank symbol 0. We write c1 � c2 to denote that
configuration c2 is obtained via a single Turing machine computation step on c1
and we write c1 �∗ ct if there exists a sequence of 0 or more computations steps
of the form c1 � c2 � . . . ct−1 � ct. We say that ct is reachable from c1 and call
c1 � c2 � . . . ct−1 � ct a computation sequence.

We label each Turing machine tape cell with an index. The cell with index
i, which we will call cell i, has cell i − 1 immediately to its left and cell i + 1
immediately to its right. The position function p(t) gives the index of the cell
being read by the tape head at time t. The rightmost position up to time t is a
cell index Pr(t) = max

t′�t
(p(t′), pr) and the leftmost position up to time t is a cell

index Pl(t) = min
t′�t

(p(t′), pl), where pl and pr are respectively the leftmost and

rightmost cells occupied by the input w.

Definition 3 (Periodic computation). Let M be a Turing machine with
periodic support. The computation of M is periodic if there is a sequence s of
transition rules and a time t, such that sequence s is executed between times
t + i|s| and t + (i + 1)|s| for all i ∈ N, where |s| is the number of rules in s.

Lemma 1. If a computation is periodic, then {ci|c1 �∗ ci} is a regular set.

Proof. After t time steps M has gone through a sequence of configurations c1 �
c2 � . . . ct. There are two possible cases for the repeated sequence s, the sequence
has either an equal or unequal number of left and right instructions. If there is
an equal number of left and right instructions then after a further |s| time steps
we get ct, ct+1, . . . , ct+s where ct and ct+s are identical. So in this case the set
of configurations reachable from c1 is the finite regular set {c1, c2, . . . , ct+s−1}.

If the number of left and right instructions in s are not equal, then we need
only consider the case where there are more right than left instructions (as the
case of more left than right instructions is symmetric). At time t we have a
configuration ct = uu1 qx,1α1 v1 such that the tape head visits the leftmost
symbol in u1 but does not revisit any symbol in u. Between times t and t + s
sequence s is executed giving the configuration sequence ct � ct+1 � . . . ct+s

where ct+i = uui qx,iαi vi for 0 � i < s and ct+|s| = uu′u1 qx,1α1 v1. In con-
figuration ct+|s| the words u1 and v1 must appear immediately to the left and
right of the tape head position as the sequence of symbols read when execut-
ing s in the |s| time steps following ct+|s| is identical to the sequence of sym-
bols read in the |s| time steps following ct. Since the tape head will not visit

2-State 2-Symbol Turing Machines 277

any cell to the left of the leftmost symbol in u1 when executing s the word u′

is not revisited by the tape head and is not altered for the remainder of the
computation. For each subsequent execution of s another u′ is placed on the
tape and so on iteration j + 1 of s we get a configuration sequence of the form
ct+|s|j � ct+|s|j+1 � ct+|s|j+2 � . . . ct+|s|(j+1) where ct+|s|j+i = u(u′)jui qx,iαi vi
and 0 � i < s. So the set of configurations reachable from c1 is the regular set
{c1, c2, . . . , ct} ∪ ui(u′)∗ui qx,iαi vi where 0 � i < s. �
Lemma 2. Let M be a 2-state, 2-symbol Turing machine with periodic support.
If, when M is started on a configuration c1, there exists an m ∈ N such that on
more than |r|2m+1 occasions the tape head of M is over a cell Pr(t) and does
not visit cell Pr(t) − m after time t, then the set {ci|c1 �∗ ci} is regular.

Proof. Let uu′ qxαvr be a configuration at time t with |u′| = m and the tape
head over cell Pr(t). If no cell to the left of Pr(t)−m is visited after time t, then
the future computation depends only on u′ qxαvr . By definition of Pr(t) no cell
to the right of the tape head’s location at symbol α has yet been read and so
vr must be a suffix of r. As a result, there are only |r|2m+1 possible values for
u′ qxαvr. So, after |r|2m+1 times where the tape head is over cell Pr(t) and no
longer visits cell Pr(t) − m, there are two times tj and tk that have the same
value for u′ qxαvr. Since the future computation depends only on u′ qxαvr, the
sequence of transition rules executed between times tj and tk are repeated ad
infinitum. So from Lemma 1 the set {ci|c1 �∗ ci} is regular. �
Using a similar argument to the one used in Lemma 2 we get Comment 1.

