Complexity of Proper Prefix-Convex Regular Languages

Janusz A. Brzozowski and Corwin Sinnamon^{(\boxtimes)}

David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada brzozo@uwaterloo.ca, sinncore@gmail.com

Abstract. A language L over an alphabet Σ is prefix-convex if, for any words $x, y, z \in \Sigma^*$, whenever x and xyz are in L, then so is xy. Prefix-convex languages include right-ideal, prefix-closed, and prefix-free languages, which were studied elsewhere. Here we concentrate on prefixconvex languages that do not belong to any one of these classes; we call such languages *proper*. We exhibit most complex proper prefix-convex languages, which meet the bounds for the size of the syntactic semigroup, reversal, complexity of atoms, star, product, and Boolean operations.

Keywords: Atom \cdot Most complex \cdot Prefix-convex \cdot Proper \cdot Quotient complexity \cdot Regular language \cdot State complexity \cdot Syntactic semigroup

1 Introduction

Prefix-Convex Languages. We examine the complexity properties of a class of regular languages that has never been studied before: the class of proper prefix-convex languages [7]. Let Σ be a finite alphabet; if w = xy, for $x, y \in \Sigma^*$, then x is a prefix of w. A language $L \subseteq \Sigma^*$ is *prefix-convex* [1,16] if whenever x and xyz are in L, then so is xy. Prefix-convex languages include three special cases:

- 1. A language $L \subseteq \Sigma$ is a *right ideal* if it is non-empty and satisfies $L = L\Sigma^*$. Right ideals appear in pattern matching [11]: $L\Sigma^*$ is the set of all words in some text (word in Σ^*) beginning with words in L.
- 2. A language is *prefix-closed* [6] if whenever w is in L, then so is every prefix of w. The set of allowed sequences to any system is prefix-closed. Every prefix-closed language other than Σ^* is the complement of a right ideal [1].
- 3. A language is *prefix-free* if $w \in L$ implies that no prefix of w other than w is in L. Prefix-free languages other than $\{\varepsilon\}$, where ε is the empty word, are prefix codes and are of considerable importance in coding theory [2].

This work was supported by the Natural Sciences and Engineering Research Council of Canada grant no. OGP0000871.

[©] Springer International Publishing AG 2017

A. Carayol and C. Nicaud (Eds.): CIAA 2017, LNCS 10329, pp. 52–63, 2017.

DOI: 10.1007/978-3-319-60134-2_5

The complexities of these three special prefix-convex languages were studied in [8]. We now turn to the "real" prefix-convex languages that do not belong to any of the three special classes.

Omitted proofs can be found in [7].

Complexities of Operations. If $L \subseteq \Sigma^*$ is a language, the *(left) quotient* of L by a word $w \in \Sigma^*$ is $w^{-1}L = \{x \mid wx \in L\}$. A language is regular if and only if it has a finite number of distinct quotients. So the number of quotients of L, the *quotient complexity* [3] $\kappa(L)$ of L, is a natural measure of complexity for L. An equivalent concept is the *state complexity* [15, 17, 18] of L, which is the number of states in a complete minimal deterministic finite automaton (DFA) over Σ recognizing L. We refer to quotient/state complexity simply as *complexity*.

If L_n is a regular language of complexity n, and \circ is a unary operation, the complexity of \circ is the maximal value of $\kappa(L_n^\circ)$, expressed as a function of n, as L_n ranges over all languages of complexity n. If L'_m and L_n are regular languages of complexities m and n respectively, and \circ is a binary operation, the complexity of \circ is the maximal value of $\kappa(L'_m \circ L_n)$, expressed as a function of m and n, as L'_m and L_n range over all languages of complexities m and n, as pressed as a function of m and n, as a operation is a lower bound on its time and space complexities. The operations reversal, (Kleene) star, product (concatenation), and binary boolean operations are considered "common", and their complexities are known; see [4,17,18].

Witnesses. To find the complexity of a unary operation we find an upper bound on this complexity, and languages that meet this bound. We require a language L_n for each n, that is, a sequence, (L_k, L_{k+1}, \ldots) , called a *stream* of languages, where k is a small integer, because the bound may not hold for small values of n. For a binary operation we need two streams. The same stream cannot always be used for both operands, but for all common binary operations the second stream can be a "dialect" of the first, that is it can "differ only slightly" from the first [4]. Let $\Sigma = \{a_1, \ldots, a_k\}$ be an alphabet ordered as shown; if $L \subseteq \Sigma^*$, we denote it by $L(a_1,\ldots,a_k)$. A dialect of L is obtained by deleting letters of Σ in the words of L, or replacing them by letters of another alphabet Σ' . More precisely, for an injective partial map $\pi: \Sigma \mapsto \Sigma'$, we get a dialect of L by replacing each letter $a \in \Sigma$ by $\pi(a)$ in every word of L, or deleting the word if $\pi(a)$ is undefined. We write $L(\pi(a_1),\ldots,\pi(a_k))$ to denote the dialect of $L(a_1,\ldots,a_k)$ given by π , and we denote undefined values of π by "-". Undefined values for letters at the end of the alphabet are omitted; for example, L(a, c, -, -) is written as L(a, c). Our definition of dialect is more general than that of [5], where only the case $\Sigma' = \Sigma$ was allowed.

