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Abstract The determination of ordered weighted averaging (OWA) operator

weights is a very important issue of applying the OWA operator for decision mak-

ing. One of the first approaches, suggested by O’Hagan, determines a special class

of OWA operators having maximal entropy of the OWA weights for a given level

of orness; algorithmically it is based on the solution of a constrained optimization

problem. In 2001, using the method of Lagrange multipliers, Fullér and Majlender

solved this constrained optimization problem analytically and determined the opti-

mal weighting vector. In 2003 Fullér and Majlender computed the exact minimal

variability weighting vector for any level of orness using the Karush-Kuhn-Tucker

second-order sufficiency conditions for optimality. The problem of maximizing an

OWA aggregation of a group of variables that are interrelated and constrained by

a collection of linear inequalities was first considered by Yager in 1996, where he

showed how this problem can be modeled as a mixed integer linear programming

problem. In 2003 Carlsson, Fullér and Majlender derived an algorithm for solving

the constrained OWA aggregation problem under a simple linear constraint: the sum

of the variables is less than or equal to one. In this paper we give a short survey of

numerous later works which extend and develop these models.

1 OWA Operators

The process of information aggregation appears in many applications related to the

development of intelligent systems. In 1988 Yager introduced a new aggregation

technique based on the ordered weighted averaging operators [44]. The determi-

nation of ordered weighted averaging operator weights is a very important issue
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of applying the OWA operator for decision making. One of the first approaches,

suggested by O’Hagan [34], determines a special class of OWA operators having

maximal entropy of the OWA weights for a given level of orness; algorithmically it

is based on the solution of a constrained optimization problem. In 2001, using the

method of Lagrange multipliers, Fullér and Majlender [12] solved this constrained

optimization problem analytically and determined the optimal weighting vector. In

2003 using the Karush-Kuhn-Tucker second-order sufficiency conditions for opti-

mality, Fullér and Majlender [13] computed the exact minimal variability weighting

vector for any level of orness. In 2003 Carlsson, Fullér and Majlender [7] derived an

algorithm for solving the (nonlinear) constrained OWA aggregation problem. In this

work we shall give a short survey of some later works that extend and develop these

models.

In a decision process the idea of trade-offs corresponds to viewing the global eval-

uation of an action as lying between the worst and the best local ratings. This occurs

in the presence of conflicting goals, when a compensation between the correspond-

ing compatibilities is allowed. Averaging operators realize trade-offs between objec-

tives, by allowing a positive compensation between ratings. The concept of ordered
weighted averaging operators was introduced by Yager in 1988 [44] as a way for pro-

viding aggregations which lie between the maximum and minimums operators. The

structure of this operator involves a nonlinearity in the form of an ordering operation

on the elements to be aggregated. The OWA operator provides a new information

aggregation technique and has already aroused considerable research interest [49].

Definition 1.1 ([44]) An OWA operator of dimension n is a mapping F∶ℝn →
ℝ, that has an associated weighting vector W = (w1,w2,… ,wn)T such as wi ∈
[0, 1], 1 ≤ i ≤ n, and w1 +⋯ + wn = 1. Furthermore,

F(a1,… , an) = w1b1 +⋯ + wnbn =
n∑

j=1
wjbj,

where bj is the jth largest element of the bag ⟨a1,… , an⟩.

A fundamental aspect of this operator is the re-ordering step, in particular an

aggregate ai is not associated with a particular weight wi but rather a weight is asso-

ciated with a particular ordered position of aggregate. It is noted that different OWA

operators are distinguished by their weighting function. In order to classify OWA

operators in regard to their location between and and or, a measure of orness, asso-

ciated with any vector W is introduced by Yager [44] as follows,

orness(W) =
1

n − 1

n∑

i=1
(n − i)wi.

