
Computational Completeness of Path-Structured
Graph-Controlled Insertion-Deletion Systems

Henning Fernau1, Lakshmanan Kuppusamy2, and Indhumathi Raman3(B)

1 Fachbereich 4 – CIRT, Universität Trier, 54286 Trier, Germany
fernau@uni-trier.de

2 SCOPE, VIT University, Vellore 632 014, India
klakshma@vit.ac.in

3 SITE, VIT University, Vellore 632 014, India
indhumathi.r@vit.ac.in

Abstract. A graph-controlled insertion-deletion (GCID) system is a
regulated extension of an insertion-deletion system. It has several compo-
nents and each component contains some insertion-deletion rules. These
components are the vertices of a directed control graph. A rule is applied
to a string in a component and the resultant string is moved to the target
component specified in the rule, describing the arcs of the control graph.
We investigate which combinations of size parameters (the maximum
number of components, the maximal length of the insertion string, the
maximal length of the left context for insertion, the maximal length of
the right context for insertion; a similar three restrictions with respect
to deletion) are sufficient to maintain the computational completeness of
such restricted systems with the additional restriction that the control
graph is a path, thus, these results also hold for ins-del P systems.

Keywords: Graph-controlled ins-del systems · Path-structured con-
trol graph · Computational completeness · Descriptional complexity
measures

1 Introduction

The motivation for insertion-deletion system comes from both linguistics [11]
and also from biology, more specifically from DNA processing [14] and RNA
editing [1]. Insertion and deletion operations together were introduced into for-
mal language theory in [9]. The corresponding grammatical mechanism is called
insertion-deletion system (abbreviated as ins-del system). Informally, the inser-
tion operation means inserting a string η in between the strings w1 and w2,
whereas the deletion operation means deleting a substring δ from the string
w1δw2. Several variants of ins-del systems have been considered in the litera-
ture. We refer to the survey article [16] for details.

One of the important variants of ins-del systems is graph-controlled ins-del
systems (abbreviated as GCID systems), introduced in [6] and further studied
in [8]. In such a system, the concept of components is introduced, which are asso-
ciated with insertion or deletion rules. The transition is performed by choosing
c© Springer International Publishing AG 2017
A. Carayol and C. Nicaud (Eds.): CIAA 2017, LNCS 10329, pp. 89–100, 2017.
DOI: 10.1007/978-3-319-60134-2 8

90 H. Fernau et al.

any applicable rule from the set of rules of the current component and by moving
the resultant string to the target component specified in the rule.

If the underlying graph of a GCID system establishes a path structure (loops,
multiple edges and directions are ignored), then such a GCID system can be seen
as a special form of a P system, namely, an ins-del P system. As P systems (a
model for membrane computing) draw their origins from modeling computations
of biological systems, considering insertions and deletions in this context is par-
ticularly meaningful. There is one small technical issue, namely, in a P system,
usually there is no specific initial membrane where the computation begins, since
the membranes evolve in a so-called maximally parallel way. But if the collec-
tion of axioms in each membrane (except of one) is empty, then this exceptional
membrane can be viewed as an initial membrane to begin with, so that such a
system works in the same way as a GCID system where the membranes of a P
system correspond to the components of a GCID system; see [13].

The mentioned connections motivate to study GCID systems. Much research
has then be devoted to restricting the computational resources as far as possible
while still maintaining computational completeness. To be more concrete, typical
questions are: To what extent can we limit the context of the insertion or of the
deletion rules? How many components are needed? Are there kind of trade-offs
between these questions? All this is formalized in the following.

The descriptional complexity of a GCID system is measured by its size
(k;n, i′, i′′;m, j′, j′′) where the parameters from left to right denote (i) number
of components (ii) the maximal length of the insertion string (iii) the maximal
length of the left context used in insertion rules (iv) the maximal length of the
right context used in insertion rules and the last three parameters follow a similar
representation with respect to deletion. The generative power of GCID systems
for insertion/deletion lengths satisfying n + m ∈ {2, 3} has also been studied
in [4,5,8]. However, the control graph is not a path for many cases.

The main objective of this paper is to characterize recursively enumerable
languages (denoted as RE) by GCID systems with bounded sizes, whose under-
lying (undirected) control graph is a path, as this special case also relates to
ins-del P systems [13]. Also, this objective can be seen as a sort of syntactic
restriction on GCID systems, on top of the usually considered numerical values
limiting the descriptional complexity. We are interested in the question which
type of resources of path-structured GCID systems are still powerful enough
to characterize RE. We prove that GCID system of sizes (k;n, i′, i′′; 1, j′, j′′)
with i′, i′′, j′, j′′ ∈ {0, 1}, i′ + i′′ = 1 and (i) k = 3, n = 1, j′ + j′′ = 2,
(ii) k = 4, n = 1, j′ + j′′ = 1, (iii) k = 3, n = 2, j′ + j′′ = 1, all charac-
terize RE with a path as a control graph. Previously, such results were only
known for GCID systems with arbitrary control graphs [5]. Our results may
also revive interest in the conjecture of Ivanov and Verlan [8] which states that
RE �= GCID(s) if k = 2 in s = (k; 1, i′, i′′; 1, j′, j′′), with i′, i′′, j′, j′′ ∈ {0, 1} and
i′ + i′′ + j′ + j′′ ≤ 3. In the same situation, this statement is known to be true if
k = 1. If the conjecture were true, then our results for k = 3 would be optimal.