Finite Automata. A deterministic finite automaton (DFA) is a quintuple $\mathcal{D} = (Q, \Sigma, \delta, q_0, F)$, where Q is a finite non-empty set of states, Σ is a finite non-empty alphabet, $\delta: Q \times \Sigma \to Q$ is the transition function, $q_0 \in Q$ is the initial state, and $F \subseteq Q$ is the set of final states. We extend δ to a function $\delta: Q \times \Sigma^* \to Q$ as usual. A DFA \mathcal{D} accepts a word $w \in \Sigma^*$ if $\delta(q_0, w) \in F$. The set of all words accepted by \mathcal{D} is the language of \mathcal{D} . If $q \in Q$, then the language L_q of q is the language accepted by the DFA $(Q, \Sigma, \delta, q, F)$. A state is empty or dead or a sink

if its language is empty. Two states p and q of \mathcal{D} are equivalent if $L_p = L_q$. A state q is reachable if there exists $w \in \Sigma^*$ such that $\delta(q_0, w) = q$. A DFA is minimal if all of its states are reachable and no two states are equivalent. A nondeterministic finite automaton (NFA) is a quintuple $\mathcal{D} = (Q, \Sigma, \delta, I, F)$, where Q, Σ and F are defined as in a DFA, $\delta : Q \times \Sigma \to 2^Q$ is the transition function, and $I \subseteq Q$ is the set of initial states. An ε -NFA is an NFA in which transitions under the empty word ε are also permitted.

Transformations. We use $Q_n = \{0, \ldots, n-1\}$ as the set of states of every DFA with *n* states. A transformation of Q_n is a mapping $t: Q_n \to Q_n$. The image of $q \in Q_n$ under *t* is *qt*. In any DFA, each letter $a \in \Sigma$ induces a transformation δ_a of the set Q_n defined by $q\delta_a = \delta(q, a)$; we denote this by $a: \delta_a$. Often we use the letter *a* to denote the transformation it induces; thus we write *qa* instead of $q\delta_a$. We extend the notation to sets: if $P \subseteq Q_n$, then $Pa = \{pa \mid p \in P\}$. We also write $P \xrightarrow{a} Pa$ to indicate that the image of *P* under *a* is *Pa*. If *s*, *t* are transformations of Q_n , their composition is (qs)t.

For $k \ge 2$, a transformation (permutation) t of a set $P = \{q_0, q_1, \ldots, q_{k-1}\} \subseteq Q_n$ is a k-cycle if $q_0 t = q_1, q_1 t = q_2, \ldots, q_{k-2}t = q_{k-1}, q_{k-1}t = q_0$. This k-cycle is denoted by $(q_0, q_1, \ldots, q_{k-1})$. A 2-cycle (q_0, q_1) is called a *transposition*. A transformation that sends all the states of P to q and acts as the identity on the other states is denoted by $(P \to q)$, and $(Q_n \to p)$ is called a *constant* transformation. If $P = \{p\}$ we write $(p \to q)$ for $(\{p\} \to q)$. The identity transformation is denoted by $\mathbb{1}$. Also, $\binom{j}{i} q \to q + 1$ is a transformation that sends q to q + 1 for $i \leq q \leq j$ and is the identity for the remaining states; $\binom{j}{i} q \to q - 1$ is defined similarly.

Semigroups. The syntactic congruence of $L \subseteq \Sigma^*$ is defined on Σ^+ : For $x, y \in \Sigma^+$, $x \approx_L y$ if and only if $wxz \in L \Leftrightarrow wyz \in L$ for all $w, z \in \Sigma^*$. The quotient set $\Sigma^+ \approx_L$ of equivalence classes of \approx_L is the syntactic semigroup of L. Let $\mathcal{D}_n = (Q_n, \Sigma, \delta, q_0, F)$ be a DFA, and let $L_n = L(\mathcal{D}_n)$. For each word $w \in \Sigma^*$, the transition function induces a transformation δ_w of Q_n by w: for all $q \in Q_n$, $q\delta_w = \delta(q, w)$. The set $T_{\mathcal{D}_n}$ of all such transformations by non-empty words is a semigroup under composition called the transition semigroup of \mathcal{D}_n . If \mathcal{D}_n is a minimal DFA of L_n , then $T_{\mathcal{D}_n}$ is isomorphic to the syntactic semigroup T_{L_n} of L_n , and we represent elements of T_{L_n} by transformations in $T_{\mathcal{D}_n}$. The size of the syntactic semigroup has been used as a measure of complexity for regular languages [4, 10, 12, 14].

Atoms. are defined by a left congruence, where two words x and y are equivalent if $ux \in L$ if and only if $uy \in L$ for all $u \in \Sigma^*$. Thus x and y are equivalent if $x \in u^{-1}L$ if and only if $y \in u^{-1}L$. An equivalence class of this relation is an *atom* of L [9,13].

One can conclude that an atom is a non-empty intersection of complemented and uncomplemented quotients of L. That is, every atom of a language with quotients $K_0, K_1, \ldots, K_{n-1}$ can be written as $A_S = \bigcap_{i \in S} K_i \cap \bigcap_{i \in \overline{S}} \overline{K_i}$ for some set $S \subseteq Q_n$. The number of atoms and their complexities were suggested as possible measures of complexity [4], because all the quotients of a language and the quotients of its atoms are unions of atoms [9].

Most Complex Regular Stream. The stream $(\mathcal{D}_n(a, b, c) \mid n \ge 3)$ of Definition 1 and Fig. 1 will be used as a component in the class of proper prefix-convex languages. This stream together with some dialects meets the complexity bounds for reversal, star, product, and all binary boolean operations [7,8]. Moreover, it has the maximal syntactic semigroup and most complex atoms, making it a most complex regular stream.

Definition 1. For $n \ge 3$, let $\mathcal{D}_n = \mathcal{D}_n(a, b, c) = (Q_n, \Sigma, \delta_n, 0, \{n-1\})$, where $\Sigma = \{a, b, c\}$, and δ_n is defined by $a: (0, \ldots, n-1)$, b: (0, 1), $c: (1 \to 0)$.