Comment 1. Let M be a 2-state, 2-symbol Turing machine with periodic sup-
port. If, when M is started on a configuration c1, there exists an m ∈ N such
that on more than |l|2m+1 occasions the tape head of M is over a cell Pl(t) and
does not visit cell Pl(t) + m after time t, then the set {ci|c1 �∗ ci} is regular.

Comment 2. Let M be a Turing machine with periodic support. If M started
on configuration c does not make at least 2 consecutive right moves an inifinite
number of times and at least 2 consecutive left moves an infinite number of
times, then it either enters a loop or gives a computation of the type describe by
Lemma 1 or Comment 1, and so the set of reachable configurations is regular.

Definition 4 (Semi-periodic computation). Let M be a Turing machine
with periodic support. The computation of M is semi-periodic if there are 2x+2
sequences of transition rules, sr, sl, e1, e2 . . . ex, h1, h2 . . . hx, such that there is a
time z where the sequence

S = (sr)i+1e1(sl)i+1h1(sr)i+1e2(sl)i+1h2 . . . (sr)i+1ex(sl)i+1hx

is executed between times t(i) and t(i + 1) for all i ∈ N, where t(i) = z +
(i2+i)x

2 (|sr| + |sl|) + i(|e1h1e2h2 . . . exhx|), f(sr) = m, f(sl) = −m, 0 � f(ei) <
m, −m < f(hi) � 0, and −m < f(S) � 0 where f(s) = (number of right
instructions in sequence s)−(number of left instructions in sequence s). Also,
for every instruction sequence y that is a prefix of sl we have f(y) � −m, and
for every instruction sequence y that is a prefix of sr we have f(y) � m.

278 T. Neary

Lemma 3. If a computation is semi-periodic, then {ci|c1 �∗ ci} is a regular set.

Proof. At time t(i) the sequence S is about to be executed by M for the (i+1)th

time. The configuration at time t(i) is given below on the left side of (1). From S
in Definition 4 the execution begins with (sr)i+1, and so between times t(i)+|sr|k
and t(i)+ |sr|(k +1) we execute the sequence sr, for 0 � k � i. In Eq. (1) during
the execution of each sr the tape head does not move to the left of the word ur,1

or to the right of the word vr,1, and so since sr has more right move than left
move instructions we can use an argument similar to the one used in Lemma 1
to show that after k iterations of sr (|sr|k time steps) the configuration on the
right side of Eq. (1) is produced. Continuing on, the left side of Eq. (2) gives the
configuration after i iterations of sr, and one further iteration of sr gives the
configuration on the right. In the configuration on the right of Eq. (2) the word
ve1,1 = vr′,1ve′

1
, where vr′,1 is the length |vr,1|−m word that appears immediately

to the right of the tape head after the last sr in (sr)i+1 has executed (recall that
each sr shifts the tape head m cells to the right in the word vr,1). The leftmost
(sr)i+1 instruction sequence in S has now completed and so e1, the next sequence
in S, executes.

In Eq. (3) we show the |e1| times steps that complete the execution of e1. Before
we proceed we explain the presence of the word u′

1 (the length f(e1) prefix of u′)
that appears in the configuration on the right of Eq. (3). Immediately following the
execution of e1 we execute the sequence (sl)i+1, and as usual we give words ul,1 and
vl,1 suchthatduringtheexecutionofeachsl thetapeheaddoesnotmovetothe leftof
ul,1 or to the rightofvl,1.FromDefinition 4weknowthat executinge1 shifts the tape
head f(e1) cells to the right. So fromEq. (3) after the execution of e1 (before thefirst
sl is about toexecute) the tapehead isat leastf(e1) cells to the rightof the rightmost
u′ subword in (u′)i+1. For every prefix y of sl we have f(y) � −m and so when
executing sl the tape head does not visit cells more than m positions to the left of its
initial locationwhen it began sl. So since |u′| = m and the initial tape head location
is at least f(e1) cells to the right of the rightmost u′, the leftmost f(e1) symbols in
the rightmost u′ (i.e. the prefix word u′

