
Studies in Fuzziness and Soft Computing

Mikael Collan
Janusz Kacprzyk    Editors 

Soft Computing 
Applications for Group 
Decision-making and 
Consensus Modeling



Studies in Fuzziness and Soft Computing

Volume 357

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl



About this Series

The series “Studies in Fuzziness and Soft Computing” contains publications on
various topics in the area of soft computing, which include fuzzy sets, rough sets,
neural networks, evolutionary computation, probabilistic and evidential reasoning,
multi-valued logic, and related fields. The publications within “Studies in Fuzziness
and Soft Computing” are primarily monographs and edited volumes. They cover
significant recent developments in the field, both of a foundational and applicable
character. An important feature of the series is its short publication time and
world-wide distribution. This permits a rapid and broad dissemination of research
results.

More information about this series at http://www.springer.com/series/2941



Mikael Collan ⋅ Janusz Kacprzyk
Editors

Soft Computing Applications
for Group Decision-making
and Consensus Modeling

123



Editors
Mikael Collan
School of Business and Management
Lappeenranta University of Technology
Lappeenranta
Finland

Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
Warsaw
Poland

ISSN 1434-9922 ISSN 1860-0808 (electronic)
Studies in Fuzziness and Soft Computing
ISBN 978-3-319-60206-6 ISBN 978-3-319-60207-3 (eBook)
DOI 10.1007/978-3-319-60207-3

Library of Congress Control Number: 2017943118

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



This volume is dedicated to Prof. Mario
Fedrizzi, Full Professor of the Department of
Industrial Engineering at the University of
Trento, Italy, as a token of appreciation for
his great scientific and scholarly
achievements, long time service to many
communities, notably those of fuzzy logic,
operations research, decision analysis and
sciences, and mathematical economics, to
name a few. This volume is fuelled by the
appreciation for his original thinking and his
novel contributions both, concerning the
theory and the applications in the
above-mentioned fields.
Professor Mario Fedrizzi received the M.Sc.
degree in Mathematics in 1973 from the
University of Padua, Italy, Ph.D. in
Operations Research from the University of
Venice (Cà Foscari) in 1976, and then started
his academic career at the University of
Trento, staying there until his retirement. He
served as Head of the Institute of Informatics
and as Dean of the Faculty of Economics and
Business Administration the University of
Trento from 1985 to 1995, and as the Deputy



Rector of the University of Trento from 2004
to 2008.
His research has focused on utility and risk
theory, group decision-making, fuzzy
decision analysis, consensus modelling, and
on decision support systems under uncertain
and imprecise (fuzzy) information. He has
authored and co-authored numerous books
and edited many volumes. His publication
record is very rich and contains more than
100 papers, which have appeared in many
peer reviewed international journals
exemplified by European Journal of
Operational Research, Fuzzy Sets and
Systems, Decision Support Systems,
Information Fusion, Expert Systems with
Applications, and Mathematical Social
Sciences. He is a member of the editorial
boards of International Journal of Uncertainty
Fuzziness and Knowledge-Based Systems,
Group Decision and Negotiation,
International Journal of General Systems,
Control and Cybernetics, and Applied
Computational Intelligence and Soft
Computing.
More specifically, Prof. Fedrizzi has
developed novel tools and techniques for the
modeling of consensus reaching in a ‘soft’
environment. In other words, when individual
testimonies of experts are expressed as fuzzy
preference relations (often expressed by fuzzy
linguistic quantifiers) and based on the
concept of a degree of consensus (under an
imprecisely specified majority). He has also
worked on extensions of these models to the
dynamic context, with iterative preference
changes and on extensions of the same to the
multi-criteria context.



Furthermore, an important part of his
research, which resulted in a series of original
papers, has been the study of fuzzy adjacency
relations in social network analysis (SNA), in
which the imprecision related to the
relationships between the nodes of a social
network is modelled by using fuzzy binary
adjacency relations and some novel
aggregation operators. This makes it possible
to continuously characterize, on a scale
ranging from non-compensatory to a fully
compensatory, the attitudes of the agents
(actors) towards their mutual cooperation.
The decision-makers, represented by nodes in
a social network, are assigned weights via a
centrality measure that can describe a wide
spectrum of aspects ranging from importance
through influence to leadership.
A very important area of research of Prof.
Fedrizzi has been related to an important
practical problem of fraud detection under
uncertainty. He showed how to use the
Choquet integral to extend the OWA-based
attack-tree approach to fraud detection,
assuming that the attack tree is valuated
recursively through bottom-up algorithms.
This approach has been shown to have a
superior numerical complexity. A noticeable
example in this line of research is a prototype
of a multi-agent system called “Fraud
Interactive Decision Expert System”

(FIDES). FIDES is focused on the evaluation
of behavioral aspects of fraud detection,
according to the judgments expressed by two
groups of experts, inspectors and auditors
respectively. FIDES combines think-maps,
attack-trees and fuzzy numbers, within a
Delphi-type environment, to provide the users



with a “human-consistent” tool for better
understanding and managing fraud schemes.
This short account of main accomplishments
of Prof. Fedrizzi should be completed with
the mention of his very important, from
theoretical and practical points of view, works
on the valuation of giga-investment projects,
i.e., projects that require very large amounts
of capital and human resources that can bring
about big gains, but also create big losses. By
employing elements and methods of group
decision support, multi-criteria
decision-making, and risk analysis in the soft
environment qualitatively new results have
been obtained.
In addition to prominent positions at the
University of Trento, Prof. Fedrizzi has held
visiting professorship positions at the
Lappeenranta University of Technology in
Lappeenranta, Finland, Åbo Akademi
University in Turku, Finland, Auckland
University of Technology in Auckland, New
Zealand, University of Granada in Granada,
Spain, Eötvös Lorand University in Budapest,
Hungary, and the System Research Institute,
Polish Academy of Sciences in Warsaw,
Poland. Prof. Fedrizzi has been for years a
member of the International Advisory Board
of KEDRI at the Auckland University of
Technology in New Zealand, and of the
Systems Research Institute, Polish Academy
of Sciences in Warsaw, Poland.
He has also been involved in consulting
activities in the areas of information systems
and decision support systems, quality control,
project management, and e-learning.
In addition to his academic career, he has also
held various prestigious positions in business,



notably from 1995 to 2006 he served as the
Chairman of Board of Directors of an
important regional bank in Trentino Alto
Adige and subsequently in the board of one
of the largest European banking groups. This
experience has clearly had a deep impact on
his research work, which had always been a
synergistic combination of a high level theory
and a feel of what is relevant and necessary in
practice.
It is clear that this volume, meant to be a
token of appreciation for Prof. Fedrizzi by our
entire community, is modest in comparison
with his achievements in terms of providing
inspiration and important research results, but
especially in terms of loyal friendship. We are
honored to have had the opportunity to
prepare this volume.

Spring 2017 Mikael Collan
Janusz Kacprzyk



Foreword

It gives me great pleasure to write the foreword to this book dedicated to Prof.
Mario Fedrizzi. Besides being an esteemed colleague, Mario is a good friend to me.

I met Mario in Trento in 1992, at the Workshop on Current Issues on Fuzzy
Technologies (CIFT), which Mario had launched as an intersection point of the
Italian and international research communities in fuzzy logic and technologies. At
that time I was starting to get close to the fuzzy community, and I was positively
surprised by the friendly and collaborative atmosphere, as well as by the perceived
enthusiasm of collaborating and contributing to knowledge development. One
of the positive consequences of that meeting was the beginning of a scientific
collaboration with Mario, which has produced various contributions in the field of
group decision-making. Another important outcome was meeting several excellent
colleagues, many of whom are contributing to this book.

This volume is unique in many respects. In the first place it witnesses the esteem
and friendship for Mario of the international fuzzy community. Mario has been
contributing to the field of fuzzy decision-making for many years, and he has
collaborated with several reputed scientists worldwide.

Second, it constitutes a collection of important contributions that brings various
perspectives in the field of group decision-making and consensus reaching.

The beauty of research is not only in the opportunity it gives to contribute to
advancement of knowledge; it is also in the opportunity it gives to grow on a
personal side, to be enriched by invaluable human relations.

Spring 2017 Gabriella Pasi
President, European Society for Fuzzy Logic

and Technology (EUSFLAT)
Milan, Italy
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Preface

This volume is dedicated to Prof. Mario Fedrizzi, Full Professor at the Department
of Industrial Engineering at the University of Trento, Italy, as a token of appreci-
ation for his scientific and scholarly achievements, and his long time service to
many communities, notably those of fuzzy logic, operations research, decision
analysis and sciences, and mathematical economics. The topic of this volume,
chosen after a long deliberation, is related to the areas in which Prof. Fedrizzi has
been active for some decades and has obtained valuable results, that is, group
decision-making and consensus reaching.

Of course, since these areas are vast and involve aspects that range over an
extremely wide spectrum of fields exemplified by psychology, and social and
political sciences, decision analysis and decision sciences, data analysis and data
mining, computational sciences, artificial and computational intelligence, systems
research, just to name a few, the selected contributions cover a range of them. The
purpose has been that of providing a bird’s view account of some novel directions
in the broadly perceived area of group decision-making and consensus modeling.
We are glad to note that many well-known researchers and scholars have very
positively responded to our initiative to publish this volume and contributed with
their latest work.

The volume starts with some philosophical and foundational considerations, then
presents some more general economic considerations, before going forward to a the
presentation of some promising models for the analysis of data and
decision-making processes. The contributions in the volume have collected inspi-
ration from previous research from fields such as social and political sciences,
systems modeling, optimization under imprecise (fuzzy) data, artificial and com-
putational intelligence, and naturally consensus reaching modeling and the results
are not only conceptual or theoretical, but include also a high real-world imple-
mentation potential.

We will now provide a short summary of the contributions to help the interested
reader more easily navigate the volume:

Part I contains a selection of more general papers on issues broadly related to
social and economic aspects.
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Vladik Kreinovich and Thongchai Dumrongpokaphoan consider in their paper
“Optimal Group Decision Making Criterion and How it can Help to Decrease
Poverty, Inequality, and Discrimination” the traditional approach to group
decision-making in economics, in which the goal is to maximize the Gross
Domestic Product (GDP), while hoping that the increased wealth will be equally
distributed across the society. Though this may, at least theoretically, sometimes
happen the reality is usually different in that in spite of an increase in the GDP,
much inequality remains, as some (often most) people remain poor, some social
groups continue to face economic discrimination, and so forth. The contribution
indicates that the maximization of the overall gain may not always be the best
criterion in group decision-making connected to social issues. The authors propose
a group decision-making criterion, which is in a specific sense optimal and show
that by using this optimality criterion one can attain a solution that can indeed help
to decrease poverty, inequality, and discrimination.

In his paper “An Overview and Re-Interpretation of Paradoxes of Responsive-
ness” Hannu Nurmi provides a comprehensive discussion and a desiderata of
democratic decision-making, including the “notion” that the political outcomes
(policies, elected persons, legislation) should be responsive to popular opinions. In
representative forms of governance, this responsiveness is however not expected to
pertain to every single outcome, but the very idea of going “to the people” seems to
presuppose some degree of responsiveness. In social choice theory, several notions
that aim to capture aspects of responsiveness have been introduced and related to
other desiderata of social choice, and those which are more relevant are discussed
from the point of view of their relevance in democratic decision-making. The author
then considers the paradoxes related to non-responsiveness from a novel point of
view in that he tries to determine their significance for multiple-criteria
decision-making (MCDM). It turns out that the use of some methods of aggre-
gating the performance criteria of policy alternatives can be ruled out, because
of their strange and unacceptable behavior in some decision settings.

Jacek Mercik in “Veto in Yes-no and Yes-no-abstain Voting Systems” is con-
cerned, from a theoretical point of view, with a transformation from simple
“yes-no” cooperative games to simple cooperative games in which players have
more than two actions available to them by introducing abstentions into the yes-no
voting system. The results obtained so far in this respect have rather been pes-
simistic exemplified by Felsenthal and Machover (2013) who even call them
“the curious case of the absent abstention”. The author discusses the relation
between the right of veto, weights of the players and quotas. The results obtained
clarify some general properties and make an a priori analysis possible to gain a
better understanding of the decision-making mechanism of such decisive bodies.
An example of the United Nations Security Council is used to illustrate the
discussion.

In “Power Indices for Finance” Cesarino Bertini, Gianfranco Gambarelli,
Izabella Stach, and Maurizio Zola consider the use of power indices for the
determination of the weight of the share stock of a company to quantify the pos-
sibility for each shareholder to get majority positions by coalitions with other
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shareholders. They indicate the potential of this approach, for building effective and
efficient models for forecasting, simulation, and regulation in many financial,
political, and economic fields.

Silvia Bortot, Ricardo Alberto Marques Pereira and Anastasia Stamatopoulou
(“The Binomial Decomposition of the Single Parameter Family of GB Welfare
Functions”) consider the binomial decomposition of the generalized Gini welfare
functions in terms of the binomial welfare functions and examine the weighting
structure of the binomial welfare functions which progressively focus on the
poorest part of the population. A parametric family of income distributions is dealt
with and the numerical behavior of the single parameter family of GB welfare
functions with respect to those income distributions. The binomial decomposition
of the GB welfare functions is considered and the dependence of the binomial
decomposition coefficients is analyzed in relation to a single parameter which
describes the family.

Part II encompasses some papers on formal foundations related to logics and
mathematics.

In the paper “The Logic of Information and Processes in System-of-Systems
Applications”, P. Eklund, M. Johansson and J. Kortelainen propose a new logic and
an approach to many-valuedness, which can make it possible to describe underlying
logical structures of information as represented in industrial processes, and as a part
of their respective markets. The authors emphasize the importance of introducing
classification structures in order to devise tools and techniques for the management
of information granularity within, and across subsystems in the system-of-systems
(SoS) context. The proposal of the logic of information and process is a main
contribution of this paper, and the authors’ focus on the system-of-systems concept
proceeds within the field of energy. In their process view, they look closer into the
power market with all its stakeholders, exemplified by those related to renewable
energy. Supply, demand, and pricing models are shown to be subjected to logical
analyses. The authors show how information and information structures are inte-
grated into processes and their structures. The Business Process Modeling Notation
(BPMN) paradigm is adopted for the modeling.

Sarka Hoskova-Mayerova and Antonio Maturo (“Decision-making Process
Using Hyperstructures and Fuzzy Structures in Social Sciences”) consider alge-
braic hyper-structures, which is an interesting field of algebra and important, both
from the theoretical and the applications point of view. The authors show that a
hyper-groupoid structure can be associated with any social relationship. These
hyper-groupoids become hyper-groups under some conditions, exemplified by a
condition concerning outer individuals. By way of analysis one can establish, in a
natural way, when social relationships become optimal. Relations between people
are a crucial topic in the social sciences and are usually described by linguistic
propositions. Obviously, the binary context is not always sufficient and often a
correct and complete modeling of such relations can only be obtained, if a degree
of the strength of a relation is used. Assuming such a context, the authors discuss
various decision-making problems and their solutions.
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Antonio Di Nola, Massimo Squillante, and Gaetano Vitale (“Social Preferences
Through Riesz Spaces: A First Approach”) propose to employ the Riesz spaces as
general framework to be used in the context of pairwise comparison matrices to
deal with definable properties, real situations, and the aggregation of preferences.
Some significant examples are presented to describe how properties of the Riesz
spaces can be used to express preferences. It is shown that the Riesz spaces make it
possible to combine advantages of many approaches. The authors also provide a
characterization of collective choice-rules, which satisfy some classic criteria
assumed in the social choice theory. They also propose an abstract approach to
social welfare functions.

In their paper “Coherent Conditional Plausibility: A Tool for Handling Fuzziness
and Uncertainty Under Partial Information” Giulianella Coletti and Barbara Van-
taggi consider some important issues related to non-additive measures. These may
be a powerful tool for the analysis of problems, when only a partial, or indirect,
information about the events of interest is available, or when imprecision and
ambiguity of agents is considered. The authors focus their attention on one
non-additive measure—the plausibility measure. They mainly study inferential
processes, where information is expressed in natural language and the uncertainty
measure is either partially or imprecisely evaluated.

The cases considered are such, where partial assessments are consistent with a
conditional plausibility, and it is assumed that the interpretation of the membership
function of a fuzzy set, in terms of coherent conditional plausibility, is regarded as a
function of the conditioning event. This kind of interpretation is particularly useful
for computing the measure of uncertainty of a fuzzy event, when knowledge about a
variable is imprecise and can be managed via a non-additive measure of uncer-
tainty. A simple situation related to a Zadeh’s example can be the following: a ball
will be drawn from an urn containing balls of different colors and different diam-
eters, but one knows only the distribution of the different colors. The purpose is to
compute the uncertainty measure of the fuzzy event “a small ball is drawn” taking
into consideration the possible logical constraints among the particular colors and
the ball diameter—a new method is proposed.

Krassimir T. Atanassov, Vassia Atanassova, Eulalia Szmidt, and Janusz
Kacprzyk (“Intuitionistic Fuzzy Interpretations of Some Formulas for Estimation of
Preference Degree”) propose a new interpretation of a degree of preference, using
some concepts, tools, and techniques of the theory of Atanassov’s intutionistic
fuzzy sets. Then, this interpretation is used for the derivation of a degree of con-
sensus in a group of agents following the approach of Fedrizzi et al. and Peneva and
Popchev.

Part III is concerned with various aspects of judgments and aggregation, taking
into account both human-related and formal aspects.

Jan Stoklasa, Tomàš Talàšek, and Pasi Luukka (“Fuzzified Likert Scales in
Group Multiple-criteria Evaluation”) discuss Likert scales, which are widely used
for the representation of attitudes in many fields of social science. The authors
consider their use in multiple-criteria multi-expert evaluations. They propose a
methodology that deals with the non-uniformity of the distribution of linguistic
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labels along the evaluation universe and also with a possible response bias (central
tendency and extreme-response tendency). The methodology represents the
Likert-type evaluations of an alternative, with respect to various criteria using
histograms. The histograms are used in the process of aggregation of information,
because the underlying evaluation scale is ordinal. A transformation of the
multi-expert multiple-criteria evaluation represented by a histogram into a 3-bin
histogram to control for the response bias is performed, and an ideal-evaluation
3-bin histogram is defined. The authors propose a distance-measure to assess the
closeness of the overall evaluation to the ideal, and suggest the use of its values
interpretation/evaluation fuzzy rules. Some examples showing the effectiveness and
efficiency of the proposed approach are presented.

Robert Fullér and Christer Carlsson (“Maximal Entropy and Minimal Variability
OWA Operator Weights: A Short Survey of Recent Developments”) consider a
very important problem of weights of the ordered weighted averaging (OWA) op-
erator. First, a comprehensive and critical analysis of the existing approaches is
given. The chapter starts with the early approach by O’Hagan, who proposed to
determine a special class of the OWA operators having the maximum entropy of the
OWA weights for a given level of the degree of orness, which boiled down to the
solution of a constrained optimization problem. Then, Fullér and Majlender pro-
posed the use of the method of Lagrange multipliers that boiled down to the
analytical solution of a constrained optimization problem, which gave the optimal
weighting vector. Then, the same authors computed the exact minimal variability
weighting vector for any level of orness, using the Karush-Kuhn-Tucker
second-order sufficiency conditions for optimality. The problem of maximizing
an OWA aggregation of a group of variables that are interrelated and constrained by
a collection of linear inequalities was first considered by Yager in 1996, where he
showed how this problem can be represented by the solution of a mixed integer
linear programming problem. Then, Carlsson, Fullér, and Majlender derived an
algorithm for solving the constrained OWA aggregation problem under a simple
linear constraint that the sum of the variables is less than, or equal, to one. After the
above pioneering works, many other approaches have been proposed. The purpose
of this paper is to present a survey and analysis of these works essence and
properties.

József Mezei and Matteo Brunelli (“A Closer Look at the Relation Between
Orness and Entropy of OWA Function”) discuss some important problems related
to the ordered weighted averaging (OWA) functions that have been extensively
used to model the problem of choice and consensus in the presence of multiple
experts and decision-makers. Since each OWA operator is associated with a weight
vector, a critical problem that has been studied for years and by many authors has
focused on the determination of the weight vector. In this paper, the authors con-
sider the degree of orness and entropy, two characterizing measures of the priority
vectors, and they study their interplay from a graphical point of view.

Michele Fedrizzi and Silvio Giove (“Rank Reversal in the AHP with Consistent
Judgements: A Numerical Study in Single and Group Decision Making”) analyze,
by using numerical simulations, the influence of some relevant factors on the
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well-known rank reversal (RR) phenomenon in Saaty’s Analytic Hierarchy Process
(AHP). The authors consider both the case of a single decision maker and of a
group of decision-makers. Their idea is to concentrate on a condition, which pre-
serves RR and on how to relax it step-by-step. First, they study how the estimated
probability of RR depends on the distribution of the criteria weights and more
precisely on the entropy of this distribution. Entropy is relevant since it is known
that RR does not occur in the zero entropy case of weight concentration. The
authors show an interesting “increasing behaviour” of the estimated RR probability
as a function of the entropy of weights. Additionally, the chapter focuses on the
aggregation of local weight vectors and on a more general aggregation rule, based
on the weighted power mean, for which the weighted geometric mean and the
weighted arithmetic mean are particular cases. Finally, the authors repeat their
analysis for the case of a group decision-making problem and observe that
the estimated probability of RR decreases by the aggregation of preferences of the
decision-makers, suggesting an inverse relationship between consensus and rank
reversal, under the assumption that all judgements are totally consistent.

In “Estimating One-Off Operational Risk Events with the Lossless Fuzzy
Weighted Average Method” Pasi Luukka, Mikael Collan, Fai Tam, and Yuri
Lawryshyn consider the problem of determining an estimate for the size of possible
one-off negative operational events. The problem is very important for banks, who
are required by the Basel II Accord to report these risks. The typical way to produce
these estimates is to use a quantitative value-at-risk methodology that is based on
limited data. This is interesting, because also the use of qualitative expert
estimate-based methodologies is allowed by the regulations. The final estimations
are typically obtained by fusing the input from multiple experts. The authors pro-
pose a new approach that is based on the author’s original idea of a new lossless
fuzzy weighted averaging. They show how to use this method for the problem
considered and why it is a good tool for the aggregation of expert estimates in the
context of bank risk management. The method proposed is simple to use, intuitive
to understand, and does not suffer from the loss of information associated with the
use of many other weighted averaging methods.

The paper “Fuzzy Signature Based Methods for Modelling the Structural
Condition of Residential Buildings” by Ádám Bukovics, István Á. Harmati and
László T. Kóczy deals with some issues related to a very important problem of the
conservation, extension, or renovation of residential buildings. The focus is on the
proper use of available financial resources and it is shown that an incorrect
assessment of the scope and extent of renovation or reconstruction needs may cause
a considerable financial loss. The authors present, through a survey of a real stock
of buildings, an analysis of what kind of examinations and research should precede
the quantitative decision support stage of renovation decisions. The authors intro-
duce three fuzzy signature based methods, which are shown to be suitable for
determining the condition of a bigger stock of buildings and for ranking them.
These methods are suitable for the aggregation of expert evaluations of different
detail and depth. Finally, the authors consider a very relevant issue of the sensitivity
analysis of the method and present results of some computational examples.
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Ronald R. Yager (“Retrieval from Uncertain Data Bases”) investigates tools that
can enrich the process of querying databases. He shows how to include soft con-
ditions with the use of fuzzy sets and describes some techniques for aggregating the
satisfaction of the individual conditions, based on the inclusion of importance and
the use of the OWA operator. The author discusses a method for aggregating the
individual satisfactions that can model a lexicographic relation between the indi-
vidual requirements. Finally, the author looks at querying databases, in which the
information can exhibit some probabilistic uncertainty.

Part IV includes chapters on various issues related to decision-making and
optimization in various settings and under various kinds of imperfect information.

José Luis García-Lapresta and Raquel González del Pozo (“An Ordinal
Multi-criteria Decision-making Procedure in the Context of Uniform Qualitative
Scales”) propose a multi-criteria decision-making procedure for the purely ordinal
context, in which agents evaluate the alternatives regarding several criteria by
assigning one, or two, consecutive terms of a uniform ordered qualitative scale to
each alternative in each criterion. The weights assigned to criteria are dealt with by
replications of the corresponding ratings and alternatives are ranked according to
the medians of their ratings, after the replications. The new method and its prop-
erties are discussed and illustrated with examples.

In “FRIM—Fuzzy Reference Ideal Method in Multicriteria Decision Making”
E. Cables, M.T. Lamata, and J.L. Verdegay consider TOPSIS, one of numerous
compensatory multi-criteria decision methods, because of its rationality, intuitive
appeal, and easy applicability. This method is based on the concept of scoring
alternatives based on their distance to a positive ideal-solution (shorter the better)
and simultaneously on their distance to a negative ideal-solution (longer the better).
Based on this idea, the Reference Ideal Method (RIM), proposed by the authors, can
be considered as an extension of the TOPSIS method, while considering that the
ideal solution does not have to be the maximum or the minimum value, but may be
a value in-between these. The RIM method yields good solutions, but does not
always obtain a solution in the case of using fuzzy numbers. An extension of the
RIM is proposed in the paper for making it possible to deal with vagueness and
uncertainty, resulting in the Fuzzy Reference Ideal Method (FRIM). Its applicability
is shown with practical examples.

In their paper “A new approach for solving CCR data envelopment analysis
model under uncertainty” Bindu Bhardwaj, Jagdeep Kaur, and Amit Kumar criti-
cally analyze Wang and Chin’s approach to the optimistic and pessimistic fuzzy
CCR data envelopment analysis (DEA) model, and—after pointing out some if its
deficiencies—propose a novel approach that makes it possible to alleviate the
observed deficiencies. Moreover, they also propose a new approach to solve the
proposed fuzzy CCR DEA models for evaluating the relative geometric efficiency
of decision-making units (DMUs).

Then, in the paper “A New Fuzzy CCR Data Envelopment Analysis Model and
Its Application to Manufacturing Enterprises” Bindu Bhardwaj, Jagdeep Kaur and
Amit Kumar consider the problem of fuzzy data envelopment analysis based on
fuzzy arithmetic with an application to the performance assessment of
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manufacturing enterprises in which the solution is obtained by solving a fuzzy
fractional programming problem transformed into a fuzzy linear programming
problem as proposed by Wang et al. The authors first show some of the original
approach, and propose a new approach to overcome this flaw. Them they present
the application a real life planning problem in a manufacturing company.

Part V cover various aspects, approaches, tools and techniques, and algorithms
that are relevant for various problems in a large area of multi-person
decision-making and consensus reaching.

Francisco Javier Cabrerizo, Francisco Chiclana, Ignacio Javier Pérez, Francisco
Mata, Sergio Alonso, and Enrique Herrera-Viedma propose in their paper
“A Feedback Mechanism Based on Granular Computing to Improve Consensus in
GDM” consider a very important problem of group decision-making, the essence of
which is to obtain the best solution to a particular problem according to opinions
(testimonies) given by a set of decision-makers, or—more generally—of some
agents. Usually, this process proceeds better, when the group is at an agreement, or
at consensus. An important issue is the level of consensus achieved among the
decision-makers before making a decision. This may be supported by different
feedback mechanisms, which can help the decision-makers reach the highest pos-
sible degree of consensus, many such mechanisms have been proposed in the
previous literature. In this work, the authors present a new feedback mechanism that
is based on granular computing and an effective and efficient framework of
designing, processing, and interpretation of information granules, to improve
(the degree of) consensus in group decision-making problems. The approach pro-
posed provides flexibility required to improve the level of consensus within the
group of decision-makers.

In their paper “A Method for the Team Selection Problem Between Two
Decision-Makers Using the Ant Colony Optimization”Marilyn Bello, Rafael Bello,
Ann Nowé, and María M. García-Lorenzo consider the problem of team selection,
which consists of how to perform a personnel selection process to form some
collaborating and cooperating teams according to some preferences. This is a
clearly important in the field of human resources. This type of selection process
usually proceeds by the ranking of candidates based on preferences of
decision-makers and by then allowing the decision-makers to select a specific
candidate, or candidates. This simple process may be viewed as unfair, because it
often leads to an unfair allocation of candidates to different teams, i.e., the quality
of the teams formed may not follow the rankings articulated by the decision-
makers. A new approach to the team selection problem is proposed, in which two
employers form their teams by selecting their members from a set of candidates that
is common to both and then each decision maker reveals his or her personal ranking
of those candidates. The method proposed is shown to lead to teams of a high
quality, according to the valuations of each of the decision-makers, and also to a
(more) fair composition of teams. The Ant-Colony Optimization meta-heuristic is
employed and its effectiveness and efficiency is shown on some quite large
examples.
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Mingwei Lin and Zeshui Xu (“Probabilistic Linguistic Distance Measures and
Their Applications in Multi-Criteria Group Decision Making”) consider a new and
interesting topic of probabilistic linguistic term sets, which can express not only the
decision-makers’ several possible linguistic assessment values, but also the weight
of each linguistic assessment value. The authors advocate the use of the proba-
bilistic linguistic term sets in various fields, specifically they focus on the distance
measures for the probabilistic linguistic term sets and their applications in
multi-criteria group decision-making. They first define the distance between two
elements of the probabilistic linguistic term set. A variety of distance measures are
proposed to calculate the distance between two probabilistic linguistic term sets.
Then, these distance measures are further extended to compute the distance between
two collections of probabilistic linguistic term sets, by considering the weight
information of each criterion. Finally, the concept of the satisfaction degree of an
alternative is proposed and used to rank the alternatives in multi-criteria group
decision-making. A real-world example is given to show the use of these distance
measures and to compare the probabilistic linguistic term sets with hesitant fuzzy
linguistic term sets.

Antonio Maturo and Aldo G.S. Ventre (“Fuzzy Numbers and Consensus”)
consider a frequently encountered case in multi-group decision and consensus
reaching processes, when in a group of decision-makers there is a considerable
variability in the scores that they assign to given alternatives. The authors propose
to represent this variability with fuzzy numbers and then present an algorithm for
reaching a consensus in the setting assumed, i.e., based on fuzzy numbers, preorder
and order relations in the sets of fuzzy numbers, and on a procedure to decrease the
spreads resulting from operations on fuzzy numbers.

Janusz Kacprzyk and Sławomir Zadrożny (“Reaching Consensus in a Group of
Agents: Supporting a Moderator Run Process via Linguistic Summaries”) present
an account and a critical analysis of works on consensus reaching processes driven
by a moderator, a “super-agent” who is in charge of running the process in an
effective and efficient way. The authors assume the classic approach to the evalu-
ation of the degree of consensus of Kacprzyk and Fedrizzi, in which a soft degree of
consensus is a degree, in which, e.g., “most of the important individuals agree on
with regards to almost all of the relevant options”, with the fuzzy “most” majority
assumed to be a fuzzy linguistic quantifier, as proposed by Kacprzyk. Typically,
this kind of situations are handled via Zadeh’s classic calculus of linguistically
quantified propositions, or by some other method, notably Yager’s OWA (ordered
weighted average) operators.

Additional information, which can be very useful to the moderator and the
agents, is provided by a novel combination of using a soft degree of consensus
alone within a decision support system setting and the linguistic data summaries in
Yager’s sense, in particular, in its protoform-based version proposed by Kacprzyk
and Zadrożny. They are intended to indicate, in a natural language, some interesting
relations between individuals and options to help the moderator identify crucial
(pairs of) individuals and/options, which pose some threats to the reaching of
(a sufficient degree of) consensus. The use of a so-called action rule that in the
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context of the chapter means “to find best concessions to be offered to the
individuals for changing their preferences to increase the degree of consensus” is
employed. New results on the use of the concepts of a consensory and dissensory
agents are also presented.

In “Consensus in Multiperson Decision Making Using Fuzzy Coalitions”
Fabrizio Maturo and Viviana Ventre consider the problem of group decisions, in
which the decision-makers have different opinions or interests. The authors propose
various metric spaces for the representation of movements of decision-makers for
reaching a consensus. They also introduce the concept of a fuzzy coalition for
developing an algorithm for building a feasible fuzzy coalition, defined as the union
of winning maximum coalitions that solve the issue of consensus among
decision-makers.

We would like to express our gratitude to all the authors for their interesting,
novel, and inspiring contributions. Peer-reviewers also deserve a deep appreciation,
because their insightful and constructive remarks and suggestions have consider-
ably improved many contributions.

And last but not least, we wish to thank Dr. Tom Ditzinger, Dr. Leontina di
Cecco, and Mr. Holger Schaepe for their dedication and help to implement and
finish this large publication project on time maintaining the highest publication
standards.

Lappeenranta, Finland Mikael Collan
Warsaw, Poland Janusz Kacprzyk
Spring 2017

xxii Preface



Contents

Part I General Human and Economic Aspects

Optimal Group Decision Making Criterion and How
It Can Help to Decrease Poverty, Inequality, and Discrimination . . . . . . 3
Vladik Kreinovich and Thongchai Dumrongpokaphan

An Overview and Re-interpretation of Paradoxes
of Responsiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Hannu Nurmi

Veto in Yes-no and Yes-no-Abstain Voting Systems. . . . . . . . . . . . . . . . . 33
Jacek Mercik

Power Indices for Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Cesarino Bertini, Gianfranco Gambarelli, Izabella Stach and Maurizio Zola

The Binomial Decomposition of the Single Parameter Family
of GB Welfare Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Silvia Bortot, Ricardo Alberto Marques Pereira
and Anastasia Stamatopoulou

Part II General Formal Foundations

The Logic of Information and Processes in System-of-Systems
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
P. Eklund, M. Johansson and J. Kortelainen

Decision-making Process Using Hyperstructures and Fuzzy Structures
in Social Sciences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Sarka Hoskova-Mayerova and Antonio Maturo

Social Preferences Through Riesz Spaces: A First Approach . . . . . . . . . 113
Antonio Di Nola, Massimo Squillante and Gaetano Vitale

xxiii



Coherent Conditional Plausibility: A Tool for Handling Fuzziness
and Uncertainty Under Partial Information . . . . . . . . . . . . . . . . . . . . . . . 129
Giulianella Coletti and Barbara Vantaggi

Intuitionistic Fuzzy Interpretations of Some Formulas
for Estimation of Preference Degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Krassimir T. Atanassov, Vassia Atanassova, Eulalia Szmidt
and Janusz Kacprzyk

Part III Judgments and Aggregation

Fuzzified Likert Scales in Group Multiple-Criteria Evaluation . . . . . . . . 165
Jan Stoklasa, Tomáš Talášek and Pasi Luukka

Maximal Entropy and Minimal Variability OWA Operator Weights:
A Short Survey of Recent Developments . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Christer Carlsson and Robert Fullér

A Closer Look at the Relation Between Orness and Entropy
of OWA Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
József Mezei and Matteo Brunelli

Rank Reversal in the AHP with Consistent Judgements:
A Numerical Study in Single and Group Decision Making . . . . . . . . . . . 213
Michele Fedrizzi, Silvio Giove and Nicolas Predella

Estimating One-Off Operational Risk Events
with the Lossless Fuzzy Weighted Average Method . . . . . . . . . . . . . . . . . 227
Pasi Luukka, Mikael Collan, Fai Tam and Yuri Lawryshyn

Fuzzy Signature Based Methods for Modelling the Structural
Condition of Residential Buildings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Ádám Bukovics, István Á. Harmati and László T. Kóczy

Retrieval from Uncertain Data Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Ronald R. Yager

Part IV Decision Making and Optimization

An Ordinal Multi-criteria Decision-Making Procedure
in the Context of Uniform Qualitative Scales . . . . . . . . . . . . . . . . . . . . . . 297
José Luis García-Lapresta and Raquel González del Pozo

FRIM—Fuzzy Reference Ideal Method in Multicriteria Decision
Making. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
E. Cables, M.T. Lamata and J.L. Verdegay

A New Approach for Solving CCR Data Envelopment Analysis
Model Under Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Bindu Bhardwaj, Jagdeep Kaur and Amit Kumar

xxiv Contents



A New Fuzzy CCR Data Envelopment Analysis Model
and Its Application to Manufacturing Enterprises . . . . . . . . . . . . . . . . . . 345
Bindu Bhardwaj, Jagdeep Kaur and Amit Kumar

Part V Multiperson Decision Making and Consensus Reaching

A Feedback Mechanism Based on Granular Computing
to Improve Consensus in GDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Francisco Javier Cabrerizo, Francisco Chiclana, Ignacio Javier Pérez,
Francisco Mata, Sergio Alonso and Enrique Herrera-Viedma

A Method for the Team Selection Problem Between Two
Decision-Makers Using the Ant Colony Optimization . . . . . . . . . . . . . . . 391
Marilyn Bello, Rafael Bello, Ann Nowé and María M. García-Lorenzo

Probabilistic Linguistic Distance Measures and Their Applications
in Multi-criteria Group Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . 411
Mingwei Lin and Zeshui Xu

Fuzzy Numbers and Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
Antonio Maturo and Aldo G.S. Ventre

Consensus in Multiperson Decision Making Using Fuzzy Coalitions. . . .. . . . 451
Fabrizio Maturo and Viviana Ventre

Reaching Consensus in a Group of Agents: Supporting
a Moderator Run Process via Linguistic Summaries . . . . . . . . . . . . . . . . 465
Janusz Kacprzyk and Sławomir Zadrożny

Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Contents xxv



Part I
General Human and Economic Aspects



Optimal Group Decision Making Criterion
and How It Can Help to Decrease Poverty,
Inequality, and Discrimination

Vladik Kreinovich and Thongchai Dumrongpokaphan

Abstract Traditional approach to group decision making in economics is to

maximize the GDP, i.e., the overall gain. The hope behind this approach is that the

increased wealth will trickle down to everyone. Sometimes, this happens, but often,

in spite of an increase in overall GDP, inequality remains: some people remain poor,

some groups continue to face economic discrimination, etc. This shows that maxi-

mizing the overall gain is probably not always the best criterion in group decision

making. In this chapter, we find a group decision making criterion which is optimal

(in some reasonable sense), and we show that using this optimal criterion can indeed

help to decrease poverty, inequality, and discrimination.

1 Traditional Group Decision Making in Economics
And Its Limitations: Formulation of the Problem

Traditional approach to group decision making in economics. Traditional

approach to group decision making in economics is to maximize the Gross Domestic

Product (GDP), i.e., to maximize the overall gain

n∑

i=1
gi, where gi is the gain of the

i-th person.

The hope behind this approach. The hope behind the traditional approach is that

the rising tide will lift all the boats, that the increased overall wealth will trickle down

to everyone.
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The reality does not not always follow this optimistic vision. Sometimes, the over-

all increase in wealth indeed increases everyone’s income. However, often, in spite

of an increase in overall GDP, inequality remains:

∙ some people remain poor,

∙ some groups continue to face economic discrimination, etc.

What can we conclude from this fact? The fact that maximizing the overall gain

does not always lead to good consequences for everyone indicates that maximizing

GDP is probably not always the best criterion in group decision making.

What we do in this paper. To improve the situation, let us try to find a better crite-

rion for group decision making.

To come up with such a better criterion, we formulate the problem of selecting a

criterion for group decision making as an optimization problem. We then solve this

optimization problem, and we show that the resulting optimal group decision making

criterion can indeed help in decreasing poverty, inequality, and discrimination.

2 Individual Decision Making: A Brief Reminder

Need to consider individual decision making. In other to properly describe group

decision making, it is necessary to first describe individual decision making.

Main assumptions behind the traditional decision theory. In this section, we will

briefly describe the traditional decision theory; see, e.g., [1, 6, 9]. The main assump-

tions behind the traditional decision theory are as follows.

The first assumption is that for every two alternatives a and b:

∙ a person either prefers a (we will denote it by a ≻ b),

∙ or prefers b (b ≻ a),

∙ or for this person, alternatives a and b are of equal value (we will denote it

by a ∼ b).

The second assumption is that the person is rational, in the sense that this person’s

preferences are consistent:

∙ if a ≻ b and b ≻ c, then a ≻ c;

∙ if a ∼ b and b ∼ c, then a ∼ c;

∙ if a ≻ b and b ∼ c, then a ≻ c; and

∙ if a ∼ b and b ≻ c, then a ≻ c.

The main concept of the traditional decision theory: the notion of utility. Under

the above assumptions, we can use the following idea to numerically describe the

value of each alternative to a person. We select two alternatives:

∙ we select a very bad alternative a0, which is much worse than anything that will

be really proposed, and
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∙ we select a very good alternative a1, which is much better than anything that will

be really proposed.

Then, for every real number p from the interval [0, 1], we can form a lottery L(p) in

which we get a1 with probability p and a0 with the remaining probability 1 − p. The

larger p, the better the lottery: if p < p′, then L(p) ≺ L(p′).
For each alternative a, and for every p, we either have a ≺ L(p) or a ≻ L(p) or

a ∼ L(p). If a ≺ L(p) and p < p′, then we will still have a ≺ L(p′). Similarly, if we

have a ≻ L(p) and p > p′, then we will have a ≻ L(p′). Thus, we have:

inf{p ∶ a ≺ L(p)} = sup{p ∶ L(p) ≺ a}.

This common probability value is called the utility of the alternative a. It is usually

denoted by u(a).
For the utility, for every 𝜀 > 0, we have

L(u(a) − 𝜀) ≺ a ≺ L(u(a) + 𝜀).

In this sense, a is “almost” equivalent to to the lottery L(u(a)); we will denote this

equivalence by a ≡ L(u(a)).

Utility is definedmodulo a linear transformation. The numerical value of the util-

ity depends on our selection of the alternatives a0 and a1. If we select a different pair

a′0 and a′1, then we, in general, will get different numerical values of the correspond-

ing utility u′(a). What is the relation between the new utility value u′(a) and the

original utility value u(a)?
To answer this question, let us first consider the case when a0 ≺ a′0 ≺ a′1 ≺ a1.

In this case, each of the new alternatives a′0 and a′1 is equivalent to an appropriate

lottery L(p): a′0 ≡ L(u(a′0)) and a′1 ≡ L(u(a′1)) for some values u(a′0) and u(a′0).
By definition of the (a′0, a

′
1)-based utility u′(a), the alternative a is equivalent to the

lottery L′(u′(a)) in which we get a′1 with probability u′(a) and a′0 with the remaining

probability 1 − u′(a).
If we replace a′1 with the equivalent lottery L(a′1) and a′0 with the equivalent lottery

L(a′0), then we conclude that the original alternative a is equivalent to the following

2-stage lottery:

∙ first, we select either 1 (with probability u′(a)) or 0 (with probability 1 − u′(a));
∙ then, depending on the value i that we selected in the first stage, we select either

a1 (with probability u(a′1)) or a0 (with probability u(a′0)).

As a result of this 2-stage lottery, we get either a1 or a0. By using the formula for the

complete probability, we can find the probability u(a) for selecting a1:

u(a) = u′(a) ⋅ u(a′1) + (1 − u′(a)) ⋅ u(a′0).

Thus, the original alternative a is equivalent to the lottery in which we select a1 with

this probability u(a) and a0 with the remaining probability 1 − u(a). So, a ≡ L(u(a)).



6 V. Kreinovich and T. Dumrongpokaphan

The above formula shows that the utilities u(a) and u′(a) are connected by a linear

dependence. This was when we have a0 ≺ a′0 ≺ a′1 ≺ a1.
In the general case, when we want to find a relation between utilities u(a) and u′(a)

corresponding to different pairs (a0, a1) and (a′0, a
′
1), the way to find this connec-

tion is by considering a third pair (a′′0 , a
′′
1 ) for which a′′0 ≺ a0, a′′0 ≺ a′0, a1 ≺ a′′1 , and

a′1 ≺ a′′1 . In this case, the above argument shows that:

∙ u′′(a) is a linear function of u′(a), and

∙ u′′(a) is a linear function of u(a)—thus, u(a) is a linear function of u′′(a).

Substituting the linear expression of u′′(a) in terms of u′(a) into the linear depen-

dence of u(a) on u′′(a) and using the fact that a composition of two linear functions

is linear, we conclude that u′(a) is indeed a linear function of u(a);

u′(a) = k ⋅ u(a) + 𝓁

for some k > 0 and 𝓁.

Now, we have all the preliminaries needed to start discussing group decision mak-

ing.

3 Group Decision Making: Analysis of the Problem

What is a group decision making criterion? To compare several alternatives, we

need to know how valuable is each alternative to each person from the group.

The value of each alternative a to each person i can be described by the i-th utility

ui(a) of this alternative. Thus, to describe the value of the alternative a to the group,

we can use the tuple u(a) = (u1(a),… , un(a)) consisting of all these utility values.

As we have mentioned earlier, for each person i, his or her utility values are

defined modulo arbitrary linear transformation: ui(a) → ki ⋅ ui(a) + 𝓁i. We are con-

sidering situations in which we start with a certain status quo s0. It is therefore rea-

sonable to re-scale utilities in such a way that the status-quo value of utility corre-

sponds to 0. In other words, instead of the original utility values, we consider the

utility gains ui(a) − ui(s0).
In this re-scaled case, for each alternative, we have ui(a) > 0: if ui(a) < 0, i.e., if

the i-th person loses with the adoption of the alternative a, this person would then

never agree to this alternative. Similarly, if ui(a) = 0, i.e., if the person does not

gain anything in the alternative a, why would this person participate in making this

decision?

Thus, the only tuples that we have to consider are tuples u(a) in which all the

components ui(a) are positive.

For every two alternatives a and b, based on the corresponding tuples, we need

to decide:

∙ whether a is better than b,
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∙ or b is better than a,

∙ or that for the group, the alternatives a and b are equivalent.

Such a decision is what we call a group decision making criterion.

Of course, if everyone benefits, i.e., if ui < u′i for all i, then clearly, the tuple u′
is better than the tuple u. Similarly, if no one loses, i.e., if ui ≤ u′i for all i, then the

tuple u′ should be either better or of the same quality as u—but not worse.

Finally, a group decision making criterion should be continuous in the following

sense: if we have a(k) → a for some sequence a(k), and if for every k, we have a(k) ≺ b
or a(k) ∼ b, then for the limit sequence a, we should also have a ≺ b or a ∼ b.

In other words, if a tuple a is worse than a tuple b, then all the tuples in some

neighborhood of a should also be worse than b.

Let us describe all this in precise terms.

Definition 1 By a pre-ordering relation on a setA, we mean a pair of binary relations

≺ and ∼ for which a ≺ b for some a and b and for which the following properties

hold for all a, b, and c:

∙ a ∼ a and a ⊀ a;

∙ if a ≺ b and b ≺ c, then a ≺ c;

∙ if a ∼ b then b ∼ a;

∙ if a ∼ b and b ∼ c, then a ∼ c;

∙ if a ≺ b and b ∼ c, then a ≺ c;

∙ if a ∼ b and b ≺ c, then a ≺ c.

Definition 2 A pre-ordering is called linear (or total) if for every two elements a
and b, we have either a ≺ b, or b ≺ a, or a ∼ b.

Definition 3 By a group decision making criterion, we mean a linear (total) pre-

ordering (≺,∼) on the set IRn
+ of all possible n-tuples u = (u1,… , un) of positive real

numbers for which:

∙ if ui < u′i for all i, then u ≺ u′,
∙ if ui ≤ u′i for all i, then either u ≺ u′ or u ∼ u′, and

∙ if a ≺ b, then for all the tuples a′ from some neighborhood of a, we should also

have a′ ≺ b.

4 We Want to Find the Best Group Decision Making
Criterion

Discussion. To select the best group decision making criterion, we need to be able to

compare different criteria: some criteria are better, some are worse, some are equiv-

alent. In other words, we need to describe a linear pre-ordering (<,≡) on the set of

all possible criteria.
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Then, we should select the best (optimal) criterion A, i.e., a criterion for which,

for every other criterion B, we should have either B < A or B ≡ A.

It is reasonable to require that there should be only one best criterion A. Indeed, if

no criterion is the best, then this pre-ordering is of no use. On the other hand, if sev-

eral criteria are the best, this means that our pre-ordering is not final: we can us this

non-uniqueness to optimize something else. For example, if several different group

decision making criteria are of equal value based on the economic consequences, it

is reasonable to select the only which is the easiest to compute. This means that the

original comparison < (based only on economical consequences) is now replaced by

a more complex comparison a <
′ b which holds if:

∙ either b is better economically,

∙ or, economically, a and b are of the same quality, but b is easier to compute.

Eventually, we will thus reach the final situation, in which for the resulting linear

pre-ordering (<,≡), exactly one group decision making criterion is the best.

Another reasonable requirement is that the comparison between different group

decision making criteria should not change if we simply re-scale the individual utility

values, i.e., replace the original utility values ui by re-scaled values u′i = ki ⋅ ui.
Finally, it is reasonable to require that all participants are equal, in the sense that

nothing should change if we simply swap two or more participants (and their utili-

ties).

Thus, we arrive at the following definitions.

Definition 4 By a comparison between group decision making criteria, we mean

a linear (total) pre-ordering (<,≡) on the set of all possible group decision making

criteria.

Definition 5 We say that a group decision making criterionA is optimalwith respect

to a given comparison (<,≡) if for every other group decision making criterion B,

we have either B < A, or B ≡ A.

Definition 6 We say that a comparison (<,≡) is final if there exists exactly one

group decision making criterion which is optimal with respect to this comparison.

Definition 7 Let k = (k1,… , kn) be a tuple of positive numbers ki > 0.

∙ For every tuple u = (u1,… , un), by its k-rescaling, we mean a tuple

Sk(u) = (k1 ⋅ u1,… , kn ⋅ un).

∙ By a k-rescaling Sk(A) = (≺k,∼k) of a group decision making criterion

A = (≺,∼),

we mean the following criterion:

a ≺k b ⇔ Sk(a) ≺ Sk(b), and a ∼k b ⇔ Sk(a) ∼ Sk(b).
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Definition 8 We say that a comparison (<,≡) is scale-invariant if for every tuple k
and for every two group decision making criteria A and B, we have:

A < B ⇔ Sk(A) < Sk(B); and

A ≡ B ⇔ Sk(A) ≡ Sk(B).

Definition 9 Let 𝜋 ∶ {1,… , n} → {1,… , n} be a permutation.

∙ For every tuple u = (u1,… , un), by its permutation, we mean a tuple

𝜋(u) = (u
𝜋(1),… , u

𝜋(n)).

∙ By a permutation 𝜋(A) = (≺
𝜋
,∼

𝜋
) of a group decision making criterion

A = (≺,∼),

we mean the following criterion:

a ≺
𝜋
b ⇔ 𝜋(a) ≺ 𝜋(b), and a ∼

𝜋
b ⇔ 𝜋(a) ∼ 𝜋(b).

Definition 10 We say that a comparison (<,≡) is permutation-invariant if for every

permutation 𝜋 and for every two group decision making criteria A and B, we have:

A < B ⇔ 𝜋(A) < 𝜋(B); and

A ≡ B ⇔ 𝜋(A) ≡ 𝜋(B).

Main Result. For every final scale-invariant permutation-invariant comparison

(<,≡),

the optimal group decision making (≺,∼) has the following form:

a = (a1,… , an) ≺ b = (b1,… , bn) ⇔
n∏

i=1
ai <

n∏

i=1
bi; and

a = (a1,… , an) ∼ b = (b1,… , bn) ⇔
n∏

i=1
ai =

n∏

i=1
bi.

Comment. For reader’s convenience, the proof of this result is given in a special

Appendix.
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Discussion. According to our result, according to the optimal group decision making

criterion, we should select an alternative a for which the product

n∏

i=1
ui(a) of all the

utilities attains the largest possible value.

This group decision making criterion was first proposed by the Nobelist John

Nash [5] (see also [4]) and is thus known as Nash’s bargaining solution. Thus, what

we prove is that Nash’s bargaining solution is the optimal group decision making

criterion.

5 The Resulting Optimal Criterion for Group Decision
Making Is in Good Accordance with Common Sense

The objective of group decision making is to make sure that the first person is happy,

and that the second person is happy, and that the their person is happy, etc. From this

viewpoint, selecting the best alternative means selecting the alternative for which

the degree to which first person is happy and the second person is happy, etc., is the

largest possible.

In line with the usual fuzzy logic techniques (see, e.g., [3, 8, 10]), to describe the

degree to which this objective is satisfied, we must:

∙ first, find the degrees to which each person is happy, and then,

∙ use an “and”-operation (t-norm) f&(a, b) to combine these degrees.

For each alternative a, a reasonable measure of the degree di(a) to which the i-th
person is happy with this alternative is his/her utility ui(a). It is therefore reasonable

to assume that the degree di(a) can be determined if we know the utility ui(a), i.e.,

that di(a) = f (ui(a)) for an appropriate algorithm f (x).
The simplest possible case is when we simply take di(a) = ui(a), with f (x) = x.

Among the simplest—and most widely used—t-norms is the algebraic product

f&(a, b) = a ⋅ b. If we use this t-norm, then the degree to which all the members

of the groups are happy with the given alternative a is equal to the product

n∏

i=1
di(a) =

n∏

i=1
ui(a).

In this case, selecting the best alternative means selecting the alternative a for which

this product attains its largest possible value.

This is exactly Nash’s bargaining solution which, as we have shown, is the optimal

group decision making criterion. Thus, Nash’s bargaining solution is indeed in good

accordance with common sense—namely, it is in good accordance with the simplest

possible formalization of the above common sense criterion.
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6 The Resulting Optimal Criterion for Group Decision
Making Can Help In Decreasing Poverty, Inequality,
and Discrimination

What happens now: it is possible thatmaximizingGDP retains poverty, inequal-
ity, and discrimination. The problem with the current economic development—

which is motivated by the need to maximize the GDP—is that while the GDP is

increased and some people get richer, some other people remain at the same poverty

level as before.

In other words, while for some people, the gain gi is positive, for many others,

the gain is practically zero: gj ≈ 0. Thus, the increase in GDP sometimes increases

inequality as well—the rich get richer, but the poor remain equally poor.

Poverty is rarely distributed uniformly: usually, some population groups are

poorer. When the income of such groups does not increase, this is an example of

an economic discrimination.

How the use of the new criterion for group decision making can help prevent
such situations. We would like to avoid the situations in which for the selected alter-

native a, at least one person j does not get any increase in utility, i.e., uj(a) ≈ 0 for

some j. Let us show that such alternatives are indeed avoided.

Indeed, if for some alternative a, we have uj(a) for some person j, then for this

alternative a, the product of utilities

n∏

i=1
ui is practically equal to 0—i.e., to its small-

est possible value. A simple redistribution in which the j-th person (and other peo-

ple who initially got practically nothing) would get a little more will immediately

increase the product.

So, when we select an alternative for which the product of utilities is the largest

possible, we will never select an alternative in which one of the persons practically

does not get any increase in utility.

In this sense, the new criterion helps decrease inequality. And if there is a whole

group of people which is discriminated against—e.g., for which uj ≈ 0 for all persons

j from this group—then the corresponding alternative will never be selected if we

use the new group decision making criterion.
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Proof of the Main Result

1◦. In this proof, we will use ideas first described in [2] and in [7].

2◦. Let us first prove that for every every final scale-invariant permutation-invariant

comparison (<,≡), the optimal group decision making A = (≺,∼) is itself scale-
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and permutation-invariant, i.e., A = Sk(A) for every tuple k and 𝜋(A) = A for every

permutation A.

Indeed, let us prove that A = Sk(A) for every tuple k = (k1,… , kn). Let us denote

k−1 = (k−11 ,… , k−1n ); then, clearly, Sk(Sk−1 (B)) = B for all B. Since the group decision

making criterion A is optimal, then for every group decision making B, we have

Sk−1 (B) < A or Sk−1 (B) ≡ A. Since the comparison (<,≡) is scale-invariant, Sk−1 (B) <
A implies that Sk(Sk−1 (B)) < Sk(A), i.e., thatB < Sk(A). Similarly, Sk−1 (B) ≡ A implies

that Sk(Sk−1 (B)) ≡ Sk(A), i.e., that B ≡ Sk(A).
Thus, for every group decision making criterion B, we have either B < Sk(A) or

B ≡ Sk(A). By definition, this means that the group decision criterion Sk(A) is opti-

mal. However, our comparison (<,≡) is final. Thus, there should be only one optimal

group decision making criterion. So, we conclude that Sk(A) = A.

Similarly, we can prove that 𝜋(A) = A for any permutation 𝜋. Let us denote the

inverse permutation by 𝜋
−1

; then, clearly, 𝜋(𝜋−1(B)) = B for all B. Since the group

decision making criterion A is optimal, then for every group decision making B,

we have 𝜋
−1(B) < A or 𝜋

−1(B) ≡ A. Since the comparison (<,≡) is permutation-

invariant, 𝜋
−1(B) < A implies that 𝜋(𝜋−1(B)) < 𝜋(A), i.e., that B < 𝜋(A). Similarly,

𝜋
−1(B) ≡ A implies that 𝜋(𝜋−1(B)) ≡ 𝜋(A), i.e., that B ≡ 𝜋(A).

Thus, for every group decision making criterion B, we have either B < 𝜋(A) or

B ≡ 𝜋(A). By definition, this means that the group decision criterion 𝜋(A) is optimal.

However, our comparison (<,≡) is final. Thus, there should be only one optimal

group decision making criterion. So, we conclude that 𝜋(A) = A.

3◦. Let us now use the scale-invariance of the optimal group decision making crite-

rion (≺,∼). Due to this scale-invariance, for every y1,… , yn, y′1,… , y′n, we can take

𝜆i =
1
yi

and conclude that

(y′1,… , y′n) ∼ (y1,… , yn) ⇔
(y′1
y1
,… ,

y′n
yn

)

∼ (1,… , 1).

Thus, to describe the equivalence relation ∼, it is sufficient to describe the set of all

the vectors z = (z1,… , zn) for which z ∼ (1,… , 1). Similarly,

(y′1,… , y′n) ≻ (y1,… , yn) ⇔
(y′1
y1
,… ,

y′n
yn

)

≻ (1,… , 1).

Thus, to describe the ordering relation ≻, it is sufficient to describe the set of all the

vectors z = (z1,… , zn) for which z ≻ (1,… , 1).
Alternatively, we can take 𝜆i =

1
y′i

and conclude that

(y′1,… , y′n) ≻ (y1,… , yn) ⇔ (1,… , 1) ≻
(
y1
y′1
,… ,

yn
y′n

)

.



Optimal Group Decision Making Criterion and How It Can Help . . . 13

Thus, it is also sufficient to describe the set of all the vectors z = (z1,… , zn) for which

(1,… , 1) ≻ z.

4◦. The above equivalence involves division. To simplify the description, we can

take into account that in the logarithmic space, division becomes a simple difference:

ln
(y′i
yi

)

= ln(y′i) − ln(yi). To use this simplification, let us consider the logarithms

Yi
def
= ln(yi) of different values. In terms of these logarithms, the original values can

be reconstructed as yi = exp(Yi). In terms of these logarithms, we thus need to con-

sider:

∙ the set S∼ of all the tuples Z = (Z1,… ,Zn) for which

z = (exp(Z1),… , exp(Zn)) ∼ (1,… , 1),

and

∙ the set S
≻

of all the tuples Z = (Z1,… ,Zn) for which

z = (exp(Z1),… , exp(Zn)) ≻ (1,… , 1).

We will also consider the set S
≺

of all the tuples Z = (Z1,… ,Zn) for which

(1,… , 1) ≻ z = (exp(Z1),… , exp(Zn)). Since the pre-ordering relation (≺,∼) is lin-

ear (total), for every tuple z:

∙ either z ∼ (1,… , 1),
∙ or z ≻ (1,… , 1),
∙ or (1,… , 1) ≻ z.

In particular, this is true for z = (exp(Z1),… , exp(Zn)). Thus, for every tuple Z:

∙ either Z ∈ S∼,

∙ or Z ∈ S
≻

,

∙ or Z ∈ S
≺

.

5◦. Let us prove that the set S∼ is closed under addition, i.e., that if the tuples Z =
(Z1,… ,Zn) and Z′ = (Z′

1,… ,Z′
n) belong to the set S∼, then their component-wise

sum

Z + Z′ = (Z1 + Z′
1,… ,Zn + Z′

n)

also belongs to the set S∼.

Indeed, by definition of the set S∼, the condition Z ∈ S∼ means that

(exp(Z1),… , exp(Zn)) ∼ (1,… , 1).

Using scale-invariance with 𝜆i = exp(Z′
i ), we conclude that

(exp(Z1) ⋅ exp(Z′
1),… , exp(Zn) ⋅ exp(Z′

n)) ∼ (exp(Z′
1),… , exp(Z′

n)).
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On the other hand, the condition Z′ ∈ S∼ means that

(exp(Z′
1),… , exp(Z′

n)) ∼ (1,… , 1).

Thus, due to transitivity of the equivalence relation ∼, we conclude that

(exp(Z1) ⋅ exp(Z′
1),… , exp(Zn) ⋅ exp(Z′

n)) ∼ (1,… , 1).

Since for every i, we have exp(Zi) ⋅ exp(Z′
i ) = exp(Zi + Z′

i ), we thus conclude that

(exp(Z1 + Z′
1),… , exp(Zn + Z′

n)) ∼ (1,… , 1).

By definition of the set S∼, this means that the tuple Z + Z′
belongs to the set S∼.

6◦. Similarly, we can prove that the set S
≻

is closed under addition, i.e., that if

the tuples Z = (Z1,… ,Zn) and Z′ = (Z′
1,… ,Z′

n) belong to the set S
≻

, then their

component-wise sum

Z + Z′ = (Z1 + Z′
1,… ,Zn + Z′

n)

also belongs to the set S
≻

.

Indeed, by definition of the set S
≻

, the condition Z ∈ S
≻

means that

(exp(Z1),… , exp(Zn)) ≻ (1,… , 1).

Using scale-invariance with 𝜆i = exp(Z′
i ), we conclude that

(exp(Z1) ⋅ exp(Z′
1),… , exp(Zn) ⋅ exp(Z′

n)) ≻ (exp(Z′
1),… , exp(Z′

n)).

On the other hand, the condition Z′ ∈ S
≻

means that

(exp(Z′
1),… , exp(Z′

n)) ≻ (1,… , 1).

Thus, due to transitivity of the strict preference relation ≻, we conclude that

(exp(Z1) ⋅ exp(Z′
1),… , exp(Zn) ⋅ exp(Z′

n)) ≻ (1,… , 1).

Since for every i, we have exp(Zi) ⋅ exp(Z′
i ) = exp(Zi + Z′

i ), we thus conclude that

(exp(Z1 + Z′
1),… , exp(Zn + Z′

n)) ≻ (1,… , 1).

By definition of the set S
≻

, this means that the tuple Z + Z′
belongs to the set S

≻
.

7◦. A similar argument shows that the set S
≺

is closed under addition, i.e., that

if the tuples Z = (Z1,… ,Zn) and Z′ = (Z′
1,… ,Z′

n) belong to the set S
≺

, then their

component-wise sum
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Z + Z′ = (Z1 + Z′
1,… ,Zn + Z′

n)

also belongs to the set S
≺

.

8◦. Let us now prove that the set S∼ is closed under the “unary minus” operation, i.e.,

that if Z = (Z1,… ,Zn) ∈ S∼, then −Z
def
= (−Z1,… ,−Zn) also belongs to S∼.

Indeed, Z ∈ S∼ means that

(exp(Z1),… , exp(Zn)) ∼ (1,… , 1).

Using scale-invariance with 𝜆i = exp(−Zi) =
1

exp(Zi)
, we conclude that

(1,… , 1) ∼ (exp(−Z1),… , exp(−Zn)),

i.e., that −Z ∈ S∼.

9◦. Let us prove that if Z = (Z1,… ,Zn) ∈ S
≻

, then −Z
def
= (−Z1,… ,−Zn) belongs to

S
≺

.

Indeed, Z ∈ S
≻

means that

(exp(Z1),… , exp(Zn)) ≻ (1,… , 1).

Using scale-invariance with 𝜆i = exp(−Zi) =
1

exp(Zi)
, we conclude that

(1,… , 1) ≻ (exp(−Z1),… , exp(−Zn)),

i.e., that −Z ∈ S
≺

.

Similarly, we can show that if Z ∈ S
≺

, then −Z ∈ S
≻

.

10◦. From Part 5 of this proof, it now follows that if Z = (Z1,… ,Zn) ∈ S∼, then

Z + Z ∈ S∼, that Z + (Z + Z) ∈ S∼, etc., i.e., that for every positive integer p, the

tuple

p ⋅ Z = (p ⋅ Z1,… , p ⋅ Zn)

also belongs to the set S∼.

By using Part 8, we can also conclude that this is true for negative integers p
as well. Finally, by taking into account that the zero tuple 0

def
= (0,… , 0) can be

represented as Z + (−Z), we conclude that 0 ⋅ Z = 0 also belongs to the set S∼.

Thus, if a tuple Z belongs to the set S∼, then for every integer p, the tuple p ⋅ Z
also belongs to the set S∼.

11◦. Similarly, from Parts 6 and 7 of this proof, it follows that

∙ if Z = (Z1,… ,Zn) ∈ S
≻

, then for every positive integer p, the tuple p ⋅ Z also

belongs to the set S
≻

, and
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∙ if Z = (Z1,… ,Zn) ∈ S
≺

, then for every positive integer p, the tuple p ⋅ Z also

belongs to the set S
≺

.

12◦. Let us prove that for every rational number r =
p
q

, where p is an integer and q is

a positive integer, if a tuple Z belongs to the set S∼, then the tuple r ⋅ Z also belongs

to the set S∼.

Indeed, according to Part 10, Z ∈ S∼ implies that p ⋅ Z ∈ S∼.

According to Part 4, for the tuple r ⋅ Z, we have either r ⋅ Z ∈ S∼, or r ⋅ Z ∈ S
≻

,

or r ⋅ Z ∈ S
≺

.

∙ If r ⋅ Z ∈ S
≻

, then, by Part 11, we would get p ⋅ Z = q ⋅ (r ⋅ Z) ∈ S
≻

, which con-

tradicts our result that p ⋅ Z ∈ S∼.

∙ Similarly, if r ⋅ Z ∈ S
≺

, then, by Part 11, we would get p ⋅ Z = q ⋅ (r ⋅ Z) ∈ S
≺

,

which contradicts our result that p ⋅ Z ∈ S∼.

Thus, the only remaining option is r ⋅ Z ∈ S∼. The statement is proven.

13◦. Let us now use continuity to prove that for every real number x, if a tuple Z
belongs to the set S∼, then the tuple x ⋅ Z also belongs to the set S∼.

Indeed, a real number x can be represented as a limit of rational numbers:

r(k) → x. According to Part 12, for every k, we have r(k) ⋅ Z ∈ S∼, i.e., the tuple

Z(k) def
= (exp(r(k) ⋅ Z1),… , exp(r(k) ⋅ Zn)) ∼ (1,… , 1). In particular, this means that

Z(k) ⪰ (1,… , 1). In the limit, Z(k) → (exp(x ⋅ Z1),… , exp(x ⋅ Zn)) ⪰ (1,… , 1). By

definition of the sets S∼ and S
≻

, this means that x ⋅ Z ∈ S∼ or x ⋅ Z ∈ S
≻

.

Similarly, for −(x ⋅ Z) = (−x) ⋅ Z, we conclude that −x ⋅ Z ∈ S∼ or (−x) ⋅ Z ∈ S
≻

.

If we had x ⋅ Z ∈ S
≻

, then by Part 9 we would get (−x) ⋅ Z ∈ S
≺

, a contradiction.

Thus, the case x ⋅ Z ∈ S
≻

is impossible, and we have x ⋅ Z ∈ S∼. The statement is

proven.

14◦. According to Parts 5 and 13, the set S∼ is closed under addition and under

multiplication by an arbitrary real number. Thus, if tuples Z,… ,Z′
belong to the set

S∼, their arbitrary linear combination x ⋅ Z +⋯ + x′ ⋅ Z′
also belongs to the set S∼.

So, the set S∼ is a linear subspace of the n-dimensional space of all the tuples.

15◦. The subspace S∼ cannot coincide with the entire n-dimensional space, because

then the pre-ordering relation would be trivial. Thus, the dimension of this subspace

must be less than or equal to n − 1. Let us show that the dimension of this subspace

is n − 1.

Indeed, let us assume that the dimension is smaller than n − 1. Since the pre-

ordering is non-trivial, there exist tuples y = (y1,… , yn) and y′ = (y′1,… , y′n) for

which y ≻ y′ and thus, Z = (Z1,… ,Zn) ∈ S
≻

, where Zi = ln
(
yi
y′i

)

. From Z ∈ S
≻

,

we conclude that −Z ∈ S
≺

.

Since the linear space S∼ is a less than (n − 1)-dimensional subspace of an n-

dimensional linear space, there is a path connecting Z ∈ S
≻

and −Z ∈ S
≺

which

avoids S∼. In mathematical terms, this path is a continuous mapping 𝛾 ∶ [0, 1] → Rn
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for which 𝛾(0) = Z and 𝛾(1) = −Z. Since this path avoids S∼, every point 𝛾(t) on this

path belongs either to S
≻

or to S
≺

.

Let t denote the supremum (least upper bound) of the set of all the values t for

which 𝛾(t) ∈ S
≻

. By definition of the supremum, there exists a sequence t(k) → t for

which 𝛾(t(k)) ∈ S
≻

. Similarly to Part 13, we can use continuity to prove that in the

limit, 𝛾(t) ∈ S
≻

or 𝛾(t) ∈ S∼. Since the path avoids the set S∼, we thus get 𝛾(t) ∈ S
≻

.

Similarly, since 𝛾(1) ∉ S
≻

, there exists a sequence t(k) ↓ t for which 𝛾(t(k)) ∈ S
≺

.

We can therefore conclude that in the limit, 𝛾(t) ∈ S
≻

or 𝛾(t) ∈ S∼—a contradiction

with our previous conclusion that 𝛾(t) ∈ S
≻

.

This contradiction shows that the linear space S∼ cannot have dimension < n − 1
and thus, that this space have dimension n − 1.

16◦. Every (n − 1)-dimensional linear subspace of an n-dimensional superspace sep-

arates the superspace into two half-spaces. Let us show that one of these half-spaces

is S
≻

and the other is S
≺

.

Indeed, if one of the subspaces contains two tuples Z and Z′
for which Z ∈ S

≻
and

Z′ ∈ S
≺

, then the line segment 𝛾(t) = t ⋅ Z + (1 − t) ⋅ Z′
containing these two points

also belongs to the same subspace, i.e., avoids the set S∼. Thus, similarly to Part 15,

we would get a contradiction.

So, if one point from a half-space belongs to S
≻

, all other points from this subspace

also belong to the set S
≻

. Similarly, if one point from a half-space belongs to S
≺

, all

other points from this subspace also belong to the set S
≺

.

17◦. Every (n − 1)-dimensional linear subspace of an n-dimensional space has the

form 𝛼1 ⋅ Z1 +⋯ + 𝛼n ⋅ Zn = 0 for some real values 𝛼i, and the corresponding half-

spaces have the form 𝛼1 ⋅ Z1 +⋯ + 𝛼n ⋅ Zn > 0 and 𝛼1 ⋅ Z1 +⋯ + 𝛼n ⋅ Zn < 0.

The set S
≻

coincides with one of these subspaces. If it coincides with the set of

all tuples Z for which 𝛼1 ⋅ Z1 +⋯ + 𝛼n ⋅ Zn < 0, then we can rewrite it as

(−𝛼1) ⋅ Z1 +⋯ + (−𝛼n) ⋅ Zn > 0,

i.e., as 𝛼
′
1 ⋅ Z1 +⋯ + 𝛼

′
n ⋅ Zn > 0 for 𝛼

′
i = −𝛼i.

Thus, without losing generality, we can conclude that the set S
≻

coincides with

the set of all the tuples Z for which 𝛼1 ⋅ Z1 +⋯ + 𝛼n ⋅ Zn > 0. We have mentioned

that

y′ = (y′1,… , y′n) ≻ y = (y1,… , yn) ⇔ (Z1,… ,Zn) ∈ S
≻
,

where Zi = ln
(y′i
yi

)

. Thus,

y′ ≻ y ⇔ 𝛼1 ⋅ Z1 +⋯ + 𝛼n ⋅ Zn = 𝛼1 ⋅ ln
(y′1
y1

)

+⋯ + 𝛼n ⋅ ln
(y′n
yn

)

> 0.

Since ln
(y′i
yi

)

= ln(y′i) − ln(yi), the last inequality is equivalent to
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𝛼1 ⋅ ln(y′1) +⋯ + 𝛼n ⋅ ln(y′n) > 𝛼1 ⋅ ln(y1) +⋯ + 𝛼n ⋅ ln(yn).

Let us take exp of both sides; then, due to the monotonicity of the exponential func-

tion, we get an equivalent inequality

exp(𝛼1 ⋅ ln(y′1) +⋯ + 𝛼n ⋅ ln(y′n)) > exp(𝛼1 ⋅ ln(y1) +⋯ + 𝛼n ⋅ ln(yn)).

Here,

exp(𝛼1 ⋅ ln(y′1) +⋯ + 𝛼n ⋅ ln(y′n)) = exp(𝛼1 ⋅ ln(y′1)) ⋅ ⋯ ⋅ exp(𝛼n ⋅ ln(y′n)),

where for every i, e𝛼i⋅zi = (ezi )𝛼i , with zi
def
= ln(y′i), implies that

exp(𝛼i ⋅ ln(y′i)) = (exp(ln(y′i)))
𝛼i = (y′i)

𝛼i ,

so

exp(𝛼1 ⋅ ln(y′1) +⋯ + 𝛼n ⋅ ln(y′n)) = (y′1)
𝛼1 ⋅ ⋯ ⋅ (y′n)

𝛼n

and similarly,

exp(𝛼1 ⋅ ln(y1) +⋯ + 𝛼n ⋅ ln(yn)) = y𝛼11 ⋅ ⋯ ⋅ y𝛼nn .

Thus, the condition y′ ≻ y is equivalent to

n∏

i=1
y𝛼ii >

n∏

i=1
(y′i)

𝛼i .

Similarly, we prove that

(y1,… , yn) ∼ y′ = (y′1,… , y′n) ⇔
n∏

i=1
y𝛼ii =

n∏

i=1
(y′i)

𝛼i .

The condition 𝛼i > 0 follows from our assumption that the pre-ordering is monotonic.

18◦. Now, from permutation-invariance, we conclude that all the coefficients 𝛼i are

equal to each other: 𝛼i = 𝛼 for all i. Thus, the condition y′ ≻ y is equivalent to

n∏

i=1
y𝛼i =

( n∏

i=1
yi

)
𝛼

>

n∏

i=1
(y′i)

𝛼 =

( n∏

i=1
y′i

)
𝛼

,

i.e., to
n∏

i=1
yi >

n∏

i=1
y′i .



Optimal Group Decision Making Criterion and How It Can Help . . . 19

Similarly, we can prove that the condition y′ ∼ y is equivalent to

n∏

i=1
y𝛼i =

( n∏

i=1
yi

)
𝛼

=
n∏

i=1
(y′i)

𝛼 =

( n∏

i=1
y′i

)
𝛼

,

i.e., to
n∏

i=1
yi =

n∏

i=1
y′i .

This completes the proof of our main result.
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An Overview and Re-interpretation
of Paradoxes of Responsiveness

Hannu Nurmi

Abstract One of the most obvious desiderata of democratic decision-making is

that the political outcomes (policies, elected persons, legislation) be responsive to

popular opinions. In representative forms of governance the responsiveness is not

expected to pertain to every single outcome, but the very idea of going to the peo-

ple seems to presuppose some degree of responsiveness. In social choice theory

several notions that aim to capture aspects of responsiveness have been introduced

and related to other desiderata of social choice. We shall discuss the most common

notions and discuss their relevance in democratic decision making. We shall also

look at the paradoxes related to non-responsiveness from a novel angle, viz. we try

to determine their significance to the multiple criteria decision making (MCDM). It

turns out that some methods of aggregating criterion performances of policy alterna-

tives can be ruled out because of their bizarre behavior under some decision settings.

1 Introduction

Responsiveness is one of the most obvious desiderata in democratic rule. At the

very least unresponsive rules of governing are certainly not acceptable as the very

idea of democracy presupposes that the ruled, the people, can, by expressing by

their opinions in legitimate manner, bring about changes in the way public poli-

cies are formulated and executed. Elections are the normal institutions to transform

the popular views into public policies or other electoral outcomes. The most com-

mon of the latter are, of course, those that pertain to composition of parliaments or

offices of the president. But what does unresponsiveness, then, mean? A clear exam-

ple of an unresponsive voting rule is a constant one which results in a fixed outcome,

say x, regardless of the distribution of the expressed opinions by the voters. I.e. no
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matter how the voters vote, x always wins. Clearly, constant rules make the act of

voting meaningless in the instrumental sense, that is, as a way of influencing the way

public policies are to be pursued. A similarly minimalistic way of defining respon-

siveness as the exclusion of constant rules is the condition on rules known as citizens’

sovereignty. This requires that, given a set of alternatives A of k alternatives and any

ranking R of those alternatives, there is a distribution of voter opinions over those

alternatives so that R is the outcome resulting from the application of the rule to

this distribution. This condition excludes blatant discriminations against some alter-

natives. This doesn’t mean that rules that satisfy citizens’ sovereignty are eo ipso
intuitively responsive to the voter opinions. A case in point is the unanimity rule: the

status quo alternative, say x, is selected, unless all individuals prefer another alter-

native, say y, to x. This rule clearly satisfies citizens’ sovereignty, but is extremely

biased towards the status quo.

In what follows we shall investigate some intuitively natural forms of responsive-

ness of choice rules. The forms will be looked upon as invulnerability to certain

kinds of paradoxes. Our primary focus is on variations in the choice sets resulting

from rules under changes in individual opinions. Two types of settings are of inter-

est: first, those where the changes in individual opinions happen in a fixed electorate,

and second, those where the changes involve enlarging the electorate itself by includ-

ing new voters in the voter set. The former settings will be called fixed electorate

paradoxes and properties, while the latter will be called paradoxes and properties in

variable electorates.

2 What Is Responsiveness?

A natural way of approaching the responsiveness problem is to start from compar-

ing the opinions of the electorate to the result of the choice rule. The question then

becomes, how well or accurately the latter represents the former. In any given choice

situation we could argue that the better the choice result represents the voter opinions,

the more responsive the rule. It turns out that nearly all voting rules that transform

n-tuples of individual complete and transitive preference relations (rankings)

(n being the number of voters) into collective rankings can be seen as the most opti-

mal, i.e. most responsive, rules. What makes them different is their underlying idea

of a consensus state, that is, a situation involving no disagreement as to the outcome

and the distance metric used in measuring the distance of any preference profile from

a consensus state. Such a consensus state can be one where all voters have identi-

cal rankings over the alternatives or one where all voters rank the same alternative

first or one where a given alternative is the Condorcet winner. Similarly, the distance

measure can be the inversion metric counting the number of binary inversions of

adjacent alternatives needed to transform one ranking to another or a discrete met-

ric that simply counts those rankings that differ in some respects from one another

(see [14, 18]). More precisely, the inversion distance between two rankings R1 and
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R2 over k alternatives is the smallest number of swaps of two adjacent alternatives

required to transform R1 to R2.

If the consensus state is one where all voters have an identical ranking over alter-

natives and if the distance between any two rankings is measured by the inversion

metric, then the outcomes ensuing from the application of Kemeny’s rule are optimal

in the sense of minimizing the distance between the observed profile and the desired

consensus state. Similarly, it has been shown by Nitzan that the Borda count outcome

represents best the voter opinions if the distance measure is the inversion metric and

if the consensus state is one where all voters are unanimous about which alternative

should be ranked first [18]. Plurality voting, in turn, can be seen as the optimal repre-

sentation of the voters’ opinions if the distance measure is the discrete metric and the

consensus state is the same as in the Borda count. The discrete distance between R1
and R2 is defined to be zero if R1 = R2 and unity, otherwise. Similarly, most voting

systems can be defined as optimal distance minimizing rules (see [3, 5, 12, 14]).

Looking at voting rules as distance minimizing devices from a consensus state

reveals essential similarities and differences in their underlying motivation. The

picture that emerges from this comparison is, however, purely static: the state of

consensus—understood in various senses—is being compared with the observed

profile of reported preferences of voters. The voting outcome is ‘a response’ to ‘the

stimulus’ provided by the preference profile. The reasonableness of the response

boils down to the plausibility of the consensus states and distance measures associ-

ated with various rules. A more nuanced picture of responsiveness of rules emerges

when we compare the responses or outcomes of rules under various changes in the

stimuli, i.e. preference profiles.

3 Responsiveness in Fixed Electorates: Monotonicity

The very idea of going to the people would seem to imply that the more voters

support an alternative, the better chances the latter has for becoming the chosen

one. Expressed in this way, the idea allows for several non-equivalent specifica-

tions. Firstly, it may mean that if the number of voters supporting an alternative

is increased, then the alternative has at least as large a probability of being elected

than before the increase. But what do we mean by ‘support of an alternative’? At

least three different interpretations are possible:

∙ the number of voters ranking the alternative first is increased,

∙ the position of the alternative is improved vis-à-vis some others, or

∙ some voters who rank the alternative first join the original electorate.

In fixed electorates, the third interpretation is excluded. In fact, the second inter-

pretation is most common in the theory of voting. It can be further divided into two

main concepts: (i) monotonicity, and (ii) Maskin monotonicity. According to the for-

mer, the additional support for an alternative means that its position is improved in

at least one voter’s preference ranking, ceteris paribus, i.e. the positions of all other
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alternatives with respect to each other remain the same. In Maskin monotonicity, in

contrast, the additional support means that the position of an alternative is improved

vis-à-vis some other alternatives, but no restrictions are imposed in the mutual posi-

tions of other alternatives.

With these distinctions in mind we can define the best-known responsiveness con-

cept, monotonicity as follows (cf. [10]).

Definition 1 Upward monotonicity. Suppose that in a given profile over a set A of

alternatives, x ∈ A wins when rule D is applied. Suppose now that the profile is

modified so that the position of x is improved, ceteris paribus, in at least one voter’s

preference ranking. Now, D is monotonic if and only if x remains the winner in the

modified profile.

More recently, Miller has suggested another monotonicity concept well in the

spirit of the preceding one. He calls it downward monotonicity, in contradistinction

to the above which he calls upward monotonicity [15].

Definition 2 Downward monotonicity. Suppose that in a profile over a set of alter-

natives A, x ∈ A wins when D is applied. Suppose moreover that a group of voters

change their mind and lower the position of another alternative, y, ceteris paribus.
Then D is downward monotonic if and only if no such change makes y the winner in

the modified profile.

The ceteris paribus proviso is essential here. In fact, it is the only thing that dis-

tinguishes the upward monotonicity concept from Maskin monotonicity. The latter

is defined as follows (cf. [13]).

Definition 3 Suppose that in a given profile over a set A of alternatives, x ∈ A wins

when rule D is applied. Suppose now that the profile is modified so that the position

of x with respect to any other alternative y is at least as high in all voters’ ranking

and perhaps strictly higher for some z ∈ A and some individuals. Now, D is Maskin

monotonic if and only if x remains the winner in the modified profile.

Although prima facie the definitions are not very different, their difference is quite

dramatic when we apply them to the most common voting procedures. It turns out

that none of them is Maskin monotonic, while many are monotonic. In this regard

Maskin monotonicity resembles the well-known independence of irrelevant alter-

natives condition of Arrow’s impossibility theorem. For a thorough discussion on

the significance of Maskin monotonicity in implementation and choice theory, the

reader is referred to [1, 2].

The difference in the two definitions above is illustrated in terms of plurality vot-

ing in Table 1. The plurality winner there is x. Suppose that the profile is modified

so that y is lifted ahead of z by the voter who ranked z first and y is lifted ahead

of both w and z by the voter represented by the right-hand column. These changes

do not involve x. Moreover, suppose that the position of x is improved by lifting it

ahead of z in the second column from the left and ahead of z and w in the right-most

column. So, for the rule to be Maskin monotonic, x would have to remain the winner
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Table 1 Plurality voting is not Maskin monotonic

2 voters 1 voter 1 voter 1 voter

x y z w

y z y z

z x x y

w w w x

in the modified profile as well. However, after these modifications the plurality vot-

ing elects y since it is ranked first by three voters out of five in the modified profile.

So, the plurality voting is not Maskin monotonic. On the other hand, it is obvious

that the plurality voting is upward monotonic since lifting the winner ahead of some

other alternatives in a profile, ceteris paribus, either leaves the number of voters

ranking each alternative first unchanged (if the modifications pertain to alternatives

ranked lower than first both in the original and modified profile) or increases the

number of voters ranking the original winner first by some positive number. So—

since no other alternative will be ranked first by more voters than originally—the

original winner remains the winner also in the modified profile. For an analysis of

some other systems in terms of Maskin monotonicity see [19].

Clearly, if a rule is Maskin monotonic, it is also monotonic, but the converse is

not true as the case of plurality voting demonstrates. Overall, the primary signifi-

cance of the Maskin monotonicity is in implementation theory where it has been

shown to be a necessary condition for Nash-implementation (see e.g. [2]). The well-

known Muller-Satterthwaite theorem states that all weakly unanimous and Maskin

monotonic choice rules are dictatorial [17]. Weak unanimity is also known as Pareto

principle: if every voter strictly prefers x to y, then y is not chosen. (For a slightly

different formulation of the theorem, see [2]). Obviously, Maskin monotonic and

Pareto optimal voting rules—if they exist—are in the dubious company of dictator-

ial rules. Hence, to avoid confusion, the distinction between monotonic and Maskin

monotonic rules should be made explicitly.

It is well-known that the plurality runoff as well as alternative vote are non-

monotonic. In fact, they are non-monotonic in a very strong sense: there are profiles

where additional support for a winning candidate may turn it into a non-winner and
diminishing support for a candidate may render it a winner even though it wasn’t one

in the original profile. Miller calls this a double monotonicity failure and provides

the following example (Table 2) [15].

Table 2 Plurality runoff and

double monotonicity failure

[15]

38 voters 32 voters 30 voters

y x z

z y x

x z y
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Here xwins. Suppose now that 9–17 voters from the left-most group lift x ahead of

both y and z, ceteris paribus. Then, the runoff takes place between x and z, whereupon

z wins. This is just another instance of the upward monotonicity failure, but there is

another one as well in the same profile. To wit, let three voters of the left-most group

drop y to the second place, ceteris paribus. Then, x is dropped out of the runoff

contest and the winner is y. Hence we have an instance of the double monotonicity

failure.

In the definition of upward monotonicity the starting point is a setting where

a winner’s position is improved, ceteris paribus, and one finds out whether the

improvement is necessarily accompanied with the winner maintaining its status. One

could envisage another, more general, notion of monotonicity whereby an improve-

ment of an alternative’s position in some rankings, ceteris paribus, is never accom-

panied with a lower rank for it in the social ranking. This notion would cover not only

situations where the focus is on what happens to the winning alternative once its posi-

tion is improved, but also situations where one looks at the position of non-winners

upon an improvement in their ranking in individual preferences, ceteris paribus. This

more general notion of monotonicity is applicable to social welfare functions, while

the above definition applies to social choice functions. Since above definition is by

now standard we shall, however, adhere to it.

4 Responsiveness in Variable Electorates:
The No-Show Paradox

What the general formulation of monotonicity in the end boils down to is that an

improvement of an alternatives position vis-à-vis the others, ceteris paribus, never

lowers the position of the alternative in the collective ranking. This concerns fixed

electorates, i.e. those where the modifications occur within the same electorate. In

variable electorates, in contrast, the electorate is assumed to expand as a result of new

voters joining it. The responsiveness of the voting rule is then typically determined by

whether or not it satisfies the property called participation. This property is defined

by means of the no-show paradox. The latter occurs whenever a group of identically-

minded voters is better off—in terms of the voting outcome—when it abstains than

when it votes according to its preferences. Thus, the conclusion that an instance of the

no-show paradox occurs is based on comparing two outcomes: one, say O1, resulting

from the application of a given procedure, F, to a set A of alternatives and to a profile

R of the set N of voters over A, and the other, say O2, resulting from applying F to

A and to a profile that consists of R augmented by a group of voters each having

identical preferences over A. Whenever the added voters prefer O1 to O2 we have an

instance of the no-show paradox.

This definition includes, as special cases, the two types of no-show paradoxes

outlined by Fishburn and Brams [11] (see also [8, 9]). To wit,



An Overview and Re-interpretation of Paradoxes of Responsiveness 27

Table 3 Plurality runoff and no-show paradox

26 voters 47 voters 2 voters 25 voters

x y y z

z z z x

y x x y

Definition 4 No-show paradox 1: The addition of identical ballots with x ranked

last may change the winner from another candidate to x.

And the other type:

Definition 5 No-show paradox 2: One of the candidates elected could have ended

a loser if additional people who ranked him in first place had actually voted.

These are clearly non-equivalent definitions with a common feature: the added

voters are better off not voting in both cases (see also [16]). In the former definition

the fact that they vote according to their preferences brings about the outcome that

is their worst, while without their votes, the outcome would have been something

more preferable. In the latter definition, the added voters’ votes to their most pre-

ferred candidate turn their favorite into a non-winner, whereas with their abstaining,

it would have won. The non-equivalence of the definitions is demonstrated by the

plurality runoff (a.k.a. alternative vote or instant runoff) and the following 100-voter

profile (Table 3).

Let us first assume that the group of 47 voters in the second column do not vote

at all. Since there are then only 53 voters, none of the three candidates gets elected

on the first round. Instead, the second round is arranged between x and z, where-

upon z wins with 27 votes against 26. Suppose now that the 47-voter group joins the

competition. Its lowest ranked alternative is x. With this group joining the profile

is the one depicted in Table 3. Now the second round involves x and y resulting in

the victory of x, the worst alternative of the 47-voter group. Thus, the situation is

one described Definition 4. On the other hand, the conditions of Definition 5 cannot

apply to the plurality runoff system. The reason is the following. Let x be the winner

in the original profile and add a group of voters with identical preferences with x
ranked first to obtain the augmented profile. Adding the group does not affect the

distribution of voters who rank other alternatives first. Thus, whichever alternative

was the runoff competitor of x in the original profile, will be its competitor in the

augmented profile. Since x defeated its runoff competitor in the original profile, it

will defeat it in the augmented one as well since its support has been increased, while

that of its competitor hasn’t. If x won in the first round in the original profile—i.e. no

runoff was required—it clearly does so in the augmented one as well (see also [9]).

Thus, Definitions 4 and 5 are non-equivalent.

The case of plurality runoff is instructive in another way as well, viz. it shows

that although apparently similar the properties of non-monotonicity and vulnerabil-

ity to no-show paradox are not identical. Plurality runoff is upward non-monotonic,
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but not vulnerable to the no-show paradox in the sense of Definition 5. It turns out

that—although seemingly closely related—upward non-monotonicity and vulnera-

bility to the no-show paradox in the sense of Definition 5 are largely logically inde-

pendent: there are systems that are vulnerable and monotonic in this sense and there

are vulnerable ones that are non-monotonic. An example of the former combination

is Copeland’s rule and of the latter, as was just seen in Table 3, the plurality runoff

and alternative vote. Of systems that are invulnerable to the no-show paradox in the

sense of Definition 5 and are upward monotonic one can mention the Borda count

and plurality voting [19]. Finally, Campbell and Kelly provide a constructive proof

that there are systems that are upward non-monotonic, but at the same time invul-

nerable to the no-show paradox in the sense Definition 5 [4].

5 Extreme Forms

The no-show paradoxes can take on various degrees of severity. In particular, it may

turn out that the alternative ranked first by a sub-group of unanimous voters will be

a winner if they abstain, but a non-winner if they vote according to their preferences,

ceteris paribus. So, by voting this group may turn their favorite from a winner to a

non-winner. This is called the P-TOP paradox by Felsenthal and Tideman [7]. This

is obviously the extreme form of Definition 5. It is also known as the strong no-show

paradox [20].

The extreme form of Definition 4, on the other hand, occurs when a group of unan-

imous voters voting according to their preferences where x is ranked lowest, ceteris
paribus, brings about an outcome where x wins, while, had the group abstained,

some other alternative would have won. So, by voting the group changes the out-

come from something that is not their worst to something that is. This paradox is

called the P-BOT paradox [7]. Table 4 illustrates the strong no-show paradox under

Copeland’s rule. The example has been originally devised by Fishburn and thereafter

utilized by Richelson as well as by Felsenthal and Nurmi [8, 10, 21].

Here v defeats more alternatives in pairwise comparisons (with the majority rule)

than any other alternative and is thus the Copeland winner. Suppose we add a voter

with the preference ranking vwxyz to the original profile of Table 4. This modifi-

cation leaves v’s Copeland score unchanged, but makes w the Condorcet, and hence

Table 4 Copeland’s rule and

the P-TOP paradox
2 voters 1 voter 1 voter

w z v

v y z

x x y

y w x

z v w
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Table 5 Copeland’s rule and

the P-BOT paradox
5 voters 4 voters

y z

z v

v x

x y

Copeland, winner. Thus, adding a voter ranking the original winner first to the profile

promotes another alternative ahead of the original winner.

Table 5 illustrates the vulnerability of Copeland’s rule to the other extreme form,

the P-BOT paradox.

As y is the strong Condorcet winner, it is eo ipso the Copeland winner. If we now

add three voters all having the the ranking: xvyz, this makes the 12-vote profile cyclic

in terms of the majority comparisons. The Copeland winners are now z and v. Thus

we have a weak version of the P-BOT paradox whereby the alternative ranked last

by the added voters belongs to the choice set in the augmented profile, whereas it

was not in the choice set in the original one.

Although we have used just Copeland’s rule in the illustration of the paradoxes,

it turns out that the P-TOP and P-BOT paradoxes are quite common among voting

rules. Indeed, Pérez has shown that nearly all Condorcet extensions are vulnerable to

either one or both extreme forms of the no-show paradox, the only exceptions being

the Minmax and Young’s rules [20]: the former is invulnerable to both P-TOP and

P-BOT, while the latter is invulnerable to the P-BOT one [8].

6 The MCDM Context

The vulnerability to monotonicity failures is typically discussed in the context of vot-

ing. There these failures confront the voters with contradictory incentives. On the one

hand, voting for one’s favorite would seem precisely what is needed to increase the

probability of his/her getting elected. On the other hand, depending on the procedure

used the voting might jeopardize the favorite’s chances of being elected or—worse

still—might lead to the election of the worst possible candidate. But monotonicity

failures can play a role in MCDM as well. To wit, let us assume that we have a choice

situation involving n criteria and ordinal measurements of the performance of the k
decision alternatives on those criteria. To make the decision one needs a rule which

allows the determination of the best alternative or priority ranking over all alterna-

tives to make a decision. The voting rules discussed above can then be used to find

a solution to the choice problem. Would this new context affect the significance of

the monotonicity failures?

Arguably not. If a non-monotonic aggregation of criterion measurements is being

resorted to, this would mean that improving an alternative’s position on some criteria

ceteris paribus might exclude it from the set of chosen alternatives even though it
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would have been chosen had the improvement not been made. This would apply to

upward non-monotonic systems. Similarly, in downward non-monotonic systems the

worsening of an alternative’s measurement value could lead to its choice. Hence, the

use of a (downward or upward) non-monotonic criterion aggregation rule could lead

to bizarre outcomes.

The same conclusion holds for monotonicity failures in variable criterion sets.

Introducing new criteria—in itself a very common occurrence—may result in strange

choices. Table 4 can be viewed from the MCDM angle as an illustration: with four

criteria and measurements depicted in the table Copeland’s rule results in v. How-

ever, if another criterion on which v is on top is added, another alternative—here

w—is chosen. To make the case somewhat more concretely, suppose the alterna-

tives are some devices (e.g. fighter jets) with several essential technical qualities

(maximum speed, fuel consumption, agility, easiness of service) along which the

order of preference can be formed. Suppose that five alternatives can be placed in the

order of priority along these technical criteria as in Table 4. Using Copeland’s rule

v is chosen. Then someone suggests another criterion, overall cost of purchase and

maintenance, and it turns out that v is best on this new criterion. If Copeland’s rule is

used in the new setting of five criteria, w emerges as the winner. This is undoubtedly

somewhat counterintuitive.

Equally if not more bizarre is the setting exhibited in Table 5. In the original set-

ting 5 out of 9 criteria place y at the top and by Copeland’s rule it is chosen. If three

criteria are added as described so that on all of them z is ranked last, the new choice

set includes this last ranked alternative.

Although Copeland’s rule has been used as an example above, these anomalies

characterize many other other rules based on pairwise comparison of alternatives.

In particular, it applies to most Condorcet extensions as was pointed out by Pérez.

Using these rules in aggregation of criterion measurements is thus questionable.
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Veto in Yes-no and Yes-no-Abstain Voting
Systems

Jacek Mercik

Abstract The paper presents a transformation from simple “yes-no” cooperative
games to simple cooperative games where players have more than two actions
available to them by introducing abstentions into a yes-no voting system. The
results obtained up to now are rather pessimistic (Felsenthal and Machover, Power,
voting, and voting power: 30 years after, Part II (2013) [6], even call them “the
curious case of the absent abstention”). We discuss in this paper the relation
between the right of veto, weights of the players and quotas. Our results clarify
some general properties and enable an a priori analysis to gain a better under-
standing of the decision-making mechanism of such decisive bodies. Examples of
the United Nations Security Council and Polish president-parliament cohabitation
are used to illustrate our discussion.

1 Introduction

The legislative process in many countries provides for the possibility of the
so-called veto, whose task is to strengthen the quality of legislation through the
elimination of possible mistakes or imperfections, and on the other hand, in situa-
tions of considerable controversy, through strengthening the conditions of its
acceptance (rejection of the veto, if permitted, usually requires a larger threshold of
votes “for”). For example, the need to break (if permissible within the legal system)
the veto results in the law not being passed by a simple majority, but by a qualified
majority of legislators. This is the case in Poland, where the passing of a law by the
Sejm usually requires a majority of over 50%, while overcoming the veto of the
president in the Sejm requires 3/5 of votes “for”. In the US, unlike in Poland,
overcoming of the veto requires 2/3 of the votes “for” of both chambers.

There appears to be a side effect (so to speak) of granting the right of veto to one
instance of the legislative process: its strengthening by increasing the influence of

J. Mercik (✉)
WSB University in Wroclaw, Wroclaw, Poland
e-mail: jacek.mercik@wsb.wroclaw.pl

© Springer International Publishing AG 2018
M. Collan and J. Kacprzyk (eds.), Soft Computing Applications for Group
Decision-making and Consensus Modeling, Studies in Fuzziness and Soft
Computing 357, DOI 10.1007/978-3-319-60207-3_3

33



this instance on the decision-making process, even when the veto is not actually
used. We are considering here the decision-making process in general and not the
law-making process in the parliament, albeit veto is universally associated with the
so-called presidential veto. However, there are also some analogies in other
decision-making processes. Examples include joint stock companies, where the
holder of the so-called “golden share” can also stop the whole decision-making
process, thus applying the veto in practice. In this case, the veto can not be rejected.
It can be thus concluded that there are two types of veto: such that can not be
rejected (i.e. veto of the first type) and such that can be rejected (i.e. veto of the
second type).

One purpose of this article is to attempt to estimate the “measure” of veto for
increasing the impact of the decision maker on the decision-making process. The
measurement of the so-called power of veto will allow the estimation of the part of
it that is not associated with correcting of legislation (decisions being taken), but is
perhaps its unintended “side effect”. The so-called power index is a tool to measure
the power, including the power of veto. Classic power indices (Shapley-Shubik,
Banzhaf and Johnston, to mention the most popular indices) are often modified, in
the opinion of the authors, to better capture the feature. For example, one may
observe the introduction of many modifications of the classical Shapley-Shubik
power index (see, for example, O’Neil [18], Napel and Widgren [17] or Kuziemko
and Werker [10]). In our paper, we do not assess which of these modifications are
the best. It seems that the study of the effect of veto on the decision-making process
needs no such modification.

From a theoretical point of view introduction of veto is a transformation from
simple “yes-no” cooperative games to simple cooperative games where players
have more than two actions available to them. Felsenthal and Machower [5]
introduced the term “tertiary games”, introducing abstentions into a yes-no voting
system, which for example suits the case of the Security Council. Hence, they
generalised the problem, which led to various attempts to better evaluate the role
and power of members which are empowered with veto and doesn’t empowered
with veto in the same decisive body. For example, Tchantchoa et al. [22] analyse
satisfaction, Freixas and Zwicker [7] multiple levels of approval and Grabisch and
Lange [8] multichoice games; all for yes-no voting with abstention. The results
obtained up to now are rather pessimistic: Felsenthal and Machover [6] even call
them “the curious case of the absent abstention”. Following this stream, we discuss
in this paper the relation between the right of veto, weights of the players and
quotas. Our results clarify some general properties and enable an a priori analysis to
gain a better understanding of the decision-making mechanism of such decisive
bodies.

The article is set up as follows. After introduction, the next section outlines the
way in which decisions are modelled. This section presents preliminaries connected
with the game-theoretical language of modelling and ways of calculating power
indices for a simple voting game and how to take vetoes into account in these
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calculations. The next section presents the calculation of different power indices for
games in which voters have equal voting rights, but some have an unconditional
veto (voting yes/no). This section describes a procedure to define an equivalent
voting game without vetoes in which players have different weights. After that, the
next section presents the calculation of the Shapley-Shubik power index in games
where voters have equal voting rights and there is yes-no-abstain voting. The last
but one section presents the derivation of equivalent games based on a transfor-
mation of weights, quotas and the type of voting. Some general evaluations of the
power of voting and non-voting players are presented together with examples of the
United Nations Security Council and president-parliament system. Finally, there are
some conclusions and suggestions for future research.

2 Preliminaries

Let N be a finite set of committee members, q be a quota and wj be the voting
weight of member j, where j ∈ N.

In this paper, we consider a special class of cooperative games called weighted
majority games. A weighted majority game G is defined by a quota q and a
sequence of nonnegative numbers wi, i ∈ n, where we may think of wi as the
number of votes, or weight, of player i and q as the threshold, or quota, needed for a
coalition to win. We assume that q and wj are nonnegative integers. A subset of the
players is called a coalition.

A game on N is given by a map v: 2N → R with v(∅) = 0. The space of all
games on N is denoted by G. A coalition T ∈ 2N is called a carrier of v if
v Sð Þ= v S ∩ Tð Þ for any S∈ 2N . The domain SG⊂G of simple games on N consists
of all v∈G such that

(i) v Sð Þ∈ f0, 1g for all S∈ 2N ;
(ii) v Nð Þ=1;
(iii) of v is monotonic, i.e. if S ⊂ T then vðSÞ ≤ vðTÞ.
A coalition S is said to be winning in v∈ SG if v Sð Þ=1 and losing otherwise.

Therefore, passing a bill, for example, is equivalent to forming a winning coalition
consisting of voters. A simple game (N, v) is said to be proper, if and only if the
following is satisfied: for all T⊂N, if v Tð Þ=1 then v N\Tð Þ=0.

We only analyse simple and proper games where players may vote either yes-no
or yes-no-abstain, respectively.

If a given committee member can transform any winning coalition into a
non-winning one by using a veto, then that veto is said to be of first degree.

If the veto of a given committee member turns some, but not all, winning
coalitions not including that member into non-winning coalitions, then that veto is
defined to be of second degree.
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3 Measurement of the Power of Decision-Maker

It is generally accepted that measurement of the power of the decision maker,
understood as his effect on the final result, is accomplished by means of the
so-called power indices. They originate from simple game theory, where they were
originally used to determine the division of the so-called payoff, or the value of the
game.

We consider the weighted decision-making body of the size n = card{N} in
which decisions are taken by vote, with a quorum γ, the sum of weights τ and
allocation of weights ω= ðω1, . . . ,ωnÞ. We assume that each i-th voter only votes
“yes” or “no”. Any non-empty subset of players S⊆N we call voter setup. For a
given allocation ω and quorum γ, we say that S⊆N is a winning configuration of
voters if ∑

i∈ S
ωi ≥ γ or a losing one if ∑

i∈ S
ωi < γ. let

T = ðγ,ωÞ∈ Rn+1 : ∑
n

i = 1
ωi = τ, ωi ≥ 0, 0≤ γ ≤ τ

� �
,

denote a set of all the coalitions size n with the sum of weights τ and quorum γ.
Most measures of power (referred to as the power indices) are used to measure

the so-called a priori power of players constituting a set that is structured only in
terms of voting rule. The a priori power index is therefore a vector function
Π: T→R+

n mapping the T set of all the n size coalitions in a non-negative set of real
numbers Rn. The power index, therefore, describes the expectations of the player
associated with decisiveness, in the sense that his voice will affect the final outcome
of the vote. There are two possible positions of such a player: pivotal position and
the “swing” position.

Let ði1, i2, . . . , inÞ denote a permutation of players from a coalition of n players,
and let the player k take the position r in this permutation, i.e. k= ir. We say that if k
is a player in a pivotal position with respect to the permutation ði1, i2, . . . , inÞ, if

∑
r

j− 1
ωij ≥ γ and ∑

r

j− 1
ωij −ωir < γ.

The most common a priori index, i.e. the Shapley-Shubik index [20, 21],
denoted as SS-index, is defined as the following expression:

SSðγ,ωÞ= pi
n!
,

where:
pi is the count of cases in which the player i is decisive and,
n! is the number of possible different powerful orders for the permutation.
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For the “swing” position the most commonly used a priori power index is the
Penrose- Banzhaf index [2, 19]. Let S be a winning configuration in the coalition
γ,ω½ �, and ϵ S. Being in the swing position in the configuration S means that the
following inequalities are met:

∑
kεS

ωk ≥ γ oraz ∑
kεS\fig

ωk < γ.

Let si denote the number of changes (swings) of the member in total, and in the
committee γ,ω½ �. The Penrose-Banzhaf index for a member of the coalition is
defined as follows:

PBiðγ,ωÞ= si
∑
k∈N

sk
.

Both indices can be used to measure the power of veto, although the
Penrose-Banzhaf index, it seems, is better suited for this purpose as, assuming that
the coalition is formed and one of its members betrays it (swings), such behaviour
is, in a way, a use of the veto. Thus we think that the “swing” should be used in the
measurement of the a priori power of veto. The problem is that the Penrose-Banzhaf
index is not the only one based on such concept of the position of the decision
maker. In addition, we know that the decision-making process in this case is
sequential in nature, and only the end result is (or rather may be) vetoed. The use of
other indices should also be considered: Coleman index [4] of the coalition
maintenance; Coleman index of the power to initiate action; Coleman index of the
power of the collectivity to act, Rae index; Zipke index; Brahms-Lake’s index;
Deegan-Packel index; Holler index; or Johnston index. The latter index is a “swing”
type index and according to Brahms [3] or Lorenzo-Freire et al. [11] it best
describes the decision-making process, in which a veto can occur.1

The concept of Johnston power index [9] is based on the concept of the so-called
vulnerable coalition.

The coalition is vulnerable if it includes at least one member in the “swing”
position, and whose defection converts the coalition from the winning of losing. For
example, in the Polish Sejm, the President, together with 232 members of parlia-
ment creates a vulnerable coalition, in which only he has all the power in the sense
of Johnson: a defection by the president (the use of the veto) converts the winning
coalition into a losing one (and none of the deputies alone is able to do—there is
always the remaining majority of 231 deputies). Note that the president and 231
members of parliament also create a vulnerable coalition, however, the president
has to share the power with each of the members: each of them is therefore equally
powerful.

1Axiomatic characteristics of strength indices in decision-making bodies of the veto can be found
in Mercik [13], while dynamic characteristics can be found in Mercik and Ramsey [16].
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Let us Consider (Table 1) the following example: the game [4; 3, 2, 1], i.e.
voting where there are three voters with 3, 2 and 1 votes each. The majority needed
for a decision is 4. The following are vulnerable coalitions in this game: (3, 2), (3,
1) and (3, 2, 1) (vulnerable coalitions must be winning coalitions).

Example 1 The value of the Johnston index for the Polish president-parliament
system.

Table 2 shows the results of calculations for the Polish Sejm and the president
(the Senate is not involved in the veto process—each majority in the Sejm rejects
the veto of the Senate).2

The actual presidential veto in Poland is the veto of the second type, i.e. it can be
rejected by a majority of 3/5 votes of the Sejm. In theoretical considerations,
however, we can also assume the existence of a veto of the first kind, i.e. allow the
possibility that the veto of the president can not be rejected.3 Values for the a priori
Johnston index for the situations when the president respectively does not have a
right to veto, is equipped with a veto of the first type, and is equipped with a veto of
the second type are shown in Table 3.

The applied a priori power index is a standardized index and therefore the results
of the calculations show that in the Polish parliamentary system the position of the
president can count only in the situation when he is equipped in veto of the first
kind, i.e. the kind of veto that can not be rejected. Because such situations are
difficult to imagine (and would mean virtual dictatorship of the president) it should
suffice to compare the a priori power of the president without the right of veto and
with the veto of the second kind. Using the results from Table 3 it can be calculated
that the veto itself increases the strength of the president by 1,675 times, which is a
significant result, although we observe a considerable imbalance of power between
the president and Sejm in favour of the latter (Table 2).

Table 1 The Johnston power indices for the game [1–4]

Vulnerable
coalitions

Number of
vulnerable
coalitions

Critical defections Fractional critical defections
3 votes
player

2 votes
player

1 vote
player

3 votes
player

2 votes
player

1 vote
player

(3, 2) 1 1 1 0 ½ ½ 0
(3, 1) 1 1 0 1 ½ 0 ½
(3, 2, 1) 1 1 0 0 1 0 0
Total 3 3 1 1 2 ½ ½
J(i) 4/6 1/6 1/6
Source Mercik [12]

2Details of the calculations can be found in Mercik [12]. General issues related to the calculation
can be found, among other works, in Alonso-Meijide et al. [1].
3From the point of view of the winning coalition, this means that the president must be its member.
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Similar calculations can be carried out using other indices of power, although the
results seem to be similar. Thus, the right of veto is an important attribute (also with
regard to the president in the Polish parliamentary system) and it is possible to
“value” it as a priori power of the decision maker.

Example 2 (Mercik and Ramsey [15] A priori power of the UN Security Council
and its members (yes-no voting system).

Let us recall that the United Nations Security Council has 5 permanent members
with power of veto, 10 non-permanent members without power of veto; in total 15
members (N = 15).4 The quota for a decision to be passed is q = 9. All members
have equal weight (wi = 1, for i = 1, …, 15). However, the yes-no voting system is
not exactly the type of voting in use in the UN Security Council but yes-no voting is
a good starting point for a more general analysis.

One may compare the values of a priori indices of veto and non-veto members of
the UN Security Council (yes-no version). One may find the results in Table 4.

As we may see from Table 4, the ratio between the power indices of
non-permanent and permanent members of the UN Security Council varies from 1
to 10.10 for the Penrose-Banzhaf power index to 1 to 105.24 for the
Shapley-Shubik power index. Actually, in the literature on power indices the
absolute Penrose-Banzhaf power index is the most commonly accepted one, so we
may conclude that a permanent member of the council is approximately 10 times
stronger than a non-permanent one if no member uses his or her right to abstain.

Let us now analyse situation when veto is introduced. In fact, abstention by a
non-veto player is identical to voting against an issue. This is not the case for
veto-players. In a priori analysis, on one hand all veto-players must be included in
any winning coalition to prevent a veto being used. On the other hand, when a veto

Table 2 The value of the Johnston power index for the Polish president-parliament system

Johnston Power index

Without the party structure in the Sejm With the party structure in the Sejm
President 0.9234 0.0067
Sejm 0.0766 0.9933
Senate 0 0
Source Mercik [12]

Table 3 The value of Johnston index for the president equipped with a different kinds of veto

President without the
right of veto

President with the veto of the
first type

President with the veto of the
second type

0.0040 0.1190 0.0067
Source own calculations

4UN Security Council voting System [23] http://www.un.org/en/sc/meetings/voting.shtml (taken
on 15.03.2017).
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player abstains, then a given coalition must be enlarged by another non-veto player
to substitute the veto player who abstains. Let kv denote the number of veto-players
choosing to abstain, kv =0, 1, 2, . . . , v (for example: each permanent member of
the UNSC may abstain. In this case v=4). This means that in the a priori analysis
the game N, q,wð Þ should be replaced by the sequence of games ðN, q+ kv, wÞ for
kv =0, . . . , v. It is easy to notice that for kv =0 this game is in fact the game with
yes-no voting only.5

Example 3 (Mercik and Ramsey [14, 15] A priori power of the UN Security
Council and its members (yes-no-abstain voting system).

First, we calculate the Shapley-Shubik power index directly for a given kv.
A non-permanent member is pivotal only if he or she is the ninth player in the
coalition, preceded by all non-abstaining (5− kv) permanent members and ð3+ kvÞ
non-permanent members. Note that there are

9
3+ kv

� �
ways of choosing the

players who appear before player i and 8! ways of ordering these players. The
number of players that come after player i equals 6− kvð Þ, i.e. the non-veto players
who did not appear before player i. There are 6− kvð Þ! orderings of these players.

So, for non-veto player i (i > 5) this happens in
9

3+ kv

� �
8! 6− kvð Þ! ways.

Ignoring the abstaining permanent members, there are ð15− kvÞ! sequential coali-
tions, so the Shapley-Shubik power index for a non-veto player in this game with

given kv equals πSSi N, q,wð Þ kvð Þ= 1
ð15− kvÞ!

