
Modularising Opacity Verification for Hybrid
Transactional Memory

Alasdair Armstrong and Brijesh Dongol(B)

Brunel University London, London, UK
{alasdair.armstrong,brijesh.dongol}@brunel.ac.uk

Abstract. Transactional memory (TM) manages thread synchronisa-
tion to provide an illusion of atomicity for arbitrary blocks of code. There
are various implementations of TM, including hardware (HTM) and soft-
ware (STM). HTMs provide high performance, but are inherently limited
by hardware restrictions; STMs avoid these limitations but suffer from
unpredictable performance. To solve these problems, hybrid TM (HyTM)
algorithms have been introduced which provide reliable software fallback
mechanisms for hardware transactions. The key safety property for TM is
opacity, however a naive combination of an opaque STM and an opaque
HTM does not necessarily result in an opaque HyTM. Therefore, HyTM
algorithms must be specially designed to satisfy opacity. In this paper
we introduce a modular method for verifying opacity of HyTM imple-
mentations. Our method provides conditions under which opacity proofs
of HTM and STM components can be combined into a single proof of an
overall hybrid algorithm. The proof method has been fully mechanised
in Isabelle, and used to verify a novel hybrid version of a transactional
mutex lock.

1 Introduction

By allowing programmers to mark blocks of arbitrary code as transactions,
Transactional Memory (TM) aims to provide an easy-to-use synchronisation
mechanism for concurrent access to shared data. Unlike coarse-grained locking,
TM implementations are fine-grained, which improves performance. In recent
years, TM has appeared as software libraries in languages such as Java, Clojure,
Haskell and C++11, and received hardware support in processors (e.g., Intel’s
TSX).

Software Transactional Memory (STM), as provided by the aforementioned
software libraries, offers a programmer-friendly mechanism for shared-variable
concurrency. However, it suffers from unpredictable performance which makes
it unsuitable for some applications. On the other hand, Hardware Transactional
Memory (HTM), as implemented in modern Intel processors, offers high perfor-
mance but comes with many limitations imposed by the constraints of the hard-
ware itself. For example, HTM implementations do not guarantee progress for a
transaction even in the absence of other concurrent transactions [11]. Hybrid

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Bouajjani and A. Silva (Eds.): FORTE 2017, LNCS 10321, pp. 33–49, 2017.
DOI: 10.1007/978-3-319-60225-7 3



34 A. Armstrong and B. Dongol

TM (HyTM) implementations address these issues by integrating STM and
HTM [10]. Recent work [2,3,18] has focused on providing software fallbacks for
HTM, combining the performance benefits of HTM with the strong semantics
and progress guarantees of STM.

Opacity [8,9] is the primary safety property for TM, which ensures that
implementations have the familiar properties of database transactions: atomic-
ity, consistency, and isolation. Opacity requires that all transactions (including
aborting ones) can be serialised into some meaningful sequential order, so that
no transaction witnesses an inconsistent state caused by the partial execution of
any other transaction. Overall, this ensures that TM implementations execute
with an illusion of atomicity.

HyTM algorithms, which are the focus of this paper, consist of STM (slow-
path) transactions executing in parallel with HTM (fast-path) transactions. Since
an execution may consist of only STM or only HTM transactions, one must
ensure that slow-path and fast-path transactions are by themselves opaque.
In addition, synchronisation between slow- and fast-path transactions must be
introduced to ensure that executions consisting of arbitrary combinations of
these transactions is opaque. It is already known that naively combining STM
and HTM results in a non-opaque HyTM algorithm [2]. In this paper, we develop
a modular verification method for proving opacity of HyTM algorithms—our
method provides a means for independently proving opacity of both the STM
slow path and the HTM fast path, and then combining them into a proof of
opacity of the overall system.

To demonstrate our proof method, in Sect. 2, we develop a novel hybrid
version of Dalessandro et al.’s Transactional Mutex Lock [4], extending it with
a subscription mechanism described in [3]. Our algorithm, HyTML, combines
an eager STM, where writes to the shared store are immediately committed to
memory, with a lazy fast path HTM, where writes to the shared store are cached
until the HTM executes a commit operation. Moreover, it improves concurrency
in the original TML algorithm by allowing multiple concurrent writing HTM
transactions; in the original algorithm, all transactions abort in the presence of
any concurrent writing transaction.

Our proof method is an extension of previous work [6,14] that uses trace
refinement of I/O automata (IOA) [17] to verify opacity via a TM specification
known as TMS2 [7]. Unlike existing work, our methods enable one to verify
HyTML in a modular manner (i.e., by combining individual opacity proofs of
the fast-path and slow-path components) despite the monolithic structure of the
algorithm. Our proof methods are influenced by compositional techniques [20]
such as rely/guarantee [12]. However, unlike rely-guarantee, which focusses on
composing processes, we focus on composition at the level of components, which
themselves consist of multiple parallel processes.

We start by developing the notion of an interference automaton (Sect. 4),
which specialises IOA by including transitions that take into account any poten-
tial interference from the environment. Parallel composition for interference
automata is developed in Sect. 5, and the notion of weak simulation for parallel



Modularising Opacity Verification for Hybrid Transactional Memory 35

interference automata is given in Sect. 6. There we provide our main decom-
position theorem, which describes how weak simulations can be combined to
ensure trace refinement of the composed system. We apply our proof methods
to verify HyTML in Sect. 7; we show how individual opacity proofs for the STM
and HTM components can be combined, to avoid the complexity inherent in a
monolithic proof. All the proofs in this paper, including our meta-theory, have
been mechanised1 in the Isabelle theorem prover [19].

