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Neurotoxicity of Copper

Felix Bulcke, Ralf Dringen, and Ivo Florin Scheiber

Abstract Copper is an essential trace metal that is required for several important 
biological processes, however, an excess of copper can be toxic to cells. Therefore, 
systemic and cellular copper homeostasis is tightly regulated, but dysregulation of 
copper homeostasis may occur in disease states, resulting either in copper defi-
ciency or copper overload and toxicity. This chapter will give an overview on the 
biological roles of copper and of the mechanisms involved in copper uptake, stor-
age, and distribution. In addition, we will describe potential mechanisms of the 
cellular toxicity of copper and copper oxide nanoparticles. Finally, we will sum-
marize the current knowledge on the connection of copper toxicity with neurode-
generative diseases.
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 Introduction

Copper represents the third most abundant essential transition metal in humans 
(Lewińska-Preis et al. 2011). After the liver, the brain is the organ containing the 
highest copper content (Szerdahelyi and Kása 1986). In its function as a cofactor 
and/or as structural component for several enzymes, copper participates in many 
physiological pathways, including energy metabolism, antioxidative defense and 
iron metabolism (Scheiber et  al. 2014). Furthermore, copper has been linked to 
important biological processes including angiogenesis, response to hypoxia and 
neuromodulation (Scheiber et al. 2014). However, excess of cellular copper above 
the needs is deleterious. Given the requirement for copper on the one hand and the 
potential toxicity of copper on the other hand, cells have evolved mechanisms to 
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maintain cellular copper concentrations in a proper range. However, in genetic cop-
per dyshomeostasis and in neurodegenerative diseases, these homeostatic mecha-
nisms may fail and as a consequence copper deficiency or copper overload may 
occur. Following a brief overview on copper homeostasis and the essentiality of 
copper, this chapter will review the potential mechanisms of copper toxicity and list 
the neurologic diseases that have been connected to noxious effects of copper. In 
addition, we will discuss the toxicity of copper nanoparticles.

 Brain Copper Content and Spatial Distribution

Total brain copper content has been estimated to be 3.1 μg g−1 wet weight in humans 
(Lech and Sadlik 2007), 5.5 μg g−1 wet weight in mice (Waggoner et al. 2000), and 
1.0 μg g−1 wet weight in rat (Olusola et al. 2004). However, the brain is a heteroge-
neous organ with anatomically and physiologically different regions which vary in 
their specific copper contents (Davies et al. 2012; Krebs et al. 2014; Ramos et al. 
2014). In humans, by far the highest copper contents are found in locus coeruleus 
and substantia nigra (Warren et al. 1960; Davies et al. 2012; Krebs et al. 2014), two 
structures which are rich in neuromelanin, but also areas within the hippocampus 
are strongly enriched in copper (Dobrowolska et al. 2008). While the copper con-
centration of the cerebrospinal fluid (CSF) in humans and rodents ranges between 
0.2 and 0.5 μM (Stuerenburg 2000; Forte et al. 2004; Strozyk et al. 2009; Fu et al. 
2015), the extracellular copper concentration in brain tissue may be higher. At least 
for the synaptic cleft, copper concentrations of up to 250 μM have been reported 
(Kardos et al. 1989; Hopt et al. 2003).

Brain copper content and distribution change during development, with age and 
in neurodegenerative diseases. An increase in copper content with age has been 
reported for rodents (Maynard et al. 2002; Tarohda et al. 2004; Wang et al. 2010; Fu 
et al. 2015) and cattle (Zatta et al. 2008), whereas no significant alteration with age 
was observed for most human brain regions (Loeffler et al. 1996; Davies et al. 2012; 
Ramos et al. 2014). The copper content in brains of Wilson’s disease (WD) patients 
was shown to be almost eight times that of control brains, with homogeneous cop-
per accumulation in all brain regions (Litwin et  al. 2013). Such a nonselective 
increase of copper throughout the brain was also observed in the ATP7B null mice, 
a rodent model of Wilson’s disease (Boaru et al. 2014). Brain copper contents of 
Menkes disease (MD) patients (Nooijen et  al. 1981; Willemse et  al. 1982) and 
mouse models of MD (Camakaris et al. 1979; Lenartowicz et al. 2015) were found 
to be lowered to values down to 20% of those found for controls. The amyloid 
plaques in Alzheimer’s disease (AD) brain are strongly enriched in copper (Lovell 
et al. 1998), while cerebral cortex, frontal cortex, amygdala, and hippocampus were 
shown to be decreased by up to 50% in copper content (Deibel et al. 1996; Akatsu 
et al. 2012; James et al. 2012; Rembach et al. 2013). In Parkinson’s disease (PD) 
and incidental Lewy body disease, a reduction by about 50% in copper content of 
substantia nigra and locus coeruleus has been reported (Ayton et al. 2013; Davies 
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et al. 2014). Substantial lower copper levels have also been observed in hippocam-
pal tissue from patients with mesial temporal lobe epilepsy associated with hippo-
campal sclerosis (Ristić et al. 2014) and in brains of scrapie-infected mice (Thackray 
et al. 2002), whereas an increase in copper was shown for the striatum of Huntington’s 
disease (HD) patients (Dexter et  al. 1992) and in iron-rich areas of the dentate 
nucleus of patients suffering from Friedreich’s ataxia and spinocerebellar ataxia 
type 3 (Koeppen et al. 2012).