Computational Completeness of Path-Structured GCID Systems 91

2 Preliminaries

We assume that the readers are familiar with the standard notations used in
formal language theory. We recall a few notations here. Let N denote the set of
positive integers, and [1 . . . k] = {i ∈ N : 1 ≤ i ≤ k}. Given an alphabet (finite
set) Σ, Σ∗ denotes the free monoid generated by Σ. The elements of Σ∗ are
called strings or words; λ denotes the empty string. For a string w ∈ Σ∗, |w| is
the length of w and wR denotes the reversal (mirror image) of w. LR and LR

are understood for languages L and language families L. For the computational
completeness results, we are using as our main tool the fact that type-0 grammars
in Special Geffert Normal Form (SGNF) that characterize RE.

Definition 1. A type-0 grammar G = (N,T, P, S) is said to be in SGNF if

– N decomposes as N = N ′∪N ′′, where N ′′ = {A1, B1, A2, B2} and N ′ contains
at least the two nonterminals S and S′;

– the only non-context-free rules in P are AB → λ, where AB ∈ {A1B1, A2B2};
– the context-free rules are of the form (i) S′ → λ, or (ii) X → Y1Y2, where

X ∈ N ′ and Y1Y2 ∈ ((N ′ \ {X})(T ∪ N ′′)) ∪ ((T ∪ N ′′)(N ′ \ {X})).

The way the normal form is constructed is described in [6], based on [7]. We
assume in this paper that the context-free rules r : X → Y1Y2 either satisfy
Y1 ∈ {A1, A2} and Y2 ∈ N ′, or Y1 ∈ N ′ and Y2 ∈ {B1, B2} ∪ T . This also means
that the derivation in G undergoes two phases: in phase I, only context-free rules
are applied. This phase ends with applying the context-free deletion rule S′ → λ.
Then, only non-context-free deletion rules are applied in phase II. Notice that
the symbol from N ′, as long as present, separates A1 and A2 from B1 and B2;
this prevents a premature start of phase II. We write ⇒r to denote a single
derivation step using rule r, and ⇒G (or ⇒ if no confusion arises) denotes a
single derivation step using any rule of G. Then, L(G) = {w ∈ T ∗ | S ⇒∗ w},
where ⇒∗ is the reflexive transitive closure of ⇒.

Definition 2. A graph-controlled insertion-deletion system (GCID for short)
with k components is a construct Π = (k, V, T,A,H, i0, if , R), where (i) k is
the number of components, (ii) V is an alphabet, (iii) T ⊆ V is the terminal
alphabet, (iv) A ⊂ V ∗ is a finite set of strings, called axiom, (v) H is a set of
labels associated (in a one-to-one manner) to the rules in R, (vi) i0 ∈ [1 . . . k] is
the initial component, (vii) if ∈ [1 . . . k] is the final component and (viii) R is a
finite set of rules of the form l: (i, r, j), where l is the label of the rule, r is an
insertion rule of the form (u, η, v)I or deletion rule of the form (u, δ, v)D, where
u, v ∈ V ∗, η, δ ∈ V + and i, j ∈ [1 . . . k].

If the initial component itself is the final component, then we call the system
returning. The pair (u, v) is called the context, η is called the insertion string, δ
is called the deletion string and x ∈ A is called an axiom. We write rules in R
in the form l: (i, r, j), where l ∈ H is the label associated to the rule. Often, the
component is part of the label name. This will also (implicitly) define H. We
shall omit the label l of the rule wherever it is not necessary for the discussion.

92 H. Fernau et al.

We now describe how GCID systems work. Applying an insertion rule of the
form (u, η, v)I means that the string η is inserted between u and v; this corre-
sponds to the rewriting rule uv → uηv. Similarly, applying a deletion rule of the
form (u, δ, v)D means that the string δ is deleted between u and v; this corre-
sponds to the rewriting rule uδv → uv. A configuration of Π is represented by
(w)i, where i ∈ [1 . . . k] is the number of the current component and w ∈ V ∗

is the current string. We also say that w has entered component Ci. We write
(w)i ⇒l (w′)j or (w′)j ⇐l (w)i if there is a rule l: (i, r, j) in R, and w′ is obtained
by applying the insertion or deletion rule r to w. By (w)i

⇒l

⇐l′
(w′)j , we mean that

(w′)j is derivable from (w)i using rule l and (w)i is derivable from (w′)j using
rule l′. For brevity, we write (w)i ⇒ (w′)j if there is some rule l in R such that
(w)i ⇒l (w′)j . To avoid confusion with traditional grammars, we write ⇒∗ for the
transitive reflexive closure of ⇒ between configurations. The language L(Π) gen-
erated by Π is defined as {w ∈ T ∗ | (x)i0 ⇒∗ (w)if for some x ∈ A}. For return-
ing GCID systems Π with initial component C1, we also write (w)1 ⇒′ (w′)1,
meaning that there is a sequence of derivation steps (w)1 ⇒ (w1)c1 ⇒ · · · ⇒
(wk)ck ⇒ (w′)1 such that, for all i = 1, . . . , k, ci �= 1.