2 Hybrid TML

Our running example is the Hybrid Transaction Mutex Lock (HyTML) algorithm
given in Listing 1, which extends Dalessandro et al.’s TML algorithm [4] with
a 2-counter subscription mechanism [3]. HyTML synchronises the software slow
path with a hardware fast path using glb (which is published by software and
subscribed by hardware) and ctr (which is published by hardware and subscribed
by software).

The parity of glb indicates whether a writing software transaction is currently
executing. Namely, a writing software transaction increments glb once at Line
31, where it effectively acquires the write lock, and again at Line 37, where it
effectively releases the write lock. Thus, �glb/2� gives the total number of com-
mitted software transactions. TML, and by extension HyTML, has the property

Listing 1. A Hybrid Transactional Mutex Lock (HyTML) algorithm
1: procedure Init
2: glb, ctr ← 0, 0

3: procedure FPBegint
4: XBegin()

5: loct ← glb
6: writer t ← false
7: if odd(loct) then
8: XAbort()

9: procedure FPReadt(a)
10: return ∗a
11: procedure FPWritet(a, v)
12: writer t ← true
13: ∗a ← v
14: procedure FPCommitt
15: if writer t then
16: ctr++

17: XEnd()

18: procedure SPBegint
19: repeat
20: loct ← glb
21: lctr t ← ctr
22: until even(loct)

23: procedure SPReadt(a)
24: vt ← ∗a
25: if glb = loct then
26: if ctr = lctr t then
27: return vt
28: abort

29: procedure SPWritet(a, v)
30: if even(loct) then
31: if ¬dcss(&glb, loct,&ctr , lctr t, loct+1)
32: then abort
33: else loct++

34: ∗a ← v

35: procedure SPCommitt
36: if odd(loct) then
37: glb ← loct + 1

1 The Isabelle files may be downloaded from [1].



36 A. Armstrong and B. Dongol

that only a single software transaction can be writing at a time. The presence
of a software writer causes all concurrently executing transactions, including
fast-path transactions, to abort.2 Unlike TML, HyTML allows more than one
concurrent writing transaction via the fast path. Variable ctr is used to signal
a completed hardware transaction and is incremented whenever a writing hard-
ware transaction commits (Line 16). The total number of committed writing
transactions is therefore given by �glb/2�+ctr . Note that read-only transactions
modify neither glb nor ctr .

Software Slow Path. The software slow path implementation is a conservative
extension to the original TML algorithm [4] — we refer the interested reader to
[4,5] for further details of the behaviour of TML. The implementation consists
of operations SPBegin and SPCommit that start and end software transactions,
respectively, as well as SPRead and SPWrite that perform (software) transac-
tional reads and writes, respectively. Each operation and transaction-local vari-
able is indexed by a transaction identifier t.

Procedure SPBegint repeatedly polls both glb and ctr , storing their values in
local variables loct and lctr t, respectively, until loct is even. This ensures that a
software transaction cannot begin until there are no software writers. Procedure
SPReadt(a) first reads the value in address a from memory and then checks
(non-atomically) if glb and ctr are consistent with loct and lctr t, respectively.
The value of the address is returned if both checks succeed, otherwise it is likely
that the transaction t has witnessed an inconsistent snapshot of the store, and
hence it aborts.

Procedure SPWritet first checks the parity of loct. If loct is odd, then t
must itself be the (unique) software writer, i.e., t had acquired the mutex lock
from a previous call to SPWritet. Therefore, t can immediately proceed and
eagerly update the value of ∗a in the store to v. If loct is even, it contends with
other writers to acquire the lock using a double compare single swap operation:
dccs, which atomically checks both lctr t and loct against their global values and
updates glb to loct + 1 if both are unmodified (which effectively acquires the
mutex lock). The dccs operation returns true iff it is successful. If either glb or
ctr have changed since t first read their values within SPBegint, then t may go on
to construct an inconsistent memory state, and hence, it must abort. Otherwise
(i.e., if dccs succeeds), loct is incremented (Line 33) to match the new value of
glb. This makes the value of loct odd, allowing the expensive dccs operation to
be elided in future calls to SPWritet, as explained above, and allows future calls
to SPReadt to succeed.

Procedure SPCommitt always succeeds. It checks to see if t is a writing trans-
action (i.e., loct is odd). If so, loct must be equal to glb, and hence, the update
to glb at Line 37 is equivalent to an increment of glb that makes glb’s value even.
This second increment effectively releases the mutex lock.

2 There are some exceptions, e.g., a read-only software transaction can successfully
commit even in the presence of another writer if no more reads are performed [5].



Modularising Opacity Verification for Hybrid Transactional Memory 37

Hardware Fast Path. Our implementation uses HTM primitives provided by an
Intel x86 processor with TSX extensions. However, we keep the specifics of the
hardware generic and assume as little as possible about the behaviour of the
primitives, allowing our work to more easily be adapted to work with other
HTMs. We use three basic primitives: XBegin, which starts a hardware transac-
tion, XEnd, which ends (and attempts to commit) the hardware transaction, and
XAbort, which explicitly aborts the hardware transaction. We assume that, once
started, a hardware transaction may be forced abort at any time for any reason,
which is consistent with Intel’s specifications [11]. In addition, when interference
on any variable that has been read is detected, a fast-path transaction must
abort (details are provided below).