9
3+ kv

� �
8! 6− kvð Þ!.

Dividing the rest of the power equally among the 5− kv non-abstaining per-
manent members, we obtain a Shapley-Shubik power index for them of

Table 4 A comparison of power indices for permanent and non-permanent members for the
yes-no voting version of the game based on the UN Security Council from the perspective of a
priori power indices. Source own calculations

Relative
Penrose-Banzhaf
Power Index

Absolute
Penrose-Banzhaf
Power Index

Shapley-Shubik
Power Index

Johnston
Power
Index

Permanent member (veto
member)

0.166929 0.051758 0.196270 0.177987

Non-permanent (non-veto
member)

0.016535 0.005127 0.001865 0.011006

Ratio of
non-permanent/permanent
members

1:10.10 1:10.10 1:105.24 1:16.17

5Note that in the UNSC example we may assume that the abstaining permanent members do not
take part in the game, thus we do not need to consider the case kv = 5.
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πSSi 15, 9, 1ð ÞðkvÞ=
1− 10

ð15− kvÞ!
9

3+ kv

� �
8! 6− kvð Þ!

5− kv
i≤ 5.

The exact values for different values of kv are presented in Table 5.
The results shown in Table 5 support our intuition connected with the relaxation

of the power of veto, i.e. introduction of abstentions. The relative power of a
non-permanent member of the UN Security Council increases from 0.95 to 26.67%
of the power of a non-abstaining permanent member of the council as the number of
permanent members of the council abstaining increases. One result which seems
initially counter-intuitive is that the power index of a lone non-abstaining veto
player is actually lower than the power index of two non-abstaining veto players.
This is probably due to the fact that a single veto player would need all but two of
the non-permanent members to pass a motion. Hence, the non-permanent members
are becoming close to veto players.

4 Formal Equivalence of Quota, Weights and Veto

Mercik and Ramsey [14, 15] showed a general formal equivalence in a priori
analysis between voting games with first degree vetoes and standard weighted
voting games. Consider the n player game where k players have an unconditional
veto and the quota is q. We now define a game without veto power, but with
weighted votes, that is equivalent. Let wi be the weight of player i and w̄ be the sum
of these weights. Assume that the minimum weight of the votes against a motion
m necessary to stop it being passed is the same in both games, i.e. m = n − q + 1,
and non-veto players are given a weight of 1. Hence, we define the quota to be
w̄− n+ q. Note that by giving each of the veto players a weight of m in the new
game, then each of them essentially remains a veto player, since the quota cannot be
attained if any veto player votes against the motion. Also, from the definition of the

Table 5 Shapley-Shubik power index for veto and non-veto members of the UN Security Council
as a function of the number of abstentions among permanent members. Source own calculations

Number of
veto players
abstaining, kv

Shapley-Shubik
power index for
non-permanent
members

Shapley-Shubik power
index for non-abstaining
permanent members

Ratio of power between
non-permanent and
permanent members
(in %)

0 0.001864802 0.196270396 0.95
1 0.006993007 0.232517483 3.01
2 0.019580420 0.268065268 7.30
3 0.042424242 0.287878788 14.74
4 0.072727273 0.272727273 26.67
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weights, it is simple to see that if at least q − k non-veto players vote for a motion,
in addition to the veto players, then the motion will be passed. It follows that the
two games are equivalent, i.e. have the same set of winning coalitions. It should be
noted that any higher weights given to the veto players would satisfy this equiv-
alence relationship (as long as the quota is changed appropriately—in fact the veto
players could all be given different weights ≥ m and the resulting game would still
be equivalent).

Example 4 Equivalent simple game for United Nations Security Council.
For the United Nations Security Council where there are 5 permanent members,

10 non-permanent members (in total 15 members), we have n = 15, k = 5 and
q = 9. Now, we construct an equivalent simple game without veto players:
m= n− q+1= 15− 9+ 1=7. Hence, the initial representation of the voting game
played by the Security Council of the UN is [9; 1*, 1*, 1*, 1*, 1*, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1], where veto players are marked by stars. This is equivalent to the simple
game [39; 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

Given that kv permanent members abstain, arguing as above we can treat this as a
game where n=15− kv, k=5− kv and q = 9. The number of votes needed to block
a bill is 7− kv. Hence, we ascribe a weight of 7− kv to each non-abstaining per-
manent member. It follows that the sum of weights is given by ð7− kvÞð5− kvÞ+10
and the quota is ð7− kvÞð5− kvÞ+4+ kv. Table 6 presents the appropriate weighted
games for different kv.

5 Summary

Analysis of the impact of the veto attribute on the position of the decision-makers
allows to conclude that there are no paradoxical situations and the veto actually
increases the decisive power of a certain decision maker. How strong this impact is
remains an open question. Measurement of power using power index is an a priori
measurement, and therefore relating to situations occurring only at certain fre-
quency. E.g. examining the situation in the UN Security Council, we find that as the
most frequent numbers of abstentions equals 0 or 1 (at least in the year 2014). One
may say that in the sense of the Shapley-Shubik power index the United Nations

Table 6 The values of quota and weight of veto player for different number of abstains. Source
own calculations

Number of abstentions New quota of modified Security Council Weight of veto player

0 39 7
1 29 6
2 21 5
3 15 4
4 11 3
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Security Council may be represented by the simple game N, q,wð Þ=
ð15, 39, 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1Þ or N, q,wð Þ= ð14, 29, 6, 6, 6, 6, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1Þ respectively. These weights can be used in a certain sense as a ratio
of measures of the power of permanent members compared non-permanent mem-
bers and the ratio of the force non-permanent members of the Security Council to
the permanent ones is at least equal to 1:6, or considering the value of the power
index ranges from 1:3.5 to 1:105.25, depending how many permanent members of
the council choose to abstain. It is believed that similar proportions will also occur
for other decision-making bodies which introduce the veto. That means, without
doubt, that the introduction of veto to the decision-making system results in
empowering the decision-makers possessing it and should be preceded by an
analysis of the balance of power between decision-makers, because the introduction
of veto distorts the balance in itself.

Analysing the differences between the yes-no and yes-no-abstain voting systems
we find that the introduction of veto in each situation (yes-no and yes-no-abstain)
increases the power of the decision-makers possessing it.
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Power Indices for Finance

Cesarino Bertini, Gianfranco Gambarelli, Izabella Stach
and Maurizio Zola

Abstract The weight of the share stock of a company may be described by power
indices that quantify the possibility for each shareholder to get majority positions by
coalitions with other shareholders. To study such indices allows us to build efficient
models for forecasting, simulating, and regulating financial, political, and economic
fields. An overview of financial applications of power indices is presented; this was
carried out at the University of Bergamo along with partners in Europe and United
States. New explanations and examples are added so as to better illustrate the results
obtained. Additionally, certain open problems are described.
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Simple games ⋅ Takeover ⋅ Voting ⋅ Weighted majority game

1 Introduction

Let us consider shareholding with only three shareholders (A, B, and C) with the
following shares: 30% to each A and B, and 40% to C. If there are no propensities or
aversions to any coalition, it is easy to see that all of the players are equivalent to
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form possible coalitions for a simple majority. Thus, they have the same “coalition
power” (i.e., each has 1/3). The same situation would be if A and B would each
have 49% of the shares and C 2%: this last one would possess the same effective
power as the others (also if with a nominal power who is very low).

On the contrary, if A possesses 51% of the weight, his power would be 100%
(i.e., 1). What could be said if the sharing is 50% to A, 30% to B, and 20% to C? In
this case, A does not have the majority; however, each of the other two should join
A, because a coalition between B and C is a minority coalition. It is easy to
understand that this last one has the same position of power (also if with different
quantities of shares). It could be deemed that A has greater power due to his greater
percentage of shares; it could be assigned a power division of 2/3, 1/6, or 1/6 after
the Shapley-Shubik model (see [61] or [62]). Another possibility is a division of
3/5, 1/5, or 1/5 after the Banzhaf-Coleman-Martin-Penrose model (see [5, 19],
or [14, 15]).

2 Some Preliminary Definitions

Let N = {1, 2,…, n} be a nonempty finite set. By a game on N, we shall mean
real-valued function v whose domain is the set of all subsets of N such that
v(Ø) = 0. We refer to any member of N as a “player” and to any subset of N as a
“coalition.” Game v is said to be “simple” if function v assumes values only in set
{0, 1}: v(S) = 0 or v(S) = 1 for all coalitions S⊆N. In the first case, the coalition is
said to be losing; in the second case, winning.

Let us consider an assembly composed of a set N = {1,…, n} of members. Each
i-th player is given certain “weight” wi (which can represent votes, seats, shares,
and so on). Let t be the sum of weights of all players in N. Given “majority quota”
q (>t/2), the elements make up a “weighted majority game,” which is usually
indicated by symbol [q; w1,…, wn] or also by [q; w]. In this type of game, each
coalition S of members of N is called a “winning coalition” if the sum of the
weights of its components is equal to or greater than q; otherwise, it is called a
“losing coalition”; that is:

vðSÞ=
1 if ∑

i∈ S
wi ≥ q

0 otherwise

(

With reference to the example in the previous section, we have N = {A, B, C},
wA = 50, wB = 30, wC = 20, t = 100, q = 51 by using letters instead of numbers;
thus, the game is represented as [51; 50, 30, 20]. The winning coalitions are {A, B},
{A, C}, and {A, B, C}, while the losing coalitions are Ø, {A}, {B}, {C}, and {B, C}.

In this example, the payoff (the “power”) of the total coalition is one: v({A, B,
C}) = 1. It is clear that, if all of the possible coalitions have the same probability,
a reliable power index should give to game [51; 30, 30, 40] the following share of
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power (1/3, 1/3, 1/3); analogously for game [51; 49, 49, 2]. It is also clear that a
valuable index should give to game [51; 51, 39, 10] the share of power (1, 0, 0), but
it is not so easy to share the total payoff for game [51; 50, 30, 20]. How can the
problem be solved? A natural solution is based on cruciality.

The i-th player is called “crucial” for coalition S if S is a winning coalition, but it
becomes a losing coalition without the contribution of this player. Let C(i, v) denote
the set of all coalitions (S) for which the i-th player is crucial in game v (i.e.,
v(S) = 1 and v(S\{i}) = 0).

In the previous example ([51; 50, 30, 20]), player A is crucial for coalitions
{A, B}, {A, C}, and {A, B, C}; player B is crucial only for {A, B} and player C only
for {A, C}.

A value for a game is function v suitable to share the total payoff v(N) among the
n players.

A power index is a value for simple games.
A “power index” of a weighted majority game is a function designed to fix a fair

division, or to represent a reasonable a priori expectation of the share of a global
prize among the players. More specifically, in the case of weighted voting game
(q; w1,…, wn), power index π assigns voting power (π1,…, πn) to the participants of
the voting body.

Let v: [q; w1,…, wn] be a weighted majority game. We say that power index π is
“locally monotonic” if wi > wj => πi(v) ≥ πj(v).

Let v: [q; w1,…, wi,…, wn] and v′: [q; w′1,…, w′i,…, w′n] be two weighted
majority games such that wi > w′i for one i∈N and wj ≤ w′j for all j ≠ i. We say
that power index π is “globally monotonic” if πi(v) ≥ πi(v′).

In [34], Gambarelli proposed the following definition of strong monotonicity:
π(v) is “strongly monotonic” if, for all i and all weighted majority games v, v′ with
Cði, vÞ⊂Cði, v0Þ, πi(v) < πi(v′).

3 The Martin-Penrose-Banzhaf-Coleman
and Shapley-Shubik Indices

Martin in 1787, Penrose [55], Banzhaf [5], and Coleman [19] introduced indices
that, under various aspects, may be considered equivalent (as far as Martin, see
[56]). The “normalized Banzhaf-Coleman index” ß represents a summary of such
indices. This index assigns each player a quota proportional to the number ci of
coalitions for which he is crucial.

For instance, in the previous example ([51; 50, 30, 20]), A is crucial for three
coalitions while B and C are crucial for only one coalition each. As the sum of
crucialities is 5, the normalized Banzhaf index assigns 1/5 of the power to player B,
1/5 to player C, and 3/5 to player A; i.e., ßA = 3/5, ßB = ßC = 1/5.

The “Shapley-Shubik index” Φ (Shapley and Shubik [61]) is an expression
of the Shapley value [60] for simple games such as weighted majority games.
This index assigns each i-th player an expected payment corresponding to the
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probability of finding himself in a crucial position upon joining an established
coalition.

With reference to the previous example ([51; 50, 30, 20]—see Table 1) we start
from coalition composted only of singular player A, then player B joins the coalition.
The new coalition {A, B} becomes a majority coalition; thus, B is crucial for this
coalition (see the first row). Analogously (see second row), if C joins the coalition
with the lonely A, coalition (A, C) becomes a majority coalition. In the other four
cases, A is the crucial player. From the totals, we can derive that the Shapley-Shubik
index is 4/6 for A and 1/6 for each B and C; i.e., Φ = (2/3, 1/6, 1/6).

There is a formula to avoid the computations of Table 1. Indicated as
P(s, n) = (s−1)!(n−s)!/n!, the Shapley-Shubik index of every i-th player is given by
the sum of all P(s, n) extended to all of the coalitions of s members for which the
i-th player is crucial:

Φi = ∑Pðs, nÞ= 1
n!
∑ s− 1ð Þ! n− sð Þ!

In the above example, it is n = 3, 0! = 1! = 1, 2! = 2, 3! = 6. As player B is
only crucial for a single two-member coalition, his index is ΦB = P(2, 3) = (2−1)!
(3−2)!/3! = 1/6; the same is true for player C. The Shapley-Shubik index of player
A is ΦA = P(2, 3) + P(2, 3) + P(3, 3) = 1/6 + 1/6 + 1/3 = 2/3.

A crucial difference between the normalized Banzhaf and Shapley-Shubik
indices lies in the bargaining model: the former does not take into account the order
in which a winning coalition is formed, while the latter does (from a mathematics
point of view, the first index takes into account the combinations and the second
one the permutations).

It is important to note that the first index is not globally monotonic in the sense
that if a player gains weight from another player, its normalized Banzhaf index
could decrease. This is a simple example: in a game with 5 players [9; 5, 5, 1, 1, 1],
each of the last three players is “dummy” who is it is not crucial for any coalition.
To compute the power sharing is easy: (1/2, 1/2, 0, 0, 0). If the first player takes a
weight unity from the second one, the game becomes [9; 6, 4, 1, 1, 1] and the
Banzhaf-Coleman index is (9/19, 7/19, 1/19, 1/19, 1/19). Thus, the first player gains
weight at the second’s expense, but his power decreases (after Banzhaf-Coleman)
from 1/2 to 9/19.

Table 1 Computation of the
Shapley-Shubik index

A B C

A ← B ← C x
A ← C ← B x
B ← A ← C x
B ← C ← A x
C ← A ← B x
C ← B ← A x
Totals 4 1 1 = 6
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On the other hand, the Shapley-Shubik index satisfies this monotonicity prop-
erty. Both indices, however, satisfy local monotonicity: players with higher weights
have at least as much voting power as players with lower weights. For some
in-depth consideration on this issue, see Turnovec [64] or Holler and Napel [42], for
example.

With regard to applications, the normalized Banzhaf index is considered
best-suited for inclusion in normative models thanks to its direct proportionality to
the number of crucialities. On the other hand, the Shapley-Shubik index is
best-suited for forecasting models owing to its properties of monotonicity and
stability (belonging to the core in convex games).

Therefore, the Shapley-Shubik index is more suitable to forecast the results of
negotiations (for example, the stock exchanges with coalitions that are changing
their structure); on the contrary, the Banzhaf-Coleman index is more suitable for
normative models (for example, for electoral systems where it is used the pure
proportionality). In [57], Rydqvist noticed a strong similarity between the
Shapley-Shubik index and the quotation of share equities for equity takeover on the
Swedish equity market.

An axiomatic characterization of the Shapley-Shubik index (i.e., a set of
requirements that only that index is suitable to fulfill) was given by Dubey in [26]; a
characterization of the Banzhaf-Coleman index was given by Owen in [51]. For
other lesser-known or lesser-used indices, see [8–10].

4 A First Application

It is easy to understand that the above-described models may be applied to the
political field where shares are substituted by seats in a parliament. In this case,
it should consider the affinity and aversion of the various members. Guillermo
Owen proposed some generalizations of the Shapley-Shubik index [50] and
Banzhaf-Coleman index [52] when it is possible to forecast the formation of dif-
ferent coalitions [38].

A political case is reported here due to the interesting computation follow-up.
In this section, using a real-world situation as a starting point, we shall focus our

attention on the existence of constant power positions in weighted majority games.
Before examining the numerical results, some observations are required on the

reliability of the models in question.
First, some coalitions that are possible in theory are not possible in practice; for

instance, those between the extreme right and extreme left parties. For the correct
application of an index, it seems necessary to discard all of the coalitions that are
unfeasible from the cruciality calculations for each player. However, there are
decision situations (e.g., referendum or presidential elections) where numerical
strength is more important than political closeness; in these cases, the original
model applies.
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Table 2 shows the powers of the parties after the Italian election taking us from
the 10th to the 11th legislature, according to the normalized Banzhaf and
Shapley-Shubik indices (the computation was made by the algorithms shown in
[37]). It is interesting that the DC party decreased its seat number from 234 to 206
yet increased power after both indices. The different distribution of the seats has
favored that party against the others.

Further, a comparison between the PDS and PSI parties shows that, while the
former party had almost twice as many seats as the latter, it has the same power
(despite the fact that the numerical values differ depending on which index is used).
It is easy to explain why if situation (2, 49, 49) is kept in mind, where the third party
has the same coalitional power as the other two. This poses some interesting
questions: in which cases do the normalized Banzhaf and Shapley-Shubik indices
(and possibly other indices as well) behave in a similar way even with different
numerical values? How can these properties be used in practical applications? Some
answers will be given in the following sections.

5 Financial Applications

Let us now consider that the parties of Table 2 are shareholders of a company. It is
worth noting that shareholder PDS owns a lot more shares than shareholder PSI yet
has the same decision power. He could then decide to yield some of his shares that
are useless to control and to buy other shares of other companies to get a better

Table 2 Banzhaf-Coleman and Shapley-Shubik power indices in the Deputies Chamber in Italy

Party 10th legislature 11th legislature
Seats Ba.Co. Sh.Sh. Seggi Ba.Co. Sh.Sh.

DC 234 35.3 39.3 206 42.7 41.6
PDS 177 21.2 22.1 107 13.3 15.5
PSI 94 21.2 22.1 92 13.0 13.8
Lega Lom. 1 1.3 0.1 55 8.4 7.1
Rif. Com. 0 – – 35 4.6 4.2
MSI 35 3.9 5.1 34 4.5 4.1
PRI 21 6.5 2.8 27 3.5 3.4
PLI 11 2.0 1.5 17 2.3 2.3
PSDI 17 2.7 2.0 16 2.1 2.1
Verdi 13 2.3 1.7 16 2.1 2.1
Rete 0 – – 12 1.6 1.5
Pannella 13 2.3 1.7 7 0.9 1.0
SVP 3 0.5 0.3 3 0.5 0.7
Others 8 + 1 + 1 + 1 0.8 1.3 1 + 1 + 1 0.5 0.6
Totals 630 100.0 100.0 630 100.0 100.0
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power position in those companies. In general, the question is whether there is a
mathematical model to buy and sell shares so as to give him the maximum
expectation of success to control various companies. The problem is very important
due to the large quantity of involved money, and it was solved in the ‘80s by the
theory of power indices. Moreover, some common behaviors of the various indices
were identified, and some answers to the questions in the previous section were
found.

In the following sections, these issues will be examined (starting from the easiest
case of two shareholders).

5.1 The Case of Two Players

Using the power indices as a starting point, it is possible to build simulation models
of a shareholder’s power variations following a modification in share distribution
with particular regard to share shifts between one shareholder and another as well as
the inclusion of new shareholders who modify share redistribution (the latter case
will be examined in a following section). Suppose the shares of a company are
initially distributed between only two shareholders in a proportion of 75–25%. In
this case, the first party has the majority for all decisions that require a majority of
51%; therefore, the power index is (1, 0), which is to say 1 for the first and 0 for
second shareholder. If the first shareholder’s shares are 50.5% and the second
shareholder’s shares are 49.5%, the index is (1/2, 1/2).

In general, the set of points on a Cartesian plane (representing all possible shares
distributions) is the oblique segment in Fig. 1, where w1 and w2 are the weights of
the two shareholders (with conventions w1 ≥ 0, w2 ≥ 0, and w1 + w2 = 100). It
should be noted that, at all points having abscissa greater than or equal to 51, the
power index is (1, 0); at all points having abscissa less than or equal to 49, the
power index is (0, 1); at all other points, it is (1/2, 1/2).

Suppose that, starting from position (75, 25), the first shareholder yields shares
to the second one (see Fig. 2). As long as the point lies in the lower right segment,
the power remains unchanged; therefore, the decrease in power ΔΦ of the first
shareholder is zero. If the point reaches the central segment, then the decrease of
power is ΔΦ = 1/2, while, if the point passes it, then the decrease of power is
ΔΦ = 1.

5.2 The Case of Three Players

Figure 3 shows a three-player game where vector w = (w1, w2, w3) represents the
non-negative weights (shares) of the shareholders under constraints t = w1 +
w2 + w3 = 100. Owing to the constraints above, vector w lies within the triangle

Power Indices for Finance 51



having vertices (100, 0, 0), (0, 100, 0), and (0, 0, 100). For the sake of simplicity,
we will consider a game with simple majority.

Let us consider the parallel plane to the first and third axis, passing through point
(0, 50, 0). At all points to the right of this plane (i.e., where w2 > 50), the second
player has a majority, and therefore his power is 1 in these points. Consider the
smaller triangle having vertices (0, 100, 0), (50, 50, 0), and (0, 50, 50). The power
index is (0, 1, 0) at all points of this triangle (with the exception of the segment

Fig. 1 All possible
distributions of seats between
two parties

Fig. 2 Power variations
following a modification in
share distribution between
two shareholders
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joining the last two vertices). Analogously, the index is (1, 0, 0) at all points on the
triangle having vertices (100, 0, 0), (50, 50, 0), and (50, 0, 50). It is also possible to
verify that the index is (1/3, 1/3, 1/3) at all points on the central triangle having
vertices (50, 0, 50), (0, 50, 50), and (50, 50, 0) (borders excluded). Regarding the
borders, the values differ at the internal points of each segment depending on the
chosen index. For instance, for the border that joins vertices (50, 50, 0) and (0, 50,
50), the normalized Banzhaf index is (1/5, 3/5, 1/5), while the Shapley-Shubik
index is (1/6, 2/3, 1/6); the same (with suitable permutations) applies for the others.
Finally, on the vertices of the small central triangle, the index is (1/2, 1/2, 0), (1/2,
0, 1/2), and (0, 1/2, 1/2).

Also note that, when the non-limit case is considered, the diagram would show
subdivisions of the large triangle not only as small triangles but also as trapezia.
(There are two types of diagrams, depending on whether q is greater or less than 2t/
3.) Each of these polygons has the following property: in all points, the game is
constant as regards the coalitions for which each player is crucial. Now, it is
possible to give an intuitive answer to one of the questions posed at the end of
Sect. 4: do the Shapley-Shubik, normalized Banzhaf, and possibly other indices
behave in a similar way even though they have different numerical values?

5.3 The Case of n Players

Readers can envisage a generalization of what has been examined so far when
applied to games with n players. The triangle in Fig. 3 becomes a simplex of
Euclidean n-dimensional space, having vertices at all points so that one of the

Fig. 3 Power variations
following modification in
share distribution between
three shareholders

Power Indices for Finance 53



components is the total sum of weights t and all other components are zero (in our
case, t = 100). This simplex is subdivided into convex polyhedra by hyperplanes
parallel to the main axis and where the distance from these is q and t − q. In each of
these polyhedra, the game is constant; therefore, once a power index has been
chosen to represent the real situation being studied, the index remains unchanged at
all points on each polyhedron.

For further information and theorems on the matter, see Gambarelli [34]. Other
common properties regarding various power indices may be found, for instance, in
Freixas and Gambarelli [31].

5.4 Share Shift Between Two Shareholders

Another model was studied to predict changes in power relationships that follow
from a shift by a subset of the shares from one shareholder to another (see Gam-
barelli [34]).

Let us assume that the initial distribution of shares among shareholders A, B, and
C in a 3-person weighted majority game is (51, 40, 9) (see Table 3). Given simple
majority voting (q = 51), a transfer of shares between B and C will not change the
situation, as A will remain the majority shareholder. However, let us now analyze
what happens if shares are exchanged between A and C. If C receives one share
from A, the distribution becomes (50, 40, 10) and the power distribution (according
to the Shapley-Shubik index) becomes (2/3, 1/6, 1/6). If C receives two shares from
A, the distribution of shares becomes (49, 40, 11) and the power distribution is
(1/3, 1/3, 1/3). The division of power remains the same even if C obtains 40 shares
from A, as the share distribution becomes (11, 40, 49) in this case, and each player
is in the same position as the others. The situation changes only if C receives 41
shares from A: in this case, the distribution becomes (10, 40, 50) and the power of
C increases to 2/3. With one more share, C acquires the majority, and his power
increases to 100%.

Table 3 shows that the power of C is a monotonic step function of the number of
shares acquired by A. The critical stocks that allow C to pass from one position of
power to another are 9, 10, 11, 50, and 51. In Gambarelli [34], it was proven that,
no matter how a power index is defined (provided that it is strongly monotonic), the
sequence of critical stocks corresponding to shares transferred between two players
i and j is always the same. The formulae generating these critical stocks ds in a
company with n shareholders are given in this article.

Figure 4 shows the movement of the share vector while shares are being
transferred between A and C. As in Table 3, the number of shares owned by
B remains unchanged and the relative component is constant; therefore, the point
representing the resulting vector of the distribution of shares moves within a plane
parallel to the wA wC plane.

The resulting segment meets the borders of the small triangles at two points,
determining the step function (marked at the top right of the diagram) that shows
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Table 3 Exchange of seats between two players (according to the Shapley-Shubik index)

Company Number of shares
C receives from A

Resulting
distribution of
shares

Resulting
distribution of
power

Power
increase of
C

A 51 1
B 40 0
C 0 9 0 0

A 50 2/3
B 40 1/6
C 1 10 1/6 1/6

A 49 1/3
B 40 1/3
C 2 11 1/3 1/3

A 10 1/6
B 40 1/6
C 41 50 2/3 2/3

A 9 0
B 40 0
C 42 51 1 1
Synthesis

Number of seats (C receives from A) Resulting increment of power (%)
1 +16.7

From 2 to 40 +33.3
41 +66.7

From 42 to 51 +100.0

Fig. 4 Exchange of shares
between two shareholders and
following resultant
distribution of power
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the power increase of C depending on the number of shares received from A. From
Fig. 4, we can see how the same number of shares transferred can give different
results (in terms of power indices) depending on the shareholder who acquires the
shares. If shareholder A yields 40 shares to C instead of to B, A’s power will go
from 1 to 1/3 (cf. broken segment) instead of from 1 to 0. It is therefore important to
know not only the discontinuity points of the step function (i.e., the critical blocks
of shares that enable a player to move from one constant power area to another) but
also the most “dangerous partner” in a transfer of shares. If the Banzhaf-Coleman
index is used instead of the Shapley-Shubik, the power variations change; however,
the critical stocks remain the same (see [34]). It should be remembered that the
above-mentioned monotonicity holds for the Shapley-Shubik index and is not
satisfied by the normalized Banzhaf index.

To determine the critical stocks ds for companies with n shareholders, the fol-
lowing formulae may be used:

dS = q− ∑
n

h=1
bhwh and dS = t− q+1− ∑

n

h=1
bhwh

varying the n-dimensional vectors b whose components take only 0 and 1 values,
with the condition bi = bj = 0. Both summations are, moreover, subjected to the
following requirement:

0≤ ∑
n

h=1
bhwh <H

where H is the minimum between q and (t − q).

It is worth noting that formula dS = t− q+1− ∑
n

h=1
bhwh is suitable for com-

puting the position of the buying player when he is crucial for all winning coalitions
(with integer exchanges of shares).

In the previous example, t = 100, q = 51, t − q = 49, i = 1, and j = 3. The
only binary vectors to be considered are (0, 0, 0) and (0, 1, 0). From these formulae,
the following values are obtained: 10, 11, 50, and 51, generating sequences (51, 50,
49, 10, 9) for A and (9–11, 50, 51) for C.

5.5 Trade of Shares Between One Player and an Ocean
of Players

Suppose a company has three major shareholders (A, B and C) and an “ocean” of
minor shareholders who are not interested in control. Let the initial breakdown of
shares between the major shareholders be (20, 15, 4) (see Table 4). What would
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happen if the third shareholder starts to buy shares on the market from minor
shareholders (the ocean) to increase his power index in the company?

If C purchased one share from the ocean, the share distribution would become
(20, 15, 5), and the power factors (according to Shapley-Shubik) would be (2/3, 1/6,
1/6), as the majority shareholding would go from 19.5 to 20. If C purchased two
shares from the ocean, the share distribution would become (20, 15, 6), and the
power indices would be (1/3, 1/3, 1/3). This power distribution would remain the
same even if C were to purchase 30 shares; the situation would only change if
C bought 31 shares. In this case, the share distribution would become (20, 15, 35)
and the power factors (1/6, 1/6, 2/3). With the purchase of one more share, C would
acquire an absolute majority, and his power factor would be 100%.

Applying the Banzhaf-Coleman index, the critical stocks are the same as those
above even though there are different power factors (0 → 1/5 → 1/3 → 3/5 → 1).

In [34], it was proven, however, that the power index is also defined in these
cases (as long as it is monotonic, as in the case of the Shapley-Shubik index),

Table 4 Trade of shares between one player and the ocean

Player No. of shares
bought by C

Resulting
distribution of
shares

Resulting majority
(A + B+C)/2

Resulting power
distribution

A 20 1
B 15 0
C 0 4 19.5 0

A 20 2/3
B 15 1/6
C 1 5 20 1/6

A 20 1/3
B 15 1/3
C 2 6 20.5 1/3

A 20 1/3
B 15 1/3
C 30 34 34.5 1/3

A 20 1/6
B 15 1/6
C 31 35 35 2/3

A 9 0
B 40 0
C 32 36 35.5 1
Synthesis

1 share bought: +16.7%
From 2 to 30 shares bought: +33.3%
With 31 shares bought: +66.7%
With More than 31 shares bought: +100.0%
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and the power of the raider (i-th player) to form coalitions is a monotonic step
function of the number of shares purchased from minor shareholders. The critical
stocks dS are generated using the following formula (where q, t, and wh have the
conditions indicated in the previous section):

dS = −
M

tbi − q
+ bi

where

M = ∑
n

h=1
h≠ i

ðtbh − qÞwh

With the condition M ≥ 0 for bi = 0; M ≤ 0 for bi = 1.
In this example, the third player is involved (i = 3). Initially t = 39, q = 19.5,

w = (4, 15, 20), and these change as w3 increases. The formula (with the necessary
roundings) generates critical points 5, 6, 35, and 36.

Note that the model proposed here differs from classic oceanic games (see, for
example, [46, 48]), as it supposes that all of the power is held by major share-
holders. It is, therefore, more suitable for incomplete information imperfect mar-
kets, where the minor shareholders are obviously excluded from the board of
directors and where the means and the information the raider has renders the power
of the ocean (which is not able to form a coalition) completely ineffective. (This
model also describes this type of situation, because the i-th player could be a
syndicate of shareholders.)

5.6 Remarks on the Prices

The takeover can be done with the agreement of the present control group (who is
interested in getting a new shareholder due to company politics, development
outlook, etc.) or against the control group. In this last case, the raider should expect
an increase of the share offer price by increasing the requested quantity. Such an
increase is artificial with respect to the real value of the shares that are only a part of
the considered company, because it is only an added value that the raider wants to
pay to gain control and the subsequent benefits. This could ensue an increase in the
value of the company (for example, by better managing politics) or damage it (for
example, by choosing worse suppliers, managers, and company politics connected
in other way to the raider, or by using confidential information to pursue different
goals). The new controller will then indirectly affect the value of the shares;
however, such an influence is more or less far from a temporary increase in the
quotation connected to the takeover.
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Another advantage for the raider is to sell the whole share pack to the present
control group (of course, at a major price): this fact will decrease the quotation of
the share, of which the small shareholders will pay the consequences. For further
remarks, see [18, 20].

During the acquisition phase, the first shares are normally bought on the market
of small shareholders with silent operations so to avoid alarming the control
group. After eventual agreements with some of the big shareholders, a takeover bid
is presented with a fixed price and a pledge to buy only if a pre-determined quantity
is reached.

An “a priori” evaluation of the price to pay for this operation is very important
for the raider. It is based on objective information (available share quantity on the
market, closeness to the majority quote, economic power of the present control
group, eventual undercutting of the share, and so on) and subjective considerations
(power and cohesion of the present control group, possible collateral benefits to
favor destabilizing agreements, and so on).

It has to be noted that the trend of the price versus the demand on the perfect
market should coincide with the trend of the power position defined by a suitable
index. On the contrary, in the most usual cases where small shareholders do not
have any possibility of control, the two curves do not coincide: the raider is playing
on the precise evaluation of this difference. The model presented in the previous
section can also be used to describe the effects of the formation of a syndicate of
small shareholders who want to defend their position.

5.7 Steadiness of Control

Another particular problem concerns the steadiness of the control position reached.
It is not sufficient to receive the minimum number of shares to enter into a power
position in order to be able to exercise the power. The present controllers can, in
turn, buy some more shares at an increased price so to reject the new shareholder
from the power position (from a geometrical point of view outside the polyhedrum
at constant power). It is then necessary to buy a further “security amount” Δs in
relation to each discontinuity point s. How to determine such a quantity? It is clear
that a purchase to get the absolute majority quote could be enough to defend against
counter-actions, but it is also clear that the cost of such an operation could nullify
the advantages.

In [36], a method is shown based on the following considerations. When the
present controllers try to buy shares on the market to regain their lost position, they
would have trouble finding them, and they could pay a higher and higher price for
those shares. The raider himself could offer to sell them the lacking shares at such a
price to cover the overcharge he paid to buy the shares. With a reliable forecasting
model of the quotation p(s) versus the number of exchanged shares starting from the
initial price po, the investor could calculate the unknown quantity Δs by equating
the sum of the paid overcharged prices for each share (from 0 to s + Δs) to the sum
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of the following overcharged prices to ask for each share (from s + Δs to s + 2Δs).
In a model in the continuum space, the two shaded areas in Fig. 5 should be
equated by obtaining the unknown Δs from the equation:

Zs+Δs

0

p sð Þds− po s+Δsð Þ=
Zs+2Δs

s+Δs

p sð Þds− poΔs

Being P(s) the integral function of p(s) in the considered interval, the problem is
to find the minimum Δs that is the solution of the following equation:

Pðs+2ΔsÞ− 2Pðs+ΔsÞ= − pos−P 0ð Þ

5.8 Indirect Control

A particularly interesting problem concerns those cases in which an investor has a
shareholding in a certain company that, in turn, holds shares in another company
(and so on). In situations of this nature, it may be useful to calculate the power in
the whole system.

Let a shareholder hold 20% of the shares of a company whose remaining shares
are divided equally (40 and 40%) between two other shareholders. Let this company
own 51% of the shares of another company that owns a quarter of the shares of a
third company, whose remaining shares are equally divided among three other
shareholders. What is the power of the first shareholder in this last company?

Fig. 5 Determination of
security amount of shares Δs
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It could be answered that the shareholder holds a third of the power in the first
company, which has total control of the second one; thus, he has a third of the
power in the second one. This last one has a quarter of the power in the last one;
thus, the shareholder has (1/3) ⋅ (1) ⋅ (1/4) = 1/12 of the power in this last one. It
seems logical to assign indirect control power equal to the product of the power
indices to each shareholder. There are counter-examples that show how this way of
proceeding in calculation can bring a total of shares in a company that is different
than 100%. Then, another way should be found.

This problem was tackled in [39] by transforming the set of inter-connected
games into just one game, using the multi-linear extensions introduced by Owen
[49] (see also [53]). The advantage of this method is that the power index con-
sidered to be most suitable in describing the situation in question can then be
applied to the unified game.

Gambarelli and Owen [39] and Denti and Prati [23, 24] focused on determining
the winning coalitions in a control structure. An algorithm for the automatic
computation of such situations was elaborated by Denti and Prati in [23, 24].
Kołodziej and Stach [45] proposed a computer program based on the approach of
Denti and Prati that enabled simulations. On the other hand, the works of Hu and
Shapley [43], Crama and Leruth [21, 22], Karos and Peters [44], as well as Mercik
and Lobos [47] are dedicated to modeling indirect control relationships in corporate
structures and using power indices to evaluate the power of players.

Karos and Peters [44] developed a theory to compute power indices for indirect
control in general cases, giving a unique solution when dealing with invariant
mutual control structures. In a mutual control structure, agents exercise control over
each other, and a mutual control structure is invariant if it incorporates all indirect
control relationships.

Mercik and Lobos [47] proposed a measure of reciprocal ownership as a
modification of the Johnston power index. This measure, called the implicit power
index, takes into account not only the power of the individual entities constituting
the companies but also the impact of the companies themselves on implicit
relationships.

For further studies about the subject, see [17, 22, 58] or [13]. Bertini et al. [13]
critically examined the models of Gambarelli and Owen [39], Denti and Prati [23,
24], Crama and Leruth [21, 22], Karos and Peters [44], and Mercik and Lobos [47].

5.9 A Global Index of de-Stability

Let us consider a set of companies that could be subjected to takeover. Is it possible
to state which one is more vulnerable or to give a numerical index stating the
stability of each company? The answer was given in [36]; let us see how to proceed.
Let n be the number of big investors holding shares of at least one such company,
whereas all of the other shares belong to the ocean of small shareholders.
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Let A be the matrix in which generic element ahk represents the share quantity
of the h-th shareholder (1 ≤ h ≤ n) or of the h-th company
(n + 1 ≤ h ≤ n + m) in the k-th company. Let B be the matrix of which generic
element bhk represents the Shapley-Shubik index of the h-th shareholder (1 ≤ h
n) in the k-th company (being the power distributed only among the big share-
holders, excluding the other companies).

Let C be the matrix in which generic element chk represents the effective power
(Shapley-Shubik index) of the representatives of the h-th shareholder in the board
of directors of the k-th company. Generic element dhk of matrix D = C − B rep-
resents the difference between the theoretical and effective power; higher values
represent greater dissatisfaction of the h-th shareholder for the situation in the k-th
company. To calculate the above-defined indices, the presence of special friend-
ships among the big shareholders should be taken into account (the generalization
given in [50] should then be used). Let dk represent the maximum value of the k-th
column of matrix D. Such a value represents maximum dissatisfaction in the
considered company (the k-th one) and contributes to the formation of the de-
stability index proposed in [36]. Other data necessary to define such an index (with
reference to each company) is as follows (for sake of simplicity, index k is omitted):

wr number of shares owned by the “raider”
wc number of shares owned by the control group (0 ≤ wr < wc)
q the majority quote
pz a former reference quotation
po a present quotation
s the power (politic and economic power) of the present control group; this

parameter gives indications on the relevant reaction capacity (0 ≤ s ≤ 1)

The above-cited values contribute to the formation of the following preliminary
indices (each taking values from 0 [= the maximum stability] to 1 [= the minimum
stability] of the company):

c=wr ̸wc ratio between the numbers of shares of the raider and the control group
m= t−wr −wcð Þ ̸t availability of residual shares on the market
v= q−wcð Þ ̸q the vicinity of the absolute majority quota by the controlling shareholders
f =max 0, pz − poð Þ ̸pzð Þ is the drop of present quotation po with respect to reference quotation pz

Thus, global index i is given by:

i= da1 ⋅ sa2 ⋅ ca3 ⋅ma4 ⋅ va5 ⋅ f a6

where a1,…, a6 are positive exogenous parameters that can be estimated using
statistical methods on historical series of past takeovers.

It has to be noted that the resulting index is still limited to between 0 and 1 (0 for
minimal and 1 for maximum de-stability).
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5.10 Portfolio Theory

Certain developments of the results above even involve the Theory of Portfolio
Selection. It is known that traditional portfolio models imply the diversification of
investments to minimize risk: the classic models of Portfolio Selection advise the
saver to diversify his share portfolio in such a way as to efficiently reduce risk (the
problem is solved by multi-task optimization by maximizing the expected return
and minimizing risk (see [63]). This, however, is in conflict with the relevant
amount of a single stock that needs to be acquired to carry out hostile take-over bids
(TOB). The connection between takeover and portfolio theories was initially
approached by Amihud and Barnea [2] and Batteau [7], who found a hindrance in
determining the control function; this function was determined at the beginning of
the ‘80s in [33, 34]. A method of linking these two theories has been proposed by
means of a control propensity index that can be linked to the risk aversion index
(see [33, 40]).

To summarize, the optimal composition of a portfolio is determined by taking
into account not only the expected return and variance of the classical investments
but also of the investments with ordinary shares to be used for control.

One of the difficulties for this generalization is that the price is aleatory in the
new model, whereas a fixed price for buying the shares was assumed in classic
models.

The method is as follows:

• To identify the “index of inclination to the control” of the investor that can be
connected to his risk aversion as it is used in classic models;

• To share the capital in two classes of investments by using the new index (those
classic and those for control);

• To identify the company to takeover (or companies, if small—with respect to
their available capital) and to identify the more-suitable power quotes in each
company;

• To eliminate from the group of companies, used for classic investments, those
already chosen for takeover and those with a strong correlation with the final
one;

• To undertake in a silent way the purchase of shares for the takeover;
• To finalize the operation.

To apply the model, the algorithms described below are used. For further
application of the games theory to the portfolio, see [6, 40].

To conclude this section, attention should be paid to the recent work by Crama
and Leruth [22] in which they show how techniques such as power indices are
more-suitable than cut-off methods for describing power-sharing among
shareholders.
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5.11 Algorithms

Many open problems are to be found in the search for properties common to various
power indices, especially with reference to alternative share shifts. On the basis of
considerations regarding the geometrical properties of the Shapley value, an
algorithm was used for calculating this value in super-additive games (see [32]),
which is in games where the payoff of each coalition is not lower than the sum of
payoffs of any partition of it. The algorithm was generalized in Gambarelli [35] for
subadditive games. The algorithm is linear in the number of significant coalitions
and uses a theorem of early stop, based on reaching the desired degree of precision.
In majority games having a low total sum of weights, the Shapley value (which
assumes the role of the Shapley-Shubik index in these cases) can be
better-calculated using the algorithm proposed by Mann and Shapley [46]. This
algorithm was suggested to Shapley by an idea by Cantor (see also [16]).

The generation of “power” function relative to share exchanges between parties
necessitates the repeated use of Mann and Shapley’s algorithm in each of the
constant power regions. A subsequent algorithm by Arcaini and Gambarelli [3]
enables further savings in calculation, as it directly generates the increase in the
index starting from each point of discontinuity, taking into account the information
that was used to calculate the preceding value.

A similar technique was applied in Gambarelli [37] to generate the power
function in the case of the normalized Banzhaf index. This algorithm also provides
a direct method of calculating this index. This method turned out to be faster than
the one used previously (i.e., the one suggested by Banzhaf [5]). Certain
improvements in the calculation of the normalized Banzhaf index have been sub-
sequently proposed (see, for instance, [1]); however, the possibility of further
savings in time remains open, especially in the case of seat shifts.

In the end, a program is now available to generate the power functions in the
cases of both of Shapley-Shubik and Banzhaf-Coleman indices for the exchange of
shares between two shareholders or between a shareholder and the ocean. Such a
program needs a small amount of memory (as it manages only a few vectors) and
can be coupled with other algorithms for the portfolio choice.

6 Some Open Problems

Various problems are still open both in the theory and application of power indices:
in the following section, some of these issues are listed.
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6.1 Open Problems in Theory

As far as the theory of power indices, very interesting issues are as follows:

• To apply the results of [35] on the Shapley value as a center of gravity to other
values with the development of more-effective algorithms for relevant
computation;

• To complete the studies of [8, 9] on the comparison among various indices in
literature to identify a more-suitable index for the specific application.

6.2 Open Problems in Finance

The possibility for a group of shareholders to take over a company with a share
majority can lead to considerable economic advantages. For this reason, we
sometimes see share transactions that are not linked to traditional objectives of
expected returns and risk but rather aimed at acquiring control of a firm. Until a few
decades ago, traditional financial theories did not deal with these problems, mainly
because the theory of power indices was little-known in the field. The first models
have been developed more recently.

An interesting application in the financial field could be to find out a better
description of how to form control coalitions by applying models applied only to
political applications up until now; for example [54].

Here in the following, some specific problems are identified; for further issues
regarding the application of power indices to the financial field, see [11].

A complete unexplored area of research is the use of the fuzzy sets theory in
order to model the uncertainty in the evaluation of power indices [28–30].

6.2.1 Moving Shares to Gain Control

Formulae have been devised to determine changes in an investor’s power in a
company following an exchange of shares with others (see [31, 34]), and successive
work by Freixas). Moreover, algorithms have been drawn up to calculate
the Shapley value [35] and the variations of both Shapley-Shubik and
Banzhaf-Coleman indices following exchanges of shares (see [37]). These tools
may be useful not only to the bidder but also to the current controller, because they
enable him to assess the stability of his position in relation to potential takeovers
(see [36]).

Some financial institutions have begun using these techniques, though obviously
without divulging their related results. Therefore, a comparison between theoretical
models and their application remains an open problem at the official level.
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Moreover, the above-mentioned formulae concern the exchange of shares between
two shareholders or among one shareholder and an ocean of small shareholders
who cannot control the firm (we note that some studies regarding small share-
holders who can control the firm have been developed, starting with Milnor and
Shapley [48] onwards. It would be useful to widen such research to include other
types of buying and selling.

In the ocean games, the limit behavior of the power indices is studied when the
weight of the greater of the small shareholders goes to zero. Some results of those
types of games shown in [4, 25, 27, 48, 59] could be compared with the results of
the present paper, and the main differences could be discussed.

Some practical work is moreover necessary to calibrate the parameters for the
stability index shown in Sect. 5.9 by the use of historical series of past takeover
situations; also, some more work is needed for models dealing with portfolio
selection. The confidentiality of real data makes such studies difficult.

6.2.2 Indirect Control

It could be very useful to develop algorithms for the computation of indirect control
with reference to the studies of [21, 24, 39, 44, 47].

A particularly interesting problem concerns those cases where an investor has a
shareholding in a certain company that, in turn, holds shares in another company
(and so on). In situations of this kind, it may be useful to calculate the power in the
whole system. This problem was tackled in Gambarelli and Owen [39] by trans-
forming the set of inter-connected games into just one game, using the multi-linear
extensions introduced by Owen in [49]. The power index considered to be
most-suitable in describing the situation in question can then be applied to the
unified game.

Karos and Peters [44] axiomatically developed a large class of power indices that
satisfy some axioms and can measure the power of players in a shareholding
network. They also indicated several interesting possibilities for further theoretical
research in this area. One open problem is what becomes feasible in terms of power
indices if the axioms are changed. The next further development refers to a mutual
control structure that can be modeled as a hypergraph, and a value for transferable
utility games combined with such a hypergraph can take the imposed control
relationships into consideration.

An open problem is the cumbersome computation of the algorithm that should
be improved for practical applications. An algorithm for the automatic computation
of such situations was elaborated by Denti and Prati [24] and Crama and Leruth
[21], but it is hoped that even-more-efficient techniques will be devised.
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6.2.3 Portfolio Theory

Possible developments of the Theory of Portfolio Selection remain open. Further-
more, analogously to what has been mentioned above, a comparison between the
model and the applicative phase at an official level is still open.
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The Binomial Decomposition of the Single
Parameter Family of GB Welfare Functions

Silvia Bortot, Ricardo Alberto Marques Pereira
and Anastasia Stamatopoulou

Abstract We consider the binomial decomposition of generalized Gini welfare

functions in terms of the binomial welfare functions Cj, j = 1,… , n and we exam-

ine the weighting structure of the binomial welfare functions Cj, j = 1,… , n which

progressively focus on the poorest part of the population. We introduce a parametric

family of income distributions and we illustrate the numerical behavior of the single

parameter family of GB welfare functions with respect to those income distributions.

Moreover, we investigate the binomial decomposition of the GB welfare functions

and we illustrate the dependence of the binomial decomposition coefficients in rela-

tion with the single parameter which describes the family.

Keywords Generalized Gini welfare functions ⋅ Binomial decomposition of the

single parameter family of GB welfare functions

1 Introduction

The generalized Gini welfare functions introduced by Weymark [61], and the asso-

ciated inequality indices in Atkinson-Kolm-Sen’s (AKS) framework, see Atkinson

[5], Kolm [48, 49], and Sen [56], are related by Blackorby and Donaldson’s cor-

respondence formula [13, 14], A(x) = x̄ − G(x), where A(x) denotes a generalized

Gini welfare function, G(x) is the associated absolute inequality index, and x̄ is the

plain mean of the income distribution x = (x1,… , xn) ∈ 𝔻n
of a population of n ≥ 2

individuals, with income domain 𝔻 = [0,∞).
The generalized Gini welfare functions [61] have the form A(x) =

∑n
i=1wi x(i)

where x(1) ≤ x(2) ≤ ⋯ ≤ x(n) and, as required by the principle of inequality aversion,

w1 ≥ w2 ≥ ⋯ ≥ wn ≥ 0 with
∑n

i=1 wi = 1. These welfare functions correspond to a

particular class of the ordered weighted averaging (OWA) functions introduced by

S. Bortot (✉) ⋅ R.A. Marques Pereira ⋅ A. Stamatopoulou

Department of Economics and Management, University of Trento,

Via Inama, 5, 38122 Trento, Italy

e-mail: silvia.bortot@unitn.it

© Springer International Publishing AG 2018

M. Collan and J. Kacprzyk (eds.), Soft Computing Applications for Group
Decision-making and Consensus Modeling, Studies in Fuzziness and Soft

Computing 357, DOI 10.1007/978-3-319-60207-3_5

71



72 S. Bortot et al.

Yager [64], which in turn correspond [35] to the Choquet integrals associated with

symmetric capacities.

In this paper we recall the binomial decomposition of generalized Gini welfare

functions due to Calvo and De Baets [22], see also Bortot and Marques Pereira [20].

The binomial decomposition is formulated in terms of the functional basis formed

by the binomial welfare functions.

The binomial welfare functions, denoted Cj with j = 1,… , n, have null weights

associated with the j − 1 richest individuals in the population and therefore they are

progressively focused on the poorest part of the population.

The paper is organized as follows. In Sect. 2 we review the notions of general-

ized Gini welfare function and the associated generalized Gini inequality index for

populations of n ≥ 2 individuals.

In Sect. 3 we consider the binomial decomposition of generalized Gini welfare

functions in terms of the binomial welfare functions Cj, j = 1,… , n. We examine

the weights of the binomial welfare functions Cj, j = 1,… , n which progressively

focus on the poorest part of the population.

In Sect. 4 we investigate the single parameter family of GB welfare functions,

particularly in the context of the binomial decomposition. In Sect. 4.1, we illustrate

the weighting structure and the numerical behavior of the GB welfare functions in

relation with a parametric family of income distributions. Moreover, in Sect. 4.2,

we study the binomial decomposition of the GB welfare functions in the cases

n = 2, 4, 6, 8. Finally, Sect. 5 contains some conclusive remarks.

2 Generalized Gini Welfare Functions and Inequality
Indices

In this section we consider populations of n ≥ 2 individuals and we briefly review the

notions of generalized Gini welfare function and generalized Gini inequality index

over the income domain 𝔻 = [0,∞). The income distributions in this framework are

represented by points x, y ∈ 𝔻n
.

We begin by presenting notation and basic definitions regarding averaging func-

tions on the domain 𝔻n
, with n ≥ 2 throughout the text. Comprehensive reviews of

averaging functions can be found in Chisini [27], Fodor and Roubens [34], Calvo

et al. [23], Beliakov et al. [9], Grabisch et al. [46], and Beliakov et al. [10].

Notation. Points in 𝔻n
are denoted x = (x1,… , xn), with 1 = (1,… , 1),

0 = (0,… , 0) . Accordingly, for every x ∈ 𝔻 , we have x ⋅ 1 = (x,… , x). Given

x, y ∈ 𝔻n
, by x ≥ y we mean xi ≥ yi for every i = 1,… , n, and by x > y we mean

x ≥ y and x ≠ y. Given x ∈ 𝔻n
, the increasing and decreasing reorderings of the

coordinates of x are indicated as x(1) ≤ ⋯ ≤ x(n) and x[1] ≥ ⋯ ≥ x[n], respectively. In

particular, x(1) = min{x1,… , xn} = x[n] and x(n) = max{x1,… , xn} = x[1] . In gen-

eral, given a permutation 𝜎 on {1,… , n}, we denote x
𝜎

= (x
𝜎(1),… , x

𝜎(n)). Finally,

the arithmetic mean is denoted x̄ = (x1 +⋯ + xn)∕n.
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Definition 1 Let A ∶ 𝔻n ⟶ 𝔻 be a function. We say that

1. A is monotonic if x ≥ y ⇒ A(x) ≥ A(y), for all x, y ∈ 𝔻n
. Moreover, A is strictly

monotonic if x > y ⇒ A(x) > A(y), for all x, y ∈ 𝔻n
.

2. A is idempotent if A(x ⋅ 1) = x, for all x ∈ 𝔻. On the other hand, A is nilpotent if

A(x ⋅ 1) = 0, for all x ∈ 𝔻.

3. A is symmetric if A(x
𝜎

) = A(x), for any permutation 𝜎 on {1,… , n} and all x ∈
𝔻n

.

4. A is invariant for translations if A(x + t ⋅ 1) = A(x), for all t ∈ 𝔻 and x ∈ 𝔻n
. On

the other hand, A is stable for translations if A(x + t ⋅ 1) = A(x) + t, for all t ∈ 𝔻
and x ∈ 𝔻n

.

5. A is invariant for dilations if A(t ⋅ x) = A(x), for all t ∈ 𝔻 and x ∈ 𝔻n
. On the

other hand, A is stable for dilations if A(t ⋅ x) = t A(x), for all t ∈ 𝔻 and x ∈ 𝔻n
.

The terms positive (negative), increasing (decreasing), and monotonic are used

in the weak sense. Otherwise these properties are said to be strict.

Definition 2 A function A ∶ 𝔻n ⟶ 𝔻 is an averaging function if it is monotonic

and idempotent. An averaging function is said to be strict if it is strictly monotonic.

Note that monotonicity and idempotency implies that min(x) ≤ A(x) ≤ max(x), for

all x ∈ 𝔻n
.

Particular cases of averaging functions are weighted averaging (WA) functions,

ordered weighted averaging (OWA) functions, and Choquet integrals, which contain

the former as special cases.

Definition 3 Given a weighting vectorw = (w1,… ,wn) ∈ [0, 1]n, with
∑n

i=1 wi = 1,

the Weighted Averaging (WA) function associated with w is the averaging function

A ∶ 𝔻n ⟶ 𝔻 defined as

A(x) =
n∑

i=1
wi xi. (1)

Definition 4 Given a weighting vector w = (w1,… ,wn) ∈ [0, 1]n, with
∑n

i=1 wi = 1,

the Ordered Weighted Averaging (OWA) function associated with w is the averaging

function A ∶ 𝔻n ⟶ 𝔻 defined as

A(w) =
n∑

i=1
wi x(i). (2)

The traditional form of OWA functions as introduced by Yager [64] is as follows,

A(x) =
∑n

i=1 w̃i x[i] where w̃i = wn−i+1. In [65, 66] the theory and applications of

OWA functions are discussed in detail.

The following is a classical result particulary relevant in our framework. This

result regards a form of dominance relation between OWA functions and the asso-

ciated weighting structures, see for instance Bortot and Marques Pereira [20] and

references therein.
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Proposition 1 Consider two OWA functions A,B ∶ 𝔻n ⟶ 𝔻 associated with
weighting vectors u = (u1,… , un) ∈ [0, 1]n and v = (v1,… , vn) ∈ [0, 1]n, respec-
tively. It holds that A(x) ≤ B(x) for all x ∈ 𝔻n if and only if

k∑

i=1
ui ≥

k∑

i=1
vi for k = 1,… , n (3)

where the case k = n is an equality due to weight normalization.

A class of welfare functions which plays a central role in this paper is that of the

generalized Gini welfare functions introduced by Weymark [61], see also Mehran

[51], Donaldson and Weymark [30, 31], Yaari [62, 63], Ebert [33], Quiggin [55],

Ben-Porath and Gilboa [12].

Definition 5 Given a weighting vector w = (w1,… ,wn) ∈ [0, 1]n, with w1 ≥ ⋯ ≥

wn ≥ 0 and
∑n

i=1 wi = 1, the generalized Gini welfare function associated with w is

the function A ∶ 𝔻n ⟶ 𝔻 defined as

A(x) =
n∑

i=1
wix(i) (4)

and, in the AKS framework, the associated generalized Gini inequality index is

defined as

G(x) = x̄ − A(x) = −
n∑

i=1

(
wi −

1
n

)
x(i) . (5)

The generalized Gini welfare functions are strict if and only if w1 > ⋯ > wn > 0.

The generalized Gini welfare functions are stable for translations and the associated

generalized Gini inequality indices are invariant for translations. Both are stable for

dilations.

The classical Gini [37–39], Bonferroni [18, 19], and De Vergottini [28, 29] wel-

fare functions and associated inequality indices are important instances of the AKS

generalized Gini framework. The substantial subsequent research on the three clas-

sical cases of generalized Gini welfare functions can be found, for instance, in Kolm

[47], Atkinson [5], Sen [56, 57] Piesch [53, 54], Mehran [51], Blackorby and Don-

aldson [13–16], Lorenzen [50], Donaldson and Weymark [30, 31], Nygård and Sand-

ström [52], Blackorby et al. [17], Weymark [61], Yitzhaki [67], Giorgi [40, 41],

Benedetti [11], Ebert [32], Shorrocks and Foster [58], Yaari [63], Silber [59], Bossert

[21], Tarsitano [60], Ben Porath and Gilboa [12], Zoli [69], Gajdos [36], Aaberge

[1–3], Giorgi and Crescenzi [42, 43], Chakravarty and Muliere [26], Chakravarty

[24, 25], Bárcena and Imedio [6], Giorgi and Nadarajah [44], Bárcena and Silber

[7, 8], Aristondo et al. [4], and Zenga [68].

The central instance of the AKS generalized Gini framework is the classical Gini

welfare function AG(x) and the associated classical Gini inequality index G(x) =
x̄ − AG(x),
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AG(x) =
n∑

i=1
wG

i x(i) wG
i = 2(n − i) + 1

n2
(6)

where the weights of AG(x) are positive and strictly decreasing with unit sum,∑n
i=1 wG

i = 1, and

G(x) =
n∑

i=1

(1
n
− wG

i

)
x(i) = −

n∑

i=1

n − 2i + 1
n2

x(i) (7)

where the coefficients of G(x) have zero sum.

The classical absolute Gini inequality index G is traditionally defined as

G(x) = 1
2n2

n∑

i,j=1
|xi − xj| = − 1

n2

n−1∑

i=1

n∑

j=i+1

(
x(i) − x(j)

)
(8)

where the double summation expression for −n2G(x) in (8) can be written as

(−(n − 1))x(1) + (1 − (n − 2))x(2) +⋯ + ((n − 2) − 1)x(n−1) + (n − 1)x(n) (9)

which corresponds to (7).

Another important instance of the AKS generalized Gini framework is the clas-

sical Bonferroni welfare function AB(x) and the associated classical Bonferroni

inequality index B(x) = x̄ − AB(x),

AB(x) =
n∑

i=1
wB

i x(i) wB
i =

n∑

j=i

1
jn

(10)

where the weights of AB(x) are positive and strictly decreasing with unit sum,∑n
i=1 wB

i = 1, and

B(x) =
n∑

i=1

(1
n
− wB

i

)
x(i) (11)

where the coefficients of B(x) have zero sum.

The classical absolute Bonferroni inequality index B is traditionally defined as

B(x) = x̄ − 1
n

n∑

i=1
mi(x) (12)

where the mean income of the i poorest individuals in the population is given by
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mi(x) =
1
i

i∑

j=1
x(j) for i = 1,… , n . (13)

Therefore we have

AB(x) =
1
n

n∑

i=1
mi(x) (14)

= 1
n

[(
x(1)

)
+ 1

2

(
x(1) + x(2)

)
+⋯ + 1

n

(
x(1) +⋯ + x(n)

)]
(15)

= 1
n

[ n∑

j=1

1
j

x(1) +
n∑

j=2

1
j

x(2) +⋯
n∑

j=n

1
j

x(n)
]

(16)

which corresponds to (10).

3 The Binomial Decomposition

In this section we review the binomial decomposition of generalized Gini welfare

functions due to Calvo and De Baets [22] and Bortot and Marques Pereira [20].

We examine the weighting structures of the binomial welfare functions Cj, with

j = 1,… , n.

Definition 6 The binomial welfare functions Cj ∶ 𝔻n ⟶ 𝔻, with j = 1,… , n, are

defined as

Cj(x) =
n∑

i=1
wji x(i) =

n∑

i=1

(n−i
j−1

)

(n
j

) x(i) j = 1,… , n (17)

where the binomial weights wji, i, j = 1,… , n are null when i + j > n + 1, according

to the usual convention that
(p

q

)
= 0 when p < q, with p, q = 0, 1,… Given that the

binomial weights are decreasing, wj1 ≥ wj2 ≥ ⋯ ≥ wjn for j = 1,… , n, the binomial

welfare functions are generalized Gini welfare functions.

Except for C1(x) = x̄, the binomial welfare functions Cj, j = 2,… , n have an

increasing number of null weights, in correspondence with x(n−j+2),… , x(n). The

weight normalization of the binomial welfare functions,
∑n

i=1 wji = 1 for j = 1,… , n,

is due to the column-sum property of binomial coefficients,

n∑

i=1

(
n − i
j − 1

)

=
n−1∑

i=0

(
i

j − 1

)

=
(

n
j

)

j = 1,… , n . (18)
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The binomial welfare functions Cj, j = 1,… , n are continuous, idempotent, and

stable for translations, where the latter two properties follow immediately from∑n
i=1 wji = 1 for j = 1,… , n.

The following interesting result concerning the cumulative properties of binomial

weights is due to Calvo and De Baets [22], see also Bortot and Marques Pereira [20].

Proposition 2 The binomial weights wji ∈ [0, 1], with i, j = 1,… , n, have the fol-
lowing cumulative property,

k∑

i=1
wj−1,i ≤

k∑

i=1
wji k = 1,… , n (19)

for each j = 2,… , n.

Given that the binomial weights have the cumulative property (19), Proposition 1

implies that the binomial welfare functions Cj, j = 1,… , n satisfy the relations x̄ =
C1(x) ≥ C2(x) ≥ ⋯ ≥ Cn(x) ≥ 0, for any x ∈ 𝔻n

.

Proposition 3 Generalized Gini welfare functions A ∶ 𝔻n ⟶ 𝔻 can be written
uniquely as

A(x) = 𝛼1C1(x) + 𝛼2C2(x) +⋯ + 𝛼nCn(x) (20)

where the coefficients 𝛼j, j = 1,… , n are subject to the following conditions,

𝛼1 = 1 −
n∑

j=2
𝛼j ≥ 0 (21)

n∑

j=2

[
1 − n

(i−1
j−1

)

(n
j

)
]
𝛼j ≤ 1 i = 2,… , n (22)

n∑

j=2

(n−i
j−2

)

(n
j

) 𝛼j ≥ 0 i = 2,… , n . (23)

The binomial welfare functions constitute therefore a functional basis for the

generalized Gini welfare functions, which can be uniquely expressed as A(x) =∑n
j=1 𝛼j Cj(x) where the coefficients 𝛼j, j = 1,… , n satisfy the constraints (21)–(22)–

(23), one of which is
∑n

j=1 𝛼j = 1. However, the binomial decomposition does not

express a simple convex combination of the binomial welfare functions, as the con-

dition 𝛼1 +⋯ + 𝛼n = 1 might suggest. In fact, condition (21) ensures 𝛼1 ≥ 0 but

conditions (22)–(23) allow for negative 𝛼2,… , 𝛼n values.

Notice that the only strict binomial welfare function is C1(x) = x̄ for all x ∈ 𝔻n
.

On the other hand, C2(x) has n − 1 positive linearly decreasing weights and one null
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last weight. In terms of the classical Gini welfare function we have that Ac(x) =
1
n

C1(x) +
n−1

n
C2(x). The remaining Cj(x), j = 3,… , n, have n − j + 1 positive non-

linear decreasing weights and j − 1 null last weights.

In dimensions n = 2, 3, 4, 5, 6, 7, 8 the weights wij ∈ [0, 1], i, j = 1,… , n of the

binomial welfare functions Cj, j = 1,… , n are as follows,

n = 2 n = 3 n = 4
C1 ∶ ( 1

2
,

1
2
) C1 ∶ ( 1

3
,

1
3
,

1
3
) C1 ∶ ( 1

4
,

1
4
,

1
4
,

1
4
)

C2 ∶ (1, 0) C2 ∶ ( 2
3
,

1
3
, 0) C2 ∶ ( 3

6
,

2
6
,

1
6
, 0)

C3 ∶ (1, 0, 0) C3 ∶ ( 3
4
,

1
4
, 0, 0)

C4 ∶ (1, 0, 0)
n = 5 n = 6
C1 ∶ ( 1

5
,

1
5
,

1
5
,

1
5
,

1
5
) C1 ∶ ( 1

6
,

1
6
,

1
6
,

1
6
,

1
6
,

1
6
)

C2 ∶ ( 4
10
,

3
10
,

2
10
,

1
10
, 0) C2 ∶ ( 5

15
,

4
15
,

3
15
,

2
15
,

1
15
, 0)

C3 ∶ ( 6
10
,

3
10
,

1
10
, 0, 0) C3 ∶ ( 10

20
,

6
20
,

3
20
,

1
20
, 0, 0)

C4 ∶ ( 4
5
,

1
5
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The binomial welfare functions Cj, j = 1,… , n have null weights associated with

the j − 1 richest individuals in the population and therefore, as j increases from 1 to

n, they behave in analogy with poverty measures which progressively focus on the

poorest part of the population.

4 The Single Parameter GB Welfare Functions

The single parameter family of GB welfare functions which interpolates between

the classical Gini and Bonferroni cases has been proposed and discussed by Don-



The Binomial Decomposition of the Single Parameter Family . . . 79

aldson and Weymark [30], Yitzhaki [67], Bossert [21], Aaberge [1], and Bárcena

and Silber [8].

The welfare functions of this family are of the form

AGB(x) =
n∑

i=1
wGB

i x(i) (24)

with

wGB
i = (1∕n2)

[
n − i(n∕i)𝛾 +

n∑

j=i
(n∕j)𝛾

]
𝛾 ∈ [0, 1] (25)

where the classical Gini and Bonferroni welfare functions are special cases with

𝛾 = 0, 1. Note that when 𝛾 = 0 we obtain the “equally distributed equivalent level

of income” corresponding to the Gini welfare function, while when 𝛾 = 1 we obtain

the “equally distributed equivalent level of income” corresponding to the Bonferroni

welfare function.

Given that the weights of the GB welfare functions are strictly decreasing, wGB
1 >

wGB
2 > … > wGB

n = 1∕n2, the GB welfare functions are generalized Gini welfare

functions. The weighting structure of the GB welfare functions is illustrated in Fig. 1

in the cases n = 2, 4, 6, 8.

(a) Case n= 2 (b) Case n= 4

(c) Case n= 6 (d) Case n= 8

Fig. 1 Weights of the GB welfare functions for parameter values 𝛾 = 0, 0.1,… , 1
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4.1 A Parametric Family of Income Distributions

We now examine the GB welfare functions in relation with a parametric family of

income distributions in the cases n = 2, 4, 6, 8. This family of income distributions,

each with unit average income, is defined on the basis of the parametric Lorenz curve

associated with the generating function

f
𝛽

(r) = re−𝛽(1−r) r ∈ [0, 1] (26)

where the parameter 𝛽 ≥ 0 is related with inequality. Figure 2 provides a graphical

illustration of the parametric Lorenz curve for parameter values 𝛽 = 0, 1,… , 8.

Consider a population with n individuals. The family of income distributions x =
(x1, x2,… , xn) with unit average income x̄ = 1 associated with the parametric Lorenz

curve above is given by

x(i) = n
[
f
𝛽

( i
n

)
− f

𝛽

( i − 1
n

)]
i = 1,… , n. (27)

The values of the GB welfare functions in relation to the family of income distri-

butions (27), in the cases n = 2, 4, 6, 8, is illustrated in Fig. 3.

The pattern of the numerical data suggests that the values of the GB welfare func-

tions are decreasing with respect to the parameter 𝛾 ∈ [0, 1], in the context of the

parametric income distribution (27).

We observe in fact that 𝛾 ≤ 𝛾

′
implies AGB(x) ≤ A′

GB(x) for the income distribu-

tions considered here, with x ∈ 𝔻n
and x̄ = 1. This is consistent with the fact that the

single parameter family of GB welfare functions interpolates between the Gini case,

with higher orness 1∕3 − 1∕6n, and the Bonferroni case, with lower orness 1/4, see

Aristondo et al. [4].

Fig. 2 Parametric Lorenz

curve for parameter values

𝛽 = 0, 1,… , 8
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(a) Case n= 2 (b) Case n= 4

(c) Case n= 6 (d) Case n= 8

Fig. 3 Values of the GB welfare functions for parameter values 𝛾 ∈ [0, 1]

Moreover, considering the parametric Lorenz curves depicted in Fig. 2, the values

taken by the GB welfare functions with n = 2, 4, 6, 8 for 𝛽 = 0, 1,… , 8 illustrate

clearly the effect of the parameter 𝛽 ≥ 0 in relation with increasing inequality.

4.2 The Binomial Decomposition of GB Welfare Functions

In the framework of the binomial decomposition (20), each GB welfare function

AGB(x) can be uniquely expressed in terms of the binomial Gini welfare functions

C1,C2,…Cn as follows,

AGB(x) = 𝛼1C1(x) + 𝛼2C2(x) +⋯ + 𝛼nCn(x) 𝛾 ∈ [0, 1] (28)

which can be written as
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n∑

i=1
wGB

i x(i) = 𝛼1

n∑

i=1
w1i x(i) + 𝛼2

n∑

i=1
w2i x(i) +⋯ + 𝛼n

n∑

i=1
wni x(i) 𝛾 ∈ [0, 1] .

(29)

The expression of the binomial decomposition is unique and therefore, for each value

of the parameter 𝛾 ∈ [0, 1], we obtain a unique vector (𝛼1,… , 𝛼n) by solving the

linear system

⎧
⎪
⎪
⎨
⎪
⎪
⎩

wGB
1 = 𝛼1w11 + 𝛼2w21 +⋯ + 𝛼nwn1

wGB
2 = 𝛼1w12 + 𝛼2w22 +⋯ + 𝛼nwn2

…
wGB

n = 𝛼1w1n + 𝛼2w2n +⋯ + 𝛼nwnn

(30)

where the binomial weights wji, i, j = 1,… , n are as in (17).

(a) α1,α2 with γ ∈ [0,1] (b) α1,..., α4 with γ ∈ [0,1]

(c) α1,..., α6 with γ ∈ [0,1] (d) α1,..., α8 with γ ∈ [0,1]

Fig. 4 Coefficients of the binomial decomposition for n = 2, 4, 6, 8



The Binomial Decomposition of the Single Parameter Family . . . 83

In Fig. 4 we depict the vector (𝛼1,… , 𝛼n) as a function of the parameter 𝛾 ∈ [0, 1]
in the cases n = 2, 4, 6, 8.

We observe, as expected, that 𝛼1 = 1∕n is independent of the parameter 𝛾 ∈ [0, 1]
since, in the last equation of the linear system (30), we have wGB

n = 1∕n2 and w1n =
1∕n and w2n = ⋯ = wnn = 0.

On the other hand, we observe that only 𝛼2 is decreasing, whereas 𝛼3,… 𝛼n are

increasing with respect to 𝛾 ∈ [0, 1].
It is well known that the classical Gini welfare function is 2-additive, see for

instance Grabisch [45] and Bortot and Marques Pereira [20] and references therein.

On the other hand, the classical Bonferroni welfare function is n-additive. In fact

in Fig. 4 we observe that only 𝛼1, 𝛼2 ≠ 0 in the classical Gini case 𝛾 = 0, and

𝛼1,… , 𝛼n ≠ 0 in the classical Bonferroni case 𝛾 = 1.

5 Conclusions

We have examined the binomial decomposition of the single parameter family of

GB welfare functions. An interesting fact regarding the coefficients 𝛼1,… , 𝛼n of the

binomial decomposition, which has been observed in Fig. 4, is that the coefficient 𝛼1
is constant in the parameter 𝛾 ∈ [0, 1] whereas the decreasingness of the coefficient

𝛼2 compensates exactly the increasingness of the higher order coefficients, given that

𝛼1 + 𝛼2 +⋯ + 𝛼n = 1. This fact, which naturally relates with the weighting structure

of GB welfare functions, is presently under investigation.
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General Formal Foundations



The Logic of Information and Processes
in System-of-Systems Applications

P. Eklund, M. Johansson and J. Kortelainen

Abstract Logic and many-valuedness as proposed in this paper enables to describe

underlying logical structures of information as represented within industrial

processes, and as part of their respective markets. We underlines the importance

of introducing classification structures in order to enable management of informa-

tion granularity within and across subsystems in aa system-of-systems. The logic of
information and process is a main contribution of this paper, and our illumination of

a system-of-systems is drawn within the field of energy. In our process view we look

closer into the power market with all its stakeholders, and e.g. as related to renewable

energy. Supply, demand and pricing models are shown to become subjected to log-

ical considerations. In our approach we show how information and their structures

are integrated into processes and their structures. Information structures build upon

our many-valued logic modelling, and for process modelling we adopt the BPMN

(Business Process Modeling Notation) paradigm.

Keywords Business process modeling notation ⋅ Energy ⋅ Lative logic

1 Introduction

In system-of-systems (SoS) applications, engineers typically see information as

residing in products and subsystems taxonomies, and even specifically as emerg-

ing from measuring devices. However, in the case of energy, it is part of a market

with a variety of stakeholders. Public opinion and governance, as well as related

rules and regulations, affect this market in one way or another. Energy can roughly

be seen as produced, transmitted, distributed and consumed, where the sources of
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energy are renewable or non-renewable. The system as a whole enables to identify

risk and opportunity, and fine-granular information structures enable accuracy and

completeness of information models.

Uncertainty is often viewed statistically as a phenomenon of variance. There-

fore, uncertainty is more seldom modelled by logical many-valuedness, which adds

complexity to this information representation. Furthermore, uncertainty as part of

many-valued logic in systems-of-systems applications, is required when observing

conditions as a basis for providing efficient and effective decision-making e.g. as

related to service and maintenance.

In this paper we will show how uncertainty resides in various elements in logic,

thus constituting an overall many-valued logic for systems-of-systems.

2 The Logic of Processes

Categorial frameworks provide suitable formalism for logical structures, with term

monads [11] and sentence functors [12] playing fundamental roles in these respects.

When departing from bivalence to many-valuedness, and in particular for the set

of valuations, quantales [21, 22], as algebraic structures, have been shown to provide

suitable structures in particular given their capability to embrace non-commutativity.

2.1 The Role of Classifications for Information and Processes

In [14, 16] we showed how quantales providing valuation in disorder (ICD) and

functioning (ICF) is arranged tensorially in a setting for disorder and functioning

within health care. For modelling many-valued and quantale based valuation of faults

(EnFa) and functioning (EnFu) in the energy SoS and its design structures, we have

a similar tensor

EnFu = EnFa ⊗ EnFa,

where EnFa typically is a three-valued non-commutative quantale, and the tensored

EnFu becomes a six-point non-commutative quantale. For detail, see [14]. This ten-

sor clearly reflects the situation that a valuation of a multiple fault system-of-systems

fault-fault interaction of EnFa encoding corresponds to the way valuation of EnFu
based functioning is done with respect to EnFu encoding. More generally, encoding

in this manner can potentially be used for integrating modelling standards like UML,

SysML and BPMN.

This paper builds upon and further extends a logic of BPMN approach adopted

in [15] for modelling process generally in crisis management, and emergency care

in particular. Engineering, procurement and construction (EPC) as related to plant

project management for fossil fuel engine based power plants was developed

in [20, 23].
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Within the overall energy SoS, there are several important subsystem to be iden-

tified with respect to intensity of logic. One is the smart grid and smart transmission

where we build upon smart grids as introduced in [1]. The descriptions in [1] are

quite general and informal, but do cover the entire spectrum of the electrical sys-

tem, from transmission to distribution and delivery. Our process model framework

enables to embrace a BPMN subview also of smart grids.

2.2 Lative Logic

The notion of logic as a structure embraces signatures and constructed terms and

sentences latively constructed [7, 13] as based on these terms. Similarly, sentence

and conglomerates of sentences are fundamental for entailments, models and satis-

factions, in turn latively to become part of axioms, theories and proof calculi. This

lativity is always produced and maintained by functors and monads, and as acting

over underlying categories in form of monoidal categories. Category theory is thus a

suitable metalanguage for logic, in particular when applications and typing of infor-

mation must be considered.

Uncertainty may reside in generalized powerset functors, and may be internalized

in underlying categories. In both cases, suitable algebras must motor this uncertainty

representation, and quantales are very suitable in this context [14].

Substitutions as morphisms in Kleisli categories of term monads, carry data and

information within and across subsystems, where each subsystem is seen as a logical

theory. Thereby we have the distinction between expression and statement within the

SoS. Expression is a term produced by a term functor over a signature, and over an

underlying category. We have separate and specific signatures within all subsystems.

A statement is a sentence produced by a sentence functor [12].

Quantales are well suited for describing multivalence in many-valued logic, when

valuation of uncertain information is subjected to various algebraic operations.

This provides a unique situation where proper logical and mathematical founda-

tion will meet the requirement of richness needed in real-world applications. Non-

commutativity in these operations is a typically important consideration from appli-

cation point of view. It represents a causality which intuitively resides between com-

mutative conjunction and non-commutative logical implication.

In the following we briefly introduce notation and constructions needed in our

descriptions related to our energy SoS signatures and terms. The many-sorted term

monad 𝐓𝛴 over 𝚂𝚎𝚝S, the many-sorted category of sets and functions, where 𝛴 =
(S, 𝛺) is a signature, can briefly be described as follows. For a sort (i.e. type) 𝚜 ∈ S,

we have sort specific functors 𝖳𝛴,𝚜 ∶ 𝚂𝚎𝚝S → 𝚂𝚎𝚝, so that

𝖳𝛴(X𝚜)𝚜∈S = (𝖳𝛴,𝚜(X𝚜)𝚜∈S)𝚜∈S.
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The important recursive step in the term construction is

𝖳𝜄

𝛴,𝚜(X𝚜)𝚜∈S =

∐

𝚜1,…,𝚜m

(𝛺𝚜1×···×𝚜m→𝚜)𝚂𝚎𝚝S
× 𝖺𝗋𝗀𝚜1×···×𝚜m◦

⋃

𝜅<𝜄

𝖳𝜅

𝛴
(X𝚜)𝚜∈S

and then with

𝖳𝜄

𝛴
(X𝚜)𝚜∈S = (𝖳𝜄

𝛴,𝚜(X𝚜)𝚜∈S)𝚜∈S,

we finally arrive at the term functor

𝖳𝛴 =
⋃

𝜄<k̄

𝖳𝜄

𝛴
.

The purely categorical construction of the corresponding term monad can be seen

in [11].

2.3 Process Modelling

For process modelling, BPMN diagrams build syntactically upon four basic cate-

gories of elements, namely Flow Objects, Connecting Objects, Artifacts and Lanes.

Flow Objects, represented by Events, Activities and Gateways, define the behaviour

of processes. Start and End are typical Event elements. Task and Sub-Process are

the most common Activities. There are three Connecting Objects, namely Sequence

Flow, Message Flow and Association. Gateways, as Event elements, handle branch-

ing, forking, merging, and joining of paths.

A Data Object is an Artifact, and having no effect on Sequence Flow or Message

Flow. Data Objects are indeed seen to “represent” data, even if BPMN does not at

all specify these representation formats or rules for such representations. However,

Data Objects are expected to provide information about what activities require to be
performed and/or what they produce [2]. Information produced is in our sense the

result of a reduction or inference, with related substitutions.

Notion like ‘service provision’ or ‘failure report’ in terms of their content and data

formats is often well understood but this is not the case when considering provision

and reports as structured documents, as a whole. To better understand the documents

as a whole we must consider in detail the notions of documents, document structures,

and document templates. In the categorical framework outlined above we can indeed

identify a document over a signature 𝛴 with the notion of a ground term over 𝛴,

i.e., a term containing no variables. In this interpretation a document template over
a signature 𝛴 then is a non-ground 𝛴-term over some set of variables X. That is,

𝖳𝛴(X)⧵𝖳𝛴(∅) is the set of all document templates. We may underline here that the

report structure really is the signature 𝛴?
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Our suggestion for information semantics [10] is then that BPMN’s Data
Object coincides with document and, by extension, is a ground term. For doc-

umentations and document refinements, this means in reality that we call a docu-

ment draft a ‘document template’ all the way until it has been matured to become

the “finished” document, where all variables have been instantiated with relevant

information (ground terms). Similarly, ‘token’ coincides with variable substitution.

From this view of BPMN information semantics, we are able to extract at any point

in the data flow a valid variable substitution that precisely represents an information

snapshot of the process at that particular point. An activity in the BPMN sense can

then be viewed as a composition of variable substitutions with the initial token or

variable substitution being the Kleisli category identity morphism 𝜂 ∶ X → 𝖳𝛴X.

In order to provide examples, let us briefly outline how the underlying signatures

as ‘owned’ and recognized by respective disciplines might look like. In our example

we may start with the signatures,

𝛴transmission = (Stransmission, 𝛺transmission)
𝛴distribution = (Sdistribution, 𝛺distribution),

respectively, for the subsystems of energy transmission and distribution stakeholders.

We may aim at providing failure reports as terms t being of sort 𝚜FailureReport ∈
Sdistribution. This may also be denoted by t ∶∶ 𝚜FailureReport. This term t is then seen

as produced by a number of operators, manipulating and attaching terms in form

of various ‘subdocuments’, like a specific cable failure report to be integrated with

the overall failure report. Assume then we have the cable report, as a term being

u ∶∶ 𝚜CableReport, with 𝚜CableReport ∈ Stransmission. The term u is then typically delivered

by operations as a response to a referral, 𝚟 ∶∶ 𝚜ReferralToTransmissionMaintenanceReport, with

𝚜ReferralToTransmissionMaintenanceReport ∈ Stransmission, from a first responder onsite where

the failure has been identified.

The refinement of failure and maintenance reports are assumed to include detailed

energy engineering knowledge as typically appearing in diagnostic and maintenance

guidelines of various kind and with different level of detail.

Report production, enhancement and enrichment is then enabled, e.g., by opera-

tors like 𝚁𝚎𝚏𝚒𝚗𝚎𝚁𝚎𝚙𝚘𝚛𝚝𝚜 ∶ 𝚜 → 𝚜, where in the case of 𝚜 ∈ Stransmission it is report

production authored by maintenance and service.

Suppose now we are given classifications for failures, 𝙲𝚕𝙴𝚗𝙵𝚊, and functioning,

𝙲𝚕𝙴𝚗𝙵𝚞. Failure taxonomies typically as fault trees usually exist, whereas function-

ing classification are rare.

We would arrange these within an over BPMN data object signature, so that we

have 𝙲𝚕𝙴𝚗𝙵𝚊, 𝙲𝚕𝙴𝚗𝙵𝚞 ∈ SDataObjectSorts, e.g., with constant 𝚌 ∶→ 𝙲𝚕𝙴𝚗𝙵𝚊 represent-

ing a particular specific fault recognized in the fault tree.

As an example, consider a failure report. We may have as a template of such a

report a non-ground term

𝙳𝚒𝚊𝚐𝚗𝚘𝚜𝚒𝚜𝙰𝚗𝚍𝚁𝚎𝚊𝚜𝚜𝚎𝚜𝚜𝚖𝚎𝚗𝚝(… , x𝚜CableReport
, …)
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so that a particular activity performed by the first responder (having a unique per-

sonal ID, say 4321) will then give rise to a many-sorted substitution 𝜎 such that

𝜎𝚜(x) =

{
t if 𝚜 = 𝙲𝚊𝚋𝚕𝚎𝚁𝚎𝚙𝚘𝚛𝚝
x otherwise

where

t = 𝙲𝚊𝚋𝚕𝚎𝚁𝚎𝚙𝚘𝚛𝚝(𝚏𝚛𝙸𝚍(4321),
𝙲𝚊𝚋𝚕𝚎𝚜...
𝙲𝚘𝚗𝚍𝚞𝚌𝚝𝚘𝚛𝚜...
𝙳𝚎𝚊𝚍𝙴𝚗𝚍𝚃𝚘𝚠𝚎𝚛...
…).

The term resulting from this substitution—which may still be a template, but nev-

ertheless is closer to a document—will be

𝙵𝚊𝚒𝚕𝚞𝚛𝚎𝚁𝚎𝚙𝚘𝚛𝚝(… , 𝙲𝚊𝚋𝚕𝚎𝚁𝚎𝚙𝚘𝚛𝚝(… ), …)

and we can view it in the following, alternative, form

|----- Failure Report | | ... transmission line location ... | |
|----- Cable Report | | frID = 4321 | | Cables ... | |
Conductors ... | | Dead-end tower ... | |----- | ... |-----

Our view of BPMN information semantics in this paper differ from [15] where

Data Objects were taken to be variable substitutions.

Uncertainty can be modelled using composition of many-valued power monads

with the term monad, i.e., 𝐐 ∙ 𝐓, where 𝐓 is the term monad and 𝐐 as the many-

valued powerset monad based on an underlying quantale Q. The structure of substi-

tutions,

(Hom(X, 𝖰𝖳X), +, ⋅, ∗
, 𝟢, 𝟣),

i.e., the set of morphisms in the Kleisli category 𝚂𝚎𝚝𝐐∙𝐓, is a Kleene algebra. See

[15] for detail.

For substitutions 𝜎1, 𝜎2 ∈ Hom(X,𝖰𝖳X), we have

𝜎1 + 𝜎2 = 𝜎1 ∨ 𝜎2,

and

𝜎1 ⋅ 𝜎2 = 𝜎1 ⋄ 𝜎2

where 𝜎1 ⋄ 𝜎2 = 𝜇
𝐐∙𝐓
X

◦ 𝖰𝖳𝜎2 ◦ 𝜎1 is the composition of morphisms in the corre-

sponding Kleisli category of 𝐐 ∙ 𝐓.
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A “partial algebra of documents” can now be provided as follows. Let 𝚝CableReport
∶∶ 𝚜CableReport be a template, or “document in progress”, as part of an overall term

(𝚝ScopeOfReport
𝚜 )𝚜∈SDataObjectSorts

in

𝖳𝛴DataObjectSignature
(X𝚜)𝚜∈SDataObjectSorts

,

with substitutions 𝜎i, i = 1, 2. Then

𝜇 ◦ 𝖳(𝜎1 + 𝜎2)((𝚝ScopeOfReport
𝚜 )𝚜)

is a concatenation or composition of information along a path of maintenance tasks,

of 𝜇 ◦ 𝖳(𝜎1)((𝚝
ScopeOfReport
𝚜 )𝚜) and 𝜇 ◦ 𝖳(𝜎2)((𝚝

ScopeOfReport
𝚜 )𝚜), whereas

𝜇 ◦ 𝖳(𝜎1 ⋅ 𝜎2)((𝚝ScopeOfReport
𝚜 )𝚜)

is a corresponding ‘sharpening the uncertainties’, or enhancing truth values residing

in that report.

3 Energy

Energy sources in our nature are often subdivided into renewable and non-renewable

sources. Opportunistic and coarsest-granular politics may say only “we need more

focus on renewable”. However true it may be, it hides detail and granularity of the

underlying information structure of pros and cons. Awareness raising among the

public enables finer-granular opinion making, which in turn enables the consumer

to understand how to affect supply and demand.

Renewable sources include geothermal, hydro, water and wind. Non-renewable

source. include fossil and nuclear fuel.

Concerning renewable energy, who owns sunlight, flow of water, underground

heat or windy air? We all do. We can all exploit it, under certain rules and regula-

tions, given opinions and policies. And we all do, sometimes even so that rules and

regulations are updated, and more opinion and policy is created.

3.1 The Logic and Fungibility of the Energy Market

In the following we will show some snapshots from an overall BPMN view of The
Lative Logic and Fungibility of ENERGY, using the following stakeholders in respec-

tive BPMN Lanes:
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∙ Power SOURCE

∙ Central or Federal GOVERNMENT

∙ National and Regional AUTHORITY

∙ Local GOVERNMENT

∙ Power Model

∙ Power MARKET

∙ Power Plant EPC

∙ Power Plant MAINTENANCE

∙ Power Plant EPC

∙ Power GENERATION

∙ Power TRANSMISSION

∙ Power DISTRIBUTION

∙ Industrial CONSUMER

∙ Public CONSUMER

∙ Household CONSUMER

Opinion, policy making and governance, in dialogue and interaction over time, are

important parts of the energy market SoS (Fig. 1). Those dialogues and interactions

obviously involve political and policy-making type of consensus [17, 18], consensus

reaching [3, 5, 9] among a variety of stakeholders, and negotiation in various form,

as representatives in BPMN swimlanes try to meet their respective objectives.

3.2 Energy to Current and Back to Energy

Force and energy residing in flow of water and wind create rotation so that attached

generators can convert mechanical energy to electrical energy. Electric charge is a

fundamental conserved property as appearing in electromagnetic interaction.

This is the ideal electrophysical situation. In practice, current is lost in transmis-

sion, and for a wide variety of reasons. Improved efficiency and reliability in trans-

mission becomes important. In ideal situations, the power P, in watts, is equal to

the current I, in amps, times the voltage V , in volts, i.e., P = I × V . Currency loss is

modelled using a power factor pf , so that in a realistic situation we have

P = pf × I × V .

In practice, the calculation and estimation of pf is non-trivial. and the value itself

can seldom point at where and why currency is lost. A number of techniques help to

improve the power factor. Measuring the power factor, however, is usually an average

condition, which means it does not reveal if a power factor decrease is a widespread

or a localized problem. Furthermore, electric energy distribution using overhead and

underground power lines makes the power factor differently transparent. Overhead

power lines are more economical, but also more susceptible to damage. Repairing

physical damage is very expensive. From logic point of view, pf is still a numerical
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Fig. 1 Policy making and public opinion in dialogue

value, but not a constant. It is a many-valued logical term (expression) 𝚙𝚏(t1,… , tn),
where its value in turn depends on subterms t1,… , tn, so that outcome power is

logically computed as

P = 𝚙𝚏(t1,… , tn)⊗ (I × V).

Obviously, this is still an informal expression as it mixes logical and numerical

computation, but it clearly enriches the value to become an valuated expression,

where the reason e.g. for power factor loss can be contributed to observations inte-

grated into the terms t1,… , tn, some of which may be bivalent and instant, while oth-

ers are dynamic and multivalent. e Tangible and intangible impacts of current loss

altogether makes it difficult for the electric utility industry e.g. to justify the placing

of overhead power lines underground. Power factor considerations differ and need

to be considered also for underground cables [19]. This is a simple yet very concrete
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example where investments in transmission efficiency and safety has a direct effect

on needs to adjust energy transmission pricing.

Assumptions are required to arrive at what would be a guess at best. Predict-

ing the performance of an underground line is difficult, yet the maintenance costs

associated with an underground line are significant and one of the major imped-

iments to the more extensive use of underground construction. Major factors that

impact the maintenance costs for underground transmission lines include: deteriora-

tion because of the loading cycles the lines undergo during their lifetimes. As time

passes, the cables’ insulation weakens, which increases the potential for a line fault.

If the cables are installed properly, this debilitating process can take years and might

be avoided. If and when a fault occurs, however, the cost of finding its location,

trenching, cable splicing, and re-embedment is sometimes 5–10 times more expen-

sive than repairing a fault in an overhead line where the conductors are visible, read-

ily accessible and easier to repair. repairs to the underground cables. experience of

repair personnel. The typical repair duration of cross-linked polyethelene (XLPE),

a solid dielectric type of underground cable, ranges from five to nine days. Outages

are longer for lines that use other nonsolid dielectric underground cables such as

high-pressure, gas-filled (HPGF) pipe-type cable, high-pressure, fluid-filled (HPFF)

pipe-type cable, and self-contained, fluid-filled (SCFF)-type cable. In comparison,

a fault or break in an overhead conductor usually can be located almost immediately

and repaired within hours or a day or two at most. redundant feeders, but the dura-

tion of such outages is still longer than those associated with overhead lines, and they

have additional costs associated with them. have been installed. Such modifications

to underground power lines are more expensive because of the inability to readily

access lines or relocate sections of lines. designed, constructed and made available

for connection to the new home in a relatively short time. Service drops to new res-

idences can be installed within a day or two after the service request is submitted to

the utility.

3.3 Failure and Recovery

Failure described only by name, without structured information about the failure, has

the consequence that time, to and between failures [4], is the only value pertinent to

a failure. In reliability engineering, failure rate is seen simply as the frequency with

which an (sub)system or component fails. This means counting how many failures

per unit of time, rather than in addition explaining how it occurs and what precisely

it pertains. Using only time as the only pertinent characteristic of a failure leads to

risk analysis being mostly based on probability of occurrence. Intrinsic reasons of

failure are hidden behind observation of failure frequency.

Our approach leans on failure and how it is valuated as described at a level of

granularity, which is sufficient for providing required solutions e.g. in service and

maintenance. Granularity of that description resides in the granularity of the under-

lying signature for the logic of the system. A signature with one sort for ’failure’,
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and constant operators simply as names for failures, indeed means time is the only

value pertinent related to failure.

Many-valuedness adds further granularity to valuation of failure and recovery. In

some cases, a failure can be instantaneous, but in general, a failure is a progression

from normal to failed, passing through a number of stages which are either reversible

or from which a process can recover before reaching a final failure state. Recovery

is then a dual progression, similarly passing from failure through a number of stages

to full recovery, and from there back to normal operation.

A failure may also be instantaneous and total, but local and residing in a certain

subsystem, so that the failure status on the system-of-systems level is less critical.

Recovery as described on local level is therefore also not to be identified with recov-

ery taking place on more global level.

Further, a production process in transition to failure may sometimes lose only

level of quality. but may maintain level of quantity, so that recovery makes quality

return to normal level, whereas quantity levels remain unchanged.

Failure is a special for of crisis, where the description of a crisis is much more

complicated. Roughly speaking, a failure can be more easily valuated, whereas a cri-

sis is more of a process. A valuation like “mean time to or between crisis” obviously

makes less sense, if any sense at all. Recovery from failure and mitigation from crisis

is therefore not to be confused.

Which values and value structures then are most pertinent to failure and recovery

in a specific system? A system build upon its underlying signature, so value expres-

sions build upon sorts and operators in that signature. The total effect of a failure is

then also a more complicated matter where generalized integrals need to be devel-

oped. Syntactic derivatives based on underlying signatures was developed in [8], and

can potentially be used to develop corresponding generalized integrals for the pur-

pose of valuation and total effect of failure. This is, however, outside the scope of

this paper.

Maintainability and availability modelling, beyond pertinence just involving time,

will obviously involve suitable and adapted maintainability and availability assess-

ment frameworks, where the underlying logic of it is expected to resemblance assess-

ment frameworks e.g. as appearing in health care [6].

A program that has complex control flow will require more tests to achieve good

code coverage and will be less maintainable (functor is an identity). Therefore be

used to calculate time wasted, but it is not usable to calculate quantity and/or quality

of production (as) value wasted.

3.4 Time and Location

Considerations related to maintenance involve time and location. When did a failure

occur, where is it located, and what is involved. Time and geographic location of a

fault on a higher level in the SoS relates also to Points-of-Interest (PoI) approaches

in geographic information systems. Location and description of a fault is even more

challenging.
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Further, locations are often uncertain, and so is prediction of time in preven-

tive actions. An important many-valued extension is therefore the generalization of

points not just to sets of points, but indeed to many-valued sets of points of interest

(MvSPoI).

3.5 Who Profits and Who Pays?

On harvesting the wind, scale is commercial typically when over 100 kW, where

electricity is sold rather than used on-site. In smaller scale, ownership related to that

harvesting can manifest in form of lease of land, community ownership, or ownership

of (a small) turbine. Note how land ownership is wind flow ownership, but for flowing

water is different.

Intangibility of impact for consumers has become tangible as consumers are reim-

bursed for loss of current in the energy supply chain. Consumer opinion must there-

fore be part of the pricing models. We no longer have a simplified numerical

𝙴𝚗𝚎𝚛𝚐𝚢𝙿𝚛𝚒𝚌𝚎(supply, demand)

but also supply and demand depending on several factors, and logically explained as

terms:

𝚜𝚞𝚙𝚙𝚕𝚢(s1,… , sm)

𝚍𝚎𝚖𝚊𝚗𝚍(d1,… , dl)

Several factors and phenomena affect this overall situation.

Construction and maintenance time and cable cost are typical. Excavation costs

are also considerable, and in all, and the question about who bears all these costs

remains unanswered. The cost of new distribution services are carried by develop-

ers, but may quickly be passed on to municipalities and in the end to consumers.

Allocation of cost associated with placing cables underground is also unclear. Costs

are absorbed in various points of the market chain, and if allowed by regulatory

agencies, consumer will eventually pay.

The power price is still seen as a balance between supply and demand. However,

such pricing models overlook public opinion and policy making (Fig. 2). Renew-

able resources of energy, that nobody owns as such, are transformed into economic

resources, that are subject to the power market.

Regulatory agencies play an important role, and this combines with governmental

policy making.

Restrictions enforced on the energy SoS by the regulatory agencies has as its

objective to protect the interests of consumers, so that consumers are not to

carry too much of the burden arising from SoS improvements, in particular if
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Fig. 2 Multifactorial energy price modelling

improvement benefit consumers unequally. Regulatory agencies might also still base

their delivery models using out-dated constructions, in particular in the case where

there is a regional shift from overhead to underground transmission.

4 Conclusion

We have described a many-valued logical framework for information ontology as

part of business process structures. A main contribution is to show where uncertain

but well-structured information resides within a process, and how information is

canonically integrated rather than amalgamated in ad hoc approaches. Developments

include a rigorous, yet flexible, modelling approach with energy supply as part of the

energy market as whole involving all stakeholders.
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Abstract Algebraic hyperstructures represent an interesting field of algebra,
important both from the theoretical point of view and also for their applications.
A hypergroupoid structure can be associated with any social relationship. These
hypergroupoids become hypergroups in some particular conditions, among them a
condition concerning outer individuals. By analyzing it we can establish in a natural
way when social relationships become optimal. The relations among persons are
one of the bases of Social Sciences that usually are described by linguistic
propositions. If U is a set of individuals (the universe set to consider), usually it is
not possible to affirm that for an ordered pair (x, y) of persons belonging to U a
relation R given in a linguistic form holds or not, as happens in a binary context.
A correct and overall complete modeling of each of these relations is obtained only
if we assign to every pair (x, y) ∈ U × U a real number R(x, y) = xRy belonging
to interval [0, 1] that is the measure to which the decision maker believes the
relation holds.
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1 Introduction

Social science is an academic set of disciplines concerned with society and human
behavior. “Social science” is commonly used as an umbrella term to refer to
anthropology, archaeology, criminology, economics, education, history, linguistics,
communication studies, political science and international relations, sociology,
geography, law, and psychology. In modern academic practice, researchers are
often eclectic, using multiple methodologies (for instance, by combining the
quantitative and qualitative techniques). The term social research has also acquired
a degree of autonomy as practitioners from various disciplines share in its aims and
methods [17, 25].

Mathematics, particularly analyses, probability, statistics or graph theory, have
been used in order to construct social and psychological theories. By constructing
mathematical models, some assumptions are made about social psychology and
they are expressed in formal mathematics, providing so an empirical interpretation.
With statistical procedures and fuzzy logic, properties of models are deduced and
they are compared with empirical data [26, 30–32].

Using mathematical sociology and psychology, it can be understood how pre-
dictable local interactions are able to give an idea about global models of social
structure. It has often been useful in science to apply developed mathematical
theory to real-world processes, and the first step in this is to show how the
real-world process can be translated into the concepts of the theory [20].

Hypergroups are generalizations of groups (set with a binary operation on it
meeting a number of conditions). If this binary operation is taken to be multivalued,
then we get a hypergroup. The motivation for generalization of the notion of group
resulted naturally from various problems in non-commutative algebra, another
motivation for such an investigation came from geometry. The theory of hyper-
groups, created in 1934 in Marty’s paper at the VIII Congress of Scandinavian
Mathematicians in Stockholm [21] was subsequently developed around the 40s
with the contribution of various authors e.g. [7, 9, 10], Wall (who introduced a
generalization of hypergroups, where the hyperproduct is a multiset, i.e. a set in
which every element has a certain multiplicity).

In the 50s and 60s they worked on hyperstructures, in Romania Benado, in
Czech Republic Drbohlav, in France Koskas, Sureau, In Greece Mittas, Stratigo-
poulos, in Italy Orsatti, Boccioni, in USA Prenowitz, Graetzer, Pickett, McAlister,
in Japan Nakano, in Yugoslavia Dacic.

But it is above all since 70’ that a more luxuriant flourishing of hyperstructures
has been and is seen in Europe, Asia, America, Australia, e.g. [3, 22].

In this congress Marty defined the hypergroups, giving some of their applica-
tions to non-commutative groups, algebraic function sand rational fractions. Over
the following decades, new and interesting results again appeared, but it is, above
all, a more luxuriant flourishing of hyperstructures that has been seen in the last
25 years.
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Algebraic hyperstructures represent an interesting field of algebra, important
both from the theoretical point of view and also for their applications. Hypergroups
have been used in algebra, geometry, convexity, automata theory, combinatorial
problems of coloring, lattice theory, Boolean algebras, logic, probability, fuzzy
logic, etc. [1, 2, 4–6, 11, 14, 27, 32]. The most complete bibliography up to 1991
can be found in Corsini’s monograph: Prolegomena of Hypergroup Theory [3], the
main applications were described in the book [4]. Using hyperstructures, mathe-
matical models of a social group can be constructed; some assumptions can be
made about sociology and psychology [17, 29].

A hypergroupoid structure can be associated with any social relationship. These
hypergroupoids become hypergroups in some particular conditions, among them a
condition concerning outer individuals. By analyzing it we can establish in a natural
way when social relationships become optimal [20].

2 Basic Definitions

In order to make this topic precise, we need some preliminary concepts. Used terms
and definitions are e.g. [13, 17, 33, 34].

On a nonempty set H, we consider a hyperoperation • that is a map that asso-
ciates a nonempty subset a • b of H with any two elements a and b of H. If A and B
are nonempty subsets of H, then by A • B we intend the union of all a • b, when
a belongs to A and b belongs to B. The pair (H, •) is called a hypergroupoid.

A hypergroupoid (H, •) is called a hypergroup if the hyperoperation • is:

1. associative, (which means that for all a, b, c of H, (a • b) • c = a • (b • c));
2. and reproductive. (which means that for all a of H, H • a = a • H = H).

A hypergroupoid (H, •) is called quasi-hypergroup if ∀ (a, b) ∈ H × H, ∃
(x, y) ∈ H × H such that a ∈ b • x and a ∈ y • b.

3 Hypergroups Inspired by Social Relationships

In this paragraph we present several hypergroups inspired by religion and friend-
ship, hierachical organization of a group [28, 17, 20]. In group social behaviour
study, sociologists very often have to deal with questions like these:

Which student would you like to do the project with?

Which student do you want to invite for a party?

With whom do you wish to cooperate on the task?

Etc.
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These, at the first sight, simple and trivial questions say a lot about the relations
in the social group (e.g. in the class, department,…) to the sociologist. Such type of
relations can be described using hyperstructures. Some properties of hyperstructures
have a particular social meaning. For instance:

• Quasi hypergroups mean that no person is alone in the group!
• Transitive relation can be used as a mediator between two people.

But there are open questions, too; e.g.

Does the semihypergroup have any meaning in sociology?

Is it possible to model a specific situation or fact in sociology with the help of
semihypergroup?

The following examples are overtaken from [17] as they can answer and explain
some of the above-mentioned questions and problems.

Example 1 Let S be the set of persons. Let R be a “friendship relation” between the
pairs of persons. By the notation aR bwemean the relation of a ∈ S towards person
b ∈ S. To indicate that person a ∈ S has the relation R (e.g. “likes”, “loves”,…)
towards person b ∈ S number 1 is used. If a is not in relation with b, 0 is used.

Example 2 For every relation R on S let us define the symmetric relation associated
to R as the relation R=R⋃R− 1. We assume aRa, for all a ∈ S. We define:

1. the active R-neighborhood of a ∈ S as the set AR(a) = {x ∈ S: a R x};
2. the active R-chain of length n > 1 from a ∈ S as the set

AR(a) = {x ∈ S: exist x1, x2, … xn-1 ∈ S: a R x1, for all i < n − 2, xi R xi+1,
xn-1 R x};

3. the passive R-neighborhood of a ∈ S as the set PR(a) = {x ∈ S: x R a};
4. the passive R-chain of length n > 1 from a ∈ S as the set

Pn
R(a) = {x ϵ S: exist x1, x2,… xn-1 ∈ S: xRx1, for all i < n− 2, xi R xi+1, xn-1 R a}.

The active neighborhood of a is considered as an active chain of length 1 from
a and the passive neighborhood as a passive A chain of length 1. For every n ∈ N,
X ⊆ S, we put

AR
n ðXÞ= ∪ a∈XAR

n ðaÞ,PR
n ðXÞ= ∪ a∈XPR

n ðaÞ.

From the social point of view an active neighborhood of a can be seen as the set
of all people that a chooses according to the rules given by the relation R, while an
active chain of length 2 from a is the set of choices x or by a or by an intermediary
y selected by a. Moreover, a passive neighborhood of b is the set of people that
choose b.

Example 3 Let S be a set of persons. We define a hyperoperation • on S, as
follows:

∀ a, b ∈ S, a • b = {z ∈ S, such that the person a suggests z for cooperation
and a person b accept the invitation of the person z}.
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It is clear that the commutative property does not hold in this case.
The constructed hyperstructures and also the associated fuzzy structures can be

used in decision-making process. More examples can be found e.g. in [12, 18, 23].
Now we present the necessary mathematical context. Let R be a binary relation

with full domain on a nonempty set H, which means that R is a subset of the
Cartesian product H × H, such that for all a in H, there exists b in H, such (a, b) be-
longs to R. The range of R is the set of all elements b of H, such that there exists an
element a in H, for which (a, b) belongs to R. We often denote a R b instead of
(a, b) belongs to R.

Let R be an equivalence relation R, i.e. a reflexive (which means that for all a in
H, a R a), symmetric (which means that a R b implies that b R a) and transitive
(which means that a R b and b R c imply that a R c) relation.

We define hypergroupoid (H, •R) associated to R, as follows:

(1) ∀a ∈ H, a •R a = {y | (a, y) belongs to R};
(2) ∀a, b of H, a •R b is the union of a •R a and b •R b.

An element c of H is called an outer element of R if there exists an element b in
H such that (b, c) does not belong to R2, where R2 = {(a, c) | there exists b in H,
such that (a, b) and (b, c) are in R}.

The following definition and example are overtaken from [20].

Definition 1 A social relationship R is optimal if the hypergroupoid (H, •R) is a
hypergroup.

Hence hypergroup structures can be used as a mathematical tool to decide if a
social relationship is optimal or not and to establish when it is so.

Example 4 We consider again H a community and the relation R defined as
follows:

a R b if and only if a and b are relatives.
We can consider that each element of H is a relative of himself and clearly, the

relation R is also symmetric.
But, is it transitive? In other words, the relatives of the relatives of an individual

are his relatives?
According to dictionary, a relative means a person who is connected with

another or others by blood or marriage. We can imagine enough complicated
situations, for instance the children of a women by a previous relationship are not
related to the children of his husband, by a previous marriage, too. At least, they are
not related for ever, because in case the woman and the man divorce, nothing
directly connects them anymore. Even if we consider relatives only by blood, the
relation is not transitive. Indeed, for instance if a is a cousin of b from b mother part
and c is a cousin of b from b father part, then a and c are not relatives by blood.

So, we can consider that the community H contains outer individuals, with
respect to the relation R defined above. This means that there are individuals in H
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that are not relatives to some individuals of H. The third condition claims that for
any outer individual, the relatives of his relatives must be his relatives. For more
details see [20].

4 Modelling Social Relations with Fuzzy Sets

4.1 Basic Definition on Fuzzy Sets and Fuzzy Relations

Fuzzy Sets were introduced in the 60s by an Iranian scientist Zadeh, who lives in
USA [40]. He and others, in the following decades, found surprising applications to
almost every field of science and knowledge: from engineering to sociology, from
agronomy to linguistic, from biology to computer science, from medicine to
economy, from psychology to statistics and so on. They are now cultivated in the
entire world. Let’s remember what a fuzzy set is.

Let U be a nonempty set (in Social Science it can be, e.g., a set of individuals or
a set of media). A fuzzy set μ in U is a function μ: U → [0, 1]. The meaning of such
a function is that it is considered a linguistic property in the set U, (e.g., the
property of individuals to be clever, old, educated, etc.), and for every individual
x ∈ U, μ(x) is the degree to which the property holds. If μ(x) = 1, then the indi-
vidual x has the property in the maximum possible degree. If μ(x) = 0 then the
individual does not meet the property at all. Let us denote by F(U) the set of all
fuzzy sets on U.

Zadeh in many papers [40] managed to impose, showing significant applications
and consistent, the theory of fuzzy sets. Some important books on fuzzy sets and
fuzzy logic are in [8, 19, 36]. Some interesting applications of fuzzy sets to Social
Sciences are considered by Ragin in [26, 31, 35].

A fuzzy relation R on U is a fuzzy set in U × U, i.e., a function R: U × U →
[0, 1]. For every (x, y) ∈ U we write x R y to denote R(x, y). The meaning of a
fuzzy relation is the mathematical representation of a linguistic relation in the set U,
(e.g., the property that individual x to be friend, trustful, relative, to the individual y,
or dominated by y etc.).

If x R y = 1, then the individual x has the relation with y in the maximum
possible degree. On the contrary, if x R y = 0 then the individual x does not have
the relation with y at all. We denote by R(U) the set of all fuzzy relations on U.

4.2 Fuzzy Relations in Social Sciences

One of the bases of Social Sciences are the relations among persons that usually are
described by linguistic propositions. If U is a set of individuals (the universe set to
consider), usually it is not possible to affirm that for an ordered pair (x, y) of persons
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belonging to U a relation R given in a linguistic form holds or not, as happens in a
binary context.

For instance, let us consider one of the linguistic relations “friendship”, “co-
operation between colleagues”, “affection for a person”, “confidence in a person for
a job” and other interpersonal relations. A correct and overall complete modeling of
each of these relations is obtained only if we assign to every pair (x, y) ∈ U × U
a real number R(x, y) = x R y belonging to interval [0, 1] that is the measure to
which the decision maker believes the relation holds.

This leads us to model the relation, as a fuzzy set with domain U × U, that is a
function

R: x, yð Þ ∈ U × U→R x, yð Þ∈ 0, 1½ �. ð4:1Þ

Another important aspects consists in a fuzzy relation between a set U of persons
and a set Ω of objects. It is formalized by a fuzzy set with domain U × Ω, i.e. a
function:

ρ: ðx,ωÞ ∈ U × Ω→ ρðx, ωÞ∈ 0, 1½ �. ð4:2Þ

For instance, let U be a set of children and Ω a set of media. Some example of
media that transmit information to children and then are in relation with children are
books, television, internet, cinemas, parents, teachers, and so on. Some possible
fuzzy relations are: “confidence in the media”, “dependence on the media”, “con-
centration in the use of the media”, and so on.

If ρ is one of these fuzzy relations, ρ(x, ω) means the degree to which x is in the
relation ρ with ω. For more details see e.g. [12, 15, 16, 18, 24, 37–39].

5 Conclusion

Algebraic hyperstructures represent an interesting field of algebra, important both
from the theoretical point of view and also for their applications. A hyperstructure
can be associated with any social relationship. These hyperstructures, called
hypergroupoids, become hypergroups in some particular conditions. By analyzing
them, we can establish in a natural way when social relationships become optimal.

