
Ahmed Bouajjani
Alexandra Silva (Eds.)

 123

LN
CS

 1
03

21

37th IFIP WG 6.1 International Conference, FORTE 2017
Held as Part of the 12th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2017
Neuchâtel, Switzerland, June 19–22, 2017, Proceedings

Formal Techniques
for Distributed Objects,
Components, and Systems

Lecture Notes in Computer Science 10321

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Ahmed Bouajjani • Alexandra Silva (Eds.)

Formal Techniques
for Distributed Objects,
Components, and Systems
37th IFIP WG 6.1 International Conference, FORTE 2017
Held as Part of the 12th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2017
Neuchâtel, Switzerland, June 19–22, 2017
Proceedings

123

Editors
Ahmed Bouajjani
University Paris Diderot
Paris
France

Alexandra Silva
University College London
London
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-60224-0 ISBN 978-3-319-60225-7 (eBook)
DOI 10.1007/978-3-319-60225-7

Library of Congress Control Number: 2017943019

LNCS Sublibrary: SL2 – Programming and Software Engineering

© IFIP International Federation for Information Processing 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

The 12th International Federated Conference on Distributed Computing Techniques
(DisCoTec) took place in Neuchâtel, Switzerland, during June 19–22, 2017. It was
organized by the Institute of Computer Science of the University of Neuchâtel.

The DisCoTec series is one of the major events sponsored by the International
Federation for Information Processing (IFIP). It comprises three conferences:

– COORDINATION, the IFIP WG6.1 International Conference on Coordination
Models and Languages

– DAIS, the IFIP WG6.1 International Conference on Distributed Applications and
Interoperable Systems

– FORTE, the IFIP WG6.1 International Conference on Formal Techniques for
Distributed Objects, Components and Systems

Together, these conferences cover a broad spectrum of distributed computing sub-
jects, ranging from theoretical foundations and formal description techniques to sys-
tems research issues.

Each day of the federated event began with a plenary speaker nominated by one
of the conferences. The three invited speakers were Prof. Giovanna Di Marzo Seru-
gendo (UniGE, Switzerland), Dr. Marko Vukolić (IBM Research, Switzerland), and
Dr. Rupak Majumdar (MPI, Germany).

Associated with the federated event were also three satellite events that took place
during June 21–22, 2017:

– The 10th Workshop on Interaction and Concurrency Experience (ICE)
– The 4th Workshop on Security in Highly Connected IT Systems (SHCIS)
– The EBSIS-sponsored session on Dependability and Interoperability with

Event-Based Systems (DIEBS)

Sincere thanks go to the chairs and members of the Program and Steering Com-
mittees of the aforementioned conferences and workshops for their highly appreciated
efforts. The organization of DisCoTec 2017 was only possible thanks to the dedicated
work of the Organizing Committee, including Ivan Lanese (publicity chair), Romain
Rouvoy (workshop chair), Peter Kropf (finance chair), and Aurélien Havet (webmas-
ter), as well as all the students and colleagues who volunteered their time to
help. Finally, many thanks go to IFIP WG6.1 for sponsoring this event, Springer’s
Lecture Notes in Computer Science for their support and sponsorship, and EasyChair
for providing the reviewing infrastructure.

April 2017 Pascal Felber
Valerio Schiavoni

Preface

This volume contains the papers presented at FORTE 2017, the 37th IFIP International
Conference on Formal Techniques for Distributed Objects, Components and Systems.
This conference was organized as part of the 12th International Federated Conference
on Distributed Computing Techniques (DisCoTec) and was held during June 19–22,
2017, in Neuchâtel (Switzerland).

The FORTE conference series represents a forum for fundamental research on
theory, models, tools, and applications for distributed systems. The conference
encourages contributions that combine theory and practice, and that exploit formal
methods and theoretical foundations to present novel solutions to problems arising
from the development of distributed systems. FORTE covers distributed computing
models and formal specification, testing, and verification methods. The application
domains include all kinds of application-level distributed systems, telecommunication
services, Internet, embedded, and real-time systems, as well as networking and com-
munication security and reliability.

After careful deliberations, the Program Committee selected 17 papers for presen-
tation, of which three are short papers and one is a tool paper. In addition to these
papers, this volume contains an abstract of the invited talk by an outstanding
researcher, Rupak Majumdar (Max Planck Institute for Software Systems, Kaiser-
slautern, Germany), on “Systematic Testing for Asynchronous Programs.” We warmly
thank him for his participation. We also thank all the authors for their submissions,
their willingness to continue improving their papers, and their presentations!

Conferences like FORTE rely on the willingness of experts to serve in the Program
Committee; their professionalism and their helpfulness were exemplary. We thank the
members of the Program Committee and all the external reviewers for their excellent
work. We would like also to thank the general chair, Pascal Felber (University of
Neuchâtel, Switzerland), and the support of the Organizing Committee chaired by
Valerio Schiavoni (University of Neuchâtel, Switzerland), and the publicity chair, Ivan
Lanese (University of Bologna, Italy). We also thank the members of the Steering
Committee for their helpful advice. For the work of the Program Committee and the
compilation of the proceedings, the EasyChair system was employed; it freed us from
many technical matters and allowed us to focus on the program, for which we are
grateful.

April 2017 Ahmed Bouajjani
Alexandra Silva

Organization

Program Committee

Elvira Albert Complutense University of Madrid, Spain
Luis Barbosa Universidade do Minho, Portugal
Gilles Barthe IMDEA Software Institute, Spain
Borzoo Bonakdarpour McMaster University, Canada
Ahmed Bouajjani IRIF, University of Paris Diderot, France
Franck Cassez Macquarie University, Australia
Hana Chockler King’s College London, UK
Pedro D’Argenio Universidad Nacional de Córdoba - CONICET,

Argentina
Frank De Boer CWI, The Netherlands
Mariangiola Dezani-Ciancaglini Università di Torino, Italy
Cezara Dragoi IST, Austria
Michael Emmi Bell Labs, Nokia, USA
Carla Ferreira CITI/DI/FCT/UNL, Portugal
Bart Jacobs Katholieke Universiteit Leuven, Belgium
Sophia Knight Uppsala University, Sweden
Annabelle McIver Macquarie University, Australia
Stephan Merz Inria Nancy, France
Stefan Milius FAU Erlangen, Germany
Catuscia Palamidessi Inria, France
Corina Pasareanu CMU/NASA Ames Research Center, USA
Anna Philippou University of Cyprus
Sanjiva Prasad Indian Institute of Technology Delhi, India
Alexandra Silva University College London, UK
Ana Sokolova University of Salzburg, Austria
Marielle Stoelinga University of Twente, The Netherlands

Additional Reviewers

Åman Pohjola, Johannes
Bacci, Giovanni
Brett, Noel
Chen, Tzu-Chun
Coppo, Mario
Dodds, Mike
Gerhold, Marcus
Gutkovas, Ramūnas

Göthel, Thomas
Isabel, Miguel
Jakšić, Svetlana
Jensen, Peter Gjøl
Klin, Bartek
Kouzapas, Dimitrios
Köpf, Boris
Lee, Matias David

Lienhardt, Michael
Luckow, Kasper
Madeira, Alexandre
Mamouras, Konstantinos
Maubert, Bastien
Meijer, Jeroen
Montenegro, Manuel
Monti, Raúl E.
Mousavi, Mohammadreza

Pang, Jun
Petrisan, Daniela
Proenca, Jose
Sammartino, Matteo
Schivo, Stefano
Schlatte, Rudolf
Siddique, Umair
Toninho, Bernardo

X Organization

Systematic Testing
for Asynchronous Programs

(Invited Talk)

Rupak Majumdar

MPI-SWS, Kaiserslautern, Germany

Asynchronous programming is a generic term for concurrent programming with
cooperative task management and shows up in many different applications. For
example, many programming models for the web, smartphone and cloud-backed
applications, server applications, and embedded systems implement programming in
this style. In all these scenarios, while programs can be very efficient, the manual
management of resources and asynchronous procedures can make programming quite
difficult. The natural control flow of a task is obscured and the programmer must ensure
correct behavior for all possible orderings of external events. Specifically, the global
state of the program can change between the time an asynchronous procedure is posted
and the time the scheduler picks and runs it.

In this talk, I will describe algorithmic analysis techniques for systematic testing of
asynchronous programs. I will talk about formal models for asynchronous programs
and verification and systematic testing techniques for these models. The results will use
connections between asynchronous programs and classical concurrency models such as
Petri nets, partial order reductions for asynchronous programs, as well as combinatorial
constructions of small test suites with formal guarantees of coverage.

Contents

Session Types for Link Failures . 1
Manuel Adameit, Kirstin Peters, and Uwe Nestmann

Learning-Based Compositional Parameter Synthesis
for Event-Recording Automata . 17

Étienne André and Shang-Wei Lin

Modularising Opacity Verification for Hybrid Transactional Memory 33
Alasdair Armstrong and Brijesh Dongol

Proving Opacity via Linearizability: A Sound and Complete Method. 50
Alasdair Armstrong, Brijesh Dongol, and Simon Doherty

On Futures for Streaming Data in ABS (Short Paper) 67
Keyvan Azadbakht, Nikolaos Bezirgiannis, and Frank S. de Boer

Session-Based Concurrency, Reactively . 74
Mauricio Cano, Jaime Arias, and Jorge A. Pérez

Procedural Choreographic Programming. 92
Luís Cruz-Filipe and Fabrizio Montesi

An Observational Approach to Defining Linearizability
on Weak Memory Models . 108

John Derrick and Graeme Smith

Applying a Dependency Mechanism for Voting Protocol Models
Using Event-B . 124

J. Paul Gibson, Souad Kherroubi, and Dominique Méry

Weak Simulation Quasimetric in a Gossip Scenario. 139
Ruggero Lanotte, Massimo Merro, and Simone Tini

Reasoning About Distributed Secrets . 156
Nicolás Bordenabe, Annabelle McIver, Carroll Morgan,
and Tahiry Rabehaja

Classical Higher-Order Processes (Short Paper). 171
Fabrizio Montesi

Weak Nominal Modal Logic . 179
Joachim Parrow, Tjark Weber, Johannes Borgström,
and Lars-Henrik Eriksson

http://dx.doi.org/10.1007/978-3-319-60225-7_1
http://dx.doi.org/10.1007/978-3-319-60225-7_2
http://dx.doi.org/10.1007/978-3-319-60225-7_2
http://dx.doi.org/10.1007/978-3-319-60225-7_3
http://dx.doi.org/10.1007/978-3-319-60225-7_4
http://dx.doi.org/10.1007/978-3-319-60225-7_5
http://dx.doi.org/10.1007/978-3-319-60225-7_6
http://dx.doi.org/10.1007/978-3-319-60225-7_7
http://dx.doi.org/10.1007/978-3-319-60225-7_8
http://dx.doi.org/10.1007/978-3-319-60225-7_8
http://dx.doi.org/10.1007/978-3-319-60225-7_9
http://dx.doi.org/10.1007/978-3-319-60225-7_9
http://dx.doi.org/10.1007/978-3-319-60225-7_10
http://dx.doi.org/10.1007/978-3-319-60225-7_11
http://dx.doi.org/10.1007/978-3-319-60225-7_12
http://dx.doi.org/10.1007/978-3-319-60225-7_13

Type Inference of Simulink Hierarchical Block Diagrams in Isabelle 194
Viorel Preoteasa, Iulia Dragomir, and Stavros Tripakis

Creating Büchi Automata for Multi-valued Model Checking. 210
Stefan J.J. Vijzelaar and Wan J. Fokkink

Privacy Assessment Using Static Taint Analysis (Tool Paper) 225
Marcel von Maltitz, Cornelius Diekmann, and Georg Carle

EPTL - A Temporal Logic for Weakly Consistent Systems (Short Paper). . . . 236
Mathias Weber, Annette Bieniusa, and Arnd Poetzsch-Heffter

Author Index . 243

XIV Contents

http://dx.doi.org/10.1007/978-3-319-60225-7_14
http://dx.doi.org/10.1007/978-3-319-60225-7_15
http://dx.doi.org/10.1007/978-3-319-60225-7_16
http://dx.doi.org/10.1007/978-3-319-60225-7_17

Session Types for Link Failures

Manuel Adameit, Kirstin Peters(B), and Uwe Nestmann

TU Berlin, Berlin, Germany
kirstin.peters@tu-berlin.de

Abstract. We strive to use session type technology to prove behav-
ioural properties of fault-tolerant distributed algorithms. Session types
are designed to abstractly capture the structure of (even multi-party)
communication protocols. The goal of session types is the analysis and
verification of the protocols’ behavioural properties. One important such
property is progress, i.e., the absence of (unintended) deadlock. Distrib-
uted algorithms often resemble (compositions of) multi-party communi-
cation protocols. In contrast to protocols that are typically studied with
session types, they are often designed to cope with system failures. An
essential behavioural property is (successful) termination, despite fail-
ures, but it is often elaborate to prove for distributed algorithms.

We extend multi-party session types with optional blocks that cover
a limited class of link failures. This allows us to automatically derive
termination of distributed algorithms that come within these limits.

1 Introduction

Session types are used to statically ensure correctly coordinated behaviour in
systems without global control. One important such property is progress, i.e., the
absence of (unintended) deadlock. Like with every other static typing approach,
the main advantage is that the respective properties are then provable without
unrolling the process, i.e., without computing its executions. Thereby, the state
explosion problem is avoided. Hence, after the often elaborate task of establishing
a type system, they allow to prove properties of processes in a quite efficient way.

Session types describe global behaviours as sessions, i.e., units of conver-
sations. The participants of such sessions are called roles. Global types specify
protocols from a global point of view, whereas local types describe the behaviour
of individual roles within a protocol. Projection ensures that a global type and
its local types are consistent. These types are used to reason about processes for-
mulated in a session calculus. Most of the existing session calculi are extensions
of the well-known π-calculus [10] with specific operators adapted to correlate
with local types. Session types are designed to abstractly capture the structure
of (even multi-party) communication protocols [2,3]. The literature on session
types provides a rich variety of extensions. Nested protocols were introduced by
[7] as an extension of multi-party session types as defined e.g. in [2,3]. They offer
the possibility to define sub-protocols independently of their parent protocols.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Bouajjani and A. Silva (Eds.): FORTE 2017, LNCS 10321, pp. 1–16, 2017.
DOI: 10.1007/978-3-319-60225-7 1

2 M. Adameit et al.

It is essentially the notion of nested protocols that led us to believe that
session types could be applied to capture properties of distributed algorithms,
especially the so-called round-based distributed algorithms. The latter are typ-
ically structured by a repeated execution of communication patterns by n dis-
tributed partners. Often such a pattern involves an exposed coordinator role,
whose incarnation may differ from round to round. As such, distributed algo-
rithms very much resemble compositions of nested multi-party communication
protocols. Moreover, an essential behavioural property of distributed algorithms
is (successful) termination [9,11], despite failures, but it is often elaborate to
prove. It turns out that progress (as provided by session types) and termination
(as required by distributed algorithms) are closely related. For these reasons,
our goal is to apply session type technology to prove behavioural properties of
distributed algorithms.

Particularly interesting round-based distributed algorithms were designed in
a fault-tolerant way, in order to work in a model where they have to cope with
system failures—be it links dropping or manipulating messages, or processes
crashing with or without recovery. As the current session type systems are not
able to cover fault-tolerance (except for exception handling as in [4,5]), it is
necessary to add an appropriate mechanism to cover system failures.

While the detection of conceptual design errors is a standard property of
type systems, proving correctness of algorithms despite the occurrence of uncon-
trollable system failures is not. In the context of distributed algorithms, various
kinds of failures have been studied. Often, the correctness of an algorithm does
not only depend on the kinds of failures but also of the phase of the algorithm
in which they occur, the number of failures, or their likelihood. Here, we only
consider a very simple case, namely algorithms that terminate despite arbitrar-
ily many link failures that may occur at any moment in the execution of the
algorithm.

Therefore, we extend session types with optional blocks, that specify chunks of
communication that may at some point fail. This partial communication protocol
is protected by the optional block, to ensure that no other process can interfere
before the block was resolved and to ensure, that in the case of failure, no parts of
the failed communication attempt may influence the further behaviour. In case
a link fails, the ambition to guarantee progress requires that the continuation
behaviour is not blocked. Therefore, the continuation of an optional block C
can be parametrised by a set of values that are either computed by a successful
termination of an optional block or are provided beforehand as default values,
i.e., we require that for each value that C uses the optional block specifies a
default value. An optional block can cover parts of a protocol or even other
optional blocks. The type system ensures that communication with optional
blocks requires an optional block as communication partner and that only a
successful termination of a block releases the protection around its values. The
semantics of the calculus then allows us to abort an unguarded optional block
at any point. If an optional block models a single communication, its abortion

Session Types for Link Failures 3

represents a message loss. In summary, optional blocks allow us to automatically
derive termination despite arbitrary link failures of distributed algorithms.

Related Work. Type systems are usually designed for scenarios that are free of
system failures. An exception is [8] that introduces unreliable broadcast. Within
such an unreliable broadcast a transmission can be received by multiple receivers
but not necessarily all available receivers. In the latter case, the receiver is dead-
locked. In contrast, we consider failure-tolerant unicast, i.e., communications
between a single sender and a single receiver, where in the case of a failure the
receiver is not deadlocked but continues using default values.

[4,5] extends session types with exceptions thrown by processes within
try-and-catch-blocks. Both concepts—try-and-catch-blocks and optional
blocks—introduce a way to structurally and semantically encapsulate an unreli-
able part of a protocol and provide some means to ‘detect’ a failure and ‘react’
to it. They are, however, conceptionally and technically different. An obvious
difference is the limitation of the inner part of optional blocks towards the com-
putation of values. More fundamentally these approaches differ in the way they
allow to ‘detect’ failures and to ‘react’ to them.

Optional blocks are designed for the case of system errors that may occur
non-deterministically and not necessarily reach the whole system or not even
all participants of an optional block, whereas try-and-catch-blocks model con-
trolled interruption requested by a participant. Hence these approaches differ
in the source of an error; raised by the underlying system structure or by a
participant. Technically this means that in the presented case failures are intro-
duced by the semantics, whereas in [4] failures are modelled explicitly as throw-
operations. In particular we do not specify, how a participant ‘detects’ a failure.
Different system architectures might provide different mechanisms to do so, e.g.
by time-outs. As it is the standard for the analysis of distributed algorithms,
our approach allows to port the verified algorithms on different systems archi-
tectures, provided that the respective structure and its failure pattern preserves
correctness of the considered properties.

The main difference between these two approaches is how they react to fail-
ures. In [4] throw-messages are propagated among nested try-and-catch-
blocks to ensure that all participants are consistently informed about concurrent
throws of exceptions. In distributed systems such a reaction towards a system
error is unrealistic. Distributed processes usually do not have any method to
observe an error on another system part and if a participant is crashed or a link
fails permanently there is usually no way to inform a waiting communication
partner. Instead abstractions (failure detectors) are used to model the detection
of failures that can e.g. be implemented by time-outs. Here it is crucial to men-
tion that failure detectors are usually considered to be local and can not ensure
global consistency. Distributed algorithms have to deal with the problem that
some part of a system may consider a process/link as crashed, while at the same
time the same process/link is regarded as correct by another part. This is one
of the most challenging problems in the design and verification of distributed
algorithms.

4 M. Adameit et al.

In the case of link failures, if a participant is directly influenced by a failure
on some other system part (a receiver of a lost message) it will eventually abort
the respective communication attempt. If a participant does not depend (the
sender in an unreliable link) it may never know about the failure or its nature.
Distributed algorithms usually deal with unexpected failures that are hard to
detect and often impossible to propagate. Generating correct algorithms for this
scenario is difficult and error-prone, thus we need methods to verify them.

Overview. We present global types and restriction in Sect. 2, local types and
projection in Sect. 3, and the session calculus in Sect. 4 with a mechanism to
check types in Sect. 5. In Sect. 6 we discuss the properties of the type system.
We conclude with Sect. 7. The missing proofs and some additional material can
be found in [1].

2 Global Types with Optional Blocks

Throughout the paper we use G for global types, T for local types, l for commu-
nication labels, s, k for session names, a for shared channels, r for role identifiers,
and v for values of a base type (e.g. integer or string). x, y are variables to rep-
resent e.g. session names, shared channels, or values. We formally distinguish
between roles, labels, process variables, type variables, and names—additionally
to identifiers for global/local types, protocols, processes, Formally we do
however not further distinguish between different kinds of names but use dif-
ferent identifiers (a, s, v, . . .) to provide hints on the main intended purpose at
the respective occurrence. Roles and participants are used as synonyms. To sim-
plify the presentation, we adapt set-like notions for tuples. For example we write
xi ∈ x̃ if x̃ = (x1, . . . , xn) and 1 ≤ i ≤ n. We use · to denote the empty tuple.

Global types describe protocols from a global point of view on systems by
interactions between roles. They are used to formalise specifications that describe
the desired properties of a system. We extend the basic global types as used e.g.
in [2,3] with a global type for optional blocks.

Definition 1 (Global Types). Global types with optional blocks are given by

G ::= r1 → r2 :
∑

i∈I

{
li
(
x̃i : S̃i

)
.Gi

}
| opt

〈
˜r, x̃ : S̃ |G

〉
.G′

| G1 ⊕r G2 | G1 || G2 | μt.G | t | end

r1 → r2 :
∑

i∈I

{
li
(
x̃i : S̃i

)
.Gi

}
is the standard way to specify a communica-

tion from role r1 to role r2, where r1 has a direct choice between several labels li
proposed by r2. Each branch expects values x̃i of sorts S̃i and executes the contin-
uation Gi. When I is a singleton, we write r1 → r2 : l

(
x̃ : S̃

)
. G1 ⊕r G2 introduces

so-called located (or internal) choice: the choice for one role r between two dis-
tinct protocol branches. The parallel composition G1 || G2 allows to specify
independent parts of a protocol. μt.G and t are used to allow for recursion. end
denotes the successful completion. We often omit trailing end clauses.

Session Types for Link Failures 5

We add opt

〈
˜r, x̃ : S̃ |G

〉
.G′ to describe an optional block between the roles

r1, . . . , rn, where ˜r, x̃ : S̃ abbreviates the sequence r1, x̃1 : S̃1, . . . , rn, x̃n : S̃n. Here G
is the protocol that is encapsulated by the optional block and the x̃i are so-called
default values that are used within the continuation G′ of the surrounding parent
session if the optional block fails. There is one (possibly empty) vector of default
values x̃i for each role ri. The inner part G of an optional block is a protocol
that (in the case of success) is used to compute the vectors of return values. The
typing rules ensure that for each role ri the type of the computed vector coincides
with the type S̃i of the specified vector of default values x̃i. Intuitively, if the
block does not fail, each participant can use its respective vector of computed
values in the continuation G′. Otherwise, the default values are used.

Optional blocks capture the main features of a failure very naturally: a part of
a protocol either succeeds or fails. They also encapsulate the source and direct
impact of the failure, which allows us to study their implicit effect—as e.g.
missing communication partners—on the overall behaviour of protocols. With
that they help us to specify, implement, and verify failure-tolerant algorithms.

Using optional blocks we provide a natural and simple specification of an
unreliable link c between the two roles src and trg, where in the case of success
the value vsrc is transmitted and in the case of failure a default value vtrg is used
by the receiver.

Example 1 (Global Type of an Unreliable Link).

GUL(src, vsrc; trg, vtrg) = opt〈src, ·, trg, vtrg :V | (src → trg :c(vsrc :V).end)〉
Here we have a single communication step—to model the potential loss

of a single message—that is covered within an optional block. In the term
GUL(src, vsrc; trg, vtrg).G′ the receiver trg may use the transmitted value vsrc in
the continuation G′ if the communication succeeds or else uses its default value
vtrg. Note that the optional block above specifies the empty sequence of values
as default values for the sending process src, i.e., the sender needs no default
values.

Well-Formed. Following [7] we type all objects appearing in global types with
kinds (types for types) K ::= Role | Val. Val are value-kinds, which are first-
order types for values (like B for boolean) or data types. Role is used for iden-
tifiers of roles. We adopt the definition of well-kinded global types from [7] that
basically ensures that all positions r, r1, r2, r̃1, r̃2 in global types can be instanti-
ated only by objects of type Role. According to [7] a global type G is projectable
if for each occurrence of G1 ⊕r G2 in the type and for any free role r′ �= r we have
G1|r′ = G2|r′ . Additionally we require (similar to sub-sessions in [7]) for a global

type G to be projectable that, for each optional block opt

〈
˜r, x̃ : S̃ |G1

〉
.G2 in

G, all roles in G1 are contained in r̃. A global type is well-formed when it is
well-kinded and projectable, and satisfies the standard linearity condition [2].
For more intuition on the notion of well-formedness and examples for non-well-
formed protocols we refer to [7]. In the examples, we use V as the type of values.

6 M. Adameit et al.

3 Local Types with Optional Blocks

Local types describe a local and partial point of view on a global communica-
tion protocol w.r.t. a single participant. They are used to validate and monitor
distributed programs. We extend the basic local types as used e.g. in [2,3] with
a local type for optional blocks.

Definition 2 (Local Types). Local types with optional blocks are given by

T ::= get[r]?i∈I

{
li
(
x̃i : S̃i

)
.Ti

}
| send[r]!i∈I

{
li
(
x̃i : S̃i

)
.Ti

}

| opt[̃r]〈T 〉
(
x̃ : S̃

)
.T ′ | T1 ⊕ T2 | T1 || T2 | μt.T | t | end

The first two operators specify endpoint primitives for communications with get
for the receiver side—where r is the sender—and send for the sender side—where
r denotes the receiver. Accordingly, they introduce the two possible local views
of a global type for communication. T1 ⊕ T2 is the local view of the global type
G1⊕rG2 for a choice determined by the role r for which this local type is created.
T1 || T2 represents the local view of the global type for parallel composition, i.e.,
describes independent parts of the protocol for the considered role. Again μt.T
and t are used to introduce recursion and end denotes the successful completion
of a protocol. Again we usually omit trailing end clauses.

We add the local type opt[̃r]〈T 〉
(
x̃ : S̃

)
.T ′. It initialises an optional block

between the roles r̃ around the local type T , where the currently considered
participant r (called owner) is a participant of this block, i.e., r ∈ r̃. After the
optional block the local type continues with T ′.

Projection. To ensure that a global type and its local types coincide, global types
are projected to their local types. Accordingly we define the projection (G)⇓rp
of a global type G on a role rp for the case that G describes an optional block.

(
opt

〈
˜r, x̃ : S̃ |G

〉
.G′

)
⇓rp =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

opt[̃r]
〈
G⇓rp

〉(
x̃i : S̃i

)
. (G′)⇓rp

if rp = ri ∈ r̃

and x̃i �= ·
opt[̃r]

〈
G⇓rp

〉
(·) || (G′)⇓rp

if rp = ri ∈ r̃

and x̃i = ·
G′ ⇓rp else

The projection rule for optional blocks has three cases. The last case is used to
skip optional blocks when they are projected to roles that do not participate.
The first two cases handle projection of optional blocks to one of its participants.
A local optional block is generated with the projection of G as content.

The first two cases check whether the optional block indeed computes any
values for the role we project onto. They differ only in the way that the contin-
uation of the optional block and its inner part are connected. If the projected
role does not specify default values—because no such values are required—the
projected continuation (G′) ⇓rp can be placed in parallel to the optional block

Session Types for Link Failures 7

(second case). Otherwise, the continuation has to be guarded by the optional
block and, thus, by the computation of the computed values (first case).

By distinguishing between these two first cases, we follow the same line of
argument as used for sub-sessions in [7], where the projected continuation of
a sub-session call is either in parallel to the projection of the call itself or
connected sequentially. Intuitively, whenever the continuation depends on the
outcome of the optional block it has to be connected sequentially. A complete
list of all projection rules can be found in [1].

Example 2 (Projection of Unreliable Links).

GUL(src, vsrc; trg, vtrg)⇓src = TUL↑(src, vsrc, trg)
= opt[scr, trg]〈send[trg]!c(vsrc :V)〉(·)

GUL(src, vsrc; trg, vtrg)⇓trg = TUL↓(src, vsrc; trg, vtrg)

= opt[src, trg]〈get[src]?c(vsrc :V)〉(vtrg :V)

When projected onto its sender, the global type for a communication over an
unreliable link results in the local type TUL↑(src, vsrc, trg) that consists of an
optional block containing a send operation towards trg. Since the optional block
for the sender does not specify any default values, the local type TUL↑(src, vsrc, trg)
will be placed in parallel to the projection of the continuation. The projection
onto the receiver results in the local type TUL↓(src, vsrc; trg, vtrg) that consists of
an optional block containing a receive operation from src. Here a default value is
necessary for the case that the message is lost. So the type TUL↓(src, vsrc; trg, vtrg)
has to be composed sequentially with the projection of the continuation.

4 A Session Calculus with Optional Blocks

Global types (and the local types that are derived from them) can be considered
as specifications that describe the desired properties of the system we want to
analyse. The process calculus, that we use to model/implement the system, is
in the case of session types usually a variant of the π-calculus [10]. We extend a
basic session-calculus as used e.g. in [2,3] with two operators.

Definition 3 (Processes). Processes are given by

P ::= a(x̃).P | a〈s̃〉.P | k?[r1, r2]i∈I { li(x̃i).Pi } | k![r1, r2]l〈ṽ〉.P
| opt[r; ṽ; r̃]〈P 〉(x̃).P ′ | [r]〈ṽ〉
| (νx) P | P1 + P2 | P1 | P2 | μX:P | X | 0

The prefixes a(x̃).P and a〈s̃〉.P are inherited from the π-calculus and are used
for external invitations. Using the shared channel a, an external participant can
be invited with the output a〈s̃〉.P transmitting the session channels s̃ that are
necessary to participate and the external participant can accept the invitation
using the input a(x̃).P . The following two operators introduce a branching input

8 M. Adameit et al.

and the corresponding transmission on the session channel k from r1 to r2. These
two operators correspond to the local types for get and send. Restriction(νx) P
allows to generate a fresh name that is not known outside of the scope of this
operator unless it was explicitly communicated. For simplicity and following
[6] we assume that only shared channels a for external invitations and session
channels s, k for not yet initialised sub-sessions are restricted, because this covers
the interesting cases1 and simplifies the typing rules in Fig. 2. The term P1 + P2

either behaves as P1 or P2. P1 | P2 defines the parallel composition of the
processes P1 and P2. μX : P and X are used to introduce recursion. 0 denotes
the successful completion.

To implement optional blocks, we add opt[r; ṽd; r̃]〈P 〉(x̃).P ′ and [r]〈ṽ〉. The
former defines an optional block between the roles r̃ around the process P with
the default values ṽd. We require that the owner r of this block is one of its
participants r̃, i.e., r ∈ r̃. In the case of success, [r]〈ṽ〉 transmits the computed
values ṽ from within the optional block to the continuation P ′ to be substituted
for the variables x̃ within P ′. If the optional block fails the variables x̃ of P ′

are replaced by the default values ṽd instead. Without loss of generality we
assume that the roles r̃ of optional blocks are distinct. Since optional blocks can
compute only values and their defaults need to be of the same kind, [r]〈ṽ〉 and the
defaults cannot carry session names, i.e., names used as session channels. The
type system ensures that the inner part P of a successful optional block reaches
some [r]〈ṽ〉 and thus transmits computed values of the expected kinds in exactly
one of its parallel branches. The semantics presented below ensures that every
optional block can transmit at most one vector of computed values and has to
fail otherwise. Similarly optional blocks, that use roles in their inner part P that
are different from r̃ and are not newly introduced as part of a sub-session within
P , cannot be well-typed. Since optional blocks open a context block around their
inner part that separates P from the continuation P ′, scopes as introduced by
input prefixes and restriction that are opened within P cannot cover parts of P ′.

Example 3 (Implementation of Unreliable Links).

PUL↑(p1, v1, p2) = opt[p1; ·; p1, p2]〈s![p1, p2]c〈v1〉. [p1]〈·〉〉(·)
PUL↓(p1, p2, v2) = opt[p2; v2; p1, p2]〈s?[p1, p2]c(x). [p2]〈x〉〉(y)

PUL↑(p1, v1, p2) is the implementation of a single send action on an unreliable
link and PUL↓(p1, p2, v2) the corresponding receive action. Here a continuation of
the sender cannot gain any information from the modelled communication; not
even whether it succeeded, whereas a continuation of the receiver in the case of
success obtains the transmitted value v1 and else its own default value v2.

Again we usually omit trailing 0. In Definition 3 all occurrences of x, x̃,
and x̃i refer to bound names of the respective operators. The set FN(P) of
free names of P is the set of names of P that are not bound. A substitution

1 Sometimes it might be useful to allow the restriction of values, e.g. for security. For
this case an additional restriction operator can be introduced.

Session Types for Link Failures 9

{y1/x1, . . . , yn/xn} = {ỹ/x̃} is a finite mapping from names to names, where the
x̃ are pairwise distinct. The application of a substitution on a term P{ỹ/x̃} is
defined as the result of simultaneously replacing all free occurrences of xi by
yi, possibly applying alpha-conversion to avoid capture or name clashes. For all
names n /∈ x̃ the substitution behaves as the identity mapping. We use ‘.’ (as
e.g. in a(x̃).P) to denote sequential composition. In all operators the part before
‘.’ guards the continuation after the ‘.’, i.e., the continuation cannot reduce
before the guard was reduced. A subprocess of a process is guarded if it occurs
after such a guard, i.e., is the continuation (or part of the continuation) of a
guard. Guarded subprocesses can be unguarded by steps that remove the guard.
We identify processes up to a standard variant of structural congruence defined
in [1].

(comS)
j ∈ I

E[k ![r1, r2]lj〈ṽ〉.P | k?[r1, r2]i∈I { li(x̃i).Pi }] →−� E[P | Pj{ṽ/x̃j}]

(choice)
Pi →−� P ′

i

E[P1 + P2] →−� E[P ′
i]

(comC)
E[a〈s̃〉.P1 | a(x̃).P2] →−� E[P1 | P2{s̃/x̃}]

(fail)
E[opt[r; ṽd; r̃]〈P 〉(x̃).P ′] →−� E[P ′{ṽd/x̃}]

(succ)
E[opt[r; ṽd; r̃]〈[r]〈ṽ〉〉(x̃).P] →−� E[P{ṽ/x̃}]

(cSO)
j ∈ I roles(Copt selor=̇) C′

opt

)
owner(Copt) = r1 owner C′

opt

)
= r2

E
[
ER[Copt[k ![r1, r2]lj〈ṽ〉.P]] | E′

R

[
C′

opt[k?[r1, r2]i∈I { li(x̃i).Pi }]]]
→−� E

[
ER[Copt[P]] | E′

R

[
C′

opt[Pj{ṽ/x̃j}]
]]

(cCO)
roles(Copt selor=̇) C′

opt

)

E
[
ER[Copt[a〈s̃〉.P1]] |E′

R

[
C′

opt[a(x̃).P2]
]] →−� E

[
ER[Copt[P1]] |E′

R

[
C′

opt[P2{s̃/x̃}]]]

Fig. 1. Reduction rules

Reduction Semantics. In [7] the semantics is given by a set of reduction rules that
are defined w.r.t. evaluation contexts. We extend them with optional blocks.

Definition 4. E ::= [] | P | E | (νx) E | opt[r; ṽ; r̃]〈E〉(x̃).P ′

Intuitively an evaluation context is a term with a single hole that is not guarded.
Additionally, we introduce two variants of evaluation contexts and a context for
blocks that are used to simplify the presentation of our new rules.

Definition 5. ER ::= [] | P | ER | opt[r; ṽ; r̃]〈ER〉(x̃).P ′

Copt ::= opt[r; ṽ; r̃]〈EP〉(x̃).P ′, where EP ::= [] | P | EP

Accordingly, a Copt-context consists of exactly one optional block that contains
an EP-context, i.e., a single hole that can occur within the parallel composition

10 M. Adameit et al.

of arbitrary processes. We define the function roles(opt[r; ṽ; r̃]〈EP〉(x̃).P ′) � r̃,
to return the roles of the optional block of a Copt-context, and the function
owner(opt[r; ṽ; r̃]〈EP〉(x̃).P ′) � r, to return its owner.

Figure 1 presents the reduction rules. The Rules (comS), (choice), and (comC)
deal with the standard operators for communication, choice, and external invi-
tations to sessions, respectively. Since evaluation contexts E contain optional
blocks, these rules allow for steps within a single optional block. To capture
optional blocks, we introduce the new Rules (fail), (succ), (cSO), and (cCO).
Here =̇ means that the two compared vectors contain the same roles but not
necessarily in the same order, i.e., =̇ checks whether the set of participants of
two optional blocks are the same. The Rules (comS) and (comC) represent two
different kinds of communication. They define communications within a session
and external session invitations, respectively. In both cases communication is
an axiom that requires the occurrence of two matching counterparts of com-
munication primitives (of the respective kind) to be placed in parallel within
an evaluation context. As a consequence of the respective communication step
the continuations of both communication primitives are unguarded and the val-
ues transmitted in the communication step are instantiated (substituted) in the
receiver continuation. (choice) allows the reduction of either side of a choice, if
the respective side can perform a step.

The two rules (succ) and (fail) describe the main features of optional blocks,
namely how they succeed (succ) and what happens if they fail (fail). (fail) aborts
an optional block, i.e., removes it and unguards its continuation instantiated
with the default values. This rule can be applied whenever an optional block
is unguarded, i.e., there is no way to ensure that an optional block does indeed
perform any step. In combination with (succ), it introduces the non-determinism
that is used to express the random nature in that system errors may occur.

(succ) is the counterpart of (fail); it removes a successfully completed optional
block and unguards its continuation instantiated with the computed results. To
successfully complete an optional block, we require that its content has to reduce
to a single occurrence of [r]〈ṽ〉, where r is the owner of the block and accordingly
one of the participating roles. Since (succ) and (fail) are the only ways to reduce
[r]〈ṽ〉, this ensures that a successful optional block can compute only a single
vector of return values. Other parallel branches in the inner part of an optional
block have to terminate with 0. This ensures that no confusion can arise from
the computation of different values in different parallel branches. Since at the
process-level an optional block covers only a single participant, this limitation
does not restrict the expressive power of the considered processes. If the content
of an optional block cannot reduce to [r]〈ṽ〉 the optional block is doomed to fail.

The remaining rules describe how different optional blocks can interact. Here,
we need to ensure that communication from within an optional block ensures
isolation, i.e., that such communications are restricted to the encapsulated parts
of other optional blocks. The ER-contexts allow for two such blocks to be nested
within different optional blocks. The exact definition of such a communication
rule depends on the semantics of the considered calculi and their communication

Session Types for Link Failures 11

rules. Here there are the Rules (cSO) and (cCO). They are the counterparts of
(comS) and (comC) and accordingly allow for the respective kind of commu-
nication step. As an example consider Rule (cSO). In comparison to (comS),
Rule (cSO) ensures that communications involving the content of an optional
block are limited to two such contents of optional blocks with the same partic-
ipants. This ensures that optional blocks describe the local view-points of the
encapsulated protocol.

Optional blocks do not allow for scope extrusion of restricted names, i.e.,
a name restricted within an optional block cannot be transmitted nor can an
optional block successfully be terminated if the computed result values are sub-
ject to a restriction from the content of the optional block. Also values that are
communicated between optional blocks can be used only by the continuation
of the optional block and only if the optional block was completed successfully.
If an optional block fails while another process is still waiting for a commu-
nication within its optional block, the latter optional block is doomed to fail.
Note that the semantics of optional blocks is inherently synchronous, since an
optional sending operation can realise the failing of its matching receiver (e.g. by
opt[r1; fail; r2]〈. . . [r1]〈ok〉〉(x).P). Let
−→+ denote the transitive closure of
−→
and let
−→∗ denote the reflexive and transitive closure of
−→, respectively.

5 Well-Typed Processes

Now we connect types with processes by the notion of well-typedness. A process
P is well-typed if it satisfies a typing judgement of the form Γ � P � Δ, i.e.,
under the global environment Γ , P is validated by the session environment Δ.
We extend environments defined in [7] with a primitive for session environments.

Definition 6 (Environments).

Γ ::= ∅ | Γ, a :T [r] | Γ, s :G

Δ ::= ∅ | Δ, s[r] :T | Δ, s[r]• :T | Δ, r : S̃↑

The global environment Γ relates shared channels to the type of the invitation
they carry and session channels s to the global type G they implement. a :T [r]
means that a is used to send and receive invitations to play role r with local
type T . The session environment Δ relates pairs of session channels s and roles
r to local types T , where s[r]• :T denotes the permission to transmit the corre-
sponding s. We add the declaration r : S̃↑, to cover the kinds of the return values
of an optional block of the owner r. A session environment is closed if it does
not contain declarations r : S̃↑. We assume that initially session environments do
not contain declarations r : S̃↑, i.e., are closed. Such declarations are introduced
while typing the content of an optional block. Whereby the typing rules ensure
that environments can never contain more than one declaration r : S̃↑.

Let (Δ, s[r] :end) = Δ. If s[r] does not appear in Δ, we write Δ(s[r]) = 0.
Following [7] we assume an operator ⊗ such that (1) Δ ⊗ ∅ = Δ, (2) Δ1 ⊗ Δ2 =

12 M. Adameit et al.

Δ2 ⊗ Δ1, (3) Δ1 ⊗
(
Δ2, r : S̃↑

)
=

(
Δ1, r : S̃↑

)
⊗ Δ2, (4) Δ1 ⊗ (Δ2, s[r] :T) =

(Δ1, s[r] :T)⊗Δ2 if Δ1(s[r]) = 0 = Δ2(s[r]), and (5) (Δ1, s[r] :T1)⊗(Δ2, s[r] :T2) =
(Δ1, s[r] :T1 || T2) ⊗ Δ2. Thus ⊗ allows to split parallel parts of local types. We
write � v : S if value v is of kind S.

In Fig. 2 we extend the typing rules of [7] with the Rules (Opt) and (OptE)
for optional blocks. (Opt) ensures that (1) the process and the local type specify
the same set of roles r̃ =̇ r̃′ as participants of the optional block, (2) the kinds
of the default values ṽ, the arguments x̃ of the continuation P ′, and the respec-
tive variables ỹ in the local type coincide, (3) the continuation P ′ is well-typed
w.r.t. the part Δ′ of the current session environment and the remainder T ′ of
the local type of s[r1], (4) the content P of the block is well-typed w.r.t. the
session environment Δ, s[r1] : T, r1 : S̃↑, where r1 : S̃↑ ensures that P computes
return values of the kinds S̃ if no failure occurs, and (5) the return values of
a surrounding optional block cannot be returned in a nested block, because of
the condition �r′′, K̃. r′′ : K̃↑ ∈ Δ. (OptE) ensures that the kinds of the values
computed by a successful completion of an optional block match the kinds of the
respective default values. Apart from that this rule is similar to (N) in Fig. 2.
Since (OptE) is the only way to consume an instance of r : S̃↑, this rule checks
that—ignoring the possibility to fail—the content of an optional block reduces to
[r]〈ṽ〉, if the corresponding local type requires it to do so. Combining these rules,
(Opt) introduces exactly one occurrence of r : S̃↑ in the session environment, the
function ⊗ in (Pa) for parallel processes in Fig. 2 ensures that this occurrence
reaches exactly one of the parallel branches of the content of the optional block,
and finally only (OptE) allows to terminate a branch with this occurrence. This

Fig. 2. Typing rules

Session Types for Link Failures 13

ensures that—ignoring the possibility to fail—each block computes exactly one
vector of return values [r]〈ṽ〉 (or, more precisely, one such vector for each choice-
branch). For an explanation of the remaining rules we refer to [2,3,7]. Applying
these typing rules is elaborate but straightforward and can be automated easily,
since for all processes except choice exactly one rule applies and all parameters
except for restriction are determined by the respective process. Thus, the num-
ber of different proof-trees is determined by the number of choices and the type
of restricted channels can be derived using back-tracking.

6 Properties of the Type Systems

Subject reduction is a basic property of each type system. It is this property
that allows us to reason statically about terms, by ensuring that whenever a
process its well-typed then all its derivatives are well-typed as well. Hence, for
all properties the type system ensures for well-typed terms, it is not necessary to
compute executions but only to test for well-typedness of the original term. We
use a strong variant of subject reduction that additionally involves the condition
Δ
→ Δ′, in order to capture how the local types evolve alongside the reduction
of processes. Therefore the effect of reductions on processes on the corresponding
local types is captured within
→ that can be found in [1].

Following [7] we use coherence to prove progress and completion. A session
environment is coherent if it is composed of the projections of well-formed global
types. Most of the reduction rules preserve coherence. The failing of optional
blocks can however temporary invalidate this property. A failing optional block
is not a problem for the process itself, because the continuation of the process is
instantiated with the default value and this process with a corresponding session
environment corresponds to the projection of the global type of the continuation.
But a failing optional block may cause another part of the network, i.e., a parallel
process, to lose coherence. If another, parallel optional block is waiting for a
communication with the former, it is doomed to fail. This situation of a single
optional block without its dual communication partner cannot result from the
projection of a global type. Due to the interleaving of steps, an execution starting
in a process with a coherent session environment may lead to a state in which
there are several single optional blocks at the same time. However, coherence
ensures that for all such reachable processes there is a finite sequence of steps
that restores coherence and thus ensures progress and completion. A session
environment Δ is initially coherent if it is obtained from a coherent environment,
i.e., Δ0
→∗ Δ for some coherent Δ0, and does not contain optional blocks
without their counterparts.

Progress ensures that well-typed processes cannot get stuck unless their pro-
tocol requires them to. In comparison to standard formulations of progress, we
add that the respective sequence of steps does not require any optional blocks
to be unreliable. We define an optional block as unreliable w.r.t. to a sequence
of steps if it does fail within this sequence and else as reliant. In other words
we ensure progress despite arbitrary (and any number of) failures of optional
blocks.

14 M. Adameit et al.

Completion is a special case of progress for processes without infinite recur-
sions. It ensures that well-typed processes, without infinite recursion, follow
their protocol and then terminate. Similarly to progress, we prove that com-
pletion holds despite arbitrary failures of optional blocks but does not require
any optional block to be unreliable.

A simple but interesting consequence of this formulation of completion is,
that for each well-typed process there is a sequence of steps that successfully
resolves all optional blocks. This is because we type the content of optional
blocks and because the type system ensures that these contents reach exactly
one success reporting message [r]〈ṽ〉 in exactly one of its parallel branches (and
in each of its choice branches).

Theorem 1 (Properties).

Subject Reduction: If Γ � P �Δ and P
−→ P ′ then there exists Δ′ such that
Γ � P ′ � Δ′ and Δ
→∗ Δ′.

Progress: If Γ � P � Δ such that Δ is initially coherent, then either P = 0 or
there exists P ′ such that P
−→+ P ′, Γ � P ′ � Δ′, where Δ
→∗ Δ′ and Δ′ is
coherent, and P
−→+ P ′ does not require any optional block to be unreliable.

Completion: If Γ � P � Δ such that Δ is initially coherent and P does not
contain infinite recursions, then P
−→∗ 0, Γ � 0 � ∅, and P
−→∗ 0 does not
require any optional block to be unreliable.

Reliance: If Γ � P �Δ such that Δ is initially coherent and P does not contain
infinite recursions, then P
−→∗ 0 such that all optional blocks are successfully
resolved in this sequence.

The proofs of these properties can be found in [1]. They basically follow the
same line of argument as used for similar type systems involving elaborate but
straightforward structural inductions over the sets of rules.

Session types usually also ensure communication safety, i.e., freedom of com-
munication error, and session fidelity, i.e., a well-typed process exactly follows
the specification described by its global type. With optional blocks we lose
these properties, because they model failures. As a consequence communications
may fail and whole parts of the specified protocol in the global type might be
skipped. In order to still provide some guarantees on the behaviour of well-typed
processes, we however limited the effect of failures by encapsulation in optional
blocks. It is trivial to see, that in the failure-free case, i.e., if no optional block
fails, we inherit communication safety and session fidelity from the underlying
session types in [2,3,7]. Even in the case of failing optional blocks, we inherit
communication safety and session fidelity for the parts of protocols outside of
optional blocks and the inner parts of successful optional blocks, since our exten-
sion ensures that all optional blocks that depend on a failure are doomed to fail
and the remaining parts work as specified by the global type.

7 Conclusions

We extend standard session types with optional blocks with default values.
Thereby, we obtain a type system for progress and completion/termination

Session Types for Link Failures 15

despite link failures that can be used to reason about fault-tolerant distributed
algorithms. Our approach is limited with respect to two aspects: We only cover
algorithms that (1) allow us to specify default values for all unreliable commu-
nication steps and (2) terminate despite arbitrary link failures. Accordingly, this
approach is only a first step towards the analysis of distributed algorithms with
session types. It shows however that it is possible to analyse distributed algo-
rithms with session types and how the latter can solve the otherwise often com-
plicated and elaborate task of proving termination. Note that, optional blocks
can contain larger parts of protocols than a single communication step. Thus
they may also allow for more complicated failure patterns than simple link fail-
ures/message loss.

We extend a simple type system with optional blocks. The (for many dis-
tributed algorithms interesting) concept of rounds is obtained instead by using
the more complicated nested protocols (as defined in [7]) with optional blocks.
Due to lack of space, the type systems with nested protocols/sub-sessions and
optional blocks as well as more interesting examples with and without explicit
(and of course overlapping) rounds are postponed to [1]. However the inclusion of
sub-session is straightforward and does not require to change the above concept
of optional blocks. In combination with sub-sessions our attempt respects two
important aspects of fault-tolerant distributed algorithms: (1) The modularity
as e.g. present in the concept of rounds in many algorithms can be expressed
naturally, and (2) the model respects the asynchronous nature of distributed
systems such that messages are not necessarily delivered in the order they are
sent and the rounds may overlap.

Our extension offers new possibilities for the analysis of distributed algo-
rithms and widens the applicability of session types to unreliable network struc-
tures. We hope to inspire further work in particular to cover larger classes of
algorithms and system failures.

References

1. Adameit, M., Peters, K., Nestmann, U.: Session types for link failures. Technical
report, TU Berlin (2017). https://arxiv.org

2. Bettini, L., Coppo, M., D’Antoni, L., Luca, M., Dezani-Ciancaglini, M., Yoshida,
N.: Global progress in dynamically interleaved multiparty sessions. In: Breugel, F.,
Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer, Heidel-
berg (2008). doi:10.1007/978-3-540-85361-9 33

3. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for
distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15375-4 12

4. Capecchi, S., Giachino, E., Yoshida, N.: Global escape in multiparty sessions. Math.
Struct. Comput. Sci. 26(2), 156–205 (2016)

5. Carbone, M., Honda, K., Yoshida, N.: Structured interactional exceptions in session
types. In: Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp.
402–417. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85361-9 32

https://arxiv.org
http://dx.doi.org/10.1007/978-3-540-85361-9_33
http://dx.doi.org/10.1007/978-3-642-15375-4_12
http://dx.doi.org/10.1007/978-3-642-15375-4_12
http://dx.doi.org/10.1007/978-3-540-85361-9_32

16 M. Adameit et al.

6. Demangeon, R.: Nested protocols in session types. Personal communication about
an extended version of [7] that is currently prepared by R. Demangeon (2015)

7. Demangeon, R., Honda, K.: Nested protocols in session types. In: Koutny, M.,
Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 272–286. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32940-1 20

8. Kouzapas, D., Gutkovas, R., Gay, S.J.: Session types for broadcasting. In: Pro-
ceedings of PLACES. EPTCS, vol. 155, pp. 25–31 (2014)

9. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)
10. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I and II.

Inf. Comput. 100(1), 1–77 (1992)
11. Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press,

Cambridge (1994)

http://dx.doi.org/10.1007/978-3-642-32940-1_20

Learning-Based Compositional Parameter
Synthesis for Event-Recording Automata

Étienne André1(B) and Shang-Wei Lin2

1 Université Paris 13, LIPN, CNRS, UMR 7030, Villetaneuse, France
eandre93430@lipn13.fr

2 SCSE, Nanyang Technological University, Singapore, Singapore

Abstract. We address the verification of timed concurrent systems
with unknown or uncertain constants considered as parameters. First,
we introduce parametric event-recording automata (PERAs), as a new
subclass of parametric timed automata (PTAs). Although in the non-
parametric setting event-recording automata yield better decidability
results than timed automata, we show that the most common decision
problem remains undecidable for PERAs. Then, given one set of compo-
nents with parameters and one without, we propose a method to com-
pute an abstraction of the non-parametric set of components, so as to
improve the verification of reachability properties in the full (paramet-
ric) system. We also show that our method can be extended to general
PTAs. We implemented our method, which shows promising results.

1 Introduction

Verifying distributed systems involving timing constraints is notoriously difficult,
especially when timing constants may be uncertain. This problems becomes even
more difficult (often intractable) in the presence of timing parameters, unknown
timing constants. Parametric reachability synthesis aims at synthesizing timing
parameter valuations for which a set of (usually bad) states is reachable. Para-
metric timed automata (PTAs) [2] is a parametric extension of timed automata
(TAs) to model and verify models involving (possibly parametric) timing con-
straints and concurrency. Its high expressiveness comes with the drawback that
most interesting problems are undecidable [3].

Related Work. Despite undecidability of the theoretical problems, several
monolithic (non-compositional) techniques for parametric reachability synthesis
in PTAs have been proposed in the past, either in the form of semi-algorithms (a
procedure that is correct but may not terminate), or using approximations. In [2],
a basic semi-algorithm (called EFsynth in [14]) has been proposed: it explores

This work is partially supported by the ANR national research program “PACS”
(ANR-14-CE28-0002).

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Bouajjani and A. Silva (Eds.): FORTE 2017, LNCS 10321, pp. 17–32, 2017.
DOI: 10.1007/978-3-319-60225-7 2

18 É. André and S.-W. Lin

the symbolic state space until bad states are found, and gathers the associated
parameter constraints. In [12], approximated parametric reachability synthesis is
performed using counter-example guided abstraction refinement (CEGAR) tech-
niques for parametric linear hybrid automata, a class of models more expressive
than PTAs. In [7], we proposed a point-based technique: instead of attacking
the reachability synthesis in a brute-force manner, we iterate on (some) inte-
ger parameter valuations, and derive for each of them a constraint around this
valuation that preserves the (non-)reachability of the bad locations. Although
numerous iterations may be needed, each of them explores a much smaller part
of the state space than the brute-force exploration of EFsynth, often resulting in
a faster execution than EFsynth.

Distributed systems are often made of a set of components interacting with
each other; taking advantage of the compositionality is a goal often desired to
speed up verification. In [11], a learning-based approach is proposed to automate
compositional verification of untimed systems modeled by labeled transition sys-
tems (LTS). For timed systems, we proposed a learning-based compositional ver-
ification framework [15] for event-recording automata (ERAs), a subclass of TAs
for which language inclusion is decidable [1]. This approach showed to be much
faster than monolithic verification.

The recent work [9] is close to our goal, as it proposes an approach for com-
positional parameter synthesis, based on the derivation of interaction and com-
ponent invariants. The method is implemented in a prototype in Scala, making
use of IMITATOR [5]. Whereas both [9] and our approach address reachability or
safety properties, the class of PTAs of [9] is larger; conversely, we add no further
restrictions on the models, whereas in [9] all clocks and (more problematically)
parameters must be local to a single component and cannot be shared.

Contribution. In this work, we propose an approach relying on a point-
based technique for parametric reachability synthesis, combined with learning-
based abstraction techniques, for a subclass of PTAs, namely parametric event-
recording automata. We propose this subclass due to the decidability of the
language inclusion in the non-parametric setting. We consider a set of paramet-
ric components A (where parameters are dense in a bounded parameter domain
D0) and a set of non-parametric components B, with their parallel composition
denoted by A ‖ B. For each integer parameter valuation v not yet covered by a
good or bad constraint, we try to compute, by learning, an abstraction ˜B of B
s.t. v(A) ‖ B does not reach the bad locations. We then “enlarge” the valuation v

using the abstract model A ‖ ˜B, which yields a dense good constraint; we prove
the correctness of this approach. If the learning fails to compute an abstraction,
we derive a counter-example, and we then replay it in the fully parametric model
A ‖ B, which allows us to derive very quickly a bad dense constraint. We iterate
until (at least) all integer points in D0 are covered. In practice, we cover not
only all rational-valued in D0, but in fact the entire parameter space (except for
one benchmark for which we fail to compute a suitable abstraction).

Learning-Based Compositional Parameter Synthesis 19

We propose the following technical contributions:

1. we introduce a parametrization of event-recording automata (PERAs);
2. we show that the reachability emptiness problem is undecidable for PERAs;
3. we then introduce our approach that combines iteration-based synthesis with

learning-based abstraction;
4. we implement our approach into a toolkit using IMITATOR and CV, and we

demonstrate its efficiency on several case studies.

Outline. Section 2 introduces the necessary preliminaries. Section 3 recalls the
parametric reachability preservation [7]. Section 4 introduces parametric event-
recording automata, and proves the undecidability of the reachability emptiness
problem. Section 5 introduces our main contribution, and Sect. 6 evaluates it on
benchmarks. Section 7 concludes the paper.

2 Preliminaries

2.1 Clocks, Parameters and Constraints

Let N, Z, Q+ and R+ denote the sets of non-negative integers, integers, non-
negative rational and non-negative real numbers respectively.

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, real-
valued variables that evolve at the same rate. A clock valuation is a function
μ : X → R+. We write 0 for the clock valuation that assigns 0 to all clocks.
Given d ∈ R+, μ + d denotes the valuation such that (μ + d)(x) = μ(x) + d, for
all x ∈ X. Given R ⊆ X, we define the reset of a valuation μ, denoted by [μ]R,
as follows: [μ]R(x) = 0 if x ∈ R, and [μ]R(x) = μ(x) otherwise.

We assume a set P = {p1, . . . , pM} of parameters, unknown rational-valued
constants. A parameter valuation (or point) v is a function v : P → Q+.

In the following, we assume � ∈ {<,≤} and �� ∈ {<,≤,≥, >}. Throughout
this paper, lt denotes a linear term over X ∪ P of the form

∑

1≤i≤H αixi +
∑

1≤j≤M βjpj + d, with αi, βj , d ∈ Z. Similarly, plt denotes a parametric linear
term over P , that is a linear term without clocks (αi = 0 for all i). A con-
straint C (a convex polyhedron) over X ∪ P is a conjunction of inequalities of
the form lt �� 0. Given a parameter valuation v, v(C) denotes the constraint
over X obtained by replacing each parameter p in C with v(p). Likewise, given
a clock valuation μ, μ(v(C)) denotes the Boolean value obtained by replacing
each clock x in v(C) with μ(x).

A guard g is a constraint over X ∪P defined by a conjunction of inequalities
of the form x �� plt .

A parameter constraint K is a constraint over P . We write v |= K if v(K)
evaluates to true. ⊥ (resp.
) denotes the special parameter constraint contain-
ing no (resp. all) parameter valuations. We will sometime manipulate non-convex
constraints over P , finite unions of parameter constraints. Such non-convex con-
straints can be implemented using finite lists of constraints, and therefore all
definitions extend in a natural manner to non-convex constraints.

20 É. André and S.-W. Lin

A parameter domain is a box parameter constraint, a conjunction of inequal-
ities of the form p �� d, with d ∈ N. A parameter domain D is bounded if, for
each parameter, there exists in D an inequality p � d (recall that, additionally,
all parameters are bounded below from 0 as they are non-negative). Therefore
D can be seen as a hypercube in M dimensions.

2.2 Parametric Timed Automata

Definition 1 (PTA). A parametric timed automaton (hereafter PTA) A is a
tuple (Σ,L, l0,X, P, I, E), where: (i) Σ is a finite set of actions, (ii) L is a finite
set of locations, (iii) l0 ∈ L is the initial location, (iv) X is a finite set of clocks,
(v) P is a finite set of parameters, (vi) I is the invariant, assigning to every
l ∈ L a guard I(l), (vii) E is a finite set of edges e = (l, g, a,R, l′) where l, l′ ∈ L
are the source and target locations, a ∈ Σ, R ⊆ X is a set of clocks to be reset,
and g is a guard.

Given a PTA A and a parameter valuation v, we denote by v(A) the non-
parametric timed automaton where all occurrences of a parameter pi have been
replaced by v(pi).

As usual, PTAs can be composed by performing their parallel composition,
their synchronized product on action names.

Definition 2 (Concrete semantics). Given a PTA A = (Σ,L, l0,X, P, I, E),
and a parameter valuation v, the concrete semantics of v(A) is given by the timed
transition system (S, s0,→), with S = {(l, μ) ∈ L × R

H
+ | μ(v(I(l))) is true},

s0 = (l0,0), and → consists of the discrete and delay transition relations:

– discrete transitions: (l, μ) e→ (l′, μ′), if (l, μ), (l′, μ′) ∈ S, there exists e =
(l, g, a,R, l′) ∈ E, μ′ = [μ]R, and μ(v(g)) is true.

– delay transitions: (l, μ) d→ (l, μ+d), with d ∈ R+, if ∀d′ ∈ [0, d], (l, μ+d′) ∈ S.

A (concrete) run is a sequence ρ = s0γ0s1γ1 · · · snγn · · · such that
∀i, (si, γi, si+1) ∈ →. We consider as usual that concrete runs strictly alternate
delays di and discrete transitions ei and we thus write concrete runs in the form

ρ = s0
(d0,e0)→ s1

(d1,e1)→ · · · . The corresponding timed word is (a0, t0), (a1, t1), · · ·
where ai is the action of ei and ti =

∑i
j=0 di. Given a state s = (l, μ), we say

that s is reachable (or that v(A) reaches s) if s belongs to a run of v(A). By
extension, we say that l is reachable in v(A), if there exists a state (l, μ) that is
reachable. Given L� ⊆ L, we say that L� is reachable in v(A) if ∃l ∈ L� s.t. l is
reachable.

Let ρ = (l0, μ0)
(d0,e0)→ (l1, μ1)

(d1,e1)→ · · · (ln, μn)
(dn,en)→ · · · be a run of v(A).

The trace of this run (denoted by trace(ρ)) is the sequence e0e1 · · · en · · · , and
the untimed word of this run is a0a1 · · · an · · · , where ai is the action of ei for
all i. The trace set of v(A) is the set of traces associated with all runs of A.

Symbolic Semantics. Let us recall the symbolic semantics of PTAs (as in
e. g., [4,14]). We define the time elapsing of a constraint C, denoted by C↗,

Learning-Based Compositional Parameter Synthesis 21

as the constraint over X and P obtained from C by delaying all clocks by an
arbitrary amount of time. That is, C↗ = {(μ, v) | μ |= v(C) ∧ ∀x ∈ X : μ′(x) =
μ(x) + d, d ∈ R+}. Given R ⊆ X, we define the reset of C, denoted by [C]R,
as the constraint obtained from C by resetting the clocks in R, and keeping the
other clocks unchanged. We denote by C↓P the projection of C onto P , obtained
by eliminating the clock variables (e. g., using Fourier-Motzkin).

A parametric zone is a convex polyhedron over X ∪ P in which constraints
are of the form x �� plt , or xi−xj �� plt , where xi, xj ∈ X and plt is a parametric
linear term over P .

A symbolic state is a pair s = (l, C) where l ∈ L is a location, and C its
associated parametric zone. The initial symbolic state of A is s0 =

(

l0, ({0} ∧
I(l0))↗ ∧ I(l0)

)

.
The symbolic semantics relies on the Succ operation. Given a symbolic state

s = (l, C) and an edge e = (l, g, a,R, l′), Succ(s, e) = (l′, C ′), with C ′ =
(

[(C

∧ g)]R ∧ I(l′)
)↗ ∧ I(l′). The Succ operation is effectively computable, using

polyhedra operations; also note that the successor of a parametric zone C is a
parametric zone (see e. g., [14]).

A symbolic run of a PTA is an alternating sequence of symbolic states and
edges starting from the initial symbolic state, of the form s0

e0⇒ s1
e1⇒ · · · em−1⇒ sm,

such that for all i = 0, . . . ,m − 1, we have ei ∈ E, and si+1 = Succ(si, ei).
Given a symbolic run s0

e0⇒ s1
e1⇒ · · · , its trace is the sequence e0e1 · · · . Two

runs (symbolic or concrete) are equivalent if they have the same trace.

3 Parametric Reachability Preservation

Let us briefly recall the parametric reachability preservation algorithm PRP [7].
Given a set of locations L�, PRP(A, v, L�) synthesizes a dense (convex) con-
straint K containing at least v and such that, for all v′ ∈ K, v′(A) preserves
the reachability of L� in v(A). By preserving the reachability of L� in v(A), we
mean that some locations of L� are reachable in v′(A) iff they are in v(A). That
is, if v(A) is safe (it does not reach L�), then v′(A) is safe too. Conversely, if
v(A) is unsafe (L� is reachable for some runs), then v′(A) is unsafe too.

Lemma 1 (Soundness of PRP [7]). Let A be a PTA, v a parameter valuation,
and L� a subset of locations. Let K = PRP(A, v, L�).

For all v′ |= K, v′(A) reaches L� iff v(A) reaches L�.

A specificity of PRP is that it does not aim at completeness; instead, it focuses
on behaviors “similar” to that of v(A) so as not to explore a too large part of the
state space, and outputs valuations neighboring v. A sort of completeness can
be achieved by iterating PRP on various parameter valuations: when v(A) has
computed K, the algorithm can be called again on a valuation v2 “neighbor” of
the result K, and so on until either the entire parameter space has been covered,
or when a certain coverage of a bounded parameter domain has been achieved
(e. g., 99 %). This iterated version is called PRPC (for PRP cartography), takes as

22 É. André and S.-W. Lin

input a PTA A and a bounded parameter domain D0, and iteratively calls PRP
on parameter valuations of D0 with a given precision (e. g., at least all integer-
valued). This gives a cartography of D0 with a union Kgood of safe constraints
(valuations for which L� is unreachable) and a union Kbad of unsafe constraints
(for which L� is reachable). Although only the coverage of the discrete points
(e. g., integer-valued) can be theoretically guaranteed, PRPC often covers most
(if not all) of the dense state space within D0, and often outside too.

l1 l2 l3
a

xa ≤ p
b

c

Fig. 1. An example of a PERA

4 Parametric Event-Recording Automata

Event-recording automata (ERAs) [1] are a subclass of timed automata, where
each action label is associated with a clock such that, for every edge with a label,
the associated clock is reset. We propose here a parametric extension of ERAs,
following the parameterization of TAs into PTAs.

Formally, let Σ be a set of actions: we denote by XΣ the set of clocks asso-
ciated with Σ, {xa | a ∈ Σ}. A Σ-guard is a guard on XΣ ∪ P .

Definition 3 (PERAs). A parametric event-recording automaton (PERA) is
a tuple (Σ,L, l0, P, I, E), where: (i) Σ is a finite set of actions, (ii) L is a
finite set of locations, (iii) l0 ∈ L is the initial location, (iv) P is a finite set of
parameters, (v) I is the invariant, assigning to every l ∈ L a Σ-guard I(l), (vi)
E is a finite set of edges e = (l, g, a, xa, l′) where l, l′ ∈ L are the source and
target locations, a ∈ Σ, xa is the clock to be reset, and g is a Σ-guard.

Just as for ERAs, PERAs can be seen as a syntactic subclass of PTAs: a
PERA is a PTA for which there is a one-to-one matching between clocks and
actions and such that, for each edge, the clock corresponding to the action is the
only clock to be reset.

Following the conventions used for ERAs, we do not explicitly represent
graphically the clock xa reset along an edge labeled with a: this is implicit.

Example 1. Figure 1 depicts an example of PERA with 3 actions (and therefore
3 clocks xa, xb and xc), and one parameter p. Only clock xa is used in a guard.

It is well-known that the EF-emptiness problem (“is the set of parameter
valuations for which it is possible to reach a given location empty?”) is undecid-
able for PTAs [2,6]. Reusing the proof of [6], we show below that this remains
undecidable for PERAs.

Learning-Based Compositional Parameter Synthesis 23

Theorem 1. The EF-emptiness problem is undecidable for PERAs, even with
bounded parameters.

Proof. The proof works by adapting to PERAs the proof of [6, Theorem 1].

This negative result rules out the possibility to perform exact synthesis for
PERAs. Still, in the next section, we propose an approach that is sound, though
maybe not complete: the synthesized valuations are correct, but some may be
missing. More pragmatically, we aim at improving the synthesis efficiency.

Fig. 2. AGR proof rule (left) and TL∗ (right)

5 Compositional Parameter Synthesis for PERAs

Figure 2a recalls the common proof rule used in Assume-Guarantee Reasoning
(AGR), which is one of the compositional verification techniques. Given two
components A, B and a safety property ϕ, the proof rule tells us that if A
can satisfy the property ϕ under an assumption ˜B and B can guarantee this
assumption ˜B, then we can conclude that A ‖ B satisfies ϕ.

5.1 Partitioning the System

The proof rule is presented in the context of two components. If a system consists
of more than two components, an intuitive way is to partition the components
into two groups to fit the proof rule. For example, if we have four components M1,
M2, M3, and M4, we could partition them as A = M1 ‖ M2 and B = M3 ‖ M4.
However, the number of possible partitions is exponential to the number of
components. In addition, an investigation [10] showed that a good partition is
very critical to AGR because it affects the verification performance significantly.
In this work, we adopt the following heuristics:

1. If a component has timing parameters, it is collected in group A;
2. If a component shares common action labels with the property, the component

is collected in group A.

Other components are collected in group B.
Heuristics 1 is required for our approach to be sound. Concerning heuris-

tics 2, in AGR, the ideal case is when A satisfies the property with the weakest

24 É. André and S.-W. Lin

assumption ˜B that allows everything, A itself is sufficient to prove the property
no matter how B behaves. Based on this observation, the rationale behind heuris-
tics 2 is that if a component shares common action labels with the property, it is
very likely to be necessary to prove the property. We will show that heuristics 2
indeed yields good performance in practice.

5.2 Computing an Abstraction via Learning

Let us explain how to automatically generate ˜B by learning for non-parametric
timed systems. We adopt the TL∗ algorithm [15], which is a learning algorithm to
infer ERAs. The TL∗ algorithm has to interact with a teacher. The interaction
between them is shown in Fig. 2b. Notice that only the teacher knows about
the ERA (say U) to be learned. During the learning process, the TL∗ algorithm
makes two types of queries: membership and candidate queries.

A membership query asks whether a word is accepted by U . After several
membership queries, TL∗ constructs a candidate ERA C, and makes a candidate
query for it. A candidate query asks whether an ERA accepts the same timed
language as U . If the teacher answers “yes”, then the learning process is finished,
and C is the ERA learned by TL∗. If the candidate C accepts more (or less) timed
words than U , the teacher answers “no” with a counterexample run ρ. TL∗ will
refine the candidate ERA based on the counterexamples provided by the teacher
until the answer to the candidate query is “yes”. See [15] for details.

The two condition checkings in Fig. 3 (A ‖ C |= ϕ and B |= C) can be
done by model checking, and counterexamples given by model checking can
also serve as counterexamples to the TL∗ algorithm. Figure 3 shows our over-
all procedure LearnAbstr(B,A, ϕ) that returns either an assumption (denoted by
Abstraction(˜B)) when it is proved that A ‖ B |= ϕ holds, or a counterexample
(denoted by Counterex(τ)) otherwise. Counterex and Abstraction are “tags” con-
taining a value, in the spirit of data exchanged in distributed programming or
types in functional programming; these tags will be used later on to differenti-
ate between the two kinds of results output by LearnAbstr. Also note that, in
our setting, we need a counterexample in the form of a trace τ , which is why
LearnAbstr returns Counterex(trace(ρ)).

Lemma 2. Let A,B be two ERAs. Assume LearnAbstr(B,A, ϕ) terminates with
result Abstraction(˜B). Then A ‖ ˜B |= ϕ and A ‖ B |= ϕ.

Proof. Abstraction(˜B) is returned only if A ‖ ˜B |= ϕ and B |= ˜B. Thus, A ‖ ˜B |= ϕ
holds. In addition, according to Fig. 2a, we can conclude that A ‖ B |= ϕ.

5.3 Replaying a Trace

In this section, we explain how to synthesize the exact set of parameter valuations
for which a finite trace belongs to the trace set.

Learning-Based Compositional Parameter Synthesis 25

Fig. 3. LearnAbstr(B,A, ϕ)

Algorithm 1. ReplayTrace(A, τ)
input : PTA A, finite trace τ = e0, e1, · · · en−1

output : Constraint over the parameters

1 s = s0
2 for i = 0 to n − 1 do s ← Succ(s, ei) ;
3 return s↓P

Replaying a trace is close to two undecidable problems for PTAs: (i) the
reachability of a location is undecidable for PTAs [2], and therefore this result
trivially extends to the reachability of a single edge; (ii) the emptiness of the set
of valuations for which the set of untimed words is the same as a given valuation
is undecidable for PTAs [8] (where a proof is provided even for a unique untimed
word). Nevertheless, computing the set of parameter valuations for which a given
finite trace belongs to the trace set can be done easily by exploring a small part
of the symbolic state space as follows.

We give our procedure ReplayTrace(A, τ) in Algorithm 1. Basically, Replay-
Trace computes the symbolic run equivalent to τ , and returns the projection
onto P of the last symbolic state of that run. The correctness of ReplayTrace
comes from the following results (proved in, e. g., [13]):

Lemma 3. Let A be a PTA, and let ρ be a run of A reaching (l, C). Let v be a
parameter valuation. There exists an equivalent run in v(A) iff v |= C↓P .

Proof. From [13, Propositions 3.17 and 3.18].

Lemma 4. Let A be a PTA, let v be a parameter valuation. Let ρ be a run
of v(A) reaching (l, μ). Then there exists an equivalent symbolic run in A reaching
(l, C), with v |= C↓P .

Proof. From [13, Proposition 3.18].

Proposition 1. Let A be a PTA, let τ a trace of v0(A) for some v0. Let K =
ReplayTrace(A, τ). Then, for all v, τ is a trace of v(A) iff v |= K.

26 É. André and S.-W. Lin

Algorithm 2. CompSynth(A,B,D0, L
�)

input : PERA A, ERA B, parameter domain D0, subset L� of locations
output : Good and bad constraint over the parameters

1 Kbad ← ⊥ ; Kgood ← ⊥
2 while D0 ∩ N ∩ (Kbad ∪ Kgood) �= ∅ do
3 Pick v in D0 ∩ N ∩ (Kbad ∪ Kgood)

4 switch LearnAbstr(B, v(A), AG¬L�) do

5 case Abstraction(˜B)

6 Kgood ← Kgood ∪ PRP(A ‖ ˜B, v, L�)
7 case Counterex(τ)
8 Kbad ← Kbad ∪ ReplayTrace(A ‖ B, τ)

9 return (Kgood , Kbad)

Proof. τ is a trace of v0(A) for some v0, and therefore it corresponds to some
run ρ of v0(A). Then from Lemma 4 there exists an equivalent symbolic run
in A reaching (l, C), with v0 |= C↓P . Now, from Lemma 3, for all v, there exists
an equivalent run in v(A) iff v |= C↓P . As ReplayTrace(A, τ) returns exactly
K = C↓P therefore τ is a trace of v(A) iff v |= K.

5.4 Exploiting the Abstraction and Performing Parameter
Synthesis

We give our procedure in Algorithm2: it takes as arguments a set of PERA
components A, a set of ERA components B, a bounded parameter domain D0

and a set of locations to be avoided. We maintain a safe non-convex parame-
ter constraint Kgood and an unsafe non-convex parameter constraint Kbad , both
initially containing no valuations (line 1). Then CompSynth iterates on inte-
ger points: while not all integer points in D0 are covered, do not belong to
Kbad ∪ Kgood (line 2), such an uncovered point v is picked (line 3). Then, we
try to learn an abstraction of B w.r.t. v(A) (line 5) so that L� is unreachable
(“AG¬L�” stands for “no run should ever reach L�”). If an abstraction is suc-
cessfully learned, then PRP is called on v and the abstract model A ‖ ˜B (line 6);
the constraint Kgood is then refined. Note that Kgood is refined because, if an
abstraction is computed, then necessarily the property is satisfied and therefore
the (abstract) system is safe. Alternatively, if LearnAbstr fails to compute a valid
abstraction, then a counterexample trace τ is returned (line 7); then this trace
is replayed using ReplayTrace (line 8), and the constraint Kbad is updated.

5.5 Soundness

Proposition 2 (soundness). Let A ‖ B be a PERA and D0 be a bounded
parameter domain. Assume CompSynth(A,B,D0, L

�) terminates with result
(Kgood ,Kbad).

Learning-Based Compositional Parameter Synthesis 27

Then, for all v (i) if v |= Kgood then v(A ‖ B) does not reach L�; (ii) if
v |= Kbad then v(A ‖ B) reaches L�.

Proof.