1) are not entered when executing the first sl
and so we have u′

1 to the left of ul,1 in Eq. (3). Note that in Eq. (3) permitting the
tape head to enter cells to the left of ue1,1 when executing e1 will not effect the value
of u′

1, as it is only possible to iterate sl if u′
1 is a prefix of u′ (see Eq. (4)) and so the

prefix value ofu′
1 is implied by the fact that (sl)i+1 is executed immediately after e1.

uh′
1
ur,1 qr,1αr,1 vr,1(v

′)ive′
1

�|sr|k uh′
1
(u′)kur,1 qr,1αr,1 vr,1(v

′)i−kve′
1

(1)

uh′
1
(u′)iur,1 qr,1αr,1 vr,1ve′

1
�|sr| uh′

1
(u′)i+1ue1,1 qe1,1αe1,1ve1,1 (2)

uh′
1
(u′)i+1ue1,1 qe1,1αe1,1ve1,1 �|e1| uh′

1
(u′)iu′

1ul,1 ql,1αl,1vl,1ve′
2

(3)

uh′
1
(u′)iu′

1ul,1 ql,1αl,1vl,1ve′
2

�|sl|k uh′
1
(u′)i−ku′

1ul,1 ql,1αl,1vl,1(v
′)kve′

2
(4)

uh1,1 qh1,1αh1,1vh1,1(v
′)i+1ve′

2
�|h1| uh′

2
ur,1 qr,1αr,1vr,1v′

1(v
′)ive′

2
(5)

uh′
n

ur,1 qr,1αr,1vr,1v′
n(v

′)ive′
n

�|sr|k uh′
n
(u′)kur,1 qr,1αr,1vr,1v′

n(v
′)i−kve′

n
(6)

The execution of sequence (sl)i+1 as shown in Eq. (4) proceeds in a manner
similar to that of (sr)i+1. The main difference is that sl has more left move than
right move instructions and so each successive sl sequence begins m cells further
to the left. Following the execution of (sl)i+1, the sequence h1 is executed as

2-State 2-Symbol Turing Machines 279

shown in Eq. (5). In the configuration on the left of Eq. (5) the word uh1,1 =
uh′

1
u′
1ul′1 , where ul′1 is the length |ul,1| − m word that appears immediately to

the left of the tape head after the last sl in (sl)i+1 has executed (recall each
sl shifts the tape head m cells to the left in the word ul,1). The word v′

1 that
appears in the configuration on the right of Eq. (5) is the length f(h1) suffix of
v′ and its presence can be explained in a manner similar to that of u′

1 in the
previous paragraph. Continuing with the execution of sequence S, on the right
side of Eq. (5) following the execution of h1 the configuration is ready to allow
the next (sr)i+1 sequence to execute. Note that unlike the configuration on the
left of Eq. (1), the configuration on the right of Eq. (5) has the word v′

1 to the
left of (v′)i. This implies that (v′)i is a prefix of v′

1(v
′)i as to execute (sr)i+1 we

must have the word (v′)i to the right of vr1,1. This prefix property holds for each
v′
j word produced by executing a hj sequence. Similarly all words of the form

(u′)iu′
j share a suffix that allows (sr)i+1 to execute, where u′

j is a word produced
by executing an ej sequence (see Eq. (3)). Returning to Eq. (5), at the right end
of the configuration ve′

2
is of the correct form to allow e2 to execute at the end

of the (sr)i+1 scan right, and following this we once again scan left with (sl)i+1

where uh′
2

allows the execution of h2. So the process of scanning right with (sr)i+1

and left with (sl)i+1 is repeated with the nth scan right given in Eq. (6). This
continues until the sequence S is completed for the value i, whereupon S begins
for i + 1. The configurations for the nth iteration of S can be obtained from the
configurations for the first iteration of S simply by increasing the number of u′

and/or the number of v′ words in each configuration. So the set of configurations
reachable by M is the union of the finite set of configurations before the first
iteration of S and the configurations indicated in Eqs. (1) to (6). �

3 Reducing the Number of Cases Through Symmetries

There are 4096 possible 2-state 2-symbol machines and in this section we show
how to reduce the number of cases to the 378 machines given in Fig. 1. Eq. (7)
below gives the form of an arbitrary 2-state 2-symbol Turing machine where
σi ∈ {0, 1}, dj ∈ {L,R} and qk ∈ {qa, qb}. In the sequel we denote each possible
machine as a triple (Σ,D,Q) where Σ = {σ1, σ2, σ3, σ4}, D = {d1, d2, d3, d4},
and Q = {q1, q2, q3, q4}. Each Σ, D and Q has 16 possible values and here we
show how to reduce the number of cases under consideration to 6, 7, and 9,
respectively (see Tables 1 to 3). We do this by identifying symmetries using the
notion of regular equivalent machines which we define below, and we also solve
some of the simplest cases from Σ, D and Q.

qa, 0, σ1, d1, q1 qa, 1, σ2, d2, q2 qb, 0, σ3, d3, q3 qb, 1, σ4, d4, q4 (7)

Before we proceed we give some preliminary definitions and notation. Given a set
with two elements {y, z} we define y = z and z = y. Given w = w0w1 . . . wm ∈
{0, 1}∗, we write w = w0w1 . . . wm to denote the word obtained by flipping each

280 T. Neary

bit wi ∈ {0, 1} in w. We define three functions greverse, gb-flip and gs-flip each of
which map a configuration c = uqxα v to another configuration as follows

greverse(c) = v qxα u gb-flip(c) = uqxα v gs-flip(c) = uqxα v

where if w = w0w1 . . . wm then w = wmwm−1 . . . w0.

Definition 5. Given Turing machines M and M ′ with periodic support, we
say that M and M ′ are regular equivalent if for every computation sequence
c1 � c2 � . . . ct of M there is a computation sequence g(c1) � g(c2) � . . . g(ct) of
M ′ and vice versa, where g ∈ {greverse, gb-flip, gs-flip}.
Showing one direction of the equivalence is sufficient to prove that a pair of
machines are regular equivalent as each function from g is its own inverse. Com-
ment 3 follows from Definition 5 as regularity is closed under g, and used with
Lemma 4 reduces the number of cases for Theorem 1.

Comment 3. Let M be a Turing machine with periodic support such that the
set of configurations reachable from any arbitrary configuraiton is regular. Then
if Turing machines M and M ′ are regular equivalent, for every configuration of
M ′ with periodic support, the set of configurations reachable for M ′ is regular.

Lemma 4. Let M be an arbitrary 2-state, 2-symbol Turing machine with peri-
odic support. Then applying any one of the mappings in Eqs. (8) to (10) to all
transition rules in M gives a regular equivalent Turing machine M ′.

fd-flip(qx, σ, σ′,D, qy) → (qx, σ, σ′,D, qy) (8)

fb-flip(qx, σ, σ′,D, qy) → (qx, σ, σ′,D, qy) (9)
fs-flip(qx, σ, σ′,D, qy) → (qx, σ, σ′,D, qy) (10)

Proof. To prove this lemma we show that for each mapping on M given by
Eqs. (8) to (10) there is a g ∈ {greverse, gb-flip, gs-flip}, such that for each com-
putation sequence c1 � c2 � . . . ct of M there is a computation sequence
g(c1) � g(c2) � . . . g(ct) of M ′ satisfying Definition 5 (recall that it is suffi-
cient to prove only one direction of the equivalence). For each of the trans-
lations in Eqs. (8), (9) and (10) we set g to greverse, gb-flip, or gs-flip, respec-
tively. For example, if we apply the translation in Eq. (8) to M , then for each
computation sequence c1 � c2 � . . . ct of M there is a computation sequence
greverse(c1) � greverse(c2) � . . . greverse(ct) of M ′. Each of the three cases (i.e.
applying Eqs. (8), (9) or (10)) can easily be verified using an inductive argument
showing that if M gives ci � ci+1 then M ′ gives g(ci) � g(ci+1). �

It is a straightforward matter to apply the mappings in Lemma4 to the
cases in Tables 1 to 3 to show that every case not given in the tables is regular
equivalent to a case that is in the tables. Applying the mapping in (9) to machines
for Σ1, Σ2, Σ3 and Σ4 gives machines for the Σ cases (1, 1, 1, 1), (1, 1, 0, 1),