Fig. 1. Minimal DFA of a most complex regular language.

Most complex streams are useful in systems dealing with regular languages and finite automata. To know the maximal sizes of automata that can be handled by a system it suffices to use the most complex stream to test all the operations.

2 Proper Prefix-Convex Languages

We begin with some properties of prefix-convex languages that will be used frequently in this section. The following lemma and propositions characterize the classes of prefix-convex languages in terms of their minimal DFAs.

Lemma 1. Let L be a prefix-convex language over Σ . Either L is a right ideal or L has an empty quotient.

Proposition 1. Let L_n be a regular language of complexity n, and let $\mathcal{D}_n = (Q_n, \Sigma, \delta, 0, F)$ be a minimal DFA recognizing L_n . The following are equivalent:

- 1. L_n is prefix-convex.
- 2. For all $p,q,r \in Q_n$, if p and r are final, q is reachable from p, and r is reachable from q, then q is final.
- 3. Every state reachable in \mathcal{D}_n from any final state is either final or empty.

Proposition 2. Let L_n be a non-empty prefix-convex language of complexity n, and let $\mathcal{D}_n = (Q_n, \Sigma, \delta, 0, F)$ be a minimal DFA recognizing L_n .

- 1. L_n is prefix-closed if and only if $0 \in F$.
- 2. L_n is prefix-free if and only if \mathcal{D}_n has a unique final state p and an empty state p' such that $\delta(p, a) = p'$ for all $a \in \Sigma$.
- 3. L_n is a right ideal if and only if \mathcal{D}_n has a unique final state p and $\delta(p, a) = p$ for all $a \in \Sigma$.

A prefix-convex language L is proper if it is not a right ideal and it is neither prefix-closed nor prefix-free. We say it is k-proper if it has k final states, $1 \leq k \leq n-2$. Every minimal DFA for a k-proper language with complexity n has the same general structure: there are n-1-k non-final, non-empty states, k final states, and one empty state. Every letter fixes the empty state and, by Proposition 1, no letter sends a final state to a non-final, non-empty state.

Next we define a stream of k-proper DFAs and languages, which we will show to be most complex.

Definition 2. For $n \ge 3$, $1 \le k \le n-2$, let $\mathcal{D}_{n,k}(\Sigma) = (Q_n, \Sigma, \delta_{n,k}, 0, F_{n,k})$ where $\Sigma = \{a, b, c_1, c_2, d_1, d_2, e\}$, $F_{n,k} = \{n-1-k, \ldots, n-2\}$, and $\delta_{n,k}$ is given by the transformations

$$a: \begin{cases} (1, \dots, n-2-k)(n-1-k, n-k), & \text{if } n-1-k \text{ is even and } k \ge 2; \\ (0, \dots, n-2-k)(n-1-k, n-k), & \text{if } n-1-k \text{ is odd and } k \ge 2; \\ (1, \dots, n-2-k), & \text{if } n-1-k \text{ is even and } k=1; \\ (0, \dots, n-2-k), & \text{if } n-1-k \text{ is odd and } k=1. \end{cases}$$

$$b: \begin{cases} (n-k, \dots, n-2)(0, 1), & \text{if } k \text{ is even and } n-1-k \ge 2; \\ (n-1-k, \dots, n-2)(0, 1), & \text{if } k \text{ is odd and } n-1-k \ge 2; \\ (n-k, \dots, n-2), & \text{if } k \text{ is even and } n-1-k = 1; \\ (n-1-k, \dots, n-2), & \text{if } k \text{ is odd and } n-1-k = 1; \\ (n-1-k, \dots, n-2), & \text{if } k \text{ is odd and } n-1-k = 1. \end{cases}$$

$$c_1: \begin{cases} (1 \to 0), & \text{if } n-1-k \ge 2; \\ 1, & \text{if } n-1-k = 1. \end{cases}$$

$$c_2: \begin{cases} (n-k \to n-1-k), & \text{if } k \ge 2; \\ 1, & \text{if } k = 1. \end{cases}$$

$$d_1: (n-2-k \to n-1) \binom{n-3-k}{0} q \to q+1).$$

$$e: (0 \to n-1-k).$$

Also, let $E_{n,k} = \{0, \ldots, n-2-k\}$; it is useful to partition Q_n into $E_{n,k}$, $F_{n,k}$, and $\{n-1\}$. Letters a and b have complementary behaviours on $E_{n,k}$ and $F_{n,k}$, depending on the parities of n and k. Letters c_1 and d_1 act on $E_{n,k}$ in exactly the same way as c_2 and d_2 act on $F_{n,k}$. In addition, d_1 and d_2 send states n-2-kand n-2, respectively, to state n-1, and letter e connects the two parts of the DFA. The structure of $\mathcal{D}_n(\Sigma)$ is shown in Figs. 2 and 3 for certain parities of n-1-k and k. Let $L_{n,k}(\Sigma)$ be the language recognized by $\mathcal{D}_{n,k}(\Sigma)$.

Fig. 2. DFA $\mathcal{D}_{n,k}(a, b, c_1, c_2, d_1, d_2, e)$ of Definition 2 when n - 1 - k is odd, k is even, and both are at least 2; missing transitions are self-loops.

Fig. 3. DFA $\mathcal{D}_{n,k}(a, b, c_1, c_2, d_1, d_2, e)$ of Definition 2 when n - 1 - k is even, k is odd, and both are at least 2; missing transitions are self-loops.

Theorem 1 (Proper Prefix-Convex Languages). For $n \ge 3$ and $1 \le k \le n-2$, the DFA $\mathcal{D}_{n,k}(\Sigma)$ of Definition 2 is minimal and $L_{n,k}(\Sigma)$ is a k-proper language of complexity n. The bounds below are maximal for k-proper prefix-convex languages. At least seven letters are required to meet these bounds.