In this paper, we have extended the area of possible applications of hypergroups
theory. The possible application of hyperstructure theory in social sciences was
shown. Several examples of hyperstructures constructed in a social sphere and on
human relations were presented, e.g. dealing with relations between persons and
their properties. Moreover, the properties of defined hyperoperations were studied.
Such hyperoperations and resulted sets can be very helpful in everyday life of
sociologists, especially in their decision-making process when studying the rela-
tions of a particular social group.
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Social Preferences Through Riesz Spaces:
A First Approach

Antonio Di Nola, Massimo Squillante and Gaetano Vitale

Abstract In this paper we propose Riesz spaces as general framework in the con-

text of pairwise comparison matrices, to deal with definable properties, real situ-

ations and aggregation of preferences. Some significant examples are presented to

describe how properties of Riesz spaces can be used to express preferences. Riesz

spaces allow us to combine the advantages of many approaches. We also provide

a characterization of collective choice rules which satisfy some classical criteria in

social choice theory and an abstract approach to social welfare functions.

1 Introduction

Our choices are strictly related to our ability to compare alternatives according to

different criteria, e.g. price, utility, feelings, life goals, social conventions, personal

values, etc. This means that in each situation we have different best alternatives with

respect to many criteria; usually, the context gives us the most suitable criteria, but

no one says that there is a unique criterion. Even when we want to make a decision

according to the opinions of the experts in a field we may not have a unique advice.

To sum up, we have to be able to define our balance between different criteria and

opinions, to give to each comparison a weight which describes the importance, cred-

ibility or goodness and then to include all these information in a mixed criteria. As

A. Di Nola ⋅ G. Vitale (✉)

Department of Mathematics, University of Salerno, Via Giovanni Paolo II, 132,

84084 Fisciano, SA, Italy

e-mail: gvitale@unisa.it

A. Di Nola

e-mail: adinola@unisa.it

M. Squillante

Department of Law, Economics, Management and Quantitative Methods,

University of Sannio, Piazza Guerrazzi, 1, 82100 Benevento, BN, Italy

e-mail: squillan@unisannio.it

© Springer International Publishing AG 2018

M. Collan and J. Kacprzyk (eds.), Soft Computing Applications for Group
Decision-making and Consensus Modeling, Studies in Fuzziness and Soft

Computing 357, DOI 10.1007/978-3-319-60207-3_8

113



114 A. Di Nola et al.

usual, we need a formalization which gives us tools to solve these problems; proper-

ties of this formalization are well summarized by Saaty in [25], according to whom

[it] must include enough relevant detail to: represent the problem as thoroughly as possible,

but not so thoroughly as to lose sensitivity to change in the elements; consider the environ-

ment surrounding the problem; identify the issues or attributes that contribute to the solution;

identify the participants associated with the problem.

Riesz spaces, with their double nature of both weighted and ordered spaces, seem

to be the natural framework to deal with multi-criteria methods; in fact, in real prob-

lems we want to obtain an order starting from weights and to compute weights having

an order.

We remark that:

∙ Riesz spaces are already studied and widely applied in economics, mainly sup-

ported by works of Aliprantis (see [1–3]);

∙ contrary to the main lines of research, which prefer to propose ad-hoc models for

each problems, this paper is devoted to analyze and propose a general framework

to work with and to be able, in the future, to provide a universal translator of

various approaches.

We introduce basic definitions and properties of Riesz spaces with a possible

interpretation of them in the context of pairwise comparison matrices, focusing on

aggregation procedures. As main results of the paper we have:

1. a characterization of collective choice rules satisfying Arrow’s axioms (Theo-

rem 1);

2. established an antitone Galois correspondence between total preorders and cones

of a Riesz space (Theorem 2);

3. a categorical duality between categories of preorders and of particular cones of

a Riesz space (Theorem 3).

This paper is organized in 6 sections. Sections 1 and 6 are, respectively, a brief

introduction and a concluding section with some remarks and perspectives. In Sect. 2

we recall some basic definitions of Riesz space and of pairwise comparison matrix.

Section 3 is devoted to explain, also with meaningful examples, the main ideas that

led us to propose Riesz spaces as suitable framework in the context of decision mak-

ing; in particular it will explained how properties of Riesz spaces can be appropriate

to model, and to deal with, real problems. In Sects. 4 and 5 we focus on a particular

method of decision making theory, i.e. PCMs; we pay special attention to:

∙ collective choice rules;

∙ classical social axioms (Arrow’s axioms);

∙ total preorder spaces;

∙ duality between total preorders and geometric objects.
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2 Preliminaries

We will use ℕ, ℤ and ℝ to indicate, respectively, the set of natural, integer and real

numbers. We will indicate with < and ≤ the usual (strict and non-strict) orders and

⪯ will be the order of the considering example and it will be defined in each context.

2.1 Riesz Spaces

Definition 1 A structure R = (R,+, ⋅, 0̄,⪯) is a Riesz space (or a vector lattice) if

and only if:

∙ R = (R,+, ⋅, 0̄) is a vector space over the field ℝ;

∙ (R,⪯) is a lattice;

∙ ∀a, b, c ∈ R if a ⪯ b then a + c ⪯ b + c;

∙ ∀𝜆 ∈ ℝ+
if a ⪯ b then 𝜆 ⋅ a ⪯ 𝜆 ⋅ b.

A Riesz space (R,+, ⋅, 0̄,⪯) is said to be archimedean iff for every x, y ∈ R with

n ⋅ x ⪯ y for every n ∈ ℕ we have x ⪯ 0̄. A Riesz space (R,+, ⋅, 0̄,⪯) is said to be

linearly ordered iff (R,⪯) is totally ordered. We will denote by R+
the subset of

positive elements of R Riesz space (the positive cone), i.e. R+ = {a ∈ R | 0̄ ⪯ a}.

We say that u is a strong unit of R iff for every a ∈ R there is a positive integer n
with |a| ≤ n ⋅ u, where |a| = (a) ∨ (−a).

Examples:

1. An example of non-linearly ordered Riesz space is the vector space ℝn
equipped

with the order ⪯ such that (a1,… , an) ⪯ (b1,… , bn) if and only if ai ≤ bi for all

i = 1,… , n; it is also possible to consider (1,… , 1) as strong unit.

2. A non-archimedean example is ℝ ×LEX ℝ with the lexicographical order, i.e.

(a1, a2) ⪯ (b1, b2) if and only if a1 < b1 or (a1 = b1 and a2 ≤ b2); in this case

(1, 0) is a strong unit.

3. (ℝ,+, ⋅, 0,≤), which is the only (up to isomorphism) archimedean linearly

ordered Riesz space, as showed in [20]; obviously 1 can be seen as the stan-

dard strong unit.

4. (ℝC
,+, ⋅, 0,⪯) the space of (not necessarily continuous) functions from C com-

pact subset ofℝ, e.g. the closed interval [0, 1], toℝ, such that for every f , g ∈ ℝC

and 𝛼 ∈ ℝ we have (f + g)(x) = f (x) + g(x), (𝛼 ⋅ f )(x) = 𝛼f (x), f ⪯ g ⇔ f (x) ≤
g(x) ∀x ∈ C and 0 is the zero-constant function; if we consider continuous func-

tions the one-constant function 1 is a strong unit.

5. (Mn(R),+, ⋅, 0n×n,⪯) the space of n × n matrices over R Riesz space with

component-wise operations and order as in example (1).
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Definition 2 A cone in Rn
is a subset K of Rn

which is invariant under multiplication

by positive scalars. A polyhedral cone is convex if it is obtained by finite intersections

of half-spaces.

Cones play a crucial role in Riesz spaces theory, as showed in [4] with also some

applications (e.g. to linear programming [4, Corollary 3.43]). Another remarkable

example of this fruitful tool is the well-known Baker-Beynon duality (see [7]), which

shows that the category of finitely presented Riesz spaces is dually equivalent to the

category of (polyhedral) cones in some Euclidean space. Analogously to Euclidean

spaces, in Rn
(with R generic Riesz space) we can consider orthants, i.e. a subset of

Rn
defined by constraining each Cartesian coordinate to be xi ⪯ 0̄ or xi ⪰ 0̄. Here we

introduce the definition of TP-cones, which will be useful in the sequel.

Definition 3 Let us consider L cone. We say that L is a TP-cone if it is the empty-set,

or an orthant or an intersection of them.

2.2 Pairwise Comparison Matrices

Let N = {1, 2, ..., n} be a set of alternatives. Pairwise comparison matrices (PCMs)

are one of the way in which we can express preferences. A PCM has the form:

X =
⎛
⎜
⎜
⎜
⎝

x11 x12 … x1n
x21 x22 x2n
∶ ⋱ ∶

xn1 … … xnn

⎞
⎟
⎟
⎟
⎠

. (1)

The generic element xij express a vis-à-vis comparison, the intensity of the pref-

erence of the element i compared with j. The request is that from these matrices

we can deduce a vector which represents preferences; more in general we want to

provide an order ≲X . In literature there are many formalizations and definitions of

PCMs, e.g. preference ratios, additive and fuzzy approaches. In [8] authors introduce

PCMs over abelian linearly ordered group, showing that all these approaches use the

same algebraic structure. A forthcoming paper provides a more general framework,

archimedean linearly ordered Riesz spaces to deal with aggregation of PCMs. In this

paper we want to go beyond the archimedean property and the linear order. Using

different Riesz spaces with various characteristics it is possible to describe and solve

a plethora of concrete issues.

PCMs are used in the Analytic Hierarchy Process (AHP) introduced by Saaty

in [24]; it is successfully applied to many Multi-Criteria Decision Making (MCDM)

problems, such as facility location planning, marketing, energetic and environmental

requalification and many others (see [5, 19, 23, 28]).



Social Preferences Through Riesz Spaces: A First Approach 117

As interpretation in the context of PCMs we will say that alternative i is preferred

to j if and only if 0̄ ⪯ xij.

3 Preferences via Riesz Spaces

Why should we use an element of a Riesz space to express the intensity of a prefer-
ence? As showed in [8, 10], Riesz spaces provide a general framework to present

at-once all approaches and to describe properties in the context of PCMs. Prefer-

ences via Riesz spaces are universal, in the sense that (I) they can express a ratio or

a difference or a fuzzy relation, (II) the obtained results are true in every formaliza-

tion and (III) Riesz spaces are a common language which can be used as a bridge

between different points of view.

What does it mean non-linear intensity? In multi-criteria methods decision mak-

ers deals with many (maybe conflicting) objectives and intensity of preferences is

expressed by a (real) number in each criteria. In AHP we have different PCMs, which

describe different criteria; if we considerℝn
(see example (2) above) we are just writ-

ing all these matrices as a unique matrix with vectors as elements. Actually, we can

consider each component of a vector as the standard way to represent the intensity

preference and the vector itself as the natural representation of multidimensional (i.e.

multi-criteria) comparison. This construction has its highest expression in the sub-

field of MCDM called Multi-Attribute Decision Making, which has several models

and applications in military system efficiency, facility location, investment decision

making and many others (e.g. see [6, 26, 29, 30])

Does it make sense to consider non-archimedean Riesz space in this context? Let

us consider the following example. A worker with economic problems has to buy a

car. We can consider the following hierarchy:

New Car

Essential Requirements

Prize Safety Fuel Economy

Comforts

Size Optionals

Aesthetics

Color Design

It is clear that Essential Requirements (ER), Comforts (C) and Aesthetics (A)

cannot be just weighted and combined as usual. In fact, we may have the following

two cases:

∙ we put probability different to zero on (C) and (A) and in the process can happen

that the selected car is not the most economically convenient or even too expensive

for him (remember that the worker has a low budget and he has to buy a car), and

this is an undesired result.
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∙ conversely, to skip the case above, we can just consider (ER) as unique criterion

and neglect (C) and (A). Also in this case we have a non-realistic model, indeed

our hierarchy does not take into account that if two cars have the same rank in (ER)

then the worker will choose the car with more optionals or with a comfortable size

for his purposes.

In a such situation it seems to be natural to consider a lexicographic order (see

example (2) above) such as (ℝ ×LEX ℝ) ×LEX ℝ, where each component of a vector

(x, y, z) ∈ (ℝ ×LEX ℝ) ×LEX ℝ is a preference intensity in (RE), (C) and (A) respec-

tively (we may shortly indicate the hierarchy with (RE) ×LEX (C) ×LEX (A)). We

remark that lexicographic preferences cannot be represented by any continuous util-

ity function (see [12]).

Which kinds of intensity can we express with functions? This approach is one

of the most popular and widely studied one, under the definition of utility functions.

These functions provide a cardinal presentation of preferences, which allows to work

with choices using a plethora of different tools, related to the model (e.g. see [17, 18,

21]). We want to stress that in example (4) we consider functions from a compact

to ℝ, without giving a meaning of the domain, which can be seen as a time inter-

val, i.e. in this framework it is also possible to deal with Discounted Utility Model

and intertemporal choices (e.g. see [16]). Manipulation of a particular class of these

functions (i.e. piecewise-linear functions defined over [0, 1]n) in the context of Riesz

MV-algebras is presented in [14]. Furthermore, it is possible to consider more com-

plex examples, for instance we can consider the space ℝF
of functionals, where F is

a general archimedean Riesz space with strong unit (e.g. see [11]).

4 On Collective Choice Rules for PCMs
and Arrow’s Axioms

In this section we want to formalize and characterize Collective Choice Rules f in

the context of generalized PCMs, i.e. PCMs with elements in a Riesz space, which

satisfy classical conditions in social choice theory.

Let R be a Riesz space. Let us consider m experts/decision makers and n alterna-

tives. A collective choice rule f is a function

f ∶ GMm
n → GMn

such that

f (X(1)
,… ,X(m)) = X
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where X is a social matrix, GMn is the set of all matrices (PCMs) over R with n
alternatives such that for every i ∈ {1,… , n} xii = 0̄. f can be seen also as follows:

f = (f̃ij)1≤i,j≤n,

where

f̃ij ∶ GMm
n → R.

Note that GMn is a subspace of Mn(R) (see example (5)), i.e. it is a Riesz space.

Let us introduce properties related with axioms of democratic legitimacy and infor-

mational efficiency required in Arrow’s theorem.

∀i, j (∃fij ∶ Rm → R ∶ f̃ij(X(1)
,… ,X(m)) = fij(x

(1)
ij ,… , x(m)

ij )) (Property I∗)

∀i, j (fij((Rm)+) ⊆ R+) (Property P∗)

∄i ∈ {1,… ,m} ∶ ∀X(j)
,with j ≠ i (f (X(1)

,… ,X(i)
,… ,X(m)) = X) (Property D∗)

Theorem 1 Let R be a Riesz space and let f be a function f ∶ (Rn2 )m → Rn2 . f is
a collective choice rule satisfying Axioms of Arrow’s theorem if and only if f has
properties I∗, P∗ and D∗.

Proof Unrestricted Domain (Axiom U). The first axiom asserts that f has to be

defined on all the space GMm
n , i.e. decision makers (DMs) can provide every possible

matrix as input. This is equivalent to say that f is defined on (Rn2 )m.

Independence from irrelevant alternatives (Axiom I). The second axiom says that

the relation between two alternatives is influenced only by these alternatives and not

by other ones, i.e. it is necessary and sufficient to know how DMs compare just these

two alternative. This is equivalent to property I∗.

Pareto principle (Axiom P). The third axiom states that f has to compute a pref-

erence if it is expressed unanimously by DMs. This is equivalent to property P∗
.

Non-dictatorship (Axiom D). The last axiom requires democracy, that is no one

has the right to impose his preferences to the entire society. This is equivalent to

property D∗
.

In Theorem 1 it is presented a characterization of collective social rules which

respect Arrow’s axioms; however it does not guarantee that the social matrix pro-

duce a consistent preference, in fact not all PCMs provide an order on the set of

alternatives. We will study this feature in Sect. 5.
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5 On Social Welfare Function Features

Social welfare functions (SWFs) are all the collective choice rules which provide a

total preorder on the set of alternatives. We can decompose a SWF g as follows:

g = 𝜔 ◦ f ,

where f is a collective choice rule having properties I∗, P∗
and D∗

, and 𝜔 is a

function such that

𝜔 ∶ GMn → 𝐓𝐏,

where 𝐓𝐏 is the set of total preorders on the set of alternatives. Let us consider a

social matrix X = f (X(1)
,… ,X(m)). We want to characterize property of 𝜔 such that

g is a social welfare function.

Let us recall the definition of transitive PCM.

Definition 4 [9, Definition 3.1] A pairwise comparison matrix X is transitive if and

only if (0̄ ⪯ xij and 0̄ ⪯ xjk) ⇒ 0̄ ⪯ xik

It is trivial to check that if X is transitive, then it is possible to directly compute

an order which expresses the preferences over alternatives. In fact, let X be a GMn,

it has two properties:

(𝜌) xii = 0̄, (Reflexivity)

(𝛾) ∀i, j ∈ {1,… , n}xij ∈ R. (Completeness)

If we have also that

(𝜏) (0̄ ⪯ xij and 0̄ ⪯ xjk) ⇒ 0̄ ⪯ xik (Transitivity)

We say that an order ≲X is compatible with X if and only if we have that:

0̄ ⪯ xij ⇔ j ≲X i.

An analogous definition is proposed in [27] in the context of utility functions.

Proposition 1 Let X be a transitive GMn (TGMn) then there exists a unique total
preorder ≲X compatible with X. Or equivalently, the correspondence

𝜃 ∶ TGMn → 𝐓𝐏
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which associates to each X ∈ TGMn a preorder ≲X compatible with X itself is a
surjective function. Moreover ≲X ≡ ≲

𝛼⋅X for every 𝛼 ∈ ℝ+, and ≲X ≡ ≳
𝛼⋅X for every

𝛼 ∈ ℝ−.

Let C (R) = {A ⊆ R | A is a cone} be the set of all closed cones of R Riesz space.

By Proposition 1 we can consider the function 𝛷

𝛷 ∶ 𝐓𝐏 → C (TGMn)

such that

𝛷(≲) = {X ∈ TGMn | ≲ is compatible with X}

Proposition 2 The function 𝛷 is injective.

We can define an order relation ≪ over 𝐓𝐏 as follows:

≲1≪≲2 ⇔ i ≲2 j → i ≲1 j .

It is also possible to denote with ≲ = ≲1 ∨ ≲2 as the total preorder such that

i ≲ j ⇔ i ≲1 j and i ≲2 j.

Remark 1 By easy considerations, we have that 𝛷(≲1) ∩𝛷(≲2) = 𝛷(≲1 ∨ ≲2).
Moreover, note that 𝐓𝐏 is closed with respect to ∨, i.e. (𝐓𝐏,∨) is a join-semilattice.

Examples

Let us consider n alternatives. The spaces of total preorder with n = 2 and n = 3
have the following configurations:

a1 = a2 = 0

a1 = a2

a1 ≤ a2 a1 ≥ a2
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a1 = a2 = 0

a1 = a2

a1 ≤ a2 a1 ≥ a2

Note that in each space we have exactly one atom which expresses indifference.

We call basic total preorder an element which is minimal in (𝐓𝐏,≪).

Remark 2 In order to deal with aggregation of many TGMn we added a root (⊤),

which can be interpreted as impossibility to make a social decision (related to Con-
dorcet’s paradox and Arrow’s impossibility theorem in the context of PCMs). We

put

𝛷(⊤) = ∅.

Proposition 3 Every ≲ total preorder different from ⊤ can be written as
⋁

i ≲i,
where ≲i are basic total preorders.

Proof If ≲ has no identities then it is a basic total preorders. For each identity ai = aj
in≲we can consider≲h ∨ ≲k, with≲h and≲k basic total preorders such that ai ≲h aj,

aj ≲k ai and preserve all the other relations of ≲.

Proposition 4 Let ≲ be a basic total preorder over n elements. We have that 𝛷(≲)
is an orthant in TGMn.

Proof By the fact that ≲ is a basic total preorder we have that ai ≲ aj or aj ≲ ai for

each alternatives ai and aj, i.e. xij ⪰ 0̄ or xij ⪯ 0̄.
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Analogously to 𝜃 we can define 𝛩 in this way:

𝛩 ∶ C (TGMn) → 𝐓𝐏

where 𝛩(∅) = ⊤ and

𝛩(K) = 𝛷
−1

⎛
⎜
⎜
⎜
⎝

⋂

C∈𝛷(𝐓𝐏)
C∩K≠∅

C

⎞
⎟
⎟
⎟
⎠

.

By Remark 1 we have that the function is well-defined.

Definition 5 Let (A,≤A) and (B,≤B) be two partially ordered sets. An antitone

Galois correspondence consists of two monotone functions: F ∶ A → B and G ∶
B → A, such that for all a in A and b in B, we have F(a) ≤B b ⇔ a ≥A G(b).

Now we can state the following result.

Theorem 2 The couple (𝛩,𝛷) is an antitone Galois correspondence between
(C (TGMn), ⊆) and (𝐓𝐏,≪).

Proof Let K be an element of C (TGMn) and ≲ an element of 𝐓𝐏. Let ≲K be

𝛩(K).The proof follows by this chain of equivalence:

𝛩(K) ≪≲ ⇔ (i ≲ j → i ≲k j) ⇔ (X ∈ 𝛷(≲) → X ∈ K) ⇔ K ⊇ 𝛷(≲).

We denote by Kn the subset of C (TGMn) of all the cones L such that L ∈ 𝛷(𝐓𝐏).

Proposition 5 Let L be a cone of TGMn. We have that

L ∈ 𝛷(𝐓𝐏) ⇔ L is a TP − cone.

Proof (⇒) Let L be in 𝛷(𝐓𝐏), this means that L = ∅ or L = 𝛷(≲) for some ≲ total

preorder. Using Proposition 3 and Remark 1 we have:

L = 𝛷(≲) = 𝛷(
⋁

i
≲i) =

⋂

i
𝛷(≲i),

where ≲i are basic total preorders. By Proposition 4 and Definition 3 we have that L
is a TP-cone.

(⇐) Let L be a TP-cone. We have that:

∙ if L = ∅ then L ∈ 𝛷(𝐓𝐏);
∙ if L is an orthant then for each i and j xij ⪰ 0̄ or xij ⪯ 0̄, which is equivalent

to say that there exists ≲ (basic) total preorder such that ai ≲ aj or aj ≲ ai, i.e.

L ∈ 𝛷(𝐓𝐏);
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∙ if L is an intersection of Oi orthants then

L =
⋂

i
Oi =

⋂

i
𝛷(≲i) = 𝛷(

⋁

i
≲i),

for some ≲i basic total preorders, i.e. L ∈ 𝛷(𝐓𝐏).

5.1 Categorical Duality

In this subsection we provide a categorical duality between the categories of total

preorders and of TP-cones (for basic definition on categories see [22]).

Let us define the categories 𝕋ℙn (of total preorders) and 𝕂n (of TP-cones in

TGMn). In 𝕋ℙn the objects are total preorder on n elements and arrows are defined

by order ≪, i.e.

≲1→≲2 ⇔ ≲1≪≲2 .

In a similar way we define 𝕂n whose objects are TP-cones in the space TGMn and

arrows are defined by inclusion.

Theorem 3 Categories of preorders and of TP-cones are dually isomorphic.

Proof of Theorem 3 descends from lemmas below.

Lemma 1 The maps Θ ∶ 𝕂n → 𝕋ℙn and Φ ∶ 𝕋ℙn → 𝕂n defined as follows

∙ Θ(C) = 𝛩(C)
∙ Θ(→) =←
∙ Φ(≲) = 𝛷(≲)
∙ Φ(→) =←

are contravariant functors.

Proof Let us consider C and D TP-cones, such that C → D. We have that:

C → D ⇔ C ⊆ D ⇔ 𝛩(C) ≫ 𝛩(C) ⇔ 𝛩(C) ← 𝛩(D).

Analogously, if we consider ≲1 and ≲2 total preorders over n elements, such that

≲1→≲2, then:

≲1→≲2 ⇔ ≲1≪≲2 ⇔ 𝛷(≲1) ⊇ 𝛷(≲2) ⇔ 𝛷(≲1) ← 𝛷(≲2).

Lemma 2 The composed functors ΦΘ ∶ 𝕂n → 𝕂n and ΘΦ ∶ 𝕋ℙn → 𝕋ℙn are the
identity functors of the categories 𝕂n and 𝕋ℙn respectively.
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Proof Let us consider K TP-cone, we have that

ΦΘ(K) = 𝛷(𝛩(K)) = 𝛷

⎛
⎜
⎜
⎜
⎝

𝛷
−1

⎛
⎜
⎜
⎜
⎝

⋂

C∈𝛷(𝐓𝐏)
C∩K≠∅

C

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

=
⋂

C∈𝛷(𝐓𝐏)
C∩K≠∅

C,

but K is a TP-cone, i.e. K ∈ 𝛷(𝐓𝐏), hence

⋂

C∈𝛷(𝐓𝐏)
C∩K≠∅

C = K.

Vice versa, let ≲ be a total preorder, then

ΘΦ(≲) = 𝛩(𝛷(≲)) = 𝛩({X ∈ TGMn | ≲ is compatible with X}).

Let us denote by K
≲
= {X ∈ TGMn | ≲ is compatible with X}, therefore we have:

𝛩(K
≲
) = 𝛷

−1

⎛
⎜
⎜
⎜
⎝

⋂

C∈𝛷(𝐓𝐏)
C∩K≠∅

C

⎞
⎟
⎟
⎟
⎠

= 𝛷
−1(K

≲
) =≲ .

In both cases arrows are preserved by Lemma 1.

6 Conclusions

This paper proposes a first attempt to use Riesz spaces as general framework for deci-

sion making methods, in particular we focused on pairwise comparison matrices and

AHP. We provide a characterization of collective choice rules satisfying Arrow’s

axioms (Theorem 1); we established an antitone Galois correspondence between

total preorders and cones of a Riesz space (Theorem 2) and a categorical duality

between categories of preorders and of particular cones of a Riesz space (Theo-

rem 3). After some motivations and examples (presented in Sect. 3) it is proposed a

systematical investigation on connections between PCMs, total preorders and Riesz

spaces; we deal with collective choice rules and classical social axioms (Arrow’s

axioms), supported by a duality between total preorders and geometric objects.

We stress also that Riesz spaces are categorically equivalent to Riesz MV-algebras

(see [15]); this implies that generalized PCMs provide a semantic for (an extension

of) Łukasiewicz logic, which is already applied also in artificial neural network field

(e.g. see [13]).
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Coherent Conditional Plausibility:
A Tool for Handling Fuzziness and
Uncertainty Under Partial Information

Giulianella Coletti and Barbara Vantaggi

Abstract Non-additive measures, such as plausibility, are meaningful when only a

partial or indirect information on the events of interest is available, or when impre-

cision and ambiguity of agents are considered. Our main aim is to study inferential

processes, like the Bayesian one, when the information is expressed in natural lan-

guage and the uncertainty measure is either partially or imprecisely assessed. We

deal with partial assessments consistent with a conditional plausibility, and adopt

the interpretation of the membership of a fuzzy set in terms of coherent conditional

plausibility, regarded as a function of the conditioning events. This kind of interpre-

tation, inspired to that given in terms of coherent conditional probability, is partic-

ularly useful for computing the measure of the uncertainty of fuzzy events, when

the knowledge on the variable is imprecise and can be managed with a non-additive

measure of uncertainty. A simple situation related to a Zadeh’s example can be the

following: a ball will be drawn from an urn containing balls of different colours

and different diameters, but one knows only the distribution of the different colours.

The aim is to compute the uncertainty measure of the fuzzy event “a small ball is

drawn”, taking in considerations possible logical constrains among the colours and

the diameters.

1 Introduction

Combining uncertainty due to heterogeneous sources of knowledge, or to ambigu-

ity of agents, is usually performed under different frameworks (e.g. probability the-

ory, theory of evidence, fuzzy set theory). This is necessary in many fields such as
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decision making, operational research, artificial intelligence, management science,

expert systems (as already discussed in seminal works such as [3, 32, 35, 36, 54,

57]) and more recently in semantic web and in bioinformatics (see for instance [42,

44, 48, 56]).

Fuzzy set theory, introduced by Zadeh [53], for handling vagueness and impreci-

sion due to natural language, has become very popular and it provides an advanced

formalization of some concepts expressed by means of natural language. Different

interpretations of fuzzy sets have been given [31, 39, 43, 47] in terms of (condi-

tional) probabilities, we refer to that given in [11–13], where the membership func-

tion of a fuzzy subset is interpreted in terms of a coherent conditional probability

assessment. This interpretation, as shown in [6, 19, 20], is particularly meaningful

when fuzzy and statistical information is simultaneously available [55].

Nevertheless sometimes the statistical information is imprecise, so it is unavoid-

able to act under ambiguity since uncertainty must be evaluated by means of classes

of probabilities and their envelopes, instead of a single probability distribution. For

example, such measures can be obtained through an extension process: when the

probabilistic information is related to events different from those of interest and

where the fuzzy information is available, the probabilistic assessment needs to be

extended, a la de Finetti [23, 51], obtaining a family of probabilities whose upper

envelope could be a plausibility [5, 15, 26, 38, 50] or also a possibility [14, 25, 33].

In this paper we consider the above problems by focusing mainly on plausibility

measures, for which many proposals of conditioning are present. We follow mainly

the approach based on Dempster rule [26], generalized in [45? ]. This rule assures

a “weak disintegration rule” and admits as particular case conditional probabili-

ties a la de Finetti [23] and T-conditional possibility, with T the t-norm of product

[2, 17, 18].

It is well known that conditional plausibilities, defined through Dempster rule,

cannot be obtained as the upper envelope of a class of conditional probabilities, even

if, for any conditioning event, they can be obtained as the upper envelope of the

extensions of a suitable probability [7].

In the first part of the paper, in order to consider a generalized Bayesian inferential

procedure, by using the concept of coherence (that is the consistency of a partial

assessment with a conditional possibility or plausibility), we study the properties of

likelihood functions, both as point and set functions, in the different frameworks.

Then, we extend some results provided in [8, 9, 21] and we study the coherence of

a likelihood and a plausibility (or possibility) “a prior” measure.

In Sect. 4 we give an interpretation of the membership of fuzzy sets as a plau-

sibilistic likelihood function and we study which properties of fuzzy set theory are

maintained. The semantic of the interpretation is very similar to those made in terms

of either probabilistic or possiblistic likelihood: if𝜑 is a property, related to a variable

X, the meaning associated to the membership 𝜇
𝜑
(⋅) on x consists into the plausibility

that You claim that X is 𝜑 under the hypothesis that X assumes the value x.

We show, from a syntactical point of view, the differences and common features

under the various frameworks. Among those is relevant to emphasize that the degree

of fuzziness, expressed through the membership, of the union 𝜇
𝜑∨𝜓 of two fuzzy
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sets, with memberships 𝜇
𝜑

and 𝜇
𝜓

, is not strictly linked to the membership of inter-

sections 𝜇
𝜑∧𝜓 by the Frank equation [37], as in the probabilistic interpretation. On

the other hands 𝜇
𝜑∨𝜓 is not univocally determined as the max{𝜇

𝜑
, 𝜇

𝜓
}, indepen-

dently of 𝜇
𝜑∧𝜓 , as in possibilistic interpretation. While in the case of plausibilistic

framework it is not univocally determined, but 𝜇
𝜑∨𝜓 (x) must be between the bounds

max{𝜇
𝜑
(x), 𝜇

𝜓
(x)} and min{𝜇

𝜑
(x) + 𝜇

𝜓
(x)} − 𝜇

𝜑∧𝜓 (x), 1}.

In all these interpretations the fuzzy membership 𝜇
𝜑

coincides with a likelihood

and the fuzzy event E
𝜑

is the Boolean event “You claim that X is 𝜑”; moreover for

the measure of uncertainty of E
𝜑

when the prior on X is subjected to imprecision

and so it could be given by means of a plausibility, we get an upper bound, while

when the prior is a possibility we give an analytic formula depending on the chosen

t-norm.

2 The Uncertainty Framework of Reference

Our framework of reference is that of conditional plausibility. Among the definitions

present in the literature we choose the axiomatic one. It is directly defined as a func-

tion on sets of conditional events E|H, that is ordered pairs (E,H) of events which

can be both true or false with H ≠ ∅, but that play a different role (the conditioning

one is assumed as a hypothesis). Any event E can be seen as the conditional event

E|𝛺 (where 𝛺 is the sure event). In the definition of conditional plausibility (such

as for the conditional probability) the set of conditional events is required to have a

proper algebraic structure and the function must satisfy a set of rules.

In order to combine uncertainty information with vagueness, we need to man-

age assessments in arbitrary sets of conditional events and so we need to refer to

the notion of coherence, which guaranties an effective tool for controlling global

consistency with a conditional plausibility and ruling the inferential procedures.

We recall that a general inferential problem can be simply seen in fact as an exten-

sion of an assessment to other events, maintaining consistency with the framework

of reference.

2.1 Conditional Measures

Usually in literature conditional measures are presented as a derived notion of uncon-

ditional ones, by introducing a law (equation) involving the joint measure and its

marginal. Nevertheless, this could be restrictive, since for some pair of events the

solution of the equation (the conditional measure) can either not exist or not be

unique. So, in analogy with conditional probability [24], it is preferable to define

conditional measures in an axiomatic way, directly as a function defined on a suit-

able set of conditional events, satisfying a set of rules (axioms). We recall here the

notion of conditional plausibility axiomatically defined as follows (see [15]):
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Definition 1 LetB be a Boolean algebra andH ⊆ B ⧵ {∅} an additive set. A func-

tion Pl defined on C = B ×H is a conditional plausibility if it satisfies the follow-

ing conditions

(i) Pl(E|H) = Pl(E ∧ H|H);
(ii) Pl(⋅|H) is a plausibility function ∀H ∈ H ;

(iii) For every E ∈ B and H,K ∈ H

Pl(E ∧ H|K) = Pl(E|H ∧ K) ⋅ Pl(H|K).

Moreover, given a conditional plausibility, a conditional belief function Bel(⋅|⋅) is

defined by duality as follows: for every event E|H ∈ C

Bel(E|H) = 1 − Pl(Ec|H). (1)

Conditions (i) and (ii) require that Pl(𝛺|H) = Pl(H|H) = 1 and Pl(∅|H) = 0 and

moreover, for any n, Pl(⋅|H) is n-alternating [26, 27], that is, for any A1,… ,An ∈ A
and A =

⋀n
i=1 Ai:

Pl(A|H) ≤
∑

∅≠I⊆{1,…,n}
(−1)|I|+1Pl(

⋁

i∈I
Ai|H) (2)

Then, Bel(⋅|H) is n-monotone, for any n.

The above definition extends the Dempster’s rule [26], i.e.

Bel(F|H) = 1 − Pl(Fc ∧ H)
Pl(H)

,

for all conditioning events H such that Pl(H) > 0.

We notice that, when all the conditioning events have positive plausibility, i.e.for

any H ∈ H with Pl(H|H0) > 0 (where H0 =
⋁

H∈H H), the above notions of con-

ditional plausibility and belief coincide with those given in [28]. In fact, if Pl(H) > 0
it follows

Bel(F|H) = Bel(F ∨ Hc) − Bel(Hc)
Pl(H)

. (3)

An easy consequence of Definition 1 is a weak form of disintegration formula [4] for

the plausibility of any conditional event E|H with respect to a partition H1,… ,HN
of H

Pl(E|H) ≤
N∑

k=1
Pl(Hk|H)Pl(E|Hk) (4)

Other different definitions of conditioning are present in the literature: the most

interesting and famous is that due to Jaffray and Walley (see [34, 40, 50, 51]) defined

by the following equation:
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Pl(F|H) = Pl(F ∧ H)
Pl(F ∧ H) + Bel(Fc ∧ H)

(5)

and obtained as upper envelope of particular classes of conditional probabilities.

We notice that conditional plausibility defined by Eq. (5) does not satisfy axiom

(iii) of Definition 1 and then, in particular, it does not satisfy (4).

Finally we point out that the class of conditional plausibilities (defined in Defin-

ition 1) contains in particular important classes: conditional probabilities, as intro-

duced in [24, 29, 41], and T-conditional possibilities [2, 18], with the t-norm T equal

to the usual product (in symbols P-conditional possibility).

The next result (proved in [4]) shows that every conditional plausibility on B ×
H can be extended (not uniquely) to a full conditional plausibility on B (i.e., a

conditional plausibility on B ×B0
) and to a full conditional plausibility on B′

for

any finite super-algebra B′
⊃ B.

Theorem 1 Let B be a finite algebra. If Pl on B ×H → [0, 1] is a conditional
plausibility, then there exists a conditional plausibility Pl′ ∶ B ×B0 → [0, 1] such
that Pl′

|B×H = Pl. Furthermore, for any finite superalgebraB′
⊇ B, there exists a

full conditional plausibility Pl′ ∶ B′ ×B′0 → [0, 1] such that Pl′
|B×H = Pl.

Note that the full conditional plausibility Pl′ on B′
extending the given condi-

tional plausibility Pl is not unique.

2.2 Coherent Conditional Plausibility

In probability theory the concept of coherence [24] has been introduced for handling

conditional probability assessed on arbitrary set of conditional events C . Coherence

assures the consistency of the assessment with a conditional probability defined on

a superset with the logical requisites required in Definition 1 and rules its coherent

extensions on any superset C ′
of C . It is possible to introduce a similar notion also

for plausibility functions as already made for T-conditional possibilities in [2, 18].

Definition 2 A function (or assessment) 𝛾 ∶ C → [0, 1], on a set of conditional

events C , is a coherent conditional plausibility iff there exists a full conditional plau-

sibility Pl on an algebra B such that C ⊆ B ×B0
and the restriction of Pl on C

coincides with 𝛾 .

Both for conditional probabilities and for P-conditional possibilities a charac-

terization of coherent assessment has been given in terms of suitable classes of

unconditional probabilities or possibilities, respectively, or in terms of solvability

of a sequence of systems (see [11, 18]).

The following result proved in [4] extends these results to (coherent) conditional

plausibility functions.
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Theorem 2 LetF = {E1|F1,E2|F2,… ,Em|Fm} and denote byB the algebra gen-
erated by {E1,… ,Em,F1,… ,Fm}, H0

0 = ∨m
j=1Fj.

For Pl ∶ F → [0, 1] the following statements are equivalent:

(a) Pl is a coherent conditional plausibility;
(b) there exists a class P = {Pl

𝛼
} of plausibility functions such that Pl

𝛼
(H𝛼

0 ) = 1
and H𝛼

0 ⊂ H𝛽

0 for all 𝛽 < 𝛼, where H𝛼

0 is the greatest element of K for which
Pl(𝛼−1)(H𝛼

0 ) = 0.
Moreover, for every Ei|Fi, there exists a unique index 𝛼 such that Pl

𝛽
(Fi) = 0

for all 𝛼 > 𝛽, Pl
𝛼
(Fi) > 0 and

Pl(Ei|Fi) =
Pl

𝛼
(Ei ∧ Fi)
Pl

𝛼
(Fi)

, (6)

(c) all the following systems (SPl𝛼), with 𝛼 = 0, 1, 2,… , k ≤ n, admit a solution
𝐗𝛼 = (𝐱𝛼1 ,… , 𝐱𝛼j

𝛼

) with 𝐱𝛼j = m
𝛼
(Hj) (j = 1,… , j

𝛼
):

(S𝛼Pl) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

∑

Hk∧Fi≠∅
x𝛼k ⋅ Pl(Ei|Fi) =

∑

Hk∧Ei∧Fi≠∅
x𝛼k , ∀Fi ⊆ H𝛼

0
∑

Hk∈H𝛼

0

x𝛼k = 1

x𝛼k ≥ 0, ∀Hk ⊆ H𝛼

0

where H𝛼

0 is the greatest element ofK such that
∑

Hi∧H𝛼

0≠∅
m(𝛼−1)(Hi) = 0.

In particular, conditions (b) and (c) put in evidence that this conditional measure

can be written in terms of a suitable class of basic assignments, instead of just one

as in the classical case, where all the conditioning events have positive plausibility.

Whenever there are events in K with zero plausibility the class of unconditional

plausibilities contains more than one element and we can say that Pl1 gives a refine-

ment of those events judged with zero plausibility under Pl0.

Every class P (condition (b) of Theorem 2) is said to be agreeing with condi-

tional plausibility Pl.

3 Likelihood Functions

In this section we recall some results related to a comparative analysis of likelihood

functions under different frameworks: probability, possibility. Moreover, we inves-

tigate the relation with likelihoods as coherent conditional plausibility.

Let us consider a finite partition L = {Hi}i∈I of 𝛺 together with two Boolean

algebras AL and A where AL = ⟨L ⟩ is the algebra generated by L and A a

super-algebra such that AL ⊆ A .
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A plausibilistic strategy is a map 𝜎 ∶ A ×L → [0, 1] satisfying the following

conditions for every Hi ∈ L :

(S1) 𝜎(E|Hi) = 0 if E ∧ Hi = ∅ and 𝜎(E|Hi) = 1 if E ∧ Hi = Hi, for every E ∈ A ;

(S2) 𝜎(⋅|Hi) is a plausibility on A .

Plausibilistic strategies differ from probabilistic (see [29]) and possibilistic strate-

gies (see [8]) on the requirement (S2): this condition is replaced by the requirement

that 𝜎(⋅|Hi) on A is a finitely additive probability or a finitely maxitive possibility,

respectively.

When the assignment is not given on a structure as A ×L , then we need to

require a coherence condition. In the particular case that the assignment is related

to an evidence, expressed by an event E, coherence is assured in all the frameworks,

as showed in the following Theorem 3. In the following we refer to the following

notion of likelihood:

Definition 3 Given an event E and a finite partition L , a likelihood function is an

assessment on {E|Hi ∶ Hi ∈ L } (that is a function f ∶ {E} ×L → [0, 1]) satisfy-

ing only the following trivial condition:

(L1) f (E|Hi) = 0 if E ∧ Hi = ∅ and f (E|Hi) = 1 if Hi ⊆ E

Theorem 3 Let L = {H1,… ,Hn} be a finite partition of 𝛺 and E an event. For
every function f ∶ {E} ×L → [0, 1] satisfying the condition (L1) the following
statements hold:

(a) f is a coherent conditional probability;
(b) f is a coherent T-conditional possibility (for every continuous t-norm T);
(c) f is a coherent conditional plausibility.

Proof Condition (a) and (b) have been proved in [13] and [8], respectively.

Condition (c) derives from the fact that any coherent conditional probability (or

equivalently any coherent T-conditional possibility, with T the usual product) is a

coherent conditional plausibility. □

Corollary 1 Let L = {H1,… ,Hn} be a finite partition of 𝛺 and E an event. If
the only coherent conditional plausibility (probability, possibility) f takes values in
{0, 1}, then it is Hi ∧ E = ∅ for every Hi such that f (E|Hi) = 0 and it is Hi ⊆ E for
every Hi such that f (E|Hi) = 1.

Proof It follows directly from Theorem 2 and the characterization theorem for coher-

ent conditional probabilities [11] and T-conditional possibilities [18]. □

The previous result points out that “syntactically” a probabilistic likelihood func-

tion is indistinguishable from a possibilistic likelihood function or a plausibilistic

likelihood function, i.e., any function f satisfying the minimal requirement of con-

sistence (L1) can be extended either as a probabilistic strategy or as a possibilistic

strategy or as a plausibility strategy.
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For this, we drop the adjective probabilistic, possibilistic or plausibilistic and we

call such functions simply likelihood.

Obviously, the extensions are syntactically different [10, 46], as aforementioned,

so a criterion for choosing the framework is need to be determined. This criterion

could be guided from semantic motivations or related to syntactically reasons. In the

last case the choice could be guided from the “prior” information. This situation is

analysed in the following session.

3.1 Likelihood and Prior

In some situations where imprecision or ambiguity of agents is presented there is no

a unique prior distribution on a given partition L of interest. In these situations a

class of prior distribution are available on AL . These prior distribution could arise

from the extension process of a given probability (see, for example, [14, 25, 33,

51]). In this paper we deal with the situation where the upper envelope of this class

of prior distribution is a plausibility.

The aim is now to make inference according to a Bayesian-like procedure, so

we need to deal with an initial assessment consisting of a “prior” 𝜑 on an algebra

AL and a “likelihood function” f related to the set of conditional events E|Hi’s,

with E any event and Hi ∈ L . This topic has been deeply discussed in [50, 51] by

considering several interesting examples.

First of all we need to test the consistency of the global assessment

{f , 𝜈} = {f (E|Hi), 𝜈(Hi) ∶ Hi ∈ L }

with respect to the framework of reference, pointing out by an uncertainty measure

(plausibility or more specific measures such as probability or P-possibility).

The choice of the framework of reference could be essentially decided by the

prior, since as shown in Theorem 3, a likelihood can be re-read in any framework.

Actually in this session we present essentially some results given in [21].

Theorem 4 Let L be a partition of 𝛺, consider a likelihood f related to an event
E onL and consider a probability P, a plausibility Pl and a possibility𝛱 , respec-
tively, on the algebra AL generated byL . Then the following statements hold:

(a) the global assessment {f ,P} is a coherent conditional probability;
(b) the global assessment {f ,Pl} is a coherent conditional plausibility;
(c) the global assessment {f ,𝛱} is a coherent T-conditional possibility (for every

continuous t-norm T);

Proof Condition (a) is well known and condition (c) has been proved in [1].

Concerning condition (b) note that Pl on AL defines a unique basic assignment

function m0 on AL that is the unique solution of S0Pl concerning the coherence of

Pl.
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Then, the assessment {f ,Pl} can be seen as an assessment and we need to estab-

lish whether it is a coherent conditional plausibility. Therefore, we need to check

whether the relevant system S0Pl,f has solution and so whether there is a class of basic

assignment {m′
𝛼
} on ⟨E,L ⟩.

Note that if the system S0Pl,f has solution, then coherence with respect to con-

ditional plausibility follows: in fact if there is some Hi ∈ L such that Pl(Hi) = 0,

we need to build the system S1Pl,f by considering equations related to f (E|Hi) (with

Pl(Hi) = 0) and coherence follows since the likelihood is a coherent conditional plau-

sibility.

Actually, the atoms in ⟨E,L ⟩ are all the events E ∧ Hi,Ec ∧ Hi with Hi ∈ L .

From [22] any plausibility on AL induces a unique function, called basic plausi-

bility assignment, 𝜈 (possibly taking also negative values) on AL such that
∑

A∈AL

𝜈(A) = 1 and
∑

A∈AL ∶A⊆B 𝜈(A) = Pl(B).
Let 𝜇 be on AL be the plausibility assignment induced by Pl, consider 𝜇

′
defined

on ⟨E,L⟩ as follows

𝜇
′(Hi) = 0,

𝜇
′(E ∧ Hi) = f (E|Hi)Pl(Hi)

𝜇
′(Ec ∧ Hi) = 𝜇(Hi) − 𝜇

′(E ∧ Hi),
𝜇(A) = 𝜇

′(A), for any A ∈ AL ⧵L

By construction
∑

A∈⟨E,L ⟩ 𝜇
′(A) = 1. For any B in ⟨E,L ⟩ but not in (AL ∪ {E ∧

Hi,Ec ∧ Hi ∶ Hi ∈ L }) one has 𝜇
′(B) = 0. Then, the function f on ⟨E,L⟩ defined as

∑
A∈⟨E,L ⟩∶A⊆B 𝜇

′(A) = f (B) is such that by construction, for any B ∈ AL ,

f (B) =
∑

A∈⟨E,L ⟩∶A⊆B
𝜇
′(A) =

∑

A∈AL ∶A⊆B
𝜇
′(E ∧ A) + 𝜇

′(Ec ∧ A) + 𝜇
′(A) =

∑

A∈AL ∶A⊆B
𝜇(A) = Pl(B)

then f extends Pl.
We need to prove that f is a plausibility: the proof can be made by induction, we

prove here that is 2-alternating, the property of n-alternance follows by induction.

For any event A ∈ ⟨E,L ⟩ there is an event Ā ∈ AL such that Ā ⊆ A and no event

B ∈ AL such that Ā ⊂ B ⊆ A, that is the maximal event ofAL contained inA. Then,

given any pair of events A,B ∈ ⟨E,L ⟩ let Ā, B̄ ∈ AL be the two maximal events

contained, respectively in A and B. Thus,

f (A ∨ B) =
∑

C∈⟨E,L ⟩∶C⊆A∨B
𝜇
′(C) =

∑

E∧Hi⊆A∨B
𝜇
′(E ∧ Hi) +

∑

Ec∧Hi⊆A∨B
𝜇
′(Ec ∧ Hi) +

∑

C∈⟨L ⟩⧵L ,C⊆A∨B
𝜇
′(C) =

=
∑

Hi⊆A∨B
𝜇(Hi) +

∑

E∧Hi⊆A∨B,Ec∧Hi⊈A∨B
𝜇
′(E ∧ Hi) +

∑

Ec∧Hi⊆A∨B,E∧Hi⊈A∨B
𝜇
′(Ec ∧ Hi) +

∑

C∈⟨L ⟩⧵L ,C⊆A∨B
𝜇(C) =
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= Pl(A ∨ B) +
∑

E∧Hi⊆A∨B,Ec∧Hi⊈A∨B
𝜇
′(E ∧ Hi) +

∑

Ec∧Hi⊆A∨B,E∧Hi⊈A∨B
𝜇
′(Ec ∧ Hi) =

= Pl(Ā ∨ B̄) +
∑

Hi⊆A∨B,Hi⊈Ā∨B̄

𝜇(Hi) +
∑

E∧Hi⊆A∨B,Ec∧Hi⊈A∨B
𝜇
′(E ∧ Hi) +

∑

Ec∧Hi⊆A∨B,E∧Hi⊈A∨B
𝜇
′(Ec ∧ Hi).

Note thatA = Ā ∨
⋁

Hi∈L ∶Hi⊈A
((E ∧ Hi ∧ A) ∨ (Ec ∧ Hi ∧ A)) and analogously forB.

Obviously, Ā ∨ B̄ ⊆ A ∨ B and Ā ∧ B̄ coincides with A ∧ B.

Moreover, Ā ∨ B̄ is included into A ∨ B but does not coincide with it, in fact Hi ∈
L could be included in A ∨ B, but Hi is not included neither in A nor in B (e.g.

E ∧ Hi ⊆ A and Ec ∧ Hi ⊆ B).

Hence,

f (A ∨ B) ≤ Pl(Ā) + Pl(B̄) − Pl(Ā ∧ B̄) +
∑

Hi⊆ ̄A∨B,Hi⊈Ā∨B̄

𝜇(Hi) +
∑

E∧Hi⊆A∨B,Ec∧Hi⊈A∨B
𝜇
′(E ∧ Hi)

+
∑

Ec∧Hi⊆A∨B,E∧Hi⊈A∨B
𝜇
′(Ec ∧ Hi) ≤

≤ Pl(Ā) + Pl(B̄) − Pl(Ā ∧ B̄) +
∑

Hi⊆A∨B,Hi⊈Ā∨B̄

(𝜇′(E ∧ Hi) + 𝜇
′(Ec ∧ Hi)) +

∑

E∧Hi⊆A∨B,Ec∧Hi⊈A∨B
𝜇
′(E ∧ Hi) +

+
∑

Ec∧Hi⊆A∨B,E∧Hi⊈A∨B
𝜇
′(Ec ∧ Hi) =

= f (A) + f (B) − Pl(Ā ∧ B̄) −
∑

E∧Hi⊆A∧B,Ec∧Hi⊈A∨B
𝜇
′(E ∧ Hi) −

∑

Ec∧Hi⊆A∧B,E∧Hi⊈A∨B
𝜇
′(Ec ∧ Hi)

= f (A) + f (B) − f (A ∧ B)

Finally, f induces a conditional plausibility, that we continue to denote with f , on

⟨E,L ⟩ ×H where H is the additive set generated by Hi ∈ L such that f (Hi) > 0.

For any Hi ∈ L one has

f (E|Hi) =
f (E ∧ Hi)
f (Hi)

=
𝜇
′(E ∧ Hi)
Pl(Hi)

= f (E|Hi).

This implies that the system S0Pl,f admits a solution and so for the above consideration

the assessment {Pl, f } is a coherent conditional plausibility. □

3.2 Aggregated Likelihoods

The interest come from inferential problems in which the available information con-

sists of a plausibilistic (or probabilistic or possibilistic) “prior” on a partition {Kj}
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and a likelihood related to the events of another partition refining the previous one.

So first of all we need to aggregate the likelihood function preserving coherence with

the framework of reference.

In what follows g ∶ {E} ×H → [0, 1] denotes a function such that the restriction

g|{E}×L of g to {E} ×L coincides with f .
We recall a common feature of probabilistic and possibility framework: any

aggregated likelihood g, seen as a coherent conditional probability or a coherent

T-conditional possibility, satisfies the following condition for every K ∈ H :

min
Hi⊆K

f (E|Hi) ≤ g(E|K) ≤ max
Hi⊆K

f (E|Hi). (7)

Now the question is to investigate whether an aggregated likelihood seen as a coher-

ent conditional plausibility must satisfy the same constraints.

In the following example we show that the quantity maxHi⊆K f (E|Hi) is not an

upper bound.

Example 1 Let L = {H1,H2} be a partition and E an event logically independent

of the events Hi ∈ L . Consider the following likelihood on L

f (E|H1) =
1
4
; f (E|H2) =

1
2

and let g be a function extending f on {E} ×H such that g(E|H1 ∨ H2) =
3
4
=

f (E|H1) + f (E|H2).

From Eq. (7) it follows that g is not a coherent T-conditional possibility or condi-

tional probability; we prove that it is indeed a coherent conditional plausibility. For

that let us consider the following system with unknowns m0(C), where C ∈ ⟨E,L ⟩

(S0) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

1∕4 ⋅
∑

H1∧C≠∅
m0(C) =

∑

H1∧E∧C≠∅
m0(C),

1∕2 ⋅
∑

H2∧C≠∅
m0(C) =

∑

H2∧E∧C≠∅
m0(C),

3∕4 ⋅
∑

(H1∨H2)∧C≠∅
m0(C) =

∑

(H1∨H2)∧E∧C≠∅
m0(C),

∑

C⊆H1∨H2

m0(C) = 1

m0(C) ≥ 0, ∀C ∈ ⟨E,L ⟩

It is easy to see that the basic assignment:

m0((E ∧ H1) ∨ (Ec ∧ H2)) = m0(H1 ∨ (Ec ∧ H2)) =
1
8
,

m0((Ec ∧ H1) ∨ (E ∧ H2)) = m0((Ec ∧ H1) ∨ H2) =

m0(Ec ∧ (H1 ∨ H2)) =
1
4
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and m0(C) = 0 for any other event C ∈ ⟨E,L ⟩, is a solution of S0, giving positive

plausibility to both the events Hi.

We give now an example showing that the lower bound of Eq. (7) can be violated

when we refer to the plausibilistic framework.

Example 2 Let L = {H1,H2} be a partition and E an event logically independent

of all the events Hi.

Consider the following aggregated likelihood on H

f (E|H1) = f (E|H2) =
2
3
, f (E|H1 ∨ H2) =

1
2
.

To prove that the assessment is coherent within a conditional plausibility, we con-

sider the following system with unknowns m0(C), where C ∈ ⟨E,L ⟩

(S0) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

2∕3 ⋅
∑

H1∧C≠∅
m0(C) =

∑

H1∧E∧C≠∅
m0(C),

2∕3 ⋅
∑

H2∧C≠∅
m0(C) =

∑

H2∧E∧C≠∅
m0(C),

1∕2 ⋅
∑

(H1∨H2)∧C≠∅
m0(C) =

∑

(H1∨H2)∧E∧C≠∅
m0(C),

∑

C⊆H1∨H2

m0(C) = 1

m0(C) ≥ 0, ∀C ∈ ⟨E,L ⟩

The following basic assignment on ⟨E,L ⟩:

m0 = (Ec ∧ H1) = m0(Ec ∧ H2) = m0(E) = m0(𝛺) = 1
4

and m0(C) = 0 for any other event C ∈ ⟨E,L ⟩, is a solution of S0, giving positive

plausibility to both the events Hi.

Remark 1 The fact that the lower bound of coherent values of Pl(E|Hi ∨ Hj) can be

less than min{Pl(E|Hi),Pl(E|Hj)} is an indirect proof that a conditional plausibility

(Definition 1) is not an upper envelope of a set of conditional probabilities.

Theorem 5 If f ∶ E ×L → [0, 1] is a likelihood, then any coherent conditional
plausibility g extending f satisfies, for every K ∈ H , the following inequality:

(L2) 0 ≤ g(E|K) ≤ min{
∑

Hi⊆K
f (E|Hi), 1}.

Proof There is a coherent conditional plausibility assessment g on B ×H with

B = ⟨H ∪ {E}⟩, extending f . For every K ∈ H , Pl satisfies (4) and g(E|K) ≥ 0
and so 0 ≤ g(E|K) ≤

∑
Hi⊆K

f (E|Hi)g(Hi|K). Then, the thesis follows. □

Theorem 5 shows that in plausibility framework there is much more freedom than

in both probabilistic and possibilistic ones, where aggregated likelihood functions
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are monotone, with respect to ⊆, only if the extension is obtained, for every K,

as maxHi⊆K f (E|Hi) and they are anti-monotone if and only if their extensions are

obtained as minHi⊆K f (E|Hi).
Since any likelihood is also a coherent conditional probability and in [13, 16] it

has been proved that an aggregated likelihood coherent within conditional probabil-

ity can be obtained by taking the minimum (maximum), this extension can be taken

also in the plausibility framework.

In the following proposition we prove that in the plausibilistic framework we

could take the sum of likelihoods Pl(E|Hi) as plausibility of E|
⋁

Hi.

Proposition 1 Let f be a likelihood on L related to an event E. If
∑

Hi∈L f (E|Hi)
≤ 1, the function g on {E} ×H defined for all K1,K2 ∈ H with K1 ∧ K2 = ∅ as

g(E|K1 ∨ K2) = g(E|K1) + g(E|K2).

is a coherent conditional plausibility extending f .

Proof To prove the result it is enough to consider the following basic assignment m
on ⟨E,L ⟩:

m((E ∧ Hi) ∨
⋁

j≠i
(Ec ∧ Hj)) + m(Hi ∨

⋁

j≠i
(Ec ∧ Hj)) = f (E|Hi)

for Hi ∈ L and m(Ec) = 1 −
∑

Hi∈L f (E|Hi).
It is easy to show that this basic assignment m is agreeing with g (see Theorem 3)

and the plausibility of Hi is positive. □

4 Fuzzy Sets as Coherent Conditional Plausibilities

The aim of this sections is to give an interpretation of the membership of the fuzzy

subsets in terms of coherent conditional plausibility (“plausibilistic likelihood”), to

study which t-norms and t-conorms can be used under this framework. This problem

essentially is based on coherent extensions of a conditional plausibility. Finally in

order to apply the results of the previous section we introduce an inferential problem,

starting from linguistic information (fuzzy sets) and imprecise prior information.

4.1 Main Definition

For our aim we start with the interpretation of fuzzy sets in terms of coherent condi-

tional plausibility as a function of the conditioning event (plausibilistic likelihood).

This interpretation generalises both those given in terms of coherent conditional
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probability (see for instance [11–13]) and in terms of coherent T-conditional pos-

sibility (see [8]), with T the usual product.

Formally speaking: let X be a (not necessarily numerical) variable, with range

CX , and, for any x ∈ CX , let us denote by Ax or x the event {X = x}. The family of

events {x}x∈CX
is obviously a partition of the certain event 𝛺.

Let 𝜑 be any property related to the variable X, and let us refer to the state of

information of a real (or fictitious) person that will be denoted by “You”.

Let us consider the Boolean event

E
𝜑
= “You claim that X has property 𝜑”, (8)

in order to give the following definition of fuzzy set E∗
𝜑

:

Definition 1 Let X be any variable with range CX , 𝜑 a related property and E
𝜑

the

corresponding event. A fuzzy subset E∗
𝜑

of CX is a pair

E∗
𝜑
= {E

𝜑
, 𝜇

𝜑
}, (9)

with 𝜇
𝜑
(x) = f (E

𝜑
|x), for every x ∈ CX , a likelihood function.

Note that, by the Corollary 3, a fuzzy subset E∗
𝜑

is a crisp set when the property

𝜑 is such that, for every x ∈ CX , either E
𝜑
∧ Ax = ∅ or Ax ⊆ E

𝜑
.

Then we can interpret the membership function f (E
𝜑
|x), for x ∈ CX , as the mea-

sure of Your degree of belief in E
𝜑

, when X assumes the different values of its range.

By Theorem 3, this measure can be regarded as a coherent conditional probability

as well as a coherent T-conditional possibility or as a coherent conditional plausibil-

ity. Obviously the choice of the framework of interpretation of the likelihood function

impacts on the resulting fuzzy operations.

4.2 Fuzzy Operations in the Plausibilistic Framework

We study the binary operations of union and intersection and the unary operation of

complementation for fuzzy sets. Obviously, these operations depend on the chosen

framework of reference.

By following [11–13] for the probabilistic interpretation and [10] for the possi-

bilistic interpretation, the operation of complementation of a fuzzy set E
𝜑

and those

of union and intersection between two fuzzy sets E∗
𝜑

and E∗
𝜓

, can be directly obtained

by using the rules of coherent conditional plausibility and the logical independence

between E
𝜑

and E
𝜓

with respect to the partition generated by the relevant variable

(or variables).

Definition 2 LetX a random variable generating the partitionCX = {Hi}i∈I and E =
{Ej}j=1,…,m a finite set of events. The events in E are logically independent with

respect to CX if, denoting with E∗
j either Ej or Ec

j , the following conditions hold:
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(i) the events in E are logically independent, i.e.,
⋀m

j=1 E
∗
j ≠ ∅;

(ii) for every i ∈ I,
⋀m

j=1 E
∗
j ∧ Hi = ∅ ⟹ E∗

j ∧ Hi = ∅ for some j = 1,… ,m.

Notice that the events E
𝜑

and E
𝜓

are “usually” logically independent, in particular

they are logically independent when 𝜓 = ¬𝜑: indeed, we can claim both “X has the

property 𝜑” and “X has the property ¬𝜑”, or only one of them or finally neither of

them. Similarly, E
𝜑

and E
𝜓

are logically independent in case 𝜓 is the superlative or

a diminutive of 𝜑.

Let us denote by 𝜑 ∨ 𝜓 and 𝜑 ∧ 𝜓 , respectively, the properties “𝜑 or 𝜓”, “𝜑 and

𝜓” (note that the symbols ∧ and ∨ do not indicate Boolean operations, since 𝜑 and

𝜓 are not Boolean objects) and define:

E
𝜑∨𝜓 = E

𝜑
∨ E

𝜓
, E

𝜑∧𝜓 = E
𝜑
∧ E

𝜓
. (10)

Consider now the problem of complementary which essentially coincides with

that discussed in the probabilistic interpretation of fuzzy sets [12, 13]. Denoting

by (E∗
𝜑
)′ = E∗

¬𝜑 = (E¬𝜑, 𝜇¬𝜑) the complementary fuzzy set of E∗
𝜑

, due to the logical

independence of {E
𝜑
,E¬𝜑}, with respect to X, any value in [0, 1] is coherent for

𝜇¬𝜑(x) for any x.

The main remark is related to the fact that the relation E¬𝜑 ≠ Ec
𝜑

holds. In fact,

while E
𝜑
∨ Ec

𝜑
= 𝛺, due to the logical independence with respect to X of {E

𝜑
,E¬𝜑},

we have instead E
𝜑
∨ E¬𝜑 ⊆ 𝛺. Then it is not necessary to require 𝜇¬𝜑(x) = 1 if

𝜇
𝜑
(x) < 1. In particular we can take

𝜇¬𝜑(x) = 1 − 𝜇
𝜑
(x) = 1 − Pl(E

𝜑
|x) = Pl(E¬𝜑|x). (11)

In fact, the above function 𝜇¬𝜑 ∶ L → [0, 1] is a likelihood function and so a coher-

ent conditional plausibility (as well as a coherent T-conditional possibility and coher-

ent conditional probability).

Let us consider two properties 𝜑 and 𝜓 related to the same variable X, such that

{E
𝜑
,E

𝜓
} are logical independent with respect to the partition generated by the vari-

able X.

Theorem 1 Given two fuzzy sets E∗
𝜑
,E∗

𝜓
related to the variable X, with 𝜇

𝜑
(x) =

Pl(E
𝜑
|x) and 𝜇

𝜓
(x) = P(E

𝜓
|x) (for any x ∈ CX) two coherent conditional plausi-

bility. For any given x in CX, the assessment Pl(E𝜑
∧ E

𝜓
|x) = v is a coherent condi-

tional plausibility if and only if

0 ≤ v ≤ min{Pl(E
𝜑
|x),Pl(E

𝜓
|x)}. (12)

Proof First of all we need to prove that the assessment {Pl(E
𝜑
|x),Pl(E

𝜓
|x) ∶ x ∈

CX} is a coherent conditional plausibility. Since a likelihood is a coherent condi-

tional probability and the assessment {Pl(E
𝜑
|x),Pl(E

𝜓
|x) ∶ x ∈ CX} is a coherent

conditional probability [6], then coherence under conditional plausibility follows.

The upper bound follows from monotonicity of capacities, it is a sharp bound,

that means it can be assumed, since it is a coherent value under probability.
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The lower bound is not coherent under probability. In order to show that the lower

bound is sharp under plausibility, consider the following basic assignment, for any

Ax = (X = x) with x ∈ CX
m(E

𝜑
∧ E

𝜓
∧ Ax) = 0

m(E
𝜑
∧ Ec

𝜓
∧ Ax) = m(Ec

𝜑
∧ E

𝜓
∧ Ax) = min{Pl(E

𝜑
|x),Pl(E

𝜓
|x)}1

n

m(Ec
𝜑
∧ E

𝜓
∧ Ax) = (Pl(E

𝜓
|x) − min{Pl(E

𝜑
|x),Pl(E

𝜓
|x)})1

n

m(E
𝜑
∧ Ec

𝜓
∧ Ax) = (Pl(E

𝜑
|x) − min{Pl(E

𝜑
|x),Pl(E

𝜓
|x)})1

n

m(Ec
𝜑
∧ Ec

𝜓
∧ Ax) = (1 − max{Pl(E

𝜑
|x),Pl(E

𝜓
|x)})1

n

and 0 otherwise (with n the cardinality of CX).

The above basic assignment generates an unconditional plausibility Pl′ on

⟨{E,

𝜑
E
𝜓
∧,Ax ∶ x ∈ CX}⟩ such that Pl′(Ax) =

1
n

and Pl′(E
𝜑
|x) = Pl(E

𝜑
|x),

Pl′(E
𝜓
|x) = Pl(E

𝜓
|x), for any x ∈ CX . □

Theorem 1 emphasizes a first difference with the probabilistic framework, in fact

the upper bounds in the two frameworks coincide while the lower bounds differ,

in fact under a probability P the lower bound is not 0, but coincides with Fréchet-

Hoeffding lower bound, that is determined by the Lukasiewcz t-norm TL, so

max{0,P(E
𝜑
|x) + P(E

𝜓
|x) − 1} ≤ v ≤ min{P(E

𝜑
|x),P(E

𝜓
|x)},

Obviously, due to coherence of the starting assessment, any value in the interval

of coherent values can be accepted, so in particular those obtained by a t-norm (if

the obtained values are inside the interval). This is true for two fuzzy events.

The question now is: starting from a set of {E
𝜑1
,… ,E

𝜑n
} of logically independent

events with respect to CX and the relevant 𝜇i = f (E
𝜑i
|x) is it possible (i.e. coherent

with the measure of reference) to compute all the intersections among the fuzzy sets,

by using the same t-norm?

The answer is: it depends on the t-norm. If, for instance, we consider the mini-

mum, then the answer is positive in all the considered frameworks of reference:

Theorem 2 Let {E∗
𝜑i
}I be a finite family of fuzzy sets related to a variable X, with

{E
𝜑i
}I logical independent with respect to the random variable X, and consider the

set F of events obtained as the intersection of a finite set of events in {E
𝜑i
}I . The

assessment
{f (A|x), ∶ A ∈ F},

where f (A|x) = min(𝜇
𝜑i
(x) ∶ A ⊆ E

𝜑i
) is
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∙ a coherent conditional probability
∙ a coherent conditional plausibility
∙ a coherent conditional possibility

Proof Since the likelihood 𝜇
𝜑j
(⋅) is a coherent conditional probability, there is a

coherent extension on
⋀

j∈J E𝜑j
|Ax for any J ⊆ I and x ∈ CX .

For a given x ∈ CX , assume without loss of generality that 𝜇
𝜑i
(x) ≤ 𝜇

𝜑i+1
(x) for

i = 1,… , 2. We can define for any J1 ⊆ I with 1 ∈ J1

fx(
⋀

i∈I
E
𝜑i
) = 𝜇

𝜑1
(x)

moreover for a set J ⊆ I with 1 ∉ J, let r = min{i ∶ i ∈ I
⋂

J} and s = max{i ∶ i ∈
I
⋂

J} (r < s)
fx(
⋀

j≥r
E
𝜑j

⋀

i<r
Ec
𝜑i
) = 𝜇

𝜑r
(x) − 𝜇

𝜑r−1
(x)

and 0 on the other atoms. Any fx is a probability, so a probability P on the algebra

generated by {E
𝜑i
,Ax ∶ i ∈ I, x ∈ CX} can be defined as

P(B) =
∑

Ax∧B≠∅

1
n
fx(B ∧ Ax)

(with n the cardinality of Cx) and it gives rise to a strictly positive probability and it

generates a conditional probability that is an extension of {𝜇
𝜑i
}I .

Then, the assignment f is a coherent conditional probability and then a coherent

conditional plausibility.

Furthermore, the above assignment fx for a given x ∈ Cx is a possibilistic distri-

bution and so a possibility 𝛱 on the algebra generated by {E
𝜑i
,Ax ∶ i ∈ I, x ∈ CX}

can be defined as

𝛱(B) = max
Ax∧B≠∅

fx(B ∧ Ax)

and it gives rise to a strictly positive possibility and it generates a P-conditional

possibility that is an extension of {𝜇
𝜑i
}I . □

The same result can be easily proved for the product t-norm, which implement

the case where the events E
𝜑i

are stochastically independent.

On the contrary, if we consider as t-norm TL, the extension to the intersection

computed trough TL can be not a coherent conditional probability, as the following

example shows.

Example 3 Let H = {H,Hc} be a partition, and E = {Ei|H}i=1,2,3 be a set of con-

ditional events such that ∧3
i=1E

∗
i ∧ H ≠ ∅ for any H ∈ H , so the events in E are

logical independent with respect to H .
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Suppose that P(E1|H) = P(E2|H) = 0.6 and P(E3|H) = 0.7, while P(Ei|Hc) =
0.5 for i = 1, 2, 3.

It is easy to check that the conditional probability P is coherent. Furthermore it

is easy to prove that, from Fréchet-Hoeffding bounds, the coherent values for P for

an event E obtained as finite intersection of Ei are such that:

0 ≤ P(E1 ∧ E2 ∧ E3|H) ≤ 0.6; 0.2 ≤ P(E1 ∧ E2|H) ≤ 0.6;
0.3 ≤ P(E1 ∧ E3|H) ≤ 0.6; 0.3 ≤ P(E2 ∧ E3|H) ≤ 0.6

We could show that the function f (∧IEi|H) I ⊆ {1, 2, 3} taking the minimum

coherent values is not coherent: in fact the function

f (E1 ∧ E2 ∧ E3|H) = 0, f (E1 ∧ E2|H) = 0.2,
f (E1 ∧ E3|H) = 0.3, f (E1|H) = f (E2|H) = 0.6, f (E3|H) = 0.7

is not a coherent conditional probability.

The next Theorem 6 proves that under a plausibility we can compute, for every

x ∈ CX , the membership of the intersection of a set of fuzzy sets by using t-norm TL.

This shows that considering coherent conditional plausibility, instead of coherent

conditional probability, for measuring the degree of belief of You on the events E
𝜑

we actually capture more parallelism with the classical theory of fuzzy sets, where

the inference is made by using t-norms and t-conorms.

Theorem 6 Let C = {E∗
𝜑i
}I be a finite family of fuzzy sets related to a variable X,

with range CX such that E
𝜑i
logical independent with respect to the random variable

X, and consider the set F of fuzzy subsets obtained as the intersection of any finite
number of these fuzzy sets. The assessment

Pl(
⋀

J
E
𝜑j
|x) = TL{𝜇𝜑j

(x) ∶ j ∈ J},

for any J ⊆ I (with TL the t-norm of Lukasiewicz) is a coherent conditional plausi-
bility.

Proof Given a finite setC = {E
𝜑i
∶ i = 1,… ,m} of events, consider the setF ⊃ C .

Due to the logical independence of the events E
𝜑i

w.r.to X, the assessment P =
{Pl(E

𝜑i
|x) ∶ i = 1,… ,m}x∈CX

is coherent with a conditional plausibility; we prove

that it can be coherently extended to F , by computing, for any x ∈ CX , every inter-

section trough TL, that is

Pl(
⋀

J⊆{1,…,m}
E
𝜑i
|x) = TL{Pl(E𝜑i

|x) ∶ i ∈ J}, (13)

is a coherent conditional plausibility.



Coherent Conditional Plausibility: A Tool for Handling Fuzziness . . . 147

Actually we prove the result for m = 3 but the basic assignment for any x ∈ CX
can be built analogously.

Assume without loss of generality that Pl(E
𝜑i
|x) ≤ Pl(E

𝜑i+1
|x) for i = 1, 2.

Let m(∧3
i=1E𝜑i

) = TL(Pl(E𝜑1
|x),… ,Pl(E

𝜑3
|x)),

m(∨3
j=1(E

c
𝜑j
∧i≠j E𝜑i

)) = TL(Pl(E𝜑1
|x),Pl(E

𝜑2
|x)) − TL(Pl(E𝜑1

|x),… ,Pl(E
𝜑3
|x)),

m(Ec
𝜑1

∧3
j=2 E𝜑j

) = TL(Pl(E𝜑2
|x),Pl(E

𝜑3
|x)) − TL(Pl(E𝜑1

|x),Pl(E
𝜑2
|x)),

m(Ec
𝜑2

∧j=1,3 E𝜑j
) = TL(Pl(E𝜑1

|x),P(E
𝜑3
|x)) − TL(Pl(E𝜑1

|x),Pl(E
𝜑2
|x)),

m(∨3
i=1E𝜑i

∧j≠i Ec
𝜑j
) = Pl(E

𝜑1
|x) − TL(Pl(E𝜑1

|x),Pl(E
𝜑3
|x)),

m(∨3
i=2E𝜑i

∧j≠i Ec
𝜑j
) = Pl(E

𝜑2
|x) − Pl(E

𝜑2
|x).

Furthermore m(∧3
i=1E

c
𝜑j
) = 1 − Pl(E

𝜑3
|x).

It is easy to check that the function m taking the above values and zero otherwise

is a basic assignment generating the function Pl defined by Eq. (13), that therefore

is coherent. □

The aim is to discuss now, under the plausibilistic interpretation, the coherent

values for the membership of the union of fuzzy sets.

We first recall that in the probabilistic interpretation, fixed the value for the mem-

bership function of the fuzzy intersection, the value for the membership function of

the fuzzy union is uniquely determined [12, 13], by the equation

𝜇
𝜑∨𝜓 (x) = 𝜇

𝜑
(x) + 𝜇

𝜓
(x) − 𝜇

𝜑∧𝜓 (x)

so that the only pair of t-norm and t-conorm are those of Frank’s class [37].

On the contrary, in the possibilistic interpretation [10], independently of the value

of 𝜇
𝜑∧𝜓 (x) = 𝛱(E

𝜑
∧ E

𝜓
|x), we get a unique value for the fuzzy union which is

𝜇
𝜑∨𝜓 (x) = 𝛱(E

𝜑
∨ E

𝜓
|x) = max{𝛱(E

𝜑
|x),𝛱(E

𝜓
|x)} = max{𝜇

𝜑
(x), 𝜇𝜓(x)}.

(14)

In the case of plausibility we have that the value of f (E
𝜑
∨ E

𝜓
|Ax) is not univocally

determined but it must satisfies the following constraints

max{ f (E
𝜑
|x), f (E

𝜓
|x)} ≤ f (E

𝜑
∨ E

𝜓
|x) ≤ min{ f (E

𝜑
|x) + f (E

𝜓
|x) − f (E

𝜑
∧ E

𝜓
|x), 1}.

Then, we can put

E∗
𝜑
∪ E∗

𝜓
= {E

𝜑∨𝜓 , 𝜇𝜑∨𝜓}; E∗
𝜑
∩ E∗

𝜓
= {E

𝜑∧𝜓 , 𝜇
𝜑∧𝜓} ,

with

𝜇
𝜑∨𝜓 (x) = f (E

𝜑
∨ E

𝜓
|Ax) 𝜇

𝜑∧𝜓 (x) = f (E
𝜑
∧ E

𝜓
|Ax) .
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Obviously both any pair of t-norm and t-conorm of Frank’s class or a pair (max,T)
with T any t-norm can be used to compute coherent extension on the union and

intersection of fuzzy sets.

Unfortunately no pair in the most famous other classes (Hamacher class [52],

Yager class [49], Dubois and Prade class [30]) seems to be apt for computing coher-

ent extension on the union and intersection of fuzzy sets. In fact for any t-norm ⊙

and dual t-conorm ⊕ in these classes there exist (x′, y′), (x′′, y′′) ∈ [0, 1]2 such that

x′ ⊙ y′ < x′ + y′ − x′ ⊕ y′; x′′ ⊙ y′′ > x′′ + y′′ − x′′ ⊕ y′

so that both two-alternativity and two-monotonicity could be violated by f (⋅|x), and

so f cannot be a coherent conditional plausibility (moreover it cannot be a coherent

conditional belief function).

From the above considerations, it follows that the coherent conditional plausibility

Pl(E
𝜑
|⋅) comes out to be a natural interpretation of the membership function 𝜇

𝜑
(⋅).

5 Plausibility of “Fuzzy Events”

First of all, we recall that the concept of fuzzy event, as introduced by Zadeh [54],

in the context of the interpretation of a fuzzy set as a pair whose elements are a

(Boolean) event E
𝜑

and a conditional measure f (E
𝜑
|x), coincides exactly with the

event E
𝜑

= “You claim that X has property 𝜑”.

For any “prior” uncertainty measure (probability, possibility and plausibility) on

the algebra generated by X the assessment together 𝜇
𝜑

is coherent with respect the

relative measure (see Theorem 4) and so coherently extendible to E
𝜑

(Theorem 2

for plausibilities, [18] for conditional probabilities and [8, 10, 18] for conditional

possibilities).

Since the variable X has finite range, by taking a probability or a T-possibility

as “prior” uncertainty measure of reference, it is easy to see that the only coherent

value for the probability or possibility of E
𝜑

is

g(E
𝜑
) =

⨁

x∈CX

𝜇
𝜑
(x)

⨀
g(x) , (15)

where
⨁

and
⨀

are the sum and the product in the case of probability, while they are

the maximum and the t-norm T in the case of possibility and g is either a probability

or a possibility.

Obviously, only in the case of probability g(E
𝜑
) coincides with Zadeh’s definition

of the probability of a “fuzzy event” [53].

The Eq. (15) is based on the disintegration formula holding for both the two mea-

sures; as discussed before it does not hold for plausibility. In fact, for plausibility

just a weak form of disintegration holds, (see inequality in (4)). Then, we need to

compute plausibility of an event E
𝜑

by means the Choquet integral:
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Pl(E
𝜑
) =

∮
𝜇
𝜑
(x)dPl(x) =

∫

1

0
Pl(𝜇

𝜑
(x) ≥ t)dt. (16)

Consider now n fuzzy sets E∗
𝜑i

, and compute by a suitable t-norm ⊙ (for instance

TL or min), the memberships of the fuzzy sets E∗
𝜑i
∩ E∗

𝜑j
and then by using (16) the

plausibility of the relevant fuzzy events E
𝜑i
∧ E

𝜑j
. Obviously the global assessment

is coherent with a conditional plausibility and then it can be further extended to

any new conditional event A|B where A,B are events of the algebra B spanned by

{E
𝜑i
}i∈I ∪ {A𝐱}𝐱∈C𝐗

, with B ≠ ∅.

This extension is not unique in general but, for the events A|B, with A = E
𝜑i

and

B = E
𝜑j

, with Pl(E
𝜑j
) > 0 the only coherent extension and, for i ≠ j, is

Pl
⊙
(E

𝜑i
|E

𝜑j
) =

Pl
⊙
(E

𝜑i
∧ E

𝜑j
)

Pl
⊙
(E

𝜑j
)

= .

∫
1
0 Pl(𝜇

𝜑i
⊙ 𝜇

𝜑j
(x) ≥ t)dt

∫
1
0 Pl(𝜇

𝜑j
(x) ≥ t)dt

(17)

When P
⊙
(E

𝜑j
) = 0, we obtain in general a not unique extension to the events

E
𝜑i
|E

𝜑j
.

Nevertheless we note that one has P
⊙
(E

𝜑j
) = 0 if and only if Pl(H) = 0, where

H =
⋁
{xk ∶ 𝜇

𝜑i
(xk) = Pl

⊙
(E

𝜑i
|xk)} > 0.

In this case to obtain a unique extension we need to have also the conditional plau-

sibility Pl(⋅|B), where B is the logical sum of the events xk such that

Pl(E
𝜑j
|xk) = 0.

Remark 2 As in the probabilistic and possibilistic framework, the values Pl(E
𝜑i
|E

𝜑j
)

computed by the formula above are coherent only when the events E
𝜑i

and E
𝜑j

are

logically independent, so, for instance, the same formula cannot be used for obtaining

the coherent extension of Pl to E
𝜑i
|E

𝜑i
, which is necessarily 1.

6 Conclusion

The first part of the paper is devoted into studying likelihood functions seen as assess-

ment on a set of conditional events E|Hi, with E the evidence and Hi varying on a

partition. It is shown that likelihood functions are assessments coherent with respect

probability, possibility and plausibility. Then, inferential processes, like Bayesian

one, is studied in the different setting taking a likelihood function and a prior, that

could be a probability, a possibility and a plausibility. In particular we prove that

any likelihood function on E ×L and any plausibility on L , with L a partition,

are globally coherent within a plausibility setting. Then, a comparison of aggre-

gated likelihoods, that are coherent extensions of a likelihood function on E ×L
to E × ⟨L ⟩ is studied in the different setting by showing the common characteristic

and the specific features.
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These results are applied in order to interpret the membership of a fuzzy event

as a coherent conditional plausibility. A comparison under the different interpreta-

tions based on coherent conditional probabilities, possibilities and plausibilities of

the obtained fuzzy operations is carried out. The syntactical advantages related to

the use of a plausibilistic frameworks are shown, in particular by referring to the

operations of n ≥ 3 fuzzy sets.
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Intuitionistic Fuzzy Interpretations
of Some Formulas for Estimation
of Preference Degree

Krassimir T. Atanassov, Vassia Atanassova, Eulalia Szmidt
and Janusz Kacprzyk

Abstract Two intuitionistic fuzzy interpretations of M. Fedrizzi, M. Fedrizzi and

R. A. M. Pereira’s, and of V. Peneva and I. Popchev’s formulas are introduced and

some of their properties are discussed.

1 Introduction

Already, there are a lot of research over procedures for obtaining of a consensus in

group decision making. One of them—a fuzzy approach, is introduced by Mario

Fedrizzi, Michele Fedrizzi, and R. A. Marques Pereira in [3]. Another approach

is given by Vanja Peneva and Ivan Popchev in [4]. In [5], the authors introduced

an extension of V. Peneva and I. Popchev’s formulas, using intuitionistic fuzzy

approach.
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Here, we continue our research from [5], combining the two previous approaches.

Let

A = {a1, a2,… , an}

be a set of alternatives and let decision makers D1,D2,… ,Dd must determine their

preferences among the alternatives.

Therefore, the following matrix can be constructed:

X =
x1,1 … x1,n
⋮ … ⋮

xm,1 … xm,n
,

where the real number xi,j is the degree of preference of alternative ai before alter-

native aj. In [3], M. Fedrizzi, M. Fedrizzi, and R. A. M. Pereira put (here “iff” is an

abbreviation of “if and only it” and 1 ≤ i, j ≤ n):

xi,j =
⎧
⎪
⎨
⎪
⎩

1, iff ai is definitely preferred to aj
0, iff aj is definitely preferred to ai
0.5, iff ai and aj are indifferent

and always

xi,j + xj,i = 1.

Therefore, xi,i = 0.5.

In [4], V. Peneva and I. Popchev’s introduce the following formula for estimation

of preference degree for each 1 ≤ k ≤ d:

𝜇k(ai, aj) =
⎧
⎪
⎨
⎪
⎩

1, if i = j

0.5 + xi,k−xj,k
2
(
max

i
xi,k−min

i
xi,k

) , if i ≠ j
. (1)

We must mention that in V. Peneva and I. Popchev’s paper is not mentioned espe-

cially that numbers xi,j ≥ 0, but in [4] they suppose this. Really, in the opposite case,

e.g., if (let for clearness we use a variable p instead of i in operations max and min)

xi,k = min
p

xp,k = −1

and

xj,k = max
p

xp,k = 1,

then for i ≠ j we obtain
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𝜇k(ai, aj) = 0.5 + −2
2

= −0.5 ∉ [0, 1],

that is impossible.

It is easy to see that the most important difference of the two approaches is in the

evaluation of the case, when some alternative is compared with itself, because in the

V. Peneva and I. Popchev’s case, 𝜇k(ai, ai) = 1, while in M. Fedrizzi, M. Fedrizzi,

and R. A. M. Pereira’s case 𝜇k(ai, ai) = 0.5, that we suppose is better.

In [3, 4], the matrix X is ordinary one, but for the aims of our future research we

can change it with an Index Matrix (IM, see [1]):

X =

a1 … an
a1 x1,1 … x1,n
⋮ ⋮ … ⋮
an xn,1 … xn,n

.

In future, the authors plan to study the properties of the IM-presentation of the

problem.

Below, we suppose that there are at least two different number xi,j. In this case,

max
1≤p≤n

xp,k − min
1≤p≤n

xp,k ≡ max
p

xp,k − min
p

xp,k ≠ 0

for every k (1 ≤ k ≤ d).

2 Short Remarks on Intuitionistic Fuzzy Pairs

The Intuitionistic Fuzzy Pair (IFP; see [2]) is an object with the form ⟨a, b⟩, where

a, b ∈ [0, 1] and a + b ≤ 1, that is used as an evaluation of some object or process

and which components (a and b) are interpreted as degrees of membership and non-

membership, or degrees of validity and non-validity, or degree of correctness and

non-correctness, etc.

Let us have two IFPs x = ⟨a, b⟩ and y = ⟨c, d⟩.
In [2], we defined analogous of operations “conjunction”, “disjunction”, “impli-

cation”, “negation”, e.g.,

¬x = ⟨b, a⟩,

and other operations, e.g.

x@y = ⟨
a + c
2

,

b + d
2

⟩,

relations and three types of operators from modal, topological and level types.



156 K.T. Atanassov et al.

3 On Intuitionistic Fuzzy Interpretation of M. Fedrizzi,
M. Fedrizzi, and R. A. M. Pereira’s and of V. Peneva
and I. Popchev’s Formulas

The intuitionistic fuzzy interpretations that we will introduce below, will have the

form of a pair ⟨𝜇k(ai, aj), 𝜈k(ai, aj)⟩, where 𝜇k(ai, aj) and 𝜈k(ai, aj) are the degrees of

preference and non-preference between alternatives ai and aj.
If we like to write (1) as an intuitionistic fuzzy pair, changing the value for case

i = j in M. Fedrizzi, M. Fedrizzi, and R. A. M. Pereira’s form, it can obtain the form

𝜇k(ai, aj) =
⎧
⎪
⎨
⎪
⎩

⟨0.5, 0.5⟩, if i = j

⟨0.5 + xi,k−xj,k
2
(
max

i
xi,k−min

i
xi,k

) , 0.5 + xj,k−xi,k
2
(
max

i
xi,k−min

i
xi,k

)⟩, if i ≠ j
.

This pair is really an intuitionistic fuzzy pair, because for the

0.5 +
xi,k − xj,k

2
(
max

i
xi,k − min

i
xi,k

) ≥ 0.5 +
−xj,k

2
(
max

i
xi,k

) ≥ 0,

0.5 +
xj,k − xi,k

2
(
max

i
xi,k − min

i
xi,k

) ≥ 0.5 +
−xi,k

2
(
max

i
xi,k

) ≥ 0,

0.5 +
xi,k − xj,k

2
(
max

i
xi,k − min

i
xi,k

) + 0.5 +
xj,k − xi,k

2
(
max

i
xi,k − min

i
xi,k

) = 1 ≤ 1.

Now, we will try to generalize the above interpretation.

Let 𝛼, 𝛽 ∈ [0, 1] and 𝛼 + 𝛽 ≤ 1. The intuitionistic fuzzy interpretation can have

the form

⟨𝜇k,𝛼,𝛽(ai, aj), 𝜈k,𝛼,𝛽(ai, aj)⟩

=
⎧
⎪
⎨
⎪
⎩

⟨0.5, 0.5⟩, if i = j

⟨𝛼 + xi,k−xj,k
2
(
max

i
xi,k−min

i
xi,k

) , 𝛽 + xj,k−xi,k
2
(
max

i
xi,k−min

i
xi,k

)⟩, if i ≠ j
. (2)

But, if n = 2, k = 1, x1,k = 1, x2,k = 0, then max
i

xi,k = 1, min
i

xi,k = 0 and if 𝛽 <

0.5, then

𝛽 +
x2,k − x1,k

2
(
max

i
xi,k − min

i
xi,k

) = 𝛽 − 0.5 < 0,
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that is a contradiction. Therefore, 𝛽 must satisfy 𝛽 ≥ 0.5. By similar way we see that

𝛼 ≥ 0.5, i.e., 𝛼 and 𝛽 must be exactly 𝛼 = 𝛽 = 0.5, i.e., the idea for a generalization of

(1) in the form of (2) failed. In practice, we obtain only a new (intuitionistic fuzzy)

record of the original formula. Therefore, we must change something in the form

of (2).

4 First Intuitionistic Fuzzy Interpretation

It has the form

⟨𝜇1
k (ai, aj), 𝜈

1
k (ai, aj)⟩ =

⟨max
p≠i

xp,k + xi,k − xj,k

2max
p

xp,k
,

max
p≠j

xp,k + xj,k − xi,k

2max
p

xp,k

⟩

, (3)

where

max
p≠i

xp,k = max
p∈{1,…,i−1,i+1,…,n}

xp,k,

min
p≠i

xp,k = min
p∈{1,…,i−1,i+1,…,n}

xp,k.

First, we check that the pair is an intuitionistic fuzzy pair. Really,

max
p≠i

xp,k + xi,k − xj,k

2max
p

xp,k
≥

max
p≠i

xp,k − xj,k

2max
p

xp,k
≥ 0,

max
p≠j

xp,k + xj,k − xi,k

2max
p

xp,k
≥

max
p≠j

xp,k − xi,k

2max
p

xp,k
≥ 0

and

max
p≠i

xp,k + xi,k − xj,k

2max
p

xp,k
+

max
p≠j

xp,k + xj,k − xi,k

2max
p

xp,k
=

max
p≠i

xp,k + max
p≠j

xp,k

2max
p

xp,k
≤ 1.

Second, the degree of uncertainty is

𝜋

1
k (ai, aj) = 1 −

max
p≠i

xp,k + max
p≠j

xp,k

2max
p

xp,k
≥ 0.
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Third, we see that for i = j, (3) obtains the form

⟨𝜇1
k (ai, ai), 𝜈

1
k (ai, ai)⟩ =

⟨max
p≠i

xp,k + xi,k − xi,k

2max
p

xp,k
,

max
p≠j

xp,k + xi,k − xi,k

2max
p

xp,k

⟩

=

⟨ max
p≠i

xp,k

2max
p

xp,k
,

max
p≠j

xp,k

2max
p

xp,k

⟩

,

that is an analogous of formula (2), but now, rendering an account the fact that in the

intuitionistic fuzzy case there exists a degree of uncertainty.

Fourth, it is valid

Proposition 1 For every two alternatives ai and aj,

¬⟨𝜇1
k (ai, aj), 𝜈

1
k (ai, aj)⟩ = ⟨𝜇1

k (aj, ai), 𝜈
1
k (aj, ai)⟩.

Proof Using the definition of operation negation, we obtain:

¬⟨𝜇1
k (ai, aj), 𝜈

1
k (ai, aj)⟩

¬

⟨max
p≠i

xp,k + xi,k − xj,k

2max
p

xp,k
,

max
p≠j

xp,k + xj,k − xi,k

2max
p

xp,k

⟩

=

⟨max
p≠j

xp,k + xj,k − xi,k

2max
p

xp,k
,

max
p≠i

xp,k + xi,k − xj,k

2max
p

xp,k

⟩

= ⟨𝜇1
k (aj, ai), 𝜈

1
k (aj, ai)⟩.

It is easy seen that

⟨𝜇1
k (ai, aj), 𝜈

1
k (ai, aj)⟩

=

⟨max
p≠i

xp,k − xj,k

2max
p

xp,k
,

xj,k
2max

p
xp,k

⟩

@

⟨
xi,k

2max
p

xp,k
,

max
p≠j

xp,k − xi,k

2max
p

xp,k

⟩

=

⟨
xi,k

2max
p

xp,k
,

max
p≠j

xp,k − xi,k

2max
p

xp,k

⟩

@

⟨max
p≠i

xp,k − xj,k

2max
p

xp,k
,

xj,k
2max

p
xp,k

⟩

that are intuitionistic fuzzy pairs, because, as we shown above,



Intuitionistic Fuzzy Interpretations of Some Formulas . . . 159

max
p≠i

xp,k − xj,k ≥ 0,

max
p≠j

xp,k − xi,k ≥ 0

and above check.

5 Second Intuitionistic Fuzzy Interpretation

Let 𝛼, 𝛽, 𝛾, 𝛿 ∈ [0, 1], 𝛼 ≥ 𝛾, 𝛽 ≥ 𝛿 and

𝛼 + 𝛽 + 1
2
|𝛾 − 𝛿| ≤ 1.

The second intuitionistic fuzzy interpretation has the form

⟨𝜇2
k,𝛼,𝛽,𝛾,𝛿(ai, aj), 𝜈

2
k,𝛼,𝛽,𝛾,𝛿(ai, aj)⟩

=
⎧
⎪
⎨
⎪
⎩

⟨𝛼, 𝛽⟩, if i = j

⟨𝛼 + 𝛾

xi,k−xj,k
2
(
max

i
xi,k−min

i
xi,k

) , 𝛽 + 𝛿

xj,k−xi,k
2
(
max

i
xi,k−min

i
xi,k

)⟩, if i ≠ j
. (4)

First, we check again that the interpretation is an intuitionistic fuzzy pair. Really,

𝛼 + 𝛾

xi,k − xj,k

2
(
max

i
xi,k − min

i
xi,k

) ≥ 𝛼 − 𝛾

xj,k
2max

i
xi,k

≥ 𝛼 − 𝛾 ≥ 0,

𝛽 + 𝛿

xj,k − xi,k

2
(
max

i
xi,k − min

i
xi,k

) ≥ 𝛽 − 𝛿

xi,k
2max

i
xi,k

≥ 𝛽 − 𝛿 ≥ 0

and

𝛼 + 𝛾

xi,k − xj,k

2
(
max

i
xi,k − min

i
xi,k

) + 𝛽 + 𝛿

xj,k − xi,k

2
(
max

i
xi,k − min

i
xi,k

)

= 𝛼 + 𝛽 + (𝛾 − 𝛿)
xi,k − xj,k

2
(
max

i
xi,k − min

i
xi,k

)

≤ 𝛼 + 𝛽 + |𝛾 − 𝛿|
xi,k

2max
i

xi,kixi,k
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≤ 𝛼 + 𝛽 + |𝛾 − 𝛿|
1
2
≤ 1.

Second, the degree of uncertainty now is

𝜋

1
k (ai, aj) = 1 − 𝛼 − 𝛾

xi,k − xj,k

2
(
max

i
xi,k − min

i
xi,k

) − 𝛽 − 𝛿

xj,k − xi,k

2
(
max

i
xi,k − min

i
xi,k

)

= 1 − 𝛼 − 𝛽 − (𝛾 − 𝛿)
xi,k − xj,k

2
(
max

i
xi,k − min

i
xi,k

) ≥ 0.

Third, we see that for i = j, using the second term of (4), we obtain

⟨𝜇1
k (ai, ai), 𝜈

1
k (ai, ai)⟩ = ⟨𝛼 + 𝛾

0

2
(
max

i
xi,k − min

i
xi,k

) , 𝛽+

+𝛿 0

2
(
max

i
xi,k − min

i
xi,k

)⟩ = ⟨𝛼, 𝛽⟩,

i.e., the first term of (4).

Fourth, it is valid

Proposition 2 For every two alternatives ai and aj, so that i ≠ j,

¬⟨𝜇2
k,𝛼,𝛽,𝛾,𝛿(ai, aj), 𝜈

2
k,𝛼,𝛽,𝛾,𝛿(ai, aj)⟩ = ⟨𝜇2

k,𝛽,𝛼,𝛿,𝛾 (aj, ai), 𝜈
2
k,𝛽,𝛼,𝛿,𝛾 (aj, ai)⟩.

The proof is similar to the above one.

The present interpretation is a real generalization of the modified formula (2), that

is the left components of the intuitionistic fuzzy pair for 𝛼 = 𝛽 = 0.5 and 𝛾 = 𝛿 = 1.

6 Conclusion

As we mentioned above, in future, we plan to research the properties of the IM,

generated by the above way.
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Part III
Judgments and Aggregation



Fuzzified Likert Scales in Group
Multiple-Criteria Evaluation

Jan Stoklasa, Tomáš Talášek and Pasi Luukka

Abstract Likert scales have been in use since 1930s as tool for attitude expres-

sion in many fields of social science. Recently there have even been several attempts

for the fuzzification of this instrument. In this chapter we explore the possibility

of their use in multiple-criteria multi-expert evaluation. We focus on discrete fuzzy

Likert scales, that are a generalization of the standard Likert scales. We propose

a methodology that deals with the non-uniformity of the distribution of linguistic

labels along the underlying ordinal evaluation scale and also with possible response

bias. We also consider the analogy of Likert scales (crisp and fuzzy) on continuous

universes. Likert-type evaluations of an alternative with respect to various criteria

are represented using histograms. Histograms are also used to aggregate the Likert-

type evaluations. A transformation of the multi-expert multiple-criteria evaluation

represented by a histogram into a 3-bin histogram to control for the response bias is

performed and an ideal-evaluation 3-bin histogram is defined. We propose a distance

measure to assess the closeness of the overall evaluation to the ideal and suggest the

use of the proposed methodology in multiple-criteria multi-expert evaluation.
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1 Introduction

Likert scales were introduced by Likert in 1930s [18] as a tool for the measurement

and assessment of attitudes. Since then Likert scales (and Likert-type scales) have

grown popular in many fields of social science, including management and market-

ing research [2]. They became a frequently used tool for the extraction of information

from participants concerning not only their attitudes, but also preferences, evalua-

tions etc. Likert scales are an easy-to-use tool for the measurement of attitudes or for

evaluation [31]. There is, however, still an ongoing debate on how to properly deal

with the data acquired via Likert scales, what statistical methods are appropriate (see

e.g. [21]), how to aggregate information obtained through Likert scales and how to

summarize it. Even attempts of fuzzification of Likert scales have been presented

(see e.g. [5, 9, 17] or the chapter by Gil & Gil in [35]). The combination of linguis-

tic and numerical labels for the elements of the Likert scale, however, introduces

several methodological issues that have not been addressed sufficiently in the liter-

ature so far. Using linguistic labels for more than the endpoints of the scale and the

middle point (if a discrete scale with an odd number of elements is applied) renders

the scale ordinal, since the meanings of the linguistic terms cannot be considered

equidistant (at least not automatically). Aggregation of information provided by the

Likert scale can therefore be problematic (in the sense of the necessary restriction to

ordinal computational methods). Also the well known response biases in self-report

questionnaires, mainly the extremity response (leniency) tendency and the mid-point

response (central) tendency of the decision makers (see e.g. [2, 12, 13]) can com-

plicate the aggregation.

In this paper we aim to discuss Likert scales in the context of multiple-criteria and

multi-expert (MCME) evaluation in the fuzzy context, as opposed to [31], where only

crisp Likert scales were considered. As such, also the area of psychology, manage-

ment, marketing and economical research, behavioral science, sociology and related

fields are the possible recipients of the presented results. In fact the combination of

the potential of Likert scales with the possibility of reflecting uncertainty and deal-

ing with response-bias can open interesting new doors in social science research.

In this chapter we suggest a way to aggregate individual evaluations (provided by

Likert scales as fuzzy sets on the underlying evaluation universe—crisp or contin-

uous) into an overall evaluation and a way of aggregating these overall evaluations

across experts that reflect the specifics of Likert scales and offer tools for handling

response-bias.

In line with [31] we suggest to use histogram representation for the summariza-

tion and aggregation of Likert-scale answers. The extremity-response and mid-point-

response tendencies are taken into account by joining specific bins of the histograms.

We propose a similarity-to-ideal (or distance-from-ideal) assessment of the fulfill-

ment of a goal (an ideal overall evaluation in the context of the fuzzy evaluations

represented by histograms). Contrary to [31], the proposed approach results in gen-

eral in a relative-type evaluation, since general (subnormal) fuzzy sets are also con-

sidered as answers provided by the decision makers. The presented methodology,
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however, constitutes a fuzzy extension of the methodology presented in [31], the lat-

ter being a special case of the former. In the case when only normal fuzzy sets are

considered, the overall evaluation can be interpreted as a degree of fulfillment of the

overall goal and as such is an absolute-type evaluation.

2 Likert Scales

The n-point Likert scale [18] can be defined as a discrete bipolar evaluation scale

with n integer values (e.g. [1, 2, 3, 4,… , n]). The values are naturally ordered, the

endpoints 1 and n are interpreted as extreme evaluations (1 as completely positive,

n as completely negative, or vice versa). If n is odd, then the middle value of the

scale is considered as neutral evaluation (or “a cannot decide value”), if n is an even

number then there is no neutral evaluation allowed and any evaluation expressed

by the user of the scale needs to tend either to the positive or the negative direc-

tion with respect to the theoretical center of the scale. Extensive discussions can

be found e.g. in the psychometrics and methodological literature concerning the

appropriate number of elements of these scales, the choice of an odd or even n and

even the selection of a minimum value of the scale (see e.g. [20]). Likert scales

in the form of [0, 1, 2,… , n − 1] or [− n
2
+ 0.5,− n

2
+ 1.5,… , 0,… ,

n
2
− 1.5, n

2
− 0.5]

for an odd n or [− n
2
,− n

2
+ 1,… ,

n
2
− 1, n

2
] for an even n can be found in the literature.

Despite the widespread use of Likert scales in e.g. self-reporting psychodiagnostics,

a preference of only 3, 4 and 5 point scales seems to prevail, although Likert scales

with 6 or 7 points are also used. An example of a method utilizing a seven-point

Likert scale is the questionnaire “Experiences in Close Relationships—Czech”,

assessing relationship anxiety and relationship evasiveness of the adult population in

the context of the theory of relational cohesion [27]. Without any loss of generality

we will be considering the [1, 2, 3, 4,… , n] form of the Likert scale in this paper.

The Likert scale can have two interconnected levels of description—the numer-

ical one represented by the integer values and a linguistic level assigning each (or

some) of the values a linguistic label (see Fig. 1). In practical applications either

Fig. 1 An example of a 5-point and 7-point Likert scale
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both levels, or just one of the levels is provided to the decision makers. Generally

speaking, four types of measurement (scales) can be distinguished (see e.g. [23, 28,

31, 36]):

∙ nominal, where the elements of the scale have no numerical interpretation, there is

no ordering of these elements. Histograms can be used to summarize the results,

but the position of the bins is not fixed—they can be reordered freely without any

change to the presented information.

∙ ordinal, where ordering of the values of the scale is known. It is possible to find

minima and maxima. The distance between the elements of the scale is not known.

As such average values and differences should not be computed (unless e.g. the

assumption of equidistance of the elements of the scale is made).

∙ interval and ratio (also called cardinal), where the ordering and distance of the

elements of the scale is known. Averaging operators can be applied.

Even a more detailed classification is possible (see e.g. [23]), but for the purpose of

this chapter it is sufficient to distinguish between nominal, ordinal and other types

of scales (measurement), where averaging and standard forms of summarization of

information (aggregation of evaluations) can be used.

When the linguistic labels are used along with the numerical level, or when the

numerical level is not presented within the questionnaire, the values (evaluations)

obtained from the decision makers via Likert scales should be considered to originate

from an ordinal scale, since the meanings of the linguistic terms used as labels might

not be equidistant. Although the distances between the meanings of the linguistic

labels are not known, the labels are usually constructed so that at least the symme-

try with respect to the middle element is preserved. The calibration of the mean-

ings of linguistic terms (assigning them appropriate position on the evaluation uni-

verse) is possible, but requires more time and resources to be done properly—see e.g.

[3, 14, 22, 26]. In general, the results of such a calibration might not be transfer-

able to a different context, thus limiting the use of these methods to some extent in

the practical real-life use (e.g. in management research, diagnostics etc.); see also

[29, 30] for a discussion of the issues related to the calibration of scales. We there-

fore leave the possibility of using calibrated Likert scales out of the scope of this

paper.

When only the numerical values of the Likert scale are presented to the decision-

makers, the obtained answers can be considered as values of the interval scale from

the mathematical point of view. In theory it is possible to compute an “average eval-

uation” applying some aggregation operator (e.g. an arithmetic or weighted mean, a

sum of the evaluations etc.) on all the Likert scale values that assess different aspects

of the same alternative (multiple criteria evaluation). The aggregation of such overall

evaluations of alternatives across more decision-makers is theoretically possible in

the same way. As pointed out by Stoklasa et al. [31], aggregating the numerical values

across more decision-makers may lead to the distortion or loss of information. The

differences in answering patterns and answering customs of the decision-makers—

possible manifestations of the leniency and central tendency—need to be taken into

account. Let us consider the 7-point Likert scale in Fig. 1. If a decision-maker tends
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to never answer using the extreme values of the scale (central tendency bias), his/her

evaluation expressed by 2 can describe exactly the same attitude (evaluation) as the

value 1 chosen by someone who has no problems using the extreme values. The

point here is that in some situations the difference between a 1 and 2 can lie in the

interpretation of the question or in the customs of the decision-maker. This becomes

even more apparent when the linguistic level is applied. Some decision-makers can

interpret “Strongly agree” as being too categorical and thus choose “Agree” with-

out having any objections to the statement presented in the question. If we are then

looking for a consensus of the decision-makers or if we want to define the “ideal eval-

uation”, we should not expect that all the decision-makers provide the evaluation 1.

For those with a central tendency in answering the agreement can be expressed by

a slightly lower value, but it might mean the same level of conviction as 1 provided

by those decision-makers that do not have the central tendency.

It is also possible to approach Likert scale through the fuzzy modelling perspec-

tive (see Fig. 2 for an illustration of the fuzzy set representation of crisp Likert scale

answers). Once in the fuzzy set context, one can allow more uncertain answers to

be provided by the decision makers (see Fig. 3 for an example). This way the capa-

bilities of Likert scales can be extended to reflect the possible uncertainty in the

answers/evaluations provided by the decision makers. The transition into the fuzzy

domain might remedy some of the above mentioned issues. The core of the central-

tendency and leniency effects, however, remain unchanged. If a person selects an

extreme answer only rarely and considers the second to most extreme as the “best

usual” evaluation, even the possibility of expressing uncertainty or choosing more

values of the scale with different membership values might not change this. Hence

in the fuzzy versions of Likert scales response-bias can be an issue and should be

considered.

Overall there seems to be enough reasons for not considering the values provided

by Likert scale items in the questionnaire in their crisp or fuzzy form as interval or

ratio scale values in the process of their aggregation. The meaning of the linguis-

tic labels can be context dependent (hence the distances between them expressed

in the numerical level can differ). Even more importantly, in multi-expert decision

making, the distances between the linguistic labels can be perceived differently by

different decision-makers, and e.g. the central tendency and the extreme-answer ten-

dency combined in one set of decision-makers can complicate the interpretability of

the aggregated results if the values are treated as cardinal. We therefore suggest the

use of histograms to represent the information in its raw and aggregated form in the

context of Likert scales.

It is also possible to generalize the situation even further and consider continuous

universes instead of discrete ones as suggested in the standard Likert scale. Although

this might be consider to be a significant departure from the original idea of Likert

scales, even when using fuzzy sets on a pre-defined continuous universe (see Fig. 4)

can face the problems of leniency and central tendency. We will therefore briefly

focus on this form of obtaining expert evaluations as well in this chapter.
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Fig. 2 Representation of two crisp answers in a 7-point Likert-scale questionnaire by fuzzy sets

3 Notation and Basic Concepts Concerning Fuzzy Sets

Let U be a nonempty set (the universe of discourse). A fuzzy set A on U is defined by

the mapping A ∶ U → [0, 1]. For each x ∈ U the value A(x) is called a membership
degree of the element x in the fuzzy set A and A(.) is called a membership function
of the fuzzy set A. If the universe is a discrete set, i.e. if U = {x1,… , xn}, then a

fuzzy set A on U is denoted A = {A(x1)|x1 ,… ,

A(xn) |xn
}. The family of all fuzzy sets on

U us denoted F (U). Ker(A) = {x ∈ U|A(x) = 1} denotes a kernel of A, A
𝛼

= {x ∈
U|A(x) ≥ 𝛼} denotes an 𝛼-cut of A for any 𝛼 ∈ [0, 1], Supp(A) = {x ∈ U|A(x) > 0}
denotes a support of A.
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Fig. 3 Possible

generalization of the

Likert-scale framework to

fuzzy answers. Example of

two uncertain answers

provided by a decision maker

via a 7-point Likert scale.

Note, that the top answer is a

normal fuzzy set, whereas

the bottom one is not

Fig. 4 Evaluations provided

as fuzzy sets on the

Likert-inspired continuous

universal set. A is a

representation of a crisp

answer, B and C are fuzzy

numbers

A fuzzy number is a fuzzy set A on the set of real numbers which satisfies the

following conditions: (1) Ker(A) ≠ ∅ (A is normal); (2) A
𝛼

are closed intervals for

all 𝛼 ∈ (0, 1] (this implies A is unimodal); (3) Supp(A) is bounded. A family of all

fuzzy numbers on U ⊆ ℝ is denoted by FN(U). A fuzzy number A can be character-

ized by a quaternion of its significant values (a1, a2, a3, a4), where a1, a2, a3, a4 ∈ U,

a1 ≤ a2 ≤ a3 ≤ a4, [a1, a4] = Cl(Supp(A)) and [a2, a3] = Ker(A). A fuzzy number

representing the interval [c, d] ⊆ ℝ can be defined as (c, c, d, d). An intersection of

two fuzzy sets A and B on U is a fuzzy set (A ∩ B) on U with the membership func-

tion defined as follows: (A ∩ B)(x) = min{A(x),B(x)}, ∀x ∈ U. Although different

t-norms can be used to define the intersection of A and B (see e.g. [10, 15]), we will

stick with the minimum t-norm in this paper. Let A ∈ F (U), then the cardinality
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of A (Card(A)) is computed as Card(A) =
∑n

i=1 A(xi) in case U = {x1,… , xn} and as

Card(A) = ∫
b

a A(x)dx in case U = [a, b] ⊂ ℝ.

A fuzzy scale on [a, b] is defined as a set of fuzzy numbers T1,T2,… ,Ts on [a, b],
that form a Ruspini fuzzy partition (see [25]) of the interval [a, b], i.e. for all x ∈
[a, b] it holds that

∑s
i=1 Ti(x) = 1, and the T’s are indexed according to their ordering.

If we weaken the requirements for a fuzzy scale e.g. to
∑s

i=1 Ti(x) ≥ 1, we obtain a

general fuzzy partition.

4 Histograms and Fuzzy Histograms

Histograms are a frequentistic summary of information concerning a given sample

(set of evaluations or answers to items provided by decision-makers). Histograms

have been widely used in statistics, pattern recognition and many other fields. The

distance of histograms plays an important role in pattern recognition, clustering (see

e.g. [8, 11]), time series analysis [34] and virtually in any application field dealing

with simulation. Histograms can be used to represent the current state (e.g. prevailing

evaluation in the given set of experts expressed via discrete Likert scales, a character-

istic pattern) and also the desired evaluation (ideal, aspiration level etc.). They thus

seem to be a proper tool for decision making based on Likert-scales outputs. Even in

the fuzzy case histograms can be used to deal with some response-bias, such as the

central-tendency or leniency effect. Histograms can be utilized to define the ideal

evaluation, or even a fuzzy ideal evaluation is such a way that reduces the possible

response bias. It is the main idea of the use of crisp Likert-scale in multiple-criteria

multi-expert decision making as proposed in [31] and it will be further generalised

here to the fuzzy case. First we need to summarize the notation for crisp and fuzzy

histograms and recall some relevant distance measures for histograms. We will then

utilize these concepts in the next section—introducing a fuzzy-Likert-scale based

multiple criteria multi-expert evaluation methodology capable of dealing with some

important response biases.

4.1 Crisp Histograms

We will be using the vector representation of a histogram in accordance with e.g. [8]

and we will be using the standard graphical representation of histograms in figures.