(i) Assume v |= Kgood . From Algorithm 2, Kgood is a finite union of convex
constraints, each of them being the result of a call to PRP. Necessarily,
v |= K, where K is one of these convex constraints, resulting from a call to
(A ‖ ˜B, v′), for some v′. From Lemma 2, v′(A) ‖ ˜B |= (AG¬L�). Since B and
˜B are non-parametric, we can write v′(A ‖ ˜B) |= (AG¬L�), v′(A ‖ ˜B) does
not reach L�. From Lemma 1, for all v′′ |= K, v′′(A ‖ ˜B) does not reach L�.
Now, since ˜B is a valid abstraction of B (B |= ˜B), therefore ˜B contains more
behaviors than B. Therefore for all v′′ |= K, v′′(A ‖ B) does not reach L�
either. Since v |= K, therefore v(A ‖ B) does not reach L�.

(ii) Assume v |= Kbad . From Algorithm 2, Kbad is a finite union of convex con-
straints, each of them being the result of a call to ReplayTrace. Necessarily,
v |= K, where K is one of these convex constraints, resulting from a call to
ReplayTrace(A ‖ B, τ) for some trace τ reaching L�. This trace was gener-
ated by LearnAbstr for some v′ and is a valid counter-example, this trace τ
reaches L� in v′(A) ‖ B. From Lemma 4, this trace is also a trace reach-
ing L� in A ‖ B. Then, from Proposition 1, for all v′′ |= K, τ is a valid trace
of v′′(A ‖ B) which reaches L� and therefore v′′(A ‖ B) reaches L�. Since
v |= K, then v(A ‖ B) reaches L�.

Proposition 3 (integer-completeness). Let A be a PERA and D0 be a
bounded parameter domain. Assume CompSynth(A,B,D0, L

�) terminates with
result (Kgood ,Kbad).

Then, for all v ∈ D0 ∩ N, v ∈ Kgood ∪ Kbad .

Proof. From Algorithm 2 (line 2).

Remark 1. Note that the integerness can be scaled down to, e. g., multiples of 0.1,
or in fact arbitrarily small numbers. The time needed to perform the verification
might grow, but the coverage of all these discrete points is still guaranteed.

6 Experiments

6.1 Handling General PTAs

So far, we showed that our framework is sound for PERAs. We now show that,
since we address only reachability, any PTA can be transformed into an equiv-
alent PERA, and therefore our framework is much more general. The idea is
that, since we are interested in reachability properties, we can rename some of
the actions so that the PTA becomes a PERA.

Basically, we remove any action labels along the edges, and we add them
back as follows: (1) if clock x is reset along an edge, the action label will be ax;
(2) if no clock is reset along an edge, the action label will be na, where na is a

28 É. André and S.-W. Lin

(unique) label, the clock associated to which (say xna) is never used (in guards
and invariants) in the PERA; note that, by definition, xna is reset along each
edge labeled with na (although this has no impact in the PERA); (3) if more
than one clock is reset along the edge, we split the edge into 2 consecutive edges
in 0-time, where each clock is reset after the other, following the mechanism
described above. Note that the 0-time can be ensured using an invariant x ≤ 0,
where x is the first clock to be reset.

Basically, our transformation leaves the structure of the PTA unchanged
(with the exception of a few transitions in 0-time to simulate multiple simulta-
neous clock resets). For each parameter valuation, the resulting PERA has the
same timed language as the original PTA – up to action renaming and with
the introduction of some 0-time transitions (that could be considered as silent
transitions if the language really mattered). Therefore, reachability is preserved.

Note that this construction provides an alternative proof for Theorem1.

Example 2. Figure 4a shows a PTA, and Fig. 4b its translation into an equivalent
PERA. (Recall that clock resets are implicit in PERAs.)

l1 l2

y = 1
a {x := 0}

a

x = p
b {x, y := 0}

(a) A PTA

l1 l2 l′2
x ≤ 0

y = 1
ax

na

x = p
ax

x ≤ 0
ay

(b) Translation to a PERA

Fig. 4. General PTA and its translation to a PERA

Remark 2. In our benchmarks, although we only address reachability, action
labels are not entirely useless: they are often used for action synchronization
between components. Therefore, renaming all actions is not a valid transforma-
tion, as components may not synchronize anymore the way it was expected. In
fact, we ensured that our models either only work using interleaving (no action
synchronization) or, when various components of a PTA synchronize on an action
label, at most one clock is reset along that transition for all PTAs synchronizing
on this action label.

6.2 Experiments

We implemented our method in a toolkit made of the following components:

– IMITATOR [5] is a state of the art tool for verifying real-time systems modeled
by an extension of PTAs with stopwatches, broadcast synchronization and
integer-valued shared variables. IMITATOR is implemented in OCaml, and
the polyhedra operations rely on the Parma Polyhedra Library (PPL).

Learning-Based Compositional Parameter Synthesis 29

– CV (Compositional Verifier) is a prototype implementation (in C++) of the
proposed learning-based compositional verification framework for ERAs.

The architecture of our toolkit is shown in Fig. 5. The leading tool is IMITA-
TOR, that takes the input model (in the IMITATOR input format), and eventu-
ally outputs the result. IMITATOR implements both algorithms CompSynth and
ReplayTrace, while CV implements LearnAbstr. The interface between both tools
is handled by a Python script, that is responsible for retrieving the abstraction
of B computed by CV and re-parameterizing the components A. We used IMI-
TATOR 2.9-alpha1, build 2212.1 Experiments were run on a MacBook Pro with
an i7 CPU 2.67 GHz and 3,7 GiB memory running Kubuntu 14.04 64 bits.

Benchmarks. We evaluated our approach using several benchmarks, with var-
ious (reachability) properties. We give in Table 1 the case studies, with the
numbers of PERAs in parallel, of clocks (equal to the number of actions, by
definition) and of parameters, followed by the specification number; then, we
compare the computation time (in s) for EFsynth, PRPC, and CompSynth (for
which we also give the number of abstractions and counter-examples generated

IMITATOR

parser core Python interface learning

CV

Constraint

Input model

Fig. 5. Architecture of our toolkit

Table 1. Experiments: comparison between algorithms

PRPC CompSynth
Case study #A #X #P Spec EFsynth

#iter total #abs #c.-ex. learning total

FMS-1 6 18 2
1 0.299 2 0.654 1 1 0.074 0.136
2 0.010 1 0.372 0 1 0.038 0.046
3 0.282 1 0.309 1 0 0.090 0.242

FMS-2 11 37 2

1 T.O. - T.O. 1 1 84.2 88.9
2 T.O. - T.O. 1 0 81.4 85.2
3 0.051 - T.O. 0 2 1.10 2.44
4 0.062 - T.O. 0 1 1.42 1.53
5 T.O. - T.O. 1 0 31.4 40.8
6 T.O. - T.O. 1 0 37.2 42.4

AIP 11 46 2

1 0.551 - T.O. 0 1 0.086 0.114
2 2.11 - T.O. 0 1 1.22 1.25
3 3.91 - T.O. 0 1 8.50 8.54
4 0.235 - T.O. 1 1 8.39 8.42
5 T.O. - T.O. 1 0 0.394 0.871
6 T.O. - T.O. 1 0 5.32 9.58
7 T.O. - T.O. 1 0 1.76 3.19
8 T.O. - T.O. 1 0 1.13 4.35
9 T.O. - T.O. 1 1 0.762 1.84
10 0.022 - T.O. 0 1 0.072 0.094

Fischer-3 5 12 2 2.76 4 14.0 0 1 - T.O.
Fischer-4 6 16 2 T.O. - T.O. 0 1 - T.O.

1 Sources, binaries, models and results are available at imitator.fr/static/FORTE17.

30 É. André and S.-W. Lin

by LearnAbstr, and the learning time required by LearnAbstr). “T.O.” denotes
a timeout (>600 s). FMS-1 and -2 are two versions of a flexible manufactur-
ing system [15] (Fig. 1 depicts the conveyor component of FMS-1). AIP is a
manufacturing system producing two products from two different materials [15].
Fischer-3 (resp. 4) is a PERA version of the mutual exclusion protocol with 3
(resp. 4) processes; it was obtained using the transformation in Sect. 6.1.

Comparison. Although reachability synthesis is intractable for PERAs (Theo-
rem 1), CompSynth always terminates for our case studies (except for Fischer, for
which the abstraction computation is too slow). In contrast, EFsynth does often
not terminate. In addition, CompSynth always gives a complete (dense) result
not only within D0 but in fact in the entire parameter domain (QM

+).
First, CompSynth outperforms PRPC for all but one benchmark: this suggest

to use CompSynth instead of PRPC in the future.
Second, CompSynth is faster than EFsynth in 13/20 cases. In addition, whereas

EFsynth often does not terminate, CompSynth always outputs a result (except
for Fischer). In some cases (FMS-2:3, FMS-2:4, AIP:4), EFsynth is much faster
because it immediately derives ⊥, whereas CompSynth has to compute the
abstraction first. Even in these unfavorable cases, CompSynth is never much
behind EFsynth: the worst case is AIP:4, with 8 s slower. This suggests that
CompSynth may be preferred to EFsynth for PERAs benchmarks.

Table 2. Experiments: scalability w.r.t. the reference domain

CompSynth
Case study #A #X #P Spec D0 #abs #c.-ex. find next point learning total

FMS-2 11 37 2 1

2,500 1 1 0.0 81.0 85.7
10,000 1 1 0.1 82.5 87.3

250,000 1 1 2.2 82.0 89.0
1,000,000 1 1 8.9 83.1 96.7

25,000,000 1 1 221.2 83.1 309.0
100,000,000 1 1 888.1 83.5 976.4

Interestingly, in almost all benchmarks, at most one abstraction (for good
valuations) and one counter-example (for bad valuations) is necessary for
CompSynth. In addition, most of the computation time of CompSynth (71 %
in average) comes from LearnAbstr; this suggests to concentrate our future opti-
mization efforts on this part. Perhaps an on-the-fly composition mixed with
synthesis could help speeding-up this part; this would also solve the issue of con-
straints ⊥ synthesized only after the abstraction phase is completed (FMS-2:3,
FMS-2:4, AIP:4).

For Fischer, our algorithm is very inefficient: this comes from the fact that
the model is strongly synchronized, and the abstraction computation does not
terminate within 600 s. In fact, in both cases, LearnAbstr successfully derives very
quickly a counter-example that is used by CompSynth to immediately synthesize
all “bad” valuations; but then, as LearnAbstr fails in computing an abstrac-
tion, the good valuations are not synthesized. Improving the learning phase for
strongly synchronized models is on our agenda.

Learning-Based Compositional Parameter Synthesis 31

We were not able to perform a comparison with [9]; the prototype of [9]
always failed to compute a result. In addition, our Fischer benchmark does not
fit in [9] as Fischer makes use of shared parameters.

Size of the Parameter Domain. Algorithm 2 is based on an enumeration of
integer points: although we could use an SMT solver to find the next uncovered
point, in our implementation we just enumerate all points, and therefore the size
of D0 may have an impact on the efficiency of CompSynth. Table 2 shows the
impact of the size of D0 w.r.t. CompSynth. “find next point” is the time to find the
next uncovered point (and therefore includes the enumeration of all points). The
overhead is reasonable up to 1,000,000 points, but then becomes very significant.
Two directions can be taken to overcome this problem for very large parameter
domains: (1) using an SMT solver to find the next uncovered point; or (2) using
an on-the-fly refinement of the precision (e. g., start with multiples of 100, then
10 for uncovered subparts of D0, then 1. . . until D0 ⊆ Kbad ∪ Kgood).

Partitioning. Finally, although the use of heuristic 2 is natural, we still wished
to evaluate it. Results show that our partitioning heuristic yields always the best
execution time, or almost the best execution time.

7 Conclusion and Perspectives

We proposed a learning-based approach to improve the verification of parametric
distributed timed systems, that turns to be globally efficient on a set of bench-
marks; most importantly, it outputs an exact result for most cases where the
monolithic procedure EFsynth fails.

Among the limitations of our work is that the input model must be a PERA
(although we provide an extension to PTAs), and that all parametric ERAs must
be in the same component A. How to lift these assumptions is on our agenda.

Another perspective is the theoretical study of PERAs, their expressiveness
and decidability (beyond EF-emptiness, that we proved to be undecidable).

Finally, addressing other properties than reachability is also on our agenda.

Acknowledgment. We warmly thank Lăcrămioara Aştefănoaei for her appreciated
help with installing and using the prototype tool of [9].

References

1. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class
of timed automata. Theoret. Comput. Sci. 211(1–2), 253–273 (1999)

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC,
pp. 592–601. ACM (1993)

3. André, É.: What’s decidable about parametric timed automata? In: Artho, C.,
Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 52–68. Springer, Cham
(2016). doi:10.1007/978-3-319-29510-7 3

4. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. IJFCS 20(5), 819–836 (2009)

http://dx.doi.org/10.1007/978-3-319-29510-7_3

32 É. André and S.-W. Lin

5. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for ana-
lyzing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.)
FM 2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32759-9 6

6. André, É., Lime, D., Roux, O.H.: Decision problems for parametric timed
automata. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol.
10009, pp. 400–416. Springer, Cham (2016). doi:10.1007/978-3-319-47846-3 25

7. André, É., Lipari, G., Nguyen, H.G., Sun, Y.: Reachability preservation based
parameter synthesis for timed automata. In: Havelund, K., Holzmann, G., Joshi, R.
(eds.) NFM 2015. LNCS, vol. 9058, pp. 50–65. Springer, Cham (2015). doi:10.1007/
978-3-319-17524-9 5

8. André, É., Markey, N.: Language preservation problems in parametric timed
automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS,
vol. 9268, pp. 27–43. Springer, Cham (2015). doi:10.1007/978-3-319-22975-1 3

9. Aştefănoaei, L., Bensalem, S., Bozga, M., Cheng, C.-H., Ruess, H.: Compositional
parameter synthesis. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A.
(eds.) FM 2016. LNCS, vol. 9995, pp. 60–68. Springer, Cham (2016). doi:10.1007/
978-3-319-48989-6 4

10. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: an evalu-
ation of automated assume-guarantee reasoning. TOSEM 17(2), 7:1–7:52 (2008)

11. Cobleigh, J.M., Giannakopoulou, D., PĂsĂreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003). doi:10.1007/3-540-36577-X 24

12. Frehse, G., Jha, S.K., Krogh, B.H.: A counterexample-guided approach to para-
meter synthesis for linear hybrid automata. In: Egerstedt, M., Mishra, B. (eds.)
HSCC 2008. LNCS, vol. 4981, pp. 187–200. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-78929-1 14

13. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. JLAP 52–53, 183–220 (2002)

14. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed
automata. Trans. Softw. Eng. 41(5), 445–461 (2015)

15. Lin, S.W., André, É., Liu, Y., Sun, J., Dong, J.S.: Learning assumptions for com-
positional verification of timed systems. TSE 40(2), 137–153 (2014)

http://dx.doi.org/10.1007/978-3-642-32759-9_6
http://dx.doi.org/10.1007/978-3-642-32759-9_6
http://dx.doi.org/10.1007/978-3-319-47846-3_25
http://dx.doi.org/10.1007/978-3-319-17524-9_5
http://dx.doi.org/10.1007/978-3-319-17524-9_5
http://dx.doi.org/10.1007/978-3-319-22975-1_3
http://dx.doi.org/10.1007/978-3-319-48989-6_4
http://dx.doi.org/10.1007/978-3-319-48989-6_4
http://dx.doi.org/10.1007/3-540-36577-X_24
http://dx.doi.org/10.1007/978-3-540-78929-1_14
http://dx.doi.org/10.1007/978-3-540-78929-1_14

Modularising Opacity Verification for Hybrid
Transactional Memory

Alasdair Armstrong and Brijesh Dongol(B)

Brunel University London, London, UK
{alasdair.armstrong,brijesh.dongol}@brunel.ac.uk

Abstract. Transactional memory (TM) manages thread synchronisa-
tion to provide an illusion of atomicity for arbitrary blocks of code. There
are various implementations of TM, including hardware (HTM) and soft-
ware (STM). HTMs provide high performance, but are inherently limited
by hardware restrictions; STMs avoid these limitations but suffer from
unpredictable performance. To solve these problems, hybrid TM (HyTM)
algorithms have been introduced which provide reliable software fallback
mechanisms for hardware transactions. The key safety property for TM is
opacity, however a naive combination of an opaque STM and an opaque
HTM does not necessarily result in an opaque HyTM. Therefore, HyTM
algorithms must be specially designed to satisfy opacity. In this paper
we introduce a modular method for verifying opacity of HyTM imple-
mentations. Our method provides conditions under which opacity proofs
of HTM and STM components can be combined into a single proof of an
overall hybrid algorithm. The proof method has been fully mechanised
in Isabelle, and used to verify a novel hybrid version of a transactional
mutex lock.

1 Introduction

By allowing programmers to mark blocks of arbitrary code as transactions,
Transactional Memory (TM) aims to provide an easy-to-use synchronisation
mechanism for concurrent access to shared data. Unlike coarse-grained locking,
TM implementations are fine-grained, which improves performance. In recent
years, TM has appeared as software libraries in languages such as Java, Clojure,
Haskell and C++11, and received hardware support in processors (e.g., Intel’s
TSX).

Software Transactional Memory (STM), as provided by the aforementioned
software libraries, offers a programmer-friendly mechanism for shared-variable
concurrency. However, it suffers from unpredictable performance which makes
it unsuitable for some applications. On the other hand, Hardware Transactional
Memory (HTM), as implemented in modern Intel processors, offers high perfor-
mance but comes with many limitations imposed by the constraints of the hard-
ware itself. For example, HTM implementations do not guarantee progress for a
transaction even in the absence of other concurrent transactions [11]. Hybrid

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Bouajjani and A. Silva (Eds.): FORTE 2017, LNCS 10321, pp. 33–49, 2017.
DOI: 10.1007/978-3-319-60225-7 3

34 A. Armstrong and B. Dongol

TM (HyTM) implementations address these issues by integrating STM and
HTM [10]. Recent work [2,3,18] has focused on providing software fallbacks for
HTM, combining the performance benefits of HTM with the strong semantics
and progress guarantees of STM.

Opacity [8,9] is the primary safety property for TM, which ensures that
implementations have the familiar properties of database transactions: atomic-
ity, consistency, and isolation. Opacity requires that all transactions (including
aborting ones) can be serialised into some meaningful sequential order, so that
no transaction witnesses an inconsistent state caused by the partial execution of
any other transaction. Overall, this ensures that TM implementations execute
with an illusion of atomicity.

HyTM algorithms, which are the focus of this paper, consist of STM (slow-
path) transactions executing in parallel with HTM (fast-path) transactions. Since
an execution may consist of only STM or only HTM transactions, one must
ensure that slow-path and fast-path transactions are by themselves opaque.
In addition, synchronisation between slow- and fast-path transactions must be
introduced to ensure that executions consisting of arbitrary combinations of
these transactions is opaque. It is already known that naively combining STM
and HTM results in a non-opaque HyTM algorithm [2]. In this paper, we develop
a modular verification method for proving opacity of HyTM algorithms—our
method provides a means for independently proving opacity of both the STM
slow path and the HTM fast path, and then combining them into a proof of
opacity of the overall system.

To demonstrate our proof method, in Sect. 2, we develop a novel hybrid
version of Dalessandro et al.’s Transactional Mutex Lock [4], extending it with
a subscription mechanism described in [3]. Our algorithm, HyTML, combines
an eager STM, where writes to the shared store are immediately committed to
memory, with a lazy fast path HTM, where writes to the shared store are cached
until the HTM executes a commit operation. Moreover, it improves concurrency
in the original TML algorithm by allowing multiple concurrent writing HTM
transactions; in the original algorithm, all transactions abort in the presence of
any concurrent writing transaction.

Our proof method is an extension of previous work [6,14] that uses trace
refinement of I/O automata (IOA) [17] to verify opacity via a TM specification
known as TMS2 [7]. Unlike existing work, our methods enable one to verify
HyTML in a modular manner (i.e., by combining individual opacity proofs of
the fast-path and slow-path components) despite the monolithic structure of the
algorithm. Our proof methods are influenced by compositional techniques [20]
such as rely/guarantee [12]. However, unlike rely-guarantee, which focusses on
composing processes, we focus on composition at the level of components, which
themselves consist of multiple parallel processes.

We start by developing the notion of an interference automaton (Sect. 4),
which specialises IOA by including transitions that take into account any poten-
tial interference from the environment. Parallel composition for interference
automata is developed in Sect. 5, and the notion of weak simulation for parallel

Modularising Opacity Verification for Hybrid Transactional Memory 35

interference automata is given in Sect. 6. There we provide our main decom-
position theorem, which describes how weak simulations can be combined to
ensure trace refinement of the composed system. We apply our proof methods
to verify HyTML in Sect. 7; we show how individual opacity proofs for the STM
and HTM components can be combined, to avoid the complexity inherent in a
monolithic proof. All the proofs in this paper, including our meta-theory, have
been mechanised1 in the Isabelle theorem prover [19].

2 Hybrid TML

Our running example is the Hybrid Transaction Mutex Lock (HyTML) algorithm
given in Listing 1, which extends Dalessandro et al.’s TML algorithm [4] with
a 2-counter subscription mechanism [3]. HyTML synchronises the software slow
path with a hardware fast path using glb (which is published by software and
subscribed by hardware) and ctr (which is published by hardware and subscribed
by software).

The parity of glb indicates whether a writing software transaction is currently
executing. Namely, a writing software transaction increments glb once at Line
31, where it effectively acquires the write lock, and again at Line 37, where it
effectively releases the write lock. Thus, �glb/2� gives the total number of com-
mitted software transactions. TML, and by extension HyTML, has the property

Listing 1. A Hybrid Transactional Mutex Lock (HyTML) algorithm
1: procedure Init
2: glb, ctr ← 0, 0

3: procedure FPBegint
4: XBegin()

5: loct ← glb
6: writer t ← false
7: if odd(loct) then
8: XAbort()

9: procedure FPReadt(a)
10: return ∗a
11: procedure FPWritet(a, v)
12: writer t ← true
13: ∗a ← v
14: procedure FPCommitt
15: if writer t then
16: ctr++

17: XEnd()

18: procedure SPBegint
19: repeat
20: loct ← glb
21: lctr t ← ctr
22: until even(loct)

23: procedure SPReadt(a)
24: vt ← ∗a
25: if glb = loct then
26: if ctr = lctr t then
27: return vt
28: abort

29: procedure SPWritet(a, v)
30: if even(loct) then
31: if ¬dcss(&glb, loct,&ctr , lctr t, loct+1)
32: then abort
33: else loct++

34: ∗a ← v

35: procedure SPCommitt
36: if odd(loct) then
37: glb ← loct + 1

1 The Isabelle files may be downloaded from [1].

36 A. Armstrong and B. Dongol

that only a single software transaction can be writing at a time. The presence
of a software writer causes all concurrently executing transactions, including
fast-path transactions, to abort.2 Unlike TML, HyTML allows more than one
concurrent writing transaction via the fast path. Variable ctr is used to signal
a completed hardware transaction and is incremented whenever a writing hard-
ware transaction commits (Line 16). The total number of committed writing
transactions is therefore given by �glb/2�+ctr . Note that read-only transactions
modify neither glb nor ctr .

Software Slow Path. The software slow path implementation is a conservative
extension to the original TML algorithm [4] — we refer the interested reader to
[4,5] for further details of the behaviour of TML. The implementation consists
of operations SPBegin and SPCommit that start and end software transactions,
respectively, as well as SPRead and SPWrite that perform (software) transac-
tional reads and writes, respectively. Each operation and transaction-local vari-
able is indexed by a transaction identifier t.

Procedure SPBegint repeatedly polls both glb and ctr , storing their values in
local variables loct and lctr t, respectively, until loct is even. This ensures that a
software transaction cannot begin until there are no software writers. Procedure
SPReadt(a) first reads the value in address a from memory and then checks
(non-atomically) if glb and ctr are consistent with loct and lctr t, respectively.
The value of the address is returned if both checks succeed, otherwise it is likely
that the transaction t has witnessed an inconsistent snapshot of the store, and
hence it aborts.

Procedure SPWritet first checks the parity of loct. If loct is odd, then t
must itself be the (unique) software writer, i.e., t had acquired the mutex lock
from a previous call to SPWritet. Therefore, t can immediately proceed and
eagerly update the value of ∗a in the store to v. If loct is even, it contends with
other writers to acquire the lock using a double compare single swap operation:
dccs, which atomically checks both lctr t and loct against their global values and
updates glb to loct + 1 if both are unmodified (which effectively acquires the
mutex lock). The dccs operation returns true iff it is successful. If either glb or
ctr have changed since t first read their values within SPBegint, then t may go on
to construct an inconsistent memory state, and hence, it must abort. Otherwise
(i.e., if dccs succeeds), loct is incremented (Line 33) to match the new value of
glb. This makes the value of loct odd, allowing the expensive dccs operation to
be elided in future calls to SPWritet, as explained above, and allows future calls
to SPReadt to succeed.

Procedure SPCommitt always succeeds. It checks to see if t is a writing trans-
action (i.e., loct is odd). If so, loct must be equal to glb, and hence, the update
to glb at Line 37 is equivalent to an increment of glb that makes glb’s value even.
This second increment effectively releases the mutex lock.

2 There are some exceptions, e.g., a read-only software transaction can successfully
commit even in the presence of another writer if no more reads are performed [5].

Modularising Opacity Verification for Hybrid Transactional Memory 37

Hardware Fast Path. Our implementation uses HTM primitives provided by an
Intel x86 processor with TSX extensions. However, we keep the specifics of the
hardware generic and assume as little as possible about the behaviour of the
primitives, allowing our work to more easily be adapted to work with other
HTMs. We use three basic primitives: XBegin, which starts a hardware transac-
tion, XEnd, which ends (and attempts to commit) the hardware transaction, and
XAbort, which explicitly aborts the hardware transaction. We assume that, once
started, a hardware transaction may be forced abort at any time for any reason,
which is consistent with Intel’s specifications [11]. In addition, when interference
on any variable that has been read is detected, a fast-path transaction must
abort (details are provided below).

Procedure FPBegint starts a fast-path transaction by calling XBegin, then
subscribes to the software global version number, glb, by reading and recording
its value in a local variable loct. A local flag writer t (initially false) is used to
indicate whether a fast-path transaction is a writer. Transaction t only begins
if loct is even—if loct is odd, a slow-path writer is executing, and hence, the
fast-path transaction aborts.

Note that because the read of glb occurs after XBegin, the underlying HTM
will track the value of glb in memory, ensuring that the fast-path transaction
aborts if glb changes. Such checks to glb are performed automatically by the
HTM outside the control of the fast-path implementation, and hence, is not
explicit in the code (Listing 1). This behaviour is captured in our model of the
fast-path transactions by validating that the value of glb is equal to loct for every
step of fast-path transaction t, and aborting whenever this validation fails.

The fast-path read and write operations, FPReadt and FPWritet consist of
standard memory operations, but the underlying HTM will ensures these writes
are not visible outside t until t commits. In FPWritet, the flag writer t is set to
true to indicate that t is now a writer. Procedure FPCommitt updates ctr if t is
a writer, which indicates to software transactions that a fast-path transaction is
committing. Note that this increment to ctr will not cause other fast-path trans-
actions to abort. Finally, FPCommitt calls XEnd, which, for a writer transaction,
commits all the pending writes to the store and publishes the increment to ctr.

3 The TMS2 Specification

The basic principle behind the definition of opacity (and other similar defini-
tions) compares a given concurrent history of transactional operations against a
sequential one. Opacity requires it be possible for transactions to be serialised
so that the real-time order of transactions is preserved. Within this serialisation
order, read operations for all transactions, including aborted transactions, must
be consistent with the state of the memory store, which is obtained from the
initial store by applying the previously committed transactions in their serialised
order [8,9]. We elide the formal definition of opacity here, focusing instead on
an automata-based TM specification, TMS2 [7]. Lesani et al. [15] have mechani-
cally verified that TMS2 is opaque, thus it is sufficient to show trace refinement
against TMS2 to verify opacity of an implementation (cf [6,14]). TMS2 and the
implementations we verify are modelled using input/output automata [16,17].

38 A. Armstrong and B. Dongol

Definition 1. An I/O automaton (IOA) is a labelled transition system A with
a set of states states(A), a set of actions acts(A) (partitioned into internal and
external actions), a set of start states start(A) ⊆ states(A) and a transition
relation trans(A) ⊆ states(A) × acts(A) × states(A) (so that the actions label
the transitions).

TMS2 contains external transitions modelling operation invocations and
responses, e.g., the invoke and respond actions for a write action are given
below, where statust is a transaction-local variable that models control flow.
The transition is enabled if all its preconditions, given after the keyword Pre,
hold in the current state. State modifications (effects) of a transition are given
as assignments after the keyword Eff.

invt(TMWrite(a, v))
Pre: statust = ready
Eff: statust := doWrite(a, v)

respt(TMWrite)
Pre: statust = writeResp
Eff: statust := ready

TMS2 contains a pair of invocations and responses for begin, read, write and
commit operations. In addition, a response is provided for aborting operations:

respt(TMAbort)
Pre: statust /∈ {notStarted, ready, commitResp, committed, aborted}
Eff: statust := aborted

After invoking a write, read, or commit operation, a transaction may execute
one of the ‘do’ actions in Fig. 1, which performs the corresponding abstract
operation.

Fig. 1. Internal actions of TMS2

Modularising Opacity Verification for Hybrid Transactional Memory 39

TMS2 guarantees that transactions satisfy two critical requirements: (R1) all
reads and writes of a transaction work with a single consistent memory snapshot
that is the result of all previously committed transactions, and (R2) the real-
time order of transactions is preserved. Full details of TMS2 may be found in
[7]. Here, we give a brief overview of the requirements that our implementation
must satisfy.

To ensure (R1), the state of TMS2 includes 〈memSeq(0), . . . memSeq
(maxIdx)〉, which is a sequence of all possible memory snapshots (the stores
sequence). Initially the sequence consists of one element, the initial memory
memSeq(0). Committing writer transactions append a new memory newMem
to this sequence (cf. DoCommitWt), by applying the writes of the transaction to
the last element memSeq(maxIdx). To ensure that the writes of a transaction
are not visible to other transactions before committing, TMS2 uses a deferred
update semantics: writes are stored locally in the transaction t’s write set wrSet t

and only published to the shared state when the transaction commits. Note that
this does not preclude TM implementations with eager writes, such as TML.
However eager implementations must guarantee that writes are not observable
until after the writing transaction has committed.

Each transaction t keeps track of all its reads from memory in a read set
rdSet t. A read of address a by transaction t checks that either a was previously
written by t itself (then branch of DoReadt(a)), or that all values read so far,
including a, are from the same memory snapshot n, where beginIdx t ≤ n ≤
maxIdx (predicate validIdx t(n) from the precondition, which must hold in the
else branch). In the former case the value of a from wrSet t is returned, and in
the latter, the value from memSeq(n) is returned and the read set is updated.
The read set of t is also validated when a transaction commits (cf. DoCommitROt

and DoCommitWt). Note that when committing, a read-only transaction may read
from a memory snapshot older than memSeq(maxIdx), but a writing transaction
must ensure that all reads in its read set are from most recent memory (i.e.
latestMem memSeq(maxIdx)), since its writes will update the memory sequence
with a new snapshot.

To ensure (R2), if a transaction t′ commits before transaction t starts, then
the memory that t reads from must include the writes of t′. Thus, when starting a
transaction, t saves the current last index of the memory sequence, maxIdx , into
a local variable beginIdx t. When t performs a read, the predicate validIdx t(n)
ensures that that the snapshot memSeq(n) used has beginIdx t ≤ n, implying
that writes of t′ are included.

Our proof of opacity is based on trace refinement [16] between HyTML and
TMS2, which ensures that every externally visible execution of HyTML is a
possible externally visible execution of TMS2. Since every execution of TMS2
is known to be opaque [15], one can conclude that HyTML is itself opaque. We
develop a proof method for trace refinement that exploits the fact that HyTML
consists of two distinct sets of transactions: slow- and fast-path. Namely, our
method proves opacity of each set of transactions independently, taking into
account any possible interference from the other set.

40 A. Armstrong and B. Dongol

4 Interference Automata

In this section, we formalise the concept of interference automata and the
notions of trace refinement and forward simulation that we use. Interference
automata specialise IOA by explicitly including transitions for environment
steps, representing the potential interference from other components within the
same system. In the context of the HyTM implementations we verify, an inter-
ference automaton will model the fast-path (slow-path) transactions with inter-
ference stemming from the slow-path (fast-path).

Definition 2 (Interference automata). An interference automaton A con-
sists of:

– PA is an (infinite) set of process identifiers,
– sets local(A) and global(A) of local and global states,
– sets external(A) and internal(A) of external and internal actions, and
– an environment action ε /∈ external(A) ∪ internal(A).

We assume external(A) ∩ internal(A) = ∅, and use actions(A) = external(A) ∪
internal(A) ∪ {ε} to denote the actions of A. Furthermore:

– initialisation of A is described by
• lstart(A) ⊆ PA → local(A), a set of local start states, and
• gstart(A) ∈ global(A), a global start state

– transitions of A are described by
• ltrans(A) ⊆ (local(A) × global(A)) × actions(A) × (local(A) × global(A)),

which describes local transitions, and
• env(A) ⊆ global(A)×global(A), which is a reflexive relation that describes

environment transitions.

The overall state space of A is given by states(A) = (PA → local(A))×global(A).
That is, a state is a pair consisting of a local state for every possible process in
PA and a global state. For any state s, the local part of the state is denoted by
sl, and the global part by sg, and hence, s = (sl, sg).

An interference automaton A may perform an environment transition in
env(A), which may only modify the global state, or a local transition for a
specific process p ∈ PA, which may only modify the local state of p and the
global state. For states s and s′, action a, and process p, we denote an internal
or external transition of A by s

a,p−−→A s′, where the action is paired with the
process identifier executing the action. By construction, we have that the local
state of process p′ is unchanged after a transition of process p whenever p �= p′.
For global state sg, s

′
g, we use sg

ε−→A s′
g to denote an environment transition,

which is lifted to the level of states in the obvious way. Namely, if sl is a local
state, we let (sl, sg)

ε−→A (sl, s
′
g) denote an environment transition.

A run of an interference automaton A is an alternating sequence of states and
actions starting from an initial state. The traces of A, denoted traces(A), are the
runs of A restricted to external actions, and the reachable states of A, denoted
reach(A), are states that can be reached by some run of A. For interference
automata A and C, we say C is a trace refinement of A iff traces(C) ⊆ traces(A).

Modularising Opacity Verification for Hybrid Transactional Memory 41

Interference automata may be regarded as a special case of IOA, where the
state is specialised and actions are split into internal and environment actions.
Therefore, all theorems of IOA, including notions of simulation [16] are also
applicable in this setting. Note that an interference automaton A represents the
actions of an arbitrary amount of processes, which is why PA must be infinite.
As such, interference automata represent systems of processes and not specific
sets of processes. A forward simulation is a standard way of verifying trace
refinement between a concrete implementation and an abstract specification.
For interference automata, this involves proving simulation between the external,
internal, and environment steps.

Definition 3 (Forward simulation). If A and C are interference automata
such that external(C) ⊆ external(A), we say R ⊆ states(C) × states(A) is a
forward simulation between A and C iff each of the following hold:

Initialisation. ∀cs ∈ start(C) • ∃as ∈ start(A) • (cs, as) ∈ R

External step correspondence
∀cs ∈ reach(C), as ∈ reach(A), a ∈ external(C), p ∈ PC , cs′ ∈ states(C) •

(cs, as) ∈ R ∧ cs
a,p−−→C cs′ =⇒

∃as′ ∈ states(A) • (cs′, as′) ∈ R ∧ as
a,p−−→A as′,

Internal step correspondence
∀cs ∈ reach(C), as ∈ reach(A), a ∈ internal(C), p ∈ PC , cs′ ∈ states(C) •

(cs, as) ∈ R ∧ cs
a,p−−→C cs′ =⇒ (cs′, as) ∈ R ∨

∃as′ ∈ states(A), a′ ∈ internal(A) • (cs′, as′) ∈ R ∧ as
a′,p−−→A as′,

Environment step correspondence
∀cs ∈ reach(C), as ∈ reach(A), cs′

g ∈ global(C) •
(cs, as) ∈ R ∧ csg

ε−→C cs′
g =⇒

∃as′
g ∈ global(A) • ((csl, cs

′
g), (asl, as′

g)) ∈ R ∧ asg
ε−→A as′

g.

Soundness of the forward simulation rule with respect to trace refinement has
been checked in Isabelle [1].

Theorem 1 (Soundness). If R is a forward simulation between interfer-
ence automata A and C, then C is a trace refinement of A, i.e., traces(C) ⊆
traces(A).

In Sect. 5, we introduce the concept of parallel interference automata and in
Sect. 6, we develop a theorem for decomposing parallel interference automata
into proofs of individual sub-components. It turns out that our decomposition
theorem only needs assume the existence of weak forward simulation of the com-
ponents, in which environment step correspondence may not hold. The notion
of a weak simulation is important here, as weak simulations correspond to our
existing proofs of opacity for e.g. TML, since these proofs do not involve envi-
ronment steps. As such, this facilitates the re-use of existing proofs of STM

42 A. Armstrong and B. Dongol

components in the parallel case with only minor modifications. Note that weak
simulation between A and C ensures trace refinement for any automaton C in
which env(C) is the identity relation since the environment step correspondence
proof is trivial.

5 Parallel Interference Automata

In this section, we define a notion of parallel composition for interference
automata. The idea is that any possible interference from one component of
the parallel composition is reflected as an environment transition in the other.
Thus, the parallel composition B‖C comprises an interleaving of the local (inter-
nal and external) actions of both B and C.

Two interference automata B and C can be composed iff they are compati-
ble, which only requires that they share the same start state, i.e., gstart(B) =
gstart(C). We let � denote disjoint union with injections (or inclusion maps) ι1
and ι2.

Definition 4 (Parallel composition). The parallel composition of two com-
patible interference automata B and C is constructed as follows:

– local(B‖C) = local(B) � local(C),
– global(B‖C) = global(B) ∪ global(C),
– PB‖C = PB � PC ,
– lstart(B‖C) = {f ∪ g • f ∈ lstart(B) ∧ g ∈ lstart(C)},
– gstart(B‖C) = gstart(B) = gstart(C) as B and C are compatible,
– internal(B‖C) = internal(B) � internal(C),
– ((ιn(s), g), ιn(a), (ιn(s′), g′)) ∈ ltrans(B‖C) iff ((s, g), a, (s′, g′)) ∈ ltrans(B)

when n = 1 and ((s, g), a, (s′, g′)) ∈ ltrans(C) when n = 2, and
– env(A) = Id, where Id is the identity relation.

Essentially this construction splits both the processes and the internal state
space of the automaton into left and right processes and states, respectively. An
invariant of any composed automaton is that left processes always act on left
internal states, and vice versa. For the parallel composition B‖C, we typically
refer to the automaton B as the left automaton and C as the right automaton.
We use L to denote the projection function that takes a combined state of B‖C
and projects just to the part from the left automata B, and similarly for R
and C.

Henceforth, we make the environment transitions of interference automata
explicit. We introduce the notation I �A for an interference automaton A where
the environment is the relation I, i.e. env(I�A) = I. We write A when env(A) =
Id and refer to such A as an interference-free automaton. Note that we therefore
have Id � A = A.

In Definition 4, the environment of the composed interference automaton
(IC � B)‖(IB � C) is set to be the identity relation Id , which is possible under
the assumption that the local transitions of IC �B imply the environment tran-
sitions of C (namely IB), and vice versa. To use this assumption in our proofs,

Modularising Opacity Verification for Hybrid Transactional Memory 43

we introduce the notion of a guarantee condition (inspired by rely/guarantee
reasoning [12]). We say that an automaton I � B guarantees a relation J when

∀s ∈ reach(I � B), a ∈ actions(I � B), p ∈ PB • s
a,p−−→I�B s′ =⇒ (sg, s

′
g) ∈ J.

This states that every reachable transition in I � B modifies the global state
only as permitted by J . In other words, if IC � B guarantees IB and IB � C
guarantees IC , then this ensures that every local transition of IC � B can be
matched with a environment step of IB � C, and vice versa.

As mentioned an (interference-free) interference automaton A represents the
actions of zero or more transactions of type A. Similarly the parallel composition
A‖A also represents zero or more transactions of type A, with some labelled as
from the left A and others from the right. In other words, parallel composition
is idempotent for interference free interference automata. This can be shown via
a re-labelling of process identifiers, and has been verified in Isabelle (see [1]).

Theorem 2. traces(A‖A) = traces(A).

We will use this theorem in the proof of HyTML to split the interference-free
IOA specification TMS2 into the parallel composition of two TMS2 components.
Thus, to show that HyTML is a trace refinement of TMS2, it will be sufficient to
show that the software and hardware components individually are refinements
of TMS2.

6 Simulation Proofs for Parallel Interference Automata

For modular verification of a parallel interference automaton, we provide a way
to build a simulation of a parallel composition from individual weak simulations
of the sub-components. For example, in HyTML we consider the two concrete
fast/slow paths, and prove both of them TMS2 independently. By Theorem 2, we
have that traces(TMS2) = traces(TMS2‖TMS2), and hence, for modular proofs
of opacity, it is sufficient to consider abstract specifications of the form A‖A.

Consider interference automata IC � B and IB � C, and an abstract inter-
ference automaton IA � A. Assume we have weak simulations R and S where

IA � A weakly simulates IC � B and, IA � A weakly simulates IB � C.

We aim to develop conditions such that R‖S is a full (non-weak) simulation
between A‖A and B‖C, where

R‖S = {(s, s′) • (L(s),L(s′)) ∈ R ∧ (R(s),R(s′)) ∈ S}.

We now describe the weak simulations R and S, including the state projection
functions L and R, and their interaction with the non-weak simulation of the
whole system. Graphically, we can visualise weak simulations R and S as

π1 ε π2

π2

and

ε γ1 ε

γ1

44 A. Armstrong and B. Dongol

where the local states of the left (right) automaton IC�B (symmetrically IB�C)
combined with the global state is represented by . Thus, the left (right)
simulation R (S) is over . Each state of the parallel automaton B‖C,
denoted , contains both left and right processes, their local states, as well as
the shared global state.

For the weak simulations R and S, we must construct a simulation R‖S of
the form:

π1 γ1 π2

γ1 π2

where the environment step ε of R must correspond to the appropriate program
step of S, namely γ1. However, we cannot prove this without some additional
properties, because we do not know how actions of IB �C affect R, and similarly
for IC�B and S. Note that establishing environment step correspondence (which
would turn R and S into non-weak forward simulations) would not help. For
example, consider R′:

π1 ε π2

εA π2

Because we have no way of guaranteeing that the abstract state after εA in R′

is the same as the abstract state after γ1 in S, we cannot naively construct a
parallel forward simulation. Instead we use non-interference conditions which
guarantee that C and B do not affect R and S, respectively. In essence, this
enables us to ‘stitch’ together the two simulations R and S into a simulation of
the parallel composition. In other words, the simulation relations used in both
component proofs are preserved by the effects of both components’ actions on
the global state.

Definition 5. The condition nonInterferenceLeft(R,S,B,C,A) holds iff

∀cl, cg, al, ag, πC , πA, p •
L(cl, cg) ∈ reach(B) ∧ L(al, ag) ∈ reach(A) ∧ R(cl, cg) ∈ reach(C)
∧ (R(cl, cg),R(al, ag)) ∈ R ∧ (L(cl, cg),L(al, ag)) ∈ S

∧ L(cl, cg)
πB ,p−−−→B L(c′

l, c
′
g) ∧ L(al, ag)

πA,p−−−→A L(a′
l, a

′
g)

=⇒ (R(cl, c
′
g),R(al, a

′
g)) ∈ R.

where πA and πC are corresponding actions. Symmetrically, we define a condition
nonInterferenceRight(R,S,B,C,A).

The reason these conditions are needed is that our guarantee conditions talk
purely about the state changes caused by the automaton itself, but not about the

Modularising Opacity Verification for Hybrid Transactional Memory 45

simulation relations between automata. While these non-interference conditions
at first look complicated due to the amount of notation involved, notice that the
local state cl and al does not change between the pre- and post-condition for the
simulation relation R. What this means is that we are really showing only that
effects contained within the guarantee conditions do not affect the simulation
relation, which means that these conditions turn out to be quite straightforward
to prove in practice, as will be seen in Sect. 7.

Attempting to remove these non-interference conditions to make the method
fully compositional might not be worthwhile in practice, as doing so would
require full (rather than weak) simulations for each of the components. This
proves to be difficult, as it requires induction on the amount of interference
within the simulation proof of each component, and it would preclude easy re-
use of existing opacity proofs for the fast and slow paths.

We can now state our simulation theorem for parallel interference automata.
The theorem states that R‖S can be strengthened to a forward simulation
between B‖C and A‖A provided R (S) is a weak simulation between B (C)
and A, and certain guarantee and non-interference conditions hold. This theo-
rem has been verified in Isabelle [1].

Theorem 3 (Decomposition). For two compatible interference automata B
and C, if R is a weak forward simulation between IA � A and IC � B, and S is
a weak forward simulation between IA � A and IB � C, where

– IB � C guarantees Ic, and IC � B guarantees IB,
– nonInterferenceRight(R,S, IC � B, IB � C, IA � A),
– nonInterferenceLeft(R,S, IC � B, IB � C, IA � A).

Then R‖S is a (non-weak) forward simulation between B‖C and A‖A, and hence
traces(B‖C) ⊆ traces(A‖A).

7 HyTML Proof and Mechanisation

In this section we discuss the proof of the HyTML algorithm, and its mecha-
nisation in Isabelle. HyTML is equal to SP‖FP where SP and FP are the soft-
ware slow-path and hardware fast-path components, respectively. Recall that we
wish to prove traces(HyTML) ⊆ traces(TMS2). We prove that TMS2‖TMS2
weakly simulates HyTML via Theorem 3, and thus traces(HyTML) ⊆
traces(TMS2‖TMS2). By Theorem 2, traces(TMS2) = traces(TMS2‖TMS2),
and hence the result follows by transitivity of ⊆.

We start by defining environment relations for all the automata involved.
The relation for the interference SP receives from FP, IFP is

Id ∪ {(g, g′) • (odd(glb) −→ g = g′) ∧ ctr ′ ≥ ctr ∧ glb′ = glb
∧ (even(glb) ∧ store �= store ′ −→ ctr ′ > ctr)}.

In words, the fast-path guarantees that: (1) If glb is odd, then it will not affect
the global state at all. (2) If glb is even, then any change to the store implies ctr

46 A. Armstrong and B. Dongol

increased. (3) Even if the store remained the same, ctr may still increase, and,
(4) The fast path never modifies glb (it only subscribes to it).

SP makes a much weaker guarantee to the FP; ISP guarantees that

{(g, g′) • ctr ′ = ctr ∧ glb′ ≥ glb}.

In words, this means that the software only guarantees that it will not change
the ctr variable, and that it only ever increments glb.

The interference from other TMS2 components on TMS2 is given by ITMS2,
which simply allows new stores to be added to the stores sequence (see (R1) in
Sect. 3).

The proof that TMS2‖TMS2 weakly simulates HyTML is split into sev-
eral sub-parts: First, we show weak simulation of both IFP � SP and ISP � FP
against ITMS2 � TMS2. The fast-path proof is much simpler than the slow-
path, as the hardware transactional memory abstraction performs most of the
fine-grained steps of atomically, which greatly simplifies the verification process.
Third, we verify the guarantee conditions from Sect. 4. Fourth, we verify the
non-interference properties in Sect. 4.

Mechanisation. For HyTM implementations we further specialise interference
automata to model the components of a hybrid TM implementation. The set
of process identifiers become transaction identifiers, and assuming L and V
represent the set of all addresses and values, the set of external actions of a
transactional automaton A are fixed, and given by:

externalT = {BeginI,BeginR,CommitI,CommitR,Abort,WriteR}
∪ {ReadI(a) | a ∈ L} ∪ {ReadR(v) | v ∈ V }
∪ {WriteI(a, v) | (a, v) ∈ L × V }

As mentioned in Sect. 2, we base our implementation of the underlying hard-
ware transactional memory on Intel’s TSX extensions. Therefore, we imple-
ment transitions for the XBegin, XEnd and XAbort actions within the hardware
automaton. We assume that each hardware transaction is equipped with read
and write sets representing the values held in the local processors cache. A simple
validation predicate which checks if the values in the read and write set match
those in main memory models the cache line invalidation used in the actual hard-
ware. While this validation is more fine-grained than what the actual hardware
can do (as it works on the level of cache lines), because the fast path automa-
ton can abort non-deterministically at anytime, all the possible behaviour of the
hardware is captured and shown to be opaque. Overly coarse-grained validation
might force us to abort when the hardware could succeed, so we err on the side
of caution. This behaviour should be generic enough to capture the behaviour of
any reasonable hardware TM implementation, not just Intel’s TSX. In particu-
lar, we do not assume that non-transactional reads and writes can occur within
hardware transactions.

Proof in Isabelle. For full-details of our proofs, we refer the interested reader to
our Isabelle theories. Here, we briefly comment on the complexity of our mechani-
sation. In Isabelle, formalising and proving the correctness of the TML slow-path

Modularising Opacity Verification for Hybrid Transactional Memory 47

required about 2900 lines, while formalising and proving the correctness of the
hardware fast-path required around 600 lines. Proving the non-interference and
guarantee conditions required only 450 lines; with the non-interference condi-
tions taking 300 lines and the guarantee conditions requiring only around 70
lines. The formalisation of the transactional automata and requisite theorems
took around 2000 lines of Isabelle. Although these are not perfect metrics, they
show that the majority of the work was in proving that both HyTM paths sat-
isfy TMS2. Once these individual proofs were completed, bringing the proofs
together was fairly comparatively straightforward once the necessary theorems
had been set up.

Proving that both HyTM paths are TMS2 is fairly mechanical, and involves
detailed line-by-line simulations—showing that every possible step preserves the
simulation relation even under interference from every other possible step. Our
method enabled adapting our existing work verifying software TML and adapting
it to the HyTM case. For simulation proofs of this nature, the number of sub-
goals grows geometrically with the number of lines in the algorithm, whereas the
non-interference conditions only grow linearly in the modular case. However, we
believe that both the conceptual benefits of splitting the proof into its logical
sub-components, as well as the ability to re-use existing proofs are the main
benefits to modularisation.

Our experience with Isabelle for these proofs was very positive. The powerful
tools and tactics within Isabelle were very useful for automating many of the
cases produced by the simulation rules.

8 Conclusion

In this paper we have developed a fully mechanised modular proof method for
verifying opacity of HyTM algorithms. Verification of opacity has received con-
siderable interest in recent years (see e.g., [5,13]). We leverage a simulation-
based approach against the TMS2 specification [7] as well as the known result
that TMS2 is itself opaque [15]. Our method supports adapting existing proofs
of opacity (via TMS2) for both the fast- and slow-path into a HyTM system
with only minor modifications to such existing proofs.

We develop the novel notion of interference automata, as well as notions
of parallel composition and weak simulation for them. These concepts give
us a proof method for combining weak simulations on individual interference
automata into a single proof of trace refinement for their parallel composition.
All of our meta theory has been checked using the Isabelle theorem prover. To
show applicability of our methodology in the context of HyTM algorithms, we
develop a novel hybrid extension to Dalessandro et al.’s TML [4], where we
apply a 2-counter subscription mechanism [3]. Our new algorithm allows more
concurrency than the original TML as it allows parallel hardware writers.

We conjecture the possibility of further optimisations to the algorithm by
removing redundant checks on glb and ctr in the slow-path read operation if loct

is odd. It may also be possible to replace the dccs operation by first acquiring a

48 A. Armstrong and B. Dongol

local value of ctr before acquiring the mutex lock glb using a compare and swap
and then checking if the local value of ctr is still valid. However, we have chosen
to present a conceptually simpler algorithm that nevertheless demonstrates our
proof method. There are more complex HyTMs [2,3,18], some with more than
two types of transactions; we leave verification of these for future work.

Acknowledgements. We thank Simon Doherty for his helpful comments on this
work. Funding is provided by EPSRC grant EP/N016661/1.

References

1. Armstrong, A., Dongol, B.: Isabelle files for modularising opacity verification for
hybrid transactional memory (2016). https://figshare.com/articles/Isabelle files
for verification of a hybrid transactional mutex lock/4868351

2. Calciu, I., Gottschlich, J., Shpeisman, T., Pokam, G., Herlihy, M.: Invyswell: a
hybrid transactional memory for Haswell’s restricted transactional memory. In:
PACT, pp. 187–200. ACM, New York (2014)

3. Dalessandro, L., Carouge, F., White, S., Lev, Y., Moir, M., Scott, M.L., Spear,
M.F.: Hybrid NOrec: a case study in the effectiveness of best effort hardware
transactional memory. SIGPLAN Not. 46(3), 39–52 (2011)

4. Dalessandro, L., Dice, D., Scott, M., Shavit, N., Spear, M.: Transactional mutex
locks. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol.
6272, pp. 2–13. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15291-7 2

5. Derrick, J., Dongol, B., Schellhorn, G., Travkin, O., Wehrheim, H.: Verify-
ing opacity of a transactional mutex lock. In: Bjørner, N., de Boer, F. (eds.)
FM 2015. LNCS, vol. 9109, pp. 161–177. Springer, Cham (2015). doi:10.1007/
978-3-319-19249-9 11

6. Doherty, S., Dongol, B., Derrick, J., Schellhorn, G., Wehrheim, H.: Proving opacity
of a pessimistic STM. In: Jiménez, E. (ed.) OPODIS (2016, to appear)

7. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and
verifying transactional memory. Formal Asp. Comput. 25(5), 769–799 (2013)

8. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Chat-
terjee, S., Scott, M.L. (eds.) PPOPP, pp. 175–184. ACM (2008)

9. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory. Synthesis Lec-
tures on Distributed Computing Theory. Morgan & Claypool Publishers, San
Rafael (2010)

10. Harris, T., Larus, J.R., Rajwar, R.: Transactional Memory. Synthesis Lectures
on Computer Architecture, 2nd edn. Morgan & Claypool Publishers, San Rafael
(2010)

11. Intel: Intel 64 and IA-32 Architectures Software Developers Manual (2016)
12. Jones, C.B.: Tentative steps toward a development method for interfering pro-

grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)
13. Lesani, M.: On the correctness of transactional memory algorithms. Ph.D. thesis,

UCLA (2014)
14. Lesani, M., Luchangco, V., Moir, M.: A framework for formally verifying software

transactional memory algorithms. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 516–530. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32940-1 36

https://figshare.com/articles/Isabelle_files_for_verification_of_a_hybrid_transactional_mutex_lock/4868351
https://figshare.com/articles/Isabelle_files_for_verification_of_a_hybrid_transactional_mutex_lock/4868351
http://dx.doi.org/10.1007/978-3-642-15291-7_2
http://dx.doi.org/10.1007/978-3-319-19249-9_11
http://dx.doi.org/10.1007/978-3-319-19249-9_11
http://dx.doi.org/10.1007/978-3-642-32940-1_36
http://dx.doi.org/10.1007/978-3-642-32940-1_36

Modularising Opacity Verification for Hybrid Transactional Memory 49

15. Lesani, M., Luchangco, V., Moir, M.: Putting opacity in its place. In: Workshop
on the Theory of Transactional Memory (2012)

16. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)
17. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-

rithms. In: PODC, pp. 137–151. ACM (1987)
18. Matveev, A., Shavit, N.: Reduced hardware NOrec: a safe and scalable hybrid

transactional memory. SIGPLAN Not. 50(4), 59–71 (2015)
19. Paulson, L.C.: Isabelle - A Generic Theorem Prover. LNCS, vol. 828. Springer,

Heidelberg (1994). (with a contribution by Nipkow, T.)
20. de Roever, W.P., de Boer, F.S., Hannemann, U., Hooman, J., Lakhnech, Y., Poel,

M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and Non-
compositional Methods. Cambridge Tracts in Theoretical Computer Science, vol.
54. Cambridge University Press, New York (2001)

Proving Opacity via Linearizability: A Sound
and Complete Method

Alasdair Armstrong1, Brijesh Dongol1(B), and Simon Doherty2

1 Brunel University London, Uxbridge, UK
brijesh.dongol@brunel.ac.uk

2 University of Sheffield, Sheffield, UK

Abstract. Transactional memory (TM) is a mechanism that manages
thread synchronisation on behalf of a programmer so that blocks of code
execute with the illusion of atomicity. The main safety criterion for trans-
actional memory is opacity, which defines conditions for serialising con-
current transactions.

Verifying opacity is complex because one must not only consider
the orderings between fine-grained (and hence concurrent) transactional
operations, but also between the transactions themselves. This paper
presents a sound and complete method for proving opacity by decom-
posing the proof into two parts, so that each form of concurrency can
be dealt with separately. Thus, in our method, verification involves a
simple proof of opacity of a coarse-grained abstraction, and a proof of
linearizability, a better-understood correctness condition. The most dif-
ficult part of these verifications is dealing with the fine-grained synchro-
nization mechanisms of a given implementation; in our method these
aspects are isolated to the linearizability proof. Our result makes it pos-
sible to leverage the many sophisticated techniques for proving lineariz-
ability that have been developed in recent years. We use our method
to prove opacity of two algorithms from the literature. Furthermore, we
show that our method extends naturally to weak memory models by
showing that both these algorithms are opaque under the TSO memory
model, which is the memory model of the (widely deployed) x86 family
of processors. All our proofs have been mechanised, either in the Isabelle
theorem prover or the PAT model checker.

1 Introduction

Transactional Memory (TM) provides programmers with an easy-to-use synchro-
nisation mechanism for concurrent access to shared data. The basic mechanism
is a programming construct that allows one to specify blocks of code as transac-
tions, with properties akin to database transactions [16]. Recent years have seen
an explosion of interest in TM, leading to the implementation of TM libraries
for many programming languages (including Java and C++), compiler support
for TM (G++ 4.7) and hardware support (e.g., Intel’s Haswell processor). This
widespread adoption coupled with the complexity of TM implementations makes
formal verification of TM an important problem.
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Bouajjani and A. Silva (Eds.): FORTE 2017, LNCS 10321, pp. 50–66, 2017.
DOI: 10.1007/978-3-319-60225-7 4

Proving Opacity via Linearizability: A Sound and Complete Method 51

The main safety condition for TM is opacity [14,15], which defines condi-
tions for serialising (concurrent) transactions into a sequential order and specifies
which data values transactions may read. A direct proof of opacity must somehow
construct an appropriate serialisation of the transactions. This is complicated
by the fact that transactions are not constrained to read the most recently com-
mitted value at any given address. Because of this, several “snapshots” of the
transactional memory must be made available to each transaction.

This situation may be contrasted with the well-known correctness condition
linearizability [17]. Unlike opacity, linearizability proofs only need to consider a
single value of the abstract object. Operations never “look back in time” to some
earlier state, and linearizability proofs are therefore less complex. Furthermore,
there is a rich literature on the verification of linearizability (see [12] for a sur-
vey), whereas the verification of opacity has received much more limited atten-
tion. Techniques exist for verifying linearizability using data-refinement [10,25],
separation logic and other program logics [6,27], and model-checking [4,5,23].
With the possible exception of data refinement, none of these techniques are
available for the verification of opacity.

These observations motivate us to explore methods for recasting the problem
of verifying opacity to that of verifying linearizability, and this paper presents
one such method. Briefly, our method involves the construction of a coarse-
grained abstraction (CGA) that serves as an intermediate specification between
the TM implementation to be verified and opacity itself. Our method requires
us to prove that this CGA is opaque. But, as we shall see, the CGA features
a coarse grain of atomicity and a simplified state space, relative to the original
implementation. These features make verifying opacity of the CGA very straight-
forward. Importantly, we do not need to consider the complex interleaving and
fine-grained synchronisation mechanisms of the original implementation in this
part of the proof. Our method also requires us to prove the linearizability of the
original TM implementation where the CGA becomes the abstract specification.
Only at this point is it necessary to consider the fine-grained synchronization of
the actual TM implementation. But for this linearizability proof we can leverage
the powerful techniques for verifying linearizability that have been developed in
recent years.

We adapt a result from [9] to prove that our method is sound : any verifica-
tion using our technique guarantees opacity of the original algorithm. We also
show that our method is complete: for any opaque TM implementation, there
must exist an opaque CGA, such that the original implementation is linearizable
with respect to the CGA. We use our method to prove opacity of two TM imple-
mentations: the Transactional Mutex Lock [7], and the more sophisticated and
practical NORec algorithm [8]. In addition, we show that our method extends
to weak memory models: we verify opacity of both TML and NORec under TSO
memory.

For full details of our mechanisations see our extended report [2], which
includes all mechanisations, and further descriptions of our proofs.

52 A. Armstrong et al.

2 Transactional Memory

In this section, we describe the interface provided by the TM abstraction, and
give an example of a transactional memory algorithm: the simple but efficient
Transactional Mutex Lock (TML) by Dalessandro et al. [7]. Then we formalise
opacity as defined by Guerraoui and Kapalka [15]. Our formalisation mainly
follows Attiya et al. [3], but we explicitly include the prefix-closure constraint to
ensure consistency with other accepted definitions [15,16,21].

To support transactional programming, TM provides a number of operations1

to developers: operations to start (TXBegin) or to end a transaction (TXCommit),
and operations to read or write shared data (TXRead, TXWrite). These operations
can be invoked from within a program (possibly with some arguments, e.g., the
address to be read) and then will return with a response. Except for operations
that start transactions, all other operations can respond with a special abort
value, thereby aborting the whole transaction.

Transactional Mutex Lock (TML). The TML algorithm is presented in Listing 1.
It provides the four operations, but operation TXCommit in this algorithm never
responds with abort. TML adopts a very strict policy for synchronisation among
transactions: as soon as one transaction has successfully written to an address,
other transactions running concurrently will be aborted if they subsequently
invoke a TXRead or TXWrite operation on any address. For synchronisation,
TML uses a global counter glb (initially 0), and each transaction t uses a local
variable loct to store a local copy of glb. Variable glb records whether there
is a live writing transaction, i.e., a transaction which has started, has neither
committed nor aborted, and has executed a write operation. More precisely, glb
is odd if there is a live writing transaction, and even otherwise. Initially, there
are no live writing transactions and thus glb is even.

Listing 1. The Transactional Mutex Lock (TML) algorithm
1: procedure Init
2: glb ← 0

3: procedure TXBegint
4: do loct ← glb
5: until even(loct)

6: procedure TXCommitt
7: if odd(loct) then
8: glb ← loct + 1

9: procedure TXReadt(a)
10: vt ← mem(a)

11: if glb = loct then

12: return vt
13: else abort

14: procedure TXWritet(a, v)
15: if even(loct) then

16: if !cas(&glb, loct, loct+1)

17: then abort
18: else loct++

19: mem(a) ← v

1 In this paper, we use the word ‘operation’ in two senses. Here, we mean ‘operation’
as a component of the TM interface. Later, we use ‘operation’ to mean the instance
of an operation within an execution. Both senses are standard, and any ambiguity
is resolved by the context.

Proving Opacity via Linearizability: A Sound and Complete Method 53

Histories. As is standard in the literature, opacity is defined over histories,
which are sequences of events that record all interactions between the TM and
its clients. Each event is either the invocation or response of some TM operation.
Possible invocations and their matching response events are given by the function
M . For transaction t, address a and value v (taken from a set V), we have

M(TXBegint) = {TXBegint}
M(TXCommitt) = {TXCommitt, TXAbortt}

M(TXWritet(a, v)) = {TXWritet, TXAbortt}
M(TXReadt(a)) = {TXReadt(v) | v ∈ V } ∪ {TXAbortt}

We let TXBegint denote the two-element sequence 〈TXBegint, TXBegint〉,
let TXWritet(x, v) denote 〈TXWritet(x, v), TXWritet〉 and TXReadt(x, v)
denote 〈TXReadt(x), TXReadt(v)〉, and finally let TXCommitt denote
〈TXCommitt, TXCommitt〉. We use notation ‘·’ for sequence concatenation.

Example 1. The following history is a possible execution of the TML, where
the address x (initially 0) is accessed by two transactions 2 and 3 running
concurrently.

〈TXBegin3, TXBegin2, TXBegin3, TXBegin2, TXWrite3(x, 4)〉 ·
TXRead2(x, 0) · 〈TXWrite3〉 · TXCommit3

Note that operations overlap in this history. For example, the invocation
TXBegin2 appears between the invocation and response of transaction 3’s
TXBegin operation. This overlapping means that this history represents an exe-
cution with both concurrent transactions, and concurrent operations. There is
an important subset of histories, called alternating histories that do not have
overlapping operations. That is, a history h is alternating if h = ε (the empty
sequence) or h is an alternating sequence of invocation and matching response
events starting with an invocation and possibly ending with an invocation. Alter-
nating histories represent executions in which the TM operations are atomic.
Note that transactions may still be interleaved in an alternating history; only
concurrency between operations is prohibited.

For a history h = 〈h1, h2, . . . hn〉, let h|t be the projection onto the events
of transaction t and h[i . . . j] be the sub-sequence of h from hi to hj inclusive.
We will assume that h|t is alternating for any history h and transaction t. Note
that this does not necessarily mean h is alternating itself. Opacity is defined for
well-formed histories, which formalise the allowable interaction between a TM
implementation and its clients. A projection h|t of a history h onto a transaction
t is well-formed iff it is ε or it is an alternating sequence of t-indexed invoca-
tions and matching responses, beginning with TXBegint, containing at most one
each of TXBegint and TXCommitt, and containing no events after any TXCommitt
or TXAbortt event. Furthermore, h|t is committed whenever the last event is
TXCommitt and aborted whenever the last event is TXAbortt. In these cases, the
transaction h|t is completed, otherwise it is live. A history is well-formed iff h|t
is well-formed for every transaction t. The history in Example 1 is well-formed,
and contains a committed transaction 3 and a live transaction 2.

54 A. Armstrong et al.

Opacity. The basic principle behind the definition of opacity (and similar defin-
itions) is the comparison of a given concurrent history against a sequential one.
Opacity imposes a number of constraints, that can be categorised into three
main types:

– ordering constraints that describe how events occurring in a concurrent his-
tory may be sequentialised;

– semantic constraints that describe validity of a sequential history hs; and
– a prefix-closure constraint that requires that each prefix of a concurrent his-

tory can be sequentialised so that the ordering and semantic constraints above
are satisfied.

To help formalise these opacity constraints we introduce the following nota-
tion. We say a history h is equivalent to a history h′, denoted h ≡ h′, iff h|t = h′|t
for all transactions t ∈ T . Further, the real-time order on transactions t and t′

in a history h is defined as t ≺h t′ if t is a completed transaction and the last
event of t in h occurs before the first event of t′.

Sequential History Semantics. We now formalise the notion of sequentiality for
transactions, noting that the definitions must also cover live transactions. A well-
formed history h is non-interleaved if transactions do not overlap. In addition
to being non-interleaved, a sequential history has to ensure that the behaviour
is meaningful with respect to the reads and writes of the transactions. For this,
we look at each address in isolation and define the notion of a valid sequential
behaviour on a single address. To this end, we model shared memory by a set
A of addresses mapped to values denoted by a set V . Hence the type A → V
describes the possible states of the shared memory.

Definition 1 (Valid history). Let h = 〈h0, . . . , h2n−1〉 be an alternating his-
tory ending with a response (recall that an alternating history is a sequence of
alternating invocation and response events starting with an invocation). We say
h is valid if there exists a sequence of states σ0, . . . , σn such that σ0(a) = 0 for
all addresses a, and for all i such that 0 ≤ i < n and t ∈ T :

1. if h2i = TXWritet(a, v) and h2i+1 = TXWritet then σi+1 = σi[a := v]; and
2. if h2i = TXReadt(a) and h2i+1 = TXReadt(v) then both σi(a) = v and σi+1 =

σi hold; and
3. for all other pairs of events σi+1 = σi.

A correct TM must ensure that all reads are consistent with the writes of the
executing transaction as well as all previously committed writes. On the other
hand, writes of aborted transactions must not be visible to other transactions.
We therefore define a notion of legal histories, which are non-interleaved histo-
ries where only the writes of successfully committed transactions are visible to
subsequent transactions.

Definition 2 (Legal history). Let hs be a non-interleaved history, i an index
of hs, and hs′ be the projection of hs[0 . . . (i − 1)] onto all events of committed
transactions plus the events of the transaction to which hsi belongs. We say hs is
legal at i whenever hs′ is valid. We say hs is legal iff it is legal at each index i.

Proving Opacity via Linearizability: A Sound and Complete Method 55

This allows us to define sequentiality for a single history, which we additionally
lift to the level of specifications.

Definition 3 (Sequential history). A well-formed history hs is sequential
if it is non-interleaved and legal. We let S denote the set of all well-formed
sequential histories.

Transactional History Semantics. A given history may be incomplete, i.e., it
may contain pending operations, represented by invocations that do not have
matching responses. Some of these pending operations may be commit oper-
ations, and some of these commit operations may have taken effect: that is,
the write operations of a commit-pending transaction may already be visible to
other transactions. To help account for this possibility, we must complete histo-
ries by (i) extending a history by adding responses to pending operations, then
(ii) removing any pending operations that are left over. For (i), for each history
h, we define a set extend(h) that contains all histories obtained by adding to h
response events matching any subset of the pending invocations in h. For (ii),
for a history h, we let [h] denote the history h with all pending invocations
removed.

Definition 4 (Opaque history, Opaque object). A history h is final-state
opaque iff for some he ∈ extend(h), there exists a sequential history hs ∈ S
such that [he] ≡ hs and furthermore ≺[he]⊆≺hs. A history h is opaque iff each
prefix h′ of h is final-state opaque; a set of histories H is opaque iff each h ∈ H
is opaque; and a TM implementation is opaque iff its set of histories is opaque.

In Definition 4, conditions [he] ≡ hs and ≺[he]⊆≺hs establish the ordering con-
straints and the requirement that hs ∈ S ensures the memory semantics con-
straints. Finally, the prefix-closure constraints are ensured because final-state
opacity is checked for each prefix of [he].

Example 2. The history in Example 1 is opaque; a corresponding sequential
history is

TXBegin2 · TXRead2(x, 0) · TXBegin3 · TXWrite3(x, 4) · TXCommit3

Note that reordering of TXRead2(x, 0) and TXBegin3 is allowed because their
corresponding transactions overlap (even though the operations themselves do
not).

3 Proving Opacity via Linearizability

In this section, we describe our method in detail, and we illustrate it by showing
how to verify the simple TML algorithm presented in Sect. 2. Briefly, our method
proceeds as follows.

56 A. Armstrong et al.

1. Given a TM implementation, we construct a coarse-grained abstraction
(CGA). This intermediate abstraction supports the standard transactional
operations (begin, read, write and commit), and the effect of each operation
is atomic. The states of this abstraction are simplified versions of the states of
the original implementation, since the variables that are used for fine-grained
synchronisation can be removed.

2. We prove that this CGA is opaque. The coarse-grained atomicity and sim-
plifed state space of this abstraction mean that this opacity proof is much
simpler than the direct opacity proof of the original implementation. Impor-
tantly, we do not need to consider the fine-grained synchronisation mecha-
nisms of the original implementation in this part of the proof.

3. We prove that the original TM implementation is linearizable with respect
to the CGA. Only at this point is it necessary to consider the complex inter-
leaving and fine-grained synchronization of the actual TM implementation.
As we noted in the introduction, for this linearizability proof we can leverage
the powerful techniques for verifying linearizability that have been developed
in recent years.

Formally, we regard our TM implementations, and our CGAs as sets of histories
(consistent with the definition of opacity). The histories of the TM implementa-
tion must model all possible behaviours of the algorithm, and therefore some of
these histories may contain overlapping operations. However, because the oper-
ations of the CGA are atomic, all the histories of the CGA are alternating.

Because the histories of each CGA are alternating, it is possible to prove
that the original TM implementation is linearizable with respect to the CGA.
To show how this works, we briefly review the definition of linearizability [17]. As
with opacity, the formal definition of linearizability is given in terms of histories:
for every concurrent history an equivalent alternating history must exist that
preserves the real-time order of operations of the original history. The real-time
order on operations2 o1 and o2 in a history h is given by o1 ≺≺h o2 if the response
of o1 precedes the invocation of o2 in h.

As with opacity, the given concurrent history may be incomplete, and hence,
may need to be extended using extend and all remaining pending invocations
may need to be removed. We say lin(h, ha) holds iff both [h] ≡ ha and ≺≺[h]⊆≺≺ha

hold.

Definition 5 (Linearizability). A history h is linearized by alternating his-
tory ha iff there exists a history he ∈ extend(h) such that lin(he, ha). A con-
current object is linearizable with respect to a set of alternating histories A (in
our case a CGA) if for each concurrent history h, there is a history ha ∈ A that
linearizes h.

In the remainder of this section, we flesh out our technique by verifying the TML
algorithm presented in Sect. 2.

2 Note: this differs from the real-time order on transactions defined in Sect. 2.

Proving Opacity via Linearizability: A Sound and Complete Method 57

A Coarse-grained Abstraction. Pseudocode describing the coarse-grained
abstraction that we use to prove opacity of the TML is given in Listing 2. Like
TML in Listing 1, it uses meta-variables loct (local to transaction t) and glb
(shared by all transactions). Each operation is however, significantly simpler
than the TML operations, and performs the entire operation in a single atomic
step. The code for each operation is defined by wrapping the original code in
an atomic block. However, the atomicity of the resulting method means that
further simplifications can be made. For example, in the TXRead operation, the
local variable vt is no longer needed, and so can be removed. Likewise, CAS of
the TXWrite operation is no longer required, and can also be dropped.

This basic strategy of making each operation atomic and then simplifying
away any unnecessary state is sufficient for the examples we have considered.
Indeed, when we apply our technique to the substantially more complicated
NoRec algorithm, we find that the simplification step removes a great deal of
complexity, including the entirety of NoRec’s transactional validation procedure
(Sect. 5).

Finding a CGA for any given TM algorithm is generally straightforward. We
can provide three simple steps, or heuristics, that can be applied to find a use-
ful CGA for any transactional memory algorithm. (1) We make every operation
atomic in a naive way, essentially by surrounding the code in atomic blocks. (2)
Much of the complexity in a transactional memory algorithm is often fine-grained
concurrency control, such as locking, ensuring that each operation remains lin-
earizable. This fine grained concurrency control can be removed in the CGA. (3)
Concurrent/linearizable data structures in the implementation of the algorithm
can be replaced by simple abstractions, that need not be implementable. For
example, in the NORec algorithm (see Sect. 5) the write set and read sets are
replaced with ordinary sets, and the validation routine becomes a predicate over
these sets.

Opacity of the Coarse-grained Abstraction. We turn now to the question of
proving that our CGA is opaque. While our TM implementations and CGAs
are sets of histories, it is convenient to define these models operationally using
labelled transition systems that generate the appropriate sets of histories (so

Listing 2. TML-CGA: Coarse-grained abstraction of TML
1: procedure Init
2: glb ← 0

3: procedure ATXBegint
4: atomic
5: await even(glb)
6: loct ← glb

7: procedure ATXCommitt
8: atomic

9: if odd(loct) then

10: glb++

11: procedure ATXReadt(a)
12: atomic
13: if glb = loct then
14: return mem(a)

15: else abort

16: procedure ATXWritet(a, v)
17: atomic
18: if glb �= loct then
19: abort

20: if even(loct) then

21: loct++; glb++
22: mem(a) ← v

58 A. Armstrong et al.

that the labels of the transition systems are invocation or response events). We
do this for two reasons. First, the algorithms of interest work by manipulating
state, and these manipulations can be mapped directly to labelled transition
systems. The second reason relates to how we prove that our CGAs are opaque.

We prove that our CGAs are opaque using techniques described in [11]. This
means we leverage two existing results from the literature: the TMS2 specifi-
cation by Doherty et al. [11], and the mechanised proof that TMS2 is opaque
by Lesani et al. [21]. Using these results, it is sufficient that we prove trace
refinement (i.e., trace inclusion of visible behaviour) between TML-CGA and
the TMS2 specification. The rigorous nature of these existing results means that
a mechanised proof of refinement against TMS2 also comprises a rigorous proof
of opacity of TML-CGA.

Although TMS2 simplifies proofs of opacity, using it to verify an implemen-
tation still involves a complex simulation argument [20]. On the other hand,
using TMS2 to prove opacity of a coarse-grained abstraction (CGA) is simple:
the operations of the CGA are atomic, and hence, each of its operations corre-
sponds exactly one operation of TMS2. This one-one correspondence also makes
the invariants and simulation relations needed for the proof straightforward to
establish. There are at most four main proof steps to consider, corresponding to
the main steps of the TMS2 specification.

Theorem 1. TML-CGA is opaque.

