Computational Completeness of Networks
of Evolutionary Processors with Elementary
Polarizations and a Small Number of Processors

Rudolf Freund', Vladimir Rogojin?, and Sergey Verlan3®™)
! Faculty of Informatics, TU Wien, Favoritenstrafie 9-11, 1040 Vienna, Austria
rudi@emcc.at
2 Department of Information Technologies, Abo Akademi University,
Domkyrkotorget 3, 20500 Turku, Finland
vladimir.rogojin@abo.fi
3 Laboratoire d’Algorithmique, Complexité et Logique, Université Paris Est Créteil,
61 av. du général de Gaulle, 94010 Créteil, France
verlan@Qu-pec.fr

Abstract. We improve previous results obtained for networks of evo-
lutionary processors with elementary polarizations —1,0,1 by showing
that only the very small number of seven processors is needed to obtain
computational completeness. In the case of not requiring a special output
node even only five processors are shown to be sufficient.

1 Introduction

Networks of evolutionary processors (NEPs) consist of cells (processors) each of
them allowing for specific operations on strings. Computations in such a net-
work consist of alternatingly performing two steps — an evolution step where
in each cell all possible operations on all strings currently present in the cell
are performed, and a communication step in which strings are sent from one
cell to another cell provided specific conditions are fulfilled. Examples of such
conditions are (output and input) filters which have to be passed, and these
(output and input) filters can be specific types of regular languages or permit-
ting and forbidden context conditions. The set of strings obtained as results of
computations by the NEP is defined as the set of objects which appear in some
distinguished node in the course of a computation. In networks of evolutionary
processors with polarizations each symbol has assigned a fixed integer value; the
polarization of a string is computed according to a given evaluation function,
and in the communication step copies of strings are moved to all cells having
the same polarization. As in [12], in this paper we only consider the elementary
polarizations —1,0, 1 for the symbols as well as for the cells.

Seen from a biological point of view, networks of evolutionary processors are
a collection of cells communicating via membrane channels which makes them

© IFIP International Federation for Information Processing 2017

Published by Springer International Publishing AG 2017. All Rights Reserved

G. Pighizzini and C. Campeanu (Eds.): DCFS 2017, LNCS 10316, pp. 140-151, 2017.
DOI: 10.1007/978-3-319-60252-3_11

Computational Completeness of Small NEPs with Elementary Polarizations 141

to be seen as tissue-like P systems (see [11]) considered in the area of membrane
computing (see [14]); as in membrane computing, the computations are carried
out in a parallel and synchronized way in all cells The operations considered
for the processors (cells) in networks of evolutionary processors usually are the
point mutations insertion, deletion, and substitution, well-known from biology
as operations on DNA.

Networks of Evolutionary Processors (NEPs) were introduced in [7,8] as a
model of string processing devices distributed over a graph, with the processors
carrying out the operations insertion, deletion, and substitution. NEPs with a
very small number of nodes are very powerful computational devices: already
with two nodes, they are as powerful as Turing machines, e.g., see [3,4]. For a
survey of the main results regarding NEPs the interested reader is referred to
[10].

In hybrid networks of evolutionary processors (HNEPs), each language
processor performs only one of these operations on a certain position of the
strings. Furthermore, the filters are defined by some variants of random-context
conditions, i.e., they check the presence and the absence of certain symbols in
the strings. For an overview on HNEPs and the so far known best results, we
refer the reader to [1].

Networks of polarized evolutionary processors were considered in [6] (a new
version of that paper is going to appear, [5]), and networks of evolutionary
processors with elementary polarizations —1,0,1 were investigated in [12]. In
this paper we consider the same model of networks of evolutionary processors
with elementary polarizations —1,0, 1 as in [12], yet we considerably improve the
number of processors (cells) needed to obtain computational completeness from
35 to 7, which makes these results already comparable with those obtained in [1]
for hybrid networks of evolutionary processors using permitting and forbidden
contexts as filters for the communication of strings between cells.

