Complexity of Proper Prefix-Convex Regular Languages

Janusz A. Brzozowski and Corwin Sinnamon^(\boxtimes)

David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada brzozo@uwaterloo.ca, sinncore@gmail.com

Abstract. A language L over an alphabet Σ is prefix-convex if, for any words $x, y, z \in \Sigma^*$, whenever x and xyz are in L, then so is xy. Prefix-convex languages include right-ideal, prefix-closed, and prefix-free languages, which were studied elsewhere. Here we concentrate on prefixconvex languages that do not belong to any one of these classes; we call such languages *proper*. We exhibit most complex proper prefix-convex languages, which meet the bounds for the size of the syntactic semigroup, reversal, complexity of atoms, star, product, and Boolean operations.

Keywords: Atom · Most complex · Prefix-convex · Proper · Quotient complexity · Regular language · State complexity · Syntactic semigroup

1 Introduction

Prefix-Convex Languages. We examine the complexity properties of a class of regular languages that has never been studied before: the class of proper prefix-convex languages [\[7\]](#page-11-0). Let Σ be a finite alphabet; if $w = xy$, for $x, y \in \Sigma^*$, then x is a prefix of w. A language $L \n\subseteq \Sigma^*$ is *prefix-convex* [\[1](#page-11-1),[16\]](#page-11-2) if whenever x and xyz are in L, then so is xy . Prefix-convex languages include three special cases:

- 1. A language $L \subseteq \Sigma$ is a *right ideal* if it is non-empty and satisfies $L = L\Sigma^*$. Right ideals appear in pattern matching [\[11\]](#page-11-3): $L\Sigma^*$ is the set of all words in some text (word in Σ^*) beginning with words in L.
- 2. A language is *prefix-closed* [\[6\]](#page-11-4) if whenever w is in L , then so is every prefix of w. The set of allowed sequences to any system is prefix-closed. Every prefixclosed language other than Σ^* is the complement of a right ideal [\[1\]](#page-11-1).
- 3. A language is *prefix-free* if $w \in L$ implies that no prefix of w other than w is in L. Prefix-free languages other than $\{\varepsilon\}$, where ε is the empty word, are prefix codes and are of considerable importance in coding theory [\[2\]](#page-11-5).

This work was supported by the Natural Sciences and Engineering Research Council of Canada grant no. OGP0000871.

c Springer International Publishing AG 2017

A. Carayol and C. Nicaud (Eds.): CIAA 2017, LNCS 10329, pp. 52–63, 2017.

DOI: 10.1007/978-3-319-60134-2 5

The complexities of these three special prefix-convex languages were studied in [\[8\]](#page-11-6). We now turn to the "real" prefix-convex languages that do not belong to any of the three special classes.

Omitted proofs can be found in [\[7](#page-11-0)].

Complexities of Operations. If $L \subseteq \Sigma^*$ is a language, the *(left) quotient* of L by a word $w \in \Sigma^*$ is $w^{-1}L = \{x \mid wx \in L\}$. A language is regular if and only if it has a finite number of distinct quotients. So the number of quotients of L, the *quotient complexity* [\[3](#page-11-7)] $\kappa(L)$ of L, is a natural measure of complexity for L. An equivalent concept is the *state complexity* [\[15,](#page-11-8)[17](#page-11-9)[,18](#page-11-10)] of L, which is the number of states in a complete minimal deterministic finite automaton (DFA) over Σ recognizing L. We refer to quotient/state complexity simply as *complexity*.

If L_n is a regular language of complexity n, and \circ is a unary operation, the *complexity of* \circ is the maximal value of $\kappa(L_n^{\circ})$, expressed as a function of *n*, as L_n ranges over all languages of complexity n. If L'_m and L_n are regular languages of complexities ^m and ⁿ respectively, and ◦ is a binary operation, the *complexity of* \circ is the maximal value of $\kappa(L'_m \circ L_n)$, expressed as a function of m and n, as L'_m and L_n range over all languages of complexities m and n. The complexity of an operation is a lower bound on its time and space complexities. The operations reversal, (Kleene) star, product (concatenation), and binary boolean operations are considered "common", and their complexities are known; see [\[4](#page-11-11)[,17](#page-11-9),[18\]](#page-11-10).

Witnesses. To find the complexity of a unary operation we find an upper bound on this complexity, and languages that meet this bound. We require a language L_n for each n, that is, a sequence, (L_k, L_{k+1}, \ldots) , called a *stream* of languages, where k is a small integer, because the bound may not hold for small values of n . For a binary operation we need two streams. The same stream cannot always be used for both operands, but for all common binary operations the second stream can be a "dialect" of the first, that is it can "differ only slightly" from the first [\[4\]](#page-11-11). Let $\Sigma = \{a_1, \ldots, a_k\}$ be an alphabet ordered as shown; if $L \subseteq \Sigma^*$, we denote it by $L(a_1,\ldots,a_k)$. A *dialect* of L is obtained by deleting letters of Σ in the words of L, or replacing them by letters of another alphabet Σ' . More precisely, for an injective partial map $\pi: \Sigma \mapsto \Sigma'$, we get a dialect of L by replacing each letter $a \in \Sigma$ by $\pi(a)$ in every word of L, or deleting the word if $\pi(a)$ is undefined. We write $L(\pi(a_1),\ldots,\pi(a_k))$ to denote the dialect of $L(a_1,\ldots,a_k)$ given by π , and we denote undefined values of π by "−". Undefined values for letters at the end of the alphabet are omitted; for example, $L(a, c, -, -)$ is written as $L(a, c)$. Our definition of dialect is more general than that of [\[5\]](#page-11-12), where only the case $\Sigma' = \Sigma$ was allowed.

