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Dipartimento di Informatica, Università degli Studi di Milano, Milano, Italy
{lavado,prigioniero}@di.unimi.it

Abstract. We present two concise representations of reversible
automata. Both representations have a size which is comparable with
the size of the minimum equivalent deterministic automaton and can be
exponentially smaller than the size of the explicit representations of cor-
responding reversible automata. Using those representations it is possible
to simulate the computations of reversible automata without explicitly
writing down their complete descriptions.

1 Introduction

Reversibility is a fundamental principle in physics: in thermodynamics a trans-
formation is reversible if, after occurring, it can be inverted in order to recover
the original state of the system. In the study of computations, reversibility means
that each elementary step can be inverted, thus recovering the previous state of
the system. In other words, every configuration must admit at most one prede-
cessor. As shown by Landauer, the irreversibility in computation leads to heat
dissipations [8], while Toffoli proved that it is ideally possible to build sequential
circuits with zero internal power dissipation [12]. This observation suggested to
study reversible computations in which there is no loss of information.

Reversibility has been studied on various computational models. In the case
of general devices as Turing machines, Bennet proved that each machine can be
simulated by a reversible one [1], while Lange, McKenzie, and Tapp proved that
each deterministic machine can be simulated by a reversible machine which uses
the same amount of space [9]. As a corollary, in the case of a constant amount
of space, this implies that each regular language is accepted by a reversible two-
way deterministic finite automaton. Actually, this result was already proved by
Kondacs and Watrous [5]. In the case of one-way automata, the situation is differ-
ent1. The class of languages accepted by reversible automata is a proper subclass
of the class of regular languages. For example, the regular language a∗b∗ cannot
be accepted by any reversible automaton [11], even if multiple initial states are
allowed. Classical automata, namely automata with a single initial state and a
set of final states, have been considered in the works by Holzer, Jakobi, and
Kutrib [3,6,7]. In particular, in [3] the authors gave a characterization of regular

1 From now on, we will consider only one-way automata. Hence we will omit to specify
“one-way” all the times.
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G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 238–249, 2017.
DOI: 10.1007/978-3-319-60252-3 19



Concise Representations of Reversible Automata 239

languages which are accepted by reversible automata. This characterization is
given in terms of the structure of the minimum deterministic automaton, i.e., the
smallest deterministic automaton accepting the language under consideration.
Furthermore, they provide an algorithm that, in the case the language is accept-
able by a reversible automaton, allows to transform the minimum deterministic
automaton into an equivalent reversible automaton, which in the worst case
is exponentially larger than the given minimum automaton. In spite of that,
the resulting automaton is minimal, namely there are no reversible automata
accepting the same language with a smaller number of states. However, it is not
necessarily unique, in fact there could exist different reversible automata with the
same number of states accepting the same language. Further results concerning
minimality and reducibility for reversible automata have been proved in [10].

Due to the above mentioned exponential state gap between deterministic
automata and equivalent reversible automata, an explicit representation of a
minimal reversible automaton can be exponentially larger than the represen-
tation of the corresponding minimum deterministic automaton. However, the
minimal reversible automaton produced by the construction in [3] is obtained by
creating copies of some parts of the minimum automaton. So, its transition table
contains repeated patterns. Thus, it is interesting to investigate whether it is
possible to obtain a concise representation of it, by avoiding to repeat those pat-
terns. This is the aim of this paper, where we present two concise representations
of reversible automata, which can be used to simulate reversible computations
without explicitly writing down the description of the reversible automaton.