- 1. The syntactic semigroup of $L_{n,k}(\Sigma)$ has cardinality $n^{n-1-k}(k+1)^k$; the maximal value $n(n-1)^{n-2}$ is reached only when k = n-2.
- 2. The non-empty, non-final quotients of $L_{n,k}(a, b, -, -, -, d_2, e)$ have complexity n, the final quotients have complexity k + 1, and \emptyset has complexity 1.
- The reverse of L_{n,k}(a, b, -, -, -, d₂, e) has complexity 2ⁿ⁻¹; moreover, the language L_{n,k}(a, b, -, -, -, d₂, e) has 2ⁿ⁻¹ atoms for all k.
- 4. For each atom A_S of $L_{n,k}(\Sigma)$, write $S = X_1 \cup X_2$, where $X_1 \subseteq E_{n,k}$ and $X_2 \subseteq F_{n,k}$. Let $\overline{X_1} = E_{n,k} \setminus X_1$ and $\overline{X_2} = F_{n,k} \setminus X_2$. If $X_2 \neq \emptyset$, then $\kappa(A_S) =$

$$1 + \sum_{x_1=0}^{|X_1|} \sum_{x_2=1}^{|X_1|+|X_2|-x_1} \sum_{y_1=0}^{|\overline{X_1}|} \sum_{y_2=0}^{|\overline{X_1}|+|\overline{X_2}|-y_1} \binom{n-1-k}{x_1} \binom{k}{x_2} \binom{n-1-k-x_1}{y_1} \binom{k-x_2}{y_2}$$

If $X_1 \neq \emptyset$ and $X_2 = \emptyset$, then $\kappa(A_S) =$

$$1 + \sum_{x_1=0}^{|X_1|} \sum_{x_2=0}^{|X_1|-x_1} \sum_{y_1=0}^{|\overline{X_1}|} \sum_{y_2=0}^{k} \binom{n-1-k}{x_1} \binom{k}{x_2} \binom{n-1-k-x_1}{y_1} \binom{k-x_2}{y_2} - 2^k \sum_{y=0}^{|\overline{X_1}|} \binom{n-1-k}{y} \binom{k-x_2}{y_1} + 2^k \sum_{y=0}^{|\overline{X_1}|} \binom{n-1-k}{y} \binom{k-x_2}{y_1} + 2^k \sum_{y=0}^{|\overline{X_1}|} \binom{k-x_2}{y_2} + 2^k \sum_{y=0}^{|\overline{X_1}|} \binom{k-x_2}{y_1} + 2^k \sum_{y=0}^{|\overline{X_1}|} \binom{k-x_2}{y_2} + 2^k \sum_{y=0}$$

Otherwise, $S = \emptyset$ and $\kappa(A_S) = 2^{n-1}$.

- 5. The star of $L_{n,k}(a, b, -, -, d_1, d_2, e)$ has complexity $2^{n-2} + 2^{n-2-k} + 1$. The maximal value $2^{n-2} + 2^{n-3} + 1$ is reached only when k = 1.
- 6. $L'_{m,j}(a, b, c_1, -, d_1, d_2, e)L_{n,k}(a, d_2, c_1, -, d_1, b, e)$ has complexity $m 1 j + j2^{n-2} + 2^{n-1}$. The maximal value $m2^{n-2} + 1$ is reached only when j = m 2.
- 7. For $m, n \ge 3$, $1 \le j \le m-2$, and $1 \le k \le n-2$, define the languages $L'_{m,j} = L'_{m,j}(a,b,c_1,-,d_1,d_2,e)$ and $L_{n,k} = L_{n,k}(a,b,e,-,d_2,d_1,c_1)$. For any proper binary boolean function \circ , the complexity of $L'_{m,j} \circ L_{n,k}$ is maximal. In particular,
 - (a) $L'_{m,i} \cup L_{n,k}$ and $L'_{m,i} \oplus L_{n,k}$ have complexity mn.
 - (b) $L'_{m,i} \setminus L_{n,k}$ has complexity mn (n-1).
 - (c) $L'_{m,j} \cap L_{n,k}$ has complexity mn (m+n-2).

Proof. The remainder of this paper is an outline of the proof of this theorem. The longer parts of the proof are separated into individual propositions and lemmas.

DFA $\mathcal{D}_{n,k}(a, b, -, -, -, d_2, e)$ is easily seen to be minimal. Language $L_{n,k}(\Sigma)$ is k-proper by Propositions 1 and 2.

- 1. See Lemma 2 and Proposition 3.
- 2. If the initial state of $\mathcal{D}_{n,k}(a, b, -, -, -, d_2, e)$ is changed to $q \in E_{n,k}$, the new DFA accepts a quotient of $L_{n,k}$ and is still minimal; hence the complexity of that quotient is n. If the initial state is changed to $q \in F_{n,k}$ then states in $E_{n,k}$ are unreachable, but the DFA on $\{n-1-k, \ldots, n-1\}$ is minimal; hence the complexity of that quotient is k + 1. The remaining quotient is empty, and hence has complexity 1. By Proposition 1, these are maximal.
- 3. See Proposition 4 for the reverse. It was shown in [9] that the number of atoms is equal to the complexity of the reverse.
- 4. See [7].
- 5. See Proposition 5.
- 6. See [7].
- 7. By [3, Theorem 2], all boolean operations on regular languages have the upper bound mn, which gives the bound for (a). The bounds for (b) and (c) follow from [3, Theorem 5]. The proof that all these bounds are tight for $L'_{m,j} \circ L_{n,k}$ can be found in [7].