Finite Automata. A *deterministic finite automaton (DFA)* is a quintuple $\mathcal{D} =$ $(Q, \Sigma, \delta, q_0, F)$, where Q is a finite non-empty set of *states*, Σ is a finite nonempty *alphabet*, $\delta: Q \times \Sigma \to Q$ is the *transition function*, $q_0 \in Q$ is the *initial* state, and $F \subseteq Q$ is the set of *final* states. We extend δ to a function $\delta: Q \times \Sigma^* \to$ Q as usual. A DFA $\mathcal D$ *accepts* a word $w \in \Sigma^*$ if $\delta(q_0, w) \in F$. The set of all words accepted by D is the *language* of D. If $q \in Q$, then the *language* L_q of q is the language accepted by the DFA $(Q, \Sigma, \delta, q, F)$. A state is *empty or dead or a sink* if its language is empty. Two states p and q of D are *equivalent* if $L_p = L_q$. A state q is *reachable* if there exists $w \in \Sigma^*$ such that $\delta(q_0, w) = q$. A DFA is *minimal* if all of its states are reachable and no two states are equivalent. A *nondeterministic finite automaton (NFA)* is a quintuple $\mathcal{D} = (Q, \Sigma, \delta, I, F)$, where Q, Σ and F are defined as in a DFA, $\delta: Q \times \Sigma \to 2^Q$ is the *transition function*, and $I \subseteq Q$ is the *set of initial states*. An ε -*NFA* is an NFA in which transitions under the empty word ε are also permitted.

Transformations. We use $Q_n = \{0, \ldots, n-1\}$ as the set of states of every DFA with *n* states. A *transformation* of Q_n is a mapping $t: Q_n \to Q_n$. The *image* of $q \in Q_n$ under t is qt. In any DFA, each letter $a \in \Sigma$ induces a transformation δ_a of the set Q_n defined by $q\delta_a = \delta(q, a)$; we denote this by $a : \delta_a$. Often we use the letter a to denote the transformation it induces; thus we write qa instead of $q\delta_a$. We extend the notation to sets: if $P \subseteq Q_n$, then $Pa = \{pa \mid p \in P\}$. We also write $P \stackrel{a}{\longrightarrow} Pa$ to indicate that the image of P under a is Pa. If s, t are transformations of Q_n , their composition is $(qs)t$.

For $k \ge 2$, a transformation (permutation) t of a set $P = \{q_0, q_1, \ldots, q_{k-1}\} \subseteq$ Q_n is a k-*cycle* if $q_0t = q_1, q_1t = q_2, \ldots, q_{k-2}t = q_{k-1}, q_{k-1}t = q_0$. This k-cycle is denoted by $(q_0, q_1, \ldots, q_{k-1})$. A 2-cycle (q_0, q_1) is called a *transposition*. A transformation that sends all the states of P to q and acts as the identity on the other states is denoted by $(P \to q)$, and $(Q_n \to p)$ is called a *constant* transformation. If $P = \{p\}$ we write $(p \to q)$ for $(\{p\} \to q)$. The identity transformation is denoted by 1. Also, $\begin{pmatrix} j & q \end{pmatrix}$ q \rightarrow q + 1) is a transformation that sends q to $q + 1$ for $i \leq q \leq j$ and is the identity for the remaining states; $\binom{i}{i}$ $q \rightarrow q - 1$) is defined similarly.

Semigroups. The *syntactic congruence* of $L \subseteq \Sigma^*$ is defined on Σ^+ : For $x, y \in$ Σ^+ , $x \approx_L y$ if and only if $wxz \in L \Leftrightarrow wyz \in L$ for all $w, z \in \Sigma^*$. The quotient set Σ^+/\approx_L of equivalence classes of \approx_L is the *syntactic semigroup* of L. Let $\mathcal{D}_n = (Q_n, \Sigma, \delta, q_0, F)$ be a DFA, and let $L_n = L(\mathcal{D}_n)$. For each word $w \in \Sigma^*$, the transition function induces a transformation δ_w of Q_n by w: for all $q \in Q_n$, $q\delta_w = \delta(q, w)$. The set $T_{\mathcal{D}_n}$ of all such transformations by non-empty words is a semigroup under composition called the *transition semigroup* of \mathcal{D}_n . If \mathcal{D}_n is a minimal DFA of L_n , then $T_{\mathcal{D}_n}$ is isomorphic to the syntactic semigroup T_{L_n} of L_n , and we represent elements of T_{L_n} by transformations in $T_{\mathcal{D}_n}$. The size of the syntactic semigroup has been used as a measure of complexity for regular languages [\[4,](#page-11-11)[10](#page-11-13)[,12](#page-11-14),[14\]](#page-11-15).

Atoms. are defined by a left congruence, where two words ^x and ^y are equivalent if $ux \in L$ if and only if $uy \in L$ for all $u \in \Sigma^*$. Thus x and y are equivalent if $x \in u^{-1}L$ if and only if $y \in u^{-1}L$. An equivalence class of this relation is an *atom* of L [\[9](#page-11-16)[,13](#page-11-17)].

One can conclude that an atom is a non-empty intersection of complemented and uncomplemented quotients of L . That is, every atom of a language with quotients $K_0, K_1, \ldots, K_{n-1}$ can be written as $A_S = \bigcap_{i \in S} K_i \cap \bigcap_{i \in \overline{S}} \overline{K_i}$ for some set $S \subseteq Q_n$. The number of atoms and their complexities were suggested as

possible measures of complexity [\[4](#page-11-11)], because all the quotients of a language and the quotients of its atoms are unions of atoms [\[9](#page-11-16)].

Most Complex Regular Stream. The stream $(\mathcal{D}_n(a, b, c) \mid n \geq 3)$ of Definition 1 and Fig. 1 will be used as a component in the class of proper prefix-convex tion [1](#page-3-0) and Fig. [1](#page-3-1) will be used as a component in the class of proper prefix-convex languages. This stream together with some dialects meets the complexity bounds for reversal, star, product, and all binary boolean operations [\[7](#page-11-0)[,8](#page-11-6)]. Moreover, it has the maximal syntactic semigroup and most complex atoms, making it a most complex regular stream.

Definition 1. *For* $n \geq 3$ *, let* $\mathcal{D}_n = \mathcal{D}_n(a, b, c) = (Q_n, \Sigma, \delta_n, 0, \{n - 1\})$ *, where* $\Sigma = \{a, b, c\}$ *and* δ *, is defined by a*: (0, n − 1) *b*: (0, 1) *c*: (1 → 0) $\Sigma = \{a, b, c\}$ *, and* δ_n *is defined by* $a: (0, \ldots, n-1)$ *, b:* $(0, 1)$ *, c:* $(1 \rightarrow 0)$ *.*

Fig. 1. Minimal DFA of a most complex regular language.

