A Pumping Lemma for Ordered Restarting
Automata

Kent Kwee and Friedrich Otto®)

Fachbereich Elektrotechnik/Informatik, Universitit Kassel, 34109 Kassel, Germany
{kwee,otto}@theory.informatik.uni-kassel.de

Abstract. While stateless ordered restarting automata accept exactly
the regular languages, it is known that ordered restarting automata with
states accept some languages that are not even growing context-sensitive.
In fact, the class of languages accepted by these automata is an abstract
family of languages that is incomparable to the (deterministic) linear
languages, the (deterministic) context-free languages, and the growing
context-sensitive languages with respect to inclusion, and the emptiness
problem is decidable for these automata. These results were derived using
a Cut-and-Paste Lemma for ordered restarting automata that is based
on Higman’s theorem. Here we extend the arguments used in that proof
to actually derive a real Pumping Lemma for these automata. Based on
this Pumping Lemma, we then prove that the finiteness problem is also
decidable for these automata, and that the only unary languages these
automata accept are the regular ones.

Keywords: Restarting automaton - Ordered rewriting - Pumping
lemma - Finiteness problem

1 Introduction

The ordered restarting automaton (ORWW-automaton for short) was introduced
in [9], where its deterministic variant was extended into a device for recognizing
picture languages. An ORWW-automaton (for words) has a finite-state con-
trol, a tape with end markers that initially contains the input, and a window
of size three. Based on its state and the content of its window, the automaton
can either perform a move-right step, a rewrite/restart step, or an accept step.
While the deterministic variant of the ORWW-automaton characterizes the reg-
ular languages, it has been observed that the nondeterministic variant is more
expressive. In fact, the nondeterministic ORW W-automaton and the languages it
accepts have been studied in some detail in [6], where it is shown that the class of
languages accepted by ORWW-automata forms an abstract family of languages,
that is, it is closed under union, intersection (with regular sets), product, Kleene
star, inverse morphisms, and non-erasing morphisms (see, e.g., [3]). However,

© IFIP International Federation for Information Processing 2017

Published by Springer International Publishing AG 2017. All Rights Reserved

G. Pighizzini and C. Campeanu (Eds.): DCFS 2017, LNCS 10316, pp. 226-237, 2017.
DOI: 10.1007/978-3-319-60252-3_18

A Pumping Lemma for Ordered Restarting Automata 227

it is neither closed under complementation nor under reversal. Further, it is
incomparable to the (deterministic) linear, the (deterministic) context-free, and
the growing context-sensitive languages with respect to inclusion, as it contains
a language that is not even growing context-sensitive, while on the other hand,
it does not even include the deterministic linear language {a™b™ | m > 1}.
In addition, it was shown that the emptiness problem is decidable for ORWW-
automata. Several of these results were derived from a Cut-and-Paste Lemma
for ORWW-automata that is based on Higman’s Theorem [2].

Here we continue the study of nondeterministic ORWW-automata, where we
are particularly interested in the expressive capability of ORWW-automata and
their algorithmic properties. The Cut-and-Paste Lemma of [6] states that, for
each ORWW-automaton M, a non-empty factor can be cut from the suffir of
each sufficiently long word accepted by M such that the resulting shorter word
is accepted by M, too. Thus, in comparison to the Pumping Lemma for regu-
lar languages (see, e.g., [3]), the Cut-and-Paste Lemma just covers the case of
pumping with exponent zero. Here we also present a real Pumping Lemma for
ORWW-automata that takes care of the case of pumping with positive expo-
nents. However, in contrast to the Cut-and-Paste Lemma, which applies to the
suffix of a sufficiently long word, the Pumping Lemma applies to the prefiz of a
sufficiently long word. Then, based on both these lemmas, we show that finite-
ness is decidable for ORWW-automata, and we show that each unary language
that is accepted by an ORW W-automaton is necessarily regular.

This paper is structured as follows. In Sect.2, we introduce the ORWW-
automaton and restate the known results on the class of languages it accepts.
Then, in Sect.3, we present the announced Pumping Lemma, which is derived
from Higman’s theorem similar to the Cut-and-Paste Lemma. In Sect.4, we
give two applications of this lemma by showing that finiteness is decidable for
ORWW-automata and that all unary languages that are accepted by ORWW-
automata are necessarily regular. The paper closes with Sect. 5, which summa-
rizes our results in short and states a number of open problems.