Linearizability Against the Coarse-grained Abstraction. Having established opac-
ity of TML-CGA, we can now focus on linearizability between TML and TML-
CGA, which by Theorem 2 will ensure opacity of TML. As with the opacity part,
we are free to use any of the available methods from the literature to prove lin-
earizability [12]. We opt for a model-checking approach; part of our motivation
is to show that model checking indeed becomes a feasible technique for verifying
opacity.

We use the PAT model checker [26], which enables one to verify trace refine-
ment (in a manner that guarantees linearizability) without having to explicitly
define invariants, refinement relations, or linearization points of the algorithm.
Interestingly, the model checker additionally shows that, for the bounds tested,
TML is equivalent to TML-CGA, i.e., both produce exactly the same set of
observable traces (see Lemma 1 below).

PAT allows one to specify algorithms using a CSP-style syntax [18]. However,
in contrast to conventional CSP, events in PAT are arbitrary programs assumed
to execute atomically — as such they can directly modify shared state, and do
not have to communicate via channels with input/output events. This enables
our transactional memory algorithms to be implemented naturally. We obtain
the following lemma, where constant SIZE denotes the size of the memory (i.e.,
number of addresses) and constant V for the possible values in these addresses.

Lemma 1. For bounds N = 3, SIZE = 4, and V = {0, 1, 2, 3}, as well as
N = 4, SIZE = 2, and V = {0, 1}, TML is equivalent to TML-CGA.

Proving Opacity via Linearizability: A Sound and Complete Method 59

4 Soundness and Completeness

We now present two key theorems for our proof method. Theorem 2, presented
below, establishes soundness. That is, it states if we have an opaque CGA
A (expressed as a set of alternating histories), and a TM implementation H
(expressed as a set of concurrent histories) such that every history in H is lin-
earizable to a history in A, then every history in H is opaque. We prove Theorem
2 using the following lemma, which essentially states our soundness result for
individual histories, rather than sets of histories.

Lemma 2 (Soundness per history [9]). Suppose h is a concrete history.
For any alternating history ha that linearizes h, if ha is opaque then h is also
opaque.

The main soundness theorem lifts this result to sets of histories. Its proof
follows from Lemma 2 in a straightforward manner (see [2] for details).

Theorem 2 (Soundness). Suppose A is a set of alternating opaque histories.
Then a set of histories H is opaque if for each h ∈ H, there exists a history
ha ∈ A and an he ∈ extend(h) such that lin(he, ha).

The next two results establish completeness of our proof method. Theorem 3
states that given an opaque TM implementation H (expressed as a set of con-
current histories) we can find a set of alternating opaque histories A such that
every history in H can be linearized to a history in A. Here, A is the CGA of
our method. We prove this theorem using Lemma 3, which essentially states our
completeness result for individual histories.

Lemma 3 (Existence of linearization). If h is an opaque history then there
exists an alternating history ha such that lin(h, ha) and ha is final-state opaque.

Proof. From the assumption that h is opaque, there exists an extension he ∈
extend(h) and a history hs ∈ S such that [he] ≡ hs and ≺[he]⊆≺hs. Our proof
proceeds by transposing operations in hs to obtain an alternating history ha
such that lin(he, ha). Our transpositions preserve final-state opacity, hence ha
is final-state opaque.

We consider pairs of operations ot and ot′ such that ot ≺≺hs ot′ , but ot′ ≺
≺[he] ot, which we call mis-ordered pairs. If there are no mis-ordered pairs, then
lin(he, hs), and we are done. Let ot and ot′ be the mis-ordered pair such that
the distance between ot and ot′ in hs is least among all mis-ordered pairs. Now,
hs has the form . . . otgot′ Note that g does not contain any operations of
transaction t, since if there were some operation o of t in g, then because opacity
preserves program order and ot ≺≺hs o, we would have ot ≺≺[he] o. Thus o, ot′

would form a mis-ordered pair of lower distance, contrary to hypothesis. For a
similar reason, g does not contain any operations of t′. Thus, as long as we do not
create a new edge in the opacity order ≺hs, we can reorder hs to (1) . . . got′ot . . .
or (2) . . . ot′otg . . . while preserving opacity. A new edge can be created only by
reordering a pair of begin and commit operations so that the commit precedes

60 A. Armstrong et al.

the begin. If ot is not a begin operation, then we choose option (1). Otherwise,
note that ot′ cannot be a commit, because since ot′ ≺≺[he] ot, t′ ≺ t, and thus t
could not have been serialised before t′. Since ot′ is not a commit, we can choose
option (2). Finally, we show that the new history has no new mis-ordered pairs.
Assume we took option (1). Then if there is some o in g such that ot ≺≺[he] o we
would have ot′ ≺≺[he] o, and thus o, ot′ would form a narrower mis-ordered pair.
The argument for case (2) is symmetric. Thus, we can repeat this reordering
process and eventually arrive at a final-state opaque history ha that has no
mis-ordered pairs, and thus lin(he, ha). ��
Theorem 3 (Completeness). If H is a prefix-closed set of opaque histories,
then there is some prefix-closed set of opaque alternating histories A such that
for each h ∈ H there is some h′ ∈ A such that lin(h, ha).

Proof. Let A = {h′.h′ is final-state opaque and ∃h ∈ H.lin(h, h′)}. Note that
both the set of all opaque histories and the set of linearizable histories of any
prefix-closed set are themselves prefix-closed. Thus, A is prefix closed. Because
A is prefix-closed, and each element is final-state opaque, each element of A
is opaque. For any h ∈ H, Lemma 3 implies that there is some ha ∈ A that
linearizes h. ��
Note that the proof of Theorem 3 works by constructing the CGA A as a set
of alternating histories. To construct the operational model that generates this
set, we use the heuristics described in Sect. 3.

5 The NORec Algorithm

In this section, we show that the method scales to more complex algorithms.
In particular, we verify the NORec algorithm by Dalessandro et al. [8] (see
Listing 3), a popular and performant software TM.

The verification for NORec proceeds as with TML. Namely, we construct
a coarse-grained abstraction, NORec-CGA (see Listing 4), verify that NORec-
CGA is opaque, then show that NORec linearizes to NORec-CGA. As with TML,
we do not perform a full verification of linearizability, but rather, model check
the linearizability part of the proof using PAT. The proof that NORec-CGA
is opaque proceeds via forward simulation against a variant of TMS2 (TMS3),
which does not require read-only transactions to validate during their commit,
matching the behaviour of NORec more closely. We have proved (in Isabelle)
that despite this weaker precondition for read-only commits, TMS2 and TMS3
are equivalent by proving each refines the other. Further details of TMS3 and
proofs (including mechanisation) may be found in our extended paper [2]. The
following theorem (proved in Isabelle) establishes opacity of NORec-CGA.

Theorem 4. NORec-CGA is opaque.

Next, we have a lemma that is proved via model checking [2].

Proving Opacity via Linearizability: A Sound and Complete Method 61

Listing 3. NORec pseudocode

1: procedure TXBegint
2: do loct ← glb
3: until even(loct)

4: procedure Validatet
5: while true do

6: timet ← glb
7: if odd(timet) then goto 6

8: for a �→ v ∈ rdSett do
9: if mem(a) �= v then abort

10: if timet=glb then return timet

21: procedure TXWritet(a, v)

22: wrSett ← wrSett ⊕ {a �→ v}
23: procedure TXReadt(a)
24: if a ∈ dom(wrSett) then
25: return wrSett(a)

26: vt ← mem(a)

27: while loct �= glb do
28: loct ← Validatet
29: vt ← mem(a)

30: rdSett ← rdSett ⊕ {a �→ vt}
31: return vt

11: procedure TXCommitt
12: if wrSett = ∅ then return

13: while !cas(glb, loct, loct + 1) do
14: loct ← Validatet

15: for a �→ v ∈ wrSett do
16: mem(a) ← v

17: glb ← loct + 2

Listing 4. NORec-CGA: Coarse-grained abstraction of NORec
1: procedure ATXBegint
2: return

3: procedure ATXCommit (t)
4: atomic
5: if wrSett = ∅ then return
6: else if rdSett ⊆ mem then
7: mem ← mem ⊕ wrSet t
8: else abort

9: procedure ATXWritet(a, v)
10: wrSett ← wrSett ⊕ {a �→ v}
11: procedure ATXReadt(a)
12: atomic
13: if a ∈ dom(wrSet t) then
14: return wrSett(a)
15: else if rdSett ⊆ mem then
16: rdSett ← rdSett ⊕ {a �→ v}
17: return mem(a)
18: else abort

Lemma 4. For bounds N = 2, SIZE = 2 and V = {0, 1}, NORec is equivalent
to NORec-CGA.

TMS3 and NORec-CGA are similar in many respects. They both use read
and write sets in the same way, and write-back lazily during the commit. The
only additional information needed in the simulation is keeping track of the
number of successful commits in NORec-CGA. Thus, the simulation relation
used in the proof of Theorem 4 above is straightforward (see [2]). On the other
hand, proving opacity of the fine-grained NoRec implementation directly would
be much more difficult as we would need to concern ourselves with the locking
mechanism employed during the commit to guarantee that the write-back occurs
atomically. However, this locking mechanism is effectively only being used to
guarantee linearizability of the NORec commit operation, so it need not occur
in the opacity proof. Lesani et al. have directly verified opacity of NORec [20].
In comparison to our approach, they introduce several layers of intermediate

62 A. Armstrong et al.

automata, with each layer introducing additional complexity and design elements
of the NORec algorithm. Overall, their proofs are much more involved than ours.

6 Weak Memory Models

We now demonstrate that our method naturally extends to reasoning about
opacity of TM implementations under weak memory. We will focus on TSO in
this Section, but our arguments and methods could be extended to other memory
models. Note that we cannot employ a data-race freedom argument [1] to show
that TML or NORec running on TSO are equivalent to sequentially consistent
versions of the algorithms. This is because transactional reads can race with
the writes of committing transactions (this is true even when we consider the
weaker triangular-race freedom condition of [24]). This racy behaviour is typical
for software transactional memory implementations.

There are two possibilities for verifying our TM algorithms on TSO. (1)
Leveraging a proof of opacity of the implementation under sequential consis-
tency then showing that the weak memory implementation refines this sequen-
tially consistent implementation. (2) Showing that the implementation under
weak memory linearizes to the coarse-grained abstraction directly. This app-
roach simply treats an implementation executing under a particular memory
model as an alternative implementation of the CGA algorithm in question.

In this paper, we follow the second approach, which shows that model check-
ing linearizability of TSO implementations against a coarse-grained abstraction
is indeed feasible. We verify both TML and NORec under TSO within the PAT
model checker.

Due to the transitivity of trace inclusion, the proof proceeds by showing that
the concrete implementation that executes using relaxed memory semantics lin-
earizes to its corresponding coarse-grained abstraction. We use constant BSIZE
to bound the maximum size of the local buffer for each transaction.

Lemma 5. For bounds N = 2, SIZE = 2, BSIZE = 2 and V = {0, 1}, TML
under TSO is equivalent to TML-CGA and NORec under TSO is equivalent to
NORec-CGA.

7 Conclusions

Our main contributions for this paper are as follows. (1) We have developed
a complete method for proving opacity of TM algorithms using linearizability.
This allows one to reuse the vast literature on linearizability verification [12]
(for correctness of the fine-grained implementation), as well as the growing liter-
ature on opacity verification (to verify the coarse-grained abstractions). (2) We
have demonstrated our technique using the TML algorithm, and shown that the
method extends to more complex algorithms by verifying the NORec algorithm.
(3) We have developed an equivalent variation of the TMS2 specification, TMS3
that does not require validation when read-only transactions commit. Because

Proving Opacity via Linearizability: A Sound and Complete Method 63

Listing 5. Abstraction used to verify TML in [9] is not opaque
1: procedure Begint
2: return

3: procedure Writet(a, v)
4: atomic
5: return abort or mem(a) ← v

6: procedure Committ
7: return

8: procedure Readt(a)
9: atomic

10: return mem(a) or return abort

Fig. 1. Overview of proofs

TMS3 specifies equivalent behaviour to TMS2 while simplifying its precondi-
tions, it is a preferable model for performing simulation proofs. (4) We have
shown that the decomposition makes it possible to cope with relaxed memory
by showing that both TML and NORec are opaque under TSO.

An overview of our proofs is given in Fig. 1. The equivalence proof between
TMS2 and TMS3 as well as the opacity proofs between the CGAs and TMS2/3
specifications have been mechanised in Isabelle, whereas the linearizablity proofs
are via model checking in PAT. We note that during our work, we developed
a variation of NORec (called NORec2) which allows read operations to lookup
values in the read set rather than querying shared memory, and demonstrated
that this variation aborts less often than the existing NORec algorithm. We were
able to quickly verify this modified algorithm. For more details, see [2].

Related Work. Derrick et al. give a proof method that inductively generates a
linearized history of a fine-grained implementation and shows that this linearized
history is opaque [9]. Although checking opacity of a linearized history is simpler
than a proof of opacity of the full concurrent history, one cannot consider their
proof method to be a decomposition because the main invariant of the imple-
mentation must explicitly assert the existence of an opaque history (see Sect. 7).
However, these methods suggest a crucial insight: that linearizability provides a
sound method for proving opacity.

The basic idea of using a linearized history to verify opacity appears in [9],
but their proof technique has little in common with ours. The abstraction that
Derrick et al. use to motivate linearizability is given in Listing 5. Note that
the read and commit operations in this abstraction perform no validation, and
this abstraction is not opaque by itself. Therefore, it cannot be as a genuine
intermediate specification. Instead, the steps of this abstraction are explicitly
coupled with the linearization points of the fine-grained TML implementation,

64 A. Armstrong et al.

and it is this coupled system that is shown to be opaque. It is currently unclear
if such a method could scale to more complex algorithms such as NORec, or to
include weak memory algorithms.

Lesani and Palsberg have developed a technique that allows opacity to be
checked by verifying an invariant-like condition called markability [22]. Lesani
et al. have developed a second method [20] that proves opacity using the inter-
mediate TMS2 specification [11,21] using stepwise refinement against several
intermediate layers of abstraction. Guerraoui et al. have developed an approach,
where a set of aspects of an algorithm are checked, followed by model check-
ing over a conflict-freedom condition that implies opacity [13]. Koskinen and
Parkinson [19] have a technique where they describe a push/pull model of trans-
actions, and note that opaque transactions are a special case of push/pull trans-
actions that do not pull during execution. This allows opacity to be proven via
mapping the algorithm to the rules of the push/pull automata, which are stated
in terms of commutativity conditions. In the context of our work, one could see
such push/pull automata as an alternative to TMS2—one could use their proof
technique to prove that our CGAs are opaque, and then use traditional lineariz-
ability verification techniques. As such, our work allows for an additional degree
of proof decomposition. A key advantage of our method is that it is agnostic
as to the exact techniques used for both the linearizability and opacity verifica-
tions, allowing for full verification by any method, or as in our case a mix of full
verification and model-checking.

Experiences. Our experiences suggest that our techniques do indeed simplify
proofs of opacity (and their mechanisation). Opacity of each coarse-grained
abstraction is generally trivial to verify (our proofs are mechanised in Isabelle),
leaving one with a proof of linearizability of an implementation against this
abstraction. We emphasise that the method used for the second step is limited
only by techniques for verifying linearizability. We have opted for a model check-
ing approach using PAT, which enables linearizability to be checked via refine-
ment. It is of course also possible to perform a full verification of linearizability.
Furthermore, we note that we were able to use the model-checking approach to
quickly test small variants of the existing algorithms.

Future Work. Our work suggests that to fully verify a TM algorithm using coarse-
grained abstraction, the bottleneck to verification is the proof of linearizability
itself [12]. It is hence worthwhile considering whether linearizability proofs can
be streamlined for transactional objects. For example, Bouajjani et al. have
shown that for particular inductively-defined data structures, linearizability can
be reduced to state reachability [4]. Exploration of whether such methods apply
to transactional objects remains a topic for future work. Establishing this link
would be a useful result — it would allow one to further reduce a proof of opacity
to a proof of state reachability.

Acknowledgements. We thank John Derrick for helpful discussions and funding
from EPSRC grant EP/N016661/1.

Proving Opacity via Linearizability: A Sound and Complete Method 65

References

1. Adve, S.V., Aggarwal, J.K.: A unified formalization of four shared-memory models.
IEEE Trans. Parallel Distrib. Syst. 4(6), 613–624 (1993)

2. Armstrong, A., Dongol, B., Doherty, S.: Reducing opacity to linearizability: a sound
and complete method. arXiv e-prints (October 2016). https://arxiv.org/abs/1610.
01004

3. Attiya, H., Gotsman, A., Hans, S., Rinetzky, N.: A programming language perspec-
tive on transactional memory consistency. In: Fatourou, P., Taubenfeld, G. (eds.)
PODC 2013, pp. 309–318. ACM (2013)

4. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: On reducing linearizability to
state reachability. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann,
B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 95–107. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-47666-6 8

5. Černý, P., Radhakrishna, A., Zufferey, D., Chaudhuri, S., Alur, R.: Model Check-
ing of linearizability of concurrent list implementations. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 465–479. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14295-6 41

6. Chakraborty, S., Henzinger, T.A., Sezgin, A., Vafeiadis, V.: Aspect-oriented lin-
earizability proofs. Logical Methods Comput. Sci. 11(1) (2015)

7. Dalessandro, L., Dice, D., Scott, M., Shavit, N., Spear, M.: Transactional mutex
locks. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol.
6272, pp. 2–13. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15291-7 2

8. Dalessandro, L., Spear, M.F., Scott, M.L.: NORec: streamlining STM by abolishing
ownership records. In: Govindarajan, R., Padua, D.A., Hall, M.W. (eds.) PPoPP,
pp. 67–78. ACM (2010)

9. Derrick, J., Dongol, B., Schellhorn, G., Travkin, O., Wehrheim, H.: Verify-
ing opacity of a transactional mutex lock. In: Bjørner, N., de Boer, F. (eds.)
FM 2015. LNCS, vol. 9109, pp. 161–177. Springer, Cham (2015). doi:10.1007/
978-3-319-19249-9 11

10. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a prac-
tical lock-free queue algorithm. In: Frutos-Escrig, D., Núñez, M. (eds.) FORTE
2004. LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30232-2 7

11. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and
verifying transactional memory. Formal Asp. Comput. 25(5), 769–799 (2013)

12. Dongol, B., Derrick, J.: Verifying linearisability: a comparative survey. ACM Com-
put. Surv. 48(2), 19 (2015)

13. Guerraoui, R., Henzinger, T.A., Singh, V.: Model checking transactional memories.
Distrib. Comput. 22(3), 129–145 (2010)

14. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Chat-
terjee, S., Scott, M.L. (eds.) PPoPP, pp. 175–184. ACM (2008)

15. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory. Synthesis Lec-
tures on Distributed Computing Theory. Morgan & Claypool Publishers, San
Rafael (2010)

16. Harris, T., Larus, J.R., Rajwar, R.: Transactional Memory. Synthesis Lectures
on Computer Architecture, 2nd edn. Morgan & Claypool Publishers, San Rafael
(2010)

17. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM TOPLAS 12(3), 463–492 (1990)

https://arxiv.org/abs/1610.01004
https://arxiv.org/abs/1610.01004
http://dx.doi.org/10.1007/978-3-662-47666-6_8
http://dx.doi.org/10.1007/978-3-642-14295-6_41
http://dx.doi.org/10.1007/978-3-642-15291-7_2
http://dx.doi.org/10.1007/978-3-319-19249-9_11
http://dx.doi.org/10.1007/978-3-319-19249-9_11
http://dx.doi.org/10.1007/978-3-540-30232-2_7
http://dx.doi.org/10.1007/978-3-540-30232-2_7

66 A. Armstrong et al.

18. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

19. Koskinen, E., Parkinson, M.: The push/pull model of transactions. In: PLDI. PLDI
2015, vol. 50, pp. 186–195. ACM, New York, NY, USA, June 2015

20. Lesani, M., Luchangco, V., Moir, M.: A framework for formally verifying software
transactional memory algorithms. In: Koutny, M., Ulidowski, I. (eds.) CONCUR
2012. LNCS, vol. 7454, pp. 516–530. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32940-1 36

21. Lesani, M., Luchangco, V., Moir, M.: Putting opacity in its place. In: Workshop
on the Theory of Transactional Memory (2012)

22. Lesani, M., Palsberg, J.: Decomposing opacity. In: Kuhn, F. (ed.) DISC
2014. LNCS, vol. 8784, pp. 391–405. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45174-8 27

23. Liu, Y., Chen, W., Liu, Y.A., Sun, J., Zhang, S.J., Dong, J.S.: Verifying linearizabil-
ity via optimized refinement checking. IEEE Trans. Softw. Eng. 39(7), 1018–1039
(2013)

24. Owens, S.: Reasoning about the implementation of concurrency abstractions on
x86-TSO. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 478–503.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14107-2 23

25. Schellhorn, G., Derrick, J., Wehrheim, H.: A sound and complete proof technique
for linearizability of concurrent data structures. ACM TOCL 15(4), 31:1–31:37
(2014)

26. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4 59

27. Vafeiadis, V.: Modular fine-grained concurrency verification. Ph.D. thesis. Univer-
sity of Cambridge (2007)

http://dx.doi.org/10.1007/978-3-642-32940-1_36
http://dx.doi.org/10.1007/978-3-642-32940-1_36
http://dx.doi.org/10.1007/978-3-662-45174-8_27
http://dx.doi.org/10.1007/978-3-662-45174-8_27
http://dx.doi.org/10.1007/978-3-642-14107-2_23
http://dx.doi.org/10.1007/978-3-642-02658-4_59

On Futures for Streaming Data in ABS

(Short Paper)

Keyvan Azadbakht(B), Nikolaos Bezirgiannis, and Frank S. de Boer

Centrum Wiskunde & Informatica (CWI), Amsterdam, Netherlands
{k.azadbakht,n.bezirgiannis,f.s.de.boer}@cwi.nl

Abstract. Many modern distributed software applications require a
continuous interaction between their components exploiting streaming
data from the server to the client. The Abstract Behavioral Specification
(ABS) language has been developed for the modeling and analysis of
distributed systems. In ABS, concurrent objects communicate by calling
each other’s methods asynchronously. Return values are communicated
asynchronously too via the return statement and so-called futures. In this
paper, we extend the basic ABS model of asynchronous method invoca-
tion and return in order to support the streaming of data. We introduce
the notion of a “Future-based Data Stream” to extend the ABS. The
application of this notion and its impact on performance are illustrated
by means of a case study in the domain of social networks simulation.

Keywords: Future · Streaming · Cooperative scheduling · Active
object · Programming language · Social network

1 Introduction

Streaming data is a client/server pattern used in many distributed applications.
It consists of a continuous generation of data by the server where the generated
data is processed by the client sequentially and incrementally. The Abstract
Behavioral Specification (ABS) language [1] has been developed for formal mod-
eling and analysis of distributed systems. In ABS, concurrent objects represent
processes that execute in parallel and interact via asynchronous communica-
tion of messages. A message specifies a call to one of the methods of the called
object. Return values are communicated asynchronously via so-called futures [2].
Futures are dynamically generated references for checking the availability of the
return value and its reading.

In this paper, we extend this basic model of asynchronous method invocation
and return to support the streaming of data between the server and the client.
We introduce the notion of “Future-Based Data Stream” by extending the syntax
with a yield statement which returns a value specified by its argument without
terminating the execution of the method, which thus proceeds as specified. The
generated values can be obtained incrementally and sequentially by querying the
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Bouajjani and A. Silva (Eds.): FORTE 2017, LNCS 10321, pp. 67–73, 2017.
DOI: 10.1007/978-3-319-60225-7 5

68 K. Azadbakht et al.

future corresponding to this method invocation. The standard return statement
terminates the method execution and is used to signal the end of the generated
stream of data.

As a proof of concept, we also present the impact of the above-mentioned
feature on performance in the implementation of distributed application for the
generation of social networks.

Related Work. There are different programming constructs for streaming data.
Asynchronous generators as specified in [3], enable the streaming of data in an
asynchronous method invocation. This includes, on the callee side, yielding the
data, and on the caller side receiving them as an asynchronous iterator or raising
an exception if there is no further yielded data. These generators are defined in
the context of the multithreaded model of concurrency, where asynchrony are
provided by spawning a thread for a method call. Akka Streams [4] provide an
API to specify a streaming setup between actors which allows to adapt behav-
ior to the underlying resources in terms of both memory and speed. There are
also languages which utilize the notion of a channel as a means of communica-
tion, inspired by the model of Communicating Sequential Processes (CSP). For
instance, JCSP [5] is a library in Java that provides CSP-like elements, e.g.,
processes and channels with read and write possibilities.

Similarly to asynchronous generators, as proposed below streaming data is
fully integrated with asynchronous method invocation, i.e., it is not a separate
orthogonal concept like channels are. But its integration with the ABS language
allows for an additional loose coupling between the producer and consumer of
data streams: by means of cooperative scheduling of tasks the consumption of
data can be interleaved with other tasks on demand. Moreover, the notion of
data streaming abstracts from the specific implementation of ABS. In our case,
we make use of the distributed Haskell backend of ABS [6] for the case study on
future-based data streams reported in this paper.

This paper is organized as follows: a brief description of the ABS program-
ming language is given in Sect. 2. The notion of Future-Based Data Stream is
specified as an extension of ABS in Sect. 3. In Sect. 4, a case study on social net-
work simulation is discussed, which uses the proposed notion of streams. Finally
we conclude in Sect. 5.

2 The ABS Programming Language

Here we briefly highlight the main features of ABS relevant to our work in this
paper. In ABS, parallel (or concurrent) processes are generated by asynchronous
method calls of the form f = o!m(ē), where f is a future used as a reference to
the return value of the asynchronous call of the method m, o is an expression
denoting the called object, and ē are the actual parameters. Such a call generates
a process for the execution of the invoked method in the (unique) concurrent
object group (cog) to which the called object belongs. Within such a group
at most one process is executing. The executing process of a cog is however
executing in parallel with all the executing processes of the other groups. A cog

On Futures for Streaming Data in ABS 69

is created by the expression new C, where C denotes a class. The statement
new local C adds a new instance of class C to the group of the object that
creates this instance.

Further, ABS features synchronous method calls and a high-level synchro-
nization mechanism (i.e., cooperative scheduling) which allows a cog to suspend
the execution of the current process and schedule another (enabled) process for
execution, by means of await and suspend statements. The await f? suspends
the current process of the active object if the future f is not resolved yet, or
it skips otherwise. The await b similarly suspends the current process if the
boolean guard b evaluates to false. Finally, the suspend statement blocks the
current process unconditionally. The process to be activated next is selected in
a cog based on the scheduling policy. The f.get also queries the resolution of the
future f and reads its value if it is resolved or it blocks the whole cog otherwise.

3 Future-Based Data Streams

In this section, future based data streaming is specified in the context of the
ABS language which exploits the notion of cogs and cooperative scheduling.

The simple code example in Fig. 1 illustrates how data streams can be used
in an ABS program extended by this feature. The program is comprised of two
classes Producer and Consumer which implement the IProd and ICons inter-
faces, respectively, followed by the main block of the program. First, the run-
time system instantiates two cogs, each of which contains one active object, i.e.
the objects prod and con. The main cog then calls asynchronously the process
method of the object con. The process method calls asynchronously the method
primes which basically generates the first n prime numbers. The primes method
is a streamer method, that is, its return type is Str<Int> and the method spec-
ification is allowed to contain the yield statement which is, roughly speaking,
a non-terminating return statement.

Therefore, the prime numbers generated by the primes are streamed to the
caller via a data stream. The last value by return statement is followed by a
special token (e.g., eof) to state that there is no further value to be streamed.
On the caller side, the return values are assigned to the variable r which is a
stream buffer enabling the above-mentioned streaming of return values from the
callee to the caller process. The StrFut<T> can only type a variable which is
assigned by an asynchronous method call where the callee is a streamer method
returning values of type T.

The awaitAll statement of the Consumer class is a mechanism to retrieve
all the prime numbers from the stream r. Based on the state of the stream, the
statement behaves in three different ways: (1) if there is at least one value in the
stream then the first value will be retrieved, assigned to x, and removed from
the stream buffer. The following block of the statement will be also executed.
This will repeat until the buffer is empty. (2) If there is no value in the buffer but
there may be more values to be received (i.e., eof is not buffered yet), then the
process cooperatively releases control so that another process of the consumer is

70 K. Azadbakht et al.

activated. The process will be activated later once the stream is not empty. (3)
If there is no value in the buffer and the eof is in the stream then the statement
will skip.

Fig. 1. An example in ABS extended by future-based data streams

Syntax. The syntax of our proposed extension of ABS, i.e., that of future-based
data streams, is specified in Fig. 2. The only syntactic extension on the callee side
is the yield statement, that can only be used in the specification of a streamer
method. The rest of the statements are related to the specification of a caller to
a streamer method.

awaitAll is already described in the above example. The await-catch state-
ment is a single-fetch version of the repetitive awaitAll: (1) If there is at least
one value in the stream buffer then it retrieves the head of the buffer and assigns
it to x. It also removes the value from the buffer, but not repetition takes places.
(2) As before, if there is no value in the buffer then the process releases the
control cooperatively. (3) If there is eof in the stream buffer then, deviating
from awaitAll, the statement s is executed. The getAll and get-catch coincide
semantically to the awaitAll and await-catch respectively, except for releasing
control, where the whole cog is suspended rather than the current process.

On Futures for Streaming Data in ABS 71

Fig. 2. Syntax

4 Case Study

Simulation of massive social networks is of great importance. Typically, larger
networks are structurally different from the smaller networks generated based
on the same models [7]. Analysis of social networks is relevant to many scientific
domains, e.g., data-mining, network sciences, physics, and social sciences [8]. In
this section, we briefly investigate social network simulation based on so-called
Preferential Attachment [9].

Modeling and implementation of the above-mentioned system is for standard
ABS already extensively investigated for both multi-core [10] and distributed
[11] architectures in the ABS language. Here we focus on how our proposed
notion of streams influences the performance of the system presented in [11]. To
adopt data streams, we have modified the communication pattern of the active
objects, where instead of one request per message, a batch of requests is sent to
an active object via one method invocation and the return values are streamed
to the caller via data streaming. The performance gain, discussed below, can
be attributed almost entirely to the batching responses instead of sending one
packet per return value. Note, such a batching mechanism is integrated naturally
in the context of data streams.

In graph-theoretical terms the problem of Preferential Attachment considers
an initial graph of d+ 1 nodes for some small number d and seeks to extend the
graph with n nodes, for some n ≫ d, by adding nodes one-by-one such that
each new node will have degree d. The d target nodes are selected preferentially
where the preference is the degree, that is, the higher the degree of a node, the
higher the probability to be attached to the new node.

4.1 Experimental Results

The case study on massive social network simulation has been implemented
in Cloud ABS [6], which is a source-to-source transcompiler from ABS code
down to Cloud Haskell [12] runnable on distributed machines. Beside a higher
level of abstraction at the programming level thanks to our proposed feature,
the distributed runtime system provides more than 6× speed-up performance
compared to the same implementation without using the feature, presented in
[11]. The results are illustrated in Fig. 3.

The distribution overhead increases the execution time for two machines,
which is compensated by the parallelism achieved through adding more VMs. As
shown in Table 1, the memory consumption decreases when adding more VMs,
which enables generating extra-large graphs which cannot fit in centralized-
memory architectures. We ran the implementation on a distributed cloud

72 K. Azadbakht et al.

environment kindly provided by the Dutch SURF foundation. The hardware
consisted of identical VMs interconnected over a 10Gbps ethernet network; each
VM was a single-core Intel Xeon E5-2698, 16GB RAM running Ubuntu 14.04
Server edition. Finally, we provided an online repository1 containing the ABS
code for the case study and instructions for installing the ABS Haskell backend.

Fig. 3. Performance results of the distributed PA in ABS-Haskell for graphs of n = 107

nodes with d = (a) 3, (b) 10.

Table 1. Maximum memory residency (in MB) per virtual machine.

Total number of VMs

Graph size 1 2 4 8 16

n = 106, d = 3 306 266 212 155 114

n = 106, d = 10 899 1028 547 354 221

n = 107, d = 3 2123 3242 1603 967 621

n = 107, d = 10 6260 9668 6702 3611 1905

5 Conclusion and Future Work

In the extended ABS, the proposed type strFut<T> of asynchronous data
streams is similar to that of simple futures in the sense that a value of its type
T can be passed around. However, shared data streams in general will give rise
to race conditions because, by definition, processing an element from the stream
implies its removal. Different standard techniques can be used to control race
conditions, like ownership types. Alternatively, in future work we will investi-
gate monotonically increasing streams whose generated elements are persistent.
This will involve some additional cursor mechanism for local reading devices for
different users and requires auxiliary garbage collection techniques.

Work is well under way addressing the type system and operational semantics
of the proposed notion as an extension of ABS.
1 http://github.com/abstools/distributed-PA/streams.

http://github.com/abstools/distributed-PA/streams

On Futures for Streaming Data in ABS 73

Acknowledgments. This research is partly funded by the EU project FP7-612985
UpScale: From Inherent Concurrency to Massive Parallelism through Type-based
Optimizations (http://www.upscale-project.eu). This work was carried out on the
Dutch national HPC cloud infrastructure, a service provided by the SURF Founda-
tion (http://www.surf.nl). We also thank Erik de Vink for his constructive comments.

References

1. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25271-6 8

2. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: Nicola,
R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-71316-6 22

3. Selivanov, Y.: Asynchronous generators (2016). https://www.python.org/dev/
peps/pep-0525/

4. Streams - version 2.5.0 (2017). http://doc.akka.io/docs/akka/2.4/scala/stream/
index.html

5. Welch, P., Brown, N.: Communicating Sequential Processes for Javatm (JCSP)
(2014). https://www.cs.kent.ac.uk/projects/ofa/jcsp/

6. Bezirgiannis, N., de Boer, F.: ABS: a high-level modeling language for cloud-
aware programming. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM
2016. LNCS, vol. 9587, pp. 433–444. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49192-8 35

7. Leskovec, J.: Dynamics of large networks. ProQuest (2008)
8. Bader, D., Madduri, K.: Parallel algorithms for evaluating centrality indices in

real-world networks. In: International Conference on Parallel Processing 2006, pp.
539–550. IEEE (2006)

9. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

10. Azadbakht, K., Bezirgiannis, N., de Boer, F.S., Aliakbary, S.: A high-level and
scalable approach for generating scale-free graphs using active objects. In: 31st
Annual ACM Symposium on Applied Computing, pp. 1244–1250. ACM (2016)

11. Azadbakht, K., Bezirgiannis, N., de Boer, F.S.: Distributed network generation
based on preferential attachment in ABS. In: Steffen, B., Baier, C., Brand, M.,
Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp.
103–115. Springer, Cham (2017). doi:10.1007/978-3-319-51963-0 9

12. Epstein, J., Black, A.P., Peyton-Jones, S.: Towards Haskell in the cloud. ACM
SIGPLAN Not. 46, 118–129 (2011). ACM

http://www.upscale-project.eu
http://www.surf.nl
http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://dx.doi.org/10.1007/978-3-540-71316-6_22
https://www.python.org/dev/peps/pep-0525/
https://www.python.org/dev/peps/pep-0525/
http://doc.akka.io/docs/akka/2.4/scala/stream/index.html
http://doc.akka.io/docs/akka/2.4/scala/stream/index.html
https://www.cs.kent.ac.uk/projects/ofa/jcsp/
http://dx.doi.org/10.1007/978-3-662-49192-8_35
http://dx.doi.org/10.1007/978-3-662-49192-8_35
http://dx.doi.org/10.1007/978-3-319-51963-0_9

Session-Based Concurrency, Reactively

Mauricio Cano1, Jaime Arias2, and Jorge A. Pérez3(B)

1 University of Groningen, Groningen, The Netherlands
2 Inria Grenoble Rhône-Alpes, Montbonnot-Saint-Martin, France

3 University of Groningen and CWI, Amsterdam, The Netherlands
j.a.perez@rug.nl

Abstract. This paper concerns formal models for the analysis of com-
munication-centric software systems that feature declarative and reactive
behaviors. We focus on session-based concurrency, the interaction model
induced by session types, which uses (variants of) the π-calculus as spec-
ification languages. While well-established, such process models are not
expressive enough to specify declarative and reactive behaviors common
in emerging communication-centric software systems. Here we propose
the synchronous reactive programming paradigm as a uniform foundation
for session-based concurrency. We present correct encodings of session-
based calculi into ReactiveML, a synchronous reactive programming
language. Our encodings bridge the gap between process specifications
and concurrent programs in which session-based concurrency seamlessly
coexists with declarative, reactive, timed, and contextual behaviors.

1 Introduction

In this paper, we introduce the synchronous reactive programming paradigm as
a practical foundation for communication-centric software systems. Our motiva-
tion is twofold. First, synchronous reactive programming allows us to uniformly
integrate point-to-point communications (as in the π-calculus) with declarative,
reactive, timed, and contextual behaviors—this is an elusive combination for
process models such as the π-calculus. Second, by relying on ReactiveML (a
synchronous reactive programming language with a formal semantics), we may
bridge the gap between π-calculus processes and actual concurrent programs,
thus bringing a rigorous communication model to programmers.

Large software systems are deployed as aggregations of distributed interacting
components, which are built using a myriad of different programming platforms
and/or made available as black-boxes that expose minimal interaction interfaces.
In these complex, heterogeneous systems communication emerges as the key
unifying glue. Certifying that interacting components conform to their prescribed
protocols is thus an important but challenging task, and is essential in ensuring
overall system correctness.

Besides protocol conformance, analyzing communication-centric software sys-
tems entails addressing additional challenges, which can be seen as related to
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Bouajjani and A. Silva (Eds.): FORTE 2017, LNCS 10321, pp. 74–91, 2017.
DOI: 10.1007/978-3-319-60225-7 6

Session-Based Concurrency, Reactively 75

the increasing ubiquity of these systems. Indeed, communication-centric soft-
ware appears in emerging trends (e.g., collective adaptive systems) and as such
is subject to various classes of requirements that are orthogonal to communica-
tion correctness. We focus on communication-centric software systems featuring
declarative, reactive, timed, and contextual behaviors. (In Sect. 2 we illustrate
these intended systems, using a transactional protocol subject to failures.) By
stipulating governing conditions (rather than how to implement such condi-
tions), declarative approaches naturally specify, e.g., security policies. Closely
intertwined, constructs modeling reactivity, time, and context-awareness are at
the heart of mechanisms that enforce, e.g., self-adaptation and fault-tolerance in
dependable systems. Therefore, while not directly connected to protocol specifi-
cations, declarative, reactive, timed, and contextual behaviors (and their inter-
play) do influence communication and should be integrated into the analysis of
protocol conformance.

Process calculi (such as the π-calculus [17]) have long offered a principled
basis for the compositional analysis of message-passing programs. Within these
approaches, our work concerns session-based concurrency, the interaction model
induced by session types [11], which organize protocols as sessions between two
or more participants. In session-based concurrency, a session type describes the
contribution of each partner to the protocol. Interactions are structured, and
always occur in matching pairs; e.g., when one partner sends, the other receives;
when one partner offers a selection, the other chooses. Different session type the-
ories for binary (two-party) and multiparty protocols have been developed [12];
here we focus on binary sessions.

Binary and multiparty session types rely on π-calculi with session constructs.
These session calculi have been extended with declarative, reactive, timed, and
contextual behaviors, but none of these extensions captures all these features. For
instance, session calculi with assertions (logical predicates) [3,5] may describe
certain declarative requirements, but do not account for reactive and contextual
behaviors. Frameworks with time-related conditions, such as [1,4], have simi-
lar limitations. The framework in [13] supports contextual information through
events, but does not represent reactive, declarative behaviors. Integrating these
extensions into a single process framework seems rather difficult, for they rely
on different languages and often conflicting assumptions.

Here we pursue a different approach: we embed session-based concurrency
within the synchronous reactive programming (SRP) model for reactive, timed
systems [2,10]. Hence, rather than extending session π-calculi with declara-
tive, reactive, timed, and contextual features, we encode session-based commu-
nication into a setting where these features (and their interplay) are already
well understood. We consider ReactiveML, a programming language based on
SRP [15,16], as target language in our developments. ReactiveML is a general
purpose functional language with a well-defined formal semantics. Our tech-
nical contributions are two correct encodings of session π-calculi into Reac-
tiveML. In a nutshell, we use signals in ReactiveML to mimick names in session
π-calculi. Our encodings enable us to integrate, in a seamless and uniform way,

76 M. Cano et al.

session-based constructs as “macros” in ReactiveML programs with declarative
and reactive constructs. Moreover, since our encodings are executable (well-
typed) ReactiveML programs, our results have a direct practical character, which
serves to bridge the gap between specifications in process models and actual con-
current programs.

This paper is structured as follows. Section 2 illustrates our approach via an
example. Section 3 summarizes the syntax and semantics of a session π-calculus
and of ReactiveML. In both cases, we consider languages with synchronous and
asynchronous (queue-based) communication. Section 4 presents our two encod-
ings and states their correctness. Section 5 collects closing remarks. An online
appendix includes further examples and technical details (omitted definitions
and proofs) [7].

2 A Motivating Example

We use a toy example to illustrate (i) the limitations of session π-calculi in rep-
resenting structured communications with declarative/reactive behaviors, and
(ii) how our approach, based on encodings into ReactiveML, can neatly over-
come such limitations.

A Ride Protocol. Suppose a conference attendee who finds himself in a foreign
airport. To get in time for his presentation, he uses a mobile app in his phone to
request a ride to the conference venue. The intended protocol may be intuitively
described as follows:

1. Attendee sends his current location and destination to a neighbouring Driver.
2. Driver receives these two pieces of information and offers three options to

Attendee: a ride right now, a ride at a later time, or to abort the transaction.
3. Attendee is in a hurry, and so he selects to be picked up right now.
4. Driver replies by sending an estimated arrival time at Attendee’s location.

Using session π-calculus processes (as in, e.g., [18]), this protocol may be imple-
mented as a process S = (νxy)(A(x) | D(y)), where processes A(x) and D(y)
abstract the behavior of Attendee and Driver as follows:

A(x) = x〈loc〉.x〈des〉.x � now.x(e).0
D(y) = y(l).y(d).y � {now : y〈eta〉.0, later : y(t).y〈ok〉.0, quit : Closey}

where process Closey denotes an unspecified sub-protocol for closing the trans-
action. Above, we write x〈z〉.P (resp. x(w).P) to denote the output (resp. input)
along name x with continuation P . Processes x � l.P and x � {li : Pi}i∈I denote
internal and external labeled choices, respectively. Above, now, later, and quit
denote labels. Process 0 denotes inaction. Process (νxy)P declares x and y as
dual session endpoints in P . This way, S says that A(x) and D(y) play comple-
mentary roles in the session protocol.

Session-Based Concurrency, Reactively 77

The Need for Richer Behaviors. Session-based concurrency assumes that
once a session is established, communication may proceed without interruptions.
This is unrealistic in most real-life scenarios, where established sessions are prone
to failures or interruptions. For instance, a connectivity issue in the middle of
the protocol with Driver may leave Attendee stuck in the airport. In such cases,
notions of contextual information, reactivity, and time become essential:

Contextual Information such as, e.g., external events signalling a malfunction,
allows relating the system with its environment. For instance, we may like
to relate A(x) and D(y) with a connectivity manager that triggers warning
events.

Reactivity serves to detect unforeseen circumstances (e.g., failures) and to
define appropriate system behaviors to run in such cases. For instance, we
may like to define A(x) so that another driver is requested if a failure in a
protocol with D(y) arises.

Time allows to track the instant in which a failure occurred, and also to establish
a deadline within which the failure should be resolved. For instance, in case of
failure A(x) may try contacting alternative drivers only until k time instants
after the failure.

As mentioned above, the session π-calculus does not support these features,
and proposed extensions do not comprehensively address them. We rely on syn-
chronous reactive programming (SRP) and ReactiveML, which already have the
ingredients for seamlessly integrating declarative, reactive behavior into session-
based concurrency.

ReactiveML. ReactiveML extends OCaml with reactive, timed behavior. Time
is modelled as discrete units, called instants; reactivity arises through signals,
which may carry values. In ReactiveML, expression signal x in e declares a new
signal x. We use constructs emit s v and await s(x) in e to emit and await a
signal s, respectively. Preemption based on signals is obtained by the expression
do (e1) until s → (e2), which executes e1 until signal s is detected, and runs e2
in the next instant. Moreover, ReactiveML can encode the parallel composition
of expressions e1 and e2, denoted e1 ‖ e2.

Embedding Sessions in ReactiveML. Our first encoding, denoted �·�f (cf.
Definition 14), translates session π-calculus processes into ReactiveML expres-
sions; we use substitution f to represent names in the session π-calculus
using (fresh) signals in ReactiveML. Our second encoding, denoted ([·]) (cf.
Definition 17), supports an asynchronous semantics.

We illustrate �·�f by revisiting our example above. Let us define a concur-
rent reactive program in which �A(x)�f , �D(y)�f , and �D′(w)�f represent Reac-
tiveML snippets that implement session-based communication. We consider a
simple possibility for failure: that Driver (D(y)) may cancel a ride anytime or
that communication with Attendee (A(x)) fails and cannot be recovered. Ide-
ally, we would like a new driver D′(w), whose implementation may be the same
as D(y), to continue with the protocol, without disrupting the protocol from

78 M. Cano et al.

Fig. 1. Reduction relation for π processes (contextual congruence rules omitted).

the perspective of A(x). This could be easily expressed in ReactiveML as the
expression S′ = signal w1, w2 in (RA ‖ RD) where:

RA = do (�A(x)�{x←w1}) until fail → (await w2(z) in �A(x)�{x←z})
RD = do (�D(y)�{y←w1}) until fail → (BD)
BD = signal w3 in (emit w2 w3; �D′(w)�{w←w3})

S′ declares two signals: while signal w1 connects a reactive attendee RA and
the reactive driver RD, signal w2 connects RA with a backup driver BD. If no
failure arises, RA and RD run their expected session protocol. Otherwise, the
presence of signal fail will be detected by both RA and RD: as a result, the
attendee will await a new signal for restarting the session; process �D(y)� stops
and BD will become active in the next instant. After emitting a fresh signal w3,
BD can execute the protocol with RA.

3 Preliminaries

A Session π-calculus. Our presentation follows closely that of [18]. We assume
a countable infinite set of variables Vs, ranged over by x, y, A variable repre-
sents one of the two endpoints of a session. We use v, v′, . . . to range over values,
which include variables and the boolean constants tt, ff. Also, we use l, l′, . . .
to range over labels. We write x̃ to denote a finite sequence of variables (and
similarly for other elements).

Definition 1 (π). The set π of session processes is defined as:

P,Q ::= x〈v〉.P | x(y).P | x � l.P | x � {li : Pi}i∈I | v? (P) :(Q) | P | Q | 0
| (νxy)P | ∗ x(y).P

Process x〈v〉.P sends value v over x and then continues as P ; dually, process
x(y).Q expects a value v on x that will replace all free occurrences of y in Q.
Processes x � lj .P and x � {li : Qi}i∈I define a labeled choice mechanism, with
labels indexed by the finite set I: given j ∈ I, process x � lj .P uses x to select
lj and trigger process Qj . We assume pairwise distinct labels. The conditional
process v? (P) : (Q) behaves as P if v evaluates to tt; otherwise it behaves as
Q. Parallel composition and inaction are standard. We often write

∏n
i=1 Pi to

stand for P1 | · · · | Pn. The double restriction (νxy)P binds together x and y in
P , thus indicating that they are the two endpoints of a session. Process ∗ x(y).P

Session-Based Concurrency, Reactively 79

Fig. 2. Reduction relation for aπ processes (contextual congruence rules omitted).

denotes a replicated input process, which allows us to express infinite server
behaviors. In x(y).P (resp. (νyz)P) occurrences of y (resp. y, z) are bound with
scope P . The set of free variables of P , denoted fv(P), is as expected.

The operational semantics for π is given as a reduction relation −→, the
smallest relation generated by the rules in Fig. 1. Reduction expresses the com-
putation steps that a process performs on its own. It relies on a structural con-
gruence on processes, denoted ≡S, which identifies processes up to consistent
renaming of bound variables, denoted ≡α. Formally, ≡S is the smallest congru-
ence that satisfies the axioms:

P | 0 ≡S P P | Q ≡S Q | P P ≡S Q if P ≡α Q
(P | Q) | R ≡S P | (Q | R) (νxy)(νwz)P ≡S (νwz)(νxy)P

(νxy)0 ≡S 0 (νxy)P | Q ≡S (νxy)(P | Q) if x, y 	∈ fv(Q)

We briefly comment on the rules in Fig. 1. Reduction requires an enclosing
restriction (νxy)(· · ·); this represents the fact that a session connecting end-
points x and y has been already established. Rule
Com� represents the syn-
chronous communication of value v through endpoint x to endpoint y. While
Rule
Sel� formalizes a labeled choice mechanism, in which communication of a
label lj is used to choose which of the Qi will be executed, Rule
Repl� is similar
to Rule
Com�, and used to spawn a new copy of Q, available as a replicated
server. Rules
IfT� and
IfF� are self-explanatory. Rules for reduction within
parallel, restriction, and ≡S (not given in Fig. 1) are as expected.

The following notion will be useful in stating properties of our translations.

Definition 2 (Contexts for π). The syntax of (evaluation) contexts in π is
given by the following grammar: E ::= [·] | E | P | P | E | (νxy)(E), where P
is a π process and ‘[·]’ represents a ‘hole’. We write C[·] to range over contexts
(νx̃ỹ)([·] | P1 | . . . | Pn), with n ≥ 1. E[P] (resp. C[P]) will denote the process
obtained by filling [·] with P .

An Asynchronous Session π-calculus (aπ). Following [13], we now define
aπ, a variant of π with asynchronous (queue-based) semantics. The syntax of
aπ includes variables x, y, . . . and co-variables, denoted x, y. Intuitively, x and
x denote the two endpoints of a session, with x = x. We write Va to denote the
set of variables and co-variables; k, k′ will be used to range over Va. As before,
values include booleans and variables. The syntax of processes is as follows:

80 M. Cano et al.

Definition 3 (aπ and aπ�). The set aπ of asynchronous session processes is
defined as:

P,Q ::= k〈v〉.P | k(y).P | k � l.P | k � {li : Pi}i∈I | v? (P) :(Q) | P | Q | 0
| (νx)P | μX.P | X | k[i : m̃; o : m̃]

We write aπ� to denote the sub-language of aπ without queues.

Differences with respect to Definition 1 appear in the second line of the above
grammar. The usual (single) restriction (νx)P is convenient in a queue-based
setting; it binds both x and x in P . We consider recursion μX.P rather than
input-guarded replication. Communication in aπ is mediated by queues of mes-
sages m (values v or labels l), one for each endpoint k; these queues, denoted
k[i : m̃; o : m̃], have output and input parts. Synchronization proceeds as follows:
the sending endpoint first enqueues the message m in its own output queue; then,
m is moved to the input queue of the receiving endpoint; finally, the receiving
endpoint retrieves m from its input queue. We will use ε to denote the empty
queue. Notions of free/bound (recursive) variables are as expected.

The operational semantics of aπ is defined as a reduction relation coupled
with a structural congruence relation ≡A. The former is defined by the rules in
Fig. 2, which either follow the above intuitions for queue-based message pass-
ing or are exactly as for π; the latter is defined as the smallest congruence on
processes that considers standard principles for parallel composition and inac-
tion, together with the axioms:

(νx)(νy)P ≡A (νy)(νx)P (νx)0 ≡A 0 μX.P ≡A P{μX.P/X}
k[i : ε; o : ε] ≡A 0 (νx)P | Q ≡A (νx)(P | Q) if x 	∈ fv(Q).

The notion of contexts for aπ includes unary contexts E and binary contexts C:

Definition 4 (Contexts for aπ). The syntax of contexts in aπ is given by
the following grammar: E ::= [·] | E | P | P | E | (νx)E, where P is an aπ
process and ‘[·]’ represents a ‘hole’. We write C[·1, ·2] to denote binary contexts
(νx̃)([·1] | [·2] |

∏n
i=1 Pi) with n ≥ 1. We will write E[P] (resp. C[P,Q]) to

denote the aπ process obtained by filling the hole in E[·] (resp. C[·1, ·2]) with
P (resp. P and Q).

Both π and aπ abstract from an explicit phase of session initiation in which
endpoints are bound together. We thus find it useful to identify aπ processes
which are properly initialized (PI): intuitively, processes that contain all queues
required to reduce.

Definition 5 (Properly Initialized Processes). Let P ≡A (νx̃)(P1 | P2) be
an aπ process such that P1 is in aπ� (i.e., it does not include queues) and
fv(P1) = {k1, . . . , kn}. We say P is properly initialized (PI) if P2 contains
a queue for each session declared in P1, i.e., if P2 = k1[i : ε, o : ε] | · · · |
kn[i : ε, o : ε].

Session-Based Concurrency, Reactively 81

ReactiveML: A Synchronous Reactive Programming Language. Based
on the reactive model given in [6], ReactiveML [16] is an extension of OCaml that
allows unbounded time response from processes, avoiding causality issues present
in other SRP approaches. ReactiveML extends OCaml with processes: state
machines whose behavior can be executed through several instants. Processes
are the reactive counterpart of OCaml functions, which ReactiveML executes
instantaneously. In ReactiveML, synchronization is based on signals: events that
occur in one instant. Signals can trigger reactions in processes; these reactions
can be run instantaneously or in the next instant. Signals carry values and can
be emitted from different processes in the same instant.

We present the syntax of ReactiveML following [14], together with two
semantics, with synchronous and asynchronous communication. We will assume
countable infinite sets of variables Vr and names Nr (ranged over by x1, x2 and
n1, n2, respectively).

Definition 6 (RML). The set RML of ReactiveML expressions is defined as:

v, v′ ::= c | (v, v) | n | λx.e | process e
e, e′ ::= x | c | (e, e) | λx.e | e e | rec x = v

| match e with {ci → ei}i∈I | let x = e and x = e in e | run e | loop e
| signale x : e in e | emit e e | pause | process e
| present e? (e) : e | do e when e | do (e) until e(x) → (e)

Values v, v′, . . . include constants c (booleans and the unit value ()), pairs, names,
abstractions, and also processes, which are made of expressions. The syntax of
expressions e, e′ extends a standard functional substrate with match and let
expressions and with process- and signal-related constructs. Expressions run e
and loop e follow the expected intuitions. Expression signalg x : d in e declares
a signal x with default value d, bound in e; here g denotes a gathering func-
tion that collects the values produced by x in one instant. When d and g are
unimportant (e.g., when the signal will only be emitted once), we will write sim-
ply signal x in P . We will also write signal x1, . . . , xn in e when declaring n > 1
distinct signals in e. If expression e1 transitions to the name of a signal then
emit e1 e2 emits a signal carrying the value from the instantaneous execution of
e2. Expression pause postpones execution to the next instant. The conditional
expression present e1? (e2) : (e3) checks the presence of a signal: if e1 transitions
to the name of a signal present in the current instant, then e2 is run in the same
instant; otherwise, e3 is run in the next instant. Expression do e when e1 executes
e only when e1 transitions to the name of a signal present in the current instant,
and suspends its execution otherwise. Expression do (e1) until e(x) → (e2) exe-
cutes e1 until e transitions into the name of a signal currently present that carries
a value which will substitute x. If this occurs, the execution of e1 stops at the end
of the instant and e2 is executed in the next one. Using these basic constructs,
we may obtain the useful derived expressions reported in Fig. 3, which include
the parallel composition e1 ‖ e2. We will say that an expression with no parallel
composition operator at top level is a thread.

82 M. Cano et al.

Fig. 3. Derived RML expressions.

We write ≡R to denote the smallest equivalence that satisfies the following
axioms: (i) e ‖ () ≡R e; (ii) e1 ‖ e2 ≡R e2 ‖ e1; (iii) (e1 ‖ e2) ‖ e3 ≡R e1 ‖ (e2 ‖ e3).

A Synchronous Semantics for RML. Following [14], we define a big-step opera-
tional semantics for RML. We require some auxiliary definitions for signal envi-
ronments and events. Below, and � denote usual multiset union and inclusion,
respectively.

Definition 7 (Signal Environment). Let D,G,M be sets of default values,
gathering functions, and multisets, respectively. A signal environment is a func-
tion S : Nr → (D × G × M), denoted S

�= [(d1, g1,m1)/n1, . . . , (dk, gk,mk)/nk],
with k ≥ 1.

We use the following notations: Sd(ni) = di, S
g(ni) = gi, and Sm(ni) = mi.

Also, Sv = fold gi mi di where fold recursively gathers multiple emissions of
different values in the same signal; see [14,16] for details. An event E associates
a signal ni to a multiset mi that represents the values emitted during an instant:

Definition 8 (Events). An event is defined as a function E : Nr → M, i.e.,
E

�= [m1/n1, . . . ,mk/nk], with k ≥ 1. Given events E1 and E2, we say that E1 is
included in E2 (written E1 �E E2) if and only if ∀n ∈ Dom(E1) ∪ Dom(E2) ⇒
E1(n) � E2(n). The union E1 and E2 (written E1 �E E2) is defined for all
n ∈ Dom(E1) ∪ Dom(E2) as (E1 �E E2)(n) = E1(n) E2(n).

We now define the semantics of RML expressions. A big-step transition in RML

captures reactions within a single instant, and is of the form e
E,b−−→
S

e′ where S

stands for the smallest signal environment (wrt �E and Sm) containing input,
output, and local signals; E is the event made of signals emitted during the
reaction; b ∈ {tt, ff} is a boolean value that indicates termination: b is false if e
is stuck during that instant and is true otherwise. At each instant i, the program
reads an input Ii and produces an output Oi. The reaction of an expression
obeys four conditions: (C1) (Ii �E Ei) �E Sm

i (i.e., S must contain the inputs
and emitted signals); (C2) Oi �E Ei (i.e., the output signals are included in the
emitted signals); (C3) Sd

i ⊆ Sd
i+1; and (C4) Sg

i ⊆ Sg
i+1 (i.e., default values and

gathering functions are preserved throughout instants).
Figure 4 gives selected transition rules; see [7] for a full account. Rules

L-Par� and
L-Done� handle let expressions, distinguishing when (a) at least

Session-Based Concurrency, Reactively 83

Fig. 4. Big-step semantics for RML expressions (selection).

one of the parallel branches has not yet terminated, and (b) both branches
have terminated and their resulting values can be used. Rule
Run� ensures
that declared processes can only be executed while they are preceded by run.
Rules
Lp-Stu� and
Lp-Un� handle loop expressions: the former decrees that
a loop will stop executing when the termination boolean of its body becomes
ff; the latter executes a loop until Rule
Lp-Stu� is applied. Rule
Sig-Dec�
declares a signal by instantiating it with a fresh name in the continuation;
its default value and gathering function must be instantaneous expressions.
Rule
Emit� governs signal emission. Rule
Pause� suspends the process for
an instant. Rules
Sig-P� and
Sig-NP� check for presence of a signal n: when
n is currently present, the body e2 is run in the same instant; otherwise, e3 is
executed in the next instant. Rules
DU-End�,
DU-P�, and
DU-NP� handle
expressions do (e1) until e2(x) → (e3). Rule
DU-End� says that if e1 terminates

84 M. Cano et al.

Fig. 5. Big-step semantics for RMLq: queue-related operations.

instantaneously, then the whole expression terminates. Rule
DU-P� says that
if e2 transitions to a currently present signal n, then e3 is executed in the next
instant, substituting x with the values gathered in n. Rule
DU-NP� executes
e1 as long as e2 does not reduce to a currently present signal. We shall rely on
a simple notion of equality.

Definition 9 (Equality with case normalization). Let ↪→R denote the
extension of ≡R with the axiom match cj with {ci → Pi}i∈I ↪→R Pj, where cj

is a constant and j ∈ I.

RMLq: ReactiveML with a Queue-Based Semantics. We extend RML with an
explicit store of queues that keeps the state of the executed program. Unlike
signals, the store of queues is preserved throughout time. The syntax of RML
is extended with constructs that modify the queues located in the store; the
resulting language is called RMLq.

Definition 10 (RMLq). RMLq expressions are obtained by extending the gram-
mar of values in Definition 6 with the following forms:

v ::= · · · | pop | put | isEmpty.

The new constructs allow RMLq programs to modify queues, which are ranged
over by q, q′, Construct put receives a queue and an element as parameters
and pushes the element into the end of the queue. Construct pop takes a queue
and dequeues its first element; if the queue is empty in the current instant the
process will block the current thread until an element is obtained. Construct
isEmpty blocks a thread until the instant in which a queue stops being empty.

The semantics of RMLq includes a state Σ,Σ′ ::= ∅ | Σ, q : ṽ (i.e., a possibly
empty collection of queues) and configurations K,K ′ ::= 〈e ; Σ〉. The big-step

semantics then has transitions of the form 〈e ; Σ〉 E,b���
S

� 〈e′ ; Σ′〉, where S is a

signal environment, b is a termination boolean, and E is an event. The corre-
sponding transition system is generated by rules including those in Fig. 5 (see
also [7]).

Most transition rules for RMLq are interpreted as for RML; we briefly discuss
queue-related rules in Fig. 5. Rule
Put-Q� pushes an element into a queue

Session-Based Concurrency, Reactively 85

and terminates instantaneously. Rule
Pop-Q� takes the first element from the
queue (if not empty) and terminates instantaneously. Rule
NEmpty� enables
isEmpty to terminate instantaneously if the queue is not empty. Rule
Pop-Qε�
keeps the thread execution stuck for at least one instant if the queue is empty;
Rule
Empty� is similar. We rule out programs with parallel pop/put operations
along the same session in the same instant.

4 Expressiveness Results

We present our main results: correct translations of π into RML and of aπ into
RMLq.

The Formal Notion of Encoding. We define notions of language, trans-
lation, and encoding by adapting those from Gorla’s framework for relative
expressiveness [9].

Definition 11 (Languages and Translations). A language L is a tuple
〈P,−→,≈〉, where P is a set of processes, → denotes an operational semantics,
and ≈ is a behavioral equality on P. A translation from Ls = 〈Ps,−→s,≈s〉
into Lt = 〈Pt,−→t,≈t〉 (each with countably infinite sets of variables Vs and
Vt, respectively) is a pair 〈�·�, ψ�·�〉, where �·� : Ps → Pt is a mapping, and
ψ�·� : Vs → Vt is a renaming policy for �·�.
We are interested in encodings: translations that satisfy certain correctness
criteria:

Definition 12 (Encoding). Let Ls = 〈Ps,−→s,≈s〉 and Lt = 〈Pt,−→t,≈t〉 be
languages; also let 〈�·�, ψ�·�〉 be a translation between them (cf. Definition 11). We
say that such a translation is an encoding if it satisfies the following criteria:

1. Name invariance: For all S ∈ Ps and substitution σ, there exists σ′ such
that �Sσ� = �S�σ′, with ψ�·�(σ(x)) = σ′(ψ�·�(x)), for any x ∈ Vs.

2. Compositionality: Let ress(·, ·) and pars(·, ·) (resp. rest(·, ·) and part(·, ·))
denote restriction and parallel composition operators in Ps (resp. Pt). Then,
we define: �ress(x̃, P)� = rest(ψ�·�(x̃), �P �) and �pars(P,Q)� = part(�P �, �Q�).

3. Operational correspondence, i.e., it is sound and complete: (1) Sound-
ness: For all S ∈ Ps, if S −→s S′, there exists T ∈ Pt such that �S� =⇒t T
and T ≈t �S′�. (2) Completeness: For all S ∈ Ps and T ∈ Pt, if �S� =⇒t T ,
there exists S′ such that S =⇒s S′ and T ≈t �S′�.

While name invariance and compositionality are static correctness criteria, oper-
ational correspondence is a dynamic correctness criterion. Notice that our notion
of compositionality is less general than that in [9]: this is due to the several impor-
tant differences in the structure of the languages under comparison (π vs. RML
and aπ vs. RMLq).

We shall present translations of π into RML and of aπ into RMLq, which
we will show to be encodings. We instantiate Definition 11 with the following
languages:

86 M. Cano et al.

Definition 13 (Concrete Languages). We shall consider:

– Lπ will denote the tuple 〈π,−→,≡S〉, where π is as in Definition 1; −→ is the
reduction semantics in Fig. 1; and ≡S is the structural congruence relation
for π.

– LRML will denote the tuple 〈RML,
E,b−−→
S

, ↪→R〉, where RML is as in Defini-

tion 6;
E,b−−→
S

is the big-step semantics for RML; and ↪→R is the equivalence in

Definition 9.
– Laπ will denote the tuple 〈aπ,−→A,≡A〉, where aπ is as in Definition 3; −→A is

the reduction semantics in Fig. 2; and ≡A is the structural congruence relation
for aπ.

– LRMLq will denote the tuple 〈RMLq,
E,b���
S

� ,≡R〉, where RMLq is as in

Definition 10;
E,b���
S

� is the big-step semantics for RMLq; and ≡R is the equiv-

alence for RML.

When events, termination booleans, and signal environments are unimportant,

we write P �−→ Q instead of P
E,b−−→
S

Q, and K ����� K ′ instead of K
E,b���
S

� K ′.

Encoding Lπ into LRML. Key aspects in our translation of Lπ into LRML are:
(i) the use of value carrying signals to model communication channels; and (ii)
the use of a continuation-passing style (following [8]) to model variables in π
using RML signals.

Definition 14 (Translating Lπinto LRML). Let 〈�·�f , ψ�·�f
〉 be a translation

where: (1) ψ�·�f
(x) = x, i.e., every variable in π is mapped to the same variable

in RML. (2) �·�f : Lπ → LRML is as in Fig. 6, where f is a substitution function.

Function f in �·�f ensures that fresh signal identifiers are used in each protocol
action. The translation of x〈v〉.P declares a new signal x′ which will be sent
paired with value v through signal x; process �P �f,{x←x′} is executed in the
next instant. Dually, the translation of x(y).P awaits a signal carrying a pair,
composed of a value and the signal name that to be used in the continuation,
which is executed in the next instant. Translations for selection and branching
are special cases of those for output and input. Restriction (νxy)P is translated
by declaring a fresh signal w, which replaces x, y in �P �f . Conditionals, parallel
composition and inaction are translated homomorphically. Input-guarded repli-
cation is a special case of recursion, enabling at most one copy of the spawned
process in the same instant; such a copy will be blocked until the process that
spawned it interacts with some process. In Fig. 6, α, β denote variables inside
the declaration of a recursive process, distinct from any other variables.

We state our first technical result: the translation of Lπ into LRML is an
encoding. In the proof, we identify a class of well-formed π processes that have
at most one output and selection per endpoint in the same instant; see [7] for
details.

Session-Based Concurrency, Reactively 87

Fig. 6. Translation from Lπ to LRML (Definition 14). Notice that fx is a shorthand for
f(x).

Theorem 1. Translation 〈�·�f , ψ�·�f
〉 is an encoding, in the sense of

Definition 12.

Encoding Laπ into LRML. The main intuition in translating aπ into RMLq
is to use the queues of RMLq coupled with a handler process that implements
the output-input transmission between queues. We start by introducing some
auxiliary notions.

Notation 1. Let P ≡A (νx̃)(
∏

i∈{1,...,n} Qi |
∏

kj∈˜k kj [i : ε, o : ε] be PI (cf. Def-

inition 5) with variables ˜k. We will write P as Cl[Ql,K(˜k)], where l ∈ {1, . . . , n},
Cl[·1, ·2] =

∏

j∈{1,...,n}\{l} Qj | [·1] | [·2], and K(˜k) =
∏

kj∈˜k kj [i : ε, o : ε].

This notation allows us to distinguish two parts in a PI process: the non-queue
processes and the queue processes K(˜k). We now define the key notion of handler
process:

Definition 15 (Handler process). Given ˜k = {k1, . . . , kn}, the handler
process H(˜k) is defined as

∏

i∈{1,...,n} I(ki) ‖ O(ki), where I(k) and O(k) are
as in Fig. 7.

Given an endpoint k, a handler defines parallel processes Ik and Ok to handle
input and output queues. Transmission is a handshake where both Ok and Ik (or
viceversa) must be ready to communicate. If ready, Ok sends a pair containing
the message (pop ko) and a fresh signal for further actions (α′). Once the pair is
received, it is enqueued in ki (i.e., the dual Ik). The process is recursively called
in the next instant with the new endpoints. The translation of aπ� into RMLq
requires a final auxiliary definition:

88 M. Cano et al.

Fig. 7. Components of handler processes (Definition 15)

Fig. 8. Auxiliary translation from aπ� into RMLq (Definition 17).

Definition 16. We define δ(·) as a function that maps aπ processes into RMLq
states:

δ(k[i : ˜h; o : m̃]) = {ki : ˜h, ko : m̃} δ(P | Q) = δ(P) ∪ δ(Q) δ((νx)P) = δ(P)

and as δ(P) = ∅ for every other aπ process.

Definition 17 (Translating Laπinto LRMLq). Let 〈([·]), ψ([·])〉 be a translation
where:

– ψ([·])(k) = k, i.e., every variable in aπ is mapped to the same variable in
RMLq.

– ([·]) : Laπ → LRMLq is defined for properly initialized aπ processes C[Q,K(˜k)],
which are translated into RMLq configurations as follows:

([C[Q,K(˜k)]]) = 〈{[C[Q,0]]} ‖ H(˜k) ; δ(K(˜k))〉

where {[·]} : Laπ� → LRMLq is in Fig. 8; H(˜k) is in Definition 15; and δ(·) is
in Definition 16.

Two key ideas in translation ([·]) are: queues local to processes and compositional
(queue) handlers. Indeed, communication between an endpoint k and its queues
ki, ko proceeds instantaneously, for such queues should be local to the process
implementing session k. Queue handlers effectively separate processes/behavior
from data/state. As such, it is conceivable to have handlers that have more
functionalities than those of H(˜k). In [7] we provide an example of a handler
more sophisticated than H(˜k).

Session-Based Concurrency, Reactively 89

Translation ([·]) is in two parts. First, {[·]} translates non-queue processes:
output and input are translated into queuing and dequeuing operations, respec-
tively. Selection and branching are modeled similarly. Translations for the con-
ditional, inaction, parallel, and recursion is as expected. Recursion is limited to
a pause-guarded tail recursion in {[·]} to avoid loops of instantaneous expressions
and nondeterminism when accessing queues. Second, ([·]) creates an RML con-
figuration by composing the RMLq process obtained via {[·]} with appropriate
handlers and with the state obtained from the information in aπ queues. Because
of this two-part structure, static correctness properties are established for {[·]}
(for this is the actual translation of source processes), whereas operational cor-
respondence is established for ([·]) (which generates an RMLq configuration).

Theorem 2 (Name invariance and compositionality for {[·]}). Let P , σ,
x, and E[·] be an aπ� process, a substitution, a variable in aπ�, and an eval-
uation context (cf. Definition 4), respectively. Then: (1) {[Pσ]} = {[P]}σ, and
(2) {[E[P]]} = {[E]}[{[P]}].
Theorem 3 (Operational correspondence for ([·])). Given a properly ini-
tialized aπ process C[Q,K(˜k)], it holds that:

1. Soundness: If C[Q,K(˜k)] −→A C[Q′,K′(˜k)] then

([C[Q,K(˜k)]]) ����� ([C ′[Q′′,K′′(˜k)]]), for some Q′′,K′′(x̃), C ′ where
C[Q,K(x̃)] −→A C[Q′,K′(x̃)] −→∗

A (νx̃)C ′[Q′′,K′′(x̃)].

2. Completeness: If ([C[Q,K(x̃)]]) ����� R then there exist Q′,C ′,K′(x̃) such
that C[Q,K(x̃)] −→∗

A (νx̃)C ′[Q′,K′(x̃)] and R = ([C ′[Q′,K′(x̃)]]).

In soundness, a single RMLq step mimicks one or more steps in aπ, i.e., sev-
eral source computations can be grouped into the same instant. This way, e.g.,
the interaction of several outputs along the same session with their queue (cf.
Rule
Send�) will take place in the same instant. In contrast, several queue syn-
chronizations in the same session (cf. Rule
Com�) will be sliced over different
instants. Conversely, completeness ensures that our encoding does not introduce
extraneous behaviors: for every RMLq transition of a translated process there
exists one or more corresponding aπ reductions.

5 Closing Remarks

We have shown that ReactiveML can correctly encode session-based concurrency,
covering both synchronous and asynchronous (queue-based) communications.1

Our encodings are executable: as such, they enable to integrate session-based
concurrency in actual RML programs featuring declarative, reactive, timed, and
contextual behavior. This is an improvement with respect to previous works,
which extend the π-calculus with some (but not all) of these features and/or

1 Synchronous communication as in the (session) π-calculus should not be confused
with the synchronous programming model of ReactiveML.

90 M. Cano et al.

lack programming support. Interestingly, since ReactiveML has a well-defined
semantics, it already offers a firm basis for both foundational and practical stud-
ies on session-based concurrency. Indeed, ongoing work concerns the principled
extension of our approach to the case of multiparty sessions.

We have not considered types in source/target languages, but we do not
foresee major obstacles. In fact, we have already shown that our encoding �·�f

supports a large class of well-typed π processes in the system of [18], covering
a typed form of operational correspondence but also type soundness: if P is a
well-typed π process, then �P �f is a well-typed RML expression—see [7]. We
conjecture a similar result for ([·]), under an extension of [18] with queues. On
the ReactiveML side, we can exploit the type-and-effect system in [14] to enforce
cooperative programs (roughly, programs without infinite loops). Since �·�f and
([·]) already produce well-typed, executable ReactiveML expressions, we further
conjecture that they are also cooperative, in the sense of [14].

Acknowledgements. We thank Ilaria Castellani, Cinzia Di Giusto, and the anony-
mous reviewers for useful remarks and suggestions. This work has been partially
sponsored by CNRS PICS project 07313 (SuCCeSS) and EU COST Actions IC1201
(BETTY), IC1402 (ARVI), and IC1405 (Reversible Computation).

References

1. Bartoletti, M., Cimoli, T., Murgia, M., Podda, A.S., Pompianu, L.: Compli-
ance and subtyping in timed session types. In: Graf, S., Viswanathan, M. (eds.)
FORTE 2015. LNCS, vol. 9039, pp. 161–177. Springer, Cham (2015). doi:10.1007/
978-3-319-19195-9 11

2. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Guernic, P.L., de Simone,
R.: The synchronous languages 12 years later. Proc. IEEE 91(1), 64–83 (2003)

3. Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for
distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR
2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15375-4 12

4. Bocchi, L., Yang, W., Yoshida, N.: Timed multiparty session types. In: Baldan, P.,
Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 419–434. Springer, Heidel-
berg (2014). doi:10.1007/978-3-662-44584-6 29

5. Bonelli, E., Compagnoni, A.B., Gunter, E.L.: Correspondence assertions for process
synchronization in concurrent communications. J. Funct. Program. 15(2), 219–247
(2005)

6. Boussinot, F., de Simone, R.: The SL synchronous language. IEEE Trans. Softw.
Eng. 22(4), 256–266 (1996)

7. Cano, M., Arias, J., Pérez, J.A.: Session-based Concurrency, Reactively (Extended
Version) (2017). http://www.jperez.nl/publications

8. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: Proceedings
of the PPDP 2012, pp. 139–150 (2012)

9. Gorla, D.: Towards a unified approach to encodability and separation results for
process calculi. Inf. Comput. 208(9), 1031–1053 (2010)

10. Halbwachs, N., Lagnier, F., Ratel, C.: Programming and verifying real-time sys-
tems by means of the synchronous data-flow language LUSTRE. IEEE Trans.
Softw. Eng. 18(9), 785–793 (1992)

http://dx.doi.org/10.1007/978-3-319-19195-9_11
http://dx.doi.org/10.1007/978-3-319-19195-9_11
http://dx.doi.org/10.1007/978-3-642-15375-4_12
http://dx.doi.org/10.1007/978-3-642-15375-4_12
http://dx.doi.org/10.1007/978-3-662-44584-6_29
http://www.jperez.nl/publications

Session-Based Concurrency, Reactively 91

11. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). doi:10.1007/
BFb0053567

12. Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.-M.,
Mostrous, D., Padovani, L., Ravara, A., Tuosto, E., Vieira, H.T., Zavattaro, G.:
Foundations of session types and behavioural contracts. ACM Comput. Surv.
49(1), 3:1–3:36 (2016)

13. Kouzapas, D., Yoshida, N., Hu, R., Honda, K.: On asynchronous eventful session
semantics. Math. Struct. Comput. Sci. 26(2), 303–364 (2016)

14. Mandel, L., Pasteur, C.: Reactivity of cooperative systems. In: Müller-Olm, M.,
Seidl, H. (eds.) SAS 2014. LNCS, vol. 8723, pp. 219–236. Springer, Cham (2014).
doi:10.1007/978-3-319-10936-7 14

15. Mandel, L., Pasteur, C., Pouzet, M.: ReactiveML, ten years later. In: Falaschi, M.,
Albert, E. (eds.) Proceedings of the PPDP 2015, pp. 6–17. ACM (2015)

16. Mandel, L., Pouzet, M.: ReactiveML: a reactive extension to ML. In: Proceedings
of the PPDP 2005, pp. 82–93. ACM (2005)

17. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Inf. Comput.
100(1), 1–40 (1992)

18. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012)

http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/978-3-319-10936-7_14

Procedural Choreographic Programming

Lúıs Cruz-Filipe(B) and Fabrizio Montesi

University of Southern Denmark, Odense, Denmark
{lcf,fmontesi}@imada.sdu.dk

Abstract. Choreographic Programming is an emerging paradigm for
correct-by-construction concurrent programming. However, its applica-
bility is limited by the current lack of support for reusable proce-
dures. We propose Procedural Choreographies (PC), a choreographic
language model with full procedural abstraction. PC includes unbounded
process creation and name mobility, yielding a powerful framework
for writing correct concurrent algorithms that can be compiled into
a process calculus. This increased expressivity requires a typing disci-
pline to ensure that processes are properly connected when enacting
procedures.