The rest of the paper is structured as follows: In Sect. 2 we give the definitions
of the model of a network of evolutionary processors with elementary polariza-
tions —1,0, 1 (NePEP for short) and of the variant of a circular Post machine we
are going to simulate by the NePEP. In Sect. 3 we show our main result proving
that any circular Post machine can be simulated by an NePEP with only seven
processors (cells), and in the case of not requiring a special output processor
even only five processors are needed. A summary of the results and an outlook
to future research conclude the paper.

2 Prerequisites

We start by recalling some basic notions of formal language theory. An alphabet
is a non-empty finite set. A finite sequence of symbols from an alphabet V' is
called a string over V. The set of all strings over V is denoted by V*; the empty
string is denoted by \; moreover, we define V* = V*\ {A}. The length of a
string z is denoted by |z|, and by |z|, we denote the number of occurrences of
a letter a in a string x. For a string x, alph(z) denotes the smallest alphabet

142 R. Freund et al.

X} such that x € X*. For more details of formal language theory the reader is
referred to the monographs and handbooks in this area, such as [15].

We only remark that in this paper, string rewriting systems as Turing
machines, Post systems, etc. are called computationally complete if these sys-
tems are able to compute any partial recursive relation R on strings over any
alphabet U. Computational completeness in the usual sense with respect to
acceptance and generation directly follows from this general kind of compu-
tational completeness; for more details we refer to [1]. The definitions of the
succeeding subsections are mainly taken from [1,12].

2.1 Insertion, Deletion, and Substitution

For an alphabet V, let a — b be a rewriting rule with a,b € VU{\}, and ab # \;
we call such a rule a substitution rule if both a and b are different from A; such a
rule is called a deletion rule if a # X and b = A, and it is called an insertion rule
if a = A and b # \. The set of all substitution rules, deletion rules, and insertion
rules over an alphabet V is denoted by Suby, Dely, and Insy, respectively.

Given such rules t=a — b € Suby, p=a — A € Dely,and c =\ — a €
Insy as well as a string w € V*, we define the following actions of 7, p, and o
on w:

— If r=a— b€ Suby, then
(w) = {ubv : Ju,v € V* (w =uav)}, if | w|s> 0,
mw)r = {w}, otherwise.
- If p=a— X € Dely, then
iy J{u: JueV* (w=ua)},if | w|,> 0,
pr(w) = { {w}, otherwise.
oy J{v: e VH (w=av)}, if |w|,> 0,
p(w) = {{w}, otherwise.
~ If o =\ — a € Insy, then 0" (w) = {wa} and o' (w) = {aw}.

The symbol « € {*,1,r} denotes the mode of applying a substitution, inser-
tion or deletion rule to a string, namely, at any position (« = *), on the left-hand
end (a =1), or on the right-hand end (o = r) of the string, respectively.

For any rule 3, 8 € {m,p,0}, any mode a € {x,l,r}, and any L C V*,
we define the a-action of 3 on L by (L) = J,,cr, B%(w). For a given finite
set of rules M, we define the a-action of M on a string w and on a language
L by M*(w) = Ugep B*(w) and M*(L) = U, M*(w), respectively. In the
following, substitutions will only be used at arbitrary positions, i.e., with a = ,
which will be omitted in the description of the rule.

2.2 Post Systems and Circular Post Machines

The left and right insertion, deletion, and substitution rules defined in the pre-
ceding subsection are special cases of string rewriting rules only working at

Computational Completeness of Small NEPs with Elementary Polarizations 143

the ends of a string; they can be seen as restricted variants of Post rewriting
rules as already introduced by Post in [13]: for a simple Post rewriting rule
Iy = u$x — y$v, where u, v, z,y € V*, for an alphabet V', we define

s(w) = {yzv | w =wuzz, z € V*'}.

A normal Post rewriting rule m, = $2 — y$ is a special case of a simple
Post rewriting rule u$x — y$v with u = v = X (we also assume zy # \); this
normal Post rewriting rule $z — y$ is the mirror version of the normal form
rules u$ — $v as originally considered in [13] for Post canonical systems; yet
this variant has already been used several times for proving specific results in
the area of membrane computing, e.g., see [9]. A Post system of type X is a
construct (V,T, A, P) where V is a (finite) set of symbols, T C V is a set of
terminal symbols, A € V* is the axiom, and P is a finite set of Post rewriting
rules of type X; for example, X can mean simple or normal Post rewriting rules.
In both cases it is folklore that these Post systems of type X are computationally
complete.