2 Definitions and Known Results

An ordered restarting automaton (ORWW-automaton) is a one-tape machine
that is described by an 8-tuple M = (Q, X, I, >, <, qo, 0, >), where @ is a finite
set of states containing the initial state gg, X is a finite input alphabet, " is a
finite tape alphabet such that X C I'; the symbols >, <1 € I serve as markers
for the left and right border of the work space, respectively,

§:(Qx (Fu{>}) -T'-(Fu{a}) U{>a})) — 2@MRUI | fAccept}

is the transition relation, and > is a partial ordering on I'. The transition relation
describes three different types of transition steps:

(1) A move-right step has the form (¢’, MVR) € §(q,araz2a3), where ¢q,¢" € Q,
ap € I'U{>}, and ag, a3 € I'. It causes M to shift the window one position to

228 K. Kwee and F. Otto

the right and to change from state ¢ to state ¢’. Observe that no move-right
step is possible, if the window contains the symbol <.

(2) A rewrite/restart step has the form b € 6(q,a1az2a3), where ¢ € @, a; €
u{>}, as,b e I', and a3 € I'U{<} such that as > b holds. It causes M to
replace the symbol as in the middle of its window by the symbol b and to
restart, that is, the window is moved back to the left end of the tape, and
M reenters its initial state gq.

(3) An accept step has the form 6(q,ajasas) = Accept, where ¢ € @, a; €
I'u{e}, ax € I', and a3 € I' U {<}. It causes M to halt and accept. In
addition, we allow an accept step of the form §(qg, ><1) = Accept.

If §(q,u) = 0 for some state ¢ and a word u, then M necessarily halts, when
it is in state ¢ with w in its window, and we say that M rejects in this situation.
Further, the letters in I' \ X are called auziliary symbols.

If |6(q,u)| <1 for all ¢ and u, then M is a deterministic ORW W-automaton
(det-ORWW-automaton), and if @ = {qo}, that is, if the initial state is the
only state of M, then we call M a stateless ORWW-automaton (stl-ORWW-
automaton) or a stateless deterministic ORWW-automaton (stl-det-ORWW-
automaton), as in this case the state is actually not needed.

A configuration of an ORWW-automaton M is a word ag, where ¢ € Q
is the current state, |3| > 3, and either « = A\ (the empty word) and § €
{>}-I't - {<}orae{>}-I'*and g € I' - I'" - {<}; here af is the current
content of the tape, and it is understood that the window contains the first
three symbols of §. In addition, we admit the configuration g9 > <. By ks we
denote binary relation that M induces on the set of configurations, and 3, is
the reflexive transitive closure of this relation. A restarting configuration has the
form g > w <; if w € X*, then go > w < is also called an initial configuration.
Further, we use Accept to denote the accepting configurations, which are those
configurations that M reaches by an accept step.

Any computation of an ORWW-automaton M consists of certain phases. A
phase, called a cycle, starts in a restarting configuration, the head is moved along
the tape by MVR steps until a rewrite/restart step is performed and thus, a new
restarting configuration is reached. If no further rewrite operation is performed,
any computation necessarily finishes in a halting configuration — such a phase is
called a tail. By F§; we denote the execution of a complete cycle, and l—f;l is the
reflexive transitive closure of this relation. It can be seen as the rewrite relation
that is realized by M on the set of restarting configurations.

An input w € X* is accepted by M, if there is a computation of M which
starts with the initial configuration ¢o>w <1 and which ends with an accept step.
The language consisting of all input words that are accepted by M is denoted
by L(M). Further, by L(ORWW) we denote the class of all languages that are
accepted by ORWW-automata.

As each cycle ends with a rewrite operation, which replaces a symbol a by a
symbol b that is strictly smaller than a with respect to the given ordering >, each
computation of M on an input of length n consists of at most (|I'| — 1) - n cycles.
Thus, M can be simulated by a nondeterministic single-tape Turing machine in
time O(n?).

A Pumping Lemma for Ordered Restarting Automata 229

The following technical result has already been used in [6] without stating or
proving it explicitly. As below we will use it again, we present it in some detail.

