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Abstract. Order-Preserving DAG Grammars (OPDGs) is a subclass of
Hyper-Edge Replacement Grammars that can be parsed in polynomial
time. Their associated class of languages is known as Ordered DAG Lan-
guages, and the graphs they generate are characterised by being acyclic,
rooted, and having a natural order on their nodes. OPDGs are useful
in natural-language processing to model abstract meaning representa-
tions. We state and prove a Myhill-Nerode theorem for ordered DAG
languages, and translate it into a MAT-learning algorithm for the same
class. The algorithm infers a minimal OPDG G for the target language
in time polynomial in G and the samples provided by the MAT oracle.

1 Introduction

Graphs are one of the fundamental data structures of computer science, and
appear in every conceivable application field. We see them as atomic struc-
tures in physics, as migration patterns in biology, and as interaction networks
in sociology. For computers to process potentially infinite sets of graphs, i.e.,
graph languages, these must be represented in a finite form akin to grammars
or automata. However, the very expressiveness of graph languages often causes
problems, and many of the early formalisms have NP-hard membership prob-
lems; see, for example, [16] and [9, Theorem 2.7.1].

Motivated by applications in natural language processing (NLP) that require
more light-weight forms of representation, there is an on-going search for gram-
mars that allow polynomial-time parsing. A recent addition to this effort was
the introduction of order-preserving DAG grammars (OPDGs) [4]. This is a
restricted type of hyper-edge replacement grammars [9] that generate languages
of directed acyclic graphs in which the nodes are inherently ordered. The authors
provide a parsing algorithm that exploits this order, thereby limiting nondeter-
minism and placing the membership problem for OPDGs in O

(
n2 + nm

)
, where

m and n are the sizes of the grammar and the input graph, respectively. This is
to be compared with the unrestricted case, in which parsing is NP-complete.

The introduction of OPDGs is a response to the recent application [6] of
Hyperedge Replacement Grammars (HRGs) to abstract meaning representations
(AMRs) [2]. An AMR is a directed acyclic graph that describes the semantics
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of a natural language sentence, and a corpus with approx. 8 000 AMRs has been
compiled by the Information Sciences Institute (ISI) at USC.1 The formalisa-
tion of AMRs is still under discussion, but although restricted, OPDGs retain
sufficient expressive power to capture the AMRs in the ISI corpus.

In this paper, we continue to explore the OPDGs mathematical properties.
We provide an algebraic representation of their domain, and a Myhill-Nerode
theorem for the ordered DAG languages. We show that every ordered DAG
language L is generated by a minimal unambiguous OPDG GL, and that this
grammar is unique up to renaming of nonterminals. In this context, ‘unambigu-
ous’ means that every graph is generated by at most one nonterminal. This is
similar the behaviour of deterministic automata, in particular that of bottom-up
deterministic tree automata which take each input tree to at most one state.

One way of understanding the complexity of the class of ordered DAG lan-
guages, is to ask what kind of information is needed to infer its members. MAT
learning [1], where MAT is short for minimal adequate teacher, is one of the most
popular and well-studied learning paradigms. In this setting, we have access to
an oracle (often called the teacher) that can answer membership queries and
equivalence queries. In a membership query, we present the teacher with a graph
g and are told whether g is in the target language L. In an equivalence query,
we give the teacher an OPDG H and receive in return an element in the sym-
metric difference of L(H) and L. This element is called a counterexample. If L
has been successfully inferred and no counterexample exists, then the teacher
instead returns the special token ⊥.

MAT learning algorithms have been presented for a range of language classes
and representational devices [1,5,10,12,14,17,18]. There have also been some
results on MAT learning for graph languages. Okada et al. present an algorithm
for learning unions of linear graph patterns from queries [15]. These patterns are
designed to model structured data (HTML/XML). The linearity of the patterns
means that no variable can appear more than once. Hara and Shoudai con-
sider MAT learning for context-deterministic regular formal graph systems [11].
Intuitively, the context determinism means that a context uniquely determines
a nonterminal, and only graphs derived from this nonterminal may be inserted
into the context. Both restrictions are interesting, but neither is compatible with
our intended applications.