 Copper Homeostasis

 Cellular Copper Homeostasis

Many components of the cellular copper homeostasis machinery have been 
described at the molecular level (Fig. 1). The copper transport receptor (Ctr) 1 is 
considered as the major entry pathway for copper into mammalian cells (Lee et al. 
2002a, b), but other copper uptake systems have also been reported (Lee et  al. 
2002b; Moriya et al. 2008; Kidane et al. 2012). Further evidence for such alterna-
tive transport mechanism was provided by data from cell-specific Ctr1 knockout 
mice (Nose et al. 2006; Kim et al. 2009). The copper transporter Ctr2 (Bertinato 
et  al. 2008), the divalent metal transporter (DMT) 1 (Arredondo et  al. 2003; 
Espinoza et al. 2012; Monnot et al. 2012; Lin et al. 2015), and anion transporters 
(Alda and Garay 1990; Zimnicka et al. 2011) have been discussed as possible can-
didate proteins mediating this alternative transport mechanism (Fig. 1). The accu-
mulation of copper in the cytosol bears the risk of copper toxicity. However, under 
physiological conditions, the concentration of free copper within the cell is kept 
very low at around 10−18 M (Rae et al. 1999). This low concentration of free copper 
is maintained by efficient binding of copper to metallothioneins (MTs) and ligands 
of low molecular mass such as glutathione (GSH) (Scheiber et al. 2014). In addi-
tion, mitochondria are likely to contribute to the cellular copper buffering capacity 
(Cobine et al. 2004; Maxfield et al. 2004; Leary et al. 2009). A group of specialized 
proteins, termed copper chaperones, shuttle copper to copper-dependent enzymes 
and to organelles (Fig. 1), thereby protecting it from being scavenged by MTs or 
GSH. Atox1 transfers Cu+ to the N-terminal metal-binding domains of the copper- 
transporting P-type ATPases ATP7A and ATP7B; the copper chaperone for super-
oxide dismutase (CCS) facilitates the insertion of copper into superoxide dismutase 
(SOD) 1, while Cox17, Sco1, Sco2, and Cox11 participate in the insertion of cop-
per ions into mammalian cytochrome c oxidase (Robinson and Winge 2010). In 
addition, a yet to be identified copper ligand aids in the transport of copper into the 
mitochondrial matrix (Cobine et al. 2004; Vest et al. 2013). Cellular copper export 
in mammals relies on the function of two proteins, ATP7A and ATP7B (Fig. 1). 
These proteins belong to the protein family of P1B-type ATPases that use the 
energy of ATP hydrolysis to transport heavy metals across cellular membranes 
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(Arguello et al. 2007). In addition to their critical function in the efflux of cellular 
copper, ATP7A and ATP7B shuttle copper to the secretory pathway for incorpora-
tion into copper-dependent enzymes such as tyrosinase, peptidylglycine-amidating 
monooxygenase (PAM), dopamine β-monooxygenase (DβM), lysyl oxidase (LOX), 
and ceruloplasmin (Cp) (Scheiber et  al. 2014). In the brain, ATP7A is further 
required for the release of copper from hippocampal neurons upon NMDA activa-
tion (Schlief et al. 2005).

Fig. 1 Mechanism of cellular copper transport. Copper enters cells via the copper transporter 
Ctr1, DMT 1, and/or yet-unknown transporters. A cuprireductase provides Cu+, the preferred sub-
strate for Ctr1 and DMT1. In cells, accumulated copper is sequestered by GSH or stored in 
metallothioneins (MT). Copper chaperones shuttle copper to its specific cellular targets. CCS pro-
vides copper to SOD1. A yet-unknown copper ligand aids in the transport of copper into the mito-
chondrial matrix and Cox17, Sco1/Sco2 and Cox11 participate in the insertion of copper into 
cytochrome c oxidase (CCO). Atox1 delivers copper to the copper-transporting P-type ATPases 
ATP7A and ATP7B that shuttle copper to the secretory pathway for subsequent incorporation into 
copper-dependent enzymes and mediate cellular copper efflux

F. Bulcke et al.



317

 Systemic Copper Homeostasis

Overall balance of systemic copper in the body is achieved by regulation of the rate 
of uptake of copper in the small intestine and efflux of copper from the liver in the 
bile (Scheiber et al. 2013). Most dietary copper is absorbed in the small intestine 
(Linder and Hazegh-Azam 1996), and Ctr1 has been shown to be essential for this 
process as mice with intestinal-specific knockout of Ctr1 exhibited severe copper 
deficiency and death by 3 weeks of age due to intestinal block of copper absorption 
(Nose et al. 2006). While it is clear that Ctr1 is required for copper to be bioavail-
able (Nose et al. 2006), its function in apical copper entry is still under controversial 
debate. In most studies, Ctr1 was observed to be localized to the apical surface (Kuo 
et al. 2006; Nose et al. 2010), but Zimnicka et al. (2007) reported that Ctr1 is located 
at the basolateral membrane in the enterocytes. Furthermore, enterocytes deficient 
in Ctr1 hyperaccumulated copper (Nose et al. 2006), suggesting the contribution of 
other transporters in the transport of copper across the brush border of the intestinal 
epithelial cells. Indeed, DMT1 (Arredondo et al. 2003; Espinoza et al. 2012) and 
anion transporters (Zimnicka et al. 2011) have been implicated in this process. The 
copper efflux protein ATP7A is responsible for the transport of copper across the 
basolateral surface of intestinal epithelia cells into portal circulation (Scheiber et al. 
2013). Increasing dietary copper causes ATP7A in intestinal enterocytes to traffic 
from the trans-Golgi network (TGN) to sub-basolateral membrane vesicles that 
periodically fuse with the plasma membrane to release copper into the basolateral 
milieu (Monty et al. 2005; Nyasae et al. 2007). ATP7B is the transporter responsible 
for efflux of copper from the liver into the bile, the principle pathway for removing 
excess copper from the body (Scheiber et al. 2013). Excess copper in the hepatocyte 
stimulates trafficking of this protein from the TGN to vesicles close to the apical 
membrane of the hepatocyte that abuts the biliary canaliculus (Cater et al. 2006), 
thus increasing the capacity of rapid copper sequestration from the cytosol and 
allowing for subsequent excretion of excess copper via exocytosis.

 Brain Copper Homeostasis

Brain copper homeostasis is regulated by the brain barrier systems, i.e., the blood- 
brain barrier (BBB) and blood-CSF barrier (BCB). The main route for copper entry 
into the brain parenchyma appears to be the BBB (Fig. 2), requiring the combined 
action of Ctr1 and ATP7A (Choi and Zheng 2009; Monnot et al. 2011; Zheng and 
Monnot 2012; Fu et al. 2014). Ctr1 is strongly expressed in brain capillary endothe-
lial cells (Kuo et al. 2006) and has been proposed to locate on the luminal side of 
these cells (Kaler 2011) making it an ideal candidate in regulating copper uptake 
from the blood. Copper levels in brains of Ctr1-heterozygous knockout mice are 
reduced to about 50% of that of wild-type animals (Lee et al. 2001) confirming the 
fundamental role for Ctr1 in the transport of copper across the BBB into the brain. 
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The requirement of ATP7A in copper export from brain capillary endothelial cells 
has been demonstrated in a cell culture model for these cells (Qian et al. 1998) and 
dysfunction of ATP7A results in hyperaccumulation of copper in brain capillaries of 
mouse models of Menkes disease (Kodama 1993; Yoshimura et al. 1995). ATP7A 
mRNA levels in the BBB were found to be about 13 times higher than ATP7B 
mRNA levels, supporting a predominant role for ATP7A in copper export from 
brain capillary endothelial cells into brain parenchyma (Fu et al. 2014). Although 
the transport of copper from blood circulation into the choroid plexus (CP) is faster 
than into cerebral capillaries, further transport of copper from the CP into the CSF 
is very slow, virtually prohibiting the passage of copper from blood to CSF (Choi 
and Zheng 2009; Fu et al. 2014). Moreover, in vitro and in vivo data demonstrated 
that the direction of BCB in transporting copper is from the CSF to blood (Fig. 2), 
providing evidence that the BCB’s role in CNS copper homeostasis is to remove 