Procedure FPBegint starts a fast-path transaction by calling XBegin, then
subscribes to the software global version number, glb, by reading and recording
its value in a local variable loct. A local flag writer t (initially false) is used to
indicate whether a fast-path transaction is a writer. Transaction t only begins
if loct is even—if loct is odd, a slow-path writer is executing, and hence, the
fast-path transaction aborts.

Note that because the read of glb occurs after XBegin, the underlying HTM
will track the value of glb in memory, ensuring that the fast-path transaction
aborts if glb changes. Such checks to glb are performed automatically by the
HTM outside the control of the fast-path implementation, and hence, is not
explicit in the code (Listing 1). This behaviour is captured in our model of the
fast-path transactions by validating that the value of glb is equal to loct for every
step of fast-path transaction t, and aborting whenever this validation fails.

The fast-path read and write operations, FPReadt and FPWritet consist of
standard memory operations, but the underlying HTM will ensures these writes
are not visible outside t until t commits. In FPWritet, the flag writer t is set to
true to indicate that t is now a writer. Procedure FPCommitt updates ctr if t is
a writer, which indicates to software transactions that a fast-path transaction is
committing. Note that this increment to ctr will not cause other fast-path trans-
actions to abort. Finally, FPCommitt calls XEnd, which, for a writer transaction,
commits all the pending writes to the store and publishes the increment to ctr.

3 The TMS2 Specification

The basic principle behind the definition of opacity (and other similar defini-
tions) compares a given concurrent history of transactional operations against a
sequential one. Opacity requires it be possible for transactions to be serialised
so that the real-time order of transactions is preserved. Within this serialisation
order, read operations for all transactions, including aborted transactions, must
be consistent with the state of the memory store, which is obtained from the
initial store by applying the previously committed transactions in their serialised
order [8,9]. We elide the formal definition of opacity here, focusing instead on
an automata-based TM specification, TMS2 [7]. Lesani et al. [15] have mechani-
cally verified that TMS2 is opaque, thus it is sufficient to show trace refinement
against TMS2 to verify opacity of an implementation (cf [6,14]). TMS2 and the
implementations we verify are modelled using input/output automata [16,17].



38 A. Armstrong and B. Dongol

Definition 1. An I/O automaton (IOA) is a labelled transition system A with
a set of states states(A), a set of actions acts(A) (partitioned into internal and
external actions), a set of start states start(A) ⊆ states(A) and a transition
relation trans(A) ⊆ states(A) × acts(A) × states(A) (so that the actions label
the transitions).

TMS2 contains external transitions modelling operation invocations and
responses, e.g., the invoke and respond actions for a write action are given
below, where statust is a transaction-local variable that models control flow.
The transition is enabled if all its preconditions, given after the keyword Pre,
hold in the current state. State modifications (effects) of a transition are given
as assignments after the keyword Eff.

invt(TMWrite(a, v))
Pre: statust = ready
Eff: statust := doWrite(a, v)

respt(TMWrite)
Pre: statust = writeResp
Eff: statust := ready

TMS2 contains a pair of invocations and responses for begin, read, write and
commit operations. In addition, a response is provided for aborting operations:

respt(TMAbort)
Pre: statust /∈ {notStarted, ready, commitResp, committed, aborted}
Eff: statust := aborted

After invoking a write, read, or commit operation, a transaction may execute
one of the ‘do’ actions in Fig. 1, which performs the corresponding abstract
operation.

Fig. 1. Internal actions of TMS2



Modularising Opacity Verification for Hybrid Transactional Memory 39

TMS2 guarantees that transactions satisfy two critical requirements: (R1) all
reads and writes of a transaction work with a single consistent memory snapshot
that is the result of all previously committed transactions, and (R2) the real-
time order of transactions is preserved. Full details of TMS2 may be found in
[7]. Here, we give a brief overview of the requirements that our implementation
must satisfy.

To ensure (R1), the state of TMS2 includes 〈memSeq(0), . . . memSeq
(maxIdx )〉, which is a sequence of all possible memory snapshots (the stores
sequence). Initially the sequence consists of one element, the initial memory
memSeq(0). Committing writer transactions append a new memory newMem
to this sequence (cf. DoCommitWt), by applying the writes of the transaction to
the last element memSeq(maxIdx ). To ensure that the writes of a transaction
are not visible to other transactions before committing, TMS2 uses a deferred
update semantics: writes are stored locally in the transaction t’s write set wrSet t

and only published to the shared state when the transaction commits. Note that
this does not preclude TM implementations with eager writes, such as TML.
However eager implementations must guarantee that writes are not observable
until after the writing transaction has committed.

Each transaction t keeps track of all its reads from memory in a read set
rdSet t. A read of address a by transaction t checks that either a was previously
written by t itself (then branch of DoReadt(a)), or that all values read so far,
including a, are from the same memory snapshot n, where beginIdx t ≤ n ≤
maxIdx (predicate validIdx t(n) from the precondition, which must hold in the
else branch). In the former case the value of a from wrSet t is returned, and in
the latter, the value from memSeq(n) is returned and the read set is updated.
The read set of t is also validated when a transaction commits (cf. DoCommitROt

and DoCommitWt). Note that when committing, a read-only transaction may read
from a memory snapshot older than memSeq(maxIdx ), but a writing transaction
must ensure that all reads in its read set are from most recent memory (i.e.
latestMem memSeq(maxIdx )), since its writes will update the memory sequence
with a new snapshot.