1 Introduction

Choreographic Programming [20] is a paradigm for programming concurrent
software that is deadlock-free by construction, by using an “Alice and Bob”
notation to syntactically prevent mismatched I/O communications in programs
(called choreographies) and using an EndPoint Projection to synthesise correct
process implementations [2,4,24]. Choreographies are found in standards [1,26],
languages [6,14,23,25], and specification models [2,4,17]. They are widely used
as a design tool in communication-based software [1,23,25,26], since they
describe interactions unambiguously and thus help ensure correctness [19].

Driven by these benefits, research on applicability of choreographic program-
ming has recently gained in breadth, ranging from service programming [2,4] to
runtime adaptation [11]. We focus on another important aspect: modular pro-
gramming. Writing procedures that can be arbitrarily instantiated and composed
into larger programs is still unsupported. The absence of full procedural abstrac-
tion disallows the creation of libraries that can be reused as “black boxes”.

Example 1. We discuss a parallel version of merge sort, written as a choreogra-
phy. Although this is a toy example, it cannot be written in any previous model
for choreographic programming. We present more realistic and involved examples
in the remainder. We make the standard assumption that we have concurrent
processes with local storage and computational capabilities. In this example,
each process stores a list and can use the following local functions: split1 and
split2, respectively returning the first or the second half of a list; is small,
which tests if a list has at most one element; and merge, which combines two

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Bouajjani and A. Silva (Eds.): FORTE 2017, LNCS 10321, pp. 92–107, 2017.
DOI: 10.1007/978-3-319-60225-7 7

Procedural Choreographic Programming 93

sorted lists into one. The following (choreographic) procedure, MS, implements
merge sort on the list stored at its parameter process p.1

MS(p) = if p.is_small then 0

else p start q1,q2; p.split1 -> q1; p.split2 -> q2;

MS <q1 >; MS<q2 >; q1.* -> p; q2.* -> p.merge

Procedure MS starts by checking whether the list at process p is small, in which
case it does not need to be sorted (0 denotes termination); otherwise, p starts two
other processes q1 and q2 (p start q1,q2), to which it respectively sends the
first and the second half of the list (p.split1 -> q1 and p.split2 -> q2). The
procedure is recursively reapplied to q1 and q2, which independently (concur-
rently) proceed to ordering their respective sub-lists. When this is done, MS stores
the first ordered half from q1 to p (q1.* -> p, where * retrieves the data stored
in q1) and merges it with the ordered sub-list from q2 (q2.* -> p.merge).

Procedure MS in Example 1 cannot be written in current choreography mod-
els, because it uses two unsupported features: general recursion, allowing pro-
cedure calls to be followed by arbitrary code; and parametric procedures, which
can be reused with different processes (as in MS<q1> and MS<q2>).

We present Procedural Choreographies (PC), a model for choreographic pro-
gramming that captures these features (Sect. 2). PC has a simple syntax, but its
semantics is expressive enough to infer safe out-of-order executions of choreo-
graphic procedures – for example, in MS<q1>; MS<q2>, the two calls can be run
in parallel because they involve separate processes and are thus non-interfering.

We also illustrate the expressivity of PC with a more involved parallel down-
loader, showing how our semantics infers parallel executions in a complex sce-
nario of concurrent data streams. This example makes use of additional features:
mobility of process names (networks with connections that evolve at runtime)
and propagation of choices among processes.

The interplay between name mobility and procedure composition requires
careful handling, because of potential dangling process references. We prevent
such errors using a decidable typing discipline (Sect. 3) that supports type
inference.

PC includes an EndPoint Projection (EPP) that synthesises correct concur-
rent implementations in terms of a process calculus (Sect. 4). This process calcu-
lus is an abstraction of systems where processes refer to one another’s locations
or identifiers (e.g., MPI [22] or the Internet Protocol).

Full definitions, proofs, and further extensions are given in [9]. Additional
examples can be found in [8] (which is based on a pre-print of this article).

2 Procedural Choreographies (PC)

Syntax. The syntax of PC is displayed in Fig. 1. A procedural choreography is a
pair 〈D , C〉, where C is a choreography and D is a set of procedure definitions.
1 In this work, we use a monospaced font for readability of our concrete examples, and
other fonts for distinguishing syntactic categories in our formal arguments as usual.

94 L. Cruz-Filipe and F. Montesi

Fig. 1. Procedural choreographies, syntax.

Process names (p, q, r, . . .), identify processes that execute concurrently. Each
process is equipped with a memory cell that stores a single value of a fixed type.
Specifically, we consider a fixed set T of datatypes (numbers, lists, etc.); each
process p stores only values of type Tp ∈ T. Statements in a choreography can
either be communication actions (η) or compound instructions (I), both of which
can have continuations. Term 0 is the terminated choreography, which we often
omit in examples. We call all terms but 0;C program terms, or simply programs,
since these form the syntax intended for developers to use for writing programs.
Term 0;C is necessary only for the technical definition of the semantics, to
capture termination of procedure calls with continuations, and can appear only
at runtime. It is thus called a runtime term.

Processes communicate through direct references (names) to each other.2

In a value communication p.e -> q.f , process p sends the result of evaluating
expression e (replacing the placeholder ∗ at runtime with the data in its memory)
to q. When q receives the value from p, it applies to it the (total) function f and
stores the result. The definition of f may also access the contents of q’s memory.

In a selection term p -> q[l], p communicates to q its choice of label l, which
is a constant. This term is intended to propagate information on which internal
choice has been made by a process to another (see Remark 2 below).

In term p start qT , process p spawns the new process q, which stores data of
type T . Process name q is bound in the continuation C of p start qT ;C.

Process spawning introduces the need for name mobility. In real-world sys-
tems, after execution of p start qT , p is the only process that knows q’s name. Any
other process wanting to communicate with q must therefore be first informed
of its existence. This is achieved with the introduction term p : q <-> r, read “p
introduces q and r” (with p, q and r distinct). As its double-arrow syntax sug-
gests, this action represents two communications – one where p sends q’s name
to r, and another where p sends r’s name to q. This is made explicit in Sect. 4.

In a conditional term if p.e thenC1 elseC2, process p evaluates e to choose
between the possible continuations C1 and C2.

The set D contains global procedures. Term X(˜qT) = CX defines a procedure
X with body CX , which can be used anywhere in 〈D , C〉 – in particular, inside
CX . The names q̃ are bound to CX , and they are exactly the free process names in
CX . Each procedure can be defined at most once in D . Term X〈p̃〉 calls (invokes)
procedure X by passing p̃ as parameters. Procedure calls inside definitions must
be guarded, i.e., they can only occur after some other action.

We assume the Barendregt convention and work up to α-equivalence in chore-
ographies, renaming bound variables as needed when expanding procedure calls.
2 PC thus easily applies to settings based on actors, objects, or ranks (e.g., MPI).

Procedural Choreographic Programming 95

Example 2. Recall procedure MS from our merge sort example in the Introduction
(Example 1). If we annotate the parameter p and the started processes q1 and
q2 with a type, e.g., List(T) for some T (the type of lists containing elements
of type T), then MS is a valid procedure definition in PC, as long as we allow
two straightforward syntactic conventions: (i) p start ˜qT stands for the sequence
p start qT1

1 ; . . . ; p start qTn
n ; (ii) a communication of the form p.e -> q stands for

p.e -> q.id, where id is the identity function: it sets the content of q to the value
received from p. We adopt these conventions also in the remainder.

Remark 1 (Design choices). We comment on two of our design choices.
The introduction action (p : q <-> r) requires a three-way synchronization,

essentially performing two communications. The alternative development of PC
with asymmetric introduction (an action p : q -> r whereby p sends q’s name to
r, but not conversely) would be very similar. Since in our examples we always
perform introductions in pairs, the current choice makes the presentation easier.

The restriction that each process stores only one value of a fixed type is, in
practice, a minor constraint. As shown in Example 2, types can be tuples or lists,
which mimics storing several values. Also, a process can create new processes
with different types – so we can encode changing the type of p by having p create
a new process p′ and then continuing the choreography with p′ instead of p.

Remark 2 (Label Selection) We motivate the need for selections (p -> q[l]).
Consider the choreography if p.coinflip then (p.∗ -> r) else (r.∗ -> p). Here, p flips
a coin to decide whether to send a value to r or to receive a value from r. Since
processes run independently and share no data, only p knows which branch of
the conditional will be executed; but this information is essential for r to decide
on its behaviour. To propagate p’s decision to r, we use selections:

if p.coinflip then (p -> r[l]; p. ∗ -> r) else (p -> r[r]; r. ∗ -> p)

Now r receives a label reflecting p’s choice, and can use it to decide what
to do.

Selections are needed only for compilation (see Sect. 4): the first choreography
above is not projectable, whereas the second one is. They can be inferred, and
thus could be removed from the user syntax, but it is useful to be able to specify
them manually (see Remark 4). See also Example 5 at the end of this section.

Semantics. We define a reduction semantics →D for PC, parameterised over D
(Fig. 2, top). Given a choreography C, we model the state of its processes with
a state function σ, with domain pn(C), where σ(p) denotes the value stored in
p. We assume that each type T ∈ T has a special value ⊥T , representing an
uninitialised process state. We also use a connection graph G, keeping track of
which processes know each other. In the rules, p G←→ q denotes that G contains
an edge between p and q, and G ∪ {p ↔ q} denotes the graph obtained from G
by adding an edge between p and q (if missing).

Executing a communication action p.e -> q.f in rule �C|Com� requires that: p
and q are connected in G; e is well typed; and the type of e matches that expected

96 L. Cruz-Filipe and F. Montesi

Fig. 2. Procedural choreographies, semantics and structural precongruence (selected
rules).

by the function f at the receiver. The last two conditions are encapsulated in
the notation e ↓ v, read “e evaluates to v”. Choreographies can thus deadlock
(be unable to reduce) because of errors in the programming of communications;
this issue is addressed by our typing discipline in Sect. 3.

Rule �C|Sel� defines selection as a no-op for choreographies (see Remark 2).
Rule �C|Start� models the creation of a process. In the reductum, the starter

and started processes are connected and can thus communicate with each other.
This rule also extends the domain of the state function σ accordingly. Rule
�C|Tell� captures name mobility, creating a connection between two processes q
and r when they are introduced by a process p connected to both.

Rule �C|Cond� uses the auxiliary operator � to obtain a reductum in the
syntax of PC regardless of the forms of the branches C1 and C2 and the con-
tinuation C. The operator � is defined by η � C = η;C, I � C = I;C and
(C1;C2) � C = C1; (C2 � C). It extends the scope of bound names: any name
p bound in C has its scope extended also to C ′. This scope extension is capture-
avoiding, as the Barendregt convention guarantees that p is not used in C ′.

Rule �C|Struct� uses structural precongruence �D . The main rules defining
�D are given in Fig. 2 (bottom). We write C ≡D C ′ when C �D C ′ and C ′ �D

C, pn(C) for the set of process names (free or bound) in a choreography C, and
A#B when two sets A and B are disjoint. These rules formalise the notion of

Procedural Choreographic Programming 97

parallelism in PC, recalling out-of-order execution. Rule �C|Eta-Eta� permutes
two communications performed by processes that are all distinct, modelling that
processes run independently of one another. For example, p. ∗ -> q; r. ∗ -> s ≡D

r. ∗ -> s; p. ∗ -> q because these two communications are non-interfering, but
p.∗ -> q; q.∗ -> s �≡D q.∗ -> s; p.∗ -> q: since the second communication causally
depends on the first (both involve q).

This reasoning is extended to instructions in rule �C|I-I�; in particular, proce-
dure calls that share no arguments can be swapped. This is sound, as a procedure
can only refer to processes that are either passed as arguments or started inside
its body, and the latter cannot be leaked to the original call site. Thus, any
actions obtained by unfolding the first procedure call involve different processes
than those obtained by unfolding the second one. As the example below shows,
calls to the same procedure can be exchanged, since X and Y need not be dis-
tinct. Omitted rules include moving actions inside or outside both branches of
a conditional, or switching independent nested conditionals. Rule �C|Unfold�
unfolds a procedure call, again using the � operator defined above.

Example 3. In our merge sort example, structural precongruence �D allows the
recursive calls MS<q1> and MS<q2> to be exchanged. Furthermore, after the calls
are unfolded, their code can be interleaved in any way.

This example exhibits map-reduce behaviour: each new process receives its
input, runs independently from all others, and then sends its result to its creator.

Example 4. In a more refined example of implicit parallelism, we swap commu-
nications from procedure calls that share process names. Consider the procedure

auth(c,a,r,l) = c.creds -> a.rCreds;

a.chk -> r.res; a.log -> l.app

Client c sends its credentials to an authentication server a, which stores the
result of authentication in r and appends a log of this operation at process l. In
the choreography auth<c, a1, r1, l>; auth<c, a2, r2, l>, a client c authenticates
at two different authentication servers a1 and a2. After unfolding the two calls,
rule �C|Eta-Eta� yields the following interleaving:

c.creds -> a1.rCreds; c.creds -> a2.rCreds;

a2.chk -> r2.res; a1.chk -> r1.res;

a1.log -> l.app; a2.log -> l.app

Thus, the two authentications proceed in parallel. Observe that the logging oper-
ations cannot be swapped, since they use the same logging process l.

Example 5. A more sophisticated example involves modularly composing differ-
ent procedures that take multiple parameters. Here, we write a choreography
where a client c downloads a collection of files from a server s. Files are down-
loaded in parallel via streaming, by having the client and the server each create
subprocesses to handle the transfer of each file. Thus, the client can request and
start downloading each file without waiting for previous downloads to finish.

98 L. Cruz-Filipe and F. Montesi

par_download(c,s) = if c.more

then c -> s [more]; c start c’; s start s’;

s: c <-> s’; c.top -> s’; pop <c>;

c: c’ <-> s’; download <c’,s’>;

par_download <c,s>; c’.file -> c.store

else c -> s [end]

At the start of par download, the client c checks whether it wants to down-
load more files and informs the server s of the result via a label selection. In
the affirmative case, the client and the server start two subprocesses, c′ and s′

respectively, and the server introduces c to s′ (s : c <-> s’). The client c sends to
s′ the name of the file to download (c.top -> s’) and removes it from its collec-
tion, using procedure pop (omitted), afterwards introducing its own subprocess
c′ to s′. The file download is handled by c′ and s′ (using procedure download),
while c and s continue operating (par download<c, s>). Finally, c′ waits until c
is ready to store the downloaded file.

Procedure download has a similar structure. It implements a stream where
a file is sequentially transferred in chunks from a process s to another process c.

download(c,s) = if s.more

then s -> c [more]; s.next -> c.app; pop <s>; download <c,s>

else s -> c [end]

The implementation of par download exploits implicit parallelism consider-
ably. All calls to download are made with disjoint sets of parameters (processes),
and can thus be fully parallelised: many instances of download run at the same
time, each one implementing a (sequential) stream. Due to our semantics, we
effectively end up executing many streaming behaviours in parallel.

We can even compose par download with auth, such that we execute the
parallel download only if the client can successfully authenticate with an authen-
tication server a. Below, we use the shortcut p -> q̃[l] for p -> q1[l]; . . . ; p -> qn[l].

auth <c,a,r,l>; if r.ok then r -> c,s[ok]; par_download <c,s>

else r -> c,s[ko]

3 Typability and Deadlock-Freedom

We give a typing discipline for PC, to check that (a) the types of func-
tions and processes are respected by communications and (b) processes that
need to communicate are first properly introduced (or connected). Regard-
ing (b), two processes created independently can communicate only after they
receive the names of each other. For instance, in Example 5, the execution of
download<c’,s’> would get stuck if c’ and s’ were not properly introduced in
par download, since our semantics requires them to be connected.

Typing judgements have the form Γ ;G � C � G′, read “C is well-typed
according to Γ , and running C with a connection graph that contains G yields
a connection graph that includes G′”. Typing environments Γ are used to track

Procedural Choreographic Programming 99

Fig. 3. Procedural choreographies, typing rules.

the types of processes and procedures; they are defined as: Γ :: = ∅ | Γ, p : T |
Γ, X :G � G′. A typing p : T states that process p stores values of type T , and a
typing X : G � G′ records the effect of the body of X on graph G.

The rules for deriving typing judgements are given in Fig. 3. We assume
standard typing judgements for functions and expressions, and write ∗ : T �T

e : T and ∗ : T1 �T f : T2 → T3 meaning, respectively “e has type T assuming
that ∗ has type T” and “f has type T2 → T3 assuming that ∗ has type T1”.
Verifying that communications respect the expected types is straightforward,
using the connection graph G to track which processes have been introduced to
each other. In rule �T|Start�, we implicitly use the fact that q does not occur in
G (again using the Barendregt convention). The final graph G′ is only used in
procedure calls (rule �T|Call�). Other rules leave it unchanged.

To type a procedural choreography, we need to type its set of procedure
definitions D . We write Γ � D if: for each X(˜qT) = CX ∈ D , there is exactly one
typing X(˜qT) : GX�G′

X ∈ Γ , and this typing is such that Γ, ˜q : T ,GX � CX�G′
X .

We say that Γ � 〈D , C〉 if Γ, ΓD ;GC � C,G′ for some ΓD such that ΓD � D and
some G′, where GC is the full graph whose nodes are the free process names in C.
The choice of GC is motivated by observing that (i) all top-level processes should
know each other and (ii) eventual connections between processes not occuring
in C do not affect its typability.

Well-typed choreographies either terminate or diverge.3

3 Since we are interested in communications, we assume evaluation of functions and
expressions to terminate on values with the right types (see Sect. 5, Faults).

100 L. Cruz-Filipe and F. Montesi

Theorem 1 (Deadlock freedom/Subject reduction). Let 〈D , C〉 be a pro-
cedural choreography. If Γ � D and Γ ;G1 � C � G′

1 for some Γ , G1 and G′
1,

then either: (i) C �D 0; or, (ii) for every σ, there exist G2, C ′ and σ′ such that
G1, C, σ →D G2, C

′, σ′ and Γ ′;G2 � C ′ � G′
2 for some Γ ′ ⊇ Γ and G′

2.

Checking that Γ � 〈D , C〉 is not trivial, as it requires “guessing” ΓD . How-
ever, this set can be computed from 〈D , C〉.
Theorem 2. Given Γ , D and C, Γ � 〈D , C〉 is decidable.

The key idea behind the proof of Theorem2 is that type-checking may require
expanding recursive definitions, but their parameters only need to be instantiated
with process names from a finite set. A similar idea yields type inference for PC.

Theorem 3. There is an algorithm that, given any 〈D , C〉, outputs: (i) a set Γ
such that Γ � 〈D , C〉, if such a Γ exists; or (ii) NO, if no such Γ exists.

Theorem 4. The types of arguments in procedure definitions and the types of
freshly created processes can be inferred automatically.

Remark 3 (Inferring introductions). These results allow us to omit type annota-
tions in choreographies, if the types of functions and expressions at processes are
given (in �T). Thus, programmers can write choreographies as in our examples.

The same reasoning can be used to infer missing introductions (p : q <-> r) in
a choreography automatically, thus lifting the programmer also from having to
think about connections. However, while the types inferred for a choreography
do not affect its behaviour, the placement of introductions does. In particular,
when invoking procedures one is faced with the choice of adding the necessary
introductions inside the procedure definition (weakening the conditions for its
invocation) or in the code calling it (making the procedure body more efficient).

Example 6. Consider a procedure X(p, q, r) = p.∗ -> q; p : q <-> r; q.∗ -> r, whose
invokation requires only that p is connected to q and r. If we invoke X twice
with the same parameters, as in X〈p, q, r〉;X〈p, q, r〉, we end up performing the
same introduction p : q <-> r twice. We could avoid this duplication by rewriting
X as X(p, q, r) = p. ∗ -> q; q. ∗ -> r and then performing the introduction only
once before invoking the procedure – p : q <-> r;X〈p, q, r〉;X〈p, q, r〉. However,
this makes invoking X more complicated, and deciding which variant is best
depends heavily on the context.

4 Synthesising Process Implementations

We now present our EndPoint Projection (EPP), which compiles a choreography
to a concurrent implementation represented in terms of a process calculus.

4.1 Procedural Processes (PP)

We introduce our target process model, Procedural Processes (PP).

Procedural Choreographic Programming 101

Fig. 4. Procedural processes, syntax and semantics (selected rules).

Syntax. The syntax of PP is given in Fig. 4 (top). A term p �v B is a process,
where p is its name, v is its value, and B is its behaviour. Networks, ranged over
by N,M , are parallel compositions of processes, where 0 is the inactive network.
Finally, 〈B, N〉 is a procedural network, where B defines the procedures that
the processes in N may invoke. Values, expressions and functions are as in PC.

A process executing a send term q!e;B sends the evaluation of expression e
to q, and proceeds as B. Term p?f ;B is the dual receiving action: the process
executing it receives a value from p, combines it with its value as specified by f ,
and then proceeds as B. Term q!!r sends process name r to q and process name q
to r, making q and r “aware” of each other. The dual action is p?r, which receives
a process name from p that replaces the bound variable r in the continuation.
Term q⊕ l;B sends the selection of a label l to process q. Selections are received
by the branching term p&{li : Bi}i∈I , which can receive a selection for any of
the labels li and proceed as Bi. Branching terms must offer at least one branch.
Term start q�B2;B1 starts a new process (with a fresh name) executing B2, and
proceeds in parallel as B1. Conditionals, procedure calls, and termination are
standard. Term start q � B2;B1 binds q in B1, and p?r;B binds r in B.

Semantics. The main rules defining the reduction relation →B for PP are shown
in Fig. 4 (bottom). As in PC, they are parameterised on the set of behavioural
procedures B. Rule �P|Com� models value communication: a process p executing
a send action towards a process q can synchronise with a receive-from-p action
at q; in the reductum, f is used to update the memory of q by combining its
contents with the value sent by p. The placeholder ∗ is replaced with the current
value of p in e (resp. q in f). Rule �P|Sel� is standard selection [15], where the
sender process selects one of the branches offered by the receiver.

Rule �P|Tell� establishes a three-way synchronisation, allowing a process to
introduce two others. Since the received names are bound at the receivers, we

102 L. Cruz-Filipe and F. Montesi

use α-conversion to make the receivers agree on each other’s name, as in session
types [15]. (Differently from PC, we do not assume the Barendregt convention
here, in line with the tradition of process calculi.) Rule �P|Start� requires the
name of the created process to be globally fresh.

All other rules are standard. Relation →B is closed under a structural pre-
congruence �B, which supports associativity and commutativity of parallel (|),
standard garbage collection of 0, and unfolding of procedure calls.

Example 7. We show a process implementation of the merge sort choreography
in Example 1 from Sect. 1. All processes are annotated with type List(T) (omit-
ted); id is the identity function (Example 2).

MS p (p) = if is_small then 0

else start q 1 � (p?id; MS p <q 1 >; p!*);

start q 2 � (p?id; MS p <q 2 >; p!*);

q 1 !split 1 ; q 2 !split 2 ; q 1 ?id; q 2 ?merge

In the next section, we show that our EPP generates this process implementation
automatically from the choreography in Example 1.

4.2 EndPoint Projection (EPP)

We now show how to compile programs in PC to processes in PP.

Behaviour Projection. We start by defining how to project the behaviour of a
single process p, a partial function denoted [[C]]p. The rules defining behaviour
projection are given in Fig. 5. Each choreography term is projected to the local
action of the process that we are projecting. For example, a communication term
p.e -> q.f projects a send action for the sender p, a receive action for the receiver
q, or skips to the continuation otherwise. The rules for projecting a selection or
an introduction (name mobility) are similar.

The rule for projecting a conditional uses the partial merging operator �:
B � B′ is isomorphic to B and B′ up to branching, where the branches of B or
B′ with distinct labels are also included. The interesting rule defining merge is:

(p&{li : Bi}i∈I ;B) � (

p&{lj : B′
j}j∈J ;B′) =

p&
({lk : (Bk � B′

k)}k∈I∩J ∪ {li : Bi}i∈I\J ∪ {lj : B′
j}j∈J\I

)

; (B � B′)

The idea of merging comes from [2]. Here, we extend it to general recursion, para-
metric procedures, and process starts. Merging allows the process that decides
a conditional to inform other processes of its choice later on, using selections. It
is found repeatedly in most choreography models [2,7,17].

Building on behaviour projection, we define how to project the set D of
procedure definitions. We need to consider two main aspects. The first is that,
at runtime, the choreography may invoke a procedure X multiple times, but
potentially passing a process r at different argument positions each time. This
means that r may be called to play different “roles” in the implementation of

Procedural Choreographic Programming 103

Fig. 5. Procedural choreographies, behaviour projection.

the procedure. For this reason, we project the behaviour of each possible process
parameter p as the local procedure Xp. The second aspect is: depending on the
role that r is called to play by the choreography, it needs to know the names of
the other processes that it is supposed to communicate with in the choreographic
procedure. We deal with this by simply passing all arguments (some of which may
be unknown to the process invoking the procedure). This is not a problem: for
typable choreographies, typing ensures that those parameters are not actually
used in the projected procedure (so they act as “dummies”). We do this for
clarity, since it yields a simpler formulation of EPP. In practice, we can annotate
the EPP by analysing which parameters of each recursive definition are actually
used in each of its projections, and instantiating only those.

We thus define [[D]] =
⋃

{

[[X(˜qT) = C]] | X(˜qT) = C ∈ D
}

where, for ˜qT =

qT1
1 , . . . , qTn

n , we set [[X(˜qT) = C]] = {Xq1(q̃) = [[C]]q1 , . . . , Xqn(q̃) = [[C]]qn}.

Definition 1 (EPP). Given a procedural choreography 〈D , C〉 and a state σ,
the EPP [[D , C, σ]] is the parallel composition of the processes in C with all
definitions from D : [[D , C, σ]] = 〈[[D]], [[C, σ]]〉 =

〈

[[D]],
∏

p∈pn(C) p �σ(p) [[C]]p
〉

where [[C, σ]], the EPP of C wrt state σ, is independent of D .

Since the σs are total, if [[C, σ]] is defined for some σ, then [[C, σ′]] is defined
also for all other σ′. When [[C, σ]] = N is defined for any σ, we say that C is
projectable and that N is the projection of C, σ. The same holds for [[D , C, σ]].

Example 8. The EPP of the choreography in Example 1 is given in Example 7.

Example 9. For an example involving merging and introductions, we project the
procedure par download (Example 5) for process s, omitting type annotations.

104 L. Cruz-Filipe and F. Montesi

par_download s (c,s) = c&{

more: start s’ � (s?c; c?id; c?c’; download s <c’,s’>);

c!!s’; par_download s <c,s>

end: 0 }

Observe that we invoke procedure downloads, since s’ occurs in the position of
download’s formal argument s.

Properties. EPP guarantees correctness by construction: the code synthesised
from a choreography follows it precisely.

Theorem 5 (EPP Theorem). If 〈D , C〉 is projectable, Γ � D , and Γ ;G �
C � G∗, then, for all σ: if G,C, σ →D G′, C ′, σ′, then [[C, σ]] →[[D]]� [[C ′, σ′]]
(completeness); and if [[C, σ]] →[[D]] N , then G,C, σ →D G′, C ′, σ′ for some G′,
C ′ and σ′ such that [[C ′, σ′]] ≺ N (soundness).

Above, the pruning relation ≺ from [2] eliminates branches introduced by the
merging operator � when they are not needed anymore to follow the originating
choreography (N � N ′ stands for N ′ ≺ N). Pruning does not alter reductions,
since the eliminated branches are never selected [2]. Combining Theorem 5 with
Theorem 1 we get that the projections of typable PC terms never deadlock.

Corollary 1 (Deadlock-freedom by construction). Let N = [[C, σ]] for
some C and σ, and assume that Γ ;G � C � G′ for some Γ such that Γ � D and
some G and G′. Then, either: (i) N �[[D]] 0 (N has terminated); or (ii) there
exists N ′ such that N →[[D]] N ′ (N can reduce).

Remark 4 (Amendment). A choreography can only be unprojectable because
of unmergeable subterms, and thus can be made projectable by adding label
selections. This can be formalised in an amendment algorithm, similar to [10,18].
For example, the first (unprojectable) choreography in Remark 2 can be amended
to the projectable choreography presented at the end of the same remark.

The same argument as in Remark 3 applies: amendment allows us to disregard
label selections, but placing them manually can be useful. For example, suppose
p makes a choice that affects q and r. If q has to perform a slower computation
as a result, then it makes sense for p to notify q first.

5 Related Work and Discussion

Choreographic Programming. Our examples cannot be written in previous mod-
els for choreographic programming, which lack full procedural abstraction. In
state-of-the-art models [2,4], procedures cannot have continuations, there can
only be a limited number of protocols running at any time (modulo dangling
asynchronous actions), and the process names used in a procedure are statically
determined. In PC, all these limitations are lifted.

Differently from PC, name mobility in choreographies is typically done using
channel delegation [4], which is less powerful: a process that introduces two other
processes requires a new channel to communicate with them thenceforth.

Procedural Choreographic Programming 105

Some choreography models include explicit parallel composition, C |C ′. Most
behaviours of C |C ′ are already captured in PC, for example X〈p, q〉 |Y 〈r, s〉
is equivalent to X〈p, q〉;Y 〈r, s〉 in PC (cf. Example 3) – see [4] for a deeper
discussion. If a parallel operator is desired, PC can be easily extended (cf. [2]).

In [21], choreographies can be integrated with existing process code by means
of a type system, which we could easily integrate in PC.

Asynchrony. Asynchronous communication in choreographic programming was
addressed in [4] using an ad-hoc transition rule. Adding asynchrony to PC is
straightforward (see the technical report [9]).

Multiparty Session Types (MPST). In MPST [16], global types are choreographic
specifications of single protocols, used for verifying the code of manually-written
implementations in process models. Global types are similar to a simplified frag-
ment of PC, obtained (among others) by replacing expressions and functions
with constants (representing types), removing process creation (the processes
are fixed), and restricting recursion to parameterless tail recursion.

MPST leaves protocol composition to the implementors of processes, which
can result in deadlocks, unlike in PC. We illustrate this key difference using
our syntax; we view a protocol in MPST as a (simplification of a) procedure in
PC. Consider the protocols X(r, s) = r.e -> s.f and Y (r′, s′) = r′.e′ -> s′.f ′, and
their instantiations X〈p, q〉 and Y 〈q, p〉. In MPST, a valid composition (in PP)
is p �v q?f

′; q!e | q �v p?f ; p!e′. This network is obviously deadlocked, but MPST
does not detect it because the interleaving of the two protocols is not checked.
In PC, we can only obtain correct implementations, because compositions are
defined at the level of choreographies, e.g., X〈p, q〉;Y 〈q, p〉 or Y 〈q, p〉;X〈p, q〉.

Deadlock-freedom for compositions in MPST can be obtained by restricting
connections among processes participating in different protocols to form a tree
[3,5]. In PC, connections can form an arbitrary graph. Another technique for
MPST is to use pre-orders [7], but this is also not as expressive as PC (see [9]).

MPST can be extended to protocols where the number of participants is fixed
only at runtime [27], or can grow during execution [13]. These results use ad-hoc
primitives and “middleware” terms in the process model, e.g., for tracking the
number of participants in a session [13], which are not needed in PC. MPST can
be nested [12], partially recalling our parametric procedures. Differently from
PC, nested procedures in MPST are invoked by a coordinator (requiring extra
communications), and compositions of such nested types can deadlock.

Sessions and Mobility. Recent theories based on session types [2,4,5,7,16]
assume that all pairs of processes in a session have a private full-duplex channel
to communicate. Thus, processes in a protocol must have a complete connection
graph. PC can be used to reason about different kinds of network topologies.

Another important aspect of sessions is that each new protocol execution
requires the creation of a new session, whereas procedure calls in PC reuse
available connections – allowing for more efficient implementations. Our parallel
downloader example uses this feature (Example 5).

106 L. Cruz-Filipe and F. Montesi

The standard results of communication safety found in session-typed calculi
can be derived from our EPP Theorem (Theorem5), as discussed in [4].

Faults. We have abstracted from faults and divergence of internal computations:
in PC, we assume that all internal computations terminate successfully. If we
relax these conditions, deadlock-freedom can still be achieved simply by using
timeouts and propagating faults through communications.

Acknowledgements. We thank the anonymous reviewers for their useful comments.
This work was supported by the CRC project, grant no. DFF–4005-00304 from the
Danish Council for Independent Research, by grant no. DFF–1323-00247 from the
Danish Council for Independent Research, Natural Sciences, and by the Open Data
Framework project at the University of Southern Denmark.

References

1. Business Process Model and Notation. http://www.omg.org/spec/BPMN/2.0/
2. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-

gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8 (2012)
3. Carbone, M., Lindley, S., Montesi, F., Schürmann, C., Wadler, P.: Coherence gen-

eralises duality: a logical explanation of multiparty session types. In: CONCUR.
LIPIcs, vol. 59, pp. 33:1–33:15. Schloss Dagstuhl (2016)

4. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: POPL, pp. 263–274. ACM (2013)

5. Carbone, M., Montesi, F., Schürmann, C., Yoshida, N.: Multiparty session types
as coherence proofs. Acta Inform. 54(3), 243–269 (2017)

6. Chor: Programming Language. http://www.chor-lang.org/
7. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for

dynamically interleaved multiparty sessions. Math. Struct. Comput. Sci. 26(2),
238–302 (2016)

8. Cruz-Filipe, L., Montesi, F.: Choreographies in practice. In: Albert, E., Lanese, I.
(eds.) FORTE 2016. LNCS, vol. 9688, pp. 114–123. Springer, Cham (2016). doi:10.
1007/978-3-319-39570-8 8

9. Cruz-Filipe, L., Montesi, F.: A language for the declarative composition of concur-
rent protocols. CoRR, abs/1602.03729 (2016)

10. Cruz-Filipe, L., Montesi, F.: A core model for choreographic programming. In:
Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 17–35.
Springer, Cham (2017). doi:10.1007/978-3-319-57666-4 3

11. Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J.: Dynamic
choreographies. In: Holvoet, T., Viroli, M. (eds.) COORDINATION 2015. LNCS,
vol. 9037, pp. 67–82. Springer, Cham (2015). doi:10.1007/978-3-319-19282-6 5

12. Demangeon, R., Honda, K.: Nested protocols in session types. In: Koutny, M.,
Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 272–286. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32940-1 20

13. Deniélou, P.-M., Yoshida, N.: Dynamic multirole session types. In: POPL, pp.
435–446. ACM (2011)

14. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scrib-
bling interactions with a formal foundation. In: Natarajan, R., Ojo, A. (eds.)
ICDCIT 2011. LNCS, vol. 6536, pp. 55–75. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19056-8 4

http://www.omg.org/spec/BPMN/2.0/
http://www.chor-lang.org/
http://dx.doi.org/10.1007/978-3-319-39570-8_8
http://dx.doi.org/10.1007/978-3-319-39570-8_8
http://dx.doi.org/10.1007/978-3-319-57666-4_3
http://dx.doi.org/10.1007/978-3-319-19282-6_5
http://dx.doi.org/10.1007/978-3-642-32940-1_20
http://dx.doi.org/10.1007/978-3-642-19056-8_4
http://dx.doi.org/10.1007/978-3-642-19056-8_4

Procedural Choreographic Programming 107

15. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). doi:10.1007/
BFb0053567

16. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9 (2016)

17. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the gap between
interaction-and process-oriented choreographies. In: SEFM, pp. 323–332 (2008)

18. Lanese, I., Montesi, F., Zavattaro, G.: Amending choreographies. In: WWV, pp.
34–48 (2013)

19. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. ACM SIGARCH Comput. Archit.
News 36(1), 329–339 (2008)

20. Montesi, F.: Choreographic programming. Ph.D. thesis, IT University of Copen-
hagen (2013). http://fabriziomontesi.com/files/choreographic programming.pdf

21. Montesi, F., Yoshida, N.: Compositional choreographies. In: D’Argenio, P.R.,
Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 425–439. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40184-8 30

22. MPI Forum: MPI: A Message-Passing Interface Standard. High-Performance Com-
puting Center Stuttgart, version 3.1 (2015)

23. PI4SOA (2008). http://www.pi4soa.org
24. Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the theoretical foundation of chore-

ography. In: WWW, pp. 973–982. ACM (2007)
25. Savara: JBoss Community. http://www.jboss.org/savara/
26. W3C WS-CDL Working Group: Web services choreography description language

version 1.0 (2004). http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/
27. Yoshida, N., Deniélou, P.-M., Bejleri, A., Hu, R.: Parameterised multiparty session

types. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 128–145. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-12032-9 10

http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1007/BFb0053567
http://fabriziomontesi.com/files/choreographic_programming.pdf
http://dx.doi.org/10.1007/978-3-642-40184-8_30
http://www.pi4soa.org
http://www.jboss.org/savara/
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/
http://dx.doi.org/10.1007/978-3-642-12032-9_10

An Observational Approach to Defining
Linearizability on Weak Memory Models

John Derrick1(B) and Graeme Smith2

1 Department of Computing, University of Sheffield, Sheffield, UK
j.derrick@sheffield.ac.uk

2 School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

smith@itee.uq.edu.au

Abstract. In this paper we present a framework for defining lineariz-
ability on weak memory models. The purpose of the framework is to be
able to define the correctness of concurrent algorithms in a uniform way
across a variety of memory models. To do so linearizability is defined
within the framework in terms of memory order as opposed to program
order. Such a generalisation of the original definition of linearizability
enables it to be applied to non-sequentially consistent architectures.
It also allows the definition to be given in terms of observable effects
rather than being dependent on an understanding of the weak mem-
ory model architecture. We illustrate the framework on the TSO (Total
Store Order) weak memory model, and show that it respects existing
definitions of linearizability on TSO.

1 Introduction

The use of weak (or relaxed) memory models is standard practice in modern
multiprocessor hardware [18]. There are numerous examples including the TSO
(Total Store Order) memory model [16,18], and the memory models of the Power
and ARM architectures [1]. TSO is implemented by the x86 architecture used
by the chip manufacturers Intel and AMD. The Power architecture is used by
IBM, and ARM is the most widely used architecture in mobile devices [10].

All of these architectures provide efficiency gains by reducing the number
of accesses to shared memory. For example, in the TSO architecture a buffer is
used to store any writes to variables until they can be flushed to memory at a
convenient time. This time is determined by the hardware to increase efficiency,
however if necessary fences can be used in the code to force a write to memory.
Such instructions flush the entire contents of the buffer to memory.

There is a trade-off between efficiency of the underlying architecture and
the use of fences. Furthermore, the presence of both a complicated underlying
architecture and associated flushes and fences means there is increased subtlety
of the correctness of any given algorithm. This has motivated an increasing
interest in verifying the correctness of concurrent algorithms on weak memory
models; for example, see [3,8,11,17,19,20] for work on TSO.
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Bouajjani and A. Silva (Eds.): FORTE 2017, LNCS 10321, pp. 108–123, 2017.
DOI: 10.1007/978-3-319-60225-7 8

An Observational Approach to Defining Linearizability 109

The standard notion of correctness for concurrent objects is linearizability
[12]. Given a specification and a concurrent implementation, the idea of lineariz-
ability is that any concurrent execution of the implementation must be consistent
with some sequential execution of the specification. The sequential execution is
obtained by identifying linearization points at which the potentially overlapping
concurrent operations are deemed to take effect instantaneously.

A number of approaches have been developed for proving linearizability on
sequentially consistent architectures, i.e., those without a weak memory model,
along with associated tool support [2,4–6,9,15,21]. In particular, Derrick et al.
[5,6,15] have developed a method for proving linearizability supported by the
interactive theorem prover KIV [14]. The method consists of proving a number
of simulation rules relating a model (a state-transition system) derived from the
code and a model representing the abstract specification. This method has been
proved sound and complete, the soundness and completeness proofs themselves
being done in KIV.

Our recent work, [8], extends the method of Derrick et al. to TSO. To do this,
it explicitly adds details of the TSO architecture, i.e., buffers, flushes and fences,
into the model derived from the code. To relate this model to the abstract speci-
fication, a new set of simulation rules is required to deal with these architectural
details which do not occur in the abstract specification.1 These rules correspond
to a new definition of linearizability, referred to in [8] as TSO-linearizability, for
which new tool support is required. Due to the explicit modelling of the TSO
architecture, we refer to this approach as an architectural approach. In [7], we
extend this to provide a framework for developing architectural approaches to
verification for other weak memory models.

In this paper, we define a new framework for correctness in terms of the
observable behaviour of weak memory models (as opposed to their underlying
architectures). This is beneficial for two reasons. Firstly, the details of many
commercial architectures, including Power and ARM, are not available publicly.
However, their observable behaviour can be derived via testing: a substantial
effort in this direction has already been undertaken for Power and ARM [13].
Secondly, by abstracting from the details of the underlying architecture, the
observational approach allows us to use the existing simulation rules and tool
support for linearizability. Specifically, the framework does not include architec-
tural details in the model derived from the code and hence, in contrast to the
architectural approach, does not require new simulation rules or tool support for
each memory model.

The paper is structured as follows. Section 2 introduces the notion of lin-
earizability. Section 3 introduces the TSO memory model and the architectural
approach to linearizability on TSO from [8]. Section 4 provides our observational
definition of linearizability and shows it is consistent with the architectural

1 The related work of Burckhardt [3] and Gotsman [11] avoid this issue by modifiying
the abstract specification. We are motivated, however, to allow implementations
on TSO to be proved correct with respect to standard specifications of concurrent
objects.

110 J. Derrick and G. Smith

definition for TSO. Section 5 discusses the generalisation of the framework to
other weak memory models including ARM and Power.

The following is used as a running example throughout the paper.

1.1 Example: seqlock

The Linux reader-writer mechanism seqlock allows the reading of shared vari-
ables without locking the global memory, thus supporting fast write access. It
works as follows. A thread wishing to write to the shared variables, x1 and x2,
say, acquires a software lock and increments a counter c. It then proceeds to
write to the variables, and finally increments c again before releasing the lock.
The lock ensures synchronisation between writers, and the counter c ensures
the consistency of values read by other threads as follows. The two increments
of c ensure that it is odd when a thread is writing to the variables, and even
otherwise. Hence, when a thread wishes to read the shared variables, it waits
in a loop until c is even before reading them. Also, before returning it checks
that the value of c has not changed (i.e., another write has not begun). If it has
changed, the thread starts over.

Figure 1 provides an abstract specification, in which operations are regarded
as atomic. A valid behaviour2 of seqlock on a sequentially consistent architecture
is: 〈write(t1, 1, 2); read(t1, 1, 2); read(t2, 1, 2)〉, where, for example, write(t1, 1, 2)
denotes thread t1 calling the write operation with parameters 1 and 2.

word x1 = 0, x2 = 0;

atomic write(in word d1,d2) {

x1 = d1;

x2 = d2;

}

atomic read(out word d1,d2) {

d1 = x1;

d2 = x2;

}

Fig. 1. seqlock specification

The assumption of atomicity is dropped in the concurrent implementation
given in Fig. 2 where the statements of operations may be interleaved. Here a
local variable c0 is used by the read operation to record the (even) value of c
before the operation begins updating local variables d1 and d2.

2 Linearizability

Linearizability [12] is the standard correctness criterion for verifying concur-
rent implementations such as seqlock. Linearizability provides the illusion that
2 We use the term behaviour to informally refer to a sequence of operations an object

may undergo. Later we formalise this as histories used in the standard definition of
linearizability, and as executions used in our observational definition of linearizability.

An Observational Approach to Defining Linearizability 111

word x1 = 0, x2 = 0;

word c = 0;

write(in word d1,d2) {

acquire;

c++;

x1 = d1;

x2 = d2;

c++;

release;

}

read(out word d1,d2) {

word c0;

do {

do {

c0 = c;

} while (c0 % 2 != 0);

d1 = x1;

d2 = x2;

} while (c != c0);

}

Fig. 2. seqlock implementation [3]

each operation executed by a thread takes effect instantaneously at some point
between its invocation and its return; this point is known as the linearization
point. For example, in seqlock the linearization point of the write operation is
the second store to c; after this the values written by the operation can be read
by other threads.

Linearizability is defined on histories, which are sequences of events that can
be invocations or returns of operations from a set I and performed by a particular
thread from a set T . Invocations have an input from domain In and returns have
an output from domain Out ; both domains contain the value ⊥ indicating no
input or output. On a sequentially consistent architecture we define events and
histories as follows:

Event =̂ inv〈〈T × I × In〉〉 | ret〈〈T × I × Out〉〉
History =̂ seqEvent

Following [12], each event in a history can be uniquely identified by its opera-
tion which we assume is annotated with a subscript representing the occurrence
of that operation in the history, so writen is the nth write operation.

Since operations are atomic in an abstract specification, its histories are
sequential, i.e., each operation invocation will be followed immediately by its
return. The histories of a concurrent implementation, however, may have over-
lapping operations and hence have the invocations and returns of operations
separated. However to be legal, a history should not have returns for which there
has not been an invocation.

Example 1. The following is a possible history of the seqlock implementation:

〈inv(t1, write1,(1, 2)), inv(t2, read1,⊥), ret(t1, write1,⊥), ret(t2, read1,(1, 2))〉

Since write1 and read1 overlap, h is not sequential. It is however legal. ��
The histories of specifications are also complete, i.e., they have a return for

each invocation. This is not necessarily the case for implementation histories.

112 J. Derrick and G. Smith

To make an implementation history complete, it is necessary to add additional
returns for those operations which have been invoked and are deemed to have
occurred, and to remove the remaining invocations without matching returns.

Definition 1 (Linearizability [12]). An implementation of a concurrent
object is linearizable with respect to a specification of the object iff for each
history h of the implementation, (1) there is a (sequential) history hs of the
specification such that the operations of a legal completion of h are identical to
those of hs, and (2) the precedence ordering of h is preserved by that of hs,
i.e., only overlapping operations of h may be reordered with respect to each other
in hs. ��

3 The TSO Memory Model

A weak memory model gives rise to additional behaviours that are not possible
on a sequentially consistent architecture. As an example of a weak memory
model, we consider the TSO architecture [16,18].

In TSO, each processor core uses a store buffer, which is a FIFO queue
that holds pending stores (i.e., writes) to memory. When a thread running on a
processor core needs to store to a memory location, it enqueues the store to the
buffer and continues computation without waiting for the store to be committed
to memory. Pending stores do not become visible to threads on other cores until
the buffer is flushed, which commits (some or all) pending stores to memory.
The value of a memory location loaded (i.e., read) by a thread is the most recent
in that processor’s local buffer, and only from the memory if there is no such
value in the buffer (i.e., initially or when all stores for that location have been
flushed). The use of local buffers allows a load by one thread, occurring after a
store by another, to return an older value as if it occurred before the store.

In general, flushes are controlled by the CPU. However, a programmer may
explicitly include a fence, or memory barrier, instruction to force flushes to occur.
Therefore, although TSO allows some non-sequentially consistent behaviours, it
is used in many modern architectures on the basis that these can be prevented,
where necessary, by programmers using fence instructions.

On TSO for example, when we run seqlock the acquire command of the
software lock necessarily has a fence to ensure synchronization between writer
threads, however a fence is not required by the release command, the effect
of which may be delayed. This can lead to unexpected behaviour on TSO. For
example, 〈write(t1, 1, 2); read(t1, 1, 2); read(t2, 0, 0)〉 is a possible behaviour if
t1’s local buffer is not flushed until after t2’s read .

The effects of weak memory models, such as TSO, can be understood in
terms of potential reordering of program commands, i.e., atomic interactions
with memory such as loads, stores and fences. The order that the commands of
a program p occur in code is captured by the program order, which we denote by
<p . On a sequentially consistent architecture each thread preserves the program
order. However, this is not the case on weak memory models, including TSO.

An Observational Approach to Defining Linearizability 113

In particular, the order of a store occurring before a load in TSO is not preserved
in the shared memory unless the store is flushed before the load occurs. To
formalise such effects we introduce a memory order, which we denote by <m(p),
and which denotes the order the commands of program p take effect in the
shared memory. The effect of TSO can then be characterised by saying that load
<p store ⇒ load <m(p) store, etc., but that store <p load does not imply store
<m(p) load.

These effects are summarised in the following table taken from [18]. The
commands include an atomic read-modify-write, RMW (e.g., a compare-and-
swap (CAS)), and a fence. To be atomic, the former needs to write to memory
immediately and hence necessarily includes a fence on TSO (since the write
will be placed at the end of the FIFO store buffer). In the table, X denotes an
enforced ordering and B denotes that commands can be reordered but bypassing
is required if the commands are to the same variable. Bypassing means that the
value read is the one that was most recently written by the thread even if it is
not yet in the shared memory.

TSO Command 2

Command 1 Load Store RMW Fence

Load X X X X

Store B X X X

RMW X X X X

Fence X X X X

3.1 Linearizability on TSO

The effect of store buffers means that it is necessary to adapt the linearizability
definition for TSO. This is done in [7,8] by considering how the histories of the
implementation are altered, and defining a transformation which then allows
concurrent histories to be compared with abstract ones.

To do this, the flush commands are recorded as special events in the TSO
histories. Such an event is identified by the thread from whose buffer a value
is flushed, and either an operation, if the flush is of the last value written by
the operation, or ⊥ otherwise. Events and histories on TSO are then defined as
follows:

EventTSO =̂ inv〈〈T × I × In〉〉 | ret〈〈T × I × Out〉〉 | flush〈〈T × (I ∪ {⊥})〉〉
HistoryTSO =̂ seqEventTSO

The predicate flush?(e) holds for an event e ∈ EventTSO iff e is a flush event.
In a sequentially consistent architecture an operation by a thread takes effect

at some point between its invocation and return. On a weak memory model, how-
ever, the effect of an operation may be delayed until some, or all, of its stores have
been flushed. On TSO an operation may actually take effect at any time up to

114 J. Derrick and G. Smith

the flush of the last value written by the operation. Implementation histories are
thus transformed to reflect this by extending the duration of operations which
perform stores: the effective return of an operation in a TSO history is either
the flush of the final value written by the operation or the return of the opera-
tion, whichever occurs later in the history.3 To represent this, a transformation
is defined on histories by:

– moving the return of an operation to replace the final flush for the operation
when such a flush occurs after the return, and

– removing all other flushes.

This is encapsulated in the following definition, where for a sequence s, head s is
the first element of s, tail s is s without the first element, s ⊕ {n �→ v} replaces
the nth value of s with value v , #s is the length of s, s(n) is the nth element
of s, and s�t is the concatention of s with a sequence t :

trans(h) =̂

⎧

⎪

⎪

⎨

⎪

⎪

⎩

〈 〉 if h = 〈 〉
trans(tail h) if flush?(head h)
trans(tail (h ⊕ {n �→ head h})) if DelayedRet(h,n),n ≤ #h
〈head h〉�trans(tail h) otherwise

where DelayedRet(h,n) =̂ ret?(head h) ∧ flush?(h(n)) ∧ (head h).i = h(n).i .

Example 2. One history hTSO of the behaviour 〈write(t1, 1, 2); read(t1, 1, 2);
read(t2, 0, 0)〉 is:

〈inv(t1, write1, (1, 2)),flush(t1,⊥), ret(t1, write1,⊥), inv(t1, read1,⊥),
ret(t1, read1, (1, 2)), inv(t2, read2,⊥), ret(t2, read2, (0, 0)),
flush(t1,⊥),flush(t1,⊥),flush(t1,⊥),flush(t1,⊥),flush(t1, write1)〉

where t1’s local buffer is not fully flushed until after the two reads (there are 6
stores including the acquisition and release of the lock). trans(hTSO) is then

〈inv(t1, write1, (1, 2)), inv(t1, read1,⊥), ret(t1, read1, (1, 2)),
inv(t2, read2,⊥), ret(t2, read2, (0, 0)), ret(t1, write1,⊥)〉 ��

The transformed history intuitively captures the behaviour on TSO and can
be compared to histories of the abstract specification using the definition of lin-
earizability of Sect. 2. Thus, linearizability on TSO is defined [8] by first trans-
forming a concurrent history according to trans, then (as in the standard defin-
ition) comparing the result to an abstract history.

Definition 2 (TSO-linearizability). An implementation of a concurrent
object is linearizable on TSO with respect to a specification of the object if for
each history hTSO of the implementation, there exists a (sequential) history hs of
the specification such that conditions of Definition 1 hold with h = trans(hTSO).

��
3 This principle is also used in other work on linearizability in TSO [19].

An Observational Approach to Defining Linearizability 115

4 Observational Definition of Linearizability on Weak
Memory Models

The approach to defining linearizability on TSO in Sect. 3.1 can be similarly
applied to other weak memory models [7]. However, it depends on an understand-
ing of the implementation details of the architecture which are used to derive
the implementation histories. It also leads to a different relationship between
concrete and abstract histories, specifically one involving a composition of a his-
tory transformation function and the standard definition of linearizability. This
means existing proof techniques, and their support tools, need to be extended.

Adopting an observational, rather than architectural, definition of lineariz-
ability overcomes both of these problems. It abstracts from architectural details,
being based instead on memory order, and requires the standard linearizability
relationship to hold between concrete and abstract histories.

In this section, we use the memory order <m(p) to define our framework
for linearizability. To do so we begin by formalising the notion of an execution,
which allows us to define the memory order in terms of the program commands.

4.1 Executions

On any memory model, an execution is a sequence of commands, which inter-
act with shared memory. Branching statements (such as if (condition) and
while (condition)) are included in executions as loads of the shared variables
in condition, and their presence in a program affects the executions of that
program. For example, letting store(x , v) be a command which writes value v
to variable x , and load(x) be a command which reads x , the executions of the
program fragment

x = n;
if (x > 0) y = n;

include 〈store(x , 1), load(x), store(y , 1)〉 when n = 1 and 〈store(x , 0), load(x)〉
when n = 0, but not 〈store(x , 0), load(x), store(y , 0)〉 when n = 0.

We now formalise what we mean by commands. A command is either an
invocation of an operation, or a load, a store, an atomic read-modify-write, or a
memory-model specific command. For example, for TSO we add fence and flush
commands. We could add returns of operations to commands but instead identify
the return of an operation with the last command associated with that operation.
Each command is identified as being executed by a thread from type T , belonging
to an occurrence of an operation of type I 4. Invocations have an associated
input from domain In. Load commands have an associated variable of type
Var (the variable that they read) and write and read-modify-write commands

4 To distinguish identical commands such as the two stores to c in the write operation
of seqlock we would add other identifying information such as program counters, but
we elide that detail here.

116 J. Derrick and G. Smith

have both an associated variable and a value of type Val (the value written
to that variable). For example, the statement x1 = d1 in operation write of
seqlock when performed by a thread t ∈ T is represented by the command
store(t , writen , x1, d1).

Command =̂ inv〈〈T × I × In〉〉 | store〈〈T × I × Var × Val〉〉 |
load〈〈T × I × Var〉〉 | RMW 〈〈T × I × Var × Val〉〉 | . . .

For a command c, we let c.t ∈ T denote the thread that executed the
command and c.i ∈ I denote the operation it belongs to, and (where applicable)
c.var ∈ Var denote the variable of the command. We let the predicate inv?(c)
hold iff c is an invocation command, and store?(c), load?(c) and rmw?(c) iff it
is a store, load or read-modify-write command, respectively. For TSO, we let the
predicates fence?(c) and flush?(c) hold iff c is a fence or flush command.

We now define the executions exec for a program p on a sequentially consis-
tent architecture, and those execm on a memory model m. These are subsets of
exec0 which are the executions of p that can occur on any memory model that
supports bypassing. First, an Execution is defined as a sequence of commands.

Execution =̂ seqCommand

We then let Object denote the set of all concurrent objects. Such objects are
represented by the implementation model (a state transition system) in the proof
method of Derrick et al. [5,6,15]. For any o ∈ Object and program p comprising
a sequence of (potentially overlapping) calls to o’s operations, let exec0(o, p)
denote the set of executions of p obtained by any reordering of the commands
of p that satisfy the following properties:

(a) If a certain command occurs within a branch of the program due to, for
example, an if or while statement, the command should occur in an exe-
cution precisely when that particular branch is taken in the execution. This
ensures the control structure of the program is respected in the reordered
executions.

(b) Whenever a load r is moved before a store w to the same variable, the
resulting executions behave as if the value read by r is that written by
w . This captures the notion of bypassing introduced in Sect. 3. In a state
transition-system approach (like that of Derrick et al. [5,6,15]) it could be
captured by an additional variable for each thread t and shared variable x
capturing the latest value written to x by t .

So exec0(o, p) contains all reorderings of p’s commands that satisfy (a) and (b),
and thus corresponds to those that can occur on any weak memory model that
supports bypassing. Since bypassing is a common feature of weak memory mod-
els, we use this set of executions as the basis of our definitions. However, (b)
could be dropped for a particular memory model if necessary.

The program order <p ⊆ Command × Command of program p captures the
order that the commands occur in the code run by each thread. An invocation

An Observational Approach to Defining Linearizability 117

command inv(t , i , in), although not explicitly appearing in the code, is ordered
as if it appeared in the code before the first statement of i , i.e., inv(t , i , in) <p c
for all commands c of operations called by p with c.t = t and c.i = i .

Note that <p is not a total order. It does not relate commands of different
threads. We assume all synchronisation between threads (e.g., acquiring and
releasing locks) is done in terms of loads and stores to shared variables. We don’t
actually formalise <p here although one could since a program can be formalised
as a sequence of invocation commands, and then <p can be formalised in terms
of the order of the invocations, program counters, etc., which define the program
order for each thread.

The executions of a program p on a sequentially consistent architecture are
precisely those executions which respect the program order <p :

exec(o, p) =̂ {e : exec0(o, p) | ∀ i , j : dom e • e(i) <p e(j) ⇒ i < j}

For a given memory model m, <m(p) ⊆ Command × Command is a partial
order on commands capturing the memory order. This order is generally weaker
than the program order allowing reordering of certain commands (as in the table
for TSO in Sect. 3). The executions of a program p on memory model m are those
executions which respect the order <m(p):

execm(o, p) =̂ {e : exec0(o, p) | ∀ i , j : dom e • e(i) <m(p) e(j) ⇒ i < j}

For all c1, c2 ∈ Command , the memory order for TSO is defined to maintain the
program order unless the first command is a store and the second a load (the
condition represented in the table in Sect. 3).

c1 <TSO(p) c2 ⇔ c1 <p c2 ∧ (¬ (store?(c1) ∧ load?(c2)) ∨
(∃ f : Command • c1 <p f ∧ f <p c2 ∧ fence?(f)))

The final predicate ensures we maintain program order if c1 and c2 are separated
by a fence. Note that bypassing when the commands are to the same variable is
covered by condition (b) above.

Example 3. Consider behaviour 〈write(t1, 1, 2); read(t1, 1, 2); read(t2, 0, 0)〉 of
seqlock consistent with a program p. For all commands c1 and c2 where c1.i =
write1 and c2.i = read1, we have c1 <TSO(p) c2. However, it is not the case that
c1 <TSO(p) c2 for any c1 and c2 where c1.t �= c2.t . Considering just the oper-
ation write(t1, 1, 2), the second c++ statement corresponds to commands load
(t1, write1, c) followed by store(t1, write1, c, 2). These commands are preceded
by the command store(t1, write1, x2, 2) corresponding to the statement x2=d2
(as d2 = 2). Hence, we have store(t1, write1, x2, 2) <p load(t1, write1, c) <p

store(t1, write1, c, 2). However, on TSO while store(t1, write1, x2, 2) <TSO(p)

store(t1, write1, c, 2) and load(t1, write1, c) <TSO(p) store(t1, write1, c, 2), it is
not the case that store(t1, write1, x2, 2) <TSO(p) load(t1, write1, c). ��

118 J. Derrick and G. Smith

4.2 Relating Executions to Histories

Histories can be derived from a set of executions as follows. Let outo be a partial
function which returns the output value produced on completion of the execution
e on object o5. The domain of outo will be those executions which end with the
final command of an operation of o. The history corresponding to an execution
e is then defined by hist(e), where lasts is the last element of a sequence s, and
fronts is the sequence s without the last element:

hist(e) =̂

⎧

⎪

⎪

⎨

⎪

⎪

⎩

〈 〉 if e = 〈 〉
hist(fronte)�〈laste〉 if inv?(laste)
hist(fronte)�〈ret((laste).t , (laste).i , outo(e))〉 if e ∈ dom outo
hist(fronte) otherwise

4.3 Linearizability on a Weak Memory Model

The observational definition of linearizability generalises that of Sect. 2. Where-
as the concrete histories which the existing definition refers to are elements of
{hist(e) | e ∈ exec(o, p)}, those for the observational definition are elements of
{hist(e) | e ∈ execm(o, p)}, for a given memory model m.

Definition 3 (Linearizability on memory model m). An implementation
of a concurrent object o is linearizable on memory model m with respect to a
specification of the object when, for any program p representing calls to the object,
for each history in {hist(e) | e ∈ execm(o, p)}, there exists a (sequential) history
hs of the specification such that the conditions of Definition 1 hold. ��
Note that the relationship between abstract and concrete histories in this def-
inition are identical to that in Definition 1. Hence, there is no need to change
the proof method or tool support. The memory model would be accounted for
in the derivation of the implementation model of the approach of Derrick et al.
[5,6,15], rather than in the simulation rules.

Below we show that, for TSO, Definition 3 is equivalent to Definition 2. Given
o ∈ Object , we let tso(o) denote the corresponding object on TSO, i.e., the object
extended to include store buffers and flush commands for each thread (see [8]
for one approach for doing this). The function hist that derives TSO histories
from TSO executions is as in Sect. 4.2 with the addition of flush commands being
retained.

Theorem 1. GivenHist(E)=̂{hist(e) |e ∈E} andTrans(H)=̂{trans(h) |h ∈H },
for any set of executions E and set of histories H :

Trans(Hist(exec(tso(o), p))) = Hist(execm(o, p))

That is, the set of concrete histories related to abstract histories by the standard
definition of linearizabilty are the same in each approach.

5 Since commands are deterministic there is exactly one such value.

An Observational Approach to Defining Linearizability 119

Proof. For each e ∈ exec(o, p) there will be a set of executions in exec(tso(o), p).
Each such execution etso is derived from e by adding flush commands such that
the following holds.

∃maptso : {i : dom etso | store?(etso(i))} �→ {i : dom etso | flush?(etso(i))} •
(∀ i : dommaptso •

i < maptso(i) ∧
(/∃ j : dom etso • i < j < maptso(i) ∧ (fence?(etso(j)) ∨ rmw?(etso(j))))) ∧

(∀ i , j : dommaptso • i < j ∧ etso(i).t = etso(j).t ⇒ maptso(i) < maptso(j))

That is, there exists a bijection mapping the positions of stores in etso and flushes
in etso such that the flushes occur after the matching stores but before the next
fence or read-write-modify command (which includes a fence as discussed in
Sect. 3), if any, and the matching flushes for stores of a given thread t are in the
order of the stores. The latter is due to the store buffer for a given thread being
a FIFO queue.

Furthermore, all threads other than a given thread t run as if each store of
t occurs at the point where the associated flush occurs.

Similarly, for each e ∈ exec(o, p) there will be a set of executions in
execm(o, p). Each such execution em is derived by reordering commands, i.e.,
itemsem = itemse (where itemss is the bag of elements in the range of sequence s),
such that the following holds.

∃mapm : {i : dom e | store?(e(i + 1))} �→ {i : dom em | store?(em(i))} •
(∀ i : dommapm •

i < mapm(i) ∧
(/∃ j : dom em • i < j < mapm(i) ∧ (fence?(em(j)) ∨ rwm?(em(j))))) ∧

(∀ i , j : dommapm • i < j ∧ em(i).t = em(j).t ⇒ mapm(i) < mapm(j))

That is, there exists a bijection mapping the positions of the commands immedi-
ately preceding stores before reordering (i.e., in e) to the positions of the stores in
the reordered execution em . The stores cannot be reordered with fences or read-
modify-write commands, nor with other stores of the same thread. The latter
ensures the order of the moved stores is the same as their original ordering.

In this case, all threads other than a given thread t run as if each store of t
occurs at the point where the store is moved to (t runs as if the store occurs in
its original position due to bypassing).

It can readily be deduced from the above that for any etso ∈ exec(tso(o), p)
there is an em ∈ execm(o, p), and vice versa, such that the executions include the
same commands (apart from flush commands) and for a given store command s,
the position of s’s flush with respect to other commands in etso is the position
of s with respect to other commands in em .

Applying hist to etso and then trans to the resulting history gives us a his-
tory htso where the return of each operation is either the last command of that
operation, or a flush associated with a store of the operation, whichever occurs
later in etso .

120 J. Derrick and G. Smith

word x=0, y=0;

OpOne(out word x1, y1) {

x=1;

x1=x;

y1=y;

}

OpTwo(out word x1, y1) {

y=1;

y1=y;

x1=x;

}

Fig. 3. Simple concurrent object

Applying hist to em gives us a history hm where the return of each oper-
ation is the last command of that operation which may be a store which has
been moved forward in the execution beyond the original last command of the
operation.

Hence, due to the correspondence between positions of flushes in etso and the
positions that stores are moved to in em it follows that htso = hm . Therefore,
Trans(Hist(exec(tso(o), p))) = Hist(execm(o, p)) as required. ��

Example 4. Consider the concurrent object in Fig. 3 and a program p on the
object in which a thread t1 calls OpOne and a thread t2 calls OpTwo. If the values
stored to x and y are not flushed until the end, then one can observe the following
behaviour on TSO: 〈OpOne(t1, 1, 0); OpTwo(t2, 0, 1)〉. The table below captures
the program order of p, and the memory order that results. (Commands are
abbreviated to their essential components for readability.)

Name Program order of p Memory order for TSO

inv1 inv(t1)
s1 store(t1, x , 1) inv1 <TSO(p) s1
l1 load(t1, x) inv1 <TSO(p) s1, inv1 <TSO(p) l1
l2 load(t1, y) inv1 <TSO(p) s1, inv1 <TSO(p) l1 <TSO(p) l2
inv2 inv(t2)
s2 store(t2, y , 1) inv2 <TSO(p) s2
l3 load(t2, y) inv2 <TSO(p) s2, inv2 <TSO(p) l3
l4 load(t2, x) inv2 <TSO(p) s2, inv2 <TSO(p) l3 <TSO(p) l4

From this one can construct valid executions that respect program order,
e.g., e = 〈inv1, s1, l1, l2, inv2, s2, l3, l4〉. An associated execution on TSO which
corresponds to the behaviour 〈OpOne(t1, 1, 0); OpTwo(t2, 0, 1)〉 is etso = 〈inv1,
s1, l1, l2, inv2, s2, l3, l4,flush(t1, OpOne1),flush(t2, OpTwo1)〉. The corresponding
execution respecting memory order is em = 〈inv1, l1, l2, inv2, l3, l4, s1, s2〉. The
histories of etso and em can then be calculated as follows:

An Observational Approach to Defining Linearizability 121

hist(etso) = 〈 inv(t1, OpOne1,⊥), ret(t1, OpOne1, (1, 0)), inv(t2, OpTwo1,⊥),
ret(t2, OpTwo1, (0, 1)),flush(t1, OpOne1),flush(t2, OpTwo1)〉

hist(em) = 〈 inv(t1, OpOne1,⊥), inv(t2, OpTwo1,⊥), ret(t1, OpOne1, (1, 0)),
ret(t2, OpTwo1, (0, 1))〉

Then it is easy to see that trans(hist(etso)) is the same as hist(em). ��

5 Generalising to Other Memory Models

The novelty of the work presented here is that it allows the definition of lineariz-
ability to be easily applied to other well understood architectures. One example
that is easy to illustrate is the Partial Store Order (PSO). PSO essentially mim-
ics TSO except with one additional relaxation, namely that PSO only guarantees
stores to the same variable are in order whereas stores to different variables may
be reordered. Hence, for all c1, c2 : Command , its memory order on program p is

c1 <PSO(p) c2 ⇔ c1 <p c2 ∧
(¬ (store?(c1) ∧ load?(c2) ∨

store?(c1) ∧ store?(c2) ∧ c1.var �= c2.var) ∨
(∃ f : Command • c1 <p f ∧ f <p c2 ∧ fence?(f)))

The Power and ARM architectures are more complex. As well as allowing
reordering of commands these architectures (1) are non-multiple-copy-atomic,
meaning a write by one thread may propagate to the other threads at different
times, and (2) allow speculative execution, where statements after a branch com-
mand may be executed before the branch condition has been determined (and
executions of paths not subsequently followed discarded).

The former can be incorporated into our framework by allowing each thread
to have its own copy of the global variables in the implementation model (as
suggested in [13]). The latter can be incorporated by enabling the implemen-
tation model to nondeterministically decide on a branch condition at any time
and then terminate when the decision is found to be incorrect. Since speculative
execution does not effect the external behaviour of a concurrent object before
the branch point is reached, no new behaviour is introduced when an execution
is terminated at the branch point. The nondeterminism ensures all possible spec-
ulative executions are considered, including those which do not terminate at the
branch point.

Like command reordering, the above behaviours of Power and ARM can
be observed via systematic testing [13]; they do not require an architectural
understanding of the memory model. Incorporating them into our framework is
an ongoing area of work.

In addition to providing a general definition of correctness for a variety of
memory models, the framework allows us to use the existing simulation rules
and tool support for linearizability. Specifically, since the framework does not

122 J. Derrick and G. Smith

include architectural details in the model derived from the code we do not need
new simulation rules or tool support for each memory model. All that is needed
is the ability to derive implementation models from code. This is an important
area of future work. In Derrick et al. [5], sequentially consistent executions are
derived from a state transition system in which each transition corresponds to
a command and is enabled precisely when a program counter variable pc, for a
given thread, is set to the line number of that command in the program code.
To allow reordering, we would need to allow certain commands to be able to
occur over a range of values of pc, while respecting additional constraint on the
relative order of their occurrence with other commands such as fences.

References

1. Alglave, J., Fox, A., Ishtiaq, S., Myreen, M.O., Sarkar, S., Sewell, P., Nardelli, F.Z.:
The semantics of power and ARM multiprocessor machine code. In: Petersen, L.,
Chakravarty, M.M.T. (eds.) DAMP 2009, pp. 13–24. ACM (2008)

2. Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison under
abstraction for verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 477–490. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-73368-3 49

3. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent library cor-
rectness on the TSO memory model. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol.
7211, pp. 87–107. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28869-2 5

4. Calcagno, C., Parkinson, M., Vafeiadis, V.: Modular safety checking for fine-grained
concurrency. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 233–
248. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74061-2 15

5. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanically verified proof obligations
for linearizability. ACM Trans. Program. Lang. Syst. 33(1), 4:1–4:43 (2011)

6. Derrick, J., Schellhorn, G., Wehrheim, H.: Verifying linearisability with potential
linearisation points. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664,
pp. 323–337. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21437-0 25

7. Derrick, J., Smith, G.: A framework for correctness criteria on weak memory mod-
els. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 178–194.
Springer, Cham (2015). doi:10.1007/978-3-319-19249-9 12

8. Derrick, J., Smith, G., Dongol, B.: Verifying linearizability on TSO architectures.
In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 341–356.
Springer, Cham (2014). doi:10.1007/978-3-319-10181-1 21

9. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a prac-
tical lock-free queue algorithm. In: Frutos-Escrig, D., Núñez, M. (eds.) FORTE
2004. LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30232-2 7

10. Fitzpatrick, J.: An interview with Steve Furber. Commun. ACM 54(5), 34–39
(2011)

11. Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: sequentially consistent
specifications of TSO libraries. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol.
7611, pp. 31–45. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33651-5 3

12. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

http://dx.doi.org/10.1007/978-3-540-73368-3_49
http://dx.doi.org/10.1007/978-3-540-73368-3_49
http://dx.doi.org/10.1007/978-3-642-28869-2_5
http://dx.doi.org/10.1007/978-3-540-74061-2_15
http://dx.doi.org/10.1007/978-3-642-21437-0_25
http://dx.doi.org/10.1007/978-3-319-19249-9_12
http://dx.doi.org/10.1007/978-3-319-10181-1_21
http://dx.doi.org/10.1007/978-3-540-30232-2_7
http://dx.doi.org/10.1007/978-3-540-30232-2_7
http://dx.doi.org/10.1007/978-3-642-33651-5_3

An Observational Approach to Defining Linearizability 123

13. Maranget, L., Sarkar, S., Sewell, P.: A tutorial introduction to the ARM and
POWER relaxed memory models (2012). Draft available from http://www.cl.cam.
ac.uk/∼pes20/ppc-supplemental/test7.pdf

14. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and
interactive proofs with KIV. In: Automated Deduction, pp. 13–39. Kluwer (1998)

15. Schellhorn, G., Wehrheim, H., Derrick, J.: A sound and complete proof technique
for linearizability of concurrent data structures. ACM Trans. Comput. Log. 15(4),
31:1–31:37 (2014)

16. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

17. Smith, G., Derrick, J., Dongol, B.: Admit your weakness: verifying correctness on
TSO architectures. In: Lanese, I., Madelaine, E. (eds.) FACS 2014. LNCS, vol.
8997, pp. 364–383. Springer, Cham (2015). doi:10.1007/978-3-319-15317-9 22

18. Sorin, D.J., Hill, M.D., Wood, D.A.: A Primer on Memory Consistency and Cache
Coherence. Synthesis Lectures on Computer Architecture. Morgan & Claypool
Publishers, San Rafael (2011)

19. Travkin, O., Mütze, A., Wehrheim, H.: SPIN as a linearizability checker under
weak memory models. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol.
8244, pp. 311–326. Springer, Cham (2013). doi:10.1007/978-3-319-03077-7 21

20. Travkin, O., Wehrheim, H.: Handling TSO in mechanized linearizability proofs. In:
Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 132–147. Springer, Cham (2014).
doi:10.1007/978-3-319-13338-6 11

21. Vafeiadis, V.: Modular fine-grained concurrency verification. Ph.D. thesis, Univer-
sity of Cambridge (2007)

http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
http://dx.doi.org/10.1007/978-3-319-15317-9_22
http://dx.doi.org/10.1007/978-3-319-03077-7_21
http://dx.doi.org/10.1007/978-3-319-13338-6_11

Applying a Dependency Mechanism for Voting
Protocol Models Using Event-B

J. Paul Gibson1, Souad Kherroubi2, and Dominique Méry2(B)

1 Telecom Sud Paris, SAMOVAR UMR 5157 CNRS Research Laboratory,
METHODES Team, Évry, France

2 Université de Lorraine, LORIA UMR 7503 CNRS Research Laboratory,
MOSEL Team, Nancy, France
dominique.mery@loria.fr

Abstract. The design of e-voting systems requires the use of techniques
which guarantee that the resulting system is safe, secure and preserves
privacy. We develop Event-B models of a voting system, by applying
a decomposition pattern and a technique of contextualisation, using a
dependency mechanism. Through refinement, we take into account the
precise regulation and structure of a specific voting process, and reason
formally about the system’s resistence to common attacks and threats.

1 Introduction

In general, elections are critical processes concerned with the collection, recording
and counting of votes [9]. All election processes use protocols satisfying security,
safety and privacy properties, which are difficult to express and to validate. We
have applied a correct-by-construction refinement technique to formally model
and reason about a voting process. The formal approach helps us to validate the
coherency of different types of interacting assumptions and requirements [10].

1.1 Diffferent Points of View

There are many different points of view concerning elections. Firstly, citizens
are mostly not overly-concerned with the interacting tasks used in reaching the
decision. They refer to abstract processes such as voting and counting, without
fully understanding the subtle details. Secondly, e-voting domain experts are
concerened with the complexity of modelling the election process at different
levels of abstraction. From our, third, point of view, as system engineers, a vot-
ing process is managed by a system which facilitates voting, whilst satisfying
the requirements of the vote with respect to the current legal position. When
the system is electronic, it may also have to meet legal requirements which are

This work was supported by grant ANR-13-INSE-0001 (The IMPEX Project
http://impex.gforge.inria.fr (or http://impex.loria.fr) from the Agence Nationale de
la Recherche (ANR).