Most complex streams are useful in systems dealing with regular languages and finite automata. To know the maximal sizes of automata that can be handled by a system it suffices to use the most complex stream to test all the operations.

2 Proper Prefix-Convex Languages

We begin with some properties of prefix-convex languages that will be used frequently in this section. The following lemma and propositions characterize the classes of prefix-convex languages in terms of their minimal DFAs.

Lemma 1. *Let* ^L *be a prefix-convex language over* ^Σ*. Either* ^L *is a right ideal or* L *has an empty quotient.*

Proposition 1. Let L_n be a regular language of complexity n, and let $\mathcal{D}_n =$ $(Q_n, \Sigma, \delta, 0, F)$ *be a minimal DFA recognizing* L_n . The following are equivalent:

- *1.* L*ⁿ is prefix-convex.*
- 2. For all $p, q, r \in Q_n$, if p and r are final, q is reachable from p, and r is *reachable from* q*, then* q *is final.*
- *3. Every state reachable in* D*ⁿ from any final state is either final or empty.*

Proposition 2. Let L_n be a non-empty prefix-convex language of complexity n, *and let* $\mathcal{D}_n = (Q_n, \Sigma, \delta, 0, F)$ *be a minimal DFA recognizing* L_n .

- 1. L_n *is prefix-closed if and only if* $0 \in F$ *.*
- *2.* ^L*ⁿ is prefix-free if and only if* ^D*ⁿ has a unique final state* ^p *and an empty state* p' *such that* $\delta(p, a) = p'$ *for all* $a \in \Sigma$ *.*
- *3.* L_n *is a right ideal if and only if* \mathcal{D}_n *has a unique final state* p and $\delta(p, a) = p$ *for all* $a \in \Sigma$ *.*

A prefix-convex language L is *proper* if it is not a right ideal and it is neither prefix-closed nor prefix-free. We say it is k-*proper* if it has k final states, $1 \leq$ $k \leq n-2$. Every minimal DFA for a k-proper language with complexity n has the same general structure: there are $n-1-k$ non-final, non-empty states, k final states, and one empty state. Every letter fixes the empty state and, by Proposition [1,](#page-3-2) no letter sends a final state to a non-final, non-empty state.

Next we define a stream of k -proper DFAs and languages, which we will show to be most complex.

Definition 2. For $n \geq 3$, $1 \leq k \leq n-2$, let $\mathcal{D}_{n,k}(\Sigma) = (Q_n, \Sigma, \delta_{n,k}, 0, F_{n,k})$
where $\Sigma = \{a, b, c, c, d, d, e\}$, $F_{n,k} = \{n-1-k, n-2\}$, and $\delta_{n,k}$ is given $where \Sigma = \{a, b, c_1, c_2, d_1, d_2, e\}, F_{n,k} = \{n-1-k, \ldots, n-2\}, and \delta_{n,k}$ *is given by the transformations*

$$
a: \begin{cases} (1,\ldots,n-2-k)(n-1-k,n-k), & \text{if } n-1-k \text{ is even and } k \geqslant 2; \\ (0,\ldots,n-2-k)(n-1-k,n-k), & \text{if } n-1-k \text{ is odd and } k \geqslant 2; \\ (1,\ldots,n-2-k), & \text{if } n-1-k \text{ is even and } k=1; \\ (0,\ldots,n-2-k), & \text{if } n-1-k \text{ is odd and } k=1. \end{cases}
$$

$$
b: \begin{cases} (n-k,\ldots,n-2)(0,1), & \text{if } k \text{ is even and } n-1-k \geqslant 2; \\ (n-1-k,\ldots,n-2)(0,1), & \text{if } k \text{ is odd and } n-1-k \geqslant 2; \\ (n-k,\ldots,n-2), & \text{if } k \text{ is even and } n-1-k=1; \\ (n-1-k,\ldots,n-2), & \text{if } k \text{ is odd and } n-1-k=1. \end{cases}
$$

$$
c_1: \begin{cases} (1 \to 0), & \text{if } n-1-k \geqslant 2; \\ 1, & \text{if } n-1-k=1. \end{cases}
$$

$$
c_2: \begin{cases} (n-k \to n-1-k), & \text{if } k \geqslant 2; \\ 1, & \text{if } k=1. \end{cases}
$$

$$
d_1: (n-2-k \to n-1)\binom{n-3-k}{0}q \to q+1.
$$

$$
d_2: \binom{n-2}{n-1-k} q \to q+1.
$$

$$
e_2: \begin{cases} (0 \to n-1-k). \end{cases}
$$

Also, let $E_{n,k} = \{0, \ldots, n-2-k\}$; it is useful to partition Q_n into $E_{n,k}$, $F_{n,k}$, *and* $\{n-1\}$ *. Letters* a *and* b *have complementary behaviours on* $E_{n,k}$ *and* $F_{n,k}$ *, depending on the parities of n and k. Letters* c_1 *and* d_1 *act on* $E_{n,k}$ *in exactly the same way as* c_2 *and* d_2 *act on* $F_{n,k}$ *. In addition,* d_1 *and* d_2 *send states* $n-2-k$ *and* $n-2$ *, respectively, to state* $n-1$ *, and letter e connects the two parts of the DFA. The structure of* $\mathcal{D}_n(\Sigma)$ *is shown in Figs.* [2](#page-5-0) *and* [3](#page-5-1) *for certain parities of* $n-1-k$ *and* k. Let $L_{n,k}(\Sigma)$ be the language recognized by $\mathcal{D}_{n,k}(\Sigma)$.

Fig. [2](#page-4-0). DFA $\mathcal{D}_{n,k}(a, b, c_1, c_2, d_1, d_2, e)$ of Definition 2 when $n-1-k$ is odd, k is even, and both are at least 2; missing transitions are self-loops.

Fig. 3. DFA $\mathcal{D}_{n,k}(a, b, c_1, c_2, d_1, d_2, e)$ $\mathcal{D}_{n,k}(a, b, c_1, c_2, d_1, d_2, e)$ $\mathcal{D}_{n,k}(a, b, c_1, c_2, d_1, d_2, e)$ of Definition 2 when $n-1-k$ is even, k is odd, and both are at least 2; missing transitions are self-loops.