Due to space limitations, most proofs have been omitted, but are available
in a technical report [3].

2 Preliminaries

Sets, sequences, and numbers. The set of non-negative integers is denoted by N.
For n ∈ N, [n] abbreviates {1, . . . , n}, and 〈n〉 the sequence 1 · · · n. In particular,
[0] = ∅ and 〈0〉 = λ. We also allow the use of sets as predicates: Given a set
S and an element s, S(s) is true if s ∈ S, and false otherwise. When ≡ is an

1 The ISI corpus is available at http://amr.isi.edu.

http://amr.isi.edu
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equivalence relation on S, (S/ ≡) denotes the partitioning of S into equivalence
classes induced by ≡. The index of ≡ is |(S/ ≡)|.

Let S◦ be the set of non-repeating sequences of elements of S. We refer to
the ith member of a sequence s as si. When there is no risk for confusion, we use
sequences directly in set operations, as the set of their members. Given a partial
order � on S, the sequence s1 · · · sk ∈ S◦ respects � if si � sj implies i ≤ j.

A ranked alphabet is a pair (Σ, rank) consisting of a finite set Σ of symbols
and a ranking function rank : Σ 
→ N which assigns a rank rank(a) to every
symbol a ∈ Σ. The pair (Σ, rank) is typically identified with Σ, and the second
component is kept implicit.

Graphs. Let Σ be a ranked alphabet. A (directed edge-labelled) hypergraph over
Σ is a tuple g = (V,E, src, tar , lab) consisting of

– finite sets V and E of nodes and edges, respectively,
– source and target mappings src : E 
→ V and tar : E 
→ V ◦ assigning to each

edge e its source src(e) and its sequence tar(e) of targets, and
– a labelling lab : E 
→ Σ such that rank(lab(e)) = |tar(e)| for every e ∈ E.

Since we are only concerned with hypergraphs, we simply call them graphs.
A path in g is a finite and possibly empty sequence p = e1, e2, . . . , ek of edges

such that for each i ∈ [k − 1] the source of ei+1 is a target of ei. The length
of p is k, and p is a cycle if src(e1) appears in tar(ek). If g does not contain
any cycle then it is a directed acyclic graph (DAG). The height of a DAG G
is the maximum length of any path in g. A node v is a descendant of a node
u if u = v or there is a nonempty path e1, . . . , ek in g such that u = src(e1)
and v ∈ tar(ek). An edge e′ is a descendant edge of an edge e if there is a path
e1, . . . , ek in g such that e1 = e and ek = e′.

The in-degree and out-degree of a node u ∈ V is |{e ∈ E | u ∈ tar(e)}| and
|{e ∈ E | u = src(e)}|, respectively. A node with in-degree 0 is a root and a node
with out-degree 0 is a leaf. For a single-rooted graph g, we write root(g) for the
unique root node.

For a node u of a DAG g = (V,E, src, tar , lab), the sub-DAG rooted at u is the
DAG g ↓u induced by the descendants of u. Thus g ↓u = (U,E′, src′, tar ′, lab′)
where U is the set of all descendants of u, E′ = {e ∈ E | src(e) ∈ U}, and
src′, tar ′, and lab′ are the restrictions of src, tar and lab to E′. A leaf v of
g↓u is reentrant if there exists an edge e ∈ E \ E′ such that v occurs in tar(e).
Similarly, for an edge e we write g↓e for the subgraph induced by src(e), tar(e),
and all descendants of nodes in tar(e). This is distinct from g ↓ src(e) iff src(e)
has out-degree greater than 1.

Marked graphs. Although graphs, as defined above, are the objects we are ulti-
mately interested in, we will mostly discuss marked graphs. When combining
smaller graphs into larger ones, whether with a grammar or algebraic opera-
tions, the markings are used to know which nodes to merge with which.

A marked DAG is a tuple g = (V,E, src, tar , lab,X) where (V,E, src, tar , lab)
is a DAG and X ∈ V ◦ is nonempty. The sequence X is called the marking of g,
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Fig. 1. A 2-context c, a 2-graph g, and the substitution c[[g]]. Filled nodes convey the
marking of c and g, respectively. Both targets of edges and external nodes of marked
graphs are drawn in order from left to right.

and the nodes in X are referred to as external nodes. For X = v0v1 · · · vk, we
write head(g) = v0 and ext(g) = v1 · · · vk. We say that two marked graphs are
isomorphic modulo markings if their underlying unmarked graphs are isomor-
phic. The rank of a marked graph g is |ext(g)|.