Fig. 2 Brain copper homeostasis. The blood-brain barrier (BBB) appears to be the main route 
for copper entry into the brain. Brain capillary endothelial cells take up copper from the blood via 
Ctr1. These cells release copper via ATP7A into the brain parenchyma and copper is subsequently 
taken up into astrocytes, neurons and other brain cells, most likely predominantly via Ctr1. At least 
astrocytes release via ATP7A excess of copper into the CSF.  The choroid plexus functions in 
extracting copper from the CSF. Copper taken up via Ctr1 and/or DMT1 into choroidal epithelial 
cells that constitute the blood-CSF barrier (BCB) is either released into the blood via ATP7B or 
stored for potential release by ATP7A back into the CSF
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copper from the CSF (Monnot et al. 2011). However, the situation might be differ-
ent in the developing brain for which the BCB has been hypothesized to be the pri-
mary route of copper entry (Donsante et al. 2010). Using a choroidal cell model, it 
was shown that both Ctr1 and DMT1 mediate copper accumulation by choroidal 
epithelial cells (Monnot et al. 2012; Zheng et al. 2012) although Ctr1 appears to 
play a much more significant role in transporting Cu into the cells than does DMT1 
(Zheng et al. 2012). Both transporters are enriched at the apical membrane of epi-
thelial cells of the CP (Kuo et al. 2006; Wang et al. 2008; Davies et al. 2012; Zheng 
and Monnot 2012) consistent with the proposed function of the CP in extracting 
copper from the CSF. In contrast to the BBB, ATP7B mRNA is more abundantly 
expressed in choroidal epithelial cells than ATP7A.  However, data from siRNA 
knockdown experiments indicates that both Cu-transporting ATPases, ATP7A and 
ATP7B, contribute to copper transport across the BCB (Fu et al. 2014). Furthermore, 
upon copper incubation of rat choroid plexus tissue, ATP7B was shown to traffic 
from a perinuclear location toward the basolateral membrane, whereas ATP7A 
translocated toward the apical microvilli, suggesting that while ATP7B is responsi-
ble for release of copper into the blood, ATP7A is responsible for the efflux of cop-
per from choroidal epithelial cells into the CSF (Fu et al. 2014). Such trafficking 
behavior of ATP7A and ATP7B in choroidal epithelial cells has been previously 
hypothesized by Kaler (Kaler 2011) but contrasts the situation reported for other 
polarized cells (Monty et al. 2005; Llanos et al. 2008; Michalczyk et al. 2008) and 
to the localization of ATP7A and ATP7B reported for human epithelial cells of the 
CP (Davies et al. 2012).

 Essentiality of Copper

By virtue of its function as cofactor and/or structural component in a number of 
important enzymes, copper is essential for a variety of biological pathways (Scheiber 
et al. 2014). The final step of the electron transfer in the mitochondrial respiratory 
chain, the oxidation of reduced cytochrome c by dioxygen, is catalyzed by cyto-
chrome c oxidase, a member of the superfamily of heme-copper-containing oxi-
dases (Ferguson-Miller and Babcock 1996). The copper-dependent SODs 1 and 3 
contribute to the antioxidative defense by catalyzing the dismutation of superoxide 
to oxygen and hydrogen peroxide (Perry et al. 2010). The multi-copper oxidase Cp 
plays an important role in iron homeostasis and thus links copper and iron metabo-
lism (Healy and Tipton 2007). Lysyl oxidase has a crucial role in the formation, 
maturation, and stabilization of connective tissues by catalyzing the cross-linking of 
elastin and collagen (Lucero and Kagan 2006). Both DβM and PAM belong to a 
small class of copper proteins found exclusively in mammals (Klinman 2006). DβM 
catalyzes the final step in noradrenaline synthesis, the oxidative hydroxylation of 
dopamine to noradrenaline, and thus plays an important role in the catecholamine 
metabolism (Timmers et  al. 2004). PAM exclusively catalyzes the C-terminal 
α-amidation of propeptides, a posttranslational modification essential for the 
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bioactivity of diverse physiological regulators, including peptide hormones, neu-
rotransmitters, and growth factors (Bousquet-Moore et al. 2010b). Tyrosinase is the 
key enzyme in the biogenesis of melanin pigments. Among others, tyrosinase cata-
lyzes the hydroxylation of L-tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA), 
the rate-limiting step in the biosynthesis of melanins and dopamine, and its subse-
quent oxidation to DOPA quinone (Olivares and Solano 2009). Primary and second-
ary copper amine oxidases regulate biogenic amine levels by catalyzing their 
oxidative deamination (Klinman 1996).

In addition to its requirement for enzymes, a growing body of evidence indicates 
a role for copper in biological processes such as coagulation (Wakabayashi et al. 
2001), angiogenesis (Urso and Maffia 2015), response to hypoxia (Feng et al. 2009), 
nonclassical secretion (Prudovsky et al. 2008), and neuromodulation (Gaier et al. 
2013). Synaptosomes and primary hippocampal neurons have been shown to release 
copper following depolarization (Kardos et al. 1989; Hopt et al. 2003; Schlief et al. 
2005) in concentrations sufficient to modulate excitatory and inhibitory neurotrans-
mission (Gaier et al. 2013; Scheiber et al. 2014). Several of the neuromodulatory 
functions of copper appear to be directly linked to interactions of copper with recep-
tors, but copper may exert its neuromodulatory functions also by altering intracel-
lular signaling pathways (Gaier et al. 2013; Scheiber et al. 2014). The exact role of 
copper in synaptic physiology remains to be elucidated (for review, see Gaier et al. 
2013). However, synaptically released endogenous copper and exogenously applied 
copper protect primary hippocampal neurons against NMDA-mediated excitotoxic 
cell death (Schlief and Gitlin 2006) in a process that involves the cellular prion pro-
tein (Gasperini et  al. 2015). While an inhibitory effect of copper on long-term 
potentiation (LTP) has been demonstrated using hippocampus slices that had been 
exposed to exogenous copper (Doreulee et al. 1997; Salazar-Weber and Smith 2011) 
and hippocampal slices of rats that had been fed a high-copper diet (Goldschmith 
et al. 2005; Leiva et al. 2009), copper has been shown to be required for amygdalar 
LTP (Gaier et al. 2014a, b).