The basic idea of the computational completeness proofs for Post systems is
the “rotate-and-simulate”-technique, i.e., the string is rotated until the string
z to be rewritten appears on the right-hand side, where it can be erased and
replaced by the string y on the left-hand side, which in total can be accomplished
by the rule $z — y$. By rules of the form $a — a$ for each symbol a the string
can be rotated. In order to indicate the beginning of the string in all its rotated
versions, a special symbol B (different from all others) is used; B is to be erased
at the end of a successful computation.

Circular Post machines are machine-like variants of Post systems using spe-
cific variants of simple Post rewriting rules; the variant of CPM5 we use in this
paper was investigated in [2].

Definition 1. A (non-deterministic) CPM5 is a construct
M = (23T5Q7q13q07R)7

where X is a finite alphabet, T C X' is the set of terminal symbols, Q is the set
of states, q1 € Q is the initial state, qo € Q is the only terminal state, and R is
a set of simple Post rewriting rules of the following types (we use the notation

Q" =Q\{qw})

e px$ — ¢$ (deletion rule) with p € @', ¢ € Q, x € X; we also write px — ¢
and, for any w € X*, the corresponding computation step is prw gaimsy qu;
e p$ — ¢3y (insertion rule) with p € Q', ¢ € Q, y € X; we also write p — yq

and, for any w € X*, the corresponding computation step is pw iy quy.

The CPM5 is called deterministic if for any two deletion rules pr — q1 and
pr — g2 we have q1 = q2 and for any two insertion rules p — q1y1 and p — ¢y
we have q1y1 = q2y2.

144 R. Freund et al.

The name circular Post machine comes up from the idea of interpreting the
machines to work on circular strings where both deletion and insertion rules
have local effects, as for circular strings the effect of the insertion rule p$ — ¢$y
is the same as the effect of p — yq directly applied to a circular string, which
also justifies writing p$ — ¢Sy as p — yq.

For a given input string w, w € T, the CPM5 M starts with ¢;w and applies
rules from R until it eventually reaches a configuration ggv for some v € T*; in
this case we say that (w,v) is in the relation computed by M.

Definition 2. A CPM5 M = (X, T,Q, q1, qo, R) is said to be in normal form if
- Q\{q} = Q1 U Q2 where Q1 N Q2 = ;

— for every p € Q1 and every x € X, there is exactly one instruction of the
form pxr — q, i.e., Q1 is the set of states for deletion rules;

— for every insertion rule p — yq we have p € Q2, i.e., Q2 is the set of states
for insertion rules, and moreover, if p — y1q1 and p — y2qo are two different
rules in R, then y; = ys.

Theorem 1 (see [2]). CPM5s in normal form are computationally complete.

2.3 Networks of Evolutionary Processors with Elementary
Polarizations

Definition 3. A polarized evolutionary processor over V is a triple (M, «,7)
where

- M is a set of substitution, deletion or insertion rules over the alphabet V
i.e., (M C Suby) or (M C Dely) or (M C Insy);

- « gives the action mode of the rules of the node;

- m e {=1,0,41} is the polarization of the node (negative, neutral, positive).

The set M represents the set of evolutionary rules of the processor. It is
important to note that a processor is “specialized” in one type of evolutionary
operation only as in HNEPs. The set of evolutionary processors over V' is denoted

Definition 4. A network of polarized evolutionary processors (NPEP for short)
is a T-tuple I' = (V, T, H, R, ©, Nin, Nout) where

— V is the alphabet of the network;

— T is the input/output alphabet, T CV; T CV;

H = (Xu, Eg) is an undirected graph (without loops) with the set of vertices

(nodes) Xy and the set of (undirected) edges Ex; H is called the underlying

communication graph of the network;

- R : Xy — EPy s a mapping which with each node x € X associates the
polarized evolutionary processor R(x) = (My, g, 72);

— @ is an evaluation function from V* into the set of integers;

— Nin, Nout € Xpg are the input and the output node, respectively.