It is easy to see that for any W the orness(W) is always in the unit interval Fur-

thermore, note that the nearer W is to an or, the closer its measure is to one;

while the nearer it is to an and, the closer is to zero. It can easily be shown that
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orness(W∗) = 1, orness(W∗) = 0 and orness(WA) = 0.5. A measure of andness is

defined as, andness(W) = 1 − orness(W). Generally, an OWA operator with much

of nonzero weights near the top will be an orlike operator, that is, orness(W) ≥ 0.5,

and when much of the weights are nonzero near the bottom, the OWA operator will

be andlike, that is, andness(W) ≥ 0.5. In [44] Yager defined the measure of disper-

sion (or entropy) of an OWA vector by,

disp(W) = −
n∑

i=1
wi lnwi.

We can see when using the OWA operator as an averaging operator disp(W)measures

the degree to which we use all the aggregates equally.

2 Obtaining OWA Operator Weights

One important issue in the theory of OWA operators is the determination of the

associated weights. One of the first approaches, suggested by O’Hagan, determines

a special class of OWA operators having maximal entropy of the OWA weights for a

given level of orness; algorithmically it is based on the solution of a constrained opti-

mization problem. Another consideration that may be of interest to a decision maker

involves the variability associated with a weighting vector. In particular, a decision

maker may desire low variability associated with a chosen weighting vector. It is

clear that the actual type of aggregation performed by an OWA operator depends

upon the form of the weighting vector [45]. A number of approaches have been sug-

gested for obtaining the associated weights, i.e., quantifier guided aggregation [44,

45], exponential smoothing and learning [50]. O’Hagan [34] determined a special

class of OWA operators having maximal entropy of the OWA weights for a given

level of orness. His approach is based on the solution of he following mathematical

programming problem,

maximize disp(W) = −
n∑

i=1
wi lnwi

subject to orness(W) =
n∑

i=1

n − i
n − 1

⋅ wi = 𝛼, 0 ≤ 𝛼 ≤ 1 (1)

w1 +⋯ + wn = 1, 0 ≤ wi, i = 1,… , n.

In 2001, using the method of Lagrange multipliers, Fullér and Majlender [12] trans-

formed constrained optimization problem (1) into a polynomial equation which is

then was solved to determine the maximal entropy OWA operator weights. By their

method, the associated weighting vector is easily obtained by
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lnwj =
j − 1
n − 1

lnwn +
n − j
n − 1

lnw1 ⟹ wj =
n−1
√

wn−j
1 wj−1

n

and

wn =
((n − 1)𝛼 − n)w1 + 1
(n − 1)𝛼 + 1 − nw1

then

w1[(n − 1)𝛼 + 1 − nw1]n = ((n − 1)𝛼)n−1[((n − 1)𝛼 − n)w1 + 1]

where n ≥ 3. For n = 2 then from orness(w1,w2) = 𝛼 the optimal weights are

uniquely defined as w∗
1 = 𝛼 and w∗

2 = 1 − 𝛼. Furthermore, if 𝛼 = 0 or 𝛼 = 1 then the

associated weighting vectors are uniquely defined as (0, 0,… , 0, 1)T and (1, 0,… ,

0, 0)T , respectively.

An interesting question is to determine the minimal variability weighting vector

under given level of orness [48]. The variance of a given weighting vector is com-

puted as follows

D2(W) =
n∑

i=1

1
n
(wi − E(W))2 =

1
n

n∑

i=1
w2

i −
(1

n

n∑

i=1
wi

)2

=
1
n

n∑

i=1
w2

i −
1
n2
.

where E(W) = (w1 +⋯ + wn)∕n = 1∕n stands for the arithmetic mean of weights.

In 2003 Fullér and Majlender [13] suggested a minimum variance method to

obtain the minimal variability OWA operator weights. A set of OWA operator

weights with minimal variability could then be generated. Their approach requires

the solution of the following mathematical programming problem:

minimize D2(W) =
1
n
⋅

n∑

i=1
w2

i −
1
n2

subject to orness(w) =
n∑

i=1

n − i
n − 1

⋅ wi = 𝛼, 0 ≤ 𝛼 ≤ 1, (2)

w1 +⋯ + wn = 1, 0 ≤ wi, i = 1,… , n.

