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Abstract In this paper we study, by means of numerical simulations, the influence

of some relevant factors on the Rank Reversal phenomenon in the Analytic Hierar-

chy Process, AHP. We consider both the case of a single decision maker and the case

of group decision making. The idea is to focus on a condition which preserves Rank

Reversal, RR in the following, and progressively relax it. First, we study how the

estimated probability of RR depends on the distribution of the criteria weights and,

more precisely, on the entropy of this distribution. In fact, it is known that RR does’nt

occur if all the weights are concentrated in a single criterion, i.e. the zero entropy

case. We derive an interesting increasing behavior of the RR estimated probability

as a function of weights entropy. Second, we focus on the aggregation method of

the local weight vectors. Barzilay and Golany proved that the weighted geometric

mean preserves from RR. By using the usual weighted arithmetic mean suggested

in AHP, on the contrary, RR may occur. Therefore, we use the more general aggre-

gation rule based on the weighted power mean, where the weighted geometric mean

and the weighted arithmetic mean are particular cases obtained for the values p → 0
and p = 1 of the power parameter p respectively. By studying the RR probability as

a function of parameter p, we again obtain a monotonic behavior. Finally, we repeat

our study in the case of a group decision making problem and we observe that the

estimated probability of RR decreases by aggregating the DMs’ preferences. This

fact suggests an inverse relationship between consensus and rank reversal. Note that

we assume that all judgements are totally consistent, so that the effect of inconsis-

tency is avoided.
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1 Introduction

Despite its popularity, Saaty’s Analytic Hierarchy Process, AHP in the following, has

been criticized by many authors since its introduction in 1977 [16]. Some researchers

pointed out single drawbacks or weaknesses, whereas other researchers criticized

and rejected the very foundations of the method. Among these criticisms, we men-

tion only few popular ones. The interested reader may refer to [7] and [19] for a more

extended debate. Barzilai [4], as an example, considers the eigenvector method and

the normalization procedure in AHP as mathematical errors. Well-known criticisms

came also from Bana e Costa and Vansnick [3] and concern the meaning of the prior-

ity vector derived from the principal eigenvalue method and the Saaty’s consistency

ratio. Nevertheless, the best known and most cited drawback of AHP is certainly the

rank reversal (RR) phenomenon. Rank reversal is the change of ranking of alterna-

tives as a consequence, for example, of the addition or deletion of an alternative.

This clearly contradicts the principle of the independence of irrelevant alternatives.

Rank reversal in AHP was firstly evidenced in 1983 by Belton and Gear [6]. After

that, numerous paper were published on this subject [5, 10, 15, 20]. Saaty regularly

answered to the criticisms on AHP and, in particular, on RR, arguing on the validity

of his method and on the legitimacy of RR [17]. A survey on this topic can be found

in [13]. Numerous authors argued on the main causes/factors influencing RR, mainly

focusing on the role of vector normalization, aggregation rule and inconsistency. The

aim of this paper is not to enter the debate in favor or against AHP and/or RR. Our

scope is, instead, to contribute to the understanding on how some relevant factors

influence the probability of the RR phenomenon. The paper is organized as follows.

In Sect. 2 we set the necessary notation and definitions in order to specify the frame-

work of pairwise comparison and AHP. In the same section we also define the main

issues on RR. In Sect. 3 we describe the plan and the results of our numerical study,

both in the case of a single decision maker and in the case of group decision making.

Finally, we discuss and comment our results.

2 Preliminaries

2.1 Pairwise Comparisons and AHP

We assume that the reader is familiar with AHP [12, 16, 18], so that we only

briefly recall the main steps of the method. Let us consider a set of n alternatives

X = {x1,… , xn}. We first recall the definition of pairwise comparison matrix, PCM

in the following, which is a positive and reciprocal square matrix 𝐀 of order n
obtained by pairwise comparing the n alternatives. More precisely, it is 𝐀 = (aij)n×n,
with aij > 0, aijaji = 1, ∀i, j, where aij is an estimation of the degree of preference

of xi over xj. Given a PCM, the most relevant task is to derive a weight vector, that

is a vector 𝐰 = (w1,… ,wn), where wj is a numerical value quantifying the priority
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of alternative xj as estimated on the basis of the pairwise comparisons. Vector 𝐰
is defined up to a positive factor. Normalization is often applied to 𝐰, so that the

components sum up to one.

In order to derive the vector 𝐰, Saaty [16] proposes the eigenvector method.