Computational Completeness of Small NEPs with Elementary Polarizations 145

The number of nodes in Xy, card(Xp), is called the size of I'. If the eval-
uation mapping ¢ takes values in the set {—1,0, 1} only, the network is said to
be with elementary polarization of symbols (an NePEP for short).

A configuration of an NPEP I, as defined above, is a mapping C : Xy —
2V" which associates a set of strings over V with each node z of the graph. A
component C(z) of a configuration C is the set of strings that can be found in
the node x of this configuration, hence, a configuration can be considered as a
list of the sets of strings which are present in the nodes of the network at a given
moment.

A computation of I' consists of alternatingly applying an evolutionary step
and a communication step. When changing by an evolutionary step, each com-
ponent C(x) of the configuration C' is changed in accordance with the set of
evolutionary rules M, associated with the node = thus yielding the new config-
uration C’, and we write C = C’ if and only if

C'(z) = M3+ (C(z)) for all z € Xy.

In a communication step, each node processor x € Xy sends out copies of all
its strings, but keeping a local copy of the strings having the same polarization
to that of x only, to all the node processors connected to x, and receives a copy
of each word sent by any node processor connected with x providing that it has
the same polarization as that of z, thus yielding the new configuration C’ from
configuration C, and we write C' - C’,

C'(x) = (C(x) \{w € C(x) | sign(p(w)) # m=}) U
U (weCy) | sign(p(w)) =m.}),

{z,y}€Ec

for all x € Xpy. Here sign(m) is the sign function which returns +1,0, —1,
provided that m is a positive integer, is 0, or is a negative integer, respectively.
Note that all strings with a different polarization than that of x are expelled.
Further, each expelled word from a node x that cannot enter any node connected
to z is lost.

In the following, we will only use the evaluation function ¢ with ¢(\) = 0
and p(aw) = p(a)+¢(w) for all a € V and w € V* i.e., the value a string is the
sum of the values of the symbols contained in it; we write ¢ for this function.

Given an input word w € T, the initial configuration Cy of I' for w is
defined by C’éw) (nin) = {w} and C(()w)(n) = () for all other nodes x € Xy \ {nn}.
The computation of I" on the input word w € V* is a sequence of configurations
Cow), C§M)7 Cz(w), ..., where Céw) is the initial configuration of I" on w, Cgf) =
Cé;fu_zl and 02(1-121 F Cé;f'jzw for all 7 > 0.

As results we take all terminal strings appearing in the output cell ngyus
during a computation of I'. In fact, in [1] this variant was called with terminal
extraction. On the other hand, we may require a special output where only the
terminal strings appear, which we will consider as the standard variant.

146 R. Freund et al.

3 Main Result

In this section we now show our main result how a given CPM5 can be simulated
by an NePEP (with terminal extraction) with only 7 (5) cells provided that for
a given input string w € T* we start with the initial string ¢yw in the input
cell, where ¢ is the initial state of the CPM5. In order to start with the input
string w directly we would have to add two more nodes to carry out this initial
procedure of adding the initial state g;.

Theorem 2. For any CPM5 M = (X,T,Q,q1,q0,R) in normal form there
exists a standard NePEP with only seven cells I' = (V,T, H, R, ¢s,i1,10) being
able to simulate the computations of M.

Proof. Let n=|T|, m=1Q], 0 <i<m and 0 < k <n. We define
V=TU{q,qf 47, X7, D}, DF,Df |0 < < m}
U{gpdn; 1 0<k<n,0<i<m}
U{A;, AY, 1 0<k<n,0<i<m}
U{AY, AR AR AR |0<k<n}u{e}

The evaluation ¢4 for the symbols in V' corresponds to the superscript of the
symbol, i.e., for o* € V with z € {+,0,—} we define ¢4(a’) =0, ¢s(a™) = +1,
¢s(a”) = —1, and, moreover, for a € T, we take ¢s(a) = 0.