Lemma 1. For each ORWW-automaton M, there exists an ORWW-automaton
M’ that accepts the same language as M, but that performs accept steps only at
the left sentinel.

Proof. Let M = (Q, X, I,>,<,qo,9,>) be an ORWW-automaton. To obtain
the automaton M’ = (Q', X, I'", >, <, ¢}, 0, >"), we take Q' = Q, ¢} = qo, and
I'" = ' U {*}, where x is a new symbol. Further, we extend > to >’ by taking
a >' x for all a € I'. Finally, we define the transition relation 6’ of M’ as follows,
wherea € 'U{>},bel’,ce I'U{x}, and g € Q:

5/((107 ‘><]) - 5((]0, I><])a

0'(q,abc) = d(q,abc), if 6(q,abe) # Accept,
0'(q,abc) = {x}, if 0(q, abc) = Accept,
0'(q,abx) = {x},

0’(qo, >* d) = Accept for all d € I' U {1, *}.

Obviously, M’ performs an accept step only at its left sentinel. The automaton
M’ can simulate M step by step until M accepts, in which case M’ writes
the letter . In the following cycles, whenever M’ detects an occurrence of the
symbol x, it copies this symbol to its left-hand neighbour. It follows that L(M) C
L(M"). On the other hand, if M’ accepts on input w, then it can do so only
because it has been able to simulate an accepting computation of M on input w,
as the first *-symbol can only be produced by M’ on reaching a configuration in
which M would accept. Thus, L(M) = L(M’) holds. O

While nondeterministic ORWW-automata are quite expressive as we will see
below, the deterministic variants are fairly weak.

Theorem 2 [5,11].

(a) For each det-ORWW-automaton M = (Q, X, I, >,<,qo,0,>), there exists
a stateless det-ORWW-automaton M’ = (X, I7,>,<,0',>") such that
L") = L(M) and [I"| = [Q|- TP + 2T

(b) For each DFA A = (Q, X, qo, F,y), there is a stl-det-ORWW-automaton
M = (X,I1>,<,8,>) such that L(M) = L(A) and |I'| = |Q| + |2

(¢) For each stl-det-ORWW-automaton M with an alphabet of size n, there
exists an NFA A of size 2°") such that L(A) = L(M) holds.

(d) For eachm > 1, there exists a reqular language B,, C {0,1,#,8}* such that
B, is accepted by a stl-det-ORWW-automaton over an alphabet of size O(n),
but each NFA for accepting By, has at least 2™ states.

Lemma 3 (Cut-and-Paste Lemma) [6].

For each ORWW-automaton M, there exists a constant N.(M) > 0 such that
each word w € L(M), |w| > N.(M), has a factorization w = xyz satisfying all
of the following conditions:

(a) |lyz| < N (M), (b)|y| >0, and (c) xz € L(M).

230 K. Kwee and F. Otto

In addition, the constant N. can be determined from M effectively.

Theorem 4 [6]. L(ORWW) is closed under union, intersection, product, Kleene
star, inverse morphisms, and non-erasing morphisms, but it is neither closed
under the operation of reversal nor under complementation.

Using the Cut-and-Paste Lemma it is easily seen that the deterministic lin-
ear language {a™b™ | m > 1} is not accepted by any ORWW-automaton.
On the other hand, there exists a language that is accepted by an ORWW-
automaton, but that is not even growing context-sensitive. Thus, we have the
following incomparability results, where DLIN denotes the deterministic linear
languages, that is, those languages that are accepted by deterministic one-turn
pushdown automata, LIN is the class of linear languages, CFL and DCFL are the
classes of context-free and deterministic context-free languages, CRL is the class
of Church-Rosser languages [8], and GCSL is the class of growing context-sensitive
languages [1].

Corollary 5. The language class LIORWW) is incomparable to the language
classes DLIN, LIN, DCFL, CFL, CRL, and GCSL with respect to inclusion.

Also from the Cut-and-Paste Lemma the following decidability result follows.
Theorem 6 [6]. The emptiness problem for ORWW-automata is decidable.

The following result was given without proof in [6], pointing out that the
construction for the deterministic case (see Theorem?2 (c)) can be extended
accordingly. In fact, a simpler construction is presented in [7].