The underlying control graph of a GCID system Π with k components is
defined to be a graph with k nodes labelled C1 through Ck and there exists a
directed edge from Ci to Cj if there exists a rule of the form (i, r, j) in R of
Π. We also associate a simple undirected graph on k nodes to a GCID system
of k components as follows: there is an undirected edge from a node Ci to Cj
(i �= j) if there exists a rule of the form (i, r1, j) or (j, r2, i) in R of Π (hence,
loops and multi-edges are excluded). We call a returning GCID system with k
components path-structured if its underlying undirected control graph has the
edge set {{Ci,C(i + 1)} | i ∈ [1 . . . k − 1]}.

The descriptional complexity of a GCID system is measured by its size
s = (k;n, i′, i′′;m, j′, j′′), where the parameters represent resource bounds as
given below. Slightly abusing notation, the language class that can be generated
by GCID systems of size s is denoted by GCID(s) and the class of languages
describable by path-structured GCID systems of size s is denoted by GCIDP (s).

k = the number of components
n = max{|η| : (i, (u, η, v)I , j) ∈ R} m = max{|δ| : (i, (u, δ, v)D, j) ∈ R}
i′ = max{|u| : (i, (u, η, v)I , j) ∈ R} j′ = max{|u| : (i, (u, δ, v)D, j) ∈ R}
i′′ = max{|v| : (i, (u, η, v)I , j) ∈ R} j′′ = max{|v| : (i, (u, δ, v)D, j) ∈ R}

3 Computational Completeness

In this section, to prove the computational completeness of GCID system of
certain sizes, we start with a type-0 grammar G = (N,T, P, S) in SGNF as
defined in Definition 1. The rules of P are labelled injectively with labels from
[1 . . . |P |]. We will use these labels and primed variants thereof as nonterminals
in the simulating GCID system. Their purpose is to mark positions in the string
and also to enforce a certain sequence of rule applications. As per the definition

Computational Completeness of Path-Structured GCID Systems 93

of SGNF, there are, apart from the easy-to-handle context-free deletion rule,
context-free rules r : X → Y1Y2 and non-context-free deletion rules f : AB → λ.
For these types of rules, we present the simulations in the form of a table, for
instance, as in Table 1. A detailed discussion of the working of this simulation
will follow in the proof of the next theorem.

To simplify our further results, the following observations from [5] are used.

Proposition 1 [5]. Let k, n, i′, i′′,m, j, j′′ be non-negative integers.

1. GCIDP (k;n, i′, i′′;m, j′, j′′) = [GCIDP (k;n, i′′, i′;m, j′′, j′)]R

2. RE = GCIDP (k;n, i′, i′′;m, j′, j′′) iff RE = GCIDP (k;n, i′′, i′;m, j′′, j′)

3.1 GCID Systems with Insertion and Deletion Length One

In [15], it has been proved that ins-del systems with size (1,1,1;1,1,1) characterize
RE. Notice that it is proved in [10,12] that ins-del systems of size (1, 1, 1; 1, 1, 0)
or (1, 1, 0; 1, 1, 1) cannot characterize RE. It is therefore obvious that we need at
least 2 components in a graph-controlled ins-del system of sizes (1, 1, 1; 1, 1, 0)
and (1, 1, 0; 1, 1, 1) to characterize RE. In [5], we characterized RE by path-
structured GCID systems of size (3; 1, 1, 1; 1, 1, 0). Also, in [8], it was shown
that GCIDP (3; 1, 2, 0; 1, 1, 0) = RE and GCIDP (3; 1, 1, 0; 1, 2, 0) = RE. We now
complement these results.

Table 1. Path-structured GCID systems of size (3; 1, 1, 0; 1, 1, 1) simulating type-0
grammars G in SGNF. In the table, c′ ∈ {A1, A2, κ

′} and c ∈ {B1, B2, κ} ∪ T , f, r are
rule markers, while Δ is a dummy symbol that was not part of the alphabet of G.

Component C1 Component C2 Component C3

r1.1 : (1, (X, r, λ)I , 2)
r1.2 : (1, (r, r′, λ)I , 2)
r1.3 : (1, (r′, Δ, λ)I , 1)
r1.4 : (1, (r′, Y2, λ)I , 2)

r2.1 : (2, (λ, X, r)D, 1)
r2.2 : (2, (λ, r, r′)D, 1)
r2.3.c : (2, (Y2, Δ, c)D, 3)
r2.4.c′ : (2, (c′, r′, Y1)D, 1)

r3.1 : (3, (r′, Y1, λ)I , 2)

f1.1 : (1, (λ, f, λ)I , 2) f2.1 : (2, (f, A, B)D, 3)
f2.2 : (2, (λ, f, λ)D, 1)

f3.1 : (3, (f, B, λ)D, 2)

h1.1 : (1, (λ, S′, λ)D, 1)

κ1.1 : (1, (λ, κ, λ)D, 1)
κ′1.1 : (1, (λ, κ′, λ)D, 1)

Theorem 1. RE = GCIDP (3; 1, 1, 0; 1, 1, 1) = GCIDP (3; 1, 0, 1; 1, 1, 1).

At a first glance, the reader might wonder that the simulation would be
straightforward (as initially thought by the authors themselves, as there are
many resources available). However, this is not the case. The problem is that any
rule of a component could be applied whenever a string enters that component.
Since insertion is only left-context-sensitive, the insertion string can be adjoined
any number of times on the right of this context, similar to context-free insertion.