The communication graph H consists of the set of nodes {1,2,3,4,5,6,7}
and of the following set of undirected edges:
{{1,2},{1,3},{1,4},{1,5},{4,5},{4,6},{6,7}}.

Node 1 is the input and node 7 is the output node.

For the seven nodes i, 1 < i < 7, the corresponding evolutionary processors
N (i) are defined as follows:

a(l) =a3) =ald) = a(7) = *, a(2) =r and a(5) = a(6) = .

7(1) =x(7) =0, 7(2) = 7(4) = 7(5) = — and 7(3) = 7(6) = +.

For the types of rules in the rule sets M; we have My, M3, M, C SUBy,
My C INSy, Ms, Mg C DELy, and M7; = (), i.e., M7 could be assumed to be
any type of rules.

Processor 1 has polarization (charge) 0 and uses substitution rules to con-
tribute to the simulation of insertion and deletion rules of M:

Insertion : ¢; — gjar(1 <1 < k)| Deletion : g;a; — ¢;(1 <i < s)
1'1:‘]2_"11@_,3‘ 1.7:¢% — X
12:q,; — ‘{lofl,j 1.8: Ai_,l — /}?Jrl’l
1.3: A? — A;r 1.9: A?yl — A?,l
14:A) — Af 1.10: DY — D
15:), — G, 1.11: D} — Df
1.6: A — A 112: A7, — gf
113: 7 — ¢,

Computational Completeness of Small NEPs with Elementary Polarizations 147

Processor 3 has polarization (charge) +1 and uses substitution rules to con-
tribute to the simulation of insertion and deletion rules of M:

Insertion : ¢, — gjar(1 <1 < k)| Deletion : g,ar, — ¢;(1 <i < s)

3.1 :AlJr—>A?_i_1 3.5:Df — DY ., 1>0
3.2:quO_’j—>ql_,j, >0 3~6:A?,l_>Ai_,z
33:40; —q) 3.7:Df — e~

A+ 0

34: A — q

Processor 4 has polarization (charge) —1 and uses substitution rules to con-
tribute to the simulation of deletion rules of M only:

Deletion : gsar, — g;

4.1:a) — Ay,
42: X7 — Df
4.32(27-_*>q§-)7j>0
4.4:@6%(]8‘

Processor 2 has polarization (charge) —1 and only contains the single inser-
tion rule 2.1: A — Af.

Processor 5 has polarization (charge) —1 and only contains the single deletion
rule 5.1: e~ — A

Processor 6 has polarization (charge) +1 and only contains the single deletion
rule 6.1: qa' — A

The proof closely follows the idea from [1] (Theorem 2), which is itself based
on the rotate-and-simulate method. We recall the main steps of that proof below.

The configuration of M is represented as gsw, s > 0, where ¢, is the current
state. Suppose that gs — g;ay is the associated instruction. Then the following
evolution is performed in I' (for readability, we omit the superscripts (charges)
of the symbols):

gsw =" g j WAy =" qr—1,;WAI =7 qr_i ;WA =7 qo jwAE =" gjway

As in the classical rotate-and-simulate method, Ay is appended to the
string and then the indices of g ; (respectively Ay) are decreased (respectively
increased) simultaneously. When the first index of g ; reaches zero, its initial
value is stored as an index of Ay, allowing to produce the right symbol a; after-
wards.

The instruction gsar — g; is simulated in the following way:

qsapw =% DSAo)kw =* DiflAl’kw =* Di,tAi_’kU)A =*
=" DoAs pw =" €A, pw =" eqiw = qjw

148 R. Freund et al.

Here the state symbol g5 is replaced by D, and the first symbol ai by Ao .
Then in a loop the index of D decreases, while the first index of A increases.
At the end of this loop the string Dy A, pw is obtained, hence the information
about the state s has been transferred to the symbol A, so it now encodes the
state and the current symbol of the machine M. Based on this information, the
new state g; is chosen. Finally, symbol Dy is transformed to symbol e, which is
further deleted.