Namely, 𝐰 is the solution of the following equation

𝐀𝐰 = 𝜆max𝐰 . (1)

Note that the maximum eigenvalue of 𝐀, here denoted by 𝜆max, refers to the Perron–

Frobenius theorem. Another popular method to derive 𝐰 = (w1,… ,wn) is the geo-

metric mean method [2, 9], where

wi =

( n∏
j=1

aij

) 1
n

∀i. (2)

Several other methods were proposed for obtaining a weight vector 𝐰 from a PCM

[8], but we do not consider them in this paper. In general, given a PCM, different

methods lead to different vectors 𝐰, but in particular cases the result is the same, as

pointed out below.

Beside reciprocity, which is a property required in the definition of a PCM, consis-
tency is another relevant property. A pairwise comparison matrix is called consistent
if and only if the following condition holds:

aik = aijajk ∀i, j, k. (3)

Property (3) can be considered as a cardinal transitivity condition and means that

preferences are fully coherent. If and only if𝐀 is consistent, then there exists a weight

vector 𝐰 = (w1,… ,wn) such that

aij =
wi

wj
∀i, j. (4)

If 𝐀 is consistent, then the Saaty’s eigenvector method and the geometric mean

method lead to the same weight vector 𝐰.

Having defined a PCM and the corresponding weight vector 𝐰, we can now apply

these basic concepts to a hierarchy, which is the characterizing structure of AHP.

Let us consider a set of m criteria C = {c1,… , cm} and require that the n alterna-

tives x1,… , xn must be evaluated on the basis of all criteria. Similarly to the case of

a single PCM, the aim of AHP is to provide a weight vector 𝐰 = (w1,… ,wn), where

wj a numerical value quantifying the global priority of alternative xj as estimated on

the basis of all the m criteria. For each fixed criterion ck, Saaty proposed to construct

a PCM, say 𝐀k where the n alternatives are pairwise compared on the basis of ck,
k = 1,… ,m. In such a way, m PCMs of order n are obtained. Then, the correspond-

ing ‘local weight vector’, say 𝐰k, is derived for each 𝐀k by using the eigenvector
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Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5 

Overall objective  

Alternative 1 Alternative 2 Alternative 3 Alternative 4

Fig. 1 Example of a hierarchy with five criteria and four alternatives

method. Vectors 𝐰k are normalized so that for each vector the sum of the compo-

nents equals one. Finally, by means of the so-called ‘hierarchical composition’, the m
local weight vectors 𝐰1,… ,𝐰m are aggregated in order to obtain the global weight

vector 𝐰. The AHP prescribes that the aggregation of the local weight vectors is

done through the weighted arithmetic mean,

𝐰 = v1𝐰1 +⋯ + vm𝐰m =
m∑
i=1

vi𝐰i , (5)

where v1,… , vm are the weights, or priorities, of the criteria c1,… , cm respectively.

AHP requires that also the weights v1,… , vm are computed as the components of

the maximal eigenvector of the m × m PCM obtained by pairwise comparing the m
criteria. Nevertheless, this is not relevant for our study, so that, in the next section, we

will determine v1,… , vm more directly. In Fig. 1 we give an example of a hierarchy

where the four alternatives constitute the lowest layer and the five criteria the layer

immediately above.

2.2 Rank Reversal

Few years after the introduction of AHP by T. Saaty in 1977 [16], Belton and Gear

proved in 1983 [6] that AHP may suffer of a drawback that was then named Rank

Reversal. They considered an example with three alternatives and three criteria. The

three PCMs where consistent and the ranking of the alternatives were computed by

means of AHP as described in the preceding subsection. Belton and Gear showed
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that, by adding a fourth alternative, the ranking of the original three alternatives

changed even if the preferences among them remained unchanged and consistency

was preserved for the new 4 × 4 PCMs. Other types of RR were studied in the follow-

ing years, evidencing, for example, that the phenomenon may occur also by replacing

an alternative with a similar one. Other authors evidenced the role of the weight vec-

tors normalization. It was also proved that RR is avoided by aggregating the local

weight vectors using the weighted geometric mean instead of the weighted arith-

metic meas prescribed by the original AHP. Moreover, it was proved by Saaty itself

that RR may not occur in the case of a single PCM, that is for a single criterion,

provided that the PCM is consistent. On the contrary, if consistency assumption is

removed, RR may occur even for a single PCM. In the next section, we describe

our numerical simulations in the case of multiple criteria and consistent PCMs. Our

study is aimed at investigating the influence on RR of some relevant factors, as the

aggregation method for local weight vectors and the entropy of the criteria weight

distribution.