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Bouajjani and A. Silva (Eds.): FORTE 2017, LNCS 10321, pp. 124–138, 2017.
DOI: 10.1007/978-3-319-60225-7 9

http://impex.gforge.inria.fr
http://impex.loria.fr

Applying a Dependency Mechanism for Voting Protocol Models 125

not relevant for the traditional manual systems. A final point of view is one of
security: voting systems make use of information and communication technolo-
gies (ICT), and their dependability relies on security analysis for identification
of threats in order to select countermeasures.

1.2 Contextual Reasoning

We [12] have previously shown the importance of context in proofs, where it
captures the system designer’s intention, as well as giving the system model
a precise and unambiguous semantics. Our study demonstrates that context is
always related to an activity, a focus or a situation. More precisely, the context is
a “moment universals” that depends on an intentional concept i.e. “action”. By
reasoning over the structure of the Event-B, the context of proof is decomposed
into — (i) Constraints: conditions having their own existence and concerned
with the theory defined for Event-B, corresponding to the sets, constants and
axioms defined in the Event-B contexts; (ii) Hypotheses: that are assumed to
be true, but not always verified, and which are expressed by restrictions on
the constraints, and suppositions on the corrupt behaviours in the system. (iii)
Dependencies: this knowledge is deduced, and expressed as a combination of
situations and constraints over time. The use of dependencies was inspired by
the work of [2,8,17], and led us to formalize a dependency mechanism in Event-B
as a proof of the coherency of the contexts in Event-B.

1.3 Refinement and Decomposition Patterns

The correct-by-construction approach [16] can be applied for integrating pro-
gressively properties and details of the voting process. In the case of the voting
system, we decompose it into three dependent and sequential phases: the prepara-
tion phase, the recording phase and the tallying phase. These phases are sequen-
tial and linked in a pipeline, where the activation of the next phase depends on
the termination of the previous one. One phase may use data computed during
the previous phase; this data is dynamically generated in one phase but is then
used to statically instantiate the configuration parameters of the next phase. We
have defined this approach as a domain-independent re-usable template, using
a formal dependency pattern, defined in a separate work [12]. Patterns [11] are
applied to refinement-based processes; they help to increase productivity and
improve quality by providing guarantees with respect to avoidance of security
risks and attacks [14]. We use the sequential decomposition pattern and identify
the three phases characterized by three main liveness properties: (1) prepara-
tion collects information for defining the persons authorized to vote and candi-
dates/options authorized to be presented as choices in the election; (2) recording
permits authorized voters to choose their preferred candidate(s) or option(s); and
(3) tallying counts the votes for each candidate, or given option. Thus, our three
stage pipeline is a composition of two instances of the sequential decomposition
pattern.

126 J.P. Gibson et al.

1.4 Formal Reasoning About E-voting

Many properties and requirements are expressed in the literature of e-voting sys-
tems. We follow the reasoning of [7] which argues that, in the ideal case, a secure
voting system should guarantee eligibility, confidentiality, anonymity and verifia-
bility. Verifiability ensures that all voters can trust the proclaimed result without
having to trust a particular authority or actor in the system. Furthermore, it
ensures the existence of an algorithm that can exhibit the proof of the result
of tallying and integrity of the authorities. In our case, the proof obligations
generated show that the system has behaved correctly. Confidentiality guaran-
tees knowledge of each voter is limited only to his/her vote. The Anonymity of
a vote is guaranteed by breaking the link between the voter and theirr vote.
Eligibility of voters determines whether or not a voter is entitled to vote. Our
model expresses this property as a condition concerning the authentication and
authorization of each voter before recording their vote. Authentication identifies
voters using credentials and passwords previously provided for this purpose.

2 The Modelling Framework

Event-B is a formal language well-suited to the modelling of reactive systems
that respond to external stimuli over time. In this set-theoretic language in first-
order logic (FOL), guarded events provide state transition behaviour. The two
syntactic units of structuring are the static context and the dynamic machine.
The context comprises sets, constants, axioms, and any theorems that must be
derived from those axioms. The machine comprises dynamic variables and the
events that update them. Safety properties are expressed as either invariants or
theorems. Every machine sees at least one context.

An event is observed in a model with constants c and sets s subject to axioms
P (s, c) and an invariant I(s, c, v). Consistency proof obligations (POs) require
that events are well-defined, feasible and maintain invariants. The term refine-
ment is overloaded, referring both to the process of transforming models, and
to the more concrete model which refines the abstract one. When model N(w)
refines M(v), it contains a refinement relation, or “gluing invariant” J(s, c, v, w).
New events may be introduced in refinement to act on new variables, effectively
refining stuttering steps (called “skip” in Event-B). The refinement POs enforce
the standard forward simulation refinement rule [1] that every concrete step of a
refining event re-establishes the gluing invariant subject to some corresponding
step of the abstract refined event, or skip.

Figure 1 summarizes the two kinds of models that are used in the formal
development. In this work the modelling process deals with various languages, as
seen by considering the triptych of Bjoerner [5]: D,S −→ R. Here, the domain D
deals with properties, axioms, sets, constants, functions, relations, and theories.
The system model S expresses a model or a refinement-based chain of models of
the system. Finally, R expresses requirements for the design of the system. One
must note that the Event-B modelling language is not expressing liveness prop-
erties and we follow the methodology introduced by Méry and Poppleton [18] for
managing such properties. We will use a notation from TLA to express liveness

Applying a Dependency Mechanism for Voting Protocol Models 127

D
AD

S1, . . . Sn

C1, . . . , Cm

ax1 : P1 S1, . . . Sn, C1, . . . , Cm . . .
axp : Pp S1, . . . Sn, C1, . . . , Cm

th1 : Q1 S1, . . . Sn, C1, . . . , Cm . . .
thq : Qq S1, . . . Sn, C1, . . . , Cm

M
AM

D
x

inv1 : I1 x, S1, . . . Sn, C1, . . . , Cm . . .
invr : Ir x, S1, . . . Sn, C1, . . . , Cm

th1 : SAFE1 x, S1, . . . Sn, C1, . . . , Cm . . .
ths : SAFEs x, S1, . . . Sn, C1, . . . , Cm

x : P x
. . .

t

G x, t

x : P x, x , t
. . .

S

x,

Fig. 1. Context and machine

properties under fairness assumptions. We have to interpret our Event-B models
over traces generated from the Event-B machines and we extend the scope of
the Event-B machines by using TLA as follows. Let M be an Event B machine
and D a context seen by M . Let x be the list of variables of M , let E be
the set of events of M , and let Init(x) be the initialisation event in M . The
temporal framework of M over D is defined by the TLA specification denoted:
Spec(M) =̂ BA(Init)(x) ∧ �[Next]x ∧FAIR, where Next ≡ ∃e ∈ E.BA(e)(x, x′)
and FAIR defines the fairness assumptions.

Following Lamport [15] the specification spec(M) is valid for the set of infinite
traces simulating M with respect to the events of M . Spec(M) is thus defined
by the initial conditions, the next relation and fairness constraints. In practice
we have to discover the weakest fairness assumptions, denoted FAIR(M), that
allow us to derive the required liveness properties. These fairness assumptions
emerge from the proof rules applied, and are expressed in terms of the temporal
operators of TLA, namely WF and SF . FAIR(M) is thus a combination of
fairness operators over events of M . Liveness properties for M are, de facto,
defined in TLA as follows: M satisfies P � Q, when Γ (M) � Spec(M) =⇒
(P � Q). When deriving the proof of Spec(M) =⇒ (P � Q), we apply the
right introduction rule of the implication and then we eliminate the conjunctive
connective in the left part of the � symbol. Thus Γ (M) will be increased by
fairness assumptions and we can use an alternative form for expressing the initial
sequent: Γ (M) is the proof context of M . In review, the refinement of Event-B
models preserves the safety properties; and for preserving the liveness properties
we follow the technique proposed by Mery and Poppleton [18] (see Fig. 2).

abstract spec

concrete spec

Fig. 2. Summary of the integrated formal methods refinement methodology

128 J.P. Gibson et al.

3 Modelling the Voting System

The 3 phases of our voting process are each developed, and verified, in a sep-
arate refinement chain. In this paper, we present only the final 2 stages of the
pipeline: the vote recording and the tally (count) phases. The system description
also includes the conditions over the environment that express voter behaviour
and possible attacks on the system. In particular, our development disregards
different roles and/or actors in the system: the only actor represented is the
voter who interacts with the system interface. In particular, our refinement-based
approach takes into account intruders with the following capabilities: (1) estab-
lishing a connection; (2) closing an already established session; (3) making
choices; (4) adding signatures; (5) adding ballots: ballot stuffing ; (6) adding
signatures and ballots simultaneously ; (7) removing signatures; (8) removing
ballots; and (9) accessing signatures, credentials, passwords. These different
assumptions concerning corrupt behavior correspond to the part of the world
in which the system is immersed. They situate the developed system and we
qualify them as “context of assumptions”.

3.1 Combining Refinement and Composition, Using
the Dependency Pattern

Figure 3 illustrates the refinement-based approach followed in our development,
and shows the use of the dependency pattern mechanism (depends) to compose
the machines associated with sequential phases of the voting process.

3.2 Refining the Voting Phase in Seven Steps

The first phase is described by an Event-B context C0 Recording which defines
the constraints and static elements that are seen by the 9 machines in our devel-
opment. The first Event-B context introduces the necessary elements to start a
recording phase of votes i.e.: sets, constants and static properties such as Electors,
Choices, Envelopes, PollStation, Representatives, Bulletins, Sig, electoral roll ,
voters hosting , start time, end time etc. . . .

Abstract model - In this first model the state of the system is characterized
by two variables that represent the registered votes and the elapsed time in the
system. The votes are modelled as a relationship between all signatures (Sig) and
the electors’ choices (Choices). The invariant in this machine simply provides a
means to type these variables. The precondition for this phase, as expressed by
the initialization event, is that the time is equal to the opening time of the offices
fixed in the context C0 Recording and that no vote has been recorded. A vote
modifies the variable rec votes which is performed by the event register votes.
In this model, we distinguish only the values of variables rec votes which take
their values in Sig ↔ Choices without precising the undertaken actions. The
event forwarding time changes the value of the variable timer introduced in
this machine to express the progression of time in the system. The variable

Applying a Dependency Mechanism for Voting Protocol Models 129

extends
sees

extends

refines

refines

sees refines sees

refines refines

depends depends

sees
refines refines

sees

refines refines

Fig. 3. Structure of the refinement-based formal development of the voting system

value is incremented by the action of thes event forwarding time until the
closing time of the offices end time is reached. We note that this event has a
convergent status under which a weak fairness assumption is made. Thus, this
event (forwarding time) will not be observable when the value of the timer
variable has reached end time. Note that the vote event can be observed only
when the voting has begun and that the closing time has not yet been reached
(see grd1). The convergence of these events is proved using a simple variant.
Then, at the end of voting, no one can cast a vote or record a signature: the only
event that will be observable is finish.

VARIABLES rec votes, timer
INVARIANTS

inv1 : rec votes ∈ Sig ↔ Choices
inv2 : timer ∈ start time .. end time

VARIANT end time − timer
INITIALISATION

act1 :rec votes := ∅

act2 :timer := start time
EVENT register votes

WHEN
grd1 :timer ≥ start time ∧ timer < end time
grd2 :∀i, j · i 	→ j ∈ interrupt sequences ⇒ timer /∈ i .. j

THEN
act1 :rec votes : |rec votes′ ∈ (Sig ↔ Choices)

END

EVENT forwarding time
STATUS convergent
WHEN

grd :timer < end time
THEN

act :timer := timer + 1
END

EVENT finish
WHEN

grd1 :timer = end time
THEN
act :skip
END

In the following seven refinements, termination proofs are the same as those
for this initial abstract machine. Since all events that will be introduced in

130 J.P. Gibson et al.

the following will also be guarded by the guards grd1 and grd2 of the event
register votes, no event changes the time and forwarding time and finish
remain unchanged. We also recall that all variables introduced in the followed
refinements are initialized with the empty set, with the exception of intruder
knowledge variables.

Refinement 1 - distinguishes the votes that are either registred or deleted.
The recording of votes is done by the event register votes refined by itself, while
tdeleting votes is done by the event remove votes. Both events refine the former
introduced in the abstract model register votes.

Refinement 2 - introduces intrusion scenarios, where people present them-
selves to vote on behalf of someone else, without having permission to do so.
Such a scenario is a single example of one among many forbidden scenarios that
may exist. We distinguish at this level of refinement, the votes recorded cor-
rectly and those that are corrupted. Four new variables (valid sig , valid choices ,
valid votes, corrupt votes sig) are introduced:

INVARIANTS
inv1 : valid sig ⊆ Sig
inv2 : valid choices ⊆ Choices
inv3 : valid votes ∈ valid sig �� vote
inv4 : corrupt votes sig ∈ Sig ↔ Choices
inv5 : valid votes ⊆ rec votes
inv6 : corrupt votes sig ⊆ rec votes
inv7 : corrupt votes sig ∩ valid votes = ∅

The votes or choices are identified in
the set of choices (inv2), while the
signatures are a subset of the set Sig
(inv1) defined in the Event-B con-
text C0 Recording.

The property inv3 associates each correct choice with one and only one
signature, and each signature with one and only one correct choice. Thus, at
any time the number of votes at the polls equals the number of signatures
honestly recorded. Votes can be corrupt, but these are detected. The invari-
ant property inv7 indicates that the correct votes and the corrupt votes par-
tition the set of all votes cast. Others variables are also introduced separately
in order to identify corrupt signatures and invalid choices. The event to reg-
ister the votes introduced in the first model is refined into two events that
allow the storage of both types of vote. This corruption scenario is one in
which corrupt choices and corrupted signatures are introduced simultaneously
via the event corrupt choices sig simultaneously . This refinement also intro-
duces two other scenarios of corruption consisting of stuffing ballot boxes, or
recording votes, without valid signatures. Two new events are introduced at this
level. The event stuffing choices consists of adding a corrupt choice by chang-
ing the variable alone corrupt choices , while the event corrupt sig only adds
a corrupted signature by changing the variable alone corrupt sig . The variable
alone corrupt choices is a subset of all choices, while the corrupted signatures
are a subset of Sig.

Refinement 3 - introduces the main actor in the system i.e.: the voter (elec-
tor). Voters having voted correctly become registered voters in the variable
honest voters. Dishonest voters are registered in the variable dishonest voters.
Voters who voted correctly can impersonate other voters in order to vote for

Applying a Dependency Mechanism for Voting Protocol Models 131

them (or steal their vote). The honest voters are linked to their correct signa-
tures via the variable honest voters sig , and an honest voter can have only one
signature at a time, and vice versa; thus, a correct signature is assigned to one
and only one voter at a time (inv3). The corrupted signatures of the voters are
defined in the relation between electors and the set of signatures (Sig) (inv4).
Note that the domain and co-domain of these two variables have no common
element (inv5 et inv6).

inv5 : dom(corrupt sig voters) ∩ dom(honest voters sig) = ∅

inv6 : ran(corrupt sig voters) ∩ ran(honest voters sig) = ∅

inv7 : honest know ∈ honest voters → P(valid choices)

inv8 : ∀v, elec, sig ·
(

v ∈ valid choices ∧ elec ∈ honest voters ∧ sig ∈ valid sig
∧elec 	→ sig ∈ honest voters sig ∧ sig 	→ v /∈ rec votes

)

⇒ elec 	→ {v} /∈ honest know)

inv12 : ∀elec1, elec2, v1, v2 ·
⎛
⎝ elec1 ∈ dom(honest know) ∧ honest know(elec1) = v1

∧elec2 ∈ dom(honest know)
∧honest know(elec2) = v2 ∧ elec1 �= elec2

⎞
⎠

⇒(∀vx · (vx ∈ v1 ⇒ vx /∈ v2)))

Removing correct choices already made implies knowledge of the choices made by
the honest voter. To ensure the secrecy of the vote, we add a variable representing
voter knowledge (inv7). This variable is a total function of the voters who voted
towards all subsets of choices. Secrecy is expressed by the invariant inv12 which
states that the knowledge of how each known voter has voted is restricted to the
voter themselves. Deleting a choice correctly implies that only the voter knows
his/her choice and how they have voted. In contrast, an intrusion deletion does
not require any knowledge of choices or how a voter has voted.

Refinement 4 - introduces authentication, which requires that the system has
some guaranteed means of identification of voters. In our model, this is ensured
by the following two constants introduced in the Event-B context C0 Recording
i.e.: Credentials assign and Passwords assign that are defined as:

Credentials assign ∈ Electors��Credentials, and Passwords assign ∈ Electors��
Passwords. The model consists of an assignment of credentials and passwords
to eligible voters. Thus, each voter has his own identification that gives permis-
sion for access to his account that is by definition, unique to each voter. The
authentication in our system consists of verification by introducing two events
for this purpose. The first event allows electors who wish to establish a con-
nection to access to their voting account (login), while the second allows the
disconnection of a voter having already established a connection. An authen-
tication modifies the variable electors session introduced for this purpose. We
note that this authentication allows access to the account for voting purposes,
recording voting, etc. The identification is expressed as follows:

inv6 : ∀s, v · (s 	→ v ∈ valid votes
)

⇒∃elec,mdp, cred ·
(

(elec 	→ s) ∈ dom(voters hosting) ∧ elec 	→ mdp ∈ Passwords assign
∧elec 	→ cred ∈ Credentials assign)

)

Authorization to vote requires that the elector entitled to vote has not yet
voted. This check is performed by refinements 5 and 6. This stage distinguishs

132 J.P. Gibson et al.

also intruders that try to establish a connection with stolen credentials and pass-
words. We thus introduce all variables that correspond to intruders’ knowledge,
and events for misused identity credentials, passwords, signatures and possibly
removing choices already made by honest voters. Introducing these details means
that the invariants inv8 and inv12 introduced in the previous refinement are not
sufficient. We need to express the requirement that knowledge of honest valid
voters is not known by intruders. The following property expresses for instance
the fact that honest choices are not known by the dishonest intruders.

inv14 : ∀elec1, v1 · (elec1 ∈ dom(honest know) ∧ honest know(elec1) = v1
)

⇒∀elec2 · elec2 ∈ dom(dishonest know choice)
⇒∀vx · (vx ∈ v1 ⇒ elec2 	→ {vx} /∈ dishonest know choice

)

Refinement 5 - considers location. In traditional systems, voting is done in a
physical location or polling station, whilst in e-voting we replace the concrete
locations with an abstract/virtual concept. Thus, we introduce in this refinement
a new variable regis votes offices, which assigns each vote cast correctly to one
and only one polling station.

inv1 : regis votes offices ∈ PollStation ↔ (rec votes)
inv2 : ∀ve · (ve ∈ rec votes ⇒ (∃h · (h 	→ ve ∈ regis votes offices))
inv3 : ∀v1, b1, b2 · (b1 	→ v1 ∈ regis votes offices ∧ b2 	→ v1 ∈ regis votes offices ⇒ b1 = b2)

The recording of the vote is thus restricted by location; in other words, a restric-
tion of authorizations for voters to cast a vote in the offices to which they
were assigned. A list is established beforehand to assign eligible offices to vot-
ers; this being defined by the constant voters hosting in the Event-B context
C0 Recording (voters hosting ∈ electoral roll → PollStation). Thus, the events
to record votes are reinforced by the guards:

grd8 : ∃sig · (sig ∈ Sig ∧ heberg∈PollStation ∧ ((votant x 	→ sig) 	→ heberg)∈voters hosting)
grd9 : heberg 	→ (s 	→ v) /∈ regis votes offices ∧ (s 	→ v) /∈ ran(regis votes offices)

and the next action is added to update the variable regis votes offices: act7 :
regis votes offices := regis votes offices ∪ {heberg �→ (s �→ v)}. Thus, eligibility
for honest voters is expressed as follows:

inv4 : (∀s, v, h · (s 	→ v ∈ valid votes ∧ h 	→ (s 	→ v) ∈ regis votes offices
⇒∃elec · (elec ∈ votant ∧ elec 	→ s ∈ honest voters sig ∧ (elec 	→ s) 	→ h ∈ voters hosting)))

which expresses that for all correctly recorded choices (valid votes) in polling
stations (regis votes offices), there exists an eligible voter having a valid signa-
ture (honest voters sig introduced in the third refinement), with an identical
signature, previously registered in the system, that casts this said choice.

Refinement 6 - models the depedency between the choice offerred to, and
taken by, the voters and the specific type of election/referendum being run;
and the anonymity of this choice. The recording of a vote is preceded by the
choice that can be made by an eligible elector. The choice of bulletins must be
anonymous, which can be guaranteed by the use of envelopes, as is the case

Applying a Dependency Mechanism for Voting Protocol Models 133

in classic voting. We introduce in this refinement several new variables that
facilitate the modelling of envelopes during the vote recording process. The vari-
able valid envelopes corresponds to the envelopes chosen by voters. A voter who
took an envelope is added to the variable voters envelopes. Each valid choice
is assigned to a single valid envelope. The choice of voter is made concrete by
the event choose. To make a choice, a voter must have authorization for this
action. The actions enabled by this event are guarded by the existence of the
person who wishes to initiate a process of voting in the list previously established
electoral roll and that no signature is yet registered to his vote.

Refinement 7 - Different elections have different modes/types of voting. For
example, a majoritarian voting where a presidential candidate must be elected
is represented by paper ballot where every candidate is the option to vote
and each paper corresponds to one candidate (vote or poll). This constraint is
shown in Event-B by the following constant: axmt1 : bulletins representatives ∈
Representatives � Bulletins where Representatives corresponds to the set of all
representatives needed for a specific election including designations that may be
chosen by a voter. For instance, this set can contain: candidat1, candidat2, . . . ,
candidatn, None of the above, in the case of a presidential election. It may also
contain favorable, unfavorable, if the choice in a referendum is an adherence to
any law.

In the case of a preferential voting or cumulative voting, voters should make
their choice on paper ballot, where all candidates are listed on all these papers.
This choice corresponds to a preference order mentioned next to each candidate
on the same paper ballot. This constraint corresponds to a Cartesian product
presented as follows in the Event-B method: axmt2 : bulletins representatives =
Representatives×Bulletins. These constraints situate our development and thus
contextualize the proofs. We have shown that constraints rely on the static part
in the system, and we qualify this as a context of constraints. Each type of
voting is defined in a different Event-B context. These two Event-B contexts
extend the first one introduced in the beginning of this section (C0 Recording)
and are noted by C1 Recording T1 et C1 Recording T2. At this stage of refine-
ment, the machine introduced in the previous refinement is refined into two differ-
ent machines. This decomposition allows each machine to see a different Event-
B context. Thus, the machine M8 Recording T1, (respectively the machine
M8 Recording T2) sees the Event-B context C1 Recording T1 (respectively
the context C1 Recording T2). In the following, we report on the development
of the first type of voting.

Each voter who has selected a paper ballot is added in the variable
bulletins voters with their own bulletin. This action is observed in the event
choose. The selected paper ballot and the voter are added to the variable
bulletins voters. This choice represents a ballot stored in the variable ballots.
The voter puts one and only one name or paper (or candidate) in the ballot
box. Therefore, one and only one ballot is sleeved in an envelope. The recorded
bulletins are a subset of the set of Bulletins. This variable will serve us in the
Event-B context corresponding to tallying. The variable ballots offices allows us

134 J.P. Gibson et al.

to record the ballots per polling station. The casting of votes in the ballot boxes is
made concrete by modifying the variable rec votes associated to a specific polling
station in the recording event. It is based on the representatives indicated on
the collected papers through the variable collected bulletins representatives that
the affectation of voices to these representatives will be made.

Once this phase is finished, i.e.: the counter to express time comes to the
end, the tallying phase can begin using the results obtained. In the following
section we explain the formal dependency mechanism used to model the transfer
of results.

4 Dependency Relationship Between Voting Phases

The data provided for the B contexts of this phase are deduced from the first
phase corresponding to a validation of both B contexts by machines from the
first phase. We detail in the following the tallying of the first type of voting that
corresponds to the machine M8 Recording T1.

This Event-B context includes all elements defined in the first phase, namely,
C1 Recording T1. The context C0 Tallying T1 extends C1 Recording T1 and
contains, in addition to elements defined in C1 Recording T1, some of the vari-
ables defined in the machine M8 Recording T1 which are defined as constants
in the present context listed in twenty two axioms. For instance,
collected bulletins representatives,rec votes, valid sig

Abstract Model: Phase of Tallying - The desired termination property for
this phase of any voting protocol is identical for all types of voting, thus, the
first abstract model M0 Tallying is common to both types of voting that we
introduce in this phase. This model describes the counting via three events tally,
finish and maintain. The only variable introduced at this level is a boolean
which verifies whether counting is complete. The event tally is observing the
value of this variable which is “false” in its guard, and does not perform any
action in this machine.

Refinement 1: Phase of Tallying - In this machine which refines the
M0 Tallying machine, the tally is done at the specific polling station. The vari-
able correct result office characterizes the representative’s scores per polling sta-
tion (inv1 : correct result office ⊆ PollStation × (Representatives × N)). In each
polling station, the scores of each representative are unique:

inv2 : ∀h, r, x1, x2 ·
⎛
⎝h ∈ PollStation ∧ r ∈ Representatives

∧h 	→ (r 	→ x1) ∈ correct result office
∧h 	→ (r 	→ x2) ∈ correct result office

⎞
⎠⇒ x1 = x2

At initialization, no representative has received any votes. The counting of
the voters’ choices requires representatives who are registered in the envelopes
(destroyed envelopes representatives), and the ballots recorded per polling sta-
tion (destroyed ballots office). In addition, one must know the representatives
of registered ballots (destroyed bulletins representatives). These variables can
be seen as “copies” of constants defined in the Event-B context seen by the

Applying a Dependency Mechanism for Voting Protocol Models 135

present machine. To verify that all registered bulletins were correctly counted,
after the end of tallying, we must ensure that all voters who have signed have
a bulletin that has been counted, and vice versa, all counted bulletins corre-
spond to choices of voters who indeed signed. We introduce a new variable
counted bulletins representatives that contains the bulletins, effectively counted.
As all bulletins contain at most one representation
(bulletins representatives ∈ Representatives � recorded bulletins), this guaran-
tees verifiability of the dynamic behaviour of the system.

inv3 : destroyed envelopes representatives ⊆ envelopes representatives
inv4 : destroyed bulletins representatives

⊆ (collected bulletins representatives � (ran(valid envelopes � ballots)))
inv5 : destroyed ballots office ⊆ ballots offices
inv6 : counted bulletins representatives

⊆ (collected bulletins representatives � (ran(valid envelopes � ballots)))
inv7 : counted bulletins representatives ∩ destroyed bulletins representatives = ∅

This property is true only if the votes were recorded correctly without being
corrupted. Verifiability is also expressed in the context seen by the present
machine1. Other properties are also expressed to say, for instance, that if there
exists a corrupt paper ballot, then these are not counted. At initialization, all
variables are initialized with the values of the corresponding constants, with the
exception of the variable counted bulletins representatives which is initialized to
the empty set. The variable checked introduced in the abstract model of the same
phase will be maintained in this machine, and its refinement. The tally counts all
correctly recorded choices in polls (destroyed bulletins representatives that is a
copy of the collected choices in collected bulletins representatives). The variable
checked is a boolean initialized to false, that asserts that the tally can continue
as long as there exist ballots not yet counted. This property is expressed by the
variant of this machine, and guarantees convergence of the tallying process.

Refinement 2: Phase of Tallying - Finally, the tally for each representative
corresponds to the number of total votes (sum of voices by office). This refine-
ment introduces the total computation of voices of each representative saved in
the variable global result : inv1 : global result ∈ Representatives→N. Each repre-
sentative has zero votes/voices at the initialization, and the action incrementing
the total voices of each representative is added to the same event for counting.

Condition for Dependencies - We recall that the dependencies between two
parties (two models) M1 and M2 are defined by: (i) the B contexts seen by the
first machines are also seen by the machines defined for the second component;
(ii) a transformation of a some variables of the first model M1 into constants in
the target model M2; (iii) the predicate characterizing the termination property
of the first model satisfies the constraints defined in the B context of the target
model.

1 Note that in the real development this property is more complicated than the one
presented in this document. The full, more complex model, can be obtained from
the authors on request.

136 J.P. Gibson et al.

The stability in the first model is defined over traces generated from the
machine in this model. This modelling reflects the fact that at the end of the first
phase, no changes can be made on these elements as variables, because these vari-
ables in the phase of registration maintain their values at the termination. There-
fore, we can define them as constants in this Event-B context. A vote is validated
only when all the constraints defined in this Event-B context are valid. The vali-
dation of such constraints is based on facts or data generated during the record-
ing phase. This implies the existence of states in the model M8 Recording T1
satisfying these constraints that we call context deduced or combination of
situations and constraints. The satisfaction of axioms thus defined, particu-
larly the axioms dep axm23 and dep axm24, expresses the “initial configu-
ration” of this phase of the vote: C0 Tallying T1(s2, c2) ∧ Init2, where s2 and
c2 are respectively, sets and constants of the B context C0 Tallying T1.

This relationship expresses a dependency between these two components. In
particular, the two axioms dep axm23 and dep axm24 should be validated by
properties over values of state variables of the previous phase.

To express the validation of these constraints, we introduce the constant
valide. This constant also depends on the state the machine 8 of the registration
phase. The states that validate these constraints are the states which, in addition
to satisfying the axioms axm1 . . .axm22, must also fulfill the conditions defined
in the axiom dep axm24 which expresses constraints, such as: (1) the closing
time of polls has arrived: timer = end time; (2) no corrupt signature has been
recorded: alone corrupt sig = ∅; (3) no corrupt choices assigned to an envelope
have been recorded: corrupt choices envelopes = ∅; (4) choices and signatures
are registered in the polls provided the voters who made these choices have signed
at offices where they were registered to vote: ∀ s, v, h · (s �→ v ∈ rec votes ∧ h �→
(s �→ v) ∈ regis votes offices ⇒ ∃ elec · ((elec �→ s) �→ h ∈ voters hosting)); (5)
the number of correct votes is the same as the number of recorded envelopes:
correct choices envelopes ∈ valid choices �� valid envelopes; and (6) a recorded
vote (with valid choices and signatures) can not belong to two different offices:
(∀ v1, b1, b2 · (b1 �→ v1 ∈ regis votes offices ∧ b2 �→ v1 ∈ regis votes offices ⇒
b1 = b2)).

The designed patterns have generated 1317 proof obligations, among which
757 are discharged in an non-automatic manner. Non-automatic proof obliga-
tions are related to properties using universal quantification. The instantiation
of the patterns consists in specifying values of sets in B contexts, which does not
give rise to additional proof obligations and in introducing other refinements for
specific needs of designers.

5 Conclusion and Future Work

5.1 Contributions: Contexts, Refinements and Dependency

Our overall contribution is to illustrate a formal method for combining con-
texts, refinements and dependency composition in a coherent and reusable man-
ner. Two main voting families appear in our development. However, the spe-
cific family remains implicit. It follows that the interpretation of the results is

Applying a Dependency Mechanism for Voting Protocol Models 137

not taken into account in our modelling. The certification of models needs to
describe the voting method in order to make a decision. Such an interpretation
thus depends on the context in which the proofs are made. Contexts are formal
objects [17] based on McCarthy’s principle that contexts are constructed incre-
mentally from previous ones, which corresponds to “context lifting”. The situa-
tion appears as a new parameter in the predicates and thus, predicates depend
on a situation. A lifting involves situations or times. In the Event-B formalism,
situations are states and constraints are static properties defined in Event-B
contexts. Thus, the dependency relationship in this formalism is defined as a
combination of states and constraints. The dependency is a measurable relation-
ship taking values from situations facts and giving rise to new proof obligations.
Such a principle represents a duality to the principle of invariance in Event-B
machines, claiming that states are constrained by invariants in order to establish
safety in a proof system.

5.2 Future Work: Security Issues

Security is an important issue for ensuring reliable operation and protecting the
integrity of stored information to guarantee a trustworthy e-voting system [6].
These are based on a systematic engineering approach achieved by the identi-
fication, detection and correcting security risks and threats, requirements and
recovery strategies [13]. Thus, validation of the assumptions made by designers
is performed on threat modelling attached to their contextual information to
safeguard the system against unauthorized modification of data, or disclosure of
information. Deeper analysis of the security in an e-voting system relies also on
identifying assets to determine answers to questions about what the system is
designed to protect, and from whom [19]. Our modelling deals only with voters.
To target a particular system, it would therefore be necessary to integrate the dif-
ferent assets. This can be achieved by defining a set Assets in the Event-B context
of the recording phase, and all these actors will be constants included in this set.

Our development can be combined with the already realized models of
Benäıssa [3,4] that deal with the key establishment properties for the prepa-
ration phase. His works deal with the authentication properties, as well as the
key establishment goals combined with the attacker’s knowledge. The authen-
tication models can be reused as input provided from the preparation phase of
the vote to the voting phase in our development as a result via the dependency
mechanism. We can also consider the probabilistic approaches such as blind
signatures, mix nets or encryption schemes.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Jon Barwise, K.: Conditionals and conditional information. In: Traugott, E., ter
Meulen, A., Reilly, J., Ferguson, C. (eds.) On Conditionals, pp. 21–54. Cambridge
University Press, Cambridge (1986)

138 J.P. Gibson et al.

3. Benaissa, N.: Modelling attacker’s knowledge for cascade cryptographic protocols.
In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol.
5238, pp. 251–264. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87603-8 20

4. Benaissa, N., Méry, D.: Proof-based design of security protocols. In: Ablayev, F.,
Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 25–36. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13182-0 3

5. Bjorner, D.: Software Engineering 3 Domains, Requirements, and Software Design.
Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg
(2006)

6. Chiang, L.: Trust and security in the e-voting system. Electron. Gov. Int. J. 6(4),
343–360 (2009)

7. Cortier, V., Galindo, D., Glondu, S., Izabachene, M., et al.: A generic construction
for voting correctness at minimum cost-application to helios. IACR Cryptology
ePrint Arch. 2013, 177 (2013)

8. Dapoigny, R., Barlatier, P.: Modeling contexts with dependent types. Fundam.
Inform. 104(4), 293–327 (2010)

9. Paul Gibson, J., Krimmer, R., Teague, V., Pomares, J.: A review of e-voting: the
past, present and future. Ann. Telecommun. 71(7), 279–286 (2016)

10. Paul Gibson, J., Lallet, E., Raffy, J.-L.: Feature interactions in a software product
line for e-voting. In: Nakamura, M., Reiff-Marganiec, S. (eds.) Feature Interactions
in Software and Communication Systems X, pp. 91–106. IOS Press, Lisbon (2009)

11. Hoang, T.S., Furst, A., Abrial, J,-R.: Event-b patterns and their tool support.
In: International Conference on Software Engineering and Formal Methods, pp.
210–219 (2009)

12. Kherroubi, S., Méry, D.: Contextualisation et dépendance en event-B. In: Idani,
A., Kosmatov, N. (eds.) Approches Formelles dans l’Assistance au D’éveloppement
de Logiciels, AFADL 2017 (2017)

13. Kotonya, G., Sommerville, I., Engineering, R.: Processes and Techniques, 1st edn.
Wiley Publishing, Hoboken (1998)

14. Kremer, S., Ryan, M.: Analysis of an electronic voting protocol in the applied pi
calculus. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186–200. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-31987-0 14

15. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
16(3), 872–923 (1994)

16. Leavens, G.T., Abrial, J.-R., Batory, D.S., Butler, M.J., Coglio, A., Fisler, K.,
Hehner, E.C.R., Jones, C.B., Miller, D., Peyton Jones, S.L., Sitaraman, M., Smith,
D.R., Stump, A.: Roadmap for enhanced languages and methods to aid verification.
In: GPCE, pp. 221–236 (2006)

17. McCarthy, J.: Notes on formalizing context. In: Proceedings of the 13th Interna-
tional Joint Conference on Artifical Intelligence - IJCAI 1993, pp. 555–560, Morgan
Kaufmann Publishers Inc, San Francisco (1993)

18. Méry, D., Poppleton, M.: Towards an integrated formal method for verification of
liveness properties in distributed systems. Softw. Syst. Model. (SoSyM) (2015)

19. Myagmar, S., Lee, A.J., Yurcik, W.: Threat modeling as a basis for security
requirements. In: Symposium on Requirements Engineering for Information Secu-
rity (SREIS). IEEE, August 2005

http://dx.doi.org/10.1007/978-3-540-87603-8_20
http://dx.doi.org/10.1007/978-3-642-13182-0_3
http://dx.doi.org/10.1007/978-3-540-31987-0_14

Weak Simulation Quasimetric
in a Gossip Scenario

Ruggero Lanotte1, Massimo Merro2, and Simone Tini1(B)

1 Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, Como, Italy
simone.tini@uninsubria.it

2 Dipartimento di Informatica, Università degli Studi di Verona, Verona, Italy

Abstract. We propose the notion of weak simulation quasimetric as the
quantitative counterpart of weak simulation for probabilistic processes.
This is an asymmetric variant of the weak bisimulation metric of Deshar-
nais et al. which maintains most of the properties of the original defini-
tion. However, our asymmetric version is particularly suitable to reason
on protocols where the systems under consideration are not approxi-
mately equivalent. As a main application, we adopt our simulation the-
ory in a simple probabilistic timed process calculus to derive an algebraic
theory to evaluate the performances of gossip protocols.

1 Introduction

Behavioural semantics, such as preorders and equivalences, provide formal instru-
ments to compare the behaviour of probabilistic systems [16]. Preorders allow us
to determine whether a system can mimic the stepwise behaviour of another
system; whereas equivalences require a sort of mutual simulation between two
systems. The most prominent examples are the simulation preorder and the
bisimulation equivalence [22,25]. Since probability values usually originate from
observations (statistical sampling) or from requirements (probabilistic specifi-
cation), both preorders and equivalences are only partially satisfactory as they
can only say whether a system can mimic another one. Any tiny variation of
the probabilistic behaviour of a system will break the preorder (resp. equiv-
alence) without any further information. In practice, many system implemen-
tations can only approximate the system specification; thus, the verification of
such implementations requires appropriate instruments to measure the quality of
the approximation. To this end, metric semantics [4,6,9] have been successfully
employed to formalise the behavioural distance between two systems.

Since metric semantics are inherently symmetric, they can be applied only
when dealing with systems which are approximately equivalent. In this paper,
we propose the notion of weak simulation quasimetric which is the asymmetric
counterpart of the weak bisimulation metric [10], and the quantitative analogous
of the weak simulation preorder [1,2]. We use the definition of weak simulation
quasimetric to derive a definition of weak simulation with tolerance p ∈ [0, 1]

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Bouajjani and A. Silva (Eds.): FORTE 2017, LNCS 10321, pp. 139–155, 2017.
DOI: 10.1007/978-3-319-60225-7 10

140 R. Lanotte et al.

between two probabilistic systems; being 0 and 1 the minimum and the maximum
tolerance, respectively. Thus, we will write S �p S′ if the system S′ is able to
simulate the stepwise behaviour of the system S with a tolerance (or distance)
p: for p = 0 the two systems are weakly similar in standard manner, while for
p = 1 they are potentially unrelated.

Our weak simulation with tolerance is suitable for compositional reason-
ings. The compositionality of a behavioural semantics with respect to the par-
allel operator is fundamental when reasoning on large-scale systems. Several
quantitative analogous of the well-known notions of precongruence (and con-
gruence) have been proposed [10,12] to ensure that systems are approximately
inter-substitutable. We prove that weak simulation with tolerance matches one
of the strongest one, namely non-expansiveness:

S1 �p1 S′
1 and S2 �p2 S′

2 entails S1 | S2 �p1+p2 S′
1 | S′

2 .

As (non-trivial) case study, we apply our simulation theory to study and esti-
mate the performance of gossip networks for Wireless Sensor Networks (WSNs).

Gossip protocols [17] rely on algorithms to deliver data packets in a network
from a source to a destination. They address some critical problems of flooding,
where each node that receives a message propagates it to all its neighbours by
broadcast. The goal of gossip protocols is to reduce the number of retransmissions
by making some of the nodes discard the message instead of forwarding it. Gossip
protocols exhibit both nondeterministic and probabilistic behaviour. Nondeter-
minism arises as they deal with distributed networks in which the activities of
individual nodes occur nondeterministically. As to the probabilistic behaviour,
nodes are required to forward packets with a pre-specified gossip probability
pgsp. When a node receives a message, rather than immediately retransmitting
it as in flooding, it relies on the probability pgsp to determine whether or not
to retransmit. The main benefit is that when pgsp is sufficiently large, the entire
network receives the broadcast message with very high probability, even though
only a nondeterministic subset of nodes has forwarded the message.

In this paper, we rely on our simulation with tolerance to develop an algebraic
theory for a simple probabilistic distributed timed calculus [5,19,23,24] which
is particularly suitable to represent gossip networks. Our algebraic theory is
also compositional as it allows us to join, and sometime merge, the tolerances of
different sub-networks with different behaviours. Last but not least, our algebraic
theory can be easily mechanised. In this extended abstract proofs are omitted.

2 A Probabilistic Timed Process Calculus

In Table 1 we define the syntax of the Probabilistic Timed Calculus for Wireless
Systems [19], pTCWS, in a two-level structure, a lower one for processes, ranged
over by letters P , Q and R, and an upper one for networks, ranged over by
letters M , N , and O. We use letters m,n, . . . for logical names; greek symbols
μ, ν, ν1, . . . for sets of names; x, y, z for variables; u for values, and v and w

Weak Simulation Quasimetric in a Gossip Scenario 141

Table 1. Syntax

Networks:
M, N ::= 0 empty network

M1 | M2 parallel composition

n[P]ν node

Dead stucking network

Processes:
P, Q ::= nil termination

!〈u〉.C broadcast

�?(x).C�D receiver with timeout

τ.C internal

σ.C sleep

X process variable

fixX.P recursion

Probabilistic Choice:
C, D ::= i∈I pi:Pi

for closed values, i.e. values that do not contain variables. Then, we use pi for
probability weights, hence pi ∈ [0, 1].

A network in pTCWS is a (possibly empty) collection of nodes (which represent
devices) running in parallel and using a common radio channel to communicate
with each other. Nodes are unique; i.e. a node n can occur in a network only
once. All nodes are assumed to have the same transmission range. The com-
munication paradigm is local broadcast ; only nodes located in the range of the
transmitter may receive data. We write n[P]ν for a node named n (the device
network address) executing the sequential process P . The set ν contains (the
names of) the neighbours of n. Said in other words, ν contains all nodes laying
in the transmission cell of n (except n). In this manner, we model the network
topology. Our wireless networks have a fixed topology. Moreover, nodes cannot
be created or destroyed. Finally, we write Dead to denote a deadlocked network
which prevents the execution of parallel components. This is a fictitious net-
work which is introduced for technical convenience (see Definition 9) and not for
specifying gossip protocols.

Processes are sequential and live inside the nodes. The symbol nil denotes
terminated processes. The sender process !〈v〉.C broadcasts the value v, the
continuation being C. The process �?(x)C�D denotes a receiver with timeout.
Intuitively, this process either receives a value v, in the current time interval, and
then continues as C where the variable x is instantiated with v, or it idles for one
time unit, and then continues as D. The process τ.C performs an internal action
and then continues as C. The process σ.C models sleeping for one time unit. In
processes of the form σ.D and �?(x)C�D the occurrence of D is said to be time-
guarded. The process fixX.P denotes time-guarded recursion, as all occurrences
of the process variable X may only occur time-guarded in P . With an abuse of

142 R. Lanotte et al.

notation, we will write ?(x).C as an abbreviation for fixX.�?(x)C�(1:X), where
the process variable X does not occur in C.

The construct
⊕

i∈I pi:Pi denotes probabilistic choice, where I is a finite,
non-empty set of indexes, and pi ∈ (0, 1] denotes the probability to execute the
process Pi, with

∑
i∈I pi = 1. Notice that, as in [8], in order to simplify the

operational semantics, probabilistic choices occur always underneath prefixing.
In processes of the form �?(x)C�D the variable x is bound in C. Similarly,

in process fixX.P the process variable X is bound in P . This gives rise to the
standard notions of free (process) variables and bound (process) variables and
α-conversion. We identify processes and networks up to α-conversion. A process
(resp. probabilistic choice) is said to be closed if it does not contain free (process)
variables. We always work with closed processes (resp. probabilistic choices): the
absence of free variables is trivially maintained at run-time. We write {v/x}P
(resp. {v/x}C) for the substitution of the variable x with the value v in the
process P (resp. probabilistic choice C). Similarly, we write {P/X}Q for the
substitution of the process variable X with the process P in Q.

We report some notational conventions .
∏

i∈I Mi denotes the parallel com-
position of all Mi, for i ∈ I. We write P1 ⊕p P2 for the probabilistic process
p:P1 ⊕ (1−p):P2. We identify 1:P with P . We write !〈v〉 as an abbreviation for
!〈v〉.1:nil. For k > 0 we write σk.P as an abbreviation for σ. . . . σ.P , where prefix
σ appears k times. Given a network M , nds(M) returns the names of M . If
m ∈ nds(M), the function ngh(m,M) returns the set of the neighbours of m
in M . Thus, for M = M1|m[P]ν |M2 it holds that ngh(m,M) = ν. We write
ngh(M) for

⋃
m∈nds(M) ngh(m,M).

Definition 1. The structural congruence over pTCWS, written ≡, is defined as
the smallest equivalence relation over networks, preserved by parallel composi-
tion, which is a commutative monoid with respect to parallel composition with
neutral element 0, and for which n[fixX.P]ν ≡ n[{fixX.P/X}P]ν .

The syntax presented in Table 1 allows us to derive networks which are some-
how ill-formed. With the following definition we rule out networks: (i) where
nodes can be neighbours of themselves; (ii) with two different nodes with the
same name; (iii) with non-symmetric neighbouring relations. Finally, in order to
guarantee clock synchronisation among nodes, we require network connectivity.

Definition 2 (Well-formedness). A network M is said to be well-formed
if (i) whenever M ≡ M1 | m[P1]

ν it holds that m
∈ ν; (ii) whenever M ≡
M1 | m1[P1]

ν1 | m2[P2]
ν2 it holds that m1
= m2; (iii) whenever M ≡ N |

m1[P1]
ν1 | m2[P2]

ν2 we have m1 ∈ ν2 iff m2 ∈ ν1; (iv) for all m,n ∈ nds(M)
there are m1, . . . ,mk ∈ nds(M), s.t. m=m1, n=mk, and mi ∈ ngh(mi+1,M) for
1≤ i≤k−1.

Henceforth, we will always work with well-formed networks.

2.1 Probabilistic Labelled Transition Semantics

Along the lines of [8], we propose an operational semantics for pTCWS associating
with each network a graph-like structure representing its possible evolutions: we

Weak Simulation Quasimetric in a Gossip Scenario 143

use a generalisation of labelled transition systems that includes probabilities.
Below, we report the mathematical machinery for doing that.

Definition 3. A (discrete) probability sub-distribution over a finite set S is a
function Δ : S → [0, 1] with

∑
s∈S Δ(s) ∈ (0, 1]. We denote

∑
s∈S Δ(s) by |Δ|.

The support of a probability sub-distribution Δ is given by Δ� = {s ∈ S :
Δ(s) > 0}. We write Dsub(S), ranged over Δ, Θ, Φ, for the set of all probability
sub-distributions over S with finite support. A probability sub-distribution Δ ∈
Dsub(S) is said to be a probability distribution if

∑
s∈S Δ(s) = 1. With D(S) we

denote the set of all probability distributions over S with finite support. For any
s ∈ S, the point (Dirac) distribution at s, denoted s, assigns probability 1 to s
and 0 to all others elements of S, so that s� = {s}.

Let I be a finite index such that (i) Δi is a sub-distribution in Dsub(S) for
each i ∈ I, and (ii) pi ≥ 0 are probabilities such that

∑
i∈I pi ∈ (0, 1]. Then, the

probability sub-distribution
∑

i∈I pi · Δi ∈ Dsub(S) is defined as:

(
∑

i∈I

pi · Δi)(s)
def=

∑

i∈I

pi · Δi(s)

for all s ∈ S. We write a sub-distribution as p1 · Δ1 + . . . + pn · Δn when the
index set I is {1, . . . , n}. Sometimes, with an abuse of notation, in the previ-
ous decomposition we admit that the terms Δi are not necessarily distinct (for
instance 1 · Δ may be rewritten as p · Δ + (1−p) · Δ, for any p ∈ [0, 1]). In the
following, we will often write

∑
i∈I piΔi instead of

∑
i∈I pi · Δi.

Definitions 1 and 2 generalise to sub-distributions in Dsub(pTCWS). Given two
sub-distributions Δ and Θ, we write Δ ≡ Θ if Δ([M]≡) = Θ([M]≡) for all
equivalence classes [M]≡ ⊆ pTCWS. A sub-distribution Δ ∈ Dsub(pTCWS) is said
to be well-formed if its support contains only well-formed networks.

We now give the probabilistic generalisation of labelled transition systems.

Definition 4 (Probabilistic LTS). A probabilistic labelled transition system
(pLTS) is a triple 〈S,L,→〉 where (i) S is a set of states; (ii) L is a set of transition
labels; (iii) → is a labelled transition relation contained in S × L × D(S).

The operational semantics of pTCWS is given by a particular pLTS 〈pTCWS,L,→〉,
where L = {m!v	μ,m?v, τ, σ} contains the labels denoting broadcasting, recep-
tion, internal actions and time passing, respectively. The definition of the rela-
tions λ−→, for λ ∈ L, is given by the SOS rules in Table 2. Some of these rules use
an obvious notation for distributing parallel composition over a sub-distribution:
(Δ | Θ)(M) = Δ(M1) · Θ(M2) if M = M1|M2; (Δ | Θ)(M) = 0 otherwise.

Furthermore, the definition of the labelled transition relation relies on a
semantic interpretation of (nodes containing) probabilistic processes in terms
of probability distributions over networks.

Definition 5. For any probabilistic choice
⊕

i∈I pi:Pi over a finite index set I,
we write [[n[

⊕
i∈I pi:Pi]

μ]] to denote the probability distribution
∑

i∈I pi·n[Pi]
μ.

144 R. Lanotte et al.

Table 2. Probabilistic labelled transition system

(Snd)
−

m[!〈v〉.C]ν
m!v�ν−−−−−−→ m[C]ν

(Rcv)
m ∈ ν

n[�?(x).C�D]ν
m?v−−−−→ n[{v/x}C]ν

(Rcv-0)
−

0
m?v−−−−→ 0

(RcvEnb)
¬(m ∈ ν ∧ rcv(P)) ∧ m 	= n

n[P]ν
m?v−−−−→ n[P]ν

(RcvPar)
M

m?v−−−−→ Δ N
m?v−−−−→ Θ

M | N
m?v−−−−→ Δ | Θ

(Bcast)
M

m!v�ν−−−−−−→ Δ N
m?v−−−−→ Θ μ:=ν\nds(N)

M | N
m!v�μ−−−−−−→ Δ | Θ

(Tau)
−

m[τ.C]ν
τ−−→ m[C]ν

(TauPar)
M

τ−−→ Δ N 	= Dead
M | N

τ−−→ Δ | N

(σ-0)
−

0
σ−−→ 0

(Timeout)
−

n[�?(x).C�D]ν
σ−−→ n[D]ν

(σ-nil)
−

n[nil]ν
σ−−→ n[nil]ν

(Sleep)
−

n[σ.C]ν
σ−−→ n[C]ν

(σ-Par)
M

σ−−→ Δ N
σ−−→ Θ

M | N
σ−−→ Δ | Θ

(Rec)
n[{fix X.P/X}P]ν

λ−−→ Δ

n[fixX.P]ν
λ−−→ Δ

Let us comment on the most significant rules of Table 2. In rule (Snd) a node
m broadcasts a message v to its neighbours ν, the continuation being the prob-
ability distribution associated to C. In the label m!v	ν the set ν denotes the
neighbours of m. In rule (Rcv) a node n gets a message v from a neighbour node
m, the continuation being the distribution associated to {v/x}C. If no message is
received in the current time interval then the node n will continue according to D,
as specified in rule (Timeout). Rules (Rcv-0) and (RcvEnb) serve to model recep-
tion enabling for synchronisation purposes. For instance, rule (RcvEnb) regards
nodes n which are not involved in transmissions originating from m. This may
happen either because the two nodes are out of range (i.e. m
∈ ν) or because
n is not willing to receive (rcv(P) is a boolean predicate that returns true if
n[P]ν ≡ n[�?(x)C�D]ν , for some x, C, D). In both cases, node n is not affected
by the transmission. Rule (Bcast) models broadcast of messages. Note that we
loose track of those transmitter’s neighbours that are in N . Rule (Sleep) models
sleeping for one time unit. Rule (σ-Par) models time synchronisation between
parallel components. Rules (Bcast) and (TauPar) have their symmetric counter-
parts which are not reported in the table. Finally, note that the semantics of
the network Dead is different from that of 0: the network Dead does not perform
any action and does prevent the evolution of any parallel component.

Extensional Labelled Transition Semantics. Our focus is on weak similar-
ities, which abstract away non-observable actions, i.e. those actions that cannot
be detected by a parallel network. The adjective extensional is used to stress

Weak Simulation Quasimetric in a Gossip Scenario 145

that those activities require a contribution of the environment. To this end, we
extend Table 2 by the following two rules:

(ShhSnd) M
m!v�∅−−−−→ Δ

M
τ−→ Δ

(ObsSnd)
M

m!v�ν−−−−→ Δ ν
= ∅
M

!v�ν−−−→ Δ

Rule (ShhSnd) models transmissions that cannot be observed because there is no
potential receiver outside the network M . Rule (ObsSnd) models transmissions
that can be observed by those nodes of the environment contained in ν. Notice
that the name of the transmitter is removed from the label. This is motivated by
the fact that receiver nodes do not have a direct manner to observe the identity of
the transmitter. On the other hand, a network M performing the action m?v can
be observed by an external node m which transmits the value v to an appropriate
set of nodes in M . Notice that the action !v	ν does not propagate over parallel
components (there is no rule for that). As a consequence, the Rule (ObsSnd) can
only be applied to the whole network, never in a sub-network.

In the rest of the paper, the metavariable α will range over the following four
kinds of actions: !v	ν, m?v, σ, τ . They denote anonymous broadcast to specific
nodes, message reception, time passing, and internal activities, respectively.

3 Weak Simulation Up to Tolerance

In this section, we introduce weak simulation quasimetrics as an instrument to
derive a notion of approximate simulation between networks. Our goal is to define
a family of relations �p over networks, with p ∈ [0, 1], to formalise the concept
of simulation with a tolerance p. Intuitively, we will write M �p N if N can
simulate M with a tolerance p. Thus, �0 will coincide with the standard weak
probabilistic simulation [1,2], whereas �1 should be equal to pTCWS × pTCWS.

In a probabilistic setting, the definition of weak transition is somewhat com-
plicated by the fact that (strong) transitions take processes (in our case net-
works) to distributions; consequently if we are to use weak transitions α=⇒, which
abstract away from non-observable actions, then we need to generalise transi-
tions, so that they take (sub-)distributions to (sub-)distributions.

For a network M and a distribution Δ, we write M
τ̂−→ Δ if either M

τ−→ Δ

or Δ = M . Then, for α
= τ , we write M
α̂−→ Δ if M

α−→ Δ. Relation α̂−→ is
extended to model transitions from sub-distributions to sub-distributions. For a
sub-distribution Δ =

∑
i∈I piMi, we write Δ

α̂−→ Θ if there is a set J ⊆ I such

that Mj
α̂−→ Θj for all j ∈ J , Mi
α̂−→, for all i ∈ I \ J , and Θ =

∑
j∈J pjΘj . Note

that if α
= τ then this definition admits that only some networks in the support
of Δ make the α̂−→ transition. Then, we define τ̂=⇒= (τ̂−→)∗, while for α
= τ we
let α̂=⇒ denote τ̂=⇒ α̂−→ τ̂=⇒.

In order to define our notion of simulation with tolerance, we adapt the con-
cept of weak bisimulation metric of Desharnais et al.’s [10]. In [10], the behav-
ioural distance between systems is measured by means of suitable pseudometrics,

146 R. Lanotte et al.

namely symmetric functions assigning a numeric value to any pair of systems.
Here, we define asymmetric variants, called pseudoquasimetrics, measuring the
tolerance of the simulation between networks. Both approaches require the lift-
ing of these functions to distributions. In [10], this is realised by means of linear
programs, relying on the symmetry of pseudometrics. Since pseudoquasimetrics
are not symmetric, we need a different technique. Thus, to this end, we adopt
the notions of matching [26] and Kantorovich lifting [7].

Definition 6 (Pseudoquasimetric). A function d : pTCWS×pTCWS → [0, 1] is
a 1-bounded pseudoquasimetric over pTCWS if (i)d(M,M) = 0 for all M ∈ pTCWS,
and (ii) d(M,N) ≤ d(M,O) + d(O,N) for all M,N,O ∈ pTCWS.

Definition 7 (Matching). Given a pair of distributions (Δ,Θ) ∈ D(pTCWS)×
D(pTCWS), a matching of (Δ,Θ) is a distribution ω ∈ D(pTCWS× pTCWS) s.t.: (i)∑

N∈pTCWS ω(M,N) = Δ(M), for all M∈pTCWS, and (ii)
∑

M∈pTCWS ω(M,N) =
Θ(N), for all N ∈ pTCWS. Ω(Δ,Θ) denotes the set of all matchings for (Δ,Θ).

A matching for (Δ,Θ) may be understood as a transportation schedule for
the shipment of probability mass from Δ to Θ [26].

Definition 8 (Kantorovich lifting). Let d : pTCWS × pTCWS → [0, 1]
be a pseudoquasimetric. The Kantorovich lifting of d is the function
K(d) : D(pTCWS) × D(pTCWS) → [0, 1] defined as:

K(d)(Δ,Θ) def= minω∈Ω(Δ,Θ)

∑

M,N∈pTCWS
ω(M,N) · d(M,N).

Note that since we are considering only distributions with finite support, the
minimum over the set of matchings Ω(Δ,Θ) is well defined.

Definition 9 (Weak simulation quasimetric). We say that a pseudoqua-
simetric d : pTCWS × pTCWS → [0, 1] is a weak simulation quasimetric if for all
networks M,N ∈ pTCWS, with d(M,N) < 1, whenever M

α−→ Δ there is a sub-
distribution Θ such that N

α̂=⇒Θ and K(d)(Δ , Θ + (1− |Θ|)Dead) ≤ d(M,N).

In the previous definition, if |Θ|< 1 then, with probability 1− |Θ|, there is no
way to simulate the behaviour of any network in the support of Δ (the special
network Dead does not perform any action).

As expected, the kernel of a weak simulation quasimetric is a weak proba-
bilistic simulation [1,2].

Proposition 1. Let d be a weak simulation quasimetric. The binary relation
{(M,N) : d(M,N) = 0} ⊆ pTCWS × pTCWS is a weak probabilistic simulation.

A crucial result in our construction process is the existence of the minimal
weak simulation quasimetric, which can be viewed as the asymmetric counterpart
of the minimal weak bisimulation metric [10].

Theorem 1. There is a weak simulation quasimetric d s.t. d(M,N) ≤ d(M,N)
for all weak simulation quasimetrics d and all networks M,N ∈ pTCWS.

Now, we have all ingredients to define our simulation with tolerance p.

Weak Simulation Quasimetric in a Gossip Scenario 147

Definition 10 (Weak simulation with tolerance). Let p ∈ [0, 1], we say
that N simulates M with tolerance p, written M �p N , iff d(M,N) = q, for
some q ≤ p. We write M �p N if both M �p N and N �p M .

Since the minimum weak simulation quasimetric d satisfies the triangle
inequality, our simulation relation is trivially transitive in an additive sense:

Proposition 2 (Transitivity). M �p N and N �q O imply M �p+q O.

As expected, if M
τ̂=⇒ Δ then M can simulate all networks in Δ�.

Proposition 3. If M
τ̂=⇒ (1−q)N +qΔ, for some Δ ∈ D(pTCWS), then N �q M .

Clearly the transitivity property is quite useful when doing algebraic reason-
ing. However, we can derive a better tolerance when concatenating two simula-
tions, if one of them is derived by an application of Proposition 3.

Proposition 4. If M �p N and O
τ̂=⇒(1 − q)N + qΔ, for some Δ ∈ D(pTCWS),

then M �p(1−q)+q O.

Intuitively, in the simulation between M and N the tolerance p must be weighted
by taking into consideration that O may evolve into N with a probability (1−q).

In order to understand the intuition behind our weak simulation with toler-
ance, we report here a few simple algebraic laws (we recall that 1:P = P).

Proposition 5 (Simple algebraic laws).

1. n[P]μ �1−p n[τ.(P ⊕p Q)]μ

2. n[Q]μ �r n[τ.(τ.(P ⊕q Q) ⊕p R)]μ, with r = (1 − p) + pq

3. n[!〈v〉.(τ.(P ⊕q τ.P) ⊕p Q
)
]μ �0 n[!〈v〉.(P ⊕p τ.Q)]μ

4. n[!〈v〉.!〈w〉]μ �r n[τ.
(
!〈v〉.τ.(!〈w〉 ⊕q P) ⊕p Q

)
]μ, with r = 1 − pq.

The first law is straightforward. The second law is a generalisation of the first
one where the right-hand side must resolve two probabilistic choices in order to
simulate the left-hand side. The third law is an adaptation of the CCS tau-law
τ.P = P in a distributed and probabilistic setting. Similarly, the fourth law
reminds a probabilistic and distributed variant of the tau-law a.(τ.(P + τ.Q)) +
a.Q = a.(P + τ.Q). This law gives an example of a probabilistic simulation
involving sequences of actions.

A crucial property of our simulation is the possibility to reason on parallel
networks in a compositional manner. Thus, if M1 �p1 N1 and M2 �p2 N2 then
M1 | M2 �p N1 | N2 for some p depending on p1 and p2; the intuition being that
if one fixes the maximal tolerance p between M1 | M2 and N1 | N2, then there
are tolerances pi between Mi and Ni ensuring that the tolerance p is respected.
Following this intuition, several compositional criteria for bisimulation metrics
can be found in the literature [10,12–15]. Here, we show that our weak simulation
with tolerance complies with non-expansiveness: one of the strongest criteria,
requiring p ≤ p1 + p2.

148 R. Lanotte et al.

Theorem 2 (Non-expansiveness law). M1 �p1 N1 and M2 �p2 N2 entails
M1 | M2 �p1+p2 N1 | N2.

Another useful property is that a network is simulated by a probabilistic
choice whenever it is simulated by all components.

Proposition 6 (Additive law). Let M �si
n[Pi]

μ|N , for all i ∈ I, with I a
finite index set. Then, M �r n[τ.

⊕
i∈I pi:Pi]

μ | N , for r =
∑

i∈I pisi.

Finally, we report a number of algebraic laws that will be useful in the next
section when analysing gossip protocols.

Proposition 7 (Further algebraic laws).

1. n[σk.nil]μ �0 n[nil]μ

2.
∏

i∈I mi[Pi]
μi �r

∏
j∈J nj[Qj]

νj entails
∏

i∈I mi[σ.Pi]
μi �r

∏
j∈J nj[σ.Qj]

νj

3. n[?(x).C]μ �0 n[σ.?(x).C]μ, if nodes in μ do not send in the current round
4. m[nil]μ|∏i∈I ni[Pi]

μi �0 m[τ.(!〈v〉 ⊕p nil)]μ|∏i∈I ni[Pi]
μi if μ ⊆ ⋃

i∈I ni,
and for all ni ∈ μ it holds that Pi
= �?(x)C�D.

Intuitively: (1) nil does not prevent time passing; (2) equalities are preserved
underneath σ prefixes; (3) receptions will timeout if there are not senders around;
(4) broascast has no effect if there are not receivers around.

4 A Case Study: Reasoning on Gossip Protocols

The baseline model for our case study is gossiping without communication colli-
sions, where all nodes are perfectly synchronised. For the sake of clarity, commu-
nication proceeds in synchronous rounds: a node can transmit or receive only one
message per round. In our implementation, rounds are separated by σ-actions.

The processes involved in the protocol are the following:

snd〈u〉pg

def= τ.(!〈u〉 ⊕pg nil) fwdpg

def= ?(x).resnd〈x〉pg resnd〈u〉pg

def= σ.snd〈u〉pg .

A sender broadcasts with a gossip probability pg, whereas a forwarder rebroad-
casts the received value, in the subsequent round, with the same probability.

We apply our simulation theory to develop algebraic reasonings on message
propagation. As an introductory example, let us consider a fragment of a network
with two sender nodes, m1 and m2, and two forwarder nodes, n1 and n2 which
are both neighbours of m1 and m2. Then, the following holds:

m1[snd〈u〉p1]
ν | m2[snd〈u〉p2]

ν | n1[fwdq]
ν1 | n2[fwdr]

ν2 �s

m1[nil]
ν | m2[nil]

ν | n1[resnd〈u〉q]
ν1 | n2[resnd〈u〉r]

ν2

with tolerance s = (1 − p1)(1 − p2). Here, the network on the left-hand-side
evolves by performing two τ -actions (via rule (ShhSnd)). Thus, the algebraic law
follows by an application of Proposition 3 being 1 − s the probability that the
message u is broadcast to both forwarders.

This simple law can be generalised to an arbitrary number of senders and
forwarders, under the hypothesis that parallel contexts are unable to receive
messages in the current round. The following theorem relies on Proposition 3.

Weak Simulation Quasimetric in a Gossip Scenario 149

Theorem 3 (Message propagation). Let I and J be pairwise disjoint sub-
sets of N. Let M be a well-formed network defined as

M ≡ N
∣
∣

∏

i∈I
mi[snd〈v〉pi

]νmi
∣
∣

∏

j∈J
nj[fwdqj]

νnj

such that, for all i ∈ I:

– {nj : j ∈ J} ⊆ νmi
⊆ nds(M), and

– the nodes in νmi
∩ nds(N) cannot receive in the current round.

Then, M r� N | ∏
i∈I mi[nil]

νmi | ∏
j∈J nj[resnd〈v〉qj]

νnj , with r=
∏

i∈I(1−pi).

Theorem 3 represents an effective tool to deal with message propagation in
gossip networks. However, it requires that all forwarders nj should be in the
neighbouring of all senders mi (constraint {nj : j ∈ J} ⊆ νmi

), which may
represent a limitation in many cases. Consider, for example, a simple gossiping
network GSP, with gossip probability p, composed by two source nodes s1 and
s2, a destination node d, and three intermediate nodes n1, n2 and n3:

GSP def=
∏2

i=1 si[snd〈v〉p]
νsi

∣
∣ ∏3

i=1 ni[fwdp]
νni

∣
∣ d[fwd1]

νd (1)

with topology νs1 = {n1}, νs2 = {n1, n2}, νn1={s1, s2, n3}, νn2={s2, n3}, νn3 =
{n1, n2, d} and n3 ∈ νd.

Here, we would like to estimate the distance between GSP, and a network
DONE, in which the message v has been delivered to the destination node d.

DONE def=
∏2

i=1 si[nil]
νsi

∣
∣ ∏3

i=1 ni[nil]
νni

∣
∣ d[σ3. snd〈v〉1]νd (2)

Unfortunately, we cannot directly apply Theorem3 to capture this message prop-
agation because node s2, unlike s1, can transmit to both n1 and n2. In this case,
before applying Theorem3, we would need a result to compose estimates of par-
tial networks. More precisely, a result which would allow us to take into account,
in the calculation of the tolerance, both the probability that a sender transmits
and the probability that the same sender does not transmit. The following result
follows from Proposition 6.

Theorem 4 (Composing networks). If M
σ−→
 then

N
∣
∣ m[snd〈v〉p]

νm
∣
∣

∏

j∈J
nj[�?(xj)Pj�Qj]

νnj
r� M

with tolerance r = ps1 + (1−p)s2, whenever

– N | m[nil]νm | ∏
j∈J nj[{v/xj

}Pj]
νnj �s1 M

– N | m[nil]νm | ∏
j∈J nj[�?(xj)Pj�Qj]

νnj �s2 M
– {nj : j ∈ J} ⊆ νm ⊆ {nj : j ∈ J} ∪ nds(N)
– nodes in νm ∩ nds(N) cannot receive in the current round.1

1 We could generalise the result to take into account more senders at the same time.
This would not add expressiveness, it would just speed up the reduction process.

150 R. Lanotte et al.

Intuitively: (i) in the network N
∣
∣ m[snd〈v〉p]

νm
∣
∣

∏
j∈J nj[�?(xj)Pj�Qj]

νnj

node m has not performed yet the τ -action that resolves the probabilistic choice
between broadcasting v or not; (ii) in N

∣
∣ m[nil]νm

∣
∣

∏
j∈J nj[{v/xj

}Pj]
νnj node

m has resolved the probabilistic choice deciding to broadcast v; (iii) finally, in
the network N

∣
∣ m[nil]νm

∣
∣ ∏

j∈J nj[�?(xj)Pj�Qj]
νnj node m has has resolved

the probabilistic choice deciding not to broadcast v.
Now, we have all algebraic tools to compute an estimation of the tolerance

r, such that GSP r� DONE. In practise, we will compute the tolerance for two
partial networks and then will use Theorem4 to compose the two tolerances.

For verification reasons we assume that the environment contains a node test ,
close to the destination node, i.e. νd = {n3, test}, to test successful gossiping.
For simplicity, the test node can receive messages but it cannot transmit.

As a first step, we compute an estimation for the network GSP in which the
sender s2 has already broadcast the message v to its neighbours n1 and n2. To
this end, we derive the following chain of similarities by applying, in sequence, (i)
Proposition 7(4), (ii) Proposition 7(3), (iii) Theorem 3 and Proposition 7(2), (iv)
Proposition 7(1) and Proposition 7(3), (v) Theorem 3 and Proposition 7(2), and
(iv) Proposition 7(1). In all steps, we have reasoned in a compositional manner,
up to common parallel components (Theorem 2).

s1[snd〈v〉p]
νs1
∣
∣ s2[nil]νs2

∣
∣
∏2

i=1 ni[resnd〈v〉p]
νni
∣
∣ n3[fwdp]

νn3
∣
∣ d[fwd1]νd

0
 ∏2
i=1 si[nil]νsi

∣
∣
∏2

i=1 ni[resnd〈v〉p]
νni
∣
∣ n3[fwdp]

νn3
∣
∣ d[fwd1]νd

0
 ∏2
i=1 si[nil]νsi

∣
∣
∏2

i=1 ni[σ.snd〈v〉p]
νni
∣
∣ n3[σ.fwdp]

νn3
∣
∣ d[σ.fwd1]νd

(1−p)2

∏2

i=1 si[nil]νsi
∣
∣
∏2

i=1 ni[σ.nil]νni
∣
∣ n3[σ.resnd〈v〉p]

νn3
∣
∣ d[σ.fwd1]νd

0
 ∏2
i=1 si[nil]νsi

∣
∣
∏2

i=1 ni[nil]νni
∣
∣ n3[σ

2. snd〈v〉p]
νn3
∣
∣ d[σ2. fwd1]νd

1−p
 ∏2
i=1 si[nil]νsi

∣
∣
∏2

i=1 ni[nil]νni
∣
∣ n3[σ

2. nil]νn3
∣
∣ d[σ2. resnd〈v〉1]νd

0
 ∏2
i=1 si[nil]νsi

∣
∣
∏3

i=1 ni[nil]νni
∣
∣ d[σ3. snd〈v〉1]νd

= DONE .

Then, by more applications of Propositions 2 and 7(1), one application of
Proposition 4, and one application of Proposition 7(2) we derive:

s1[snd〈v〉p]
νs1

∣
∣ s2[nil]

νs2
∣
∣ ∏2

i=1 ni[resnd〈v〉p]
νni

∣
∣ n3[fwdp]

νn3
∣
∣ d[fwd1]

νd

1−2p2+p3� DONE
(3)

with tolerance 1 − 2p2 + p3, obtained by solving the expression (1 − p)(1 − (1 −
p)2) + (1 − p)2.

Similarly, we compute an estimation of the tolerance which allows the net-
work GSP, in which the sender s2 did not broadcast the message v to its neigh-
bours, to simulate the network DONE. To this end, we derive the following chain
of similarities by applying, in sequence, (i) Theorem3 and Proposition 7(3), (ii)
Proposition 7(3), (iii) Theorem 3 and Proposition 7(2), (iv) Proposition 7(1) and
(3), (v) Theorem 3 and Proposition 7(2), and (vi) Propositions 7(1) and (4). In
all steps, we have reasoned up to common parallel components (Theorem 2).

Weak Simulation Quasimetric in a Gossip Scenario 151

s1[snd〈v〉p]
νs1
∣
∣ s2[nil]νs2

∣
∣
∏3

i=1 ni[fwdp]
νni
∣
∣ d[fwd1]νd

1−p
 ∏2
i=1 si[nil]νsi

∣
∣ n1[resnd〈v〉p]

νn1
∣
∣
∏3

i=2 ni[fwdp]
νni
∣
∣ d[fwd1]νd

0
 ∏2
i=1 si[nil]νsi

∣
∣ n1[σ.snd〈v〉p]

νn1
∣
∣
∏3

i=2 ni[σ.fwdp]
νni
∣
∣ d[σ.fwd1]νd

1−p
 ∏2
i=1 si[nil]νsi

∣
∣ n1[σ.nil]νn1

∣
∣ n2[σ.fwdp]

νn2
∣
∣ n3[σ.resnd〈v〉p]

νn3
∣
∣ d[σ.fwd1]νd

0
 ∏2
i=1 si[nil]νsi

∣
∣ n1[nil]νn1

∣
∣ n2[σ

2. fwdp]
νn2
∣
∣ n3[σ

2. snd〈v〉p]
νn3
∣
∣ d[σ2. fwd1]νd

1−p
 ∏2
i=1 si[nil]νsi

∣
∣ n1[nil]νn1

∣
∣ n2[σ

2. resnd〈v〉p]
νn2
∣
∣ n3[σ

2.]νn3
∣
∣ d[σ2. resnd〈v〉1]νd

0
 ∏2
i=1 si[nil]νsi

∣
∣
∏3

i=1 ni[nil]νni
∣
∣ d[σ3.snd〈v〉1]νd

= DONE .

Then, by more applications of Propositions 2 and 7(1), one application of
Proposition 4, and one application of Proposition 7(2) we derive:

s1[snd〈v〉p]
νs1

∣
∣ s2[nil]

νs2
∣
∣

∏3
i=1 ni[fwdp]

νni
∣
∣ d[fwd1]

νd
1−p3� DONE . (4)

Finally, we can apply Theorem4 to (3) and (4) to derive the following esti-
mation for the tolerance:

GSP 1−(3p3−2p4)� DONE

Since the tolerance is 1− (3p3 −2p4), it follows that the gossip network GSP will
succeed in propagating the messages to the destination d, with probability at
least 3p3−2p4. Thus, for instance, for a gossip probability p = 0.8 the destination
will receive the message with probability 0.716, with a margin of 10%. For p =
0.85 the probability at the destination increases to 0.798, with a margin of 6%;
while for p = 0.9 the probability at destination rises to 0.88, with a difference of
only 2%. So, p = 0.9 can be considered the threshold of our small network.2

Note that in the previous example both messages may reach the destination
node in exactly three rounds. However, more generally, we could have different
message propagation paths in the same network which might take a different
amount of time to be traversed. The algebraic tools we developed up to now do
not allow us to deal with paths of different lengths.

As an example, we would like to estimate the distance between the network

GSP2
def= s1[snd〈v〉1]νs1

∣
∣ s2[snd〈v〉p]

νs2
∣
∣ n[fwdp]

νn
∣
∣ d[fwd1]

νd

with topology νs1 = {d}, νs2 = {n}, νn={s2, d} and νd = {s1, n, test}, and the
networks defined as follows:

DONE2
def= s1[nil]

νs1
∣
∣ s2[nil]

νs2
∣
∣ n[nil]νn

∣
∣ d[τ.(σ.snd〈v〉1 ⊕p σ2.snd〈v〉1)]νd

in which the message v propagated up to the destination node d following two
different paths. Thus, d will probabilistically choose between broadcasting v after
one or two rounds.

The following result provide the missing instrument.

2 Had we had more senders we would have estimated a better threshold.

152 R. Lanotte et al.

Theorem 5 (Composing paths). Let M be a well-formed network. Then,

M
∣
∣ m[τ.

⊕

i∈I

pi:Qi]
νm

r�
∏

j∈J
nj[nil]

νnj
∣
∣ d[τ.