94 H. Fernau et al.

This issue is handled by inserting some markers and then inserting Y1 and Y2

(from rule X → Y1Y2) after the markers. We have to be careful, since a back-
and-forth transition may insert many Y1’s and/or Y2’s after the marker.

Proof. Consider a type-0 grammar G = (N,T, P, S) in SGNF as in Defin-
ition 1. We construct a GCIDP system Π such that L(Π) = L(G): Π =
(3, V, T, {κ′Sκ},H, 1, 1, R). The alphabet of Π is V ⊂ N ∪ T ∪ {r, r′ : r ∈
[1 . . . |P |]} ∪ {κ′, κ}. The simulation is explained in Table 1, which completes
the description of R and V . Clearly, Π has size (3; 1, 1, 0; 1, 1, 1).

With the rules of Table 1, we prove L(G) ⊆ L(Π) by showing how the differ-
ent types of rules are simulated. Let us look into the context-free rules first. The
simulation of the deletion rule h is obvious and hence omitted. Applying some
rule r : X → Y1Y2, with X ∈ N ′, to w = αXβ, where α, β ∈ (N ′′ ∪ T)∗, yields
w′ = αY1Y2β in G. In Π, we can find the following simulation, with α′c′ = κ′α
and cβ′ = βκ where α′κ, κ′cκ, κ′c′κ, κ′β′ ∈ {κ′}(N ′′ ∪ T)∗{κ}:

(κ′wκ)1 ⇒r1.1 (α′c′Xrcβ′)2 ⇒r2.1 (α′c′rcβ′)1 ⇒r1.2 (α′c′rr′cβ′)2 ⇒r2.2 (α′c′r′cβ′)1
⇒r1.3 (α′c′r′Δcβ′)1 ⇒r1.4 (α′c′r′Y2Δcβ′)2 ⇒r2.3.c (α′c′r′Y2cβ

′)3 ⇒r3.1

(α′c′r′Y1Y2cβ
′)2 ⇒r2.4.c′ (α′c′Y1Y2cβ

′)1 = (κ′αY1Y2βκ)1 = (κ′w′κ)1 .

For the non-context-free case, the simulation of f : AB → λ is straight-
forward; hence, details are omitted. By induction, this proves that whenever
S ⇒∗ w in G, then there is a derivation (κ′Sκ)1 ⇒′

∗ (κ′wκ)1 in Π, and finally
(κ′wκ)1 ⇒′ (w)1 is possible.

In the following we show the converse L(Π) ⊆ L(G) and this is important
since it also proves that Π not only produces intended strings as above but also
does not produce any unintended strings as well.

Conversely, consider a configuration (w)1, with (κ′Sκ)1 ⇒′
∗ (w)1. We assume

now that w starts with κ′ and ends with κ, and that these are the only occur-
rences of these special letters in w, as no malicious derivations are possible when
prematurely deleting κ or κ′. We now discuss five situations for w and prove in
each case that, whenever (w) ⇒′ (w′), then w′ satisfies one of these five situa-
tions, or from (w′)1 no final configuration can be reached. As S ∈ N ′, the base
case κ′Sκ is covered in case (iii) which is presented below. Hence, by induction,
the case distinction presented in the following considers all possibilities.
(i) Assume that w contains one occurrence of r′ (the primed marker of some
context-free rule r), but no occurrence of unprimed markers of context-free rules,
and no occurrence of any nonterminal from N ′, neither an occurrence of Δ. Hence,
w = κ′αr′βκ for appropriate strings α, β ∈ (N ′′ ∪ T)∗. Then, the rules (i.a) r1.3,
(i.b) r1.4, as well as the simulation initiation rules like (i.c) f1.1 are applicable.
Let us discuss these possibilities now. Subcase (i.c): If f1.1 is applied, then, say,
f is introduced to the right of some occurrence of A. In C2, one can then try
to apply (i.c.1) f2.1, (i.c.2) f2, 2, or (i.c.3) r2.4.c′ for an appropriate c′. How-
ever, as we are still simulating phase I of G, B cannot be to the right of A,
so that Subcase (i.c.1) cannot occur. Subcase (i.c.2) simply undoes the effect of
previously applying f1.1, so that we can ignore its discussion. In Subcase (i.c.3),

Computational Completeness of Path-Structured GCID Systems 95

we are back in C1 with a string that contains no symbols from N ′, nor any variants
of context-free rule markers, nor any Δ, but one non-context-free rule marker. We
will discuss this in Case (v) below and show that such a derivation cannot termi-
nate. Subcase (i.b): If we apply r1.4 to w immediately, we are stuck in C2. Hence,
consider finally Subcase (i.a): we apply r1.3 first once. Now, we are in a very similar
situation as before, but one Δ is added to the right of r′. This means that contin-
uing with f1.1 will get stuck again in C2. In order to make progress, we should
finally apply r1.4. Now, we are in the configuration (κ′αr′Y2Δ