Theorem 1 (Proper Prefix-Convex Languages). *For* $n \geq 3$ and $1 \leq k \leq n-2$ *the DFA* $\mathcal{D}_{-1}(\Sigma)$ of Definition 2 is minimal and $L_{-1}(\Sigma)$ is a k-proper $n-2$ $n-2$, the DFA $\mathcal{D}_{n,k}(\Sigma)$ of Definition 2 is minimal and $L_{n,k}(\Sigma)$ is a k-proper *language of complexity* n*. The bounds below are maximal for* k*-proper prefixconvex languages. At least seven letters are required to meet these bounds.*

- *1. The syntactic semigroup of* $L_{n,k}(\Sigma)$ *has cardinality* $n^{n-1-k}(k+1)^k$ *; the maximal value* $n(n-1)^{n-2}$ *is reached only when* $k = n-2$ *.*
- 2. The non-empty, non-final quotients of $L_{n,k}(a, b, -, -, -, d_2, e)$ have complex*ity* n, the final quotients have complexity $k + 1$, and \emptyset has complexity 1.
- *3. The reverse of* $L_{n,k}(a, b, -, -, -, d_2, e)$ *has complexity* 2^{n-1} *; moreover, the language* $L_{n,k}(a, b, -, -, -, d_2, e)$ *has* 2^{n-1} *atoms for all k.*
- 4. For each atom A_S of $L_{n,k}(\Sigma)$, write $S = X_1 \cup X_2$, where $X_1 \subseteq E_{n,k}$ and $X_2 \subseteq F_{n,k}$ *. Let* $\overline{X_1} = E_{n,k} \setminus X_1$ and $\overline{X_2} = F_{n,k} \setminus X_2$ *. If* $X_2 \neq \emptyset$ *, then* $\kappa(A_S) =$

$$
1+\sum_{x_1=0}^{|X_1|+|X_2|-x_1}\sum_{x_2=1}^{|\overline{X_1}|+|\overline{X_2}|}\sum_{y_1=0}^{|\overline{X_1}|+|\overline{X_2}|-y_1}{n-1-k\choose x_1}{k\choose x_2}{n-1-k-x_1\choose y_1}{k-x_2\choose y_2}.
$$

If $X_1 \neq \emptyset$ *and* $X_2 = \emptyset$ *, then* $\kappa(A_S) =$

$$
1+\sum_{x_1=0}^{|X_1|} \sum_{x_2=0}^{|X_1|-x_1} \sum_{y_1=0}^{|\overline{X_1}|} \sum_{y_2=0}^{k} {n-1-k \choose x_1}{k \choose x_2}{n-1-k-x_1 \choose y_1}{k-x_2 \choose y_2} -2^k \sum_{y=0}^{|\overline{X_1}|} {n-1-k \choose y}.
$$

Otherwise, $S = \emptyset$ *and* $\kappa(A_S) = 2^{n-1}$ *.*

- *5. The star of* $L_{n,k}(a, b, -, -, d_1, d_2, e)$ *has complexity* $2^{n-2} + 2^{n-2-k} + 1$. The *maximal value* $2^{n-2} + 2^{n-3} + 1$ *is reached only when* $k = 1$ *.*
- 6. $L'_{m,j}(a, b, c_1, -, d_1, d_2, e)L_{n,k}(a, d_2, c_1, -, d_1, b, e)$ *has complexity* $m-1-j+$ $j2^{n-2} + 2^{n-1}$. The maximal value $m2^{n-2} + 1$ is reached only when $j = m-2$.
- *7. For* $m, n \geqslant 3, 1 \leqslant j \leqslant m 2,$ and $1 \leqslant k \leqslant n 2,$ define the languages $L'_{m,j} = L'_{m,j}(a, b, c_1, -, d_1, d_2, e)$ *and* $L_{n,k} = L_{n,k}(a, b, e, -, d_2, d_1, c_1)$ *. For any proper binary boolean function* \circ *, the complexity of* $L'_{m,j} \circ L_{n,k}$ *is maximal. In particular,*
	- $\mathcal{L}_{m,j}$ ∪ $L_{n,k}$ *and* $L'_{m,j}$ ⊕ $L_{n,k}$ *have complexity mn.*
	- *(b)* $L'_{m,j} \setminus L_{n,k}$ *has complexity* $mn (n-1)$ *.*
	- (c) $L_{m,j}^{r} \cap L_{n,k}$ has complexity $mn (m+n-2)$.

Proof. The remainder of this paper is an outline of the proof of this theorem. The longer parts of the proof are separated into individual propositions and lemmas.

DFA $\mathcal{D}_{n,k}(a, b, -, -, -, d_2, e)$ is easily seen to be minimal. Language $L_{n,k}(\Sigma)$ is k-proper by Propositions [1](#page-3-2) and [2.](#page-3-3)

- 1. See Lemma [2](#page-6-0) and Proposition [3.](#page-7-0)
- 2. If the initial state of $\mathcal{D}_{n,k}(a, b, -, -, -, d_2, e)$ is changed to $q \in E_{n,k}$, the new DFA accepts a quotient of $L_{n,k}$ and is still minimal; hence the complexity of that quotient is *n*. If the initial state is changed to $q \in F_{n,k}$ then states in $E_{n,k}$ are unreachable, but the DFA on $\{n-1-k,\ldots,n-1\}$ is minimal; hence the complexity of that quotient is $k + 1$. The remaining quotient is empty, and hence has complexity 1. By Proposition [1,](#page-3-2) these are maximal.
- 3. See Proposition [4](#page-8-0) for the reverse. It was shown in [\[9\]](#page-11-16) that the number of atoms is equal to the complexity of the reverse.
- 4. See [\[7\]](#page-11-0).
- 5. See Proposition [5.](#page-9-0)
- 6. See [\[7\]](#page-11-0).
- 7. By [\[3,](#page-11-7) Theorem 2], all boolean operations on regular languages have the upper bound mn , which gives the bound for (a). The bounds for (b) and (c) follow from [\[3](#page-11-7), Theorem 5]. The proof that all these bounds are tight for $L'_{m,j} \circ L_{n,k}$ can be found in [\[7](#page-11-0)].