We will also use the notation introduced in [31], where crisp Likert scales were sug-

gested as a tool for multiple-criteria multi-expert evaluation. The histogram can be

represented by a vector of fixed dimension. The dimension specifies the number of

bins of the histogram, the components of the vector represent the number of observa-

tions/evaluations belonging to each bin. More specifically let us consider an n-point

Likert scale with the set of possible values L = {l1,… , ln} that is used to provide
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Fig. 5 Representation/summary of an 8-item questionnaire by a histogram. A 7-point crisp Likert

scale is used to provide evaluations of each item by the decision-maker

evaluations (measurement) of alternative (feature) x (in the case of the Likert scales

presented in Fig. 1 we can write L = {1,… , n}).

Let us consider a set E of m evaluations (measurements) of the alternative (fea-

ture) x, E = {e1,… , em}, where e1,… , em ∈ L. The histogram of the set E is a vector

(an ordered n-tuple) H(E) = [H1(E),… ,Hn(E)], where Hi(E) represents the number

of times x has been evaluated li, for all i = 1,… , n, that is

Hi(E) =
m∑

j=1
cij, where cij =

{
1 if ej = li,
0 otherwise.

(1)

The histogram presented in Fig. 5 would be represented by the vector

[0, 2, 0, 1, 1, 1, 3].

4.2 Fuzzy Histograms on Discrete Universes

Fuzzy histograms (i.e. histogram of fuzzy numbers with crisp classes, histograms of

crisp numbers with fuzzy classes or histograms of fuzzy numbers with fuzzy classes)

have been studied e.g. in [6, 37]. Let us consider again an n-point Likert scale with

the set of possible values L = {l1,… , ln} and let m evaluations be provided as fuzzy

sets on L, i.e. ̃E = { ẽ1,… , ẽm}, where ẽj ∈ F (L), ẽj = { ẽj(l1)|l1 ,… ,

ẽj(ln) |ln}. The his-

togram of the set ̃E is a vector (an ordered n-tuple) ̃H(̃E) = [̃H1(̃E),… ,
̃Hn(̃E)], where

̃Hi(̃E) represents the relative amount of support for li across all ẽj, corrected for sub-

normality of ẽj, for all i = 1,… , n, j = 1,… ,m, that is

̃Hi(̃E) =
m∑

j=1

( ẽj(li)
Card( ẽj)

⋅ hgt(̃ej)
)

. (2)
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The multiplication by hgt(̃ej) in (2) serves as a compensation for answers that are

represented by subnormal fuzzy sets—these answers are considered less informative

(no fully fitting element of l is expressed by the decision maker) and hence contribute

less to the overall evaluation. Note, that if the crisp case of Likert scales is considered,

where the answer li to item j is represented as ẽj = {0|l1 ,… ,

0 |li−1 ,
1 |li ,

0 |li+1 ,… ,

0 |ln},

j = 1,… ,m then (2) reduces to (1).

4.3 Fuzzy Histograms on Continuous Universes

Let us now depart a bit further from the original idea of an n-point Likert scale

and consider the underlying evaluation scale to be continuous, more specifically

LC = [1, n]. The evaluations ẽj, j = 1,… ,m, provided by the m decision makers can

now be considered as fuzzy sets on LC, i.e. ̃E = { ẽ1,… , ẽm}, where ẽj ∈ F (LC).
We can now introduce a partition of LC to define the bins for the histogram. E.g.

if a uniform partition into u subintervals is considered, i.e. LC = lI1 ∪ lI2 ∪⋯ ∪ lIu,

where lIs =
[

1 + (s − 1) n−1
u
, 1 + s n−1

u

]

, s = 1,… , u. A fuzzy histogram of the set ̃E

can again be defined as a vector (an ordered n-tuple) ̃H(̃E) = [̃HlI1
(̃E),… ,

̃HlIu
(̃E)],

where ̃HlIs
(̃E) represents the sum of relative cardinalities of all

(

ẽj ∩̃lIs
)

, where

̃lIs ∈ F (LC), such that̃lIs(x) = 1 for all x ∈ lIs and̃lIs(x) = 0 otherwise. Again the cor-

rection for subnormality of ẽj is applied, j = 1,… ,m, that is

̃HlIs
(̃E) =

m∑

j=1

⎛
⎜
⎜
⎜
⎝

Card

(

ẽj ∩̃lIs
)

Card( ẽj)
⋅ hgt(̃ej)

⎞
⎟
⎟
⎟
⎠

. (3)

We can also consider the bins to be defined through the introduction of a fuzzy

partition of LC = [1, n]. In this case we define u fuzzy numbers ̃lFN
s ∈ F (LC),

s = 1,… , u, such that
∑u

s=1
̃lFN

s (x) ≥ 1 for all x ∈ LC. Ruspini fuzzy partitions (see

[25]) might be a reasonable tool for this purpose. For each ẽj ∈ F (LC) we define u
fuzzy sets ẽjs, j = 1,… ,m, s = 1,… , u in the following way

ẽjs(x) = ẽj(x) ⋅
̃lFN

s (x)
∑u

q=1
̃lFN

q (x)
. (4)

These fuzzy sets reflect the distribution of the membership degrees of a given ẽj

among all ̃lFN
s , s = 1,… , u. Using these fuzzy sets we can now define the fuzzy

histogram of the set ̃E again as a vector (an ordered n-tuple) ̃H(̃E) = [̃H
̃lFN
1
(̃E),… ,

̃H
̃lFN

u
(̃E)], where



Fuzzified Likert Scales in Group Multiple-Criteria Evaluation 175

̃H
̃lFN

s
(̃E) =

m∑

j=1

(
Card

(
ẽjs
)

Card
(
ẽj
) ⋅ hgt

(
ẽj
)
)

. (5)

Again, the correction for subnormality is applied by multiplying the ratio of cardi-

nalities in the sum in (5) by hgt
(
ẽj
)
.

4.4 Histogram Distances

Since we aim to generalize the methodology proposed in [31] for crisp Likert scales

to fuzzified versions of Likert scales, we will briefly summarize some vector distance

measures for histograms that were considered in [31]. The family of probabilistic dis-

tance measures for histograms (distance measures for probability density functions)

will not be considered here (we refer the interested readers e.g. to [1, 7]).

Vector distance measures for histograms are defined differently based on the

underlying evaluation/measurement scales. We can distinguish between distances

for nominal, ordinal and modulo histograms (i.e. histograms where the values of the

underlying measurement scale form a circle—see e.g. [8, 19]). Since Likert scales

usually do not provide a modulo-type measurement, modulo-type histograms are left

out of the scope of this chapter.

Let us consider two sets of evaluations E = {e1,… , em} and F = {f1,… , fm},

ej, fj ∈ L, j = 1,… ,m, and their respective histograms H(E) and H(F). The distance

of the individual measurements (see e.g. [8]) can be defined for the nominal, ordinal

and modulo types of measurements respectively e.g. by (6), (7) and (8).

dnom(ej, fj) =

{
0 if ej = fj,
1 otherwise

(6)

dord(ej, fj) = |ej − fj| (7)

dmod(ej, fj) =

{
|ej − fj| if |ej − fj| ≤

n
2
,

n − |ej − fj| otherwise.
(8)

An intuitive definition of a distance between two histograms is the minimum num-

ber of necessary changes of evaluations for the transformation of one histogram into

the other (taking into account the nature of the evaluation scale and thus the “mag-

nitude” of the change if it can be assessed). For nominal type histograms H(E) and

H(F), their distance Dnom(H(E),H(F)) can be defined e.g. by (9) or as the number

of non-matching answers (evaluations) across all bins. The fact that the underlying

evaluation scale is nominal (not even ordinal) implies that distances between bins

have no meaning and hence cannot be considered in the computation.
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For ordinal type histograms H(E) and H(F), their distance Dord(H(E),H(F)) can

be defined e.g. by (10) as the minimum number of necessary unit changes of evalu-

ation (under the assumption of the uniformity of the evaluation scale) to transform

H(E) into H(F) (see e.g. [8]).

Dnom(H(E),H(F)) =
∑n

i=1 |Hi(E) − Hi(F)|
2

(9)

Dord(H(E),H(F)) =
n∑

i=1

|
|
|
|
|
|

i∑

j=1
(Hj(E) − Hj(F))

|
|
|
|
|
|

(10)

5 Definition of the Problem

This chapter deals with the use of fuzzified Likert scales in the context of multiple-

criteria multi-expert evaluation. In general we aim on problems, where a set of k
decision-makers {DM1,… ,DMk} provide their evaluations of a certain object or

phenomenon via m Likert-type items in a questionnaire. The set of evaluations of

the m items by an evaluator r is denoted Er = {er
1,… , er

m}, r = 1,… , k. That is the

phenomenon/object is assessed by each individual using m criteria, points of view

or questions. For the sake of simplicity, we will assume that the items have the same

weight (descriptive power). We also assume all the decision makers have the same

weight. As such we present a fuzzy extension of the analysis and methodology pro-

posed in [31]. We will further distinguish between two settings:

∙ discrete Likert-scale setting—n-point Likert scales are considered, and the eval-

uations provided by the decision makers are allowed to be fuzzy sets on L =
{l1,… , ln}, i.e. ẽr

j ∈ F (L), r = 1,… , k, j = 1,… ,m. Note, that the standard

(crisp) use of Likert scales is a special case of this fuzzy approach, i.e. the crisp

case equivalent of an answer to item j by the evaluator r in this fuzzy represen-

tation is ẽr
j = {ẽr

j (l1)|l1 ,… ,

ẽr
j (ln) |ln}, where exactly one of the membership degrees

ẽr
j (l1),… , ẽr

j (ln) is equal to 1 and the others are equal to 0.

∙ a continuous generalization of the Likert scale, where LC = [1, n] is considered

to be the underlying (continuous) evaluation scale and ẽr
j ∈ F (LC), r = 1,… , k,

j = 1,… ,m.

In both cases we propose a methodology for the aggregation of evaluations of an

alternative with respect to multiple criteria obtained by multiple experts into one

overall evaluation represented by a histogram. We define a reduced 3-bin histogram

representation to address the possible response-bias and define an appropriate 3-bin

ideal evaluation. We suggest to compute the distance from this ideal as a measure

based on which the alternatives can be ordered and the best alternative chosen sub-

sequently.
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6 Proposed Solution—Fuzzified Discrete Likert Scales

We now consider an n-point discrete Likert scale with the set of possible values L =
{l1,… , ln}, k decision makers (evaluators) are providing evaluations of an alternative

with respect to m criteria. The m evaluations suggested by the decision-maker r are

fuzzy sets on L, i.e. ̃Er = {ẽr
1,… , ẽr

m}, where ẽr
j ∈ F (L), ẽr

j = {ẽr
j (l1)|l1 ,… ,

ẽr
j (ln) |ln},

r = 1,… , k. We propose to aggregate the m evaluations provided by the decision-

maker r into an overall evaluation
̂
̃Er and the subsequent aggregation of these overall

evaluations across all the experts onto the group evaluation
̂
̃E, such that the ordinal

character of the evaluation scales is respected and the response-bias described in the

previous sections can be dealt with in the next step. We therefore suggest to represent

the overall evaluations in the form of fuzzy histograms using (2):

̂
̃Er = ̃H(̃Er); r = 1,… , k, (11)

and the group evaluation analogically also in the form of a histogram:

̂
̃E = ̃H(̃E1 ∪ ̃E2 ∪⋯ ∪ ̃Ek). (12)

The histogram representation provides a graphical level for the presentation of aggre-

gated information which is a desired property in mathematical modelling. The his-

togram is defined in such a way that each normal fuzzy answer is considered to con-

tain a unit of “support” which is distributed among the bins representing l1,… , ln.

A subnormal fuzzy-set answer is considered to contain (1 unit times its height of

“support”). The histogram thus summarizes the evaluation in a relative format, but

so far no assumption concerning the distance of the bins had to be made. Also notice,

that for fuzzy-set representation of crisp answers we obtain exactly the same as was

proposed in [31] for the crisp Likert scales. All the
̂
̃Er and the

̂
̃E are now n-bin his-

tograms (Fig. 5 presents an analogy of this process for the crisp case, in our case the

height of the bins is defined by (2)). Without any loss of generality we can assume,

that 1 is the best evaluation and n is the worst possible evaluation. Since we are going

to use the distance-from-ideal based approach, we now need to specify, how an ideal

group-evaluation (the best possible evaluation) looks like? As pointed out in [31], in

a crisp situation this answer leads to the specification of an absolute-type evaluation

ideal. In the fuzzy case this holds only if all the fuzzy answers provided by all the

decision-makers are normal. Otherwise, if subnormal answers are also allowed, the

definition has to reflect possible subnormality of the fuzzy-set answers, thus becom-

ing a relative-type evaluation ideal.

If we now define the ideal group evaluation as
̂
̃I, such that

̂
̃I = ̃H(̃I1 ∪̃I2 ∪⋯ ∪̃Ik) = ̃H(̃I), (13)
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where
̂
̃I1,… ,

̂
̃Ik are the ideal overall evaluations by each decision-maker represented

by histograms, ̃Ir = {ẽr
1,… , ẽr

m}, ẽ
r
j = {hgt(̃er

j )|l1 ,
0 |l2 ,… ,

0 |ln}, r = 1,… , k,

j = 1,… ,m. Note, that in the crisp case these would be fuzzy singletons, in the fuzzy

case where subnormal fuzzy answers are also allowed, the membership degree of l1
to each respective fuzzy set ẽr

j is hgt(̃er
j ) and the membership degrees of all l2,… , ln

are assumed to be zero for the definition of such an ideal. The histogram represen-

tation of the ideal thus becomes
̂
̃I = [̃H1(̃I),… ,

̃Hn(̃I)], where ̃H1(̃I) =
∑m

j=1
∑k

r=1

hgt(̃er
j ) and ̃Hi(̃I) = 0 for all i = 2,… , n. Mathematically speaking this would be a

correct definition of the best possible evaluation under the given assumptions.

So far, we have ignored the central-tendency bias. Can we really say, that the ideal

evaluation is defined correctly by
̂
̃I? That is can we say that the ideal evaluation is

such that all the decision makers provided only support for the best (most extreme)

evaluation in all the items that represent the given goal in the questionnaire (or eval-

uation tool)? As pointed out in [31], when we need to aggregate the evaluations of

different decision makers, we can never be sure that there is a significant difference

e.g. between an evaluation of 1 provided by one decision maker and an evaluation

of 2 provided by a different decision maker, with whom the central tendency bias

(very rare selection of extreme evaluations) manifests itself. It may be that these two

different evaluations in fact represent the same (or very close) level of satisfaction

for both decision makers. We should therefore be careful in considering these values

as very different.

The avoidance of extreme answers is to be expected, since Likert scales are

frequently presented with labels such as “completely agree”, “strongly approve”,

“strong negative” etc. for the extremes of the evaluation scale, which might be too

categorical for the decision makers to use and hence the next, less extreme, label

can be chosen instead (i.e. “agree”, “approve” or “negative” respectively). In the

context of a possible central-tendency bias, it therefore seems illogical to define the

ideal as being composed solely of extreme answers—such an output might not be

achievable. Note, that defining unachievable ideal evaluations can seriously bias the

absolute type evaluation procedure.

The ideas of fuzzy optimization and the concept of sufficiently high evaluation

[4, 32, 33] seem to be more feasible for this purpose. Instead of the ideal defined

by
̂
̃I we can define the ideal in a more central-tendency-friendly way as “Nonzero

membership degrees of values close to the positive extreme point of the scale and
zero memberships everywhere else provided by all the decision makers in all the
items relevant for the evaluation of the given alternative”. Here “close to the positive

extreme point” can be operationally defined as “lt or lower”, where t < n
2
, and t ∈

{1,… , n} is the pre-specified threshold index (e.g. t = 2 for a 6-point or 7-point

Likert scale). The introduction of the threshold t reflects the central-tendency bias

and makes the evaluations more comparable.

We can thus define reduced 3-bin histograms to represent the overall evaluations

of the decision makers by (14).
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Fig. 6 The construction of a 3-bin reduced histogram (right figure) from an overall evaluation

provided by one of the decision-makers (left figure). A 7-point Likert scale is used to provide eval-

uations by the decision-maker. A crisp Likert scale is presented here for better clarity, the fuzzified

Likert scale would be a direct analogy

̂
̃E′

r = ̃H′(̃Er) = [̃H′
+(̃Er), ̃H′

0(̃Er), ̃H′
−(̃Er)], where

̃H′
+(̃Er) = ̃H1(̃Er) +⋯ + ̃Ht(̃Er),

̃H′
0(̃Er) = ̃Ht+1(̃Er) +⋯ + ̃Hn−t(̃Er),

̃H′
−(̃Er) = ̃Hn−(t−1)(̃Er) +⋯ + ̃Hn(̃Er),

r = 1,… , k (14)

Note, that the middle bin (0) of the histogram summarizes the neutral and close-

to-neutral evaluations, the (+) bin summarizes all positive evaluations with respect

to the given threshold t and defines the “less than t from the best”-bin, the (−) bin

summarizes all negative evaluations with respect to the given threshold t and defines

the “less than t from the worst”-bin (see Fig. 6 for an analogy in the crisp case). The

resulting 3-bin histogram preserves the symmetry with respect to the middle value

property.

This way we can consider the underlying 3-point scale to be cardinal in nature

(an interval scale to be precise). The difference between a (+) and a (−) evaluation is

twice as large as the difference between e.g. (+) and (0). We have thus achieved an

aggregation of the information that compensates for the possible manifestation of the

central-tendency effect and at the same time we have introduced a cardinal (interval)

underlying scale for the reduced representation of the evaluations. At the level of a

single decision maker, this takes into account the possible inter-item differences in

the decision-maker’s tendency to provide extreme evaluations. The correction for the

central-tendency effect is however more necessary in the group aggregation (aggre-

gation across all the decision makers). The group evaluation can be defined as the

reduced 3-bin histogram (15):

̂
̃E′ = ̃H′(̃E1 ∪ ̃E2 ∪⋯ ∪ ̃Ek) =

[ k∑

r=1

̃H′
+(̃Er),

k∑

r=1

̃H′
0(̃Er),

k∑

r=1

̃H′
−(̃Er)

]

. (15)
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The ideal evaluation in this case represents such a set of evaluations provided by the

k decision-makers to the m items of the questionnaire (evaluation tool) that are all

no worse than t. That is the ideal, reflecting the possibility of providing subnormal

fuzzy sets as answers, is in this case defined by (16).

̂
̃I′ =

[ m∑

j=1

k∑

r=1
hgt(̃er

j ), 0, 0

]

(16)

This can be considered to be a prototype of such evaluation, that represents the com-

plete fulfillment of a given goal. Note, that if only normal fuzzy sets were allowed,

then
∑m

j=1
∑k

r=1 hgt(̃er
j ) = m ⋅ k and hence

̂
̃I′ = [m ⋅ k, 0, 0], which is the same as in

[31]. In case when only normal fuzzy sets are allowed as answers, ordering of alter-

natives can be easily obtained by means of computing the distance of the group

evaluation 3-bin histogram representing the group evaluation of the alternative from

the 3-bin ideal D( ̂̃I′, ̂̃E′). We just need to choose an appropriate distance measure for

the histograms. In case we allow also subnormal answers, computing the distance

from ideal solution defined by (16) we obtain a measure of dissensus on the decision

that the alternative is ideal.

After closer inspection we can clearly see that the nominal-histogram distance

(9) is not applicable, since it considers the difference between (+) and (−) to be the

same as between (+) and (0). This is obviously not a desired property (see Fig. 7).

We require the distance measure to be able to reflect that the further the evaluations

are on the ordinal scale, the higher the distance of the respective histograms have to

be (a similar idea as in the earth mover’s distance measure, e.g. [24]).

The original symmetry of the distribution of the elements of the Likert scale with

respect to the middle of the scale implies the same property in our reduced histogram

representation—bins are symmetrically distributed with respect to the middle bin.

We can therefore now define a distance between the reduced ideal evaluation
̂
̃I′ and

Fig. 7 An intuitive requirement on the distance between ordinal histograms—the difference

between the positive (+) and negative (−) bins should be higher than between (+) and the neu-

tral bin (0)
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the actual reduced group evaluation
̂
̃E′ by (17). Let us for the purpose of the notation

now consider [+, 0,−] = [1, 2, 3] for the subscripts of ̃H′
.

Dred(
̂
̃I′, ̂̃E′) =

2∑

i=1
i ⋅

(
̃H′

i+1(̃E) − ̃H′
i+1(̃I)

)

= ̃H′
0(̃E) + 2̃H′

−(̃E) (17)

The degree of fulfillment of the overall goal (GF) can be defined by (18), that is as a

normalized similarity of the group evaluation to the ideal evaluation for those cases,

when only normal fuzzy sets are allowed as answers.

GF( ̂̃E′) = 1 −
Dred(

̂
̃I′, ̂̃E′)

2 ⋅ m ⋅ k
(18)

We can easily verify, that GF( ̂̃E′) ∈ [0, 1] and GF( ̂̃E′) = 1 if and only if
̂
̃I′ and

̂
̃E′ are identical. If

̂
̃E′ is the complete opposite of

̂
̃I′, i.e.

̂
̃E′ = [0, 0,m ⋅ k], then

GF( ̂̃E′) = 0. Note, that (17) is in fact a special case od the ordinal histogram distance

(10). The proof can be found in [31]. The distance measure Dred is a special case of

Dord, since the symmetry of the scale {+, 0,−} with respect to 0 implies that the bins

of the histogram are equidistant, which is also the underlying assumption for Dord. It

is worth noting, that in our case the equidistance does not need to be assumed, it is

implied by the symmetry of the Likert scale and by the construction of
̂
̃E′ introduced

by (15).

For those applications, where subnormal fuzzy sets can/must be accepted as

answers, we can define the degree of consensus on the given alternative being ideal
(CD) by (19).

CD( ̂̃E′) = 1 −
Dred(

̂
̃I′, ̂̃E′)

2 ⋅
∑m

j=1
∑k

r=1 hgt(̃er
j )

(19)

7 Proposed Solution—Continuous Likert-Type Scales

Let us now broaden the scope a bit and consider the continuous evaluation universe

LC = [1, n] instead of the classic n-point discrete Likert scale with the set of possible

values L = {l1,… , ln}. We will again consider k decision makers (evaluators) that

provide evaluations of an alternative with respect to m criteria. The m evaluations

expressed by the decision-maker r are fuzzy sets on LC, i.e. ̃Er = {ẽr
1,… , ẽr

m}, where

ẽr
j ∈ F (LC), r = 1,… , k. See Fig. 4 for an example of such fuzzy evaluations. The

m fuzzy evaluations provided by the decision maker can be summarized e.g. using

the method proposed in [16]—i.e. defining a fuzzy set ẽr ∈ F (LC) representing the

overall evaluation of the alternative by decision-maker r by aggregating the member-

ship functions of ẽr
j for all j = 1,… ,m. Alternatively this summary can be defined
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in a more histogram-similar manner just by defining the function er(x) =
∑m

j=1 ẽr
j (x)

for all x ∈ LC. Such defined er(x) is, however, no longer a fuzzy set on LC.

Since we are interested mainly in the overall MCME evaluation of the alter-

native, that would take into account the possible response bias, we can proceed

to directly defining the three-bin fuzzy histogram as a representation of the over-

all multiple-criteria multi-expert evaluation of the alternative analogically to (14).

First we define a threshold t ∈ [1, n+1
2
) and thus introduce three subintervals of

the evaluation universe: lI+ = [1, t] representing the values considered to be suffi-
ciently positive evaluations, lI0 = [t, n − t] representing the values of more or less
neutral evaluations and lI− = [n − t, n] representing the values of sufficiently neg-
ative evaluations. We define the fuzzy number representations of these intervals

as̃lI+ = (1, 1, t, t), ̃0I
+ = (t, t, n − t, n − t) and̃lI− = (n − t, n − t, n, n) respectively. The

three-bin histogram representing the final MCME evaluation can now be defined in

accordance with Sect. 4.3, Eq. (3) as

̂
̃E′ =

[
̃HlI+(̃E), ̃HlI0

(̃E), ̃HlI−
(̃E)

]

, (20)

where ̃E = ̃Er ∪⋯ ∪̃Ek and HlIg
(̃E) =

∑m
j=1

∑k
r=1

(
Card

(

ẽr
j∩̃l

I
g

)

Card

(

ẽr
j

) ⋅ hgt

(

ẽr
j

)
)

for all g ∈

{+, 0,−}. This way each fuzzy set contributes to each of the three bins proportionally

to the relative cardinality of its intersection with the fuzzy set representation of the

underlying interval. The strength of the contribution is modified by the height of the

respective fuzzy set—normal fuzzy sets are considered to provide a unit information,

subnormal less than a unit. The definition of the ideal evaluation
̂
̃I′ formulated in (16)

applies here as well, i.e.
̂
̃I′ =

[∑m
j=1

∑k
r=1 hgt(̃er

j ), 0, 0
]

. The distance from the ideal

evaluation (17) can be used with analogical interpretation as in the previous section.

Alternatively, instead of a crisp partition of LC by lI+, lI0 and lI−, we can intro-

duce a fuzzy partition of LC. We can again choose a threshold value t ∈ [1, n+1
2
) and

a reasonable “overlap” Δ ∈ (0, n+1
2

− t) and define three fuzzy numbers̃lFN
+ = (1, 1,

t − Δ
2
, t + Δ

2
),̃lFN

0 = (t − Δ
2
, t + Δ

2
, n − t − Δ

2
, n − t + Δ

2
) and̃lFN

− = (n − t − Δ
2
, n − t +

Δ
2
, n, n) such that̃lFN

+ ,̃lFN
0 and̃lFN

− form a fuzzy partition of LC. Note, that the result-

ing fuzzy partition of LC needs to be symmetrical with respect to the middle point

of LC. In line with (4) we now define the fuzzy sets ẽr
j+, ẽr

j0 and ẽr
j− representing the

distribution of the membership degree of each x ∈ LC to ẽr
j among̃lFN

+ ,̃lFN
0 and̃lFN

−

based on the membership degrees of x to ̃lFN
+ , ̃lFN

0 and ̃lFN
− , for all j = 1,… ,m and

r = 1,… , k, by (21).

ẽr
jg(x) = ẽr

j (x) ⋅
̃lFN

g (x)
∑

q∈{+,0,−}
̃lFN

q (x)
, for all x ∈ LC, g ∈ {+, 0,−}. (21)
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The three-bin histogram representing the final MCME evaluation can now be

defined in accordance with Sect. 4.3, equation (5) as

̂
̃E′ =

[
̃HlFN

+
(̃E), ̃HlFN

0
(̃E), ̃HlFN

−
(̃E)

]

, (22)

where ̃E = ̃Er ∪⋯ ∪̃Ek and HlFN
g
(̃E) =

∑m
j=1

∑k
r=1

(
Card

(

ẽr
jg

)

Card

(

ẽr
j

) ⋅ hgt

(

ẽr
j

)
)

for all g ∈

{+, 0,−}. Again this way each fuzzy evaluation contributes to the fuzzy bin g pro-

portionally to the relative cardinality of its ẽr
jg function multiplied by the height of

the respective fuzzy set. Again normal fuzzy sets are considered to provide a unit

information, subnormal less than a unit. The definition of the ideal evaluation
̂
̃I′ for-

mulated in (16) can be applied here again, i.e.
̂
̃I′ =

[∑m
j=1

∑k
r=1 hgt(̃er

j ), 0, 0
]

. The

distance from the ideal evaluation (17) can be used with analogical interpretation

too.

8 Conclusion

This chapter extends the methodology for the use of discrete crisp Likert scales in

multiple-criteria multi-expert evaluation presented in [31] to the fuzzy domain. Dis-

crete fuzzy Likert scales are considered as well as the generalization of the Likert

scales to continuous evaluation universes. The results obtained for the discrete fuzzy

Likert scales are a direct generalization of the results obtained in [31]. The pro-

posed methodology suggests a fuzzy histogram representation of fuzzy Likert-type

evaluations and their aggregation. Three-bin histograms are proposed to dela with

response bias such as central-tendency and leniency effects. In the discrete case the

definition of the three bin histogram introduces equidistance of bins and enables

the application of the distance-to-ideal based approach to select the best alternative.

In the continuous case, the three-bin histograms are used to deal with the response

bias mainly, since the underlying evaluation universe is cardinal. It is interesting to

note, that under the proposed methodology, it is possible to introduce a fuzzy ideal

evaluation (in the three-bin histogram evaluation) that allows for the evaluation of

absolute type (interpretation in terms of the “fulfillment of the overall goal”), under

the condition that normal fuzzy evaluations are provided. If subnormal fuzzy evalu-

ation can be considered, the definition of an absolute ideal evaluation is more tricky.

The suggested definition of ideal evaluation for this case results in evaluations with

the interpretation of “consensus on the given alternative being good”. The presented

methodology extends the findings of [31] to the more general fuzzy domain, allow-

ing for the expression of uncertainty or imprecision in the Likert-type evaluations.

As such it provides tools for the aggregation of fuzzy Likert-type evaluations and

proposes an extension of the standard use of Likert scales to multiple-criteria multi-

expert fuzzy evaluation.
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Maximal Entropy and Minimal Variability
OWA Operator Weights: A Short Survey
of Recent Developments

Christer Carlsson and Robert Fullér

Abstract The determination of ordered weighted averaging (OWA) operator

weights is a very important issue of applying the OWA operator for decision mak-

ing. One of the first approaches, suggested by O’Hagan, determines a special class

of OWA operators having maximal entropy of the OWA weights for a given level

of orness; algorithmically it is based on the solution of a constrained optimization

problem. In 2001, using the method of Lagrange multipliers, Fullér and Majlender

solved this constrained optimization problem analytically and determined the opti-

mal weighting vector. In 2003 Fullér and Majlender computed the exact minimal

variability weighting vector for any level of orness using the Karush-Kuhn-Tucker

second-order sufficiency conditions for optimality. The problem of maximizing an

OWA aggregation of a group of variables that are interrelated and constrained by

a collection of linear inequalities was first considered by Yager in 1996, where he

showed how this problem can be modeled as a mixed integer linear programming

problem. In 2003 Carlsson, Fullér and Majlender derived an algorithm for solving

the constrained OWA aggregation problem under a simple linear constraint: the sum

of the variables is less than or equal to one. In this paper we give a short survey of

numerous later works which extend and develop these models.

1 OWA Operators

The process of information aggregation appears in many applications related to the

development of intelligent systems. In 1988 Yager introduced a new aggregation

technique based on the ordered weighted averaging operators [44]. The determi-

nation of ordered weighted averaging operator weights is a very important issue
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of applying the OWA operator for decision making. One of the first approaches,

suggested by O’Hagan [34], determines a special class of OWA operators having

maximal entropy of the OWA weights for a given level of orness; algorithmically it

is based on the solution of a constrained optimization problem. In 2001, using the

method of Lagrange multipliers, Fullér and Majlender [12] solved this constrained

optimization problem analytically and determined the optimal weighting vector. In

2003 using the Karush-Kuhn-Tucker second-order sufficiency conditions for opti-

mality, Fullér and Majlender [13] computed the exact minimal variability weighting

vector for any level of orness. In 2003 Carlsson, Fullér and Majlender [7] derived an

algorithm for solving the (nonlinear) constrained OWA aggregation problem. In this

work we shall give a short survey of some later works that extend and develop these

models.

In a decision process the idea of trade-offs corresponds to viewing the global eval-

uation of an action as lying between the worst and the best local ratings. This occurs

in the presence of conflicting goals, when a compensation between the correspond-

ing compatibilities is allowed. Averaging operators realize trade-offs between objec-

tives, by allowing a positive compensation between ratings. The concept of ordered
weighted averaging operators was introduced by Yager in 1988 [44] as a way for pro-

viding aggregations which lie between the maximum and minimums operators. The

structure of this operator involves a nonlinearity in the form of an ordering operation

on the elements to be aggregated. The OWA operator provides a new information

aggregation technique and has already aroused considerable research interest [49].

Definition 1.1 ([44]) An OWA operator of dimension n is a mapping F∶ℝn →
ℝ, that has an associated weighting vector W = (w1,w2,… ,wn)T such as wi ∈
[0, 1], 1 ≤ i ≤ n, and w1 +⋯ + wn = 1. Furthermore,

F(a1,… , an) = w1b1 +⋯ + wnbn =
n∑

j=1
wjbj,

where bj is the jth largest element of the bag ⟨a1,… , an⟩.

A fundamental aspect of this operator is the re-ordering step, in particular an

aggregate ai is not associated with a particular weight wi but rather a weight is asso-

ciated with a particular ordered position of aggregate. It is noted that different OWA

operators are distinguished by their weighting function. In order to classify OWA

operators in regard to their location between and and or, a measure of orness, asso-

ciated with any vector W is introduced by Yager [44] as follows,

orness(W) =
1

n − 1

n∑

i=1
(n − i)wi.

It is easy to see that for any W the orness(W) is always in the unit interval Fur-

thermore, note that the nearer W is to an or, the closer its measure is to one;

while the nearer it is to an and, the closer is to zero. It can easily be shown that
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orness(W∗) = 1, orness(W∗) = 0 and orness(WA) = 0.5. A measure of andness is

defined as, andness(W) = 1 − orness(W). Generally, an OWA operator with much

of nonzero weights near the top will be an orlike operator, that is, orness(W) ≥ 0.5,

and when much of the weights are nonzero near the bottom, the OWA operator will

be andlike, that is, andness(W) ≥ 0.5. In [44] Yager defined the measure of disper-

sion (or entropy) of an OWA vector by,

disp(W) = −
n∑

i=1
wi lnwi.

We can see when using the OWA operator as an averaging operator disp(W)measures

the degree to which we use all the aggregates equally.

2 Obtaining OWA Operator Weights

One important issue in the theory of OWA operators is the determination of the

associated weights. One of the first approaches, suggested by O’Hagan, determines

a special class of OWA operators having maximal entropy of the OWA weights for a

given level of orness; algorithmically it is based on the solution of a constrained opti-

mization problem. Another consideration that may be of interest to a decision maker

involves the variability associated with a weighting vector. In particular, a decision

maker may desire low variability associated with a chosen weighting vector. It is

clear that the actual type of aggregation performed by an OWA operator depends

upon the form of the weighting vector [45]. A number of approaches have been sug-

gested for obtaining the associated weights, i.e., quantifier guided aggregation [44,

45], exponential smoothing and learning [50]. O’Hagan [34] determined a special

class of OWA operators having maximal entropy of the OWA weights for a given

level of orness. His approach is based on the solution of he following mathematical

programming problem,

maximize disp(W) = −
n∑

i=1
wi lnwi

subject to orness(W) =
n∑

i=1

n − i
n − 1

⋅ wi = 𝛼, 0 ≤ 𝛼 ≤ 1 (1)

w1 +⋯ + wn = 1, 0 ≤ wi, i = 1,… , n.

In 2001, using the method of Lagrange multipliers, Fullér and Majlender [12] trans-

formed constrained optimization problem (1) into a polynomial equation which is

then was solved to determine the maximal entropy OWA operator weights. By their

method, the associated weighting vector is easily obtained by
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lnwj =
j − 1
n − 1

lnwn +
n − j
n − 1

lnw1 ⟹ wj =
n−1
√

wn−j
1 wj−1

n

and

wn =
((n − 1)𝛼 − n)w1 + 1
(n − 1)𝛼 + 1 − nw1

then

w1[(n − 1)𝛼 + 1 − nw1]n = ((n − 1)𝛼)n−1[((n − 1)𝛼 − n)w1 + 1]

where n ≥ 3. For n = 2 then from orness(w1,w2) = 𝛼 the optimal weights are

uniquely defined as w∗
1 = 𝛼 and w∗

2 = 1 − 𝛼. Furthermore, if 𝛼 = 0 or 𝛼 = 1 then the

associated weighting vectors are uniquely defined as (0, 0,… , 0, 1)T and (1, 0,… ,

0, 0)T , respectively.

An interesting question is to determine the minimal variability weighting vector

under given level of orness [48]. The variance of a given weighting vector is com-

puted as follows

D2(W) =
n∑

i=1

1
n
(wi − E(W))2 =

1
n

n∑

i=1
w2

i −
(1

n

n∑

i=1
wi

)2

=
1
n

n∑

i=1
w2

i −
1
n2
.

where E(W) = (w1 +⋯ + wn)∕n = 1∕n stands for the arithmetic mean of weights.

In 2003 Fullér and Majlender [13] suggested a minimum variance method to

obtain the minimal variability OWA operator weights. A set of OWA operator

weights with minimal variability could then be generated. Their approach requires

the solution of the following mathematical programming problem:

minimize D2(W) =
1
n
⋅

n∑

i=1
w2

i −
1
n2

subject to orness(w) =
n∑

i=1

n − i
n − 1

⋅ wi = 𝛼, 0 ≤ 𝛼 ≤ 1, (2)

w1 +⋯ + wn = 1, 0 ≤ wi, i = 1,… , n.

Fullér and Majlender [13] computed the exact minimal variability weighting vec-

tor for any level of orness using the Karush-Kuhn-Tucker second-order sufficiency

conditions for optimality.

Yager [47] considered the problem of maximizing an OWA aggregation of a group

of variables that are interrelated and constrained by a collection of linear inequalities

and he showed how this problem can be modeled as a mixed integer linear program-

ming problem. The constrained OWA aggregation problem [47] can be expressed as

the following mathematical programming problem
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max wTy
subject to Ax ≤ b, x ≥ 0,

where wTy = w1y1 +⋯ + wnyn and yj denotes the jth largest element of the bag

⟨x1,… , xn⟩.
In 2003 Carlsson, Fullér and Majlender [7] showed an algorithm for solving the

(nonlinear) constrained OWA aggregation problem

max wTy; subject to{x1 +⋯ + xn ≤ 1, x ≥ 0}. (3)

where yj denotes the jth largest element of the bag ⟨x1,… , xn⟩.

3 Recent Advances

In this section we will give a short chronological survey of some later works that

extend and develop the maximal entropy, the minimal variability and the constrained

OWA operator weights models. We will mention only those works in which the

authors extended, improved or used the findings of our original papers [7, 12, 13].

In 2004 Liu and Chen [21] introduced the concept of parametric geometric OWA

operator (PGOWA) and a parametric maximum entropy OWA operator (PMEOWA)

and showed the equivalence of parametric geometric OWA operator and parametric

maximum entropy OWA operator weights. Carlsson et al. [8] showed how to evaluate

the quality of elderly care services by OWA operators.

In 2005 Wang and Parkan [39] presented a minimax disparity approach, which

minimizes the maximum disparity between two adjacent weights under a given level

of orness. Their approach was formulated as

minimize max
i=1,2,…,n−1

∣ wi − wi+1 ∣

subject to orness(w) =
n∑

i=1

n − i
n − 1

wi = 𝛼, 0 ≤ 𝛼 ≤ 1,

w1 +⋯ + wn = 1, 0 ≤ wi ≤ 1, i = 1,… , n.

Majlender [32] developed a maximal Rényi entropy method for generating a para-

metric class of OWA operators and the maximal Rényi entropy OWA weights. His

approach was formulated as
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maximize H
𝛽

(w) =
1

1 − 𝛽

log2
n∑

i=1
w𝛽

i

subject to orness(w) =
n∑

i=1

n − i
n − 1

wi = 𝛼, 0 ≤ 𝛼 ≤ 1,

w1 +⋯ + wn = 1, 0 ≤ wi ≤ 1, i = 1,… , n.

where 𝛽 ∈ ℝ and H1(w) = −
∑n

i=1 wi log2 wi. Liu [22] extended the the properties

of OWA operator to the RIM (regular increasing monotone) quantifier which is rep-

resented with a monotone function instead of the OWA weighting vector. He also

introduced a class of parameterized equidifferent RIM quantifier which has mini-

mum variance generating function. This equidifferent RIM quantifier is consistent

with its orness level for any aggregated elements, which can be used to represent the

decision maker’s preference. Troiano and Yager [37] pointed out that OWA weight-

ing vector and the fuzzy quantifiers are strongly related. An intuitive way for shaping

a monotonic quantifier, is by means of the threshold that makes a separation between

the regions of what is satisfactory and what is not. Therefore, the characteristics of a

threshold can be directly related to the OWA weighting vector and to its metrics: the

attitudinal character and the entropy. Usually these two metrics are supposed to be

independent, although some limitations in their value come when they are consid-

ered jointly. They argued that these two metrics are strongly related by the definition

of quantifier threshold, and they showed how they can be used jointly to verify and

validate a quantifier and its threshold.

In 2006 Xu [43] investigated the dependent OWA operators, and developed a new

argument-dependent approach to determining the OWA weights, which can relieve

the influence of unfair arguments on the aggregated results. Zadrozny and Kacprzyk

[54] discussed the use of the Yager’s OWA operators within a flexible querying inter-

face. Their key issue is the adaptation of an OWA operator to the specifics of a user’s

query. They considered some well-known approaches to the manipulation of the

weights vector and proposed a new one that is simple and efficient. They discussed

the tuning (selection of weights) of the OWA operators, and proposed an algorithm

that is effective and efficient in the context of their FQUERY for Access package.

Wang et al. [40] developed the query system of practical hemodialysis database for

a regional hospital in Taiwan, which can help the doctors to make more accurate

decision in hemodialysis. They built the fuzzy membership function of hemodialy-

sis indices based on experts’ interviews. They proposed a fuzzy OWA query method,

and let the decision makers (doctors) just need to change the weights of attributes

dynamical, then the proposed method can revise the weight of each attributes based

on aggregation situation and the system will provide synthetic suggestions to the

decision makers. Chang et al. [10] proposed a dynamic fuzzy OWA model to deal

with problems of group multiple criteria decision making. Their proposed model

can help users to solve MCDM problems under the situation of fuzzy or incomplete

information. Amin and Emrouznejad [6] introduced an extended minimax disparity

model to determine the OWA operator weights as follows,
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minimize 𝛿

subject to orness(w) =
n∑

i=1

n − i
n − 1

wi = 𝛼, 0 ≤ 𝛼 ≤ 1,

wj − wi + 𝛿 ≥ 0, i = 1,… , n − 1, j = i + 1,… , n
wi − wj + 𝛿 ≥ 0, i = 1,… , n − 1, j = i + 1,… , n

w1 +⋯ + wn = 1, 0 ≤ wi ≤ 1, i = 1,… , n.

In this model it is assumed that the deviation |wi − wj| is always equal to 𝛿, i ≠ j.
In 2007 Liu [23] proved that the solutions of the minimum variance OWA oper-

ator problem under given orness level and the minimax disparity problem for OWA

operator are equivalent, both of them have the same form of maximum spread equid-

ifferent OWA operator. He also introduced the concept of maximum spread equid-

ifferent OWA operator and proved its equivalence to the minimum variance OWA

operator. Llamazares [30] proposed determining OWA operator weights regarding

the class of majority rule that one should want to obtain when individuals do not

grade their preferences between the alternatives. Wang et al. [41] introduced two

models determining as equally important OWA operator weights as possible for a

given orness degree. Their models can be written as

minimize J1 =
n−1∑

i=1
(wi − wi+1)2

subject to orness(w) =
n∑

i=1

n − i
n − 1

wi = 𝛼, 0 ≤ 𝛼 ≤ 1,

w1 +⋯ + wn = 1, 0 ≤ wi ≤ 1, i = 1,… , n.

and

minimize J2 =
n−1∑

i=1

( wi

wi+1
−

wi+1

wi

)2

subject to orness(w) =
n∑

i=1

n − i
n − 1

wi = 𝛼, 0 ≤ 𝛼 ≤ 1,

w1 +⋯ + wn = 1, 0 ≤ wi ≤ 1, i = 1,… , n.

Yager [51] used stress functions to obtain OWA operator weights. With this stress

function, a user can “stress” which argument values they want to give more weight in

the aggregation. An important feature of this stress function is that it is only required

to be nonnegative function on the unit interval. This allows a user to completely focus

on the issue of where to put the stress in the aggregation without having to consider

satisfaction of any other requirements.
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In 2008 Liu [24] proposed a general optimization model with strictly convex
objective function to obtain the OWA operator under given orness level,

minimize
n∑

i=1
F(wi)

subject to orness(w) =
n∑

i=1

n − i
n − 1

wi = 𝛼, 0 ≤ 𝛼 ≤ 1,

w1 +⋯ + wn = 1, 0 ≤ wi ≤ 1, i = 1,… , n.

and where F is a strictly convex function on [0, 1], and it is at least two order dif-

ferentiable. His approach includes the maximum entropy (for F(x) = x ln x) and the

minimum variance (for F(x) = x2 problems as special cases. More generally, when

F(x) = x𝛼, 𝛼 > 0 it becomes the OWA problem of Rényi entropy [32], which includes

the maximum entropy and the minimum variance OWA problem as special cases.

Liu also included into this general model the solution methods and the properties

of maximum entropy and minimum variance problems that were studied separately

earlier. The consistent property that the aggregation value for any aggregated set

monotonically increases with the given orness value is still kept, which gives more

alternatives to represent the preference information in the aggregation of decision

making. Then, with the conclusion that the RIM quantifier can be seen as the con-

tinuous case of OWA operator with infinite dimension, Liu [25] further suggested a

general RIM quantifier determination model, and analytically solved it with the opti-

mal control technique. Ahn [2] developed some new quantifier functions for aiding

the quantifier-guided aggregation. They are related to the weighting functions that

show properties such that the weights are strictly ranked and that a value of orness
is constant independently of the number of criteria considered. These new quanti-

fiers show the same properties that the weighting functions do and they can be used

for the quantifier-guided aggregation of a multiple-criteria input. The proposed RIM

and regular decreasing monotone (RDM) quantifiers produce the same orness as the

weighting functions from which each quantifier function originates. the quantifier

orness rapidly converges into the value of orness of the weighting functions hav-

ing a constant value of orness. This result indicates that a quantifier-guided OWA

aggregation will result in a similar aggregate in case the number of criteria is not too

small.

In 2009 Wu et al. [42] used a linear programming model for determining ordered

weighted averaging operator weights with maximal Yager’s entropy [46]. By ana-

lyzing the desirable properties with this measure of entropy, they proposed a novel

approach to determine the weights of the OWA operator. Ahn [3] showed that a

closed form of weights, obtained by the least-squared OWA (LSOWA) method, is

equivalent to the minimax disparity approach solution when a condition ensuring

all positive weights is added into the formulation of minimax disparity approach.

Liu [26] presented some methods of OWA determination with different dimension

instantiations, that is to get an OWA operator series that can be used to the different
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dimensional application cases of the same type. He also showed some OWA deter-

mination methods that can make the elements distributed in monotonic, symmetric

or any function shape cases with different dimensions. Using Yager’s stress function

method [51] he managed to extend an OWA operator to another dimensional case

with the same aggregation properties.

In 2010 Ahn [4] presented a general method for obtaining OWA operator weights

via an extreme point approach. The extreme points are identified by the intersection

of an attitudinal character constraint and a fundamental ordered weight simplex that

is defined as

K = {w ∈ ℝn ∣ w1 + w2 +⋯ + wn = 1,wj ≥ 0, j = 1,… , n}.

The parameterized OWA operator weights, which are located in a convex hull of the

identified extreme points, can then be specifically determined by selecting an appro-

priate parameter. Vergara and Xia [38] proposed a new method to find the weights of

an OWA for uncertain information sources. Given a set of uncertainty data, the pro-

posed method finds the combination of weights that reduces aggregated uncertainty

for a predetermined orness level. Their approach assures best information quality

and precision by reducing uncertainty. Yager [52] introduced a measure of diversity

related to the problem of selecting of selecting n objects from a pool of candidates

lying in q categories.

In 2011 Liu [27] summarizing the main OWA determination methods (the opti-

mization criteria methods, the sample learning methods, the function based methods,

the argument dependent methods and the preference methods) showed some relation-

ships between the methods in the same kind and the relationships between different

kinds. Gong [15] generated minimal disparity OWA operator weights by minimizing

the combination disparity between any two adjacent weights and its expectation. Ahn

[5] showed that the weights generated by the maximum entropy method show equally

compatible performance with the rank order centroid weights under certain condi-

tions. Hong [17] proved a relationship between the minimum-variance and minimax

disparity RIM quantifier problems.

In 2012 Zhou et al. [55] introduced the concept of generalized ordered weighted

logarithmic proportional averaging (GOWLPA) operator and proposed the gener-

alized logarithm chi-square method to obtain GOWLPA operator weights. Zhou et

al. [56] presented new aggregation operator called the generalized ordered weighted

exponential proportional averaging (GOWEPA) operator and introduced the least

exponential squares method to determine GOWEPA operator weights based on its

orness measure. Yari and Chaji [53] used maximum Bayesian entropy method for

determining ordered weighted averaging operator weights. Liu [28] provided analyt-

ical solutions of the maximum entropy and minimum variance problems with given

linear medianness values.

In 2013 Cheng et al. [11] proposed a new time series model, which employs the

ordered weighted averaging operator to fuse high-order data into the aggregated val-

ues of single attributes, a fusion adaptive network-based fuzzy inference system pro-

cedure, for forecasting stock price in Taiwanese stock markets. Luukka and Kurama
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[31] showed how to apply OWA operators to similarity classifier. This newly derived

classifier is examined with four different medical data set. Data sets used in this

experiment were taken from a UCI-Repository of Machine Learning Database. Liu

et al. [29] introduced a new aggregation operator: the induced ordered weighted aver-

aging standardized distance (IOWASD) operator. The IOWASD is an aggregation

operator that includes a parameterized family of standardized distance aggregation

operators in its formulation that ranges from the minimum to the maximum standard-

ized distance. By using the IOWA operator in the VIKOR method, it is possible to

deal with complex attitudinal characters (or complex degrees of orness) of decision

maker and provide a more complete picture of the decision making process.

In 2014 Sang and Liu [36] showed an analytic approach to obtain the least square

deviation OWA operator weights. Kim and Singh [19] outlined an entropy-based

hydrologic alteration assessment of biologically relevant flow regimes using gauged

flow data. The maximum entropy ordered weighted averaging method is used to

aggregate non-commensurable biologically relevant flow regimes to fit an eco-index

such that the harnessed level of the ecosystem is reflected. Kishor et al. [20] intro-

duced orness measures in an axiomatic framework and to propose an alternate defin-

ition of orness that is based on these axioms. The proposed orness measure satisfies

a more generalized set of axioms than Yager’s orness measure.

In 2015 Zhou et al. [57] introduced the generalized least squares method to deter-

mine the generalized ordered weighted logarithmic harmonic averaging (GOWLHA)

operator weights based on its orness measure. Gao et al. [14] proposed a new opera-

tor named as the generalized ordered weighted utility averaging-hyperbolic absolute

risk aversion (GOWUA-HARA) operator and constructed a new optimization model

to determine its optimal weights. Aggarwal [1] presented a method to learn the crite-

ria weights in multi-criteria decision making by applying emerging learning-to-rank

machine learning techniques.

In 2016 Kaur et al. [18] applied minimal variability OWA operator weights to

reduce computational complexity of high dimensional data and ANFIS with the

fuzzy c-means clustering is used to produce understandable rules for investors. They

verified their model through an empirical analysis of the stock data sets, collected

from Bombay stock market to forecast the Bombay Stock Exchange Index. Gong

et al. [16] presented two new disparity models to obtain the associated weights,

which is determined by considering the absolute deviation and relative deviation

of any distinct pairs of weights. Mohammed [33] demonstrated the application of a

Laplace-distribution-based ordered weighted averaging operator to the problem of

breast tumor classification.

In 2017 Reimann et al. [35] performed a large-scale empirical study and test

whether preferences exhibited by subjects can be represented better by the OWA

operator or by a more standard multi-attribute decision model. Chaji [9] presented an

analytic approach to obtain maximal Bayesian entropy OWA weights. His approach

is based on the solution of he following mathematical programming problem,
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maximize W = −
n∑

i=1
wi ln

wi

𝛽i∕min{𝛽1,… , 𝛽n}
= −

n∑

i=1
wi ln

wi

𝛽i
− lnmin{𝛽1,… , 𝛽n}

subject to orness(W) =
n∑

i=1

n − i
n − 1

⋅ wi = 𝛼, 0 ≤ 𝛼 ≤ 1

w1 +⋯ + wn = 1, 0 ≤ wi, i = 1,… , n.

where 𝛽1,… , 𝛽n are given prior OWA weights, such that 𝛽1 +⋯ + 𝛽n = 1,

𝛽i > 0, i = 1,… , n.
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A Closer Look at the Relation Between
Orness and Entropy of OWA Function

József Mezei and Matteo Brunelli

Abstract Ordered weighted averaging (OWA) functions have been extensively used

to model problem of choice and consensus in the presence of multiple experts and

decision makers. Since each OWA is associated to a weight vector many scholars

have focused on the problem of the determination of this weight vector. In this study,

we consider orness and entropy, two characterizing measures of priority vectors, and

we study their interplay from a graphical point of view.

1 Introduction

In a world where the amount of data is ever increasing, it becomes more and more

important to find meaningful ways to aggregate numerical information into a sin-

gle representative number. This is the field of investigation related to aggregation

functions [2]. The most important domains in which aggregation is extensively

applied include multicriteria decision analysis, group decision making or informa-

tion retrieval.

There is a wide variety of aggregation functions available to be used in various

applications and it is a difficult but extremely important task to choose one that

captures the requirements that one wants to achieve with the aggregation process.
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If we consider multicriteria decision problems, one can for example require an aggre-

gation function to evaluate alternatives based on: (i) their best performance among

all the criteria using the maximum operator; (ii) their worst performance among all

the criteria minimum operator; or (iii) their average performance using the arithmetic
mean operator. In this article we will consider a widely used parametrized class of

aggregation functions that includes the above examples as special cases, namely the

Ordered Weighting Averaging (OWA) function introduced by Yager [16].

OWA functions have been used in the setting of group decisions to extend the

concept of consensus from a crisp to a fuzzy perspective, where consensus becomes

a matter of degree [6]. A similar model was extended to work in cases where pref-

erences are expressed in a linguistic form [3]. More recently, OWA functions were

used to aggregate the agreement between pairs of agents and estimate the level of

agreement in larger groups [4].

While maximum, minimum and average offer the right choice in many decision

problems, typically one would like to use an aggregation function resulting in a value

between the minimum and maximum (i.e., an averaging function) that satisfies a set

of predefined criteria. In case of the OWA function, the most widely used character-

izing measure, orness, captures its similarity to the maximum. For a given orness

value, typically, there is not a unique corresponding OWA function, except for the

two extreme cases, i.e. maximum and minimum are the only OWA functions with

orness 1 and 0, respectively. Another widely used characterizing measure is entropy
or dispersion. It measures the uniformity of the weights taking its unique maximum

value in case of the arithmetic mean.

In this chapter, we will look at the relationship of orness and entropy and provide

a visual representation to understand this relationship. Since a typical approach in the

literature for choosing an OWA function is to find the one that maximizes entropy for

a given orness value, an important, but so far in the literature not considered, question

would be to what extent the value of orness determines the value that entropy can

take. As we will see, the interval containing entropy values that can be achieved

by an OWA with a given orness value can vary significantly. Additionally, we will

also look at this orness-entropy relationship for specific families of OWA functions

corresponding to various quantifier guided aggregation procedures.

The rest of the chapter is structured as follows. In Sect. 2, we recall the most

important definitions regarding OWA functions, their characteristic measures and

discuss the related contributions from the literature. Section 3 presents the numeri-

cal experiments focusing on the visual representation of various OWA characteristic

measures. The results are discussed and conclusions are offered in Sect. 4.

2 Preliminaries and Literature Review

In this section the definitions and notation used in later parts of the paper are intro-

duced. We will also summarize contributions from the literature considering differ-

ent problems related to orness and entropy of OWA operators.
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2.1 OWA Operators

One of the most general definitions of an aggregation function requires two basic

properties to be satisfied.

Definition 1 (Aggregation function [9]) A function f ∶ 𝕀n → 𝕀, where 𝕀 is a non-

empty interval of the extended real number system, is an aggregation function of n
arguments if it satisfies the following properties:

1. boundary conditions:

inf
x∈𝕀n

f (x) = inf 𝕀, sup
x∈𝕀n

f (x) = sup 𝕀;

2. monotonicity: f is non-decreasing in each variable.

In most of the applications and a large part of the literature, a specific case of

aggregation functions, namely averaging functions, are used. An aggregation func-

tion, f , is an averaging function if it satisfies the following property:

min(x1,… , xn) ≤ f (x1,… , xn) ≤ max(x1,… , xn) ∀(x1,… , xn) ∈ 𝕀n.

An especially relevant and studied family of aggregation functions is represented

by the Ordered Weighted Averaging (OWA) functions, originally introduced by

Yager [16]. Before the definition, we specify the general concept of a weight vector.

Definition 2 (Weight vector) A real valued vector 𝐰 is a weight vector if and only

if wi ≥ 0 ∀i and
∑n

i=1 wi = 1. We call Wn the set of all the weight vectors of length

n, i.e.

Wn =

{

(w1,… ,wn)
|
|
|
|
wi ≥ 0 ∀i,

n∑

i=1
wi = 1

}

Using an associated weight vector, an OWA function can be defined as follows.

Definition 3 (OWA function [16]) An Ordered Weighted Averaging (OWA) function

is a mapping OWA𝐰 ∶ ℝn → ℝ with an associated weight vector 𝐰, such that

OWA𝐰(x1,… , xn) =
n∑

i=1
wiyi

where yi is the ith largest element of the multiset {x1,… , xn}.

It is clear that the attitudinal character of an OWA function depends on its associ-

ated weight vector 𝐰 = (w1,… ,wn). Some indices have been proposed in the litera-

ture to give a numerical estimation of various characteristics of a weight vector and

the associated OWA operator. The most widely used one, proposed in [16], quantifies

the degree to which the OWA function is similar to the maximum operator.
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Oy = orness(𝐰) = 1
n − 1

n∑

i=1
wi(n − i) (1)

The value of orness(𝐰) is equal to 1 if and only if the OWA function represents

the maximum. Similarly, it is equal to 0, if and only if the OWA collapses to the

minimum. Values between 0 and 1 represent OWA functions which are trade-offs

between maximum and minimum. While the above definition is the most widely

adopted, there are alternative definitions of orness in the literature that can be char-

acterized by different sets of reasonable properties required for a well-defined orness

measure. A novel definition was proposed by Kishor et al. [10] as follows:

Op =
1
2n′

n∑

i=1

(

2n′ + 1 − i −
⌊2i − 1

n

⌋
−
⌊
2n′ − 1

n

⌋ ⌊ i − 1
n′

⌋)

wi, (2)

where n′ =
⌊
n+1
2

⌋
.

The second main characterizing measure of an OWA function is the entropy (or

dispersion) [16], measuring the degree to which the information in the arguments is

taken into consideration during the aggregation process.

Ey = entropy(𝐰) = −
n∑

i=1
wi logwi (3)

The value of entropy(𝐰) characterizes the dispersion of the weights in the same

way entropy is used to estimate the level of uncertainty in a probability distribution. A

different measure of dispersion, introduced by Yager [17], can be defined as follows:

Ep = 1 − max
i

wi. (4)

For both entropy measures, the maximum (minimum) values are attained when all

the weights are equal (one of the weights is equal to 1). Figure 1 depicts the points in

three dimensions corresponding to weights associated to OWA functions with given

Oy and Ey values.

A crucial problem when using OWA functions is to determine the weights to be

used in the aggregation [15]. A widely used procedure is to utilize a linguistic quan-

tifier. While there are different types of quantifiers, the most widely used ones belong

to the family of Regular Increasing Monotone (RIM) quantifiers.

Definition 4 (RIM quantifier [18]) A RIM linguistic quantifier Q is a fuzzy subset

of the real line that satisfies the following properties:

∙ Q(0) = 0 and Q(1) = 1;

∙ Q(x) ≥ Q(y) if x > y.

Using RIM quantifiers, the weight vector associated to the OWA operator can be

defined in the following way:
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(a) An interval for orness: a sample of weight
vectors inW3 with orness between 0.3 and 0.7

(b) An interval for entropy: a sample of
weight vectors in W3 with entropy between
0.95 and 1

Fig. 1 Graphical interpretations of orness and entropy

wi = Q
( i
n

)
− Q

( i − 1
n

)
. (5)

The two most widely used parametric families of RIM quantifiers are the following:

∙ Q1(r) = r𝛼 with 𝛼 ≥ 0;

∙ Q2(r) = 1 − (1 − r)𝛼 with 𝛼 ≥ 0.

The associated weight vectors can be specified as follows:

∙ w1,i =
( i
n

)
𝛼

−
( i − 1

n

)
𝛼

;

∙ w2,i =
(n + 1 − i

n

)
𝛼

−
(n − i

n

)
𝛼

.

Additionally to RIM quantifiers, there exist other classes, namely Regular

Decreasing Monotone (RDM) and Regular UniModal (RUM) quantifiers. In the sub-

sequent analysis, we will utilize the following functions:

∙ Q3(r) = e−𝛼r;
∙ Q4(r) =

2

1 + e−𝜆
(

r
1−r

) − 1.

with the corresponding weight vectors.

2.2 Related Literature

A typical starting point for generating the weights of an OWA operator to be used

in the aggregation process is to specify the required attitudinal character in terms of

the orness value. As we noted before, except for the two extreme cases of orness 0
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and 1, there is no unique weight vector corresponding to a given value in the unit

interval. For this reason, additional properties need to be specified in order to arrive

to a unique weight vector. A widely used approach first proposed in [13] is to find

the weight vector that maximizes entropy for a given orness level, hereafter called

𝛽. This can be obtained by solving the following optimization problem:

maximize
(w1,…,wn)

Ey(𝐰)

subject to Oy(𝐰) = 𝛽

w1 +⋯ + wn = 1
w1,… ,wn ≥ 0 .

(6)

Fullér and Majlender [7] found an analytical solution to the above optimization

problem. Yager [17] considered the same problem with the dispersion measure Ep.

We note here that there are alternative measures for capturing the dispersion of the

weight vector other than the ones used in this article. For example, Majlender [12]

formulated a similar optimization problem with the objective of maximizing Rényi

entropy for a given orness value and derived an analytical solution to the problem.

Additionally to various dispersion measures, other characteristics of the OWA
function have also been used to determine the weights as the solution to an opti-

mization problem similar to the one presented above. Again Fullér and Majlender

[8] derived an analytical solution to the optimization problem that, for a given orness

level, minimizes the variability of the weight vector:

D2(w) = 1
n

n∑

i=1
w2
i −

1
n2

.

Motivated by the previous studies, Wang and Parkan [14] identified the weight

vector minimizing the maximal disparity for a given orness level, where disparity is

defined as

max
i∈{1,2,…,n−1}

|wi − wi+1|. (7)

The disparity model was further investigated and extended by Amin and

Emrouznejad [1, 5]. Furthermore, Liu [11] proved that the optimal solution for

the minimal variability and disparity problem is the maximum spread equidifferent

OWA.

3 Numerical Experiments
In this section we present a visual representation of the relationship between various

characteristic measures of OWA functions. Particularly, we will look at the efficient

frontier of the various optimization problems that have been presented in the liter-

ature to determine weights of OWA functions. We will also look at how different

weights resulting from linguistic quantifiers compare to those optimal frontiers.
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In the experiments, we generated 1,00,000 random weight vectors of order n for

various n values, calculated the corresponding characteristic measures, and created

scatterplots for specific pairs of measures.

3.1 Orness and Entropy

First we look at the relationship between orness Oy and entropy Ey. Figure 2 depicts

the points that represent orness and entropy of the 10,000 randomly generated weight

vectors. As we mentioned before, the optimal frontier from the perspective of the

discussed optimization problem can be analytically identified using the solution

from [7].

Especially in the subfigures with n = 3, 4, it is evident that for each n there are

n low points where the entropy is zero. For instance, with n = 4, these minimums

are represented by the vectors (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0) and (1, 0, 0, 0). Con-

versely, the maximum is reached, in each case, by the vector (1∕n,… , 1∕n). This
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Fig. 2 The relationship between orness and entropy. Each point is vector samples from a uniform

distribution on Wn
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Fig. 3 Comparison of the relationship between various orness and dispersity measures

behaviour can be confirmed for larger n values, in the figures a larger number of

randomly generated weights would be necessary to visualize these minimum points.

Next, we look at the relationship between the two presented orness and entropy

measures as depicted in Fig. 3. The overall structure of the graphs in the solution

space is quite similar, as we always observe the four low points in terms of entropy.

However, we can observe several differences, particularly with respect to the shape

of the efficient frontier. Additionally, the choice of the characteristic measures has

an important effect on how wide the interval of values that the entropy can take for

a given orness level, as it can be for example seen for orness level 0.5 in the figures.

3.2 Linguistic Quantifiers

As presented in the previous sections, the weights of the OWA functions can be

found by means of linguistic quantifiers. Now, by noting that these quantifiers are

parametric we focus on the subset of vectors in Wn which can be obtained through
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Fig. 4 The bright curves represent the sets of weights obtained with Q1, Q2, Q3 and Q4, respec-

tively

the quantifiers. In particular we want to discover how the entropy of these vectors

changes in relation to its orness. We shall consider the four quantifiers introduced in

the previous section and look at the orness and the entropy which can be obtained

using different values of 𝛼 ∈]0,∞[. The results are reported in Fig. 4 and show that in

all cases the obtained vectors are remarkably close to the maximum entropy vectors,

at least for W4. While the weights generated by this procedures are clearly not the

optimal ones derived in [7], the presented figures show that relying on linguistic

quantifiers will result in close to optimal weights in terms of entropy.

3.3 Variability and Disparity

Variance and disparity have been proposed in the literature as indices alternative to

the entropy. The definition of disparity was recalled in (7). In contrast to the previous

problems, in these cases one is interested in the minimal variability and minimal
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Fig. 5 Comparison of the relationship between orness and variance and disparity measures

dispersion OWA functions for a given orness level. Figure 5 depicts the results of

the simulation. The main difference, similarly to the behaviours of various entropy

measures, can be identified in the wider range of possible disparity values for a given

orness level.

4 Discussion and Conclusion

Studying various families of aggregation functions is an important problem from

both the theoretical and the practical standpoints. In this chapter, we have studied

OWA functions, one of the most widely used families of aggregation functions in

the literature and in real life applications. A typical question related the use of OWA
operators is the selection of the aggregation weights. A common strategy is to select

weights based on a predefined value of one or several characterizing measures, such

as orness and entropy. In this chapter, instead of focusing on the approach of deter-

mining weights that maximize or minimize one of the characterizing measures why

keeping another fixed, we offer a visual representation of the problem.

We looked at the relationship of different orness and entropy measures, and addi-

tionally to visualizing the efficient frontier of the typically considered optimization

problems, we depicted the complete objective space. Additionally to the traditional

entropy and orness definitions, we looked at more recent proposals, and the visual

analysis illustrated some differences between the behaviour of the different charac-

teristics. As an interesting finding of the analysis, we found that by using linguistic

quantifiers, the generated weights have entropy value close to the optimal value for

a given orness level.

The presented research is exploratory by nature, as we only present and discuss

visual representation of the relationship between various characteristic measures of

OWA functions. The natural future research direction would be to derive analytical
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formulas for the efficient frontiers in case of different entropy and orness measures,

and also to offer a quantitative estimation on how far the solutions based on linguistic

quantifiers are from the frontier.
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Rank Reversal in the AHP with Consistent
Judgements: A Numerical Study in Single
and Group Decision Making

Michele Fedrizzi, Silvio Giove and Nicolas Predella

Abstract In this paper we study, by means of numerical simulations, the influence

of some relevant factors on the Rank Reversal phenomenon in the Analytic Hierar-

chy Process, AHP. We consider both the case of a single decision maker and the case

of group decision making. The idea is to focus on a condition which preserves Rank

Reversal, RR in the following, and progressively relax it. First, we study how the

estimated probability of RR depends on the distribution of the criteria weights and,

more precisely, on the entropy of this distribution. In fact, it is known that RR does’nt

occur if all the weights are concentrated in a single criterion, i.e. the zero entropy

case. We derive an interesting increasing behavior of the RR estimated probability

as a function of weights entropy. Second, we focus on the aggregation method of

the local weight vectors. Barzilay and Golany proved that the weighted geometric

mean preserves from RR. By using the usual weighted arithmetic mean suggested

in AHP, on the contrary, RR may occur. Therefore, we use the more general aggre-

gation rule based on the weighted power mean, where the weighted geometric mean

and the weighted arithmetic mean are particular cases obtained for the values p → 0
and p = 1 of the power parameter p respectively. By studying the RR probability as

a function of parameter p, we again obtain a monotonic behavior. Finally, we repeat

our study in the case of a group decision making problem and we observe that the

estimated probability of RR decreases by aggregating the DMs’ preferences. This

fact suggests an inverse relationship between consensus and rank reversal. Note that

we assume that all judgements are totally consistent, so that the effect of inconsis-

tency is avoided.
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1 Introduction

Despite its popularity, Saaty’s Analytic Hierarchy Process, AHP in the following, has

been criticized by many authors since its introduction in 1977 [16]. Some researchers

pointed out single drawbacks or weaknesses, whereas other researchers criticized

and rejected the very foundations of the method. Among these criticisms, we men-

tion only few popular ones. The interested reader may refer to [7] and [19] for a more

extended debate. Barzilai [4], as an example, considers the eigenvector method and

the normalization procedure in AHP as mathematical errors. Well-known criticisms

came also from Bana e Costa and Vansnick [3] and concern the meaning of the prior-

ity vector derived from the principal eigenvalue method and the Saaty’s consistency

ratio. Nevertheless, the best known and most cited drawback of AHP is certainly the

rank reversal (RR) phenomenon. Rank reversal is the change of ranking of alterna-

tives as a consequence, for example, of the addition or deletion of an alternative.

This clearly contradicts the principle of the independence of irrelevant alternatives.

Rank reversal in AHP was firstly evidenced in 1983 by Belton and Gear [6]. After

that, numerous paper were published on this subject [5, 10, 15, 20]. Saaty regularly

answered to the criticisms on AHP and, in particular, on RR, arguing on the validity

of his method and on the legitimacy of RR [17]. A survey on this topic can be found

in [13]. Numerous authors argued on the main causes/factors influencing RR, mainly

focusing on the role of vector normalization, aggregation rule and inconsistency. The

aim of this paper is not to enter the debate in favor or against AHP and/or RR. Our

scope is, instead, to contribute to the understanding on how some relevant factors

influence the probability of the RR phenomenon. The paper is organized as follows.

In Sect. 2 we set the necessary notation and definitions in order to specify the frame-

work of pairwise comparison and AHP. In the same section we also define the main

issues on RR. In Sect. 3 we describe the plan and the results of our numerical study,

both in the case of a single decision maker and in the case of group decision making.

Finally, we discuss and comment our results.

2 Preliminaries

2.1 Pairwise Comparisons and AHP

We assume that the reader is familiar with AHP [12, 16, 18], so that we only

briefly recall the main steps of the method. Let us consider a set of n alternatives

X = {x1,… , xn}. We first recall the definition of pairwise comparison matrix, PCM

in the following, which is a positive and reciprocal square matrix 𝐀 of order n
obtained by pairwise comparing the n alternatives. More precisely, it is 𝐀 = (aij)n×n,
with aij > 0, aijaji = 1, ∀i, j, where aij is an estimation of the degree of preference

of xi over xj. Given a PCM, the most relevant task is to derive a weight vector, that

is a vector 𝐰 = (w1,… ,wn), where wj is a numerical value quantifying the priority
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of alternative xj as estimated on the basis of the pairwise comparisons. Vector 𝐰
is defined up to a positive factor. Normalization is often applied to 𝐰, so that the

components sum up to one.

In order to derive the vector 𝐰, Saaty [16] proposes the eigenvector method.

Namely, 𝐰 is the solution of the following equation

𝐀𝐰 = 𝜆max𝐰 . (1)

Note that the maximum eigenvalue of 𝐀, here denoted by 𝜆max, refers to the Perron–

Frobenius theorem. Another popular method to derive 𝐰 = (w1,… ,wn) is the geo-

metric mean method [2, 9], where

wi =

( n∏
j=1

aij

) 1
n

∀i. (2)

Several other methods were proposed for obtaining a weight vector 𝐰 from a PCM

[8], but we do not consider them in this paper. In general, given a PCM, different

methods lead to different vectors 𝐰, but in particular cases the result is the same, as

pointed out below.

Beside reciprocity, which is a property required in the definition of a PCM, consis-
tency is another relevant property. A pairwise comparison matrix is called consistent
if and only if the following condition holds:

aik = aijajk ∀i, j, k. (3)

Property (3) can be considered as a cardinal transitivity condition and means that

preferences are fully coherent. If and only if𝐀 is consistent, then there exists a weight

vector 𝐰 = (w1,… ,wn) such that

aij =
wi

wj
∀i, j. (4)

If 𝐀 is consistent, then the Saaty’s eigenvector method and the geometric mean

method lead to the same weight vector 𝐰.

Having defined a PCM and the corresponding weight vector 𝐰, we can now apply

these basic concepts to a hierarchy, which is the characterizing structure of AHP.

Let us consider a set of m criteria C = {c1,… , cm} and require that the n alterna-

tives x1,… , xn must be evaluated on the basis of all criteria. Similarly to the case of

a single PCM, the aim of AHP is to provide a weight vector 𝐰 = (w1,… ,wn), where

wj a numerical value quantifying the global priority of alternative xj as estimated on

the basis of all the m criteria. For each fixed criterion ck, Saaty proposed to construct

a PCM, say 𝐀k where the n alternatives are pairwise compared on the basis of ck,
k = 1,… ,m. In such a way, m PCMs of order n are obtained. Then, the correspond-

ing ‘local weight vector’, say 𝐰k, is derived for each 𝐀k by using the eigenvector
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Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion 5 

Overall objective  

Alternative 1 Alternative 2 Alternative 3 Alternative 4

Fig. 1 Example of a hierarchy with five criteria and four alternatives

method. Vectors 𝐰k are normalized so that for each vector the sum of the compo-

nents equals one. Finally, by means of the so-called ‘hierarchical composition’, the m
local weight vectors 𝐰1,… ,𝐰m are aggregated in order to obtain the global weight

vector 𝐰. The AHP prescribes that the aggregation of the local weight vectors is

done through the weighted arithmetic mean,

𝐰 = v1𝐰1 +⋯ + vm𝐰m =
m∑
i=1

vi𝐰i , (5)

where v1,… , vm are the weights, or priorities, of the criteria c1,… , cm respectively.

AHP requires that also the weights v1,… , vm are computed as the components of

the maximal eigenvector of the m × m PCM obtained by pairwise comparing the m
criteria. Nevertheless, this is not relevant for our study, so that, in the next section, we

will determine v1,… , vm more directly. In Fig. 1 we give an example of a hierarchy

where the four alternatives constitute the lowest layer and the five criteria the layer

immediately above.

2.2 Rank Reversal

Few years after the introduction of AHP by T. Saaty in 1977 [16], Belton and Gear

proved in 1983 [6] that AHP may suffer of a drawback that was then named Rank

Reversal. They considered an example with three alternatives and three criteria. The

three PCMs where consistent and the ranking of the alternatives were computed by

means of AHP as described in the preceding subsection. Belton and Gear showed
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that, by adding a fourth alternative, the ranking of the original three alternatives

changed even if the preferences among them remained unchanged and consistency

was preserved for the new 4 × 4 PCMs. Other types of RR were studied in the follow-

ing years, evidencing, for example, that the phenomenon may occur also by replacing

an alternative with a similar one. Other authors evidenced the role of the weight vec-

tors normalization. It was also proved that RR is avoided by aggregating the local

weight vectors using the weighted geometric mean instead of the weighted arith-

metic meas prescribed by the original AHP. Moreover, it was proved by Saaty itself

that RR may not occur in the case of a single PCM, that is for a single criterion,

provided that the PCM is consistent. On the contrary, if consistency assumption is

removed, RR may occur even for a single PCM. In the next section, we describe

our numerical simulations in the case of multiple criteria and consistent PCMs. Our

study is aimed at investigating the influence on RR of some relevant factors, as the

aggregation method for local weight vectors and the entropy of the criteria weight

distribution.

3 Numerical Study on Rank Reversal

3.1 The Effect of Criteria Weights Distribution on Rank
Reversal

In this subsection, we study how the distribution of the normalized criteria weights

(v1,… , vm),
∑m

i=1 vi = 1 can influence the probability of RR. We start by observ-

ing that if m − 1 weights are null, being 1 the remaining weight, as for exam-

ple in (v1,… , vm) = (1, 0,… , 0), then RR doesn’t occur. The simple reason is that

this case leads back to the single criterion consistent case. As mentioned above,

Saaty proved that this latter case is RR-free. By drifting away from this polarized

case, RR can arise. In particular, our assumption was to consider the uniform case

(v1,… , vm) = ( 1
m
,

1
m
,… ,

1
m
) as an ‘opposite’ case with respect to the previous polar-

ized one. In our opinion, the most suitable quantity to describe the range between

these two extreme cases is the entropy of (v1,… , vm),

H(v1,… , vm) = −
m∑
i=1

vi ln(vi) . (6)

Note that entropy of (v1,… , vm) measures the ‘closeness’ to the uniform case

( 1
m
,

1
m
,… ,

1
m
). In fact, the minimum value of entropy (6) is reached in the fully polar-

ized case, for example, H(1, 0,… , 0) = 0, whereas the maximum value of entropy

(6) is reached in the case of uniformly distributed weights, H( 1
m
,

1
m
,… ,

1
m
) = lnm.

We assume that, in the case of vi = 0, the value of the corresponding term in (6) is

taken to be 0, according to the limit limvi→0+
(
vi ln(vi)

)
= 0. We performed numerous
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simulations with different values of the number of alternatives and criteria. We antic-

ipate that, for the sake of simplicity, Fig. 2a reports a single example, corresponding

to n = 4 alternatives and m = 5 criteria. In the following, we briefly describe the

plan of our numerical study.

1. We construct m consistent PCMs 𝐀 = (aij)n×n by setting aij =
wi

wj
, where (w1,… ,

wn) is a randomly generated vector by uniformly sampling in the set {1, 2, 3, 4, 5,
6, 7, 8, 9}.

2. We associate to each PCM constructed in the previous point the corresponding

normalized weight vector. Given that all the PCMs are consistent, it is clearly

irrelevant wether to use the eigenvector method or the geometric mean method.

Moreover, the obtained normalized vector will be proportional to that used for

constructing the PCM. At this point, we have the m normalized local weight vec-

tors 𝐰1,… ,𝐰m.

3. Them local weight vectors𝐰1,… ,𝐰m are aggregated in order to obtain the global

weight vector 𝐰. The aggregation is performed using the standard weighted arith-

metic mean (5) and weights v1,… , vm of the criteria are randomly generated.

4. For each one of the m consistent PCMs 𝐀 = (aij)n×n constructed at the point 1, we

remove the last row and the last column, thus obtaining a new set of m consistent

PCMs of order n − 1.

5. We repeat on the new set of m consistent PCMs of order n − 1 exactly the same

computations as described at points 2 and 3 with the same weights v1,… , vm
of the criteria. So, we obtain the corresponding global weight vector with n − 1
components.

6. We compare, for each instance of m consistent PCMs, the rank obtained in the

n alternatives case with that obtained in the (n − 1) alternatives case, in order to

verify whether the RR occurred.

We repeat 100.000 times the points from 1 to 6, thus obtaining the output data set

of our study. We can now better describe the graphical results shown in Fig. 2a,

where the case with 4 alternatives and 5 criteria is reported. Each point in the plot

is determined as follows. We report on the horizontal axis the entropy values, rang-

ing from 0 to its maximum value lnm = ln 5. This interval is then partitioned in k
equally spaced subintervals. For each subinterval, we consider all the weight vectors

(v1, v2, v3, v4, v5) with entropy value belonging to this subinterval. Correspondingly,

we compute the percentage of occurrence of RR for all 4 × 4 PCMs, constructed as

described above, provided that the aggregation is made using the criteria weight vec-

tors with entropy values belonging to the fixed subinterval. Finally, this percentage

is reported on the vertical axis, thus obtaining the second coordinate of the point.

The first coordinate of the point is the center of the subinterval. As synthesized

in Fig. 2a, it is apparent that the probability of RR increases when the entropy of

(v1, v2, v3, v4, v5) increases, thus evidencing the role of criteria weights distribution

on RR. Figure 2b reports the outcome of a study which is very similar to the one

reported in Fig. 2a. The only difference is that, instead of measuring the closeness of

a criteria weight vector (v1, v2, v3, v4, v5) to the uniform case ( 1
5
,

1
5
,

1
5
,

1
5
,

1
5
) with the
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(a) Effect of criteria weights entropy.

(b) Effect of criteria weights standard deviation.
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Fig. 2 Estimated probability of rank reversal for a single DM

entropy of (v1, v2, v3, v4, v5), we use its standard deviation. Note that, actually, the

standard deviation measures the distance from ( 1
5
,

1
5
,

1
5
,

1
5
,

1
5
), rather than the close-

ness. As pointed out above, the interpretation of Fig. 2a is straightforward. The per-

centage of cases in which RR occurred increases when the entropy (6) increases.
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In the case of maximum entropy, i.e. H(v1, v2, v3, v4, v5) = H( 1
5
,

1
5
,

1
5
,

1
5
,

1
5
) = ln 5 ≈

1.6, we found that RR occurred approximately in 23% of cases. Figure 2b represents

the same outcome as in Fig. 2a, but referring to the standard deviation of criteria

weights. Coherently with the outcome in Figs. 2a, 2b shows that the percentage of

cases in which RR occurred decreases when the standard deviation increases.

3.2 The Effect of Aggregation Methods on Rank Reversal

Let us consider again the question of the aggregation of the local weight vectors

𝐰1,… ,𝐰m. As it is known, Saaty’s AHP states that the aggregation is made using the

weighted arithmetic mean (5). On the other hand, Barzilai and Golany [5] proposed

to use the weighted geometric mean,

𝐰 =
m∏
i=1

𝐰vi
i . (7)

Note that the exponents vi in (7) act componentwise. This means that components

wj of vector 𝐰 are computed as

wj =
m∏
i=1

(𝐰i)
vi
j . (8)

Barzilai and Golany proved that if the weighted geometric mean aggregation (7) is

applied, RR cannot occur, thus evidencing that the weighted arithmetic mean can

be considered as a relevant factor determining RR. In our study, we consider the

weighted arithmetic mean and the weighted geometric mean as particular cases of

the weighted power mean,

𝐰 =

( m∑
i=1

vi(𝐰i)p
) 1

p

, (9)

where, again, the exponent p in (9) acts componentwise.

More precisely, it is known that the weighted arithmetic mean (5) is obtained

from (9) for p = 1 and the weighted geometric mean (7) is obtained from (9) for

p → 0. Justified by this latter result, definition (9) is often completed assuming that

for p = 0 the weighted power mean is defined to be the weighted geometric mean.

We assume this extended definition in the following. Clearly, each value of p in

[0, 1] is associated with a different aggregation method which acts between the two

extreme cases of the weighted geometric and arithmetic mean. By means of numer-

ical simulations, we study how the relative frequency of RR varies by moving from

the RR-free case of the geometric mean aggregation, corresponding to p = 0, to the
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weighted arithmetic mean case, corresponding to p = 1. As it might be expected, the

outcome is a monotonically increasing behavior, as showed in Fig. 3. Similarly to the

study described in the Sect. 3.1, we performed numerous simulations with different

values of the number of alternatives and criteria but, in Fig. 3, for the sake of sim-

plicity, we report a single example, corresponding to n = 4 alternatives and m = 5
criteria. The following description of the plan of our numerical study is quite similar

to the one described in the previous subsection, as it differs only for what concerns

the aggregation method at point 3.

1. We construct m consistent PCMs 𝐀 = (aij)n×n by setting aij =
wi

wj
, where (w1,… ,

wn) is a randomly generated vector by uniformly sampling in the set {1, 2, 3, 4, 5,
6, 7, 8, 9}.

2. We associate to each PCM constructed in the previous point the corresponding

normalized weight vector. Given that all the PCMs are consistent, it is clearly

irrelevant whether to use the eigenvector method or the geometric mean method.

Moreover, the obtained normalized vector will be proportional to that used for

constructing the PCM. At this point, we have the m normalized local weight vec-

tors 𝐰1,… ,𝐰m.

3. Them local weight vectors𝐰1,… ,𝐰m are aggregated in order to obtain the global

weight vector 𝐰. The weights v1,… , vm of the criteria are randomly generated

and the aggregation is performed using the weighted power mean (9) with 100

different values of p uniformly spaced in [0, 1].
4. For each one of the m consistent PCMs 𝐀 = (aij)n×n constructed at the point 1, we

remove the last row and the last column, thus obtaining a new set of m consistent

PCMs of order n − 1.

5. We repeat on the new set of m consistent PCMs of order n − 1 exactly the same

computations as described at points 2 and 3 with the same weights v1,… , vm of

the criteria and the same 100 different values of p used in the n × n case.

6. We compare, for each instance, the rank obtained in the n × n case with that

obtained in the (n − 1) × (n − 1) case, in order to verify whether the RR occurred.

Let us describe how the plot in Fig. 3 is obtained. Each one of the 100 points in

the plot corresponds to a fixed value of p on the horizontal axis. The second coordi-

nate of the point is obtained by reporting on the vertical axis the relative frequency

of RR, as computed by performing the numerical simulations described above. This

relative frequency was computed on 5.000 different instances of five 4 × 4 PCMs.

We use the same set of instances for generating all points in the plot, using different

values of p in the aggregation method (9). As synthesized in Fig. 3, it is apparent that

the probability of RR increases with p, thus evidencing how the RR is influenced by

the aggregation method (9). For example, it can be noted that points corresponding

to values of p close to zero represent aggregation methods close to weighted geo-

metric mean (7). In these cases, RR occurs very rarely. Although we reported only

few examples in Figs. 2 and 3, we can send the interested readers other outcomes

corresponding to different values of n and m.
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Fig. 3 Estimated probability of rank reversal as influenced by the aggregation method in the case

of a single DM

3.3 Group AHP and Rank Reversal

As mentioned in the introduction, we extended our study to the case of a group

of Decision Makers, DMs in the following. We assume that N DMs express their

preferences on n alternatives {x1,… , xn} through AHP exactly as described in the

previous subsections. Then, m PCMs of order n are associated to each DM, cor-

responding to the m criteria. We denote by 𝐀l
k the PCM of DM l referring to cri-

terion k, for l = 1,… ,N and k = 1,… ,m. In order to derive a final weight vector

𝐰 = (w1,… ,wn) quantifying the group priorities on the n alternatives, one has to

aggregate the data provided by the N DMs. As it is known, there are two main aggre-

gation procedures within AHP, i.e. the aggregation of individual priorities (AIP) and

the aggregation of individual judgments (AIJ). In AIP procedure, each DM derives

independently his/her individual priorities. Then, the N priority vectors are aggre-

gated to a group priority vector using either a (weighted) arithmetic (WAMM) or a

(weighted) geometric mean method. Conversely, in AIJ procedure, the group PCMs

are first determined and the group priority vector is computer after that [11, 21].

In the of AIJ procedure, each entry of the group PCMs 𝐀G
k is obtained using the

geometric mean method on the corresponding entries of the PCMs of all DMs,

(
𝐀G

k
)
ij =

[ N∏
l=1

(
𝐀l

k
)
ij

] 1
N

k = 1,… ,m i, j = 1,… , n . (10)
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(a) Effect of criteria weights entropy.

(b) Effect of criteria weights standard deviation.

R
el

at
iv

e 
fr

eq
ue

nc
y 

of
 r

an
k 

re
ve

rs
al

R
el

at
iv

e 
fr

eq
ue

nc
y 

of
 r

an
k 

re
ve

rs
al

Fig. 4 Estimated probability of rank reversal in a group of 5 DMs

As pointed out by Aczél and Saaty [1], the geometric mean method must be used

in AIJ procedure in order to preserve the reciprocity of the group PCMs (10). In the

following, we use AIJ procedure, since we consider it as more relevant for our study.

The interested reader can refer to [14] for an updated review on group aggregation

techniques for AHP.
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Fig. 5 Estimated probability of group rank reversal as influenced by the aggregation method. Case

with 4 DMs

Our numerical study on group RR is then performed as follows.

1. The number N of DMs constituting the group is fixed and the PCMs of the N
DMs are constructed as described in Sect. 3.1.

2. The PCMs of the N DMs are aggregated using componentwise the geometric

mean method, as in (10), in order to form the the group PCMs.

3. The same study and graphical representation described in Sect. 3.1 for a single

DM is performed for the group. An illustrative example of the obtained outcomes

is reported in Fig. 4, corresponding to the case with N = 5.

4. The study described in the preceding points is performed on the aggregation

method too, thus extending to the group case the investigation carried out in

Sect. 3.2. Again, we report an illustrative example with N = 4 in Fig. 5.

Similarly to the study described in Sects. 3.1 and 3.2, we considered different values

of n, m and N. For the sake of simplicity, we reported only the illustrative examples

in Fig. 4 and in Fig. 5. A first remark is that the monotone behavior of the estimated

RR probability is confirmed for the group case too. Although Fig. 4 resembles Fig. 2,

it can be observed that the values reported in the latter are approximately double that

the values in the former. For different values of the parameters n, m and N we obtain

results that are coherent with this last observation. We can therefore conclude that

outcomes of our simulations support the conjecture that RR probability decreases

when the number of experts in a group increases. The impact of the number of experts

on rank reversal was studied from a different point of view in [10]. Comparison

between Figs. 3 and 5 leads to very similar conclusions for the aggregation method

too.
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Abstract Banks are required by the Basel II Accord to report on their operational
risks, including reporting an estimate for the size of possible one-off negative
operational events. The typical way to produce these estimates is to use a quanti-
tative value at risk methodology that is based on a limited amount of data, but also
the use of qualitative, expert estimate-based methodologies is sanctioned by the
regulations. The final estimations are most often reached by fusing the input from
multiple experts. In this chapter we propose and introduce a new lossless fuzzy
weighted averaging method and show how and why it is a usable tool for the
aggregation of expert estimates in the context of estimating the unlikely one-off
operational losses originating from single risks. The method is simple to use,
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1 Introduction

Under current regulations, set by Basel II [2, 3], banks are required to set aside
capital to ensure solvency to account for risk events related to credit, market and
operational risk. Currently, our client, “the Bank”, uses two methods to quantify
operational risk, as part of the Basel II guideline: through a quantitative statistical
approach, and a qualitative scenario analysis approach. In the statistical approach,
losses are assumed to follow a statistical distribution, and the Value-at-Risk VaR
measure is calculated based on the distribution tail. This value can be difficult to
quantify given that typically, a limited amount of internal operational risk incident
data is available. In the scenario analysis approach, subject-matter experts (SMEs)
review historical operational risk incidents and corroborate on potential future
losses. Our objective is to create a methodology to aggregate expert opinions within
the scenario analysis approach, utilizing fuzzy set theory, to estimate the expected
loss from a single severe and infrequent event.

The Basel II framework defines operational risk as “the risk of loss resulting
from inadequate or failed internal processes, people and systems or from external
events”. The framework outlines three methods for calculating operational risk,
namely (i) the Basic Indicator Approach, (ii) the Standard Approach, and (iii) the
Advanced Measurement Approach (AMA), each requiring a greater level of
sophistication. Under the AMA [4], besides a quantitative analysis, banks must also
use scenario analysis based on expert opinion, to evaluate exposure to high-severity
events. The reason for the qualitative scenario analysis is to augment quantitative
analyses, which typically lack sufficient data to provide dependable results.

A number of authors have highlighted the challenges of utilizing internal/
external data to quantify operational loss, and recommend the use of expert judg-
ment based scenario analysis to augment the analysis see, e.g., [1, 10, 15, 16]. There
are a few papers which attempt to formalize the scenario analysis approach based
on qualitative subjective input from subject matter experts in the operational risk
context. Dutta and Babbel [10] make the claim that there has been little focus on the
development of scenario-based methodology for the operational risk measurement,
citing one exception, namely [13], where a Baysian inference method is proposed to
incorporate expert opinion with available data. Arguably, the approach used by
Lambrigger et al. is mathematically complex to the point that managers may not
accept the methodology due to a lack of familiarity with the formulation.

Stepanek et al. [17] utilize a semantic linguistic approach to rank risk scenarios
within the insurance industry. The authors make a strong case for their method’s
effectiveness in ranking the scenarios, but a monetary quantification of the scenarios
is not provided. Amin [1] presents a list of methodological challenges associated
with quantifying operational risk based on historical data. He proposes an analytical
approach for quantifying operational risk based on expert judgment by utilizing a
survey to quantify information on the quality of risk management, the business
environment, and the effectiveness of internal control factors using a four point
scale. Amin uses a uniform distribution to estimate the potential financial impact
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associated with the four point scale. Through Monte Carlo simulation, VaR esti-
mates are obtained. According to our experience, we feel that SMEs are more
inclined to provide low, medium, and high estimated losses. From previous liter-
ature on profitability analysis [7] and strategic project selection [8] we know that
such estimations can be used in formulating fuzzy numbers from these estimates
that represent, in this context, the losses. We choose to utilize fuzzy numbers and
fuzzy set theory as the basis for our work.

Fuzzy set theory provides a methodology to utilize linguistic information to
estimate numerical outcomes [18], and thus, there appears to be a natural fit for
fuzzy logic to be utilized in the scenario analysis of the AMA. Furthermore, we find
that fuzzy representations of information are easy to understand for managers, when
presented in a graphical form and require no simulation. According to Reveiz and
León Rincon [14] while there are several studies that support the use of fuzzy logic
in operational risk management, there is very little literature on the application of
the fuzzy models in modeling operational risk.

Previously in the academic literature the use of fuzzy methods in capturing
one-off events in the banking context is scarce, however, a contribution by Durfee
and Tselykh [9] provides one such example. Their method is based on summing up
fuzzy numbers originating from expert estimates of different operational risks in
order to arrive at a quantification of the total operational risk. This approach is
different from the one that we take in this chapter, as we consider the estimation of
one such risk. Outside of banking, operational risks have been previously quantified
by utilizing fuzzy numbers in, e.g., the telecom business [6]. It is rather clear that
there is a lot of room for new methods and for research on using fuzzy modeling in
framing operational risks generally, and in the banking context specifically.

An important issue that is connected to risk management and to estimation of
losses, and particularly important in the banking risk estimation context presented
here, is the ability to aggregate information contained in the estimates of multiple
SMEs in a way that does not lose information contained in these estimates. This
observation is not a trivial one, as commonly used aggregation methods such as the
weighted average and the fuzzy weighted average may lose information about the
estimated minima and maxima in the aggregation process that are important in
determining the expected losses. For this reason, in this chapter we present a new
lossless fuzzy weighted averaging (LFWA) method that is designed to overcome
the problem of information loss that is connected to the use of fuzzy weighted
averaging.

We illustrate the use of the new method in the banking context with a situation
where multiple subject matter experts are asked to estimate the size of a single
one-off risk with three scenarios. After creating triangular fuzzy loss estimates from
these scenarios they are aggregated to yield an overall loss estimate. For this
aggregation we use the fuzzy weighted average and the proposed lossless fuzzy
weighted average method and study the difference between the results. We show
that the way the aggregation is done has a remarkable effect on the result, which
indicates that there are “gains” to be made by introducing smarter aggregation
methods in this context.
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This chapter continues with an introduction of the mathematical background
needed and then with the presentation of the new proposed lossless fuzzy weighted
averaging method. The use of the method in the context of banking is illustrated
numerically and the chapter is closed with some discussion and conclusions.

2 Preliminaries

In this section we briefly go through the mathematical background starting from the
definition of a fuzzy set used in this chapter, the basic mathematical operations on
fuzzy sets, and then go into how we present a triangular fuzzy number.

Definition 1 Let X be an nonempty set (a universe of discourse). A fuzzy set A on
X is defined by a mapping: μA:X→ 0, 1½ �, where μA is called a membership function
of A. The set of all fuzzy sets on X is denoted by F Xð Þ. From the membership
function, instead of μA xð Þ, often simply A xð Þ is used, see, e.g., [12].

Some properties of fuzzy sets that are required later are given in Definition 2.

Definition 2 Let A∈F Xð Þ, then the core of A is a crisp set
core Að Þ= x∈XjA xð Þ=1f g the support of A is crisp set Supp Að Þ= x∈X A xð Þj ⟩0f g.

Let Supp Að Þ= a, bð Þ then cl Supp Að Þð Þ= a, b½ �.
In the proposed method we consider only fuzzy numbers of the triangular type

that are of the form given in Definition 3.

Definition 3 A triangular fuzzy number A can be defined by a triplet
A= a1, a2, a3ð Þ. The membership function A xð Þ is defined as [11]:

AðxÞ=
x− a1
a2 − a1

, a1 ≤ x≤ a2
x− a3
a2 − a3

, a2 ≤ x≤ a3
0, otherwise

8
<

:
ð1Þ

For arithmetic operations for triangular fuzzy numbers we refer to [11].
One commonly used way to aggregate fuzzy numbers is by computing their

weighted average. This can be done, for example, by using the methodology
described in Definition 4.

Definition 4 Let U be the set of fuzzy numbers. A Fuzzy Weighted Averaging
(FWA) operator of dimension n is a mapping FWA: Un → U that has an associated
weighting vector W, of dimension n, such that ∑n

i=1 wi =1 and wi ∈ 0, 1½ �, then:

FWAðA1, . . . , AnÞ= ∑
n

i=1
wiAi ð2Þ

where (A1, …, An), are now fuzzy triangular numbers of the form given in Defi-
nition 3.
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The FWA and other fuzzy weighted aggregation operators that are based on the
FWA are often applied, for example, in connection with cases where one needs to
aggregate the evaluations of many decision makers, see, for example, [5, 8] for
more discussion about fuzzy weighted averaging operators. The advantage of the
FWA is that it is simple to understand and easy to use.

When one takes a fuzzy weighted average from n fuzzy numbers provided
typically by experts, an aspect that can in some situations prove to be problematic is
that the aggregation procedure causes one to lose a part of the original information
provided.

Say, for example that one has triangular fuzzy evaluations (A) from three
experts: A1 = 2, 4, 10ð Þ, A2 = 3, 4, 6ð Þ and A3 = 1, 3, 4ð Þ, and if these evaluations are
assumed to carry equal weights, then the fuzzy weighted average will be
Aave = 2+3+1

3 , 4+ 4+ 3
3 , 10+ 6+ 4

3

� �
= 2, 3.67, 6.67ð Þ.

The aggregation procedure, as noted above, faces the problem that information
regarding the full range of the expert identified possible states of the world may be
lost. In the above example, expert A3 provided the estimate of 1 for the minimum
possible outcome, in other words a possible by the expert identified “state of the
world” is 1, however, this value is not included in the outcome of the fuzzy
weighted average resulting in a loss of information provided by expert evaluation.

If the example presented above were a risk management situation, such as one
found in the banks that are the context of this chapter, then the lowest identified
possible outcome, certainly relevant to the risk profile, would be omitted. It is clear
that such loss of relevant information is not good for decision-making. In fact, when
experts with different experience are used, they may have different information that
may not be optimally aggregated by FWA and methods that are derivatives of
FWA, because of this observed possible loss of information.

To avoid this loss of information we propose, as an alternative, a lossless new
way of aggregating expert information into a fuzzy number that preserves the
information about the managerially identified estimated possible minimum and
maximum values. If this kind of a new method is used as the basis of calculating a
single number representation for the evaluations of the group of experts involved, it
seems to have a different “attitude”, than using FWA for the same purpose, because
it will not lose the estimated extreme values.

3 The Proposed New Lossless Fuzzy Weighted Average
and Computation of Single Number Consensus

The new proposed method is based on the idea that the lossless fuzzy weighted
average (LFWA) is constructed by calculating the “contribution” from each fuzzy
number Ai that contributes to the LFWA, for each possible point xj of the LFWA in
a way that individual contributing weights wi are provided for each contributing
fuzzy number. The procedure is described as follows:
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First, n fuzzy numbers, where n is the number of decision makers giving the
aggregated estimates, are typically elicited.

Second, the decision makers evaluate credibility scores (CS) for each fuzzy
number used in the creation of the LFWA. These credibility scores are then
transformed into individual weights for each fuzzy number, by the following
formula:

wi =
CSi

∑n
i=1 CSi

ð3Þ

Third, with n fuzzy numbers and n weights, an average for each point xj of the
resulting LFWA is calculated. This is done by computing the weighted average Ac

from n membership values of the contributing fuzzy numbers for each particular
point of the LFWA. This is formulated as:

Ac xj
� �

= ∑
n

i=1
wiAi xj

� � ð4Þ

To set the universe or range, for which this procedure is applied, an interval,
where non-zero averages are reached is defined. This is done by taking the union of
the fuzzy numbers contributing to the LFWA and by computing the support area of
this union:

X = cl supp A1 ∪ A2 ∪⋯ ∪ Anð Þð Þ= x1, x2½ � ð5Þ

where supp Að Þ= x∈X A xð Þj >0f g, used union is the standard max operator. With
the closure used denoting that the support is bounded and leads to a closed interval
x1, x2½ �. This way we, for example, get X = 1, 10½ � for the previously presented
example and the information from both, the lowest and the highest expert estimates
is included.

Fourth, the constructed LFWA or Ac is used as the basis for computing an
expected value that can be also interpreted as a consensus estimate of the evalua-
tions from the involved experts. For the purpose of deriving a single number
expected value we use the center of gravity (COG):

EX Acð Þ= ∫ x2
x1
xAc xð Þdx

∫ x2
x1
Ac xð Þdx . ð6Þ

The resulting expected value (consensus estimate) is a representation that con-
siders the original extremes of the expert estimates, which is an important issue in
terms of the applicability of such representations in risk management (or for other
purposes), where it is paramount not to exclude the extreme values.
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4 Case: Estimating One-Off Operational Loss Events
by Using the LFWA

The case presented here is based on a realistic situation of an international bank that
must annually report the risks of one-off operational losses to the regulators. The
bank has decided to use multiple-expert evaluation in order to estimate the size of
possible one-off operational loss events and for this reason needs a method that will
not lose relevant information that is coming from the experts and that pertains to the
minimum and the maximum possible sizes of the said one-off operational losses.

In Table 1 we can find estimates of three scenarios that have been evaluated for
minimum possible (low), expected and maximum possible (high) losses. It is
simply assumed that the expected loss fully belongs to the set of possible outcomes
and that the minimum possible and the maximum possible losses belong to the set
of possible outcomes with a membership degree that is limited to zero; this is
similar to what is presented in [7].

Also, a credibility score for each expert opinion has been estimated. The cred-
ibility score can be understood as the credibility of the expert giving the evaluation,
e.g., such that senior experts or risk specialists get a higher credibility score, while
junior experts get a lower score. The credibility scores are transformed into nor-
malized (within the unit interval) weights resulting in a weighting vector
= 0.2857, 0.5714, 0.1429ð Þ, also visible in Table 1.

The commonly used way to aggregate the information would be to use the fuzzy
weighted average [2], the result of which is for this information would be
Aave = 27.14, 40, 67.14ð Þ. The resulting triangular fuzzy number is provided in
Fig. 1.

Calculation of a single expected value with the COG from the result of the fuzzy
weighted average of the expert estimates with [6] gives us EX Aaveð Þ=44.76.

This result has the observed and visible flaw of disregarding the identified
minimum and maximum possible values of the losses and for this reason the bank
wants to use the proposed lossless fuzzy weighted average method for determi-
nation of a single one-off operational loss estimate.

This can be done by using the estimated scenarios represented as fuzzy numbers
A1 = 20, 30, 100ð Þ, A2 = 35, 50, 60ð Þ, and A3 = 10, 20, 30ð Þ and the weight vector of
the normalized credibility scores W = 0.2857, 0.5714, 0.1429ð Þ by computing the

Table 1 Expert estimates, credibility scores, and normalized weights for the three estimates

Expert Low estimate
($MM)

Expected loss
($MM)

High estimate
($MM)

Credibility
score

Normalized
weight

1 20 30 100 2 2
2+4+1 = 0.2857

2 35 50 60 4 4
2+4+1 = 0.5714

3 10 20 30 1 1
2+4+1 = 0.1429
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consensus for each individual point xj, by using the estimated scenarios and the
credibility scores as described above in [4].

The resulting fuzzy number Ac from using the lossless fuzzy weighted averaging
in aggregating the expert given scenarios can be seen in Fig. 2.

Fig. 1 The fuzzy number resulting from using the FWA to aggregate the scenarios

Fig. 2 The fuzzy number Ac resulting from using LFWA to aggregate the scenarios
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When a single expected value representing the fuzzy number Ac is calculated by
using [6] we get EX Acð Þ=47.26. This value is remarkably different from EX Aaveð Þ.
The difference of this magnitude put in the context of banking is significant and
reflects the importance of having a lossless aggregation method available in
aggregating SME estimates in this context.

5 Conclusions

In this chapter we have discussed the evaluation and estimation of possible one-off
operational losses in the banking context, a task that is required from banking
institutions and based on the Basel II framework. We have learned that this
requirement of estimation requirement can be partially fulfilled by using
subject-matter expert evaluation that can in turn be transferred into fuzzy number
loss estimates. Typically multiple experts are used in creating the overall estimate of
these losses, which in practice means that there is a need to aggregate the estimates.

In the framework of risk management that we are discussing here in the banking
context, it is important that the information elicited from the experts is aggregated
in a way that the extreme (minimum and maximum) situations that are deemed
possible by the experts are not lost in the aggregation process. This means that
commonly used aggregation methods that are based on the procedure used in the
fuzzy weighted averaging are not a good choice in this context as the process may
lose the information about the estimated minima and the maxima. It has been for
this reason that we have introduced a new lossless fuzzy weighted averaging
method that is able to fuse the information contained in the multiple estimates
without loss and is thus better for the purposes of the overall estimation of possible
one-off operational losses in the banking context.

The use of the new method was illustrated numerically in the banking context
and the gained results show that the difference to using the fuzzy weighted aver-
aging are remarkable and important from the point of view of operational risk
estimation in this context. The method proposed is generally usable, intuitively
understandable and the aggregation result can be visually presented.

There are many interesting future research directions opened up by this research
such as the possible extensions of the new lossless fuzzy weighted averaging
method and utilizing the method in framing the evaluation of multiple risks
simultaneously in the context of one-off operational loss estimation in the banking
business.
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Fuzzy Signature Based Methods
for Modelling the Structural Condition
of Residential Buildings

Ádám Bukovics, István Á. Harmati and László T. Kóczy

Abstract Conservation, extension or renovation of residential buildings is a task
that requires intensive attention, where it must be ensured that design and con-
struction works are carried out in proper quality. Priority is given to the proper use
of the available financial resources. Incorrect assessment of renovation or recon-
struction needs might cause considerable financial loss without implementing
necessary interventions (which could eliminate eventual deteriorations, or hinder
their reoccurrence).

1 Introduction

Conservation, extension or renovation of residential buildings is a task that requires
intensive attention, where it must be ensured that design and construction works are
carried out in proper quality. Priority is given to the proper use of the available
financial resources. Incorrect assessment of renovation or reconstruction needs
might cause considerable financial loss without implementing necessary interven-
tions (which could eliminate eventual deteriorations, or hinder their reoccurrence).
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In this chapter through the survey of a real stock of buildings it will be intro-
duced what kind of examinations and researches precede the preparation of a
decision support and ranking method, related to the renovation (or other utilization)
of residential buildings, and what factors influence the reliability thereof. Thereafter
three fuzzy signature based methods are introduced shortly which—in different
depth—are suitable for determining the condition of a bigger stock of buildings and
for ranking them. These methods are suitable for aggregate handling of expert
evaluations of different detail and depth. Finally the sensitivity analysis of the
method will also be introduced.

2 Characteristic of Status Assessments

2.1 Role of Building Diagnostics and Building Pathology
in Status Assessments

In Hungary, and in many other historical countries of the world buildings and
engineering constructions provide a significant part of the national property.
Hospitals, schools, residential buildings, bridges, roads, and many other construc-
tions could be listed here, where conscious protection and maintenance is in the
public interest.

Construction pathology analyses the processes of deteriorations in building
structures, and reveals the reasons and consequences of these processes. Building
diagnostics is a process of determining the condition of buildings and rate of defects
in buildings. These days there is a tendency to recognise the significance of both,
since a considerable part of buildings is in very bad condition, and this professional
renovation is inevitable. It is enough to think of the stock of rented flats of the central
districts of Budapest (the capital of Hungary), where the systematic renovation of
more than 100 years old buildings cannot be further postponed for a long time.

The significance of building pathology is appreciated these days. Many inter-
national organisations and experts are involved in the study of the building defects
and the reasons thereof, and are documenting the obtained results and details in a
professional manner.

It often occurs that a bigger stock of buildings is examined at the same time,
where advantage is that lots of data are available for drawing more precise
conclusions.

Often such examinations were initiated by the owner or the building maintainer,
because many defects can be avoided with the help of experience gained in the
course of examinations, thereby making renewal or construction works more
cost-effective.
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2.2 Uncertainties in the Status Assessment

In the next the causes of uncertainties and inaccuracy are introduced which occur
while preparing the expert reports.

It has an influence on the correctness of the evaluation of the condition how
detailed assessment of the given building element has been completed. The quality
of building structures and building materials cannot be clearly identified in case of
covered structural elements. Sometimes it is even difficult to identify the structural
systems themselves.

The hidden structural defects, which can be discovered only by using destructive
examination is hindering an accurate condition assessment. Usually there is no sign
of such defects, and the defect is noticed only when the structure is damaged.

In most cases when examining an inhabited building no destruction check can be
carried out. So it is not possible (or only possible to a restricted extent) to complete
laboratory investigations either. In such a case material quality and the properties,
and often the structural systems themselves can be determined by estimation only.
In this situation the expert can rely on building diagnostics by visual check only.

When preparing an expert report it is not sure whether two well prepared experts
would give the same evaluation of the condition of building structures. Professional
experience and skill of the experts completing the status evaluation analysis may be
different to a significant extent, so the condition of the examined building struc-
tures, defined by certain experts, may include significant inaccuracy.

There are construction materials which were accepted and prevailing at the time
of the construction of the residential building but later adverse features were
detected and so these are not used nowadays. These construction materials are
unreliable, often dangerous. Usually it is necessary to replace the structure, or at
least these are taken into consideration as a negative feature when qualifying the
structure, even in the case when seemingly the structure is in good condition as a
whole. Bauxite concrete and slag concrete are the most well-known construction
materials of this type.

It may be of a help with carrying out the work, if the original design docu-
mentation of the building or a part of it is still available, or the discovered con-
ditions have been documented during a later renovation or assessment. In case of
residential buildings constructed at the end of the 19th century and the beginning of
the 20th century usually no original design documentations are any more available,
partly due to the sad historical events of the 20th century. As a consequence of the
two world-wars, the Hungarian revolution in 1956, and also as a result of the
closing down the big planning companies at the beginning of the 1990s—including
the liquidation of the archives of architectural and structural plans, the design
documentations of lots of residential buildings disappeared or were destroyed.

All factors, influencing the evaluation of the building structure are included,
which influence the quality of the structure and at the same time make uncertain the
expert evaluation.
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Expert uncertainties are sorted into two groups (Fig. 1). Uncertainties in the first
group (general uncertainties) have impact on the expert evaluation in each case, and
here the expert’s subjectivity is integrated into the system. (It depends on the
professional skill and time investment). The second group are those uncertainties,
which depend on the quality and quantity of data defining the circumstances of
status assessment, are called special uncertainties (SU). At this point two further
sub-groups are defined, subject to whether the given uncertainty relates to the whole
building or to a specific structure within the building.

Special uncertainties of expert evaluation featuring certain building structures
(SUP), takes into consideration the circumstances and methods of the examination
of certain building structures as well as the quality and acceptance of the examined
building materials.

The special uncertainties of the expert evaluation, featuring the total building
(SUT) takes into consideration the impact of the direct environment of the building
exerted on the whole building, as well as the circumstances of the construction of
the building, and the documentations of later interventions (renovation, recon-
struction, strengthening).

3 Generating the Database and Knowledge Base Used
for Modelling the Condition of Buildings

3.1 Presentation of the Historic Residential Building
Stock of Budapest

The city of Budapest had grown into a metropolis over several decades therefore the
development of this city significantly differed from other big cities in many
respects.

Fig. 1 General and special uncertainties of expert evaluation

240 Á. Bukovics et al.



Budapest became one of the most dynamically developing cities of the world at
the end of the 19th century and in the beginning of the 20th century. The following
data well indicate the extent of its development: while in 1869 280349 inhabitants
lived in 52583 flats, in 1900 733358 inhabitants lived in 182214 flats. Thus over
31 years the number of inhabitants increased by 450,000, and more than 129,000
flats were built. During this time period new residential districts were built, using
the well-known construction technology and structural solutions of the given era
(Figs. 2 and 3). A large amount of these buildings still exist and are a significant
element of the cityscape. The condition of a part of these buildings is often
degraded. Static, functional and social deterioration can be noticed in case of a
significant part of these old buildings. To solve this problem is one of the most
pressing issues of Budapest.

The development of Budapest city was the most dynamical over the period
between the Compromise between Hungary and Austria of 1867 and the outbreak
of World War I in 1914. In this time period Budapest became a world city.
A considerable part of the tenement houses and the network of public institutions
were established at that time. Even nowadays the public and residential buildings of
this time period dominate the image of the city (Fig. 4).