Fullér and Majlender [13] computed the exact minimal variability weighting vec-

tor for any level of orness using the Karush-Kuhn-Tucker second-order sufficiency

conditions for optimality.

Yager [47] considered the problem of maximizing an OWA aggregation of a group

of variables that are interrelated and constrained by a collection of linear inequalities

and he showed how this problem can be modeled as a mixed integer linear program-

ming problem. The constrained OWA aggregation problem [47] can be expressed as

the following mathematical programming problem
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max wTy
subject to Ax ≤ b, x ≥ 0,

where wTy = w1y1 +⋯ + wnyn and yj denotes the jth largest element of the bag

⟨x1,… , xn⟩.
In 2003 Carlsson, Fullér and Majlender [7] showed an algorithm for solving the

(nonlinear) constrained OWA aggregation problem

max wTy; subject to{x1 +⋯ + xn ≤ 1, x ≥ 0}. (3)

where yj denotes the jth largest element of the bag ⟨x1,… , xn⟩.

3 Recent Advances

In this section we will give a short chronological survey of some later works that

extend and develop the maximal entropy, the minimal variability and the constrained

OWA operator weights models. We will mention only those works in which the

authors extended, improved or used the findings of our original papers [7, 12, 13].

In 2004 Liu and Chen [21] introduced the concept of parametric geometric OWA

operator (PGOWA) and a parametric maximum entropy OWA operator (PMEOWA)

and showed the equivalence of parametric geometric OWA operator and parametric

maximum entropy OWA operator weights. Carlsson et al. [8] showed how to evaluate

the quality of elderly care services by OWA operators.

In 2005 Wang and Parkan [39] presented a minimax disparity approach, which

minimizes the maximum disparity between two adjacent weights under a given level

of orness. Their approach was formulated as

minimize max
i=1,2,…,n−1

∣ wi − wi+1 ∣

subject to orness(w) =
n∑

i=1

n − i
n − 1

wi = 𝛼, 0 ≤ 𝛼 ≤ 1,

w1 +⋯ + wn = 1, 0 ≤ wi ≤ 1, i = 1,… , n.

Majlender [32] developed a maximal Rényi entropy method for generating a para-

metric class of OWA operators and the maximal Rényi entropy OWA weights. His

approach was formulated as
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maximize H
𝛽

(w) =
1

1 − 𝛽

log2
n∑

i=1
w𝛽

i

subject to orness(w) =
n∑

i=1

n − i
n − 1

wi = 𝛼, 0 ≤ 𝛼 ≤ 1,

w1 +⋯ + wn = 1, 0 ≤ wi ≤ 1, i = 1,… , n.

where 𝛽 ∈ ℝ and H1(w) = −
∑n

i=1 wi log2 wi. Liu [22] extended the the properties

of OWA operator to the RIM (regular increasing monotone) quantifier which is rep-

resented with a monotone function instead of the OWA weighting vector. He also

introduced a class of parameterized equidifferent RIM quantifier which has mini-

mum variance generating function. This equidifferent RIM quantifier is consistent

with its orness level for any aggregated elements, which can be used to represent the

decision maker’s preference. Troiano and Yager [37] pointed out that OWA weight-

ing vector and the fuzzy quantifiers are strongly related. An intuitive way for shaping

a monotonic quantifier, is by means of the threshold that makes a separation between

the regions of what is satisfactory and what is not. Therefore, the characteristics of a

threshold can be directly related to the OWA weighting vector and to its metrics: the

attitudinal character and the entropy. Usually these two metrics are supposed to be

independent, although some limitations in their value come when they are consid-

ered jointly. They argued that these two metrics are strongly related by the definition

of quantifier threshold, and they showed how they can be used jointly to verify and

validate a quantifier and its threshold.

In 2006 Xu [43] investigated the dependent OWA operators, and developed a new

argument-dependent approach to determining the OWA weights, which can relieve

the influence of unfair arguments on the aggregated results. Zadrozny and Kacprzyk

[54] discussed the use of the Yager’s OWA operators within a flexible querying inter-

face. Their key issue is the adaptation of an OWA operator to the specifics of a user’s

query. They considered some well-known approaches to the manipulation of the

weights vector and proposed a new one that is simple and efficient. They discussed

the tuning (selection of weights) of the OWA operators, and proposed an algorithm

that is effective and efficient in the context of their FQUERY for Access package.