nβκ)2 for some
n ≥ 1. As Y1 �= Y2, r2.4.c′ is not applicable for any c′, so the derivation is stuck
in C2. If we apply r.2.3.c, then we can only proceed if n = 1, which means that
we applied r1.3 exactly once before. Hence, (κ′αr′Y2Δβκ)2 ⇒ (κ′αr′Y2βκ)3 ⇒
(κ′αr′Y1Y2βκ)2 ⇒ (κ′αY1Y2βκ)1 is enforced. This corresponds to the intended
derivation; the assumed occurrence of r′ in the string was replaced by Y1Y2; this
corresponds to the situation of Case (iii).
(ii) Assume that w contains one occurrence of r (the unprimed marker of some
context-free rule r), but no occurrence of primed markers of context-free rules,
and no occurrence of any nonterminal from N ′, neither an occurrence of Δ.
Hence, w = κ′αrβκ for appropriate strings α, β ∈ (N ′′ ∪ T)∗. Similarly as dis-
cussed in Case (i), trying to start a simulation of some non-context-free rule
gets stuck in C2, in particular, as we are simulating phase I of G and there is no
nonterminal from N ′ in the current string. Hence, we are now forced to apply
r1.2. This means that in C2, we have to apply r2.2, leading us to (w′)1 with
w′ = αr′β, a situation previously discussed in Case (i).
(iii) Assume that w contains one occurrence X ∈ N ′, but no occurrence of
unprimed or primed markers of context-free rules, and no occurrence of Δ. Hence,
w = κ′αXβκ for appropriate strings α, β ∈ (N ′′ ∪T)∗. As we are still simulating
phase I of G, we are now forced to apply r1.1 or simulate the context-free deletion
rule (which gives a trivial discussion that is omitted; the important point is that
this switches to phase II of the simulation of G). This means that in C2, we have
to apply r2.1, leading us to (w′)1 with w′ = κ′αrβκ for some context-free rule
r : X → Y1Y2, a situation already discussed in Case (ii).
(iv) Assume that w ∈ {κ′}(N ′′ ∪ T)∗{κ}. Now, it is straightforward to analyze
that we have to follow the simulation of one of the non-context-free deletion
rules, or finally apply the rule deleting the special symbols κ, κ′.
(v) Assume that w contains no primed or unprimed markers of context-free
rules, nor a symbol from N ′, nor any Δ but contains a non-context-free rule
marker. This means we have to apply some rule f1.1, but although this might
successfully simulate a non-context-free deletion rule, it will bring us back to C1
with a non-context-free rule marker in the string. Hence, we are back in Case (v),
so that this type of derivation can never terminate.

The second claim follows by Proposition 1. The underlying graph of the
simulation is shown in Fig. 1(a). The corresponding undirected graph is a path
and hence the presented GCID system is path-structured. �

In [6], it was shown that GCID systems of sizes (4; 1, 1, 0; 1, 1, 0) and
(4; 1, 1, 0; 1, 0, 1) describe RE, with the underlying control graph not being a

96 H. Fernau et al.

Fig. 1. Control graphs underlying the GCID systems (characterizing RE) in this paper

path. In [5], the number of components was reduced from 4 to 3, however,
with the underlying graph still not being a path. In the next two theorems
we characterize RE by path-structured GCID systems of sizes (4; 1, 1, 0; 1, 1, 0)
and (4; 1, 1, 0; 1, 0, 1). The former result also complements an earlier result of [8],
which stated that GCIDP (3; 1, 2, 0; 1, 1, 0) = GCIDP (3; 1, 1, 0; 1, 2, 0) = RE. We
trade-off the number of components against the length of the left context of the
insertion/deletion.

Theorem 2. RE = GCIDP (4; 1, 1, 0; 1, 1, 0) = GCIDP (4; 1, 0, 1; 1, 0, 1).

Proof. Consider a type-0 grammar G = (N,T, P, S) in SGNF as in Definition 1.
We construct a GCIDP system Π = (4, V, T, {κS},H, 1, 1, R) such that L(Π) =
L(G). The four columns of the table correspond to the four components of Π.
The rows correspond to the simulation of r : X → Y1Y2, f : AB → λ and of the
context-free deletion rule h : S′ → λ. The last row deletes the left-end marker κ
introduced in the axiom. The alphabet of Π is V ⊂ N ∪ T ∪ {p, p′, p′′, p′′′ : p ∈
[1 . . . |P |]} ∪ {κ}. R is defined as shown in Table 2, depending on G. Clearly, Π
has size (4; 1, 1, 0; 1, 1, 0). We now prove that L(G) ⊆ L(Π). To this end, we show
that if w ⇒ w′ in G, with w,w′ ∈ (N ∪ T)∗, then (κw)1 ⇒′ (κw′)1 according
to Π. From this fact, the claim follows by a simple induction argument. As the
claim is evident for rule h, we only need to discuss w ⇒ w′ due to using a
context-free rule (Case CF) or due to using a non-context-free rule (Case CF).

Case CF: The intended simulation works as follows:

(καXβ)1 ⇒r1.1 (καrXβ)2 ⇒r2.1 (καrXr′β)3 ⇒r3.1 (καrr′β)4 ⇒r4.1

(καrr′r′′β)3 ⇒r3.2 (καrr′r′′r′′′β)2 ⇒r2.2 (καrr′′r′′′β)2 ⇒r2.3 (καrr′′′β)3 ⇒r3.3

(καrr′′′Y2β)4 ⇒r4.2 (καr′′′Y2β)3 ⇒r3.4 (καr′′′Y1Y2β)2 ⇒r2.4.c (καY1Y2β)1.