2-State 2-Symbol Turing Machines 281

(1, 1, 1, 0) and (1, 1, 0, 0) respectively1. Applying the mapping in (10) to Σ2, Σ3

and Σ5 gives the Σ cases (0, 1, 0, 0), (1, 0, 0, 0), and (1, 0, 0, 1) respectively, and
applying the mapping (9) and then (10) to Σ2 and Σ3 gives cases (0, 1, 1, 1) and
(1, 0, 1, 1) respectively. We have now shown that 9 of the 10 possible Σ values
not given in Table 1 are regular equivalent to cases in the table, and now the only
case not covered is (0, 1, 0, 1). For Σ = (0, 1, 0, 1) the read symbol is the same
as the write symbol for each transition rule and so it never changes the tape
contents. It follows that if machines for the case (0, 1, 0, 1) enter the same cell
more than twice they enter a loop and so computations for this case either loop
or scan in one direction only never making 2 consecutive moves in the opposite
direction and are thus covered by Comment 2.

Table 1. The 16 possible cases for the 4
read symbols in (7) reduced to 6 cases.

Σ1 Σ2 Σ3 Σ4 Σ5 Σ6

σ1 = 0 0 0 0 0 1
σ2 = 0 0 0 0 1 0
σ3 = 0 0 1 1 1 1
σ4 = 0 1 0 1 0 0

Table 2. The 16 possible cases for the
4 move values in (7) reduced to 7 cases.

D1 D2 D3 D4 D5 D6 D7

d1 = L L L R L L L
d2 = L L R L L R R
d3 = L R L L R L R
d4 = R L L L R R L

Table 3. The 16 possible cases for the 4 next state values in (7) reduced to 9 cases.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

q1 = qa qb qa qa qb qb qb qb qb

q2 = qb qa qb qb qa qa qb qb qb

q3 = qa qa qa qb qa qb qa qa qb

q4 = qa qa qb qa qb qa qa qb qa

Applying the mapping in (8) to cases D1 to D7 in Table 2 gives 7 regular
equivalent cases. The remaining cases, (R,R,R,R) and (L,L,L, L), need not be
included in Table 2 as they are covered by Comment 2.

The 16 possible cases for Q are reduced to the 9 given in Table 3 by omitting
the 7 cases where q1 = q2 = qa or q3 = q4 = qb. These 7 cases are not included in
Table 3 as the behaviour for these cases is easily explained. To see this note that
when we have q1 = q2 = qa state qa is a trap state where if we enter qa we never
again enter state qb and so from that point on the computation is essentially
that of a 1-state 2-symbol Turing machine. Taking the case q1 = q2 = qa, if the
pair of transition rules for qa both have the same write symbol (i.e. σ1 = σ2)
1 Note that applying mapping (9) to machines of the form given by Eq. (7) also flips

the read symbols and so applying it to Σ = (σ1, σ2, σ3, σ4) gives (σ2, σ1, σ4, σ3)
instead of (σ1, σ2, σ3, σ4).

282 T. Neary

or shift direction (i.e. d1 = d2), or if the write symbol is the same as the read
symbol for both rules (i.e. σ1 = 0, σ2 = 1) then when the machine enters qa the
computation is periodic and from Lemma 1 this means that the set of reachable
configurations is regular. For the remaining cases of q1 = q2 = qa we need only
consider machines with the rules qa, 0, 1, R, qa and qa, 1, 0, L, qa as such machines
are regular equivalent to all remaining cases for q1 = q2 = qa. When in state qa
this machine scans right changing 0’s to 1’s until it reads a 1, and then it scans
left changing 1’s to 0’s until it reads a 0, and this left scan right scan behaviour
is repeated ad infinitum giving a semi-periodic computation. So from Lemma3
the set of reachable configurations for machines with q1 = q2 = qa is regular.
The same argument is applicable to the case q3 = q4 = qb.