Wang et al. [40] developed the query system of practical hemodialysis database for

a regional hospital in Taiwan, which can help the doctors to make more accurate

decision in hemodialysis. They built the fuzzy membership function of hemodialy-

sis indices based on experts’ interviews. They proposed a fuzzy OWA query method,

and let the decision makers (doctors) just need to change the weights of attributes

dynamical, then the proposed method can revise the weight of each attributes based

on aggregation situation and the system will provide synthetic suggestions to the

decision makers. Chang et al. [10] proposed a dynamic fuzzy OWA model to deal

with problems of group multiple criteria decision making. Their proposed model

can help users to solve MCDM problems under the situation of fuzzy or incomplete

information. Amin and Emrouznejad [6] introduced an extended minimax disparity

model to determine the OWA operator weights as follows,
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minimize 𝛿

subject to orness(w) =
n∑

i=1

n − i
n − 1

wi = 𝛼, 0 ≤ 𝛼 ≤ 1,

wj − wi + 𝛿 ≥ 0, i = 1,… , n − 1, j = i + 1,… , n
wi − wj + 𝛿 ≥ 0, i = 1,… , n − 1, j = i + 1,… , n

w1 +⋯ + wn = 1, 0 ≤ wi ≤ 1, i = 1,… , n.

In this model it is assumed that the deviation |wi − wj| is always equal to 𝛿, i ≠ j.
In 2007 Liu [23] proved that the solutions of the minimum variance OWA oper-

ator problem under given orness level and the minimax disparity problem for OWA

operator are equivalent, both of them have the same form of maximum spread equid-

ifferent OWA operator. He also introduced the concept of maximum spread equid-

ifferent OWA operator and proved its equivalence to the minimum variance OWA

operator. Llamazares [30] proposed determining OWA operator weights regarding

the class of majority rule that one should want to obtain when individuals do not

grade their preferences between the alternatives. Wang et al. [41] introduced two

models determining as equally important OWA operator weights as possible for a

given orness degree. Their models can be written as

minimize J1 =
n−1∑

i=1
(wi − wi+1)2

subject to orness(w) =
n∑

i=1

n − i
n − 1

wi = 𝛼, 0 ≤ 𝛼 ≤ 1,

w1 +⋯ + wn = 1, 0 ≤ wi ≤ 1, i = 1,… , n.

and

minimize J2 =
n−1∑

i=1

( wi

wi+1
−

wi+1

wi

)2

subject to orness(w) =
n∑

i=1

n − i
n − 1

wi = 𝛼, 0 ≤ 𝛼 ≤ 1,

w1 +⋯ + wn = 1, 0 ≤ wi ≤ 1, i = 1,… , n.

Yager [51] used stress functions to obtain OWA operator weights. With this stress

function, a user can “stress” which argument values they want to give more weight in

the aggregation. An important feature of this stress function is that it is only required

to be nonnegative function on the unit interval. This allows a user to completely focus

on the issue of where to put the stress in the aggregation without having to consider

satisfaction of any other requirements.
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In 2008 Liu [24] proposed a general optimization model with strictly convex
objective function to obtain the OWA operator under given orness level,

minimize
n∑

i=1
F(wi)

subject to orness(w) =
n∑

i=1

n − i
n − 1

wi = 𝛼, 0 ≤ 𝛼 ≤ 1,

w1 +⋯ + wn = 1, 0 ≤ wi ≤ 1, i = 1,… , n.

and where F is a strictly convex function on [0, 1], and it is at least two order dif-

ferentiable. His approach includes the maximum entropy (for F(x) = x ln x) and the

minimum variance (for F(x) = x2 problems as special cases. More generally, when

F(x) = x𝛼, 𝛼 > 0 it becomes the OWA problem of Rényi entropy [32], which includes

the maximum entropy and the minimum variance OWA problem as special cases.