We remark that it could be possible that another symbol from the string is
transformed to Ag 1 (not necessarily the first one). In this case the computation
will not yield a valid result because the state symbol will not be present in the
first position and the corresponding symbol ¢ will never be erased, see [1] for
more details.

Now we explain the simulation in more details. We start with the remark
that in each step only one symbol of a string w can be changed (by substitution,
insertion or deletion) yielding w’. This implies that |¢p(w) — ¢(w')| < 2. In many
cases this allows us to predict the change in the polarization (and thus the
communication to another node), based on the above difference and the current
node polarization.

Assume that the string ¢2w is present in node 1. First, we suppose that
there is an instruction ¢, — gjax in M. Then, only the rule 1.1 is applicable,
producing the string g, SW- Since the initial string had neutral polarization, this
rule application changes the polarization of the string to negative and during
the communication step this string is sent to nodes 2, 4 and 5. In node 5 there
is no rule applicable to this string, so it will never exit this node. In node 4, rule
4.1 can be applied several times, but this will further decrease the value of the
string, which will remain negative, so it will never be able to get out of nodes 4
and 5.

In node 2 the insertion rule 2.1 is applied yielding . ij(")". Clearly, this
string has a neutral polarization, so it will return back to node 1. Next, we
discuss the evolution of strings of form q,;_m,wA;r, 0 <t<k—2in node 1:

- + 0 + 0 0
Qkft’ijt =1.2 qkftfl,ijt :>3~IQk7t71,ijt+1 =15
R A0 0 A0
1.5 Q—t—1,; WAL =13 Q1 ;WAL =3.2

- i+ - +
=32 Qg1 ;WAL =16 Gp1 ;WA

During first two steps only rules 1.2 and 3.1 are applicable (and they change
the polarization of the string). Next, rules 1.3, 1.4 and 1.5 are applicable. It
can be easily seen that if 1.3 is applied yielding the string qg_t_mw/l;_l, then
no more applicable rule is present in node 3. If rule 1.4 is applied then the
only possible continuation is the application of the sequence of rules 3.4 and 1.5
yielding the string (j,gitfl) jwa? 1 in node 1. Clearly, there are no more applicable
rules and this string cannot evolve anymore.

So, rule 1.5 has to be applied. Next, there is a choice between the application
of 1.3 and 1.4. In case of the application of 1.4, either 3.4 or 3.2 is applicable. The

Computational Completeness of Small NEPs with Elementary Polarizations 149

first application yields to the case discussed before, while the second application
produces the following evolution not yielding any result:

~0 i+ - i+ 0 i+
Qrt—1, WA =32 qkfthijt—&-l =1.2 Qo_t—2 ;WA 1 =34
0 0 40 0
=34 Qr—t—2,jWai11 =15 p—t—2,jWA; 1

So, on the fourth step rule 1.3 should be applied. Then the only applicable
rule is 3.2. Now, if rule 1.6 is not applied, then on the next step (after the
application of 1.2) no more rules will be applicable to the corresponding string
in node 3.

Hence, the procedure described above permits to evolve the string '].wAS'
into q; ijZLl. Now, the sequence described above produces the string g, ijz,
which cannot evolve anymore. However, another evolution now becomes possible
(by choosing 1.4 instead of 1.3):

— + 0 + 0 0 ~0 0
ql,ijk—l 1.2 qO,ijk—l =3.1 qO,ijk =15 qO,ijt+1 1.4
~0 A0 0 A+ 0 0
=1.4 o jwAE =33 GGWA] =34 qjway,

We remark that if rule 3.4 is applied instead of 3.3, then corresponding string
cannot evolve. This concludes the discussion of the simulation of the rule ¢, —
gjar of M.

Now consider that there is an instruction gsar — ¢; in M to be simulated.
Then, only rule 1.7 is applicable, producing the string X w. Since the initial
string had neutral polarization, this rule application changes the polarization of
the string to negative and during the communication step this string is sent to
the nodes 2, 4 and 5. In node 5 there is no rule applicable to this string, so it
will never exit this node. In node 2, rule 2.1 can be applied yielding X wAg in
node 1 to which no further rule is applicable.