To ensure (R2), if a transaction t′ commits before transaction t starts, then
the memory that t reads from must include the writes of t′. Thus, when starting a
transaction, t saves the current last index of the memory sequence, maxIdx , into
a local variable beginIdx t. When t performs a read, the predicate validIdx t(n)
ensures that that the snapshot memSeq(n) used has beginIdx t ≤ n, implying
that writes of t′ are included.

Our proof of opacity is based on trace refinement [16] between HyTML and
TMS2, which ensures that every externally visible execution of HyTML is a
possible externally visible execution of TMS2. Since every execution of TMS2
is known to be opaque [15], one can conclude that HyTML is itself opaque. We
develop a proof method for trace refinement that exploits the fact that HyTML
consists of two distinct sets of transactions: slow- and fast-path. Namely, our
method proves opacity of each set of transactions independently, taking into
account any possible interference from the other set.



40 A. Armstrong and B. Dongol

4 Interference Automata

In this section, we formalise the concept of interference automata and the
notions of trace refinement and forward simulation that we use. Interference
automata specialise IOA by explicitly including transitions for environment
steps, representing the potential interference from other components within the
same system. In the context of the HyTM implementations we verify, an inter-
ference automaton will model the fast-path (slow-path) transactions with inter-
ference stemming from the slow-path (fast-path).

Definition 2 (Interference automata). An interference automaton A con-
sists of:

– PA is an (infinite) set of process identifiers,
– sets local(A) and global(A) of local and global states,
– sets external(A) and internal(A) of external and internal actions, and
– an environment action ε /∈ external(A) ∪ internal(A).

We assume external(A) ∩ internal(A) = ∅, and use actions(A) = external(A) ∪
internal(A) ∪ {ε} to denote the actions of A. Furthermore:

– initialisation of A is described by
• lstart(A) ⊆ PA → local(A), a set of local start states, and
• gstart(A) ∈ global(A), a global start state

– transitions of A are described by
• ltrans(A) ⊆ (local(A) × global(A)) × actions(A) × (local(A) × global(A)),

which describes local transitions, and
• env(A) ⊆ global(A)×global(A), which is a reflexive relation that describes

environment transitions.

The overall state space of A is given by states(A) = (PA → local(A))×global(A).
That is, a state is a pair consisting of a local state for every possible process in
PA and a global state. For any state s, the local part of the state is denoted by
sl, and the global part by sg, and hence, s = (sl, sg).

An interference automaton A may perform an environment transition in
env(A), which may only modify the global state, or a local transition for a
specific process p ∈ PA, which may only modify the local state of p and the
global state. For states s and s′, action a, and process p, we denote an internal
or external transition of A by s

a,p−−→A s′, where the action is paired with the
process identifier executing the action. By construction, we have that the local
state of process p′ is unchanged after a transition of process p whenever p �= p′.
For global state sg, s

′
g, we use sg

ε−→A s′
g to denote an environment transition,

which is lifted to the level of states in the obvious way. Namely, if sl is a local
state, we let (sl, sg)

ε−→A (sl, s
′
g) denote an environment transition.

A run of an interference automaton A is an alternating sequence of states and
actions starting from an initial state. The traces of A, denoted traces(A), are the
runs of A restricted to external actions, and the reachable states of A, denoted
reach(A), are states that can be reached by some run of A. For interference
automata A and C, we say C is a trace refinement of A iff traces(C) ⊆ traces(A).



Modularising Opacity Verification for Hybrid Transactional Memory 41

Interference automata may be regarded as a special case of IOA, where the
state is specialised and actions are split into internal and environment actions.
Therefore, all theorems of IOA, including notions of simulation [16] are also
applicable in this setting. Note that an interference automaton A represents the
actions of an arbitrary amount of processes, which is why PA must be infinite.
As such, interference automata represent systems of processes and not specific
sets of processes. A forward simulation is a standard way of verifying trace
refinement between a concrete implementation and an abstract specification.
For interference automata, this involves proving simulation between the external,
internal, and environment steps.

Definition 3 (Forward simulation). If A and C are interference automata
such that external(C) ⊆ external(A), we say R ⊆ states(C) × states(A) is a
forward simulation between A and C iff each of the following hold:

Initialisation. ∀cs ∈ start(C) • ∃as ∈ start(A) • (cs, as) ∈ R

External step correspondence
∀cs ∈ reach(C), as ∈ reach(A), a ∈ external(C), p ∈ PC , cs′ ∈ states(C) •

(cs, as) ∈ R ∧ cs
a,p−−→C cs′ =⇒

∃as′ ∈ states(A) • (cs′, as′) ∈ R ∧ as
a,p−−→A as′,

Internal step correspondence
∀cs ∈ reach(C), as ∈ reach(A), a ∈ internal(C), p ∈ PC , cs′ ∈ states(C) •

(cs, as) ∈ R ∧ cs
a,p−−→C cs′ =⇒ (cs′, as) ∈ R ∨

∃as′ ∈ states(A), a′ ∈ internal(A) • (cs′, as′) ∈ R ∧ as
a′,p−−→A as′,

Environment step correspondence
∀cs ∈ reach(C), as ∈ reach(A), cs′

g ∈ global(C) •
(cs, as) ∈ R ∧ csg

ε−→C cs′
g =⇒

∃as′
g ∈ global(A) • ((csl, cs

′
g), (asl, as′

g)) ∈ R ∧ asg
ε−→A as′

g.