Liu also included into this general model the solution methods and the properties

of maximum entropy and minimum variance problems that were studied separately

earlier. The consistent property that the aggregation value for any aggregated set

monotonically increases with the given orness value is still kept, which gives more

alternatives to represent the preference information in the aggregation of decision

making. Then, with the conclusion that the RIM quantifier can be seen as the con-

tinuous case of OWA operator with infinite dimension, Liu [25] further suggested a

general RIM quantifier determination model, and analytically solved it with the opti-

mal control technique. Ahn [2] developed some new quantifier functions for aiding

the quantifier-guided aggregation. They are related to the weighting functions that

show properties such that the weights are strictly ranked and that a value of orness
is constant independently of the number of criteria considered. These new quanti-

fiers show the same properties that the weighting functions do and they can be used

for the quantifier-guided aggregation of a multiple-criteria input. The proposed RIM

and regular decreasing monotone (RDM) quantifiers produce the same orness as the

weighting functions from which each quantifier function originates. the quantifier

orness rapidly converges into the value of orness of the weighting functions hav-

ing a constant value of orness. This result indicates that a quantifier-guided OWA

aggregation will result in a similar aggregate in case the number of criteria is not too

small.

In 2009 Wu et al. [42] used a linear programming model for determining ordered

weighted averaging operator weights with maximal Yager’s entropy [46]. By ana-

lyzing the desirable properties with this measure of entropy, they proposed a novel

approach to determine the weights of the OWA operator. Ahn [3] showed that a

closed form of weights, obtained by the least-squared OWA (LSOWA) method, is

equivalent to the minimax disparity approach solution when a condition ensuring

all positive weights is added into the formulation of minimax disparity approach.

Liu [26] presented some methods of OWA determination with different dimension

instantiations, that is to get an OWA operator series that can be used to the different
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dimensional application cases of the same type. He also showed some OWA deter-

mination methods that can make the elements distributed in monotonic, symmetric

or any function shape cases with different dimensions. Using Yager’s stress function

method [51] he managed to extend an OWA operator to another dimensional case

with the same aggregation properties.

In 2010 Ahn [4] presented a general method for obtaining OWA operator weights

via an extreme point approach. The extreme points are identified by the intersection

of an attitudinal character constraint and a fundamental ordered weight simplex that

is defined as

K = {w ∈ ℝn ∣ w1 + w2 +⋯ + wn = 1,wj ≥ 0, j = 1,… , n}.

The parameterized OWA operator weights, which are located in a convex hull of the

identified extreme points, can then be specifically determined by selecting an appro-

priate parameter. Vergara and Xia [38] proposed a new method to find the weights of

an OWA for uncertain information sources. Given a set of uncertainty data, the pro-

posed method finds the combination of weights that reduces aggregated uncertainty

for a predetermined orness level. Their approach assures best information quality

and precision by reducing uncertainty. Yager [52] introduced a measure of diversity

related to the problem of selecting of selecting n objects from a pool of candidates

lying in q categories.

In 2011 Liu [27] summarizing the main OWA determination methods (the opti-

mization criteria methods, the sample learning methods, the function based methods,

the argument dependent methods and the preference methods) showed some relation-

ships between the methods in the same kind and the relationships between different

kinds. Gong [15] generated minimal disparity OWA operator weights by minimizing

the combination disparity between any two adjacent weights and its expectation. Ahn

[5] showed that the weights generated by the maximum entropy method show equally

compatible performance with the rank order centroid weights under certain condi-

tions. Hong [17] proved a relationship between the minimum-variance and minimax

disparity RIM quantifier problems.

In 2012 Zhou et al. [55] introduced the concept of generalized ordered weighted

logarithmic proportional averaging (GOWLPA) operator and proposed the gener-

alized logarithm chi-square method to obtain GOWLPA operator weights. Zhou et

al. [56] presented new aggregation operator called the generalized ordered weighted

exponential proportional averaging (GOWEPA) operator and introduced the least

exponential squares method to determine GOWEPA operator weights based on its

orness measure. Yari and Chaji [53] used maximum Bayesian entropy method for

determining ordered weighted averaging operator weights. Liu [28] provided analyt-

ical solutions of the maximum entropy and minimum variance problems with given

linear medianness values.