Q1 Q2 Q3

Q4 Q5 Q6

Q7 Q8 Q9

Location of each Qi case within
each (Σi, Dj) 3 × 3 block below

Σ1

Σ2

Σ3

Σ4

Σ5

Σ6

D1 D2 D3 D4 D5 D6 D7

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

B B B

C C C

C

C

B B B

B B

B B B

B B B

B B

B B B

B B B

B B

B B B

B B B

B B

B B B

B B B

B B

B B B

B B B

B B

B B B

B B B

B B

B B B

B B

B B

B B

B B

B B

B B

B B B

B

B B

B B B

B

B B

B B

B

B B B

B B

B

B B B

B

B B

B B B

B B

B B B

B B

B

B

B B

B B B

B

B B

B B

B

B B B

B

B B

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A A A

A

A A

A

A A

A

A A

A

A A

A

A

A A

A

A

A A

A

A

A A

A A

A A

A A

A A

A

B

B

B

B

C

C

C C

C

B B

B

B

B B

B

B B

B B

B

C C C

C B B C

B

C B B

B

C C

B

B

C

C

C C

C

B B B

B C

B

B E

B

B B

B B

B

B B B

E B

B

B C

B

B B

B B B

B

C

Fig. 1. An overview of the 378 cases given by Tables 1 to 3, which were obtained from
the reduction in the number of cases given in Sect. 3. Each small square in the above
figure represents a Turing machine. There is a 3 × 3 block of small squares for each
(Σi, Dj) pair which gives the 9 possible values for Qi. Letter A indicates a reduction to
a symmetric case, B is for machines that have periodic computations, C is for machines
that give semi-periodic computations, and E is for machines that are binary counters.

2-State 2-Symbol Turing Machines 283

4 Solving Cases in Fig. 1

4.1 Case A: Reduce the Number of Cases Using Symmetries

From Comment 3 we know that if a pair of machines M and M ′ are regular
equivalent we need only consider one of the two machines in our list of open cases.
Table 4 shows that if the square in Fig. 1 for a machine (Σi,Dj , Qk) contains an
A then it is regular equivalent to another machine in the figure whose square
does not contain an A. This means that we need not consider Case A machines
because by solving the remaining cases each machine in Case A will be regular
equivalent to a case that has been solved.

Table 4. Lemma 4 mappings that map each A case in Fig. 1 to a non-A case in Fig. 1.
The mappings given on the left of each row are applied to the cases in that row to show
that each case is regular equivalent to another case in Fig. 1. Here Q′ ∈ {Q1, Q2, . . . Q9},
Qm ∈ {Q2, Q5, Q6, Q9}, Ql ∈ {Q6, Q8, Q9}, and Qp ∈ {Q5, Q8, Q9}. Keep in mind
Footnote 1 when applying fb-flip.

fs-flip (Σ1, D3, Q
′) (Σ1, D4, Q

′) (Σ6, D3, Q
′) (Σ6, D6, Ql)

fb-flip (Σ5,D2, Q
′) (Σ5,D4, Q

′) (Σ5,D5, Qm) (Σ6,D2, Q
′)

(Σ6,D5, Q5)
fs-flip, fb-flip (Σ4, D3, Q

′) (Σ4, D4, Q
′) (Σ4, D7, Qp) (Σ6, D4, Q

′)

fs-flip, fd-flip (Σ6, D5, Ql) (Σ6, D7, Ql)

fb-flip, fd-flip (Σ5, D6, Qm) (Σ5, D7, Qm) (Σ6, D6, Q5) (Σ6, D7, Q5)

fs-flip, fb-flip, fd-flip (Σ4,D5, Qp) (Σ4,D6, Qp)

4.2 Cases B: Machines that Give Periodic Computations

In Fig. 1, if the square for a machine (Σi,Dj , Qk) contains a B then the machine’s
computation is periodic. From Lemma2 and Comment 1, periodicity can be
proved by showing that a machine eventually scans right never again visiting cell
i − m after it visits cell i, or alternatively that the head scans left never again
visiting cell i+m after cell i. To achieve this we consider what happens after the
tape head attempts to scan in the opposite direction after either �2 consecutive
right moves or �2 consecutive left moves. Comment 2 allows us to consider only
machines that make consecutive left moves and consecutive right moves. As an
example of the above technique we show that after machine (Σ5,D6, Q8) (given
in (11)) makes 2 or more consecutive left moves it scans left for the rest of the
computation never again visiting cell i + 3 after it visits cell i.

qa, 0, 0, L, qb qa, 1, 1, R, qb qb, 0, 1, L, qa qb, 1, 0, R, qb (11)

If the tape head is about to make a right move that follows �2 consecutive left
moves then either the configuration has the form given on the left of (12) or