Lemma 2. Let $n \geq 1$ and $1 \leq k \leq n-2$. For any permutation t of Q_n such that $F_{n+1} - F_{n+1} - F_{n+1}$ and $(n-1)t - n-1$ there is a word $w \in \{a, b\}^*$ $E_{n,k}t = E_{n,k}, F_{n,k}t = F_{n,k}, and (n-1)t = n-1,$ there is a word $w \in \{a, b\}^*$ *that induces t on* $\mathcal{D}_{n,k}$ *.*

Proof. Only a and b induce permutations of Q_n ; every other letter induces a properly injective map. Furthermore, a and b permute $E_{n,k}$ and $F_{n,k}$ separately, and both fix $n-1$. Hence every $w \in \{a, b\}^*$ induces a permutation on Q_n such that $E_{n,k}w = E_{n,k}, F_{n,k}w = F_{n,k}$, and $(n-1)w = n-1$. Each such permutation naturally corresponds to an element of $S_{n-1-k} \times S_k$, where S_m denotes the symmetric group on m elements. To be consistent with the DFA, assume S_{n-1-k} contains permutations of $\{0,\ldots,n-2-k\}$ and S_k contains permutations of $\{n-1-k,\ldots,n-2\}$. Let s_a and s_b denote the group elements

corresponding to the transformations induced by a and b respectively. We show that s_a and s_b generate $S_{n-1-k} \times S_k$.

It is well known that $(0, \ldots, m-1)$, and $(0, 1)$ generate the symmetric group on $\{0,\ldots,m-1\}$ for any $m\geq 2$. Note that $(1,\ldots,m-1)$ and $(0,1)$ are also generators, since $(0, 1)(1, \ldots, m - 1) = (0, \ldots, m - 1).$

If $n-1-k=1$ and $k=1$, then $S_{n-1-k}\times S_k$ is the trivial group. If $n-1-k=1$ and $k \ge 2$, then $s_a = (1, (n-1-k, n-k))$ and s_b is either $(1, (n-1-k, ..., n-2))$ or $(1,(n-k,\ldots,n-2))$, and either pair generates the group. There is a similar argument when $k = 1$.

Assume now $n-1-k \geqslant 2$ and $k \geqslant 2$. If $n-1-k$ is odd then $s_a = ((0, \ldots, n-1)$ $(2-k)$, $(n-1-k, n-k)$), and hence s_a^{n-1-k} = $((0, \ldots, n-2-k)^{n-1-k}, (n-k)$ $1 - k, n - k$ ^{n-1-k} $) = (1, (n - 1 - k, n - k))$. Similarly if $n - 1 - k$ is even then $s_a = ((1, \ldots, n-2-k), (n-1-k, n-k))$, and hence $s_a^{n-2-k} = (1, (n-1-k, n-k))$. Therefore $(1,(n-1-k,n-k))$ is always generated by s_a . By symmetry, $((0,1),1)$ is always generated by s_b regardless of the parity of k .

Since we can isolate the transposition component of s_a , we can isolate the other component as well: $(1,(n-1-k,n-k))s_a$ is either $((0,\ldots,n-2-k),1)$ or $((1,\ldots,n-2-k),1)$. Paired with $((0,1),1)$, either element is sufficient to generate $S_{n-1-k} \times \{\mathbb{1}\}\$. Similarly, s_a and s_b generate $\{\mathbb{1}\}\times S_k$. Therefore s_a and s_{*b*} generate $S_{n-1-k} \times S_k$. It follows that a and b generate all permutations t of Q_n such that $E_{n,k}t = E_{n,k}$, $F_{n,k}t = F_{n,k}$, and $(n-1)t = n-1$. Q_n such that $E_{n,k}t = E_{n,k}$, $F_{n,k}t = F_{n,k}$, and $(n-1)t = n-1$.

Proposition 3 (Syntactic Semigroup). *The syntactic semigroup of* $L_{n,k}(\Sigma)$ *has cardinality* $n^{n-1-k}(k+1)^k$ *, which is maximal for a k-proper language. Furthermore, seven letters are required to meet this bound. The maximum value* $n(n-1)^{n-2}$ *is reached only when* $k = n-2$ *.*

Proof. Let L be a k-proper language of complexity n and let D be a minimal DFA recognizing L. By Lemma [1,](#page-3-2) $\mathcal D$ has an empty state. By Proposition 1, the only states that can be reached from one of the k final states are either final or empty. Thus, a transformation in the transition semigroup of D may map each final state to one of $k + 1$ possible states, while each non-final, non-empty state may be mapped to any of the n states. Since the empty state can only be mapped to itself, we are left with $n^{n-1-k}(k+1)^k$ possible transformations in the transition semigroup. Therefore the syntactic semigroup of any k-proper language has size at most $n^{n-1-k}(k+1)^k$.

Now consider the transition semigroup of $\mathcal{D}_{n,k}(\Sigma)$. Every transformation t in the semigroup must satisfy $F_{n,k}t \subseteq F_{n,k} \cup \{n-1\}$ and $(n-1)t = n-1$, since any other transformation would violate prefix-convexity. We show that the semigroup contains every such transformation, and hence the syntactic semigroup of $L_{n,k}(\Sigma)$ is maximal.