Graph operations. Let g be a single-rooted marked DAG with external nodes X
and |ext(g)| = k. Then g is called a k-graph if head(g) is the unique root of g,
and all nodes in ext(g) are leaves.

If head(g) has out-degree at most 1 (but is not necessarily the root of g),
and either head(g) has out-degree 0 or ext(g) is exactly the reentrant nodes
of g ↓ head(g), then g is a k-context. We denote the set of all k-graphs over
Σ by G

k
Σ , and the set of all k-contexts over Σ by C

k
Σ . Furthermore, GΣ =

∪k∈NG
k
Σ and CΣ = ∪k∈NC

k
Σ . Note that the intersection GΣ ∩CΣ is typically not

empty. Finally, the empty context consisting of a single node, which is external,
is denoted by ε.

Given g ∈ G
k
Σ and c ∈ C

k
Σ , the substitution c[[g]] of g into c is obtained

by first taking the disjoint union of g and c, and then merging head(g) and
head(c), as well as the sequences ext(g) and ext(c) element-wise. The results is
a single-rooted, unmarked DAG. For an example, see Fig. 1.

Let g be a graph in G
0
Σ , e an edge and let h be the marked graph given by

taking g ↓ e and marking the (single) root, and all reentrant nodes. Then the
quotient of g ∈ G

0
Σ with respect to h, denoted g/h is the unique context c ∈ C

k
Σ

such that c[[h]] = g. The quotient of a graph language L ⊆ GΣ with respect to
g ∈ GΣ is the set of contexts L/g = {c | c[[g]] ∈ L}.

Let A be a symbol of rank k. Then A• is the graph (V, {e}, src, tar , lab,X),
where V = {v0, v1, . . . , vk}, src(e) = v0, tar(e) = v1 . . . vk, lab(e) = A, and
X = v0 . . . vk. Similarly, A� is the very same graph, but with only the root
marked, in other words, X = v0.

3 Well-Ordered DAGs

In this section, we present two formalisms for generating languages of DAGs,
one grammatical and one algebraic. Both generate graphs that are well-ordered
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in the sense defined below. We show that the two formalisms define the same
families of languages. This allows us to use the algebraic formulation as a basis
for the upcoming Myhill-Nerode theorem and MAT learning algorithm.

An edge e with tar(e) = w is a common ancestor edge of nodes u and u′ if
there are t and t′ in w such that u is a descendant of t and u′ is a descendant of
t′. If, in addition, there is no edge with its source in w that is a common ancestor
edge of u and u′, we say that e is a closest common ancestor edge of u and u′.
If e is a common ancestor edge of u and v we say that e orders u and v, with u
before v, if tar(e) can be written as wtw′, where t is an ancestor of u and every
ancestor of v in tar(e) can be found in w′.

The relation �g is defined as follows: u �g v if every closest common ancestor
edge e of u and v orders them with u before v. It is a partial order on the leaves
of g [4]. Let g be a graph. We call g well-ordered, if we can define a total order
� on the leaves of g such that �g⊆ �, and for every v ∈ V and every pair u, u′

of leaves of g↓v, u �g↓v u′ implies u � u′.

3.1 Order-Preserving DAG Grammars

Order-preserving DAG grammars (OPDGs) are essentially hyper-edge replace-
ment grammars with added structural constraints to allow efficient parsing.2

The idea is to enforce an easily recognisable order on the nodes of the gener-
ated graphs, that provides evidence of how they were derived. The constraints
are rather strict, but even small relaxations make parsing NP-hard; for details,
see [4]. Intuitively, the following holds for any graph g generated by an OPDG:

– g is a connected, single-rooted DAG,
– only leaves of g have in-degree greater than 1, and
– g is well-ordered.