⊕

i∈I

pi:Pi]
νd

with r =
∑

i∈I pisi, whenever:

– M | m[Qi]
νm

si
� ∏

j∈J nj[nil]
νnj | d[Pi]

νd , for any i ∈ I;
– νm ⊆ nds(M).

As a first step, we compute an estimation of the tolerance which allows GSP2

to simulate the first probabilistic behaviour of DONE2. To this end, we derive
the following chain of similarities by applying, in sequence, (i) Theorem3, (ii)
again Theorem 3, (iii) Propositions 7(2) and (4). In all steps, we reason up to
parallel components (Theorem 2).

s1[snd〈v〉1]νs1
∣
∣ s2[snd〈v〉p]

νs2
∣
∣ n[fwdp]

νn
∣
∣ d[fwd1]

νd

0� s1[nil]
νs1

∣
∣ s2[snd〈v〉1]νs2

∣
∣ n[fwdp]

νn
∣
∣ d[resnd〈v〉1]νd

1−p� s1[nil]
νs1

∣
∣ s2[nil]

νs2
∣
∣ n[resnd〈v〉p]

νn
∣
∣ d[resnd〈v〉1]νd

0� s1[nil]
νs1

∣
∣ s2[nil]

νs2
∣
∣ n[nil]νn

∣
∣ d[σ.snd〈v〉1]νd .

By an application of Proposition 2 we derive:

s1[snd〈v〉1]νs1
∣
∣ s2[snd〈v〉p]

νs2
∣
∣ n[fwdp]

νn
∣
∣ d[fwd1]

νd

1−p� s1[nil]
νs1

∣
∣ s2[nil]

νs2
∣
∣ n[nil]νn

∣
∣ d[σ.snd〈v〉1]νd .

(5)

Then, we compute an estimation of the tolerance which allows the network
GSP2 to simulate the second probabilistic behaviour of DONE2. To this end, we
derive the following chain of similarities by applying, in sequence, (i) Theorem3,
(ii) Theorem 3 again, Proposition 7(1), (2) and (3). Again, in all steps, we have
reasoned up to parallel components (Theorem 2).

s1[nil]
νs1

∣
∣ s2[snd〈v〉p]

νs2
∣
∣ n[fwdp]

νn
∣
∣ d[fwd1]

νd

1−p� s1[nil]
νs1

∣
∣ s2[nil]

νs2
∣
∣ n[resnd〈v〉p]

νn
∣
∣ d[fwd1]

νd

1−p� s1[nil]
νs1

∣
∣ s2[nil]

νs2
∣
∣ n[nil]νn

∣
∣ d[σ2.snd〈v〉1]νd .

Then, by more applications of Proposition 2 and one application of
Proposition 4 we derive:

s1[nil]
νs1

∣
∣ s2[snd〈v〉p]

νs2
∣
∣ n[fwdp]

νn
∣
∣ d[fwd1]

νd

1−p2� s1[nil]
νs1

∣
∣ s2[nil]

νs2
∣
∣ n[nil]νn

∣
∣ d[σ2.snd〈v〉1]νd .

(6)

Finally, we can apply Theorem5 to (5) and (6) to derive

GSP2 r� DONE2

with r = p(1 − p) + (1 − p)(1 − p2). Thus, the network GSP2 will succeed in
transmitting both messages v to the destination d, with probability at least 1−r.

We conclude by observing that, in order to deal with paths of different length,
one should apply Theorem5 for all possible paths.

Weak Simulation Quasimetric in a Gossip Scenario 153

5 Conclusions, Related and Future Work

We have introduced the notion of weak simulation quasimetric as a means to
define weak simulation with tolerance, i.e. a compositional simulation theory
to express that a probabilistic system may be simulated by another one with
a given tolerance measuring the distance between the two systems. Basically,
weak simulation quasimetric is the asymmetric counterpart of weak bisimulation
metric [10], and the quantitative analogous of weak simulation preorder [1,2].

We applied our proposal to develop an algebraic theory to estimate the per-
formance of gossip networks in terms of the probability to successfully propagate
messages up to the desired destination. The algebraic theory is compositional
as it allows us to estimate the performance of gossip networks in terms of the
behavioural distance of its sub-networks.

Our work has been inspired by [4,6,9,10], where the notion of behavioural
distance between two probabilistic systems is formalised in terms of the notion
of bisimulation metric. Bisimulation metric works fine for systems being approx-
imately equivalent. However, when the simulation game works only in one direc-
tion, as in the gossip protocols analysed in the current paper, an asymmetric
notion of simulation pseudometric is required.

The current paper is the ideal continuation of [19]. In that paper, the authors
developed a notion of simulation up to probability to measure the closeness rather
than the distance between two probabilistic systems. Then, as in here, simula-
tion up to probability has been used to provide an algebraic theory to evaluate
the performance of gossip networks. Despite the similarity of the two simulation
theories, the simulation up to probability has a number of limitations that have
motivated the current work: (i) the simulation up to probability is not transitive,
while simulation quasimetrics are transitive by definition; (ii) in order to work
with a transitive relation, paper [19] introduces an auxiliary rooted simulation
which is much stronger than the main definition; (iii) that rooted simulation
(and hence the simulation up to probability) is not suitable to compose esti-
mates originating from paths with different lengths (as we do here by means of
Theorem 5), and, more generally, to deal with more transmissions.

A nice survey of formal verification techniques for the analysis of gossip
protocols appears in [3]. Probabilistic model-checking has been used in [11] to
study the influence of different modelling choices on message propagation in
flooding and gossip protocols, and in [18] to investigate the expected rounds
of gossiping required to form a connected network and how the expected path
length between nodes evolves over the execution of the protocol.

As future work, we intend to study gossip protocols with communication
collisions, random delays and lossy channels. We then plan to apply our metric-
based simulation theory to investigate the behaviour of IoT systems and cyber-
physical systems [20,21]. In the context of probabilistic process calculi, we want
to investigate which of the compositionality properties proposed in [13] hold for
the operators that are usually offered by probabilistic process calculi.

Acknowledgements. We thank the anonymous reviewers for valuable comments.

154 R. Lanotte et al.

References

1. Baier, C., Hermanns, H., Katoen, J.P.: Probabilistic weak simulation is decidable
in polynomial time. Inf. Process. Lett. 89(3), 123–130 (2004)

2. Baier, C., Katoen, J.-P., Hermanns, H., Haverkort, B.: Simulation for continuous-
time Markov chains. In: Brim, L., Křet́ınský, M., Kučera, A., Jančar, P. (eds.)
CONCUR 2002. LNCS, vol. 2421, pp. 338–354. Springer, Heidelberg (2002). doi:10.
1007/3-540-45694-5 23

3. Bakhshi, R., Bonnet, F., Fokkink, W., Haverkort, B.: Formal analysis techniques
for gossiping protocols. Oper. Syst. Rev. 41(5), 28–36 (2007)

4. van Breugel, F., Worrell, J.: A behavioural pseudometric for probabilistic transition
systems. Theoret. Comput. Sci. 331(1), 115–142 (2005)

5. Cerone, A., Hennessy, M., Merro, M.: Modelling MAC-layer communications in
wireless systems. Log. Methods Comput. Sci. 11(1:18) (2015)

6. Deng, Y., Chothia, T., Palamidessi, C., Pang, J.: Metrics for action-labelled quan-
titative transition systems. ENTCS 153(2), 79–96 (2006)

7. Deng, Y., Du, W.: The Kantorovich metric in computer science: a brief survey.
ENTCS 253(3), 73–82 (2009)

8. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.: Characterising testing
preorders for finite probabilistic processes. Log. Meth. Comput. Sci. 4(4) (2008)

9. Desharnais, J., Gupta, J., Jagadeesan, R., Panangaden, P.: Metrics for labelled
Markov processes. Theoret. Comput. Sci. 318(3), 323–354 (2004)

10. Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: The metric analogue
of weak bisimulation for probabilistic processes. In: LICS 2002, pp. 413–422 (2002)

11. Fehnker, A., Gao, P.: Formal verification and simulation for performance analysis
for probabilistic broadcast protocols. In: Kunz, T., Ravi, S.S. (eds.) ADHOC-NOW
2006. LNCS, vol. 4104, pp. 128–141. Springer, Heidelberg (2006). doi:10.1007/
11814764 12

12. Gebler, D., Larsen, K.G., Tini, S.: Compositional metric reasoning with probabilis-
tic process calculi. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 230–245.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46678-0 15

13. Gebler, D., Larsen, K.G., Tini, S.: Compositional bisimulation metric reasoning
with probabilistic process calculi. Log. Meth. Comput. Sci. 12(4) (2016)

14. Gebler, D., Tini, S.: Fixed-point characterization of compositionality proper-
ties of probabilistic processes combinators. In: Borgström, J., Crafa, S. (eds.)
EXPRESS/SOS 2014, EPTCS, vol. 160, pp. 63–78 (2014)

15. Gebler, D., Tini, S.: SOS specifications of probabilistic systems by uniformly con-
tinuous operators. In: Aceto, L., Frutos-Escrig, D. (eds.) CONCUR 2015, LIPIcs,
vol. 42, pp. 155–168. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

16. Jonsson, B., Larsen, K.G., Yi, W.: Probabilistic extensions of process algebras. In:
Handbook of Process Algebra, pp. 685–710. Elsevier (2001)

17. Kermarrec, A.M., van Steen, M.: Gossiping in distributed systems. Oper. Syst.
Rev. 41(5), 2–7 (2007)

18. Kwiatkowska, M., Norman, G., Parker, D.: Analysis of a gossip protocol in PRISM.
SIGMETRICS Perform. Eval. Rev. 36(3), 17–22 (2008)

19. Lanotte, R., Merro, M.: Semantic analysis of gossip protocols for wireless sensor
networks. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp.
156–170. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23217-6 11

20. Lanotte, R., Merro, M.: A semantic theory of the internet of things. In: Lluch
Lafuente, A., Proença, J. (eds.) COORDINATION 2016. LNCS, vol. 9686, pp.
157–174. Springer, Cham (2016). doi:10.1007/978-3-319-39519-7 10

http://dx.doi.org/10.1007/3-540-45694-5_23
http://dx.doi.org/10.1007/3-540-45694-5_23
http://dx.doi.org/10.1007/11814764_12
http://dx.doi.org/10.1007/11814764_12
http://dx.doi.org/10.1007/978-3-662-46678-0_15
http://dx.doi.org/10.1007/978-3-642-23217-6_11
http://dx.doi.org/10.1007/978-3-319-39519-7_10

Weak Simulation Quasimetric in a Gossip Scenario 155

21. Lanotte, R., Merro, M.: A calculus of cyber-physical systems. In: Drewes, F.,
Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 115–127.
Springer, Cham (2017). doi:10.1007/978-3-319-53733-7 8

22. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

23. Macedonio, D., Merro, M.: A semantic analysis of key management protocols for
wireless sensor networks. Sci. Comput. Program. 81, 53–78 (2014)

24. Merro, M., Ballardin, F., Sibilio, E.: A timed calculus for wireless systems. Theoret.
Comput. Sci. 412(47), 6585–6611 (2011)

25. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nord.
J. Comput. 2, 250–273 (1995)

26. Villani, C.: Optimal Transport. Old and New. Springer, Heidelberg (2008)

http://dx.doi.org/10.1007/978-3-319-53733-7_8

Reasoning About Distributed Secrets

Nicolás Bordenabe1, Annabelle McIver1(B), Carroll Morgan2,
and Tahiry Rabehaja1

1 Department of Computing, Macquarie University, Sydney, Australia
{nicolas.bordenabe,annabelle.mciver,tahiry.rabehaja}@mq.edu.au

2 DATA61 and University of New South Wales, Sydney, Australia
carroll.morgan@unsw.edu.au

Abstract. In 1977 Tore Dalenius described how partial disclosure about
one secret can impact the confidentiality of other correlated secrets, and
indeed this phenomenon is well-known in privacy of databases. The aim
here is to study this issue in a context of programs with distributed secrets.
Moreover, we do not assume that secrets never change, in fact we investi-
gate what happens when they do: we explore how updates to some (but
not all) secrets can affect confidentiality elsewhere in the system.

We provide methods to compute robust upper bounds on the impact of
such information leakages with respect to all distributed secrets. Finally
we illustrate our results on a defence against side channels.

Keywords: Quantitative information flow · Foundations of security ·
Program semantics · Secure refinement

1 Introduction

This paper concerns information flow when secrets are distributed amongst sev-
eral agents. For example, let X,Y and Z represent three agents with respective
secrets x, y and z, where z = f(x, y) for some function f. In this basic scenario,
each secret is correlated via a known function (f), so that if something is leaked
about one of the secrets, then something is also leaked about the others.

Partial disclosure about one secret leading to collateral disclosure about
another is well documented in privacy of statistical databases, and was first
addressed by Dalenius [9] who argued that ideal designs for privacy should pre-
vent it: “Nothing about an individual should be learnable from the database that
cannot be learned without access to the database”. Later he argued the infea-
sibility of such a strict goal, and more recently Dwork [11] addressed the same
concern demonstrating that whenever there is a (known) correlation between two
pieces of information, anything learned about one piece implies that something
might also be learned about the other.

In secure programming generally, i.e. not just read-only databases, this corre-
sponds to leaking information about a secret “high-level” variable x, which then
consequentially leaks information about a different high-level variable z that does
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Bouajjani and A. Silva (Eds.): FORTE 2017, LNCS 10321, pp. 156–170, 2017.
DOI: 10.1007/978-3-319-60225-7 11

Reasoning About Distributed Secrets 157

not appear in the program at all, but is known only via “auxiliary information”
to be correlated with the initial value of x (as in z = f(x, y) mentioned above).
Because of the generality of this programming-language perspective, we call this
effect collateral leakage.

Our approach is information theoretic where we model secrets as probability
distributions DX over some secret space X , and we assume that programs are
mechanisms which can both update secrets and leak some information about
them. Within this setting we study the broader phenomenon of collateral leakage
where secrets might be distributed between several non-colluding agents, and
where those secrets could be correlated.

We extend our recent work by using Hidden Markov Models (HMM ’s) in
a new way to handle collateral leakage. In particular we study how to analyse
the system-wide impact of information leaks caused by program execution on
some, but not all of the secrets. These issues have been addressed partially in
other work, but here we bring all these results together and take them further.
In summary, we do the following:

• We review standard HMM ’s and show how to view HMM matrices as map-
pings from correlations expressed as distributions in DX 2 to correlations DX 2,
when the HMM is only able to update the second component in the product
X 2 (Sect. 3.2).

• We show how this unusual view of HMM ’s –as mechanisms that update
correlations– can be used to study the impact of information flow on cor-
related secrets, even when those secrets are not mentioned in particular pro-
gram fragments (Sect. 4), and we provide methods to calculate exact and
approximate leakages. Full proofs of these results can be found at [3].

• We illustrate some of our results on the analysis of a defence against side
channels in cryptography (Sect. 5).

A particular novelty of this approach is “security refinement” which determines a
partial order on HMM ’s extending previous work [20] to HMM ’s as correlation
transformers. Refinement allows programs to be compared in a compositional
manner: this does not seem possible with less general notions of leakage [21].

2 Motivation: Correlated Passwords

2.1 Changing a Password: Is it Only “Fresh”, or Actually
“Different”?

The example of Fig. 1 contrasts two users’ approaches to updating their pass-
words; for simplicity each password is just one letter, chosen from {A,B,C}. User
Lax may update to any of the three, uniformly at random, including his current
one; but User Strict must change his password, again uniformly, now choosing
from only two of course. Because the original password X was uniformly distrib-
uted (which we assume for simplicity), in both cases the distribution of its final
value is uniform as well; but an important difference, as we will see, is that for
Lax the final X is independent of the initial X, while for Strict it is correlated.

158 N. Bordenabe et al.

// Password X is initially uniformly distributed over X = {A, B, C}.
“Lax” user
X:∈ [A,B,C] ∗

leak [X+,X−] †

“Strict” user
X:∈ [X+,X−] $

leak [X+,X−] †

∗ [...] is a uniform distribution over {...}; and X:∈ chooses X from it.
$ X+ is the letter following X in X (wrapping around), and X− the preceding.
† leak [...] chooses a value from the distribution [...] and passes it to the adver-
sary: she does not know however whether that value was X+ or X−.

Fig. 1. Updating a password

In the second statement, at †, we confront (hostile) information flow: both
users suffer an “over the shoulder” attack while logging in with their new pass-
word. We imagine that an observer hears a key-click and sees a key that is not
being pressed: she thus learns one value that the new password definitely isn’t.

Figure 1 illustrates our concerns in a very simple way: the secret (password)
is updated, and it is its final value the adversary wants to capture (indeed she
will not be using its old value to hack this account). And yet –as we will see–
third party agents can be affected.

One reason that in Fig. 1 it’s natural to focus on the final state is that our
aim (in program semantics) is to integrate security “correctness” with (ordi-
nary) functional correctness of programs, i.e. to treat the two within the same
framework [20]; and since functional correctness (and correctness comparisons,
i.e. refinement [22]) is determined wrt. the final values a program produces, we
should do the same for security correctness. Indeed it is in both cases the con-
centration on final values that allows small state-modifying programs, whether
secure or not, to be sequentially composed to make larger ones [18–20].

Now the example above was constructed so that the two programs have the
same final distribution and the adversary has the same knowledge of it — in both
cases she knows exactly one value that the password is not. So are these programs
equivalent in terms of their functional- and information-flow behaviour?

Here is where we encounter our criterion. As closed systems with a single
secret, the password stored in variable X, Lax/Strict are indeed equivalent pro-
grams when the initial distribution is uniform. But they are not equivalent if we
consider correlations between X and some other variable not mentioned in either,
but present in a larger system with secrets distributed amongst other users. For
example, suppose our young user selected his password X to be “the same as
Dad’s” that is stored in variable Z. And suppose Mum knows he did so.

So Dad says “You’d better change your password, son. Making it the same
as someone else’s is not safe.” But as luck would have it Mum is in the bedroom,
later, when Son changes it, and sees one of the two values that it has not become.
In that case son Lax would leak no information about Dad’s password; but with
Strict, Dad’s password is twice as likely (1/2) to be what Mum saw as it is to be
one of the other two values (1/4 each). (See (8) below for details.)

Reasoning About Distributed Secrets 159

Can this simple, almost fanciful example be dismissed? We don’t think so: the
facts are indisputable, that in the Strict case Mum learns something about Dad’s
password but in the Lax case she does not: we return to this in Sect. 3.2; and we
give a more elaborate example in Sect. 5. Have we invented this problem? No: it
was recognised by Dalenius [9] and formalised by Dwork [11]. But (we believe)
its impact has not been studied in respect of program refinement.

We stress the point that this phenomenon is truly remarkable if placed in
the context of rigorous reasoning about programs generally. We have

(var X; Lax) and (var X; Strict) are the same over uniform initial X (1)
but (var Z; var X:= Z; Lax)
and (var Z; var X:= Z; Strict)

are different over uniform initial Z (2)

What kind of familiar program algebra would invalidate an equality (1) because
of variables added (2) that are not referred to by either program? The semantics
of Lax and of Strict must differ in (1) as well.

In our extended HMM model described next, we show how Lax and of Strict
are indeed modelled differently by keeping track of how programs change the
correlation between initial and final program state. (In this case Son’s initial
and final passwords.)

3 HMM ’s: Generalising Channels for Secure Refinement

3.1 Systems with Distributed Secrets

In a system of distributed secrets different secrets are handled by different sys-
tem commands, possibly by different system components. Our aim here is to
study the impact those commands have on all system secrets, whether or not
they are part of any particular command. There are two reasons why this is
important. The first is related to the issue raised by Dalenius, that a rigorous
analysis of security must consider the prospect of the mechanism being executed
in an environment where other secrets can be impacted. The second is related
to compositionality in program semantics — the semantics must include enough
detail so that conclusions drawn from local analysis of program fragments in
isolation will be consistent with any emergent behaviours when those fragments
are executed in larger contexts.

In our use of HMM ’s detailed below we concentrate on showing how to use an
analysis of an HMM in a compositional way — i.e. the analysis not only informs
us about the leaks and updates to the variables described in a particular HMM
matrix, but allows us as well to draw conclusions about leaks of other correlated
variables if we consider the HMM to be executed as part of a larger system.

Review of the Channel Model for Quantitative Information Flow. Tra-
ditional models of information flow use “channels” to model flows in so-called
“mechanisms”, i.e. stochastic matrices which describe the relationship between

160 N. Bordenabe et al.

secrets of type X and observations of type Y. We recall first the standard notions
of information flow in this setting, which we then extend to HMM ’s.

Given channel matrix C, the entry Cxy is the probability that y is observed
given that the secret is x. Channel matrices are stochastic meaning that for
each x,

∑
y:Y Cxy = 1. We write α�β for the type of stochastic matrices over

α×β, thus C is of type X�Y. A fundamental assumption is that the secret
x, once set, never changes and the measurements of information flow that the
channel model supports thus involve comparisons between the attacker’s prior
knowledge of the secret, and how that changes to posterior knowledge when
observations Y are taken into account. The prior knowledge is captured by a
probability distribution π:DX which assigns a probability πx to each possible
value x: X ; posterior distributions emerge when π is combined with C and are
calculated using Bayesian reasoning. For observation y and prior π, the posterior
probability that the secret is x given observation y is Cxy×πx/(

∑
x′:X Cx′y×πx′).

The vulnerability of a secret wrt. leaks can be assessed by measuring the extent
to which the attacker can use the information leaked.

Notions of Vulnerability of Secrets and Leakage of Channels. Vulner-
ability is a generalisation of entropy (of distributions), no longer necessarily
e.g. Shannon but now others more adapted for secure programming, and whose
great variety allows fine-grained control of the significance of the information
that might be leaked [2].

Given a state-space X , vulnerability is induced by a gain function over that
space, typically g of type GWX = W→X→R, for some space of actions w: W.
When W is obvious from context, or unimportant, we will omit it and write just
g:GX . Given g and w (but not yet x) the function1 g.w is of type X→R and
can thus be regarded as a random variable on X . The range of W models a set
of actions available to the attacker and the value g.w.x represents his gain if he
picks w and the secret’s value turns out to be x. His optimal average gain, or
g-vulnerability is then Vg[π] = maxw∈W

∑
x:X g.w.x×πx.

A particularly simple example is W=X with g.w.x = (1 if w=x else 0) so
that the adversary gains 1 if he guesses correctly and 0 otherwise: we call this
particular gain-function gid. A benefit of the more general W’s is that they allow
representation of many conventional entropy functions (including even Shannon),
thus bringing them all within the same framework [21]. Given a g, prior π and a
channel C we can model the expected conditional g-vulnerability as the maximal
gain wrt. the channel C, or the average of the vulnerabilities of the posteriors:

Vg[π,C]:=
∑

y:Y
max
w:W

Cxy×πx×g.w.x. (3)

Inspired by mutual information, we can define more general notions of leak-
age by comparing the g-vulnerability of a prior with the expected conditional
1 We write dot for function application, left associative, so that function g applied to

argument w is g.w and then g.w.x is (g.w) applied to x, that is using the Currying
technique of functional programming.

Reasoning About Distributed Secrets 161

vulnerability. The multiplicative g-leakage of C wrt prior π and gain function g
is the ratio between the posterior and prior g-vulnerabilities:

Lg(π,C) := log2 Vg[π,C]/Vg[π]. (4)

The capacity of a channel is the supremum of that leakage (4), but varying in
its definition depending on whether the supremum is over either gain functions,
or priors or both:

L∀(π,C) := sup
g

Lg(π,C), Lg(∀, C) := sup
π

Lg(π,C), L∀(∀, C) := sup
π,g

Lg(π,C).

Remarkably, it can be shown that L∀(∀, C) equals Lgid
(∀, C) (“min-capacity”):

it is the most robust estimation of leakage, and can always be achieved for the
uniform prior [1], making it straightforward to calculate. Moreover Lgid

(∀, C)
(also called ML(C)) provides an upper bound for information leakage computed
from the traditional Shannon entropy. Thus if ML(C) is no more than k then
this means that no more than k bits are leaked by C for any prior. Capacities
are useful because if they can be computed for a given channel C we are able to
argue that the channel’s leaks are insignificant if its calculated capacity is small.

3.2 HMM ’s Leak Information About Secrets and Update Them

The original model for HMM ’s describes a two stage process acting on a secret
in DX : first information about the secret is leaked, and then the value of
the secret is updated. The first stage is equivalent to the action of a channel
as described above, and the second stage is effected by a Markov transition.
A Markov transition is also described by a matrix M (say) so that Mxx′ is the
probability that initial state x will result in final state x′. An HMM-step then
comprises a channel and a transition together, but acting independently on the
initial state: we call C its channel and M its markov (lower case), and write
(C:M) of type X � Y×X . Defined (C:M)xyx′ = Cxy×Mxx′ , it is a stochastic
matrix with rows X and columns Y×X . In this way HMM ’s generalise both
Markov processes and channels, and can therefore model a program that both
leaks secrets and updates them. We shall, in particular, study how to use HMM ’s
when there are distributed secrets.

We begin by generalising HMM steps in order to model behaviour of pro-
grams consisting of multiple leak and assignment steps. We define sequential
composition for HMM ’s which summarises the overall information flow: in fact
sequential composition is a natural operator if we are using them to model pro-
grams. Let H1,2 of the same type X � Y×X be HMM ’s. The composed type is
the X � Y2×X that takes initial state x to final state x′ via some intermediate
state x′′, leaking information (y1, y2) –as it goes– gradually into the set Y2. We
define

(H1;H2)x(y1y2)x′ =
∑

x′′
H1

xy1x′′×H2
x′′y2x′ , (5)

162 N. Bordenabe et al.

and note that it is again stochastic. Sequential compositions are strictly more
general than the HMM -steps built directly from (C:M) — that is, for some arbi-
trary composition (5) it does not necessarily correspond to a single step (C:M)
for some C and M . By keeping track of sequences of observations compositions
of HMM -steps allow observers to accumulate multiple leaks over time and to
draw conclusions based on their amalgamated knowledge.

Returning now to our example at Fig. 1 we illustrate how a program can
be modelled as an HMM, by composing individual HMM steps. Recall the
program snippet X:∈ [X+,X−]; leak [X+,X−] where first X is updated and then
something is leaked. The first statement X:∈ [X+,X−] corresponds this Markov
matrix X�X :

MS1 :

⎛

⎝
A

A

0
B

1/2

C

1/2
B 1/2 0 1/2
C 1/2 1/2 0

⎞

⎠

For Strict the output for each ini-
tial state is a uniform choice over
anything but the input. As an
HMM we write it (Ic:MS1), where
Ic is the identity channel that leaks
nothing.

The second statement leak [X+,X−] corresponds to a channel matrix in X�Y,
where in fact Y=X because the observables are of the same type as the state:2

C2 :

⎛

⎝
A

◦A
0

◦B
1/2

◦C
1/2

B 1/2 0 1/2
C 1/2 1/2 0

⎞

⎠

This leaks uniformly any value not equal
to the current state, and ◦A, ◦B, ◦C denote
the observations. We write it as (C2:Im),
where Im is the identity Markov process
that leaves all states unchanged.

For Strict the result is this HMM using (5) to form the composition
(Ic:MS1); (C2:Im), we can write it as a single matrix X�Y×X :

◦A ◦ B ◦ C
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

⎛

⎜

⎜

⎝

A B C A B C A B C

A 0 1/4 1/4 0 0 1/4 0 1/4 0
B 0 0 1/4 1/4 0 1/4 1/4 0 0
C 0 1/4 0 1/4 0 0 1/4 1/4 0

⎞

⎟

⎟

⎠

The labels ◦A, ◦B, ◦C denote the obser-
vations corresponding to those from
C2. Notice that the rows are not
identical, because the first HMM -step
updates the state in a way dependent
on its incoming value.

Observe that there is a great deal of information concerning the current and
former values of X: for example, if the secret was originally uniformly distributed
over the three values, and if ◦A is observed, then the probability that the initial
state was A but is now B is 1/4. Preserving this information about initial and final
correlations in the semantics is precisely how we can analyse the effect that leaks
about X has on other variables (such as Z in Fig. 1). We therefore consider HMM ’s
to be transformers not of individual secrets, but rather of secret correlations in

2 Although the matrices C2 and MS1 look the same, they are describing different
aspects of the system.

Reasoning About Distributed Secrets 163

DX 2. When an HMM transforms a correlation, the first component remains
unchanged, but the second is updated, as before, according to the HMM. Thus
given a correlation between X of type X and some other secret X’ (of the same
type) the HMM now produces a joint distribution X×Y×X which describes the
correlation between the (unchanged) X’, the observations, and the updated X.

Definition 1. Given an HMM H of type X � Y×X , and a distribution Π ∈
DX 2, we write Π〉H:DX×Y×X for the joint distribution defined:

(Π〉H)x0yx :=
∑

x′:X
Πx0x′×Hx′yx. (6)

The probability that y is observed is py:=
∑

x0,x(Π〉H)x0yx. Given that y is
observed, the (posterior) probability that the correlation is now (x0, x) is defined
by: (Π〉H)x0yx/py.

When Π∗ is the correlation Π∗
(x0,x) = 1/3 if and only if x0 = x, then

(Π∗〉Strict) allows us to compute the chance that the correlation between initial
and final values, given that A is observed: in that case the chance that initial
state was A and the final is now B is 1/4, but the chance that the final state is
the same as the initial is 0.

Next, we extend the definition of refinement of abstract HMM ’s in closed
systems [18,20] to take correlations into account.

Definition 2. Let H1: X � Y1×X and H2: X � Y2×X be HMM’s over base
type X with observation types Y1,Y2 respectively. We say that H1 � H2 if and
only if there is a refinement matrix R:Y1

� Y2 such that H1 · R = H2, where
H1 · R :=

∑
y:Y1 H1

xy×Ry.3

A special case of a refinement matrix R is given by y �→ y∗ for fixed obser-
vation y∗ — this removes all information flow in H so that H · R is maximal in
the refinement order and therefore only records state updates. We write mkv.H
for this maximal refinement of H.4,5

Definition 2 has an equivalent formulation in terms of gain functions: H1 �
H2 means that the gain for an attacker of H1 will always be at least as high as
a gain for an attacker observing H2, because he can use the extra observations
to improve his strategy. Note however that the attacker’s gains are related to
guessing the correlation. Given an HMMH and gain function g, we define

Vg[Π,H] :=
∑

y:Y
max
w:W

∑

x,x′,x′′
Πxx′×Hx′yx′′×g.w.(x, x′′). (7)

3 We have overloaded matrix multiplication, to mean that the summation is always
over the shared state in M1 · M2.

4 Notice that the exact value y∗ is not important for refinement comparisons.
5 Definition 2 defines a pre-order on HMM ’s, but it can be made into a partial order

on “abstract HMM ’s”, introduced elsewhere [21].

164 N. Bordenabe et al.

Theorem 1. Let H1,H2 be HMM’s. We have H1�H2 if and only if
Vg[Π,H1] ≥ Vg[Π,H2], for all g:W→X 2→R, and Π:DX 2.

If we use an initial correlation Π(x,x′) = 1/3 if and only if x = x′, we
see that Lax
� Strict since Vgcid[Π, Lax] = 1/6 whereas Vgcid[Π,Strict] = 1/4.
Here gcid corresponds to gid, but where W = X 2. Similarly Strict
� Lax since
V[AA][Π, Lax] = 1/9 but V[AA][Π,Strict] = 0, where [AA] is the gain function
which gives 1 only for secret (correlation) (A,A), and 0 for everything else.

Crucially, refinement is compositional for sequential composition.

Lemma 1. Let H1 � H2, then H1;H � H2;H and H;H1 � H;H2 for any
HMM H: X � Y×X .

4 Reasoning About Distributed, Correlated Secrets

We return now to a system of distributed secrets described by X and Z, and
we study how to model information flow about Z when only X is updated
by a program fragment. Given an HMM H : X � Y×X representing such
a fragment, we can describe the effect that H has on some initial correla-
tion Π : D(X×Z) between X and Z by computing the joint distribution
J :D(Z×Y×X): Jzyx:=

∑
x′:X Πzx′×Hx′yx. Moreover Theorem 1 implies that

if H�H ′ then Vg[Π,H1] ≥ Vg[Π,H2], for g: W×Z×X → R.
We show next that robust upper bounds for leakage Z follows from leakage

about the initial state of X .
Define

↼

Π to be the Z-marginal of Π, i.e.
↼

Π =
∑

x:X Πxz and let matrix
⇒
Π

in Z�X be given by
⇒
Πzx = Πxz/

↼

Πz if
↼

Πz > 0 and 0 otherwise. This factors Π

into its marginal and a conditional, and indeed Πxz =
↼

Πz×
⇒
Πzx. Now the matrix

multiplication
⇒
Π·H gives an HMM of type Z�Y×X . Since we are interested in

the leakage about Z only we can define a channel on Z alone by forgetting the
final value of X . This gives us the “effective collateral channel”.

Definition 3. The effective collateral channel of H, written chn.H, is a sto-
chastic matrix of type X�Y and defined simply by ignoring the final state: thus
(chn.H)xy:=

∑
x′ Hxyx′ .

Definition 4. The collateral leakage resp. capacity of H wrt a prior Π:D(Z×X)
is the collateral leakage resp. capacity of

⇒
Π·chn.H.

Refinement of collateral channels and their corresponding HMM ’s is consistent.

Lemma 2. If H1 � H2 then Vg[π, chn.H1] ≥ Vg[π, chn.H2] for g: W×X→R

and π:DX .

Proof. Define Π∗
xx′ := πx if and only if x = x′. Observe now that Vg[π, chn.H1] =

Vg∗ [Π∗,H], where g∗.w.x.x′ = g.w.x.x. The result now follows by Theorem1.

Reasoning About Distributed Secrets 165

Using Definition 3 on the HMM (Ic:MS1); (C2:Im) described above, we can cal-
culate the effective collateral channel for the program Strict. It describes the
information leak about the initial state of Son’s password only.

chn.Strict :

⎛

⎝
A

◦A
1/2

◦B
1/4

◦C
1/4

B 1/4 1/2 1/4
C 1/4 1/4 1/2

⎞

⎠

We see now clearly that Mum’s best
guess for Son’s initial setting of his
password is to guess the value she
observes; she has now learned some-
thing about Dad’s current password.

(8)

The simplicity of Definitions 3, 4 conceals that it can be difficult in practice
to calculate the collateral leakage of an HMM. One reason is that a model for
initial state only is not compositional i.e. chn.(H1;H2) cannot be calculated from
just chn.H1 and chn.H2 alone. This implies that if H is expressed as a sequential
composition of many smaller ones, e.g. if we have H = H1;H2; · · · ;HN , still
the final states of the intermediate H’s must be retained, not only to form
the composition, but because the overall y observation from H comprises all
the smaller observations y1 · · · yN with each yn+1 being determined by the final
state (x′)n of the Hn just before — we can abstract only at the very end.

In the special case however where each H is an HMM -step (Cn:Mn), the
calculation of the effective channel can be somewhat decomposed.

Lemma 3. Let H be an HMM and (C:M) an HMM-step. Then

chn. (C:M) = C
chn. ((C:M);H) = C ‖ (M ·chn.H)

where in general (C1‖C2)x,(y1y2) = C1
xy1×C2

xy2 is parallel composition of chan-
nels. The M cannot be discarded, since it affects the prior of the “tail” H of the
sequential composition.

We see in the example above that we do not have to construct the full HMM,
and then reduce it as we did at (8) but instead just perform the matrix multi-
plication of its components, so that chn.Strict = MS1·C2. Even with Lemma 3,
in general chn.H can be challenging to compute because its size (given by the
number of columns in the stochastic matrix representation) grows exponentially
with the number of single-step HMM ’s, in the definition of H, that have non-
trivial channel portions. We give an example of such a calculation in Sect. 5 (fast
exponentiation for cryptography).

On the other hand, if we want to compute only the collateral capacity, we
can obtain at least an upper bound at considerably less cost, without the need to
compute chn.H exactly. The following provides an upper bound for L∀(∀, chn.H),
and requires only linear resources.

Lemma 4. For any H let CCap.H be defined

CCap. (C:M) = L∀(∀, C) if H=(C:M)
CCap. ((C:M);H ′) = L∀(∀, C) + min(L∀(∀,M),CCap.H ′) if H=(C:M);H ′

Then L∀(∀, chn.H) ≤ CCap.H with the stochastic matrix M treated as a channel.

166 N. Bordenabe et al.

In fact Lemma 4 provides a very robust estimate of the collateral capacity
of an HMM, since it does not mention Z or the correlating Π. And it is the
best possible general bound, achieving equality for some examples, e.g. Fig. 1:
CCap for Strict is log(3/2), and for Lax it is log 1 = 0, confirming that Strict leaks
some information about correlated secrets whereas Lax leaks nothing. Both these
values are equal to the calculated leakages in their given scenarios. It is also easy
to calculate since for any channel we have from [1] that L∀(∀, C) = Lgid

(ΥX , C),
where ΥX is the uniform prior on X .

Lemma 5. Let H,H ′: X � Y×X be HMMs. CCap.H = 0 ⇒ CCap.(H ′;H) =
CCap.H ′.

Proof. From Theorem 4 the unfolding of the recursive definition for CCap.(H ′;H)
will eventually yield a minimum between non-negative terms which include
CCap.H. The result now follows, because this allows a simplification to CCap.H ′.

In cases where we know the correlation Π (and thus Z), we can compute the
collateral capacity by identifying the optimising gain function in Definition 4.

Theorem 2. Given H and Π:D(Z×X) with
↼

Π,
⇀

Π resp. the marginals of Π

on Z,X ; define conditional
⇒
Π as above. There exists ĝ:GZZ and ĝΠ :GZX such

that

L∀(
↼

Π,
⇒
Π·chn.H) = Lĝ(

↼

Π,
⇒
Π·chn.H) = LĝΠ (

⇀

Π, chn.H).

This shows that it is possible to construct the gain-function that maximizes the
collateral capacity, and even allows its exact calculation. Moreover, it also shows
that the collateral capacity of H wrt. Z can be understood as regular g-leakage
of H wrt. the initial state of X .

The next theorem is more general, and gives an upper bound over all possible
correlations: it is determined by the extremal leakage of the initial prior π:DX ,
thus easy to calculate [1].

Theorem 3. Given H and Π as above, ΥX is uniform on X , then

L∀(
↼
π,

⇒
Π·chn.H) ≤ Lgid(ΥX , chn.H), where ↼

π,
⇒
Πare as defined in Theorem 2 .

Note that when X,Z are completely correlated, i.e. when
⇐
Π and

⇒
Π are both

the identity, the inequality in Theorem3 becomes equality. Finally we note that
the separation of information flow from state updates sometimes does simplify
sequences of HMM steps, when either the chn.H or mkv.H contains no proba-
bilistic updates, then the channel can be approximated by (chn.H : mkv.H). We
provide details at [3].

5 Case Study: Side Channel Analysis

Keys for public-key cryptography are best if independent, but that is not to say
that they necessarily are: recently [16] discovered an unexpected sharing of the

Reasoning About Distributed Secrets 167

prime numbers used to generate them. Although that discovery concerned public
keys (and hence also the private keys), it makes the point that we cannot assume
not-yet-discovered correlations do not exist between private keys alone. That
motivates our example here, the collateral leakage from a fast-exponentiation
algorithm that might compromise someone else’s private key.

// B for base, the cleartext; E for exponent, the key: precondition is B,E >= 0,0 .

// P for power, the ciphertext.

P:= 1

while E!=0 // Invariant is P*(B^E) = be, where b, e are initial values of B,E .

D:∈ [2,3,5] // D for divisor; uniform choice from {2,3,5}.
R:= E mod D; // R for remainder.

if R!=0 then P:= P*B^R fi // Side-channel : is E divisible exactly by D ?

B:= B^D // D is small: assume no side-channel here.

E:= E div D // State update of E here. (No side-channel.)

end

// Now P=be and E=0: but what has an adversary learned about the initial e ?

Although our state comprises B,E,P,D,R we concentrate only on the secrecy of E. In
particular, we are not trying to discover B or P in this case; and D,R are of no external
significance afterwards anyway.

Fig. 2. Defence against side channel analysis in exponentiation, Exp(B,E)

Figure 2 implements fast exponentiation, with a random choice of divisor to
defend against a side channel that leaks program flow (of a conditional) [24].
Since the program code is public, that leak is effectively of whether divisor D
exactly divides the current value of E, which value is steadily decreased by the
update at the end of each iteration: thus additional information is leaked every
time. In the standard (and fastest) algorithm the divisor D is always 2, but that
ultimately leaks E’s initial value exactly, one bit (literally) on each iteration. The
final value of E is always zero, of no significance; but its initial value represents
collateral leakage about subsequent use of this same key (obviously), but also the
use of other apparently unrelated keys elsewhere [16]. The obfuscating defence
is to vary the choice of D unpredictably from one iteration to the next, choosing
it secretly from some set D, here {2, 3, 5} although other options are possible.
The divisor D itself is not leaked.

Since the output of Exp(B, E) of Fig. 2 is a function of its inputs, and as
mentioned above its behaviour can be summarised by a single-step HMM, of the
form (chn.Exp(B, E):“Output BE”). Thus our task is to compute chn.Exp(B, E).
We modelled the loop as a sequential composition of HMM -steps for a fixed
number of iterations and used Lemma 3 to construct a channel that captures the
leakage of information about the initial state of the program. We assumed that
all variables are secret, and that every iteration leaks some information at the
if statement “if R!= 0”, revealing whether the (hidden) R at that point is 0 or
not, and therefore possibly information about the other variables too. Interesting
however, is that although this leak appears to be standard, the obfuscation

168 N. Bordenabe et al.

provided by the choice of R means that overall the calculation of chn.Exp(B, E)
shows that the information leak is highly probabilistic, the more randomness
provided by D. We provide detailed calculations in [3] of the construction of
the HMM ’s. Although our calculation is wrt. the uniform prior on E, and even
though we do not know the extent of any correlation between this key E and
others used elsewhere, by using the multiplicative capacity [1, Sect. VI.C], we
can bound the maximum leakage about the initial value of E with the min-
capacity of such a channel. Furthermore, by relying on Theorem3 we can see
that this min-capacity can also be used as a bound on the collateral leakage with
respect to any other secret that might be correlated to E. For example, if E has
8 bits then a maximum of 3.51 of those bits of E’s initial state will be leaked;
moreover no more than of 3.51 of bits of any other secret Z in the system, that
could be correlated to E will be leaked. This is therefore a very robust upper
bound on the impact of system-wide leakage.

Size of E D={2} D={2, 3} D={2, 3, 5}
4 bits 4 2.80 2.22
5 bits 5 3.32 2.61
6 bits 6 3.83 2.92
7 bits 7 4.34 3.21
8 bits 8 4.88 3.51

Note that in the case D={2} the whole se-
cret E is leaked. As explained at end §??,
that Lgid gives the upper bound L∀ for all
vulnerabilities.

Fig. 3. Collateral leakage in bits wrt E for different D’s, for Prog given at Fig. 2.

Our table Fig. 3 confirms that the larger the divisor set D, the less effective
is the side channel; and the protection is increased with more bits for E.

6 Related Work, Conclusions and Prospects

In this paper we have studied information leakage in systems where several
secrets are distributed across a system. We have demonstrated how to use an
HMM model to analyse collateral leakage in programs where some, but not all,
secrets can change. We have shown that when correlations are present across the
system, the impact of collateral leakages can still be predicted by local reasoning
on program statements that process particular subsets of secrets. Our model
represents the first step towards a general method for analysing leakages in
distributed contexts.

Our work extends classical analyses of quantitative information flow which
assume that secrets do not change. Early approaches to measuring leakage are
based on determining a “change in uncertainty” of some “prior” value of the
secret — although how to measure the uncertainty differs in each approach.
For example Clark et al. [6] use Shannon entropy to estimate the number of bits
being leaked; and Clarkson et al. [8] model a change in belief. The role of capacity
when the prior is not known was stressed by Chatzikokolakis et al. [5]. Smith [23]

Reasoning About Distributed Secrets 169

demonstrated the importance of using measures which have some operational
significance, and this idea was developed further by introducing the notion of
g-leakage to express such significance in a very general way. The partial order
used here on HMM ’s is the same as the g-leakage order explored in by Alvim et
al. [1], but it appeared also in even earlier work [18]. Unlike information flows
that e.g. only use Shannon entropy, our � based on gain functions respects com-
position of programs, making it suitable for equality reasoning in algebras [20].

More recently Marzdiel et al. [17] analysed information flow of dynamic
secrets, using a model based on probabilistic automata. This reflects a view
that in general systems secrets are not necessarily static. In other work [20] we
have explored a model based on the analysis of final states only, but it cannot
be used to explore general correlations with fresh variables, as we do here.

Clark et al. [7] give techniques for static analysis of quantitative information
flow based on Shannon entropy for a small while-language. Extended HMM ’s
for modelling side channels have been explored by Karlof and Wagner [14] and
Green et al. [13] for e.g. key recovery. We note that in Sect. 5 our quantitative
capacity bounds on side channels are valid even for collateral leakage, when the
program is executed as a procedure call. In Sect. 5 we observe that there is a
relationship between reducing the impact of a side channel and the performance
of the algorithm. Others [10] have explored this trade-off between confidentiality
and performance using a game theory setting.

Bordenabe and Smith [4] explore collateral leakage in the context of a static
secrets, and our work can be seen as a generalisation of their approach when
secrets can be updated. Kawamoto et al. [15] also study gain function leakage
for complex systems made from components. Their focus is different to ours in
that they consider how to decompose a channel in order to compute the leakage
more easily; they do not deal with the general problem of collateral leakage.

References

1. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,
G.: Additive and multiplicative notions of leakage, and their capacities. In: CSF,
pp. 308–322. IEEE (2014)

2. Alvim, M.S., Scedrov, A., Schneider, F.B.: When not all bits are equal: worth-
based information flow. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol.
8414, pp. 120–139. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54792-8 7

3. Bordenabe, N., McIver, A., Morgan, C., Rabehaja, T.: Compositional security and
collateral leakage (2016). arXiv:1604.04983

4. Bordenabe, N.E., Smith, G.: Correlated secrets in quantitative information flow.
In: IEEE 29th Computer Security Foundations Symposium, CSF 2016, Lisbon,
Portugal, 27 June - 1 July 2016, pp. 93–104 (2016)

5. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as
noisy channels. Inf. Comput. 206(2–4), 378–401 (2008)

6. Clark, D., Hunt, S., Malacaria, P.: Quantitative analysis of the leakage of confi-
dential data. Electron. Notes Theoret. Comput. Sci. 59(3), 238–251 (2001)

7. Clark, D., Hunt, S., Malacaria, P.: Quantified interference for a while language.
Electron. Notes Theoret. Comput. Sci. 112, 149–166 (2005)

http://dx.doi.org/10.1007/978-3-642-54792-8_7
http://arxiv.org/abs/1604.04983

170 N. Bordenabe et al.

8. Clarkson, M.R., Myers, A.C., Schneider, F.B.: Belief in information flow. In: 18th
IEEE Computer Security Foundations Workshop, (CSFW-18 2005), 20–22 June
2005, Aix-en-Provence, France, pp. 31–45 (2005)

9. Dalenius, T.: Towards a methodology for statistical disclosure control. Statistik
Tidskrift 15, 429–444 (1977)

10. Doychev, G., Köpf, B.: Rational protection against timing attacks. In: IEEE 28th
Computer Security Foundations Symposium, CSF 2015, Verona, Italy, 13–17 July
2015, pp. 526–536 (2015)

11. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
doi:10.1007/11787006 1

12. Espinoza, B., Smith, G.: Min-entropy as a resource. Inf. Comput. 226, 57–75 (2013)
13. Green, P.J., Noad, R., Smart, N.P.: Further hidden Markov model cryptanalysis.

In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 61–74. Springer,
Heidelberg (2005). doi:10.1007/11545262 5

14. Karlof, C., Wagner, D.: Hidden Markov model cryptanalysis. In: Walter, C.D., Koç,
Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 17–34. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-45238-6 3

15. Kawamoto, Y., Chatzikokolakis, K., Palamidessi, C.: Compositionality results
for quantitative information flow. In: Norman, G., Sanders, W. (eds.) QEST
2014. LNCS, vol. 8657, pp. 368–383. Springer, Cham (2014). doi:10.1007/
978-3-319-10696-0 28

16. Lenstra, A.K., Hughes, J.P., Augier, M., Kleinjung, T., Wachter, C.: Ron was
wrong, Whit is right. Technical report, EPFL IC LACAL, Station 14, CH-1015
Lausanne, Switzerland (2012)

17. Mardziel, P., Alvim, M.S., Hicks, M.W., Clarkson, M.R.: Quantifying information
flow for dynamic secrets. In: 2014 IEEE Symposium on Security and Privacy, SP
2014, Berkeley, CA, USA, 18–21 May 2014, pp. 540–555 (2014)

18. McIver, A., Meinicke, L., Morgan, C.: Compositional closure for bayes risk in prob-
abilistic noninterference. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 223–235.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14162-1 19

19. McIver, A., Meinicke, L., Morgan, C.: Hidden-Markov program algebra with iter-
ation. Math. Struct. Comput. Sci. 25, 320–360 (2014)

20. McIver, A., Morgan, C., Rabehaja, T.: Abstract Hidden Markov Models: a monadic
account of quantitative information flow. In: Proceedings of LICS 2015 (2015)

21. McIver, A., Morgan, C., Smith, G., Espinoza, B., Meinicke, L.: Abstract channels
and their robust information-leakage ordering. In: Abadi, M., Kremer, S. (eds.)
POST 2014. LNCS, vol. 8414, pp. 83–102. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54792-8 5

22. Morgan, C.C.: Programming from Specifications, 2nd edn. Prentice-Hall, Upper
Saddle River (1994). http://www.cs.ox.ac.uk/publications/books/PfS/

23. Smith, G.: On the foundations of quantitative information flow. In: Alfaro, L. (ed.)
FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00596-1 21

24. Walter, C.D.: MIST: an efficient, randomized exponentiation algorithm for resist-
ing power analysis. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 53–66.
Springer, Heidelberg (2002). doi:10.1007/3-540-45760-7 5

http://dx.doi.org/10.1007/11787006_1
http://dx.doi.org/10.1007/11545262_5
http://dx.doi.org/10.1007/978-3-540-45238-6_3
http://dx.doi.org/10.1007/978-3-319-10696-0_28
http://dx.doi.org/10.1007/978-3-319-10696-0_28
http://dx.doi.org/10.1007/978-3-642-14162-1_19
http://dx.doi.org/10.1007/978-3-642-54792-8_5
http://dx.doi.org/10.1007/978-3-642-54792-8_5
http://www.cs.ox.ac.uk/publications/books/PfS/
http://dx.doi.org/10.1007/978-3-642-00596-1_21
http://dx.doi.org/10.1007/978-3-642-00596-1_21
http://dx.doi.org/10.1007/3-540-45760-7_5

Classical Higher-Order Processes

(Short Paper)

Fabrizio Montesi(B)

University of Southern Denmark, Odense, Denmark
fmontesi@imada.sdu.dk

Abstract. Classical Processes (CP) is a calculus where the proof the-
ory of classical linear logic types processes à la π-calculus, building on a
Curry-Howard correspondence between session types and linear proposi-
tions. We contribute to this research line by extending CP with process
mobility, inspired by the Higher-Order π-calculus. The key to our calcu-
lus is that sequents are asymmetric: one side types sessions as in CP and
the other types process variables, which can be instantiated with process
values. The controlled interaction between the two sides ensures that
process variables can be used at will, but always respecting the linear
usage of sessions expected by the environment.

1 Introduction

Session types define protocols that discipline how concurrent processes may inter-
act [10]. The type theory of sessions for (a variant of) the π-calculus [11] was
found to be in a Curry-Howard correspondence with intuitionistic linear logic,
where processes correspond to proofs, session types to propositions, and commu-
nication to cut elimination [4]. Properties that are normally obtained through
additional machinery on top of session types, like deadlock-freedom, come for free
from the properties of linear logic, like cut elimination. The correspondence was
later revisited for classical linear logic, yielding the calculus of Classical Processes
(CP) [19]. The design of CP is guided by the logic, making the correspondence
stricter at the cost of deviating some more from the standard π-calculus.

The solidity of the correspondence between session types and linear logic
propositions has been confirmed repeatedly. From the initial seminal idea, differ-
ent extensions have been proposed in order to capture, among others, multiparty
sessions [6,8], the paradigm of choreographic programming [7,12], behavioural
polymorphism [2,3,6,19], and integrations with functional programming [17].

In this paper, we begin extending this research line towards a key generali-
sation of the π-calculus: the Higher-Order π-calculus (HOπ) [15]. HOπ supports
process mobility: communicated values can be processes, which can then be run
or re-transmitted by the receiver – by using process variables to refer to the
received processes in its program. Our main contribution is the development of
CHOP (Classical Higher-Order Processes), which extends CP to process mobility

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Bouajjani and A. Silva (Eds.): FORTE 2017, LNCS 10321, pp. 171–178, 2017.
DOI: 10.1007/978-3-319-60225-7 12

172 F. Montesi

in the same fashion as in HOπ. In CP, typing judgements are of the form P � Δ,
read “process P uses its sessions according to Δ”. If we ignore the P , this is
the standard one-sided sequent form of classical linear logic. The key aspect
of CHOP is that it extends the one-sided sequents used in CP to two-sided
sequents, which are manipulated by combining the typing of linear channels of
CP (on the right) with a new discipline that types process variables (on the
left). So our typing judgements are now of the form Θ � P ::Δ, read “process
P uses its session endpoints according to Δ, possibly using some process vari-
ables according to Θ”. Why the “possibly” for the usage of process variables?
In HOπ, a process variable can be used by the receiving process at will (zero or
more times). This expressivity is carried over to CHOP by interpreting process
variables as non-linear resources. As a result, we get a hybrid type system that
consists of two fragments. The first is inherited directly from CP, used to manip-
ulate linear resources (session communications), while the second disciplines the
usage of process variables.

2 Classical Higher-Order Processes (CHOP)

We introduce the calculus of Classical Higher-Order Processes (CHOP), which
extends the latest version of the calculus of Classical Processes (CP) [6].

Types. There are two kinds of types in CHOP: session types, ranged over by
A,B,C,D, and process types, ranged over by T . Session types are inherited
directly from CP, and correspond to linear logic propositions. We range over
atomic propositions in session types with X,Y . Process types are used to type
the communication of processes and the use of process variables.

We start by giving the syntax of session types, in the following, along with a
short explanation of their meanings.

A,B,C,D ::= A ⊗ B (send A, proceed as B) | A � B (receive A, proceed as B)

| A ⊕ B (select A or B) | A�B (offer A or B)

| 0 (unit for ⊕) | � (unit for �)

| 1 (unit for ⊗) | ⊥ (unit for �)

| ?A (client request) | !A (server accept)

| ∃X.A (existential) | ∀X.A (universal)

| X (atomic propositions) | X⊥ (dual of atomic proposition)

CP uses the standard notion of duality from linear logic to check that types
are compatible. Above, each type constructor on the left-hand side is dual to
that used on the right-hand side. We write A⊥ for the type dual to A, defined
inductively in the standard way (cf. [19] for details). For example, (A ⊗ B)⊥ =
A⊥

� B⊥.
Each session in CP has two endpoints (one for each process in the session).

Endpoints are ranged over by x, y, z. Session environments, ranged over by Γ,Δ,
associate endpoints to session types: Γ = {x1 : A1, . . . , xn : An}. We make the
standard assumption that Γ and Δ have distinct endpoints when writing Γ,Δ.

Classical Higher-Order Processes 173

In CHOP, we can refer to processes that we receive at runtime (via process
mobility) by using process variables, ranged over by p, q, r. A process environ-
ment Θ maps process variables to process types: Θ = {p1 : T1, . . . , pn : Tn}.
There is only one form for process types: T :: = Θ → Δ. A process type assign-
ment p : Θ → Δ reads “p implements Δ provided that the process variables
in Θ are available”. Note that Θ may be empty, meaning that p does not need
to invoke other process variables to implement its session behaviour as specified
in Δ.

Processes and Typing. Let P,Q,R range over processes, the program terms of
CHOP. We explain terms together with their respective typing rules. A typing
judgement Θ � P ::Δ states that P implements the communication behaviour
specified in Δ, possibly using the process variables specified in Θ.

We first briefly recap the terms and typing rules that we inherit from CP,
displayed in Fig. 1. (We omit the rules for exponentials and quantifiers, for space
reasons. Θ is carried in the same way as for the other rules.) The process terms in
Fig. 1 are the same as in [6]. We adopt the same convention of having sent objects
always in square brackets [. . .], and, dually, in an input operation the received
variable is always bound in round parentheses (. . .). The endpoint name that we
output in a send x[y].(P | Q) and in a client request ?x[y].P is bound, as in the
internal π-calculus [16]. (This will not be the case for process variables, as we
are going to see shortly.) A forwarder term x → yB forwards communications
from x to y. The restriction term (νxAy)

(
P | Q) connects two endpoints x

and y to form a session, thus x and y are now able to communicate.

Fig. 1. CHOP, selected typing rules (Part 1, sessions).

We now move to the new terms and typing rules introduced in this work for
the communication of process terms, given in Fig. 2.

Rule MP allows us to use process variables. It states that if we invoke a
process variable p, typed with Θ → Δ, and the process environment provides all

174 F. Montesi

Fig. 2. CHOP, typing rules (Part 2, higher-order processes).

the process variables that p may in turn use according to Θ, then we obtain an
implementation of the session behaviour specified by Δ.

There are two ways of instantiating a process variable. One is receiving a
process – x(p).R – which allows us to use p later on (Rule ⊥R). The other is by
defining the body of a variable explicitly. We denote this as an explicit substi-
tution (inspired by the λσ-calculus [1]) P [q:=Q], read “let q be Q in P”. We
formalise how substitutions are propagated and applied later on, in our semantics
for CHOP. Rule Chop allows us to substitute Q for q in P , provided that Q and
q have compatible typing. If you think in terms of processes, Chop stands for
“Cut for Higher-Order Processes”. If you think in terms of logic, Chop stands
for “Cut for Higher-Order Proofs”. The idea is that a variable p stands for a
“hole” in a proof, which has to be filled as expected by the type for p. This idea
is also the reason for which Modus Ponens (MP), which is usually admissible,
is given as an axiom. Since p represents a missing part of our proof, we do not
know that its type is valid (i.e., that there exists a proof for some P such that
Θ � P ::Δ). We delegate this responsibility to the term that instantiates p with
a process.

Lastly, a term x[P] sends P along x (recalling a weakened version of the right
rule for implication, → R).

As an example, consider the following cloud server implementation. It pro-
vides a choice between two options. In the first case, we expect the client to
send us an application p to run, which requires a connection with an internally-
provided database (DB). In the second case, we expect to receive both the
application p and the database q that it needs to use, putting them in parallel.
(Thus, we may decide to use DB or not.) We omit the types for restrictions.

(
x.case(x(p).(νzw) (p | d), x(y).x(p).y(q).(νzw) (p | q))

)
[d:=DB]

Semantics. To give a semantics to CHOP, we follow the same approach as
in [7,19]: we derive term reductions and equivalences from sound proof transfor-
mations.

Communications in CHOP are still defined by cut reductions over linear
propositions, as in CP. The key insight that underlies our semantics for process
mobility is that we interpret process types as atomic propositions in linear logic.
That is, in the eyes of linear logic, a process type T is an atomic proposition (X).
This twist allows us to integrate the expressivity of CP with our new rules: the

Classical Higher-Order Processes 175

dual of T is just T⊥. (Different typing systems are often integrated this way.) A
consequence is that we can cut a process output with a process input, as below.

Θ � P ::Δ
Θ � x[P]::x : Θ → Δ

→R
Θ, p : Θ → Δ � Q::Γ

Θ � y(p).Q::Γ, y : (Θ → Δ)⊥
⊥ R

Θ � (νxΘ→Δy) (x[P] | y(p).Q)::Γ
Cut

The above cut can always be eliminated by rewriting it into a (smaller) chop:

Θ � P ::Δ Θ, p : Θ → Δ � Q::Γ

Θ � Q[p:=P]::Γ
Chop

By following this idea we can derive the key β-reductions (−→) for process
mobility in CHOP, given in the following. We also give some examples of equiv-
alences (≡) that define how explicit substitutions are propagated.

(νxΘ→Δy) (x[P] | y(p).Q) −→ Q[p:=P]

p[p:=P] −→ P

(x[y].(Q | R))[p:=P] ≡ x[y].(Q[p:=P] | R[p:=P]))

(x(y).Q)[p:=P] ≡ x(y).(Q[p:=P])

For space reasons, we do not include all reductions and conversions. Note
that we inherit all the original ones from CP (cf. [6]), for example those given
below.

(νxAy) (w → xA | Q) −→Q{w/y}
(νxA⊗By) (x[u].(P | Q) | y(v).R) −→ (νuAv) (P | (νxBy) (Q | R))

(νx1y) (x[] | y().P) −→P

(νxA⊕By) (x[inl].P | y.case(Q,R)) −→ (νxAy) (P | Q)

(νxA⊕By) (x[inr].P | y.case(Q,R)) −→ (νxBy) (P | R)

(νx∃X.By) (x[A].P | y(X).Q) −→ (νxB{A/X}y) (P | Q{A/X})

3 Related Work

Other session calculi include primitives for moving processes by relying on a
functional layer [14,17]. Differently, CHOP is nearer to the original Higher-Order
π-calculus (HOπ) [15], where the communicated values are processes, instead of
functions (or values as intended in λ-calculus). A consequence is that the theory
of CHOP is simpler. For example, our language of session types remains separate

176 F. Montesi

from process types, which are opaque atomic propositions in the session types
of CHOP. As such, we do not require the additional asymmetric connectives in
session types used in [17] for communicating processes (⊃ and ∧). The “send a
process and continue over channel x” primitive of [17] can be encoded in CHOP
as x[y].(y[P] | Q) (similarly for receive). However, the functional layer in [17]
allows for a remarkably elegant integration of recursive types, which is missing in
CHOP. A possible direction to recover this feature is the work presented in [18].

In previous works, the process values that can be sent usually have the form
λx̃.P , to enable reuse in contexts that use different channel names. In CHOP,
this is not necessary since we can get the same result with the forwarder term
inherited from CP, which the receiver of a process can use to manipulate its
names. For example, suppose that p has a free session endpoint x that we want
to rename to w. We can just write (νyAx) (w → yA | p) to obtain the desired
effect: whichever process will replace p will communicate over w instead of x.
(It is straightforward to generalise this construction to arbitrarily many names,
and to offer it through syntactic sugar, e.g., let x̃ = w̃ inP .) This is often done
in practice, e.g., in the setting of microservices [9]; for example, in the Jolie
programming language, the constructs of aggregation and embedding are used
to implement this pattern [13], but without any type safety guarantees on the
usage of sessions as in CHOP.

In [6,8], the notion of duality found in linear logic is replaced with coher-
ence, which allows many processes to participate in a same session. We leave an
extension of CHOP to such multiparty sessions to future work.

The calculus of Linear Compositional Choreographies (LCC) [7] gives a
propositions-as-types correspondence for Choreographic Programming [12] based
on linear logic. CHOP may provide the basis for extending LCC with process
mobility, potentially yielding the first higher-order choreography calculus.

4 Conclusions

We presented CHOP, an attempt at extending CP to higher-order process com-
munication. This paper is meant as a first attempt at formulating its theory. The
reductions supported by CHOP, derived by sound proof transformations, are
promising in the sense that: they realise communication as expected; they pre-
serve typing; and they point out how process substitutions may be implemented
efficiently (applied only where they are needed), recalling explicit substitutions
for the λ-calculus [1].

We have deliberately postponed presenting the metatheory for CHOP. The
reason is that its main results require careful formulation, since differently from
CP it makes sense for processes to get stuck (in CP, well-typed processes always
progress). For example, the process (νx⊥�1y) (x(y).y().x[] | p) cannot reduce
because of the free process variable p. We conjecture that a progress result can be
formulated by appropriately instantiating free process variables whenever they
are needed, similarly to how catalyser processes can be used in standard session
types to provide all missing communication endpoints [5].

Classical Higher-Order Processes 177

We end this work with an open question on expressivity. One of the reasons
for which the standard π-calculus does not include process mobility is that it can
be simulated through channel mobility. Now that we have an extension of CP to
process mobility, can we prove the same result for CHOP? This would provide
additional confidence on the fact that the propositions-as-types correspondence
between linear logic propositions and session types is on the right track.

Acknowledgements. The author thanks Lúıs Cruz-Filipe and the anonymous
reviewers for their useful comments. This work was supported by the CRC project,
grant no. DFF–4005-00304 from the Danish Council for Independent Research, and by
the Open Data Framework project at the University of Southern Denmark.

References

1. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitutions. J. Funct.
Program. 1(4), 375–416 (1991)

2. Caires, L., Pérez, J.A.: Multiparty session types within a canonical binary theory,
and beyond. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp.
74–95. Springer, Cham (2016). doi:10.1007/978-3-319-39570-8 6

3. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Behavioral polymorphism and
parametricity in session-based communication. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 330–349. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-37036-6 19

4. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types.
MSCS 26(3), 367–423 (2016). Also: Caires and Pfenning, CONCUR, pages 222–
236, 2010

5. Carbone, M., Dardha, O., Montesi, F.: Progress as compositional lock-freedom. In:
Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 49–64.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-43376-8 4

6. Carbone, M., Lindley, S., Montesi, F., Schürmann, C., Wadler, P.: Coherence gen-
eralises duality: a logical explanation of multiparty session types. In: CONCUR,
LIPIcs, vol. 59, pp. 33:1–33:15 (2016)

7. Carbone, M., Montesi, F., Schürmann, C.: Choreographies, logically. Distributed
Computing, pp. 1–17 (2017). Also: CONCUR, pages 47–62, 2014

8. Carbone, M., Montesi, F., Schürmann, C., Yoshida, N.: Multiparty session types as
coherence proofs. Acta Inf. 54(3), 243–269 (2017). Also: CONCUR, pp. 412–426,
2015

9. Dragoni, N., Giallorenzo, S., Lluch-Lafuente, A., Mazzara, M., Montesi, F.,
Mustafin, R., Safina, L.: Microservices: yesterday, today, and tomorrow. In: Present
And Ulterior Software Engineering (PAUSE). Springer (2017, to appear). https://
arxiv.org/abs/1606.04036

10. Honda, K., Vasconcelos, V., Kubo, M.: Language primitives and type disciplines
for structured communication-based programming. In: ESOP, pp. 22–138 (1998)

11. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Inf. Comput.
100(1), 1–40 (1992)

12. Montesi, F.: Choreographic programming. Ph.D. thesis, IT University of Copen-
hagen (2013). http://www.fabriziomontesi.com/files/choreographic programming.
pdf

http://dx.doi.org/10.1007/978-3-319-39570-8_6
http://dx.doi.org/10.1007/978-3-642-37036-6_19
http://dx.doi.org/10.1007/978-3-642-37036-6_19
http://dx.doi.org/10.1007/978-3-662-43376-8_4
https://arxiv.org/abs/1606.04036
https://arxiv.org/abs/1606.04036
http://www.fabriziomontesi.com/files/choreographic_programming.pdf
http://www.fabriziomontesi.com/files/choreographic_programming.pdf

178 F. Montesi

13. Montesi, F., Guidi, C., Zavattaro, G.: Service-oriented programming with Jolie.
In: Bouguettaya, A., Sheng, Q.Z., Daniel, F. (eds.) Web Services Foundations, pp.
81–107. Springer, Heidelberg (2014)

14. Mostrous, D., Yoshida, N.: Session typing and asynchronous subtyping for the
higher-order π-calculus. Inf. Comput. 241, 227–263 (2015)

15. Sangiorgi, D.: From π-calculus to higher-order π-calculus — and back. In: Gaudel,
M.-C., Jouannaud, J.-P. (eds.) CAAP 1993. LNCS, vol. 668, pp. 151–166. Springer,
Heidelberg (1993). doi:10.1007/3-540-56610-4 62

16. Sangiorgi, D.: Pi-calculus, internal mobility, and agent-passing calculi. TCS
167(1&2), 235–274 (1996)

17. Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and
sessions: a monadic integration. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 350–369. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37036-6 20

18. Toninho, B., Caires, L., Pfenning, F.: Corecursion and non-divergence in session-
typed processes. In: Maffei, M., Tuosto, E. (eds.) TGC 2014. LNCS, vol. 8902, pp.
159–175. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45917-1 11

19. Wadler, P.: Propositions as sessions. JFP 24(2–3), 384–418 (2014). Also: ICFP,
pp. 273–286 (2012)

http://dx.doi.org/10.1007/3-540-56610-4_62
http://dx.doi.org/10.1007/978-3-642-37036-6_20
http://dx.doi.org/10.1007/978-3-642-37036-6_20
http://dx.doi.org/10.1007/978-3-662-45917-1_11

Weak Nominal Modal Logic

Joachim Parrow(B), Tjark Weber, Johannes Borgström,
and Lars-Henrik Eriksson

Department of Information Technology, Uppsala University, Uppsala, Sweden
joachim.parrow@it.uu.se

Abstract. Previous work on nominal transition systems explores strong
bisimulation and a general kind of Hennessy-Milner logic with infinite but
finitely supported conjunction, showing that it is remarkably expressive.
In the present paper we treat weak bisimulation and the corresponding
weak Hennessy-Milner logic, where there is a special unobservable action.
We prove that logical equivalence coincides with bisimilarity and explore
a few variants of the logic. In this way we get a general framework for
weak bisimulation and logic in which formalisms such as the pi-calculus
and its many variants can be uniformly represented.

1 Introduction

In many models of concurrent computation there is a fundamental distinction
between two kinds of actions: on one hand, those that are strictly internal
to a process, and thus cannot be observed by its environment; on the other
hand, those that represent an interaction with the environment and thus are
observable. The discriminatory power of the model must then be weak enough,
roughly speaking, that unobservables do not count. This idea emerged in the
early 1980s in a variety of concurrency models, for example in Milner’s obser-
vation equivalence, Lamport’s notion of stuttering, and the denotational models
of Hoare [6,19,20]. A good example is weak bisimulation in numerous process
calculi. Here the special action τ represents anything unobservable, and the
bisimulation game requires a simulating process to mimic actions with the same
observable content, i.e., it is allowed to have more or fewer τs. Similarly, the
so called weak modal logics cannot express formulas to test for the presence or
absence of τs.

In our earlier work [23] we develop a theory of nominal transition systems,
bisimulation, and modal logic, with the goal to be as general as possible and
subsume many models in the literature. The states of the transition systems
may be tested by state predicates from an arbitrary logic. Transitions between
states can take arbitrarily structured labels and also bind names (like in the
scope extrusions of the pi-calculus). Thus we can uniformly represent not only
the pi-calculus but also many of its high-level extensions. Our results include a
treatment of bisimulation and an adequate Hennessy-Milner logic (HML) where
logical equivalence coincides with bisimilarity. We make ample comparisons to

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Bouajjani and A. Silva (Eds.): FORTE 2017, LNCS 10321, pp. 179–193, 2017.
DOI: 10.1007/978-3-319-60225-7 13

180 J. Parrow et al.

other work to support our claim that their primitives can be encoded in our
general framework. Main technical points include the use of nominal sets to
represent how states, actions and predicates depend on names, and the use of
finitely supported infinite conjunctions in the logic to represent a variety of
quantifiers and fixpoints. Section 2 below recapitulates the necessary background.
All of that work is of the so-called strong variety: all actions are counted as
observable.

In this paper we extend our investigation to nominal transition systems where
there is a special unobservable action τ . In Sect. 3 we define and explore the
notion of weak bisimulation. In comparison to existing work in process algebra
there are subtleties in the interplay of unobservable actions and state predicates.
In Sect. 4 we introduce a weak HML and prove that its induced logical equiva-
lence coincides with weak bisimulation. The logic is formulated as a sublogic of
our earlier logic [23] and contains only formulas that do not distinguish between
weakly bisimilar states. Again the main subtlety is in the interplay between
state predicates and action modalities. The logic does not admit disjunctions of
state predicates, and in Sect. 5 we prove that this does not affect the expres-
sive power. In Sect. 6 we demonstrate that state predicates can be encoded as
additional transitions: self loops labelled with the predicate. Section 7 describes
how our results can apply to existing models of computation, Sect. 8 relates to
existing work on weak modal logics, and in Sect. 9 we conclude with a summary
of the main insights gained and prospects for further work.

Our main results in Sects. 3 and 4, including the adequacy of the weak
logic, have been formalised in the interactive theorem prover Isabelle/HOL using
the nominal datatype package. Our Isabelle theories, comprising approximately
1,300 lines of machine-readable definitions and proofs, are available from the
Archive of Formal Proofs.1 They extend an earlier formalisation [25] of nominal
transition systems and our logic for strong bisimilarity, from which they re-use
the definition of (strong) formulas.

2 Background

In this section we recapitulate the relevant definitions from our earlier work [23],
to which we refer for more extensive explanations, examples, and relation to
previous work on transition systems and Hennessy-Milner logics.

2.1 Nominal Sets

Nominal sets [24] is a general theory of objects that contain names, and in
particular formulates the notion of alpha-equivalence when names can be bound.
The reader need not know nominal set theory to follow this paper, but some key
definitions will make it easier to appreciate our work, and we recapitulate them
here.

1 https://devel.isa-afp.org/entries/Modal Logics for NTS.shtml.

https://devel.isa-afp.org/entries/Modal_Logics_for_NTS.shtml

Weak Nominal Modal Logic 181

We assume a countably infinite multi-sorted set of atomic identifiers or names
N ranged over by a, b, A permutation is a bijection on names that leaves all
but finitely many names invariant. The singleton permutation that swaps names
a and b and has no other effect is written (a b), and the identity permutation,
which swaps nothing, is written id. Permutations are ranged over by π, π′. The
effect of applying a permutation π to an object X is written π · X. Formally,
the permutation action · can be any operation that satisfies id · X = X and
π · (π′ · X) = (π ◦ π′) · X, but a reader may comfortably think of π · X as the
object obtained by permuting all names in X according to π.

A set of names N supports an object X if for all π that leave all elements
of N invariant it holds π · X = X. In other words, if N supports X then names
outside N do not matter to X. If a finite set supports X then there is a unique
minimal set supporting X, called the support of X, written supp(X), intuitively
consisting of exactly the names that matter to X. In general, the support of a
set is not the same as the union of the support of its members. An example is
the set of all names; the support of each element a is the set {a}, but the whole
set has empty support since π · N = N for any permutation π.

We write a#X, pronounced “a is fresh for X,” for a �∈ supp(X). The intuition
is that if a#X then X does not depend on a in the sense that a can be replaced
with any fresh name without affecting X. If A is a set of names we write A#X
for ∀a ∈ A . a#X.

A nominal set S is a set with a permutation action such that X ∈ S implies
π · X ∈ S, and where each member X ∈ S has finite support. A main point
is that then each member has infinitely many fresh names available for alpha-
conversion.

A set of names N supports a function f on a nominal set if for all π that
leave all elements of N invariant it holds π · f(X) = f(π · X), and similarly for
relations and functions of higher arity. Thus we extend the notion of support to
finitely supported functions and relations as the minimal finite support, and can
derive general theorems such as supp(f(X)) ⊆ supp(f) ∪ supp(X).

An object that has empty support is called equivariant. For instance, a unary
function f is equivariant if π · f(X) = f(π ·X) for all π, X. The intuition is that
an equivariant object does not treat any name special.

2.2 Nominal Transition Systems

Definition 1. A nominal transition system is characterised by the following

– states: A nominal set of states ranged over by P , Q.
– pred: A nominal set of state predicates ranged over by ϕ.
– An equivariant binary relation � on states and pred. We write P � ϕ to

mean that in state P the state predicate ϕ holds.
– act: A nominal set of actions ranged over by α.
– An equivariant function bn from act to finite sets of names, which for each

α returns a subset of supp(α), called the binding names.

182 J. Parrow et al.

– An equivariant transition relation → on states and residuals. A residual is a
pair of action and state. For → (P, (α, P ′)) we write P

α−→ P ′. The transition
relation must satisfy alpha-conversion of residuals: If a ∈ bn(α), b#α, P ′ and

P
α−→ P ′ then also P

(a b)·α−−−−→ (a b) · P ′.

In [23] we motivate and demonstrate many examples of nominal transition sys-
tems, including the pi-calculus and several extensions of it. Here states, actions
and transitions are familiar, and the binding names correspond to the names in
scope extrusions. State predicates represent what the environment can perceive
of a state, for example equality tests of expressions, or connectivity between
communication channels.

Definition 2. A bisimulation R is a symmetric binary relation on states in a
nominal transition system satisfying the following two criteria: R(P,Q) implies

1. Static implication: P � ϕ implies Q � ϕ.
2. Simulation: For all α, P ′ such that bn(α)#Q there exist Q′ such that if

P
α−→ P ′ then Q

α−→ Q′ and R(P ′, Q′).