Many buildings were declared protected as National Heritage thus their exis-
tence in the future seems to be ensured. Some parts of the city are a part of World
Heritage (Buda Castle Quarter, Riverside of the Danube, Andrássy Avenue),
thereby guaranteeing the preservation of the image of the cityscape in addition to
the protected buildings (Figs. 5 and 6).

At that time an unprecedented development process started in the Hungarian
capital. Rapid growth of the city was enhanced by the milling and the distillery
industries, as well as the boom in the heavy industry, connected with the railway
construction, too. The most dynamical development was between 1890 and 1900

Fig. 2 Typical urban structure of inner Budapest
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Fig. 3 Typical streetview of inner Budapest

Fig. 4 Areas in Budapest including buildings, similar to those under review
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when the number of the population of the city increased by 23,000 heads per year.
There was a time period when it was considered the most dynamically developing
city of the world, thus overtaking even Chicago. The intensive growth was largely
promoted also by the gigantic transport infrastructure and cultural projects, con-
necting to the year of the Millenium, the 1000-year anniversary of the Hungarian
state in 1896 (the first continental underground railway was open here).

The growth of the number of flats was connected to the growth of the stock of
tenement houses. In the last three decades of the 19th century about 7000 new
tenement houses were built, typically multi-storey residential buildings.

Fig. 5 Andrássy Avenue at the end of the 19th century

Fig. 6 The hungarian Parliament at the riverside of the Danube
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3.2 The Available Expert Reports and Their Analysis

Old residential buildings are typical in the 13th district of the city, too. Layout
arrangements and building structures resemble buildings from the same age in other
districts of the city. In this district expert reports were prepared about 340 resi-
dential buildings altogether (Fig. 7). The majority of the buildings were built
between 1880 and 1950.

The buildings were studied on the basis of building structure, building diag-
nostic, social and functional aspects. The knowledge and conclusions obtained from
the structural and diagnostic research of these residential buildings can be efficiently
utilized on a important part of the residential buildings of Budapest, since a large
part (especially in the inner districts) were built at the end of the 19th century, and
at the beginning of the 20th century. Therefore their age, structural arrangement and
conditions are similar to those of the buildings under review.

The study may be helpful in the optimum allocation of economic resources
which are available for renovations and for rehabilitation.

Conclusions can be drawn on the typical construction methods of various ages
and their respective characteristic construction deficiencies. Significant financial
savings can be achieved by the elimination of construction and operational

Fig. 7 Location of stock of buildings under review
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deficiencies. The knowledge of the building systems and the construction materials
makes it easy to recognise the frequency of the typical defects.

The buildings were examined separately on the basis of the aspects of building
structures and building diagnostics.

Relying on the database the buildings were arranged into 3 groups. Group 1
includes multi-storey buildings, with number of storeys ranging from 2–5. Group 2
includes higher quality single-storey buildings, and Group 3 includes single-storey
residential buildings of generally poor conditions.

Various groups were studied separately and altogether, as well, and the con-
nections between the diagnosed building defects and the systems and materials of
the structures were identified. The most important statistics and connections will be
represented on diagrams and figures. The flow-chart of the process can be seen on
Fig. 8.

Fig. 8 The processing flow-chart
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3.3 Examples of the Building Structural and Building
Diagnostic Analysis of the Examined Buildings

Over the past decades—often because of financial reasons—the necessary main-
tenance and renovation works of a lot of residential buildings were not fulfilled this
lead unfortunately to fast deterioration of the status of older buildings.

Based on the supervision of buildings we can draw conclusions with regard to
the characteristic construction defaults and the characteristic construction methods
of the given time period.

The conclusion and resorts of the analysis of the database may facilitate to
implement the ideas of rehabilitation of the given parts of the city. It can be used in the
course of the renovation and utilisation of buildings which are in bad condition and it
may be helpful in the optimum utilisation of economical opportunities. Considerable
financial savings can be realised by eliminating the errors during operation.

Primary main load bearing structures (foundation structures, wall structures,
cellar floor, intermediate floor, cover floor, side corridor structures, step structures
and roof structures) and those secondary structures which play an important role in
protecting the main load bearing structures (roof covering, facade, footing, tin
structures and insulation against ground water and soil moisture) were in the focus
of my studies.

In this chapter some examples of the results of the studies of side corridor
structures and floor structures is described. These results are from the building
structural and building diagnostic analysis of the available expert reports [1].

3.3.1 Building Structural Analysis

At the end of the 19th century side corridors became dominant in Hungary, when
lots of multi-storey residential buildings were built.

Although these days the central corridor design was applied in case of a
remarkable part of multi-storey residential buildings to access the flats, in certain
periods of the 19th and 20th centuries the side corridor design was nearly exclu-
sively applied to access the flats. Since a considerable part of these residential
buildings still exists, it is unavoidable to analyse them for building diagnostics and
building structure in the interest of economical sustainability of such structures.

Side corridors were usually built with three different types of structural systems:
with steel brackets (58%), stone brackets (24%), and monolithic reinforced concrete
plates. Side corridors built with steel brackets were made with reinforced concrete
plates (51%), Prussian vault (26%), cinder concrete plates (MATRAI) (16%) and
natural stone plates (7%) alike. Side corridors built with stone brackets are covered
by natural stone plates (46%), monolithic reinforced concrete plates (47%) and
precast concrete plates (7%) (See Fig. 9).

The plate structure of steel and stone bracket type side corridors is nearly
exclusively of the single span support design in case of cinder concrete, natural stone
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and prefabricated reinforced concrete plates. If monolithic reinforced concrete
materials are used for the plate structure, it can be of single span plate or continuous
plate according to its static frame. In case of single span design the reinforced
concrete plate is arranged between the bottom and the top flange of the steel beams,
and the plate is supported by the bottom member. In case of the continuous slab
design two general structures were used. In the first case the bottom reinforcement
rod is of the single span plate design, and is arranged between the steel beams, and
the top reinforcement rod is of the continuous plate design arranged over the steel
beam. In the second case the reinforced concrete plate is placed over the steel beams,
and the bottom and the top reinforcement rod is of the continuous design alike.

In case of the majority of side corridors constructed with monolithic reinforced
concrete one side of the slab is restrained into the reinforced concrete ring beam in its
entire width. The stability is ensured by the weight of the brickwork over the slab.

Steel bracket type suspension corridors were usually built between 1890 and
1920, the monolithic reinforced concrete plates became popular from the 1930s. In
case of the examined building stock stone brackets were used in all of the con-
struction periods (Fig. 10).

Floors are one of the most significant type of load bearing structure of a resi-
dential building. It is intended to transfer the forces to the walls and the lintel
beams. Based on their location the floors can differ within one building, too. So the
cellar floor, the intermediate floor and the cover floor were separately studied.

In case of intermediate floors the most frequently used (70%) type of floors is the
steel beam. Typically brick vault (54%), reinforced concrete or Horcsik slab (9%)
was used between the steel beams. 12% of the floors was made of bottom or top

Fig. 9 Apportionment of structures of side corridors in case of buildings under review
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Fig. 10 Changes of the material of side corridors in term of time

Fig. 11 Apportionment of structures of side corridors in case of buildings under review

ribbed monolithic reinforced concrete (using Portland cement or bauxite cement),
and 9–9% of floors was made of precast reinforced concrete beams (with brick
vault, reinforced concrete or Horcsik slab, prefabricated concrete or reinforced
concrete element), and of timber (Fig. 11).
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Wooden floors were only made up to 1890. Steel-beam floors became popular
around the turn of the century, Monolithic reinforced concrete plates were basically
built from 1930 (Fig. 12).

3.4 Building Diagnostic Analysis

In case of the monolithic reinforced concrete plate type side corridors the most
frequently occurring defects are the frost damage (43%), cracks of the slab plate
(17%) and corrosion of the reinforcement rod (13%) (See Fig. 13). In case of steel
brackets the corrosion of steel beams is often occurring.

Fig. 12 Changes of the material of intermediate floor in term of time

Fig. 13 Corrosion of the reinforcement rod
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The lack of providing an adequate slope required for drainage was a common
mistake made during the construction of side corridors, thereby causing constant
soaking of flats in the line of perimeter walls. A part of the side corridors in the
older residential buildings is in bad condition.

24% of the analysed side corridors were strutted in order to ensure safe usage.
Inefficient strutting deteriorated wall and floor structures in many cases. In many
cases strutting was erected too high, as a consequence whereof slush and
storm-water was flowing down towards the wall, making them wet, thereby causing
deterioration, many often the peel off of the plaster. In case of timber floor wetting
occurs at the place where the joists are the most sensitive to wetting, that is at the
tailing thereof. Water-soaked beams may get rotted, as a result whereof entire floor
sections may be collapse (Fig. 14).

In case of side corridors made with Prussian vault brickwork between the steel
beams it was a frequently made mistake that the Prussian vault brickwork was made
with irregular brick bonds.

In case of cellar floors and intermediate floors built with steel beams the most
frequently occurring defect is the corrosion of steel beams, while in the case of

Fig. 14 Flowchart of structural damages of side corridors caused by inadequate slope
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reinforced concrete plates it is the corrosion of the reinforcement rod occurring due
to the imperfect concrete cover for reinforcement.

42% of bottom or top ribbed monolithic reinforced concrete slabs was made of
bauxite cement. This material is exposed to considerable decrease of strength in an
environment with high moisture content and due to high temperature. The cinder
concrete slab structure (Matrai-slab) between steel beams is very sensitive to
moisture, too. If exposed to moisture, sulfuric and the derivatives thereof may be
produced, which may cause corrosion of the steel beams and the reinforcement rod.

It is a frequent damage of steel beam floor with reinforced concrete slabs that the
reinforced concrete slab elements get loosened from the flange of the beam. Usually
it happens as a result of the movement of buildings. As a result of further move-
ments of buildings the floor may become life-threatening due to smaller support of
the slab sections.

4 The Applicability of the Fuzzy Approach
on the Problem

In many cases the traditional two valued logic is not suitable for modelling or handling
a given occurrence. For example, when describing the condition of a load-bearing
building structure the linguistic characteristics of “proper condition” cannot be handled
by Boolean-logic, because it cannot be sharply determined where the border between
the “proper” and “improper” condition is. In the case of decisive majority of this type
of linguistic variables a certain type of joint attribute of inaccuracy and uncertainty can
be well observed. Fuzzy type inaccuracy is somehow linked to human thinking.

Fuzzy sets were introduced in 1965, and is considered now as one of themain areas
of the Soft Computing methods [2]. Shortly after its introduction several significant
results were achieved in the field of modelling and control as well. Systems for
drawing conclusions were elaborated, which were successfully used in many fields of
engineering. Binary logic can be considered a special case of fuzzy logic, since fuzzy
logic retains one of the basic axioms of two-valued logic. Interval of fuzzy logic
variables [0, 1], and within this any optional value can be taken. In case of 0 the
applied linguistic variable is “totally false”while in case 1 it is “totally true”. In case of
0.5 the statement is, half true, while, for example, in the case of 0.1 it is “nearly false”.

Modelling of the condition of load bearing structures of residential buildings is a
complex task, the components of which are well structured and a hierarchical
structure can be built up from them. Thereby certain components of the structure are
determined by a partial tree of components on a higher level. Also the built-up
structure may provide significant additional information on the problem. Building
structures can be analysed and compared also on various levels.

Fuzzy signatures can be well used for modelling problems what may be mod-
elled by a hierarchical structure [3, 4]. They are also suitable for handling cases
where some components of data are missing. It can be well used, too if there is
partial difference in the structure of two data elements.
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With the help of the methods created in the course of our work it is possible to
draw conclusions on the condition of a residential building or on the stock of
residential buildings, modelled by fuzzy signatures.

The set of data which belongs to the problem to be modelled has a joint basic
structure.

Structure of data may be different to a small extent, because some of the com-
ponents of set of data may be missing. (For example, a building with or without side
corridor). In order to be able to evaluate and compare the data an aggregator
operator is assigned to each tip of the base structure with the aim of modifying the
structure. Relevance weight is also specified, by which further information can be
buffered on the relationship of components.

In a mathematical sense, fuzzy signatures are hierarchical representations of data
structured into vectors of fuzzy values. A fuzzy signature can be illustrated by a
nested vector valued fuzzy sets and by a tree graph.

An aggregated value can be computed from a set of aggregator operator values.
The operation of the aggregation can be specified by an n-operand function [1]. h:
[0, 1]n → [0, 1].

5 Methods Developed for Modelling Status Surveys

We have worked out methods for ranking the buildings based on various view-
points which are modelling and utilizing the results of status surveys of residential
buildings, promoting optimal utilization and priority of buildings, supporting
interventions (their rankings and priorities) in the course of renovations and
transformation of buildings.

Some of these methods do not take into account the expert’s uncertainties, and
some of them take into consideration the circumstances of construction and survey,
as well as the competence of and also the work invested by the expert into the survey.

The results, characterising the condition of a building can be different depending
on the applied method, too. The condition of a building can be characterised by a
singleton value, an interval valued fuzzy set, triangular or trapezoidal shaped fuzzy
membership function with two parts (which represent the lower and upper bound of
the uncertain membership grade).

In the next three methods will described which are suitable for modelling the
condition of building structures.

5.1 Fuzzy Singleton Signature Based Model
for Qualification and Ranking of Residential Buildings

5.1.1 The Basic Structure of Fuzzy Signatures

In order to determine the conditions of buildings, a fuzzy singleton signature based
model was proposed.
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In order to model the goals, initially the basic structure of fuzzy singleton
signature, characterizing the problem was set up on the basis of the data available
from the prepared data base.

Fuzzy membership degrees, which can be used in the system, were assigned to
the individual data elements by experts, from the interval [0, 1].

When applying the fuzzy signature based qualifying and ranking method, the
examined main load bearing structures will be jointly named as “primary” struc-
tures. These are the following:

• foundation structures,
• wall structures,
• cellar floor structures,
• intermediate floor structures,
• cover floor structures,
• side corridor structures,
• step structures
• roof structures.

Those not primary load-bearing structures, which however play an important
role in the protection of the main load bearing structures themselves will be called
“secondary structures”. These are the following:

• roof covering,
• surface formation,
• tin structures,
• insulation against soil moisture and ground water.

The applicability of the elaborated method is demonstrated by using a database,
created from 340 real expert assessment reports which contains multi-storey resi-
dential buildings.

The basic structure to apply here is a four-level fuzzy signature, because in the
course of the examination of these old residential buildings this depth was found to
be the most appropriate to achieve sufficient accuracy in describing the condition of
buildings.

Because the database was prepared on the basis of the examination of numerous
residential buildings in district 13, characteristic of Budapest, so the results
obtained, express well the actual general conditions. The set up of the fuzzy sin-
gleton signature structure in the form of a tree structure is shown in Fig. 15.

The information available about the conditions of the load bearing structure of
the buildings, providing the basis for the database, was classified into two main
groups. The first level of the fuzzy signature tree splits the information into “pri-
mary structures” and “secondary structures” groups (μ11, μ12).

The same set-up of the fuzzy singleton signature in vector format is shown in
Fig. 16. The vector format illustrates the structure in the line of vectors embedded
in one another.
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5.1.2 The Applied Aggregation Operators and Relevance Weights

It may be necessary to modify the structures and the values appearing on the leaves
of the modified structure depend on the aggregation operators. Therefore the
aggregation operators play thereby significant role in the evaluation, and then in the
comparison of two signatures. A loss of information will unavoidably occur, when
reducing the sub-trees, since the aggregated status descriptors may be equal to one

Fig. 15 Set up of fuzzy singleton signature structure
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another, while the original signatures were different. It occurs even if the sub-trees
have different arrangement and information contents. With the use of weighted
aggregations it is possible to take further expert knowledge into consideration. The
relevance weight shows the importance of each node, related to the root of the
sub-tree. The sub-groups of variables together specify a component on a higher
level. Therefore the components within the sub-trees of the structure may relate to
the roots of the sub-trees in a way unlike the components of other sub-trees related
to their respective roots. Thus different aggregation operators should be assigned to
each node of the fuzzy signature structure.

The aggregation operators and the relevance weights were determined based on
the official expert reports, and on the basis of evaluating the importance of the
structure related to the whole residential building.

In this case for aggregations the weighted average was used which is a special
case of the weighted generalized mean aggregation operation [5] where p = 1.

aðμ1, μ2, . . . , μnÞ= ∑
n

i=1
wi ⋅ μpi

� �1
p

, ð1Þ

Fig. 16 Complete set-up of
the fuzzy singleton signature
structure in vector format
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The notations used in the formula: a: (aggregation function), μi: (membership
degree of descendant i), wi: (relevance weight of descendant i), n: (number of
successors in the node to be aggregated), p: (aggregation factor (p ∈ R, p ≠ 0)).

After the evaluation of the related literature and the expert reports the proper
relevance weights were chosen.

With the use of the aggregation operators we can modify the structure of the
fuzzy signatures. Then a sub-tree of the variables is reduced to the root of the
sub-tree.

In Fig. 17 one of the recursive processes of the model can be seen. In order to
reduce the sub-tree with the root corresponding to μ1, in the first instance the
sub-tree marked μ12 must be reduced. After that the root, marked by μ1 can be
reduced, too.

The applied aggregation operators were determined by using the values on the
root of the structure and the relevance weights.

The applied aggregation operators are the following:
Floor structures:

a1 =
0.35 ⋅m ⋅ μ11211 + 0.45 ⋅ ðn− 1Þ ⋅ μ11212 + 0.20 ⋅ μ11213

0.2 + 0.45 ⋅ ðn− 1Þ+0.35 ⋅m
ð2Þ

Vertical load bearing structures:

a2 = ð0.50− 0.05 ⋅ ðn− 1ÞÞ ⋅ μ1111 + ð0.50+ 0.05 ⋅ ðn− 1ÞÞ ⋅ μ1112 ð3Þ

Horizontal load bearing structures:

a3 =
0.65 ⋅ μ1121 + 0.20 ⋅ f ⋅ μ1112 + 0.15 ⋅ μ1112

0.80 + 0.20 ⋅ f
ð4Þ

Primary structures:

a4 = 0.40 ⋅ μ111 +
0.60 ⋅ n
n+1

⋅ μ112 +
0.60
n+1

⋅ μ113

= 0.40 ⋅ μ111 +
0.60
n+1

⋅ ðn ⋅ μ112 + μ113Þ
ð5Þ

Fig. 17 A recursive process
of the evaluation
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Surface formation:

a5 =
n− 0.50

n
⋅ μ1221 +

0.50
n

⋅ μ1222 ð6Þ

Secondary structures:

a6 =
0.40 ⋅ μ121 + 0.20 ⋅ n ⋅ μ122 + 0.20 ⋅ μ123 + 0.20 ⋅ μ124

0.80+ 0.20 ⋅ n
ð7Þ

Primary and secondary structures:

a7 = 0.75 ⋅ μ11 + 0.25 ⋅ μ12 ð8Þ

Possible values of the parameters are:
n = 2, 3, 4, 5 (number of the storeys of the building)
0 ≤ m ≤ 1 (extent of the cellar)
f = 0 or 1 (building with or without side corridors).

5.1.3 Software

In order to determine the status and do the ranking of multi-storey residential
buildings of similar formation and age a simple software was prepared on the basis
of the fuzzy singleton signature.

The input data may be constant or it may change in terms of time. Constant input
data are for example the applied materials, the applied structures and the formation
of the building. Input data which change in terms of time are for example the extent
of cracks the appearance of cracks and the extent of the corrosion.

For each member of the examined residential buildings a value in [0, 1] can be
computed, which express the overall quality of the residential building.

Defining the present-day condition of the buildings and the future utilisation
(“suggested for demolition”; “suggested for renewal”; “renewal is necessary, but
not immediately”) is the aim of the ranking.

With the ranking a more sophisticated decision making is possible as to what can
and should be done with the given residential building.

5.1.4 Application of the Model

In order to study and analyze the database a fuzzy singleton signature based soft-
ware was created. With the help of this software valuable information can be gained
on the status of the examined building structures and their respective links to each
another. The overall condition of the residential building is characterised by the
aggregated status descriptor μ1 (which was calculated with the help of the fuzzy
signature based software). The condition of the buildings and the whole set of
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buildings were examined in two ways, which were called “normal tuning” and “fine
tuning” method. Input data are less detailed in the case of the “normal tuning
method”, than in the case of the “fine-tuning method”, and the output results give
only approximation classification.

The results of the computation in the case of the “normal tuning method” are
illustrated in Fig. 18.

Studying the diagram the following observation can be done:
In 17.65% of the tested cases the value of μ1 summarised aggregated state

descriptor does not exceed 0.3. This means that the status of the tested structures of
the building would be qualified “inappropriate”. More than 80% of the examined
buildings are qualified as “appropriate” (0.3 ≤ μ1 ≤ 0.7). Only 1.47% of the
buildings are qualified as “good condition” (μ1 > 0.7). It can be established that a
large part of the examined residential buildings is in need of renovation. It is partly
because of the omission of former preservation works.

The stock of buildings was tested with the normal and the fine tuning methods. It
was determined that the value of the summarised aggregated state descriptor (μ1),
describing the condition of the buildings was different only to a minimum extent in
the case of the two methods.

It may be concluded that in the tests it is usually enough the use the normal
tuning method. The application of the fine-tuning method is necessary only in
special cases.

With the use of the model it is possible to take a suggestion for prompt inter-
ventions in order to avoid further rapid deterioration of the condition. It is worth to
begin the preservation process immediately when the condition of the main
load-bearing structures is relatively good, however the condition of the secondary

Fig. 18 Qualification of structures in case of the “normal tuning method”
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structures, protecting the same, is in deteriorated condition. In this case the “sec-
ondary” structures can not protect the main load bearing structures from deterio-
rative effects any more.

In the next an urgency ranking (suggested ranking of restoration) on the basis of
the database is specified. It must be defined in which case of the summarised
aggregated state descriptor, related to μ11 (main load bearing structure) it is advisable
to check the summarised condition of the “secondary” structures. After studying the
database it is suggested that in the case of μ11 ≥ 0.4 summarised aggregated status
descriptor values should be checked if it is necessary to perform quick intervention.

In such a case the condition of the “primary” structures is good enough for an
intervention and taking into account the financial aspects, it is necessary to do so in
order to prevent any accidents later. It is also advisable to determine the range of μ12
summarised aggregated status descriptor value, when it is advisable to start reno-
vation. When μ11 ≥ 0.4 and μ12 ≤ 0.3 or μ12 − μ11 ≤ −0.2, quick intervention
of the “secondary” structures is recommended (Fig. 19).

5.2 Modelling the Condition of Residential Buildings
by Real Fuzzy Sets

5.2.1 Introduction of Real Fuzzy Sets and the Applied Operations

According to the original definition of fuzzy sets the elements of the basic set
(universe of discourse X) are mapped into the [0, 1] unit interval by the membership

Fig. 19 Suggestion for urgent interventions
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function, thereby providing membership values for the given elements of the set [4]
m: X → [0, 1]. Later on, this definition was generalised in many ways, and the
one, best suiting our present goals is the membership function extended to the
whole real line [6]:

μA:X→R1 ð9Þ

Negative and greater than one membership values have no physical meaning,
however this extended set of values enable us to make certain technical compu-
tations in a way that such “imaginary” membership values should be generated as
intermediate results (while the final result is a true membership value in [0, 1]). This
extension is primarily justified by the fact that in the so-called I-fuzzy and R-fuzzy
axiomatic systems it is possible to determine the inverse of the set intersection and
the union under certain conditions. In many aspects the features of these inverse
operations are similar to the algebraic inverse operations [7].

The simplest and most commonly used generally prevailing fuzzy operations,
satisfying the R-fuzzy axioms are as follows.

• Disjunction (algebraic sum):

μA∨B = μA + μB − μA ⋅ μB ð10Þ

• Conjunction (algebraic product):

μA∧B = μA ⋅ μB ð11Þ

Based on the axiomatics it is possible to introduce fuzzy inverse disjunction and
fuzzy inverse conjunction.

• Inverse disjunction:

αA∨ −B =
αA − αB
1− αB

αB ≠ 1 ð12Þ

If αB > αA, then αA∨ −B <0;

• Inverse conjunction:

αA∧ −B =
αA
αB

αB ≠ 0 ð13Þ

If αA > αB, then αA∧ −B >1.
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5.2.2 Determining the Membership Values

For the determination of the membership values of the examined attributes, the
number of the factors influencing the condition of the examined building element
must be specified. These factors describe the intensity and the expansion of the
investigated effect exerted on the status of the examined building element.

We introduced “status improving factors” that modify the condition of the
building element in a positive direction. They will be denoted by bi (i = 1,…, n, n
being the number of status improving factors taken into account). Similarly “status
deterioration factors” modify the condition of the building in a negative direction.
This will be denoted by αi (i = 1,…, m, m being the number of status deterioration
factors taken into account).

In the examined case the application of 6 (3 status improving and 3 status
deterioration) factors were justified. (In the general case there may be any number
of such factors).

It is supposed that each factor is effecting the condition in each case the
examination must be restricted to strictly monotonously behaving fuzzy operators.
Fuzzy disjunction interpreted as a strictly monotonous fuzzy operator, is suitable for
taking into consideration all the factors. The so called “result of status improving
factors” includes the effect of all status improving factors. It is denoted with bP.

The “result of status deterioration factors” includes the effects of all status
deterioration factors. It is denoted with αN. These two factor was determined with
the help of the fuzzy disjunction (1).

In case of any n positive, and m negative factors effecting the membership value,
using the fuzzy disjunction, the expression of factors βP and αN are given as the
next formulas:

βP = β⋃n
i=1Ai

= ∑
n

i=1
βi − ∑

n

i≠ j
i=1

βi ⋅ βj±⋯±ð− 1Þn− 1 ⋅ ∏
n

i=1
βi =1− ∏

n

i=1
ð1− βiÞ ð14Þ

αN = α⋃m
i= 1Ai

= ∑
m

i=1
αi − ∑

m

i≠ j
i= 1

αi ⋅ αj±⋯±ð− 1Þm− 1 ⋅ ∏
m

i=1
αi =1− ∏

m

i=1
ð1− αiÞ ð15Þ

These so called sieve formulas could be converted into a closed form, using De
Morgan’s equality [8]. In case of three status improving and three status deterio-
ration factors (as in the case of our investigation), the value of βP and αN can be
calculated by the following:
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βP = βAf ∨Bf ∨Cf = βAf + βBf + βCf

− βAf ⋅ βBf − βAf ⋅ βCf − βBf ⋅ βCf + βAf ⋅ βBf ⋅ βCf
ð16Þ

αN = αAf ∨Bf ∨Cf = αAf + αBf + αCf − αAf ⋅ αBf
− αAf ⋅ αCf − αBf ⋅ αCf + αAf ⋅ αBf ⋅ αCf

ð17Þ

In order to describe the condition of the building structure in two different ways
we propose two extreme values. These two together determine an interval valued
fuzzy set (Fig. 20). The two extreme values of the interval are defined by the
membership values calculated on the basis of what we call “optimistic” and
“pessimistic” estimation.

The “optimistic” estimation ðλSUPÞ means the expected upper limit of the
membership value of the examined structure. The result of the status improving
factors is multiplied by the complement of the status deterioration factors and this
value is divided by the complement of the relative deterioration ðβP ⋅ αNÞ.

“Optimistic” estimation:

λSUP =
βP ⋅ ð1− αNÞ
1− βP ⋅ αN

ð18Þ

The “pessimistic” estimation ðλINFÞ means the lower limit of the membership
value of the tested building structure. The result of the status improving factors is
multiplied by the complement of the resultant of status deterioration factors.

“Pessimistic” estimation:

λINF = βP ⋅ ð1− αNÞ ð19Þ

The received membership values (the results of the two estimations) were
compared with the results of expert evaluation. It is established that this latter one
was well approximated by the average of the two values ðλINF , λSUPÞ. Therefore this
interval is recommended for describing the estimated condition of the examined
building structure ðλAVGÞ.

The estimated average condition:

λAVG =
λINF + λSUP

2
ð20Þ

In the next it is considered as the overall membership value connected with the
status of the examined building structure. These values can be applied when using
the fuzzy signature-based status determining and ranking model.

Fig. 20 Interval valued fuzzy
set
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5.2.3 The Applicability of the R-Fuzzy Algebraic Structure

As a result of the methodological research we found that in each case the upper
value, (with the application of fuzzy inverse disjunction) was greater than the lower
one (obtained by the application of fuzzy conjunction) (λSUP > λINF).

We investigated which values may be supposed by the upper and lower mem-
bership functions and the estimated condition depending on the resultant of the
status improving factors (bP) and the status deterioration factors (αN).

In our method (described in the following section) the smallest value of the
resultant of status improving factors may be 0.65, since the minimum value of bA1,
cannot be smaller than this. The value of μP was examined in the interval between
0.65 and 1 with 0.05 accuracy.

The resultant of the αN status deterioration factors was examined and plotted in
the interval [0, 1] with 0.05 accuracy. The value and the character of the examined
fuzzy algebraic operators are influenced by status deterioration effects.

The alteration of the value of fuzzy algebraic operators was investigated in
connection with the value of the status deterioration factors in case of various
characterising values of the status improving factors. In Fig. 21 the resulting dia-
gram can be seen In case of bP = 0.85.

In this diagram the blue line shows the “optimistic” estimation, the yellow one
shows the “pessimistic” value, while the purple one shows the estimated average
condition of the membership value of the examined building structure.

Usually the difference between the “optimistic” and “pessimistic” values of the
membership function (the “open scissors”) is great if the value of the resultant of
status improving factors and that of the status deterioration factors is great alike.
Than the difference between the “optimistic” and “pessimistic” value of the
membership function may exceed 0.60. The value of λSUP-λINF decreases in the
case when the resultant of the status deterioration factors has an extraordinary small
or large value. If the difference between the “optimistic” and “pessimistic” values of
the membership function exceeds 0.45, a detailed examination of the reasons of
deterioration is recommended.

Fig. 21 Possible values of λSUP, λINF and λAVG subject to αN in case of βP = 0.85

Fuzzy Signature Based Methods for Modelling the Structural … 263



5.2.4 Investigating the Model on Foundation Structures

In order to investigate the created model with the help of the examining building
stock, the membership values of foundation structures were determined. The
applicability of the method based on imaginary fuzzy values was examined. It was
investigated how the method could be applied from the viewpoint of the qualifi-
cation and ranking of the load bearing structures. In Fig. 22 the schematic model of
the definition of membership values, featuring the condition of foundation struc-
tures can be seen.

The membership value, featuring the foundation structure (in our case strip
foundation), is influenced by the following factors.

Positive factors:

Material of the strip foundation (βAf)
Its value was selected depending on the material of strip foundation.

Conformance of the width of the strip foundation (positive direction) (βBf)
First the ratio of the width of the actual strip foundation (wf) and the idealized,

estimated width of the strip foundation (wfi) was calculated. In order to define the
width of the idealized foundation it is necessary to calculate the loads exerted on the
strip foundation, as well as to know the soil quality under it. These values are
available in the expert reports. After that the expected width of the strip foundations
of the examined buildings was determined. Comparing the expected width with the
actual width, the factor was obtained. If the actual width is smaller than the ide-
alized width, this factor has no impact.

Fig. 22 Schematic model of
the definition of μ1111
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Year of construction (βCf)
It takes two viewpoints into account. One is the number of years that have

passed after the construction because of the process of the natural weakening of the
status of building structures in terms of time. The second part is whether in the year
of the construction the city had already its regulations in effect or has not.

Negative factors:

Detected deteriorations of the strip foundation (αAf)
This factor is defined by using the component featuring the status of the formerly

determined membership value of foundation structure (μ1111). The bigger the extent
of the detected deteriorations is the closer the value of μ1111 is to 0.

Conformance of the width of the strip foundation (αBf)
If the width of strip foundation is smaller than the ideal width, the value of αBf

depends on the relation to wf/wfi.

Other effects deteriorating the quality of the structure (αCf)
It takes into account the effect of vibrations impairing the status of the foun-

dation structures. The effect of vibration is ifferent in case of buildings situated in
side streets, in case of buildings situated by roads with high traffic, and in case of
buildings situated over the subway train.

5.2.5 Results

In Fig. 23 the values of all three membership functions (λSUP, λINF, λAVG) can be
seen. The examined residential buildings were arranged in monotonically increas-
ing sequence on the basis of the estimated value of overall membership functions. It
is interesting to observe that in the case of building structures in extremely good and
in extremely bad status, the difference between the upper and the lower membership
value is generally rather small. The scissors between upper and lower values open
up for medium status residential buildings. In the case of the examined buildings
the difference between the upper and the lower value of the membership value is
0.25 as an average.

Fig. 23 Values of the membership functions in case of ranked buildings
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5.3 Modelling the Uncertainty in the Condition Assessment
Using Fuzzy Signature Sets

5.3.1 Effects of Uncertainties Exerted on Membership Functions

When modelling the reliability of expert evaluations uncertainties are assigned to
the expert estimation. Then the singleton membership value is transformed into a
membership function. In our case triangular- and trapezoidal-shaped membership
functions are suggested to model the uncertainties, because they can be easily
handled. The steps of determining the membership functions are as follows
(Fig. 24). The expert defines a singleton value, which will be first normalised to [0,
1]. The form of the membership function will be changed step by step, while the
uncertainties of the expert report are taken into consideration. Every uncertainty
modifies the shape of the membership functions.

5.3.2 The Structure of the Fuzzy Signature

In this case a four-level fuzzy signature structure was proposed (see Fig. 25). The
membership function at the leaves of the structure is related to the following
building structures: foundation structures (A1), wall structures (A2), cellar floor
(A3), intermediate floor (A4), cover floor (A5), side corridor structures (A6), step
structures (A7), roof structures (A8), roof covering (A9), facade (A10), footing (A11),
tin structures (A12), insulation against soil moisture and ground water (A13).

In this approach the applied aggregation operators are piecewise combinations of
the min and weighted mean operators, which depend on the special features of the
building. For example to aggregation operator h2, related to the status of the vertical
load bearing structures and aggregation operator h7, related to the status of the
building, were determined as follows.

Fig. 24 Modelling the uncertainty with membership function
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h2 =

ð0.50− 0.05 ⋅ ðn− 1ÞÞ ⋅ x1 + ð0.50+ 0.05 ⋅ ðn− 1ÞÞ ⋅ x2 if x1 > 0.40

ð0.50− 0.05 ⋅ ðn− 1ÞÞ ⋅ x1 + ð0.50+ 0.05 ⋅ ðn− 1ÞÞ ⋅ x2 if 0.40≥ x1 ≥ 0.20 and x2 < x1
ð0.50− 0.05 ⋅ nÞ ⋅ x1 + ð0.50+ 0.05 ⋅ nÞ ⋅ x2 if 0.40≥ x1 ≥ 0.20 and x2 ≥ x1

min ðx1 ; x2Þ if x1 < 0.20

8>>><
>>>:

9>>>=
>>>;

ð21Þ

h7 =

0.75 ⋅ h4 + 0.25 ⋅ h6 if h4 > 0.4

or 0.2≤ h4 ≤ 0.4 and h6 < h4
0.85 ⋅ h4 + 0.15 ⋅ h6 if 0.2≤ h4 ≤ 0.4 and h6 ≥ h4

minðh4; h2Þ if h4 < 0.2

8>><
>>:

9>>=
>>; ð22Þ

n is the number of the storeys of the building.

5.3.3 Investigating the Model

For investigating the model database introduced earlier was used. The membership
function, which takes into account the general and special uncertainties, is
fine-tuned also with this database.

As an example we have chosen an old building which was built in 1894. The
human expert’s report was modelled by triangular shaped fuzzy membership
functions, according to the previous sections. The values of the shape parameters
are shown in the table (see Fig. 26).

Fig. 25 Basic structure of the fuzzy set signature
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The fuzzy number, which describes the condition of the whole residential
building, is obtained after having taken into consideration the uncertainties in case
of each examined building structure in the same way as above. After that the
triangular membership function, gained by using the aggregation operators, is
further modified, thus taking into account also the special uncertainties character-
izing the whole building.

The output of the fuzzy signature is a triangular shaped membership function.
The shape of the final fuzzy set offers lot of information about the uncertainty of the

condition assessment, which should be taken into account before the decisionmaking.
It is possible to get a crisp conclusion applying some defuzzification methods.

6 Sensitivity and Validity of the Fuzzy Signature Based
Evaluation of Residential Building Condition

In the next a few comments will be given as results to the overall sensitivity of the
assessment in terms of the uncertainty in the expert report.

6.1 Sensitivity of the Fuzzy Singleton Signature

From the mathematical point of view important questions are the sensitivity and
stability of the fuzzy signature-based decision support method. It must be examined
whether a small change in the input variables may result a large change of the final
membership function, or may not. The answer depends on the structure of the
signature and on the applied aggregation operators [9].

Fig. 26 Triangular shaped
fuzzy numbers
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The examined fuzzy signature creates the weighted arithmetic mean of the input
values in every node, so the final output is the weighted arithmetic mean of the
original input values, where the weights can be determined from the tree structure
and form the functions used in the nodes. In general, if the input values are x1,…, xn
(0 ≤ xi ≤ 1 for all i) p1,…, pn, where p1 + ⋅ ⋅ ⋅ + pn = 1 pi ≥ 0 for all i, than
the output value is

f ðx1, . . . , xnÞ= p1 ⋅ x1 +⋯+ pn ⋅ xn ð23Þ

Let us change the input values to x*1, . . . , x
*
2. Then the absolute value of the

change in the output is

Δfj j= f ðx*1, . . . , x*nÞ− f ðx1, . . . , xnÞ
�� ��= ∑

n

i=1
pi ⋅Δxi

����
���� ð24Þ

From the well-known Cauchy-Schwarz inequality [10] we get that

Δfj j≤ p
��� ���

2
⋅ Δxk k2 ð25Þ

where *k k2 stands for the Euclidean vector norm. From the triangular inequality we
get that

Δfj j= max
i
ðpiÞ ⋅ Δxk k1 ð26Þ

(where *k k1 denotes the sum norm (taxicab norm) [11]).
In order to examine the sensitivity of the applied fuzzy singleton signature the

input values are numbered form top to bottom. In the final decision their respective
weights are the following:

p1 = 0.16500− 0.01500n ð27Þ

p2 = 0.13500+ 0.01500n ð28Þ

p3 = 0.1023750
nm

ð− 0.25 + 0.45n+0.35mÞð0.8+ 0.2f Þðn+1Þ ð29Þ

p4 = 0.1316250
ðn− 1Þn

ð− 0.25 + 0.45n+0.35mÞð0.8+ 0.2f Þðn+1Þ ð30Þ

p5 = 0.058500
n

ð− 0.25 + 0.45n+0.35mÞð0.8+ 0.2f Þðn+1Þ ð31Þ
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p6 = 0.0900
fn

ð0.8+ 0.2f Þðn+1Þ ð32Þ

p7 = 0.06750
n

ð0.8+ 0.2f Þðn+1Þ ð33Þ

p8 =
0.45
n+1

ð34Þ

p9 =
0.1

0.8 + 0.2n
ð35Þ

p10 =
0.05n− 0.025
0.8 + 0.2n

ð36Þ

p11 =
0.025

0.8 + 0.2n
ð37Þ

p12 =
0.005

0.8 + 0.2n
ð38Þ

p13 =
0.005

0.8 + 0.2n
ð39Þ

Analysing the above expressions numerically we get the maximal value of
∑13

i=1 p
2
i (see Table 1).

With the results of Table 1 we get an upper estimation of the change of the
output.

Δfj j≤ 0.4 ⋅ Δxk k2 ð40Þ

Based on the maximal values of |pi| (see Table 2) we can conclude that

Δfj j≤ 0.28 ⋅ Δxk k1 ð41Þ

From those results it follows that the change of the output is bounded in the
following sense: a small change of the input values can not yield a large change of
the output.

Table 1 maximal values of
∑13

i=1 p
2
i

f/n 2 3 4 5

0 0.12 0.14 0.15 0.16
1 0.12 0.12 0.13 0.14
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6.2 Sensitivity of the Applied Operations Defined
by the Fuzzy Sets of Real Values

In the pessimistic case

Δλinfj j≤ ΔβPj j+ ΔαNj j ð42Þ

And in the optimistic case

Δλsup
�� ��≤ ðΔ2αN +Δ2βPÞ ⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− aÞ2 + b2 ⋅ ðb− 1Þ2

ð1− a ⋅ bÞ4

s
ð43Þ

Here a is the maximal value of αN and β is the maximal value of bP.

Sensitivity of the whole R-fuzzy signature
“Optimistic case”
Let us assume that we use 3 + 3 values to determine the values of αN and βP.

Applying our results described in the previous sections we can conclude that the
upper estimation of |Δƒ| with the Euclidean norm is the following:

Δfj j≤
ffiffiffiffiffiffiffiffiffi
0.48

p
⋅K2maxða, bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
13

j=1
∑
3

i=1
ðΔ2βij +Δ2αijÞ

s
ð44Þ

where K2maxða, bÞ= max
j

K2jða, bÞ
� �

.

The estimation using the sum norm is the following:

Δfj j≤ 0.28 ⋅K1maxða, bÞ ∑
13

j=1
∑
3

i=1
ð Δβij
�� ��+ Δαij

�� ��Þ ð45Þ

where K2maxða, bÞ= max
j

K1jða, bÞ
� �

.

Table 2 Maximal values of |pi|

P1 P2 P3 P4 P5 P6 P7
0.135 0.21 0.0853 0.2743 0.075 0.075 0.0703
P8 P9 P10 P11 P12 P13
0.15 0.0833 0.125 0.0208 0.0417 0.0417
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“Pessimistic case”
We assume again that we have 3 + 3 values to determine the value of αN and βP.

Then the estimation with the Euclidean norm of the input values is

Δfj j≤
ffiffiffiffiffiffiffiffiffi
0.96

p
⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
13

j=1
∑
3

i=1
ðΔ2βij +Δ2αijÞ

s
ð46Þ

while the estimation with the sum norm of the input values is

Δfj j≤ 0.28 ⋅ ∑
13

j=1
∑
3

i=1
ð Δβij
�� ��+ Δαij

�� ��Þ ð47Þ

7 Conclusion

Based on the above it can be stated that fuzzy signatures are essentially suitable for
modelling the available expert evaluation reports.

It is also reasonable to draw all evaluations of different depth and details to a
joint platform and to determine which are eventually defective. Also in case of
buildings of different structure modelling by fuzzy signatures may present the
evaluations on a joint platform.

It was established that the inaccurateness and uncertainties inevitably occurring
in expert reports do not increase the uncertainty of resulting evaluation to such an
extent that would make the results invalid.

Since the uncertainty in expert evaluations is multiple, in addition to normal
fuzzy signatures an extended (rich) toolbox is offered which includes fuzzy sets of
real values, fuzzy set signatures, as well as type 2 fuzzy signatures.
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Retrieval from Uncertain Data Bases

Ronald R. Yager

Abstract We investigate tools that can enrich the process of querying databases.
We show how to include soft conditions with the use of fuzzy sets. We describe
some techniques for aggregating the satisfactions of the individual conditions based
on the inclusion of importance and the use of the OWA operator. We discuss a
method for aggregating the individual satisfactions that can model a lexicographic
relation between the individual requirements. We look at querying databases in
which the information in the database can have some probabilistic uncertainty.

1 Introduction

Database structures play a pervasive role in underlying many websites, as a result
the intelligent retrieval of information from databases is an important task. The use
of soft concepts often allows us to model human cognitive concepts. Here we focus
on providing a framework for retrieving information from database structures via
soft querying [1–4]. A query can be seen as a collection of requirements and an
imperative for combining an object’s satisfaction to the individual requirements to
get the object’s overall satisfaction to the query. We describe some fuzzy set based
methods that enable the inclusion of human focused concepts in the construction of
a query [5–8]. Here we also describe techniques for aggregating the satisfactions of
the individual conditions to obtain an object’s overall satisfaction to a query. The
inclusion of importance information and the use of the OWA operator are some
tools that provide this facility. Here we also discuss a method for aggregating the
individual satisfaction’s that can model a lexicographic relation between the indi-
vidual requirements. In addition we look at databases in which the information can
have some probabilistic uncertainty.
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2 Standard Querying of Data Bases

A database consists of a collection of attributes, Vj, j = 1 to r and a domain Xj for
each attribute. Associated with a database is a collection of objects Di, the objects in
the database. Each Di is an r tuple, (di1, di2, …, dir). Here dij ∈ Xj is the value of
attribute Vj for object Di.

A query Q is of a collection of q pairs. Each pair Pk = (VQ(k), FQ(k)) consists of
an attribute VQ(k) and an associated property for that attribute FQ(k). Here Q(k)
indicates the index of the attribute in the kth pair. Thus if Q(k) = i then the attribute
in the kth pair is Vi. In addition to the collection of pairs a query contains infor-
mation regarding the relationship between the pairs. We denote this information as
Agg.

The querying process consists of testing each object Di to see if it satisfies the
query. The process of testing an object consists of two steps. The first is the
determination of the satisfaction of each of the pairs by the object. We denote this
as Tr(Pk|Di) or more simple as tik. The second step is to calculate the overall
satisfaction of Di to the query Q, Sat(Q/Di), by combining the individual tik, guided
by the instructions contained in Agg. Here then Sat(Q/Di) = Agg(ti1, …, tiq) = Ti.

The calculation of tik, Tr[Pk|Di] is based on determining whether the condition
FQ(k) is satisfied based on diQ(k), the value of VQ(k) for the ith object Di. In the
standard environment FQ(k) is represented as a crisp subset of XQ(k) indicating the
desired values of VQ(k). The determination of satisfaction, Tr[Pk|Di], is based on
whether diQ(k) ∈ FQ(k). The system returns the value tik = 1 if diQ(k) ∈ FQ(k) and
tik = 0 if diQ(k) ∉ FQ(k). Using the notation FQ(k)(diQ(k)) to indicate membership of
diQ(k) in FQ(k) we get tik = FQ(k)(diQ(k)). Thus in this case each of the values tik ∈
{0, 1} where 0 indicates false, not satisfied, and 1 indicates true, satisfied.

In this binary environment the aggregation process is constructed as a
well-formed logical statement consisting of conjunctions, disjunctions, negations
and implications. The overall satisfaction Sat(Q|Di) is equal to the truth-value of
this well-formed formula. The calculation of this truth-value involves the use of
Min, Max and Negation. For example the requirement that all pairs in Q are
satisfied is expressed as Ti = Mink = 1 to r[tik]. The requirement that any of the
conditions need be satisfied is expressed as Ti = Maxk = 1 to r[tik]. We note this is a
binary environment, Ti ∈ {0, 1}, and hence we have two categories of objects,
those which satisfy the query and those that do not.

3 Soft Database Querying

An extension of the querying process involves the use of soft or flexible queries
[6, 8]. This idea extends the process of querying standard databases in a number of
ways. The most fundamental is to allow the search criteria, the FQ(k), to be expressed
as fuzzy subsets of the domain XQ(k). This allows one to represent imprecise
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non-crisply bounded concepts. In this case the determination of the satisfaction of a
criteria Pk = (VQ(k), FQ(k)) by an object Di, tik, again equals the membership grade of
diQ(k) in FQ(k), tik = FQ(k)(diQ(k)). However in this case tik ∈ [0, 1], it takes a value in
the unit interval rather than simply in the binary set {0, 1}. An important implication
of this is that the overall satisfaction of the element Di will also lie in the unit interval.
This will allow for a richer and more discriminating ordering of the elements in
regard to their satisfaction to the query then simply satisfied or not, here we get a
degree of satisfaction. We note the evaluation of the overall satisfaction to a query Q
whose Agg operator is based on a well-formed logical formula can be implemented in
this framework. In particular conjuncting the satisfactions to two criteria pairs Pk1 and
Pk2 is implemented byMin(tik1, tik2). disjuncting the satisfactions to two criteria pairs
Pk1 and Pk2 is implemented byMax(tik1, tik2). The negation of the satisfaction to Pki is
implemented as 1 − tik1.

A second benefit obtained by using flexible queries is the allowance for more
sophisticated formulations for the operator Agg used to determine the overall sat-
isfaction to the query [6]. Let us look at some of these extensions.

A first class of extensions is a generalization of the operations used for imple-
menting the “anding” and “oring” operator. Assume P1 and P2 are two conditions
whose satisfaction for Di are ti1 and ti2. Classically the “anding” of the satisfactions
to these two criteria has been implemented using the Min operator:
P1 and P2 ⇒Min ti1, ti2ð Þ. The “oring” of the satisfactions to these two criteria has
been implemented using the Max operator: P1 or P2 ⇒Max ti1, ti2ð Þ. The t-norm
operator is a generalization of the “anding” operator [9], it provides a class of
cointensive operators that can be used to implement the conjunction. We recall a
t-norm is a binary operator T: [0, 1] × [0, 1] → [0, 1] having the properties:
symmetry, associativity, monotonicity and has one as the identity. Notable exam-
ples of t-norm in addition to the Min are TP(a, b) = ab and TL(a, b) = Max(0,
a + b − 1). Since for any t-norm T we have T(a, b) ≤ Min(a, b) then using other
t-norms increases the penalty for not completely satisfying the conditions.

The t-conorm operator provides a generalization of the oring operator.
A t-conorm is a mapping S: [0, 1] × [0, 1] → [0, 1] which has the same first three
properties of the t-norm binary, condition four is replaced by S(0, a) = a, zero as
Identity. In addition to the Max other notable examples of t-conorm are SP(a, b)=a
+ b − ab and TL(a, b)=Min(a + b, 1). We note for any t–norm S we have S(a,
b) ≥ Max(a, b).

Another extension to the standard situation is the inclusion of importance
associated with the conditions [10, 11]. Here we assume each of the q conditions Pk
has an associated importance weight wk ∈ [0, 1]. The methodology for including
importance depends on the aggregation relationship between the criteria, it is dif-
ferent for “anding” and “oring”.

Assume for object Di we have that tik ∈ [0, 1] as its degree of satisfaction to Pk.
Consider first the case in which we desire an “anding” of the Pk. That is our
aggregation imperative is expressed as
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ðP1, w1) and ðP2, w2) . . . and ðPq, wq).

In this case the weighted aggregation results in an overall the satisfaction Min
(h1, …, hq) where hk = Max((1 − wk), tik) [12].

It is interesting to observe the standard situation is obtained when all wk = 1. In
this case we get Mink[tik]. We can also observe that since Max((1 − wk), tik) ≥ tik
then Mink[Max((1 − wk), tik)] ≥ Mink[tik]. Thus the use of importances is effec-
tively to reduce the requirements, we are easing the difficulty. We also observe that
more generally we can replace Min with any t-norm T and Max with any t-conorm
S thus we can use Tq

k= 1½S((1 −wKÞ, tiKÞ� [10].
Consider now the case where we have an “oring” of the criteria. Thus here our

aggregation imperative is (P1, w1) or (P2, w2) or (P3, w3) or, …, (Pq, wq). In this
case the weighted aggregation and the satisfaction is Max(g1, g2, …, gq) where
gk = Min(wk, tik) [10, 13].

We observe the standard situation is obtained when all wk = 1. In this case we
get Maxk[tik]. We can also observe that since Min(wk, tik) ≤ tik then Maxk[Min(wk,
tik)] ≤ Maxk[tik]. Thus the use of importances reduces the influence of individual
criteria. We also observe that more generally we can replace Min with any t-norm T
and Max with any t-conorm S thus we can use Sqk= 1½T(wK, tikÞ�.

An interesting observation can be made with respect to the weighted “anding”
and “oring” observations. In the case of the weighted oring, increasing the weights
associated with the criteria can only result in an increase in the overall satisfaction
while in the case of the “anding” increasing the weights can only result in a decrease
in the satisfaction. More formally if we let wk and w̃k be two pairs of weights such
that w̃k ≥wk and let gk = T(wk, tik) and let gk̃ = Tðw̃k, tikÞ then for any t-conorm S,
we have S(g1, …, gq) ≤ S(g ̃1, . . . , g ̃q). On the other hand if we let

hk = S((1 − wk), tik) and h̃k = S((1 − w̃k), tik) then for any t-norm T, T(h1,…, hq) ≥
T(h̃1, …,h̃q).

We can make the following observation about the weighted “oring” aggregation
in the case of the using S = Max. In this case our overall aggregation is Max(g1,…,
gq) where gk = T(wk, tik) for a t-norm T. We further observe that if wk < 1 then for
any T and tik we have gk < 1. From this we can conclude that in the case of the
weighted “or” aggregation using S = Max we can never get an overall satisfaction
of one unless at least one at the criteria conditions has importance of one. We note
this is a necessary but not sufficient condition for getting an overall satisfaction of
one.

A corresponding result can be obtained in the case of the weighted “anding”
aggregation in the case of using T = Min. Recall the definition hk = S(w̃k, tik) for
any t-conorm S, from this we can observe that if wk < 1, then w̃k > 0 and hence for
any S and tik we have hk ≥ w̃k > 0. Since our overall aggregation is Min(h1, …,
hq) we can conclude that in this case of weighted “anding” aggregation we can not
get an overall satisfaction of zero unless at least one of the criteria conditions has
importance weight of one.
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An interesting formulation for the weighted “oring” aggregation occurs when we
use S(a, b) = Min(a + b, 1) and T(a, b) = ab. In this case (P1, w1) or (P2, w2) or …
or (Pq, wq) evaluates to Min ∑q

k= 1 wktik, 1
� �

Min(∑ k=1
q wktik,1). Thus here we take a

simple weighted sum and then bound it by the value one.
A correspondingly interesting formulation for the weighted “anding” can be had

if we use T(a, b) = Max(a + b − 1, 0) and S(a ̄, b) = a + b − ab. In this case

T g1, . . . , gq
� �

=1−Min ∑
q

k= 1
wktīk, 1

� �

The OWA operator [14] can provide a useful formulation for the aggregation
process in flexible querying of databases. We recall the OWA operator is aggre-
gation operator F: In → I so that F(a1, …, an) = ∑j wjbj where bj is the jth largest
of the ai and wj are collection of n weights such that wj ∈ [0, 1] and∑j wj = 1. We
note that if π is an index function so π(j) is the index of the jth largest ai, then
bj = aπ(j) and hence F(a1, …, an) = ∑j wj aπ(j). It is common to refer to the col-
lection of wj using an n vector W whose jth component is wj, in this case we refer to
W as the OWA weighting vector.

We observe that if w1 = 1 and wj = 0 for j ≠ 1 then F(a1,…, an) = Maxi[ai]. If
wn = 1 and wj = 0 for j ≠ n then F(a1, …, an) = Mini[a]. If wj = 1/n for all the j
then F(a1,…, an) = 1

n∑i ai. The OWA operator is a mean operator, it is monotonic,
symmetric and bounded, It is also idempotent

The OWA operator can be very directly used in flexible querying. Assume we
have a query with n component pairs, Pk = (VQ(k), FQ(k)) where FQ(k) is a fuzzy
subset over the domain of VQ(k). As in the preceding for any object Di we can
obtain tik = FQ(k)(diQ(k)). We can then provide an aggregation of these using the
OWA operator, F(ti1, ti2, …, tin). Essentially this provides a kind an average of the
individual satisfactions. We can denote this OWAW(Di). Different choices of
the OWA weights will result in different types of aggregation. If we use the weights
such that w1 = 1 then we get Maxk[tik] which is essentially an “oring” of the
components. If we use a weighting vector W such that wn = 1 we get Mink[tik]
which is an “anding” of the conditions. If wj = 1/n then we are taking a simple
average of the criteria satisfactions.

Using quantifiers and particularly linguistic quantifiers we can use the OWA
operator to provide a very rich class of aggregation operators [15]. A quantifier or
proportion can be seen as a value in the unit interval. In [16] Zadeh generalized the
concept of quantifier by introducing the concept of linguistic quantifiers. Examples
of these linguistic quantifiers are: most, about half, all, few and more then α
percent. Zadeh [16] suggested that one can represented these linguistic quantifiers
as fuzzy subsets of the unit interval. This if R is a linguistic quantifier we can
represent it as a fuzzy subset R of the unit interval so that for any y ∈ I, R(y) is the
degree to which the proportion y satisfies the concept R. An important class of
quantifiers are regular monotonic quantifiers. These quantifiers have the properties:
R(0) = 0, R(1) = 1 and R(x) ≥ R(y) for x > y. Thus for these quantifiers the

Retrieval from Uncertain Data Bases 279



satisfaction increases as the proportion increases. Examples of these are “at least p”,
“most”, “some”, “all” and “at least one”. In [15] Yager showed how to use the
fuzzy subsets associated with these quantifiers to generate the weights of an OWA
operator. In particular he suggested we obtain the weights as

wj =R(
j
n
Þ−R(

j− 1
n

Þ.

It can be shown if R is regular monotonic then the weights sum to one and lie in
the unit interval.

Using these ideas we can obtain a quantifier guided approach to flexible
querying. We can express a query as collection of n pairs, Pk = (VQ(k), FQ(k)) and
an aggregation imperative in terms of a linguistic quantifier R describing the pro-
portion of these pairs we require to be satisfied. We then express this quantifier R as
a fuzzy subset of the unit interval, R. Using this R we obtain a collection of OWA

weights, wj = R( jn)−R(
j− 1
n ) for j = 1 to n. Once having these weights we can

evaluate the satisfaction of each element Di as OWAR(Di). In [17] we showed how
to extend this to the case importance weighted criteria.

4 Lexicographic Formulated Queries

In the database query structure presented here we impose a priority ordering on the
conditions composing the query. In this approach conditions higher in priority
ordering play a more important role in determining the overall satisfaction of an
object to the query in the same way that letters in earlier positions a play in
determining the alphabetical order. The technique we shall develop will be called a
LEXicographic Aggregation (LEXA) query and it will make use of the prioritized
aggregation operator introduced in [18–20]. This approach will allow us to model
different query imperatives than in the preceding.

Here again we shall consider a query Q to consist of a collection of q pairs Pk
and an aggregation imperative. Each pair as in the preceding is of the form (VQ(k),
FQ(k)) where VQ(k) indicates an attribute name and FQ(k) is a fuzzy subset of the
domain of VQ(k) denoting the desired values for VQ(k). Again for each object
Di = (di1, …, diq) we can obtain the values tik = FQ(k)(dik), the satisfaction of the
pair Pk by Di. Here we will consider an aggregation imperative in the spirit of a
lexicographic ordering. This aggregation imperative requires an ordering of the Pk
indicating their priority in formulating the overall satisfaction to the query. While
our lexicographic aggregation query framework will work in the flexible environ-
ment we shall initially consider its performance in the binary situation.

We now describe the basic binary LEXA query. In this case it is assumed that
the tik are binary either 1 or 0, Pk is satisfied by Di or not. In the following we shall
assume there are m elements in the database, Di for i = 1 to m. As we subsequently
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see the output of a LEXA query is an ordering of the elements in Di according to
their satisfaction to lexicographic query.

A lexicographic aggregation query assumes a linear priority among the criteria,
the Pk, with respect to their importance. For simplicity we shall assume that the Pk
have been indexed according to this priority ordering:

P1 > P2 >⋯>Pq.

The following algorithm describes the process for forming the ordered list L

(1) Initiate: k = 1, D = {Di| i = 1 to m}, list L as empty
(2) Set F = ∅
(3) Test all elements Di ∈ Dwith respect Pk and place all those for which tik = 0 in F.
(4) Place all elements in F tied at the top available level of L.
(5) Set D = D − F
(6) If D = ∅ Stop
(7) Set k = k + 1
(8) If k > q

(a) Place all remaining elements in D tied as top level of L
(b) Stop

(9) Go to step 2

The result of this is the list L which is an ordered list of the satisfactions of the
elements in D to the lexicographic query Q. We note the higher up the list the better
the satisfaction.

There is another way we can generate the satisfaction ordering of the elements in
D under the priority ordering P1 > ⋅ ⋅ ⋅ > Pq. For each Di, starting from P1 and
preceding in increasing order find the first index k for which tik = 0. Assign Di a
score Si where

Si = q if Di meets no failures

Si = k− 1 otherwise

Using this method each Di gets a score Si ∈ {0, 1, …, q}. If we order the
elements by their value for Si we get L. We note that Si is the number of criteria Di

satisfied before it meets failure. This method for evaluating the score of satisfaction
of an element Di to a LEXA query is more useful then the preceding as it provides a
score is addition to an ordering.

It is interesting to note there is only one situation in which an element Di can
attain the maximal score Si = q, if all tik = 1. On the other hand there are many
ways Di can get the minimal score of Si = 0. In particular any Di which has ti1 = 0
will have Si = 0 regardless of the values of tik for k ≠ 1.

We further observe that since 0 ≤ Si ≤ q we can provide a kind of normal-

ization by defining Gi = Si
q . Here we are getting a value in the unit interval.
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**We shall introduce a more general implementation of the lexicographic
aggregation type query that will be appropriate for the case where the tik are values
from [0, 1] rather then being binary values from {0, 1}. In this environment for each
element Di we shall obtain a score Gi indicating its satisfaction to our LEXA query.

Again here we have a query Q consisting of q condition pairs, Pk = (VQ(k), FQ(k)).
In addition we have a priority ordering over the pairs guiding the lexicographic
aggregation,

P1 > P2 > P3 ⋯ >Pq.
Assume for object Di we have tik = FQ(k)(dik) as the degree to which Di satisfies

Pk. Our procedure for determining Gi is to calculate

Gi = ∑
q

k= 1
wiktik

where the wik are determined as follows.

(1) Set ui1 = 1

(2) uik = ∏k
j = 2 tiðj− 1Þ for k = 2 to q

(3) wik = 1
q uik

The important observation here is that the wik is proportional to the product of
the satisfactions of the higher priority conditions. We note that we can express
uik = uik−1Hik−1.

We can make some observations. For k1 < k2 we always have wik1 ≥ wik2.
Thus a lower priority condition can’t have a bigger weight than one that is higher.

We observe that if tik1 = 0 then wik2 = 0 for all k2 > k1.
We can show that Gi = 1 if and only tik = 1 for all k.
We also observe that Gi = 0 iff ti1 = 0. It is important to emphasize that this is

independent of the satisfaction to the other criteria. Zero satisfaction to the highest
priority criterion means zero overall satisfaction, there is no possibility for com-
pensation by other criteria.

Let us look at this process for the binary case to see that it correctly generalizes
the evaluation in the binary case we presented earlier. Consider the list of satis-
factions: ti1, ti2, …, tiq which here we assume are either one or zero. Assume tik is
the first one of these that is zero, hence tij = 1 for j < k. In this case we get that
uij = 1 for j ≤ k and ujk = 0 for j > k.

Hence

Gi = ∑
q

j = 1
wijtij =

1
q
∑
q

j = 1
uijtij =

1
q
∑
q

j = 1
tij
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Furthermore since tij = 1 for j < k and tij = 0 for j = k we get

Gi =
1
q
∑
k

j = 1
tij =

1
q
∑
k− 1

j = 1
1 =

k − 1
q

as desired. In the special case where all tij = 1 then all uij = 1 and all wij = 1
q and

hence Gi =
q
q = 1.

As discussed in [18] the approach we suggested can be extended to the case
when the ordering among the pairs is a weak ordering, we allow ties among the
conditions pairs with respect to their priority. Here we shall denote a condition pair
as P(k, j) where all pairs with the same k value are tied in the priority ordering. The j
value is just an indexing distinguishing among the tied pairs. Thus here we are
assuming the priority ordering is such that for k1 < k2 that P(k1, j) > P(k2, i) and
P(k1, j) = P(k1, i) for all j and i. We let nk denote the number of pairs with k in the
first term, thus n1 is the number of conditions with the highest priority. We shall
also let n = ∑q

k=1 nk.
Here we let ti(k, j) denote the satisfaction of the object Di to the condition pair P(k, j).

In this case we obtain the value Gi as

Gi = ∑
q

k= 1
wik ∑

nk

r = 1
tiðj, rÞ

� 	

Again it is a weighted sum of the satisfaction to each of the pairs. We emphasize
that each pair with the same k has the same weight wik. The procedure we use to
obtain the weights is similar to the earlier one except in the first step:

1. Calculate: Hij = Max
r = 1 to nj

½tiðj, rÞ�
(It is the satisfaction value of the least satisfied pair at the j level)

2.

ui1 = 1

uik = ∏
k

j = 1
Hiðj− 1Þ for k = 2 to q

3. wik = 1
n uik

Let us see how this plays out in the pure binary case where all ti(k, r) ∈ {0, 1}.
Let b be the k value at which we meet the first condition for which ti(k, r) = 0. In this
case we have that Hij = 1 for j < b and Hij = 0 for j = 0. Here then while ui1 = 1
we have for k = 2 to q that uik = ∏n

j = 1 Hiðj− 1Þ. From the above we get that

uik = 1 2≤ k≤ b

uik = 0 k> b
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Thus we get wik = 1
n for k = 1 to b and wik = 0 for k > b. From this we get

Gi = ∑q
k= 1 wik ∑nk

r = 1 tiðk, rÞ
� �

= ∑b
k= 1

1
n ∑nk

r = 1 tiðk, rÞ
� �

.
For all k < b all the elements have ti(k,r) = 1 hence

Gi =
1
n

∑
b− 1

k= 1
nk + ∑

nb

r = 1
tiðb, rÞ

� 	

We note at least one element in the second term is zero. We see that the
numerator of Gi is equal to the number of elements in the priority classes higher
than the first class where we meet failure plus all the pairs satisfied in the class that
we meet failure. An alternative expression of this numerator is the sum of all
satisfied pairs in priority classes up to and including the class when we meet our
first failure.

We here point to related work by Chomicki [21–24] on preferences in databases
and the on bipolar queries by Dubois and Prade [25, 26] and Zadrozny and
Kacprzyk [27, 28].

5 Querying Probabilistic Databases

In the preceding we have discussed several different paradigms for formulating
questions to databases. In particular we considered a query to be a collection of q
condition pairs, Pk = (VQ(k), FQ(k)), and an agenda for aggregating the satisfactions
to these pairs by a database element Di. We added flexibility by allowing FQ(k) to be a
fuzzy subset of the domain XQ(k) of VQ(k). In this flexible case we obtained the
degree of satisfaction of Pk by Di to be tik = FQ(k)(xiQ(k)) ∈ [0, 1] where xiQ(k) is the
value of VQ(k) for Di. Thus tik is the degree to which FQ(k) is true given the value of
VQ(k) for Di is xiQ(k). We now shall consider the situation in which the value of VQ(k)

for Di, xiQ(k), is random. More specifically if the domain XQ(k) = {yQ(k)1, yQ(k)2, …,
yQ(k)rQ(k)} then the knowledge of the value of VQ(k) for object Di, xiQ(k), is best
expressed as a probability distribution PiQ(k) where Prob(xiQ(k) = yQ(k)j) = pj/iQ(k).
In the special case where Pj/qQ(k) = 1 for some j then we have the preceding situation
in which xiQ(k) is exactly yQ(k)j.

Initially in the following discussion we shall assume all the Q(k) are distinct. We
shall subsequently consider the case where a query can involve multiple occur-
rences of the same attribute.

The approach we shall follow in this probabilistic situation is in the spirit of the
possible words approach used in [29–37]. We shall associate with every Di a
collection Z of q tuples. In particular Z = XQ(1) × XQ(2) × ⋅ ⋅ ⋅ × XQ(q). That is
each element z ∈ Z is of the form z = (z1, z2, …, zq) where zk ∈ XQ(k). For each
object Di in the database we now associate a probability distribution PDi over the
space Z so that the probability of z, PDiðz) = ∏q

k= 1 Prob(xiQðkÞ = zkÞ.
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We want to make one comment here. In the preceding we assumed all the VQ(k)

in a query where distinct. This is not a necessary requirement. However in the case
where the we have a multiple occurrences of the same attribute in the query care
must be taken in the formulation of the possible worlds. In the preceding we
formulated Z = XQ(1) × XQ(2) × XQ(q), here each element z ∈ Z is of the form
z = (z1, z2,, zq) where each zk ∈ XQ(k). In order to understand which happens when
all VQ(k) are not distinct we consider the situation where Q(1) = Q(2), here then VQ

(1) = VQ(2). Here the associated Z space has the additional required that for all z ∈
Z, z1 = z2. Thus any element in Z must have the same value of VQ(1) and VQ(2). In
addition we must make some modifications in the calculation of PDi(z). In par-
ticular we must note duplicate the probabilities and avoid using them twice, thus
PDi(z) must be based on the product of the distinct probabilities and hence we have

PDiðz) = ∏
q

k = 1 for all
distinct QðkÞ

Prob(xiQðkÞ = zkÞ

Another comment we want to make is regarding the relationship between dis-
tinct attribute values. Implicit in the preceding has been an assumption of inde-
pendence between the probability distribution of distinct attributes. In some cases
this may not be true. For example some values of V1 may not be allowable under
V2 while some values for V1 may mandate a particular value for V2. Such rela-
tionships require us to modify to possible elements in Z and condition the proba-
bility distribution in known ways. Nevertheless when including these special
conditions we still end up with a subset of tuples from Z with associated proba-
bilities, as a result in the following we shall neglect any special relationships
between the attributes as they don’t effect the subsequent discussion nor the basic
ideas of the approach introduced.

We now recall that our query consists of a collection of q constraints Pk = (VQ(k),
FQ(k)) where each FQ(k) is a fuzzy subset over the space XQ(k). We now apply these
constraints to the space of possible worlds Z. In particular we transform the space Z
to F so that each tuple z = (z1, …, zq) is transformed to new tuple

F zð Þ= ðFQ 1ð Þ z1ð Þ, FQ 2ð Þ x2ð Þ, . . . , FQ qð ÞðzqÞÞ

We note each element FQ(k)(xk) ∈ [0, 1]. Thus each term in F(z) is a tuple of q
values drawn from the unit interval, F(z) is a subset the space Iq. In addition for
each element Di in the database we can associate a probability distribution over the
space F. In particular for each Di we associate PDi(z) with the tuple F(z). Thus now
for any element Di we have a probability distribution on the space F of satisfactions
to the query components. We note that if two z tuples, z1 and z2, transform into the
same value, F(z1) = F(z2), we represent these in F with just one, F(z1), and use the
sum of the probabilities z1 and z2.
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In order to provide an intuitive understanding of the discussion to follow we
shall use the following database to illustrate our ideas.

Example 1 We consider a database with three attributes V1, V2 and V3. The domain
of these are respectfully:

X1 = a, b, cf g, X2 = red, bluef g, X3 = 10, 20f g
Let D be one object in the database and let x1, x2, x3 denote the values of V1, V2,

V3 for this object. In particular for each of these, x1, x2, x3, we have a probability
distribution

x1: Prob(a) = 0.4, Prob(b) = 0.5 and Prob(c) = 0.1
x2: Prob(red) = 0.7 and Prob(blue) = 0.3
x3: Prob(10) = 0.6 and Prob(20) = 0.4.

In this example the set of Z of possible worlds are Z = {(a, red, 10), (a, red, 20),
(a, blue, 10), (a, blue, 20), (b, red, 10), (b, red, 20), (b, blue, 10), (b, blue, 20), (c,
red, 10), (c, red, 20), (c, blue, 10), (c, blue, 20)}.

For the element D we get the probability of each of these components as shown
in Table 1.

Before preceding we want to point out that for any other object D* in the
database the set of possible worlds Z will be the same, the difference between D and
D* will be in the probabilities associated with the elements in Z.

We now consider our query as consisting of three components: P1 = (V1, F1),
P2 = (V2, F2) and P3 = (V3, F3) where each Fk is a fuzzy set over the space Xk

defining the required condition. Below are the associated fuzzy subsets

F1 =
1
a
,
0.6
b

,
0.2
c


 �
, F2 =

0.8
red

,
1

blue


 �
, F3 =

1
10

,
0.2
20


 �

Table 1 Probabilities of
elements in Z

Element in Z Probability

(a, red, 10) (0.4) (0.7) (0.6) = 0.167
(a, red, 20) (0.4) (0.7) (0.4) = 0.112
(a, blue, 10) (0.4) (0.3) (0.6) = 0.072
(a, blue, 20) (0.4) (0.3) (0.4) = 0.048
(b, red, 10) (0.5) (0.7) (0.6) = 0.21
(b, red, 20) (0.5) (0.7) (0.4) = 0.14
(b, blue, 10) (0.5) (0.3) (0.6) = 0.09
(b, blue, 20) (0.5) (0.3) (0.4) = 0.06
(c, red, 10) (0.1) (0.7) (0.6) = 0.042
(c, red, 20) (0.1) (0.7) (0.4) = 0.028
(c, blue, 10) (0.1) (0.3) (0.6) = 0.018
(c, blue, 20) (0.1) (0.3) (0.4) = 0.012
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We now can apply these constraints to our set Z of possibilities and also use the
probabilities for D and shown the results in Table 2.

We now consider the issue of evaluating the query Q for the object D in the
database. Let us recapitulate the situation. Associated with D we have a space F of
tuples Tj = (F1(z1), …, Fq(zq)), each tuple is an element from the space Iq. That is
each tuple is a collection of q values that the unit interval. In addition associated
with each tuple in F we have a probability. Parenthetically we note that the space F
of tuples is the same for each element Di in the database, the only distinction
between the elements in the database are the probabilities associated with each of
the tuples.

At this point we can reformulate more simply. We have a subset F ⊆ Iq with
arbitrary element Tj = (tj1, tj2, …, tjq). Furthermore for any database element Di we
have a probability distribution over the space F where pij is the probability asso-
ciated with the tuple Tj for the database object Di. We note that ∑nz

j = 1 pij = 1 where
nz is the cardinality of the space Z.

In addition associated with a query is an aggregation imperative that dictates
how we aggregate the satisfactions to the individual components, in particular Agg
(Tj) = Agg(tj1, tj2, …, tjq). After applying the Agg operation to the tuples in the
space F we end up with a collection of scalar values, Agg(F), consisting of the
elements Agg(Tj). For each Di we have a probability distribution over the set of
Agg(Tj). In particular for each Di and each Agg(Tj) we have pij as its probability.
We now illustrate the preceding with our earlier example and consider the appli-
cation of different aggregation imperatives.

Example 2 We have the collection of 12 tuples and their associated probabilities. In
Table 3 we consider three aggregation imperatives the first imperative is an
“anding” of all conditions, here Agg(Tj) = Mink(tjk), the second imperative is an

Table 2 Probabiities of
transformed elements

Element in Z Transform F(z) Probability

(a, red, 10) (1, 0.8, 1) 0.167
(a, red, 20) (1, 0.8, 0.2) 0.112
(a, blue, 10) (1, 1, 1) 0.072
(a, blue, 20) (1, 1, 0.2) 0.048
(b, red, 10) (0.6, 0.8, 1) 0.21
(b, red, 20) (0.6, 0.8, 0.2) 0.14
(b, blue, 10) (0.6, 1, 1) 0.09
(b, blue, 20) (0.6, 1, 0.2) 0.06
(c, red, 10) (0.2, 0.8, 1) 0.042
(c, red, 20) (0.2, 0.8, 0.2) 0.028
(c, blue, 10) (0.2, 1, 1) 0.018
(c, blue, 20) (0.2, 1, 0.2) 0.012
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average of all conditions, Agg(Tj) = 1
q∑

q
j = 1 tjk and the third imperative is an

“oring” of all conditions, here Agg(Tj) = Maxk(tjk)..
In a similar way we can implement any aggregation imperative.
Combining the probabilities of tuples with the same value for their anding we

get Table 4.
Combining the probabilities of the tuples with the same value for their oring we

get Table 5
Let us now summarize our situation for a query we obtained a collection Tj of

tuples. Associated with the query is an aggregation operation that converts Tj into a
single value Agg(Tj) indicating the overall satisfaction of the tuple. For simplicity
we denote these as Agg(Tj) = aj. Essentially we have a collection of degrees of
satisfaction, aj, of each possible world to the query. Finally for each element Di in
the database we have a probability distribution over the aj. Thus the satisfaction of
the query by the database object Di is a probability distribution

Table 3 Aggregated value of
elements in F

Tuple in F Probability And Average Oring

T1 = (1, 0.8, 1) 0.167 0.8 0.933 1
T2 = (1, 0.8, 0.2) 0.112 0.2 0.66 1
T3 = (1, 1, 1) 0.072 1 1 1
T4 = (1, 1, 0.2) 0.048 0.2 0.73 1
T5 = (0.6, 0.8, 1) 0.21 0.6 0.9 1
T6 = (0.6, 0.8, 0.2) 0.14 0.2 0.53 0.8
T7 = (0.6, 1, 1) 0.09 0.6 0.866 1
T8 = (0.6, 1, 0.2) 0.06 0.2 0.6 1
T9 = (0.2, 0.8, 1) 0.042 0.2 0.66 1
T10 = (0.2, 0.8, 0.2) 0.028 0.2 0.40.8
T11 = (0.2, 1, 1) 0.018 0.2 0.73 1
T12 = (0.2, 1, 0.2) 0.012 0.2 0.466 1

Table 4 Probabilities of
“anded” value

Value Prob

0.2 0.461
0.6 0.3
0.8 0.167
1 0.072

Table 5 Probabilities of
“ored” value

Value Prob

1 0.82
0.8 0.168
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a1 pi1
a2 pi2
⋮

ar pir

We emphasize that the set aj, which are the satisfactions of a possible world to
the query, is the same for all Di, the difference between the Di is reflected in the
probability distribution over the aj, the probabilities they assign to a possible world.

A natural question that arises is how to order the Di with respect to their sat-
isfaction to the query. Here we look to [38] for some ideas. If D and D̂ are two
database objects then for each of these we have a probability distribution over the
set A = {a1, …, ar}.

P bP
a1 p1 bP1
a2 P2 bP2
aj pj bPj
ar pr P̂r

In the following for simplicity we shall assume the aj have been indexed so that
they are in increasing order, aj > ak if j > k. In the following we shall use the
notation D> D̂ if D is a more satisfying alternative than D̂. What is clear is that if
pj = 1 and P̂k = 1 and j > k than D> D̂.

One approach to ordering the P and P̂ is to use the cumulative distribution
function, CDF, and the idea of stochastic dominance [39, 40].

We define CDF p aj
� �

= ∑j
i = 1 pi, this the probability that for object D the actual

satisfaction will be less or equal aj. Similarly we define CDFp ̂ aj
� �

= ∑j
i = 1 pî. Using

this we shall say D> D̂ if

CDFP ajð Þ≤CDFbpðajÞ for all j

CDFP ajð Þ≤CDFbpðajÞ for at least one j

We note that if CDFP(aj) ≤ CDF p ̂(aj) then ∑j
i = 1 pi ≤ ∑j

i = 1 pî this implies

1− ∑
r

i = j + 1
pi ≤ 1− ∑

r

i = j + 1
pî

which further implies that ∑r
i = j + 1 pi ≥ ∑r

i = j + 1 pî. Thus we see that under this
condition object D never has less probability associated with the higher satisfaction
then D̂. This provides a reasonable justification for asserting that D> D̂.
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While the CDF provides a way for ordering the elements if the conditions are
met, usually the condition CDFP(aj) ≤ CDF p ̂(aj) is not satisfied for all j. This
effectively means that the use of stochastic dominance does not provide the kind of
general approach necessary to cover all cases.

Another approach to comparing the two database elements is a scalarization.
Here we associate with each element a distinct value and then compare these values.
Since these are scalar values we are able to order them. One approach to scalar-
ization is to use the expected value of satisfaction of each the elements. Here
EV(D) = ∑r

j = 1 ajpj and EVðD̂Þ= ∑r
j = 1 ajpĵ. We then say D> D̂ if EV(D) > EV

(D̂). If EV(D) = EV(D) then we say they are tied.
It is interesting to show that if CDFP(aj) ≤ CDF p ̂(aj) for all j then EV(D)

EV(D̂). We shall illustrate this for the case when r = 4, the extension to the more
general case of r will be obvious. Since we assumed ai > aj for i > j then we can
express

a2 = a1 +Δ2 Δ2 > 0

a3 = a2 +Δ3 Δ3 > 0

a4 = a3 +Δ4 Δ4 > 0

We see

EV Dð Þ= ∑
4

j = 1
ajpj = a1p1 + ða1 +Δ2Þp2 + ða1 +Δ2 +Δ3Þp3 + ða1 +Δ2 +Δ3 +Δ4Þp4

EV Dð Þ=a1 ∑
4

j = 1
pj +Δ2 ∑

4

j = 2
pj +Δ3 ∑

4

j = 3
pj +Δ4 ∑

4

j = 4
pj

As we have already shown if CDFp(ai) ≤ CDF p ̂(ai) for all i then
∑4

j = 4 pj ≥ ∑4
j = 4 pĵ for all i. From this we see that if CDFP(ai) ≤ CDF p ̂(ai) for all i

then EV(D) ≥ EV(D̂).
A more general approach to scalarization of the probabilities of the database

elements can be had if we use some ideas from the OWA aggregation operator.
Here we let α ∈ [0, 1] be a measure our optimism. The more optimistic the more
we are anticipating the higher valued satisfactions to occur. Here then if α = 1 we
are always anticipating that ar will occur. While if α = 0 we are always anticipating
a1 will occur.

We now associate with a given α a function f(x) = xq where q = 1− α
α . We see

that if α → 0 then q → ∞ and if α → 1 then q → 0 and if α = 1/2 then q = 1.
Using this function we obtain a set of OWA weights as follows. Letting

Sj = ∑r
k = i pk we get
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wj = f Sj
� �

− f Sj + 1
� �

for j = 1 to rr

Using these weights we obtain EVαðDÞ= ∑r
j = 1 wjaj. We first see that if α = 1/2

then q = 1 and hence wj = ∑r
k = j pk − ∑r

k = j + 1 pk = pj. Here we get the usual
expected value. We see that if α → 0, q = ∞, since Sj < 1 for all j > 1 we have
(Sj)

∞ → 0 for j < 1 and (Si)
∝ = 1 hence in this case

w1 = 1

wj = 0 for j > 1

From this we obtain EV0(D) = a1, it is the least satisfaction. If α → 1, q = 0,
wr = 1, if pr > 0 and hence ED1(D) = ar. Here we see that in using EVα for the
extreme optimistic and pessimistic of α all database elements Dk will have the same
value for EVα(Dk) however for other values 0 < α < 1 as in the case of α = 0.5
each of the Dk will get its own unique value for EVα(Dk). Here then choosing α will
determine the ordering of the Dk.

6 Conclusion

Here we provided a framework for soft querying of databases. We described a soft
query as a collection of required conditions and an imperative for combining an
objects satisfaction to individual conditions to get its overall satisfaction. We
investigated tools that can enrich this process by enabling the inclusion of more
human focused considerations. We described some more sophisticated techniques
for aggregating the satisfactions of the individual conditions based on the inclusion
of importances and the use of the OWA operator. In addition to considering more
human focused aspects of the query we looked at databases in which the infor-
mation in the database can have some uncertainty. We particularly considered
probabilistic.
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Part IV
Decision Making and Optimization



An Ordinal Multi-criteria Decision-Making
Procedure in the Context of Uniform
Qualitative Scales

José Luis García-Lapresta and Raquel González del Pozo

Abstract In this contribution, we propose a multi-criteria decision-making proce-

dure that has been devised in a purely ordinal way. Agents evaluate the alternatives

regarding several criteria by assigning one or two consecutive terms of a uniform

ordered qualitative scale to each alternative in each criterion. Weights assigned to

criteria are managed through replications of the corresponding ratings, and alterna-

tives are ranked according to the medians of their ratings after the replications.

Keywords Multi-criteria decision-making ⋅ Group decision-making ⋅ Qualitative

scales ⋅ Majority Judgment

1 Introduction

Majority Judgment (MJ) is a recent voting system introduced and analyzed by Balin-

ski and Laraki [2, 3]. Under MJ, agents evaluate each alternative with a linguistic

term of a fixed ordered qualitative scale (the authors consider six linguistic terms for

evaluating candidates in political elections: ‘to reject’, ‘poor’, ‘acceptable’, ‘good’,

‘very good’ and ‘excellent’). The alternatives are ranked according to the medians of

the obtained ratings. The authors also propose two different tie-breaking processes

for obtaining a final ranking on the set of alternatives.

MJ does not care whether the qualitative scale is or not uniform (the psychological

distance between consecutive terms of the scale could be or not the same). Addition-

ally, when the number of ratings is even MJ only considers one of the medians, the

lower median (as shown in Felsenthal and Machover [8, Example 3.7], if the upper
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median is chosen the outcome could be different to the one obtained when choosing

the lower median). This asymmetry and loss of information could be relevant when

the number of ratings is low.

As all voting systems, MJ may produce some paradoxes and inconsistences (some

of them can be found in Felsenthal and Machover [8]). Some problems of MJ have

been solved by using different techniques (see García-Lapresta and Martínez-Panero

[10] and Falcó and García-Lapresta [5]).

In this contribution, we propose an alternative and extended procedure of MJ

by allowing agents to assign one or two consecutive terms of the qualitative scale,

when they hesitate. Moreover, we consider different criteria that can be weighted

in a different way, but by using an ordinal treatment. Additionally, we take into ac-

count the two medians of the corresponding ratings, avoiding a loss of information.

This richer information requires to consider an appropriate linear order on the set of

feasible pairs of medians.

We note that the possibility of using more than one linguistic term for assess-

ing alternatives has been considered by Travé-Massuyès and Piera [14], Roselló

et al. [13], Agell et al. [1], Falcó et al. [6, 7] and García-Lapresta et al. [9], among

others.

The proposed multi-criteria decision-making procedure is shown by taking into

account some data obtained in a case study (García-Lapresta et al. [9]).

The rest of the contribution is organized as follows. Section 2 is devoted to intro-

duce the proposed multi-criteria decision-making procedure. Section 3

includes the case study. Finally, Sect. 4 concludes with some remarks.

2 The Decision Procedure

In this section we establish the multi-criteria decision-making procedure. First, we

introduce the notation and basic notions.

2.1 Notation and Basic Notions

Let A = {1,… ,m}, with m ≥ 2, be a set of agents and let X = {x1,… , xn}, with

n ≥ 2, be the set of alternatives which have to be evaluated by the agents regard-

ing a set of different criteria C = {c1,… , cq}. Initially, each agent may assign a

linguistic term to every alternative in each criterion within an ordered qualitative

scale  = {l1,… , lg}, arranged from the lowest to the highest linguistic terms, i.e.,

l1 < l2 < ⋯ < lg, where the granularity of  is at least 3 (g ≥ 3). It is assumed that

the linguistic scale is uniform: the psychological distance between every pair of con-

secutive terms of the scale is the same.
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Since agents could hesitate on which linguistic term is the more appropriate to

assign in each case, agents are allowed to assign two consecutive linguistic terms of

the scale. Thus, we consider the set of these intervals:

2 = {[lr, ls] ∣ r, s ∈ {1,… , g}, s ∈ {r, r + 1}}.

Taking into account that [lr, lr] = {lr}, we will identify the linguistic term lr ∈ 

with the interval [lr, lr] ∈ 2 and, then,  ⊂ 2. Notice that the granularity of 2
is 2g − 1.

We extend the original order on 
(
l1 < l2 < ⋯ < lg

)
to 2 in the natural way:

lr < [lr, lr+1] < lr+1, for every r ∈ {1,… , g − 1}.

The opinions of all the agents over all the alternatives regarding the criterion

ck ∈ C are collected in a profile Vk
, that is a matrix of m rows and n columns with

coefficients in 2

Vk =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

v1,k1 ⋯ v1,ki ⋯ v1,kn
⋯ ⋯ ⋯ ⋯ ⋯
va,k1 ⋯ va,ki ⋯ va,kn
⋯ ⋯ ⋯ ⋯ ⋯
vm,k1 ⋯ vm,ki ⋯ vm,kn

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=
(
va,ki

)
,

where va,ki is the rating given by the agent a to the alternative xi with respect to the

criterion ck.
Since each criterion may have different importance in the decision, we consider

a weighting vector w = (w1,… ,wq) ∈ [0, 1]q, with w1 +⋯ + wq = 1. For practical

reasons, we assume that these weights have at most two decimals, i.e., the percent-

ages 100 ⋅ w1,… , 100 ⋅ wq are integer numbers.

A binary relation⪰ on a set Z ≠ ∅ is a linear order if it is complete (x ⪰ y or y ⪰ x,

for all x, y ∈ Z), transitive (if x ⪰ y and y ⪰ z, then x ⪰ z, for all x, y, z ∈ Z) and anti-

symmetric (if x ⪰ y and y ⪰ x, then x = y, for all x, y ∈ Z). As usual, the asymmetric

and symmetric parts of a linear order ⪰ are denoted by ≻ and ∼, respectively.

In the next section we will need to compare some pairs of intervals of linguistic

terms,

P = {([lr, ls], [lt, lu]) ∈ 2 × 2 ∣ r + s ≤ t + u}.

We will use the following binary relation on P

([lr, ls], [lt, lu]) ⪰P ([lr′ , ls′ ], [lt′ , lu′ ]) ⇔

⎧
⎪
⎨
⎪
⎩

r + s + t + u > r′ + s′ + t′ + u′

or

r + s + t + u = r′ + s′ + t′ + u′ and t + u − r − s ≤ t′ + u′ − r′ − s′,
(1)

for all [lr, ls], [lt, lu], [lr′ , ls′ ], [lt′ , lu′ ] ∈ P.



300 J.L. García-Lapresta and R. González del Pozo

It is easy to check that ⪰P is a linear order on P and that (1) is equivalent to

⎧
⎪
⎨
⎪
⎩

r + s + t + u > r′ + s′ + t′ + u′

or

r + s + t + u = r′ + s′ + t′ + u′ and t + u ≤ t′ + u′
(2)

and

⎧
⎪
⎨
⎪
⎩

r + s + t + u > r′ + s′ + t′ + u′

or

r + s + t + u = r′ + s′ + t′ + u′ and r + s ≥ r′ + s′.
(3)

Notice that

r + s + t + u
4

=
r+s
2

+ t+u
2

2

is the average of the midpoints of the intervals [r, s] and [t, u].
Moreover,

t + u − r − s
4

=
t+u
2

− r+s
2

2

is the difference between the midpoints of the intervals [t, u] and [r, s].
Then, the two conditions appearing in the lexicographic order ⪰P can be inter-

preted through the midpoints of the corresponding intervals. First, the bigger the

average of midpoints, the better. In the case of a tie, the smaller the difference be-

tween midpoints, the better.

Example 1 If g = 3, then P is ordered in the following way

(l3, l3) ≻P ([l2, l3], [l2, l3]) ≻P (l2, l3) ≻P (l2, [l2, l3]) ≻P ([l1, l2], l3) ≻P

(l2, l2) ≻P ([l1, l2], [l2, l3]) ≻P (l1, l3) ≻P ([l1, l2], l2) ≻P (l1, [l2, l3]) ≻P

([l1, l2], [l1, l2]) ≻P (l1, l2) ≻P (l1, [l1, l2]) ≻P (l1, l1).

2.2 The Procedure

The proposed multi-criteria decision-making procedure is divided in the following

steps.

∙ Step 1. Gather the ratings given by the agents in the corresponding profiles

V1
,… ,Vq

.

∙ Step 2. Replicate the previous profiles according to the corresponding percentages

100 ⋅ w1,… , 100 ⋅ wq. In practice, calculate the greatest common divisor (gcd) of
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percentages associated with the weights, and divide each percentage by the gcd.

Then, the minimum number of replications of each profile is obtained.

For instance, if there are four criteria and the weights are w1 = 0.15, w2 = 0.20,

w3 = 0.25 and w4 = 0.40, then gcd(15, 20, 25, 40) = 5 and the profiles V1
, V2

, V3

and V4
should be replicated 15∕5 = 3, 20∕5 = 4, 25∕5 = 5 and 40∕5 = 8 times,

respectively.

∙ Step 3. For each alternative xi ∈ X, arrange the obtained ratings (taking into

account the corresponding replications) in an increasing fashion.

∙ Step 4. Select the medians Mi ∈ P of the ratings for each alternative xi ∈ X in the

following way:

1. If the number of ratings is odd, then duplicate the median. Thus,

Mi = ([lr, ls], [lr, ls]) for some [lr, ls] ∈ 2.

2. If the number of ratings is even, then take into account the two medians. Thus,

Mi = ([lr, ls], [lt, lu]) for some
(
[lr, ls], [lt, lu]

)
∈ P.

∙ Step 5. Rank order the alternatives through the linear order ⪰P, defined in (1), (2)

and (3), by applying it to the corresponding medians:

xi ⪰X xj ⇔ Mi ⪰P Mj,

for all xi, xj ∈ X.

∙ Step 6. Since some alternatives can share the same median(s), it is necessary to

devise a tie-breaking process for ordering the alternatives. We propose to use a

sequential procedure based on Balinski and Laraki [2] (see Balinski and Laraki

[4] for practical examples). It consists of withdrawing the median(s) of the ratings

associated with the alternatives that are in a tie, and then selecting the new me-

dian(s) of the remaining ratings for the corresponding alternatives and applying

Steps 4 and 5. The process continues until the ties are broken. It is important to

note that alternatives with different ratings never are in a final tie.

The proposed multi-criteria decision-making procedure inherits (even enhances)

good properties from MJ. We now pay attention on some of them (see Felsenthal

and Machover [8]).

1. Voter-expressivity: agents not only rank order the alternatives (as in the prefer-

ential approach), but they assign grades in a enriched qualitative scale, 2. In

fact, there are (2g − 1)(g − 1) different ways in which va,ki > va,kj .

2. Anonymity: all agents are treated equally.

3. Neutrality: all alternatives are treated equally.

4. Unanimity: if all voters award alternative xi a higher rating than to every other

alternative in each criterion, then xi wins.

5. Transitive ordering: alternatives are ranked in a linear order; one alternative is

necessarily ranked ahead or behind another, unless they have identical ratings in

all the criteria.
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6. Independence of irrelevant alternatives: if alternative xi wins, then xi would still

win if another alternative, xj, is removed, ceteris paribus.
7. Monotonicity: if alternative xi wins, then xi would still win if one of the xi’s

ratings va,ki increases, ceteris paribus.

3 An Illustrative Case Study

We now show how the proposed multi-criteria decision-making procedure works

taking into account some data obtained in a case study carried out in Trigo restaurant

in Valladolid (November 30th, 2013), under appropriate conditions of temperature,

light and service.

A total of six judges (agents) trained in the sensory analysis of wild mushrooms

were recruited through the Gastronomy and Food Academy of Castilla y León. When

the test was being carried out there was no communication among judges, and the

samples were given without any identification. For more details, see García-Lapresta

et al. [9].

All six judges assessed the wild mushrooms included in Table 1 through the five

linguistic terms of Table 2 (or the corresponding intervals of two consecutive lin-

guistic terms, when they hesitated) under three criteria: appearance, smell and taste.

Notice that the granularity of 2 is 9:

2 =
{
l1, [l1, l2], l2, [l2, l3], l3, [l3, l4], l4, [l4, l5], l5

}
.

Table 1 Alternatives

x1 Raw Boletus pinophilus
x2 Raw Tricholoma portentosum
x3 Cooked Boletus pinophilus
x4 Cooked Tricholoma portentosum

Table 2 Linguistic terms in 

l1 I don’t like it at all

l2 I don’t like it

l3 I like it

l4 I rather like it

l5 I like it so much
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Table 3 Ratings given by the judges

1 2 3 4 5 6

x1 Appearance l4 l4 l5 l5 l3 l4
Smell [l4, l5] l3 [l4, l5] l5 l3 l5
Taste l5 l5 [l4, l5] l5 l4 [l4, l5]

x2 Appearance l4 l3 l4 l5 l3 [l2, l3]
Smell l3 [l2, l3] l4 l3 l2 [l2, l3]
Taste l3 l3 [l4, l5] l4 l2 l4

x3 Appearance l5 l4 l4 l4 l3 l4
Smell l5 l5 l5 l4 l3 [l4, l5]
Taste [l4, l5] l5 l5 l5 l4 [l4, l5]

x4 Appearance l5 l3 [l4, l5] l5 [l2, l3] l4
Smell l5 l3 l5 l3 [l3, l4] l4
Taste l4 l4 l5 l3 l4 [l3, l4]

Table 3 includes the ratings provided to the alternatives in all the criteria.

Notice that only l1 and [l1, l2] of 2 were not used for the judges, and five of the

six judges used at least once two consecutive linguistic terms; in overall 20.83% of

the ratings had two consecutive linguistic terms (less than in the tasting described in

Agell et al. [1], where 40% of the ratings had two or more linguistic terms).

We considered the weights w1 = 0.2 for appearance, w2 = 0.3 for smell and

w3 = 0.5 for taste, i.e., w = (0.2, 0.3, 0.5) (these weights are usual in this kind of

tasting). After replicating the profiles V1
,V2

and V3
2, 3 and 5 times, respectively,

and applying the steps 3, 4 and 5, we obtain the following medians:

M1 =
(
[l4, l5], [l4, l5]

)
, M2 =

(
l3, l3

)
, M3 =

(
[l4, l5], [l4, l5]

)
, M4 =

(
l4, l4

)
.

Then, x1 ∼X x3 ≻X x4 ≻X x2. In order to break the tie between x1 and x3, we apply

step 6 and, after four tiebreakers, we obtain the following medians

M1 =
(
[l4, l5], [l4, l5]

)
and M3 =

(
[l4, l5], l5

)
. Consequently, the final ranking

is x3 ≻X x1 ≻X x4 ≻X x2. We note that this result coincides with the one obtained

in García-Lapresta et al. [9] following a very different procedure based on geodesic

distances and a penalization of the imprecision.

4 Concluding Remarks

The multi-criteria decision-making we have proposed in this contribution has been

devised within the framework of uniform qualitative scales. In that setting, makes

sense to consider the medians of the corresponding ratings as the collective rating.

It is not the case of non-uniform qualitative scales, where medians could not capture
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the collective opinion. As further research, we plan to devise an appropriate proposal

which takes into account the ordinal proximities among linguistic terms of the scale,

following García-Lapresta and Pérez-Román [11, 12].
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FRIM—Fuzzy Reference Ideal Method
in Multicriteria Decision Making

E. Cables, M.T. Lamata and J.L. Verdegay

To Mario, Professor Mario Fedrizzi, whose friendship, high
scientific and academic level, have influenced us along the
years.

Abstract There are numerous compensatory multicriteria decision methods that
are used for decision making. Among them, we consider the TOPSIS method for its
rationality and easy applicability. This method is based on the concept that the
alternative chosen should be the one whose distance to the positive ideal solution is
smaller and simultaneously, the distance to the negative ideal solution is as large as
possible. Based on this idea, the Reference Ideal Method (RIM) can be considered
as an extension of the TOPSIS method when considering that the ideal solution
does not have to be the maximum or minimum value, but may be a value between
them. RIM gives good solutions but does not always obtain the solution when
operating with fuzzy numbers. In this paper its extension is proposed to work with
vagueness and uncertainty, resulting in the Fuzzy Reference Ideal Method (FRIM),
with its applicability being illustrated through an example built frequency from a
real practical problem.

1 Introduction

Humans are faced with situations each and every day where they have to choose
among a set of options. In general, decision-makers make their choices following a
set of rules and heuristic associated with their experience level, their independence
degree, the type of information available, etc. In every situation it is necessary to
consider that there are not unique criteria for making decisions, but that the
decision-maker has to decide taking into account different decision criteria; thus, let
us focus on the so-called Multi Criteria Decision Making (MCDM) problems and
methods. In these circumstances, to select the most favourable alternative of the set,
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we must resort to operating methods that assess alternatives objectively and
rationally with respect to previously established criteria and they may have asso-
ciated weights reflecting their value, intensity, importance, etc.

The quality of our decisions depends directly on these methods, which must be
able to synthesize large amount of information, often from different sources and
therefore with different natures and different meanings. The MCDM problem res-
olution depends on the effectiveness, efficiency and functionality of these methods
which are of great importance.

Among the wide variety of MCDM methods, in this paper we will consider those
associated with compensatory strategy which take into account that the chosen
alternative is superior to the other alternatives in the sum of the weighted utilities of
all the criteria considered; by selecting, at the end of the process, the alternative
with a higher score. In other words, we will consider methods that permit trade-offs
between criteria [17]. It is important to mention that in these methods, a negative
value on one attribute can be compensated by an equal or higher value on another
attribute.

• Among the compensatory methods we can consider the methods using:
• A utility function, as is the case of the Analytical Hierarchy Process (AHP) [25],

the Analytical Network Process (ANP) [26], or the SMART method [11],
among others.

• An outranking relation between alternatives, for example: the ELECTRE
method [27] and the PROMETHEE method [3]. The identification of the ideal
solution to perform the aggregation of information, for example: the TOPSIS
method [33], the VIKOR method [22], and the Reference Ideal Method
(RIM) [5].

• Moreover, from the high level of imprecision that is reflected in the information
collected in real decision problems, different MCDM methods have been
extended or combined, so as to operate with fuzzy information [20], for
example: The AHP method, [4, 7, 15, 28, 32], the ANP method, [16, 19, 29], the
ELECTRE method and their respective variants and applications such as
ELECTRE III [24], ELECTRE TRI [14, 23, 27, 30], the PROMETHEE method
[2, 13], the TOPSIS method, with different variants, [1, 5, 9, 12] and the VIKOR
method [8, 10, 18, 21, 31] among many others.

As can be observed, there are different MCDM methods using fuzzy numbers.
These methods have as their purpose to resolve the high levels of imprecision that
the information presents to confront decision making problems in different areas
with a high degree of objectivity. In general, these methods consider that the best is
the maximum value when it comes to profits and the worst when we consider
losses.

It is also necessary to consider problems, both in the crisp as well as in the fuzzy
case, where for a given criterion, “the best” should not be the maximum (profit
case) or the minimum (losses case), but “the optimum” may be a value between the
minimum and the maximum value. Such will be the case of the pH of a cosmetic,
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the temperature of a wine, the fat content in food, the age of a person to access a
specific job, etc. In order to address these situations where the best is not the
maximum neither the minimum value and to reach operational solutions, RIM was
presented [6]. RIM is a new method based on the concept of “ideal solution value”,
where this concept will be any value between the maximum and the minimum
value, with this ideal solution being the main difference with the VIKOR and
TOPSIS methods in which this value is the extreme value.

But RIM, as with other MCDM methods, cannot be applied directly to problems
where the information is expressed imprecisely, or in other words to problems in
which there is vagueness or imprecision in data and therefore will be expressed as
fuzzy numbers. Therefore, the aim of this paper is to present the Fuzzy Reference
Ideal Method (FRIM) that modifies, broadens and extends the original RIM. Thus,
FRIM can operate in situations where the best for a particular criterion could be the
maximum value, the minimum value or an intermediate value among them, it can
operate with fuzzy numbers and therefore solve situations that until now had not
been addressed.

Consequently, the problem to be solved has already been raised in this section
and we have performed a discussion of some of the most recognized compensatory
MCDM methods related to the problem, as well as the extension to operate with
imprecise information. In the next section, RIM and the problems derived from
operating with fuzzy numbers are presented. The third section is dedicated to
developing FRIM itself, to finish by presenting a real illustrative example of the
new formulation that we extract from the results of a research project that we are
currently developing for a consumer organisation in Spain.

2 Background: The Reference Ideal Method (RIM)

Different MCDM reported in the literature, require a valuation matrix M, where its
elements xij represent the evaluation of all alternatives Ai, i = 1, 2, . . . , m for each
one of the criteria Cj, j = 1, 2, . . . , n and wj is the weight associated with each
criterion.

M =

w1

C1

w2

C2 ⋯
wn

Cn

A1
A2

⋮
Am

x11 x12 ⋯ x1n
x21 x22 ⋯ x2n
⋮ ⋮ ⋱ ⋮
xm1 xm2 ⋯ xmn

0
BB@

1
CCA
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In this case, RIM also uses a valuation or judgments matrix and from it the
calculations are performed to rank the alternatives involved in the decision-making
process. Therefore, supposing the decision matrix M is known, RIM is based on
identifying for each criterion Cj, j = 1, 2, . . . , n the concepts of Range and Ref-
erence Ideal:

The Range Rj = Aj,Bj
� �

indicates any interval, ordered set of labels or ordered
set of values that identify a domain of discourse and that is associated with each one
of the criteria.

The Reference Ideal RIj = Cj,Dj
� �

, is an interval, an ordered set of labels, labels
or simple values, which represent the optimal value, the maximum importance or
relevance of the criterion Cj in a given Range.

Then, from the abovementioned concepts, RIM is based on determining the
shortest distance to the Reference Ideal, considering the distance of a given rating
xij, to their respective Cj,Dj

� �
, as follows:

dmin xij, Cj,Dj
� �� �

=min xij −Cj
�� ��, xij −Dj

�� ��� � ð1Þ

Once the distance matrix has been obtained, it is necessary to normalize it. This
operation is performed with the aim of transforming all values to the same scale,
because these values can usually represent different magnitudes and different
meanings. Thus, we see that the TOPSIS, VIKOR and RIM methods have different
metrics for the process.

Particularly, RIM performs normalization of any xij ∈ Aj,Bj
� �

value through the
following function [12].

f : xij ⊗ A,B½ �⊗ C,D½ �→ 0, 1½ �

f xij,Rj,RIj
� �

=

1 if xij ∈ Cj,Dj
� �

1− dmin xij,RIjð Þ
dist Aj ,Cjð Þ if xij ∈ Aj,Cj

� �
∧Aj ≠Cj

1− dmin xij,RIjð Þ
dist Dj ,Bjð Þ if xij ∈ Dj,Bj

� �
∧Dj ≠Bj

0 in other case

8>>>>><
>>>>>:

ð2Þ

Example 1 To show the behaviour of the f function, we will consider Fig. 1,
Let us suppose R= A,B½ �= 0, 10½ �, C,D½ �= 5, 7½ �, and the three possibilities

x=2, y=6 and z=8. When calculating the f function image for the x, y, z values,
we obtain:

Fig. 1 Representation of
values A, B, C, D, x, y, and
z in the real line
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f x,R,RIð Þ=1−
min x−Cj j, x−Dj jð Þ

dist A,Cð Þ =1−
min 2− 5j j, 2− 7j jð Þ

5
= 1−

3
5
=

2
5

f y,R,RIð Þ=1

f z,R,RIð Þ=1−
min z−Cj j, z−Dj jð Þ

dist D,Bð Þ =1−
min 8− 5j j, 8− 7j jð Þ

3
= 1−

1
3
=

2
3

As we see, RIM has been able to solve a decision problem, where “the best” can
be any value v∈ A,B½ �, (not just the extremes A or B). However, when fuzzy
numbers are considered, RIM presents problems; therefore in the next paragraph we
will see what these problems are and how to solve them.

3 The Fuzzy Reference Ideal Method (FRIM)

Until now we have worked on a set of real numbers. However, if the values are not
real ones, but fuzzy numbers, it becomes necessary to reformulate the expression
(1) and therefore (2). When it is necessary to operate with fuzzy numbers the
distance between two fuzzy numbers Xĩj, D̃ij, will be given by the vertex method
distance defined in (3):

dist:X ̃ x Y ̃→ℝ

dist X ̃ij, D̃ij
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

x1 − d1ð Þ2 + x2 − d2ð Þ2 + x3 − d3ð Þ2
� 	r

ð3Þ

Furthermore, and as we have seen before, when there is vagueness in the data,
the formulation used by RIM cannot be applied directly and we will thus need to
reformulate the distance measure to a fuzzy interval.

3.1 Minimal Distance to a Fuzzy Interval

As it has arisen, RIM is based on determining the shortest distance to the reference
ideal, and in this case, when operated with fuzzy numbers it is possible to observe
that it is not sufficient with the Euclidean distance. For this, we define the minimal
distance of a fuzzy number to an interval bounded by fuzzy numbers (or a fuzzy
number) through the following definition.

Definition 1 Let X ̃,C ̃, D̃ be positive fuzzy numbers such that, X ̃= x1, x2, x3ð Þ,
C ̃= c1, c2, c3ð Þ, D ̃= d1, d2, d3ð Þ, then the minimal distance of the value X ̃ij to the
interval IRj̃ = C ̃j,D ̃j

� �
, is given by the function d*min, where:
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d*min:Xĩj⊗ IR ̃j
� �

→ℝ

d*min X ̃ij, IRj̃
� �� �

=min dist X ̃ij,C ̃j
� �

, dist X ̃ij, D̃j
� �� � ð4Þ

where, the functions dist Xĩj,C ̃j
� �

and dist X ̃ij,D ̃j
� �

are calculated using the
expression (3).

3.2 Normalization in FRIM

As such, RIM carries out the normalization process of the decision matrix through
expression 2, which should not be used when we operate with fuzzy numbers. It
may be the case that the value assigned to the variable X ̃ is not completely included
in the Reference Ideal interval C ̃j, D̃j

� �
. In this case X ̃ij ∩ C ̃j,D ̃j

� �
≠∅. This would

be the case of the Y ̃ value on the interval C ̃j,D ̃j
� �

, as shown in Fig. 2.
Thus, the reformulation of (2) is expressed in the following definition.

Definition 2 Let X ̃, Ã, B̃, C ̃, D̃ be positive fuzzy numbers such that,
X ̃= x1, x2, x3ð Þ, Ã= a1, a2, a3ð Þ, B ̃= b1, b2, b3ð Þ, C ̃= c1, c2, c3ð Þ,
D ̃= d1, d2, d3ð Þ, where the interval Rj̃ = Ãj, B ̃j

� �
represents the range, the interval

IRj̃ = C ̃j, D̃j
� �

represents the Reference Ideal and C ̃j, D ̃j
� �

⊆ Ãj, B̃j
� �

for each cri-
terion Cj̃, then the normalization function f *, is given by:

f * Xĩj, Rj̃
� �

, IRj̃
� �� �

=

1 if Xĩj ∈ IRj̃
� �

1−
d*min Xĩj, IRj̃

� �� �
dist A ̃j,C ̃j

� � if X ̃ij ∈ A ̃j,C ̃j
� �

∧Xĩj∉ IRj̃
� �

∧ dist Aj̃,C ̃j
� �

≠ 0

1−
d*min Xĩj, IRj̃

� �� �
dist D ̃j,B ̃j

� � if Xĩj ∈ D ̃j,Bj̃
� �

∧Xĩj∉ IR̃j
� �

∧ dist Dj̃, B̃j
� �

≠ 0

0 in other case

8>>>>>>><
>>>>>>>:

ð5Þ

where:
d*min X ̃ij, IRj̃

� �� �
is obtained by applying (4).

Fig. 2 Representation of the
fuzzy Reference ideal and the
fuzzy numbers X ̃ and Y ̃
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dist A ̃j,C ̃j
� �

and dist D̃j, B̃j
� �

are obtained by applying (3).

Example 2 Let us suppose Ãj, Bj̃
� �

= 0, 15, 35ð Þ, 110, 135, 150ð Þ½ �,
Cj̃, D̃j
� �

= 50, 52, 54ð Þ, 57, 60, 63ð Þ½ � and we wish to normalize the values
X ̃= 56, 59, 62ð Þ and Y ̃= 59, 62, 65ð Þ then:

f * X ̃,R ̃j, IR ̃j
� �

=1

In this case the fuzzy number X ̃, is totally included in the interval that represents
the Reference Ideal.

f * Y ̃, R̃j, IR ̃j
� �

=1−
d*min Y ̃, C ̃j, D̃j

� �� �
max dist Ãj,C ̃j

� �
, dist D̃j, B̃j

� �� � =1−
2
73

= 0.9726

In this case Y ̃ is not completely included in the Reference Ideal with the result
being near to 1.

4 Fuzzy RIM Algorithm

From the formulations showed previously, it can be considered that the FRIM
algorithm stays similar to the RIM algorithm, because only step 2 changes.

Therefore, the algorithm FRIM steps are described below:
Step 1. Definition of the work context.

First, the conditions in the work context are established, and for each criterion Cj

the following aspects are defined:

• The Range Ãj,B ̃j
� �

, that from now will be denoted by R ̃j.
• The Reference Ideal Cj̃, D̃j

� �
, that from now will be denoted by IR ̃j.

• The weight wj associated to the criterion.

Step 2. Obtain the decision matrix V in correspondence with the defined criteria. In
this case, the v ̃ij elements represent triangular fuzzy numbers.

V =

v1̃1
v2̃1
⋮
vm̃1

v1̃2
v2̃2
⋮
vm̃2

⋯
⋯
⋱
⋯

v ̃1n
v2̃n
⋮
vm̃n

0
BB@

1
CCA
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Step 3. Normalize the decision matrix V , depending on the reference ideal.

N =

f *ðv1̃1, R̃1, IR1̃Þ f *ðv1̃2,R ̃2, IR2̃Þ ⋯ f *ðv1̃n, R̃n, IRñÞ
f *ðv2̃1, R̃1, IR ̃1Þ f *ðv2̃2,R ̃2, IR2̃Þ ⋯ f *ðv2̃n, R̃n, IRñÞ
⋮ ⋮ ⋱ ⋮
f *ðvm̃1, R̃1, IR1̃Þ f *ðvm̃2,R ̃2, IR ̃2Þ ⋯ f *ðvm̃n, R̃n, IRñÞ

0
BB@

1
CCA

where, the f * function is that considered in (5).
Step 4. Calculate the weighted normalized matrix P, through:

P=N⊗W =

n11 ⋅w1 n12 ⋅w2 ⋯ n1n ⋅wn

n21 ⋅w1 n22 ⋅w2 ⋯ n2n ⋅wn

⋮ ⋮ ⋱ ⋮
nm1 ⋅w1 nm2 ⋅w2 ⋯ nmn ⋅wn

0
BB@

1
CCA

Step 5. Calculate the distance to the ideal and non-ideal alternative.