3 Numerical Study on Rank Reversal

3.1 The Effect of Criteria Weights Distribution on Rank
Reversal

In this subsection, we study how the distribution of the normalized criteria weights

(v1,… , vm),
∑m

i=1 vi = 1 can influence the probability of RR. We start by observ-

ing that if m − 1 weights are null, being 1 the remaining weight, as for exam-

ple in (v1,… , vm) = (1, 0,… , 0), then RR doesn’t occur. The simple reason is that

this case leads back to the single criterion consistent case. As mentioned above,

Saaty proved that this latter case is RR-free. By drifting away from this polarized

case, RR can arise. In particular, our assumption was to consider the uniform case

(v1,… , vm) = ( 1
m
,

1
m
,… ,

1
m
) as an ‘opposite’ case with respect to the previous polar-

ized one. In our opinion, the most suitable quantity to describe the range between

these two extreme cases is the entropy of (v1,… , vm),

H(v1,… , vm) = −
m∑
i=1

vi ln(vi) . (6)

Note that entropy of (v1,… , vm) measures the ‘closeness’ to the uniform case

( 1
m
,

1
m
,… ,

1
m
). In fact, the minimum value of entropy (6) is reached in the fully polar-

ized case, for example, H(1, 0,… , 0) = 0, whereas the maximum value of entropy

(6) is reached in the case of uniformly distributed weights, H( 1
m
,

1
m
,… ,

1
m
) = lnm.

We assume that, in the case of vi = 0, the value of the corresponding term in (6) is

taken to be 0, according to the limit limvi→0+
(
vi ln(vi)

)
= 0. We performed numerous
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simulations with different values of the number of alternatives and criteria. We antic-

ipate that, for the sake of simplicity, Fig. 2a reports a single example, corresponding

to n = 4 alternatives and m = 5 criteria. In the following, we briefly describe the

plan of our numerical study.

1. We construct m consistent PCMs 𝐀 = (aij)n×n by setting aij =
wi

wj
, where (w1,… ,

wn) is a randomly generated vector by uniformly sampling in the set {1, 2, 3, 4, 5,
6, 7, 8, 9}.

2. We associate to each PCM constructed in the previous point the corresponding

normalized weight vector. Given that all the PCMs are consistent, it is clearly

irrelevant wether to use the eigenvector method or the geometric mean method.

Moreover, the obtained normalized vector will be proportional to that used for

constructing the PCM. At this point, we have the m normalized local weight vec-

tors 𝐰1,… ,𝐰m.

3. Them local weight vectors𝐰1,… ,𝐰m are aggregated in order to obtain the global

weight vector 𝐰. The aggregation is performed using the standard weighted arith-

metic mean (5) and weights v1,… , vm of the criteria are randomly generated.

4. For each one of the m consistent PCMs 𝐀 = (aij)n×n constructed at the point 1, we

remove the last row and the last column, thus obtaining a new set of m consistent

PCMs of order n − 1.

5. We repeat on the new set of m consistent PCMs of order n − 1 exactly the same

computations as described at points 2 and 3 with the same weights v1,… , vm
of the criteria. So, we obtain the corresponding global weight vector with n − 1
components.

6. We compare, for each instance of m consistent PCMs, the rank obtained in the

n alternatives case with that obtained in the (n − 1) alternatives case, in order to

verify whether the RR occurred.

We repeat 100.000 times the points from 1 to 6, thus obtaining the output data set

of our study. We can now better describe the graphical results shown in Fig. 2a,

where the case with 4 alternatives and 5 criteria is reported. Each point in the plot

is determined as follows. We report on the horizontal axis the entropy values, rang-

ing from 0 to its maximum value lnm = ln 5. This interval is then partitioned in k
equally spaced subintervals. For each subinterval, we consider all the weight vectors

(v1, v2, v3, v4, v5) with entropy value belonging to this subinterval. Correspondingly,

we compute the percentage of occurrence of RR for all 4 × 4 PCMs, constructed as

described above, provided that the aggregation is made using the criteria weight vec-

tors with entropy values belonging to the fixed subinterval. Finally, this percentage

is reported on the vertical axis, thus obtaining the second coordinate of the point.

The first coordinate of the point is the center of the subinterval. As synthesized

in Fig. 2a, it is apparent that the probability of RR increases when the entropy of

(v1, v2, v3, v4, v5) increases, thus evidencing the role of criteria weights distribution

on RR. Figure 2b reports the outcome of a study which is very similar to the one

reported in Fig. 2a. The only difference is that, instead of measuring the closeness of

a criteria weight vector (v1, v2, v3, v4, v5) to the uniform case ( 1
5
,

1
5
,

1
5
,

1
5
,

1
5
) with the
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(a) Effect of criteria weights entropy.