Soundness of the forward simulation rule with respect to trace refinement has
been checked in Isabelle [1].

Theorem 1 (Soundness). If R is a forward simulation between interfer-
ence automata A and C, then C is a trace refinement of A, i.e., traces(C) ⊆
traces(A).

In Sect. 5, we introduce the concept of parallel interference automata and in
Sect. 6, we develop a theorem for decomposing parallel interference automata
into proofs of individual sub-components. It turns out that our decomposition
theorem only needs assume the existence of weak forward simulation of the com-
ponents, in which environment step correspondence may not hold. The notion
of a weak simulation is important here, as weak simulations correspond to our
existing proofs of opacity for e.g. TML, since these proofs do not involve envi-
ronment steps. As such, this facilitates the re-use of existing proofs of STM



42 A. Armstrong and B. Dongol

components in the parallel case with only minor modifications. Note that weak
simulation between A and C ensures trace refinement for any automaton C in
which env(C) is the identity relation since the environment step correspondence
proof is trivial.

5 Parallel Interference Automata

In this section, we define a notion of parallel composition for interference
automata. The idea is that any possible interference from one component of
the parallel composition is reflected as an environment transition in the other.
Thus, the parallel composition B‖C comprises an interleaving of the local (inter-
nal and external) actions of both B and C.

Two interference automata B and C can be composed iff they are compati-
ble, which only requires that they share the same start state, i.e., gstart(B) =
gstart(C). We let � denote disjoint union with injections (or inclusion maps) ι1
and ι2.

Definition 4 (Parallel composition). The parallel composition of two com-
patible interference automata B and C is constructed as follows:

– local(B‖C) = local(B) � local(C),
– global(B‖C) = global(B) ∪ global(C),
– PB‖C = PB � PC ,
– lstart(B‖C) = {f ∪ g • f ∈ lstart(B) ∧ g ∈ lstart(C)},
– gstart(B‖C) = gstart(B) = gstart(C) as B and C are compatible,
– internal(B‖C) = internal(B) � internal(C),
– ((ιn(s), g), ιn(a), (ιn(s′), g′)) ∈ ltrans(B‖C) iff ((s, g), a, (s′, g′)) ∈ ltrans(B)

when n = 1 and ((s, g), a, (s′, g′)) ∈ ltrans(C) when n = 2, and
– env(A) = Id, where Id is the identity relation.

Essentially this construction splits both the processes and the internal state
space of the automaton into left and right processes and states, respectively. An
invariant of any composed automaton is that left processes always act on left
internal states, and vice versa. For the parallel composition B‖C, we typically
refer to the automaton B as the left automaton and C as the right automaton.
We use L to denote the projection function that takes a combined state of B‖C
and projects just to the part from the left automata B, and similarly for R
and C.

Henceforth, we make the environment transitions of interference automata
explicit. We introduce the notation I �A for an interference automaton A where
the environment is the relation I, i.e. env(I�A) = I. We write A when env(A) =
Id and refer to such A as an interference-free automaton. Note that we therefore
have Id � A = A.

In Definition 4, the environment of the composed interference automaton
(IC � B)‖(IB � C) is set to be the identity relation Id , which is possible under
the assumption that the local transitions of IC �B imply the environment tran-
sitions of C (namely IB), and vice versa. To use this assumption in our proofs,



Modularising Opacity Verification for Hybrid Transactional Memory 43

we introduce the notion of a guarantee condition (inspired by rely/guarantee
reasoning [12]). We say that an automaton I � B guarantees a relation J when

∀s ∈ reach(I � B), a ∈ actions(I � B), p ∈ PB • s
a,p−−→I�B s′ =⇒ (sg, s

′
g) ∈ J.

This states that every reachable transition in I � B modifies the global state
only as permitted by J . In other words, if IC � B guarantees IB and IB � C
guarantees IC , then this ensures that every local transition of IC � B can be
matched with a environment step of IB � C, and vice versa.

As mentioned an (interference-free) interference automaton A represents the
actions of zero or more transactions of type A. Similarly the parallel composition
A‖A also represents zero or more transactions of type A, with some labelled as
from the left A and others from the right. In other words, parallel composition
is idempotent for interference free interference automata. This can be shown via
a re-labelling of process identifiers, and has been verified in Isabelle (see [1]).

Theorem 2. traces(A‖A) = traces(A).

We will use this theorem in the proof of HyTML to split the interference-free
IOA specification TMS2 into the parallel composition of two TMS2 components.
Thus, to show that HyTML is a trace refinement of TMS2, it will be sufficient to
show that the software and hardware components individually are refinements
of TMS2.