The essentiality of copper is best illustrated by MD, a rare, X-linked recessive 
disorder caused by genetic defects in the copper-transporting ATPase ATP7A that 
manifests with clinical symptoms, including severe progressive neurological degen-
eration, increased seizure frequency, connective tissue abnormalities, muscular 
hypotonia, hypothermia, and abnormalities of the skin and hair (Kaler 2011; 
Kodama et al. 2011). As ATP7A is required for the transport of copper across the 
basolateral surface of intestinal epithelia cells into portal circulation, loss of func-
tion of ATP7A leads to failure of copper absorption in the intestine and hence to a 
systemic copper deficiency (Kodama et al. 2011). Treatment with parental copper 
can improve neurological outcomes when initiated in the neonatal period and the 
BBB is immature, but proves ineffective when initiated at later age due to the essen-
tial role of ATP7A for copper transport across the BBB (Kaler 2011; Kodama et al. 
2011). Many of the clinical symptoms of MD can be ascribed to a decrease in the 
activities of secreted copper-dependent enzymes that rely on the function of ATP7A 
to receive their copper (Kaler 2011; Kodama et al. 2011). Decreased PAM activity 
and the subsequent lack of α-amidated peptides are thought to contribute to the 
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neurodevelopmental delay and increased seizure frequency associated with MD 
(Bousquet-Moore et al. 2010a; Kaler 2011). Partial deficiency of DβM accounts for 
the elevated dopamine to noradrenaline ratio in plasma and CSF of MD patients 
(Kaler 1998). Hypopigmentation of the skin and hair is a consequence from reduced 
tyrosinase activity and lowered LOX activity is responsible for bone and connective 
tissue abnormalities (Kaler 2011; Kodama et al. 2011). However, low CCO activity 
as a consequence of impaired transport of copper into the brain is likely to be the 
major cause of the severe neurodegeneration associated with MD (Kaler 2013; 
Scheiber et al. 2014). In support of this view, a mouse model (Atp7aNes) in which the 
Atp7a gene was selective deleted in neural cells showed normal to slightly elevated 
brain copper levels and no signs of Menkes-like degenerative neuropathology and 
early mortality (Hodgkinson et al. 2015). Nevertheless, ATP7A has been shown to 
have a critical role in the availability of an NMDA receptor-dependent releasable 
pool of copper in primary hippocampal neurons (Schlief et  al. 2005), which has 
been shown to protect these cells against NMDA-mediated excitotoxic cell death 
(Schlief et al. 2006). Failure of this copper-dependent neuroprotective pathway in 
MD may contribute to the extensive neurodegeneration seen in this fatal disease 
(Schlief et al. 2006; Schlief and Gitlin 2006; Hodgkinson et al. 2015).

 Toxicity of Copper

Copper toxicity in individuals without genetic susceptibility is rare (de Romaña 
et al. 2011). Acute copper toxicity has been described for individuals that acciden-
tally or with suicidal intention ingested high doses of copper (Franchitto et  al. 
2008). For copper doses up to 1 gram, gastrointestinal symptoms predominate. 
Ingestion of higher copper doses may result in nausea, vomiting, headache, diar-
rhea, hemolytic anemia, gastrointestinal hemorrhage, liver and kidney failure and 
even death may occur (Franchitto et al. 2008). Chronic copper toxicity is a feature 
of WD, Indian childhood cirrhosis, and idiopathic chronic toxicosis that originate 
from genetic defects affecting copper metabolism (Scheiber et al. 2013). In addi-
tion, copper may contribute as a noxious metal to the pathology of neurodegenera-
tive disorders, including AD, PD, and HD (Scheiber et al. 2014).

 Mechanisms of Copper Toxicity

 Oxidative Mechanisms

Copper toxicity is in large part a consequence of the redox activity of copper. Copper 
can easily cycle between the reduced Cu(I) and the oxidized Cu(II) oxidation state, 
allowing it to facilitate redox reactions and to coordinate a large variety of ligands 
(Liu et al. 2014). This feature is utilized by most of the copper-dependent enzymes 
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that employ copper as a cofactor in fundamental redox reactions (Liu et al. 2014). 
However, the redox nature that makes copper biologically useful also renders it 
potentially toxic. Redox cycling of copper in the presence of superoxide or reducing 
agents such as ascorbic acid or GSH may catalyze the generation of highly reactive 
hydroxyl radicals from hydrogen peroxide via the Haber-Weiss cycle (Gunther et al. 
1995). The hydroxyl radical, being the most powerful oxidizing radical likely to 
arise in biological systems, is capable of initiating oxidative damage by abstracting 
the hydrogen from an amino-bearing carbon to form a carbon-centered protein radi-
cal or from an unsaturated fatty acid to form a lipid radical and by inducing DNA 
strand breaks and oxidation of bases (Gaetke et al. 2014). In addition, copper ions 
are capable of accelerating lipid peroxidation by splitting lipid hydroperoxides in a 
reaction analogous to the Fenton reaction, giving alkoxyl and peroxyl radicals 
thereby propagating the chain reaction (Halliwell 2006).

Mitochondria are major targets for copper-induced oxidative damage. 
Ultrastructural changes of liver mitochondria in WD patients; in the Long-Evans 
Cinnamon (LEC) rat, a rat model of WD; and in rats with dietary copper overload 
(Sokol et al. 1990; Zischka et al. 2011; Fanni et al. 2014) are accompanied by func-
tional impairment of enzymes of mitochondrial respiration (Sokol et al. 1993; Gu 
et al. 2000; Zischka et al. 2011). Altered activities of respiratory chain enzyme com-
plexes similar to that found in the liver have been observed in brain tissue of 
ATP7B−/− mice (Sauer et al. 2011). Treatment of cultured hepatocytes mixed neuro-
nal/glial cultures or neuroblastoma cultures with copper was shown to inhibit mito-
chondrial pyruvate and α-ketoglutarate dehydrogenase complexes, which was 
attributed to mitochondrial ROS formation (Sheline and Choi 2004; Arciello et al. 
2005). As markers of lipid peroxidation are elevated in hepatocyte mitochondria of 
WD patients, animal models of WD and rats with dietary copper overload, oxidative 
membrane damage is likely to contribute to the mitochondrial alterations observed 
under these copper-overload conditions (Sokol et  al. 1990, 1994; Zischka et  al. 
2011). In addition, increased levels of phosphatidic acid and phosphatidyl hydroxyl 
acetone have been observed in liver mitochondria of ATP7B−/− mice (Yurkova et al. 
2011), indicative of ROS-mediated fragmentation of mitochondrial cardiolipin 
(Yurkova et al. 2008). Cardiolipin is a phospholipid crucial for integrity and func-
tion of the mitochondrial inner membrane and oxidation of cardiolipin has been 
shown to impair oxidative phosphorylation and to cause induction of apoptosis 
(Hauck and Bernlohr 2016). The induction of the mitochondrial permeability transi-
tion as a consequence of copper-mediated oxidative stress was observed in primary 
hepatocytes (Roy et al. 2009) and primary astrocytes, but not in primary neurons 
(Reddy et al. 2008). Mitochondrial permeability transition results in increased per-
meability of the inner mitochondrial membrane leading to cell death via apoptosis 
and/or necrosis (Javadov and Kuznetsov 2013).