Theorem 7 [6]. Let M = (X, I,>, <, a1, >) be a sti-ORWW-automaton. Then
L(M) is a regular language.

3 A Pumping Lemma for ORWW-Automata

Here we derive our main result, the Pumping Lemma for ORWW-automata.

Definition 8. Let M = (Q, X, I',>, <, qo, 6, >) be an ORWW-automaton. The
transition relation 0 can be presented by a set of five-tuples of the form
(g,a1,a2,a3,0), where ¢ € Q, a1 € I'U{>}, as € I', a3 € I' U {<}, and
0 € I'UQ U {Accept}. Here a tuple (q,a1,a2,as,q") with ¢ € Q represents the
move-right transition (¢, MVR) € 6(q,a1,a2,a3), a tuple (q,a1,as,a3,b) with
b € I' represents the rewrite/restart transition b € 6(q, a1, az2,a3), and a tuple
(g,a1,a2,a3,Accept) represents the accept transition §(q,a1,as,a3) = Accept.
We introduce an alphabet (2 the letters of which are in 1-to-1 correspondence to
these five-tuples.

Let w € L(M) and let C be an accepting computation of M on input w.
With each integer i, 1 < i < |w|, we associate a word cric € 2* that corre-
sponds to the sequence of operations that M executes within the computation C
at position i, that is, when the i-th letter is in the middle of the window. Let

A Pumping Lemma for Ordered Restarting Automata 231

of = titj, ... tj,, where t; € 2 for all1 <r < s. Ift; = (q1,a1,a2,a3,01)

and tj ., = (q2,b1,b2,b3,02), then ay > b1, az > b, and az > bs. In addition, if
01 = ¢ € Q, that is, it represents a move-right operation, then as = be, and if
01 = b € I, that is, it represents a rewrite/restart operation, then ag > b = bs.
Now the pattern TZ»C € 2% is the word that is obtained from oic by condensing

consecutive identical letters into a single letter.
Observe that it is only MVR operations that may be condensed.

Ezample 9. Consider the following accepting computation C' of an ORWW-
automaton M:

qo>aaa< tFpr qo>araa<l Fpr >goaraa<d b >ajgoaa<
Fa go>araar< b >qoaraar < by >aiqoaar < bFpy Accept.

This computation consists of two cycles and an accepting tail that are described
by the following sequences of operations:

1= (qu Daaaaval)a
Cy = (q07 >,ay,a, q0)7 (q07a17a7 aqu)a (q07 a,a, <]»a1)7
Cc3 = (q07 >,a,a, q0)7 (CIO7(117(17 ai, qO)a (QOM% ai, <]7Accept)'

For the first position, we thus get the sequence of operations

Ulc = (q07 >,a,a, al)(Q07 >,a1,aq, qO)(QOv >,ar,a, q0)7
which yields the pattern 7¢ = (qo, >, a, a, a1)(qo, >, a1, a, o), while for the sec-
ond position we get the sequence of operations

0'20 = (QO7a17aaa‘aqo)(q();al)ava'lvqo) = TQC-

For the third position we have 0§ = (qo, a, a, <, a1)(qo, a, a1, <, Accept) = 75.

For two patterns 7 and 75, we write 7¥ C ¥ if 77 is a scattered subword
of 7§, that is, if 7C = wiws ... wy, for some wy,ws,...,w,, € §2, then there are
words %o, Y1, - - -, Ym € 2% such that 7'2C = Yow1Y1W2Y2 - - - Ym—1WmYm. Lhe next
lemma is the main step towards the proof of the Pumping Lemma.

Lemma 10. Let M = (Q, X, I,>,<,qo,9,>) be an ORWW-automaton that
accepts at the left sentinel, let Cp, be an accepting computation of M for the
input xz, and let Cy, be an accepting computation of M for the input uv. If the
pattern T‘ii“’ of the computation C,, at position |u| is a scattered subword of the

pattern Tlg"“ of the computation Cy, at position |x|, that is, Tli"“” C T‘(;;Tz, and if

these two patterns contain the same rewrite operations, then xv € L(M).