Lemma 2. Let $n \ge 1$ and $1 \le k \le n-2$. For any permutation t of Q_n such that $E_{n,k}t = E_{n,k}$, $F_{n,k}t = F_{n,k}$, and (n-1)t = n-1, there is a word $w \in \{a,b\}^*$ that induces t on $\mathcal{D}_{n,k}$.

Proof. Only a and b induce permutations of Q_n ; every other letter induces a properly injective map. Furthermore, a and b permute $E_{n,k}$ and $F_{n,k}$ separately, and both fix n-1. Hence every $w \in \{a,b\}^*$ induces a permutation on Q_n such that $E_{n,k}w = E_{n,k}$, $F_{n,k}w = F_{n,k}$, and (n-1)w = n-1. Each such permutation naturally corresponds to an element of $S_{n-1-k} \times S_k$, where S_m denotes the symmetric group on m elements. To be consistent with the DFA, assume S_{n-1-k} contains permutations of $\{0, \ldots, n-2-k\}$ and S_k contains permutations of $\{n-1-k, \ldots, n-2\}$. Let s_a and s_b denote the group elements corresponding to the transformations induced by a and b respectively. We show that s_a and s_b generate $S_{n-1-k} \times S_k$.

It is well known that $(0, \ldots, m-1)$, and (0, 1) generate the symmetric group on $\{0, \ldots, m-1\}$ for any $m \ge 2$. Note that $(1, \ldots, m-1)$ and (0, 1) are also generators, since $(0, 1)(1, \ldots, m-1) = (0, \ldots, m-1)$.

If n-1-k = 1 and k = 1, then $S_{n-1-k} \times S_k$ is the trivial group. If n-1-k = 1 and $k \ge 2$, then $s_a = (1, (n-1-k, n-k))$ and s_b is either $(1, (n-1-k, \dots, n-2))$ or $(1, (n-k, \dots, n-2))$, and either pair generates the group. There is a similar argument when k = 1.

Assume now $n-1-k \ge 2$ and $k \ge 2$. If n-1-k is odd then $s_a = ((0, \ldots, n-2-k), (n-1-k, n-k))$, and hence $s_a^{n-1-k} = ((0, \ldots, n-2-k)^{n-1-k}, (n-1-k, n-k))$. Similarly if n-1-k is even then $s_a = ((1, \ldots, n-2-k), (n-1-k, n-k))$, and hence $s_a^{n-2-k} = (\mathbb{1}, (n-1-k, n-k))$. Therefore $(\mathbb{1}, (n-1-k, n-k))$ is always generated by s_a . By symmetry, $((0, 1), \mathbb{1})$ is always generated by s_b regardless of the parity of k.

Since we can isolate the transposition component of s_a , we can isolate the other component as well: $(\mathbb{1}, (n-1-k, n-k))s_a$ is either $((0, \ldots, n-2-k), \mathbb{1})$ or $((1, \ldots, n-2-k), \mathbb{1})$. Paired with $((0, 1), \mathbb{1})$, either element is sufficient to generate $S_{n-1-k} \times \{\mathbb{1}\}$. Similarly, s_a and s_b generate $\{\mathbb{1}\} \times S_k$. Therefore s_a and s_b generate $S_{n-1-k} \times S_k$. It follows that a and b generate all permutations t of Q_n such that $E_{n,k}t = E_{n,k}$, $F_{n,k}t = F_{n,k}$, and (n-1)t = n-1.

Proposition 3 (Syntactic Semigroup). The syntactic semigroup of $L_{n,k}(\Sigma)$ has cardinality $n^{n-1-k}(k+1)^k$, which is maximal for a k-proper language. Furthermore, seven letters are required to meet this bound. The maximum value $n(n-1)^{n-2}$ is reached only when k = n-2.

Proof. Let L be a k-proper language of complexity n and let \mathcal{D} be a minimal DFA recognizing L. By Lemma 1, \mathcal{D} has an empty state. By Proposition 1, the only states that can be reached from one of the k final states are either final or empty. Thus, a transformation in the transition semigroup of \mathcal{D} may map each final state to one of k + 1 possible states, while each non-final, non-empty state may be mapped to any of the n states. Since the empty state can only be mapped to itself, we are left with $n^{n-1-k}(k+1)^k$ possible transformations in the transition semigroup. Therefore the syntactic semigroup of any k-proper language has size at most $n^{n-1-k}(k+1)^k$.

Now consider the transition semigroup of $\mathcal{D}_{n,k}(\Sigma)$. Every transformation t in the semigroup must satisfy $F_{n,k}t \subseteq F_{n,k} \cup \{n-1\}$ and (n-1)t = n-1, since any other transformation would violate prefix-convexity. We show that the semigroup contains every such transformation, and hence the syntactic semigroup of $L_{n,k}(\Sigma)$ is maximal.

First, consider the transformations t such that $E_{n,k}t \subseteq E_{n,k} \cup \{n-1\}$ and qt = q for all $q \in F_{n,k} \cup \{n-1\}$. By Lemma 2, a and b generate every permutation of $E_{n,k}$. When t is not a permutation, we can use c_1 to combine any states p and q: apply a permutation on $E_{n,k}$ so that $p \to 0$ and $q \to 1$, and then apply c_1 so that $1 \to 0$. Repeat this method to combine any set of states, and further

apply permutations to induce the desired transformation while leaving the states of $F_{n,k} \cup \{n-1\}$ in place. The same idea applies with d_1 ; apply permutations and d_1 to send any states of $E_{n,k}$ to n-1. Hence a, b, c_1 , and d_1 generate every transformation t such that $E_{n,k}t \subseteq E_{n,k} \cup \{n-1\}$ and qt = q for all $q \in F_{n,k} \cup \{n-1\}$.