The first representation is based on a parameter β which is equal to the
maximum number of incoming transitions with a same letter in each state of the
given deterministic automaton A. Given β and A it is possible to simulate the
computations of a reversible automaton A′ equivalent to A, without explicitly
representing it. The drawback of this simple representation is that even when the
given automaton A is minimum, the simulated reversible automaton A′ is not
necessarily minimal. This motivates us to search a different concise representa-
tion, which exploits a result shown in [10]. The authors have proved that all the
minimal reversible automata accepting a language have the same “state struc-
ture”, in the sense that for each state q of the minimum deterministic automa-
ton they should contain exactly the same number c(q) of states equivalent to q.
The second representation is given by the minimum deterministic automaton A
accepting the language under consideration and such function c. We prove that,
using such representation, it is possible to simulate the behaviour of a minimal
reversible automaton equivalent to A without explicitly representing it. Both
representations have polynomial size with respect to the size of the given deter-
ministic automaton A and require a precomputation (of the parameter β and of
the function c, respectively) which can be performed in polynomial time.

2 Preliminaries

In this section we recall some basic definitions and results useful in the paper.
For a detailed exposition, we refer the reader to [4]. Given a set S, let us denote
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by #S its cardinality and by 2S the family of all its subsets. Given an alphabet Σ,
|w| denotes the length of a string w ∈ Σ∗ and ε the empty string.

A deterministic automaton is a tuple A=(Q,Σ, δ, qI , F ), where Q is the set
of states, Σ is the input alphabet, qI ∈ Q is the initial state, F ⊆ Q is the set
of accepting states, and δ : Q × Σ → Q is the partial transition function. The
function δ can be extended to words in a standard way. The language accepted
by A is L(A) = {w ∈ Σ∗ | δ(qI , w) ∈ F}. The reverse transition function of A is
the function δR : Q × Σ → 2Q, with δR(p, a) = {q ∈ Q | δ(q, a) = p}. A state
p ∈ Q is useful if p is reachable, i.e., there is w ∈ Σ∗ such that δ(qI , w) = p,
and productive, i.e., if there is w ∈ Σ∗ such that δ(p,w) ∈ F . When the set of
states Q is finite, the automaton A is said to be a deterministic finite automaton
(dfa). In this paper we only consider automata with all useful states.

We say that two states p, q ∈ Q are equivalent if for all w ∈ Σ∗, δ(p,w) ∈ F
exactly when δ(q, w) ∈ F . Two automata A and A′ are said to be equivalent if
they accept the same language, i.e., L(A) = L(A′). By minimal automaton (in a
certain family of automata) we mean an automaton with a minimal number of
states. When the minimal automaton is unique (e.g., for the family of all dfas
accepting a certain regular language) we call it minimum.

A strongly connected component (scc) C of a dfa A = (Q,Σ, δ, qI , F ) is a
maximal subset of Q such that in the transition graph of A there exists a path
between every pair of states in C. We introduce the relation ≺ on the set of sccs
of A, such that, for two such components C1 and C2, C1 ≺ C2 when no state in
C1 can be reached from a state in C2, but a state in C2 is reachable from a state
in C1. As usual, if C1 ≺ C2 or C1 = C2 we write C1 � C2. It can be verified
that � is a partial order.

Given a dfa A = (Q,Σ, δ, qI , F ), a state r ∈ Q is said to be irreversible
when #δR(r, a) > 1 for some a ∈ Σ, otherwise r is said to be reversible. The dfa
A is said to be irreversible if it contains at least one irreversible state, otherwise
A is reversible (rev-dfa). As pointed out in [7], the notion of reversibility for
a language is related to the computational model under consideration. In this
paper we only consider dfas. Hence, by saying that a language L is reversible,
we refer to this model, namely we mean that there exists a rev-dfa accepting L.
The following result presents a characterization of reversible languages:

Theorem 1 [3, Theorem 2]. Let L be a regular language and M =(Q,Σ, δ, qI , F )
be the minimum dfa accepting L. Then, L is accepted by a rev-dfa if and only
if there do not exist useful states p, q ∈ Q, a letter a ∈ Σ, and a string w ∈ Σ∗

such that p �= q, δ(p, a) = δ(q, a), and δ(q, aw) = q.