A+
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

j=1
pij −wj
� �2s

andA−
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

j=1
pij
� �2s

Step 6. Calculate the relative index to the reference ideal of each alternative by the
following expression:

Ii =
A−
i

A+
i +A−

i
, where, 0≤ Ii ≤ 1, i=1, 2, . . .,m

Step 7. Rank the alternatives in descending order from the relative index Ii. In this
case, if the alternative has a relative index I near to the value 1, this indicates that it
is very good. However, if this value approaches the value 0, we will interpret that
the alternative should be rejected.

5 A Real Illustrative Example

The rationality of FRIM, as well as its practical importance, may be illustrated by
the following real example extracted from a much broader project, to classify the
different trademarks of olive oil that we are carrying out for a consumer organi-
sation in Spain.

Olive oil is how we refer to the oil obtained from the fruit of olive trees. People
have been eating olive oil for thousands of years and it is now more popular than
ever, thanks to its many proven health benefits and its culinary usefulness. It is good
to understand the different types or grades of olive oil to help decision makers select
the appropriate uses for this healthful and flavoursome type of fat.
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The basic types of olive oil are: extra virgin olive oil, virgin olive oil and pure
olive oil. There are other forms, but these are blends and are not part of the formal
grading process. Extra virgin is the highest quality and most expensive olive oil
classification. But, as it is evident, not all trademarks of extra virgin olive oil are
equal.

There are hundreds of trademarks of virgin olive oil and classifying them is an
important problem, both from the economic as well as the methodological point of
view, to which a large amount of resources are dedicated (http://www.bestoliveoils.
com/). In situations in which the conventional methodologies (TOPSIS, VIKOR)
present dysfunctions because they are unable to provide correct solutions, FRIM is
shown as a rigorous methodology which perfectly resolves these solutions that are
unapproachable for the other methods. For this reason FRIM is being applied to
carry out the classification of olive oils that we are working on. Herein we only
present this small-sized example for purely illustrative purposes.

Let us consider 8 trademarks of extra virgin olive oil that are available in
supermarkets. We wish to know which the best is, considering the price, acidity,
wax and qualification of tasting experts.

For each trademark measures have been taken several for each criteria, the
minimum, average and maximum of the values, except those relating to the tasting
of which only the final values are known, and which correspond to the mean value.

The data are collected in Table 1 and it is considered that the four criteria are
equally important. The values of A are determined by minimum values for prices,
while for acidity and waxes the minimum values are those given by the experience.
The values of B indicate the maximum for prices and value ceilings imposed by the
law for acidity and waxes. While the interval [C, D] represents the greater or lesser
slack that a decision-maker is willing to admit (Tables 2 and 3).

As we can see, this case cannot be resolved by TOPSIS or VIKOR methods. We
detail the reasons why it is not possible through the different criteria that have been
taken into account in the case proposed to illustrate the method.

Table 1 The decision matrix

Trademarks Prices Acidity Waxes Oil tastings

M1 (2.99, 3.29, 3.75) (0.17, 0.19, 0.21) (64, 67, 70) (6.9, 6.9, 6.9)
M2 (2.69, 3.27, 3.85) (0.18, 0.2, 0.22) (54, 57, 60) (5.8, 5.8, 5.8)
M3 (2.93, 3.04, 3.8) (0.28, 0.31, 0.34) (59, 62, 65) (6.3, 6.3, 6.3)
M4 (2.8, 3.24, 3.69) (0.23, 0.26, 0.29) (66, 69, 72) (6.8, 6.8, 6.8)
M5 (2.95, 3.14, 3.46) (0.22, 0.25, 0.28) (53, 56, 59) (6, 6, 6)
M6 (2.74, 2.96, 3.99) (0.33, 0.37, 0.4) (46, 49, 52) (6.4, 6.4, 6.4)
M7 (2.89, 3.08, 3.8) (0.18, 0.2, 0.22) (57, 60, 63) (6.6, 6.6, 6.6)
M8 (3, 3.19, 3.45) (0.23, 0.26, 0.29) (56, 59, 62) (6.4, 6.4, 6.4)

FRIM—Fuzzy Reference Ideal Method in Multicriteria … 313

http://www.bestoliveoils.com/
http://www.bestoliveoils.com/


• The prices: It is logical to think that we would seek to pay as little as possible,
therefore both TOPSIS and VIKOR, or indeed any other MCDM, could be
applied.

• The acidity: In this case we consider any oil as being good if its acidity is within
the interval [0.16, 0.26] although by law this may reach 0.80.

• The waxes: For this criterion, neither of the methods (TOPSIS, VIKOR) can
give a solution because the optimal is the interval [50, 63], but the range
possible goes from a minimum of 0 to a maximum of 150. RIM cannot be
applied either because it does not work with fuzzy evaluations. Thus it must be
resolved with a method such as FRIM and comparisons with other methods
cannot be made since they are inapplicable.

• The oil taste: It is easy to understand that the ideal it to achieve the maximum
score by the experts, which means that both TOPSIS and VIKOR could be
applied.

The following tables show the different steps of the algorithm (Tables 4, 5
and 6).

Concluding that under these criteria, the trademark with the best quality price
ratio is M5 although M8 is very close to it.

Table 2 The values of the range

Trademarks Prices Acidity Waxes Oil tastings

A (2.69, 2.96, 3.45) (0.15, 0.16, 0.17) (0, 15, 35) (1, 1, 1)
B (3, 3.29, 3.99) (0.55, 0.70, 0.80) (110, 135, 150) (9, 9, 9)

Table 3 The values of the Reference Ideal

Trademarks Prices Acidity Waxes Oil tastings

C (2.69, 2.96, 3.04) (0.16, 0.16, 0.17) (50, 52, 54) (8, 9, 9)
D (2.69, 2.96, 3.04) (0.2, 0.22, 0.26) (57, 60, 63) (8, 9, 9)

Table 4 Normalized
valuation matrix

Trademarks Prices Acidity Waxes Oil tastings

M1 0.1947 1.0000 0.9042 0.7620
M2 0.1699 1.0000 1.0000 0.6218
M3 0.2456 0.8199 0.9726 0.6858
M4 0.3085 0.9274 0.8768 0.7494
M5 0.4880 0.9486 1.0000 0.6474
M6 0.1114 0.6974 0.9172 0.6986
M7 0.2484 1.0000 1.0000 0.7240
M8 0.4498 0.9274 1.0000 0.6986
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6 Final Remarks

Since the measuring instruments are imprecise, it is necessary to work with methods
that counteract this problem. In this sense, the fuzzy theory and its arithmetic give
good results. On the other hand there are many problems where the best decision is
not associated to the maximun or to the minimun but that the best value correspond
to intermediate best value correspond to intermediate values as it the case that
concerns us. Thus, to assess the quality of Virgin olive oil one of the components to
consider are waxes, where the best is neither 0 nor 150, extreme values that take it.
We have seen that the optimum would be a value comprised between 50 and 63.

In this paper, from the study of the Reference Ideal Method, a modification
thereof is performed if the operation uses fuzzy numbers. Therefore, it has been
necessary to modify RIM, because it was not possible to work directly with this
method, when the fuzzy number has non-empty intersection with the Reference
Ideal.

Given that RIM does not give a solution when the fuzzy number intersects with
the reference ideal, a new distance has been defined and from it, the normalization
function.

Triangular fuzzy numbers have been considered, but by extension the Fuzzy
Reference Ideal Method (FRIM) can work with any other type of fuzzy numbers.

Table 5 Weighted
normalized matrix

Trademarks Prices Acidity Waxes Oil tastings

M1 0.0487 0.2500 0.2260 0.1905
M2 0.0425 0.2500 0.2500 0.1554
M3 0.0614 0.2050 0.2432 0.1715
M4 0.0771 0.2318 0.2192 0.1873
M5 0.1220 0.2372 0.2500 0.1619
M6 0.0279 0.1744 0.2293 0.1746
M7 0.0621 0.2500 0.2500 0.1810
M8 0.1125 0.2318 0.2500 0.1746

Table 6 Variation to the
positive and negative
reference ideal. Indexes
calculation

Trademarks d +
i d −

i Ri

M1 0.2113 0.3902 0.6487
M2 0.2281 0.3885 0.6301

M3 0.2093 0.3665 0.6365
M4 0.1873 0.3779 0.6686
M5 0.1559 0.3998 0.7194
M6 0.2473 0.3380 0.5775
M7 0.2002 0.4020 0.6676
M8 0.1579 0.3992 0.7166
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A New Approach for Solving CCR Data
Envelopment Analysis Model Under
Uncertainty

Bindu Bhardwaj, Jagdeep Kaur and Amit Kumar

Abstract Wang and Chin (Expert Syst Appl, 38:11678–11685, 2011 [25]) proposed
an optimistic as well as pessimistic fuzzy CCR data envelopment analysis
(DEA) model and an approach for solving it to evaluate the best relative fuzzy
efficiency as well as worst relative fuzzy efficiency and hence, relative geometric crisp
efficiency of decision making units (DMUs). In this chapter, it is shown that the fuzzy
CCRmodels, proposed byWang and Chin, are not valid and hence cannot be used to
evaluate the best relative fuzzy efficiency as well as worst relative fuzzy efficiency
and hence, relative geometric crisp efficiency of DMUs. To resolve the flaws of the
fuzzy CCRDEAmodels, proposed byWang and Chin, new fuzzy CCRDEAmodels
are proposed. Also, a new approach is proposed to solve the proposed fuzzy
CCR DEA models for evaluating the relative geometric crisp efficiency of DMUs.

Keywords Data envelopment analysis ⋅ Fuzzy input and fuzzy output data ⋅
Fuzzy efficiency

1 Introduction

DEA is a non-parametric approach for measuring the relative efficiency of DMUs
when the production process presents a structure of multiple inputs and outputs.
DEA has found surprising development due to its wide range of applications to real
world problems. The conventional CCR and BCC DEA models [1, 2] require
accurate measurement of both the inputs and outputs.

In conventional DEA models, all the data is assumed to be exactly known.
However, inputs and outputs of DMUs in real world problems may be imprecise.
Imprecise evaluations may be the result of unquantifiable, incomplete and
non-obtainable information. In recent years, fuzzy set theory has been proven to be
useful as a way to quantify imprecise and vague data in DEA models. The DEA
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model with fuzzy data, called “fuzzy DEA” models, can more realistically represent
real world problems than the conventional DEA models.

Several authors [1, 3–24, 27, 28] have proposed methods to solve fuzzy DEA
models and to solve fuzzy DEA models two approaches are used: (1) by trans-
forming the fuzzy fractional programming model into a fuzzy linear programming
model (2) by transforming fuzzy DEA models into two respective pessimistic and
optimistic crisp DEA models using α-cut technique. Wang et al. [26] pointed out
that the former ignores the fact that a fuzzy fractional programming cannot be
transformed into a linear programming model as we do for a crisp fractional pro-
gramming; while the latter requires the solution of a series of linear programming
models based on different α-level sets and therefore it requires much computational
efforts to get the fuzzy efficiencies of DMUs. Thus Wang et al. [26] proposed
methods to solve fuzzy DEA models without using the aforementioned transfor-
mations (1) and (2) and later extended their existing method by considering
uncertain weights [25]. In this chapter, the shortcomings of the existing method [25]
are pointed out and a new method is proposed for the same.

The rest of the chapter is organized as follows. In Sect. 2, some basic definitions
and arithmetic operations on fuzzy numbers are presented. In Sect. 3, the existing
method [25] for solving fuzzy DEA problems is reviewed. In Sect. 4, the flaws of the
existing method [25] are pointed out. To overcome these flaws, a new method is
proposed in Sect. 5 for solving the proposed fuzzy DEA models. The proposed
method is illustrated with the help of a real world problem in Sect. 6 and the obtained
results are discussed in Sect. 7. Finally, the conclusions are discussed in Sect. 8.

2 Basic Definitions and Arithmetic Operations

In this section, some basic definitions and arithmetic operations on fuzzy numbers
are reviewed [29].

2.1 Basic Definitions

In this section, some basic definitions are reviewed [29].

Definition 1 A fuzzy number Ã= aL, aM , aRð Þ is said to be a triangular fuzzy
number if its membership function is given by

μA ̃ xð Þ=

x− aLð Þ
ðaM − aLÞ

, aL ≤ x< aM

1 x= aM
x− aRð Þ

ðaM − aRÞ , aM < x≤ aR

0, otherwise.

8>>>>><
>>>>>:
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Definition 2 A triangular fuzzy number Ã= ðaL, aM , aRÞ is said to be non-negative
triangular fuzzy number if and only if aL ≥ 0.

Definition 3 A triangular fuzzy number Ã= ðaL, aM , aRÞ is said to be positive
triangular fuzzy number if and only if aL >0.

Definition 4 A ranking function is a function ℜ:F Rð Þ→R, where F Rð Þ is a set of
fuzzy numbers defined on the set of real numbers, which maps each fuzzy number
into real line where a natural order exists.

Let Ã= aL, aM , aRð Þ and B ̃= bL, bM , bRð Þ be two triangular fuzzy numbers. Then,

(i) Ã≽B̃ iff ℜ Ã
� �

≥ℜ B̃
� �

(ii) Ã≈B ̃ iff ℜðA ̃Þ=ℜðB ̃Þ

where, ℜðÃÞ= aL +2aM + aR

4
and ℜðB̃Þ= bL +2bM + bR

4
.

2.2 Arithmetic Operations on Triangular Fuzzy Numbers

Let Ã= aL, aM , aRð Þ and B̃= bL, bM , bRð Þ be two arbitrary triangular fuzzy numbers.
Then,

(i) Ã+B ̃= aL + bL, aM + bM , aR + bRð Þ
(ii) Ã−B ̃= ðaL − bR, aM − bM , aR − bLÞ
(iii) ÃB ̃= aLbL, aMbM , aRbRð Þ, where Ã and B ̃ are non-negative triangular fuzzy

numbers.

(iv)
Ã
B̃
=

aL

bR
,
aM

bM
,
aR

bL

� �
, where Ã is a non-negative triangular fuzzy number and

B̃ is a positive triangular fuzzy number.

3 An Overview of the Existing Fuzzy DEA Approach

Wang and Chin [25] proposed the optimistic fuzzy CCR DEA model (1) and
pessimistic fuzzy CCR DEA model (2) to evaluate the best relative fuzzy efficiency

E
B̃
p

� �
and worst relative fuzzy efficiency E ̃Wp

� �
respectively of pth DMU by

considering input data, output data and weights as trapezoidal fuzzy numbers.
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trapezoidal fuzzy numbers.
Wang and Chin [25] proposed the following method to evaluate best relative

fuzzy efficiency as well as worst relative fuzzy efficiency and hence, geometric crisp
efficiency of DMUs.

Step 1: Using the product of trapezoidal fuzzy numbers, defined in Sect. 2.2, the
optimistic fuzzy CCR DEA model (1) and the pessimistic fuzzy CCR DEA model
(2) can be transformed into optimistic fuzzy CCR DEA model (3) and the pes-
simistic fuzzy CCR DEA model (4) respectively.
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trapezoidal fuzzy numbers.
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Step 2: The optimistic fuzzy CCR DEA model (3) and the pessimistic fuzzy
CCR DEA model (4) can be transformed into optimistic fuzzy CCR DEA model (5)
and the pessimistic fuzzy CCR DEA model (6) respectively.
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Step 3: The optimistic fuzzy CCR DEA model (5) and the pessimistic fuzzy
CCR DEA model (6) can be transformed into optimistic crisp CCR DEA model (7)
and the pessimistic crisp CCR DEA model (8) respectively.

Minimize ℜ E
B̃
p

� �
=ℜ EB

p1,E
B
p2,E

B
p3,E

B
p4

� �
=ℜ

∑s
r=1 u

L
r y

L
rp, ∑

s
r=1 u

M
r y

M
rp, ∑

s
r=1 u

N
r y

N
rp, ∑

s
r=1 u

U
r y

U
rp

� �
∑m

i=1 v
L
i x

L
ip, ∑

m
i=1 v

M
i x

M
ip , ∑

m
i=1 v

N
i x

N
ip, ∑

m
i=1 v

U
i x

U
ip

� �
2
4

3
5

2
4

3
5

Subject to

ℜ
∑s

r=1 u
L
r y

L
rj, ∑

s
r=1 u

M
r y

M
rj , ∑

s
r=1 u

N
r y

N
rj , ∑

s
r=1 u

U
r y

U
rj

� �
∑m

i=1 v
L
i x

L
ij, ∑

m
i=1 v

M
i x

M
ij , ∑

m
i=1 v

N
i x

N
ij , ∑

m
i=1 v

U
i x

U
ij

� �
2
4

3
5≤ℜ 1, 1, 1, 1ð Þ, ∀j

0≤ uLr ≤ uMr ≤ uNr ≤ uUr ; 0≤ vLi ≤ vMi ≤ vNi ≤ vUi , i=1, . . . ,m, r=1, . . . , s.

ð7Þ
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Minimize ℜ E
W̃
p

� �
=ℜ EW

p1,E
W
p2,E

W
p3,E

W
p4

� �
=ℜ

∑s
r=1 u

L
r y

L
rp, ∑

s
r=1 u

M
r y

M
rp, ∑

s
r=1 u

N
r y

N
rp, ∑

s
r=1 u

U
r y

U
rp

� �
∑m

i=1 v
L
i x

L
ip, ∑

m
i=1 v

M
i x

M
ip , ∑

m
i=1 v

N
i x

N
ip, ∑

m
i=1 v

U
i x

U
ip

� �
2
4

3
5

2
4

3
5

Subject to

ℜ
∑s

r=1 u
L
r y

L
rj, ∑

s
r=1 u

M
r y

M
rj , ∑

s
r=1 u

N
r y

N
rj , ∑

s
r=1 u

U
r y

U
rj

� �
∑m

i=1 v
L
i x

L
ij, ∑

m
i=1 v

M
i x

M
ij , ∑

m
i=1 v

N
i x

N
ij , ∑

m
i=1 v

U
i x

U
ij

� �
2
4

3
5≥ℜ 1, 1, 1, 1ð Þ, ∀ j

0≤ uLr ≤ uMr ≤ uNr ≤ uUr ; 0≤ vLi ≤ vMi ≤ vNi ≤ vUi , i=1, . . . ,m, r=1, . . . , s.

ð8Þ

Step 4: The optimistic crisp CCR DEA model (7) and the pessimistic crisp
CCR DEA model (8) can be transformed into optimistic crisp CCR DEA model (9)
and the pessimistic crisp CCR DEA model (10) respectively.

Maximize ℜ E ̃Bp
� �

=ℜ EB
p1,E

B
p2,E

B
p3,E

B
p4

� �� �
=

ℜ ∑s
r =1 u

L
r y

L
rp, ∑

s
r =1 u

M
r y

M
rp, ∑

s
r=1 u

N
r y

N
rp, ∑

s
r=1 u

U
r y

U
rp

� �
ℜ ∑m

i=1 v
L
i x

L
ip, ∑

m
i=1 v

M
i x

M
ip , ∑

m
i=1 v

N
i x

N
ip, ∑

m
i=1 v

U
i x

U
ip

� �
2
4

3
5

2
4

3
5

Subject to
ℜ ∑s

r=1 u
L
r y

L
rj, ∑

s
r =1 u

M
r y

M
rj , ∑

s
r=1 u

N
r y

N
rj , ∑

s
r =1 u

U
r y

U
rj

� �
ℜ ∑m

i=1 v
L
i x

L
ij, ∑

m
i=1 v

M
i x

M
ij , ∑

m
i=1 v

N
i x

N
ij , ∑

m
i=1 v

U
i x

U
ij

� � ≤ℜ 1, 1, 1, 1ð Þ,∀j

0≤ uLr ≤ uMr ≤ uNr ≤ uUr ; 0≤ vLi ≤ vMi ≤ vNi ≤ vUi , i=1, . . . ,m, r=1, . . . , s.

ð9Þ

Minimize ℜ E
W̃
p

� �
=ℜ EW

p1,E
W
p2,E

W
p3,E

W
p4

� �
=

ℜ ∑s
r=1 u

L
r y

L
rp, ∑

s
r=1 u

M
r y

M
rp, ∑

s
r=1 u

N
r y

N
rp, ∑

s
r=1 u

U
r y

U
rp

� �
ℜ ∑m

i=1 v
L
i x

L
ip, ∑

m
i=1 v

M
i x

M
ip , ∑

m
i=1 v

N
i x

N
ip, ∑

m
i=1 v

U
i x

U
ip

� �
2
4

3
5

Subject to
ℜ ∑s

r=1 u
L
r y

L
rj, ∑

s
r=1 u

M
r y

M
rj , ∑

s
r=1 u

N
r y

N
rj , ∑

s
r=1 u

U
r y

U
rj

� �
ℜ ∑m

i=1 v
L
i x

L
ij, ∑

m
i=1 v

M
i x

M
ij , ∑

m
i=1 v

N
i x

N
ij , ∑

m
i=1 v

U
i x

U
ij

� � ≥ℜ 1, 1, 1, 1ð Þ, ∀ j

0≤ uLr ≤ uMr ≤ uNr ≤ uUr ; 0≤ vLi ≤ vMi ≤ vNi ≤ vUi , i=1, . . . ,m, r=1, . . . , s.

ð10Þ

Step 5: The optimistic crisp CCR DEA model (9) and pessimistic crisp CCR DEA
model (10) can be transformed into optimistic crisp CCR DEA model (11) and
pessimistic crisp CCR DEA model (12) respectively.

Maximize ℜ E
B̃
p

� �
=

∑s
r=1 u

L
r y

L
rp + ∑s

r=1 u
M
r y

M
rp + ∑s

r=1 u
N
r y

N
rp + ∑s

r=1 u
U
r y

U
rp

� �
∑m

i=1 v
L
i x

L
ip + ∑m

i=1 v
M
i x

M
ip + ∑m

i=1 v
N
i x

N
ip + ∑m

i=1 v
U
i x

U
ip

� �
2
4

3
5

Subject to
∑s

r=1 u
L
r y

L
rj + ∑s

r=1 u
M
r y

M
rj + ∑s

r=1 u
N
r y

N
rj + ∑s

r=1 u
U
r y

U
rj

� �
∑m

i=1 v
L
i x

L
ij + ∑m

i=1 v
M
i x

M
ij + ∑m

i=1 v
N
i x

N
ij + ∑m

i=1 v
U
i x

U
ij

� � ≤ 1, ∀j

0≤ uLr ≤ uMr ≤ uNr ≤ uUr ; 0≤ vLi ≤ vMi ≤ vNi ≤ vUi , i=1, . . . ,m, r=1, . . . , s.

ð11Þ

Minimize ℜ E ̃Wp
� �

=
∑s

r =1 u
L
r y

L
rp + ∑s

r =1 u
M
r y

M
rp + ∑s

r=1 u
N
r y

N
rp + ∑s

r=1 u
U
r y

U
rp

� �
∑m

i=1 v
L
i x

L
ip + ∑m

i=1 v
M
i x

M
ip + ∑m

i=1 v
N
i x

N
ip + ∑m

i=1 v
U
i x

U
ip

� �
2
4

3
5

Subject to
∑s

r=1 u
L
r y

L
rj + ∑s

r=1 u
M
r y

M
rj + ∑s

r =1 u
N
r y

N
rj + ∑s

r =1 u
U
r y

U
rj

� �
∑m

i=1 v
L
i x

L
ij + ∑m

i=1 v
M
i x

M
ij + ∑m

i=1 v
N
i x

N
ij + ∑m

i=1 v
U
i x

U
ij

� � ≥ 1, ∀j

0≤ uLr ≤ uMr ≤ uNr ≤ uUr ; 0≤ vLi ≤ vMi ≤ vNi ≤ vUi , i=1, . . . ,m, r=1, . . . , s.

ð12Þ
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Step 6: The optimistic crisp CCR DEA model (11) and pessimistic crisp CCR DEA
model (12) can be transformed into optimistic crisp CCR DEA model (13) and
pessimistic crisp CCR DEA model (14) respectively.

Maximize ℜ E ̃Bp
� �

= ∑s
r=1 u

L
r y

L
rp + ∑s

r=1 u
M
r y

M
rp + ∑s

r=1 u
N
r y

N
rp + ∑s

r=1 u
U
r y

U
rp

h i
Subject to

∑m
i=1 v

L
i x

L
ip + ∑m

i=1 v
M
i x

M
ip + ∑m

i=1 v
N
i x

N
ip + ∑m

i=1 v
U
i x

U
ip =1

∑s
r=1 u

L
r y

L
rj + ∑s

r=1 u
M
r y

M
rj + ∑s

r=1 u
N
r y

N
rj + ∑s

r=1 u
U
r y

U
rj

� �
− ∑m

i=1 v
L
i x

L
ij + ∑m

i=1 v
M
i x

M
ij + ∑m

i=1 v
N
i x

N
ij + ∑m

i=1 v
U
i x

U
ij

� �
≤ 0,∀j

0≤ uLr ≤ uMr ≤ uNr ≤ uUr ; 0≤ vLi ≤ vMi ≤ vNi ≤ vUi , i=1, . . . ,m, r=1, . . . , s.

ð13Þ

Maximize ℜ E ̃Bp
� �

= ∑s
r=1 u

L
r y

L
rp + ∑s

r=1 u
M
r y

M
rp + ∑s

r=1 u
N
r y

N
rp + ∑s

r=1 u
U
r y

U
rp

h i
Subject to

∑m
i=1 v

L
i x

L
ip + ∑m

i=1 v
M
i x

M
ip + ∑m

i=1 v
N
i x

N
ip + ∑m

i=1 v
U
i x

U
ip =1

∑s
r=1 u

L
r y

L
rj + ∑s

r=1 u
M
r y

M
rj + ∑s

r=1 u
N
r y

N
rj + ∑s

r=1 u
U
r y

U
rj

� �
− ∑m

i=1 v
L
i x

L
ij + ∑m

i=1 v
M
i x

M
ij + ∑m

i=1 v
N
i x

N
ij + ∑m

i=1 v
U
i x

U
ij

� �
≥ 0,∀ j

0≤ uLr ≤ uMr ≤ uNr ≤ uUr ; 0≤ vLi ≤ vMi ≤ vNi ≤ vUi i=1, . . . ,m, r=1, . . . , s.

ð14Þ

Step 7: Find the optimal value ℜ E ̃Bp
� �

=EB
p , representing the best relative crisp

efficiency of pth DMU, by solving optimistic crisp CCR DEA model (13).

Step 8: Find the optimal value ℜ E ̃Wp
� �

=EW
p , representing the worst relative crisp

efficiency of pth DMU, by solving pessimistic crisp CCR DEA model (14).

Step 9: Find the relative geometric average crisp efficiency EGEOMETRIC
P of pth

DMU by putting the values EB
p and EW

p , obtained in Step 4 and Step 5, in

EGEOMETRIC
P =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EB
p ×EW

p

q
.

4 Flaws in the Existing Method

If ðaL, aM , aN , aUÞ& ðbL, bM , bN , bUÞ. are two trapezoidal fuzzy numbers then

ℜ
aL, aM , aN , aUð Þ
bL, bM , bN , bUð Þ

� �
=ℜ

aL

bU
,
aM

bN
,
aN

bM
,
aU

bL

� �
=

1
4

aL

bU
+

aM

bN
+

aN

bM
+

aU

bL

� �
and

ℜ aL, aM , aN , aUð Þ
ℜ bL, bM , bN , bUð Þ =

aL + aM + aN + aU

bL + bM + bN + bU

A New Approach for Solving CCR Data Envelopment Analysis … 325



It is obvious that

ℜ
aL, aM , aN , aUð Þ
bL, bM , bN , bUð Þ

� �
≠

ℜ aL, aM , aN , aUð Þ
ℜ bL, bM , bN , bUð Þ

However, Wang and Chin [25] have used the property

ℜ
aL, aM , aN , aUð Þ
bL, bM , bN , bUð Þ

� �
=

ℜ aL, aM , aN , aUð Þ
ℜ bL, bM , bN , bUð Þ

in Step 4 of their proposed method. Therefore, the method, proposed by Wang and
Chin [25], is not valid.

5 Proposed Fuzzy CCR DEA Approach

In this section, to resolve the flaws of the existing optimistic fuzzy CCR DEA
model (1) and pessimistic fuzzy CCR DEA model (2), proposed by Wang and Chin
[25], new optimistic fuzzy CCR DEA model (15) and pessimistic fuzzy CCR DEA
model (16) are proposed.

Maximize E ̃Bp ≈ EB
p1,E

B
p2,E

B
p3,E

B
p4

� �
≈

∑s
r=1 uLr , u

M
r , u

N
r , u

U
r

� �
yLrp, y

M
rp, y

N
rp, y

U
rp

� �
∑m

i=1 vLi , v
M
i , v

N
i , v

U
ið Þ xLip, x

M
ip , x

N
ip, x

U
ip

� �
�

2
4

3
5

Subject to
∑s

r=1 uLr , u
M
r , u

N
r , u

U
r

� �
yLrj, y

M
rj , y

N
rj , y

U
rj

� �
≼ ∑m

i=1 vLi , v
M
i , v

N
i , v

U
i

� �
xLij, x

M
ij , x

N
ij , x

U
ij

� �
,∀ j

ð15Þ

uLr , u
M
r , u

N
r , u

U
r

� �
and vLi , v

M
i , v

N
i , v

U
i

� �
, i=1, . . . ,m, r=1, . . . , s, are non-negative

trapezoidal fuzzy numbers.

Minimize E ̃Wp ≈ EW
p1,E

W
p2,E

W
p3,E

W
p4

� �
≈

∑s
r=1 uLr , u

M
r , u

N
r , u

U
r

� �ðyLrp, yMrp, yNrp, yUrpÞ
∑m

i=1 vLi , v
M
i , v

N
i , v

U
ið ÞðxLip, xMip , xNip, xUipÞ�

" #
Subject to

∑s
r=1 uLr , u

M
r , u

N
r , u

U
r

� �
yLrj, y

M
rj , y

N
rj , y

U
rj

� �
≽ ∑m

i=1 vLi , v
M
i , v

N
i , v

U
i

� �
xLij, x

M
ij , x

N
ij , x

U
ij

� �
, ∀ j

ð16Þ

uLr , u
M
r , u

N
r , u

U
r

� �
and vLi , v

M
i , v

N
i , v

U
i

� �
, i=1, . . . ,m, r=1, . . . , s, are non-negative

trapezoidal fuzzy numbers.
To evaluate the best relative fuzzy efficiency as well as worst relative fuzzy

efficiency and relative geometric crisp efficiency of DMUs considering the opti-
mistic fuzzy CCR DEA model (15) and pessimistic fuzzy CCR DEA model (16)
can be obtained by using the following steps:

Step 1: Using the product of trapezoidal fuzzy numbers, defined in Sect. 2.2, the
optimistic fuzzy CCR DEA model (15) and pessimistic fuzzy CCR DEA model
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(16) can be transformed into optimistic fuzzy CCR DEA model (17) and pessimistic
fuzzy CCR DEA model (18) respectively.

Maximize E
B̃
p ≈ EB

p1,E
B
p2,E

B
p3,E

B
p4

� �
≈

∑s
r=1 uLr y

L
rp, u

M
r y

M
rp, u

N
r y

N
rp, u

U
r y

U
rp

� �
∑m

i=1 vLi x
L
ip, v

M
i x

M
ip , v

N
i x

N
ip, v

U
i x

U
ip

� �
2
4

3
5

Subject to
∑s

r=1 uLr y
L
rj, u

M
r y

M
rj , u

N
r y

N
rj , u

U
r y

U
rj

� �
≼ ∑m

i=1 vLi x
L
ij, v

M
i x

M
ij , v

N
i x

N
ij , v

U
i x

U
ij

� �
, ∀ j

ð17Þ

uLr , u
M
r , u

N
r , u

U
r

� �
and vLi , v

M
i , v

N
i , v

U
i

� �
, i=1, . . . ,m, r=1, . . . , s, are non-negative

trapezoidal fuzzy numbers.

Minimize E ̃Wp ≈ EW
p1,E

W
p2,E

W
p3,E

W
p4

� �
≈

∑s
r=1 uLr y

L
rp, u

M
r y

M
rp, u

N
r y

N
rp, u

U
r y

U
rp

� �
∑m

i=1 vLi x
L
ip, v

M
i x

M
ip , v

N
i x

N
ip, v

U
i x

U
ip

� �
2
4

3
5

Subject to
∑s

r=1 uLr y
L
rj, u

M
r y

M
rj , u

N
r y

N
rj , u

U
r y

U
rj

� �
≽ ∑m

i=1 vLi x
L
ij, v

M
i x

M
ij , v

N
i x

N
ij , v

U
i x

U
ij

� �
, ∀ j

ð18Þ

uLr , u
M
r , u

N
r , u

U
r

� �
and vLi , v

M
i , v

N
i , v

U
i

� �
, i=1, . . . ,m, r=1, . . . , s, are non-negative

trapezoidal fuzzy numbers.

Step 2: Using the division of trapezoidal fuzzy numbers, defined in Sect. 22, the
optimistic fuzzy CCR DEA model (17) and pessimistic fuzzy CCR DEA model
(18) can be transformed into optimistic fuzzy CCR DEA model (19) and pessimistic
fuzzy CCR DEA model (20) respectively.

Maximize E ̃Bp ≈ EB
p1,E

B
p2,E

B
p3,E

B
p4

� �
≈

∑s
r=1 u

L
r y

L
rp

∑m
i=1 v

U
i x

U
ip
,
∑s

r=1 u
M
r y

M
rp

∑m
i=1 v

N
i x

N
ip
,
∑s

r=1 u
N
r y

N
rp

∑m
i=1 v

M
i x

M
ip
,
∑s

r=1 u
U
r y

U
rp

∑m
i=1 v

L
i x

L
ip

 !" #
Subject to

∑s
r=1 u

L
r y

L
rp, ∑

s
r=1 u

M
r y

M
rp, ∑

s
r=1 u

N
r y

N
rp, ∑

s
r=1 u

U
r y

U
rp

� �
≼ ∑m

i=1 v
L
i x

L
ip, ∑

m
i=1 v

M
i x

M
ip , ∑

m
i=1 v

N
i x

N
ip, ∑

m
i=1 v

U
i x

U
ip

� �
, ∀ j

ð19Þ

uLr , u
M
r , u

N
r , u

U
r

� �
and vLi , v

M
i , v

N
i , v

U
i

� �
, i=1, . . . ,m, r=1, . . . , s, are non-negative

trapezoidal fuzzy numbers.

Minimize E ̃Wp ≈ EW
p1,E

W
p2,E

W
p3,E

W
p4

� �
≈

∑s
r=1 u

L
r y

L
rp

∑m
i=1 v

U
i x

U
ip
,
∑s

r=1 u
M
r y

M
rp

∑m
i=1 v

N
i x

N
ip
,
∑s

r=1 u
N
r y

N
rp

∑m
i=1 v

M
i x

M
ip
,
∑s

r=1 u
U
r y

U
rp

∑m
i=1 v

L
i x

L
ip

 !" #
Subject to

∑s
r= 1 u

L
r y

L
rp, ∑

s
r=1 u

M
r y

M
rp, ∑

s
r=1 u

N
r y

N
rp, ∑

s
r=1 u

U
r y

U
rp

� �
≽ ∑m

i=1 v
L
i x

L
ip, ∑

m
i=1 v

M
i x

M
ip , ∑

m
i=1 v

N
i x

N
ip, ∑

m
i=1 v

U
i x

U
ip

� �
, ∀ j

ð20Þ

uLr , u
M
r , u

N
r , u

U
r

� �
and vLi , v

M
i , v

N
i , v

U
i

� �
, i=1, . . . ,m, r=1, . . . , s, are non-negative

trapezoidal fuzzy numbers.
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Step 3: Using the relation ðaL, aM , aN , aUÞ≤ ðbL, bM , bN , bUÞ, aL ≤ bL, aM ≤ bM ,
aN ≤ bN , aU ≤ bU , the optimistic fuzzy CCR DEA model (19) and pessimistic fuzzy
CCR DEA model (20) can be transformed into optimistic fuzzy CCR DEA model
(21) and pessimistic fuzzy CCR DEA model (22) respectively.
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Minimize E ̃Wp ≈ EW
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∑m
i=1 v

L
i x

L
ip

 !" #
Subject to

∑s
r=1 u

L
r y

L
rj ≥ ∑m

i=1 v
L
i x

L
ij, ∀ j

∑s
r=1 u

M
r y

M
rj ≥ ∑m

i=1 v
M
i x

M
ij , ∀ j

∑s
r=1 u

N
r y

N
rp ≥ ∑m

i=1 v
N
i x

N
ip, ∀ j

∑s
r=1 u

U
r y

U
rp ≥ ∑m

i=1 v
U
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U
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0≤ uLr ≤ uMr ≤ uNr ≤ uUr ; 0≤ vLi ≤ vMi ≤ vNi ≤ vUi , i=1, . . . ,m, r=1, . . . , s.

ð22Þ

Step 4: The fuzzy optimal value E
B̃
p ≈ EB

p1,E
B
p2,E

B
p3,E

B
p4

� �
, representing the best

relative fuzzy efficiency of pth DMU, as well as the fuzzy optimal value

E ̃Wp ≈ EW
p1,E

W
p2,E

W
p3,E

W
p4

� �
, representing the worst relative fuzzy efficiency of pth

DMU, can be obtained by solving the optimistic fuzzy CCR DEA model (21) and
pessimistic fuzzy CCR DEA model (22) as follows:

Step 4(a): Find the optimal value EB
p1

� �
and EW

p1

� �
of the optimistic crisp

CCR DEA model (23a) and pessimistic CCR DEA model (24a) by solving opti-
mistic crisp CCR DEA model (23b) and pessimistic CCR DEA model (24b)
equivalent to optimistic crisp CCR DEA model (23a) and pessimistic CCR DEA
model (24a) respectively.

Maximize EB
p1 =

∑s
r=1 u

L
r y

L
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∑m
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U
i x

U
ip

" #
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L
r y

L
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U
i x

U
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≤ 1,

& all the constraints of model 21.

ð23aÞ
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Maximize EB
p1 = ∑s
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L
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U
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U
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& all the constraints of model 22.

ð24aÞ
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U
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Step 4(b): Find the optimal value EB
p2

� �
and EW

p2

� �
of the optimistic crisp

CCR DEA model (25a) and pessimistic CCR DEA model (26a) by solving opti-
mistic crisp CCR DEA model (25b) and pessimistic CCR DEA model (26b)
equivalent to optimistic crisp CCR DEA model (25a) and pessimistic CCR DEA
model (26a) respectively.

Maximize EB
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∑s
r=1 u

M
r y

M
rp

∑m
i=1 v

N
i x

N
ip
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Maximize EB
p2 = ∑s
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N
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ð25bÞ
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Minimize EW
p2 =
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M
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M
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N
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Maximize EW
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M
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ð26bÞ

Step 4(c): Find the optimal value EB
p3

� �
and EW

p3

� �
of the optimistic crisp

CCR DEA model (27a) and pessimistic CCR DEA model (28a) by solving opti-
mistic crisp CCR DEA model (27b) and pessimistic CCR DEA model (28b)
equivalent to optimistic crisp CCR DEA model (27a) and pessimistic CCR DEA
model (28a) respectively.
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& all the constraints of model 21ð Þ.

ð27aÞ
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Minimize EW
p3 =
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Minimize EW
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N
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& all the constraints of model 22ð Þ.

ð28bÞ

Step 4(d): Find the optimal value EB
p4

� �
and EW

p4

� �
of the optimistic crisp

CCR DEA model (29a) and pessimistic CCR DEA model (30a) by solving opti-
mistic crisp CCR DEA model (29b) and pessimistic CCR DEA model (30b)
equivalent to optimistic crisp CCR DEA model (29a) and pessimistic CCR DEA
model (30a) respectively.

Maximize EB
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L
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L
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& all the constraints of model 21ð Þ.

ð29aÞ
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Maximize EB
p4 = ∑s
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∑m
i=1 v

L
i x

L
ip =1,
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Minimize EW
p4 =

∑s
r=1 u

U
r y

U
rp

∑m
i=1 v

L
i x

L
ip

" #
Subject to
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L
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U
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ð30bÞ

Step 5: Using the values of EB
p1,E

B
p2,E

B
p3,E

B
p4 and EW

p1, EW
p2, EW

p3, EW
p4, obtained in

Step (4a) to Step (4d), find the fuzzy optimal value E ̃Bp = EB
p1,E

B
p2,E

B
p3,E

B
p4

� �
of

optimistic fuzzy DEA model (21), representing the best relative fuzzy efficiency

of pth DMU, as well as pessimistic fuzzy optimal value E ̃Wp = EW
p1,E

W
p2,E

W
p3,E

W
p4

� �
of pessimistic fuzzy DEA model (22), representing the worst relative fuzzy effi-
ciency of pth DMU.
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Step 5: Find the crisp optimal value EB
p =ℜ E ̃Bp

� �
, representing the best relative

crisp efficiency of pth DMU.

Step 6: Find the crisp optimal value EW
p =ℜ E ̃Wp

� �
, representing the worst relative

crisp efficiency of pth DMU.

Step 7: Find the relative geometric crisp efficiency EGEOMETRIC
P of pth DMU by

putting the values EB
p and EW

p , obtained in Step 5 and Step 6, in

EGEOMETRIC
P =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EB
p ×EW

p

q
.

6 Application to Real Life Problem

Wang and Chin [25] evaluated the best relative intuitionistic fuzzy efficiency as
well as worst relative intuitionistic fuzzy efficiency and hence, relative geometric
crisp efficiency of by considering eight manufacturing enterprises (DMUs) of China
with two inputs and two outputs shown in Table 1 and using the optimistic fuzzy
CCR DEA model (1) as well as pessimistic fuzzy CCR DEA model (2). The eight
manufacturing enterprises, all manufacture the same type of products but with
different qualities. Both the gross output value (GOV) and product quality (PQ) are
considered as outputs. Manufacturing cost (MC) and the number of employees
(NOE) are considered as inputs. The data about the GOV and MC are uncertain due
to the unavailability at the time of assessment and are therefore estimated as fuzzy
numbers. The product quality is assessed by customers using fuzzy linguistic terms
such as Excellent, Very Good, Average, Poor and Very Poor. The assessment
results by customers are weighted and averaged.

However, as discussed in Sect. 4 that the optimistic fuzzy CCR DEA model (1)
as well as pessimistic fuzzy CCR DEA model (2) are not valid. Therefore, the best
relative fuzzy efficiency as well as worst relative fuzzy efficiency and hence, rel-
ative geometric crisp efficiency of 8 manufacturing enterprises, evaluated by Wang
and Chin [25], is not exact. In this section, to illustrate the proposed method the
exact best relative fuzzy efficiency as well as worst relative fuzzy efficiency and
hence, relative geometric crisp efficiency of Enterprise A is evaluated by using the
proposed method.

The best relative fuzzy efficiency and worst relative fuzzy efficiency of DMUA

can be obtained by solving the optimistic fuzzy CCR DEA models (31) and pes-
simistic CCR DEA models (32).
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Maximize E ̃BA = EB
A1,E

B
A2,E

B
A3

� �h
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� �
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M
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N
r

� �
and vLi , v

M
i , v

N
i

� �
, i=1, 2, r=1, 2, are non-negative triangular fuzzy

numbers.

Table 1 Input and output data for eight manufacturing enterprises [25]

(DMUs) Inputs (Two) Outputs (two)
MC NOE GOV PQ

A (2120, 2170, 2210) 1870 (14500, 14790, 14860) (3.1, 4.1, 4.9)
B (1420, 1460, 1500) 1340 (12470, 12720, 12790) (1.2, 2.1, 3.0)
C (2510, 2570, 2610) 2360 (17900, 18260, 18400) (3.3, 4.3, 5.0)
D (2300, 2350, 2400) 2020 (14970, 15270, 15400) (2.7, 3.7, 4.6)
E (1480, 1520, 1560) 1550 (13980, 14260, 14330) (1.0, 1.8, 2.7)
F (1990, 2030, 2100) 1760 (14030, 14310, 14400) (1.6, 2.6, 3.6)
G (2200, 2260, 2300) 1980 (16540, 16870, 17000) (2.4, 3.4, 4.4)
H (2400, 2460, 2520) 2250 (17600, 17960, 18100) (2.6, 3.6, 4.6)
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� �
≽ 1420, 1460, 1500ð Þ vL1, v

M
1 , v

U
1

� �
+ 1340, 1340, 1340ð Þ vL2, v

M
2 , v

U
2

� �
17900, 18260, 18400ð Þ uL1, u

M
1 , u

U
1

� �
+ 3.3, 4.3, 4.0ð Þ uL2, u

M
2 , u

U
2

� �
≽ ð2510, 2570, 2610Þ vL1, v

M
1 , v

U
1

� �
+ ð2360, 2360, 2360Þ vL2, v

M
2 , v

U
2

� �
14970, 15270, 15400ð Þ uL1, u

M
1 , u

U
1

� �
+ 2.7, 3.7, 4.6ð Þ uL2, u

M
2 , u

U
2

� �
≽ ð2300, 2350, 2400Þ vL1, v

M
1 , v

U
1

� �
+ ð2020, 2020, 2020Þ vL2, v

M
2 , v

U
2

� �
13980, 14260, 14330ð Þ uL1, u

M
1 , u

U
1

� �
+ 1.0, 1.8, 2.7ð Þ uL2, u

M
2 , u

U
2

� �
≽ ð1480, 1520, 1560Þ vL1, v

M
1 , v

U
1

� �
+ ð1550, 1550, 1550Þ vL2, v

M
2 , v

U
2

� �
14030, 14310, 14400ð Þ uL1, u

M
1 , u

U
1

� �
+ 1.6, 2.6, 3.6ð Þ uL2, u

M
2 , u

U
2

� �
≽ ð1990, 2030, 2100Þ vL1, v

M
1 , v

U
1

� �
+ ð1760, 1760, 1760Þ vL2, v

M
2 , v

U
2

� �
16540, 16870, 17000ð Þ uL1, u

M
1 , u

U
1

� �
+ 2.4, 3.4, 4.4ð Þ uL2, u

M
2 , u

U
2

� �
≽ ð2200, 2260, 2300Þ vL1, v

M
1 , v

U
1

� �
+ ð1980, 1980, 1980Þ vL2, v

M
2 , v

U
2

� �
17600, 17960, 18100ð Þ uL1, u

M
1 , u

U
1

� �
+ 2.6, 3.6, 4.6ð Þ uL2, u

M
2 , u

U
2

� �
≽ 2400, 2460, 2520ð Þ vL1, v

M
1 , v

U
1

� �
+ 2250, 2250, 2250ð Þ vL2, v

M
2 , v

U
2

� �
,

ð32Þ

uLr , u
M
r , u

N
r

� �
and vLi , v

M
i , v

N
i

� �
, i=1, 2, r=1, 2, are non-negative triangular fuzzy

numbers.
Using the method, proposed in Sect. 5, the exact best relative fuzzy efficiency as

well as worst relative fuzzy efficiency and hence relative geometric crisp efficiency
of DMUA can be obtained as follows:

Step 1: Using the product of triangular fuzzy numbers, defined in Sect. 2.2, the
optimistic fuzzy CCR DEA model (31) and pessimistic fuzzy CCR DEA model
(32) can be transformed into optimistic fuzzy CCR DEA model (33) and pessimistic
fuzzy CCR DEA model (34) respectively.
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Maximize E ̃BA = EB
A1,E

B
A2,E

B
A3

� �h
≈

14500uL1 + 3.1uL2, 14790u
M
1 + 4.1uM2 , 14860u

U
1 + 4.9uU2

� �
2120vL1 + 4.9vL2, 2170v

M
1 + 1870vM2 , 2210v

U
1 + 1870vU2

� �
" ##

Subject to

14500uL1 + 3.1uL2, 14790u
M
1 + 4.1uM2 , 14860u

U
1 + 4.9uU2

� �
≼ 2120vL1 + 1870vL2, 2170v

M
1 + 1870vM2 , 2210v

U
1 + 1870vU2

� �
12470uL1 + 1.2uL2, 12720u

M
1 + 2.1uM2 , 12790u

U
1 + 3.0uU2

� �
≼ 1420vL1 + 1340vL2, 1460v

M
1 + 1340vM2 , 1500v

U
1 + 1340vU2

� �
17900uL1 + 3.3u2, 18260uM1 + 4.3uM2 , 18400u

U
1 + 4.0uU2

� �
≼ ð2510vL1 + 2360vL2, 2570v

M
1 + 2360vM2 , 2610v

U
1 + 2360vU2 Þ

14970uL1 + 2.7uL2, 15270u
M
1 + 3.7uM2 , 15400u

U
1 + 4.6uU2

� �
≼ ð2300vL1 + 2020vL2, 2350v

M
1 + 2020vM2 , 2400v

U
1 + 2020vU2 Þ

13980uL1 + 1.0uL2, 14260u
M
1 + 1.8uM2 , 14330u

U
1 + 2.7uU2

� �
≼ ð1480vL1 + 1550vL2, 1520v

M
1 + 1550vM2 , 1560v

U
1 + 1550vU2 Þ

14030uL1 + 1.6uL2, 14310u
M
1 + 2.6uM2 , 14400u

U
1 + 3.6uU2

� �
≼ ð1990vL1 + 1760vL2, 2030v

M
1 + 1760vM2 , 2100v

U
1 + 1760vU2 Þ

16540uL1 + 2.4uL2, 16870u
M
1 + 3.4uM2 , 17000u

U
1 + 4.4uU2

� �
≼ ð2200vL1 + 1980vL2, 2260v

M
1 + 1980vM2 , 2300v

U
1 + 1980vU2 Þ

17600uL1 + 2.6uL2, 17960u
M
1 + 3.6uM2 , 18100u

U
1 + 4.6uU2

� �
≼ 2400vL1 + 2250vL2, 2460v

M
1 + 2250vM2 , 2520v

U
1 + 2250vU2

� �
,

0≤ uLr ≤ uMr ≤ uNr ≤ uUr ; 0≤ vLi ≤ vMi ≤ vNi ≤ vUi , i=1, 2, r =1, 2.

ð33Þ

Minimize E ̃WA = EW
A1,E

W
A2,E

W
A3

� �h
≈

14500uL1 + 3.1uL2, 14790u
M
1 + 4.1uM2 , 14860u

U
1 + 4.9uU2

� �
2120vL1 + 4.9vL2, 2170v

M
1 + 1870vM2 , 2210v

U
1 + 1870vU2

� �
" ##

Subject to

14500uL1 + 3.1uL2, 14790u
M
1 + 4.1uM2 , 14860u

U
1 + 4.9uU2

� �
≽ 2120vL1 + 1870vL2, 2170v

M
1 + 1870vM2 , 2210v

U
1 + 1870vU2

� �
12470uL1 + 1.2uL2, 12720u

M
1 + 2.1uM2 , 12790u

U
1 + 3.0uU2

� �
≽ 1420vL1 + 1340vL2, 1460v

M
1 + 1340vM2 , 1500v

U
1 + 1340vU2

� �
17900uL1 + 3.3u2, 18260uM1 + 4.3uM2 , 18400u

U
1 + 4.0uU2

� �
≽ð2510vL1 + 2360vL2, 2570v

M
1 + 2360vM2 , 2610v

U
1 + 2360vU2 Þ

14970uL1 + 2.7uL2, 15270u
M
1 + 3.7uM2 , 15400u

U
1 + 4.6uU2

� �
≽ð2300vL1 + 2020vL2, 2350v

M
1 + 2020vM2 , 2400v

U
1 + 2020vU2 Þ

13980uL1 + 1.0uL2, 14260u
M
1 + 1.8uM2 , 14330u

U
1 + 2.7uU2

� �
≽ð1480vL1 + 1550vL2, 1520v

M
1 + 1550vM2 , 1560v

U
1 + 1550vU2 Þ

14030uL1 + 1.6uL2, 14310u
M
1 + 2.6uM2 , 14400u

U
1 + 3.6uU2

� �
≽ð1990vL1 + 1760vL2, 2030v

M
1 + 1760vM2 , 2100v

U
1 + 1760vU2 Þ

16540uL1 + 2.4uL2, 16870u
M
1 + 3.4uM2 , 17000u

U
1 + 4.4uU2

� �
≽ð2200vL1 + 1980vL2, 2260v

M
1 + 1980vM2 , 2300v

U
1 + 1980vU2 Þ

17600uL1 + 2.6uL2, 17960u
M
1 + 3.6uM2 , 18100u

U
1 + 4.6uU2

� �
≽ 2400vL1 + 2250vL2, 2460v

M
1 + 2250vM2 , 2520v

U
1 + 2250vU2

� �
,

0≤ uLr ≤ uMr ≤ uNr ≤ uUr ; 0≤ vLi ≤ vMi ≤ vNi ≤ vUi , i=1, 2, r=1, 2,

ð34Þ
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Step 2: The optimistic fuzzy CCR DEA model (33) and pessimistic fuzzy
CCR DEA model (34) can be transformed into optimistic fuzzy CCR DEA model
(35) and pessimistic fuzzy CCR DEA model (36) respectively.

Maximize E
B̃
A = EB

A1,E
B
A2,E

B
A3

� �h
≈

14500uL1 + 3.1uL2, 14790u
M
1 + 4.1uM2 , 14860u

U
1 + 4.9uU2

� �
2120vL1 + 4.9vL2, 2170v

M
1 + 1870vM2 , 2210v

U
1 + 1870vU2

� �
" ##

Subject to
14500uL1 + 3.1uL2 ≤ 2120vL1 + 1870vL2, 14790uM1 + 4.1uM2 ≤ 2170vM1 + 1870vM2 ,

14860uU1 + 4.9uU2 ≤ 2210vU1 + 1870vU2 , 12470uL1 + 1.2uL2 ≤ 1420vL1 + 1340vL2,

12720uM1 + 2.1uM2 ≤ 1460vM1 + 1340vM2 , 12790uU1 + 3.0uU2 ≤ 1500vU1 + 1340vU2 ,

17900uL1 + 3.3uL2 ≤ 2510vL1 + 2360vL2, 18260uM1 + 4.3uM2 ≤ 2570vM1 + 2360vM2 ,

18400uU1 + 4.0uU2 ≤ 2610vU1 + 2360vU2 , 14970uL1 + 2.7uL2 ≤ 2300vL1 + 2020vL2,

15270uM1 + 3.7uM2 ≤ 2350vM1 + 2020vM2 15400uU1 + 4.6uU2 ≤ 2400vU1 + 2020vU2 ,

13980uL1 + 1.0uL2 ≤ 1480vL1 + 1550vL2, 14260uM1 + 1.8uM2 ≤ 1520vM1 + 1550vM2 ,

14330uU1 + 2.7uU2 ≤ 1560vU1 + 1550vU2 14030uL1 + 1.6uL2 ≤ 1990vL1 + 1760vL2,

14310uM1 + 2.6uM2 ≤ 2030vM1 + 1760vM2 , 14400uU1 + 3.6uU2 ≤ 2100vU1 + 1760vU2 ,

16540uL1 + 2.4uL2 ≤ 2200vL1 + 1980vL2, 16870uM1 + 3.4uM2 ≤ 2260vM1 + 1980vM2 ,

17000uU1 + 4.4uU2 ≤ 2300vU1 + 1980vU2 , 17600uL1 + 2.6uL2 ≤ 2400vL1 + 2250vL2,

17960uM1 + 3.6uM2 ≤ 2460vM1 + 2250vM2 , 18100uU1 + 4.6uU2 ≤ 2520vU1 + 2250vU2 .

0≤ uLr ≤ uMr ≤ uNr ≤ uUr ; 0≤ vLi ≤ vMi ≤ vNi ≤ vUi , i=1, 2, r=1, 2.

ð35Þ

Minimize E
W̃
A = EW

A1,E
W
A2,E

W
A3

� �h
≈

14500uL1 + 3.1uL2, 14790u
M
1 + 4.1uM2 , 14860u

U
1 + 4.9uU2

� �
2120vL1 + 4.9vL2 , 2170v

M
1 + 1870vM2 , 2210v

U
1 + 1870vU2

� �
" ##

Subject to

14500uL1 + 3.1uL2 ≥ 2120vL1 + 1870vL2, 14790uM1 + 4.1uM2 ≥ 2170vM1 + 1870vM2 ,

14860uU1 + 4.9uU2 ≥ 2210vU1 + 1870vU2 12470uL1 + 1.2uL2 ≥ 1420vL1 + 1340vL2 ,

12720uM1 + 2.1uM2 ≥ 1460vM1 + 1340vM2 , 12790uU1 + 3.0uU2 ≥ 1500vU1 + 1340vU2 ,

17900uL1 + 3.3uL2 ≥ 2510vL1 + 2360vL2, 18260uM1 + 4.3uM2 ≥ 2570vM1 + 2360vM2 ,

18400uU1 + 4.0uU2 ≥ 2610vU1 + 2360vU2 , 14970uL1 + 2.7uL2 ≥ 2300vL1 + 2020vL2 ,

15270uM1 + 3.7uM2 ≥ 2350vM1 + 2020vM2 , 15400uU1 + 4.6uU2 ≥ 2400vU1 + 2020vU2 ,

13980uL1 + 1.0uL2 ≥ 1480vL1 + 1550vL2 , 14260uM1 + 1.8uM2 ≥ 1520vM1 + 1550vM2 ,

14330uU1 + 2.7uU2 ≥ 1560vU1 + 1550vU2 , 14030uL1 + 1.6uL2 ≥ 1990vL1 + 1760vL2,

14310uM1 + 2.6uM2 ≥ 2030vM1 + 1760vM2 14400uU1 + 3.6uU2 ≥ 2100vU1 + 1760vU2 ,

16540uL1 + 2.4uL2 ≥ 2200vL1 + 1980vL2 , 16870uM1 + 3.4uM2 ≥ 2260vM1 + 1980vM2 ,

17000uU1 + 4.4uU2 ≥ 2300vU1 + 1980vU2 , 17600uL1 + 2.6uL2 ≥ 2400vL1 + 2250vL2,

17960uM1 + 3.6uM2 ≥ 2460vM1 + 2250vM2 , 18100uU1 + 4.6uU2 ≥ 2520vU1 + 2250vU2 .

0≤ uLr ≤ uMr ≤ uNr ≤ uUr ; 0≤ vLi ≤ vMi ≤ vNi ≤ vUi , i=1, 2, r=1, 2,

ð36Þ

Step 3: The optimistic fuzzy CCR DEA model (35) and pessimistic fuzzy
CCR DEA model (36) can be transformed into optimistic fuzzy CCR DEA model
(37) and pessimistic fuzzy CCR DEA model (38) respectively.
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Maximize E
B̃
A = EB

A1,E
B
A2,E

B
A3

� �
≈

14500uL1 + 3.1uL2
2210vU1 + 1870vU2

,
14790uM1 + 4.1uM2
2170vM1 + 1870vM2

,
14860uU1 + 4.9uU2
2120vL1 + 4.9vL2

� �	 
	 

Subject to

All the constraints of model 35ð Þ.
ð37Þ

Minimize E ̃WA = EW
A1,E

W
A2,E

W
A3

� �
≈

14500uL1 + 3.1uL2
2210vU1 + 1870vU2

,
14790uM1 + 4.1uM2
2170vM1 + 1870vM2

,
14860uU1 + 4.9uU2
2120vL1 + 4.9vL2

� �	 
	 

Subject to

All the constraints of model 36ð Þ.

ð38Þ

Step 4: The fuzzy optimal value E
B̃
A ≈ EB

A1,E
B
A2,E

B
A3

� �
, representing the best relative

fuzzy efficiency of DMUA, as well as the fuzzy optimal value E ̃WA ≈ EW
A1,E

W
A2,E

W
A3

� �
,

representing the worst relative fuzzy efficiency of DMUA, can be obtained by
solving the optimistic fuzzy CCR DEA model (37) and pessimistic fuzzy
CCR DEA model (38) as follows:

Step 4(a): The optimal value EB
A1

� �
and EW

A1

� �
of the optimistic crisp CCR DEA

model (39a) and pessimistic CCR DEA model (40a) by solving optimistic crisp
CCR DEA model (39b) and pessimistic CCR DEA model (39b) equivalent to
optimistic crisp CCR DEA model (39a) and pessimistic CCR DEA model (40a) are
0.812 and 1 respectively.

Maximize EB
A1 =

14500uL1 + 3.1uL2
2210vU1 + 1870vU2

	 

Subject to

14500uL1 + 3.1uL2
2210vU1 + 1870vU2

≤ 1,

& all the constraints of model 35ð Þ.

ð39aÞ

Maximize EB
A1 = 14500uL1 + 3.1uL2

� �
Subject to

2210vU1 + 1870vU2 = 1
14500uL1 + 3.1uL2 ≤ 2210vU1 + 1870vU2 ,
& all the constraints of model 35ð Þ.

ð39bÞ

Minimize EW
A1 =

14500uL1 + 3.1uL2
2210vU1 + 1870vU2

	 

Subject to

14500uL1 + 3.1uL2
2210vU1 + 1870vU2

≥ 1,

& all the constraints of model 36ð Þ.

ð40aÞ

Minimize EW
A1 = 14500uL1 + 3.1uL2

� �
Subject to

2210vU1 + 1870vU2 = 1
14500uL1 + 3.1uL2 ≥ 2210vU1 + 1870vU2 ,
& all the constraints of model 36ð Þ.

ð40bÞ

338 B. Bhardwaj et al.



Step 4(b): The optimal value EB
A2

� �
and EW

A2

� �
of the optimistic crisp CCR DEA

model (41a) and pessimistic CCR DEA model (42a) by solving optimistic crisp
CCR DEA model (41b) and pessimistic CCR DEA model (42b) equivalent to
optimistic crisp CCR DEA model (41a) and pessimistic CCR DEA model (42b) are
0.833 and 1.046 respectively.

Maximize EB
A2 =

14790uM1 + 4.1uM2
2170vM1 + 1870vM2

	 

Subject to

14500uL1 + 3.1uL2
2210vU1 + 1870vU2

= 0.812

0.812≤
14790uM1 + 4.1uM2
2170vM1 + 1870vM2

≤ 1

& all the constraints of model 38ð Þ.

ð41aÞ

Maximize EB
A2 = 14790uM1 + 4.1uM2

� �
Subject to

2170vM1 + 1870vM2 = 1,
14500uL1 + 3.1uL2 = 0.812ð Þ 2210vU1 + 1870vU2

� �
,

0.812ð Þ 2170vM1 + 1870vM2
� �

≤ 14790uM1 + 4.1uM2 ≤ 2170vM1 + 1870vM2
& all the constraints of model 35ð Þ.

ð41bÞ

Minimize EW
A2 =

14790uM1 + 4.1uM2
2170vM1 + 1870vM2

	 

Subject to

14500uL1 + 3.1uL2
2210vU1 + 1870vU2

= 1,

14790uM1 + 4.1uM2
2170vM1 + 1870vM2

≥ 1

& all the constraints of model 36ð Þ.

ð42aÞ

Minimize EB
A2 = 14790uM1 + 4.1uM2

� �
Subject to

2170vM1 + 1870vM2 = 1,
14500uL1 + 3.1uL2 = 2210vU1 + 1870vU2 ,
2170vM1 + 1870vM2 ≤ 14790uM1 + 4.1uM2
& all the constraints of model 36ð Þ.

ð42bÞ

Step 4(c): The optimal value EB
A2

� �
and EW

A2

� �
of the optimistic crisp CCR DEA

model (43a) and pessimistic CCR DEA model (44a) by solving optimistic crisp
CCR DEA model (43b) and pessimistic CCR DEA model (P29b) equivalent to
optimistic crisp CCR DEA model (43a) and pessimistic CCR DEA model (44a) are
0.854 and 1.072 respectively.
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Maximize EB
A3 =

14860uU1 + 4.9uU2
2120vL1 + 4.9vL2

	 

Subject to

14500uL1 + 3.1uL2
2210vU1 + 1870vU2

= 0.812,

14790uM1 + 4.1uM2
2170vM1 + 1870vM2

= 0.833,

0.833≤
14860uU1 + 4.9uU2
2120vL1 + 4.9vL2

≤ 1,

& all the constraints of model 37ð Þ.

ð43aÞ

Maximize EB
A3 = 14860uU1 + 4.9uU2

� �
Subject to

2120vL1 + 4.9vL2 = 1,
14500uL1 + 3.1uL2 = 0.812ð Þ 2210vU1 + 1870vU2

� �
14790uM1 + 4.1uM2 = 0.833ð Þ 2170vM1 + 1870vM2

� �
,

0.833ð Þ 2120vL1 + 4.9vL2
� �

≤ 14860uU1 + 4.9uU2 ≤ 2120vL1 + 4.9vL2.
& all the constraints of model 37ð Þ.

ð43bÞ

Minimize EW
A3 =

14860uU1 + 4.9uU2
2120vL1 + 4.9vL2

	 

Subject to

14500uL1 + 3.1uL2
2210vU1 + 1870vU2

= 1,

14790uM1 + 4.1uM2
2170vM1 + 1870vM2

= 1.046,

14860uU1 + 4.9uU2
2120vL1 + 4.9vL2

≥ 1.046,

& all the constraints of model 36ð Þ.

ð44aÞ

Minimize EW
A3 = 14860uU1 + 4.9uU2

� �
Subject to

2120vL1 + 4.9vL2 = 1,
14500uL1 + 3.1uL2 = 2210vU1 + 1870vU2
14790uM1 + 4.1uM2 = 1.046ð Þ 2170vM1 + 1870vM2

� �
,

1.046ð Þ 2120vL1 + 4.9vL2
� �

≤ 14860uU1 + 4.9uU2 .
& all the constraints of model 36ð Þ.

ð44bÞ

Step 5: Using the values of EB
A1,E

B
A2,E

B
A3 and E

W
A1,E

W
A2,E

W
A3, obtained in Step (4a) to

Step (4c), the fuzzy optimal value E
B̃
A = EB

A1,E
B
A2,E

B
A3

� �
of optimistic fuzzy DEA

model-4.16, representing the best relative fuzzy efficiency of DMUA, is

E
B̃
A = EB

A1,E
B
A2,E

B
A3

� �
= 0.812, 0.833, 0.854ð Þ, as well as pessimistic fuzzy optimal

value E ̃WA = EW
A1,E

W
A2,E

W
A3

� �
of pessimistic fuzzy DEA model (31), representing the

worst relative fuzzy efficiency ofDMUA, isE ̃
W
A = EW

A1,E
W
A2,E

W
A3

� �
= 1, 1.046, 1.072ð Þ.
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Step 6: The crisp optimal value EB
A =ℜ E ̃BA

� �
=ℜ 0.812, 0.833, 0.854ð Þ, repre-

senting the best relative crisp efficiency of DMUA, is 0.833.

Step 7: The crisp optimal value EW
A =ℜ E ̃WA

� �
=ℜ 1, 1.046, 1.072ð Þ, representing

the worst relative crisp efficiency of DMUA, is 1.041.

Step 8: The geometric average crisp efficiency EGEOMETRIC
A of Ath DMU by putting

the values EB
A and EW

A , obtained in Step 5 and Step 6, in EGEOMETRIC
A =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EB
A ×EW

A

p
is 0.931.

7 Results

The exact best relative fuzzy efficiency, exact worst relative fuzzy efficiency and
relative geometric crisp efficiency of all the DMUs, obtained by using the proposed
method are shown in Table 2.

It is obvious from Table 2 that ℜ E ̃B
� �

>R E ̃E
� �

>R EG̃
� �

=ℜ E ̃F
� �

>R EH̃
� �

>
R EÃ
� �

>R EC̃
� �

>R ED̃
� �

. Therefore, E ̃B≻E ̃E≻E ̃G ≈E ̃F≻E ̃A≻E ̃H≻E ̃C≻E ̃D.

Table 2 Results obtained by using the proposed method

DMUj Best relative fuzzy
efficiency

Worst relative fuzzy
efficiency

Relative geometric crisp
efficiency

A (0.81238, 0.833217,
0.85407)

(1, 1.04625, 1.07227) 0.931

B (0.97498, 1, 1) (1, 1.12689, 1.28793) 1.062
C (0.79661, 0.815201,

0.83732)
(1, 1.01738, 1.055204) 0.913

D (0.77643, 0.79636,
0.81927)

(1, 1, 1.028724) 0.898

E (0.97303, 1, 1) (1, 1, 1) 0.996
F (0.83517, 0.85653,

0.879205)
(1, 1, 1.104026) 0.938

G (0.87519, 0.89757,
0.92263)

(1, 1.07384, 1.1585) 0.938

H (0.819529, 0.84089,
0.86447)

(1, 1.009602, 1.08548) 0.929
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8 Conclusions

On the basis the present study, it can be concluded that there are flaws in the
existing method [25] and hence, the existing method [25] cannot be used for
evaluating the best relative geometric crisp efficiency of DMUs. Also, to resolve the
flaws of the existing method [25], a new approach is proposed to solve the proposed
fuzzy CCR DEA models for evaluating the best relative geometric crisp efficiency
of DMUs.
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A New Fuzzy CCR Data Envelopment
Analysis Model and Its Application
to Manufacturing Enterprises

Bindu Bhardwaj, Jagdeep Kaur and Amit Kumar

Abstract Wang et al. (Expert Syst Appl 36:5205–5211, 2009, [26]) pointed out
that in the literature the solution of a fuzzy CCR data envelopment analysis
(DEA) model which is a fuzzy fractional programming problem, is obtained by
transforming it into a fuzzy linear programming problem. While, due to the

property eAeA ≠ 1 ̃, where eA is a fuzzy number, the fuzzy CCR DEA model cannot be

transformed into a fuzzy linear programming problem. To resolve this flaw of the
existing methods, Wang et al. proposed two new methods to solve the fuzzy
CCR DEA model without transforming it into a fuzzy linear programming problem.
In this chapter, flaws in the methods, proposed by Wang et al. as well as flaws in the
fuzzy CCR DEA model, proposed by Wang et al., are pointed out. To resolve these
flaws, a new fuzzy CCR DEA model as well as a new method to solve fuzzy
CCR DEA model are proposed. To illustrate the proposed method, the real life
problem, chosen by Wang et al., is solved.
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1 Introduction

The efficiency evaluation of every system is important to find its weakness so that
subsequent improvements can be made. DEA, a non-parametric approach proposed
by Charnes et al. [3], is an approach to measure the relative efficiency of
homogenous units called decision making units (DMUs) which consume the same
type of inputs and produce the same type of outputs. Since, the pioneering work
Charnes et al. [3], DEA has been extensively used for evaluating the performance of
many activities.

The conventional CCR and BCC DEA models [2, 3] require accurate mea-
surement of both the inputs and outputs. However, inputs and outputs of DMUs in
real world problems may be imprecise. Imprecise evaluations may be the result of
unquantifiable, incomplete and non-obtainable information. In recent years, fuzzy
set theory has been proven to be useful as a way to quantify imprecise and vague
data in DEA models. The DEA model with fuzzy data, called “fuzzy DEA” models,
can more realistically represent real world problems than the conventional DEA
models. Several approaches have been developed and many new are coming for
handling fuzzy input and output data in DEA.

Several authors [1, 4–25, 27, 28] have proposed methods to solve fuzzy DEA
models and to solve fuzzy DEA models two approaches are used: (1) by trans-
forming the fuzzy fractional programming ∑s

r=1 uryr̃j ̸∑
m
i=1 vixĩj into a fuzzy linear

programming model ∑s
r=1 uryr̃j by setting ∑m

i=1 vixĩj≈1 ̃ (2) by transforming fuzzy
DEA models into two respective pessimistic and optimistic crisp DEA models
using α-cut technique. Wang et al. [26] pointed out that the former ignores the fact
that a fuzzy fractional programming cannot be transformed into a linear program-
ming model as we do for a crisp fractional programming unless 1 ̃ is assumed to be a
crisp number; while the latter requires the solution of a series of linear programming
models based on different α-level sets and therefore it requires much computational
efforts to get the fuzzy efficiencies of DMUs.

To the best of our knowledge, the methods, proposed by Wang et al. [26], are the
only existing methods to solve fuzzy DEA models without using the aforemen-
tioned transformations (1) and (2). In this chapter, the shortcomings of the existing
methods [26] are pointed out and a new method is proposed for the same.

The rest of the chapter is organized as follows. In Sect. 2, some basic definitions
and arithmetic operations on fuzzy numbers are presented. In Sect. 3, the existing
methods [26] for solving fuzzy DEA problems are reviewed. In Sect. 4, the flaws of
the existing methods and in Sect. 5, the flaws of the existing fuzzy CCR DEA
model are pointed out. To overcome these flaws, a new fuzzy CCR DEA model is
proposed in Sect. 6 and a new method is proposed in Sect. 7 for solving the same.
The proposed method is illustrated with the help of a real world problem in Sect. 8
and the obtained results are discussed in Sect. 9. Finally, the conclusions are dis-
cussed in Sect. 10.
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2 Basic Definitions and Arithmetic Operations

In this section, some basic definitions and arithmetic operations on fuzzy numbers
are reviewed [29].

2.1 Basic Definitions

In this section, some basic definitions are reviewed [29].

Definition 1 A fuzzy number eA= aL, aM , aRð Þ is said to be a triangular fuzzy
number if its membership function is given by

μeAðxÞ=
x− aLð Þ

ðaM − aLÞ , aL ≤ x< aM

1 x= aM
x− aRð Þ

ðaM − aRÞ , aM < x≤ aR

0, otherwise.

8>><>>:
Definition 2 A triangular fuzzy number eA= ðaL, aM , aRÞ is said to be non-negative
triangular fuzzy number if and only if aL ≥ 0.

Definition 3 A triangular fuzzy number eA= ðaL, aM , aRÞ is said to be positive
triangular fuzzy number if and only if aL >0.

2.2 Arithmetic Operations on Triangular Fuzzy Numbers

Let eA= aL, aM , aRð Þ and eB= bL, bM , bRð Þ be two arbitrary triangular fuzzy numbers.
Then,

(i) eA+ eB= ðaL + bL, aM + bM , aR + bRÞ
(ii) eA− eB= ðaL − bR, aM − bM , aR − bLÞ
(iii) eAeB= aLbL, aMbM , aRbRð Þ, where eA and eB are non-negative triangular fuzzy

numbers.

(iv) eAeB = aL
bR ,

aM
bM ,

aR
bL

� �
, where eA is a non-negative triangular fuzzy number and eB is

a positive triangular fuzzy number.
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3 An Overview of the Existing Fuzzy CCR DEA Methods

In this section, the existing methods [26] for solving fuzzy CCR DEA model are
reviewed.

Suppose that there are n DMUs to be assessed where each DMUjðj=1, 2, . . . , nÞ
consumes m inputs xĩjði=1, 2, . . . ,mÞ to produce s outputs y ̃rjðr=1, 2, . . . sÞ.
Wang et al. [26] proposed the following two methods for solving fuzzy CCR DEA
model (1) by considering input and output data as triangular fuzzy numbers
xĩj = ðxLij, xMij , xUij Þ and yr̃j = ðyLrj, yMrj , yUrj Þ respectively.

Maximize eEp≈ EL
p ,E

M
p ,E

U
p

� �
≈
∑s

r=1 ur yLrp, y
M
rp, y

U
rp

� �
∑m

i=1 vi xLip, x
M
ip , x

U
ip

� �
24 35

Subject to

∑s
r=1 ur yLrj, y

M
rj , y

U
rj

� �
∑m

i=1 vi xLij, x
M
ij , x

U
ij

� � ≼ ð1, 1, 1Þ, ∀j

ur, vi ≥ 0, ∀i, r.

ð1Þ

3.1 First Method

The steps of the method, proposed by Wang et al. [26] for solving fuzzy CCR DEA
model (1), are as follows:

Step 1: Using the product of triangular fuzzy numbers, defined in Sect. 2.2, the
fuzzy CCR DEA model (1) can be transformed into fuzzy CCR DEA
model (2).

Maximize eEp≈ EL
p ,E

M
p ,E

U
p

� �
≈

∑s
r=1 ury

L
rp, ∑

s
r=1 ury

M
rp, ∑

s
r=1 ury

U
rp

� �
∑m

i=1 vix
L
ip, ∑

m
i=1 vix

M
ip ∑

m
i=1 vix

U
ip

� �
24 35

Subject to

∑s
r=1 ury

L
rj, ∑

s
r=1 ury

M
rj , ∑

s
r=1 ury

U
rj

� �
∑m

i=1 vix
L
ij, ∑

m
i=1 vix

M
ij ∑

m
i=1 vix

U
ij

� � ≼ ð1, 1, 1Þ, ∀j

ur, vi ≥ 0, ∀i, r.
ð2Þ
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Step 2: Using division of triangular fuzzy number, defined in Sect. 2.2, the fuzzy
CCR DEA model (2) can be transformed into fuzzy CCR DEA model (3).

Maximize eEp≈ EL
p ,E

M
p ,E

U
p

� �
≈

∑s
r=1ury

L
rp

∑m
i=1 vix

U
ip
,
∑s

r=1ury
M
rp

∑m
i=1 vix

M
ip
,
∑s

r=1 ury
U
rp

∑m
i=1 vix

L
ip

 !" #
Subject to

∑s
r=1ury

L
rj

∑m
i=1 vix

U
ij
,
∑s

r=1 ury
M
rj

∑m
i=1 vix

M
ij
,
∑s

r=1ury
U
rj

∑m
i=1 vix

L
ij

 !
≼ð1,1,1Þ, ∀j

ur,vi≥0, ∀i,r.

ð3Þ

Step 3: Using the relation (ðaL, aM , aUÞ≤ ðbL, bM , bUÞ⇒ aL ≤ bL, aM ≤ bM

commaaU ≤ bU , the fuzzy CCR DEA model (3) can be transformed into
fuzzy CCR DEA model (4).

Maximize eEp≈ EL
p ,E

M
p ,E

U
p

� �
≈

∑s
r=1 ury

L
rp

∑m
i=1 vix

U
ip
,
∑s

r=1 ury
M
rp

∑m
i=1 vix

M
ip
,
∑s

r=1 ury
U
rp

∑m
i=1 vix

L
ip

 !" #
Subject to

∑s
r=1 ury

L
rj

∑m
i=1 vix

U
ij

≤ 1, ∀j

∑s
r=1 ury

M
rj

∑m
i=1 vix

M
ij

≤ 1, ∀j

∑s
r=1 ury

U
rj

∑m
i=1 vix

L
ij
≤ 1, ∀j

ur, vi ≥ 0, ∀i, r.

ð4Þ

Step 4: For a fuzzy number ðaL, aM , aRÞ, if aR ≤ 1 then the condition aL ≤ 1 and
aM ≤ 1 will automatically be satisfied, so the fuzzy CCR DEA model (4)
can transformed into fuzzy CCR DEA model (5).

Maximize eEp≈ EL
p ,E

M
p ,E

U
p

� �
≈

∑s
r=1 ury

L
rp

∑m
i=1 vix

U
ip
,
∑s

r=1 ury
M
rp

∑m
i=1 vix

M
ip
,
∑s

r=1 ury
U
rp

∑m
i=1 vix

L
ip

 !" #
Subject to

∑s
r=1 ury

U
rj

∑m
i=1 vix

L
ij
≤ 1, ∀j

ur, vi ≥ 0, ∀i, r.

ð5Þ
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Step 5: Transform the fuzzy CCR DEA model (5) into crisp CCR DEA models
(6)–(8).

Maximize EL
p =

∑s
r=1 ury

L
rp

∑m
i=1 vix

U
ip

" #
Subject to

∑s
r=1 ury

U
rj

∑m
i=1 vix

L
ij
≤ 1, ∀j

ur, vi ≥ 0, ∀i, r.

ð6Þ

Maximize EM
p =

∑s
r=1 ury

M
rp

∑m
i=1 vix

M
ip

" #
Subject to

∑s
r=1 ury

U
rj

∑m
i=1 vix

L
ij
≤ 1,∀j

ur, vi ≥ 0, ∀i, r.

ð7Þ

Maximize EU
p =

∑s
r=1 ury

U
rp

∑m
i=1 vix

L
ip

" #
Subject to

∑s
r=1 ury

U
rj

∑m
i=1 vix

L
ij
≤ 1, ∀j

ur, vi ≥ 0, ∀i, r.

ð8Þ

Step 6: The crisp CCR DEA models (6)–(8) can be transformed into crisp
CCR DEA models (9) to (11) respectively.

Maximize EL
p = ∑s

r=1 ury
L
rp

h i
Subject to

∑m
i=1 vix

U
ip =1,

∑s
r=1 ury

U
rj − ∑m

i=1 vix
L
ij ≤ 0, ∀j

ur, vi ≥ 0, ∀i, r.

ð9Þ
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Maximize EM
p = ∑s

r=1 ury
M
rp

h i
Subject to

∑m
i=1 vix

M
ip =1,

∑s
r=1 ury

U
rj − ∑m

i=1 vix
L
ij ≤ 0, ∀j

ur, vi ≥ 0, ∀i, r.

ð10Þ

Maximize EU
p = ∑s

r=1 ury
U
rp

h i
Subject to

∑m
i=1 vix

L
ip =1,

∑s
r=1 ury

U
rj − ∑m

i=1 vix
L
ij ≤ 0, ∀j

ur, vi ≥ 0, ∀i, r.

ð11Þ

Step 7: Find the optimal value EL
p ,E

M
p and EU

p of crisp CCR DEA models (9) to
(11) respectively.

Step 8: Using the optimal values of EL
p ,E

M
p and EU

p , obtained in Step 6, the fuzzy

optimal value EL
p ,E

M
p ,E

U
p

� �
(best relative fuzzy efficiency of DMUp) of

fuzzy CCR DEA model (1) can be obtained.

3.2 Second Method

The steps of the method, proposed by Wang et al. [26] for solving fuzzy CCR DEA
model (1), are as follows:

Step 1: Using the product of triangular fuzzy numbers, defined in Sect. 2.2, the
fuzzy CCR DEA model (1) can be transformed into fuzzy CCR DEA
model (12).

Maximize eEp≈ EL
p ,E

M
p ,E

U
p

� �
≈

∑s
r=1 ury

L
rp, ∑

s
r=1 ury

M
rp ∑

s
r=1 ∑

s
r=1 ury

U
rp,

� �
∑m

i=1 vix
L
ip, ∑

m
i=1 vix

M
ip , ∑

m
i=1 vix

U
ip

� �
24 35

Subject to

∑s
r=1 ury

L
rj, ∑

s
r=1 ury

M
rj , ∑

s
r=1 ury

U
rj

� �
∑m

i=1 vixij, ∑
m
i=1 vix

M
ij , ∑

m
i=1 vix

U
ij

� � ≼ ð1, 1, 1Þ, ∀j

ur, vi ≥ 0, ∀i, r.

ð12Þ
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Step 2: Using the division of triangular fuzzy numbers, defined in Sect. 2.2, the
fuzzy CCR DEA model (12) can be transformed into fuzzy CCR DEA
model (13).

Maximize eEp≈ EL
p ,E

M
p ,E

U
p

� �
≈

∑s
r=1 ury

L
rp

∑m
i=1 vix

U
ip
,
∑s

r=1 ury
M
rp

∑m
i=1 vix

M
ip
,
∑s

r=1 ury
U
rp

∑m
i=1 vix

L
ip

 !" #
Subject to

∑s
r=1 ury

L
rj

∑m
i=1 vix

U
ij
,
∑s

r=1 ury
M
rj

∑m
i=1 vix

M
ij
,
∑s

r=1 ury
U
rj

∑m
i=1 vix

L
ij

 !
≼ ðÞ1, 1, 1, ∀j

ur, vi ≥ 0, ∀i, r.

ð13Þ

Step 3: Using the relation (ðaL, aM , aUÞ≼ ðbL, bM , bUÞ⇒ aL ≤ bL, aM ≤ bM ,
aU ≤ bU , the fuzzy CCR DEA model (13) can be transformed into fuzzy
CCR DEA model (14).

Maximize eEp≈ EL
p ,E

M
p ,E

U
p

� �
≈

∑s
r=1 ury

L
rp

∑m
i=1 vix

U
ip
,
∑s

r=1 ury
M
rp

∑m
i=1 vix

M
ip
,
∑s

r=1 ury
U
rp

∑m
i=1 vix

L
ip

 !" #
Subject to

∑s
r=1 ury

L
rj

∑m
i=1 vix

U
ij

≤ 1, ∀j

∑s
r=1 ury

M
rj

∑m
i=1 vix

M
ij

≤ 1, ∀j

∑s
r=1 ury

U
rj

∑m
i=1 vix

L
ij
≤ 1, ∀j

ur, vi ≥ 0, ∀i, r.

ð14Þ

Step 4: As for fuzzy CCR DEA model (14), since there are no restrictions imposed
subjectively on the support of the fuzzy numbers 1 ̃, its lower and upper
bounds are therefore viewed as free. Based upon this point of view fuzzy
CCR DEA model (14) can be transformed into fuzzy CCR DEA model
(15).
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Maximize eEp≈ EL
p ,E

M
p ,E

U
p

� �
≈

∑s
r=1 ury

L
rp

∑m
i=1 vix

U
ip
,
∑s

r=1 ury
M
rp

∑m
i=1 vix

M
ip
,
∑s

r=1 ury
U
rp

∑m
i=1 vix

L
ip

 !" #
Subject to

∑s
r=1 ury

M
rj

∑m
i=1 vix

M
ij

≤ 1, ∀j

ur, vi ≥ 0, ∀i, r.

ð15Þ

Step 5: Transform the fuzzy CCR DEA model (15) into crisp CCR DEA models
(16)–(18).

Maximize EL
p =

∑s
r=1 ury

L
rp

∑m
i=1 vix

U
ip

" #
Subject to

∑s
r=1 ury

M
rj

∑m
i=1 vix

M
ij

≤ 1, ∀j

ur, vi ≥ 0, ∀i, r.

ð16Þ

Maximize EM
p =

∑s
r=1 ury

M
rp

∑m
i=1 vix

M
ip

" #
Subject to

∑s
r=1 ury

M
rj

∑m
i=1 vix

M
ij

≤ 1, ∀j

ur, vi ≥ 0, ∀i, r.

ð17Þ

Maximize EU
p =

∑s
r=1 ury

U
rp

∑m
i=1 vix

L
ip

" #
Subject to

∑s
r=1 ury

M
rj

∑m
i=1 vix

M
ij

≤ 1, ∀j

ur, vi ≥ 0, ∀i, r.

ð18Þ

Step 6: The crisp CCR DEA models (16)–(18) can be transformed into crisp
CCR DEA models (19) to (21) respectively.
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Maximize EL
p = ∑s

r=1 ury
L
rp

h i
Subject to

∑m
i=1 vix

U
ip =1,

∑s
r=1 ury

M
rj − ∑m

i=1 vix
M
ij ≤ 0, ∀j

ur, vi ≥ 0, ∀i, r.

ð19Þ

Maximize EM
p = ∑s

r=1 ury
M
rp

h i
Subject to

∑m
i=1 vix

M
ip =1,

∑s
r=1 ury

M
rj , − ∑m

i=1 vix
M
ij ≤ 0, ∀j

ur, vi ≥ 0, ∀i, r.

ð20Þ

Maximize EU
p = ∑s

r=1 ury
U
rp

h i
Subject to

∑m
i=1 vix

L
ip =1,

∑s
r=1 ury

M
rj − ∑m

i=1 vix
M
ij ≤ 0, ∀j

ur, vi ≥ 0, ∀i, r.

ð21Þ

Step 7: Find the optimal value EL
p ,E

M
p and EU

p of crisp CCR DEA models (19) to
(21) respectively.

Step 8: Using the optimal values of EL
p ,E

M
p and EU

p , obtained in Step 6, the fuzzy

optimal value EL
p ,E

M
p ,E

U
p

� �
(best relative fuzzy efficiency of DMUp) of

fuzzy CCR DEA model (1) can be obtained.

4 Flaws in the Existing Methods

In this section, the flaws in the methods, proposed by Wang et al. [26], are pointed
out.

(i) In the fuzzy CCR DEA model (1), ur, vi are crisp numbers. Therefore, if these
numbers are represented as triangular fuzzy numbers ur = ðuLr , uMr , uUr Þ
and vi = ðvLi , vMi , vUi Þ then the condition uLr = uMr = uUr , v

L
i = vMi = vUi should

always be satisfied. However, in the methods, proposed by Wang et al. [26]
the values of EL

p ,E
M
p ,E

U
p are obtained by solving the crisp CCR DEA models

(9)–(11) independently. Since, all these models are solved independently so
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the optimal values of ur and vi, obtained on solving these models, will not
necessarily be same i.e., if uLr , v

L
i , u

M
r , v

M
i and uUr , v

U
i represents the optimal

values of ur and vi, obtained on solving crisp CCR DEA models (9) to (11)
respectively, then the condition uLr = uMr = uUr and vLi = vMi = vUi will not nec-
essarily be satisfied. Hence, using the methods, proposed by Wang et al. [26]
the obtained optimal solution uLr , v

L
i , u

M
r , v

M
i , u

U
r , v

U
i

� �
is not an optimal solu-

tion of fuzzy CCR DEA model (1) i.e., using the method, proposed by Wang
et al. [26], it is not possible to find a crisp optimal solution ur, vif g of fuzzy
CCR DEA model (1).

(ii) It is well known that for a triangular fuzzy number ða, b, cÞ, the property
a≤ b≤ c should always be satisfied. However, it is obvious from Step 6 of the
existing methods, presented in Sects. 1 and 2, that the values of EL

p ,E
M
p ,E

U
p are

obtained by solving three independent crisp CCR DEA models so the
restriction EL

p ≤EM
p ≤EU

p may or may not be satisfied.

5 Flaws in the Existing Fuzzy DEA Model

It is obvious from Step 2 and Step 3 of the existing methods [26], presented in
Sect. 3, that Wang et al. [26] have transformed the fuzzy constraints

∑s
r=1 ury

M
rj

∑m
i=1 vix

U
ij
,
∑s

r=1 ury
M
rj

∑m
i=1 vix

M
ij
,
∑s

r=1 ury
U
rj

∑m
i=1 vix

L
ij

 !
≼ ð1, 1, 1Þ

into the crisp constraints
∑s

r =1 ury
L
rj

∑m
i=1 vix

U
ij
≤ 1∀j, ∑s

r=1 ury
M
rj

∑m
i=1 vix

M
ij
≤ 1∀j and ∑s

r= 1 ury
U
rj

∑m
i=1 vix

L
ij
≤ 1, ∀j.

Since,
∑s

r =1 ury
L
rj

∑m
i= 1 vix

U
ij
,
∑s

r= 1 ury
M
rj

∑m
i=1 vix

M
ij
,
∑s

r= 1 ury
U
rj

∑m
i=1 vix

L
ij

� �
≼ ð1, 1, 1Þ∀j so there should exist a

non-negative triangular fuzzy number SL, SM , SUð Þ such that

∑s
r=1 ury

L
rj

∑m
i=1 vix

U
ij
,
∑s

r=1 ury
M
rj

∑m
i=1 vix

M
ij
,
∑s

r=1 ury
U
rj

∑m
i=1 vix

L
ij

 !
+ SL, SM , SU
� 	

= ð1, 1, 1Þ,∀j.

However, the following clearly indicates that there will never exist a
non-negative triangular fuzzy number SL, SM , SUð Þ, where SL ≤ SM ≤ SU , and hence
the constraint

∑s
r=1 ury

L
rj

∑m
i=1 vix

U
ij
,
∑s

r=1 ury
M
rj

∑m
i=1 vix

M
ij
,
∑s

r=1 ury
U
rj

∑m
i=1 vix

L
ij

 !
≼ ð1, 1, 1Þ, ∀j
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cannot be transformed into the constraints
∑s

r =1 ury
L
rj

∑m
i= 1 vix

U
ij
≤ 1∀j, ∑s

r=1 ury
M
rj

∑m
i=1 vix

M
ij
≤ 1∀j and

∑s
r=1 ury

U
rj

∑m
i= 1 vix

L
ij
≤ 1, ∀j.

∑s
r=1 ury

L
rj

∑m
i=1 vix

U
ij
,
∑s

r=1 ury
M
rj

∑m
i=1 vix

M
ij
,
∑s

r=1 ury
U
rj

∑m
i=1 vix

L
ij

 !
≼ ð1, 1, 1Þ

⇒
∑s

r=1 ury
L
rj

∑m
i=1 vix

U
ij
,
∑s

r=1 ury
M
rj

∑m
i=1 vix

M
ij
,
∑s

r=1 ury
U
rj

∑m
i=1 vix

L
ij

 !
+ SL, SM , SU
� 	

= ð1, 1, 1Þ

⇒
∑s

r=1 ury
L
rj

∑m
i=1 vix

U
ij

+ SL =1,
∑s

r=1 ury
M
rj

∑m
i=1 vix

M
ij

+ SM =1,
∑s

r=1 ury
U
rj

∑m
i=1 vix

L
ij
+ SU =1

⇒
∑s

r=1 ury
L
rj

∑m
i=1 vix

U
ij

=1− SL,
∑s

r=1 ury
M
rj

∑m
i=1 vix

M
ij

=1− SM ,
∑s

r=1 ury
U
rj

∑m
i=1 vix

L
ij
=1− SU .

Now,

∑s
r=1 ury

L
rj

∑m
i=1 vix

U
ij

≤
∑s

r=1 ury
M
rj

∑m
i=1 vix

M
ij

≤
∑s

r=1 ury
U
rj

∑m
i=1 vix

L
ij

⇒ 1− SL ≤ 1− SM ≤ 1− SU

⇒ − SL ≤ − SM ≤ − SU

⇒ SL ≥ SM ≥ SU

⇒ SL, SM , SU
� 	

is not a triangular fuzzy number.

6 Proposed Fuzzy CCR DEA Model

In this section, to resolve the flaws of the existing fuzzy CCR DEA model, pointed
out in Sect. 3, a modified fuzzy CCR DEA model is proposed.

If there are n DMUs then the best relative crisp efficiency ðEpÞ of pth DMU can
be obtained by solving the CCR DEA model (22).

Maximize Ep =
Virtual output of pth DMU
Virtual input of pth MU


 �
Subject to

Virtual output of jth DMU≤Virtual input of jth DMU, ∀j.

ð22Þ

If each DMU uses m inputs ðxij; i=1, 2, . . . ,m; j=1, 2, . . . , nÞ to produce
s outputs ðyrj; r=1, 2, . . . s; j=1, 2, . . . , nÞ then CCR DEA model (22) is trans-
formed into crisp CCR DEA model (23).
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Maximize Ep =
∑s

r=1 uryrp
∑m

i=1 vixip


 �
Subject to

∑s
r=1 uryrj ≤ ∑m

i=1 vixij, ∀j
ur, vi ≥ 0, ∀i, r.

ð23Þ

where ur r=1, . . . .sð Þ and viði=1, . . . ,mÞ are the weights assigned to the rth
output and ith input, respectively.

Replacing the crisp input data ðxijÞ and crisp output data ðyrjÞ by triangular fuzzy
numbers xĩj = ðxLij, xMij , xUij Þ and y ̃rj = ðyLrj, yMrj , yUrj Þ respectively, the CCR DEA model
(23) can be transformed into fuzzy CCR DEA model (24).

Maximize eEj≈ EL
p ,E

M
p ,E

U
p

� �
≈
∑s

r=1 ur yLrp, y
M
rp, y

U
rp

� �
∑m

i=1 vi xLip, x
M
ip , x

U
ip

� �
�

24 35
Subject to

∑s
r=1 ur yLrj, y

M
rj , y

U
rj

� �
≼ ∑m

i=1 vi xLij, x
M
ij , x

U
ij

� �
,∀j

ur, vi ≥ 0, ∀i, r.

ð24Þ

7 Proposed Method

In Sect. 6, it is shown that the fuzzy CCR DEA model (5), proposed by Wang et al.
[26], are not valid and hence cannot be used for evaluating the best relative fuzzy
efficiency of DMUs. In this section, a new method is proposed to evaluate the best
relative fuzzy efficiency of DMUs by using the fuzzy CCR DEA model (24).

Step 1: Using the product of triangular fuzzy numbers, defined in Sect. 2.2, the
fuzzy CCR DEA model (24) can be transformed into fuzzy CCR DEA
model (25).

Maximize eEj≈ EL
p ,E

M
p ,E

U
p

� �
≈
∑s

r=1 uryLrp, ury
M
rp, ury

U
rp

� �
∑m

i=1 vixLip, vix
M
ip , vix

U
ip

� �
24 35

Subject to

∑s
r=1 uryLrj, ury

M
rj , ury

U
rj

� �
≼ ∑m

i=1 vixLij, vix
M
ij , vix

U
ij

� �
, ∀j

ur, vi ≥ 0, ∀i, r.

ð25Þ
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Step 2: Using the division of triangular fuzzy numbers defined in Sect. 2.2, the
fuzzy CCR DEA model (25) can be transformed into fuzzy CCR DEA
model (26).

Maximize eEp≈ EL
p ,E

M
p ,E

U
p

� �
≈

∑s
r=1 ury

L
rp

∑m
i=1 vix

U
ip
,
∑s

r=1 ury
M
rp

∑m
i=1 vix

M
ip
,
∑s

r=1 ury
U
rp

∑m
i=1 vix

L
ip

 !" #
Subject to

∑s
r=1 uryLrj, ury

M
rj , ury

U
rj

� �
≼ ∑m

i=1 vixLij, vix
M
ij , vix

U
ij

� �
, ∀j

ur, vi ≥ 0, ∀i, r.

ð26Þ

Step 3: Using the relation (ðaL, aM , aUÞ≼ bL, bM , bUð Þ⇒ aL ≤ bL, aM ≤ bM ,
aU ≤ bU , the fuzzy CCR DEA model (26) can be transformed into fuzzy
CCR DEA model (27).

Maximize eEp≈ EL
p ,E

M
p ,E

U
p

� �
≈

∑s
r=1 ury

L
rp

∑m
i=1 vix

U
ip
,
∑s

r=1 ury
M
rp

∑m
i=1 vix

M
ip
,
∑s

r=1 ury
U
rp

∑m
i=1 vix

L
ip

 !" #
Subject to

∑s
r=1 ury

L
rj ≤ ∑m

i=1 vix
L
ij,∀ j

∑s
r=1 ury

M
rj ≤ ∑m

i=1 vix
M
ij ,∀ j

∑s
r=1 ury

U
rj ≤ ∑m

i=1 vix
U
ij , ∀ j

ur, vi ≥ 0, ∀i, r.

ð27Þ

Step 4: The fuzzy optimal value eEp≈ EL
p ,E

M
p ,E

U
p

� �
, representing the best relative

fuzzy efficiency of pth DMU, can be obtained by solving the fuzzy
CCR DEA model (27) as follows:

Step 4(a): Find the optimal value EL
p

� �
of the crisp CCR DEA model

(28a) by solving crisp CCR DEA model (28b) equivalent to
crisp CCR DEA model (28a).

358 B. Bhardwaj et al.



Maximize EL
p =

∑s
r=1 ury

L
rp

∑m
i=1 vix

U
ip

" #
Subject to

∑s
r=1 ury

L
rp

∑m
i=1 vix

U
ip

≤ 1,

& all the constraints of model M− 27.

ð28aÞ

Maximize EL
p = ∑s

r=1 ury
L
rp

h i
Subject to

∑m
i=1 vix

U
ip =1,

∑s
r=1 ury

L
rp ≤ ∑m

i=1 vix
U
ip,

& all the constraints of model M− 27.

ð28bÞ

Step 4(b): Find the optimal value EM
p

� �
of the crisp CCR DEA model

(29a) by solving crisp CCR DEA model (29b) equivalent to
crisp CCR DEA model (29a).

Maximize EM
p =

∑s
r=1 ury

M
rp

∑m
i=1 vix

M
ip

" #
Subject to

∑s
r=1 ury

L
rp

∑m
i=1 vix

U
ip

=EL
p ,

EL
p ≤

∑s
r=1 ury

M
rp

∑m
i=1 vix

M
ip

≤ 1,

& all the constraints of model M− 27.

ð29aÞ

Maximize EM
p = ∑s

r=1 ury
M
rp

h i
Subject to

∑s
r=1 vix

M
ip =1,

∑s
r=1 ury

L
rp =EL

p ∑m
i=1 vix

U
ip

� �
,

EL
p ∑m

i=1 vix
M
ip

� �
≤ ∑s

r=1 ury
M
rp

& all the constraints of model M− 27.

ð29bÞ
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Step 4(c): Find the optimal value EU
p

� �
of the crisp CCR DEA model

(30a) by solving crisp CCR DEA model (30b) equivalent to
crisp CCR DEA model (30a).

Maximize EU
p =

∑s
r=1 ury

U
rp

∑m
i=1 vix

L
ip

" #
Subject to

∑s
r=1 ury

L
rp

∑m
i=1 vix

U
ip

=EL
p

∑s
r=1 ury

M
rp

∑m
i=1 vix

M
ip

=EM
p ,

EM
p ≤

∑s
r=1 ury

U
rp

∑m
i=1 vix

L
ip

≤ 1,

& all the constraints of model M− 27.

ð30aÞ

Maximize EU
p = ∑s

r=1 ury
U
rp

h i
Subject to

∑m
i=1 vix

L
ip =1,

∑s
r=1 ury

L
rp =EL

p ∑m
i=1 vix

U
ip

� �
,

∑s
r=1 ury

M
rp =EM

p ∑m
i=1 vix

M
ip

� �
,

EM
p ∑m

i=1 vix
L
ip

� �
≤ ∑s

r=1 ury
U
rp

∑s
r=1 ury

U
rp ≤ ∑m

i=1 vix
L
ip

& all the constraints of model M− 27.

ð30bÞ

Step 5: Using the optimal values of EL
p ,E

M
p and EU

p , obtained in Step 4, the fuzzy

optimal value (best relative fuzzy efficiency of DMUP) is EL
p ,E

M
p ,E

U
p

� �
.

8 Exact Fuzzy Efficiency of Real Life Problem

Wang et al. [26] solved a problem to illustrate his proposed approach. However, as
discussed in Sect. 4 that there are flaws in the existing methods [26]. So, the results
of this problem, obtained by using Wang et al.’s approach [26], are not exact. In this
section, the exact results of the same problem are obtained by using the proposed
method.
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8.1 Problem Description

Consider a performance assessment problem in China where eight manufacturing
enterprises (DMUs) are to be evaluated in terms of two inputs and two outputs. The
eight manufacturing enterprises all manufacture the same type of products but with
different qualities. Both the gross output value (GOV) and product quality (PQ) are
considered as outputs. Manufacturing cost (MC) and the number of employees
(NOE) are considered as inputs. The data about the GOV and MC are uncertain due
to the unavailability at the time of assessment and are therefore estimated as fuzzy
numbers. The product quality is assessed by customers using fuzzy linguistic terms
such as Excellent, Very Good, Average, Poor and Very Poor. The assessment
results by customers are weighted and averaged. The input and output data for the
eight manufacturing enterprises is summarized in Table 1.

The fuzzy CCR DEA model to find the best relative fuzzy efficiency of DMUA

can be formulated as model (31).

Maximize eEA ≈ EL
A,E

M
A ,E

U
A

� 	�
≈

14500, 14790, 14860ð Þu1 + 3.1, 4.1, 4.9ð Þu2
2120, 2170, 2210ð Þv1 + ð1870, 1870, 1870Þv2


 ��
Subject to

14500u1 + 3.1u2, 14790u1 + 4.1u2, 14860u1 + 4.9u2ð Þ
≼ 2120v1 + 1870v2, 2170v1 + 1870v2, 2210v1 + 1870v2ð Þ,

12470u1 + 1.2u2, 12720u1 + 2.1u2, 12790u1 + 3.0u2ð Þ
≼ 1420v1 + 1340v2, 1460v1 + 1340v2, 1500v1 + 1340v2ð Þ,

17900u1 + 3.3u2, 18260u1 + 4.3u2, 18400u1 + 5.0u2ð Þ
≼ 2510v1 + 2360v2, 2570v1 + 2360v2, 2610v1 + 2360v2ð Þ,

14970u1 + 2.7u2, 15270u1 + 3.7u2, 15400u1 + 4.6u2ð Þ
≼ 2300v1 + 2020v2, 2350v1 + 2020v2, 2400v1 + 2020v2ð Þ,

13980u1 + 1.0u2, 14260u1 + 1.8u2, 14330u1 + 2.7u2ð Þ
≼ 1480v1 + 1550v2, 1520v1 + 1550v2, 1560v1 + 1550v2ð Þ,

14030u1 + 1.6u2, 14310u1 + 2.6u2, 14400u1 + 3.6u2ð Þ
≼ 1990v1 + 1760v2, 2030v1 + 1760v2, 2100v1 + 1760v2ð Þ,

16540u1 + 2.4u2, 16870u1 + 3.4u2, 17000u1 + 4.4u2ð Þ
≼ 2200v1 + 1980v2, 2260v1 + 1980v2, 2300v1 + 1980v2ð Þ,

17600u1 + 2.6u2, 17960u1 + 3.6u2, 18100u1 + 4.6u2ð Þ
≼ 2400v1 + 2250v2, 2460v1 + 2250v2, 2520v1 + 2250v2ð Þ,

u1, u2, v1, v2 ≥ 0.

ð31Þ
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Using the method, proposed in Sect. 7, the exact best relative fuzzy efficiency of
DMUA can be obtained by using the following steps:

Step 1: Using the arithmetic operations of triangular fuzzy numbers, defined in
Sect. 2.2, the fuzzy CCR DEA model (31) can be transformed into fuzzy
CCR DEA model (32).

Maximize eEA ≈ EL
A,E

M
A , E

U
A

� 	�
≈

14500u1 + 3.1u2, 14790u1 + 4.1u2, 14860u1 + 4.9u2ð Þ
2120v1 + 4.9u2, 2170v1 + 1870v2, 2210v1 + 1870v2ð Þ


 ��
Subject to

14500u1 + 3.1u2, 14790u1 + 4.1u2, 14860u1 + 4.9u2ð Þ
≼ 2120v1 + 1870v2, 2170v1 + 1870v2, 2210v1 + 1870v2ð Þ,

12470u1 + 1.2u2, 12720u1 + 2.1u2, 12790u1 + 3.0u2ð Þ
≼ 1420v1 + 1340v2, 1460v1 + 1340v2, 1500v1 + 1340v2ð Þ,

17900u1 + 3.3u2, 18260u1 + 4.3u2, 18400u1 + 5.0u2ð Þ
≼ 2510v1 + 2360v2, 2570v1 + 2360v2, 2610v1 + 2360v2ð Þ,

14970u1 + 2.7u2, 15270u1 + 3.7u2, 15400u1 + 4.6u2ð Þ
≼ 2300v1 + 2020v2, 2350v1 + 2020v2, 2400v1 + 2020v2ð Þ,

13980u1 + 1.0u2, 14260u1 + 1.8u2, 14330u1 + 2.7u2ð Þ
≼ 1480v1 + 1550v2, 1520v1 + 1550v2, 1560v1 + 1550v2ð Þ,

14030u1 + 1.6u2, 14310u1 + 2.6u2, 14400u1 + 3.6u2ð Þ
≼ 1990v1 + 1760v2, 2030v1 + 1760v2, 2100v1 + 1760v2ð Þ,

16540u1 + 2.4u2, 16870u1 + 3.4u2, 17000u1 + 4.4u2ð Þ
≼ 2200v1 + 1980v2, 2260v1 + 1980v2, 2300v1 + 1980v2ð Þ,

17600u1 + 2.6u2, 17960u1 + 3.6u2, 18100u1 + 4.6u2ð Þ
≼ 2400v1 + 2250v2, 2460v1 + 2250v2, 2520v1 + 2250v2ð Þ,

u1, u2, v1, v2 ≥ 0.

ð32Þ

Table 1 Input and output data for eight manufacturing enterprises [26]

Enterprises
(DMUs) Inputs Outputs

MC NOE GOV PQ

A (2120, 2170, 2210) 1870 (14500, 14790, 14860) (3.1, 4.1, 4.9)
B (1420, 1460, 1500) 1340 (12470, 12720, 12790) (1.2, 2.1, 3.0)
C (2510, 2570, 2610) 2360 (17900, 18260, 18400) (3.3, 4.3, 5.0)
D (2300, 2350, 2400) 2020 (14970, 15270, 15400) (2.7, 3.7, 4.6)
E (1480, 1520, 1560) 1550 (13980, 14260, 14330) (1.0, 1.8, 2.7)
F (1990, 2030, 2100) 1760 (14030, 14310, 14400) (1.6, 2.6, 3.6)
G (2200, 2260, 2300) 1980 (16540, 16870, 17000) (2.4, 3.4, 4.4)
H (2400, 2460, 2520) 2250 (17600, 17960, 18100) (2.6, 3.6, 4.6)
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Step 2: The fuzzy CCR DEA model (32) can be transformed into fuzzy CCR DEA
model (33).

Maximize eEA ≈ EL
A,E

M
A ,E

U
A

� 	�
≈

14500u1 + 3.1u2, 14790u1 + 4.1u2, 14860u1 + 4.9u2ð Þ
2120v1 + 4.9u2, 2170v1 + 1870v2, 2210v1 + 1870v2ð Þ


 ��
Subject to

14500u1 + 3.1u2 ≤ 2120v1 + 1870v2, 14790u1 + 4.1u2 ≤ 2170v1 + 1870v2,

14860u1 + 4.9u2 ≤ 2210v1 + 1870v2, 12470u1 + 1.2u2 ≤ 1420v1 + 1340v2,

12720u1 + 2.1u2 ≤ 1460v1 + 1340v2, 12790u1 + 3.0u2 ≤ 1500v1 + 1340v2,

17900u1 + 3.3u2 ≤ 2510v1 + 2360v2, 18260u1 + 4.3u2 ≤ 2570v1 + 2360v2,

18400u1 + 5.0u2 ≤ 2610v1 + 2360v2, 14970u1 + 2.7u2 ≤ 300v1 + 2020v2,

15270u1 + 3.7u2 ≤ 2350v1 + 2020v2, 15400u1 + 4.6u2 ≤ 2400v1 + 2020v2,

3980u1 + 1.0u2 ≤ 1480v1 + 1550v2, 14260u1 + 1.8u2 ≤ 1520v1 + 1550v2,

14330u1 + 2.7u2 ≤ 1560v1 + 1550v2, 14030u1 + 1.6u2 ≤ 1990v1 + 1760v2,

14310u1 + 2.6u2 ≤ 2030v1 + 1760v2, 14400u1 + 3.6u2 ≤ 2100v1 + 1760v2,

16540u1 + 2.4u2 ≤ 2200v1 + 1980v2, 16870u1 + 3.4u2 ≤ 2260v1 + 1980v2,

17000u1 + 4.4u2 ≤ 2300v1 + 1980v2, 17600u1 + 2.6u2 ≤ 2400v1 + 2250v2,

17960u1 + 3.6u2 ≤ 2460v1 + 2250v2, 18100u1 + 4.6u2 ≤ 2520v1 + 2250v2.

u1, u2, v1, v2 ≥ 0.

ð33Þ

Step 3: The fuzzy CCR DEA model (33) can be transformed into fuzzy CCR DEA
model (34).

Maximize eEA≈ EL
A,E

M
A ,E

U
A

� 	
≈

14500u1 + 3.1u2
2210v1 + 1870v2

,
14790u1 + 4.1u2
2170v1 + 1870v2

,
14860u1 + 4.9u2
2120v1 + 4.9u2

� �
 �
 �
Subject to

All the constraints of model M− 33.

ð34Þ

Step 4: The fuzzy optimal value eEA≈ EL
A,E

M
A ,E

U
A

� 	
, representing the best relative

fuzzy efficiency of DMUA, can be obtained by solving the CCR fuzzy DEA
model (34) as follows:

Step 4(a): The left optimal value EL
p

� �
of fuzzy efficiency of the fuzzy

CCR DEA model (34) can be obtained by solving the following
models (35) and (36).
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Maximize EL
A =

14500u1 + 3.1u2
2210v1 + 1870v2


 �
Subject to

14500u1 + 3.1u2
2210v1 + 1870v2

≤ 1,

& all the constraints of model M− 33.

ð35Þ

The model (35) can be transformed into the following linear
model (36).

Maximize EL
A =14500u1 + 3.1u2

� 

Subject to

2210v1 + 1870v2 = 1,

14500u1 + 3.1u2 ≤ 2210v1 + 1870v2,

& all the constraints of model M− 33.

ð36Þ

On solving the linear model (36), the obtained left optimal value

EL
p

� �
of the fuzzy efficiency of CCR DEA model (34) is 0.812.

Step 4(b): The middle optimal value EM
p

� �
of fuzzy efficiency of the fuzzy

CCR DEA model (34) can be obtained by solving the following
models (37) and (38).

Maximize EM
A =

14790u1 + 4.1u2
2170v1 + 1870v2


 �
Subject to

14500u1 + 3.1u2
2210v1 + 1870v2

= 0.812,

0.812≤
14790u1 + 4.1u2
2170v1 + 1870v2

≤ 1,

& all the constraints of model M− 33.