We can make the same argument for transformations that act only on $F_{n,k}$ and fix every other state. Since c_2 and d_2 act on $F_{n,k}$ exactly as c_1 and d_1 act on $E_{n,k}$, the letters a, b, c_2 , and d_2 generate every transformation t such that $F_{n,k}t \subseteq F_{n,k} \cup \{n-1\}$ and qt = q for all $q \in E_{n,k} \cup \{n-1\}$. It follows that a, b, c_1 , c_2, d_1 , and d_2 generate every transformation t such that $E_{n,k}t \subseteq E_{n,k} \cup \{n-1\}$, $F_{n,k}t \subseteq F_{n,k} \cup \{n-1\}$, and (n-1)t = n-1.

Note the similarity between this DFA restricted to the states $E_{n,k} \cup \{n-1\}$ (or $F_{n,k} \cup \{n-1\}$) and the witness for right ideals introduced in [7]. The argument for the size of the syntactic semigroup of right ideals is similar to this; see [10].

Finally, consider an arbitrary transformation t such that $F_{n,k}t \subseteq F_{n,k} \cup \{n-1\}$ and (n-1)t = n-1. Let j_t be the number of states $p \in E_{n,k}$ such that $pt \in F_{n,k}$. We show by induction on j_t that t is in the transition semigroup of \mathcal{D} . If $j_t = 0$, then t is generated by $\Sigma \setminus \{e\}$. If $j_t \ge 1$, there exist $p, q \in E_{n,k}$ such that $pt \in F_{n,k}$ and q is not in the image of t. Consider the transformations s_1 and s_2 defined by $qs_1 = pt$ and $rs_1 = r$ for $r \ne q$, and $ps_2 = q$ and $rs_2 = rt$ for $r \ne p$. Then $(rs_2)s_1 = rt$ for all $r \in Q_n$. Notice that $j_{s_2} = j_t - 1$, and hence Σ generates s_2 by inductive assumption. One can verify that $s_1 = (n - 1 - k, pt)(0, q)(0 \rightarrow n - 1 - k)(0, q)(n - 1 - k, pt)$. From this expression, we see that s_1 is the composition of transpositions induced by words in $\{a, b\}^*$ and the transformation $(0 \rightarrow n - 1 - k)$ induced by e, and hence s_1 is generated by Σ . Thus, t is in the transition semigroup. By induction on j_t , it follows that the syntactic semigroup of $L_{n,k}$ is maximal.

Now we show that seven letters are required to meet this bound. Two letters (like a and b) are required to generate the permutations, since clearly one letter is not sufficient. Every other letter will induce a properly injective map. A letter (like c_1) that induces a properly injective map on $E_{n,k}$ and permutes $F_{n,k}$ is required. Similarly, a letter (like c_2) that permutes $E_{n,k}$ and induces a properly injective map on $F_{n,k}$ is required. Similarly, a letter (like c_2) that permutes $E_{n,k}$ and induces a properly injective map on $F_{n,k}$ is required. A letter (like d_1) that sends a state in $E_{n,k}$ to n-1 and permutes $F_{n,k}$ is required. Similarly, a letter (like d_2) that sends a state in $F_{n,k}$ to n-1 and permutes $E_{n,k}$ is required. Finally, a letter (like e) that connects $E_{n,k}$ and $F_{n,k}$ is required.

For a fixed n, we may want to know which $k \in \{1, \ldots, n-2\}$ maximizes $s_n(k) = n^{n-1-k}(k+1)^k$; this corresponds to the largest syntactic semigroup of a proper prefix-convex language with n quotients. We show that $s_n(k)$ is largest at k = n-2. Consider the ratio $\frac{s_n(k+1)}{s_n(k)} = \frac{(k+2)^{k+1}}{n(k+1)^k}$. Notice this ratio is increasing with k, and hence s_n is a convex function on $\{1, \ldots, n-2\}$. It follows that the maximum value of s_n must occur at one the endpoints, 1 and n-2.

Now we show that $s_n(n-2) \ge s_n(1)$ for all $n \ge 3$. We can check this explicitly for n = 3, 4, 5. When $n \ge 6$, $s_n(n-2)/s_n(1) = \frac{n}{2} \left(\frac{n-1}{n}\right)^{n-2} \ge 3(1/e) > 1$; so the largest syntactic semigroup of $L_{n,k}(\Sigma)$ occurs only at k = n-2 for all $n \ge 3$. \Box **Proposition 4 (Reverse).** For any regular language L of complexity n with an empty quotient, the reversal has complexity at most 2^{n-1} . Moreover, the reverse of $L_{n,k}(a, b, -, -, -, d_2, e)$ has complexity 2^{n-1} for $n \ge 3$ and $1 \le k \le n-2$.

Proof. The first claim is left for the reader to verify. For the second claim, let $\mathcal{D}_{n,k} = (Q_n, \{a, b, d_2, e\}, \delta_{n,k}, 0, F_{n,k})$ denote the DFA $\mathcal{D}_{n,k}(a, b, -, -, -, d_2, e)$ in Definition 2 and let $L_{n,k} = L(D_{n,k})$. Construct an NFA \mathcal{N} recognizing the reverse of $L_{n,k}$ by reversing each transition, letting the initial state 0 be the unique final state, and letting the final states in $F_{n,k}$ be the initial states. Applying the subset construction to \mathcal{N} yields a DFA \mathcal{D}^R whose states are subsets of Q_{n-1} , with initial state $F_{n,k}$ and final states $\{U \subseteq Q_{n-1} \mid 0 \in U\}$. We show that \mathcal{D}^R is minimal, and hence the reverse of $L_{n,k}$ has complexity 2^{n-1} .