According to Theorem1, a language L is reversible exactly when the minimum
dfa accepting it does not contain the forbidden pattern consisting of two transi-
tions on a same letter a entering in a same state r, with one of these transitions
arriving from a state in the same scc as r. An algorithm to convert a minimum
dfa M into an equivalent rev-dfa, if any, was obtained in [3]. Furthermore, the
resulting rev-dfa is minimal.
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3 A Simple Concise Representation

In this section we present our first concise representation. Let us start with a
construction for simulating a dfa by an equivalent rev-dfa, in which we use the
information about the maximum number of incoming transitions with respect
to a same letter in the irreversible states.

Let A = (Q,Σ, δ, qI , F ) be a dfa with all useful states and let β be the
maximum number of transitions on a same letter incoming in a state of Q,
i.e., β = max {#δR(q, a) | q ∈ Q, a ∈ Σ}. We observe that β > 1 if and only
if A is irreversible. We define the following automaton with infinitely many
states A∞ = (Q′, Σ, δ′, q′

I , F
′), where Q′ = Q×N, q′

I = 〈qI , 0〉, F ′ = F ×N and
the transitions are defined as follows: let δ(q, a) = p and δR(p, a) = {qj1 , . . . , qjk},
k ≥ 1 for q, p ∈ Q, a ∈ Σ. For x ≥ 0:

δ′(〈q, x〉, a) =

{
〈p, x〉 k = 1
〈p, xβ + i − 1〉 otherwise (1)

where i ∈ {1, . . . , k} is such that q = qji .
Notice that, if δ′(〈q, x〉, a) = 〈p, y〉 then x ≤ y. Roughly speaking, the idea

of the construction is to use the second component of the states in A∞ as label
in order to distinguish different copies of a state reached from an irreversible
transition in A. The formula used for the second component allow us to obtain
this goal, as we will prove in Theorem2.

We denote by A′ the automaton obtained by restricting A∞ to useful states.
We prove that A′ simulates A and that it is finite if and only if A does not
contain the forbidden pattern.

Theorem 2. Let A = (Q,Σ, δ, qI , F ) be a dfa and A′ = (Q′, Σ, δ′, q′
I , F

′) be
the automaton obtained by applying the above construction to A, restricted to
useful states. Then: (a) L(A′) = L(A), (b) A′ is reversible.

Proof.(a) It is enough to observe that each state 〈q, x〉 ∈ Q′ is equivalent to
q ∈ Q.

(b) We have to prove that for each a ∈ Σ, 〈q̄1, x1〉 �= 〈q̄2, x2〉 implies that
if both δ′(〈q̄1, x1〉, a) and δ′(〈q̄2, x2〉, a) are defined then they are different.
Observe that δ′(〈q̄i, xi〉, a) (i ∈ {1, 2}) can be undefined only if δ(q̄i, a) is
undefined. We consider the following cases:
– If q̄1 = q̄2 and x1 �= x2 then δ(q̄1, a) = δ(q̄2, a) = p for some p ∈ Q,

otherwise M would be nondeterministic. Let δR(p, a) = {qj1 , . . . , qjk},
k ≥ 1. Then there exists i such that q̄1 = q̄2 = qji . Considering (1),
δ′(〈q̄1, x1〉, a) = 〈p, y1〉 and δ′(〈q̄1, x2〉, a) = 〈p, y2〉. If k = 1 then y1 = x1

and y2 = x2, otherwise y1 = x1β + i − 1 and y2 = x2β + i − 1.
Since x1 �= x2 we get y1 �= y2. Hence, 〈p, y1〉 �= 〈p, y2〉.