Proof. We construct an accepting computation C’ for the input zv from the
given computations C,, and C,,. The sequences of cycles (Cy,Cs,...,Cy) of
Cyz and (D1, Do, ..., Dg) of Cy, are considered as working lists that are used for
constructing the cycles of C’ that have their rewrite operations in the prefix = or

232 K. Kwee and F. Otto

FELEE T FELEEC
Yo t1
t1 to
Y1 ts
t2 t4

Fig. 1. The inputs zz and uv with the patterns Tlc“” (left) and T‘STU (right)

x|

in the suffix v of the input zv, respectively. As Tlfjr"’ C T‘glmz, these patterns can be

written as T‘Si“’ =tyty ...t with ty,te,...,t,. € 2 and T‘STZ =yot1Y1 .- Yr—1trYr
for some yo,y1,...,yr € 2* (see Fig.1). As both patterns contain the same
rewrite operations, the factors yo, y1, ...y, only consist of MVR operations.

For constructing the computation C’ on input zv, we start by taking C’ to
be the empty sequence of cycles. Now we consider the cycles of C,, one after
another (see Fig.2).

> T s Tm—1 Tm zZ1 s < > U1 s Un—1 Un U1 e <
dy
Yo t1
<o do
tl t1
cq ds
tl tl
c2
_— =
ta
Y1
_— >
da
c3 v ts
ds
c 2 ts -
4
i3

Fig. 2. The cycles of the computations C. (left) and Cy, (right). Each line represents
a cycle, where the operation executed at the last position of x (left) or u (right) is
displayed. The arrows labelled ¢; represent initial parts of cycles executed within the
prefix of the tape initially containing x (left), and the arrows labelled d; represent final
parts of cycles executed within the suffix of the tape initially containing v (right)

Let C; be the cycle currently considered.

— If C; is a short cycle, that is, a cycle that executes a rewrite step within a
proper prefix of z, then we just append it to C’ (see the cycle ¢z in Fig. 2).

— If C; contains a rewrite operation at position |x|, then this operation corre-
sponds to the letter #; for some 1 <[< r. Again we append this cycle to C”
(see the cycle c3). As both patterns contain the same rewrite operations,
which must occur in the same relative order in both patterns, we see that the
rewrite operation ¢; can also be executed at this point in the computation C’.

A Pumping Lemma for Ordered Restarting Automata 233

— If C; is a cycle that executes a rewrite step within the suffix z of xz, then
this cycle contains a MVR operation at position |z|. If this operation does
not correspond to one of the letters ¢1,ts,...,t. in the pattern T‘glmz, we skip
this cycle without appending it to C”.

— Finally, let C; be a cycle that executes a rewrite step within the suffix z
of zz, but the MVR operation executed at position |z| corresponds to the
letter t; for some 1 <! < r. By ¢y we denote the prefix of the cycle C; up to
position |z| — 1. Further, let D;,, D;,, ..., D;, be all those cycles of Cy, that
contain the MVR operation ¢; at position |u|, and for all 1 < j < v, let d,
be the suffix of the cycle D;; that starts with the operation #; at position |u].
We now combine the prefix ¢ of C; with the suffix d; of Dij foralll <j<v
(see ¢p and dy,ds,ds in Fig.2). As the same operation ¢; is applied in the
cycle C; at position |z| as in the cycles D;,, D;,,...,D;, at position |u|, we
see that cody, coda, . .., cod, is a sequence of possible cycles of M. We append
this sequence of cycles to C”.

— Any further cycle C; 5, s > 1, that also executes a MVR operation at position
|z| which corresponds to the letter ¢; of the pattern TI%”, is skipped (see ¢;
in Fig. 2).

Figure 3 illustrates the result of the construction above. Finally, the compu-
tation C” is completed by attaching the accepting tail computation from C,., to
it. Recall that M accepts with the left sentinel in its window. It is now easily

seen that C’ is an accepting computation of M for the input zwv. O
> T1 - Tm—1 Tm VI ..o

co tl dy

o " do

co " ds

ca

cs L

s fy

s " ds

Fig. 3. The computation C’ for input zv

Next we consider a special case of the above lemma.