ð37Þ

The model (37) can be transformed into the following linear
model (38).

364 B. Bhardwaj et al.



Maximize EM
A =14790u1 + 4.1u2

� 

Subject to

2170v1 + 1870v2 = 1,

14500u1 + 3.1u2 = 0.812 2210v1 + 1870v2ð Þ,
0.812 2170v1 + 1870v2ð Þ≤ 14790u1 + 4.1u2 ≤ 2170v1 + 1870v2,

& all the constraints of model M− 33.

ð38Þ

On solving the linear model (38), the obtained middle optimal

value EM
p

� �
of the fuzzy efficiency of CCR DEA model (34) is

0.829.

Step 4(c): The right optimal value ER
p

� �
of fuzzy efficiency of the fuzzy

CCR DEA model (34) can be obtained by solving the following
models (39) and (40).

Maximize EU
A =

14860u1 + 4.9u2
2120v1 + 4.9u2


 �
Subject to

14500u1 + 3.1u2
2210v1 + 1870v2

= 0.812,

14790u1 + 4.1u2
2170v1 + 1870v2

= 0.829,

0.829≤
14860u1 + 4.9u2
2120v1 + 4.9u2

≤ 1,

& all the constraints of model M− 33.

ð39Þ

The model (39) an be transformed into the following linear
model (40).

Maximize EU
A =14860u1 + 4.9u2

� 

Subject to

2120v1 + 4.9u2 = 1,

14500u1 + 3.1u2 = 0.812 2210v1 + 1870v2ð Þ,
14790u1 + 4.1u2 = 0.829 2170v1 + 1870v2ð Þ,
0.829 2120v1 + 4.9u2ð Þ≤ 14860u1 + 4.9u2 ≤ 2120v1 + 4.9u2,

& all the constraints of model M− 33.

ð40Þ
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On solving the linear model (40), the obtained middle optimal

value ER
p

� �
of the fuzzy efficiency of CCR DEA model (34) is

0.833.

Step 5: Using the optimal values of EL
A,E

M
A and EU

A , obtained in Step 4, the fuzzy
optimal value (best relative fuzzy efficiency of DMUA of fuzzy CCR DEA
model (34) is EL

A,E
M
A ,E

U
A

� 	
= ð0.812, 0.829, 0.833Þ.

Similarly, the best relative fuzzy efficiency of the remaining DMUs can also be
obtained.

9 Results

The exact best relative fuzzy efficiency of all the DMUs obtained by using the
proposed method are shown in Table 2.

The DMUs are ranked in Table 3 according to their degree of preferences by
using the Wang et al.’s ranking approach [26]. According to the existing ranking
approach [26] it can be concluded that B> 51.92%E> 100%G> 100%F > 94.07%

H > 80.80%A> 87.23%C> 99.69%D.

Table 2 Exact best relative
fuzzy efficiencies of DMUs

DMUs Exact best relative fuzzy efficiency of jth DMU ðeEjÞ
A (0.812, 0.829, 0.833)
B (0.975, 1, 1)
C (0.797, 0.815, 0.825)
D (0.776, 0.792, 0.799)
E (0.973, 1, 1)
F (0.835, 0.852, 0.857)
G (0.875, 0.893, 0.900)
H (0.820, 0.836, 0.843)

Table 3 Degree of preference for fuzzy efficiencies and their ranking

Enterprises A B C D E F G H Rank

A – 0 0.8723 1 0 0 0 0.1920 6
B 1 – 1 1 0.5192 1 1 1 1
C 0.1277 0 – 0.9969 0 0 0 0.0188 7
D 0 0 0.0031 – 0 0 0 0 8
E 1 0.4808 1 1 – 1 1 1 2
F 1 0 1 1 0 – 0 0.9407 4
G 1 0 1 1 0 1 – 1 3

H 0.8080 0 0.9812 1 0 0.0593 0 – 5
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10 Conclusions

On the basis the present study, it can be concluded that there are flaws in the fuzzy
CCR DEA model as well as in the method, proposed by Wang et al. [26], and hence
neither the fuzzy CCR DEA model nor the method, proposed by Wang et al. [26],
should be used for evaluating the best relative fuzzy efficiency of DMUs. Also, to
resolve the flaws of the fuzzy CCR DEA model, a new fuzzy CCR model is
proposed. Further, a new method is proposed to solve the proposed fuzzy
CCR DEA model for evaluating the best relative fuzzy efficiency of DMUs and the
exact best relative fuzzy efficiency of the DMUs, considered by Wang et al. [26], is
evaluated by using the proposed method.
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A Feedback Mechanism Based on Granular
Computing to Improve Consensus in GDM

Francisco Javier Cabrerizo, Francisco Chiclana, Ignacio Javier Pérez,
Francisco Mata, Sergio Alonso and Enrique Herrera-Viedma

Abstract Group decision making is an important task in real world activities.

It consists in obtaining the best solution to a particular problem according to the

opinions given by a set of decision makers. In such a situation, an important issue

is the level of consensus achieved among the decision makers before making a deci-

sion. For this reason, different feedback mechanisms, which help decision makers

for reaching the highest degree of consensus possible, have been proposed in the lit-

erature. In this contribution, we present a new feedback mechanism based on gran-

ular computing to improve consensus in group decision making problems. Granular

computing is a framework of designing, processing, and interpretation of informa-

tion granules, which can be used to obtain a required flexibility to improve the level

of consensus within the group of decision makers.
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1 Introduction

Group decision making (GDM) is utilized to get the best solution or solutions for a

given problem using the preferences or opinions expressed by a group of decision

makers [11, 18, 44]. In such a situation, each decision maker usually approaches the

decision process from a different point of view. However, the decision makers have a

common interest in obtaining a consensus or agreement before making the decision.

In particular, in a GDM situation, there is a set of different alternatives to solve the

problem and a group of decision makers that are usually required to express their

opinions about the alternatives by means of a particular preference structure [13,

16].

An important issue in a GDM situation is the level of consensus achieved among

the decision makers before making the decision. Usually, when decisions are made

by a group of individuals, it is advisable that the decision makers are involved in a

discussion process in which they talk about their reasons for making decisions with

the aim of arriving at a sufficient level of consensus acceptable to all [6, 27]. If this

discussion process is not carried out, solutions which are not well accepted by some

decision makers could be obtained [6, 45], and therefore the decision makers might

reject them. Due to it, a consensus process is usually carried out before obtaining a

final solution in a GDM situation [1, 10, 15, 17, 27, 35, 51].

In a consensus process, an important step is the recommendations provided to

the decision makers to improve the level of consensus. From this point of view, the

first consensus approaches presented by the researchers of the GDM field can be

considered as basic approaches because they are based on a moderator who gives

the advice to the decision makers [5, 19, 20, 28–30]. The objective of the modera-

tor in each discussion round is to address the consensus process towards success by

achieving the highest consensus degree and reducing the number of decision mak-

ers outside of the agreement. However, a drawback of these approaches is that the

moderator can introduce some subjectivity in the discussion process. To overcome it,

new consensus approaches have been presented by providing to the moderator with

better analysis tools or substituting the moderator figure. It makes more effective and

efficient the discussion process.

In consensus approaches incorporating a feedback mechanism, which substitutes

the moderator’s actions, proximity measures are computed to evaluate the proximity

between individual decision makers’ opinions and the collective one [7, 22, 24, 25,

49]. These proximity measures are utilized to identify the opinions given by the

decision makers which are contributing less to reach a high consensus level. The

goal of the feedback mechanism is to give advice to those decision makers to find

out the modifications they need to make in their preferences to achieve a solution

with better consensus.

On the other hand, a novel data mining tool [31], the so called action rules [37],

has been incorporated in consensus approaches to support and stimulate the discus-

sion in the group. The aim of an action rule is to show how a subset of flexible

attributes should be modified to achieve an expected change of the decision attribute
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for a subset of objects characterized by some values of the subset of stable attributes.

In such a way, these action rules are utilized to suggest and indicate to the moder-

ator with which decision makers and with respect to which preferences it may be

expedient to deal.

In any case, decisions makers have to allow a certain degree of flexibility and be

ready to make changes on their first opinions to obtain a higher level of consensus.

In such a situation, information granularity [38, 40, 41, 50] may become relevant

because it gives to the decision makers a level of flexibility using some first opinions

that can be adjusted in order to improve the consensus level among the decision

makers.

The objective of this contribution is to develop a new feedback mechanism based

on granular computing to improve the consensus achieved among the decision mak-

ers in a GDM situation. Granular computing is a paradigm that represents and

processes information in form of information granules [2, 38], that are complex

information entities arising in the process of abstraction of data and derivation of

knowledge from information [4]. In particular, an allocation of information granu-

larity is used in the feedback mechanism as a key component to suggest advice to

the decision makers in order to improve the consensus.

This contribution is organized as follows. In Sect. 2, we introduce the description

of a GDM situation and describe the process carried out to solve it. Section 3 presents

the feedback mechanism based on granular computing proposed here to improve

the consensus achieve among the decision makers involved in a GDM situation. An

example of application of the feedback mechanism is illustrated in Sect. 4. Finally,

some conclusions and future work are pointed out in Sect. 5.

2 GDM Process

A GDM process is defined as a situation in which a group of two or more decision

makers, E = {e1, e2,… , em} (m ≥ 2), provide their opinions or preferences about a

solution set of possible alternatives, X = {x1, x2,… , xn} (n ≥ 2), to achieve a com-

mon solution [11, 18, 27]. In particular, if the decision process is defined in a fuzzy

context, the goal is to rank the alternatives from best to worst, associating with the

alternatives some degrees of preferences given in the unit interval.

In the literature we can find different representation structures in which the deci-

sion makers can convey their judgments [13, 14]. Among them, the fuzzy preference

relation [34, 47, 52] has been widely utilized by the researchers because this repre-

sentation structure offers a very expressive representation and, in addition, it presents

good properties allowing to operate with it easily [13, 23].

Definition 1 A fuzzy preference relation PR on a set of alternatives X is a fuzzy set

on the Cartesian product X × X, i.e., it is characterized by a membership function

𝜇PR ∶ X × X → [0, 1].
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A fuzzy preference relation PR is usually represented by the n × n matrix PR =
(prij), being prij = 𝜇PR(xi, xj) (∀i, j ∈ {1,… , n}) interpreted as the preference degree

or intensity of the alternative xi over xj: prij = 0.5 indicates indifference between xi
and xj (xi ∼ xj), prij = 1 indicates that xi is absolutely preferred to xj, and prij > 0.5
indicates that xi is preferred to xj (xi ≻ xj). Based on this interpretation, we have that

prii = 0.5 ∀i ∈ {1,… , n} (xi ∼ xi). Since prii’s (as well as the corresponding ele-

ments on the main diagonal in some other matrices) do not matter, it will be written

as ‘–’ instead of 0.5 [25, 28].

GDM processes are usually faced by carrying out two processes before a final

solution can be provided [1, 30]:

∙ A consensus process referring to how to get the highest degree of agreement

among the decision makers.

∙ A selection process obtaining the final solution using the opinions expressed by

the group of decision makers.

In the following subsections, both the consensus process and the selection process

are described in detail.

2.1 Consensus Process

A consensus process is an iterative and a dynamic discussion process carried out

among the members of a group, coordinated by a moderator who helps them bring

their preferences closer. On the one hand, if the agreement among the decision mak-

ers is lower than a threshold, the moderator would urge them to discuss their prefer-

ences further in an effort to bring them closer. On the other hand, if the consensus

level is higher than the threshold, the moderator would apply the selection process

with the aim of obtaining the final consensus solution to the problem [27, 36].

An important step of a consensus process is the assessment of the agreement

achieved among the group of decision makers. To obtain it, coincidence existing

among the decision makers is computed [8, 21]. Consensus approaches usually

obtain consensus degrees, utilized to evaluate the current level of agreement among

the decision makers’ preferences, given at three different levels of a fuzzy prefer-

ence relation [8, 19]: pairs of alternatives, alternatives, and relation. According to

it, the computation of the consensus degrees is performed as follows once the fuzzy

preference relations have been provided by all the decision makers within the group

[8, 25, 49]:

1. For each pair of decision makers (ek, el) (k = 1,… ,m − 1, l = k + 1,… ,m) a

similarity matrix, SMkl = (smkl
ij ), is defined as:

smkl
ij = 1 − |prkij − prlij| (1)
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2. Then, a consensus matrix, CM = (cmij), is calculated by aggregating all the (m −
1) × (m − 2) similarity matrices using an aggregation function, 𝜙:

cmij = 𝜙(smkl
ij ), k = 1,… ,m − 1, l = k + 1,… ,m (2)

Here, the arithmetic mean is utilized as aggregation function. However, different

aggregation operators could be utilized according to the particular properties that

we want to implement.

3. Once the consensus matrix has been calculated, the consensus degrees are

obtained at the three different levels of a fuzzy preference relation:

a. Consensus degree on the pairs of alternatives.The consensus degree on a pair

of alternatives (xi, xj), called cpij, is defined to measure the consensus degree

among all the decision makers on that pair of alternatives. In this case, this

is expressed by the element of the collective similarity matrix CM:

cpij = cmij (3)

The closer cpij to 1, the greater the agreement among all the decision makers

on the pair of alternatives (xi, xj).
b. Consensus degree on the alternatives. The consensus degree on the alterna-

tive xi, called cai, is defined to measure the consensus degree among all the

decision makers on that alternative:

cai =
∑n

j=1;j≠i(cpij + cpji)
2(n − 1)

(4)

c. Consensus degree on the relation. The consensus degree on the relation,

called cr, expresses the global consensus degree among all the decision mak-

ers’ opinions. It is computed as the average of all the consensus degree for

the alternatives:

cr =
∑n

i=1 cai
n

(5)

The consensus degree of the relation, cr, is the value used to control the consensus

state. The closer cr is to 1, the greater the agreement among all the decision makers’

preferences.

2.2 Selection Process

Once the consensus level is higher than a specified threshold, the selection process

is carried out in two sequential steps:
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1. Aggregation step defining a collective fuzzy preference relation that indicates the

global preference between every pair of alternatives.

2. Exploitation step transforming the global information about the alternatives into

a global ranking of them, from which a set of alternatives is derived.

In what follows, we present in more detail both the aggregation step and the

exploitation step of a selection process.

2.2.1 Aggregation Step

The aim of this step is to obtain a collective fuzzy preference relation, PRc = (prcij),
by aggregating all individual fuzzy preference relations, {PR1

,… ,PRm}, given by

the decision makers involved in the problem. Each value prcij represents the pref-

erence of the alternative xi over the alternative xj according to the majority of the

decision makers’ assessments. To do so, an OWA operator is used [53].

Definition 2 An OWA operator of dimension n is a function 𝜙 ∶ [0, 1]n ⟶ [0, 1],
that has a weighting vector associated with it, W = (w1,… ,wn), with wi ∈ [0, 1],
∑n

i=1 wi = 1, and it is defined according to the following expression:

𝜙W (a1,… , an) = W ⋅ BT =
m∑

i=1
wi ⋅ a𝜎(i) (6)

being 𝜎 ∶ {1,… , n} ⟶ {1,… , n} a permutation such that p
𝜎(i) ≥ a

𝜎(i+1),

∀i = 1,… , n − 1, i.e., a
𝜎(i) is the i-highest value in the set {a1,… , an}.

OWA operators fill the gap between the operators Min and Max. It can be imme-

diately verified that OWA operators are commutative, increasing monotonous and

idempotent, but in general not associative.

In order to classify OWA aggregation operators with regards to their localization

between “or” and “and”, Yager [53] introduced the measure of orness associated

with any vector W expressed as:

orness(W) = 1
n − 1

n∑

i=1
(n − i)wi (7)

This measure, which lies in the unit interval, characterizes the degree to which

the aggregation is like an “or” (Max) operation. Note that the nearer W is to an “or”,

the closer its measure is to one; while the nearer it is to an “and”, the closer is to zero.

As we move weight up the vector we increase the orness(W), while moving weight

down causes us to decrease orness(W). Therefore, an OWA operator with much of

nonzero weights near the top will be an “orlike” operator (orness(W) ≥ 0.5), and

when much of the weights are nonzero near the bottom, the OWA operator will be

“andlike” (orness(W) < 0.5).
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A natural question in the definition of the OWA operator is how to obtain the

associated weighting vector. In [53], it was defined an expression to obtain W that

allows to represent the concept of fuzzy majority [28] by means of a fuzzy linguistic

non-decreasing quantifier Q [58]:

wi = Q
( i
n

)

− Q
( i − 1

n

)

, i = 1,… , n (8)

The membership function of Q is given by Eq. (9), with a, b, r ∈ [0, 1]. Some

examples of non-decreasing proportional fuzzy linguistic quantifiers are: “most”

(0.3, 0.8), “at least half” (0, 0.5), and “as many as possible” (0.5, 1).

Q(r) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0 if r < a

r−a
b−a

if a ≤ r ≤ b

1 if r > a

(9)

When a fuzzy quantifier Q is used to compute the weights of the OWA operator

𝜙, it is symbolized by 𝜙Q.

2.2.2 Exploitation Step

The aim of this step is to obtain a rank of the alternatives. To do so, the concept

of fuzzy majority (of alternatives) and the OWA operator are used to compute two

choice degrees of alternatives: the quantifier-guided dominance degree (QGDD) and

the quantifier-guided non-dominance degree (QGNDD) [9, 26]. They will act over

the collective preference relation resulting in a global ranking of the alternatives,

from which the solution will be obtained.

∙ QGDDi: It quantifies the dominance that one alternative has over all the others in

a fuzzy majority sense. It is obtained as follows:

QGDDi = 𝜙Q(prci1, pr
c
i2,… , prci(i−1), pr

c
i(i+1),… , prcin) (10)

∙ QGNDDi: It gives the degree in which each alternative is not dominated by a fuzzy

majority of the remaining alternatives. It is obtained as follows:

QGNDDi = 𝜙Q(1 − ps1i, 1 − ps2i,… , 1 − ps(i−1)i, 1 − ps(i+1)i,… , 1 − psni) (11)

where psji = max{prcji − prcij, 0} represents the degree in which xi is strictly dom-

inated by xj. When the fuzzy quantifier represents the statement “all”, whose
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algebraic aggregation corresponds to the conjunction operator Min, this non-

dominance degree coincides with Orlovski’s non-dominated alternative

concept [34].

Two different policies can be used to carry out the application of both choice

degrees: a sequential policy or a conjunctive policy [12, 26]. In the sequential policy,

one of the choice degrees is selected and applied to the set of alternatives according

to the opinions given by the decision makers, obtaining a selection set of alternatives.

If there is more than one alternative in this selection set, then, the other choice degree

is applied to select the alternative of this set with the best second choice degree. In

the conjunctive policy, both choice degrees are applied to the set of alternatives,

obtaining two selection sets of alternatives. The final selection set of alternatives

is obtained as the intersection of these two selection sets of alternatives. As it is

possible to get and empty selection set, the latter conjunction selection process is

more restrictive than the former sequential selection process.

3 A Feedback Mechanism Based on Granular Computing

In the discussion process, if the consensus achieved among the decision makers is

lower than a consensus threshold, the decision makers must discuss and modify their

opinions. It is done by a feedback mechanism, which gives advice to the decision

makers on how to change their preferences in order to increase the consensus. In

addition, the feedback mechanism usually substitutes the moderators’ actions with

the aim of avoiding the subjectivity that the moderator can introduce in the discussion

process.

In order to improve the consensus, the decision makers have to accept some mod-

ifications in their initial preferences by allowing a certain flexibility. If fuzzy prefer-

ence relations are used to represent the assessments provided by the decision makers,

this flexibility could be brought by allowing the fuzzy preference relations to be gran-

ular rather than numeric. That is, the feedback mechanism proposed here assumes

that the entries of a fuzzy preference relation are information granules instead of

plain numbers. In such a way, the feedback mechanism elevates the fuzzy preference

relations to their granular format.

To emphasize that the feedback mechanism uses granular fuzzy preference rela-

tions, the notation G(PR) is employed. Here, G(.) represents a specific granular for-

malism being utilized. For example, as information granules we could use fuzzy sets

[54–57], rough sets [46], probability density functions [59], intervals [3], and others.

In particular, information granularity is used here by the feedback mechanism as an

important computational and conceptual resource being exploited as a means to give

advice to the decision makers in order to improve the consensus among them. That

is, granularity is used as synonymous of flexibility. It facilitates the increase of the

agreement achieved among the group of decision makers.
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In this contribution, the feedback mechanism uses intervals to articulate the gran-

ularity of information. Therefore, the length of the intervals can be sought as a level

of granularity 𝛼. In addition, because interval-valued fuzzy preference relations are

used, G(PR) = P(PR), where P(.) denotes a family of intervals.

The concept of interval-valued fuzzy preference relations is employed by the feed-

back mechanism to generate recommendations to the decision makers in order to

improve the consensus among them. Specifically, the level of consensus achieved

among the decision makers is used as a performance index.

In what follows, we give the details both the performance index to be optimized

and its optimization, which, given the nature of the required task, is carried out by

the Particle Swarm Optimization (PSO) framework [32].

3.1 The Performance Index

The level of granularity is used by the feedback mechanism to improve the agree-

ment achieved among the decision makers by generating recommendations in order

to bring all preferences close to each other. Decision makers should feel comfort-

able when accepting the modifications provided by the feedback mechanism located

within the bounds established by the fixed level of granularity 𝛼.

Advice is generated by the feedback mechanism by maximizing the global con-

sensus degree among the decision makers. It is calculated in term of the consensus

degree on the relation (see Sect. 2.1):

O = cr (12)

The optimization problem reads as follows:

MaxPR1
,PR2

,…,PRm∈P(PR)O (13)

This maximization problem is performed by the feedback mechanism for all

interval-valued fuzzy preference relations that are possible according to the fixed

level of information granularity 𝛼. This truth is emphasized by incorporating the

granular form of the fuzzy preference relations, that is, PR1
,… ,PRm

, are elements

of the family of interval-valued fuzzy preference relations, P(PR).

Due to the nature of the not straight relationship between the optimized fuzzy pref-

erence relations, this optimization problem is not an easy task. The optimized fuzzy

preference relations are chosen from a quite large search space formed by P(PR) and,

therefore, it requires the use of an advanced technique of global optimization.

Among the different techniques of global optimization, the PSO framework [32]

is used in this contribution because it does not come with a prohibitively high level

of computational overhead as this is the case of other global optimization techniques
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and it offers a substantial level of optimization flexibility, being a viable alterna-

tive for this problem. However, it should be noted that other techniques as genetic

algorithms, evolutionary optimization, simulated annealing, and so on, could be also

used.

3.2 PSO Framework

As aforementioned, the PSO environment is employed in the feedback mechanism

to optimize the fuzzy preference relations coming from the space of interval-valued

fuzzy preference relations because this technique is a viable alternative for the prob-

lem at hand.

PSO is an evolutionary computational method based on the social behavior

metaphor, which was developed by Kennedy and Eberhart [32, 33]. In this tech-

nique, a population of random candidate solutions, called particles, is initialized.

Then, a randomized velocity is assigned to each particle, which is iteratively moved

though the search-space according to simple mathematical formulae over the parti-

cle’s velocity and position. The movement of each particle is attracted towards the

position of the best fitness achieved so far by the particle itself (zp) and by the posi-

tion of the best fitness achieved so far across the whole population (zg) [32, 48] (see

Fig. 1).

An important issue in the PSO framework is how to find a suitable mapping

between the representation of the particle and the problem solution. In a GDM con-

text, each particle represents a vector in which the elements are located in the unit

interval. That is, if the GDM problem is set up with a group of m decision makers

and a set of n alternatives, the number of elements of the particle will be m ⋅ n(n − 1).
Let us consider an element prij and assume a level of granularity 𝛼 located in the

[0, 1] interval. If we use an initial fuzzy preference relation expressed by a decision

maker, the interval of admissible values of this element of P(PR) is equal to:

[a, b] = [max(0, prij − 𝛼∕2),min(1, prij + 𝛼∕2)] (14)

As an example, if we have prij = 0.8, being the level of granularity 𝛼 equal to 0.2
and the corresponding element of the particle x equal to 0.3, then, the corresponding

interval of the interval-valued fuzzy preference relation calculated using Eq. (14) is

[a, b] = [0.70, 0.90]. Using the expression z = a + (b − a)x, the modified value of

prij becomes equal to 0.76.

Another important question in the PSO framework is how to assess the perfor-

mance of each particle during its movement. To do so, a performance index or fitness

function is used. In the GDM context considered in this contribution, the PSO aims

to maximize the level of agreement achieved among the decision makers involved in

the problem. Hence, the following fitness function f will be used:

f = O (15)



A Feedback Mechanism Based on Granular Computing . . . 381

Fig. 1 PSO flowchart

whereO is the optimization criterion presented previously. Here, the higher the value

of f is, the better the particle is.

It should be pointed out that the generic form of the PSO framework is employed

in this contribution. Therefore, the updates of the velocity of a particle are performed

in the form v(t + 1) = w × v(t) + c1a ⋅ (zp − z) + c2b ⋅ (zg − z). Here, ⋅ means a vec-

tor multiplication carried out coordinate-wise, “t” is an index of the generation, zg
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denotes the best position overall and developed so far across the swarm, and zp is

the best position obtained so far for the particle under study. The inertia compo-

nent, called w, scales the actual velocity v(t) and stresses some effect of resistance to

modify the actual velocity. Its value is usually 0.2 and it is kept constant through the

process [39]. On the other hand, a and b represents vectors of random numbers that

are drawn from the uniform distribution over the unit interval. These vectors help

from a proper mix of the components of the velocity. Finally, in iteration “t + 1”, the

particle’s position is calculated as: z(t + 1) = z(t) + v(t + 1).
Once the PSO algorithm has optimized the fuzzy preference relations coming

from the space of interval-valued fuzzy preference relation, the feedback mechanism

advise the decision makers the modifications that they should put into practice in

their opinions in order to improve the consensus among them.

4 An Illustrative Example

An example of application of the proposed feedback mechanism is presented in this

section. It helps quantifying the improvement of the consensus when the feedback

mechanism is applied.

Let us suppose that a patient presents some symptoms, being all of them common

to several diseases, and some doctors, who are specialist in different diagnosis, have

to jointly diagnose the disease that the patient has contracted. This situation can be

defined as a GDM problem in which there are a set of four possible diseases (alter-

natives), {x1, x2, x3, x4}, and a set of four doctors (decision makers), {e1, e2, e3, e4}.

4.1 First Consensus Round

At the first stage of the discussion process, the four doctors express the following

fuzzy preference relations:

PR1 =
⎛
⎜
⎜
⎜
⎝

− 0.30 0.70 0.50
0.70 − 0.70 0.60
0.40 0.20 − 0.30
0.70 0.30 0.80 −

⎞
⎟
⎟
⎟
⎠

PR2 =
⎛
⎜
⎜
⎜
⎝

− 0.30 0.60 0.70
0.80 − 0.70 0.20
0.20 0.40 − 0.50
0.20 0.60 0.50 −

⎞
⎟
⎟
⎟
⎠

PR3 =
⎛
⎜
⎜
⎜
⎝

− 0.80 0.50 0.20
0.20 − 0.60 0.90
0.50 0.30 − 0.70
0.60 0.20 0.20 −

⎞
⎟
⎟
⎟
⎠

PR4 =
⎛
⎜
⎜
⎜
⎝

− 0.90 0.20 0.70
0.30 − 0.60 0.30
0.90 0.40 − 0.50
0.40 0.90 0.50 −

⎞
⎟
⎟
⎟
⎠
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4.1.1 Consensus Measures

Once the doctors have provided their opinions, the consensus measures are calcu-

lated as described in Sect. 2.1.

The consensus matrix is equal to:

CM =
⎛
⎜
⎜
⎜
⎝

− 0.62 0.73 0.72
0.63 − 0.93 0.60
0.63 0.88 − 0.80
0.72 0.60 0.70 −

⎞
⎟
⎟
⎟
⎠

The element (i, j) of the consensus matrix represents the consensus degrees on

the pair of alternatives (xi, xj).
The consensus degrees on the alternatives are:

ca1 = 0.67
ca2 = 0.71
ca3 = 0.78
ca4 = 0.69

And the consensus on the relation is:

cr = 0.71

Assuming a minimum consensus threshold equal to 0.75, the selection process

cannot be applied because the consensus achieved among the doctors is lower than

the minimum consensus threshold. Therefore, the feedback mechanism has to be

applied in order to improve the agreement.

4.1.2 Feedback Mechanism

The aim of the feedback mechanism is to support the doctors’ changes in their fuzzy

preference relations in order to increase the consensus.

First, it should be pointed out that, as a result of an intensive experimentation, the

following values of the parameters were selected in the PSO algorithm:

∙ 50 particles formed the swarm. This value was found to obtain stable results. That

is, identical or similar results were obtained in successive runs of the PSO algo-

rithm.

∙ 200 generations or iterations were carried out as it was observed that were no

further modifications of the values of the fitness functions after this number of

iterations.

∙ c1 and c2 were set as 2 because these values are commonly found in the existing

literature.
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Considering a given level of granularity 𝛼 = 0.4, the recommended fuzzy prefer-

ence relations generated by the feedback mechanism are as follows:

PR1 =
⎛
⎜
⎜
⎜
⎝

− 0.31 0.60 0.57
0.63 − 0.58 0.63
0.35 0.22 − 0.31
0.73 0.40 0.80 −

⎞
⎟
⎟
⎟
⎠

PR2 =
⎛
⎜
⎜
⎜
⎝

− 0.33 0.61 0.69
0.85 − 0.60 0.27
0.26 0.39 − 0.50
0.15 0.61 0.50 −

⎞
⎟
⎟
⎟
⎠

PR3 =
⎛
⎜
⎜
⎜
⎝

− 0.78 0.45 0.13
0.19 − 0.49 0.78
0.46 0.35 − 0.65
0.58 0.13 0.30 −

⎞
⎟
⎟
⎟
⎠

PR4 =
⎛
⎜
⎜
⎜
⎝

− 0.88 0.20 0.66
0.25 − 0.65 0.36
0.81 0.53 − 0.46
0.48 0.86 0.50 −

⎞
⎟
⎟
⎟
⎠

4.2 Second Consensus Round

In the second consensus round, we assume that the doctors agree the advice gener-

ated by the feedback mechanism. Then, the consensus measures are computed again.

4.2.1 Consensus Measures

The consensus matrix is equal to:

CM =
⎛
⎜
⎜
⎜
⎝

− 0.64 0.77 0.71
0.60 − 0.92 0.70
0.71 0.84 − 0.82
0.69 0.60 0.75 −

⎞
⎟
⎟
⎟
⎠

The element (i, j) of the consensus matrix represents the consensus degrees on

the pair of alternatives (xi, xj).
The consensus degrees on the alternatives are:

ca1 = 0.68
ca2 = 0.72
ca3 = 0.80
ca4 = 0.71

And the consensus on the relation is:

cr = 0.73
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Because the consensus achieved among the doctors is lower than the minimum

consensus threshold, the feedback mechanism has to be applied again in order to

increase the consensus.

4.2.2 Feedback Mechanism

Considering the same values of the parameters in the PSO algorithm as in the first

round, the new recommended fuzzy preference relations provided by the feedback

mechanism are the following:

PR1 =
⎛
⎜
⎜
⎜
⎝

− 0.31 0.60 0.57
0.63 − 0.58 0.63
0.35 0.22 − 0.31
0.73 0.40 0.80 −

⎞
⎟
⎟
⎟
⎠

PR2 =
⎛
⎜
⎜
⎜
⎝

− 0.33 0.61 0.69
0.85 − 0.60 0.27
0.26 0.39 − 0.50
0.15 0.61 0.50 −

⎞
⎟
⎟
⎟
⎠

PR3 =
⎛
⎜
⎜
⎜
⎝

− 0.78 0.45 0.13
0.19 − 0.49 0.78
0.46 0.35 − 0.65
0.58 0.13 0.30 −

⎞
⎟
⎟
⎟
⎠

PR4 =
⎛
⎜
⎜
⎜
⎝

− 0.88 0.20 0.66
0.25 − 0.65 0.36
0.81 0.53 − 0.46
0.48 0.86 0.50 −

⎞
⎟
⎟
⎟
⎠

4.3 Third Consensus Round

As in the above round, it is assumed that the doctors accept the preferences gener-

ated by the feedback mechanism and, therefore, the consensus measures are obtained

again.

4.3.1 Consensus Measures

The consensus matrix is equal to:

CM =
⎛
⎜
⎜
⎜
⎝

− 0.65 0.78 0.71
0.60 − 0.90 0.82
0.68 0.84 − 0.82
0.69 0.64 0.78 −

⎞
⎟
⎟
⎟
⎠

The element (i, j) of the consensus matrix represents the consensus degrees on

the pair of alternatives (xi, xj).
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The consensus degrees on the alternatives are:

ca1 = 0.69
ca2 = 0.75
ca3 = 0.81
ca4 = 0.75

And the consensus on the relation is:

cr = 0.75

In this round, the consensus is equal to the minimum consensus threshold and,

therefore, the selection process can be applied in order to rank the alternatives.

4.4 Selection Process

The goal of the selection process is to obtain a ranking of the alternatives from best

to worst according to the preferences given by the doctors. To do so, an aggregation

step and an exploitation step are carried out.

4.4.1 Aggregation

The OWA operator is used to aggregation the fuzzy preference relations given by

the doctors. We make use of the linguistic quantifier “most”, defined in Sect. 2.2.1,

which, applying Eq. (8), generates a weighting vector of four values to obtain each

collective preference value prcij. As example, the collective preference value prc12 is

computed as follows:

w1 = Q(1∕4) − Q(0) = 0 − 0 = 0
w2 = Q(2∕4) − Q(1∕4) = 0.4 − 0 = 0.4
w3 = Q(3∕4) − Q(2∕4) = 0.9 − 0.4 = 0.5
w4 = Q(1) − Q(3∕4) = 1 − 0.9 = 0.1
prc12 = w1 ⋅ pr412 + w2 ⋅ pr312 + w3 ⋅ pr212 + w4 ⋅ pr112 = 0.51

Then, the collective fuzzy preference relation is:

PRc =
⎛
⎜
⎜
⎜
⎝

− 0.51 0.48 0.56
0.40 − 0.58 0.46
0.38 0.35 − 0.46
0.49 0.46 0.48 −

⎞
⎟
⎟
⎟
⎠
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4.4.2 Exploitation

Using again the same linguistic quantifier “most” and Eq. (8), we obtain the following

weighting vector W = (w1,w2,w3):

w1 = Q(1∕3) − Q(0) = 0.07 − 0 = 0.07
w2 = Q(2∕3) − Q(1∕3) = 0.73 − 0.07 = 0.66
w3 = Q(1) − Q(2∕3) = 1 − 0.73 = 0.27

Using, for example, the quantifier guided dominance degree, QGDDi, we obtain

the following values:

QGDD1 = 0.51
QGDD2 = 0.45
QGDD3 = 0.38
QGDD4 = 0.47

Finally, applying the sequential policy with the quantifier guided dominance

degree, the following ranking of alternatives is obtained:

x1 ≻ x4 ≻ x2 ≻ x3

Therefore, according to the doctors’ judgments, the patient’s symptoms corre-

spond to the first disease.

Finally, it should be pointed out that here a granularity level of 0.4 has been used.

However, the higher the level of granularity is, the higher the level of flexibility is

and, hence, the possibility of obtaining a higher consensus. Anyway, if the level of

granularity is very high, the fuzzy preference relations generated by the feedback

mechanism could be very different in comparison with those provided by the deci-

sion makers and, in such a way, they could reject them.

5 Conclusions and Future Work

In this contribution, we have presented a feedback mechanism based on granular

computing to improve the consensus achieved among the decision makers in a GDM

situation. The feedback mechanism assumes the concept of granular fuzzy preference

relation and accentuates the role of information granularity, which is regarded as an

important resource to be exploited as a means to improve the consensus achieved

among the decision makers involved in the problem. In particular, the granularity

level has been treated as synonymous of flexibility, which has been used to opti-

mize a certain optimization criterion capturing the essence of reconciliation of the

individual preferences. It has also been shown that the PSO environment is a suit-

able optimization framework for this purpose. However, it should be noted that the
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PSO optimizes the fitness function but there is no guarantee that the result is optimal

rather that the solution is the best one being formed by the PSO environment.

In the future, it is worth continuing this research in several directions:

∙ In this contribution, intervals have been used as information granules in the granu-

lar representation of the fuzzy preference relations. However, other formalism as,

for instance, rough sets or fuzzy sets, could be utilized in the granular representa-

tion of the preferences.

∙ The feedback mechanism has been proposed in a fixed framework, that is, in a

situation in which the decision makers and the alternatives do not change during

the decision making process. However, with the aim of making the process more

realistic, the approach should be able to deal with changeable elements. In such a

way, the feedback mechanism should be able to deal with a dynamic environment

[42, 43].
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A Method for the Team Selection Problem
Between Two Decision-Makers Using
the Ant Colony Optimization

Marilyn Bello, Rafael Bello, Ann Nowé and María M. García-Lorenzo

Abstract The team selection issue is important in the management of human
resources, in which the purpose is to conduct a personnel selection process to form
teams according to certain preferences. This selection problem is usually solved by
ranking the candidates based on the preferences of decision-makers and allowing
the decision-makers to select a candidate on its turn. While this solution method is
simple and might seem fair it usually results in an unfair allocation of candidates to
the different teams, i.e. the quality of the teams might be quite different according to
the rankings articulated by the decision-makers. In this paper we propose a new
approach to the team selection problem in which two employers should form their
teams selecting personnel from a set of candidates that is common to both; each
decision-maker has a personal ranking of those candidates. The objective it to make
teams of high quality according to the valuation of each of the decision-makers; this
results in a method for the team selection problem which not only result in high
quality teams, but also focuses on a fair composition of the teams. Our approach is
based on the Ant Colony Optimization metaheuristic, and allows to solve large
instances of the problem as shown in the experimental section of this paper.

1 Introduction

For a company to be successful in the environment in which it is immersed,
managers must make good decisions about the personnel selection, since employees
can be an important source of long-term competitive advantage. Personnel selection
is the process by which one or more people are chosen depending on how suitable
are their characteristics for a job. It is one of the main processes of any company or
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organization, since it provides the right workers to perform the duties of each of the
positions [1–3]. The process of personnel selection determines the quality of the
joining staff, therefore it plays an important role in the human resource manage-
ment, and the future of the company depends largely on the contribution of its staff
in order to maintain a place in the market [4–6]. Qualities such as capability,
knowledge, abilities and other personal characteristics play an important role in the
success of the organization, so that an important objective is to achieve a ranking of
the personnel in terms of those skills.

The personnel selection is a complex process that is expected to be able to place
the right employee in the right job at the right time [7]. Today, many tools and
techniques are used in this specific decision-making problem [8–10]. Among the
first works where the problem was presented from the perspective of the intelligent
systems was reported in [11]. Extensions based on Multi-Criteria Decision-Making
(MCDM) have also been proposed [12] which are relevant is the decision-maker
seeks to optimize a combination of criteria associated to the candidates [13].

The MCDM approaches focus on determining overall preferences of possible
alternatives. According to this goal, they can be used to rank alternatives (to build a
ranking) [14–17]. To obtain a ranking of candidates is especially interesting when
the management of human resources is directed to organize, manage and lead a team
instead of selecting an employee for a simple vacant; this contributes to the success
of the project and creates a competitive advantage for the organization [18, 19].

The MCDM methods have been applied in many studies related to personnel
selection, including [16, 20–22], in which they were used to evaluate candidates
from the degree to which they meet the requirements or evaluation criteria; these
methods provide a model of aggregation of this information. In [23] is proposed a
mathematical model for the problem of personnel selection, which generates a
ranking of candidates. Well-known methods to help decision-making as TOPSIS
[24], ELECTRE [15], PROMETHEE [25] and AHP [26] have been used with this
problem.

In [27] is proposed a method for personnel selection based on multi-criteria
decision-making, including AHP and Stochastic Dynamic Programming methods.
Another solution in which AHP and fuzzy sets are combined is proposed in [26];
another example of the use of a multi-criteria decision-making method based on
fuzzy sets for personnel selection is presented in [28]. An application of the method
VIKOR [29] to the personnel selection problem is presented in [17]. In [30] an
extension of TOPSIS for the problem of personnel selection is proposed; other
solutions based on TOPSIS are proposed in [16, 24, 31]. In [15], one solution using
ELECTRE is proposed. The use of PROMETHEE for preparing the ranking of
candidates is shown in [14].

The personnel selection problem can also be seen as the problem of forming a
team, called team selection; in this case, the problem is not to select the most
suitable for a job, but to select a set of people who must act as a team. There are
many factors to consider in the team selection [32]. A variety of approaches are
proposed for the selection of the members of a team, most of them aimed at forming
teams in the field of business, industry and sport.
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Many researches in this field focus on the selection of team members, given that
they have to solve common tasks collaboratively to achieve a certain objective (the
so-called teamwork) [33]. The employer needs to maximize profits selecting team
members from the available candidates [34]. Given the importance and complexity
of the creation of a suitable team, many researches are still proposing improve-
ments, but it remains an open problem.

In [35], the problem of team selection is treated as a multi-objective
decision-making problem in the event Cricket team selection. In [36] is considered
the problem of the team formation for large-scale multi-agent system. In [33] is pro-
posed the use of fuzzy inference systems to treat the selection of players and the
formation of teams as a complex multi-criteria decision-making problem with
conflicting objectives. In [37], the problem of team formation is developed by building
rankings through a multi-criteria decision process that uses the TOPSIS method.
Heuristic search techniques, as genetic algorithm and simulated annealing, have been
proposed to optimize the process of selecting members of the team [38–40].

Most researches and publications on the subject analyze the factors or indicators
to be considered for the selection of the team members, and how to use the
decision-making methods to form the team considering these factors so as to
achieve the teamwork; in many cases the result is to generate a ranking of candi-
dates, which works as basis for selection In this research, this problem is tried in a
framework different to the classic, due to the process of selection is realized in a
competitive environment, that is, when two or more decision-makers should to form
their teams by choosing the personnel from the same set of candidates; and at the
same time, it is necessary to form two teams as similar as possible to the preferences
defined in the rankings. More precisely, the purpose is to minimize the difference
between the teams formed and the set of candidates placed in the top positions of
the ranking given by the decision-makers. For example; suppose a company ded-
icated to develop projects, which have personnel for different roles. This company
has to form the work teams for two projects that will be developed, so they have to
choose the personnel for each team starting from their human resources. The
purpose is to achieve that both teams will be enough efficient, since the company
wants develop both project successfully.

This new problem can be seen as an optimization process. In this paper two
method based on the Ant Colony Optimization metaheuristic [41–44] are proposed
to solve it.

2 Formulation of the Personnel Selection Problem
in a Competitive Environment

In order to form the work teams two decision-makers draw up a ranking of the N
candidates according to their interests. An intuitive approach is to allow each
decision-maker select a candidate alternately to form a team that consists of N/2
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members. To do this, she/he takes into account the order of preference and selects
the next best candidate who has not been selected yet. The purpose of each
decision-maker is to get a set of candidates that is as similar as possible to those in
the first N/2 ranking positions defined by her/him. However, given that both
decision-makers select from the same set of candidates, there will be probably a
conflict of interest.

Formally, we can state the problem as follows:
Given a set of N candidates C = {c1, c2, …, cN}, every decision-maker has to

select from this set of candidates to form a team with N/2 members (without loss of
generality it can be considered that N is an even number).

Two rankings R = {R1, R2} are formed from C, taking into account different
preferences to evaluate candidates from the perspective of each decision-maker.
A decision-maker D1 defines a ranking of candidates R1 = {r11, r12, …, r1N} and
another decision-maker D2 defines another ranking R2 = {r21, r22, …, r2N} ordered
by a decreasing order of preference, or let be r11 ≥ r12 ≥ ⋅ ⋅ ⋅ ≥ r1N and
r21 ≥ r22 ≥ ⋅ ⋅ ⋅ ≥ r2N.

A first strategy is to make the selection according to the order established in the
rankings R1 and R2, as shown in Example 1. In case 1, there is no conflict of
interest according to the rankings R1 and R2, so that if D1 and D2 alternately
choose from C according to the order of preference, the resulting sets R1* and R2*
will fully satisfy the preferences of both decision-makers; while in the case 2 there
is a conflict of interest and D2 cannot fully meet their preferences.

Example 1: Let be N = 4 candidates; C = {1, 2, 3, 4};
Case 1: Given R1 = {1, 2, 3, 4} and R2 = {4, 3, 2, 1}, results in R1* = {1, 2}

and R2* = {4, 3}.
Case 2: Given R1 = {1, 2, 4, 3} and R2 = {3, 2, 4, 1}, results in R1* = {1, 2}

and R2* = {3, 4}.
However, let us suppose that D2 had not strictly followed the order established

by its ranking for Case 2, i.e. D1 will select candidate 1, but D2 will select
candidate 2 instead of 3; now D1 will have to select candidate 4 and D2 will select
candidate 3. See example 2 below.

Example 2: Let be N = 6 candidates; C = {1, 2, 3, 4, 5, 6}; given the rankings
R1 = {1, 2, 4, 3, 5, 6} and R2 = {3, 2, 6, 1, 5, 4}, the teams resulting from the
process selection will be: R1* = {1, 4, 5} and R2* = {2, 3, 6}.

In this example, the decision-maker D2 not strictly followed the established
order in his ranking and gets a solution of higher quality than the decision-maker
D1.

These examples show that there are alternatives to improve decision-makers
options. The idea is to consider the ranking of each decision-maker as a reference of
preferences, but not necessarily as a strict order to follow in the selection. The
ranking of each decision-maker can be seen as a heuristic information for the
selection process. Hence, the problem is how to develop a heuristic search to guide
the selection process, for trying to meet the preferences of both decision-makers. In
this work, the Ant Colony Optimization (ACO) metaheuristic is used to direct the
process of team selection.
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3 Ant Colony Optimization

The ACO is a relatively recent metaheuristic, which is inspired by the behavior
governing the ants to find the shortest paths between the food sources and the
anthill [42]. ACO algorithms are directly inspired by the behavior of real ant
colonies to solve combinatorial optimization problems. They are based on a colony
of artificial ants, i.e., simple computational agents that work cooperatively and
communicate through artificial pheromone trails [43].

These algorithms are essentially constructive: at each iteration of the algorithm,
each ant builds a solution for the problem, going through a construction graph. Each
edge of the graph, which represents the possible steps that the ant can take, is
associated with two types of information that guide the movement of the ant:

• Heuristic information, which measures the heuristic preference to move from
node r to node s, that is, to cover the edge ars. It is denoted by ηrs. Ants do not
modify this information during the execution of the algorithm.

• Information of the artificial pheromone trails, which measures the “learned
desirability” of the movement from r to s. It imitates the real pheromone that
natural ants deposit. This information is modified while running the algorithm
depending on the solutions found by the ants. It is denoted by τrs.

The basic mode of operation of an ACO algorithm is as follows: the m artificial
ants of the colony move concurrently and asynchronously through the adjacent
states of the problem (which can be represented as a graph with weights). This
movement is performed following a transition rule which is based on local heuristic
and rote information available in the components (nodes). This local information
includes the heuristic and the pheromone trails to guide the search information.
When moving through the construction graph, ants incrementally build solutions.
Once each ant has generated a solution, it is evaluated and it can deposit a quantity
of pheromone according to the quality of the solution. Optionally, ants can lay
pheromone every time they cross an arch (connection) while building the solution
(online step by step pheromone trail). This information will guide the future search
for the other ants in the colony. In addition, the operation mode of a generic ACO
algorithm includes evaporation of the pheromone trails and it is used as a mech-
anism to avoid the deadlock in the search and it allows ants to seek and explore new
regions of space. Optional actions that do not have a natural counterpoint can be
also run and they are used to implement tasks from a global perspective that the ants
cannot carry out because of the local perspective they offer. Examples of these are
to observe the quality of all solutions generated and to deposit a new amount of
additional pheromone just in the links associated with some solutions, or to apply a
local search procedure to the solutions generated by the ants before upgrading the
pheromone trails.
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3.1 Ant System

Among the ACO algorithms, there is the Ant System (AS) [41]. The AS was the
first ACO algorithm. Initially, three variants were presented: AS-density,
AS-quantity and AS-cycle that differed in the way the pheromone trails were
updated. In the first two, ants deposited pheromones while building solutions (that
is, they applied an online update step to step of pheromone), except that the amount
of pheromone deposited on the AS-density is constant, while the amount deposited
in AS-quantity depended directly on the heuristic desirability of the transition ηrs.
Finally, in the AS-cycle, the pheromone deposition takes place once the solution is
complete (update online a posteriori pheromone). This last option was the one
which got the best results, it is therefore known as the AS in literature and it is the
one used in this research.

AS is characterized by the fact that the pheromone update is performed once all
ants have completed their solutions, and it is performed as follows: first, all pher-
omone trails are reduced by a constant factor, implementing in this way the
pheromone evaporation; next, every ant colony deposits an amount of pheromone
which is in function of the solution’s quality.

The solutions in AS are constructed as follows. At each step of construction, one
ant k chooses to go to the next node with a probability that is calculated according
to expression (1):

Pkrs t + 1ð Þ=
τrs tð Þ½ �α* ηrs½ �β

∑s∈N k
r
τrs tð Þ½ �α* ηrs½ �β , if s∈N k

r

0 if s∉N k
r

8
<

:
ð1Þ

Where Nr
k is the feasible neighborhood by ant k when it is located at node r, and

α, β are two parameters that weight the relative importance of the pheromone trails
and the heuristic information. Each ant k stores the sequence it has followed so far
and its memory is used to determine its neighborhood at each construction step.

As it has been exposed, the pheromone deposit is made once all ants have
finished building their solutions. First, the pheromone trails associated with each arc
are evaporated by reducing all pheromones by a constant factor ρ ∈ (0, 1] that is
the evaporation rate; see expression (2):

τrsðt + 1Þ= ð1− ρÞ*τrsðtÞ ð2Þ

The next step of each ant is to walk back the way it has followed, that is, the way
it is stored in its local memory and to deposit an amount of pheromone in each
connection for which has traveled, as shown in Eq. (3):

τrsðt + 1Þ= τrsðtÞ+Δτkrs, ∀arsϵSk ð3Þ

396 M. Bello et al.



Where Δ τrsk = f(C (Sk)), that is, the amount of pheromone released depends on
the quality C (Sk) of the solution Sk built by ant k.

3.2 MAX-MIN Ant System

The MAX-MIN Ant System (MMAS) [45] was specifically developed to achieve
stronger exploitation of solutions, avoiding stagnation states. In a nutshell, we could
define a stagnation state as the situation where ants construct the same solution over
and over again and the exploration stops. This model has the following features:

1. At the end of each iteration only an ant adds pheromone to its found way. This
ant can be the best solution or the best solution global.

2. Second, all pheromone trails are limited in the range [τmax, τmin], so that no
pheromone trail is less than τmin or greater than τmax.

3. As a final point, pheromone trails are initialized with τmax to ensure further
exploration of the search space.

4 A Method for Solving the Personnel Selection Problem
in a Competitive Environment Using Ant Colony
Optimization

The method proposed in this section uses the multi-type ants’ model [46]. In this
model two types of ants and two types of pheromones are used: ants are attracted by
the pheromones of the same type (cooperation) and they are repelled by the
pheromones of the other type (competition).

The graph where the ants operate consists of N nodes, each node represents a
candidate. It is a complete graph, meaning that there are links among all nodes. Two
pheromone values are associated to each node, one for each type of ant, which
correspond to the two decision-makers who make the selection of candidates. Two
sets of ants (with equal number of ants) operate on the graph, one per
decision-maker. Ants work in pairs, each pair has an ant of each type; at the end of
each cycle every pair of ants has built a team for each decision-maker. When an ant
visits a node, this is already disabled for its partner; that is, the ants in a pair cannot
visit the same nodes. In each search cycle, ants visit N/2 nodes.

Another element of the proposed method is the heuristic information used by the
ants. The objective of each ant is to select candidates according to the values of
preference defined in the respective rankings for each type of ant. The heuristic
value of each node for a given ant type is determined by its position in the cor-
responding ranking; the node corresponding to the first candidate of the ranking has
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the greatest heuristic value, while the node corresponding to the last element has the
lowest heuristic value.

The initial value of the pheromone associated to the link between nodes i and j
for each type of ant is calculated taking into account the distance of those candi-
dates in the rankings; the greater the distance between the two candidates, the lower
the value of the pheromone. Updating the pheromone value depends on the quality
of the solution found by each ant. The quality of the solution depends on two
aspects: (i) the similarity of the solution built by each ant in the part respect to the
ranking of preference; (ii) the difference of the value of both solutions (trying to the
ants in the pair reach solutions with similar quality).

This approach for assessing the quality of the solutions reached by each pair of
ants is specified in the expressions (10) and (11); expression (10) has two terms, the
first term takes into account to what extent each ant finds a solution similar to the
ranking given by the decision-makers and the second term compares the quality of
the solutions found by each pair of ants; in other words, expression (10) is looking
for the solutions found by the pair of ants to be as close as possible to the ranking of
preference for each decision-maker as well as the level of satisfaction of both
decision-makers to be similar. As the first term of the expression (10) is an average,
if the second is not considered, solutions could be preferred, in which an ant of the
pair reaches a very good solution but the other ant obtains a very bad one.

In the expression (11) the quality of a solution according to a given ranking is
calculated. If the candidate on the first position is included in the solution a 1 is
taken into account in the sum, for the candidate on the second position a 2 is taken
into account in the sum, and so on. The lower this sum, the more the solution
satisfies a particular decision-makers preference.

Components of the Ant System to Team Selection method (AS-TS):

1. Build a complete graph with N nodes, where each node represents a candidate.
2. Generate two types of ants: type 1 (h1) and type 2 (h2), where each type of ant

represents the decision-maker D1 and D2 respectively.
3. m ants of each type are used, which work in pairs (h1k, h2k) where k represents

the kth ant of type 1 and 2 respectively, with k = 1, 2, …, m. Hence, in each
cycle there are working m pairs {(h11, h21), (h12, h22)… (h1m, h2m)}.

4. At the starting point of each iteration, ants are distributed randomly, but the ants
of the same pair must be in different nodes; i.e., an ant of type 2 can only be
placed in a node if the ant type 1 of that pair is not located in that node.

5. Two types of pheromones τij1 (amount of pheromone for ants of type 1 asso-
ciated with the link between node i and node j) and τij2 (amount of pheromone
for ants of type 2 between nodes i and j) are generated, where ants of type 1 are
attracted by pheromones of type 1 (τij1) and repelled by the type 2 (τij2), and vice
versa. Pheromone values are calculated by expressions (4) and (5) for ants of
type 1 and 2 respectively:
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τ1ijð0Þ=1 ̸ð1+ δði, jÞÞ ð4Þ

τ2ijð0Þ=1 ̸ð1+ δði, jÞÞ ð5Þ

Where δ(i, j) in τij1 and τij2 is the number of positions between candidates i and j in
the rankings R1 and R2 respectively. This results in pheromone values in the range
[1/(N-2), 1] reaching the value 1 when the nodes i and j are adjacent in the ranking.

6. The heuristic value used to assess the quality of each possible successor node is
denoted for ants of type 1 as ηij1 and for ants of type 2 as ηij2; it is calculated by
the expressions (6) and (7) for ants of type 1 and 2 respectively:

η1ij = 1 ̸OðjÞ ð6Þ

η2ij = 1 ̸OðjÞ ð7Þ

Where O(j) is the position of the candidate j in the rankings R1 and R2 for ants
of type 1 and type 2 respectively.

7. The neighborhood at node i of the kth ant of type 1 (or type 2), denoted by Vi
1k

(or Vi
2k), has all the nodes that have not been selected yet by the kth ant nor by

its pair’s ant.
8. The probabilistic rule, which decides the new node to visit, is defined by the

expressions (8) and (9) for ants of type 1 and 2 respectively:

p1kij =
0 if j∉V1k

i
τ1ij½ �α* η1ij½ �β ̸ τ2ij½ �θ

∑j∈V1k
i

τ1ij
� �α

* η1ij
� �β

̸ τ2ij
� �θ if j∈V1k

i

8
><

>:
ð8Þ

p2kij =
0 if j∉V2k

i
τ2ij½ �α* η2ij½ �β ̸ τ1ij½ �θ

∑j∈V2k
i

τ2ij
� �α

* η2ij
� �β

̸ τ1ij
� �θ if j∈V2k

i

8
><

>:
ð9Þ

9. Each ant ends in a cycle when it has visited N/2 nodes. At the end of each cycle,
each pair (h1k, h2k) will generate a solution where the ant h1 k has the solution
for D1 (R1*) and the ant h2k has the solution for D2 (R2*).

10. The solutions found for each pair of ants is evaluated at the end of each cycle
by the expression (10):
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Evalk = ½ðevalðsðh1kÞ, R1Þ+ evalðsðh2kÞ, R2ÞÞ ̸2�
+ jevalðsðh1kÞ, R1Þ− evalðsðh2kÞ, R2Þj ð10Þ

Where s (h1k) and s (h2k) are the solutions found by the ants h1k and h2k

respectively; eval (s (h1k, R1) and eval (s (h2k), R2) values are obtained according to
the expression (11):

eval Ri*, Ri
� �

= ∑
∀c∈Ri*

π cð Þ ð11Þ

Where π (c) is the value of the candidate c ∈ Ri* according to its position in the
ranking Ri; the function π assigns the value of 1 to the first place in the ranking, 2 to
the second and so on, until the last place in the ranking is assigned to the value N.
See example 3 below.

11. When a cycle is completed, that is, when all the ants have covered the N/2
nodes in the cycle, the evaporation of all pheromones is performed and then
new pheromone is deposited. As the proposed model is based on the Ant
System, the pheromone is deposited in all ij arcs, appearing in the solutions
found by each ant in the cycle. All pheromone’s values are decreased using the
expression (12) where ρ is a value between 0 and 1.

τijðt + 1Þ= ρ*τijðtÞ ð12Þ

The pheromone’s deposit is calculated using Eqs. (13) y (14):

τ1ijðt + 1Þ= τ1ijðtÞ+ ð1 ̸evalðsðh1kÞ, R1ÞÞ ð13Þ

τ2ijðt + 1Þ= τ2ijðtÞ+ ð1 ̸evalðsðh2kÞ, R2ÞÞ ð14Þ

12. On the completion of the search, the solutions s(h1k) and s(h2k) associated with
the pair (h1k, h2k) with the lowest value of Evalk will be the sets R1* and R2 *
resulting for the decision-makers D1 and D2 respectively.

Example 3: Given the set of N = 6 candidates C = {0, 1, 2, 3, 4, 5}; the
rankings R1 = {2, 0, 1, 3, 5, 4} and R2 = {3, 2, 1, 5, 0, 4}; and the resulting
subsets R1* = {0, 2, 4} and R2* = {3, 5, 1}. Applying the expression (11) we
have:

eval (R1*, R1) = 2 + 1 + 6 = 9
eval (R2*, R2) = 1 + 4 + 3 = 8
The algorithm Ant System to Team Selection (AS-TS) is defined using these

components.
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Algorithm AS-TS

Input: N (number of candidates); R1 and R2 (rankings of preferences of decision-
makers D1 and D2 respectively); NmaxC (maximum number of cycles to run); m 
(number of ants of each type);  (parameter to decrease the pheromone); , , 
(exponents of the probabilistic rule’s terms).
Output: the teams R1* and R2* with N/2 candidates. 

P0: 
To calculate the initial values of the pheromone τij

1(0) and τij
2(0) according to (4) 

and (5).
To calculate the heuristic values ij

1 and ij
2 according to (6) and (7).

Iteration 0
P1: Repeat

P1.1: Ants are distributed on the graph according to point 4.
P1.2: For i=1 until N/2 to do

For k=1 until m to do
For ant h1k to select the next node according to (8).
For ant h2k to select the next node according to (9).

End
End

P1.3: At the end of P12 each pair (h1k, h2k) has reached a solution where the ant 
 has the solution for   D1, s(h 1k) and the ant , h2k has the solution for D2, s(h2k). 
P1.4: Evaporate the pheromones according to (12).
P1.5: Increase  the  pheromone  according  to  (13)  and  (14)  in  all  ij  arcs  that

appear in the solutions found by each ant.
P1.6: Evaluate the solutions obtained for each pair of ants as (10) and to update 

sets R1* and R2* with the best solution obtained so far.
P1.7: IterationIteration+1 

Until Iteration = = NmaxC
P2: To return sets R1* and R2*. 

h1k

5 Another Proposal for Solving the Personnel Selection
Problem in a Competitive Environment Using Ant
Colony Optimization

In this research the algorithms Max-Min Ant System to Team Selection
(MMAS-TS) is also proposed. This proposal is based on the MAX-MIN Ant
System model and the components AS-TS algorithm. The components of the
algorithm MMAS-TS are similar to those described for AS-TS algorithm except the
three modifications enunciated below.

M1: The initial pheromone values associated with the link between nodes i and j
for each type of ant take the value τij1 (0) = τij2 (0) = τmax.
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M2: The pheromone deposit is made in each arch ij that appears in the solutions
found by the best couple of ants in the iteration and by the pair of ants that has
obtained the best solution from the execution start until now.

M3: Pheromone levels are delimited each time a cycle is completed; the values
are limited to τmax and τmin. These values are calculated from the expressions (15)
and (16) respectively.

τmax = 1 ̸ 1− ρð Þð Þ* 1 ̸Evalmejor par global� � ð15Þ

τmin = τmax ̸ 10*Nð Þ ð16Þ

Where N represents the number of candidates, ρ is the value of the constant
evaporation and Evalmejor_par_global represents the quality of the best global solution
found by the ant colony throughout the search process, and is calculated from the
expression (10).

Algorithm MMAS-TS

Input: N (number of candidates); R1 and R2 (rankings of preferences of decision-
makers D1 and D2 respectively); NmaxC (maximum number of cycles to run); m 
(number of ants of each type);  (parameter to decrease the pheromone); , , 
(exponents of the probabilistic rule’s terms); τmax (maximum value of pheromone).
Output: the teams R1* and R2* with N/2 candidates. 

P0: 
To  calculate  the  initial  values  of  the  pheromone τij

1(0)  and τij
2(0)  according  to

To calculate the heuristic values ij
1 and ij

2 according to (6) and (7).
Iteration 0
P1: Repeat

P1.1: Ants are distributed on the graph according to point 4.
P1.2: For i=1 until N/2 to do

For k=1 until m to do
For ant h1k to select the next node according to (8).
For ant h2k to select the next node according to (9).

End
End

P1.3: At the end of P12 each pair (h1k, h2k) has reached a solution where the ant 
h1k has the solution for   D1, s(h1k) and the ant h2k has the solution for D2, s(h2k). 

P1.4: Evaporate the pheromones according to (12).
P1.5: Increase the pheromone according to (M2).
P1.6: Evaluate the solutions obtained for each pair of ants as (10) and to update 

sets R1* and R2* with the best solution obtained so far.
P1.7: To delimit the levels of pheromone according to (M3).
P1.8: IterationIteration+1 

Until Iteration = = NmaxC
P2: To return sets R1* and R2*. 

(M1).
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In the following section the performance of the proposed methods is reported by
an experimental study.

6 Experimental Study

The purpose of this empirical study is to illustrate the effectiveness of the algo-
rithms AS-TS and MMAS-TS using some examples. For doing that, a simulation of
the candidates’ selection process is performed, in which two rankings R1 and R2 of
N elements are generated randomly for decision-makers D1 and D2 respectively. In
the study we considered values of 4, 6, 8, 10, 12, 14, 16, 18 and 20 for N. Different
values were evaluated for the model’s parameters. The results shown in the fol-
lowing tables were obtained with the following values of input’s parameters for the
algorithm: α = β = θ = 1, ρ = 0.75, NmaxC = 10 and m = N.

In Tables 1, 2, 3, 4, 5, 6, 7, 8 and 9 we give the results achieved using the
proposed algorithms. Each table contains three rows corresponding to different
examples generated for that number of candidates. The first column shows the
rankings R1 and R2, which were randomly generated; the second column shows the
results achieved by each of the decision-makers, if the selection of candidates is
carried out in the order established of the rankings; in the third column the results
obtained after applying the algorithms AS-TS and MMAS-TS are given.

In addition to the teams achieved by each method, we also report the distances
between the teams R1* and R2* to the rankings R1 and R2 for every example, and
the evaluation according to the expression (10). The best results in each case are
indicated in bold.

Table 1 4 candidates

Rankings Results according to the order
established in the rankings

Results applying the algorithm
AS-TS

Results applying the algorithm
MMAS-TS

R1 = {3, 1, 2, 0}
R2 = {0, 3, 1, 2}

R1* = {3, 1} R2* = {0, 2} (3,
5) = 4 + 2 = 6.0

R1* = {2, 3} R2* = {1, 0}
(4, 4) = 4 + 0 = 4.0
R1* = {2, 3} R2* = {1, 0}
(4, 4) = 4 + 0 = 4.0

R1 = {0, 2, 1, 3}
R2 = {3, 1, 0, 2}

R1* = {0, 2} R2* = {3, 1} (3,
3) = 3 + 0 = 3.0

R1* = {2, 0} R2* = {1, 3}
(3, 3) = 3 + 0 = 3.0
R1* = {0, 2} R2* = {3, 1}
(3, 3) = 3 + 0 = 3.0

R1 = {0, 2, 3, 1}
R2 = {0, 1, 2, 3}

R1* = {0, 2} R2* = {1, 3} (3,
6) = 4.5 + 3 = 7.5

R1* = {0, 3} R2* = {2, 1}
(4, 5) = 4.5 + 1 = 5.5
R1* = {3, 0} R2* = {1, 2}
(4, 5) = 4.5 + 1 = 5.5
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Table 3 8 candidates

Rankings Results according to the order
established in the rankings

Results applying the algorithm
AS-TS
Results applying the algorithm
MMAS-TS

R1 = {0, 1, 3, 7, 5, 6, 4,
2} R2 = {0, 1, 7, 5, 4, 6,
3, 2}

R1* = {0, 3, 5, 6} R2* = {1,
7, 4, 2} (15,
18) = 16.5 + 3 = 19.5

R1* = {4, 3, 0, 6} R2* = {2,
1, 5, 7} (17,
17) = 17 + 0 = 17.0
R1* = {4, 0, 3, 6} R2* = {5,
7, 1, 2} (17,
17) = 17 + 0 = 17.0

R1 = {0, 2, 7, 5, 6, 3, 1,
4} R2 = {0, 2, 7, 5, 6, 3,
1, 4}

R1* = {0, 7,6, 1} R2* = {2,
5, 3, 4} (16,
20) = 18 + 4 = 22.0

R1* = {2, 7, 6, 4} R2* = {0,
3, 5, 1} (18,
18) = 18 + 0 = 18.0
R1* = {0, 2, 1, 4} R2* = {6,
5, 7, 3}
(18,18) = 18 + 0 = 18.0

R1 = {7, 6, 0, 1, 2, 5, 4,
3} R2 = {7, 6, 2, 1, 3, 5,
4, 0}

R1* = {7, 0, 1, 5} R2* = {6,
2, 3, 4} (14,
17) = 15.5 + 3 = 18.5

R1* = {1, 7, 0, 4} R2* = {6,
3, 2, 5} (15,
16) = 15.5 + 1 = 16.5
R1* = {0, 7, 3, 2} R2* = {5,
4, 1, 6} (10,
10) = 10 + 0 = 10.0

Table 2 6 candidates

Rankings Results according to the order
established in the rankings

Results applying the algorithm
AS-TS
Results applying the algorithm
MMAS-TS

R1 = {2, 0, 1, 3, 5, 4}
R2 = {3, 2, 1, 5, 0, 4}

R1* = {2, 0, 5} R2* = {3, 1,
4} (8, 10) = 9 + 2 = 11.0

R1* = {0, 2, 4} R2* = {3, 5,
1} (9, 8) = 8.5 + 1 = 9.5
R1* = {0, 2, 4} R2* = {1, 5,
3} (9, 8) = 8.5 + 1 = 9.5

R1 = {5, 3, 1, 4, 0, 2}
R2 = {0, 3, 2, 5, 4, 1}

R1* = {5, 3, 1} R2* = {0, 2,
4} (6, 9) = 7.5 + 3 = 10.5

R1* = {1, 5, 4} R2* = {0, 3,
2} (8, 6) = 7 + 2 = 9.0
R1* = {4, 5, 1} R2* = {2, 3,
0} (8, 6) = 7 + 2 = 9.0

R1 = {2, 1, 0, 4, 3, 5}
R2 = {2, 0, 3, 4, 1, 5}

R1* = {2, 1, 4} R2* = {0, 3,
5} (7, 11) = 9 + 4 = 13.0

R1* = {1, 2, 5} R2* = {0, 3,
4} (9, 9) = 9 + 0 = 9.0
R1* = {0, 3, 1} R2* = {5, 4,
2} (7, 8) = 7.5 + 1 = 8.5
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Table 5 12 candidates

Rankings Results according to the
order established in the
rankings

Results applying the
algorithm AS-TS
Results applying the
algorithm MMAS-TS

R1 = {11, 10, 5, 4, 3, 2, 9, 8,
1, 6, 7, 0} R2 = {11, 10, 4, 5,
2, 3, 9, 8, 6, 1, 7, 0}

R1* = {11, 5, 3, 9, 1, 7}
R2* = {10, 4, 2, 8, 6, 0}
(36, 39) = 37.5 + 3 = 40.5

R1* = {10, 5, 11, 0, 1, 7}
R2* = {4, 8, 3, 9, 6, 2} (38,
38) = 38 + 0 = 38.0
R1* = {2, 3, 5, 8, 9, 1}
R2* = {11, 10, 4, 6, 7, 0}
(38, 38) = 38 + 0 = 38.0

R1 = {9, 5, 6, 3, 0, 1, 10, 11,
7, 4, 2, 8} R2 = {9, 5, 6, 3,
11, 10, 1, 0, 7, 4, 2, 8}

R1* = {9, 6, 0, 1, 7, 2}
R2* = {5, 3, 11, 10, 4, 8}
(35, 39) = 37 + 4 = 41.0

R1* = {0, 3, 5, 7, 2, 1}
R2* = {4, 6, 9, 11, 10, 8}
(37, 37) = 37 + 0 = 37.0
R1* = {6, 9, 1, 4, 0, 8}
R2* = {7, 5, 3, 10, 11, 2}
(37, 37) = 37 + 0 = 37.0

R1 = {0, 1, 4, 5, 10, 11, 7, 8,
3, 2, 9, 6} R2 = {0, 6, 1, 9, 4,
2, 5, 3, 10, 8, 11, 7}

R1* = {0, 1, 4, 5, 10, 11}
R2* = {6, 9, 2, 3, 8, 7} (21,
42) = 31.5 + 21 = 52.5

R1* = {7, 4, 11, 1, 5, 8}
R2* = {6, 0, 9, 10, 3, 2}
(30, 30) = 30 + 0 = 30.0
R1* = {11, 0, 4, 10, 7, 8}
R2* = {9, 1, 5, 3, 6, 2} (30,
30) = 30 + 0 = 30.0

Table 4 10 candidates

Rankings Results according to the
order established in the
rankings

Results applying the
algorithm AS-TS
Results applying the
algorithm MMAS-TS

R1 = {8, 2, 7, 5, 4, 6, 9, 0,
1, 3} R2 = {9, 8, 2, 4, 6, 3,
1, 0, 5, 7}

R1* = {8, 2, 7, 5, 0}
R2* = {9, 4, 6, 3, 1} (18,
23) = 20.5 + 5 = 25.5

R1* = {5, 8, 7, 4, 0}
R2* = {9, 2, 6, 3, 1} (21,
22) = 21.5 + 1 = 22.5
R1* = {0, 4, 7, 5, 8}
R2* = {6, 9, 2, 3, 1}
(21,22) = 21.5 + 1 = 22.5

R1 = {8, 1, 4, 6, 7, 0, 9, 3,
2, 5} R2 = {6, 5, 8, 9, 4, 1,
3, 7, 0, 2}

R1* = {8, 1, 4, 7, 0}
R2* = {6, 5, 9, 3, 2} (17,
24) = 20.5 + 7 = 27.5

R1* = {8, 0, 1, 7, 3}
R2* = {9, 6, 5, 4, 2} (22,
22) = 22 + 0 = 22.0
R1* = {7, 1, 8, 0, 3}
R2* = {4, 6, 2, 9, 5} (22,
22) = 22 + 0 = 22.0

R1 = {9, 7, 5, 4, 3, 1, 0, 2,
6, 8} R2 = {9, 7, 5, 4, 3, 1,
0, 2, 6, 8}

R1* = {9, 5, 3, 0, 6}
R2* = {7, 4, 1, 2, 8} (25,
30) = 27.5 + 5 = 32.5

R1* = {4, 7, 1, 2, 0}
R2* = {9, 8, 6, 5, 3} (27,
28) = 27.5 + 1 = 28.5
R1* = {7, 5, 2, 4, 8}
R2* = {0, 9, 1, 3, 6} (27,
28) = 27.5 + 1 = 28.5
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Table 7 16 candidates

Rankings Results according to the order
established in the rankings

Results applying the algorithm
AS-TS

Results applying the algorithm
MMAS-TS

R1 = {3, 4, 5, 6, 10, 11, 12, 13,
15, 2, 8, 0, 1, 9, 7, 14} R2 = {3,
4, 7, 6, 11, 10, 12, 14, 0, 1, 8, 15,
2, 9, 5, 13}

R1* = {3, 5, 6, 10, 13, 15, 2,
8} R2* = {4, 7, 11, 12, 14, 0,
1, 9} (51,
58) = 54.5 + 7 = 61.5

R1* = {12, 15, 3, 5,10, 13, 8,
2} R2* = {6, 4, 0, 11, 7, 1, 14,
9} (54, 55) = 54.5 + 1 = 55.5
R1* = {3, 2, 10, 13, 5, 15, 6,
9} R2* = {7, 12, 0, 4, 11, 14,
8, 1} (54,
55) = 54.5 + 1 = 55.5

R1 = {10, 11, 0, 1, 7, 3, 4, 6, 12,
9, 5, 8, 14, 2, 15, 13} R2 = {10,
11, 1, 0, 2, 7, 3, 15, 4, 6, 13, 12,
14, 9, 5, 8}

R1* = {10, 0, 7, 3, 4, 12, 9, 5}
R2* = {11, 1, 2, 15, 6, 13, 14,
8} (52, 68) = 60 + 16 = 76.0

R1* = {8, 10, 11, 3, 12, 9, 6,
5} R2* = {14, 13, 0, 1, 2, 7, 4,
15} (59, 59) = 59 + 0 = 59.0
R1* = {12, 0, 6, 5, 7, 4, 3, 9}
R2* = {8, 10, 1, 15, 11, 13,
14, 2} (59,
59) = 59 + 0 = 59.0

R1 = {15, 12, 8, 9, 0, 1, 3, 7, 14,
13, 2, 5, 10, 6, 11, 4} R2 = {4,
11, 8, 9, 0, 1, 15, 12, 2, 5, 10, 6,
3, 14, 7, 13}

R1* = {15, 12, 8, 0, 3, 7, 14,
13} R2* = {4, 11, 9, 1, 2, 5,
10, 6} (45,
55) = 50 + 10 = 60.0

R1* = {15, 12, 8, 14, 2, 7, 3,
13} R2* = {4, 9, 11, 0, 1, 6, 5,
10} (51, 51) = 51 + 0 = 51.0
R1* = {3, 8, 15, 12, 2, 13, 14,
7} R2* = {0, 4, 11, 6, 5, 9, 10,
1} (51, 51) = 51 + 0 = 51.0

Table 6 14 candidates

Rankings Results according to the order
established in the rankings

Results applying the
algorithm AS-TS

Results applying the
algorithm MMAS-TS

R1 = {4, 13, 7, 3, 10, 1, 0, 12, 6,
2, 11, 8, 5, 9} R2 = {8, 2, 11, 3, 7,
0, 1, 5, 13, 6, 12, 4, 10, 9}

R1* = {4, 13, 7, 3, 10, 12, 6}
R2* = {8, 2, 11, 0, 1, 5, 9}
(32, 41) = 36.5 + 9 = 45.5

R1* = {4, 3, 10, 7, 13, 9, 6}
R2* = {8, 2, 1, 11, 0, 5, 12}
(38, 38) = 38 + 0 = 38.0

R1* = {3, 13, 4, 12,9, 10, 7}
R2* = {0, 1, 5, 2,8, 6, 11}
(37, 37) = 37 + 0 = 37.0

R1 = {12, 9, 1, 0, 3, 10, 2, 11, 7,
6, 4, 5, 13, 8} R2 = {6, 9, 0, 8, 12,
5, 10, 1, 2, 4, 3, 7, 13, 11}

R1* = {12, 9, 1, 3, 10, 11, 7}
R2* = {6, 0, 8, 5, 2, 4, 13}
(34, 46) = 40 + 12 = 52.0

R1* = {2, 12, 1, 3,10, 11, 7}
R2* = {5, 0, 6, 9, 8, 4, 13}
(39, 39) = 39 + 0 = 39.0
R1* = {10, 12, 11, 1, 3, 7, 2}
R2* = {13, 4, 8, 9, 0, 6, 5}
(39, 39) = 39 + 0 = 39.0

R1 = {1, 5, 13, 0, 12, 10, 2, 8, 6,
9, 7, 4, 11, 3} R2 = {8, 6, 11, 4,
12, 7, 1, 13, 0, 2, 10, 3, 5, 9}

R1* = {1, 5, 13, 0, 12, 10, 9}
R2* = {8, 6, 11, 4, 7, 2, 3}
(31, 38) = 34.5 + 7 = 41.5

R1* = {9, 13, 5, 1, 10, 0, 2}
R2* = {12, 4, 6, 11, 8, 7, 3}
(33, 33) = 33 + 0 = 33.0
R1* = {5, 1, 13, 9, 10, 0, 2}
R2* = {11, 8, 6, 3, 7, 12, 4}
(33, 33) = 33 + 0 = 33.0
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For instance, in the first row in Table 1, given the rankings R1 = {3, 1, 2, 0} and
R2 = {0, 3, 1, 2}, the teams obtained if the decision-makers follow the order
established in the rankings are R1* = {3, 1} and R2* = {0, 2}, similarity of these
teams respect to the ranking (according to expression 11) are 3 and 5 respectively,
the value of the first term of expression (10) is 4 and the value of the second term is
2, the overall value according to expression (10) of this solution is 6. You can see
that the solution shown in the third column obtained by the algorithms AS-TS and
MMAS-TS is fairer because the second term of the expression (10) is 0; both
decision-makers obtain similar solutions. In this case the algorithms AS-TS and
MMAS-TS achieve equal solutions.

From the analysis in the tables, it can be concluded that the performance of the
proposed methods allow obtaining teams that are fairer to both decision-makers, yet
having the same overall quality compared to the method where the decision-makers
selected alternatively based on their rankings. An important element is that, the
larger the number of candidates, the proposed methods are more effective. The
results obtained by the two proposed methods are similar, although in some cases
MMAS-TS achieves better solutions.

Table 8 18 candidates

Rankings Results according to the
order established in the
rankings

Results applying the
algorithm AS-TS
Results applying the
algorithm MMAS-TS

R1 = {17, 12, 1, 15, 16, 13, 9,
7, 8, 2, 6, 14, 3, 5, 4, 10, 11, 0}
R2 = {0, 12, 17, 15, 16, 10, 1,
6, 8, 2, 14, 3, 5, 4, 9, 7, 13, 11}

R1* = {17, 12, 1, 13, 9, 7,
2, 3, 4} R2* = {0, 15, 16,
10, 6, 8, 14, 5, 11} (65,
75) = 70 + 10 = 80.0

R1* = {8, 17, 7, 1, 9, 16,
13, 11, 3} R2* = {10, 15,
0, 12, 5, 4, 2, 6, 14} (69,
69) = 69 + 0 = 69.0
R1* = {17, 7, 1, 12, 9,
13, 2, 4, 11} R2* = {15,
6, 0, 10, 5, 8, 16, 3, 14}
(69, 69) = 69 + 0 = 69.0

R1 = {11, 4, 9, 5, 16, 7, 13, 0,
1, 14, 2, 12, 3, 15, 8, 6, 17, 10}
R2 = {1, 16, 4, 0, 6, 3, 2, 13, 7,
15, 8, 12, 9, 11, 5, 17, 10, 14}

R1* = {11, 4, 9, 5, 7, 13,
14, 2, 12, 3} R2* = {1, 16,
0, 6, 3, 2, 15, 8, 17, 10} (69,
79) = 74 + 10 = 84.0

R1* = {12, 4, 9, 11, 13,
5, 7, 14, 17} R2* = {1, 6,
0, 16, 3, 2, 8, 15, 10} (62,
63) = 62.5 + 1 = 63.5
R1* = {13, 9, 11, 7, 4, 5,
14, 17, 12} R2* = {2, 16,
1, 0, 8, 3, 15, 10, 6} (62,
63) = 62.5 + 1 = 63.5

R1 = {12, 11, 16, 2, 0, 17, 10,
4, 6, 14, 13, 3, 9, 15, 7, 8, 1, 5}
R2 = {9, 15, 6, 1, 3, 12, 8, 2,
14, 7, 13, 11, 5, 17, 10, 16, 4,
0}

R1* = {12, 11, 16, 2, 0, 17,
10, 4, 13} R2* = {9, 15, 6,
1, 3, 8, 14, 7, 5} (47,
54) = 50.5 + 7 = 57.5

R1* = {10, 17, 12, 11, 4,
13, 14, 16, 0} R2* = {2,
9, 1, 3, 15, 6, 8, 7, 5} (53,
53) = 53 + 0 = 53.0
R1* = {12, 4, 16, 17, 0,
13, 14, 10, 11} R2* = {2,
8, 3, 1, 9, 15, 6, 5, 7} (53,
53) = 53 + 0 = 53.0
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7 Conclusions

The problem of personnel selection is of great importance for institutions to achieve
a better performance. One case of this problem is called team selection, in which the
aim is to select members of a team. Usually both, the personnel selection and the
team selection are developed using the ranking of candidates.

In this paper we propose a new problem related to the team selection, where a set
of candidates has to be divided in two teams taking into account the preferences of
two decision-makers who will be responsible for a team. Each decision-maker
defines a ranking expressing his preference on the candidates. Each decision-maker
wants to form the team that is closest to his ranking. But as the preferences of
decision-makers may be similar, the rankings established by them may be similar.

A common approach for developing the selection is to allow the decision-makers
alternatively select a candidate according to their ranking. While this seems a fair
approach, it does not necessarily in a fair set of teams as shown in the experimental
session. To obtain high quality teams as well as a fair set of teams, two heuristic

Table 9 20 candidates

Rankings Results according to the
order established in the
rankings

Results applying the
algorithm AS-TS
Results applying the
algorithm MMAS-TS

R1 = {18, 17, 12, 19, 1, 15,
16, 13, 9, 7, 8, 2, 6, 14, 3, 5, 4,
10, 11, 0} R2 = {0, 12, 18,
17, 19, 15, 16, 10, 1, 6, 8, 2,
14, 3, 5, 4, 9, 7, 13, 11}

R1* = {18, 17, 19, 1, 13, 9,
7, 2, 3, 4} R2* = {0, 12,
15, 16, 10, 6, 8, 14, 5, 11}
(83, 93) = 88 + 10 = 98.0

R1* = {5, 1, 13, 18, 17, 7,
19, 9, 2, 11} R2* = {3, 16,
10, 15, 0, 12, 6, 14, 8, 4}
(86, 88) = 87 + 2 = 89.0
R1* = {4, 18, 19, 17, 13, 2,
1, 9, 7, 11} R2* = {3, 0,
12, 16, 15, 8, 5, 10, 14, 6}
(87, 87) = 87 + 0 = 87.0

R1 = {17, 19, 18, 12, 1, 15,
16, 13, 9, 7, 8, 2, 6, 14, 3, 5, 4,
10, 11, 0} R2 = {0, 12, 18,
17, 19, 15, 16, 10, 1, 6, 8, 2,
14, 3, 5, 4, 9, 7, 13, 11}

R1* = {17, 19, 18, 1, 13, 9,
7, 2, 3, 4} R2* = {0, 12,
15, 16, 10, 6, 8, 14, 5, 11}
(82,
93) = 87.5 + 11 = 98.5

R1* = {1, 7, 19, 18, 13, 16,
14, 11, 8, 9} R2* = {6, 12,
0, 15, 17, 10, 2, 4, 3, 5} (88,
88) = 88 + 0 = 88.0
R1* = {4, 19, 17, 1, 18, 13,
9, 7, 11, 2} R2* = {15, 12,
10, 0, 6, 8, 16, 3, 14, 5} (86,
87) = 86.5 + 1 = 87.5

R1 = {14, 4, 0, 5, 10, 1, 7, 19,
3, 16, 18, 15, 9, 12, 2, 8, 13, 6,
11, 17} R2 = {10, 5, 19, 14,
0, 2, 11, 1, 4, 7, 3, 16, 17, 18,
15, 9, 6, 12, 8, 13}

R1* = {14, 4, 0, 1, 7, 3, 18,
15, 12, 8} R2* = {10, 5,
19, 2, 11, 16, 17, 9, 6, 13}
(81,
97) = 89 + 16 = 105.0

R1* = {12, 14, 4, 0, 8, 1,
13, 7, 16, 9} R2* = {19, 5,
2, 10, 11, 15, 3, 18, 6, 17}
(89, 89) = 89 + 0 = 89.0
R1* = {1, 14, 12, 4, 7, 3,
16, 18, 8, 9} R2* = {6, 10,
0, 19, 2, 5, 17, 15, 11, 13}
(89, 89) = 89 + 0 = 89.0
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methods of solution are proposed based on the 2-type Ant Colony Optimization.
The conducted experimental study shows that the proposed methods allow forming
teams that are equally close to the preferences of both employers, yet are fair and
that efficiency is more noticeable the larger the number of candidates.
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Probabilistic Linguistic Distance Measures
and Their Applications in Multi-criteria
Group Decision Making

Mingwei Lin and Zeshui Xu

Abstract The probabilistic linguistic term sets can express not only the decision
makers’ several possible linguistic assessment values, but also the weight of each
linguistic assessment value, so they can preserve the original decision information
and then have become an efficient tool for solving multi-criteria group decision
making problems. To promote the wide applicability of probabilistic linguistic term
sets in various fields, this chapter focuses on the distance measures for probabilistic
linguistic term sets and their applications in multi-criteria group decision making.
This chapter first defines the distance between two probabilistic linguistic term
elements. Based on this, a variety of distance measures are proposed to calculate the
distance between two probabilistic linguistic term sets. Then, these distance mea-
sures are further extended to compute the distance between two collections of
probabilistic linguistic term sets by considering the weight information of each
criterion. After that, the concept of the satisfaction degree of an alternative is given
and utilized to rank the alternatives in multi-criteria group decision making. Finally,
a real example is given to show the use of these distance measures and then
compare the probabilistic linguistic term sets with hesitant fuzzy linguistic term
sets.
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1 Introduction

Because of the fuzziness of human beings’ thinking, the decision makers may
prefer to assess the objects by using the linguistic terms rather than use the
numerical values [1, 2]. For example, the decision makers may make use of the
linguistic terms such as “bad”, “medium”, and “good” when the comfortable degree
of a car is evaluated. In this case, Zadeh put forward the fuzzy linguistic approach to
model the qualitative linguistic assessment information [3]. However, the fuzzy
linguistic approach is built based on the fuzzy set theory [4] and then it shows some
limitations on the linguistic information modeling and computing processes. To
extend and improve the fuzzy linguistic approach, many linguistic models have
been proposed, such as the membership function-based model [5], the type-2 fuzzy
sets-based model [6], the ordinal scales-based model [7], the 2-tuple linguistic
model [8], and the virtual linguistic model [9]. These models still have some
limitations, especially on the linguistic information modeling. That is because they
can only provide a single linguistic term to express the decision makers’ linguistic
assessment information regarding a linguistic variable. This case is not in confor-
mity with human beings’ thinking [10]. In some situations, the decision makers
may hesitate among several possible linguistic terms to express their assessment
information and the use of only a single linguistic term is insufficient to express
their real assessment information accurately. Considering this fact, Rodriguez et al.
put forward the concept of hesitant fuzzy linguistic term set (HFLTS) [11], which
was inspired by the concept of hesitant fuzzy sets [12] and fuzzy linguistic
approach. The HFLTS is a very powerful tool to represent the decision makers’
linguistic assessment information in a more flexible way. It allows the decision
makers to utilize some possible linguistic terms to evaluate a linguistic variable at
the same time [13].

However, the HFLTS does not contain the weight information of each possible
linguistic term and then all the possible linguistic terms are processed under the
assumption that their weights are equal. Obviously, this is not the case. Although
the decision makers hesitate among several possible linguistic terms, they may
prefer some of them in some situations so that these linguistic terms have different
weights. Considering this fact, Pang et al. put forward the concept of probabilistic
linguistic term set (PLTS), which consists of several possible linguistic terms
associated with their corresponding probabilities [14]. Since the PLTS can capture
the weight of each possible linguistic term, it does not lose the linguistic assessment
information and then it can achieve more reasonable decision results.

The distance measures are vital and they are widely used for decision making
[15–17], pattern recognition [18–20], and clustering analysis [21–23]. However,
there are very few research results on the distance measures of the PLTSs. Although
there have been many studies about the distance measures of the fuzzy sets [4],
interval-valued fuzzy sets [24], intuitionistic fuzzy sets [25], interval-valued intu-
itionistic fuzzy sets [26], hesitant fuzzy sets [12], interval-valued hesitant fuzzy sets
[27], and hesitant fuzzy linguistic term sets [11], these methods cannot be employed
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to measure the distance between two PLTSs directly. Thus, the chapter investigates
the distance measures for PLTSs and then applies them to multi-criteria group
decision making.

The rest of this chapter is organized as follows: Sect. 2 gives the knowledge of
the linguistic term sets and probabilistic linguistic term sets. In Sect. 3, the defi-
nition of distance measure is given for probabilistic linguistic term sets and then
some distance measures are proposed to measure the distance between two PLTSs.
In Sect. 4, the proposed distance measures are extended to compute the distance
between two collections of PLTSs. In Sect. 5, the proposed distance measures are
applied to multi-criteria group decision making and then a practical example is
given to illustrate the applicability of the proposed distance measures and compare
the probabilistic linguistic term sets with hesitant fuzzy linguistic term sets. Finally,
the conclusions are drawn in Sect. 6.

2 Preliminaries

In this section, the concepts and operational laws about linguistic term sets and
probabilistic linguistic term sets are given.

2.1 Linguistic Term Sets

The linguistic term sets are an important part of linguistic information modeling in
the linguistic decision making and the decision makers can use them to give their
assessment values over the considered objects. They consist of totally ordered
linguistic terms, the number of which is finite. They are often defined as
S= sαjα=0, 1, . . . , τf g [28], where sα is a linguistic term and τ+1 denotes the
cardinality of S. s0 and sτ are the minimum and maximum linguistic terms that can
be utilized by the decision makers. When τ =4,
S= s0 = none, s1 = low, s2 =medium, s3 = high, s4 = perfectf g. For any S, the fol-
lowing conditions should be satisfied [29]:

(1) If 0≤ α< β≤ τ, then sα < sβ;
(2) There exists a negation operator neg sαð Þ= sβ, where α+ β = τ.

However, during the process of aggregating decision making information, the
aggregated results usually do not match any one element in the linguistic term set
and then may result in the loss of decision information. Thus, Xu [30] extended it to
be a virtual linguistic model S1 = sαjα∈ 0, q½ �f g, where q is a positive integer much
larger than τ. Given sα ∈ S1, if sα ∈ S, then it is an original linguistic term; other-
wise, it is referred to as a virtual linguistic term. Although the virtual linguistic
model can avoid the loss of decision information, the output virtual linguistic terms
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are not interpretable. In this case, Xu et al. [31] defined the syntax and semantics of
virtual linguistic terms and reconstructed the computational model of virtual lin-
guistic terms based on their semantics.

2.2 Probabilistic Linguistic Term Set

The concept of hesitant fuzzy linguistic term set is a very flexible tool for decision
making, which can express a single decision maker’s complex preference infor-
mation. However, they do not contain the weight information of each linguistic
term. In this case, the concept of probabilistic linguistic term set was proposed to
express both a decision maker’s several possible linguistic terms and the proba-
bilistic information of each possible linguistic term [14]. In this subsection, the
concept and operational laws of probabilistic linguistic term sets are reviewed
briefly.

Definition 1 [14] Let S= fs0, s1, . . . , sτg be a linguistic term set, a probabilistic
linguistic term set (PLTS) is defined as:

LðpÞ= LðkÞ pðkÞ
� �

LðkÞ
�� ∈ S; pðkÞ ≥ 0; k=1, 2, . . . , #LðpÞ; ∑

#LðpÞ

k=1
pðkÞ ≤ 1

( )

where LðkÞ pðkÞ
� �

denotes the linguistic term LðkÞ associated with its probability pðkÞ

and #LðpÞ is the number of elements in LðpÞ. For convenience, LðkÞ pðkÞ
� �

is called a
probabilistic linguistic term element (PLTE). If k=1 and pðkÞ =1, then a PLTS
reduces to a linguistic term.

If ∑
#LðpÞ

k =1
pðkÞ =0, then the decision maker does not provide any assessment

information. If ∑
#LðpÞ

k=1
pðkÞ =1, then the decision maker provides complete assessment

information. If 0 < ∑
#LðpÞ

k =1
pðkÞ <1, then it implies that the decision maker offers only

partial assessment information and it is a very common case in the practical
decision making problems. Therefore, Pang et al. normalized the PLTS by means of

allocating the unknown 1− ∑
#LðpÞ

k=1
pðkÞ to all the linguistic terms in LðpÞ averagely and

then repeating the least linguistic term in the PLTS with the smaller cardinality until
two PLTSs have the same number of elements.
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Definition 2 [14] If LðpÞ is a PLTS, where 0< ∑
#LðpÞ

k=1
pðkÞ <1, then the normalized

PLTS LnðpÞ can be defined as LnðpÞ= LðkÞ pðkÞn

� �
k=1, 2, . . . , #LðpÞj

n o
, where

pðkÞn = pðkÞ ̸ ∑
#LðpÞ

k=1
pðkÞ and k=1, 2, . . . , #LðpÞ.

Definition 3 [14] Given any two PLTSs, L1ðpÞ= LðkÞ1 pðkÞ1

� �
k=1,j

n
2, . . . , #L1ðpÞ:g and L2ðpÞ= LðkÞ2 pðkÞ2

� �
k=1, 2, . . . , #L2ðpÞj

n o
, where #L1ðpÞ and

#L2ðpÞ are the numbers of linguistic terms in L1ðpÞ and L2ðpÞ respectively. If
#L1ðpÞ>#L2ðpÞ, then #L1ðpÞ− #L2ðpÞ linguistic terms are added to L2ðpÞ until the
numbers of linguistic terms in L1ðpÞ and L2ðpÞ are equal. The added linguistic terms
are the least ones in L2ðpÞ and their corresponding probabilities are zero.

However, the normalization of PLTSs changes the linguistic assessment infor-
mation and then influences the decision making results.

Example 1 Given two PLTSs L1ðpÞ= fs5ð0.8Þg and L2ðpÞ= fs5ð0.9Þg, then their
normalized PLTSs are Ln1ðpÞ=Ln2ðpÞ= fs5ð1Þg and then the distance between
Ln1ðpÞ and Ln2ðpÞ is zero. It is quite obvious that L1ðpÞ and L2ðpÞ are different and
their distance cannot be zero.

Thus, we only utilize Definition 3 to normalize the PLTSs in order to make two
PLTSs have the same number of PLTEs and then redefine the operational laws for
PLTSs as follows:

Definition 4 Given any two PLTSs, L1ðpÞ= LðkÞ1 pðkÞ1

� �
k1 = 1, 2, . . . , #L1ðpÞj

n o
and L2ðpÞ= LðkÞ2 pðkÞ2

� �
k2 = 1, 2, . . . , #L2ðpÞj

n o
, then

L1 pð Þ⊕L2 pð Þ= ∪
L

k1ð Þ
1 p

k1ð Þ
1

� �
∈ L1 pð Þ,L k2ð Þ

2 p
k2ð Þ

2

� �
∈ L2 pð Þ

L k1ð Þ
1 ⊕L k2ð Þ

2 p k1ð Þ
1 p k2ð Þ

2

� �n o

L1 pð Þ⊗L2 pð Þ= ∪
L

k1ð Þ
1 p

k1ð Þ
1

� �
∈ L1 pð Þ,L k2ð Þ

2 p
k2ð Þ

2

� �
∈ L2 pð Þ

L k1ð Þ
1 ⊗L k2ð Þ

2 p k1ð Þ
1 p k2ð Þ

2

� �n o

where L k1ð Þ
1 and L k2ð Þ

2 are the k1 th and k2 th linguistic terms in L1 pð Þ and L2 pð Þ
respectively, p k1ð Þ

1 and p k2ð Þ
2 are their corresponding probabilities.

Some other operational laws can be defined as follows:

λL1 pð Þ= ∪
L

k1ð Þ
1 p

k1ð Þ
1

� �
∈ L1 pð Þ

λL k1ð Þ
1 p k1ð Þ

1

� �
jk1 = 1, 2, . . . , #L1 pð Þ

n o
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L1 pð Þð Þλ = ∪
L

k1ð Þ
1 p

k1ð Þ
1

� �
∈ L1 pð Þ

L k1ð Þ
1

� �λ
p k1ð Þ
1

� �
jk1 = 1, 2, . . . , #L1 pð Þ

� �

3 Distance Measures Between PLTSs

Distance measures are very important tools that have been widely utilized for
decision making, pattern recognition, and clustering analysis. Until now, many
research results have been achieved, for example, Liu [32] proposed the axiom
definitions of entropy and distance measure for fuzzy sets and discussed their
relations. Chaudhuri et al. [33] modified the Hausdorff-like metric distance for
fuzzy sets to contain a single term representing the geometric distance only.
Balopoulos et al. [34] studied some normalized distance measures for fuzzy sets
based on the binary operators and matrix norms. Heidarzade et al. [35] gave a new
definition of centroid for an interval type-2 fuzzy set and then introduced a for-
mulation for computing the distance between two interval type-2 fuzzy sets. Zhang
et al. [36] introduced a new family of normalized distances to measure the distance
between two interval-valued fuzzy sets. Zeng et al. [37] gave a normalized Ham-
ming distance and a normalized Euclidean distance for interval-valued fuzzy sets.
Xu et al. [38] provided an overview of distance measures for intuitionistic fuzzy
sets and also defined several continuous distance measures. Hatzimichailidis et al.
[39] utilized matrix norms and fuzzy implications to define a novel distance metric
for intuitionistic fuzzy sets. Hung et al. [40] introduced the Hausdorff metric to
calculate the distance between two intuitionistic fuzzy sets. Wang et al. [41] pro-
vided the axiom definition of distance measure for intuitionistic fuzzy sets and then
gave several distance measures. Szmidt et al. [42] defined the distance between two
intuitionistic fuzzy sets considering all three parameters. Duenci et al. [43] intro-
duced the Lp norm and the level of uncertainty to develop a distance measure for
interval-valued intuitionistic fuzzy sets. Li et al. [44] gave the definitions of the
Hamming distance and Euclidean distance for interval intuitionistic fuzzy sets. Xu
et al. [45] proposed a variety of distance measures to compute the distance between
two hesitant fuzzy sets. Li et al. [46] gave the concept of hesitance degree of a
hesitant fuzzy element and defined the distance measures for hesitant fuzzy sets
considering the hesitance degree. Bai [47] gave the Hamming distance, Euclidean
distance, Hausdorff distance, and generalized distance for interval-valued hesitant
fuzzy sets. Liao et al. [48] proposed a variety of distance measures for hesitant
fuzzy linguistic term sets and then used them to rank the alternatives in the
multi-criteria decision making. Meng et al. [49] presented two generalized hesitant
fuzzy linguistic weighted distance measures for hesitant fuzzy linguistic term sets.

To the best of our knowledge, currently, there is very little study on distance
measures for probabilistic linguistic term sets. Moreover, since probabilistic
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linguistic term sets express the assessment information in a different way from other
sets, the existing distance measures cannot be utilized for probabilistic linguistic
term sets. Hence, this chapter focuses on the distance measures for probabilistic
linguistic term sets.

Inspired by the above analysis, the axiom definition of distance measure is first
given for PLTSs in this section and then a variety of distance measures are studied
for PLTSs.

Motivated by the axiom definition of distance measure for HFLTSs given by
Liao et al. [48], we give the axiom definition of distance measure for PLTSs as
follows:

Definition 5 Let L1 pð Þ and L2 pð Þ be two PLTSs, then the distance measure
between them is defined as d L1ðpÞ, L2ðpÞð Þ, which satisfies the following three
conditions:

(1) 0≤ d L1ðpÞ, L2ðpÞð Þ≤ 1;
(2) d L1ðpÞ,L2ðpÞð Þ=0 if and only if L1ðpÞ=L2ðpÞ;
(3) d L1ðpÞ,L2ðpÞð Þ= d L2ðpÞ, L1ðpÞð Þ.

Before giving the distance measures for PLTSs, this chapter gives the definition
of the distance measure between two PLTEs as follows:

Definition 6 Let Lðk1Þ1 pðk1Þ1

� �
∈ L1ðpÞ and Lðk2Þ2 pðk2Þ2

� �
∈ L2ðpÞ be two PLTEs, then

the distance measure between them is defined as:

d Lðk1Þ1 pðk1Þ1

� �
, Lðk2Þ2 pðk2Þ2

� �� �
= pðk1Þ1 ×

IðLðk1Þ1 Þ
τ

− pðk2Þ2 ×
IðLðk2Þ2 Þ

τ

�����
�����

where I Lðk1Þ1

� �
and I Lðk2Þ2

� �
are the subscripts of the linguistic terms Lðk1Þ1 and Lðk2Þ2 ,

respectively.

Since 0≤ I Lðk1Þ1

� �
≤ τ and 0≤ I Lðk2Þ2

� �
≤ τ , then 0≤ IðLðk1Þ1 Þ

τ ≤ 1 and 0≤ IðLðk2Þ2 Þ
τ ≤ 1.

Also since 0≤ pðk1Þ1 ≤ 1 and 0≤ pðk2Þ2 ≤ 1, then 0≤ d Lðk1Þ1 pðk1Þ1

� �
,Lðk2Þ2 pðk2Þ2

� �� �
≤ 1.

Given two PLTSs L1ðpÞ and L2ðpÞ, L1ðpÞ= Lðk1Þ1 pðk1Þ1

� �
k1 = 1, 2, . . . , #L1ðpÞj

n o
and L2ðpÞ= Lðk2Þ2 pðk2Þ2

� �
k2 = 1, 2, . . . , #L2ðpÞj

n o
with #L1ðpÞ=#L2ðpÞ, then we

can give the definitions of a normalized Hamming distance and a normalized
Euclidean distance for PLTSs based on Definition 6.

The normalized Hamming distance between L1ðpÞ and L2ðpÞ can be given as:
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dnhd L1ðpÞ,L2ðpÞð Þ= 1
#L1ðpÞ ∑

#L1ðpÞ

k=1
d LðkÞ1 pðkÞ1

� �
,LðkÞ2 pðkÞ2

� �� �
ð2Þ

and the normalized Euclidean distance between L1ðpÞ and L2ðpÞ can be defined as:

dned L1ðpÞ,L2ðpÞð Þ= 1
#L1ðpÞ ∑

#L1ðpÞ

k =1
d LðkÞ1 pðkÞ1

� �
,LðkÞ2 pðkÞ2

� �� �� �2" #1 ̸2

ð3Þ

Inspired by the generalized idea proposed by Yager [50], this chapter gives the
generalized normalized distance as:

dgnd L1 pð Þ,L2 pð Þð Þ= 1
#L1 pð Þ ∑

#L1 pð Þ

k=1
d L kð Þ

1 p kð Þ
1

� �
,L kð Þ

2 p kð Þ
2

� �� �� �λ" #1 ̸λ

ð4Þ

where λ>0.
In particular, if λ=1, then the generalized normalized distance reduces to the

normalized Hamming distance. If λ=2, then it reduces to the normalized Euclidean
distance.

Example 2 Given a linguistic term set S= fsα α=0, 1, . . . , 6j g , as well as two
PLTSs L1ðpÞ= s2ð0.6Þ, s3ð0.3Þf g and L2ðpÞ= s4ð0.8Þ, s5ð0.2Þf g, then the general-
ized normalized distance between them is calculated as

dgnd L1 pð Þ, L2 pð Þð Þ= 1
2

0.6 ×
2
6
− 0.8 ×

4
6

����
����
λ

+

 "
0.3 ×

3
6
− 0.2 ×

5
6

����
����
λ
!#1 ̸λ

If λ=1, then the normalized Hamming distance is dnhd L1ðpÞ, L2ðpÞð Þ=0.175. If
λ=2, then the normalized Euclidean distance is dned L1ðpÞ, L2ðpÞð Þ=0.2360.

The Hausdorff distance can also be given for PLTSs. Let L1ðpÞ and L2ðpÞ be any
two PLTSs, then the generalized normalized Hausdorff distance between them can
be defined as:

dgnhaud L1 pð Þ,L2 pð Þð Þ= max
k

d L kð Þ
1 p kð Þ

1

� �
,L kð Þ

2 p kð Þ
2

� �� �� �λ	 
1 ̸λ

ð5Þ

where λ>0.
Two special cases of the generalized normalized Hausdorff distance are given as

follows:

(1) If λ=1, then it reduces to the normalized Hamming-Hausdorff distance as:
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dnhhaud L1 pð Þ,L2 pð Þð Þ= max
k

d L kð Þ
1 p kð Þ

1

� �
,L kð Þ

2 p kð Þ
2

� �� �� �
ð6Þ

(2) If λ=2, then it reduces to the normalized Euclidean-Hausdorff distance as:

dnehaud L1 pð Þ,L2 pð Þð Þ= max
k

d L kð Þ
1 p kð Þ

1

� �
,L kð Þ

2 p kð Þ
2

� �� �� �2	 
1 ̸2

ð7Þ

Example 3 If we adopt the data of Example 2 here, then their generalized nor-
malized Hausdorff distance is

dgnhaud L1 pð Þ, L2 pð Þð Þ= = max 0.6 ×
2
6
− 0.8 ×

4
6

����
����
λ

 
,

"
0.3 ×

3
6
− 0.2 ×

5
6

����
����
λ
!#1 ̸λ

If λ=1, then the normalized Hamming-Hausdorff distance measure between
them is dnhhaud L1ðpÞ,L2ðpÞð Þ=0.3333.

If λ=2, then the normalized Euclidean-Hausdorff distance measure between
them is dnehaud L1ðpÞ,L2ðpÞð Þ=0.3333.

Additionally, some hybrid distance measures can be given for PLTSs by com-
bining the above two types of distance measures as follows:

(1) The hybrid normalized Hamming distance between L1ðpÞ and L2ðpÞ is

dhnhd L1 pð Þ, L2 pð Þð Þ= 1
2

1
#L1 pð Þ ∑

#L1 pð Þ

k=1
d L kð Þ

1 p kð Þ
1

� �
,L kð Þ

2 p kð Þ
2

� �� �
+

"

max
k

d L kð Þ
1 p kð Þ

1

� �
,L kð Þ

2 p kð Þ
2

� �� �
 ð8Þ

(2) The hybrid normalized Euclidean distance between L1ðpÞ and L2ðpÞ is

dhned L1 pð Þ,L2 pð Þð Þ= 1
2

1
#L1 pð Þ ∑

#L1 pð Þ

k =1
d L kð Þ

1 p kð Þ
1

� �
,L kð Þ

2 p kð Þ
2

� �� �� �2
+

"(

max
k

d L kð Þ
1 p kð Þ

1

� �
, L kð Þ

2 p kð Þ
2

� �� �� �2
�1 ̸2
ð9Þ

(3) The generalized hybrid normalized distance between L1ðpÞ and L2ðpÞ is
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dghnd L1 pð Þ,L2 pð Þð Þ= 1
2

1
#L1 pð Þ ∑

#L1 pð Þ

k=1
d L kð Þ

1 p kð Þ
1

� �
,L kð Þ

2 p kð Þ
2

� �� �� �λ
+

"(

max
k

d L kð Þ
1 p kð Þ

1

� �
, L kð Þ

2 p kð Þ
2

� �� �� �λ
�1 ̸λ

ð10Þ

Example 4 If we adopt the data of Example 2 here, then the generalized hybrid
normalized distance is

dghnd L1 pð Þ, L2 pð Þð Þ= 1
2

1
2

0.6 ×
2
6
− 0.8 ×

4
6

����
����

� �λ
 

+

"(
0.3 ×

3
6
− 0.2 ×

5
6

����
����

� �λ
!
+

max 0.6 ×
2
6
− 0.8 ×

4
6

����
����

� �λ
 

, 0.3 ×
3
6
− 0.2 ×

5
6

����
����

� �λ
!#)1 ̸λ

If λ=1, the hybrid normalized Hamming distance measure between them is
dhnhd L1ðpÞ, L2ðpÞð Þ=0.2542.

If λ=2, the hybrid normalized Euclidean distance measure between them is
dhned L1ðpÞ,L2ðpÞð Þ=0.2888.

4 Distance Measures Between Two Collections of PLTSs

The distance measures between two PLTSs can only be used to measure the dis-
tance between two alternatives with respect to one criterion. However, in most
cases, all the alternatives are usually assessed with respect to some different criteria,
which have different weights. Then the distance between two alternatives with
respect to a fixed number of criteria should be measured by using the distance
measures between two collections of PLTSs by taking into account the weight
information of criteria. Hence, in this section, we investigate the weighted distance
measures between two collections of PLTSs in discrete and continuous cases.

4.1 Distance Measures Between Two Collections of PLTSs
in Discrete Case

Given a LTS S= sαjα=0, 1, . . . , τf g, two alternatives denoted as two collections of
PLTSs L1 = L11 pð Þ, L12 pð Þ, . . . ,L1m pð Þf g and L2 = L21 pð Þ,L22 pð Þ, . . . ,L2m pð Þf g
with the weight vector of criteria w= w1,w2, . . . ,wmð ÞT , where 0≤wj ≤ 1 and
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∑
m

j=1
wj =1, then a generalized weighted distance between two alternatives, namely,

L1 and L2 is defined as:

dgwd L1, L2ð Þ= ∑
m

j=1

wj

#L1j pð Þ ∑
#L1j pð Þ

kj =1
d L

kjð Þ
1j p

kjð Þ
1j

� �
,L

kjð Þ
2j p

kjð Þ
2j

� �� �� �λ
" #1 ̸λ

ð11Þ

and a generalized weighted Hausdorff distance between L1 and L2 is defined as:

dgwhaud L1,L2ð Þ= ∑
m

j=1
wj max

kj
d L

kjð Þ
1j p

kjð Þ
1j

� �
,L

kjð Þ
2j p

kjð Þ
2j

� �� �� �λ
" #1 ̸λ

ð12Þ

where λ>0.
Particularly, if λ=1, then the weighted Hamming distance between L1 and L2 is

dwhd L1,L2ð Þ= ∑
m

j=1

wj

#L1j pð Þ ∑
#L1j pð Þ

kj =1
d L

kjð Þ
1j p

kjð Þ
1j

� �
,L

kjð Þ
2j p

kjð Þ
2j

� �� �
ð13Þ

and the weighted Hamming-Hausdorff distance between L1 and L2 is

dwhhaud L1,L2ð Þ= ∑
m

j=1
wj max

kj
d L

kjð Þ
1j p

kjð Þ
1j

� �
,L

kjð Þ
2j p

kjð Þ
2j

� �� �
ð14Þ

If λ=2, then the weighted Euclidean distance between L1 and L2 is

dwed L1,L2ð Þ= ∑
m

j=1

wj

#L1j pð Þ ∑
#L1j pð Þ

kj =1
d L

kjð Þ
1j p

kjð Þ
1j

� �
,L

kjð Þ
2j p

kjð Þ
2j

� �� �� �2
( )1 ̸2

ð15Þ

and the weighted Euclidean-Hausdorff distance between L1 and L2 is

dwehaud L1, L2ð Þ= ∑
m

j=1
wj max

kj
d L

kjð Þ
1j p

kjð Þ
1j

� �
, L

kjð Þ
2j p

kjð Þ
2j

� �� �� �2
" #1 ̸2

ð16Þ

Based on the above weighted distances, several hybrid weighted distances are
derived as follows:

(1) The hybrid weighted Hamming distance between L1 and L2 is defined as:
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dhwhd L1,L2ð Þ= ∑
m

j=1

wj

2
1

#L1j pð Þ ∑
#L1j pð Þ

kj =1
d L

kjð Þ
1j p

kjð Þ
1j

� �
, L

kjð Þ
2j p

kjð Þ
2j

� �� �
+

"

max
kj

d L
kjð Þ

1j p
kjð Þ

1j

� �
,L

kjð Þ
2j p

kjð Þ
2j

� �� �

ð17Þ

(2) The hybrid weighted Euclidean distance between L1 and L2 is defined as:

dhwed L1, L2ð Þ= ∑
m

j=1

wj

2

(
1

#L1j pð Þ ∑
#L1j pð Þ

kj =1
d L

kjð Þ
1j p

kjð Þ
1j

� �
,L

kjð Þ
2j p

kjð Þ
2j

� �� �� �2

+

"

max
kj

d L
kjð Þ

1j p
kjð Þ

1j

� �
,L

kjð Þ
2j p

kjð Þ
2j

� �� �� �2
#)1 ̸2

ð18Þ

(3) The generalized hybrid weighted distance between L1 and L2 is defined as:

dghwd L1,L2ð Þ= ∑
m

j=1

wj

2

(
1

#L1j pð Þ ∑
#L1j pð Þ

kj =1
d L

kjð Þ
1j p

kjð Þ
1j

� �
,L

kjð Þ
2j p

kjð Þ
2j

� �� �� �λ

+

 

max
kj

d L
kjð Þ

1j p
kjð Þ

1j

� �
,L

kjð Þ
2j p

kjð Þ
2j

� �� �� �λ
!)1 ̸λ

ð19Þ

where λ>0.