– If q̄1 �= q̄2 and δ(q̄1, a) = p1 �= δ(q̄2, a) = p2 then, in A′ the states
δ′(〈q̄1, x1〉, a) = 〈p1, y1〉 and δ′(〈q̄2, x2〉, a) = 〈p2, y2〉 are different regard-
less of the values of y1 and y2.
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Fig. 1. A dfa where β = 2 and an equivalent rev-dfa

– If q̄1 �= q̄2 and δ(q̄1, a) = δ(q̄2, a) = p, let δR(p, a) = {qj1 , . . . , qjk}, with
k > 1. Then, there exist i, i′, with i �= i′ such that q̄1 = qji and q̄2 = qji′ .
Considering (1), δ′(〈q̄1, x1〉, a) = 〈p, y1〉 and δ′(〈q̄2, x2〉, a) = 〈p, y2〉, where
y1 = x1β+i−1 and y2 = x2β+i′−1. In the case x1 = x2, since i �= i′, we
get y1 �= y2. In the case x1 �= x2, and supposing, without loss of generality,
x1 > x2, we get βx1 ≥ βx2+β, and hence βx1 > βx2+β−1 ≥ βx2+i′−1
(notice that i′ ≤ β). Then y1 = x1β + i − 1 ≥ x1β > x2β + i′ − 1 = y2.
This implies that 〈p, y1〉 �= 〈p, y2〉.

Hence, δ′(〈q̄1, x1〉, a) �= δ′(〈q̄2, x2〉, a). This allow us to conclude that A′ is
reversible. �

Theorem 3. The automaton A′ = (Q′, Σ, δ, q′
I , F

′) obtained by applying the
above construction to a dfa A = (Q,Σ, δ, qI , F ) is infinite if and only if A
contains the forbidden pattern.

Two examples related to the previous construction are shown in Figs. 1 and
2, where β = 2. Let us apply the construction to transform the dfa shown in
Fig. 1 through an equivalent rev-dfa. Given for instance δ(q3, b) = q5, we have
δR(q5, b) = {q3, q4}, k > 1 and i = 1. Then δ′(〈q3, 1〉, b) = 〈q5, 2〉. Now we apply
the same construction to the dfa in Fig. 2. Given for instance δ(q1, b) = q2,
we have δR(q2, b) = {qI , q1}, k > 1 and i = 2. Then δ′(〈q1, 0〉, b) = 〈q2, 1〉.
This time taking δ(q2, a) = q3, we have δR(q3, a) = {q1, q2}, k > 1 and i = 2.
Then δ′(〈q2, 1〉, a) = 〈q3, 3〉. Actually, the simulation of a computation on a
string does not require the explicit construction of the automaton A′. In fact,
once we have β the computation of the automaton can be obtained, using the
transition table of A and (1). For instance on aba we have the following steps:
q′
I

a→〈q1, 0〉 b→〈q2, 1〉 a→〈q3, 3〉.
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Notice that the second components in the states having a same q are not
necessarily consecutive numbers, in the sense that, it is possible to have some
gaps in the numbering as illustrated in Fig. 2 (states of the form 〈q3, x〉 in the
automaton on the right).
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Fig. 2. A dfa where β = 2 and an equivalent rev-dfa

We point out that the automaton A′ can be simulated without explicitly
constructing its transition table. Indeed to simulate A′ it is enough to know the
value of β, which can be computed from the transition table of A, and to follow
the transitions of A applying (1) to compute the states reached by A′. So, a
concise representation of A′ is given by the value of β and the automaton A. We
will discuss later in this section how to compute β and how much the value of
the second component of a state of A′ can be large.

Even when applied to a minimum dfa, the above construction produces a
rev-dfa which is not necessarily minimal as illustrated in Figs. 3 and 4: in Fig. 3
a minimum dfa M and an equivalent minimal rev-dfa (obtained by applying
the algorithm in [3]) are shown. Notice that the minimal rev-dfa contains five
states which are equivalent to q7. Instead Fig. 4 shows the rev-dfa A′ obtained
by the above construction (notice that β = 3). In particular, A′ contains six
states equivalent to q7.