Extensive genome damage is a common feature of metal-overload conditions, 
including many neurological disorders, in particular base modifications and strand 
breaks (Hegde et al. 2011; Mitra et al. 2014). The induction of oxidative DNA dam-
age by copper and various copper complexes has been demonstrated in vitro with 
isolated DNA (Sagripanti and Kraemer 1989; Tkeshelashvili et  al. 1991) and 
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 cultured mammalian cell cultures (Ma et al. 1998; Alimba et al. 2016) as well as 
in vivo (Prá et al. 2008; Georgieva et al. 2013). Copper is thought to exert its geno-
toxic effect via a site-specific mechanism that involves the generation of singlet 
oxygen and/or hydroxyl radicals bound to or in close proximity of high-affinity 
copper- binding sites on double-stranded DNA rather than via the generation of free 
hydroxyl radicals (Sagripanti and Kraemer 1989; Tkeshelashvili et al. 1991; Frelon 
et  al. 2003). Facilitation of autoxidation of catecholamines such as adrenaline, 
L-DOPA, dopamine, and 6-hydroxydopamine by copper results not only in an 
increased production of superoxide (Halliwell 2006), but complexes resulting from 
catecholamine oxidation products and copper also oxidatively damage DNA (Lévay 
et  al. 1997; Spencer et  al. 2011). This observation has been used to explain the 
selective copper neurotoxicity in neurodegenerative diseases, in particular PD 
(Spencer et al. 2011).

The oxidative DNA damage exerted by copper and/or copper-induced oxidative 
stress may lead to activation of the tumor suppressor protein p53 (Phatak and Muller 
2015) which in turn can trigger apoptosis by transcriptionally activating or repress-
ing the expression of a panel of pro- and antiapoptotic proteins or by direct action at 
the mitochondria (Wang et al. 2014). Indeed, elevated p53 mRNA and protein levels 
and nuclear translocation of p53 have been shown in liver cells and neurons upon 
copper exposure (Strand et al. 1998; Narayanan et al. 2001; VanLandingham et al. 
2002). A supporting role of p53 in copper-induced cell death has been demonstrated 
for neurons and liver cells deficient or mutated in p53 which are more resistant to 
the toxic effect of copper (Strand et  al. 1998; VanLandingham et  al. 2002). The 
induction of apoptosis in hepatocytes in response to copper has further been shown 
to involve the activation of the endogenous CD95 system (Strand et al. 1998), a 
downstream effector of p53-dependent apoptosis (Haupt et al. 2003), and the activa-
tion of acid sphingomyelinase and subsequent release of ceramide (Lang et  al. 
2007) by copper-induced ROS. As the induction of apoptosis via the CD95 system 
in hepatocytes has been shown to require the activation of acid sphingomyelinase 
in  vivo (Kirschnek et  al. 2000), copper may stimulate acid sphingomyelinase in 
these cells at least in part through the endogenous CD95 system (Lang et al. 2007). 
However, in erythrocytes, copper induced phosphatidylserine exposure and death 
via leukocyte-secreted acid sphingomyelinase, suggesting that ceramide might also 
be involved in CD95-independent pathways leading to hepatocyte and erythrocyte 
death after copper treatment (Lang et al. 2007).

 Binding to Biomolecules

Although copper toxicity is ascribed in large part as a consequence to copper- 
induced oxidative stress, direct binding of copper to proteins should be considered. 
In this regard, copper has been shown to bind to the X-linked inhibitor of apoptosis 
(XIAP), an antiapoptotic protein that directly binds to and inhibits specific caspases, 
thereby inducing a conformational change in the protein as well as a decrease in its 
half-life (Mufti et al. 2006). These two changes make the cell more susceptible to 

Neurotoxicity of Copper



324

apoptotic stimuli and may contribute to the pathophysiology of copper toxicosis 
syndromes (Mufti et al. 2007). In addition, copper may nonspecifically bind to thiol 
and amino groups in proteins unrelated to copper metabolism, thereby altering pro-
tein structure and modifying their biological functions (Letelier et al. 2005). Binding 
of copper has been shown to inhibit enzymatic activities of the cytochrome P450 
oxidative system, GSH transferases, and lactate dehydrogenase (Letelier et al. 2005, 
2006; Pamp et  al. 2005). Noncompetitive inhibition of Na+/K+-ATPase from rat 
brain synaptic plasma membranes (Vasić et al. 1999; Krstić et al. 2005; Nedeljković 
and Horvat 2007) and rabbit kidney (Li et al. 1996) by copper most likely occurs via 
binding of copper to protein sulfhydryl groups (Vujisić et al. 2004). Na+/K+-ATPase 
is concentrated in the synaptic membranes where it mediates potassium uptake and 
sodium release, which are required to restore ionic equilibria after the passage of 
nervous impulse (de Lores Arnaiz and Ordieres 2014). Consequently, inhibition of 
Na+/K+-ATPase will lead to diverse alterations of neuronal behavior (de Lores 
Arnaiz and Ordieres 2014). Copper binding to proteins involved in DNA repair may 
contribute to copper-induced DNA damage. Copper has been shown to inhibit the 
activities of the DNA glycosylases NEIL1 and NEIL2 by forming stable complexes 
with these proteins (Hegde et al. 2010) and to inhibit both phosphatase and kinase 
activities of the enzyme polynucleotide kinase 3′-phosphatase (PNKP) that is 
responsible for preparing nicked DNA for ligation (Whiteside et al. 2010). Copper 
has further been shown to strongly inhibit DNA-binding affinity of the DNA nick- 
sensor poly(ADP-ribose)polymerase-1 (PARP-1) and H2O2-induced poly(ADP- 
ribosyl)ation in HeLa S3 cells (Schwerdtle et al. 2007). As binding to DNA lesions 
and the activity of PARP-1 depends on three zinc finger domains (Eustermann et al. 
2011), copper may exert its inhibitory effect by displacing zinc and/or by oxidation 
of the cysteines complexing zinc in these zinc finger structure (Schwerdtle et al. 
2007).