Table 2. GCID rules of size (4; 1, 1, 0; 1, 1, 0) with axiom κS and c ∈ N ′′ ∪ T ∪ {κ}.

Component C1 Component C2 Component C3 Component C4

r1.1 : (1, (λ, r, λ)I , 2) r2.1 : (2, (X, r′, λ)I , 3)

r2.2 : (2, (r, r′, λ)D, 2)

r2.3 : (2, (r, r′′, λ)D, 3)

r2.4.c : (2, (c, r′′′, λ)D, 1)

r3.1 : (3, (r, X, λ)D, 4)

r3.2 : (3, (r′′, r′′′, λ)I , 2)

r3.3 : (3, (r′′′, Y2, λ)I , 4)

r3.4 : (3, (r′′′, Y1, λ)I , 2)

r4.1 : (4, (r′, r′′, λ)I , 3)

r4.2 : (4, (λ, r, λ)D, 3)

f1.1 : (1, (λ, f, λ)I , 2) f2.1 : (2, (A, f ′, λ)I , 3)

f2.2 : (2, (λ, f, λ)D, 1)

f3.1 : (3, (f ′, B, λ)D, 4)

f3.2 : (3, (f, f ′, λ)D, 2)

f4.1 : (4, (f, A, λ)D, 3)

h1.1 : (1, (λ, S′, λ)D, 1)

κ1.1 : (1, (λ, κ, λ)D, 1)

Computational Completeness of Path-Structured GCID Systems 97

Here, c is the last symbol of κα, possibly κ.

Case CF: Let us consider f : AB → λ. This means that w = αABβ and w′ = αβ
for some α, β ∈ (N ∪ T)∗. Within Π, this can be simulated as follows.

(κw)1 = (καABβ)1 ⇒f1.1 (καfABβ)2 ⇒f2.1 (καfAf ′Bβ)3
⇒f3.1 (καfAf ′β)4 ⇒f4.1 (καff ′β)3 ⇒f3.2 (καfβ)2 ⇒f2.2 (κw′)1.

The converse inclusion L(Π) ⊆ L(G) is following an inductive argument as in
the previous theorem and hence is omitted here. The second claim follows by
Proposition 1. The underlying graph of the simulation is shown in Fig. 1(b). �
Theorem 3. RE = GCIDP (4; 1, 1, 0; 1, 0, 1) = GCIDP (4; 1, 0, 1; 1, 1, 0).

Proof. Consider a type-0 grammar G = (N,T, P, S) in SGNF. The rules of P are
labelled injectively with labels from [1 . . . |P |]. We construct a GCIDP system Π
such that L(Π) = L(G), with Π = (4, V, T, {S},H, 1, 1, R). The alphabet of Π
is V ⊂ N ∪T ∪{p, p′, p′′, p′′′ : p ∈ [1 . . . |P |]}. R is defined as shown in Table 3. Π
has the claimed size. The intended simulation of a context-free rule is as follows.

(αXβ)1 ⇒r1.1 (αXrβ)2 ⇒r2.1 (αrβ)1 ⇒r1.2 (αrr′β)2 ⇒r2.2

(αr′β)1 ⇒r1.3 (αr′r′′β)2 ⇒r2.3 (αr′r′′Y2β)3 ⇒r3.1 (αr′Y2β)4 ⇒r4.1

(αr′r′′′Y2β)3 ⇒r3.2 (αr′r′′′Y1Y2β)2 ⇒r2.4 (αr′Y1Y2β)2 ⇒r2.5 (αY1Y2β)1.

The intended simulation of a non-context-free rule is as follows.

(αABβ)1 ⇒f1.1 (αABfβ)2 ⇒f2.1 (αAf ′Bfβ)3 ⇒f3.1

(αf ′Bfβ)4 ⇒r4.1 (αf ′fβ)3 ⇒r3.2 (αfβ)2 ⇒r2.2 (αβ)1.

This shows that L(G) ⊆ L(Π). The main complication for the correctness proof
is the fact that we may return to C1 with strings containing rule markers.
This brings along a detailed discussion of four different situations for w when
considering (S)1 ⇒′

∗ (w)1 ⇒′ (w′)1 according to Π. A detailed explanation of
these different situations follows a similar argument as in Theorem 1 and is
omitted here in view of page constraint. �
Table 3. GCID rules of size (4; 1, 1, 0; 1, 0, 1) simulating a type-0 grammar in SGNF

Component C1 Component C2 Component C3 Component C4

r1.1 : (1, (X, r, λ)I , 2)

r1.2 : (1, (r, r′, λ)I , 2)

r1.3 : (1, (r′, r′′, λ)I , 2)

r2.1 : (2, (λ, X, r)D, 1)

r2.2 : (2, (λ, r, r′)D, 1)

r2.3 : (2, (r′′, Y2, λ)I , 3)

r2.4 : (2, (λ, r′′′, Y1)D, 2)

r2.5 : (2, (λ, r′, Y1)D, 1)

r3.1 : (3, (λ, r′′, Y2)D, 4)

r3.2 : (3, (r′′′, Y1, λ)I , 2)

r4.1 : (4, (r′, r′′′, λ)I , 3)

f1.1 : (1, (λ, f, λ)I , 2) f2.1 : (2, (A, f ′, λ)I , 3)

f2.2 : (2, (λ, f, λ)D, 1)

f3.1 : (3, (λ, A, f ′)D, 4)

f3.2 : (3, (λ, f ′, f)D, 2)

f4.1 : (4, (λ, B, f)D, 3)

h1.1 : (1, (λ, S′, λ)D, 1)

98 H. Fernau et al.

3.2 GCID Systems with Insertion Length Two

In [6], it is shown that GCIDP (4; 2, 0, 0; 1, 1, 0) = RE. Here, we show that, if
we allow a context (either left or right) for insertion, then we can still describe
RE while decreasing the number of components from 4 to 3, yet obtaining path-
structured GCID systems.