In Theorem 3 it has been stated that when a dfa A does not contain the for-
bidden pattern, the automaton A′ obtained by applying the above construction
is finite. Furthermore, by Theorem2, A′ is reversible and, as already observed,
not necessarily minimal. Hence, it is interesting to know what is the maximum
value of the second component in a state of A′. In order to give a bound we will
use the following lemmata.

Lemma 4. If a dfa A contains less than two reversible states, then it contains
the forbidden pattern.

Lemma 5. Let A′ = (Q′, Σ, δ′, q′
I , F

′) be the automaton obtained by applying
the above construction to a dfa A = (Q,Σ, δ, qI , F ) which does not contain the
forbidden pattern. Given w ∈ Σ∗ and q = δ(qI , w), consider q0, q1, . . . , qm ∈ Q,
a1, a2, . . . , am ∈ Σ such that w = a1 · · · am, q0 = qI , qm = q, and qi = δ(qi−1, ai),
for i = 1, . . . ,m. Then δ′(q′

I , w) = 〈q′
I , x〉, where βk−1 ≤ x < βk, and k = #{i ∈

{1, . . . , m} | #δR(qi, ai) > 1}.
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Fig. 3. A minimum dfa and an equivalent minimal rev-dfa
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Fig. 4. A nonminimal rev-dfa obtained from the minimum dfa in Fig. 3

As a consequence of Lemma 5, the value of the second components of states
of A′ is smaller than βk, where k is the maximum number of irreversible states
that on a path from the initial state are reached by “irreversible transitions”.
Considering Lemma 4, we obtain:
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Corollary 6. If a dfa A does not contain the forbidden pattern, then the max-
imum value of the second component of a state of A′ obtained by applying the
above construction to A is smaller than β#Q−2.

Observe that, the maximum value of the second component in a state of A′ is
reached when in each irreversible state r of A, the maximum number of incoming
transitions for a same letter a is equal to β, i.e., #δR(r, a) = β. Two examples
have been shown in Figs. 1 and 2. The dfa on the left of Fig. 2 has a path from
qI to q3 reading the string w = aba containing all irreversible states.

We also observe that β has an important role in the construction, so we
believe useful to outline how β can be computed. Given a dfa A = (Q,Σ, δ, qI , F )
containing only useful states, we assume that δ resides in a transition table T
of size #Q · #Σ. The key observation is that a state is irreversible with respect
to a symbol when it occurs more than one time in a column of T . Hence, the
problem can be reduced to find the maximum number of occurrences of a state
in a column of T , that requires time O(#Q) for each symbol. So, the overall
time is O(#Q · #Σ), which is linear in the cardinality of Q when the alphabet
is fixed.

4 Another Concise Representation

The drawback of the representation described in Sect. 3 is that the reversible
automaton is not necessarily minimal. In this section we give a different rep-
resentation which avoids such problem. To state it, some properties related to
minimal rev-dfas are useful. In [3] it has been observed that there are reversible
languages having several nonisomorphic minimal rev-dfas, while in [10, Lem-
mas 2 and 3] the following result has been proved:

Lemma 7. Let M = (Q,Σ, δ, qI , F ) be the minimum dfa accepting a reversible
language L. Then there exists a function c : Q → N such that for each state q ∈
Q, in any rev-dfa equivalent to M there are at least c(q) copies of q, and
in any minimal rev-dfa equivalent to M there are exactly c(q) copies of q.
Furthermore, if p, q ∈ Q are in the same scc, then c(p) = c(q).

As a consequence of Lemma 7, all the minimal rev-dfas accepting L have
the same “state structure”, in the sense that they should contain exactly c(q)
states equivalent to the state q of M .

Here we present an easy way to compute the value of c(q), for each q ∈ Q, that
is summarized in Algorithm 1. The algorithm firstly transforms the transition
graph of M by decomposing it in sccs, replacing each scc by a single state, and
linking with an edge two sccs C′ and C′′, with C′ �= C′′, if there exist two states
p ∈ C′ and q ∈ C′′ such that δ(p, a) = q for some symbol a. This is summarized
in line 1. After that, the obtained acyclic graph SM can be sorted in topological
order (�, line 2). For further details about these constructions see, for example,
[2, Chap. 23].