6 Simulation Proofs for Parallel Interference Automata

For modular verification of a parallel interference automaton, we provide a way
to build a simulation of a parallel composition from individual weak simulations
of the sub-components. For example, in HyTML we consider the two concrete
fast/slow paths, and prove both of them TMS2 independently. By Theorem 2, we
have that traces(TMS2) = traces(TMS2‖TMS2), and hence, for modular proofs
of opacity, it is sufficient to consider abstract specifications of the form A‖A.

Consider interference automata IC � B and IB � C, and an abstract inter-
ference automaton IA � A. Assume we have weak simulations R and S where

IA � A weakly simulates IC � B and, IA � A weakly simulates IB � C.

We aim to develop conditions such that R‖S is a full (non-weak) simulation
between A‖A and B‖C, where

R‖S = {(s, s′) • (L(s),L(s′)) ∈ R ∧ (R(s),R(s′)) ∈ S}.

We now describe the weak simulations R and S, including the state projection
functions L and R, and their interaction with the non-weak simulation of the
whole system. Graphically, we can visualise weak simulations R and S as

π1 ε π2

π2

and

ε γ1 ε

γ1



44 A. Armstrong and B. Dongol

where the local states of the left (right) automaton IC�B (symmetrically IB�C)
combined with the global state is represented by . Thus, the left (right)
simulation R (S) is over . Each state of the parallel automaton B‖C,
denoted , contains both left and right processes, their local states, as well as
the shared global state.

For the weak simulations R and S, we must construct a simulation R‖S of
the form:

π1 γ1 π2

γ1 π2

where the environment step ε of R must correspond to the appropriate program
step of S, namely γ1. However, we cannot prove this without some additional
properties, because we do not know how actions of IB �C affect R, and similarly
for IC�B and S. Note that establishing environment step correspondence (which
would turn R and S into non-weak forward simulations) would not help. For
example, consider R′:

π1 ε π2

εA π2

Because we have no way of guaranteeing that the abstract state after εA in R′

is the same as the abstract state after γ1 in S, we cannot naively construct a
parallel forward simulation. Instead we use non-interference conditions which
guarantee that C and B do not affect R and S, respectively. In essence, this
enables us to ‘stitch’ together the two simulations R and S into a simulation of
the parallel composition. In other words, the simulation relations used in both
component proofs are preserved by the effects of both components’ actions on
the global state.

Definition 5. The condition nonInterferenceLeft(R,S,B,C,A) holds iff

∀cl, cg, al, ag, πC , πA, p •
L(cl, cg) ∈ reach(B) ∧ L(al, ag) ∈ reach(A) ∧ R(cl, cg) ∈ reach(C)
∧ (R(cl, cg),R(al, ag)) ∈ R ∧ (L(cl, cg),L(al, ag)) ∈ S

∧ L(cl, cg)
πB ,p−−−→B L(c′

l, c
′
g) ∧ L(al, ag)

πA,p−−−→A L(a′
l, a

′
g)

=⇒ (R(cl, c
′
g),R(al, a

′
g)) ∈ R.

where πA and πC are corresponding actions. Symmetrically, we define a condition
nonInterferenceRight(R,S,B,C,A).

The reason these conditions are needed is that our guarantee conditions talk
purely about the state changes caused by the automaton itself, but not about the



Modularising Opacity Verification for Hybrid Transactional Memory 45

simulation relations between automata. While these non-interference conditions
at first look complicated due to the amount of notation involved, notice that the
local state cl and al does not change between the pre- and post-condition for the
simulation relation R. What this means is that we are really showing only that
effects contained within the guarantee conditions do not affect the simulation
relation, which means that these conditions turn out to be quite straightforward
to prove in practice, as will be seen in Sect. 7.

Attempting to remove these non-interference conditions to make the method
fully compositional might not be worthwhile in practice, as doing so would
require full (rather than weak) simulations for each of the components. This
proves to be difficult, as it requires induction on the amount of interference
within the simulation proof of each component, and it would preclude easy re-
use of existing opacity proofs for the fast and slow paths.

We can now state our simulation theorem for parallel interference automata.
The theorem states that R‖S can be strengthened to a forward simulation
between B‖C and A‖A provided R (S) is a weak simulation between B (C)
and A, and certain guarantee and non-interference conditions hold. This theo-
rem has been verified in Isabelle [1].

Theorem 3 (Decomposition). For two compatible interference automata B
and C, if R is a weak forward simulation between IA � A and IC � B, and S is
a weak forward simulation between IA � A and IB � C, where

– IB � C guarantees Ic, and IC � B guarantees IB,
– nonInterferenceRight(R,S, IC � B, IB � C, IA � A),
– nonInterferenceLeft(R,S, IC � B, IB � C, IA � A).

Then R‖S is a (non-weak) forward simulation between B‖C and A‖A, and hence
traces(B‖C) ⊆ traces(A‖A).

7 HyTML Proof and Mechanisation

In this section we discuss the proof of the HyTML algorithm, and its mecha-
nisation in Isabelle. HyTML is equal to SP‖FP where SP and FP are the soft-
ware slow-path and hardware fast-path components, respectively. Recall that we
wish to prove traces(HyTML) ⊆ traces(TMS2). We prove that TMS2‖TMS2
weakly simulates HyTML via Theorem 3, and thus traces(HyTML) ⊆
traces(TMS2‖TMS2). By Theorem 2, traces(TMS2) = traces(TMS2‖TMS2),
and hence the result follows by transitivity of ⊆.