Alteration of gene expression and metabolic pathways may also contribute to 
copper toxicity. Utilizing the ATB7B−/− mice, an animal model for WD, Huster et al. 
(2007) provided evidence that despite significant copper accumulation, copper- 
mediated oxidative stress does not play a major role at early stages of the disease. 
Instead, in presymptomatic ATB7B−/− mice, copper overload was shown to have a 
distinct and selective effect on liver gene expression and metabolism: Accumulated 
copper selectively upregulated the molecular machinery associated with cell cycle 
and chromatin structure and downregulated lipid metabolism (Huster et al. 2007). In 
fact, transcripts of genes involved in lipid metabolism remain significantly down-
regulated in ATP7B−/− mice liver at all stages of WD (Ralle et al. 2010). Transcripts 
of enzymes involved in key steps of cholesterol biosynthesis were found to be most 
affected and accompanied by a marked decrease in liver cholesterol and VLDL 
cholesterol in serum (Huster et  al. 2007; Ralle et  al. 2010). Furthermore, severe 
dysregulation of sterol metabolism was observed in brains of ATP7B−/− mice (Sauer 
et  al. 2011). The mechanism through which copper induces its effects on gene 
expression is not yet fully revealed. However, analysis of downregulated signaling 
pathways revealed a significant involvement of specific nuclear receptors (Burkhead 
et al. 2011). Indeed, NR3C1/glucocorticoid receptor (GR) and NR1H4/farnesoid X 
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receptor (FXR), two key nuclear receptors with functions in lipid metabolism, are 
less abundant in nuclei of ATP7B−/− hepatocytes (Wilmarth et  al. 2012). Also 
nuclear receptor target gene expression and activity are impaired in HepG2 cells 
treated with copper, livers from ATP7B−/− mice, and hepatic autopsy samples of 
WD patients (Wooton-Kee et  al. 2015). Recent evidence suggests that copper 
directly decreases nuclear receptor function by competing with zinc for occupancy 
of the DNA-binding zinc finger domains (Wooton-Kee et al. 2015). The selective 
effects of copper on gene expression may be explained by differences in zinc finger 
coordination among different zinc-containing transcription factors that may result 
in a spectrum of susceptibility to copper interaction with the zinc finger proteins 
(Wooton-Kee et al. 2015).

Increasing evidence suggests a neuromodulatory function of copper (Gaier et al. 
2013; Scheiber et al. 2014). Several of the neuromodulatory functions of copper 
appear to be linked to its effects on voltage-gated ion channels and synaptic recep-
tors, but copper may exert its neuromodulatory functions also by altering intracel-
lular signaling pathways in neurons (Gaier et al. 2013; Scheiber et al. 2014). Thus, 
copper neurotoxicity may be in part a consequence of excess copper adversely 
affecting synaptic transmission and functions.

 Neurotoxicity of Copper

A number of neurodegenerative disorders have been connected with disturbances in 
copper homeostasis in brain (Rivera-Mancia et  al. 2010; Scheiber et  al. 2014; 
Bandmann et al. 2015). Here we will only shortly mention the main characteristics 
of the disorders and will focus more on the evidence presented so far on the roles 
that copper deprivation or copper excess may play in the pathology of the diseases.

 Neurologic Wilson Disease

WD is a rare, inherited autosomal recessive disease of copper metabolism that origi-
nates from a genetic defect in the copper-transporting ATPase ATP7B.  Impaired 
ATP7B function in WD results in failure of biliary copper secretion, leading to cop-
per accumulation in the liver, brain and other tissues as well as in failure of loading 
of Cp with copper (Dusek et al. 2015). The majority of patients with WD present 
either predominantly hepatic or neuropsychiatric symptoms, the latter occurring in 
up to 50% of WD patients (Das and Ray 2006). Neurologic symptoms in WD are 
manifold and include dysarthria, tremor, Parkinsonism, dystonia, ataxia, chorea and 
cognitive impairments (Lorincz 2010). Ventricular dilatation and generalized atro-
phy are common neuropathological abnormalities in the WD brain (Meenakshi- 
Sundaram et  al. 2008). Macroscopic structural changes are most consistently 
observed in the basal ganglia, particularly in the dorsal striatum, but have also been 
reported for the thalamus, brainstem, and frontal cortex (Brewer and 
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Yuzbasiyan-Gurkan 1992; Meenakshi-Sundaram et al. 2008). Involvement of the 
white matter has been considered to be present in at least 10% of cases (Mikol et al. 
2005). Copper toxicity is considered as primary cause of the brain damage associ-
ated with WD, although other factors, such as decreased Cp oxidase activity and 
subsequent disturbance of iron metabolism, may also contribute (Dusek et al. 2015). 
Copper content in brains of WD patients is strongly increased in all brain regions 
(Litwin et al. 2013) and a fair degree of correlation between the severity of neuro-
degeneration and cerebral copper content has been reported (Horoupian et al. 1988).

The occurrence of abnormal astrocytes, i.e. Alzheimer type I and II cells and 
Opalski cells, already in early stages of the disease is a typical neuropathological 
feature of WD (Mossakowski et al. 1970; Bertrand et al. 2001; Das and Ray 2006). 
Astrocytes, localized in the brain between neurons and capillary endothelial cells, 
are considered the first parenchymal cells to encounter metals crossing the BBB 
(Scheiber and Dringen 2013) and abnormal astrocytes in WD stain strongly for MT 
and copper (Bertrand et  al. 2001; Mikol et  al. 2005), suggesting that astrocytes 
accumulate excess copper, in order to protect neurons from copper toxicity. Such a 
neuroprotective function of astrocytes has been reported for cultured brain cells 
(Brown 2004) and is supported by data from the North Ronaldsay sheep, an animal 
model for copper toxicosis, where an elevated brain copper content was accompa-
nied by increased expression of MT and copper accumulation in astrocytes 
(Haywood et al. 2008). However, during the course of WD, the storage capacity of 
astrocytes is likely to get exhausted, leading to astrocyte damage as well as to an 
increase in extracellular copper in the brain parenchyma. Thus, both impairments of 
astrocyte functions that are required for normal neuronal function (Parpura et al. 
2012) and exposure of neurons to excess copper should be considered to contribute 
to neuronal death in WD.