Then, all c(q) are computed by analyzing the sccs in topological order in the
following way (lines 3–9): when a scc C is considered, first of all the algorithm
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Algorithm 1. Computation of c(p) for each p ∈ Q.
1: Let SM be the graph representing the sccs of the transition graph of M
2: Let LSM be the list of the sccs of M sorted by topological order �
3: for all sccs C ∈ LSM do
4: max c ← 1
5: for all states q ∈ C do
6: for all letters a ∈ Σ do
7: max c ← max{max c,

∑
p∈δR(q,a)\C c(p)}

8: for all states q ∈ C do
9: c(q) ← max c

10: return c

computes for each state q ∈ C the maximum number of transitions on a same
symbol a entering in q from sccs different from C, where a transition from p
to q is counted c(p) times, i.e., the algorithm computes

∑
p∈δR(q,a)\C c(p), for

all q ∈ Q and a ∈ Σ and stores the maximum of all such values (lines 5–7).
This value is assigned as c(q) to each q ∈ C (lines 8–9). Note that, analyzing
the sccs in topological order, the value of c(p) is used for all the states p in the
set δR(q, a)\C when the algorithm is going to compute c(q), for q ∈ C. Obviously,
for each state q in the first scc CqI , δR(q, a) \ CqI = ∅.

If M does not contain the forbidden pattern, then for each q ∈ CqI , c(q) =
1 and the set δR(r, a) \ CqI is empty for any r ∈ CqI . As a consequence, the
instruction at line 7 does not produce any increment of max c for any state in
the scc under consideration.

It is easy to see that Algorithm 1 works in polynomial time: it is well known
that operations at lines 1 and 2 require time O(#V + #E), where V and E
are, respectively the set of vertices and the set of edges of the graph under
consideration. So, in our case, the time for compute SM and LSM is O(#Q).
From line 3 to 9 the algorithm analyzes, the incoming transitions to each state q.
This can be done in time O(#Q) assuming that Σ is fixed. So, the Algorithm 1
uses O(#Q) time.

The following property will be useful for the construction:

Lemma 8. Let δR(p, a) = {qj1 , . . . , qjk}, k ≥ 1, p, qj1 , . . . , qjk ∈ Q, and a ∈ Σ.
Then

∑i−1
h=1 c(qjh) + x < c(p), for i = 1, . . . , k, 0 ≤ x < c(qji).

We are now ready to present the construction which leads to our second concise
representation. Let M =(Q,Σ, δ, qI , F ) be a minimum dfa accepting a reversible
language L. We define the following dfa A′ = (Q′, Σ, δ′, q′

I , F
′), where Q′ =

{〈q, x〉 | q ∈ Q, 0 ≤ x < c(q)}, q′
I = 〈qI , 0〉, F ′ = {〈q, x〉 | q ∈ F, 0 ≤ x <

c(q)}, and the transitions are defined as follows: let δ(q, a) = p and δR(p, a) =
{qj1 , . . . , qjk}, k ≥ 1 for q, p ∈ Q, a ∈ Σ. Then:

δ′(〈q, x〉, a) = 〈p,
∑
h<i

c(qjh) + x〉, (2)

where i ∈ {1, . . . , k} is such that q = qji and 0 ≤ x < c(q).
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Fig. 5. A dfa and an equivalent minimal rev-dfa
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Fig. 6. A dfa and an equivalent minimal rev-dfa