First, consider the transformations t such that $E_{n,k}$ t $\subseteq E_{n,k} \cup \{n-1\}$ and $qt = q$ for all $q \in F_{n,k} \cup \{n-1\}$. By Lemma [2,](#page-6-0) a and b generate every permutation of $E_{n,k}$. When t is not a permutation, we can use c_1 to combine any states p and q: apply a permutation on $E_{n,k}$ so that $p \to 0$ and $q \to 1$, and then apply c_1 so that $1 \rightarrow 0$. Repeat this method to combine any set of states, and further

apply permutations to induce the desired transformation while leaving the states of $F_{n,k} \cup \{n-1\}$ in place. The same idea applies with d_1 ; apply permutations and d_1 to send any states of $E_{n,k}$ to $n-1$. Hence a, b, c₁, and d_1 generate every transformation t such that $E_{n,k}$ t $\subseteq E_{n,k} \cup \{n-1\}$ and $qt = q$ for all $q \in F_{n,k} \cup \{n-1\}.$

We can make the same argument for transformations that act only on $F_{n,k}$ and fix every other state. Since c_2 and d_2 act on $F_{n,k}$ exactly as c_1 and d_1 act on $E_{n,k}$, the letters a, b, c_2 , and d_2 generate every transformation t such that $F_{n,k}t \subseteq F_{n,k} \cup \{n-1\}$ and $qt = q$ for all $q \in E_{n,k} \cup \{n-1\}$. It follows that a, b, c_1 , c_2, d_1 , and d_2 generate every transformation t such that $E_{n,k}t \subseteq E_{n,k} \cup \{n-1\}$, $F_{n,k}t \subseteq F_{n,k} \cup \{n-1\}, \text{ and } (n-1)t = n-1.$

Note the similarity between this DFA restricted to the states E_n _k ∪ {n − 1} (or $F_{n,k} \cup \{n-1\}$) and the witness for right ideals introduced in [\[7](#page-11-0)]. The argument for the size of the syntactic semigroup of right ideals is similar to this; see [\[10](#page-11-13)].

Finally, consider an arbitrary transformation t such that $F_{n,k}t \subseteq F_{n,k} \cup \{n-1\}$ and $(n-1)t = n-1$. Let j_t be the number of states $p \in E_{n,k}$ such that $pt \in F_{n,k}$. We show by induction on j_t that t is in the transition semigroup of \mathcal{D} . If $j_t = 0$, then t is generated by $\Sigma \setminus \{e\}$. If $j_t \geq 1$, there exist $p, q \in E_{n,k}$ such that $pt \in F_{n,k}$ and q is not in the image of t. Consider the transformations s_1 and s_2 defined by $qs_1 = pt$ and $rs_1 = r$ for $r \neq q$, and $ps_2 = q$ and $rs_2 = rt$ for $r \neq p$. Then $(rs_2)s_1 = rt$ for all $r \in Q_n$. Notice that $j_{s_2} = j_t - 1$, and hence Σ generates s_2 by inductive assumption. One can verify that $s_1 = (n 1-k, pt(0, q)(0 \to n-1-k)(0, q)(n-1-k, pt)$. From this expression, we see that s_1 is the composition of transpositions induced by words in $\{a, b\}^*$ and the transformation $(0 \to n-1-k)$ induced by e, and hence s_1 is generated by Σ . Thus, t is in the transition semigroup. By induction on j_t , it follows that the syntactic semigroup of $L_{n,k}$ is maximal.

Now we show that seven letters are required to meet this bound. Two letters (like a and b) are required to generate the permutations, since clearly one letter is not sufficient. Every other letter will induce a properly injective map. A letter (like c_1) that induces a properly injective map on $E_{n,k}$ and permutes $F_{n,k}$ is required. Similarly, a letter (like c_2) that permutes $E_{n,k}$ and induces a properly injective map on $F_{n,k}$ is required. A letter (like d_1) that sends a state in $E_{n,k}$ to $n-1$ and permutes $F_{n,k}$ is required. Similarly, a letter (like d_2) that sends a state in $F_{n,k}$ to $n-1$ and permutes $E_{n,k}$ is required. Finally, a letter (like e) that connects $E_{n,k}$ and $F_{n,k}$ is required.

For a fixed n, we may want to know which $k \in \{1, ..., n-2\}$ maximizes $s_n(k) = n^{n-1-k}(k+1)^k$; this corresponds to the largest syntactic semigroup of a proper prefix-convex language with n quotients. We show that $s_n(k)$ is largest at $k = n - 2$. Consider the ratio $\frac{s_n(k+1)}{s_n(k)} = \frac{(k+2)^{k+1}}{n(k+1)^k}$. Notice this ratio is increasing with k, and hence s_n is a convex function on $\{1,\ldots,n-2\}$. It follows that the maximum value of s_n must occur at one the endpoints, 1 and $n-2$.

Now we show that $s_n(n-2) \geq s_n(1)$ for all $n \geq 3$. We can check this explicitly for $n = 3, 4, 5$. When $n \ge 6$, $s_n(n-2)/s_n(1) = \frac{n}{2} \left(\frac{n-1}{n}\right)^{n-2} \ge 3 \left(1/e\right) > 1$; so the largest syntactic semigroup of $L_{n,k}(\Sigma)$ occurs only at $k = n - 2$ for all $n \geq 3$. **Proposition 4 (Reverse).** *For any regular language* ^L *of complexity* ⁿ *with an empty quotient, the reversal has complexity at most* 2*n*−¹*. Moreover, the reverse of* $L_{n,k}(a, b, -, -, -, d_2, e)$ *has complexity* 2^{n-1} *for* $n \geq 3$ *and* $1 \leq k \leq n-2$ *.*

Proof. The first claim is left for the reader to verify. For the second claim, let $\mathcal{D}_{n,k} = (Q_n, \{a, b, d_2, e\}, \delta_{n,k}, 0, F_{n,k})$ denote the DFA $\mathcal{D}_{n,k}(a, b, -, -, -, d_2, e)$ in Definition [2](#page-4-0) and let $L_{n,k} = L(D_{n,k})$. Construct an NFA N recognizing the reverse of $L_{n,k}$ by reversing each transition, letting the initial state 0 be the unique final state, and letting the final states in $F_{n,k}$ be the initial states. Applying the subset construction to $\tilde{\mathcal{N}}$ yields a DFA \mathcal{D}^R whose states are subsets of Q_{n-1} , with initial state $F_{n,k}$ and final states $\{U \subseteq Q_{n-1} \mid 0 \in U\}$. We show that \mathcal{D}^R is minimal, and hence the reverse of $L_{n,k}$ has complexity 2^{n-1} .

Recall from Lemma [2](#page-6-0) that a and b generate all permutations of $E_{n,k}$ and $F_{n,k}$ in $\mathcal{D}_{n,k}$ and, although the transitions are reversed in \mathcal{D}^{R} , they still generate all such permutations. Let $u_1, u_2 \in \{a, b\}^*$ be such that u_1 induces $(0, \ldots, n-2-k)$ and u_2 induces $(n-1-k,\ldots,n-2)$ in \mathcal{D}^R .