284 T. Neary

it has the form given on the left of (13) (where σ′
i, σ

′
−i ∈ {0, 1}). On the right

of (12) we see that after 4 time steps the configuration has the same form as the
configuration on the left side of (13) (so we need consider only the case in (13)).
On the right of (13) we see that after 3 time steps the tape head is now reading
σ′

−1, one cell to the left of its original position. If σ′
−1 = 0 the tape head will

move left again to make its second consecutive left move and so if we wish to
make a right move in the future it will follow �2 consecutive left moves and we
will repeat the entire sequence of steps we have just described. Alternatively, if
σ′

−1 = 1 then we have the same case as the left side of (13) and the 3 steps
in (13) are repeated. For both cases (12) and (13) the process repeats with the
tape head moving left never visiting cell i + 3 after it has entered cell i, and so
from Comment 1 the computation is periodic. The technique given here can be
applied to all B cases in Fig. 1 to show that they have periodic computations.

. . . σ′
−2σ

′
−1 qa1 10σ′

1σ
′
2σ

′
3 . . . �4 . . . σ′

−2σ
′
−1 qb1 01σ′

1 σ′
2σ

′
3 . . . (12)

. . . σ′
−2σ

′
−1 qb1 01σ′

1σ
′
2σ

′
3 . . . �3 . . . σ′

−4 qbσ′
−1 011σ′

1σ
′
2σ

′
3 . . . (13)

4.3 Cases C: Machines that Give Semi-periodic Computation

From the proof of Lemma 3 a semi-periodic machine operates by scanning right
using a repeating sequence of rules that print a repeating pattern until some
sequence of symbols is met on the tape that causes the machine to end the scan
right, and following this the machine scans left printing out another repeating
pattern until it meets another sequence of symbols on the tape that causes
the scan left to end. The entire process is then repeated. The behaviour of the
machine when ending a rightward scan depends on the sequence of symbols it
reads when it ends the scan right. The scan length increases with each subsequent
pass and the sequence of symbols that ends each scan is provided by the blank
word that is repeated to the right of the input. Since there is only a finite number
of positions at which a scan right can end in relation to the right blank word
the behaviour of the machine at the end of scans to the right becomes periodic
over time. This can be seen in Definition 4 and Lemma 3 where the first scan
right ends with e1, the second scan ends with e2, the third with e3, and so on
until scan x which ends with ex. Following scan x the process is repeated with
e1 ending the next scan right. The same is true for scans left with the sequence
h1, h2, . . . hx being repeated once for every x scans to the left. When a 2-state 2-
symbol machine is executing a semi-periodic computation the patterns it prints
during leftward and rightward scans have length � 2 and the behaviour at the
end of left and right scans are repeated periodically as described above. For this
reason it is straightforward to determine when a 2-state 2-symbol machine is
executing a semi-periodic computation.

As an example let us consider the machine (Σ6,D6, Q3) given in (14). It is
easy to determine the behaviour of this machine just by looking at its instruc-
tions. The machine scans left in state qa reading 0’s and printing 1’s to the tape
until it reads a 1, then it scans right in state qb reading 1’s and printing 0’s until
it reads a 0, and then it begins another scan left in qa. We now show how this

2-State 2-Symbol Turing Machines 285

behaviour matches the behaviour of the sequence S given in Definition 4. In the
scans mentioned above the growth to the left depends on the position of 1’s in
the left blank word as each 1 terminates a scan left, and similarly the growth to
the right depends on the position of 0’s in the right blank word. Since the left
and right blank words are repeated periodically the growth is periodic for some
constant number of scans right, this constant is the x value in sequence S. We set
sequences sr and sl so that f(sr) = m and f(sl) = −m (see Definition 4) where
m is the growth over the x scans left and right during an iteration of S, and this
means that during iteration i of S, scans right have the form (sr)i+1 and scans
left have the form (sl)i+1. To account for the growth between successive left and
right scans during a single iteration of S, we define each ej and hj so that the
extra distance traveled between each successive execution of (sr)i+1 or (sl)i+1

during S is considered part of ej or hj . This completes our explanation of how to
give the 2x+2 sequence that define S in Definition 4. All the machines for Case C
can be shown to be semi-periodic using similar analysis to that given above.