Theorem 4. RE = GCIDP (3; 2, 1, 0; 1, 0, 1) = GCIDP (3; 2, 0, 1; 1, 1, 0).

Table 4. GCID rules of size (3; 2, 1, 0; 1, 0, 1) simulating a type-0 grammar in SGNF.

Component C1 Component C2 Component C3

r1.1 : (1, (X, r, λ)I , 2) r2.1 : (2, (λ, X, r)D, 3)
r2.2 : (2, (λ, r, λ)D, 1)

r3.1 : (3, (r, Y1Y2, λ)I , 2)

f1.1 : (1, (B, f, λ)I , 2) f2.1 : (2, (λ, B, f)D, 3)
f2.2 : (2, (λ, f, λ)D, 1)

f3.1 : (3, (λ, A, f)D, 2)

h1.1 : (1, (λ, S′, λ)D, 1)

Proof. Consider a type-0 grammar G = (N,T, P, S) in SGNF as in Defini-
tion 1. We construct a GCIDP system Π = (3, V, T, {S},H, 1, 1, R) of size
(3; 2, 1, 0; 1, 0, 1) such that L(Π) = L(G). Here, let V ⊂ N ∪ T ∪ [1 . . . |P |]
contain in particular those rule labels used in the rules listed in Table 4. Π is of
size (3; 2, 1, 0; 1, 0, 1). We now prove that L(G) ⊆ L(Π). As the claim is evident
for h : S′ → λ, we show that if w ⇒ w′ in G, then (w)1 ⇒′ (w′)1 according to
Π in two more cases.

Case CF: Here, w = αXβ and w′ = αY1Y2β for some α, β ∈ (N ′′ ∪ T)∗. The
simulation of r : X → Y1Y2 performs as follows:

(αXβ)1 ⇐r2.2⇒r1.1
(αXrβ)2 ⇒r2.1 (αrβ)3 ⇒r3.1 (αrY1Y2β)2 ⇒r2.2 (αY1Y2β)1 .

Note the role of the right context r in r2.1. If the marker r is not present for the
deletion, then after applying r3.1, when we come back to C2, we can apply r2.1
again and could end-up with a malicious derivation.
Case CF: Here w = αABβ and w′ = αβ for some α, β ∈ (N ∪ T)∗. The rules
f : AB → λ can be simulated as follows.

(αABβ)1
⇐f2.2⇒f1.1(αABfβ)2 ⇒f2.1 (αAfβ)3 ⇒f3.1 (αfβ)2 ⇒f2.2 (αβ)1 .

We leave it to the reader to verify that no malicious derivations are possible.
Proposition 1 shows that also GCID systems of size (3; 2, 0, 1; 1, 1, 0) are compu-
tationally complete. Figure 1(a) shows the control graph of the simulation. �
Theorem 5. RE = GCIDP (3; 2, 1, 0; 1, 1, 0) = GCIDP (3; 2, 0, 1; 1, 0, 1).

The simulation is very similar to Theorem 4 and hence we provide only the
simulating rules in Table 5. �

Computational Completeness of Path-Structured GCID Systems 99

Table 5. GCID rules of size (3; 2, 1, 0; 1, 1, 0) simulating a type-0 grammar in SGNF.

Component C1 Component C2 Component C3

r1.1 : (1, (λ, r, λ)I , 2) p2.1 : (2, (r, X, λ)D, 3)
r2.2 : (2, (λ, r, λ)D, 1)

r3.1 : (3, (r, Y1Y2, λ)I , 2)

f1.1 : (1, (λ, f, λ)I , 2) f2.1 : (2, (f, A, λ)D, 3)
f2.2 : (2, (λ, f, λ)D, 1)

f3.1 : (3, (f, B, λ)D, 2)

h1.1 : (1, (λ, S′, λ)D, 1)

3.3 Consequences for ins-del P Systems

Representing the family of languages generated by ins-del P system with k
membranes and size (n, i′, i′′,m, j′, j′′), where the size parameters have the
same meaning as in GCID system by ELSPk(INSi′,i′′

n DELj′,j′′
m) (this nota-

tion was used in [8], based on [13]), we know that ELSP4(INS1,0
1 DEL0,0

2),
ELSP4(INS0,0

2 DEL1,0
1) ([6]) and ELSP3(INS2,0

1 DEL1,0
1), ELSP3(INS1,0

1 DEL2,0
1)

([8]) are computationally complete. Since the underlying control graph of all
the GCID systems (characterizing RE) in this paper has a path structure, the
results that we obtained correspond to ins-del P systems in the following way,
complementing [6,8].