Consider a state $U = \{q_1, ..., q_h, n-1-k,..., n-2\}$ where $0 \le q_1 <$ $q_2 < \cdots < q_h \leq n-2-k$. If $h = 0$, then U is the initial state. When $h \geq 1$, ${q_2 - q_1, q_3 - q_1, \ldots, q_h - q_1, n - 1 - k, \ldots, n - 2}eu_1^{q_1} = U$. By induction, all such states are reachable.

Now we show that any state $U = \{q_1, \ldots, q_h, p_1, \ldots, p_i\}$ where $0 \leq q_1 < q_2$ $\langle \cdots \langle q_h \rangle \leq n-2-k$ and $n-1-k \leq p_1 < p_2 < \cdots < p_i \leq n-2$ is reachable. If $i = k$, then $U = \{q_1, \ldots, q_h, n-1-k, \ldots, n-2\}$ is reachable by the argument above. When $0 \leq i < k$, choose $p \in F_{n,k} \setminus U$ and see that U is reached from $U \cup \{p\}$ by $u_2^{n-1-p} d_2 u_2^{p-(n-2-k)}$. By induction, every state is reachable.

To prove distinguishability, consider distinct states U and V. Choose $q \in$ $U \oplus V$. If $q \in E_{n,k}$, then U and V are distinguished by $u_1^{n-1-k-q}$. When $q \in F_{n,k}$, they are distinguished by $u_2^{n-1-q}e$. So \mathcal{D}^R is minimal.

Proposition 5 (Star). Let L be a regular language with $n \geq 2$ quotients,
including $k \geq 1$ final quotients and one empty quotient. Then $\kappa(L^*) \leq 2^{n-2} + 1$ *including* $k \geq 1$ *final quotients and one empty quotient. Then* $\kappa(L^*) \leq 2^{n-2} +$ 2*ⁿ*−2−*^k*+1*. This bound is tight for prefix-convex languages; in particular, the language* $(L_{n,k}(a, b, -, -, d_1, d_2, e))^*$ *meets this bound for* $n \geq 3$ *and* $1 \leq k \leq n-2$ *.*

Proof. Since L has an empty quotient, let $n-1$ be the empty state of its minimal DFA D. To obtain an ε -NFA for L^* , we add a new initial state 0' which is final and has the same transitions as 0. We then add an ε -transition from every state in F to 0. Applying the subset construction to this ε -NFA yields a DFA $\mathcal{D}' = (Q', \Sigma, \delta', \{0'\}, F')$ recognizing L^* , in which Q' contains non-empty subsets of $Q_n \cup \{0\}$.

Many of the states of Q' are unreachable or indistinguishable from other states. Since there is no transition in the ε -NFA to 0', the only reachable state in Q' containing $0'$ is $\{0'\}$. As well, any reachable final state $U\neq \{0'\}$ must contain 0 because of the ε -transitions. Finally, for any $U \in Q'$, we have $U \in F'$ if and only if $U \cup \{n-1\} \in F'$, and since $\delta'(U \cup \{n-1\}, w) = \delta'(U, w) \cup \{n-1\}$ for all $w \in \mathbb{Z}^*$, the states U and $U \cup \{n-1\}$ are equivalent in D' .

Hence \mathcal{D}' is equivalent to a DFA with the states $\{\{0'\}\}\cup\{U\subseteq Q_{n-1}\mid U\cap F=$ \emptyset } ∪ { $U \subseteq Q_{n-1}$ | 0 ∈ U and $U \cap F \neq \emptyset$ }. This DFA has $1 + 2^{n-1-k} + (2^{n-2} - 1)$ 2^{n-2-k}) = $2^{n-2} + 2^{n-2-k} + 1$ states. Thus, $\kappa(L^*) \leq 2^{n-2} + 2^{n-2-k} + 1$.

This bound applies when L is a prefix-convex language and $n \geqslant 3$. By Lemma [1,](#page-3-4) L is either a right ideal or has an empty state. If L is a right ideal, then $\kappa(L^*) \leq n + 1$, which is at most $2^{n-2} + 2^{n-2-k} + 1$ for $n \geq 3$.

For the last claim, let $\mathcal{D}_{n,k}(a, b, -, -, d_1, d_2, e)$ $\mathcal{D}_{n,k}(a, b, -, -, d_1, d_2, e)$ $\mathcal{D}_{n,k}(a, b, -, -, d_1, d_2, e)$ of Definition 2 be denoted by $\mathcal{D}_{n,k} = (Q_n, \{a, b, d_1, d_2, e\}, \delta_{n,k}, 0, F_{n,k})$ and let $L_{n,k} = L(D_{n,k})$. We apply the same construction and reduction as before to obtain a DFA $\mathcal{D}'_{n,k}$ recognizing $L^*_{n,k}$ with states $Q' = \{\{0'\}\}\cup \{U \subseteq E_{n,k}\}\cup \{U \subseteq Q_{n-1} \mid 0 \in U \text{ and } U \cap F_{n,k} \neq \emptyset\}.$ We show that the states of Q' are reachable and pairwise distinguishable.

By Lemma [2,](#page-6-0) a and b generate all permutations of $E_{n,k}$ and $F_{n,k}$ in $\mathcal{D}_{n,k}$. Choose $u_1, u_2 \in \{a, b\}^*$ such that u_1 induces $(0, \ldots, n-2-k)$ and u_2 induces $(n-1-k,\ldots,n-2)$ in $\mathcal{D}_{n,k}$.