In node 4 rules 4.1 and 4.2 are applicable. If 4.2 is applied, then the polar-
ization of the resulting string is positive and the string will be lost. Hence 4.1
should be applied, yielding X;Aa,kw’ (w = apw). Now again both rules 4.1 and
4.2 are applicable. This time using rule 4.2 allows to obtain the neutral string
D;“A& xw which further goes to node 1. In the other case, the corresponding
string will always be negative.

Now let us consider the evolution of strings of type D;r_tA; KW, 0<t<s—1
being in node 1. Using the same technique as in the case above the decrement of
the index of D and the increment of the index of A is performed, with the rules
1.8, 1.9, 1.10, 1.11, 2.5, and 2.6 now having a similar function as the rules 1.2,
1.5, 1.3, 1.6, 2.1, and 2.2. Hence, we obtain:

+ — o/ + 0 ’ 0 0 ,
Dy A’ =18 DY Ay w” =os Doy 1 Ay pw =109
0 A0 / H+ A0 /
=1.9 DS*tflAiH»l,kw =1.10 DsitflAtJrl’kw =926
D+ L ! N+ - ! + — I
=26 Dy 1A w0 =16 Dy 1 A 0 =10 Dy Ay pw

It can easily be verified that the few possible variations of the computa-
tion above (not using rule 1.9 or using 1.12 instead of 1.9) immediately yield

150 R. Freund et al.

strings that cannot evolve anymore. Hence, we obtain that from D;"Aa, Lw' only
the string DJA;kw’ can be obtained (in node 1). At this point two rules are
applicable: 1.8 and 1.12. Using rule 1.8 yields D3A2+17kw’ in node 3, where
only rule 3.7 is applicable, yielding 5*Ag 41, RW' . However, the last string is nega-
tive, so it is lost during the communication step. The other possibility gives the
following evolution:

+ A= ./ + A4, 7 — At — =] - 0,/ 0,/
Dy Agpw' =112 Dy g w =376 ¢ w =113€ §; W =43€ W =51 ¢W

We remark that last two operations can be done in a reverse order (if the
string first travels to node 5 and then to node 4). The additional application of
rule 4.1 traps the string in nodes 4 and 5.

Finally, we show how a terminal string is obtained as a result. We can assume
that the last instruction of M is an instruction of type gsar — qo. Then rule 4.4
produces the word qar w’, which being positive is sent to node 6, where rule 6.1
is applied producing a neutral string w’, which further arrives in node 7.

Corollary 1. For any CPM5 M = (X, T,Q,q1,q0, R) in normal form there
exists a NePEP with terminal extraction with five cells I' = (V, T, H, R, ¢s, i1, i0)
being able to simulate the computations of M.

Proof. The assertion can be easily proved by deleting nodes 6 and 7 from the
previous construction, as well as by adding the rule g0 — £~ to processor 1.

4 Conclusion and Future Research

In this paper we have improved the number of cells necessary to obtain compu-
tational completeness with networks of polarized evolutionary processors with
elementary polarizations —1, 0, 1 of symbols to seven. In the case of not requiring
a special output node and just taking all terminal strings as results even only
five nodes have been shown to be sufficient.

The construction given in this paper, like the previous ones for networks of
polarized evolutionary processors makes intensive use of the control given by the
structure of the communication graph. On the other hand, in [1] the results were
obtained for several specific regular graph structures as complete graphs, star-
like and even linear graphs. Hence, an interesting question for future research
arises when asking for the ingredients and the number of cells needed to obtain
computational completeness for variants of networks of polarized evolutionary
processors based on such specific graph structures. Finally, we also may look
for reducing the number seven (five for the case of terminal extraction) of cells
needed to obtain computational completeness with networks of polarized evolu-
tionary processors with elementary polarizations —1,0, 1 of symbols.

Computational Completeness of Small NEPs with Elementary Polarizations 151

References

10.

11.

12.

13.

14.