Corollary 1. For i′, i′′, j′, j′′ ∈ {0, 1} with i′ + i′′ = j′ + j′′ = 1, the following
ins-del P systems are computationally complete.

1. RE = ELSP3(INSi′,i′′
2 DELj′,j′′

1) = ELSP4(INSi′,i′′
1 DELj′,j′′

1).
2. RE = ELSP3(INS1,0

1 DEL1,1
1) = ELSP3(INS0,1

1 DEL1,1
1). �

4 Summary and Open Problems

In this paper, we focused on examining the computational power of graph-
controlled ins-del systems with paths as control graphs, which naturally cor-
respond to variants of P systems. We lowered the resource needs to describe RE.
However, we still do not know if these resource bounds are optimal.

Here we considered the underlying graph of GCID systems to be path-
structured only. One may also consider also tree structure, which may give addi-
tional power, especially to ins-del P systems. The resources used in the results of
ins-del P systems need not be optimal since in ins-del P systems, each membrane
can have initial strings and they all evolve in parallel which may reduce the size.

The reader may have noticed that we discussed in detail the case of insertion
strings of length two, but a similar discussion for the case of deletion strings of
length two is missing. More precisely, to state one concrete question, it is open
whether RE = GCIDP (3; 1, 1, 0; 2, 1, 0) = GCIDP (3; 1, 1, 0; 2, 0, 1).

In view of the connections with P systems, it would be also interesting to
study Parikh images of (restricted) graph-controlled ins-del systems, as started
out for matrix-controlled ins-del systems in [3]. This also relates to the macroset
GCID systems considered in [2].

100 H. Fernau et al.

Acknowledgement. This work was supported by overhead money from the DFG
grant FE 560/6-1.

References

1. Benne, R. (ed.): RNA Editing: The Alteration of Protein Coding Sequences of
RNA. Molecular Biology. Ellis Horwood, Chichester (1993)

2. Fernau, H.: An essay on general grammars. J. Automata Lang. Comb. 21, 69–92
(2016)

3. Fernau, H., Kuppusamy, L.: Parikh images of matrix ins-del systems. In: Gopal,
T.V., Jäger, G., Steila, S. (eds.) TAMC 2017. LNCS, vol. 10185, pp. 201–215.
Springer, Cham (2017). doi:10.1007/978-3-319-55911-7 15

4. Fernau, H., Kuppusamy, L., Raman, I.: Generative power of graph-controlled ins-
del systems with small sizes. Accepted with J. Automata Lang. Comb. (2017)

5. Fernau, H., Kuppusamy, L., Raman, I.: On the computational completeness
of graph-controlled insertion-deletion systems with binary sizes. Accepted with
Theor. Comput. Sci. (2017). http://dx.doi.org/10.1016/j.tcs.2017.01.019

6. Freund, R., Kogler, M., Rogozhin, Y., Verlan, S.: Graph-controlled insertion-
deletion systems. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings Twelfth
Annual Workshop on Descriptional Complexity of Formal Systems, DCFS. EPTCS,
vol. 31, pp. 88–98 (2010)

7. Geffert, V.: Normal forms for phrase-structure grammars. RAIRO Informatique
Théorique Appl. / Theor. Inf. Appl. 25, 473–498 (1991)

8. Ivanov, S., Verlan, S.: About one-sided one-symbol insertion-deletion P systems. In:
Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa,
A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 225–237. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54239-8 16

9. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf.
Comput. 131(1), 47–61 (1996)

10. Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Further results on insertion-deletion
systems with one-sided contexts. In: Mart́ın-Vide, C., Otto, F., Fernau, H. (eds.)
LATA 2008. LNCS, vol. 5196, pp. 333–344. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-88282-4 31

11. Marcus, S.: Contextual grammars. Rev. Roum. Mathématiques Pures Appliquées
14, 1525–1534 (1969)

12. Matveevici, A., Rogozhin, Y., Verlan, S.: Insertion-deletion systems with one-sided
contexts. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664,
pp. 205–217. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74593-8 18

13. Păun, Gh.: Membrane Computing: An Introduction. Springer, Heidelberg (2002)
14. Păun, Gh., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Para-

digms. Springer, Heidelberg (1998)
15. Takahara, A., Yokomori, T.: On the computational power of insertion-deletion

systems. Nat. Comput. 2(4), 321–336 (2003)
16. Verlan, S.: Recent developments on insertion-deletion systems. Comput. Sci. J.

Moldova 18(2), 210–245 (2010)

http://dx.doi.org/10.1007/978-3-319-55911-7_15
http://dx.doi.org/10.1016/j.tcs.2017.01.019
http://dx.doi.org/10.1007/978-3-642-54239-8_16
http://dx.doi.org/10.1007/978-3-540-88282-4_31
http://dx.doi.org/10.1007/978-3-540-88282-4_31
http://dx.doi.org/10.1007/978-3-540-74593-8_18

	Computational Completeness of Path-Structured Graph-Controlled Insertion-Deletion Systems
	1 Introduction
	2 Preliminaries
	3 Computational Completeness
	3.1 GCID Systems with Insertion and Deletion Length One
	3.2 GCID Systems with Insertion Length Two
	3.3 Consequences for ins-del P Systems

	4 Summary and Open Problems
	References