Recall from Lemma 2 that a and b generate all permutations of $E_{n,k}$ and $F_{n,k}$ in $\mathcal{D}_{n,k}$ and, although the transitions are reversed in \mathcal{D}^R , they still generate all such permutations. Let $u_1, u_2 \in \{a, b\}^*$ be such that u_1 induces $(0, \ldots, n-2-k)$ and u_2 induces $(n-1-k, \ldots, n-2)$ in \mathcal{D}^R .

Consider a state $U = \{q_1, \ldots, q_h, n-1-k, \ldots, n-2\}$ where $0 \leq q_1 < q_2 < \cdots < q_h \leq n-2-k$. If h = 0, then U is the initial state. When $h \geq 1$, $\{q_2 - q_1, q_3 - q_1, \ldots, q_h - q_1, n-1-k, \ldots, n-2\}eu_1^{q_1} = U$. By induction, all such states are reachable.

Now we show that any state $U = \{q_1, \ldots, q_h, p_1, \ldots, p_i\}$ where $0 \leq q_1 < q_2 < \cdots < q_h \leq n-2-k$ and $n-1-k \leq p_1 < p_2 < \cdots < p_i \leq n-2$ is reachable. If i = k, then $U = \{q_1, \ldots, q_h, n-1-k, \ldots, n-2\}$ is reachable by the argument above. When $0 \leq i < k$, choose $p \in F_{n,k} \setminus U$ and see that U is reached from $U \cup \{p\}$ by $u_2^{n-1-p}d_2u_2^{p-(n-2-k)}$. By induction, every state is reachable.

To prove distinguishability, consider distinct states U and V. Choose $q \in U \oplus V$. If $q \in E_{n,k}$, then U and V are distinguished by $u_1^{n-1-k-q}$. When $q \in F_{n,k}$, they are distinguished by $u_2^{n-1-q}e$. So \mathcal{D}^R is minimal.

Proposition 5 (Star). Let L be a regular language with $n \ge 2$ quotients, including $k \ge 1$ final quotients and one empty quotient. Then $\kappa(L^*) \le 2^{n-2} + 2^{n-2-k} + 1$. This bound is tight for prefix-convex languages; in particular, the language $(L_{n,k}(a, b, -, -, d_1, d_2, e))^*$ meets this bound for $n \ge 3$ and $1 \le k \le n-2$.

Proof. Since L has an empty quotient, let n-1 be the empty state of its minimal DFA \mathcal{D} . To obtain an ε -NFA for L^* , we add a new initial state 0' which is final and has the same transitions as 0. We then add an ε -transition from every state in F to 0. Applying the subset construction to this ε -NFA yields a DFA $\mathcal{D}' = (Q', \Sigma, \delta', \{0'\}, F')$ recognizing L^* , in which Q' contains non-empty subsets of $Q_n \cup \{0'\}$.

Many of the states of Q' are unreachable or indistinguishable from other states. Since there is no transition in the ε -NFA to 0', the only reachable state in Q' containing 0' is $\{0'\}$. As well, any reachable final state $U \neq \{0'\}$ must contain 0 because of the ε -transitions. Finally, for any $U \in Q'$, we have $U \in F'$ if and only if $U \cup \{n-1\} \in F'$, and since $\delta'(U \cup \{n-1\}, w) = \delta'(U, w) \cup \{n-1\}$ for all $w \in \Sigma^*$, the states U and $U \cup \{n-1\}$ are equivalent in D'. Hence \mathcal{D}' is equivalent to a DFA with the states $\{\{0'\}\} \cup \{U \subseteq Q_{n-1} \mid U \cap F = \emptyset\} \cup \{U \subseteq Q_{n-1} \mid 0 \in U \text{ and } U \cap F \neq \emptyset\}$. This DFA has $1 + 2^{n-1-k} + (2^{n-2} - 2^{n-2-k}) = 2^{n-2} + 2^{n-2-k} + 1$ states. Thus, $\kappa(L^*) \leq 2^{n-2} + 2^{n-2-k} + 1$.

This bound applies when L is a prefix-convex language and $n \ge 3$. By Lemma 1, L is either a right ideal or has an empty state. If L is a right ideal, then $\kappa(L^*) \le n+1$, which is at most $2^{n-2} + 2^{n-2-k} + 1$ for $n \ge 3$.

For the last claim, let $\mathcal{D}_{n,k}(a, b, -, -, d_1, d_2, e)$ of Definition 2 be denoted by $\mathcal{D}_{n,k} = (Q_n, \{a, b, d_1, d_2, e\}, \delta_{n,k}, 0, F_{n,k})$ and let $L_{n,k} = L(D_{n,k})$. We apply the same construction and reduction as before to obtain a DFA $\mathcal{D}'_{n,k}$ recognizing $L^*_{n,k}$ with states $Q' = \{\{0'\}\} \cup \{U \subseteq E_{n,k}\} \cup \{U \subseteq Q_{n-1} \mid 0 \in U \text{ and } U \cap F_{n,k} \neq \emptyset\}$. We show that the states of Q' are reachable and pairwise distinguishable.

By Lemma 2, a and b generate all permutations of $E_{n,k}$ and $F_{n,k}$ in $\mathcal{D}_{n,k}$. Choose $u_1, u_2 \in \{a, b\}^*$ such that u_1 induces $(0, \ldots, n-2-k)$ and u_2 induces $(n-1-k, \ldots, n-2)$ in $\mathcal{D}_{n,k}$.