15.

Alhazov, A.| Freund, R., Rogozhin, V., Rogozhin, Y.: Computational completeness
of complete, star-like, and linear hybrid networks of evolutionary processors with
a small number of processors. Nat. Comput. 15(1), 51-68 (2016)

Alhazov, A., Krassovitskiy, A., Rogozhin, Y.: Circular post machines and P sys-
tems with exo-insertion and deletion. In: Gheorghe, M., Paun, G., Rozenberg, G.,
Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 73-86. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28024-5_7

Alhazov, A., Martin-Vide, C., Rogozhin, Y.: On the number of nodes in universal
networks of evolutionary processors. Acta Informat. 43(5), 331-339 (2006)
Alhazov, A., Martin-Vide, C., Rogozhin, Y.: Networks of evolutionary processors
with two nodes are unpredictable. In: Loos, R., Fazekas, S.Z., Martin-Vide, C.
(eds.) LATA 2007. Proceedings of the 1st International Conference on Language
and Automata Theory and Applications. Report, vol. 35/07, pp. 521-528. Research
Group on Mathematical Linguistics, Universitat Rovira i Virgili, Tarragona (2007)
Arroyo, F., Canaval, S., Mitrana, V.: Popescu, S: On the computational power
of networks of polarized evolutionary processors. Inf. Comput. 253(3), 371-380
(2017)

Arroyo, F., Gémez Canaval, S., Mitrana, V., Popescu, S.: Networks of polarized
evolutionary processors are computationally complete. In: Dediu, A.-H., Martin-
Vide, C., Sierra-Rodriguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370,
pp. 101-112. Springer, Cham (2014). doi:10.1007/978-3-319-04921-2_8
Castellanos, J., Martin-Vide, C., Mitrana, V., Sempere, J.M.: Solving NP-complete
problems with networks of evolutionary processors. In: Mira, J., Prieto, A. (eds.)
IWANN 2001. LNCS, vol. 2084, pp. 621-628. Springer, Heidelberg (2001). doi:10.
1007/3-540-45720-8_74

Castellanos, J., Martin-Vide, C., Mitrana, V., Sempere, J.M.: Networks of evolu-
tionary processors. Acta Inform. 39(6-7), 517-529 (2003)

Freund, R., Rogozhin, Y., Verlan, S.: Generating and accepting P systems with
minimal left and right insertion and deletion. Nat. Comput. 13(2), 257-268 (2014)
Manea, F., Martin-Vide, C., Mitrana, V.: Accepting networks of evolutionary word
and picture processors: a survey. Sci. Appl. Lang. Methods 2, 525-560 (2010)
Martin-Vide, C., Pazos, J., Paun, G., Rodriguez-Patén, A.: A new class of symbolic
abstract neural nets: tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON
2002. LNCS, vol. 2387, pp. 290-299. Springer, Heidelberg (2002). doi:10.1007/
3-540-45655-4_32

Popescu, S.: Networks of polarized evolutionary processors with elementary polar-
ization of symbols. In: NCMA 2016, 275-285 (2016)

Post, E.L.: Formal reductions of the general combinatorial decision problem. Am.
J. Math. 65(2), 197-215 (1943)

Paun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford (2010)

Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1-3.
Springer, Heidelberg (1997)

http://dx.doi.org/10.1007/978-3-642-28024-5_7
http://dx.doi.org/10.1007/978-3-319-04921-2_8
http://dx.doi.org/10.1007/3-540-45720-8_74
http://dx.doi.org/10.1007/3-540-45720-8_74
http://dx.doi.org/10.1007/3-540-45655-4_32
http://dx.doi.org/10.1007/3-540-45655-4_32

	Computational Completeness of Networks of Evolutionary Processors with Elementary Polarizations and a Small Number of Processors
	1 Introduction
	2 Prerequisites
	2.1 Insertion, Deletion, and Substitution
	2.2 Post Systems and Circular Post Machines
	2.3 Networks of Evolutionary Processors with Elementary Polarizations

	3 Main Result
	4 Conclusion and Future Research
	References