We write P
·∼ Q to mean that there exists a bisimulation R such that R(P,Q).

Static implication and symmetry means that bisimilar states must satisfy
the same state predicates. The simulation requirement is familiar from the pi-
calculus.

2.3 Hennessy-Milner Logic

We define a Hennessy-Milner logic including infinitary conjunctions; as demon-
strated in [23] this results in high expressiveness using a very compact formal
definition. In order to avoid set-theoretic paradoxes we begin by fixing some
infinite cardinal κ to bound the cardinality of conjunctions. We define the for-
mulas, ranged over by A,B, . . ., and the validity of a formula A in a state P ,
written P |= A, by induction as

Definition 3.

P |= ∧
i∈I Ai if for all i ∈ I it holds that P |= Ai

P |= ¬A if not P |= A
P |= ϕ if P � ϕ

P |= 〈α〉A if there exists P ′ such that P
α−→ P ′ and P ′ |= A

Support and name permutation are defined as usual (permutation distributes
over all formula constructors). In

∧
i∈I Ai it is required that the indexing set I

has bounded cardinality, by which we mean that |I| < κ. We assume that κ is
sufficiently large; specifically, we require κ > ℵ0 (so that we may form countable
conjunctions) and κ > |states|. It is also required that the set of conjuncts
{Ai | i ∈ I} has finite support; this is then the support of the conjunction. This
is strictly weaker than requiring the set to be uniformly bounded, i.e., that there
is a finite set of names supporting all members. Alpha-equivalent formulas are

Weak Nominal Modal Logic 183

identified; the only binding construct is in 〈α〉A where bn(α) binds into A. In
the last clause we assume that 〈α〉A is a representative of its alpha-equivalence
class such that bn(α)#P .

We write � for the empty conjunction and A0∧A1 for the binary conjunction∧
i∈{0,1} Ai. Bounded and finitely supported disjunction

∨
is defined in the usual

way as the dual of conjunction. Universal and existential quantifiers are defined
as conjunction and disjunction over the set of instances. In [23] we expand on
the expressive power and relate to existing logics.

Definition 4. Two states P and Q are logically equivalent, written P
·= Q, if

for all A it holds that P |= A iff Q |= A.

Theorem 1. (Theorems 6 and 9 in [23]) P
·∼ Q iff P

·= Q.

The implication from left to right is by induction over formulas. The other
direction is by contraposition: if not P

·∼ Q then there is a distinguishing for-
mula A such that P |= A and not Q |= A.

3 Weak Bisimulation

The logics and bisimulations considered in [23] are of the strong variety, in the
sense that all transitions are regarded as equally significant. In many models of
concurrent computation there is a special action that is unobservable in the sense
that in a bisimulation, and also in the definition of the action modalities, the
presence of extra such transitions does not matter. This leads to notions of weak
bisimulation and accompanying weak modal logics. For example, a process that
has no transitions is weakly bisimilar to any process that has only unobservable
transitions, and these satisfy the same weak modal logic formulas. We shall here
introduce these ideas into the nominal transition systems, where the presence of
state predicates requires some care in the definitions.

To cater for unobservable transitions assume a special action τ with empty
support. The following definitions are standard:

Definition 5.

1. P ⇒ P ′ is defined by induction to mean P = P ′ or P
τ−→ ◦ ⇒ P ′.

2. P
α⇒ P ′ means P ⇒ ◦ α−→ ◦ ⇒ P ′.

3. P
α̂⇒ P ′ means P ⇒ P ′ if α = τ and P

α⇒ P ′ otherwise.

Intuitively P
α̂⇒ P ′ means that P can evolve to P ′ through transitions with the

only observable content α. We call this a weak action α and it will be the basis
for the semantics in this section.

The normal way to define weak bisimilarity is to weaken Q
α−→ Q′ to Q

α̂⇒ Q′

in the simulation requirement. This results in the weak simulation criterion:

Definition 6. A binary relation R on states is a weak simulation if R(P,Q)
implies that for all α, P ′ with bn(α)#Q there exists Q′ such that

if P
α−→ P ′ then Q

α̂⇒ Q′ and R(P ′, Q′)

184 J. Parrow et al.

However, just replacing the simulation requirement with weak simulation
in Definition 2 will not suffice. The reason is that through the static implication
criterion in Definition 2, an observer can still observe the state predicates directly,
and thus distinguish between a state that satisfies ϕ and a state that does not
but can silently evolve to another state that satisfies ϕ:

Example 1.

P Q
ϕ

τ

Certainly {(P,Q), (Q,Q)} is a weak simulation according to Definition 6. But
P �� ϕ and Q � ϕ, thus they are in no static implication. We argue that if ϕ
is the only state predicate (in particular, there is no predicate ¬ϕ), then the
only test that an observer can apply is “if ϕ then . . . ,” and here P and Q will
behave the same; P can pass the test after an unobservable delay. Thus P and
Q should be deemed weakly bisimilar, and static implication as in Definition 2
is not appropriate.

Therefore we need a weak counterpart of static implication where τ transi-
tions are admitted before checking predicates, that is, if P � ϕ then Q ⇒ Q′ � ϕ.
In other words, Q can unobservably evolve to a state that satisfies ϕ. How-
ever, this is not quite enough by itself. Consider the following example where
P � ϕ0, P � ϕ1, R � ϕ1 and Q � ϕ0, with transitions P

τ−→ R and Q
τ−→ R:

Example 2.

ϕ1 ϕ0ϕ1

ϕ0
R QP

τ τ

Here we do not want to regard P and Q as weakly bisimilar. They do have the
same transitions and can satisfy the same predicates, possibly after a τ transition.
But an observer of P can first determine that ϕ1 holds, and then determine
that ϕ0 holds. This is not possible for Q: an observer who concludes ϕ1 must
already have evolved to R.

Similarly, consider the following example where the only difference between
P and Q is that P � ϕ but not Q � ϕ:

Example 3.

P

P0

P1

Q
ϕ

ϕ

τ

α

τ

α

Again we do not want to regard P and Q as weakly bisimilar. Intuitively, an
observer of Q that determines that ϕ holds must already be at P1 and thus have

Weak Nominal Modal Logic 185

preempted the possibility to do α, whereas for P , the predicate ϕ holds while
retaining the possibility to do α. For instance, P in parallel with a process of
kind “if ϕ then γ” can perform γ followed by α, but Q in parallel with the same
cannot do that sequence.

In conclusion, the weak counterpart of static implication should allow the
simulating state to proceed through unobservable actions to a state that both
satisfies the same predicate and continues to bisimulate. This leads to the
following:

Definition 7. A binary relation R on states is a weak static implication if
R(P,Q) implies that for all ϕ there exists Q′ such that

if P � ϕ then Q ⇒ Q′ and Q′ � ϕ and R(P,Q′)

Definition 8. A weak bisimulation is a symmetric binary relation on states
satisfying both weak simulation and weak static implication. We write P

·≈ Q to
mean that there exists a weak bisimulation R such that R(P,Q).

In Example 1, {(P,Q), (Q,P), (Q,Q)} is a weak bisimulation. In Examples 2
and 3, P and Q are not weakly bisimilar.

It is interesting to compare this with weak bisimilarities defined for psi-
calculi [16]. A psi-calculus contains a construct of kind “if ϕ then . . . ” to test
if a state predicate is true. These constructs may be nested; for instance, “if ϕ0

then if ϕ1 then . . . ” effectively tests if both ϕo and ϕ1 are true simultaneously.
If state predicates are closed under conjunction, Definition 8 coincides with the
definition of simple weak bisimulation in [16]. In general, however, Definition 8
is less discriminating. Consider P0

τ−→ P1
τ−→ P0 where for i = 0, 1: Pi � ϕi.

Compare it to Q with no transitions where both Q � ϕ0 and Q � ϕ1:

Example 4.

P0 P1
ϕ0 ϕ1

τ

τ Q
ϕ0 ϕ1

Here all of P0, P1 and Q are weakly bisimilar, unless the predicates are closed
under conjunction, in which case the predicate ϕ0 ∧ ϕ1 distinguishes between
them. In psi-calculi Q would not be simply weakly bisimilar to P0 or P1 for the
same reason.

We proceed to establish some expected properties of weak bisimilarity.

Lemma 1. If P
·≈ Q and P

α̂⇒ P ′ with bn(α)#Q then for some Q′ it holds
P ′ ·≈ Q′ and Q

α̂⇒ Q′.

Proof. The proof has been formalised in Isabelle; it is by induction and case
analysis according to Definition 5.

Lemma 2.
·≈ is an equivariant equivalence relation.

Proof. The proofs of equivariance, reflexivity, symmetry, and transitivity have
been formalised in Isabelle.

186 J. Parrow et al.

4 Weak Logic

We here define a Hennessy-Milner logic adequate for weak bisimilarity. Since
weak bisimilarity identifies more states than strong bisimilarity, the logic needs
to be correspondingly less expressive: it must not contain formulas that distin-
guish between weakly bisimilar states. Our approach is to keep the definition of
formulas (Definition 3) and identify an adequate sublogic.

One main idea is to restrict the action modalities 〈α〉 to occur only in accor-
dance with the requirement of a weak bisimulation, thus checking for α̂⇒ rather
than for α−→. We therefore define the derived weak action modal operator 〈〈α〉〉
in the following way, where 〈τ〉iA is defined to mean A if i = 0 and 〈τ〉〈τ〉i−1A
otherwise.

Definition 9 (Weak action modality).

〈〈τ〉〉A =
∨

i∈ω

〈τ〉iA 〈〈α〉〉A = 〈〈τ〉〉〈α〉〈〈τ〉〉A for α �= τ

Note that in 〈〈α〉〉A the names in bn(α) bind into A. As usual we consider formulas
up to alpha-conversion in the standard sense, i.e., to prove a property of a formula
it is enough to prove a property of an alpha-variant. It is then straightforward to
show (and formalise in Isabelle) that 〈〈α〉〉A corresponds to the weak transitions
used in the definition of weak bisimilarity:

Proposition 1. Assume bn(α)#P . Then

P |= 〈〈α〉〉A iff ∃P ′. P α̂⇒ P ′ and P ′ |= A

In particular, for α = τ , we have that 〈〈τ〉〉A holds iff A holds after zero or more
τ transitions.

Thus a first step towards a weak sublogic is to replace 〈α〉 by 〈〈α〉〉 in
Definition 3. By itself this is not enough; that sublogic is still too expressive.
For instance, the formula ϕ asserts that ϕ holds in a state; this holds for Q but
not for P in Example 1, even though they are weakly bisimilar.

To disallow ϕ as a weak formula we require that state predicates only occur
guarded by a weak action 〈〈τ〉〉. This solves part of the problem. In Example 1 we
can no longer use ϕ as a formula, and the formula 〈〈τ〉〉ϕ holds of both P and Q.
Still, in Example 1 there would be the formula 〈〈τ〉〉¬ϕ which holds for P but not
for Q, and in Example 4 the formula 〈〈τ〉〉(ϕ0 ∧ ϕ1) holds for Q but not for P0.
Clearly a logic adequate for weak bisimulation cannot have such formulas. The
more draconian restriction that state predicates occur immediately under 〈〈τ〉〉
would indeed disallow both 〈〈τ〉〉¬ϕ and 〈〈τ〉〉(ϕ0 ∧ ϕ1) but would also disallow
any formula distinguishing between P and Q in Examples 2 and 3.

A solution is to allow state predicates under 〈〈τ〉〉, and never directly under
negation or in conjunction with another state predicate. The logic is:

Weak Nominal Modal Logic 187

Definition 10 (Weak formulas). The set of weak formulas is the sublogic of
Definition 3 given by

A ::=
∧

i∈I

Ai | ¬A | 〈〈α〉〉A | 〈〈τ〉〉(A ∧ ϕ)

Note that since P
α̂⇒ ◦ ⇒ P ′ holds iff P

α̂⇒ P ′ we have that 〈〈α〉〉〈〈τ〉〉A is
logically equivalent to 〈〈α〉〉A. We thus abbreviate 〈〈α〉〉〈〈τ〉〉(A∧ϕ) to 〈〈α〉〉(A∧ϕ).
We also abbreviate 〈〈α〉〉(� ∧ ϕ) to 〈〈α〉〉ϕ.

Compared to Definition 3, the state predicates can now only occur in formulas
of the form 〈〈τ〉〉(A ∧ ϕ), i.e., under a weak action, and not under negation or
conjunction with another predicate. For instance, in Example 1 above, neither ϕ
nor 〈〈τ〉〉¬ϕ are weak formulas, and in fact there is no weak formula to distinguish
between P and Q. Similarly, in Example 4 〈〈τ〉〉(ϕ0 ∧ ϕ1) is not a weak formula,
and no weak formula distinguishes between Q and Pi.

To argue that the logic still is expressive enough to provide distinguishing
formulas for states that are not weakly bisimilar, consider Example 2 and the for-
mula 〈〈τ〉〉((〈〈τ〉〉ϕ0)∧ϕ1) which holds for P but not for Q. Similarly, in Example 3
〈〈τ〉〉((〈〈α〉〉�) ∧ ϕ) holds for P but not for Q.

Definition 11. Two states P and Q are weakly logically equivalent, written
P

·≡ Q, if for all weak formulas A it holds that P |= A iff Q |= A.

Theorem 2. If P
·≈ Q then P

·≡ Q.

Proof. The proof has been formalised in Isabelle. It is by induction over weak
formulas.

Theorem 3. If P
·≡ Q then P

·≈ Q.

Proof. The proof has been formalised in Isabelle. The idea is to prove that
·≡ is

a bisimulation by contraposition: for any non-bisimilar pair of states there exists
a distinguishing weak formula.

5 Disjunction Elimination

As defined in Sect. 2, disjunction is a derived logical operator, expressed through
conjunction and negation. This is still true in the weak modal logic, but there
is a twist in that neither general conjunctions nor negations may be applied
to unguarded state predicates. The examples in Sect. 3 demonstrate why this
restriction is necessary: negated or conjoined state predicates in formulas would
mean that adequacy no longer holds. Interestingly, we can allow disjunctions of
unguarded predicates while maintaining adequacy; in fact, adding disjunction
would not increase the expressive power of the logic. In this section we demon-
strate this.

The extended weak logic is as follows, where a simultaneous induction defines
both extended weak formulas (ranged over by E) and preformulas (ranged over
by B) corresponding to subformulas with unguarded state predicates.

188 J. Parrow et al.

Definition 12 (Extended weak formulas E and preformulas B).

E ::=
∧

i∈IEi | ¬E | 〈〈α〉〉E | 〈〈τ〉〉B

B ::= E ∧ B | ϕ | ∨
i∈I Bi

The last clause in the definition of preformulas is what distinguishes this
logic from the logic in Definition 10. (Thus an extended weak formula is also an
ordinary weak formula if it does not contain a disjunction of unguarded state
predicates.) For instance, 〈〈τ〉〉(ϕ0 ∨ ϕ1) is an extended weak formula, as is

〈〈τ〉〉(((〈〈β〉〉�) ∧ ϕ0) ∨ ((〈〈γ〉〉�) ∧ ϕ1))

saying that it is possible to do a sequence of unobservable actions such that either
continuing with β and satisfying ϕ0 hold, or continuing with γ and satisfying ϕ1

hold.

Theorem 4. For any extended weak formula E there is an (ordinary) weak
formula Δ(E) such that E

·≡ Δ(E).

Proof. The idea is to push disjunctions in preformulas to top level using the
fact that (finite) conjunction distributes over disjunction, and then use the fact
that the action modality distributes over disjunction to transform disjunctions
of preformulas into disjunctions of weak formulas.

6 State Predicates as Actions

We shall here demonstrate that omitting state predicates does not really entail
a loss of expressiveness: for any transition system T there is another transition
system S(T) where state predicates are replaced by self-loops. In this section
we formally define this transformation S and derive some of its properties. To
formulate this idea we introduce the notation statesT to mean the states in the
transition system T, and similarly for actions, bn, transitions, bisimilarity, etc.

Definition 13. The function S from transition systems to transition systems is
defined as follows:

– statesS(T) = statesT
– actS(T) = actT � predT

– bnS(T)(α) = bnT(α) if α ∈ actT; bnS(T)(ϕ) = ∅ if ϕ ∈ predT

– predS(T) = �S(T) = ∅
– P

α−→S(T) P ′ if P
α−→T P ′ (for α ∈ actT); P

ϕ−→S(T) P if P �T ϕ (for
ϕ ∈ predT)

It is easy to see that if T is a transition system then so is S(T). In particular
equivariance of →S(T) follows from equivariance of →T and �T and the fact that
the union of equivariant relations is equivariant.

Weak Nominal Modal Logic 189

Theorem 5. If P
·≈T Q then P

·≈S(T) Q.

Proof. We prove that
·≈T is a weak S(T)-bisimulation.

Theorem 6. If P
·≈S(T) Q then P

·≈T Q.

Proof. We prove that
·≈S(T) is a weak T-bisimulation. It needs a lemma that if

P ⇒ Q ⇒ R and P
·≈ R then Q

·≈ R.

A corresponding transformation of weak formulas turns state predicates into
actions in the following way.

Definition 14. The partial function S from weak formulas on the transition
system T to weak formulas on the transition system S(T) is defined by

S(〈〈τ〉〉((〈〈τ〉〉A) ∧ ϕ)) = 〈〈ϕ〉〉S(A)

and is homomorphic on the first three cases in Definition 10.

S is not total since a formula 〈〈τ〉〉(A ∧ ϕ) is in its domain only when A =
〈〈τ〉〉A′ for some A′. It is easy to see that S is injective and surjective, i.e., every
weak formula A on S(T) has a unique formula B on T such that S(B) = A. We
write S−1 for the inverse of S. Thus

S−1(〈〈ϕ〉〉A) = 〈〈τ〉〉((〈〈τ〉〉S−1(A)) ∧ ϕ)

and S−1 is homomorphic on all other operators.

Theorem 7. P |=S(T) A iff P |=T S−1(A).

Proof. By induction over weak formulas on S(T).

An interesting consequence is that to express the distinguishing formulas
guaranteed by Theorem3, it is enough to consider formulas in dom(S), i.e., in
the last clause of Definition 10, it is enough to consider A = 〈〈τ〉〉A′. The reason is
that if P � ·≈T Q then by Theorem 6 also P � ·≈S(T) Q, which by Theorem3 means
there is a distinguishing formula B for P and Q in S(T), which by Theorem 7
means that S−1(B) is a distinguishing formula in T.

Finally, consider the apparently more appealing definition of S by

S(〈〈τ〉〉(A ∧ ϕ)) = 〈〈ϕ〉〉S(A)

Here S is total and a bijection, but with this definition, Theorem7 fails.
A counterexample is A = ¬〈〈α〉〉�, P �T ϕ with P

τ−→T Q and P
α−→T Q for

some α �= τ , where Q has no outgoing transitions, cf. the diagrams below:

P Qϕ

τ
α α

τ

ϕ

QP
T: S(T):

Since P
ϕ⇒S(T) Q and Q has no 〈〈α〉〉 action, we have that

P |=S(T) 〈〈ϕ〉〉¬〈〈α〉〉�
The only state that satisfies ϕ also has an 〈〈α〉〉 action, thus it does not hold that

P |=T 〈〈τ〉〉((¬〈〈α〉〉�) ∧ ϕ)

190 J. Parrow et al.

7 Applications

In our earlier work [23] we outlined how several advanced process algebras can
be given a semantics in terms of nominal transition systems. For all of these the
present paper thus defines weak bisimulation, a weak HML, and an adequacy
theorem. We here comment briefly on some of them.

The pi-calculus already has several notions of weak bisimulation, and Defi-
nition 8 corresponds to the early weak bisimulation. In the pi-calculus there are
no state predicates, thus the weak static implication is unimportant. There is an
HML adequate for strong bisimulation [22] but we are not aware of a weak HML.
Our result here contributes a weak HML adequate for early weak bisimulation.

The applied pi-calculus [1] comes equipped with a labelled transition system
and a notion of weak labelled bisimulation. States contain a record of emitted
messages; this record has a domain and can be used to equate open terms M and
N modulo some rewrite system. The definition of bisimulation requires bisimilar
processes to have the same domain and equate the same open terms, i.e., to be
strongly statically equivalent. In order to model this strong static equivalence in
our weak logic, we add state predicates “x ∈ dom” and “M ≡ N” to the labelled
transition system. Since these are invariant under silent transitions, weak and
strong static implication coincide, and our weak HML is adequate for Abadi and
Fournet’s early weak labelled bisimilarity.

The spi-calculus [2] has a formulation as an environment-sensitive labelled
transition system [4] equipped with state formulae φ. As above, adding state
predicates “x ∈ dom” to this labelled transition system makes our weak HML
adequate with respect to Boreale’s weak bisimilarity.

Our earlier work also describes how to make nominal transition systems of
multiple-labelled transition systems [11], the explicit fusion calculus [26], the con-
current constraint pi-calculus [7], and psi-calculi [16]. These calculi can become
interesting applications of our ideas since they have actions with binders and non-
trivial state predicates. Each of them has a special unobservable action, but until
now only psi-calculi have a notion of weak labelled bisimulation (as remarked
in Sect. 3), and none have a weak HML. Through this paper they all gain both
bisimulation and logic, although more work is needed to establish how compat-
ible the bisimulation equivalence is with their respective syntactic constructs.
A complication with all but the multiple-labelled systems is that the natural
formulation of bisimulation makes use of substitutive effects (or in psi-calculi,
the similar assertion extensions) which are bisimulation requirements on neither
predicates nor actions. In order to map them into our framework these would
need to be cast as actions. This could be an interesting area of further research.

8 Related Work

The first published HML is by Hennessy and Milner (1980–1985) [13,14,21].
They work with image-finite CCS processes, where finite (binary) conjunction
suffices for adequacy, and define both strong and weak versions of the logic.
Milner et al. (1993) [22] give a strong HML for the pi-calculus.

Weak Nominal Modal Logic 191

Kozen’s modal μ-calculus (1983) [18] subsumes several other weak temporal
logics including CTL* (Cranen et al. 2011) [9], and can encode weak transi-
tions using least fixed points. Dam (1996) [10] gives a modal μ-calculus for the
pi-calculus, treating bound names using abstractions and concretions, and pro-
vides a model checking algorithm. Bradford and Stevens (1999) [5] give a generic
framework for parameterising the μ-calculus on data environments, state predi-
cates, and action expressions. The logic defined in the present paper can encode
the weakest fixpoint operator of μ-calculi by a disjunction of its finite unrollings,
in the same way as the strong version of our logic [23].

There are several weak HMLs for variants of the pi-calculus. Hüttel and
Pedersen (2007) [15] define a weak HML for an applied pi-calculus with a
subterm-convergent rewrite system augmented with test rules. Koutavas and
Hennessey (2012) [17] give a weak HML for a higher-order pi-calculus with
both higher-order and first-order communication using an environment-sensitive
LTS. The conjunction operator of the logic is infinite, without an explicit
bound on its cardinality. Without such a bound the set of formulas is not well-
defined: let F be the set of all formulas, and consider the subset of formulas
S :=

{∧
A∈I A | I ⊆ F}

. By Cantor’s Theorem |S| > |F|, which is a contradic-
tion. Xu and Long (2015) [27] define a weak HML with countable conjunction
for a purely higher-order pi-calculus. The adequacy proof uses stratification.

There are several extensions of HML with spatial modalities. The one most
closely related to our logic is by Berger et al. (2008) [3]. They define an HML
with both strong and weak action modalities, fixpoints, spatial conjunction and
adjunction, and a scope extrusion modality, to study a typed value-passing pi-
calculus with selection and recursion. The logic has three (may, must, and mixed)
proof systems that are sound and relatively complete.

9 Conclusion

Nominal transition systems include both labelled transitions and state predi-
cates, and can therefore accommodate a wide variety of formalisms. We have
defined weak bisimulation and a corresponding weak modal logic on nominal
transition systems, and proved the adequacy result: logical equivalence coin-
cides with weak bisimilarity. The use of finitely supported infinite conjunctions
is critical for this result.

A key insight is the notion of weak static implication: to bisimulate a state
satisfying a state predicate it must be possible to take zero or more unobservable
transitions to reach a state that both satisfies the predicate and continues to
bisimulate. Another important conclusion is that in the logic, state predicates
must be guarded by a weak action and cannot directly be combined conjunctively
or negated. They may be combined disjunctively, but doing so does not increase
expressiveness, since the action modality distributes over disjunction.

Many formalisms, among them most process algebras, feature labelled tran-
sitions but no state predicates. It is a folklore fact that this entails no loss of
expressiveness. Here we formulate this as a theorem, showing that checking a

192 J. Parrow et al.

predicate corresponds to executing a transition leading back to the same state.
Formally this is done through a transformation that replaces predicates with
loops, and showing that weak bisimilarity is precisely preserved. We also show
how the so obtained weak modal logic correlates with the original one.

Nominal transition systems constitute a possible semantics for many for-
malisms, and an interesting idea for further work is to explore operators on
them. For instance, a parallel composition operator would enable closer rela-
tions to existing process algebras. There are many different ways to approach
this, and to gain general results it would be interesting to define classes of opera-
tors, for example through general formats, and explore their properties. There is
a huge literature on operator formats for process algebras, of which a few are on
nominal process algebras [8,12], but as we understand it none yet treat nominal
transition systems in their full generality.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proceedings of POPL 2001, pp. 104–115. ACM (2001)

2. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: the spi calculus.
Inf. Comput. 148(1), 1–70 (1999)

3. Berger, M., Honda, K., Yoshida, N.: Completeness and logical full abstraction
in modal logics for typed mobile processes. In: Aceto, L., Damg̊ard, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008. LNCS, vol. 5126, pp. 99–111. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-70583-3 9

4. Boreale, M., De Nicola, R., Pugliese, R.: Proof techniques for cryptographic
processes. SIAM J. Comput. 31(3), 947–986 (2001)

5. Bradfield, J.C., Stevens, P.: Observational mu-calculus. Technical report RS-99-5,
BRICS (1999)

6. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984)

7. Buscemi, M.G., Montanari, U.: CC-Pi: a constraint-based language for specifying
service level agreements. In: Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
18–32. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71316-6 3

8. Cimini, M., Mousavi, M.R., Reniers, M.A., Gabbay, M.J.: Nominal SOS. ENTCS
286, 103–116 (2012)

9. Cranen, S., Groote, J.F., Reniers, M.: A linear translation from CTL* to the first-
order modal µ-calculus. Theoret. Comput. Sci. 412(28), 3129–3139 (2011)

10. Dam, M.: Model checking mobile processes. Inf. Comput. 129(1), 35–51 (1996)
11. De Nicola, R., Loreti, M.: Multiple-labelled transition systems for nominal calculi

and their logics. Math. Struct. Comput. Sci. 18(1), 107–143 (2008)
12. Fiore, M., Staton, S.: A congruence rule format for name-passing process calculi.

Inf. Comput. 207(2), 209–236 (2009)
13. Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In:

Bakker, J., Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–309. Springer,
Heidelberg (1980). doi:10.1007/3-540-10003-2 79

14. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32(1), 137–161 (1985)

http://dx.doi.org/10.1007/978-3-540-70583-3_9
http://dx.doi.org/10.1007/978-3-540-70583-3_9
http://dx.doi.org/10.1007/978-3-540-71316-6_3
http://dx.doi.org/10.1007/3-540-10003-2_79

Weak Nominal Modal Logic 193

15. Hüttel, H., Pedersen, M.D.: A logical characterisation of static equivalence. ENTCS
173, 139–157 (2007). Proceedings of MFPS XXIII

16. Johansson, M., Bengtson, J., Parrow, J., Victor, B.: Weak equivalences in psi-
calculi. In: Proceedings of LICS 2010, pp. 322–331 (2010)

17. Koutavas, V., Hennessy, M.: First-order reasoning for higher-order concurrency.
Comput. Lang. Syst. Struct. 38(3), 242–277 (2012)

18. Kozen, D.: Results on the propositional µ-calculus. Theoret. Comput. Sci. 27(3),
333–354 (1983)

19. Lamport, L.: What good is temporal logic? In: IFIP Congress, pp. 657–668 (1983)
20. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Hei-

delberg (1980). doi:10.1007/3-540-10235-3
21. Milner, R.: A modal characterisation of observable machine-behaviour. In: Aste-

siano, E., Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112, pp. 25–34. Springer, Hei-
delberg (1981). doi:10.1007/3-540-10828-9 52

22. Milner, R., Parrow, J., Walker, D.: Modal logics for mobile processes. Theoret.
Comput. Sci. 114(1), 149–171 (1993)

23. Parrow, J., Borgström, J., Eriksson, L.-H., Gutkovas, R., Weber, T.: Modal logics
for nominal transition systems. In: Proceedings of CONCUR 2015. LIPIcs, vol. 42,
pp. 198–211. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)

24. Pitts, A.M.: Nominal Sets. Cambridge University Press, Cambridge (2013)
25. Weber, T., Eriksson, L.-H., Parrow, J., Borgström, J., Gutkovas, R.: Modal logics

for nominal transition systems. Archive of Formal Proofs, October 2016. http://
isa-afp.org/entries/Modal Logics for NTS.shtml. Formal proof development

26. Wischik, L., Gardner, P.: Explicit fusions. Theoret. Comput. Sci. 340(3), 606–630
(2005)

27. Xian, X., Long, H.: A logical characterization for linear higher-order processes. J.
Shanghai Jiaotong Univ. (Sci.) 20(2), 185–194 (2015)

http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1007/3-540-10828-9_52
http://isa-afp.org/entries/Modal_Logics_for_NTS.shtml
http://isa-afp.org/entries/Modal_Logics_for_NTS.shtml

Type Inference of Simulink Hierarchical Block
Diagrams in Isabelle

Viorel Preoteasa1(B), Iulia Dragomir2, and Stavros Tripakis1,3

1 Aalto University, Espoo, Finland
viorel.preoteasa@gmail.com

2 Verimag, Saint-Martin-d’Héres, France
3 University of California, Berkeley, USA

Abstract. Simulink is a de-facto industrial standard for embedded sys-
tem design. In previous work, we developed a compositional analysis
framework for Simulink, the Refinement Calculus of Reactive Systems
(RCRS), which allows checking compatibility and substitutability of com-
ponents. However, standard type checking was not considered in that
work. In this paper we present a method for the type inference of Simulink
models using the Isabelle theorem prover. A Simulink diagram is trans-
lated into an (RCRS) Isabelle theory. Then Isabelle’s powerful type infer-
ence mechanism is used to infer the types of the diagram based on the
types of the basic blocks. One of the aims is to handle formally as many
diagrams as possible. In particular, we want to be able to handle even
those diagrams that may have typing ambiguities, provided that they are
accepted by Simulink. This method is implemented in our toolset that
translates Simulink diagrams into Isabelle theories and simplifies them.
We evaluate our technique on several case studies, most notably, an auto-
motive fuel control system benchmark provided by Toyota.

1 Introduction

Simulink is a widespread tool from Mathworks for modeling and simulating
embedded control systems. A plethora of formal verification tools exist for
Simulink, both from academia and industry, including Mathwork’s own Design
Verifier. Formal verification is extremely important, particularly for safety criti-
cal systems. Formal verification techniques make steady progress and are increas-
ingly gaining acceptance in the industry.

At the same time, we should not ignore more “lightweight” methods, which
can also be very beneficial. In this paper, we are interested in particular in type
checking and type inference. Type checking is regularly used in many program-
ming languages, as part of compilation, and helps to catch many programming
mistakes and sometimes also serious design errors. Type inference is a more

This work has been partially supported by the Academy of Finland and the U.S.
National Science Foundation (awards #1329759 and #1139138).

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Bouajjani and A. Silva (Eds.): FORTE 2017, LNCS 10321, pp. 194–209, 2017.
DOI: 10.1007/978-3-319-60225-7_14

Type Inference of Simulink Hierarchical Block Diagrams in Isabelle 195

Fig. 1. Two Simulink diagrams. Both are accepted (i.e., simulated) by Simulink.

advanced technique which usually includes type checking but in addition per-
mits types to be inferred when those are not given by the user, thus automatically
extracting valuable information about the design. Importantly, both type check-
ing and type inference are typically much less expensive than formal verification.
We therefore view both of them as complementary to formal verification for the
rigorous design of safety-critical systems.

Simulink already provides some kind of type checking and inference as part
of its basic functionality. In the version R2016b that we used while writing this
article, the user has to open a diagram and then click on Display → Signals &
Ports → Port Data Types, upon which Simulink (computes and) displays the
typing information, for example, as shown in Fig. 1. Unfortunately, Simulink
analyses are proprietary, and as such it is difficult to know what type checking
and inference algorithms are used. Moreover, the way Simulink uses the typing
information is often strange, as illustrated by the examples that follow.

Consider first the two diagrams shown in Fig. 1. Both these examples capture
implicit type conversions performed by Simulink. In both diagrams, there are
two Constant blocks, with values 2 and 3 respectively. In the first block, we
manually set the output type to be Boolean. In the second block we manually
set the output type to double. The outputs of the two constants are fed into an
Add block which performs addition. In the rightmost diagram, the result is fed
into an Integrator. The block Scope plots and displays the output over time.

Both diagrams of Fig. 1 are accepted by Simulink, meaning that they can be
simulated. Although Simulink issues a warning that says “Parameter precision
loss occurred . . . A small quantization error has occurred.” the results of the
simulation appear as expected: a constant value 4 in the case of the leftmost
diagram, and a straight slope from values 0 to 40 for the rightmost diagram, when
simulated from 0 to 10 time units. Simulink performs an implicit conversion of 2
to the Boolean value true, and then another implicit conversion of true to the real
value 1, in order for the addition to be performed. These implicit conversions are
stipulated in the Simulink documentation (when the source block allows them).
Therefore, the result is 3 + 1 = 4.

Although these examples seem unusual, they are designed to be minimal and
expose possible problems, similar to those detected in a Fuel Control System
(FCS) benchmark provided by Toyota [9]. It is common practice to mix, in lan-
guages that allow it, Boolean and numeric values in a way exposed by these exam-
ples. We have tested this behavior extensively and we have observed that other
languages that perform automatic conversions between Boolean and numeric
values behave consistently with Simulink (e.g., C: (double)3 + (bool)2 = 4.0,
Python: float(3) + bool(2) = 4.0).

196 V. Preoteasa et al.

Fig. 2. A diagram rejected by Simulink.

Now, consider the diagram shown in Fig. 2, where the output of the same
Boolean constant block as the one used in the previous diagrams is fed directly
into the integrator. In this case, Simulink rejects this diagram (meaning it refuses
to simulate it). It issues an error message saying: “Data type mismatch. Input
of Integrator expects a signal of data type ‘double’. However, it is driven by
a signal of data type ‘boolean’.” The Integrator, as well as other block types,
accepts only inputs of type double and implicit conversions (from Boolean to
double or vice-versa) are not allowed and performed. We remark that Simulink
does not treat diagrams in a consistent way with respect to typing. One of the
goals of this paper is to present a formal type checking and inference framework
for Simulink, where such examples are treated consistently (and meaningfully).

The contribution of this work is a type inference mechanism for Simulink
diagrams, on top of the type inference mechanism of the Isabelle theorem prover
[12]. One important feature of this approach is handling Simulink basic blocks
locally, without knowledge of their environment. The challenge of this work is
embedding the more relaxed type system of Simulink into the formal type system
of Isabelle, while preserving the semantics, and as much typing information as
possible. We apply this technique to several case studies, including the FCS
benchmark.

This work is part of a larger project on translating Simulink diagrams into
Isabelle theories suitable for analysis and verification [6,15,16]. Because Isabelle’s
language is formal and precise, we can directly obtain concise and correct code in
other languages that can be used for processing Simulink models. For example,
from the Isabelle model we easily obtain Python code for simulations, and Z3
SMT solver [4] model for automatically checking properties.

Our techniques apply to the entire Simulink language, provided we know how
to translate basic blocks. Simulink contains many basic blocks but all of them
fall into some of the categories discussed in this paper.

2 Related Work

The verification of Simulink diagrams has been extensively studied in the lit-
erature, by proposing model transformations of Simulink diagrams to a formal
framework. Formal frameworks include Hybrid Automata [1], BIP [19], NuSMV
[10], Boogie [17], Timed Interval Calculus [2], Function Blocks [24], I/O Extended
Finite Automata [25], Hybrid CSP [26], and SpaceEx [11]. Many of the target
formalisms define a typing feature, and the proposed model translations make
use of it: a basic block is mapped to some “expression” on inputs and out-
puts, where the types of inputs and outputs are dependent of the block type.

Type Inference of Simulink Hierarchical Block Diagrams in Isabelle 197

The static type checking is then delegated to the target framework, if such func-
tionality is available. However, these studies mostly aim for formal verification
of Simulink diagrams and do not report about type checking.

The most relevant work with respect to type checking Simulink diagrams is
described in [18,23]. [23] presents a translation from discrete-time Simulink to
Lustre, where the type system of Simulink is formalized as a simple polymorphic
type system and unification is used to infer types. It is unclear how the above type
system handles the subtleties studied in this paper. [18] presents the SimCheck
framework, which among other functions allows the user to annotate ports and
wires with types and also units (e.g., cm). A translation to Yices [7] supports
the automated static and behavioral type checking. In contrast to SimCheck,
we automatically infer the types and dimensions of signals from the Simulink
diagrams, but we do not infer or check for physical units.

In previous work, we have presented the Refinement Calculus of Reactive
Systems (RCRS) [6,15], a compositional framework for static analysis of hier-
archical block diagrams in general, and Simulink models in particular. In the
RCRS framework blocks are specified syntactically by general formulas (con-
tracts) on input, output, and state variables. These contracts are then composed
using serial, parallel and feedback composition operators. Such contracts can
be seen as richer types, and the compatibility and contract synthesis methods
developed in RCRS can be seen as type checking and type inference techniques.
However, the contracts considered in RCRS are much more powerful than the
types considered in this paper, and the compatibility and synthesis algorithms of
RCRS are much more expensive (requiring in general quantifier elimination and
satisfiability checking in expressive logics). Therefore, the framework proposed
in this paper is much more lightweight.

In this work we use the Isabelle theorem prover which has a standard type
inference mechanism [3], briefly discussed in Sect. 3.1. Our goal is to give an
embedding of Simulink into a language and framework suitable for further
processing (simplifications, checking of properties, and even simulation). Other
systems for logical reasoning (e.g., PVS [13], Z3 [4], Coq [20]) could also be
used for this purpose. As we use type inference, our work cannot be directly
transferred to systems that do not have it (PVS, Z3). Translations of Simulink
diagrams into systems with proper subtyping (PVS, Coq) need also different
treatment since in these systems typing of a term is not always decidable.

We do not use type coercions (implicite type conversions) in our approach.
We encode possible coercions explicitely in the representations of basic blocks.

3 Preliminaries

3.1 Isabelle

Isabelle/HOL is an interactive theorem prover based on higher order logic.
Isabelle provides an environment which consists of a powerful specification
and proving language and it has a rich theory library of formally verified

198 V. Preoteasa et al.

mathematics. Notable features of Isabelle include a type system with type infer-
ence, polymorphism and overloading, and axiomatic type classes.

Isabelle’s type system includes the basic types bool, real, int, nat, type vari-
ables ′a, ′b, etc., and predefined type constructors ′a → ′b (functions from ′a to
′b) and ′a × ′b (Cartesian product of ′a and ′b). Type expressions are build from
basic types and type variables using the type constructors. For term f(x, g(y))
we can specify that it has a type t by using : t after the term f(x, g(y)) : t.

Definitions in Isabelle are introduced using declarations of the form

definition f(x)(y)(g) = g(x)(y).

This definition introduces a function f : ′a → ′b → (′a → ′b → ′c) → ′c, and
Isabelle uses the type inference mechanism to deduce its type. The type of f
is the most general type such that the expression f(x)(y)(g) = g(x)(y) is well
typed. A type t is more general than a type t′ if t′ can be obtained from t by
instantiating the type variables in t with some type expressions [12].

We can also use specific types in definitions:

definition h(x : real)(y)(g) = g(x)(y)

In our translation of Simulink to Isabelle we use the type inference mechanism.
Another important feature of Isabelle that we use is the type classes [8].

This is a mechanism that can be used, for example, to overload a polymorphic
function + : ′a → ′a → ′a on different types for ′a.

class plus = instantiation real : plus
fixes + : ′a → ′a → ′a definition x+ y = . . .

instantiation nat : plus
definition 0 + x = x | Suc(x) + y = Suc(x+ y)

We define the type class plus with the constant + of polymorphic type ′a →
′a → ′a, and two instantiations to natural and real numbers. In a term x + y,
the type of x and y is not just a type variable ′a, but a type variable ′a of class
plus. This is represented syntactically as x : ′a : plus. The terms (x : nat) + y
and (x : real) + y are well typed because the types nat and real are defined as
instances of plus. Moreover, in the term (x : nat) + y, the plus operator is the
one defined in the instance of nat : plus, while x + y does not in general have a
definition. The term (x : bool) + y is not well typed because bool is not defined
as an instance of plus.

3.2 Representation of Simulink Diagrams as Predicate
Transformers

A (fragment of a) Simulink diagram is modeled intuitively as a discrete symbolic
transition system with input, output, current and next state. The intuition behind
this representation is the following. Initially, the current state has a default value.
The system representation works in discrete steps, and, at each step, it updates
the output and the next state based on the input and the current state.

Type Inference of Simulink Hierarchical Block Diagrams in Isabelle 199

For example, an integrator block like the one from Fig. 1 is discretized as a
system parameterized by dt > 0, with input x and current state s, and output
y := s and next state s′ := s+ x · dt .

Formally, we model these systems in Isabelle as monotonic predicate trans-
formers [5], mapping predicates (sets) over the output and next state into predi-
cates (sets) over the input and current state. A monotonic predicate transformer
S with input x, current state s, output y and next state s′, for a set q of pairs
(y, s′), S(q) returns the set of all pairs (x, s) such that if the execution of S
starts in (x, s) then S does not fail and results in a pair (y, s′) ∈ q. A detailed
discussion of the choice for this semantics is outside the scope of this paper, and
is extensively presented in [6,15,21].

In Isabelle, the integrator block is represented as the predicate transformer

Integrator(dt)(q)(x, s) = q(s, s+ x · dt)
and it has the type ′a → (′a : plus × ′a → bool) → (′a × ′a → bool). In what
follows we do not make a distinction between the input and current state, and
output and next state, respectively. In general, a Simulink diagram is modeled
as a predicate transformer with input (and current state) of a type variable ′a,
and output (and next state) of a type variable ′b. The type of this predicate
transformer is (′b → bool) → (′a → bool) and we use the notation ′a ◦→ ′b for it
(this may appear reversed, but is correct and in accordance with the discussion
on predicate transformers above). Often ′a and ′b will be Cartesian products,
including the empty product (unit). We denote by () : unit the empty tuple.

For a predicate transformer mapping, for example, inputs (x, y, z) into output
expressions (x+ y, x · z), we use the notation [x, y, z � x+ y, x · z] where

[x, y, z � x+ y, x · z](q)(x, y, z) = q(x+ y, x · z)
Using this notation, the constant and the integrator blocks become

Const(a) = [() � a], Integrator(dt) = [x, s � s, s+ x · dt].
We denote by Id the identity predicate transformer ([x � x]).

A block diagram is modeled in Isabelle as an expression of predicate trans-
formers corresponding to the basic blocks, using three composition operators:
serial (◦), parallel (‖), and feedback (fb). The serial composition of predicate
transformers is exactly the composition of functions. The parallel and feedback
compositions are described in [6,16]. For this presentation, the typing of these
operations is important. The typing of the serial composition is standard. The
parallel and feedback compositions have the types:

‖ : (′a ◦→ ′b) → (′c ◦→ ′d) → (′a × ′c ◦→ ′b × ′d),
fb : (′a × ′b ◦→ ′a × ′c) → (′b ◦→ ′c)

Using these notations, the predicate transformer for the rightmost diagram
from Fig. 1 is given by

(((Const(s_bool(2)) ‖Const(3)) ◦ [x, y � x+ y]) ‖ Id) ◦ Integrator(dt)

200 V. Preoteasa et al.

We use here the Id predicate transformer to model and connect the current
state of the integrator. We also use the polymorphic function s_bool which for 2
returns True if the type of the result is Boolean, and 1 if the type of the result is
real. The type of the result in this case is real as it is inferred from the addition
block (following the constant blocks).

4 Constant Blocks

Simulink diagrams may contain constant blocks, parameterized by numeric con-
stants. These are blocks without input and with one single output which is
always equal to the constant’s parameter. By default, Simulink constants do not
have associated types. In order to have the possibility to instantiate these types
later for reals, integers, Booleans, or other types, we use uninterpreted constants.
By default, numeric constants in Isabelle are polymorphic. If no type is explic-
itly set to a constant in a term t = 12, then Isabelle associates a type variable
′a : numeral to this constant. If the term is used in a context where the type is
more specific (t = 12∧Suc(t) = t′) then Isabelle uses the type class instantiation
to the specific type (in this case natural because of the successor function).

Due to this polymorphic treatment of constants, in some contexts the prob-
lem arises that the types of these constants are not part of the type of the
resulting predicate transformer. Consider for example the diagram from Fig. 3a.
The Isabelle definition for this diagram is

Compare = (Const(1 : ′a : numeral) ‖Const(2)) ◦ [x, y � x �= y] (= [() � 1 �= 2])

Fig. 3. (a) Comparison on constants, (b) Comparison into conjunction, (c) And on
typed constants

In this definition ′a is the inferred type of constants 1 and 2. The problem with
this definition is that the type ′a is not part of the type of Compare : unit ◦→ bool.
If this definition was allowed, then we would have an unsound system, because for
example if ′a is instantiated by real, then (1 : real) �= 2 is true and Compare =
[() � True], but if ′a is instantiated by unit, then (1 : unit) �= 2 is false (unit
contains only one element) and Compare = [() � False], and we can derive [() �
False] = [() � True] which is false. In order to instantiate unit for ′a, the type unit
must be of class numeral. Although by default this is not the case in Isabelle, we
can easily add an instantiation of unit as numeral and obtain this contradiction.

Type Inference of Simulink Hierarchical Block Diagrams in Isabelle 201

Isabelle allows this kind of definition, but it gives a warning message (“Addi-
tional type variable(s) in specification of Compare : ′a : numeral”), and it defines
the function Compare to depend on an additional type variable:

Compare(′a : numeral) = (Const(2 : ′a) ‖Const(1)) ◦ [x, y � x �= y]

Now Compare(real) and Compare(unit) are different terms, so they are not equal
anymore and we cannot derive [() � False] = [() � True]. Assume now that we
compose the Compare block with a conjunction block as in Fig. 3b.

A = (Compare ‖ Const(1)) ◦ And

However, this definition is now incorrect because Compare has an additional type
parameter. The correct definition would be:

A(′a : numeral) = (Compare(′a) ‖ Const(1)) ◦ And

When we generate the definition for the diagram from Fig. 3b we do not know
that Compare needs the additional type parameter. To have control over the
type parameters we add them systematically for all constants occurring in the
diagram. Moreover, we define the constants with a variable parameter. Due to
the lack of space, the rationale for these definitions is discussed in [14].

With this method the constant blocks from Fig. 3b are defined by

ConstA(x : ′a) = Const(1 : ′a) and ConstB(y : ′b) = Const(2 : ′b) and
ConstC(z : ′c) = Const(1 : ′c) (1)

and the diagram is defined by

A(x, y, z) = (((ConstA(x) ‖ConstB(y)) ◦ [x, y � x �= y]) ‖ ConstC(z)) ◦ And (2)

In this approach, variables x, y, z are used only to control the types of the con-
stants. In this definition, because outputs of ConstA and ConstB are entering the
comparison block, the types of x and y are unified. If we need an instance of
A for type real for constants ConstA and ConstB and type Boolean for ConstC,
then we can specify it using the term A(x : real, y : real, z : bool).

This definition mechanism is implemented in our Simulink to Isabelle model
translator under the −const option. When the option is set, then the constants
are defined as in (1), and the diagrams using these constants are defined as in
(2). When the option is not given, then the constants are defined as in:

ConstA = Const(1) and ConstB = Const(2) and ConstC = Const(1)

and they are used as in: A = (((ConstA ‖ConstB)◦[x, y � x �= y]) ‖ ConstC)◦And.
When the constant blocks in a Simulink diagram define an output type, we
simply use them as in Const(1.5 : real) (Fig. 3c).

202 V. Preoteasa et al.

5 Conversion Blocks

Simulink diagrams may also contain conversion blocks. The type of the input of
a conversion is inherited and the type of the output is usually specified (Boolean,
real, . . .). However we can have also situations when the output is not specified,
and it is inherited from the type of the inputs of the block that follows a conver-
sion. In Fig. 4a we illustrate an explicit conversion to real, while Fig. 4b presents
an unspecified conversion.

Fig. 4. Conversions examples.

As with the other blocks we want to define these conversions locally, without
knowing the types of the inputs and outputs, when the output type is unspecified.
In doing so, we use the overloading mechanism of Isabelle. Overloading is a
feature that allows using the same constant name with different types. For the
conversion blocks we introduce the following definitions.

consts conv : ′a → ′b
overloading

conv(x : ′a) := x
conv(x : bool) := if x then (1 : real) else 0
conv(x : real) := (x �= 0)

This definition introduces an arbitrary function conv from a type variable ′a to
a type variable ′b, and it also defines three overloadings for this function. The
term conv(x) in general is of type ′b and x is of type ′a. If we restrict the type
′a and ′b to real and bool, then we have

(conv(x : real) : bool) = (x �= 0)

When we translate a conversion block, if we know the output type, then we use
the conversion restricted to this output type, otherwise we use the unrestricted
conversion. For example the conversion from Fig. 4a is translated into [x �
(conv(x) : real)]. The entire diagram from Fig. 4a is translated into

(((Const(1) ‖ Const(1))◦And◦[x � (conv(x) : real)]) ‖ Id)◦[x, s � s, s+x·dt] (3)

The identity block (Id) is used here for the current state input of the integral
block. The conversion from Fig. 4b is translated into [x � conv(x)]. This diagram
becomes

(((Const(1) ‖ Const(1)) ◦ And ◦ [x � conv(x)]) ‖ Id) ◦ [(x : real), s � s, s+ x · dt]

Type Inference of Simulink Hierarchical Block Diagrams in Isabelle 203

and compared with (3) the only difference is that in the later case, the type of
the output of the conversion is not specified. However, in both cases, the inputs
of the conversions must be Boolean because of the And block, and the outputs
must be real because of the integral block. In both cases the translations are
equivalent to [(s : real) � s, s+ dt].

6 Boolean Blocks

Simulink Boolean blocks are also challenging to implement due to the fact that,
for example, the inputs to a conjunction block could have different types (real,
Boolean, unspecified), as illustrated in Fig. 3c. In languages that allow it (e.g., C,
Python), it is common practice to use numerical values in Boolean expressions,
with the meaning that non-zero is true. Similarly, it is common practice to use
Boolean values in numeric expressions. Simulink also allows these cases, but
Isabelle does not. We show in this and next section how to solve these problems.

Consider the example from Fig. 3c. If we would simply take the conjunction
of all inputs

(Const(1.5 : real) ‖Const(1 : bool) ‖Const(3)) ◦ [x, y, z � x ∧ y ∧ z]

we will obtain in Isabelle a type error, because x has type real, y has type bool
and z has type ′a : numeral, and their conjunction is not well typed.

To fix this typing problem, we implement the conjunction block in the fol-
lowing way: And = [x, y, z � (x �= 0) ∧ (y �= 0) ∧ (z �= 0)]. In this expression
the types of variables x, y, and z are independent of each other, and also of the
Boolean output, and they can match the types of the blocks that are input to
And. There are still some details to consider. If input x is real, then x �= 0 is
true if and only if x is not zero, and this coincides with the semantics of And in
Simulink. However, if the input y is Boolean, then the expression y �= 0 is not
well typed, unless we add additional class instantiation in Isabelle:

instantiation bool : zero =
(0 : bool) := False

Intuitively this instantiation provides the interpretation of constant 0 as False,
when 0 is used as a Boolean value. With this the expression (y : bool) �= 0 is
equivalent to y �= False and it is equivalent to y. The same holds for the expres-
sion 1 : bool which is not well typed unless we provide an instantiation of bool
as numeral, where every (non-zero) numeral constant is True. These definitions
formalize the behavior described by Simulink in its documentation.

Using this approach, the translation of the diagram from Fig. 3c is:

(Const(1.5 : real) ‖Const(1 : bool) ‖Const(3)) ◦ [x, y, z � x �= 0 ∧ y �= 0 ∧ z �= 0]

and it is equal to

(Const(1.5 : real) ‖Const(True) ‖Const(3)) ◦ [x, y, z � x �= 0 ∧ y ∧ z �= 0]

204 V. Preoteasa et al.

because y is of type bool and (y �= 0) = y. If we expand the serial composition
and simplify the term, we obtain [() � (3 : ′a : {numeral, zero}) �= 0]. The
equality (3 : ′a : {numeral, zero}) �= 0 cannot be simplified. This is because the
type ′a : {numeral, zero} has all numeric constants 1, 2, . . . (numeral) and the
constant 0 (zero), but no relationship between these constants is known. If we
know that we only use the type ′a with instances where the numeric constants
1, 2, . . . are always different from 0, then we can create a new class based on
numeral and zero that has also the property that n �= 0 for all n ∈ {1, 2, . . .}.
Formally we can introduce this class in Isabelle by

class numeral_nzero = zero+ numeral +
assume numeral_nzero[simp] : (∀a.numeral(a) �= 0)

The new class numeral_nzero contains the numeric constants {0, 1, . . .} but also it
has the property that all numbers 1, 2, . . . are different from 0 (∀a.numeral(a) �=
0). In this property a ranges over the binary representations of the numbers
1, 2, This property is called numeral_nzero, and the [simp] declaration tells
Isabelle to use it automatically as simplification rule. Now the equality (3 : ′a :
numeral_nzero) �= 0 is also automatically simplified to True.

We provide the following class instantiation:

instantiation bool : numeral_nzero =
(0 : bool) := False | (numeral(a) : bool) := True

Because in this class we have also the assumption (∀a.numeral(a) �= 0), we need
to prove it, and it trivially holds because False �= True. Similarly we need to
introduce instantiations of numeral_nzero to real, integer, and natural numbers.
In these cases, since real, integer, and natural are already instances of numeral
and zero, we do not need to define 0 and numeral(a), but we only need to prove
the property (∀a.numeral(a) �= 0).

With this new class, the translation of diagram from Fig. 3c becomes:

(Const(1.5 : real) ‖Const(1 : bool) ‖Const(3 : ′a : numeral_nzero)) ◦
[x, y, z � x �= 0 ∧ y �= 0 ∧ z �= 0]

Because of the properties of types real, bool, and ′a : numeral_nzero, it is equal
to

(Const(1.5 : real) ‖Const(True) ‖Const(3 : ′a : numeral_nzero)) ◦
[x, y, z � x �= 0 ∧ y ∧ z �= 0]

and, after expanding the serial composition and symplifying the term, we obtain
[() � True].

Although the translation of Boolean blocks is rather involved, the result
obtained especially after basic Isabelle simplifications is simple and intuitive, as
shown above. Moreover, for the translation of a Boolean block we do not need to
consider its context, and the correctness of the translation can be assessed locally.
Basically an element e in a conjunction (e ∧ . . .) is replaced by ((e �= 0) ∧ . . .).
By creating the class numeral_nzero and the instantiations to bool and real, the
typing of e (e : bool or e : real, . . .) defines the semantics of the expression e �= 0.

Type Inference of Simulink Hierarchical Block Diagrams in Isabelle 205

7 Generic Translations

The approach described so far works well for diagrams that do not mix val-
ues of different types (Boolean, real) in operations. However, there are some
diagrams that are accepted by Simulink and cannot be translated with the app-
roach described above due to type mismatch. Figures 1 and 2 give three examples
of this kind of diagrams.

Figure 1 illustrates diagrams accepted by Simulink, while the diagram repre-
sented in Fig. 2 is not accepted by Simulink. The simulation of leftmost diagram
from Fig. 1 gives 4 (2 : bool results in True, and then converted to real is 1).
The rightmost diagram from Fig. 1 is equivalent to a diagram where constant
4 is input for an integral block. However none of these diagrams result in cor-
rect translations when using the method presented so far. This is due to type
mismatches:

(Const(2 : bool) ‖Const(3 : real)) ◦ Add
(((Const(2 : bool) ‖Const(3 : real)) ◦ Add) ‖ Id) ◦ [(x : real), s � s, s+ x · dt]
(Const(2 : bool) ‖ Id) ◦ [(x : real), s � s, s+ x · dt]

In the first case, we try to add a Boolean to a real. The second example contains
the first example as a sub-diagram, and it has the same type incompatibility. In
the third example the output of Const(2 : bool) of type bool is used as the input
for the first component of [(x : real), s � s, s+ x · dt] which expects a real.

To be able to translate these diagrams, we use type variables instead of
the concrete types bool, real, Because we work with expressions containing
arithmetic and Boolean operations, we need to use type variables of appropriate
classes. For example, to translate the leftmost diagram from Fig. 1, we cannot
just use an arbitrary type ′a because ′a must be of class numeral for the constants
2 and 3, and of class plus. In fact only class numeral is required here because plus
is a subclass of numeral. The generic translation of this diagram is:

ConstA(x : ′a : numeral) = Const(2 : ′a), ConstB(y : ′a : numeral)=Const(3 : ′a)
A(x, y) = (ConstA(x) ‖ConstB(y)) ◦ [a, b � a+ b]

In this translation, we only need to specify the types for the constants as dis-
cussed in Sect. 4. However, when we use the type variable ′a for numeric con-
stants 1, 2, . . ., then we must specify it using the class numeral. If the expression
involving the elements of type ′a contains some other operators, then we must
include also the classes defining these operators. For example we need to have:
ConstA(x : ′a : {numeral,mult}) = Const((2 : ′a) · 3). To simplify this we intro-
duce a new class simulink that contains all mathematical and Boolean operators
as well as all real functions that can occur in Simulink diagrams.

class simulink = zero+ numeral+minus+ uminus+ power + ord +
fixes s_exp, s_sin : ′a → ′a | fixes s_and : ′a → ′a → ′a
. . .
assume numeral_nzero[simp] : (∀a.numeral(a) �= 0)

206 V. Preoteasa et al.

Class zero contains the symbol 0, class numeral contains the numbers 1, 2, . . .,
classes minus and uminus contains the binary and unary minus operators, class
power contains the power and multiplication operators, and class ord contains
the order operators. Because the real functions exp, sin, . . . and the Boolean
functions are defined just for reals and Boolean types respectively, and they do
not have generic type classes, we introduce the generic versions of these functions
and operators in the class simulink (s_exp, s_sin, . . . , s_and, . . .). Additionally we
assume that constant 0 is different from all numeric constants 1, 2,

Using this new class the translation of the rightmost diagram from Fig. 1 is
given by

ConstA(x : ′a : simulink) = Const(s_bool(2 : ′a))
ConstB(y : ′a : simulink) = Const(3 : ′a)
Integral(dt : ′a : simulink) = [s, x � s, s+ x · dt]
Add = [(x : ′a : simulink), y � x+ y]
A(x, y, dt) = (((ConstA(x) ‖ConstB(y)) ◦ Add) ‖ Id) ◦ Integral(dt)

The inferred type of A is A(x : ′a : simulink, y : ′a, dt : ′a) : ′a ◦→ ′a × ′a
In this generic translation there are some details to consider when translating

a constant block of type Boolean like the ones from Fig. 1 (2 : bool). In order to
use A(x, y, dt) in the end, we still need to instantiate the type variable ′a. In this
case, it would be appropriate to instantiate ′a with type real. If we simply use
Const(2 : ′a) in definition of ConstA, then when instantiating ′a, we will obtain
the constant 2 and we will add it to 3 resulting in 5, and this is not the result
obtained when simulating the diagram in Simulink. To preserve the Simulink
semantics in the generic case, we translate Boolean constants using a function
s_bool which for a parameter x returns 1 if x is different from 0 and 0 otherwise:

definition s_bool(x) := if x �= 0 then 1 else 0

The typing of x : ′a and of s_bool(x) : ′b defines again a more precise semantics
for s_bool(x). For example if both ′a and ′b are bool, then s_bool(x) = x.
Similarly, we define instantiations for bool and real for all the generic functions
defined in the simulink class. These instantiations are detailed in [14].

We implemented this strategy in our Simulink to Isabelle model translator
under the −generic option. When this option is missing, then all blocks are
defined using their specific types. If this option is given, then only type variables
of class simulink are used.

Additionally, we implemented the option −type isabelle_type with an Isabelle
type parameter, which adds a new definition where it instantiates all type vari-
ables to the type parameter.

For example, if we apply the translation using the options −const, −generic,
and −type real to the rightmost diagram from Fig. 1, we obtain:

Type Inference of Simulink Hierarchical Block Diagrams in Isabelle 207

ConstA(x : ′a : simulink) := Const(s_bool(2 : ′a))
ConstB(y : ′a : simulink) := Const(3 : ′a)
Integral(dt : ′a : simulink) := [s, x � s, s+ x · dt]
Add := [(x : ′a : simulink), y � x+ y]
A(x, y, dt) := (((ConstA(x) ‖ConstB(y)) ◦ Add) ‖ Id) ◦ Integral(dt)
A_type(dt) := A(0 : real, 0 : real, dt : real)

and also the simplified versions A and A_type:

A(x, y, dt) = [s � s, s+ (1+ 3) · dt] and A_type(dt) = [s � s, s+ 4 · dt]
In the generic version s_bool(2) is automatically simplified to 1 using the defini-
tion of s_bool and the assumption numeral_nzero, and in A_type the expression
1+3 is further simplified to 4. In A_type we can eliminate the variables providing
types for constants because these types are now instantiated to real.

8 Implementation and Validation

The mechanism presented above for translating Simulink diagrams is imple-
mented in the Refinement Calculus of Reactive Systems framework, available
from http://rcrs.cs.aalto.fi. In this framework, Simulink diagrams are translated
into Isabelle theories, where diagrams are modeled using predicate transformers.
The framework allows the user to perform various analyses on the formal model
such as simplification, compatibility checking, safety property verification and
simulation.

In order to handle a large set of diagrams, we introduced three translation
options: −const,−generic, and −type isabelle_type, where each solves different
possible corner cases. These options allow some control over the translation
process. More details about these options are available in the extended version
of this work [14].

We have extensively tested all combinations of interactions of numeric and
Boolean blocks, and we carefully implemented the observed behavior. We have
also tested our technique on several examples, including an industrial case study:
the Fuel Control System (FCS) benchmark from Toyota [9]. All examples pre-
sented in this paper are excerpts from the FCS model. The latter contains 1
constant-related problem as described in Sect. 4, 5 implicit conversions, and 5
explicit conversions from which 1 has the inherited output type. Our approach
allowed to detect and correct the implicit bool to real conversion present in the
FCS model.

Simulink’s type system is not formalized, thus it is difficult to make formal
claims about its relation to our work. Our experience shows that in most cases
our translation results in types that are more general than those in the original
diagram.1 Therefore, instantiating the remaining type variables can be done such
that the types of the translation match the types inferred by Simulink.
1 The only exception is when Boolean values are used in numeric expressions, as

discussed in Sect. 7, in which case true and false are modeled as the numbers 1
and 0.

http://rcrs.cs.aalto.fi

208 V. Preoteasa et al.

9 Conclusions and Future Work

We presented a type inference technique for Simulink diagrams which relies on
Isabelle’s type inference. The main advantage of our technique is that it treats the
basic blocks of the diagram compositionally, i.e., locally and without knowledge
of their context.

Our work is not necessarily restricted to Simulink and could also be used to
translate from other weakly typed languages and/or other hierarchical block dia-
gram notations. It could in principle be also applicable to similar in style dataflow
languages, with synchronous or asynchronous semantics, which are standard in
modeling and reasoning about distributed systems (e.g., see [22]). Our work
could also help in implementing translations into other systems than Isabelle
(e.g., PVS, Z3, Coq), although several challenges need to be overcome as men-
tioned in Sect. 2. The investigation of all these possibilities is part of future
work.

References

1. Agrawal, A., Simon, G., Karsai, G.: Semantic translation of Simulink/stateflow
models to hybrid automata using graph transformations. Electron. Notes Theoret.
Comput. Sci. 109, 43–56 (2004)

2. Chen, C., Dong, J.S., Sun, J.: A formal framework for modeling and validating
Simulink diagrams. Formal Aspects Comput. 21(5), 451–483 (2009)

3. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: POPL
1982, pp. 207–212. ACM (1982)

4. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3_24

5. Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Comm. ACM 18(8), 453–457 (1975)

6. Dragomir, I., Preoteasa, V., Tripakis, S.: Compositional semantics and analysis of
hierarchical block diagrams. In: Bošnački, D., Wijs, A. (eds.) SPIN 2016. LNCS,
vol. 9641, pp. 38–56. Springer, Cham (2016). doi:10.1007/978-3-319-32582-8_3

7. Dutertre, B., de Moura, L.: The Yices SMT solver. Technical report, SRI Interna-
tional (2006)

8. Haftmann, F., Wenzel, M.: Constructive type classes in Isabelle. In: Altenkirch,
T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 160–174. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74464-1_11

9. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: HSCC, pp. 253–262. ACM (2014)

10. Meenakshi, B., Bhatnagar, A., Roy, S.: Tool for translating Simulink models into
input language of a model checker. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS,
vol. 4260, pp. 606–620. Springer, Heidelberg (2006). doi:10.1007/11901433_33

11. Minopoli, S., Frehse, G.: SL2SX translator: from Simulink to SpaceEx models. In:
HSCC, pp. 93–98. ACM (2016)

12. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2002)

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-319-32582-8_3
http://dx.doi.org/10.1007/978-3-540-74464-1_11
http://dx.doi.org/10.1007/11901433_33

Type Inference of Simulink Hierarchical Block Diagrams in Isabelle 209

13. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). doi:10.1007/3-540-55602-8_217

14. Preoteasa, V., Dragomir, I., Tripakis, S.: Type inference of Simulink hierarchical
block diagrams in Isabelle. CoRR, abs/1612.05494 (2016)

15. Preoteasa, V., Tripakis, S.: Refinement calculus of reactive systems. In: EMSOFT,
pp. 2:1–2:10. ACM (2014)

16. Preoteasa, V., Tripakis, S.: Towards compositional feedback in non-deterministic
and non-input-receptive systems. In: LICS. ACM (2016)

17. Reicherdt, R., Glesner, S.: Formal verification of discrete-time MATLAB/Simulink
models using boogie. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS,
vol. 8702, pp. 190–204. Springer, Cham (2014). doi:10.1007/978-3-319-10431-7_14

18. Roy, P., Shankar, N.: SimCheck: a contract type system for Simulink. Innov. Syst.
Softw. Eng. 7(2), 73–83 (2011)

19. Sfyrla, V., Tsiligiannis, G., Safaka, I., Bozga, M., Sifakis, J.: Compositional transla-
tion of Simulink models into synchronous BIP. In: SIES, pp. 217–220. IEEE (2010)

20. The Coq Development Team. The Coq Proof Assistant Reference Manual – Version
V8.6, December 2016

21. Tripakis, S., Lickly, B., Henzinger, T.A., Lee, E.A.: A theory of synchronous rela-
tional interfaces. ACM Trans. Program. Lang. Syst. 33(4), 14:1–14:41 (2011)

22. Tripakis, S., Pinello, C., Benveniste, A., Sangiovanni-Vincentelli, A., Caspi, P.,
Natale, M.D.: Implementing synchronous models on loosely time-triggered archi-
tectures. IEEE Trans. Comput. 57(10), 1300–1314 (2008)

23. Tripakis, S., Sofronis, C., Caspi, P., Curic, A.: Translating discrete-time Simulink
to Lustre. ACM Trans. Embed. Comput. Syst. 4(4), 779–818 (2005)

24. Yang, C., Vyatkin, V.: Transformation of Simulink models to IEC 61499 Function
Blocks for verification of distributed control systems. Control Eng. Pract. 20(12),
1259–1269 (2012)

25. Zhou, C., Kumar, R.: Semantic translation of Simulink diagrams to input/output
extended finite automata. Discret. Event Dyn. Syst. 22(2), 223–247 (2012)

26. Zou, L., Zhany, N., Wang, S., Franzle, M., Qin, S.: Verifying Simulink diagrams
via a Hybrid Hoare Logic Prover. In: EMSOFT, pp. 9:1–9:10 (2013)

http://dx.doi.org/10.1007/3-540-55602-8_217
http://dx.doi.org/10.1007/978-3-319-10431-7_14

Creating Büchi Automata for Multi-valued
Model Checking

Stefan J.J. Vijzelaar(B) and Wan J. Fokkink

VU University Amsterdam, Amsterdam, The Netherlands
{s.j.j.vijzelaar,w.j.fokkink}@vu.nl

Abstract. In explicit state model checking of linear temporal logic
properties, a Büchi automaton encodes a temporal property. It inter-
leaves with a Kripke model to form a state space, which is searched
for counterexamples. Multi-valued model checking considers additional
truth values beyond the Boolean true and false; these values add extra
information to the model, e.g. for the purpose of abstraction or execu-
tion steering. This paper presents a method to create Büchi automata
for multi-valued model checking using quasi-Boolean logics. It allows
for multi-valued propositions as well as multi-valued transitions. A logic
for the purpose of execution steering and abstraction is presented as
an application.

1 Introduction

Model checking is a technique used to automatically verify whether a system
adheres to a given specification; or more specifically for this paper, that a prop-
erty is never violated during the execution of a system. This can be implemented
as a search through a product state space of two interleaved automata: the Kripke
model that describes the system under verification; and the Büchi automaton
that describes the property under verification. The Kripke model is generally an
abstraction of a concrete system; it can be created by hand or is derived with the
help of automation from a more detailed model. The Büchi automaton encodes
the negation of the property being verified, which is usually expressed in linear
temporal logic (LTL). The resulting product state space can then be searched
for executions of the system that violate the property.

Algorithms to generate Büchi automata generally assume that the Kripke
model and LTL property are based on Boolean logic. We are interested in verifi-
cation based on multi-valued logics. These logics extend the set of Boolean truth
values true and false with new truth values. Thus additional information can be
encoded, such as uncertainty caused by a loss of information during abstraction,
or the ability of certain transitions to be enabled or disabled at will during exe-
cution. We need multi-valued versions of Kripke models, Büchi automata and
LTL to support these applications.

Multi-valued definitions of Kripke models and Büchi automata follow natu-
rally from their Boolean definitions. Creating a multi-valued Büchi automaton,
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Bouajjani and A. Silva (Eds.): FORTE 2017, LNCS 10321, pp. 210–224, 2017.
DOI: 10.1007/978-3-319-60225-7 15

Creating Büchi Automata for Multi-valued Model Checking 211

that correctly encodes a temporal property for multi-valued model checking,
however, requires more care. When model checking LTL properties using Boolean
logic, it is customary to assume all executions of the Kripke model are infinite.

This assumption can be guaranteed using stutter extension: the ability to
extend any finite execution to an infinite one without influencing the validity of
certain LTL properties. In the multi-valued setting this is not possible.

In this paper we show how to create multi-valued Büchi automata for LTL
properties. We present definitions of the LTL operators that are compatible
with multi-valued logics and do not require stutter extension. To ensure correct
results for the weak next operator, we introduce the notion of maximality: a
progress condition that considers to what degree of truth executions can halt
when competing executions can to some degree continue. Based on these revised
LTL definitions we describe an algorithm for constructing Büchi automata for
multi-valued Kripke models, supporting both multi-valued atomic propositions
and transitions.

To give an example of multi-valued LTL model checking we look at the
application of execution steering. Our nine-valued steering logic indicates which
transitions in a Kripke model can be enabled or disabled during execution. This
shows the necessity of maximality to get correct multi-valued results.

Although there is a considerable amount of work on model checking with
multi-valued logics (see e.g. [4,9]), to our knowledge there are no algorithms for
explicit state multi-valued LTL model checking supporting multi-valued propo-
sitions and transitions. Chechik et al. use Büchi automata for verification of
multi-valued computations, but with Boolean transitions [5]; Andrade et al. use
a SAT solver for multi-valued LTL model checking over quasi-Boolean logics [1].

2 Preliminaries

Models and temporal logics typically use Boolean logic: transitions between
states either exist or do not exist; atomic propositions either hold for a state
or do not hold; and by extension temporal properties over a model can be veri-
fied or falsified. They are either true or false. It is customary to only draw true
transitions in a graph: missing transitions are assumed to be false.

Additional truth values in the logic can increase its expressiveness and lead
to more informative answers when verifying a property. Such multi-valued logics,
which are logics with more than two truth values, can be defined using lattices.

2.1 Lattices

A lattice L = 〈L,�〉 is a partially ordered (�) set of elements L, in which any
two elements have a least upper bound (join or �) and a greatest lower bound
(meet or �). A lattice has a join and meet for each non-empty finite subset
of elements. Therefore, a non-empty finite lattice is bounded, and has a least
element (bottom or ⊥) and greatest element (top or �). In a distributive lattice
meet and join distribute over each other.

212 S.J.J. Vijzelaar and W.J. Fokkink

A Boolean logic can be described as a lattice consisting of only two elements,
with false being the bottom and true being the top; see Fig. 1a. The Boolean
conjunction (∧) and disjunction (∨) operations map respectively to the meet
(�) and join (�) of the lattice. To create a multi-valued logic we can use lattices
that have additional elements beyond true and false.

true

false

(a) Boolean

true

A

false

N

(b) Belnap

tf

Tt

Ttf

A

Ftf

Ff

f

N

t

(c) Steering

Fig. 1. Distributive lattices

2.2 Quasi-Boolean Logics

The multi-valued logics we are interested in are quasi-Boolean logics, also called
De Morgan logics. Without the requirements of excluded middle (x∨¬x = true)
and noncontradiction (x ∧ ¬x = false), they generalise Boolean logics.

The lattice of a quasi-Boolean logic L = 〈L,≤,¬〉 is bounded and distributive:
the bottom element is false, the top element is true, meet is used as a conjunction
(∧), and join is used as a disjunction (∨). Negation (¬) requires an appropriate
involution which, in addition to being its own inverse, should adhere to De
Morgan’s laws. It follows by definition that disjunction and conjunction are
distributive, and the law of double negation applies.

A typical example of a distributive lattice is the one used for Belnap logic, as
depicted in Fig. 1b. This logic can be used to encode may and must transitions
resulting from abstraction, using respectively N or true for may transitions, and
A or true for must transitions. The steering logic shown in Fig. 1c can encode
steering information and will be explained in more detail later. Per definition its
element Tt is equal true and its element Ff is equal to false; and one could define
the elements N and A as respectively the empty string and TFtf for reasons of
consistency, but this is deemed impractical.

Note that the lattices in Fig. 1 are depicted as Hasse diagrams in which only
the transitive reduction of the partial ordering is represented by lines between
elements: an element is smaller in ≤ than any directly connected element that
is further up. (The transitive closure relates any indirectly connected elements.)

Creating Büchi Automata for Multi-valued Model Checking 213

2.3 Multi-valued Kripke Models

Multi-valued Kripke models are a generalisation of Kripke models and can use
values of any quasi-Boolean logic for transitions and atomic propositions, instead
of being limited to the usual Boolean values true and false. Similarly temporal
properties are evaluated over the Kripke model by using the operators as defined
by the quasi-Boolean logic. We follow the definition presented in [10].

Definition 1. A multi-valued Kripke model is a tuple M = 〈L,AP , S, s0, R,Θ〉,
where L = 〈L,≤,¬〉 is a quasi-Boolean logic, AP a set of atomic propositions,
S a finite set of states, s0 the initial state, R : S × S → L a transition relation
mapping to truth values of L, and Θ : AP → (S → L) a labelling function
assigning truth values to states for each atomic proposition.

Definition 2. A path π = s1, s2, . . . is an infinite sequence of states in a multi-
valued Kripke model M = 〈L,AP , S, s0, R,Θ〉 with sn ∈ S for all n ≥ 1. The
path is called finite iff R(sk, sk+1) = false for some k ≥ 1, and infinite otherwise.

2.4 Linear Temporal Logic

Linear temporal logic (LTL) is used to describe properties of paths through
a Kripke model. We use LTL in release positive normal form to aid in our
construction of Büchi automata. This is without loss of generality, since any LTL
formula can be written in release positive normal form [3]. We also distinguish
between a weak and a strong next operator to allow for transitions with truth
values different than true, for example, when considering finite paths.

Definition 3. An LTL formula ϕ over a set of atomic propositions AP is in
release positive normal form if:

ϕ = l | p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | Xs ϕ | Xw ϕ | ϕ1 U ϕ2 | ϕ1 R ϕ2

With l ∈ L a truth value; p ∈ AP a proposition; Xs and Xw the strong and
weak next operators; U and R the until and release operators; and ¬, ∧, ∨ the
Boolean connectives.