 Alzheimer Disease

AD is the most common neurodegenerative disease in humans with most of the 
cases representing the late-onset form that is sporadic with no obvious implication 
of genetic factors (Prakash et al. 2016). The disease is characterized by a progres-
sive decline and ultimately loss of memory and multiple other cognitive functions 
along with psychiatric disturbances (Castellani et al. 2010). Aside from age, other 
risk factors include family history of dementia and genetic and environmental fac-
tors (Castellani et al. 2010). The major pathological hallmarks of AD are the pres-
ence of extracellular senile plaques, primarily composed of amyloid-β (Αβ) peptides 
of 40 and 42 residues, and intracellular neurofibrillary tangles, primarily constituted 
of hyperphosphorylated tau protein (Ballard et al. 2011).

Strong evidence implicates a dyshomeostasis of copper in the etiology of AD, 
but controversy exists regarding the role of copper in the pathogenic process. While 
some evidence supports a detrimental role of copper in AD, other studies suggest 
the opposite. In support of the former, Aβ peptides bind copper with high affinity, 
and the senile plaques are strongly enriched in copper (Eskici and Axelsen 2012). 
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Copper has been shown to precipitate Aβ peptides in vitro, and it has been suggested 
that copper triggers the formation of senile plaques (Roberts et al. 2012). However, 
with increasing copper:Aβ ratios, the aggregation pathway changes, and the aggre-
gating peptide is diverted into soluble oligomeric forms that are thought to be the 
most neurotoxic Aβ species (Eskici and Axelsen 2012; Matheou et  al. 2015). 
Although the precise mechanisms by which oligomeric Aβ species exert their toxic 
effects are unknown, copper may exacerbated the toxicity of such Aβ oligomers 
through the formation of ROS, as Aβ can mediate the reduction of Cu2+ to Cu+ 
(Roberts et al. 2012), by increasing the specific inhibition of cytochrome c oxidase 
(Crouch et  al. 2005) or by enhancing microglial activation (Yu et  al. 2015). 
Moreover, copper has been implicated in tau pathology associated with AD, by 
stimulating the phosphorylation and aggregation of tau and by enhancing the toxic-
ity of tau aggregates (Du et al. 2014; Voss et al. 2014).

On the contrary, lower copper contents in affected brain regions of AD patients 
(Loeffler et al. 1996) and mouse models for AD (Bayer et al. 2003) as compared to 
controls rather argue for a copper deficit contributing to the neurodegeneration in 
AD.  Copper supplementation and administration of Cu(gtsm) as copper source 
improved the survival and cognitive functions in mouse models of AD (Bayer et al. 
2003; Crouch et al. 2009). However, intake of copper had no effect on cognition in 
patients with mild AD (Kessler et al. 2008). Mechanistically, copper deficiency may 
exacerbate disease progression by influencing amyloid precursor protein processing 
and Aβ metabolism (Cater et al. 2008). In addition, copper deficiency may impair 
the activity of copper-dependent enzymes. In this regard, low activities of cyto-
chrome c oxidase (Maurer et al. 2000) and SOD1 (Marcus et al. 1998) have been 
reported for the AD brain.

 Parkinson Disease

PD is the second most common neurodegenerative disease in humans, with the 
majority of cases representing idiopathic PD (Thomas and Flint Beal 2007). PD is 
characterized by a complex motor disorder known as Parkinsonism that manifests 
with resting tremor, bradykinesia, rigidity and postural instability (Thomas and 
Flint Beal 2007). The pathological hallmarks of the disease are the loss of 
neuromelanin- containing dopaminergic neurons in the substantia nigra pars com-
pacta and the presence of α-synuclein aggregates, named Lewy bodies (Thomas and 
Flint Beal 2007). The precise mechanisms underlying α-synuclein aggregation and 
nigral cell loss are unknown. Among others, oxidative stress, mitochondrial dys-
function, inflammation and dyshomeostasis of metals have been suggested to con-
tribute to the pathogenesis of PD (Jomova et al. 2010).

The role of copper in PD is controversial, as some evidence points to a noxious 
role of copper in the pathology of PD, while other studies suggest a deficiency of 
copper in PD.  Thus, copper has been demonstrated to bind to both soluble and 
membrane-bound α-synucleins with high affinity, to accelerate aggregation of 
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 soluble α-synuclein (Uversky et  al. 2001), and a copper-binding oligomer of 
α-synuclein has been discussed as neurotoxic form of α-synuclein (Brown 2010). 
However, while the total copper content in brains of PD patients does not differ 
strongly from healthy controls, copper levels are substantial lower in substantia 
nigra of PD patients (Loeffler et al. 1996; Ayton et al. 2013; Davies et al. 2014). This 
reduction in the copper content of the substantia nigra in PD has been discussed to 
result in the impairment of copper-dependent pathways, thereby contributing to the 
pathogenesis of PD (Double 2012; Ayton et al. 2013; Davies et al. 2014). In support 
of this view, copper supplementation (Alcaraz-Zubeldia et al. 2001, 2009) and the 
use of the BBB-permeable copper complex Cu(II)atsm (Hung et al. 2012) have been 
shown to be neuroprotective in animal models of PD, whereas copper chelation was 
not (Youdim et al. 2007).

 Huntington’s Disease

HD is a rare autosomal-dominant, progressive neurodegenerative disease character-
ized by motor, cognitive, and psychiatric abnormalities (Anderson 2011). HD is 
caused by polyglutamine expansion at the N-terminus of the huntingtin protein 
(McFarland and Cha 2011) that finally leads to brain atrophy, predominantly in the 
striatum and the cerebral cortex (Anderson 2011). Aggregation of the mutant hun-
tingtin protein, oxidative stress, impaired energy metabolism, loss of neurotrophic 
support and transcriptional dysregulation have been discussed to contribute to 
development and progression of HD, but the exact pathogenic mechanism remains 
unknown. Accumulation of copper in the HD brain has been hypothesized to foster 
disease progression by promoting aggregation of the mutant huntingtin protein (Fox 
et al. 2007; Hands et al. 2010; Xiao et al. 2013). Further supporting a potential role 
of copper in disease progression, treatment with copper chelators, dietary copper 
reduction and genetic manipulation of copper transporters delayed disease progres-
sion in animal models for HD (Nguyen et al. 2005; Tallaksen-Greene et al. 2009; 
Cherny et al. 2012; Xiao et al. 2013).