4.2 Distance Measures Between Two Collections of PLTSs
in Continuous Case

The above mentioned distance measures are specially proposed for the discrete case
and then they cannot be applicable for the continuous case where the universe of
discourse and the weights of PLTSs are continuous. Thus, this subsection focuses
on the distance measures between two collections of PLTSs in continuous case.

Let x∈X = a, b½ � and the weights of PLTSs with respect to x be w xð Þ, where
w xð Þ∈ 0, 1½ � and

R b
a w xð Þ dx=1, then we define the generalized continuous

weighted distance between two collections of PLTSs L1 and L2 as:
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dgcwd L1,L2ð Þ=
Z b

a
w xð Þ 1

lx
∑
lx

k=1
d L kð Þ

1x p kð Þ
1x

� �
,L kð Þ

2x p kð Þ
2x

� �� �h iλ
dx

� �1 ̸λ

ð20Þ

with

d L kð Þ
1x p kð Þ

1x

� �
,L kð Þ

2x p kð Þ
2x

� �� �
= p k1ð Þ

1 xð Þ× I k1ð Þ
1 xð Þ
τ

− p k2ð Þ
2 xð Þ× I k2ð Þ

x xð Þ
τ

�����
�����

where λ>0.
If λ=1, then the generalized continuous weighted distance between L1 and L2

reduces to a continuous weighted Hamming distance:

dcwhd L1, L2ð Þ=
Z b

a
w xð Þ 1

lx
∑
lx

k=1
d L kð Þ

1x p kð Þ
1x

� �
,L kð Þ

2x p kð Þ
2x

� �� �
dx ð21Þ

If λ=2, then the generalized continuous weighted distance between L1 and L2
becomes a continuous weighted Euclidean distance:

dcwed L1,L2ð Þ=
Z b

a
w xð Þ 1

lx
∑
lx

k=1
d L kð Þ

1x p kð Þ
1x

� �
, L kð Þ

2x p kð Þ
2x

� �� �h i2
dx

� �1 ̸2

ð22Þ

If w xð Þ=1 ̸ b− að Þ for all x∈ a, b½ �, then the generalized continuous weighted
distance between two collections of PLTSs L1 and L2 reduces to the generalized
continuous normalized distance:

dgcnd L1,L2ð Þ= 1
b− a

Z b

a

1
lx

∑
lx

k=1
d L kð Þ

1x p kð Þ
1x

� �
,L kð Þ

2x p kð Þ
2x

� �� �h iλ
dx

� �1 ̸λ

ð23Þ

Especially, if λ=1, then the generalized continuous normalized distance
becomes a continuous normalized Hamming distance:

dcnhd L1,L2ð Þ= 1
b− a

Z b

a

1
lx

∑
lx

k=1
d L kð Þ

1x p kð Þ
1x

� �
,L kð Þ

2x p kð Þ
2x

� �� �
dx ð24Þ

If λ=2, then it reduces to a continuous normalized Euclidean distance:

dcned L1,L2ð Þ= 1
b− a

Z b

a

1
lx

∑
lx

k=1
d L kð Þ

1x p kð Þ
1x

� �
, L kð Þ

2x p kð Þ
2x

� �� �� �2
dx

	 
1 ̸2

ð25Þ

where λ>0.
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By using the Hausdorff metric, we define a generalized continuous weighted
Hausdorff distance:

dgcwhaud L1 pð Þ,L2 pð Þð Þ=
Z b

a
w xð Þmax

k
d L kð Þ

1x p kð Þ
1x

� �
,L kð Þ

2x p kð Þ
2x

� �� �� �λ
dx

	 
1 ̸λ

ð26Þ

Especially, if λ=1, then the generalized continuous weighted Hausdorff dis-
tance becomes a continuous weighted Hamming-Hausdorff distance:

dcwhhaud L1 pð Þ,L2 pð Þð Þ=
Z b

a
w xð Þmax

k
d L kð Þ

1x p kð Þ
1x

� �
,L kð Þ

2x p kð Þ
2x

� �� �
dx ð27Þ

If λ=2, then it reduces to a continuous weighted Euclidean-Hausdorff distance:

dcwehaud L1 pð Þ,L2 pð Þð Þ=
Z b

a
w xð Þmax

k
d L kð Þ

1x p kð Þ
1x

� �
, L kð Þ

2x p kð Þ
2x

� �� �� �2
dx

	 
1 ̸2

ð28Þ

If w xð Þ=1 ̸ b− að Þ for all x∈ a, b½ �, then the generalized continuous weighted
Hausdorff distance between two collections of PLTSs L1 and L2 reduces to the
generalized continuous normalized Hausdorff distance:

dgcnhaud L1 pð Þ, L2 pð Þð Þ= 1
b− a

Z b

a
max
k

d L kð Þ
1x p kð Þ

1x

� �
, L kð Þ

2x p kð Þ
2x

� �� �� �λ
dx

	 
1 ̸λ

ð29Þ

If λ=1, then the generalized continuous normalized Hausdorff distance reduces
to the continuous normalized Hamming-Hausdorff distance:

dcnhhaud L1 pð Þ,L2 pð Þð Þ= 1
b− a

Z b

a
max
k

d L kð Þ
1x p kð Þ

1x

� �
,L kð Þ

2x p kð Þ
2x

� �� �
dx ð30Þ

If λ=2, then it reduces to the continuous normalized Euclidean-Hausdorff
distance:

dcnehaud L1 pð Þ,L2 pð Þð Þ= 1
b− a

Z b

a
max
k

d L kð Þ
1x p kð Þ

1x

� �
,L kð Þ

2x p kð Þ
2x

� �� �� �2
dx

	 
1 ̸2

ð31Þ

Similarly, some hybrid continuous weighted distance measures can be defined
by combing the above mentioned continuous distances. In what follows, we define
the generalized hybrid continuous weighted distance:
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dghcwd L1,L2ð Þ=
Z b

a

w xð Þ
2

1
lx

∑
lx

k=1
d L kð Þ

1x p kð Þ
1x

� �
,L kð Þ

2x p kð Þ
2x

� �� �� �λ
+

	�

max
k

d L kð Þ
1x p kð Þ

1x

� �
,L kð Þ

2x p kð Þ
2x

� �� �� �λ

dx
�1 ̸λ ð32Þ

If λ=1, then the generalized hybrid continuous weighted distance reduces to the
hybrid continuous weighted Hamming distance:

dhcwhd L1,L2ð Þ=
Z b

a

w xð Þ
2

1
lx

∑
lx

k=1
d L kð Þ

1x p kð Þ
1x

� �
,L kð Þ

2x p kð Þ
2x

� �� �
+

	

max
k

d L kð Þ
1x p kð Þ

1x

� �
, L kð Þ

2x p kð Þ
2x

� �� �

dx

ð33Þ

If λ=2, then it reduces to the hybrid continuous weighted Euclidean distance:

dhcwed L1,L2ð Þ=
Z b

a

w xð Þ
2

1
lx

∑
lx

k =1
d L kð Þ

1x p kð Þ
1x

� �
,L kð Þ

2x p kð Þ
2x

� �� �� �2
+

	�

max
k

d L kð Þ
1x p kð Þ

1x

� �
,L kð Þ

2x p kð Þ
2x

� �� �� �2

dx
�1 ̸2 ð34Þ

where λ>0.
If w xð Þ=1 ̸ b− að Þ for all x∈ a, b½ �, then the generalized hybrid continuous

weighted distance reduces to the generalized hybrid continuous normalized
distance:

dghcnd L1, L2ð Þ= 1
2 b− að Þ
� Z b

a

1
lx

∑
lx

k=1
d L kð Þ

1x p kð Þ
1x

� �
,L kð Þ

2x p kð Þ
2x

� �� �� �λ
+

	

max
k

d L kð Þ
1x p kð Þ

1x

� �
,L kð Þ

2x p kð Þ
2x

� �� �� �λ

dx
�1 ̸λ ð35Þ

If λ=1, then the generalized hybrid continuous normalized distance reduces to
the hybrid continuous normalized Hamming distance:

dhcnhd L1, L2ð Þ= 1
2 b− að Þ

Z b

a

1
lx

∑
lx

k=1
d L kð Þ

1x p kð Þ
1x

� �
, L kð Þ

2x p kð Þ
2x

� �� �
+

	

max
k

d L kð Þ
1x p kð Þ

1x

� �
,L kð Þ

2x p kð Þ
2x

� �� �

dx

ð36Þ
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If λ=2, then it reduces to the hybrid continuous normalized Euclidean distance:

dhcned L1, L2ð Þ= 1
2 b− að Þ
� Z b

a

1
lx

∑
lx

k=1
d L kð Þ

1x p kð Þ
1x

� �
,L kð Þ

2x p kð Þ
2x

� �� �� �2
+

	

max
k

d L kð Þ
1x p kð Þ

1x

� �
,L kð Þ

2x p kð Þ
2x

� �� �� �2

dx
�1 ̸2 ð37Þ

4.3 Ordered Weighted Distance Measures Between Two
Collections of PLTSs

Ordered weighted distance measures were first proposed by Xu et al. to develop a
group decision making approach [51]. The idea behind the ordered weighted dis-
tance measures aims to achieve a good trade-off between the influences of exces-
sively large and small deviations on the aggregation results by assigning low
weights to excessively large deviations and high weights to excessively small ones.
Because of this excellent feature, many scholars have paid attention to the ordered
weighted distance measures and then applied them to decision making and pattern
recognition [52]. Until now, to our knowledge, there are no studies about the
ordered weighted distance measures for PLTSs. Hence, in this subsection, we focus
on the ordered weighted distance measures for two collections of PLTSs.

Inspired by the previous work on the ordered weighted distance measures, in the
following, we define a generalized ordered weighted distance between two col-
lections of PLTSs L1 and L2:

dgowd L1,L2ð Þ= ∑
m

j=1

wj

#L1δ jð Þ pð Þ ∑
#L1δ jð Þ pð Þ

kδ jð Þ =1
d L

kδ jð Þð Þ
1δ jð Þ p

kδ jð Þð Þ
1δ jð Þ

� �
, L

kδ jð Þð Þ
2δ jð Þ p

kδ jð Þð Þ
2δ jð Þ

� �� �� �λ
( )1 ̸λ

ð38Þ

where λ>0 and δ jð Þ: 1, 2, . . . ,mð Þ→ 1, 2, . . . ,mð Þ is a permutation which satisfies

1
#L1δ jð Þ pð Þ ∑

#L1δ jð Þ pð Þ

kδ jð Þ =1
d L

kδ jð Þð Þ
1δ jð Þ p

kδ jð Þð Þ
1δ jð Þ

� �
, L

kδ jð Þð Þ
2δ jð Þ p

kδ jð Þð Þ
2δ jð Þ

� �� �� �λ

≥
1

#L1δ j+1ð Þ pð Þ ∑
#L1δ j+1ð Þ pð Þ

kδ j+1ð Þ =1
d L

kδ j+1ð Þð Þ
1δ j+1ð Þ p

kδ j+1ð Þð Þ
1δ j+1ð Þ

� �
,L

kδ j+1ð Þð Þ
2δ j+1ð Þ p

kδ j+1ð Þð Þ
2δ j+1ð Þ

� �� �� �λ
ð39Þ

where j=1, 2, . . . ,m.
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In particular, if λ=1, then the generalized ordered weighted distance between
two collections of PLTSs reduces to the ordered weighted Hamming distance:

dowhd L1,L2ð Þ= ∑
m

j=1

wj

#L1δ jð Þ pð Þ ∑
#L1δ jð Þ pð Þ

kδ jð Þ =1
d L

kδ jð Þð Þ
1δ jð Þ p

kδ jð Þð Þ
1δ jð Þ

� �
,L

kδ jð Þð Þ
2δ jð Þ p

kδ jð Þð Þ
2δ jð Þ

� �� �
ð40Þ

If λ=2, then the generalized ordered weighted distance between two collections
of PLTSs reduces to the ordered weighted Euclidean distance:

dowed L1, L2ð Þ= ∑
m

j=1

wj

#L1δ jð Þ pð Þ ∑
#L1δ jð Þ pð Þ

kδ jð Þ =1
d L

kδ jð Þð Þ
1δ jð Þ p

kδ jð Þð Þ
1δ jð Þ

� �
, L

kδ jð Þð Þ
2δ jð Þ p

kδ jð Þð Þ
2δ jð Þ

� �� �� �2
( )1 ̸2

ð41Þ

Considering the Hausdorff metric, here we define a generalized ordered weighted
Hausdorff distance between two collections of PLTSs:

dgowhaud L1,L2ð Þ= ∑
m

j=1
wj max

kδ jð Þ
d L

kδ jð Þð Þ
1δ jð Þ p

kδ jð Þð Þ
1δ jð Þ

� �
, L

kδ jð Þð Þ
2δ jð Þ p

kδ jð Þð Þ
2δ jð Þ

� �� �� �λ
" #1 ̸λ

ð42Þ

where λ>0 and δ jð Þ: 1, 2, . . . ,mð Þ→ 1, 2, . . . ,mð Þ is a permutation which satisfies

max
kδ jð Þ

d L
kδ jð Þð Þ

1δ jð Þ p
kδ jð Þð Þ

1δ jð Þ

� �
,L

kδ jð Þð Þ
2δ jð Þ p

kδ jð Þð Þ
2δ jð Þ

� �� �� �λ

≥

max
kδ j+1ð Þ

d L
kδ j+1ð Þð Þ

1δ j+1ð Þ p
kδ j+ 1ð Þð Þ

1δ j+1ð Þ

� �
, L

kδ j+1ð Þð Þ
2δ j+1ð Þ p

kδ j+1ð Þð Þ
2δ j+1ð Þ

� �� �� �λ
ð43Þ

where j=1, 2, . . . ,m.
In particular, if λ=1, then the generalized ordered weighted Hausdorff distance

between two collections of PLTSs reduces to the ordered weighted
Hamming-Hausdorff distance:

dowhhaud L1,L2ð Þ= ∑
m

j=1
wj max

kδ jð Þ
d L

kδ jð Þð Þ
1δ jð Þ p

kδ jð Þð Þ
1δ jð Þ

� �
,L

kδ jð Þð Þ
2δ jð Þ p

kδ jð Þð Þ
2δ jð Þ

� �� �
ð44Þ

If λ=2, then the generalized ordered weighted Hausdorff distance between two
collections of PLTSs reduces to the ordered weighted Euclidean-Hausdorff
distance:
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dowehaud L1,L2ð Þ= ∑
m

j=1
wj max

kδ jð Þ
d L

kδ jð Þð Þ
1δ jð Þ p

kδ jð Þð Þ
1δ jð Þ

� �
,L

kδ jð Þð Þ
2δ jð Þ p

kδ jð Þð Þ
2δ jð Þ

� �� �� �2
" #1 ̸2

ð45Þ

Combining the ordered weighted distances and the ordered weighted Hausdorff
distances, some hybrid ordered weighted distances can be defined as follows:

(1) The hybrid ordered weighted Hamming distance between two collections of
PLTSs L1 and L2 is

dhowhd L1, L2ð Þ= ∑
m

j=1

wj

2
1

#L1δ jð Þ pð Þ ∑
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"
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� �
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kδ jð Þð Þ
2δ jð Þ

� �� �

ð46Þ

(2) The hybrid ordered weighted Euclidean distance between two collections of
PLTSs L1 and L2 is

dhowed L1, L2ð Þ= ∑
m

j=1

wj

2

(
1
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ð47Þ

(3) The generalized hybrid ordered weighted distance between two collections of
PLTSs L1 and L2 is

dghowd L1,L2ð Þ

= ∑
m

j=1

wj

2

(
1

#L1δ jð Þ pð Þ ∑
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� �� �� �λ
#)1 ̸λ
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where λ>0 and δ jð Þ: 1, 2, . . . ,mð Þ→ 1, 2, . . . ,mð Þ is a permutation which
satisfies
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where j=1, 2, . . . ,m.

5 The Application of Distance Measures in Multi-criteria
Group Decision Making

In this section, multi-criteria group decision making problems under probabilistic
linguistic environment are described and then the decision making procedure based
on distance measures is designed.

5.1 Problem Description and Decision Making Procedure

Multi-criteria group decision making is a common activity in our daily life, which is
a process of choosing a preferred alternative from a set of alternatives or ranking all
the alternatives with respect to multiple criteria. A multi-criteria group decision
making problem under probabilistic linguistic environment is described as follows:

There are a set of n alternatives, A= a1, a2, . . . , anf g, and a set of m criteria,
C= c1, c2, . . . , cmf g. The weight vector of criteria is w= w1,w2, . . . ,wmð ÞT , where
wj ≥ 0 j=1, 2, . . . ,mð Þ and ∑

m

j=1
wj =1. A group of decision makers are called to

assess n alternatives with respect to m criteria by utilizing the linguistic term set to
form a set of linguistic decision matrices and then these linguistic decision matrices
are used to make up a probabilistic linguistic decision matrix as follows:

R= Lij pð Þ
 �
n×m =

L11 pð Þ L12 pð Þ ⋯ L1m pð Þ
L21 pð Þ L22 pð Þ ⋯ L2m pð Þ

⋮ ⋮ ⋱ ⋮
Ln1 pð Þ Ln2 pð Þ ⋯ Lnm pð Þ

2
664

3
775
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where Lij pð Þ= L
kijð Þ

ij p
kijð Þ

ij

� �
jkij =1, 2, . . . , #Lij pð Þ

� �
is a probabilistic linguistic

term set denoting the degree that the alternative ai satisfies the criterion cj.
Because all the PLTSs in the probabilistic linguistic decision matrix usually have

different numbers of probabilistic linguistic elements, the PLTSs should be nor-
malized as shown in Sect. 2.2.

Then we give the definitions of the probabilistic linguistic positive ideal solution
x+ and the probabilistic linguistic negative ideal solution x− as follows:

Definition 7 Let R= LijðpÞ

 �

n×m be a normalized probabilistic linguistic decision

matrix with Lij pð Þ= LðkÞij pðkÞij

� �
jk=1, 2, . . . , #Lij pð Þ

n o
. Then the probabilistic lin-

guistic positive ideal solution (PLPIS) of alternatives is

x+ = L1ðpÞ+ ,L2ðpÞ+ , . . . ,LmðpÞ+
� �

where LjðpÞ+ = L+
j

� �
ð1Þ

n o
and L+

j = max
i, k

LðkÞij

� �
.

Definition 8 Let R= Lij pð Þ
 �
n×m be a normalized probabilistic linguistic decision

matrix with Lij pð Þ= L kð Þ
ij p kð Þ

ij

� �
k=1, 2, . . ., #Lij pð Þ��n o

. Then the probabilistic lin-

guistic negative ideal solution (PLNIS) of alternatives is

x− = L1 pð Þ− ,L2 pð Þ− , . . .,Lm pð Þ−ð Þ

where LjðpÞ− = L−
j

� �
ð1Þ

n o
and L−

j = min
i, k

LðkÞij

� �
.

To choose a preferred alternative or rank all the alternatives, we should compute
the distance between each alternative xi and the probabilistic linguistic positive
ideal solution x+ , and the distance between each alternative xi and the probabilistic
linguistic negative ideal solution x− . Obviously, a better alternative should be
closer to the probabilistic linguistic positive ideal solution and also farther from the
probabilistic linguistic negative ideal solution. Inspired by the TOPSIS method [53,
54], we put forward a concept of the satisfaction degree, which takes the distances
d xi, x+ð Þ and d xi, x−ð Þ of each alternative into consideration, as follows:

Definition 9 Given the distances d xi, x+ð Þ and d xi, x−ð Þ of an alternative xi, then a
satisfaction degree of this alternative with respect to multi-criteria is defined as:

s xið Þ= 1− θð Þd xi, x−ð Þ
θd xi, x+ð Þ+ 1− θð Þd xi, x−ð Þ

where the parameter θ∈ 0, 1½ �, which represents the risk preferences of decision
makers. If θ<0.5, then it means that the decision makers are optimistic. If θ>0.5,
then it means that they are pessimistic. The value of this parameter should be given
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by the decision makers in advance. Obviously, the higher the satisfaction degree,
the better the alternative.

5.2 An Illustrative Example

In this section, a practical example adapted from [55] is employed to demonstrate
the application of our proposed distance measures to multi-criteria group decision
making:

Energy is a major input for overall socio-economic development of any society.
Thus, the energy policy has a great impact on economic development and envi-
ronment and then the selection of the most appropriate energy policy is very
important. Suppose that there are five alternatives (energy projects)
a1, a2, a3, a4, a5f g to be invested, and four criteria c1, c2, c3, c4f g to be considered:

c1: technological; c2 : environmental; c3: socio-political; c4: economic. The weight
vector of four criteria is w= 0.15, 0.3, 0.2, 0.35ð Þ. Five decision makers
d1, d2, d3, d4, d5f g are invited to assess all the alternatives by using the following

linguistic term set:

S= fs0 = none, s1 = very low, s2 = low, s3 =medium,

s4 = high, s5 = very high, s6 = perfectg

For an alternative with respect to a criterion, all the decision makers provide their
linguistic assessment information anonymously. Then all the linguistic assessment
information and their weights are used to form a PLTS. For example, when the
alternative a1 with respect to c1 is assessed, two decision makers provide the
linguistic term s3 and three decision makers provide the linguistic term s4 as their
evaluation values. Hence, the overall linguistic assessment information of the
alternative a1 over the criterion c1 is denoted as a PLTS L11 pð Þ= s3 0.4ð Þ, s4 0.6ð Þf g.
Then the probabilistic linguistic decision matrix given by these five decision makers
are listed in Table 1.

To rank all the alternatives, Definitions 7 and 8 are used to obtain the proba-
bilistic linguistic positive ideal solution x+ = s5 1ð Þf g, s5 1ð Þf g, s5 1ð Þf g, s6 1ð Þf gf g
and the probabilistic linguistic negative ideal solution
x− = s2 1ð Þf g, s2 1ð Þf g, s1 1ð Þf g, s3 1ð Þf gf g. Then the distance d xi, x+ð Þ between
each alternative xi and the probabilistic linguistic positive ideal solution x+ and the
distance d xi, x−ð Þ between each alternative xi and the probabilistic linguistic neg-
ative ideal solution x− are computed. Finally, the satisfaction degree of each
alternative xi is calculated by using Definition 9. Without loss of generality, we set
the value of the parameter θ as 0.5.

To consider the weight information of multiple criteria, the generalized weighted
distance measure, the generalized weighted Hausdorff distance measure, and the
generalized hybrid weighted distance measure are introduced to calculated the
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distances. Then the satisfaction degree of each alternative and the ranking of the
alternatives are shown in Tables 2, 3 and 4.

As listed in Tables 2, 3 and 4, using different distance measures to obtain the
same best alternative and using the generalized weighted distance measures and
generalized hybrid weighted distance measures to get the same ranking of alter-
natives. As the parameter λ changes, the ranking of alternatives changes between a2
and a3 when the generalized weighted distance measures and the generalized hybrid
weighted distance measures are employed, while the ranking of alternatives keeps
unchanged when the generalized weighted Hausdorff distance measures are used.

Figures 1, 2 and 3 show that the satisfaction degree increases or decreases as the
parameter λ increases. For example, when the generalized weighed distance mea-
sures are used, the satisfaction degrees of a1, a2, and a5 decrease monotonically as
the parameter λ increases, while the satisfaction degrees of a3 and a4 increase
monotonically as the parameter λ increases. Therefore, from this point of view, the
parameter λ can be considered as a decision maker’s risk attitude and then the

Table 2 Satisfaction degrees and rankings of alternatives obtained by the generated weighted
distance measures

a1 a2 a3 a4 a5 Rankings

λ=1 0.5760 0.2376 0.1816 0.3600 0.4564 a1 ≻ a5≻a4 ≻ a2 ≻ a3
λ=2 0.5649 0.2189 0.1972 0.3679 0.4532 a1 ≻ a5 ≻ a4 ≻ a2 ≻ a3
λ=4 0.5492 0.2131 0.2133 0.3684 0.4491 a1 ≻ a5 ≻ a4 ≻ a3 ≻ a2
λ=6 0.5400 0.2167 0.2219 0.3676 0.4434 a1 ≻ a5 ≻ a4 ≻ a3 ≻ a2
λ=10 0.5334 0.2238 0.2319 0.3671 0.4354 a1 ≻ a5 ≻ a4 ≻ a3 ≻ a2

Table 3 Satisfaction degrees and rankings of alternatives obtained by the generated weighted
Hausdorff distance measures

a1 a2 a3 a4 a5 Rankings

λ=1 0.5626 0.1900 0.2056 0.3282 0.4457 a1 ≻ a5 ≻ a4 ≻ a3 ≻ a2
λ=2 0.5569 0.1972 0.2092 0.3412 0.4443 a1 ≻ a5 ≻ a4 ≻ a3 ≻ a2
λ=4 0.5468 0.2106 0.2163 0.3539 0.4389 a1 ≻ a5 ≻ a4 ≻ a3 ≻ a2
λ=6 0.5393 0.2199 0.2226 0.3594 0.4341 a1 ≻ a5 ≻ a4 ≻ a3 ≻ a2
λ=10 0.5305 0.2288 0.2318 0.3638 0.4280 a1 ≻ a5 ≻ a4 ≻ a3 ≻ a2

Table 4 Satisfaction degrees and rankings of alternatives obtained by the generated hybrid
weighted distance measures

a1 a2 a3 a4 a5 Rankings

λ=1 0.5681 0.2086 0.1957 0.3413 0.4500 a1 ≻ a5 ≻ a4 ≻ a2 ≻ a3
λ=2 0.5599 0.2050 0.2048 0.3511 0.4475 a1 ≻ a5 ≻ a4 ≻ a2 ≻ a3
λ=4 0.5477 0.2114 0.2152 0.3587 0.4422 a1 ≻ a5 ≻ a4 ≻ a3 ≻ a2
λ=6 0.5395 0.2189 0.2223 0.3621 0.4370 a1 ≻ a5 ≻ a4 ≻ a3 ≻ a2
λ=10 0.5305 0.2273 0.2319 0.3648 0.4302 a1 ≻ a5 ≻ a4 ≻ a3 ≻ a2
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proposed distance measures provide the decision maker with more choices when
the parameter value regarding to the decision maker’s risk preference is given.

5.3 Discussions and Analysis

For the purpose of comparison, in this subsection, we use the distance measures to
deal with the multi-criteria group decision making problems where the linguistic
assessment information of an alternative over a criterion is represented by a hesitant
fuzzy linguistic term set (HFLTS) not a PLTS.
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Fig. 1 Satisfaction degrees of alternatives obtained by the generated weighted distance measures
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Then the hesitant fuzzy linguistic decision matrix provided by five decision
makers is shown in Table 5.

Xu et al. [29] defined the distance between two linguistic terms as:

Definition 10 [29] Let S= sαjα=0, 1, . . . , τf g be a linguistic term set, sa and sb be
two linguistic terms, then the distance between sa and sb is

d sa, sbð Þ= a− bj j
τ

Based on Definition 10, Liao et al. [48] proposed a series of distance measures to
compute the distance between two hesitant fuzzy linguistic term sets and the dis-
tance between two collections of hesitant fuzzy linguistic term sets. Without loss of
generality, we utilized the generalized weighted distance measure, the generalized
weighted Hausdorff distance measure, and the generalized hybrid weighted distance
measure by Liao et al. to compute the distance between two collections of hesitant
fuzzy linguistic term sets, which are defined as follows:

Given a linguistic term set S= sαjα=0, 1, . . . , τf g and two collections of
HFLTSs H1

S = H11,H12, . . . ,H1mf g and H2
S = H21,H22, . . . ,H2mf g, the weight

1 2 4 6 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ

S
at

is
fa

ct
io

n 
de

gr
ee

s
a1 a2 a3 a4 a5

Fig. 3 Satisfaction degrees of alternatives obtained by the generated hybrid weighted distance
measures

Table 5 Hesitant fuzzy
linguistic decision matrix
provided by five decision
makers

c1 c2 c3 c4
a1 s3, s4f g s2, s4f g s3, s4f g s3, s5f g
a2 s3, s5f g s2, s3, s4f g s1, s2, s3f g s3, s4f g
a3 s3, s4f g s3, s4f g s3, s4, s5f g s4, s6f g
a4 s4, s5f g s3, s4, s5f g s2, s3f g s3, s4f g
a5 s2, s3f g s3, s5f g s2, s3, s4f g s4, s5f g

Probabilistic Linguistic Distance Measures … 435



vector of which is w= w1,w2, . . . ,wmð ÞT , where 0≤wj ≤ 1 and ∑
m

j=1
wj =1, then we

define the generalized weighted distance between H1
S and H2

S as:

dgwd H1
S ,H

2
S

� �
= ∑

m

j=1

wj

#H1j
∑
#H1j

h=1

Ih1j − Ih2j
��� ���

τ

0
@

1
A

λ0
B@

1
CA

1 ̸λ

where #H1j is the cardinality of the HFLTSs H1j and H2j, Ih1j and Ih2j are the sub-
scripts of the j th linguistic terms in H1j and H2j, respectively, and λ>0.

The generalized weighted Hausdorff distance between H1
S and H2

S is defined as:

dgwhaud H1
S ,H

2
S

� �
= ∑

m

j=1
wj max

h=1, 2, ..., #H1j

Ih1j − Ih2j
��� ���

τ

0
@

1
A

λ0
B@

1
CA

1 ̸λ

The generalized hybrid weighted distance between H1
S and H2

S is defined as:

dghwd H1
S ,H

2
S

� �
= ∑

m

j=1

wj

2
1

#H1j
∑
#H1j

h=1

Ih1j − Ih2j
��� ���

τ

0
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1
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λ

+ max
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Ih1j − Ih2j
��� ���

τ

0
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1
CA

0
B@

1
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1 ̸λ

Tables 6, 7 and 8 show that by using different distance measures, we can achieve
the same ranking of alternatives and the ranking of alternatives remains unchanged
as the parameter λ increases when the HFLTSs are introduced to express the
decision makers’ linguistic assessment information, and the best alternative is a3.

However, by using different distance measures, we can achieve the different
rankings of alternatives and different best alternatives when the PLTSs are used to
represent the decision makers’ linguistic assessment information from that when the
HFLTSs are employed to express the decision makers’ linguistic assessment
information. That is because the PLTSs can express not only the decision makers’

Table 6 Satisfaction degrees and rankings of alternatives obtained by the generated weighted
distance measures

a1 a2 a3 a4 a5 Rankings

λ=1 0.4297 0.3047 0.6172 0.4531 0.5000 a3 ≻ a5 ≻ a4 ≻ a1 ≻ a2
λ=2 0.4593 0.3530 0.5988 0.4616 0.5000 a3 ≻ a5 ≻ a4 ≻ a1 ≻ a2
λ=4 0.4622 0.3937 0.6035 0.4746 0.5082 a3 ≻ a5 ≻ a4 ≻ a1 ≻ a2
λ=6 0.4642 0.4125 0.6123 0.4820 0.5111 a3 ≻ a5 ≻ a4 ≻ a1 ≻ a2
λ=10 0.4724 0.4261 0.6265 0.4888 0.5097 a3 ≻ a5 ≻ a4 ≻ a1 ≻ a2
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some possible linguistic terms, but also their probabilistic information. Then, the
decision makers’ linguistic assessment information is not lost, and more reasonable
decision results can be obtained.

6 Conclusions

In this chapter, we have put forward a variety of distance measures for PLTSs and
applied them to multi-criteria group decision making. We have first put forward the
axiom definition of distance measure for PLTSs and given the definition of distance
between two PLTEs. Based on this, a new family of distance measures have been
designed to compute the distance between two PLTSs. Because of the weighting
information of multiple criteria, we have also proposed the weighted and ordered
distance measures to calculate the distance between two collections of PLTSs.
Motivated by the TOPSIS method, the distance measures have been used to define
the concept of satisfaction degree of an alternative and then they have been utilized
to solve the group decision making problems. Finally, a practical example con-
cerning the selection of energy alternatives have been provided to illustrate the
applicability of the proposed distance measures in multi-criteria group decision
making and compare the PLTSs with the HFLTSs.

Acknowledgements This research work was partially supported by the National Natural Science
Foundation of China (Nos. 61273209, 71571123).

Table 7 Satisfaction degrees and rankings of alternatives obtained by the generated weighted
Hausdorff distance measures

a1 a2 a3 a4 a5 Rankings

λ=1 0.4536 0.3711 0.5790 0.4667 0.5000 a3 ≻ a5 ≻ a4 ≻ a1 ≻ a2
λ=2 0.4537 0.3824 0.5881 0.4761 0.5063 a3 ≻ a5 ≻ a4 ≻ a1 ≻ a2
λ=4 0.4566 0.3986 0.6041 0.4866 0.5111 a3 ≻ a5 ≻ a4 ≻ a1 ≻ a2
λ=6 0.4615 0.4086 0.6165 0.4913 0.5111 a3 ≻ a5 ≻ a4 ≻ a1 ≻ a2
λ=10 0.4720 0.4188 0.6322 0.4950 0.5084 a3 ≻ a5 ≻ a4 ≻ a1 ≻ a2

Table 8 Satisfaction degrees and rankings of alternatives obtained by the generated hybrid
weighted distance measures

a1 a2 a3 a4 a5 Rankings

λ=1 0.4441 0.3448 0.5944 0.4610 0.5000 a3 ≻ a5 ≻ a4 ≻ a1 ≻ a2
λ=2 0.4557 0.3719 0.5919 0.4705 0.5040 a3 ≻ a5 ≻ a4 ≻ a1 ≻ a2
λ=4 0.4585 0.3971 0.6039 0.4825 0.5101 a3 ≻ a5 ≻ a4 ≻ a1 ≻ a2
λ=6 0.4624 0.4098 0.6152 0.4883 0.5110 a3 ≻ a5 ≻ a4 ≻ a1 ≻ a2
λ=10 0.4721 0.4209 0.6305 0.4930 0.5088 a3 ≻ a5 ≻ a4 ≻ a1 ≻ a2
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Fuzzy Numbers and Consensus

Antonio Maturo and Aldo G.S. Ventre

Abstract Often in a group of decision makers there is a considerable variability in
the scores that decision makers assign to the alternatives. In this paper we represent
this variability with fuzzy numbers. Moreover we present an algorithm for the
achievement of consensus based on suitable fuzzy numbers, on preorder and order
relations in sets of fuzzy numbers, and on a procedure to decrease the spreads.

Keywords Fuzzy numbers and order/preorder relations ⋅ Multiperson decision
making ⋅ Consensus

1 A Formalization of a Multiperson Decision
Making Problem

Suppose that a set D= d1, . . . , dr, . . . , dp
� �

of decision makers, all having the
same importance, should establish an order on a set A= a1, . . . , ai, . . . , amf g of
alternatives, evaluating the importance of the various alternatives with respect to a
general objective indicated by OG.

If every decision maker establishes its own order, or, specifically a score for each
alternative, then we must find a criterion for aggregating the various orders or the
various scores in order to have a relationship of “social” order/pre-order among the
alternatives.

Methods of aggregation for a “social order” can be found in [1, 4, 10, 11, 14, 43].
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The logic that each decision maker can follow to assign an order or a score in a
rational way to the alternatives, for a social aggregation, is discussed and deepened,
for example, in [3, 6, 13, 15, 21–24, 37, 38, 41]. An example of application in
education is due to [7].

In some papers it is imposed the condition that the scores are measures or, at
least, fuzzy measures (cfr [2, 12, 25–28, 42, 44, 46, 47]).

For decisions under uncertainty the scores of the alternatives are connected to the
concepts of probability or coherent prevision [5, 6, 13] or to an extension of such
concepts in Join Spaces (see [19]).

In this paper, following the AHP procedure by Saaty, we suppose that the overall
objective OG is specified by a set of sub-objectives or specific objectives, and that
they are specified by a set C= c1, . . . , cj, . . . , cn

� �
of criteria. It is supposed that

decision makers agree on what are the specific objectives and criteria. Then it is
defined the digraph associated with the problem of decision, having vertices located
on 4 levels, where in the first level is the overall objective, in the second are specific
objectives, in the third and fourth are criteria and alternatives, respectively. The arcs
of the graph with the first extreme at a level i ∈ {1, 2, 3} have the second extreme
at the level i + 1.

Every decision maker, independently of the others, gives a score to each arc of
the digraph with the following conditions:

(1) Scores are non-negative real numbers belonging to the interval [0, 1];
(2) The sum of the scores attributed to the outgoing arcs from the general objective

is equal to 1;
(3) The sum of the scores of the outgoing arcs from a sub-objective is equal to 1.

Regarding the scores of the arcs that connect a given criterion with the alter-
natives, it is not always appropriate to impose the condition that the sum of the
scores is equal to 1. Advantages or disadvantages may occur and we must reason
according to the context.

Once assigned the scores to the arcs, the score of a path of the digraph is defined
as the product of the scores of the arcs in the path. Finally, the score of each vertex
V different from the general objective is equal to the sum of the scores of the paths
going from the general objective to the vertex V.

In conclusion, for each decision maker dr, we obtain:

• a row vector wr = [wr1, wr2, …, wrn] of the criteria weights, which are positive
real numbers with sum equal to 1;

• a matrix Dr with general term prij equal to the weight that the decision maker dr
assigns to the arc of the digraph with the first extreme the criterion cj and the
second extreme the alternative ai.

The row vector πr = ½πr1, πr2, . . . , πrm�, of the scores of the alternatives assigned
by decision maker dr, is the matrix product of wr by the transpose Dr’ of the matrix
Dr, i.e. πr = wr Dr’.
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2 A Representation of the Problem of Consensus Among
Decision Makers with Fuzzy Numbers

In various articles the consensus among decision makers has been addressed con-
sidering the decision makers as points of a metric space [4, 10, 11, 21–24]. Before
any formula for the aggregation of the scores, dynamic algorithms are proposed to
lead the points of the metric space, that represent the various decision makers, to
reach consensus. Only when these points are fairly close then the diversity of views
appears unbound by prejudice or very particular special interests, and thus the
diversity of judgments seems to be related to objective assessments, although with
some differences in points of view.

In this paper we consider an approach based on fuzzy numbers and the order and
pre-order relationships between fuzzy numbers.

We recall the necessary definitions briefly (for further information see e.g.
[12, 18, 20, 35, 45, 46, 47]).

Applications of fuzzy numbers for fuzzy regression and decision making
problems are in [29, 31–34, 36].

Definition 2.1 (Fuzzy number) Let [a, b] be a compact interval of R. A fuzzy
number with base [a, b] is a function u: R → [0, 1], having as domain the set of real
numbers and with values in [0, 1], such that:

(BS) (bounded support) u(x) = 0 for x∉[a, b], and u(x) > 0 for x belonging to
the open interval (a, b);

(CN) (compactness and normality) For every r ∈ (0, 1] the set [u]r = {x ∈ R: u
(x) ≥ r} is a nonempty compact interval.

The numbers a, b, are called respectively, the left and the right endpoint of u, and
the set {x ∈ [a, b]: u(x) > 0} is said to be the support of u, denoted S(u).
Moreover, u is said to be degenerate if a = b, that is S(u) is a singleton.

Definition 2.2 (r-cuts) For every r such that 0 ≤ r ≤ 1 the set [u]r = {x ∈ [a, b]:
u(x) ≥ r} is said to be the r-cut of u. The left and right endpoints of [u]r are
denoted, respectively, uλ

r and uρ
r . The fuzzy number u is said to be simple if c = d,

that is C(u) is a singleton.
In particular, for r = 0, [u]0 = [a, b], and, for r = 1, [u]1 is a compact interval [c,

d], called the core (or central part) of u, and denoted with C(u). The numbers c, d,
are the left and the right endpoint of C(u).

Definition 2.3 (Spreads) The intervals [a, c) and (d, b] are, respectively, the left
part and the right part of u. The real numbers L(u) = c – a, M(u) = d – c, and R
(u) = b – d are, the left, middle, and right spreads of u. Their sum T(u) = b – a is
the total spread.

Definition 2.4 (Relation ⊆) Let u: R → [0, 1] and v: R → [0, 1] two fuzzy
numbers. We say that u is contained in v, we write u ⊆ v, if u(x) ≤ v(x), ∀x ∈ R.
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Proposition 2.5 The relation ⊆ is a partial order relation in the set of fuzzy
numbers. A compact interval [a, b] is interpreted as a fuzzy set w: R → [0, 1] with
base [a, b] and such that w(x) = 1, ∀x ∈ [a, b]. Then it is the maximum fuzzy
number with base [a, b] with respect to the order relation ⊆.

Notations 2.6 We assume the following notations:

• (endpoints notation) u ∼ (a, c, d, b) stands for u is a fuzzy number with end-
points a, b and core [c, d]; u ∼ (a, c, b) for simple u;

• (spreads notation) u ∼ [c, d, L, R] denotes that u is a fuzzy number with core [c, d]
and left and right spreads L and R, respectively; u ∼ [c, L, R] denotes simple u;

• (r-cut spreads notation) the numbers Lr(u) = (c − uλ
r ) and Rr(u) = (uρ

r − d) are
called the r-cut left spread and the r-cut right spread of u, we write [u]r = [c, d,
Lr(u), Rr(u)], and, if u is simple, we write also [u]r = [c, Lr(u), Rr(u)].

Definition 2.7 We say that the fuzzy number u ∼ (a, c, d, b) is a trapezoidal fuzzy
number, let us write u = (a, c, d, b), if:

∀x∈ a, c½ Þ, a < c⇒ u(x) = ðx − a) ̸(c − a), ð1Þ

∀x∈ d, bð �, d < b⇒ u(x) = ðb − x) ̸(b − d), ð2Þ
A simple trapezoidal fuzzy number u = (a, c, c, b) is said to be a triangular fuzzy

number and we write u = (a, c, b). A trapezoidal fuzzy number u = (c, c, d, d), with
support equal to the core is said to be a rectangular fuzzy number and is identified
with the compact interval [c, d] of R.

Proposition 2.8 In terms of r-cut left and right spreads u ∼ [c, d, L, R] is a
trapezoidal fuzzy number, we write u = [c, c’, L, R], iff:

Lr uð Þ= 1− rð Þ c− að Þ= 1− rð ÞL, Rr uð Þ= 1− rð Þ b− dð Þ= 1− rð ÞR. ð3Þ
In particular, u ∼ [c, L, R] is a triangular fuzzy number, we write u = [c, L, R],

iff:

Lr uð Þ= 1− rð Þ c− að Þ= 1− rð ÞL, Rr uð Þ= 1− rð Þ b− cð Þ= 1− rð ÞR. ð4Þ

Several orderings can be defined in the set of fuzzy numbers [8, 9, 12, 16, 17, 18,
20]. We focus our attention on some fundamental orderings that play an important
role when choices among social or economic actions are involved.

Let Φ be the set of all the fuzzy numbers.

Proposition 2.9 (Main order) The relation ≲M on Φ such that:

∀u, v∈Φ, u≲M v⇔∀r∈ ½0, 1�, ½u]r ≤ ½v�r, ð5Þ

is a partial order relation on Φ, called the main order.
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The main order is the basic ordering in the set of fuzzy numbers whatever the
shape.

Proposition 2.10 (Trapezoidal order) The relation ≲T on Φ such that:

∀u, v∈Φ, u≲T v⇔½u�0 ≤ ½v�0, ½u]1 ≤ ½v�1 ð6Þ
is a partial preorder relation on Φ, called the trapezoidal order.
Such a relation is mainly useful if the trapezoidal shape is preferred, because of

the relative simplicity in handling these numbers. The restriction of ≲T to the set
T of the trapezoidal fuzzy numbers is a partial order relation.

Proposition 2.11 (Crisp order) The relation ≲C such that:

∀u, v∈Φ, u≲C v⇔½u�1 ≤ ½v�1 ð7Þ
is a partial preorder relation on Φ, called the core order or crisp order.
The relation ≲C is useful when peripheral spreads are considered of marginal

importance with respect to the central ones. Moreover the restriction of ≲C to the set
of simple fuzzy numbers is a total preorder relation.

Proposition 2.12 (Strict order) The relation ≲S such that:

∀u, v∈Φ, u≲S v⇔ðx∈ S(u), y∈S(v))⇒ x≤ y ð8Þ
is a partial preorder relation on Φ, called the strict order.
Suppose that every decision maker dr has attributed a row vector πr = [πr1, πr2,

…, πrn] of scores to alternatives. We obtain the following matrix Π of scores of the
alternatives, having rows for the decision makers and columns for the alternatives
(Table 1).

The alternative ai is associated with the column vector [π1i, π2i, …, πpi]’ of the
scores of the different decision makers. Let αi, βi, γi be the minimum, the maximum
and an average of these scores (such as the arithmetic mean, median, or generally
the mean of order h > 0, with h fixed by decision makers), respectively. Then the
“social” score of the alternative ai assigned by the whole group D of decision
makers can be represented by the triangular fuzzy number π*i = (αi, γi, βi) with left
spread γi − αi and right spread βi − γi.

Table 1 Matrix of scores of decision makers
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There are many possibilities for constructing the triangular fuzzy number π*i
depending on the chosen average. If we want to take into account of various
averages, the minimum of which is γi1 and the maximum γi2, the “social” score
assigned to the alternative ai by the whole group D of decision makers is the
trapezoidal fuzzy number π**i = (αi, γi1, γi2, βi) with left spread γi1 − αi, right
spread βi - γi2 and middle spread γi2 − γi1.

As a particular case a triangular fuzzy number is obtained if γi2 = γi1 and a
rectangular fuzzy number, i.e. an interval, if αi = γi1, γi2 = βi.

3 Shared Ordering, and Consensus

Let us suppose, for instance, that social alternative scores are fuzzy triangular
numbers π*i = (αi, γi, βi). Then, as a first approach to a ranking of alternatives the
crisp order can be considered, in which the preferable alternative is the one with the
highest core, and two alternatives with the same core are considered equally
preferable.

This approach, however, does not take into account the views of decision makers
“more peripheral” which attributed a score away from the central value γi to the
alternative ai. In particular, if for a couple of alternatives (ai, ah), it is π*i ⊂ π*h, the
two alternatives are considered equivalent even if the spreads of the second alter-
native are greater than those of the first. The same reasoning can be extended to the
case in which the social alternatives scores are trapezoidal fuzzy numbers or any
shape fuzzy numbers.

Let us remark that, in the case the social alternatives scores are triangular fuzzy
numbers or, in general, simple fuzzy numbers, we get a total pre-order relation
between the alternatives is obtained.

We can adopt a more rigorous approach, which takes into account the left and
right spreads, ordering the fuzzy triangular numbers π*i = (αi, γi, βi) (or, in general,
the trapezoidal fuzzy numbers π**i = (αi, γi1, γi2, βi)) with the main order. So we
define π*i ≤ π*h if and only if αi ≤ αh, γi ≤ γh, βi ≤ βh. The main order is an
order relation, but in general it is not total. For example, two alternatives ai, ah such
that π*i ⊂ π*h are not comparable. Moreover, even with the main order, the opinion
of the decision makers away from the core is scarcely taken into account.

A third approach, which takes into account the views of all decision makers,
consists in ordering fuzzy numbers with the strict order.

Then, it seems reasonable to introduce the following definition:

Definition 3.1 We say that fuzzy numbers π*i (or in general π**i) identify a shared
ordering among the decision makers if the strict order among the alternatives is a
total ordering.

A second aspect to be considered is the consensus among decision makers.
We say “coalition” any non-empty subset A of D. The concept of social “score”

can be extended to any coalition A of D.
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Let only consider the scores assigned by a coalition A. We can associate each
alternative to a triangular fuzzy number π*iA = (αiA, γiA, βiA), called the social
score of ai assigned by A.

Following legal obligations or preliminary agreements among decision makers,
we can fix an integer k ∈ (p/2, p], called level of majority and a positive real
number ε, called level of consensus. The coalition A is said to be [30, 39, 40]:

• winning if |A| ≥ k;
• loser if |A| ≤ p − k;
• blocking if p − k < |A| < k.

We denote by δ(A), called diameter of the coalition, the maximum of the spreads
(right or left) of the fuzzy numbers π*iA. Given a real number ε > 0, we say that in
a coalition A there is the consensus (to the level ε) if δ(A) ≤ ε.

The search for consensus among decision makers is to find, together with an
impartial arbiter K, called the Demiurge, a procedure to identify a coalition A
winning, in which there is consensus, and if possible maximal, i.e. such that A ⊂ B
⇒ δ(A) > ε.

If K, with impartial procedure followed, cannot individuate a winning coalition
in which there is consensus, then he declares the inability to reach consensus, and
calls on all decision-makers to reformulate the decision problem, rethinking specific
objectives, criteria, alternatives and scores.

If K is able to achieve a winning coalition in which there is consensus, then he
determines whether it is or not maximal considering the diameters of coalitions A∪
{ai}, with ai ∈ D − A. If all these coalitions have a diameter greater than ε then A
is maximal, otherwise K widens the coalition by bringing in the coalition A the
decision maker ai not belonging to A and such that δ(A∪ {ai}) is minimum.

A procedure for achieving a winning coalition in which there is consensus, or to
decide that it is not possible to reach consensus, is as follows. First of all we
identify a positive real number α, called the minimum level of improvement.

Empirical remark: the number α must be small enough to allow the procedure to
move forward, but not too small, otherwise the process can become very long.

In step s ≥ 1, let D(s) be the number of decision-makers remained after the
previous steps. Evidently D(1) = D. There are three possibilities:

(1) D(s) < k, then the Demiurge K states that it is not possible to reach consensus,
and the procedure ends;

(2) D(s) ≥ k and δ(D(s)) ≤ ε, then the Demiurge K states that consensus has been
reached, and the procedure ends;

(3) D(s) ≥ k and δ(D(s)) > ε.

In the third case, let A = D(s). The demiurge K evaluates all fuzzy triangular
numbers π*iA = (αiA, γiA, βiA). For each decision maker dr belonging to A, and for
each alternative ai, K calculates the distance between the evaluation πri(s) given by
the decision maker dr at the beginning of step s, and the core γiA. The maximum of
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these numbers, at varying of i, is said the variability at step s of the decision maker
dr, indicated with v(s)(dr).

K subsequently identifies decision makers with the highest variability, said
marginal decision makers, in order to review, one by one, their evaluations in order
to have new evaluations πri(s+1) with a new variability v(s+1)(dr) ≤ v(s)(dr) − α. If
the decision maker adapts himself, then the Demiurge passes to the next step with
the same set of decision makers. If he does not conform, the decision maker is
excluded and the Demiurge considers the next step only with the remaining deci-
sion makers.

4 Conclusions

If the Demiurge can secure a maximal winning coalition A where there is con-
sensus, then triangular fuzzy numbers π*iA = (αiA, γiA, βiA) are the end result of the
procedure for obtaining consensus. At this point the demiurge K can make its
findings by ordering the alternatives according to the three order relations/preorder
considered in Sect. 2.

These data, appropriately illustrated, will be a support for politicians and
administrators for the choice of alternatives, or simply for their ordering by means
of preference-indifference relations.
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Consensus in Multiperson Decision
Making Using Fuzzy Coalitions

Fabrizio Maturo and Viviana Ventre

Abstract We consider the problem of group decisions, in which decision-makers
have different opinions or interests. This study proposes various metric spaces for
representing the movements of decision-makers for reaching consensus. We also
introduce the concept of fuzzy coalition for developing an algorithm for building a
feasible fuzzy coalition, which is defined as the union of winning maximum
coalitions which solve the issue of consensus among decision-makers.

Keywords Multiperson decision making ⋅ Cooperative games ⋅ Mediation and
consensus ⋅ Metric spaces ⋅ Cluster analysis

1 Introduction and Motivation

We consider a decision problem with different decision-makers, which is formal-
ized as follows. A decision must be taken by a committee consisting of a set
D = {d1, …,dr, …, dp} of decision-makers, that are supposed to have the same
importance. The decision would establish a relationship of pre-order δ (total or, in
general, partial) in a set A = {a1, …, ai, …, am} of alternatives, with a general
objective O, that is, for each pair of alternatives (ai, aj), the group of
decision-makers poses ai δ aj if and only if the committee D evaluates the alter-
native ai less desirable, or equally preferred, over alternative aj.

We write ai ∼ aj if ai and aj are both considered equally preferable, i.e. both
relations ai δ aj and aj δ ai apply. Finally, we write ai < aj or aj > ai, if ai is judged
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less preferable than aj, i.e. the relation ai aj holds but not aj δ ai. Criteria to reach a
relationship of social pre-order, starting from the relations of order of individual
decision-makers are, for example, in [1]. The logic by which we obtain social
decisions are further defined in [2].

Preferably, we want to assign a quantitative value μ(ai) to each alternative ai,
which represents the extent to which, in the opinion of the group D, the alternative
ai satisfies the general objective O.

Primarily, in this study, we assume that, for each alternative ai, μ(ai) is a real
number in [0, 1], so the relation of pre-order δ reduces to the usual relation of order
in [0, 1].

In some parts of the paper, to take into account the uncertainty in attributing
quantitative values, due both to the uncertainty of the individual decision-makers
and the need to consider the variability of judgments of different decision-makers,
we consider the general case in which a triangular fuzzy number μ*(ai) with support
contained in [0, 1] is assigned to each alternative ai. In this case, we indicate with
μ(ai) the core of μ*(ai) (see e.g. [17, 26, 28–31, 36–38]).

Afterwards, we denote with u = (au, cu, bu) a triangular fuzzy number with core
cu and support in [au, bu]. If T is the set of triangular fuzzy numbers with supports in
[0, 1], we can consider various relationships of pre-order δ in T. The most important
are the following [13, 17]:

(1) Crisp order, which is indicated with ≤ c: for each u = (au, cu, bu), v = (av, cv, bv),

u ≤ cv if and only if cu ≤ cv.

(2) Main order (or standard order), which is indicated with ≤ s: for each u = (au,
cu, bu), v = (av, cv, bv),

u≤ sv if and only if au ≤ av, cu ≤ cv, bu ≤ bv.

The crisp order is a relation of total pre-order, but it is not a relation of order. It is
equivalent to consider that only the core of fuzzy numbers is relevant.

The main order is a relation of order in T, but not total. The couple (T, ≤ s) is a
lattice. The minimum is the fuzzy set 0 = (0, 0, 0) whereas the maximum is 1 = (1,
1, 1). Furthermore, for each u = (au, cu, bu), v = (av, cv, bv):

inf u, vf g= min au, avf g, min cu, cvf g, minfbu, bvgð Þ,
sup u, vf g= max au, avf g, max cu, cvf g, maxfbu, bvgð Þ.

The process for obtaining the values m(ai) and m*(ai) should take into account
the diversity of assessments of different decision-makers and the fact that the degree
of satisfaction of the general objective O depends on the degree to which the
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criteria, that represent particular aspects of the objective O, are met. Therefore, we
assume that the decision depends on a set C = {c1,…, cj,…, cn} of criteria, and that
each decision-maker dr, with its own procedure, assigns to each criterion cj a weight
wrj which represents the degree of importance of cj with respect to the objective O.
Thus, a vector wr = (wr1, …, wrn), called vector of criteria weights, is associated
with each decision-maker dr.

In this paper, we assume that the weights wrj are real numbers satisfying the
following conditions:

(1) Positivity: for every decision-maker dr and criterion cj, wrj ≥ 0;
(2) Normalization: for every decision-maker dr, wr1 +…+ wrn = 1.

Every decision-maker dr is called to attribute a score prij (or p*rij) to each couple
(ai, cj) which is formed by an alternative and criterion. The score prij is a real
number in [0, 1] indicating to what extent the alternative ai satisfies the criterion cj
in the opinion of the decision-maker dr. More generally, the decision-maker dr
assigns a score as a triangular fuzzy number p*rij with core prij and support in [0, 1].

In this paper, we analyze procedures and algorithms to get the scores prij
(or p*rij) and weights wrj for the summary evaluations μ(ai) e μ*(ai), mediating
between the opinions of different decision-makers.

2 Procedures for the Allocation of Weights and Scores

One of the most followed procedure, for the allocation of weights so that the
conditions of positivity and normalization are met, is the AHP method illustrated by
Saaty [32, 33]. Some applications are in [3, 6, 11, 12, 18–21].

Essentially, the general objective is stated (and also defined) by a set of specific
objectives; each of the specific objectives is defined by sub-objectives, and each
sub-objective by a set of criteria. Scores (of specific objectives with respect the
overall objective, sub-objectives with respect to each of the specific objectives,
criteria with respect to sub-objectives) are determined using mathematical calcu-
lations from the pairwise comparison matrices obtained from interviews to
decision-makers [18, 19, 32, 33].

The next step is to assign, to each decision-maker, the scores of alternatives with
respect to each criterion. Let prij be the score that the decision-maker dr assigns to
the alternative ai with respect to the criterion cj. Whatever the scale for allocating
the scores, there are no difficulties to bring the scores to real numbers in [0, 1], with
a minimum score of 0 and maximum score equal to 1. However, the normalization
condition is not always appropriate:

∀r, j, pr1j + pr2j + ⋯ +prmj = 1. ð2:1Þ

Indeed, if the scores are utilities (or can be assumed as utilities), as required in
various studies dealing with rational decisions [15, 16, 27, 34, 35], it may happen

Consensus in Multiperson Decision Making Using Fuzzy Coalitions 453



that all the alternatives have a high utility compared to a criterion and low utility
with respect to another one. Furthermore, the normalization introduces a strict
dependence of scores of some alternatives by scores of other alternatives, which is
in general not possible for the utilities. The importance of having utilities is also
useful in order to have a consistent evaluation of alternatives [4, 5, 14, 22–25].
Conditions for obtaining coherent subjective probabilities in decision problems
under uncertainty are presented in [4].

In conclusion, the assignment of scores prij (interpretable as utilities) to alter-
native ai, with respect to the criterion cj, by the decision-maker dr, leads us to obtain
a number urj, which we call the overall usefulness of the criterion cj, defined by the
following formula:

urj = pr1j + pr2j + . . . prmj ð2:2Þ

Thus, it follows that urj > 0, otherwise the criterion cj would be totally useless
and should be excluded. In general, it does not happen that urj = 1. However, the
AHP procedure of the comparison in pairs among the alternatives with respect to
each criterion, which would lead getting scores p′rij such that for every criterion cj

u′rj = p′r1j + p′r2j + ⋯ +p′rmj = 1

is a very efficient procedure. Indeed, it seems to guarantee the obtaining of numbers
proportional to the utility, even if it does not provide the real utility. If it were
known the number urj, then the following numbers could be considered as
“coherent utility” of alternative ai with respect to the criterion cj:

p′′rij = urjp′rij. ð2:3Þ

As a compromise between the two requirements (to use an efficient procedure
and get coherent utility), in this paper, we propose the following algorithm.

First phase: the decision maker dr, as expert, or assisted by experts, attributes the
prij scores and calculates urj, that is the overall usefulness of the criterion cj.

Second phase: the decision maker dr, using the AHP procedure by Saaty, cal-
culates p′rij numbers and then p″rij = urj p′rij.

Third step: setting a positive real number ε, we calculate the Euclidean distance
δ(2)(vrj, v″rj) between the vectors vrj = (prij, …, prmj) and v″rj = (p″rij, …, p″rmj).

Fourth phase: if δ(2)(vrj, v″rj) < ε we accept prij numbers as coherent utilities,
otherwise we return to the first step and ask the decision-maker dr to correct the
scores prij so that δ(2)(vrj, v″rj) decreases.

At the end of the assignment procedure of the scores, to each decision-maker dr
is associated a matrix Dr, with general term prij and vector of criteria utility with
respect to the decision maker dr given by ur = (ur1, …, urn) (as marginal row). In
the marginal column of the matrix are inserted the final scores μr(ai) of the alter-
natives according to the decision-maker dr (Table 1).
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If such prij scores can be considered utilities, the scores of the alternatives μr(ai)
are obtained according to the linear formula:

mr aið Þ=wr1pri1 +wr1pri1 +⋯+wr1pri1 ð2:4Þ

3 Decision-Makers as Points of the M-Dimensional Space
of the Alternatives

We set μri = μr(ai). In various studies [3, 11, 12, 18], the decision-maker dr is
represented by the point Pr = (μr1, …, μrm) of the m-dimensional space of the
alternatives. In this space, the distance δ(2)(Pr, Ps) between the decision-makers dr
and ds has been defined with the Euclidean formula:

δ 2ð Þ
rs = δ 2ð Þ Pr, Psð Þ= f½ðμr1 − μs1Þ2 +⋯+ ðμrm − μsmÞ2� ̸mg1 ̸2. ð3:1Þ

More generally, for any real number h ≥ 1 we can consider the distance of order
h given by δ(h)(Pr, Ps) between the decision-makers dr and ds with the formula:

δ hð Þ
rs = δ hð Þ Pr, Psð Þ= f½ðμr1 − μs1Þh +⋯+ ðμrm − μsmÞh� ̸mg1 ̸h. ð3:2Þ

As h tends to +∞ we obtain, specifically

δð∞Þ
rs =maxfjμr1 − μs1 , . . . ,j jμrm − μsmjg ð3:3Þ

The choice of h depends on the importance that the commission wants to
attribute to larger values |μri – μsi| than to smaller ones. The larger h the more
relevant are the greatest values. For h = + ∞ holds only the maximum value.

Decision-makers are points of the metric space S(h) = (Rm, δ(h)) and, being
0 ≤ μri ≤ 1, it results δrs(h) ≤ 1; thus, given a decision-maker Pr, all the others are
in the hypersphere of radius 1 and center Pr.

Fixed h ≥ 1 and a value ε > 0, both defined by the commission D, we say that:

• There is consensus (at level ε) between the decision-makers dr and ds, and we
write Pr γ Ps, if δ(h)(Pr, Ps) ≤ ε;

Table 1 Matrix Dr of
alternatives and criteria
according to the
decision-maker dr

Dr c1 (wr1) c2 (wr2) cj (wri) cn (wrn) μr
a1 pr11 pr12 pr1j pr1n μr(a1)
a2 pr21 pr22 pr2j pr2n μr(a2)
ai pri1 pri2 prij prin μr(ai)
am prm1 prm2 prmj prmn μr(am)
ur ur1 ur2 urj urn
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• There is a strict consensus (at level ε) between the decision-makers dr and ds,
and we write Pr σ Ps, if δ(h)(Pr, Ps) ≤ ε/2.

Relations γ and σ in D are reflexive and symmetric, but not transitive. Fur-
thermore, σ ⊆ γ. Transitivity is replaced by the weaker properties:

ðPr σ Ps, Ps σ PtÞ⇒ Pr γ Pt.

For each decision-maker Pr, we can finally define:

• The degree of consensus of Pr, indicated with γ(Pr), as the number of
decision-makers Ps in consensus with Pr;

• The degree of the strict consensus of Pr, indicated with σ(Pr), as the number of
decision-makers Ps in close consensus with Pr;

• The variability of Pr, indicated with v(Pr), defined as the maximum distance of
Pr from the other decision-makers.

We say that a coalition K has internal consensus (or strict internal consensus) if
the distance of any two elements of the coalition does not exceed ε (or not exceed
ε/2).

Evidently, set a decision-maker Pr, the decision-makers belonging to the
hypersphere of center Pr and radius ε/2 (i.e. in close consensus with Pr) form a
coalition K with internal consensus and σ(Pr) elements.

An algorithm for reaching consensus is a procedure that allows the most distant
decision-makers to modify their assessments of criteria weights and scores of the
alternatives, so that the representative points of the decision-makers come close,
gradually, to obtain a final coalition C with internal consensus, encompassing all
decision-makers, or at least a majority of them.

In this process for reaching the final coalition, if there are f changes of assess-
ments of decision-makers, the point Pr, which represents a decision-maker dr
belonging to C, moves as a finite sequence (Pr

1, Pr
2, …, Pr

f) of positions in the space
Rm, from the initial situation Pr

1 = (μr11 , …, μrm1 ) to the final one Pr
f = (μr1f , …, μrmf ).

Once the final coalition C and final score vectors Pr
f = (μr1f , …, μrmf ) (that

decision-makers belonging to the coalition C attribute to alternative) are obtained,
we can get the group evaluation of alternatives such as an average of the assess-
ments of individual decision-makers belonging to C.

The most common case is the calculation of the arithmetic mean, where the
social score of alternative ai is given by the formula

μ aið Þ= ðδ1μf1i + δ2μf2i +⋯+ δpμfpiÞ ̸m ð3:4Þ
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where δr = 1 if the decision-maker dr belongs to C and δr = 0 if dr does not belong
to C.

A more general procedure, introduced by Maturo and Ventre [20], can lead to
obtain a set of h > 1 possible final coalitions. In this case, if nr is the number of final
coalitions to which dr belongs, and m is the number of decision-makers that are part
of at least one final coalition, we can define the power of dr as the ratio:

πr = nr ̸h. ð3:5Þ

Placing m = π1 + π2 +…+ πq, the formula (3.4) is replaced by the more general
formula:

μ aið Þ= ðπ1μf1i + π2μf2i +⋯+ πpμfpiÞ ̸m ð3:6Þ

Evidently the (3.6) reduces to (3.4) in the case of only one possible final
coalition.

A significant interpretation of the formula (3.6) is obtained in the context of
fuzzy sets. In fact, we can think that the final set of decision-makers is a fuzzy set in
which each decision-maker dr has a degree of membership πr.

In Fig. 1, we consider a set D = {a, b, c, d, e, f, g, h, i, l, m, n} of 12
decision-makers and three final coalitions. According to this method, the
decision-makers d and e have power 1, b has power 2/3, a, c, g, h, and i have power
1/3, whereas m, l, and n have zero power.

Fig. 1 Example of 12
decision-makers and three
final coalitions
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4 Decision-Makers as Points of the M � N Dimensional
Space of Pairs (Alternatives, Criteria)

It may be useful to employ more analytical formulas for the distance (with respect
to Eq. 3.2), in which it appears visible the evaluation of each decision-maker with
respect to each pair (alternative, criterion), so that it is easier to show how the
feedback of two decision-makers can get closer by setting new assessments of
criteria and alternatives.

In this context, a decision-maker dr is represented by the point Pr of the
dimensional space m × n of the couples (alternative ai, criterion cj) of coordinates
(wrj prij, i = 1, …, m; j = 1, …, n).

In this space, for any real number h ≥ 1, we can consider the distance of order h
λ(h)(Pr, Ps) between the decision-makers dr and ds, with the following formula:

λ hð Þ Pr, Psð Þ= λ hð Þ Pr, Psð Þ= f½∑
m

i= 1
ð∑

n

j = 1

1
n ×m

wrjprij −wsjpsij
�� ��hÞ�g1 ̸h. ð4:1Þ

In particular, for h = 2 we have the Euclidean space whereas for h = +∞ we
have the distance:

λð∞Þ Pr, Psð Þ=max jwrjprij −wsjpsijj
n o

, i = 1, . . . , m; j = 1, . . . , n. ð4:2Þ

We can extend to these metric spaces all the considerations on procedures for
achieving consensus that we presented in the previous paragraph.

It also seems interesting to consider the following formula:

ν hð Þ
rs = ν hð Þ Pr, Psð Þ= f½∑

m

i= 1
ð∑

n

j = 1

φrsj

n ×m
prij − psij
�� ��hÞ�g1 ̸h, h≥ 1 ð4:3Þ

where φrsj = φ(wrj, wsj), and φ is a function defined in [0, 1]2, with values in [0, 1],
symmetric, increasing with respect to each variable, strictly increasing in (0, 1]2,
and satisfying the boundary conditions:

∙ φ 0, 0ð Þ=0;

∙ ∑
n

j = 1
φrsj = 1
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Two special cases are:

φrsj = wrj + wsj
� �

̸2 arithmetic meanð Þ;
φrsj = wrjwsj

� �
̸ð ∑

n

k= 1
wrk wskÞ.

5 An Algorithm for the Achievement of Consensus Among
Decision-Makers or Coalitions

We present a dynamic algorithm with f steps, with f natural number to be deter-
mined. The set of decision-makers D = {d1, …,dr, …, dp}, at the step s, is rep-
resented by the point cloud Ns = {P1

s, …, Pr
s, …, Pp

s} of a metric space (S, γ). In
particular, if we consider the metric space of Sect. 3, it is S = Rm, γ = δ(h) and, if
we have the metric space of Sect. 4, then S = Rm×n, γ = λ(h).

Following legal obligations or preliminary agreements among decision-makers,
we can fix an integer k∈ (p/2, p], called level of majority and a positive real number
ε, called level of consensus. We also assume to have an impartial referee A, called
the “Demiurge”, which, according to his knowledge and skills, looks for giving
information and procedures for increasing consensus among decision-makers [3].

Let Ks be a coalition at the step s. We denote by ω(Ks), called diameter of the
coalition to the step s, the maximum distance between two points representing Ks;
let also be |Ks| the number of elements of the coalition, and Cs, called the center of
the coalition, the point of S such that

∑
P∈Ks

γðP, CsÞ= min
X∈ S

∑
P∈Ks

γðP,XÞ.

The coalition Ks is said to be:

• winning if |Ks| ≥ k;
• loser if |Ks| ≤ p – k;
• blocking if p – k < |Ks| < k.

In addition, the coalition is said feasible if ω(Ks) ≤ ε.
We name solution to the problem of consensus to the step s every coalition that

simultaneously meets three requirements: winning, feasible, and maximum.
The algorithm requires that, at each step, some decision-makers (who does not

respect the rules set by the Demiurge (A) can be excluded from the decision-making
power. We denote by D(s) the number of remaining decision-makers at the step s.

A positive real number α, called level of improvement, must be fixed. Thus, at
the step s, the following cases may occur:
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(C1) D(s) is a feasible winning coalition, or a union of feasible winning coalitions;
(C2) D(s) is not a feasible winning coalition, and there is only one solution to the
problem of consensus;
(C3) D(s) is not a union of feasible winning coalitions, and there are several
solutions;
(C4) there are no solutions.

In the case (C1), the algorithm ends and we set f = s. If D(s) is a feasible winning
coalition, it is taken as final solution; instead, if D(s) is a union of feasible winning
coalitions, we define, as fuzzy feasible winning coalition, the fuzzy set with domain
D(s) in which each element Pr

s has a degree of membership equal to the ratio
between the number of feasible winning coalitions to which it belongs, and the total
number of feasible winning coalitions.

In the case (C2), let Ks be the solution; we calculate, for each decision-maker Pr
s

which not belongs to the solution, the maximum distance βrs from an element of the
solution, called distance of Pr

s from the solution, and each of these decision-makers
is invited to review his assessments in order to move from the point Pr

s to a point
Pr
s+1 with distance from Ks equal to a number βrs+1 (less than, or equal to, βrs – α).

The decision-makers who do not conform are excluded from the set D(s+1) of the
remaining decision-makers to the step s + 1.

In the case (C3), for each decision-maker Pr
s not belonging to any solution, and

for each solution Ks, we consider the maximum distance βrsK of Pr
s by an element of

Ks, and βrs is set equal to the minimum of the values βrsK to vary of Ks in the set of
solutions. The number βrs is said the distance of Pr

s from all the solutions. Then, each
of these decision-makers is invited to review his assessments in order to move from
the point Pr

s to a point Pr
s+1 with distance from all of the solutions equal to a number

βrs+1 (less than, or equal to, βrs – α). Also in this case, the decision-makers who do
not conform are excluded from the set D(s+1) of the remaining decision-makers at
the step s + 1.

In the case (C4), we consider, for each decision-maker Pr
s, the variability v(Pr

s)
and a degree of consensus γ(Prs). Evidently, the maximum variability is equal to the
diameter ω(Ds) of the coalition D(s). One at a time, the decision-makers with
maximum variability and minimum consensus are invited to change their opinions
in order to move from the point Pr

s to a point Pr
s+1 with variability less than, or equal

to, ω(Ds) – α, or with equal variability, but a greater degree of consensus. If there
are different decision-makers with the same variability and degree of consensus,
then we may choose the decision-maker that needs to change his position by lot, or
by other criteria determined at the beginning by the Demiurge. If |D(s)| > k, the
decision-maker who does not conform will be excluded from the set D(s+1) of the
remaining decision-makers at the step s + 1. If |D(s)| = k and a decision-maker who
is called to modify his assessment do not adapt, then the Demiurge declares that it
has not been possible to reach consensus, and invites all decision-makers to revise
the decision problem from the beginning, in particular the set of criteria and
alternatives.
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6 The Possible Role of Cluster Analysis as an Aid
to the Achievement of the Consensus

A possible help for an effective procedure for reaching consensus may come from
cluster analysis. While cluster analysis algorithms are automatic, algorithms for and
achieving consensus are not automatic because, at every step, may arise the will-
ingness to change positions of decision-makers appropriately identified by the
Demiurge; however, cluster analysis can help the Demiurge in the selection of
individuals which should be invited to change their positions. One could also
analyze the role of coalitions that, although no final or majority, appear to be
“natural” or “spontaneous” because the groups should be obtained in few steps of
cluster analysis.

Let us consider for example the figure, which represents 7 decision-makers in a
two-dimensional space with two alternatives:

An algorithm for reaching consensus almost certainly would require a change of
positions of decision-makers c and g because they are the most distant from each
other, and it should try to move decision-makers close to d that is in the central
position.

How can we move c (or g) without taking into account the natural coalition to
which it belongs? How do we justify the power of d, which should attract the
others, despite being an isolated decision-maker?

A cluster analysis algorithm should lead to three “natural” coalitions {a, b, c},
{d}, {e, f, g} (Fig. 2). In this case, this solution seems to take into account also
“natural” or “spontaneous” coalitions. But how can we organize an effective and
rational algorithm for reaching consensus after that we have individuated these
three starting groups?

A possible solution could be asking smaller coalitions to move towards a larger
one: e.g. the decision-making d moves towards {e, f, g} or toward {a, b, c}. In this
case we can get a small majority. Another possibility is to ask the larger coalitions
to agree and get closer to each other, such as approaching the centroids. In this way
we can have a large majority.

In general, if we want to respect the coalitions, we could do the following. With
a cluster analysis algorithm, we identify feasible “natural” or “spontaneous”
coalitions. Then, for every coalition K we consider:

• the variability of K, indicated with v(K), defined as the maximum distance of K
from the other coalitions;

Fig. 2 Example of 7 decision-makers in a two-dimensional space with two alternatives
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• the power of K, indicated with π(K), as the number of decision-makers
belonging to K;

• the degree of the strict consensus of K, indicated with σ(K), as the maximum
number of decision-makers Ps of K in close consensus with an element Pr of K.

Moreover, the Demiurge identifies a formula to measure the distance between
two coalitions, e.g. the distance of order h between the centroids or, in general,
between the centers (h is fixed at the beginning by the Demiurge). Then, the
Demiurge identifies “spontaneous” coalitions with maximum variability and asks
them, one at a time, to reduce their variability; first, the Demiurge asks the one with
the least power to reduce its variability; in case there are more coalitions that have
maximum variability and minimum power, the Demiurge asks the one with the least
degree of strict consensus to reduce its variability.

More generally, the Demiurge may act as a mediator for negotiations between
the coalitions, can explain the benefits of their approach, can illustrate the need to
review the various positions.

7 Conclusions and Research Perspectives

In this paper, we have considered various representations of all the decision-makers
and various possible algorithms for reaching consensus. The choice of the algo-
rithms to be used can be the subject of prior agreements between the Demiurge and
the Commission, or it can derive by special regulations.

A key element is to understand whether the decision-makers are independent of
each other or if they are linked in such a way as to form spontaneous coalitions. In
the first case, the algorithm of Sect. 5 seems the most suitable. In the second case, it
seems that the help of cluster analysis and the theory of cooperative games can be
an effective aid for reaching consensus.

A further problem is the respect for the diversity of the various stakeholders and
the need to try to protect all users involved in the decisions. In this regard, it might
be interesting to extend the social field the models used in the environmental field
for the study of biodiversity [7–10]. The have results of such studies could be used
in decision-making problems for the determination of the criteria, for the presen-
tation of alternatives and for evaluation of the usefulness of each pair (alternative
criteria). In addition, the consensus-algorithm may be modified taking into account,
not only of consensus but also of respect for the diversity of views of decision
makers linked to the need for social and economic.
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Reaching Consensus in a Group of Agents:
Supporting a Moderator Run Process
via Linguistic Summaries

Janusz Kacprzyk and Sławomir Zadrożny

Abstract We present some account of our works on consensus reaching processes

in a set of agents (individuals, decision makers, etc.), notably those which are driven

by a moderator, a “super-agent” who is in charge of running the process in an

effective and efficient way. We assume the classic approach to the evaluation of a

degree of consensus due to Kacprzyk and Fedrizzi [19–21] in which a soft degree

of consensus has been introduced as a degree to which, for instance, “most of the

important individuals agree as to almost all of the relevant options”, using the fuzzy

majority introduced into group decision making by Kacprzyk [17, 18] equated with

a fuzzy linguistic quantifier (most, almost all, . . . ) and handled via Zadeh’s [53]

classic calculus of linguistically quantified propositions or some other method,

notably Yager’s [50] OWA (ordered weighted average) operators. The consensus

reaching process is run in a group of agents, which is assumed to be relatively

small (e.g. human experts), by a moderator for whom some support, i.e. additional

information may be useful. In our case, it is provided by a novel combination of,

first, the use of the a soft degree of consensus alone within a decision support sys-

tem setting along the lines of Fedrizzi et al. [5], Fedrizzi et al. [4], Kacprzyk and

Zadrożny [28, 31]. Second, the linguistic data summaries in the sense of Yager [49],

Kacprzyk and Yager [24], Kacprzyk et al. [25], in particular in its protoform based

version proposed by Kacprzyk and Zadrożny [30, 32], are employed to indicate in

a natural language some interesting relations between individuals and options to

help the moderator identify crucial (pairs of) individuals and/options which pose

some threats to the reaching of consensus. Third, we mention the use of some results

obtained in our recent paper (Kacprzyk et al. [40]) on the use of a novel data min-
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ing tool, a so-called action rule proposed by Raś and Wieczorkowska [46], which

are meant in our context to find best concessions to be offered to the individuals

for changing their preferences to increase the degree of consensus. Fourth, our new

results of the use of the concepts of a consensory and dissensory agent (cf. Kacprzyk

and Zadrożny [37]) are summarized.

Keywords Consensus ⋅ Consensus reaching support ⋅ Fuzzy preference ⋅ Fuzzy

majority ⋅ Fuzzy logic ⋅ Linguistic quantifier ⋅ Linguistic summary ⋅OWA (ordered

weighted averaging) operator ⋅ Action rule ⋅ Consensory agent ⋅ Dissensory agent

1 Introduction

In view of the complexity of the present world plagued by economic, environmental,

social, etc. problems, the process of reaching decisions that would be good, or even

acceptable, to as many as possible members of a group, not to speak about the whole

society, becomes extremely important. It is obvious that consensus, as a reflection of

such a wide acceptance, has become a widely discussed and considered issue, both

in the academic and scholarly community, and among economists, social scientists,

political scientists, politicians, etc.

In most cases, decision making processes, maybe even serious discussions, start

with a point of departure which exhibits a possibly high initial agreement of the

agents, parties or institutions involved, though maybe yet far from a consensus.

This can facilitate the process of reaching a proper decision (consensus) that will

be acceptable to all the participants involved, providing some just and fair solutions.

This clearly suggests that the initial consensus should then be further made deeper—

through a consensus reaching process.

We will mainly focus our attention on the process of consensus reaching among

agents whose testimonies may initially differ to a considerable extent but we assume

the agents’ rational commitment to consensus, i.e. a readiness to change testimonies

to attain a higher extent of consensus. This will be done via suggestions of the mod-

erator who will have some mechanisms and tools to propose arguments for changes.

This is meant here as a consensus reaching process [2, 12] which is dynamic, itera-

tive and interactive, meant to last over some time span.

In all nontrivial cases the consensus reaching process would need a computer

based support, and a moderator to run it. The moderator is a special individual

(agent), either human or software who is responsible for running the discussion

within the group of agents, convincing agents to change their testimonies using

analyses and argumentation, etc. until a proper state of agreement (“consensus”) is

reached that may facilitate a fair, just and acceptable collective decision to be made.

We assume the following basic setting. First, the agents present individual
preference relations, which can be aggregated to a social fuzzy preference relations—
cf., e.g., Nurmi [43]. Then, a fuzzy majority is assumed as proposed by

Kacprzyk [17, 18]; for a comprehensive review, cf. Kacprzyk et al. [38, 39]. The
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fuzzy majority may be represented in a natural way via the so-called linguistic quan-
tifiers: most, almost all, much more than a half, . . . which can be handled by fuzzy

logic using notably Zadeh’s [53] calculus of linguistically quantified proposition

which is simple and intuitively appealing; moreover, for instance, Yager’s [50] OWA

(ordered weighted average) operators can also be employed.

We assume a human-consistent approach to the definition of a soft degree of
consensus introduced by Kacprzyk and Fedrizzi [19–21] as a degree to which, e.g.,

“most of the relevant (knowledgeable, expert, . . . ) individuals agree as to almost all
of the important options”. Then, we assume a moderator-run support of consensus

reaching proposed by Fedrizzi et al. [5], and then further developed by Kacprzyk and

Zadrożny [28, 31] that is based on the soft degrees of consensus mentioned above

and some additional information, hints, clues, etc. derived.

To be more specific, in our former papers (cf. Kacprzyk and Zadrożny [29, 35])

we proposed the use of linguistic data summaries in the sense of Yager [49], but in

their extended and implementable version of Kacprzyk and Yager [24] or Kacprzyk

et al. [25] as a tool to get insight and information as to the group’s testimonies, diffi-

culties, dynamics, etc. exemplified by which individuals provide testimonies which

pose problems, which pairs of options may pose some problems, etc.

Moreover, in our recent paper, cf. Kacprzyk and Zadrożny [37] we proposed a

novel approach based on new concepts of a consensory and dissensory agent for

whom the above mentioned additional information in the form of linguistic sum-

maries is separately derived, and then used by the moderator as a step towards a

fairness type attitude of the moderator.

Fuzzy majority is in common use by the humans, and—in our context—Loewer

and Laddaga [41] statement is often cited:

. . . It can correctly be said that there is a consensus among biologists that Darwinian natural

selection is an important cause of evolution though there is currently no consensus con-

cerning Gould’s hypothesis of speciation. This means that there is a widespread agreement
among biologists concerning the first matter but disagreement concerning the second . . .

and it is clear that a strict majority as, e.g., more than 75% would not reflect the

intention.

The use of fuzzy linguistic quantifiers has been proposed by the authors to

introduce a fuzzy majority for measuring (a degree of) consensus and deriving

new solution concepts in group decision making (cf. Kacprzyk [17, 18], Kacprzyk

and Fedrizzi [19–21]), as well as on voting (choice functions) by Kacprzyk and

Zadrożny [27, 28, 32].

This soft degree of consensus is basically meant to overcome some “rigidness” of

the conventional concept of consensus in which (full) consensus occurs only when

“all the agents agree as to all the issues” which is unrealistic is practice. The new

degree of consensus can be therefore equal to 1, which stands for full consensus,

when, for instance, “most of the (important) agents agree as to almost all (of the

relevant) options”.

The agents provide their testimonies concerning (pairs of) options in question as

fuzzy preference relations expressing preferences given in pairwise comparisons of
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options. For an effective and efficient group decision making, we need to first reach

consensus among the agents. A discussion is run—supported by a moderator—to

clarify points of view, exchange information, advocate opinions, etc., to imply some

changes in the preferences, possibly getting them closer to consensus.

The moderator usually needs some support with some hints, clues, suggestions,

etc. as to the most promising directions for a further discussion, troublesome options

and/or individuals, etc.

Kacprzyk and Zadrożny [29] have proposed to use for this, first, linguistic data

summaries to subsume what proceeds in the group with respect to the uniformity

of preferences, in the sense of agents and options, which was then extended in

Kacprzyk and Zadrożny [35]. To quote, for illustration some examples, linguistic

summaries like: “Most individuals definitely prefer option oi1 to option oi2, mod-

erately prefer oi3 to oi4, . . . ”, “Most individuals definitely preferring oi1 to oi2 also

definitely prefer oi3 to oi4”, “Most individuals choose options oi1, oi2, . . . ”, “Most

individuals reject options oi1, oi2, . . . ”, “Most options are dominated by option oi in

opinion of individual ek”, “Most options are dominated by option oi in opinion of

individual ek1, ek2, . . . ”, “Most options dominating alternative oi in opinion of indi-

vidual ek1 also dominate option oi in opinion of individual ek2”, etc. can be given.

Obviously, such summaries may help the moderator and the group of agents gain

a deeper understanding and insight of relations within the agents and their testi-

monies (preferences). The derivation of such valuable summaries can be facilitated

by Kacprzyk and Zadrożny’s [27, 28] works on general choice functions in group

decision making as well as, e.g. Herrera-Viedma et al. [14, 15] approach. The lin-

guistic summaries will also be employed here though in a slightly different setting.

A novel and interesting approach in this context has been recently proposed by

Kacprzyk et al. [40] based on the use of so-called action rules. The concept of

an action rule was proposed by Raś and Wieczorkowska [46], in the context of

Pawlak’s [45] information systems, and then has been extensively further studied

and developed by Raś and his collaborators. Roughly speaking, the purpose of an

action rule is to show how a subset of flexible attributes should be changed to obtain

an expected change of the decision attribute for a subset of objects characterized

by some values of the subset of stable attributes. For example, in a bank context,

an action rule may, e.g., indicate that offering a 20% reduction in a monthly bank

account fee instead of a 10% reduction to a middle-aged customer is expected to

increase his or her spendings from medium to high, and action rules are sought to

attain as “cheaply as possible” a desired change of an attribute value. In our context,

the essence is to find some cheapest concessions to eventually be offered to some

agents to make them change preferences in a desired direction.

In general, the use of linguistic summaries, action rules, and other elements which

can provide insight into the very essence of the structure of the group, testimonies,

etc. may be described as tools and techniques for a better, more effective and efficient

moderation in the consensus reaching process. This approach is very powerful but

will not be used in this paper, for simplicity and clarity.

Recently, Kacprzyk and Zadrożny [37] have proposed to additionally use another

approach. Namely, as already mentioned, the (computer based) support of the con-
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sensus reaching process as meant here (cf. Fedrizzi et al. [5], Fedrizzi et al. [4],

Kacprzyk and Zadrożny [28, 31], and Zadrożny and Furlani [55]) is extended using

the following reasoning: (1) at each consensus reaching stage, the agents present

their current testimonies (individual fuzzy preference relations), a fuzzy majority

based degree of consensus is calculated—if it is high enough, or a time limit is over,

then the process is terminated and otherwise the subsequent steps are executed, (2)

the current individual fuzzy preference relations are aggregated using, for instance,

some averaging (cf. Nurmi [43], Kacprzyk et al. [38], etc.) to a current consensual

social fuzzy preference relation, (3) normalized degrees of similarity of the particular

individual fuzzy preference relations to the current consensual social fuzzy prefer-

ence relation are calculated using some similarity measure, e.g. 1—the value of the

Hamming or Euclidean distance, (4) normalized degrees of dissimilarity of the par-

ticular individual fuzzy preference relations to the current consensual social fuzzy

preference relation are calculated using some dissimilarity measure (e.g. Hamming

or Euclidean distance), (5) a fuzzy set of consensory agents is determined in which

the degree of membership of a particular agent is the normalized degree of simi-

larity of his/her individual fuzzy preference relation to the consensual social fuzzy

preference relation, (6) a fuzzy set of dissensory agents is determined in which the

degree of membership of a particular agent is the normalized degree of dissimilarity

of his/her individual fuzzy preference relation to the consensual social fuzzy pref-

erence relation, (7) the moderator, supported by additional information provided by

linguistic summaries, derived separately for the above two types of agents, consen-

sory and dissensory, specifies sets of “troublesome” agents and options for which

changes in the preferences should hopefully make the degree of consensus higher,

and suggests these changes of preferences to those agents, and with respect to those

options mentioned, and then the above steps are repeated until the end of the process.

Notice that the introduction of the concepts of a consensory and dissensory agent,

then used separately in the moderated consensus reaching process, can clearly be

viewed to follow the very idea of a fairness, or equity driven approach because

we take into account both the “good” and “bad”, “promising” and “nonpromising”,

“flexible and stubborn”, etc. agents—cf. Gołuńska and Hołda [6], or Gołuńska and

Kacprzyk [7]. This may provide a new way of a equitable, fairness focused moder-
ation of the consensus reaching process. We will not consider this problem in more

detail and refer the reader to Kacprzyk and Zadrożny [36].

Now, first, we will briefly present the calculus of linguistically quantified propo-

sitions, and the concept of a soft degree of consensus, followed by the essence of

a consensus reaching process. We will then briefly show how linguistic data sum-

maries can be used to help gain insight into the very essence of consensus reaching,

and then we will briefly show the essence of a equitable, fairness focused moderation

of the consensus reaching process.
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2 A Soft Degree of Consensus Under Fuzzy Preferences
and a Fuzzy Majority

First, to set the stage, we will outline Zadeh’s calculus of linguistically quantified

propositions.

2.1 Linguistic Quantifiers and a Fuzzy Logic Based Calculus
of Linguistically Quantified Propositions

A linguistically quantified proposition, exemplified by “most individuals are con-

vinced”, may be generally written as

Qy’s are S (1)

or, with importance R added, exemplified by “most of the important individuals are

convinced”, as

QRy’s are S (2)

or more conveniently written as

Qy’s are (R, S) (3)

The fuzzy predicates S and R are interpreted as fuzzy sets defined in the universe

Y = {yi} under consideration.

Usually, a (proportional, nondecreasing) linguistic quantifier Q is used and is

assumed to be a fuzzy set in [0, 1], for instance

𝜇
“most”(x) =

⎧
⎪
⎨
⎪
⎩

1 for x ≥ 0.8
2x − 0.6 for 0.3 < x < 0.8
0 for x ≤ 0.3

(4)

The truth values (from [0, 1]) of (1) and (2) are calculated by using Zadeh’s [53]

calculus of linguistically quantified statements, respectively, as:

truth(Qy’s are S) = 𝜇Q[
1
n

n∑

i=1
𝜇S(yi)] (5)

truth(QRy’s are S) = 𝜇Q[
∑n

i=1(𝜇R(yi) ∧ 𝜇S(yi))
∑n

i=1 𝜇R(yi)
] (6)
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where “∧” (minimum) can be replaced by, e.g., a t-norm; n denotes the cardinality

of the universe Y .

Some other methods to interpret linguistically quantified propositions can be

used, exemplified by the OWA operators (cf. Yager [50]) which will not be, how-

ever, discussed here.

2.2 A Degree of Consensus Under Fuzzy Preferences and a
Fuzzy majority

We have a set of n options, O = {o1,… , on}, and a set of m agents, E = {e1,… , em}.

Each agent ek, k = 1, 2,… ,m, provides his or her individual fuzzy preference rela-
tion, Pk, given by its membership function 𝜇Pk

∶ O × O → [0, 1]. If the cardinality of

the set S is small enough (as assumed here), an individual fuzzy preference relation

of individual ek, Pk, may conveniently be represented by an n × n matrix Pk = [rkij],
such that rkij = 𝜇Pk

(oi, oj); i, j = 1, 2,… , n; k = 1,… ,m. Pk is commonly assumed

(also here) to be reciprocal in that rkij + rkji = 1 for i ≠ j; moreover, it is also normally

assumed that rkii = 0, for all i, j, k.

The Pk’s are usually meant as

𝜇Pk
(oi, oj) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1 if oi is definitely preferred to oj
c ∈ (0.5, 1) if oi is slightly preferred to oj
0.5 in the case of indifference

d ∈ (0, 0.5) if oj is slightly preferred to oi
0 if oj is definitely preferred to oi

(7)

The relevance of options, B, is assumed to be given as a fuzzy set B defined in the

set of options O such that 𝜇B(oi) ∈ [0, 1] is a degree of relevance of option oi, from

0 for fully irrelevant to 1 for fully relevant, through all intermediate values.

The relevance of a pair of options, (oi, oj) ∈ O × O, may be defined, for instance,

as

bBij =
1
2
[𝜇B(oi) + 𝜇B(oj)] (8)

which is clearly the most straightforward option; evidently, bBij = bBji , and bBii do not

matter; for each i, j.
And analogously, the importance of agents, I, is defined as a fuzzy set in the set

of agents E such that 𝜇I(ek) ∈ [0, 1] is a degree of importance of agent ek, from 0 for

fully unimportant to 1 for fully important, through all intermediate values.

Then, the importance of a pair of agents, (ek1 , ek2 ), b
I
k1,k2

, may be defined in various

ways, e.g., analogously as (8), i.e.
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bIk1,k2 =
1
2
[𝜇I(ek1 ) + 𝜇I(ek2 )] (9)

Using Zadeh’s [53] calculus of linguistically quantified propositions, we derive

the soft degree of consensus in the following steps, by consecutively calculating:

∙ the degree of strict agreement between agents ek1 and ek2 as to their preferences

between options oi and oj

vij(ek1 , ek2 ) =
{

1 if rk1ij = rk2ij
0 otherwise

(10)

where here and later on in this section, if not otherwise specified, k1 = 1,… ,m −
1; k2 = k1 + 1,… ,m; i = 1,… , n − 1; j = i + 1,… , n.

∙ the degree of agreement between agents ek1 and ek2 as to their preferences between

all relevant pairs of options is

vB(ek1 , ek2 ) =
∑n−1

i=1
∑n

j=i+1[vij(ek1 , ek2 ) ∧ bBij ]
∑n−1

i=1
∑n

j=i+1 b
B
ij

(11)

∙ the degree of agreement between agents ek1 and ek2 as to their preferences between

Q1 relevant pairs of options is

vBQ1(ek1 , ek2 ) = 𝜇Q1[vB(ek1 , ek2 )] (12)

∙ the degree of agreement of all important pairs of agents as to their preferences

between Q1 pairs of relevant options

vI,BQ1 =
2

m(m − 1)

∑m−1
k1=1

∑m
k2=k1+1

[vBQ1(ek1 , ek2 ) ∧ bIk1,k2 ]
∑m−1

k1=1
∑m

k2=k1+1
bIk1,k2

(13)

and, finally,

∙ the degree of agreement of Q2 important pairs of agents as to their preferences

between Q1 relevant pairs of options, called the degree of Q1∕Q2∕I∕B-consensus

con(Q1,Q2, I,B) = 𝜇Q2(v
I,B
Q1) (14)

Since the strict agreement (10) may be viewed too rigid, we can use the degree

of sufficient agreement (at least to degree 𝛼 ∈ (0, 1] of agents e1 and e2 as to their

preferences between options oi and oj, as well as to explicitly introduce the strength

of agreement into (10), and analogously define the degree of strong agreement of

agents e1 and e2 as to their preferences between options oi and oj. This will not be

considered in this paper, for simplicity.
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Obviously, instead of the classic minimum, “∧”, we can use any t-norm

(cf. Kacprzyk et al. [38]).

2.3 Linguistic Data Summaries

A linguistic data summary is meant as a natural language like (short) sentence that

subsumes the very essence (from a certain point of view) of a (numeric) set of data,

too large to be comprehensible by humans. The original Yagers approach to the lin-

guistic summaries (cf. Yager [49], Kacprzyk and Yager [24], Kacprzyk et al. [25] and

Kacprzyk and Zadrożny [30]) may be briefly presented as follows: Y = {y1,… , yn}
is a set of objects, A = {A1,… ,Am} is a set of attributes characterizing objects from

Y , and Aj(yi) denotes a value of attribute Aj for object yi.
A linguistic summary of set Y consists of:

∙ a summarizer S, i.e. an attribute together with a linguistic value (label) defined on

the domain of attribute Aj;

∙ a quantity in agreement Q, i.e. a linguistic quantifier (e.g. most);

∙ truth (validity) T of the summary, i.e. a number from the interval [0, 1] assessing

the truth (validity) of the summary (e.g., 0.7),

and, optionally, a qualifier R may occur, i.e. another attribute together with a linguis-

tic value (label) defined on the domain of attribute Ak.

In our context we may identify objects with agents and their attributes with their

preferences over various pairs of options. Then, the linguistic summary may be

exemplified by

T(Most agents prefer option o1to o2) = 0.7 (15)

A richer form of the summary, which will be of importance for our work, may

include a qualifier as in, e.g.,

T(Most of important agents prefer option o1 to o2) = 0.7 (16)

Thus, the core of a linguistic summary is a linguistically quantified proposition
in the sense of Zadeh [53] which were presented in the previous section.

The linguistic summaries (15) and (16) may be written in a more general form as:

Qy’s are S (17)

QRy’s are S (18)

or more conveniently as

Qy’s are (R, S) (19)
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Then, T , i.e. its truth (validity), directly corresponds to the truth value of (17)

or (18).

Using Zadeh’s [53] fuzzy logic based calculus of linguistically quantified propo-

sitions, a (proportional, nondecreasing) linguistic quantifier Q is assumed to be

a fuzzy set in [0, 1]. Then, the truth values (from [0, 1]) of (17) and (18) are

calculated, respectively, as:

truth(Qy’s are S) = 𝜇Q[
1
n

n∑

i=1
𝜇S(yi)] (20)

truth(QRy’s are S) = 𝜇Q[
∑n

i=1(𝜇R(yi) ∧ 𝜇S(yi))
∑n

i=1 𝜇R(yi)
] (21)

where “∧” (minimum) can be replaced by, e.g., a t-norm.

The fuzzy predicates S and R are assumed here to be of a simplified, atomic

form referring to just one attribute as, e.g., importance, or to the preferences with

respect to one pair of options, in the context considered here. They can be extended to

cover more sophisticated summaries involving some confluence of various attribute

values as, e.g., young and well paid for age and salary. Clearly, the most inter-

esting are non-trivial, human-consistent summarizers (concepts) as, e.g.: produc-

tive workers, difficult orders, etc. Their definition may require a complicated com-

bination of attributes, possibly with a hierarchy of the attributes imposed (not all

attributes are of the same importance for a concept in question)—cf. Kacprzyk

and Zadrożny [30, 34], etc.

Notice that the very concept of a linguistic summary is obviously closely related

to the definitions of degrees of consensus discussed in previous sections. However,

the specific setting of linguistic data summaries will be more convenient for our dis-

cussion of how some additional information (or knowledge) can be used for helping

the moderator run a consensus reaching session.

3 A Consensus Reaching Process

The basic setting of the consensus reaching process follows Fedrizzi et al. [5],

Fedrizzi et al. [4], Kacprzyk and Zadrożny [28, 31], and Zadrożny and Furlani [55]

approach though a different perspective, mainly represented by the Spanish

researchers, notably, Chiclana, Herrera, Herrera-Viedma et al., etc. [15] can also

be used.

Basically, there is a group of participating agents (human, software agents, small

groups, organizations, institutions, etc.) and a moderator who is meant to effectively

and efficiently run the consensus reaching session. The individuals and the moderator

exchange information and opinions, provide argumentation, operating in a network

as shown in Fig. 1.
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Moderator

Fig. 1 Agents and the moderator in a consensus reaching session
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Fig. 2 Dynamics of the consensus reaching process

The consensus reaching proceeds dynamically, step by step. In the beginning,

at t = 0, the agents present their initial fuzzy preference relations which may differ

from each other to a large extent. The moderator tries to persuade them to change

their preference relations using some argumentation, concessions, etc. The agents

are, obviously, assumed to be rationally committed to reaching consensus, that is,

are willing to change their preferences, if necessary and to some extent (Fig. 2).

The moderator should be supported, e.g., via an effective and efficient human-

computer interface, enhanced communication capabilities, advanced presentation

tools for the visualization or verbalization of results obtained, etc. We will use here

some natural language based tools.
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4 Supporting the Moderator to Run a Consensus Reaching
Session Using Linguistic Data Summaries

In this work we propose a new approach whose essence is, in its first part, a natural

language based support—suggested in Kacprzyk and Zadrożny [34]—that is based

on the verbalization of results obtained by using linguistic summaries of data in the

sense of Yager [49], but in their implementable and extended version proposed by

Kacprzyk and Yager [24] and Kacprzyk et al. [25], or even more so in the sense

of a protoform based analysis proposed by Kacprzyk and Zadrożny [30], and an

NLG (natural language generation) based perspective suggested by Kacprzyk and

Zadrożny [34], in which an extremely powerful and far reaching relation to natural

language generation (NLG) is shown.

4.1 Using Linguistic Data Summaries to Help the Moderator
Run a Consensus Reaching Session

We use a set of indicators assessing how far the group is from consensus, what are

the obstacles in reaching consensus, which preference matrix may be a candidate

for a consensual one, etc. These indicators are presented as some linguistic data

summaries.

The original definition of a soft degree of consensus, i.e. the degree to which

“Most of the important individuals agree in their preferences as to almost all of the

important options”, may be more formally expressed as follows:

Qh’s are (B′
,Qq’s are (I′, sim(ph1q , p

h2
q )) (22)

where: h = (h1, h2) ∈ E × E is a pair of individuals, B′
represents importance of a

pair of individuals (related to B, an importance of particular individuals), q ∈ O × O
is a pair of options, I′ represents importance of a pair of options (related to I, an

importance of particular options), phiq is a preference degree of individual i of pair h
for pair of options q, and sim(⋅, ⋅) is a measure of similarity between two preference

degrees.

Thus, the very concept of the consensus degree may be seen as corresponding

to a specific linguistic summary truth value. Other linguistic summaries may be

instrumental in supporting consensus reaching process, too. Their general struc-

ture is such that summarizer S and qualifier R are composed of features of either

agents or options (depending on the perspective adopted, to be discussed later) and

fuzzy values (labels) expressing the degree of preferences or importance weights of

individuals/options.
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4.1.1 The First Case: Agents as Objects

The objects of a linguistic summary may be identified with agents and their attributes

are preference degrees for the particular pairs of options and importance degrees of

the agents. Formally, referring to Sect. 2.3, we have:

Y = E (23)

and

A = {ij} ∪ {} (24)

where attributes ij correspond to preference degrees over pairs of options (oi, oj),
and  represents the importance.

Then, the following types of summaries may be useful for the moderator to run

the consensus reaching session.

4.1.2 Consensus Indicating/Building Summaries

They correspond to a flexible definition of consensus (cf. (22)) that states thatmost of
the individuals express similar preferences, for instance “Most individuals definitely

prefer oi1 to oi2, moderately prefer oi3 to oi4, . . . ”, etc. formally written as

Qek (pki1,i2 = definite) ∧ (pki3,i4 = moderate) ∧ … (25)

If the list of conjuncts is long enough, then a high value of truth of (25) means that

there is a consensus among the individuals as to their preferences.

Clearly, this type of a linguistic summary may be used as another definition of

consensus. Similarly to (22), importance weights of individuals and/or options may

be added.

If the list of conjuncts is short, such a summary may be treated as an indication that

no sufficient consensus has been reached but can provide an indication of opinions

that are shared by the group of individuals. Thus, they may be either further discussed

to reach more agreement in the group or assumed to be ready to proceed to other

issues.

4.1.3 Discussion Targeting Summaries

They may be used to direct a further discussion in the group, and may disclose some

patterns of understanding. For instance:

Most individuals definitely preferring oi1 to oi2 also definitely prefer oi3 to oi4

to be formally expressed as
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Qek (pki1,i2 = definite, pki3,i4 = moderate) (26)

The discovery of association expressed with such a summary may trigger a further

discussion enabling a better understanding of the decision problem.

4.1.4 Option Choice Oriented Summaries

Though we have assumed so far that the goal is to agree upon the content of the

preference matrices, an ultimate goal is often to select either an option or a set of

options preferred by the group. This can also be supported by proper summaries.

To generate summaries taking that into account we have to assume a constructive

definition of an option preferred by an agent as implied by his or her fuzzy preference

relation, and we can apply here some choice functions considered by Kacprzyk and

Zadrożny [27, 28, 32]. They are based on the concept of the classic choice function,

C, that may be defined in a slightly simplified general form as:

C(S,P) = O0, O0 ⊆ S (27)

that may be exemplified by

C(S,P) = {oi ∈ O ∶ ∀i≠jP(oi, oj)} (28)

where P denotes a classical crisp preference relation.

In the case of a fuzzy preference relation, P, we assume C to be a fuzzy set of

options defined as:

𝜇C(oi) = min
j

𝜇P(oi, oj) (29)

which may lead to a more flexible formula by replacing the strict min operator with

a linguistic quantifier Q (e.g., “most”) yielding:

𝜇C(oi) = T(Qoj P(oi, oj)) (30)

For our further discussion the specific form of the choice function is not

important, and we assume (30). In fact, it is possible that each individual adopts

a different choice function, and hence a choice function assigned to each individual

is denoted as Ck.

Now, we can define a linguistic summary selecting a set of collectively preferred

options, for instance as:

Most individuals choose options oi1, oi2, . . .

to be formally expressed as, e.g.,

Qek (𝜇Ck
(oi1) = high) ∧ (𝜇Ck

(oi2) = very high) ∧ … (31)
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where the membership degrees to a choice set are discretized and expressed using

linguistic labels.

The options referred to in such a summary qualify as a consensus solution if the

goal of the group is to arrive at a subset of collectively preferred options. Therefore,

such a summary may be viewed an alternative indicator of consensus.

On the other hand, a summary exemplified by

Most individuals reject options oi1, oi2, . . .

to be formally expressed as, e.g.,

Qek (𝜇Ck
(oi1) = low) ∧ (𝜇Ck

(oi2) = very low) ∧ … (32)

make it possible to exclude the options concerned from a further consideration.

Therefore, by using the concept of a choice function we can get a constructive

and practical definition of a consensus degree. Namely, both (22) and (25) refer to

the preferences of the individuals over all pairs of options, possibly with impor-

tance weights. Since these importance weights are set independently of the current

“standing” of the options implied by individual preference relations, a more rational

definition should put more emphasis on preferences related to the options preferred

by individuals and less on those rejected by them. Thus, the importance weights of

pairs of options in (22) may be assumed as:

𝜇I′kl
(oi, oj) = f (𝜇Ck

(oi), 𝜇Cl
(oi), 𝜇Ck

(oj), 𝜇Cl
(oj)) (33)

that is, importance weights of pairs of options are specific for each pair of individuals.

Function f may be exemplified by a simple arithmetic average.

4.1.5 Second Case: Options as Objects

Objects of linguistic summaries may also be equated with options and, then, their

attributes are preference degrees over other options as expressed by particular agents

adding, possibly, importance degrees of the options. Formally, we have:

Y = O (34)

and

A = {k
ij} ∪ {} (35)

where attributes 
k
ij correspond to preference degrees over other options and  rep-

resents importance.

This perspective may give an additional insight into the structure of preferences

of both the entire group and particular individuals. For example, a summary:
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Most options are dominated by option oi in opinion of individual k

formally expressed as, e.g.,

Qoj pkij = definite (36)

directly corresponds to the choice function mentioned earlier. Namely, if such a sum-

mary is valid, then it means that option oi belongs to the choice set of individual k.

On the other hand, a summary like:

Most options are dominated by option oi in opinion of individual k1, k2, . . .

formally expressed as, e.g.,

Qoj (pk1ij = definite) ∧ (pk2ij = definite) ∧ … (37)

indicates option oi as a candidate for a consensual solution.

Interesting patterns in the group may be grasped via linguistic summaries exem-

plified by:

Most options dominating option oi in opinion of individual k1 also dominate option oi in

opinion of individual k2

to be formally expressed as, e.g.,

Qoj (pk1ji = definite, pk2ji = definite) (38)

Such a summary indicates a similarity of preferences of individuals k1 and k2.

This similarity is here limited to just a pair of options but may be much more con-

vincing in case of:

Qoj (pk1ji1 = definite ∧ pk1ji2 = definite ∧… ,

pk2ji1 = definite ∧ pk2ji2 = definite ∧…)

Another perspective may be obtained assuming a different set of attributes for

options. Namely, we can again employ the concept of a choice set and characterize

each option oi by a vector:

[𝜇C1
(oi), 𝜇C2

(oi),… , 𝜇Cm
(oi)] (39)

Then, a summary like:

Most options are preferred by individual ek

formally expressed as, e.g.,

Qoi 𝜇Ck
(oi) = high (40)

indicates individual ek as being rather indifferent in his/her preferences, while a

summary like:
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Most options are rejected by individual el

formally expressed as, e.g.,

Qoi 𝜇Cl
(oi) = low (41)

suggests that individual el exposes a clear preference towards a limited subset of

options.

The second representation of options as objects may be seen as a kind of a com-

pression of the first. Namely, for a given option oi all pkij’s related to individual ek
which represent oi in (35) are compressed into one number 𝜇Ck

(oi) in (39), i.e.,

[pki1, p
k
i2,… , pkin] ⟶ 𝜇Ck

(oi) (42)

Another compression is possible by aggregating, for a given option oi, all pkij’s
related to option oj which represent oi in (35) into one number, i.e.,

[p1ij, p
2
ij,… , pmij ] ⟶ aggregation(pkij)k=1,m (43)

The aggregation operator may take various forms, including a linguistic quantifier

guided aggregation. The representation of options as objects obtained thus far may

be used to generate summaries with interpretations similar to (39), but with slightly

different semantics. The difference is related to the direct and indirect approaches to

group decision making as proposed and discussed in Kacprzyk [17, 18].

This subsumes some basic possible verbalized types of an additional informa-

tion, which is based on linguistic summaries, that can be of a great help in support-

ing the moderator to effectively and efficiently run a consensus reaching session.

Among other approaches in a related spirit one should also cite Herrera-Viedma

et al. [14, 15].

4.1.6 Remarks on Using the Concepts of a Consensory and Dissensory
Agents

As we have already indicated, the recent new approach to the support of consensus

reaching processes has been proposed by Kacprzyk and Zadrożny [37]. It is based

on a new concept of a consensory and dissensory agent. Basically, the moderator

tries to induce changes at preferences of agents and pairs of options that are the

most “promising” to possibly faster arrival at a higher degree of consensus. This is

often equivalent to the concentration of agents whose testimonies are already close

to consensus, and the disregard of agents whose testimonies are far from consensus.

A much more promising policy (cf. Gołuńska and Kacprzyk [7], Gołuńska et al. [8],

Gołuńska et al. [9–11]) should most probably be the one which would be fair in the

sense that it would guarantee that both more promising and less promising agents,

that is, in our context both the consensory and dissensory agents, would be taken

into account.
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Therefore, we derive the linguistic summaries shown in this section separately for

the consensory and dissensory agents, that is, just to give some examples:

∙ for the consensory agents:

– for the linguistic summarymost of the important consensory agents express sim-
ilar preferences, for instance: “Most of the important consensory agents defi-

nitely prefer oi1 to oi2, moderately prefer oi3 to oi4, . . . ”, “most of the important

consensory agents definitely preferring oi1 to oi2 also definitely prefer oi3 to oi4,

. . . ”,

∙ for the dissensory agents:

– for the linguistic summarymost of the important dissensory agents express simi-
lar preferences, for instance “Most of the important dissensory agents definitely

prefer oi1 to oi2, moderately prefer oi3 to oi4, . . . ”, etc., “most of the important

dissensory agents definitely preferring oi1 to oi2 also definitely prefer oi3 to oi4,

. . . ”,

The moderator can now see more in detail how the preferences of the consensory

and dissensory agents look like and are distributed, and therefore has much more

information and clues on which changes of preferences to suggest to which agents.

By taking into account testimonies of both the consensory and dissensory agents, i.e.

taking into account all agents and not neglecting any agent, we obtain an important

step towards a fair treatment of all participating agents.

5 Concluding Remarks

The purpose of this paper was to extend the setting of a moderator run consensus

reaching process under individual fuzzy preference relations, fuzzy majority and a

soft degree of consensus as proposed by the authors in previous papers by some

new elements. First, to support the moderator, the system provides a possibility to

generate linguistic summaries of how the preferences and their required and current

changes proceed, in the context of agents and options, extending former approaches

by the authors. Then, using a new concept of a set of consensory and dissensory

agents recently introduced by the authors, a new approach was proposed in which

the linguistic summaries for the support of the moderator while running a consensus

reaching session were generated separately for the consensory and dissensory agents

so that the moderator was provided with a deeper view that makes it possible to treat

the agents more fairly. This had proved to be very effective and efficient in the running

of real world consensus reaching sessions.
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