The strong next operator Xs ϕ requires that the next state on a path is reach-
able and that ϕ holds in this next state. The weak next operator Xw ϕ requires
that ϕ holds in the next state on a path or that this next state is unreachable.
Note that these definitions coincide when the next state is reachable. The until
operator ϕ U ψ verifies whether ϕ holds in all states up to, but not necessarily
including, a state where ψ holds. The release operator ϕ R ψ verifies whether
ψ holds in all states up to, and including, a state where ϕ holds. For the until
operator to hold it is required for ψ to hold eventually; for the release operator it
is sufficient when ψ holds indefinitely. Precise semantics of these operators will
be presented in the next section when we look at multi-valued LTL.

LTL formulas apply to paths in the Kripke model using its labelling function
Θ; but the formulas do not state whether they apply to all paths or a single path.

214 S.J.J. Vijzelaar and W.J. Fokkink

An LTL property can either be universally quantified, when we want to verify
the property, or existentially quantified, when we want to find a counterexample.
A property that needs to be verified for all paths can be put in its negated form
to look for counterexamples; a step often taken by model checkers.

2.5 Multi-valued Büchi Automata

Multi-valued Büchi automata as used in this paper are a generalisation of
Boolean non-deterministic Büchi automata by using a multi-valued transition
relation.

Definition 4. A multi-valued non-deterministic Büchi automaton is a tuple
A = 〈L, Σ,Q, q0, δ, F 〉, where L = 〈L,≤,¬〉 is a quasi-Boolean logic, Σ an
alphabet, Q a finite set of states, q0 the initial state, δ : Q × Σ × Q → L a
transition relation to truth values of L, and F ⊆ Q a set of accepting states.

The quasi-Boolean logic of the Büchi automata is chosen to match the logic
of the Kripke model. The alphabet Σ is defined as Σ = LAP with AP the set of
atomic propositions of the Kripke model; the transition relation δ can then be
defined using the operators of the quasi-Boolean logic.

2.6 Bilattices

Bilattices [7] contain two orderings over the same set of elements. A bilattice is
distributive if the meet and join operators of both its orderings are distributive
with respect to each other, resulting in twelve distributive laws.

Definition 5. A bilattice is a tuple B = 〈L,≤1,≤2〉, with L a set of elements,
and ≤1, ≤2 partial orderings on L. Both 〈L,≤1〉 and 〈L,≤2〉 form a lattice.

In the context of logics and abstractions, one ordering is generally called the
truth ordering ≤t and the other the information ordering ≤i (see e.g. [10]). The
truth ordering, with a suitable definition for negation, defines a quasi-Boolean
logic; the information ordering models information loss due to abstraction.

The lattices in Fig. 1b and c are also bilattices: an element is smaller in
≤t than any directly connected element that is further up, and an element is
smaller in ≤i than any directly connected element that is more to the right.
To distinguish between lattice operations of the two orderings, we use ∧ or ∨
to indicate a meet or join over ≤t, and ⊗ or ⊕ to indicate a meet or join over
≤i. For more details on using the information order for abstraction of a Kripke
model see [11].

3 Multi-valued LTL

The Boolean definitions of LTL operators can be carried over to a multi-valued
logic by using the multi-valued definitions of the Boolean connectives. Some
simplifications made to the definitions in Boolean logics, however, do not apply
to the multi-valued setting, and can cause problems if not correctly dealt with.

Creating Büchi Automata for Multi-valued Model Checking 215

3.1 Stutter Extension of Kripke Models

In Boolean LTL model checking it is customary to assume that all transitions
on paths through the Kripke model are true, and that all paths are infinite [3].
This can be ensured by using the stutter invariance of LTL properties without
a next operator: the truth of such properties does not change if a state already
on a path is finitely repeated. For example the path π1 = s1, s2, s3, . . . cannot
be distinguished from π2 = s1, s2, s2, s2, s3, . . . by stutter invariant properties.

The requirement that stuttering is limited to a finite number of repetitions
prevents paths from diverging; a path that diverges gets stuck in the repeated
state, and never continues on the original path. This however does not apply to
deadlock states, since there is no path to continue on; therefore, in Boolean LTL
model checking, self loops can be placed on deadlock states, such that finite paths
ending in a deadlock state change into infinite paths diverging on the deadlock
state. This is called a stutter extension and when applied to a Boolean Kripke
model ensures that all its paths are infinite.

3.2 Strong and Weak Next Operators

In Boolean model checking with stutter extensions there is no difference between
strong and weak next, since all transitions in a path are true and there is always
a next state. In multi-valued model checking this is no longer the case, since
besides true and false there can be truth values for which stutter extension is not
a solution. Adding a self loop in those cases would cause unwanted divergence,
and it would suggest that an execution can simultaneously halt and continue.

Without stutter extensions, even Boolean model checking needs to make a
distinction between a strong and weak next operator, but at least the require-
ment of stutter invariance can be safely dropped.

Definition 6. Given a single path π = s1, s2, . . . in a multi-valued Kripke model
M = 〈L,AP , S, s0, R,Θ〉. The strong and weak next operators of LTL have the
following definitions respectively:

[Xs ϕ]1 = R(s1, s2) ∧ [ϕ]2 [Xw ϕ]1 = ¬R(s1, s2) ∨ [ϕ]2

Evaluation of a property ψ over the path π′ = sn, sn+1, . . . is indicated by [ψ]n.

These definitions only consider a single path in isolation, ignoring all other
transitions in the Kripke model that are not a part of it. We will remove this
restriction in the following sections when we introduce the notion of maximality;
and we will see that it is necessary to consider the truth values of all outgoing
transitions for each state in a path.

For Boolean logic, due to the law of excluded middle, an alternative definition
of Xw is ¬R(s1, s2) ∨ (R(s1, s2) ∧ [ϕ]2). This can be rewritten as (¬R(s1, s2) ∨
[ϕ]2) ∧ (R(s1, s2) ∨ ¬R(s1, s2)), in which the second disjunct is true. In quasi-
Boolean logics we lack the law of excluded middle, but the linear-time semantics
of LTL still require that transitions are either taken or not: it makes no sense

216 S.J.J. Vijzelaar and W.J. Fokkink

to evaluate a property over an execution that neither halts nor continues. We
assume this requirement holds for each transitions of the Kripke model by taking
R(s1, s2) ∨ ¬R(s1, s2) = true, resulting in the definition for Xw as given above.
This does not introduce any requirements on the Kripke model or make any
assumptions on the value of R(s1, s2).

3.3 Until and Release Operators

Using the definitions for strong and weak next, we can define the until and
release operators for a single multi-valued path. The next operators, which would
otherwise break stutter invariance, will preserve this invariance when used in
the context of the until and release operators. Note that the duality ¬(ϕUψ) =
¬ϕR¬ψ between until and release is preserved, since we have ¬Xs ϕ = Xw ¬ϕ.

Definition 7. Using the weak and strong next operator, the until and release
operators have the following expansion laws:

ϕ U ψ ≡ ψ ∨ (ϕ ∧ Xs(ϕ U ψ)) ϕ R ψ ≡ ψ ∧ (ϕ ∨ Xw(ϕ R ψ))

By definition ϕUψ is the least solution of its expansion law and requires that ψ
is evaluated at some point, while ϕ R ψ is the greatest solution of its expansion
law and does not require that ϕ is evaluated at some point.

Due to the additional requirement on ϕ U ψ, its expansion can not ignore
ψ indefinitely. In disjunctive normal form, only the clauses of finite length are
considered: the infinite clause c = ϕ ∧ Xs(c) is not included in the evaluation.

In Boolean Kripke models, these expansions work as expected. In a path
where ϕUψ encounters a false transition, the strong next operator ensures that
the property becomes false if ψ has not been true yet. The strong next requires
ψ to hold at some point. Similarly when ϕRψ encounters a false transition, the
weak next operator ensures that the property becomes true even when ϕ has
not been true yet. The weak next allows ϕ to never hold.

3.4 Paths with False Transitions

The definitions of the LTL operators given in the previous sections are correct
for a single Boolean or quasi-Boolean path, but can give incorrect results when
universally or existentially quantifying over all paths in a Kripke model. This
becomes apparent when we consider paths with false transitions.

In principle, paths with false transitions can be safely ignored if their first
false transition originates from a non-deadlock state. However, quasi-Boolean
logics allow for transitions that are only partially false and states that are only
partially deadlocked. In the following we investigate paths with false transitions
to exemplify the issue and reach a more general solution.

In Fig. 2a we see a Kripke model with each state labelled by the propositions
that are true in that state, while propositions that are not part of the label are
false. All transitions drawn in the figure have the transition value true, while

Creating Büchi Automata for Multi-valued Model Checking 217

ϕ ψ

(a) Single path

ψ

ϕ

ϕ, ψ

t

f

(b) Steering

Fig. 2. Example Kripke models

omitted transitions have the transition value false. The small incoming arrow
indicates the initial state of the model.

If we only consider paths without false transitions, then ϕ U ψ holds uni-
versally, but ψ R ϕ does not hold existentially. This follows from the only path
π1 = ϕ,ψ, ψ, . . . without false transitions. (States are uniquely identified by their
propositions in this example.) If we allow paths to include false transitions, then
we should also consider the path π2 = ϕ,ϕ, . . . among others.

Quantifying over all paths, irrespective of transition values, would give incor-
rect results. The property ψ R ϕ would hold existentially, since it holds for π2.
(The execution effectively halts after the first ϕ in the path by taking a false
transition, and ϕ is never released.) The property ϕ U ψ would not hold univer-
sally, since it does not hold for π2. (The execution halts, and ψ will never hold.)
We need to adapt the definitions of the LTL operators if we want to use them
on a multi-valued Kripke model.

3.5 Maximality

Paths with false transitions can give incorrect results. The same problem applies
to multi-valued transitions that are only partially true. To get correct results we
need to consider to what extent a transition is allowed to stop the execution; this
is done by taking into account the other transitions from the same state. For the
specific case of a false transition this means that we only halt the execution to
the extent we can not make progress through any of the other transitions. This
requirement is formalised using the notion of maximality.

Definition 8. Given a multi-valued Kripke model M = 〈L,AP , S, s0, R,Θ〉, for
the transition from state s1 ∈ S to s2 ∈ S, the predicate other, the predicate
halt, and the maximality max are defined as:

other(s1, s2) =
∨

o∈S\{s2}R(s1, o)

halt(s1, s2) = ¬other(s1, s2) ∧ ¬R(s1, s2)
max(s1, s2) = ¬other(s1, s2) ∨ R(s1, s2)

Maximality of a transition is defined by its own value, and the values of other
transitions from the same state. Looking at the border cases, a true transition is
always maximal, but the maximality of a false transition depends on the other
transitions. This ensures that halting the execution, by taking a false transition

218 S.J.J. Vijzelaar and W.J. Fokkink

from the current state, depends on the degree to which the current state is a
deadlock state. In addition, maximality is equal to the transition value if any
other transition is true, or equal to true if all other transitions are false.

Including the value s2 in the disjunction over o ∈ S\{s2} in the defini-
tion of other results in an alternative definition for maximality: max′(s1, s2) =
max(s1, s2) ∧ (R(s1, s2) ∨ ¬R(s1, s2)). The definitions coincide for Boolean
logic, but not for multi-valued logics without excluded middle. We assume
R(s1, s2) ∨ ¬R(s1, s2) = true for each transitions of the Kripke model by using
the original definition for maximality; otherwise, we would incorrectly test for
excluded middle and fail for any transition value other than true or false.

We revise the definitions of our LTL operators to require maximality; this
is comparable to requiring fair paths under a fairness condition. A property
under fairness in the universal case requires a path to be not fair or uphold
the property, while the existential case requires a path to be fair and uphold
the property. We can similarly change our definitions to require maximality of
transitions in addition to the original requirements.

In a multi-valued setting, maximality can not be evaluated separately from
the LTL property for the path as a whole, but needs to be evaluated simulta-
neously with the LTL property for each individual transition. This is necessary,
since a violation of a property at state sn of a path, should only be influenced
by the maximality of the path up to sn. This requires us to choose between
existential or universal quantification of our LTL formulas and modify our defin-
itions accordingly to include maximality. In the following we assume existential
quantification, since Büchi automata are used to search for counterexamples.
Imposing maximality on top of Definition 7 gives us the following existential
definitions:

Definition 9. Given a path π = s1, s2, . . . in a multi-valued Kripke model M =
〈L,AP , S, s0, R,Θ〉 such that s1, s2, . . . ∈ S. The strong next and weak next have
the following existential definitions:

[Xs ϕ]1 = R(s1, s2) ∧ [ϕ]2 [Xw ϕ]1 = max(s1, s2) ∧ (halt(s1, s2) ∨ [ϕ]2)

We can define the strong next operator analogous to weak next as
max(s1, s2) ∧ (R(s1, s2) ∧ [ϕ]2), but this reduces to the definition given above
since max(s1, s2)∧R(s1, s2) = R(s1, s2). The strong next operator already works
correctly in the existential case for false transitions. In the definition of the
weak next operator, halt(s1, s2) replaces the ¬R(s1, s2) of the original definition
to prevent introducing a test for noncontradiction: max(s1, s2) ∧ ¬R(s1, s2) =
halt(s1, s2)∨(R(s1, s2)∧¬R(s1, s2)). We assume noncontradiction for each tran-
sition of the Kripke model by taking R(s1, s2) ∧ ¬R(s1, s2) = false. Note that
indeed max(s1, s2) ∧ halt(s1, s2) = halt(s1, s2).

4 Steering Logic

We take a closer look at the nine-valued lattice of Fig. 1c. Our motivation for
developing this logic and the theory of this paper is to investigate multi-valued

Creating Büchi Automata for Multi-valued Model Checking 219

abstraction in the context of steerability: guiding the execution of a program
to avoid bugs. This can for example be done by the scheduler of the opera-
tion system or by instrumenting the original program. Values of the nine-valued
lattice should be interpreted as values indicating the steerability of transitions.
They can be attached to transitions using quasi-Boolean guards in the modelling
language: a quasi-Boolean expression that determines the transition value.

4.1 Semantics

The lattice of Fig. 1c can be used to encode steerability information in a model.
Values of the lattice are effectively subsets of {t, f, T, F} with N being the empty
set, and A being the complete set. We use the convention that lowercase letters
indicate truth under steering and uppercase letters indicate truth by default.
Negation is defined as exchanging T with F and t with f in the subset. Keep in
mind that while the subset construction is helpful to understand the semantics
behind the truth values, the subsets are indivisible as truth values of the logic.

The intuition of the individual values is that T indicates a transition that
is enabled by default: during execution it can be non-deterministically chosen
to further the execution. A value t indicates a transition that can be enabled
when controlling the execution: if we want this transition to be considered, we
will have to influence the execution. Similarly F is a transition that is disabled
by default, while f can be disabled when controlling the execution.

We could use all possible subsets of these base values to form a lattice, but
we can reduce the number of values by adding a restriction: if a subset contains
an uppercase value, then it also needs to contain the corresponding lowercase
value. For example, we do not allow the value T , but do allow the value Tt . The
reason for this restriction is that a transition that is enabled by default can be
trivially enabled when controlled, simply by not exerting any influence.

To indicate a steerable transition we can also use the values tf , Ttf , and Ftf .
They respectively indicate a transition that: can be enabled or disabled when
controlled (tf); is enabled by default, but can be disabled when controlled (Ttf);
and is disabled by default, but can be enabled when controlled (Ftf). Using these
values in a multi-valued Kripke model enables us to detect how a property is
influenced by the ability to steer an execution. For example, a property with the
value tf can be enforced or broken using steering, while a value Ttf holds by
default, but can be broken using steering.

4.2 Example

To demonstrate the necessity of maximality, we give an example using steering
logic. In Fig. 2b we have a state space with multi-valued transitions: labeled
transitions have the value as depicted, unlabelled transitions have the value true,
and omitted transitions have the value false. The t transition can be enabled by
steering, while the f transition can be disabled.

If we evaluate the existential property ϕRψ in the initial state, then we have
two infinite paths without false transitions: one taking the t transition and the

220 S.J.J. Vijzelaar and W.J. Fokkink

other taking the f transition. Paths with false transitions are ignored a priori:
without maximality they lead to incorrect results and with maximality they have
no influence. For the remaining two paths, with or without maximality, ϕRψ is
false after the t transition and true after the f transition.

To calculate ϕ R ψ without maximality we use Definition 6. The path over
the t transition gives [ϕ R ψ]1 = true ∧ (false ∨ (¬t ∨ false)) = f . The path over
the f transition gives [ϕ R ψ]1 = true ∧ (false ∨ (¬f ∨ true)) = true. The true
result of the second path suggests that ϕRψ holds, irrespective of how we steer;
but it forgoes that, with the f transition disabled, it is ignored in favour of any
other transition, such as the t transition. The initial state is never a deadlock
state: we are not allowed to halt the execution by disabling the f transition.

In comparison, to calculate ϕ R ψ with maximality we use Definition 9. The
path over the t transition gives [ϕRψ]1 = true ∧ (false ∨ ((¬f ∨ t) ∧ ((¬t ∧ ¬f) ∨
false))) = f . The path over the f transition gives [ϕRψ]1 = true ∧ (false ∨ ((¬t∨
f) ∧ ((¬t ∧ ¬f) ∨ true))) = f . The f result of the second path correctly models
that by disabling the f transition we can steer to ignore this path in favour of
others. The maximality in the path over the f transition correctly models the
influence of the other transitions on our ability to halt the execution.

5 Creating Büchi Automata

Explicit state LTL model checking verifies a property by searching for counterex-
amples in a state space: the product of a Kripke model describing the program,
and a Büchi automaton encoding the negation of the property. Counterexamples
are paths ending in an accepting cycle of the state space: cycles containing states
that have been marked as accepting in the Büchi automaton.

The truth of a counterexample is the conjunction of its transition values,
while multiple counterexamples can be combined using disjunction. The negation
of this disjunction is the truth of the property. If no accepting cycles with truth
larger than false are found, then the property is true for the model.

5.1 The Algorithm

Our algorithm for generating multi-valued Büchi automata is an adaptation
of the algorithm presented in [8]. It starts with a graph consisting of a single
node containing a single proof obligation: the LTL formula under verification.
Nodes in the graph are then iteratively expanded by creating new transitions to
new nodes. The transitions contain requirements on atomic propositions of the
current state, while the new nodes contain proof obligations for the next state.

Our algorithm differs from [8] in that we cannot use all of the transitions in
the multi-valued Kripke model in their positive form: we also require support
for calculating ¬R(s1, s2) and ¬other(s1, s2). In addition we use the more con-
ventional method of evaluating atomic propositions of the Kripke model using
the transitions of the Büchi automaton, instead of its states.

Creating Büchi Automata for Multi-valued Model Checking 221

The Kripke model is modified to include the atomic propositions r and o.
After each transition from a state s1 ∈ S to a state s2 ∈ S, the model ensures
that r = R(s1, s2) and o = other(s1, s2). These propositions are then used to
calculate max(s1, s2) and halt(s1, s2). This can require duplication of the original
state if there are multiple incoming transitions for which r and o do not agree.
When interleaved with the Büchi automaton all transitions of the Kripke model
are true; only r will be equal to R(s1, s2).

Given a multi-valued Kripke model with atomic propositions AP and quasi-
Boolean logic L = 〈L,≤,¬〉, we want to create a Büchi automaton to verify
whether a temporal property ¬ϕ holds universally for the complete state space
of the model. The algorithm creates a proof graph on the basis of which we can
construct the Büchi automaton.

Definition 10. A proof graph is a tuple G = 〈N,n0, T,R〉 with N : P(P(LTL))
a set of proof nodes, n0 the initial node, T : P(P(LTL)) a set of proof transitions
and R : N × N → T a transition relation.

Each node and transition is a set of proof obligations: a set of LTL formulas
that need to be verified. Initially proof nodes are related using {false} transitions.
We can assume without loss of generality that all LTL formulas are in release
positive normal form.

The algorithm starts by creating a single initial node {ϕ} in the proof graph,
with ϕ the counterexample we are searching for. This initial node will be made
the current node, making it the first node up for expansion. (In the following t
and f are variables and should not be considered as truth values.)

O1 ∅
O1

(a) Expand O1

O1 O2

{f, ...}

(b) Match f

Fig. 3. Preliminaries

A node n = O1 is expanded by creating an initial transition t = O1 from n
to a destination d = ∅, as shown in Fig. 3a. Starting with this initial transition,
a transition t from a node n to a destination d is processed by removing an
obligation f ∈ t from t and executing the following rules by matching on the
formula f . When this results in a split, a copy t′ of t is created to a corresponding
copy d′ of d. Processing continues on t, or in case of a split on both t and t′,
until only literals (p or ¬p, with p ∈ AP) and truth values (l ∈ L) remain.

ϕ ∧ ψ Add ϕ and ψ to t.
ϕ ∨ ψ Split t, add ϕ to t, add ψ to t′.
Xs ϕ Add r and ϕ to d.
Xw ϕ Split t, add ¬r and ¬o to d, add r ∨ ¬o and ϕ to d′.
ϕ U ψ Split t, add ϕ and Xs(ϕ U ψ) to t, add ψ to t′.
ϕ R ψ Split t, add ψ and Xw(ϕ R ψ) to t, add ϕ and ψ t′.

222 S.J.J. Vijzelaar and W.J. Fokkink

Applying the rules on an obligation f of transition t from O1 to O2, as depicted
in Fig. 3b, will result in the transitions of Fig. 4. With regard to the temporal
operators we effectively follow Definitions 7 and 9 when put in disjunctive normal
form.

O1 O2

{ϕ, ψ, ...}

(a) ϕ ∧ ψ

O1 O2 ∪ {r, ϕ}

{...}

(b) Xs ϕ

O1

O2

O2

{ϕ,Xs(f), ...}

{ψ, ...}

(c) ϕ U ψ

O1

O2

O2

{ϕ, ...}

{ψ, ...}

(d) ϕ ∨ ψ

O1

O2 ∪ {r̄, ō}

O2 ∪ {r ∨ ō, ϕ}

{...}

{...}

(e) Xw ϕ

O1

O2

O2

{ψ,Xw(f), ...}

{ϕ, ψ, ...}

(f) ϕ R ψ

Fig. 4. Splitting transitions

After processing the current node, the algorithm checks for optimisations.
Transitions that are inconsistent in their proof obligations, such that their con-
junction results in false, are removed. Truth values in a transition are combined
into a single value using conjunction. Nodes with identical proof obligations are
combined; and multiple transitions t1, . . . , tn between the same two nodes are
replaced by a single transition {∧

(t1) ∨ . . . ∨ ∧
(tn)}.

Expansion continues in a depth-first manner by following one of the transi-
tions to a new current node. Only nodes that have not been visited before are
considered. The algorithm stops when all nodes have been visited.

5.2 The Multi-valued Büchi Automaton

Having constructed a proof graph, we can create the multi-valued Büchi automa-
ton 〈L, Σ,Q, q0, δ, F 〉 required for interleaving with the multi-valued Kripke
model 〈L,AP , S, s0, R,Θ〉. We create a state qk for each node nk of the proof
graph; the initial node n0 corresponds to the initial Büchi state q0.

Transitions between Büchi states correspond to transitions between proof
states. The transition relation δ : Q×Σ×Q → L of the Büchi automaton returns
a conjunction of the proof obligations contained in the corresponding transition
between proof nodes. In the case of multi-valued Kripke models we use Σ = LAP ,
such that δ : Q×LAP ×Q → L. We can therefore define the transition relation as
δ(qs, σ, qt) = σ (

∧
(R(ns, nt)) with σ : LAP being used as a mapping from atomic

propositions to truth values. (When applied to an expression, each occurrence
of an atomic proposition is replaced by its corresponding truth value.)

Creating Büchi Automata for Multi-valued Model Checking 223

The construction of the proof graph for an LTL property ϕ might suggest
that any infinite path in the graph corresponds to a proof of ϕ. This is however
not the case for the until operator, and the reason why accepting states of the
Büchi automaton are significant. When evaluating ϕUψ in the Boolean setting,
its definition requires that ψ becomes true at some point during the execution.
For the multi-valued setting this means that in the disjunctive normal form of
the until operator we do not consider the conjunct that is the infinite conjunction
of ϕ. This is enforced in the Büchi automaton by creating an acceptance set F
for each sub-formula of the form ϕUψ, such that qk ∈ F iff ϕUψ /∈ nk or ψ ∈ nk.
An accepting run of the Büchi automaton should pass infinitely often through
at least one member of each acceptance set.

Our definition of multi-valued Büchi automata only allows for one acceptance
set. This limitation simplifies the requirements on the model checker looking for
accepting loops in the combined state space. It is straightforward to convert a
Büchi automaton with multiple acceptance sets to one with a single acceptance
set, by putting multiple copies of the original Büchi automaton in sequence: make
one copy for each acceptance set, and have transitions move from one copy to the
next after reaching an accepting state for the current acceptance set. For further
details see [3], where generalised non-deterministic Büchi automata (GNBA) are
transformed into non-deterministic Büchi automata (NBA).

Theorem 1. The product state space of a modified Kripke model and a multi-
valued Büchi automaton as described in Sect. 5 encodes the given LTL property
¬ϕ such that the disjunction of all counterexamples is the truth of ϕ.

Proof (Sketch). This follows directly from Definitions 7 and 9. The algorithm
ensures that each accepting path through the Büchi automaton corresponds to a
conjunct of ϕ in disjunctive normal form. Finite conjuncts correspond to paths
diverging on an accepting state ∅ with a true self-loop. Only paths of conjuncts
that require a γ U ψ but do not consider ψ at some point, are not accepting. ��

The resulting multi-valued Büchi automaton can be used to verify the prop-
erty ϕ over the multi-valued Kripke model when the transitions of the Kripke
model in the interleaved state space are all valued as true. The actual transi-
tion value is derived from atomic propositions in the target Kripke state by the
Büchi automaton. (Transitions of the Büchi automaton can be described as a
conjunction of this transition value and an additional truth value derived from
the original atomic propositions of the Kripke model.) These additional atomic
propositions can however increase the size of the Kripke model.

We can opt for an implementation that slightly deviates from the normal
definition of a Büchi automaton. Instead of encoding the transition values with
atomic propositions in the target Kripke state, we can use atomic propositions
of the Büchi automaton to signal the Kripke model what value we require for
its next transition. The Kripke model can then directly calculate these values
from its state, without having to resort to additional bookkeeping. Changes to
the size of the Büchi automaton are negligible, since the additional state of the
atomic propositions is directly related to the original destination Büchi state.

224 S.J.J. Vijzelaar and W.J. Fokkink

This alternate implementation might even result in a reduced size for the Büchi
automaton when there are original states that only differ in their calculation of
the transition value.

6 Future Work

We are implementing the presented algorithm to facilitate multi-valued model
checking in the (distributed) SpinJa model checker [6,12]. Together with the
steering logic that was considered in Sect. 4, this will allow us to investigate exe-
cution steering based on abstract models [11], building on our previous imple-
mentation of multi-valued model checking [2,13].

References

1. Andrade, J.O., Kameyama, Y.: Efficient multi-valued bounded model checking for
LTL over quasi-Boolean algebras. IEICE Trans. 95–D(5), 1355–1364 (2012)

2. Augustijn, R.: Multivalued logics and hyper transitions in SpinJa. Master’s thesis.
Vrije Universiteit Amsterdam (2015)

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

4. Bruns, G., Godefroid, P.: Model checking with multi-valued logics. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp.
281–293. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27836-8 26

5. Chechik, M., Devereux, B., Gurfinkel, A.: Model-checking in finite state-space
systems with fine-grained abstractions using SPIN. In: Dwyer, M. (ed.) SPIN
2001. LNCS, vol. 2057, pp. 16–36. Springer, Heidelberg (2001). doi:10.1007/
3-540-45139-0 3

6. de Jonge, M., Ruys, T.C.: The SpinJa model checker. In: Pol, J., Weber, M. (eds.)
SPIN 2010. LNCS, vol. 6349, pp. 124–128. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-16164-3 9

7. Fitting, M.: Bilattices and the theory of truth. J. Philos. Logic 18, 225–256 (1989)
8. Gerth, R., Peled, D.A., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic ver-

ification of linear temporal logic. In: Dembiński, P., Średniawa, M. (eds.) PSTV.
IFIP, vol. 38, pp. 3–18. Springer, Heidelberg (1995). Chapman & Hall

9. Kupferman, O., Lustig, Y.: Lattice automata. In: Cook, B., Podelski, A. (eds.)
VMCAI 2007. LNCS, vol. 4349, pp. 199–213. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-69738-1 14

10. Meller, Y., Grumberg, O., Shoham, S.: A Framework for compositional verification
of multi-valued systems via abstraction-refinement. In: Liu, Z., Ravn, A.P. (eds.)
ATVA 2009. LNCS, vol. 5799, pp. 271–288. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-04761-9 21

11. Vijzelaar, S.J.J., Fokkink, W.J.: Multi-valued simulation and abstraction using
lattice operations. ACM Trans. Embedded Comput. Syst. 16(2), 42:1–42:26 (2017)

12. Vijzelaar, S.J.J., Verstoep, C., Fokkink, W.J., Bal, H.E.: Distributed MAP in the
SpinJa model checker. In: PDMC, EPTCS, vol. 72, pp. 84–90 (2011)

13. Vijzelaar, S.J.J., Verstoep, C., Fokkink, W.J., Bal, H.E.: Bonsai: cutting models
down to size. In: Voronkov, A., Virbitskaite, I. (eds.) PSI 2014. LNCS, vol. 8974,
pp. 361–375. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46823-4 29

http://dx.doi.org/10.1007/978-3-540-27836-8_26
http://dx.doi.org/10.1007/3-540-45139-0_3
http://dx.doi.org/10.1007/3-540-45139-0_3
http://dx.doi.org/10.1007/978-3-642-16164-3_9
http://dx.doi.org/10.1007/978-3-642-16164-3_9
http://dx.doi.org/10.1007/978-3-540-69738-1_14
http://dx.doi.org/10.1007/978-3-540-69738-1_14
http://dx.doi.org/10.1007/978-3-642-04761-9_21
http://dx.doi.org/10.1007/978-3-642-04761-9_21
http://dx.doi.org/10.1007/978-3-662-46823-4_29

Privacy Assessment Using Static Taint Analysis
(Tool Paper)

Marcel von Maltitz(B), Cornelius Diekmann, and Georg Carle

Technische Universität München, Munich, Germany
{vonmaltitz,diekmann,carle}@net.in.tum.de

Abstract. When developing and maintaining distributed systems,
auditing privacy properties gains more and more relevance. Nevertheless,
this task is lacking support of automated tools and, hence, is mostly car-
ried out manually. We present a formal approach which enables auditors
to model the flow of critical data in order to shed new light on a system
and to automatically verify given privacy constraints. The formalization
is incorporated into a larger policy analysis and verification framework
and overall soundness is proven with Isabelle/HOL. Using this solution,
it becomes possible to automatically compute architectures which follow
specified privacy conditions or to input an existing architecture for ver-
ification. Our tool is evaluated in two real-world case studies, where we
uncover and fix previously unknown violations of privacy.

1 Introduction

Privacy enhancing technologies provide measures to improve the privacy prop-
erties of systems, when applied correctly. But they are not necessarily sufficient,
as privacy must also be incorporated on the level of the system architectures and
already be considered during the design of a newly developed system [4]. There
exist multiple approaches [1–4,7,17] which aim for developing a high-level con-
cept of privacy in order to enable privacy assessment and auditing of IT systems
and their designs. Nevertheless, detailed, often manual, examination is neces-
sary, making audits a complex and time-consuming task. Driven empirically and
by running code, dynamic taint analysis has been recently used successfully in
the Android world to enhance user privacy [12,18] by tracking the flow of criti-
cal information at runtime. However measures from the formal world still offer
unleveraged potential for assessing privacy conformance of architectures. We aim
for connecting the best of both worlds by making privacy-relevant aspects more
explicit and easier to verify.

The abstract concept of ‘security’ has been made more tangible and verifiable
by deriving protection goals, in particular confidentiality, integrity, and availabil-
ity. The same method has been applied to the abstract concept of ‘privacy’ and

This work has been supported by the German Federal Ministry of Education and
Research, project DecADe, grant 16KIS0538.

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Bouajjani and A. Silva (Eds.): FORTE 2017, LNCS 10321, pp. 225–235, 2017.
DOI: 10.1007/978-3-319-60225-7 16

226 M. von Maltitz et al.

another triad of protection goals was derived: Unlinkability, Transparency, and
Intervenability [2,17].

In distributed systems, privacy aspects can be examined by focusing on the
flow of data between system components. Borrowing ideas from dynamic taint
analysis and their success in the Android world, we demonstrate that coarse-
grained taint analysis is applicable to auditing of distributed architectures regard-
ing the aforementioned privacy goals, can be done completely static (preventing
runtime failures), while providing strong formal guarantees.

We motivate this concept by a simple, fictional example: A house, equipped
with a smart meter to measure its energy consumption. In addition, the owner
provides location information via her smartphone to allow the system to turn off
the lights when she leaves the home. Once every month, the aggregated energy
consumption is sent over the internet to the energy provider for billing.

Fig. 1. Example: privacy concerns and information flow in a smart home

We are interested in the privacy implications of this setup and perform a
taint tracking analysis. The software architecture is visualized in Fig. 1. The
Building produces information about its energy consumption, hence we label it
as taint source and assign it the energy label. Likewise, the Smartphone tracks
the location of its owner. Both data is sent to the SmartHomeBox . Since the
SmartHomeBox aggregates all data, it is assigned the set {energy, location} of
taint labels. The user wants to transmit only the energy information, not her
location to the energy provider’s Cloud . Therefore, the Anonymizer filters the
information and removes all location information. We call this process untainting.
With the Anonymizer operating correctly, only energy-related information ends
up in the energy provider’s Cloud , since {energy, location}\{location} = {energy}.

Even for clearly specified privacy requirements, the confidence in a software
evaluation may vary vastly. For example, the Common Criteria [6] define several
Evaluation Assurance Levels (EAL). For the highest assurance level, formal veri-
fication is required, e.g. using the theorem prover Isabelle/HOL [16]. One remark-
able work in the field of formal verification with Isabelle/HOL is the verification
of information-flow enforcement for the C implementation of the seL4 microker-
nel [15]. Similarly, to provide high confidence in our results, we have carried out
this research completely in Isabelle/HOL. For brevity, we skip all proofs in this
paper. Further details can be found in the full version of this paper and the proofs
are provided in the accompanying theory files (cf. Section Availability).

Privacy Assessment Using Static Taint Analysis (Tool Paper) 227

Our proposed solution is a small—yet, fully formal and real-world applicable—
step towards modeling (privacy-critical) data flows in distributed systems using
taint labels, while being agnostic with respect to the exact notion of privacy cho-
sen by the auditor. Our approach rather opens up a new viewpoint and further
enables specifying constraints on data flow which can be automatically verified
by our solution. Our case studies show that, even with this restricted toolset,
vital insights in real-world systems are already possible. In the first case study, an
energy monitoring system similar to Fig. 1, we could make the informal claims of
the system’s original architects explicit and verify them. In the second case study,
a smartphone measurement framework, we demonstrate the complete audit of the
real-world implementation in a fully-automated manner, uncovering previously
unknown bugs. To the best of our knowledge, this is the first time that such an
audit, which bridges the gap from an abstract taint analysis to complex low-level
firewall rules, has been performed completely with the assurance level provided
by the theorem prover Isabelle/HOL [16].

Our Mission Statement. It is not our goal to formalize the privacy protection
goals of unlinkability, transparency, and intervenability. We aim for creating an
environment which provides the necessary information for an auditor to start
assessing those scenario-specific goals. We aim for statically analyzing distributed
systems by considering their architecture specification as we found that this level
of abstraction can both be mapped to the real-world implementation of a system,
as well as being formally decidable. We intend to lay the groundwork to add
automatic support for the mentioned privacy protection goals on top; our case
study reveals that this is already doable today under certain circumstances.

2 Formalization and Implementation

“The architecture defines the structure of a software system in terms of compo-
nents and (allowed) dependencies” [13]. We will stick to this high-level, abstract,
implementation-agnostic definition for the formalization. As illustrated in Fig. 1,
a graph can be conveniently used to describe a system architecture. We assume
that we have a graph G = (V,E) without taint label annotations which specifies
a distributed architecture. Since such a graph specifies the permitted information
flows and all allowed accesses, it is sometimes also called a policy. To analyze,
formalize, and verify policies represented as graphs, we utilize the topoS [9,11]
framework. It allows specification of predicates over a graph, which are called
security invariants. They follow special design criteria to ensure the overall
soundness of topoS. To define a new security invariant, topoS imposes strict
proof obligations. In return, topoS offers arbitrary composability of all security
invariants, generic analysis/verification algorithms, and secure auto-completion
of user-defined partial attribute assignments [11]. By integrating our formaliza-
tion into topoS, we also obtain a usable and executable tool.

228 M. von Maltitz et al.

We formalize tainting as a security invariant for topoS. To foster intuition,
we first present a simplified model which does not support trust or untainting.
However, we have aligned this section constructively such that all the results
obtained for simple model follow analogously for the full model.

Let t be a total function which returns the taint labels for an entity, for
example, t SmartHomeBox = {energy, location}. Given an architecture specifi-
cation G = (V,E), intuitively, information-flow security according to the taint
model can be understood as follows: Information leaving a node v is tainted with
v’s taint labels, hence every receiver r must have the respective taint labels to
receive the information. In other words, for every node v in the graph, all nodes
r which are reachable from v must have at least v’s taint labels. Representing
reachability by the transitive closure (i.e. E+), the invariant can be formalized
as follows:

tainting (V,E) t ≡ ∀v ∈ V. ∀r ∈ {r. (v, r) ∈ E+}. t v ⊆ t r

For this formalization, we discharged the proof obligations imposed by topoS.
This enables us to make use of all generic features of topoS, for example, a user
may specify a t which is not total.

Analysis: Tainting vs. Bell-LaPadula Model. The Bell-LaPadula model
(BLP) is the traditional, de-facto standard model for label-based information-
flow security. The question arises whether we can justify our taint model using
BLP. topoS comes with a pre-defined formalization of the BLP model [11]. The
labels in BLP, often called security clearances, are defined as a total order:
unclassified ≤ confidential ≤ secret ≤ . . . Let sc be a total function which assigns
a security clearance to each node. Since our policy model does not distinguish
read from write actions, the BLP invariant simply states that receivers must
have the necessary security clearance for the information they receive:

blp (V,E) sc ≡ ∀(v1, v2) ∈ E. sc v1 ≤ sc v2

We will now show that one tainting invariant is equal to BLP invariants for
every taint label. We define a function project a Ts, which translates a set of taint
labels Ts to a security clearance depending on whether a is in the set of taint
labels. Formally, project a Ts ≡ if a ∈ Ts then confidential else unclassified.
Using function composition, the term project a ◦ t is a function which first
looks up the taint labels of a node and projects them afterwards.

Theorem 1 (Tainting and Bell-LaPadula Equivalence).

tainting G t ←→ ∀a. blp G (project a ◦ t)

The ‘→’-direction of our theorem shows that one tainting invariant guaran-
tees individual privacy according to BLP for each taint label. This implies that
every user of a software can obtain her personal privacy guarantees. This fulfills
the transparency requirement for individual users. The ‘←’-direction shows that

Privacy Assessment Using Static Taint Analysis (Tool Paper) 229

tainting is as expressive as BLP. This justifies the theoretic foundations w.r.t.
the well-studied BLP model. These findings are in line with Denning’s lattice
interpretation [8]; however, to the best of our knowledge, we are the first to
discover and formally prove this connection in the presented context.

The theorem can be generalized for arbitrary (but finite) sets of taint labels A.
The project function then maps to a numeric value of a security clearance by
taking the cardinality of the intersection of A with Ts.

Untainting and Adding Trust. Real-world application requires the need
to untaint information, for example, when data is encrypted or properly
anonymized. The taint labels now consist of two components: the labels a node
taints and the labels it untaints. Let t be a total function t which returns the taints
and untaints for an entity. We extend the simple tainting invariant to support
untainting:

tainting′ (V,E) t ≡ ∀(v1, v2) ∈ E. taints (t v1) \ untaints (t v1) ⊆ taints (t v2)

For a taint label a, let X = taints a and let Y = untaints a. We impose
the type constraint that Y ⊆ X. We implemented the datatype such that X is
internally extended to X ∪ Y . For example in Fig. 1, t Anonymizer is actually
taints: {energy, location}, untaints: {location}. Which merely appears to be a
convenient abbreviation is actually a fundamental requirement for the overall
soundness of the invariant. With this type constraint, as indicated earlier, we
discharged the proof obligations imposed by topoS and all insights obtained for
the simple mode now follow analogously for this model, in particular equivalence
with a BLP model with trusted entities according to Theorem 1.

3 Conclusion

Several guidelines for verifying and auditing privacy properties of software sys-
tems exist. Yet, we found that automated tools for supporting privacy audits are
still lacking. We presented a formal model based on static taint analysis which
shall contribute to filling this gap. While our model is reduced to the bare mini-
mum to facilitate adding assessment of privacy protection goals on top, the case
studies show that improvements of audits are already achievable. We integrated
our model into the formal policy framework topoS and proved soundness with
Isabelle/HOL. From given system specifications or implementations, a model
instance can be derived in which flow of critical data becomes explicit and data
flow constraints can be verified automatically. We carried out two real-world case
studies. They demonstrate the applicability of our approach, exemplifying that
insights formally derived from the model are consistent with manual inspections
of the architecture. In the second studied system, thanks to our tooling, auditing
could be carried out in a completely automated manner.

230 M. von Maltitz et al.

Availability

Our formalization, case studies, and proofs can be found at https://www.isa-afp.
org/entries/Network Security Policy Verification.shtml. The full version of this
paper is at https://arxiv.org/abs/1608.04671.

A Case Studies

The main idea and usage of our model was already motivated by the fictional
example of Fig. 1. In this appendix, we present details on two real-world case
studies where we evaluate and audit two distributed systems for data collection
which are deployed at the Technical University of Munich. For the sake of brevity,
we only present the most interesting aspects. We will write node labels as X—Y ,
where X corresponds to the tainted labels and Y corresponds to the untainted
labels. For example, t Anonymizer = {energy}—{location}.

A.1 Energy Monitoring System

Energy monitoring systems (EMS) have severe privacy implications: If installed
in an office, such a system for example allows to draw conclusions about the
effective working periods and behavior of employees by measuring the devices
they use. EMS consist of at least two components: A logging unit which records
energy usage locally and a server which stores and processes all recorded data.
Considering privacy, storing all collected data in a single, possibly external place
without fine-grained access control on the data level is critical.

We examined how to improve privacy of the data before persisting it [14]:
Since the logger is an off-the-shelf component which we cannot modify, we sug-
gest to add an additional component, called P4S , directly after the logger. This
component separates the data by different owners, recipients, or some given pred-
icate and applies further protection measures. The separated data can then be
forwarded to (possibly different) cloud services. For the sake of brevity, we do not
discuss this service, key management, and how cloud services could collaborate.
Our proposed architecture is shown in Fig. 2. We modeled four different kinds
of privacy-related data the logger captures by the taint labels A, B, C, and D.

As input to our tool, we provided the set of components including taint
labels and system boundaries as architectural constraints. The results are as fol-
lows: Our model shows that data flow from the Logger to P4S (which crosses
a system boundary physically over the network) is highly critical. For this taint
label specification, topoS verified that our architecture is compliant with the
security invariants. It also asserts that any attempt to interlink the different
data processing pipelines within P4S would be a severe privacy violation. These
insights generated by topoS can be further incorporated into the architecture:
The designed pipelines can be separated into individual, isolated, stateless con-
tainers within P4S that can be instantiated on demand for each different taint
label. In summary, our extended topoS allowed us to formally assess privacy
properties of our proposed architecture before we invested time implementing it.

https://www.isa-afp.org/entries/Network_Security_Policy_Verification.shtml
https://www.isa-afp.org/entries/Network_Security_Policy_Verification.shtml
https://arxiv.org/abs/1608.04671

Privacy Assessment Using Static Taint Analysis (Tool Paper) 231

Fig. 2. Architecture of an energy monitoring system

A.2 MeasrDroid

MeasrDroid [5] is a system for collecting smartphone sensor data for research pur-
poses. Via an app it may collect location data, information from the smartphone
sensors, and networking properties such as signal strength, latency, and reliabil-
ity. Ultimately, the data is stored and analyzed by a trusted machine, called
CollectDroid . To decrease the attack surface of this machine, it is not reachable
over the Internet. Instead, the smartphones push the data to a server called
UploadDroid , which is regularly polled by CollectDroid for new information.
Since UploadDroid is particularly exposed, a compromise of this machine must
not lead to a privacy violation. Hence, it must be completely uncritical, i.e. not
having any taint or untaint labels. This is achieved by having the smartphones
encrypt the data for CollectDroid as only recipient. Consequently, UploadDroid
only sees encrypted data. The model of the architecture is shown in Fig. 3. We
modeled three users, each producing data with its individual tainting label A,
B, or C. To model encryption of some taint label x , we create a pair of related
nodes (Encx ,Decx) where the first untaints and the second taints accordingly.

Fig. 3. MeasrDroid architecture

For this taint label specification, topoS verified that our architecture is com-
pliant with the security invariants. In addition, given the taint label specifica-
tion and adding an additional adversary node, topoS automatically computes

232 M. von Maltitz et al.

an alternative architecture which is also compliant with the security invariants.
Comparing our manually designed architecture with the topoS -generated archi-
tecture with adversary, we asserted that we did not overlook subtle informa-
tion leaks. Our evaluation shows that our architecture is a subset of the topoS -
generated architecture and only uncritical data can leak to an adversary. It also
reveals that our architecture provides no protection against an adversary flood-
ing UploadDroid with nonsensical data. We found topoS to be a suitable tool to
formally support the previous informal privacy claims about the architecture.

Auditing the Real MeasrDroid. The previous paragraphs presents a theoretical
evaluation of the architecture of MeasrDroid. The question arises how the real
system, which exists since 2013, compares to our theoretical evaluation. Together
with the authors of MeasrDroid we evaluate the implementation regarding our
previous findings: We collect all machines which are associated with MeasrDroid.
We find that they do not have a firewall set up, but instead rely on the central
firewall of our lab. With over 5500 rules for IPv4, this firewall may be the largest
real-world, publicly available iptables firewall in the world1 and handles many
different use cases. MeasrDroid is only a tiny fragment of it, relying on the
protocols http, https, and ssh. For brevity, we focus our audit port 80 (http).

The model of the MeasrDroid architecture (cf. Fig. 3) should be recognizable
in the rules of our firewall. In particular, CollectDroid should not be reachable
from the Internet while UploadDroid should, and the former should be able to
pull data from the latter. This information may be hidden somewhere in the
firewall rule set. We used fffuu [10] to extract the access control structure of the
firewall. The result is visualized in Fig. 4. This figure reflects the sheer intrinsic
complexity of the access control policy enforced by the firewall. We have high-
lighted three entities. First, the IP range enclosed in a cloud corresponds to the
IP range which is not used by our department, i.e. the Internet. The large block
on the left corresponds to most internal machines which are not globally acces-
sible. The IP address we marked in bold red belongs to CollectDroid . Inspecting
the arrows, we have formally verified our first auditing goal: CollectDroid is
not directly accessible from the Internet. The other large IP block on the right
belongs to machines which are globally accessible. The IP address in bold red
belongs to UploadDroid . Therefore, we have verified our second auditing goal:
UploadDroid should be reachable from the Internet. In general, it is pleasant to
see that the two machines are in different access groups. Finally, we see that
the class of IP addresses including CollectDroid can access UploadDroid which
proves our third auditing goal.

For the sake of example, we disregard that most machines at the bottom
of Fig. 4 could attack CollectDroid . Under this assumption, we ignore this part
of the graph and extract only the relevant and simplified parts in Fig. 5. So
far, we presented only the positive audit finding. Our audit also reveals many
problems, visualized with red arrows. They can be clearly recognized in Fig. 5:
First, UploadDroid can connect to CollectDroid . This is a clear violation of

1 We make them available at https://github.com/diekmann/net-network.

https://github.com/diekmann/net-network

Privacy Assessment Using Static Taint Analysis (Tool Paper) 233

Fig. 4. MeasrDroid: Main firewall – IPv4 http connectivity matrix (Color figure online)

Fig. 5. MeasrDroid: Main firewall – simplified connectivity matrix (Color figure online)

234 M. von Maltitz et al.

the architecture. We have empirically verified this highly severe problem by
logging into UploadDroid and connecting to CollectDroid . Second, most inter-
nal machines may access CollectDroid . Third, there are no restrictions for
UploadDroid with regard to outgoing connections. In theory, it should only pas-
sively retrieve data and never initiate connections by itself (disregarding system
updates).

Therefore, our audit could verify some core assertions about the actual imple-
mentation. In addition, it could uncover and confirm serious bugs. These bugs
were unknown prior to our audit and we could only uncover them with the help
of the presented tools. Using the firewall serialization feature of topoS, we fixed
the problems and reiterated our evaluation to assert that our fix is effective.

References

1. Das Standard-Datenschutzmodell. Technical report, Konferenz der unabhängigen
Datenschutzbehörden des Bundes und der Länder, Darmstadt (2015). https://
www.datenschutzzentrum.de/uploads/sdm/SDM-Handbuch.pdf

2. Bock, K., Rost, M.: Privacy by design und die neuen schutzziele. DuD 35(1), 30–35
(2011)

3. Cavoukian, A.: Creation of a Global Privacy Standard, November 2006, Revised
October 2009. https://www.ipc.on.ca/images/resources/gps.pdf

4. Cavoukian, A.: Privacy by Design – The 7 Foundational Principles, January 2011.
https://www.ipc.on.ca/wp-content/uploads/Resources/7foundationalprinciples.
pdf

5. Chair of Network Architectures, Services, TUM: MeasrDroid. http://www.droid.
net.in.tum.de/

6. Common Criteria: Part 3: Security assurance components. Common Criteria for
Information Technology Security Evaluation CCMB-2012-09-003(Version 3.1 Revi-
sion 4), September 2012

7. Danezis, G., Domingo-Ferrer, J., Hansen, M., Hoepman, J.H., Metayer, D.L.,
Tirtea, R., Schiffner, S.: Privacy and data protection by design – from policy to
engineering. Technical report, ENISA (2015)

8. Denning, D.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

9. Diekmann, C., Korsten, A., Carle, G.: Demonstrating topoS: theorem-prover-based
synthesis of secure network configurations. In: 11th International Conference on
Network and Service Management (CNSM), pp. 366–371, November 2015

10. Diekmann, C., Michaelis, J., Haslbeck, M., Carle, G.: Verified iptables firewall
analysis. In: IFIP Networking 2016, Vienna, Austria, May 2016

11. Diekmann, C., Posselt, S.-A., Niedermayer, H., Kinkelin, H., Hanka, O., Carle, G.:
Verifying security policies using host attributes. In: Ábrahám, E., Palamidessi, C.
(eds.) FORTE 2014. LNCS, vol. 8461, pp. 133–148. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-43613-4 9

12. Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.G., Cox, L.P., Jung, J.,
McDaniel, P., Sheth, A.N.: TaintDroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. ACM TOCS 32(2), 5 (2014)

13. Feilkas, M., Ratiu, D., Jürgens, E.: The loss of architectural knowledge during
system evolution: an industrial case study. In: ICPC, pp. 188–197, May 2009

https://www.datenschutzzentrum.de/uploads/sdm/SDM-Handbuch.pdf
https://www.datenschutzzentrum.de/uploads/sdm/SDM-Handbuch.pdf
https://www.ipc.on.ca/images/resources/gps.pdf
https://www.ipc.on.ca/wp-content/uploads/Resources/7foundationalprinciples.pdf
https://www.ipc.on.ca/wp-content/uploads/Resources/7foundationalprinciples.pdf
http://www.droid.net.in.tum.de/
http://www.droid.net.in.tum.de/
http://dx.doi.org/10.1007/978-3-662-43613-4_9

Privacy Assessment Using Static Taint Analysis (Tool Paper) 235

14. Kinkelin, H., Maltitz, M., Peter, B., Kappler, C., Niedermayer, H., Carle, G.:
Privacy preserving energy management. In: Aiello, L.M., McFarland, D. (eds.)
SocInfo 2014. LNCS, vol. 8852, pp. 35–42. Springer, Cham (2015). doi:10.1007/
978-3-319-15168-7 5

15. Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S., Lewis,
C., Gao, X., Klein, G.: seL4: from general purpose to a proof of information flow
enforcement. In: IEEE S&P, pp. 415–429, May 2013

16. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assis-
tant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2016).
http://isabelle.in.tum.de/

17. Rost, M., Pfitzmann, A.: Datenschutz-Schutzziele – revisited. Datenschutz und
Datensicherheit DuD 33(6), 353–358 (2009)

18. Tromer, E., Schuster, R.: DroidDisintegrator: intra-application information flow
control in Android apps (extended version). In: ASIA CCS 2016, pp. 401–412.
ACM (2016). http://www.cs.tau.ac.il/∼tromer/disintegrator/disintegrator.pdf

http://dx.doi.org/10.1007/978-3-319-15168-7_5
http://dx.doi.org/10.1007/978-3-319-15168-7_5
http://isabelle.in.tum.de/
http://www.cs.tau.ac.il/~tromer/disintegrator/disintegrator.pdf

EPTL - A Temporal Logic for Weakly
Consistent Systems (Short Paper)

Mathias Weber(B), Annette Bieniusa, and Arnd Poetzsch-Heffter

University of Kaiserslautern, Kaiserslautern, Germany
{m weber,bieniusa,poetzsch}@cs.uni-kl.de

Abstract. The high availability and scalability of weakly-consistent sys-
tem attracts system designers. Yet, writing correct application code for
this type of systems is difficult; even how to specify the intended behavior
of such systems is still an open question. There has not been established
any standard method to specify the intended dynamic behavior of a
weakly consistent system.

In this paper, we present a event-based parallel temporal logic
(EPTL), that is tailored to specify properties of weakly consistent sys-
tems. In contrast to LTL and CTL, EPTL takes into account that opera-
tions of weakly consistent systems are in many cases not serializable and
have to be treated respectively to capture their behavior. We embed our
temporal logic in Isabelle/HOL and can thereby leverage strong semi-
automatic proving capabilities.

1 Introduction

To improve availability and fault tolerance, information systems are often repli-
cated to several nodes and globally distributed. In such system scenarios, design-
ers face a trade-off between availability, fault tolerance, and consistency. To
achieve high availability, designers might weaken the consistency constraints
between the nodes. In weakly consistent systems, we might refrain from making
the objects consistent after each operation. For example, the replicated state
might consist of several objects and communication is done via asynchronous
message passing.

In such systems with weak consistency semantics, concurrent modifications
of a replicated object can lead to a divergent system state as the order in which
updates are applied can differ among the nodes. To avoid the divergence, these
update conflicts need to be resolved e.g. using CRDTs [9]. The main idea of
CRDTs is to leveraging mathematical properties of the data structure and its
operations to automatically solve conflicts due to concurrent modifications of
the replicated object state.

The standard notion of time as being linear is known to not work well
in weakly consistent systems [6]. Instead of assuming linear time, we follow
Burckhardt et al. [2] in representing time as a partial order on the events in the
system.
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Bouajjani and A. Silva (Eds.): FORTE 2017, LNCS 10321, pp. 236–242, 2017.
DOI: 10.1007/978-3-319-60225-7 17

EPTL - A Temporal Logic for Weakly Consistent Systems (Short Paper) 237

The topic of specifying weakly consistent systems is an open research ques-
tion. LTL [8] is a classical specification language for dynamic properties of sys-
tems. It is widely used to specify properties of reactive systems. LTL is known
for formulas which are easy to understand as well as its formal foundation. As
we will show in Sect. 2, it can be difficult to capture the concurrent nature
and asynchronous communication typical for weakly consistent systems in LTL
(and CTL).

We want to decouple the specification of the behavior of the system from
the behavior of the data types and want to enable to choose among different
implementations based on the required properties described in the system spec-
ification. Our focus is on the understandability of the specification as well as a
solid formal foundation.

Abstract Executions. Our goal is to have a specification language for properties
of weakly consistent systems. The specification should be independent of the
conflict resolution strategy used in the concrete implementation because this
strategy partially depends on the required properties.

Weakly consistent systems are composed of multiple processes. Instead of
sharing the state directly and protecting concurrent accesses using locks, each
process obtains a replica of the shared object and solely interacts with this object.
The values of the replicas are synchronized by asynchronously distributing the
operations to all replicas. A typical data structure used in such systems is a
multi-value register (MVR). This datatype ensures that all written values of
concurrent write operations are visible to subsequent read operations. The put
operations allows to assign a new value to the register, the get operation allows
to access the current state. Since the result of the get operation can consist of
multiple concurrently written values, the operation returns a set of values. This
means that if concurrently we have an operation writing the value 1 and one
operation writing the value 2, the value of the register after synchronization of
the operations is the set {1, 2}. Note that this property of multi-value registers
usually leads to non-serializable system traces.

When formally specifying the semantics of the multi-value register, we want
to abstract away from details concerning communication and process structure.
Following Burckhardt et al. [2], we model the execution of a weakly consis-
tent system as an abstract execution. An abstract execution A consists of a
set of events E and a visibility relation vis ⊆ E × E. The set E denotes the
events representing the execution of operations on different nodes of the distrib-
uted weakly consistent system. The events have a unique identity and carry the
metadata about the object and operation executed on it as well as information
relevant for the specific use case (e.g. the subject executing the operation). The
vis relation models the dependency between events. For two events e1 and e2, if
(e1, e2) ∈ vis, then e1 can influence the effect of e2. The local order of events for
each process is usually included in the visibility relation. To capture causality,
vis must be irreflexive, transitive and antisymmetric. This corresponds to causal
visibility. In addition, the visibility relation needs to be well-founded, so we can
talk about the next events in the execution. The relation can also be depicted

238 M. Weber et al.

in an event graph where the nodes of the graph are the events and the edges
represent the visibility relation. Transitive edges are left out for readability.

We annotate the nodes of event graphs with operation expressions as follows:
op(p1, . . . , pn) describes that an event e represents an execution of operation
op with parameters p1 to pn. If the returned value is relevant, we denote it
as op(p1, . . . , pn) ⇒ retval where op(p1, . . . , pn) is defined as above and retval
represents the returned value.

1

2

3 4

5

put(0)

put(1)

put(2)

get

get() {2}

() {1, 2}

Fig. 1. Event graph of a multi-value register.

In form of an event graph, the example for the multi-value register can be
depicted as in Fig. 1. Event e1 corresponds to an initial put operation, which
assigns the single value 0. The put(1) operation of e2 happens concurrently with
another operation, put(2) of e3, that also modifies the state of the register. Both
events are visible to event e5 associated to the get operation which yields the set
{1, 2} as result. As the example shows, this abstract execution is only concerned
with the partial order of events with respect to the visibility relation; the event
graph abstracts away from the details of a specific implementation (e.g. which
process executes an operation or how operations are distributed to the other
process).

The paper makes the following contributions: (1) We show why current tem-
poral logics are not suitable to specify the intended behavior of weakly consis-
tent systems. (2) Our temporal logic called event-based parallel temporal logic
(EPTL) based on an abstract execution of the system allows to express prop-
erties on the global partial order of the events of the system and takes into
account the non-serializability of operations. (3) We have proven laws that allow
to rewrite EPTL formulas while retaining the semantics. EPTL is modeled in
Isabelle/HOL and all laws are formally verified.

2 Event-Based Parallel Temporal Logic (EPTL)

In this section we present a new variant of temporal logic, namely event-based
parallel temporal logic (EPTL).

Why LTL and CTL are not Suitable. Traditionally, linear time logic [8] (LTL) is
interpreted on Kripke structures representing the reachable states of the system.
This has two implications: (1) Time is usually seen as linear thereby totally

EPTL - A Temporal Logic for Weakly Consistent Systems (Short Paper) 239

ordering the events of the system and (2) LTL formulas specify properties of the
states of the system, not the events. The leads to problems when trying to use
LTL to specify properties of weakly consistent systems.

If we regard the serializations of abstract executions like the one in Fig. 1 as
independent event graphs, none of the executions would yield a result for a get
operation that consists of more than one value since no operation would happen
concurrently. We would need to encode the temporal information of the original
abstract execution into the possible systems states. But this does not scale well
and would typically require knowledge of the implementation of the replicated
data type. Since the goal is to have a specification logic for the intended behavior
of the system, this approach is not an option.

Computation tree logic [3] (CTL) allows for branching time, which solves
parts of the issues discussed before. But in weakly consistent systems, the order
of events forms a directed acyclic graph (DAG). Allowing to express that multiple
different events can be successor of a single event and taking copies of future
events is not an option. We would still loose the information that events can
have happened concurrently in the past. The extended version [11] includes
more details.

Syntax and Semantics. Instead of being based on possible states of the system,
EPTL is directly based on events following many previous works [1,4,5,10]. For
an abstract execution A = (E, vis), we define the partial order e1 ≤A e2 ≡ e1 =
e2 ∨ (e1, e2) ∈ vis. When A is clear from the context, we simply write e1 ≤ e2.
The satisfaction relation (A, e) |= ϕ is defined recursively over the structure of
the formula as follows:

(A, e) |= Q iff Q[I](e) for variable interpretation I
(A, e) |= ¬ϕ iff (A, e) �|= ϕ
(A, e) |= (ϕ1 ∨ ϕ2) iff (A, e) |= ϕ1 or (A, e) |= ϕ2

(A, e) |= EXϕ iff ∃e1.e < e1 and e1 is a minimum wrt < and (A, e1) |= ϕ
(A, e) |= AXϕ iff ∀e1.e < e1 if e1 is a minimum wrt <, then (A, e1) |= ϕ
(A, e) |= (ϕ U ψ) iff ∃e1.e ≤ e1 such that (A, e1) |= ψ) and

∀e3.e ≤ e3 such that (A, e3) �|= ϕ exists e2 such that
e ≤ e2 and e2 ≤ e3 and (A, e2) |= ψ

An interpretation I assigns values to all free variables occurring in an EPTL
formula. Q[I] stands for the proposition Q in which all free variables are replaced
by their interpretation according to I. An EPTL formula ϕ is said to be valid if
(A, e) |= ϕ for all interpretations I. An abstract execution A satisfies an EPTL
property ϕ, A |= ϕ, if all starting events of the abstract execution satisfy ϕ. The
starting events of an abstract execution A are all events that are minimal with
respect to the partial order ≤A i.e. they have no predecessor events.

The logical operators ∧ and ⇒ and the remaining temporal logic operators
can be defined as usual. The main difference to LTL is that we have two different
step operators EX and AX and a different semantics for the until operator U

240 M. Weber et al.

which is tailored to weakly consistent systems. Because the events in the sys-
tem are ordered using a partial order, the next step is no longer unambiguous.
Because of branches of concurrent events, a step might address multiple sub-
sequent events. We want to have the possibility to address either at least one
(EX) or all (AX) events that happen immediately after the current event. Also,
the semantics of the until operator U has to be adapted to the partial order.

The definition of the until operation is stronger than in previous work [1,4,10]
to be able to express strong properties about weakly consistent systems like the
correctness of access control. Since this is a safety-critical question, we need
a specification that is easy to understand and at the same time has a strong
semantics on the execution of such a weakly consistent application. In general,
access control is about specifying which operations are permitted to be executed
by some subject or user on some object in the system. In a simple access con-
trol system we consider three types of operations: grant(op, s, o) gives subject
s the right to perform operation op on object o. revoke(op, s, o) takes away the
right of subject s to perform operation op on object o. exec(op, s, o) represents
the execution of operation op performed by subject s on object o. Correspond-
ing propositions (e.g. grantP (op, s, o)) are true for an event e if e represents
the execution of the corresponding operation with the given parameters (e.g.
grant(op, s, o)).

Based on the given operations, we can define the properties we require from
our simple access control system. We want to start with a default policy that
initially no user has the right to execute any operation on the system until an
administrative user grants this right to him/her. To simplify the example, we
do not consider the details of rights to perform grant and revoke operations
and assume that there is some administrative user in the system that has the
right to perform these operations. Using the weak version of until defined as
(A, e) |= ϕ W ψ iff (A, e) |= Gϕ ∨ (ϕ U ψ), we can define the initial policy by
the following property:

A |= ¬execP (op, s, o) W grantP (op, s, o)

The dependency between grant and revoke should work like this: Whenever
the right of a subject is revoked, this operation should not be executed until a
subsequent grant allows the operation again. This can be specified in EPTL in
the following way:

A |= G(revokeP (op, s, o) ⇒ AX(¬execP (op, s, o) W grantP (op, s, o)))

This property both models the semantics of the revoke and grant opera-
tions. A grant operation allows an operation that was previously revoked and a
subsequent revoke operation disables the operation for the specified user again.

We see that the specifications are both readable and understandable as well
as short. The strong semantics of the until operator ensures that revoking the
right of a user disallows the operation on all future concurrent paths in the
event graph.

EPTL - A Temporal Logic for Weakly Consistent Systems (Short Paper) 241

Laws. Most of the laws of LTL can be shown to also hold in EPTL. Some
implications like the distributivity of the conjunction and disjunction are only
one-directional. The most important exception to the LTL laws is the induction
formula for the until operator, which does not hold in EPTL.

ϕ U ψ �≡ ψ ∨ (ϕ ∧ X(ϕ U ψ))

This makes reasoning in EPTL inconvenient. But since EPTL is mainly
intended as a specification logic for the intended behavior of the system which
translates to properties on abstract executions, this restriction is not a big issue.

Proofs and Extended Version. We have modeled EPTL in the theorem prover
Isabelle/HOL. All laws of EPTL are formalized and verified in the interactive
theorem prover and are used by the tool to simplify formulas. Even though
we did not yet find an efficient automatic checking procedure for EPTL, the
proofs can be done in semi-automatic fashion in HOL. Together with the strong
automation of Isabelle/HOL this should make for a comfortable environment in
which to show that the presented model is suitable to implement access control.

An extended version of this paper [11] includes the proven laws and extended
examples.

3 Related Work

Alur et al. [1] presented a global partial order logic called ISTL. Same as we, they
do not restrict the view on the system to the state sequence observed by a local
process. The logic is based on a partially ordered set of local states which can also
be seen as a branching structure. This branching structure represents all possible
sequences of global states that may be derived from the partial order. This
state based approach makes it unsuitable for reasoning about weakly consistent
systems. As described in Sect. 2, encoding the events and the conflict resolution
strategy into a state requires knowledge about the implementation of the conflict
resolution strategy. Since the concrete implementation has to be abstracted from
in the specification of the behavior of a weakly consistent system, ISTL is not
suitable as a specification language for weakly consistent systems.

The other line of research about partial order semantics uses Mazurkiewicz
traces [7]. The base for these traces is a finite set of actions, which can be seen
as state transformations of resources of the system under investigation. Two
actions are independent if they act on disjoint set of resources. Only indepen-
dent actions are allowed to be performed concurrently. This restriction is the
reason why Mazurkiewicz traces cannot be used to reason about weakly consis-
tent systems in the given form. In these considered systems, the resources are
replicated objects where each process performs operations on its copy. When
looking at these operation from a global view, they all change the same shared
object. In this sense, the operations are not independent, even though they are
possibly performed concurrently. It is not obvious how to apply Mazurkiewicz
traces to weakly consistent systems.

242 M. Weber et al.

4 Conclusion

We presented the new temporal logic EPTL that is tailored to specify properties
of weakly consistent systems. As the example of access control shows, it allows
for a concise and readable, yet machine-checkable specification. The complete
logic is modeled in Isabelle/HOL and all laws are verified using the theorem
prover. All theory files are available under https://softech-git.informatik.uni-kl.
de/mweber/EPTL/tree/master.

References

1. Alur, R., McMillan, K., Peled, D.: Deciding global partial-order properties. Formal
Methods Syst. Des. 26(1), 7–25 (2005)

2. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: spec-
ification, verification, optimality. In: Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2014, pp.
271–284. ACM, New York (2014)

3. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). doi:10.1007/BFb0025774

4. Diekert, V., Gastin, P.: Pure future local temporal logics are expressively complete
for Mazurkiewicz traces. Inf. Comput. 204(11), 1597–1619 (2006)

5. Havelund, K., Rosu, G.: Testing linear temporal logic formulae on finite execution
traces. Technical report, RIACS (2001)

6. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

7. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI
Rep. Ser. 6(78), 1–51 (1977)

8. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57 (1977)

9. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24550-3 29

10. Thiagarajan, P.S., Walukiewicz, I.: An expressively complete linear time temporal
logic for Mazurkiewicz traces. Inf. Comput. 179(2), 230–249 (2002)

11. Weber, M., Bieniusa, A., Poetzsch-Heffter, A.: EPTL - a temporal logic for weakly
consistent systems abs/1704.05320 (2017). https://arxiv.org/abs/1704.05320

https://softech-git.informatik.uni-kl.de/mweber/EPTL/tree/master
https://softech-git.informatik.uni-kl.de/mweber/EPTL/tree/master
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/978-3-642-24550-3_29
https://arxiv.org/abs/1704.05320

Author Index

Adameit, Manuel 1
André, Étienne 17
Arias, Jaime 74
Armstrong, Alasdair 33, 50
Azadbakht, Keyvan 67

Bezirgiannis, Nikolaos 67
Bieniusa, Annette 236
Bordenabe, Nicolás 156
Borgström, Johannes 179

Cano, Mauricio 74
Carle, Georg 225
Cruz-Filipe, Luís 92

de Boer, Frank S. 67
Derrick, John 108
Diekmann, Cornelius 225
Doherty, Simon 50
Dongol, Brijesh 33, 50
Dragomir, Iulia 194

Eriksson, Lars-Henrik 179

Fokkink, Wan J. 210

Gibson, J. Paul 124

Kherroubi, Souad 124

Lanotte, Ruggero 139
Lin, Shang-Wei 17

McIver, Annabelle 156
Merro, Massimo 139
Méry, Dominique 124
Montesi, Fabrizio 92, 171
Morgan, Carroll 156

Nestmann, Uwe 1

Parrow, Joachim 179
Pérez, Jorge A. 74
Peters, Kirstin 1
Poetzsch-Heffter, Arnd 236
Preoteasa, Viorel 194

Rabehaja, Tahiry 156

Smith, Graeme 108

Tini, Simone 139
Tripakis, Stavros 194

Vijzelaar, Stefan J.J. 210
von Maltitz, Marcel 225

Weber, Mathias 236
Weber, Tjark 179

	Foreword
	Preface
	Organization
	Systematic Testing for Asynchronous Programs (Invited Talk)
	Contents
	Session Types for Link Failures
	1 Introduction
	2 Global Types with Optional Blocks
	3 Local Types with Optional Blocks
	4 A Session Calculus with Optional Blocks
	5 Well-Typed Processes
	6 Properties of the Type Systems
	7 Conclusions
	References

	Learning-Based Compositional Parameter Synthesis for Event-Recording Automata
	1 Introduction
	2 Preliminaries
	2.1 Clocks, Parameters and Constraints
	2.2 Parametric Timed Automata

	3 Parametric Reachability Preservation
	4 Parametric Event-Recording Automata
	5 Compositional Parameter Synthesis for PERAs
	5.1 Partitioning the System
	5.2 Computing an Abstraction via Learning
	5.3 Replaying a Trace
	5.4 Exploiting the Abstraction and Performing Parameter Synthesis
	5.5 Soundness

	6 Experiments
	6.1 Handling General PTAs
	6.2 Experiments

	7 Conclusion and Perspectives
	References

	Modularising Opacity Verification for Hybrid Transactional Memory
	1 Introduction
	2 Hybrid TML
	3 The TMS2 Specification
	4 Interference Automata
	5 Parallel Interference Automata
	6 Simulation Proofs for Parallel Interference Automata
	7 HyTML Proof and Mechanisation
	8 Conclusion
	References

	Proving Opacity via Linearizability: A Sound and Complete Method
	1 Introduction
	2 Transactional Memory
	3 Proving Opacity via Linearizability
	4 Soundness and Completeness
	5 The NORec Algorithm
	6 Weak Memory Models
	7 Conclusions
	References

	On Futures for Streaming Data in ABS
	1 Introduction
	2 The ABS Programming Language
	3 Future-Based Data Streams
	4 Case Study
	4.1 Experimental Results

	5 Conclusion and Future Work
	References

	Session-Based Concurrency, Reactively
	1 Introduction
	2 A Motivating Example
	3 Preliminaries
	4 Expressiveness Results
	5 Closing Remarks
	References

	Procedural Choreographic Programming
	1 Introduction
	2 Procedural Choreographies (PC)
	3 Typability and Deadlock-Freedom
	4 Synthesising Process Implementations
	4.1 Procedural Processes (PP)
	4.2 EndPoint Projection (EPP)

	5 Related Work and Discussion
	References

	An Observational Approach to Defining Linearizability on Weak Memory Models
	1 Introduction
	1.1 Example: seqlock

	2 Linearizability
	3 The TSO Memory Model
	3.1 Linearizability on TSO

	4 Observational Definition of Linearizability on Weak Memory Models
	4.1 Executions
	4.2 Relating Executions to Histories
	4.3 Linearizability on a Weak Memory Model

	5 Generalising to Other Memory Models
	References

	Applying a Dependency Mechanism for Voting Protocol Models Using Event-B
	1 Introduction
	1.1 Diffferent Points of View
	1.2 Contextual Reasoning
	1.3 Refinement and Decomposition Patterns
	1.4 Formal Reasoning About E-voting

	2 The Modelling Framework
	3 Modelling the Voting System
	3.1 Combining Refinement and Composition, Using the Dependency Pattern
	3.2 Refining the Voting Phase in Seven Steps

	4 Dependency Relationship Between Voting Phases
	5 Conclusion and Future Work
	5.1 Contributions: Contexts, Refinements and Dependency
	5.2 Future Work: Security Issues

	References

	Weak Simulation Quasimetric in a Gossip Scenario
	1 Introduction
	2 A Probabilistic Timed Process Calculus
	2.1 Probabilistic Labelled Transition Semantics

	3 Weak Simulation Up to Tolerance
	4 A Case Study: Reasoning on Gossip Protocols
	5 Conclusions, Related and Future Work
	References

	Reasoning About Distributed Secrets
	1 Introduction
	2 Motivation: Correlated Passwords
	2.1 Changing a Password: Is it Only ``Fresh'', or Actually ``Different''?

	3 HMM's: Generalising Channels for Secure Refinement
	3.1 Systems with Distributed Secrets
	3.2 HMM's Leak Information About Secrets and Update Them

	4 Reasoning About Distributed, Correlated Secrets
	5 Case Study: Side Channel Analysis
	6 Related Work, Conclusions and Prospects
	References

	Classical Higher-Order Processes
	1 Introduction
	2 Classical Higher-Order Processes (CHOP)
	3 Related Work
	4 Conclusions
	References

	Weak Nominal Modal Logic
	1 Introduction
	2 Background
	2.1 Nominal Sets
	2.2 Nominal Transition Systems
	2.3 Hennessy-Milner Logic

	3 Weak Bisimulation
	4 Weak Logic
	5 Disjunction Elimination
	6 State Predicates as Actions
	7 Applications
	8 Related Work
	9 Conclusion
	References

	Type Inference of Simulink Hierarchical Block Diagrams in Isabelle
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Isabelle
	3.2 Representation of Simulink Diagrams as Predicate Transformers

	4 Constant Blocks
	5 Conversion Blocks
	6 Boolean Blocks
	7 Generic Translations
	8 Implementation and Validation
	9 Conclusions and Future Work
	References

	Creating Büchi Automata for Multi-valued Model Checking
	1 Introduction
	2 Preliminaries
	2.1 Lattices
	2.2 Quasi-Boolean Logics
	2.3 Multi-valued Kripke Models
	2.4 Linear Temporal Logic
	2.5 Multi-valued Büchi Automata
	2.6 Bilattices

	3 Multi-valued LTL
	3.1 Stutter Extension of Kripke Models
	3.2 Strong and Weak Next Operators
	3.3 Until and Release Operators
	3.4 Paths with False Transitions
	3.5 Maximality

	4 Steering Logic
	4.1 Semantics
	4.2 Example

	5 Creating Büchi Automata
	5.1 The Algorithm
	5.2 The Multi-valued Büchi Automaton

	6 Future Work
	References

	Privacy Assessment Using Static Taint Analysis (Tool Paper)
	1 Introduction
	2 Formalization and Implementation
	3 Conclusion
	A Case Studies
	A.1 Energy Monitoring System
	A.2 MeasrDroid

	References

	EPTL - A Temporal Logic for Weakly Consistent Systems (Short Paper)
	1 Introduction
	2 Event-Based Parallel Temporal Logic (EPTL)
	3 Related Work
	4 Conclusion
	References

	Author Index