(b) Effect of criteria weights standard deviation.
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Fig. 2 Estimated probability of rank reversal for a single DM

entropy of (v1, v2, v3, v4, v5), we use its standard deviation. Note that, actually, the

standard deviation measures the distance from ( 1
5
,

1
5
,

1
5
,

1
5
,

1
5
), rather than the close-

ness. As pointed out above, the interpretation of Fig. 2a is straightforward. The per-

centage of cases in which RR occurred increases when the entropy (6) increases.
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In the case of maximum entropy, i.e. H(v1, v2, v3, v4, v5) = H( 1
5
,

1
5
,

1
5
,

1
5
,

1
5
) = ln 5 ≈

1.6, we found that RR occurred approximately in 23% of cases. Figure 2b represents

the same outcome as in Fig. 2a, but referring to the standard deviation of criteria

weights. Coherently with the outcome in Figs. 2a, 2b shows that the percentage of

cases in which RR occurred decreases when the standard deviation increases.

3.2 The Effect of Aggregation Methods on Rank Reversal

Let us consider again the question of the aggregation of the local weight vectors

𝐰1,… ,𝐰m. As it is known, Saaty’s AHP states that the aggregation is made using the

weighted arithmetic mean (5). On the other hand, Barzilai and Golany [5] proposed

to use the weighted geometric mean,

𝐰 =
m∏
i=1

𝐰vi
i . (7)

Note that the exponents vi in (7) act componentwise. This means that components

wj of vector 𝐰 are computed as

wj =
m∏
i=1

(𝐰i)
vi
j . (8)

Barzilai and Golany proved that if the weighted geometric mean aggregation (7) is

applied, RR cannot occur, thus evidencing that the weighted arithmetic mean can

be considered as a relevant factor determining RR. In our study, we consider the

weighted arithmetic mean and the weighted geometric mean as particular cases of

the weighted power mean,

𝐰 =

( m∑
i=1

vi(𝐰i)p
) 1

p

, (9)

where, again, the exponent p in (9) acts componentwise.

More precisely, it is known that the weighted arithmetic mean (5) is obtained

from (9) for p = 1 and the weighted geometric mean (7) is obtained from (9) for

p → 0. Justified by this latter result, definition (9) is often completed assuming that

for p = 0 the weighted power mean is defined to be the weighted geometric mean.

We assume this extended definition in the following. Clearly, each value of p in

[0, 1] is associated with a different aggregation method which acts between the two

extreme cases of the weighted geometric and arithmetic mean. By means of numer-

ical simulations, we study how the relative frequency of RR varies by moving from

the RR-free case of the geometric mean aggregation, corresponding to p = 0, to the
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weighted arithmetic mean case, corresponding to p = 1. As it might be expected, the

outcome is a monotonically increasing behavior, as showed in Fig. 3. Similarly to the

study described in the Sect. 3.1, we performed numerous simulations with different

values of the number of alternatives and criteria but, in Fig. 3, for the sake of sim-

plicity, we report a single example, corresponding to n = 4 alternatives and m = 5
criteria. The following description of the plan of our numerical study is quite similar

to the one described in the previous subsection, as it differs only for what concerns

the aggregation method at point 3.

1. We construct m consistent PCMs 𝐀 = (aij)n×n by setting aij =
wi

wj
, where (w1,… ,

wn) is a randomly generated vector by uniformly sampling in the set {1, 2, 3, 4, 5,
6, 7, 8, 9}.

2. We associate to each PCM constructed in the previous point the corresponding

normalized weight vector. Given that all the PCMs are consistent, it is clearly

irrelevant whether to use the eigenvector method or the geometric mean method.

Moreover, the obtained normalized vector will be proportional to that used for

constructing the PCM. At this point, we have the m normalized local weight vec-

tors 𝐰1,… ,𝐰m.

3. Them local weight vectors𝐰1,… ,𝐰m are aggregated in order to obtain the global

weight vector 𝐰. The weights v1,… , vm of the criteria are randomly generated

and the aggregation is performed using the weighted power mean (9) with 100

different values of p uniformly spaced in [0, 1].
4. For each one of the m consistent PCMs 𝐀 = (aij)n×n constructed at the point 1, we

remove the last row and the last column, thus obtaining a new set of m consistent

PCMs of order n − 1.

5. We repeat on the new set of m consistent PCMs of order n − 1 exactly the same

computations as described at points 2 and 3 with the same weights v1,… , vm of

the criteria and the same 100 different values of p used in the n × n case.