Lemma 11. Let M = (Q, X, I,>,<,qo,9,>) be an ORWW-automaton that
accepts at the left sentinel, let w € L(M), let C be an accepting computation of M
for the input w, and let 1 < i < j < |w| be indices such that 7€ (w) C ch(w) and
these two patterns contain the same rewrite operations. Then w can be written
as w = xyz, where |z| =1 and |y| = j —1, such that xyyz € L(M). In fact, there
exists an accepting computation C' for zyyz satisfying 7€ (zyyz) = chl (zyyz).

234 K. Kwee and F. Otto

Proof. If we choose r1 = zy, y1 = z, u1 = =, and v; = yz, we can apply
Lemma 10 to the factorizations w = xyz = x1y; and w = zyz = wyvy. Thus,
we obtain an accepting computation C’ of M for the input zyv; = xyyz. From
the construction of C’ in the proof of the above lemma we see that the patterns
7 (zyyz) and chl (xyyz) coincide. O

Finally, we need the following notion that has already been considered in [10]
under the name of det-MVR;-form for general restarting automata.

Definition 12. An ORWW-automaton M = (Q, X, I',>>, <, qo, d,>) is said to
have deterministic MVR operations if, for all ¢ € Q and all a,b,c € T'U{>, <},
d(q, abe) contains at most a single MVR operation.

Lemma 13. For each ORWW-automaton M = (Q, X, I,>,<,qo,d,>), there
exists an ORWW automaton M’ with deterministic MVR operations that accepts
the same language as M. If M accepts at the left sentinel, then so does M'.

Proof. Using a variant of the well-known powerset construction, the ORWW-
automaton M’ can be defined as M’ = (29, X, I',>, <, {qo}, ¢, >), where, for
all) £S5 CQ and all a,b,c € I'U{>, <},

Tis,abe) = {q € Q|35 €5 : (¢, MVR) € §(s,abc) }, and

Accept, if 3s € S : §(s, abe) = Accept,
6/(57 abc) = (USES 5(8’ abc) N F) U {(T(S,abc)a MVR)}a if T(S,abc) 7é (Z)a
(Uses d(s,abe) N F) , if T(s,abc) = 0.

The next lemma is the second technical main result.

Lemma 14. Let M be an ORWW-automaton with deterministic MVR opera-
tions that accepts at the left sentinel. From M a constant N(M) > 0 can be
computed such that, for each w € L(M) satisfying |w| > N(M) and each accept-
ing computation C of M on input w, there are indices 1 < i < j < |w| such that
7¢(w) C ch(w) and these patterns contain the same rewrite operations.

Proof. Let M = (Q, X, I',1>,<,qo,0,>) be an ORWW-automaton with deter-
ministic MVR operations that accepts at the left sentinel, and let n = |I'|.
Further, let w € L(M) and let C' be an accepting computation of M on input w.
The MVR operations executed at a position 1 < k < |w| — 1 only depend on the
prefix of length k + 1 of w. As M has deterministic MVR operations, the MVR
operation that can be executed at position k£ is uniquely determined by that
prefix, if it exists at all. For this reason a different MVR operation can become
applicable at position k only if that prefix has been modified by a rewrite oper-
ation. This, however, can happen at most (k+ 1) - (n — 1) times. Therefore, the
pattern 7 (w) contains at most (k+1)-(n — 1) +1 MVR operations. Addition-
ally, it contains at most n — 1 rewrite operations. Therefore, 75 (w) has length

A Pumping Lemma for Ordered Restarting Automata 235

at most (k+1)-(n—1)+n+1=%k-(n—1)+ 2n. Finally, we extend each
pattern 7 (w) into the word 1 (w) = ax7 (w)sy where ay, is the input letter
at position k and sy is the final letter produced by C' at position k. Higman’s
theorem [2] (see, also [4,12]) implies there exists a computable constant N (M)
such that, if |w| > N(M), then there are indices 1 < i < j < N(M) such that
n¢ (w) is a scattered subsequence of njc (w). This means that a; = a; and s; = s,
and that 77 (w) is a scattered subsequence of TJ-C (w). As in both positions the
letter a; = a; is rewritten into the letter s; = s;, and as each rewrite operation
c c

at position i occurs in 77 (w) and therewith also in 7 (w), we see that 77 (w)

and ch(w) contain exactly the same rewrite operations. O
Now we can state and prove the announced Pumping Lemma.