For reachability, we consider three cases. (1) State $\{0'\}$ is reachable by ε . (2) Let $U \subseteq E_{n,k}$. For any $q \in E_{n,k}$, we can reach $U \setminus \{q\}$ by $u_1^{n-2-k-q}d_1u_1^q$; hence if U is reachable, then every subset of U is reachable. Observe that state $E_{n,k}$ is reachable by $eu_1^{n-2-k}d_2^k$, and we can reach any subset of this state. Therefore, all non-final states are reachable. (3) If $U \cap F_{n,k} \neq \emptyset$, then $U = \{0, q_1, q_2, \ldots, q_h, r_1, \ldots, r_i\}$ where $0 < q_1 < \cdots < q_h \leq n-2-k$ and $n-1-k \leq r_1 < \cdots < r_i < n-1$ and $i \geq 1$. We prove that U is reachable by induction on i. If i = 0, then U is reachable by (2). For any $i \geq 1$, we can reach U from $\{0, q_1, \ldots, q_h, r_2 - (r_1 - (n-1-k)), \ldots, r_i - (r_1 - (n-1-k))\}$ by $eu_2^{r_1 - (n-1-k)}$. Therefore, all states of this form are reachable.

Now we show that the states are pairwise distinguishable. (1) The initial state $\{0'\}$ is distinguishable from any other final state U since $\{0'\}u_1$ is non-final and Uu_1 is final. (2) If U and V are distinct subsets of $E_{n,k}$, then there is some $q \in U \oplus V$. We distinguish U and V by $u_1^{n-1-k-q}e$. (3) If U and V are distinct and final and neither one is $\{0'\}$, then there is some $q \in U \oplus V$. If $q \in E_{n,k}$, then $Ud_2^k = U \setminus F_{n,k}$ and $Vd_2^k = V \setminus F_{n,k}$ are distinct, non-final states as in (2). Otherwise, $q \in F_{n,k}$ and we distinguish U and V by $u_2^{n-1-q}d_2^{k-1}$.

	Right-ideal	Prefix-closed	Prefix-free	Proper
SeGr	n^{n-1}	n^{n-1}	n^{n-2}	$n^{n-1-k}(k+1)^k$
Rev	2 ⁿ⁻¹	2 ⁿ⁻¹	$2^{n-2} + 1$	2 ⁿ⁻¹
Star	n+1	$2^{n-2} + 1$	n	$2^{n-2} + 2^{n-2-k} + 1$
Prod	$m + 2^{n-2}$	$(m+1)2^{n-2}$	m+n-2	$m-1-j+j2^{n-2}+2^{n-1}\\$
U	mn - (m + n - 2)	mn	mn-2	mn
\oplus	mn	mn	mn-2	mn
\	$\mathbf{mn} - (\mathbf{m} - 1)$	$\mathbf{mn} - (\mathbf{n-1})$	mn - (m + 2n - 4)	mn - (n - 1)
\cap	mn	mn - (m + n - 2)	mn - 2(m + n - 3)	mn - (m + n - 2)

 Table 1. Complexities of prefix-convex languages

3 Conclusions

The bounds for prefix-convex languages (see also [8]) are summarized in Table 1. The largest bounds are shown in boldface type, and they are reached either in the class of right-ideal languages or the class of proper languages. Recall that for regular languages we have the following results: semigroup n^n , reverse 2^n , star $2^{n-1} + 2^{n-2}$, product $m2^n - 2^{n-1}$, boolean operations mn.

References

- 1. Ang, T., Brzozowski, J.A.: Languages convex with respect to binary relations, and their closure properties. Acta Cybernet. **19**(2), 445–464 (2009)
- Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata (Encyclopedia of Mathematics and its Applications). Cambridge University Press, New York (2010)
- Brzozowski, J.A.: Quotient complexity of regular languages. J. Autom. Lang. Comb. 15(1/2), 71–89 (2010)
- Brzozowski, J.A.: In search of the most complex regular languages. Int. J. Found. Comput. Sci 24(6), 691–708 (2013)
- Brzozowski, J.A., Davies, S., Liu, B.Y.V.: Most complex regular ideal languages. Discrete Math. Theoret. Comput. Sci. 18(3), 1–25 (2016). Paper #15
- Brzozowski, J.A., Jirásková, G., Zou, C.: Quotient complexity of closed languages. Theory Comput. Syst. 54, 277–292 (2014)
- Brzozowski, J.A., Sinnamon, C.: Complexity of prefix-convex regular languages (2016). http://arxiv.org/abs/1605.06697
- 8. Brzozowski, J.A., Sinnamon, C.: Complexity of right-ideal, prefix-closed, and prefix-free regular languages. Acta Cybernet. (2017, to appear)
- Brzozowski, J.A., Tamm, H.: Theory of átomata. Theoret. Comput. Sci. 539, 13–27 (2014)
- Brzozowski, J., Ye, Y.: Syntactic complexity of ideal and closed languages. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 117–128. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22321-1_11
- Crochemore, M., Hancart, C.: Automata for pattern matching. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp. 399–462. Springer, Heidelberg (1997)
- Holzer, M., König, B.: On deterministic finite automata and syntactic monoid size. Theoret. Comput. Sci. **327**(3), 319–347 (2004)
- Iván, S.: Complexity of atoms, combinatorially. Inform. Process. Lett. 116(5), 356– 360 (2016)
- Krawetz, B., Lawrence, J., Shallit, J.: State complexity and the monoid of transformations of a finite set. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 213–224. Springer, Heidelberg (2005). doi:10. 1007/978-3-540-30500-2_20
- Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad. Nauk SSSR 194, 1266–1268 (1970). (Russian). English translation: Soviet Math. Dokl. 11, 1373–1375 (1970)
- Thierrin, G.: Convex languages. In: Nivat, M. (ed.) Automata, Languages and Programming, pp. 481–492. North-Holland (1973)
- Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234 (2001)
- Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994)