qa, 0, 1, L, qa qa, 1, 0, R, qb qb, 0, 1, L, qa qb, 1, 0, R, qb (14)

4.4 Cases E: Binary Counters

The two binary machines in Fig. 1 compute in a similar manner and so we will
just look at machine (Σ5,D6, Q3) given in (15). Below we show (Σ5,D6, Q3)
incrementing from 4 to 8. The left most 1 is not part of the number and the
most significant bit is on the right. To increment a number the machine scans
right in qb changing 1’s to 0’s until it reads a 0 which it changes to a 1 and
it then scans left in qa until it reads a 1, which signals the beginning of the
next increment. It is easy to see that when started on any configuration the
set of configurations generated by this machine is regular as it generates all
possible strings and the scans left and right that increment the number have
a simple form. If the machine has periodic support then the set of reachable
configurations remains regular. The repeated words on the left have no effect
on the computation as the tape head can not move left over a 1. On the right
when each blank words becomes part of the computation it effects the form of
only a constant number of bits at the right end of the number and so the set of
reachable configurations is regular.

qa1 0010 �2 qa1 1010 �4 qa1 0110 �2 qa1 1110 �8 qa1 0001

qa, 0, 0, L, qa qa, 1, 1, R, qb qb, 0, 1, L, qa qb, 1, 0, R, qb (15)

References

1. Baiocchi, C.: Three small universal Turing machines. In: Margenstern, M.,
Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 1–10. Springer, Heidelberg
(2001). doi:10.1007/3-540-45132-3 1

2. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40
(2004)

http://dx.doi.org/10.1007/3-540-45132-3_1

286 T. Neary

3. Hermann, G.: The uniform halting problem for generalized one state Turing
machines. In: Proceedings, Ninth Annual Symposium on Switching and Automata
Theory (FOCS), pp. 368–372. IEEE Computer Society Press, October 1968

4. Kudlek, M.: Small deterministic Turing machines. TCS 168(2), 241–255 (1996)
5. Minsky, M.: Size and structure of universal Turing machines using tag systems. In:

Recursive Function Theory, Symposium in Pure Mathematics, vol. 5, pp. 229–238
(1962)

6. Neary, T., Woods, D.: Four small universal Turing machines. Fundam. Inform.
91(1), 123–144 (2009)

7. Neary, T., Woods, D.: Small weakly universal Turing machines. In: Kuty�lowski,
M., Charatonik, W., G ↪ebala, M. (eds.) FCT 2009. LNCS, vol. 5699, pp. 262–273.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03409-1 24

8. Neary, T., Woods, D.: The complexity of small universal Turing machines: a survey.
In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.)
SOFSEM 2012. LNCS, vol. 7147, pp. 385–405. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-27660-6 32

9. Pavlotskaya, L.: Solvability of the halting problem for certain classes of Turing
machines. Math. Notes (Springer) 13(6), 537–541 (1973)

10. Pavlotskaya, L.: Dostatochnye uslovija razreshimosti problemy ostanovki dlja
mashin T’juring. Problemi kibernetiki, pp. 91–118 (1978). (in Russian)

11. Rogozhin, Y.: Small universal Turing machines. TCS 168(2), 215–240 (1996)
12. Wagner, K.: Universelle Turingmaschinen mit n-dimensionale band. Elektronische

Informationsverarbeitung und Kybernetik 9(7–8), 423–431 (1973)
13. Watanabe, S.: 5-symbol 8-state and 5-symbol 6-state universal Turing machines.

J. ACM 8(4), 476–483 (1961)

http://dx.doi.org/10.1007/978-3-642-03409-1_24
http://dx.doi.org/10.1007/978-3-642-27660-6_32
http://dx.doi.org/10.1007/978-3-642-27660-6_32

	2-State 2-Symbol Turing Machines with Periodic Support Produce Regular Sets
	1 Introduction
	2 Turing Machines with Periodic Support
	3 Reducing the Number of Cases Through Symmetries
	4 Solving Cases in Fig.1
	4.1 Case A: Reduce the Number of Cases Using Symmetries
	4.2 Cases B: Machines that Give Periodic Computations
	4.3 Cases C: Machines that Give Semi-periodic Computation
	4.4 Cases E: Binary Counters

	References