6. We compare, for each instance, the rank obtained in the n × n case with that

obtained in the (n − 1) × (n − 1) case, in order to verify whether the RR occurred.

Let us describe how the plot in Fig. 3 is obtained. Each one of the 100 points in

the plot corresponds to a fixed value of p on the horizontal axis. The second coordi-

nate of the point is obtained by reporting on the vertical axis the relative frequency

of RR, as computed by performing the numerical simulations described above. This

relative frequency was computed on 5.000 different instances of five 4 × 4 PCMs.

We use the same set of instances for generating all points in the plot, using different

values of p in the aggregation method (9). As synthesized in Fig. 3, it is apparent that

the probability of RR increases with p, thus evidencing how the RR is influenced by

the aggregation method (9). For example, it can be noted that points corresponding

to values of p close to zero represent aggregation methods close to weighted geo-

metric mean (7). In these cases, RR occurs very rarely. Although we reported only

few examples in Figs. 2 and 3, we can send the interested readers other outcomes

corresponding to different values of n and m.
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Fig. 3 Estimated probability of rank reversal as influenced by the aggregation method in the case

of a single DM

3.3 Group AHP and Rank Reversal

As mentioned in the introduction, we extended our study to the case of a group

of Decision Makers, DMs in the following. We assume that N DMs express their

preferences on n alternatives {x1,… , xn} through AHP exactly as described in the

previous subsections. Then, m PCMs of order n are associated to each DM, cor-

responding to the m criteria. We denote by 𝐀l
k the PCM of DM l referring to cri-

terion k, for l = 1,… ,N and k = 1,… ,m. In order to derive a final weight vector

𝐰 = (w1,… ,wn) quantifying the group priorities on the n alternatives, one has to

aggregate the data provided by the N DMs. As it is known, there are two main aggre-

gation procedures within AHP, i.e. the aggregation of individual priorities (AIP) and

the aggregation of individual judgments (AIJ). In AIP procedure, each DM derives

independently his/her individual priorities. Then, the N priority vectors are aggre-

gated to a group priority vector using either a (weighted) arithmetic (WAMM) or a

(weighted) geometric mean method. Conversely, in AIJ procedure, the group PCMs

are first determined and the group priority vector is computer after that [11, 21].

In the of AIJ procedure, each entry of the group PCMs 𝐀G
k is obtained using the

geometric mean method on the corresponding entries of the PCMs of all DMs,

(
𝐀G

k
)
ij =

[ N∏
l=1

(
𝐀l

k
)
ij

] 1
N

k = 1,… ,m i, j = 1,… , n . (10)
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(a) Effect of criteria weights entropy.

(b) Effect of criteria weights standard deviation.
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Fig. 4 Estimated probability of rank reversal in a group of 5 DMs

As pointed out by Aczél and Saaty [1], the geometric mean method must be used

in AIJ procedure in order to preserve the reciprocity of the group PCMs (10). In the

following, we use AIJ procedure, since we consider it as more relevant for our study.

The interested reader can refer to [14] for an updated review on group aggregation

techniques for AHP.
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Fig. 5 Estimated probability of group rank reversal as influenced by the aggregation method. Case

with 4 DMs

Our numerical study on group RR is then performed as follows.

1. The number N of DMs constituting the group is fixed and the PCMs of the N
DMs are constructed as described in Sect. 3.1.

2. The PCMs of the N DMs are aggregated using componentwise the geometric

mean method, as in (10), in order to form the the group PCMs.

3. The same study and graphical representation described in Sect. 3.1 for a single

DM is performed for the group. An illustrative example of the obtained outcomes

is reported in Fig. 4, corresponding to the case with N = 5.

4. The study described in the preceding points is performed on the aggregation

method too, thus extending to the group case the investigation carried out in

Sect. 3.2. Again, we report an illustrative example with N = 4 in Fig. 5.

Similarly to the study described in Sects. 3.1 and 3.2, we considered different values

of n, m and N. For the sake of simplicity, we reported only the illustrative examples

in Fig. 4 and in Fig. 5. A first remark is that the monotone behavior of the estimated

RR probability is confirmed for the group case too. Although Fig. 4 resembles Fig. 2,

it can be observed that the values reported in the latter are approximately double that

the values in the former. For different values of the parameters n, m and N we obtain

results that are coherent with this last observation. We can therefore conclude that

outcomes of our simulations support the conjecture that RR probability decreases

when the number of experts in a group increases. The impact of the number of experts

on rank reversal was studied from a different point of view in [10]. Comparison

between Figs. 3 and 5 leads to very similar conclusions for the aggregation method

too.
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