We start by defining environment relations for all the automata involved.
The relation for the interference SP receives from FP, IFP is

Id ∪ {(g, g′) • (odd(glb) −→ g = g′) ∧ ctr ′ ≥ ctr ∧ glb′ = glb
∧ (even(glb) ∧ store �= store ′ −→ ctr ′ > ctr)}.

In words, the fast-path guarantees that: (1) If glb is odd, then it will not affect
the global state at all. (2) If glb is even, then any change to the store implies ctr



46 A. Armstrong and B. Dongol

increased. (3) Even if the store remained the same, ctr may still increase, and,
(4) The fast path never modifies glb (it only subscribes to it).

SP makes a much weaker guarantee to the FP; ISP guarantees that

{(g, g′) • ctr ′ = ctr ∧ glb′ ≥ glb}.

In words, this means that the software only guarantees that it will not change
the ctr variable, and that it only ever increments glb.

The interference from other TMS2 components on TMS2 is given by ITMS2,
which simply allows new stores to be added to the stores sequence (see (R1) in
Sect. 3).

The proof that TMS2‖TMS2 weakly simulates HyTML is split into sev-
eral sub-parts: First, we show weak simulation of both IFP � SP and ISP � FP
against ITMS2 � TMS2. The fast-path proof is much simpler than the slow-
path, as the hardware transactional memory abstraction performs most of the
fine-grained steps of atomically, which greatly simplifies the verification process.
Third, we verify the guarantee conditions from Sect. 4. Fourth, we verify the
non-interference properties in Sect. 4.

Mechanisation. For HyTM implementations we further specialise interference
automata to model the components of a hybrid TM implementation. The set
of process identifiers become transaction identifiers, and assuming L and V
represent the set of all addresses and values, the set of external actions of a
transactional automaton A are fixed, and given by:

externalT = {BeginI,BeginR,CommitI,CommitR,Abort,WriteR}
∪ {ReadI(a) | a ∈ L} ∪ {ReadR(v) | v ∈ V }
∪ {WriteI(a, v) | (a, v) ∈ L × V }

As mentioned in Sect. 2, we base our implementation of the underlying hard-
ware transactional memory on Intel’s TSX extensions. Therefore, we imple-
ment transitions for the XBegin, XEnd and XAbort actions within the hardware
automaton. We assume that each hardware transaction is equipped with read
and write sets representing the values held in the local processors cache. A simple
validation predicate which checks if the values in the read and write set match
those in main memory models the cache line invalidation used in the actual hard-
ware. While this validation is more fine-grained than what the actual hardware
can do (as it works on the level of cache lines), because the fast path automa-
ton can abort non-deterministically at anytime, all the possible behaviour of the
hardware is captured and shown to be opaque. Overly coarse-grained validation
might force us to abort when the hardware could succeed, so we err on the side
of caution. This behaviour should be generic enough to capture the behaviour of
any reasonable hardware TM implementation, not just Intel’s TSX. In particu-
lar, we do not assume that non-transactional reads and writes can occur within
hardware transactions.

Proof in Isabelle. For full-details of our proofs, we refer the interested reader to
our Isabelle theories. Here, we briefly comment on the complexity of our mechani-
sation. In Isabelle, formalising and proving the correctness of the TML slow-path



Modularising Opacity Verification for Hybrid Transactional Memory 47

required about 2900 lines, while formalising and proving the correctness of the
hardware fast-path required around 600 lines. Proving the non-interference and
guarantee conditions required only 450 lines; with the non-interference condi-
tions taking 300 lines and the guarantee conditions requiring only around 70
lines. The formalisation of the transactional automata and requisite theorems
took around 2000 lines of Isabelle. Although these are not perfect metrics, they
show that the majority of the work was in proving that both HyTM paths sat-
isfy TMS2. Once these individual proofs were completed, bringing the proofs
together was fairly comparatively straightforward once the necessary theorems
had been set up.

Proving that both HyTM paths are TMS2 is fairly mechanical, and involves
detailed line-by-line simulations—showing that every possible step preserves the
simulation relation even under interference from every other possible step. Our
method enabled adapting our existing work verifying software TML and adapting
it to the HyTM case. For simulation proofs of this nature, the number of sub-
goals grows geometrically with the number of lines in the algorithm, whereas the
non-interference conditions only grow linearly in the modular case. However, we
believe that both the conceptual benefits of splitting the proof into its logical
sub-components, as well as the ability to re-use existing proofs are the main
benefits to modularisation.

Our experience with Isabelle for these proofs was very positive. The powerful
tools and tactics within Isabelle were very useful for automating many of the
cases produced by the simulation rules.

8 Conclusion

In this paper we have developed a fully mechanised modular proof method for
verifying opacity of HyTM algorithms. Verification of opacity has received con-
siderable interest in recent years (see e.g., [5,13]). We leverage a simulation-
based approach against the TMS2 specification [7] as well as the known result
that TMS2 is itself opaque [15]. Our method supports adapting existing proofs
of opacity (via TMS2) for both the fast- and slow-path into a HyTM system
with only minor modifications to such existing proofs.

We develop the novel notion of interference automata, as well as notions
of parallel composition and weak simulation for them. These concepts give
us a proof method for combining weak simulations on individual interference
automata into a single proof of trace refinement for their parallel composition.
All of our meta theory has been checked using the Isabelle theorem prover. To
show applicability of our methodology in the context of HyTM algorithms, we
develop a novel hybrid extension to Dalessandro et al.’s TML [4], where we
apply a 2-counter subscription mechanism [3]. Our new algorithm allows more
concurrency than the original TML as it allows parallel hardware writers.