Notice that by Lemma 8, this function δ′ is well defined. We will prove that A′

is a minimal rev-dfa equivalent to M .
Two examples related to the construction are shown in Figs. 5 and in 6. Let

us apply the construction to the minimum dfa M in Fig. 5. The topological order
� of the sccs of M clearly is qI � q1 � q2 � q3 and the number of copies c(q)
of a state q ∈ Q follows the sequence of Fibonacci [3, Example 9]. In particular,
c(qI) = c(q1) = 1, c(q2) = 2, c(q3) = 3. Given for instance δ(q1, b) = q2,
δR(q2, b) = {qI , q1}, then δ′(〈q1, 0〉, b) = 〈q2, c(qI) + 0〉 = 〈q2, 1〉. Now we apply
the construction to the minimum dfa M in Fig. 6. Consider the following number
of copies c(q): c(qI) = c(q1) = 1, c(q2) = c(q3) = c(q4) = 2 and c(q5) = 4.
For instance, given δ(q4, b) = q5, δR(q5, b) = {q3, q4}, we have δ′(〈q4, 0〉, b) =
〈q5, c(q3) + 0〉 = 〈q5, 2〉.
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Note that, even in this case, it is possible to simulate a computation of the
rev-dfa A′ without explicitly constructing it: given a letter and knowing the
state 〈state, index〉 in which the automaton is, it is always possible to obtain the
next state. As example, consider the minimum dfa showed in Fig. 6 (on the left)
and the input string abbab. So, the computation of the simulated rev-dfa passes
through the following states: 〈qI , 0〉 a→ 〈q1, 0〉 b→ 〈q2, 1〉 b→ 〈q3, 1〉 a→ 〈q4, 1〉 b→
〈q5, 3〉.
Theorem 9. Let M = (Q,Σ, δ, qI , F ) be a minimum dfa accepting a reversible
language L and let c(q) be the number of states equivalent to q ∈ Q in any min-
imal rev-dfa equivalent to M . Let A′ = (Q′, Σ, δ′, q′

I , F
′) be the dfa obtained

by applying the construction to M , then: (a) L(A′) = L, (b) A′ is reversible,
(c) A′ is minimal.

Proof. The proof of (a) and (b) is similar to Theorem2. To prove (c), we observe
that, by Lemma 8, A′ contains at most c(p) copies of any state p ∈ Q. However
since A′ is reversible, by Lemma 7 it should contain at least c(p) copies of p.
Hence we conclude that A′ is a rev-dfa containing exactly c(p) copies of each
state p of the minimum dfa M . According to Lemma 7 this implies that A′ is
minimal. �

According to the results in this section, given a minimum dfa M , after com-
puting c(q) for each state q of M , we can simulate a minimal rev-dfa A′ equiva-
lent to M , without explicitly representing it, starting from the initial state q′

I and
using (2) at each step to compute the next state. Since A′ can have exponentially
many states with respect to M , this avoids to write down a large description.

5 Conclusion

We have presented two concise representations of a reversible automaton A′

equivalent to a given dfa. Both of them allow to simulate the rev-dfa with-
out explictly writing down its transition table which, in the worst case, can be
exponentially larger. The first representation in Sect. 3 requires an easy pre-
computation of a parameter β, but the obtained automaton is not necessarily
minimal. Instead, the second representation in Sect. 4 requires the more involved
precomputation of the function c, but the obtained automaton is minimal. Both
precomputations can be done in polynomial time.

Even when the rev-dfa A′ obtained from a minimum dfa A in the first
representation is not minimal, its size is not too far from the size of a minimal
rev-dfa in the following sense. In Lemma 5 we gave an upper bound of the
maximum value of the second component in a state of A′, i.e., βkp , where kp

is the maximum number of irreversible states on a path in A from the initial
state qI to p. Since A′ is reversible we have c(p) ≤ βkp (Lemma 7). Furthermore,
in the path at least two copies of each irreversible state should be created to
obtain a reversible automaton. Then, 2kp ≤ c(p) ≤ βkp . This implies that A′

has a polynomial number of states with respect to the number of states of A if
and only if each minimal rev-dfa equivalent to A has a polynomial number of
states.
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