Theorem 15 (Pumping Lemma). For each ORWW-automaton M there exists
a computable constant Np(M) > 0 such that each word w € L(M), |w| > N,(M),
has a factorization w = xyz satisfying all of the following conditions:

(a) |zy| < Np(M), (b) ly| > 0, and (c) xy™z € L(M) for all m > 1.

Proof. Let M be an ORWW automaton. By Lemma 1 we may assume that M
only accepts at the left sentinel. Further, by Lemma 13, we can convert M into
an equivalent ORWW-automaton M; that is MVR-deterministic and that only
accepts at the left sentinel. Then Lemma 14 implies that a constant N,(M) can
be computed such that, for each w € L(M;) = L(M) satistying |w| > N, (M),
and each accepting computation C' of M; on input w, there are indices 1 <
i < j < Np(M) such that 77 (w) E 7§ (w) and these patterns contain the same
rewrite operations. Hence, by Lemma 11, w can be factored as w = xyz such that
|zy| < Np(M), |yl > 0, zyyz € L(My) = L(M), and 7 (zyyz) = 75, (xyy=),
where C’ is the accepting computation of M; for input zyyz that is obtained
from the computation C. Using Lemma 11 repeatedly we obtain that zy™z €
L(M;) = L(M) holds for all m > 1. O

4 Applications of the Pumping Lemma

In [6] we have used the Cut-and-Paste Lemma to prove that emptiness is decid-
able for ORWW-automata. Here we show that also finiteness is decidable for
ORWW-automata using both, the Cut-and-Paste Lemma and the Pumping
Lemma.

Theorem 16. The following finiteness problem is decidable:
INSTANCE: An ORWW-automaton M.
QUESTION: Is the language L(M) finite?

Proof. Let M = (Q, X, I',>, <, qo, 6, >) be an ORWW-automaton, let N.(M) be
the corresponding constant from the Cut-and-Paste Lemma for M, and N,(M)
be the corresponding constant from the Pumping Lemma for M. We claim that

236 K. Kwee and F. Otto

L(M) is finite iff it does not contain any word w such that N,(M) < |w| <
N, (M) + N.(M).

Indeed, if L(M) contains a word w such that N,(M) < |w| < N,(M) +
N (M), then the Pumping Lemma tells us that L(M) is infinite. Conversely, if
L(M) is infinite, then it contains a word w of length at least N,(M). Assume
that w is the shortest word with these properties. If |w| < N,(M) + N (M),
then there is nothing to prove. On the other hand, if |w| > N,(M) + N.(M),
then we can apply the Cut-and-Paste Lemma to w, which yields a factorization
w = zyz such that |yz| < N (M), ly| > 0, and zz € L(M). Thus, |w| > |zz| =
lw| = |y| > |w| = Ne(M) > N,(M), which contradicts our choice of w. Hence,
we see that L(M) is infinite iff it contains a word w such that N,(M) < |w| <
Np(M) + N.(M). |

The next result, which is also derived from the Pumping Lemma, shows that
ORWW-automata only accept unary languages that are regular.

Theorem 17. For each ORWW-automaton M, if the language L(M) is unary,
then it is already regular.

Proof. Let M be an ORWW-automaton with input alphabet X = {a}, and let
a = N,(M) be the constant from the Pumping Lemma for M. For all integers ¢
and d satisfying 0 < d < a! and 0 < ¢ < o, we let Sy C N be defined as follows:

Sqc:={n>a|n=d mod a! and a"T** € L(M) for all i € N}.

By definition {a™ | n € Sy} C L(M) for all pairs (d,c). On the other hand, if
a™ € L(M) for some n > «, then there exists an integer d, 0 < d < «!, such that
n = d mod a!. By the Pumping Lemma there also exists an integer ¢, 0 < ¢ < «,
such that a"t<% € L(M) for all i € N. Hence, it follows that n € Sq..

If Sy # 0, it can be represented as the linear set Sy, = { min (Sy.c) +i-a! |
i € N }. Therefore, if ¢ : * — N denotes the Parikh mapping defined by a™ +— n
(n > 0), then

Y(L(M)) ={n<ala" e LM)}ulSac
d,c

which shows that (L(M)) is a semi-linear subset of N. Thus, it follows that
L(M) is indeed a regular language. O

Actually, it can be shown that a regular expression can be determined for the
language L(M) of an ORWW-automaton M that has a unary input alphabet.