For reachability, we consider three cases. (1) State $\{0'\}$ is reachable by ε . (2) Let $U \subseteq E_{n,k}$. For any $q \in E_{n,k}$, we can reach $U \setminus \{q\}$ by $u_1^{n-2-k-q} d_1 u_1^q$; hence if U is reachable, then every subset of U is reachable. Observe that state $E_{n,k}$ is reachable by $eu_1^{n-2-k}d_2^k$, and we can reach any subset of this state. Therefore, all non-final states are reachable. (3) If $U \cap F_{n,k} \neq \emptyset$, then $U =$ $\{0, q_1, q_2, \ldots, q_h, r_1, \ldots, r_i\}$ where $0 < q_1 < \cdots < q_h \leqslant n-2-k$ and $n-1-k \leqslant n-1$ $r_1 < \cdots < r_i < n-1$ and $i \geqslant 1$. We prove that U is reachable by induction on *i*. If $i = 0$, then U is reachable by (2). For any $i \geq 1$, we can reach U from $\{0, q_1, \ldots, q_h, r_2 - (r_1 - (n-1-k)), \ldots, r_i - (r_1 - (n-1-k))\}$ by $ev_2^{r_1 - (n-1-k)}$. Therefore, all states of this form are reachable.

Now we show that the states are pairwise distinguishable. (1) The initial state ${0' }$ is distinguishable from any other final state U since ${0' }$ u₁ is non-final and Uu_1 is final. (2) If U and V are distinct subsets of $E_{n,k}$, then there is some $q \in U \oplus V$. We distinguish U and V by $u_1^{n-1-k-q}e$. (3) If U and V are distinct and final and neither one is $\{0'\}$, then there is some $q \in U \oplus V$. If $q \in E_{n,k}$, then $U d_2^k = U \setminus F_{n,k}$ and $V d_2^k = V \setminus F_{n,k}$ are distinct, non-final states as in (2). Otherwise, $q \in F_{n,k}$ and we distinguish U and V by $u_2^{n-1-q} d_2^{k-1}$.

	Right-ideal	Prefix-closed	Prefix-free	Proper
	$\operatorname{SeGr} \mathbf{n}^{\mathbf{n-1}}$	n^{n-1}	n^{n-2}	$\left n^{n-1-k} (k+1)^k \right $
Rev	2^{n-1}	$2n-1$	$2^{n-2}+1$	$2n-1$
	Star $ n+1 $	$2^{n-2}+1$	n	$\lfloor 2^{\mathbf{n-2}}+2^{\mathbf{n-2-k}}+1\rfloor$
	$\text{Prod} \mid m + 2^{n-2}$	$(m+1)2^{n-2}$	$m+n-2$	$\lfloor m-1-j+j2^{n-2}+2^{n-1}\rfloor$
\cup	$\left\lfloor mn-(m+n-2)\right\rfloor$ mn		$mn-2$	mn
\oplus	mn	mn	$mn-2$	mn
λ	$mn - (m - 1)$	$mn - (n-1)$	$\left\lfloor mn - (m + 2n - 4) \right\rfloor$ mn $- (n - 1)$	
∩	mn		$mn - (m + n - 2) mn - 2(m + n - 3) mn - (m + n - 2)$	

Table 1. Complexities of prefix-convex languages

3 Conclusions

The bounds for prefix-convex languages (see also [\[8](#page-11-6)]) are summarized in Table [1.](#page-10-0) The largest bounds are shown in boldface type, and they are reached either in the class of right-ideal languages or the class of proper languages. Recall that for regular languages we have the following results: semigroup n^n , reverse 2^n , star $2^{n-1} + 2^{n-2}$, product $m2^n - 2^{n-1}$, boolean operations mn.

References

- 1. Ang, T., Brzozowski, J.A.: Languages convex with respect to binary relations, and their closure properties. Acta Cybernet. **19**(2), 445–464 (2009)
- 2. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata (Encyclopedia of Mathematics and its Applications). Cambridge University Press, New York (2010)
- 3. Brzozowski, J.A.: Quotient complexity of regular languages. J. Autom. Lang. Comb. **15**(1/2), 71–89 (2010)
- 4. Brzozowski, J.A.: In search of the most complex regular languages. Int. J. Found. Comput. Sci **24**(6), 691–708 (2013)
- 5. Brzozowski, J.A., Davies, S., Liu, B.Y.V.: Most complex regular ideal languages. Discrete Math. Theoret. Comput. Sci. **18**(3), 1–25 (2016). Paper #15
- 6. Brzozowski, J.A., Jirásková, G., Zou, C.: Quotient complexity of closed languages. Theory Comput. Syst. **54**, 277–292 (2014)
- 7. Brzozowski, J.A., Sinnamon, C.: Complexity of prefix-convex regular languages (2016). <http://arxiv.org/abs/1605.06697>
- 8. Brzozowski, J.A., Sinnamon, C.: Complexity of right-ideal, prefix-closed, and prefix-free regular languages. Acta Cybernet. (2017, to appear)
- 9. Brzozowski, J.A., Tamm, H.: Theory of ´atomata. Theoret. Comput. Sci. **539**, 13–27 (2014)
- 10. Brzozowski, J., Ye, Y.: Syntactic complexity of ideal and closed languages. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 117–128. Springer, Heidelberg (2011). doi[:10.1007/978-3-642-22321-1](http://dx.doi.org/10.1007/978-3-642-22321-1_11) 11
- 11. Crochemore, M., Hancart, C.: Automata for pattern matching. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 399–462. Springer, Heidelberg (1997)
- 12. Holzer, M., König, B.: On deterministic finite automata and syntactic monoid size. Theoret. Comput. Sci. **327**(3), 319–347 (2004)
- 13. Iv´an, S.: Complexity of atoms, combinatorially. Inform. Process. Lett. **116**(5), 356– 360 (2016)
- 14. Krawetz, B., Lawrence, J., Shallit, J.: State complexity and the monoid of transformations of a finite set. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 213–224. Springer, Heidelberg (2005). doi[:10.](http://dx.doi.org/10.1007/978-3-540-30500-2_20) [1007/978-3-540-30500-2](http://dx.doi.org/10.1007/978-3-540-30500-2_20) 20
- 15. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad. Nauk SSSR **194**, 1266–1268 (1970). (Russian). English translation: Soviet Math. Dokl. **11**, 1373–1375 (1970)
- 16. Thierrin, G.: Convex languages. In: Nivat, M. (ed.) Automata, Languages and Programming, pp. 481–492. North-Holland (1973)
- 17. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. **6**, 221–234 (2001)
- 18. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theoret. Comput. Sci. **125**(2), 315–328 (1994)