We conjecture the possibility of further optimisations to the algorithm by
removing redundant checks on glb and ctr in the slow-path read operation if loct

is odd. It may also be possible to replace the dccs operation by first acquiring a



48 A. Armstrong and B. Dongol

local value of ctr before acquiring the mutex lock glb using a compare and swap
and then checking if the local value of ctr is still valid. However, we have chosen
to present a conceptually simpler algorithm that nevertheless demonstrates our
proof method. There are more complex HyTMs [2,3,18], some with more than
two types of transactions; we leave verification of these for future work.

Acknowledgements. We thank Simon Doherty for his helpful comments on this
work. Funding is provided by EPSRC grant EP/N016661/1.

References

1. Armstrong, A., Dongol, B.: Isabelle files for modularising opacity verification for
hybrid transactional memory (2016). https://figshare.com/articles/Isabelle files
for verification of a hybrid transactional mutex lock/4868351

2. Calciu, I., Gottschlich, J., Shpeisman, T., Pokam, G., Herlihy, M.: Invyswell: a
hybrid transactional memory for Haswell’s restricted transactional memory. In:
PACT, pp. 187–200. ACM, New York (2014)

3. Dalessandro, L., Carouge, F., White, S., Lev, Y., Moir, M., Scott, M.L., Spear,
M.F.: Hybrid NOrec: a case study in the effectiveness of best effort hardware
transactional memory. SIGPLAN Not. 46(3), 39–52 (2011)

4. Dalessandro, L., Dice, D., Scott, M., Shavit, N., Spear, M.: Transactional mutex
locks. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol.
6272, pp. 2–13. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15291-7 2

5. Derrick, J., Dongol, B., Schellhorn, G., Travkin, O., Wehrheim, H.: Verify-
ing opacity of a transactional mutex lock. In: Bjørner, N., de Boer, F. (eds.)
FM 2015. LNCS, vol. 9109, pp. 161–177. Springer, Cham (2015). doi:10.1007/
978-3-319-19249-9 11

6. Doherty, S., Dongol, B., Derrick, J., Schellhorn, G., Wehrheim, H.: Proving opacity
of a pessimistic STM. In: Jiménez, E. (ed.) OPODIS (2016, to appear)

7. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and
verifying transactional memory. Formal Asp. Comput. 25(5), 769–799 (2013)

8. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Chat-
terjee, S., Scott, M.L. (eds.) PPOPP, pp. 175–184. ACM (2008)

9. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory. Synthesis Lec-
tures on Distributed Computing Theory. Morgan & Claypool Publishers, San
Rafael (2010)

10. Harris, T., Larus, J.R., Rajwar, R.: Transactional Memory. Synthesis Lectures
on Computer Architecture, 2nd edn. Morgan & Claypool Publishers, San Rafael
(2010)

11. Intel: Intel 64 and IA-32 Architectures Software Developers Manual (2016)
12. Jones, C.B.: Tentative steps toward a development method for interfering pro-

grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)
13. Lesani, M.: On the correctness of transactional memory algorithms. Ph.D. thesis,

UCLA (2014)
14. Lesani, M., Luchangco, V., Moir, M.: A framework for formally verifying software

transactional memory algorithms. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 516–530. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32940-1 36

https://figshare.com/articles/Isabelle_files_for_verification_of_a_hybrid_transactional_mutex_lock/4868351
https://figshare.com/articles/Isabelle_files_for_verification_of_a_hybrid_transactional_mutex_lock/4868351
http://dx.doi.org/10.1007/978-3-642-15291-7_2
http://dx.doi.org/10.1007/978-3-319-19249-9_11
http://dx.doi.org/10.1007/978-3-319-19249-9_11
http://dx.doi.org/10.1007/978-3-642-32940-1_36
http://dx.doi.org/10.1007/978-3-642-32940-1_36


Modularising Opacity Verification for Hybrid Transactional Memory 49

15. Lesani, M., Luchangco, V., Moir, M.: Putting opacity in its place. In: Workshop
on the Theory of Transactional Memory (2012)

16. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)
17. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-

rithms. In: PODC, pp. 137–151. ACM (1987)
18. Matveev, A., Shavit, N.: Reduced hardware NOrec: a safe and scalable hybrid

transactional memory. SIGPLAN Not. 50(4), 59–71 (2015)
19. Paulson, L.C.: Isabelle - A Generic Theorem Prover. LNCS, vol. 828. Springer,

Heidelberg (1994). (with a contribution by Nipkow, T.)
20. de Roever, W.P., de Boer, F.S., Hannemann, U., Hooman, J., Lakhnech, Y., Poel,

M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and Non-
compositional Methods. Cambridge Tracts in Theoretical Computer Science, vol.
54. Cambridge University Press, New York (2001)


	Modularising Opacity Verification for Hybrid Transactional Memory
	1 Introduction
	2 Hybrid TML
	3 The TMS2 Specification
	4 Interference Automata
	5 Parallel Interference Automata
	6 Simulation Proofs for Parallel Interference Automata
	7 HyTML Proof and Mechanisation
	8 Conclusion
	References