5 Concluding Remarks

We have established a Pumping Lemma for ORWW-automata that nicely com-
plements the Cut-and-Paste Lemma for these automata presented in [6]. Observe
that the Cut-and-Paste Lemma tells us that we can cut from the suffix of a suf-
ficiently long word, while the Pumping Lemma tells us that we can pump within

A Pumping Lemma for Ordered Restarting Automata 237

the prefix of a sufficiently long word. This effect is clearly demonstrated by the
language L = {a™b" | m > n} € L(ORWW) [6], as from a word a™b™ € L,
where m is a sufficiently large integer, the Cut-and-Paste Lemma yields a word of
the form a™b™ %, and the Pumping Lemma gives words of the form a1 ™.
From the Pumping Lemma we have then derived the solvability of the finite-
ness problem for ORWW-automata and the fact that the only unary languages
accepted by these automata are the regular ones.

However, there still remain many open questions. For example, is it true that
ORWW-automata only accept languages that are semi-linear? Further, given an
ORWW-automaton M and a regular language R (for example, through a DFA),
it can be checked whether L(M) is contained in R, as this is the case iff L(M)NR®
is empty. However, it is still open whether the converse inclusion (that is, is R
contained in L(M)) can be checked. A special case is the universality problem,
that is, given an ORWW-automaton M with input alphabet X, is L(M) all
of X*? Finally, one may ask whether ORWW-automata yield more succinct
representations for unary languages than deterministic ORWW-automata.

References

1. Dahlhaus, E., Warmuth, M.: Membership for growing context-sensitive grammars
is polynomial. J. Comput. Syst. Sci. 33, 456-472 (1986)

2. Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc.
2, 326-336 (1952)

3. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

4. Karandikar, P., Schnoebelen, P.: Generalized Post embedding problems. Theory
Comput. Syst. 56, 697-716 (2015)

5. Kwee, K., Otto, F.: On some decision problems for stateless deterministic ordered
restarting automata. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol.
9118, pp. 165-176. Springer, Cham (2015). doi:10.1007/978-3-319-19225-3_14

6. Kwee, K., Otto, F.: On the effects of nondeterminism on ordered restart-
ing automata. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM
2016. LNCS, vol. 9587, pp. 369-380. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49192-8_30

7. Kwee, K., Otto, F.: Nondeterministic ordered restarting automata (2017, Submit-
ted

8. I\/[cl)\faughton7 R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal
languages. J. Assoc. Comput. Mach. 35, 324-344 (1988)

9. Mréaz, F., Otto, F.: Ordered restarting automata for picture languages. In: Geffert,
V., Preneel, B., Rovan, B., Stuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS,
vol. 8327, pp. 431-442. Springer, Cham (2014). doi:10.1007/978-3-319-04298-5_38

10. Mraz, F., Platek, M., Prochdzka, M.: On special forms of restarting automata.
Grammars 2, 223-233 (1999)

11. Otto, F.: On the descriptional complexity of deterministic ordered restarting
automata. In: Jiirgensen, H., Karhumaéki, J., Okhotin, A. (eds.) DCFS 2014. LNCS,
vol. 8614, pp. 318-329. Springer, Cham (2014). doi:10.1007/978-3-319-09704-6_28

12. Schmitz, S., Schnoebelen, P.: Multiply-recursive upper bounds with Higman’s
lemma. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol.
6756, pp. 441-452. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22012-8_35

http://dx.doi.org/10.1007/978-3-319-19225-3_14
http://dx.doi.org/10.1007/978-3-662-49192-8_30
http://dx.doi.org/10.1007/978-3-662-49192-8_30
http://dx.doi.org/10.1007/978-3-319-04298-5_38
http://dx.doi.org/10.1007/978-3-319-09704-6_28
http://dx.doi.org/10.1007/978-3-642-22012-8_35

	A Pumping Lemma for Ordered Restarting Automata
	1 Introduction
	2 Definitions and Known Results
	3 A Pumping Lemma for ORWW-Automata
	4 Applications of the Pumping Lemma
	5 Concluding Remarks
	References