 Autism Spectrum Disorders

Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders, 
including autistic disorder and Asperger syndrome, that are characterized by perva-
sive difficulties since early childhood across reciprocal social communication and 
restricted, repetitive interests and behaviors (Murphy et al. 2016). The etiology of 
ASD is currently unknown but is likely to be multifactorial encompassing both 
genetic and environmental factors (Murphy et al. 2016). There is some evidence for 
an alteration of copper homeostasis in ASDs. Homozygous deletions of the 
COMMD1 gene have been linked to autism (Levy et al. 2011), which loss of func-
tion results in copper overload in hepatic cell lines and is the cause of copper 
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toxicosis in Bedlington Terriers (Fedoseienko et al. 2014). Hair and nail samples of 
autistic children contain significant elevated levels of copper when compared to 
healthy controls and the levels of copper correlated positively with the severity of 
autism (Lakshmi Priya and Geetha 2011; Russo and de Vito 2011). Excess copper 
has further been shown to affect a pathway at the glutamatergic synapses associated 
with autism (Baecker et al. 2014).

 Neurotoxicity of Copper Nanoparticles

Nanoparticles are usually defined as objects with at least two dimensions in the 
nanoscale (Borm et al. 2006). Due to their small size and their relative high surface, 
compared to the bulk material, they provide various interesting material properties. 
The chemical and physical properties of nanoparticles do not only depend on their 
size but also on their composition, shape, surface area, catalytic activity, and surface 
modifications (Kettler et al. 2014; Amin et al. 2015). Due to the huge variety of 
these materials, nanoparticles gained a lot of interest from industry and the scientific 
community over the last decades (Borm et al. 2006; Cupaioli et al. 2014).

The cheap price and the special features of copper oxide nanoparticles (CuO- 
NPs) led to an increased interest from the industry toward this material (Yurderi 
et  al. 2015). However, despite their high application potential, there are various 
disadvantages of this material. The biocidal activity of CuO-NPs is a double-edged 
feature. On the one hand, CuO-NPs are effectively used in wood preservatives, anti-
fouling paint, water filters, sterile surface coatings or textiles and bandages (Almeida 
et al. 2007; Ben-Sasson et al. 2014; Dankovich and Smith 2014). On the other hand, 
the biocidal activity of CuO-NPs could be unintentionally harmful to the human 
health and the environment (Karlsson et al. 2008).

It is important to elucidate the uptake and distribution of CuO-NPs in the body to 
understand the toxic mechanisms of CuO-NPs. Several studies report that nanopar-
ticles are able to enter the body by different routes but inhalation is the most prob-
able uptake route for nanoparticles, whereas the skin is hardly penetrated 
(Oberdörster et al. 2004; Borm et al. 2006; Kimura et al. 2012). Nanoparticles are 
able to enter the brain upon inhalation either directly by translocation over the nerve 
endings of the olfactory bulb or indirectly after uptake into the blood stream and 
crossing of the BBB (Kreyling et al. 2002; Oberdörster et  al. 2004; Sharma and 
Sharma 2012). Especially for the occupational exposure scenario, it has to be con-
sidered that high amounts of Cu-containing NPs can unintentionally be released 
from electric motors or during welding (Szymczak et  al. 2007). The majority of 
airborne copper is present as fine particles and nanoparticles. A recent study identi-
fied such airborne copper as source for poor motor neuron performance and altered 
basal ganglia in school kids, demonstrating the impact of nano-particular copper on 
the brain (Pujol et al. 2016).

The high toxic potential of CuO-NPs was demonstrated by in vitro studies on 
lung cell lines (Kim et al. 2013; Ivask et al. 2015). This high toxicity of CuO-NPs 
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was confirmed by in  vivo inhalation and injection studies on rats and mice 
(Chen et al. 2006; Liao and Liu 2012; Privalova et al. 2014; Jing et al. 2015). Hereby, 
one particular inhalation study reported the high toxicity of CuO-NPs in compari-
son to the less toxic micrometer-sized copper oxide particles (Yokohira et al. 2008). 
In vivo studies have also shown that CuO-NPs can accumulate in the brain and have 
a high capacity to alter brain functionality (An et al. 2012; Privalova et al. 2014). 
The animals treated with CuO-NPs suffered severe cognitive impairments and dam-
age of the BBB (An et al. 2012; Sharma and Sharma 2012). Wistar rats treated with 
CuO-NPs showed a decrease in learning and memory abilities as well as an impaired 
hippocampal LTP (An et al. 2012) which may involve the reported effects of CuO- 
NPs on neuronal potassium and sodium channels (Xu et al. 2009; Liu et al. 2011).

Several studies have evaluated the toxicity of CuO-NPs on brain cells including 
neurons (Li et al. 2007; Chen et al. 2008; Xu et al. 2009; Prabhu et al. 2010; Liu 
et al. 2011; Perreault et al. 2012) and astrocytes (Bulcke et al. 2014; Bulcke and 
Dringen 2014; Bulcke and Dringen 2016; Joshi et al. 2016). In contrast to iron oxide 
nanoparticles (Petters et al. 2014), CuO-NPs have a high toxic potential on primary 
cultured astrocytes (Bulcke and Dringen 2014) and alter in sub-toxic concentrations 
their glucose and glutathione metabolism and induce the synthesis of MTs (Bulcke 
and Dringen 2014; Bulcke and Dringen 2016). CuO-NP application leads to sub-
stantial cellular copper accumulation. CuO-NPs are likely to enter astrocytes by 
endocytotic mechanisms (Bulcke and Dringen 2016), but also extracellular libera-
tion of copper ions has been suggested to be involved in the copper accumulation 
observed in glial cells after exposure to CuO-NPs (Joshi et al. 2016). The conse-
quence of an exposure of cells to CuO-NPs is most likely mediated by an increase 
in cytosolic copper concentration which is caused by accumulation of copper liber-
ated from particles rather than adverse particle effects (Bulcke and Dringen 2016). 
Thus, the reported toxicity of CuO-NPs to brain cells is most likely mediated by 
accelerated ROS production and oxidative damage (Bulcke et al. 2014).

 Conclusions

Copper is an essential trace element which is involved in a large variety of different 
cellular functions. However, as copper in excess leads to accelerated formation of 
ROS and inactivation of cellular enzymes, the availability of copper is tightly regu-
lated both on the systemic and cellular level. Both excess of copper and copper 
deprivation have severe adverse consequences on cells and organism as clearly 
shown by the different types of neurodegenerative disorders which have been con-
nected with disturbances in copper homeostasis. The dilemma that sufficient 
amounts of copper have to be available but that an excess of copper has to be pre-
vented makes therapeutic approaches to correct disturbances of copper homeostasis 
in neurological disorders a challenging task.
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