In 2013 Cheng et al. [11] proposed a new time series model, which employs the

ordered weighted averaging operator to fuse high-order data into the aggregated val-

ues of single attributes, a fusion adaptive network-based fuzzy inference system pro-

cedure, for forecasting stock price in Taiwanese stock markets. Luukka and Kurama
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[31] showed how to apply OWA operators to similarity classifier. This newly derived

classifier is examined with four different medical data set. Data sets used in this

experiment were taken from a UCI-Repository of Machine Learning Database. Liu

et al. [29] introduced a new aggregation operator: the induced ordered weighted aver-

aging standardized distance (IOWASD) operator. The IOWASD is an aggregation

operator that includes a parameterized family of standardized distance aggregation

operators in its formulation that ranges from the minimum to the maximum standard-

ized distance. By using the IOWA operator in the VIKOR method, it is possible to

deal with complex attitudinal characters (or complex degrees of orness) of decision

maker and provide a more complete picture of the decision making process.

In 2014 Sang and Liu [36] showed an analytic approach to obtain the least square

deviation OWA operator weights. Kim and Singh [19] outlined an entropy-based

hydrologic alteration assessment of biologically relevant flow regimes using gauged

flow data. The maximum entropy ordered weighted averaging method is used to

aggregate non-commensurable biologically relevant flow regimes to fit an eco-index

such that the harnessed level of the ecosystem is reflected. Kishor et al. [20] intro-

duced orness measures in an axiomatic framework and to propose an alternate defin-

ition of orness that is based on these axioms. The proposed orness measure satisfies

a more generalized set of axioms than Yager’s orness measure.

In 2015 Zhou et al. [57] introduced the generalized least squares method to deter-

mine the generalized ordered weighted logarithmic harmonic averaging (GOWLHA)

operator weights based on its orness measure. Gao et al. [14] proposed a new opera-

tor named as the generalized ordered weighted utility averaging-hyperbolic absolute

risk aversion (GOWUA-HARA) operator and constructed a new optimization model

to determine its optimal weights. Aggarwal [1] presented a method to learn the crite-

ria weights in multi-criteria decision making by applying emerging learning-to-rank

machine learning techniques.

In 2016 Kaur et al. [18] applied minimal variability OWA operator weights to

reduce computational complexity of high dimensional data and ANFIS with the

fuzzy c-means clustering is used to produce understandable rules for investors. They

verified their model through an empirical analysis of the stock data sets, collected

from Bombay stock market to forecast the Bombay Stock Exchange Index. Gong

et al. [16] presented two new disparity models to obtain the associated weights,

which is determined by considering the absolute deviation and relative deviation

of any distinct pairs of weights. Mohammed [33] demonstrated the application of a

Laplace-distribution-based ordered weighted averaging operator to the problem of

breast tumor classification.

In 2017 Reimann et al. [35] performed a large-scale empirical study and test

whether preferences exhibited by subjects can be represented better by the OWA

operator or by a more standard multi-attribute decision model. Chaji [9] presented an

analytic approach to obtain maximal Bayesian entropy OWA weights. His approach

is based on the solution of he following mathematical programming problem,
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maximize W = −
n∑

i=1
wi ln

wi

𝛽i∕min{𝛽1,… , 𝛽n}
= −

n∑

i=1
wi ln

wi

𝛽i
− lnmin{𝛽1,… , 𝛽n}

subject to orness(W) =
n∑

i=1

n − i
n − 1

⋅ wi = 𝛼, 0 ≤ 𝛼 ≤ 1

w1 +⋯ + wn = 1, 0 ≤ wi, i = 1,… , n.

where 𝛽1,… , 𝛽n are given prior OWA weights, such that 𝛽1 +⋯ + 𝛽n = 1,

𝛽i > 0, i = 1,… , n.
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