Definition 1 (Order-preserving DAG grammar [4]). An order-preserving
DAG grammar is a system H = (Σ,N, I, P ) where Σ and N are disjoint ranked
alphabets of terminals and nonterminals, respectively, I is the set of starting
nonterminals, and P is a set of productions. Each production is of the form
A → f where A ∈ N and f ∈ G

rank(A)
Σ∪N satisfies one of the following two cases:

1. f consists of exactly two nonterminal edges e1 and e2, both labelled by A,
such that src(e1) = src(e2) = head(f) and tar(e1) = tar(e2) = ext(f). In
this case, we call A → f a clone rule.

2. f meets the following restrictions:
– no node has out-degree larger than 1
– if a node has in-degree larger than one, then it is a leaf;
– if a leaf has in-degree exactly one, then it is an external node or its unique

incoming edge is terminal

2 In [4], the grammars are called Restricted DAG Grammars, but we prefer to use a
name that is more descriptive.
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– for every nonterminal edge e in f , all nodes in tar(e) are leaves, and
src(e) �= head(f)

– the leaves of f are totally ordered by �f and ext(f) respects �f .

Fig. 2. Examples right-hand sides f of normal form rules of types (a), (b), and (c) for
a nonterminal of rank 3.

A derivation step of H is defined as follows. Let ρ = A → f be a production, g
a graph, and gA a subgraph of g isomorphic modulo markings to A�. The result
of applying ρ to g at gA is the graph g′ = (g/gA)[[f ]], and we write g ⇒ρ g′.
Similarly, we write g ⇒∗

H g′ if g′ can be derived from g in zero or more derivation
steps. The language L(H) of H are all graphs g over the terminal alphabet Σ
such that S• ⇒∗

H g, for some S ∈ I. Notice that since a derivation step never
removes nodes and never introduces new markings, if we start with a graph g
with |ext(g)| = k, all derived graphs g′ will have |ext(g′)| = k. In particular, if
we start from S•, all derived graphs will have |ext(g′)| = rank(S).

Definition 2 (Normal form [4]). An OPDG H is on normal form if every
production A → f is in one of the following forms:

(a) The rule is a clone rule.
(b) f has a single edge e, which is terminal.
(c) f has height 2, the unique edge e with src(e) = head(f) is terminal, and all

other edges are nonterminal.

We say that a pair of grammars H and H ′ are language-equivalent if L(H) =
L(H ′). As shown in [4], every OPDG H can be rewritten to a language-equivalent
OPDG H ′ in normal form in polynomial time. For an example of normal form
rules, see Fig. 2.

For a given alphabet Σ, we denote the class of graphs ∪H is an OPDGL(H)
that can be generated by some OPDG by HΣ , and by Hk

Σ the class of rank k
marked graphs that can be generated from a rank k nonterminal.

3.2 DAG Concatenation

In Sects. 4 and 5, we need algebraic operations to assemble and decompose
graphs. For this purpose, we define graph concatenation operations that mimic
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the behaviour of our grammars and show that the class of graphs that can be
constructed in this way is equal to HΣ .

In particular, we construct our graphs in two separate ways, mirroring the
cloning and non-cloning rules of the grammars:

– 2-concatenation, which takes 2 rank-m graphs and merges their external
nodes, preserving their order, corresponding to the clone rules in Definition 2.

– a-concatenation, for a ∈ Σ, takes an a-labelled rank(a) terminal edge and a
number (less than or equal to rank(a)) of marked graphs, puts the graphs
under targets of the terminal edge, and merges some of the leaves. This cor-
responds to rules of type (b) or (c) in Definition 2.

The second operation is more complex, since we must make sure that order
is preserved. Given a terminal a of rank k and a sequence g1, . . . , gn, with n ≤ k,
of marked graphs, new graphs are created in the following way. We start with
a� and, for each i ∈ [n] identify head(gi) with a unique leaf of a�, intuitively
“hanging” g1, . . . , gn under an edge labelled a. We then identify some of the
leaves of the resulting graph. To specify the result of such a concatenation, and
to ensure that it preserves order, we equip it with the following parameters.

(1) A number m. This is the number of nodes we will merge the external nodes
of the graphs g1, . . . , gn and the remaining leaves of the a-labelled edge into.

(2) A subsequence s = s1 . . . sn of 〈k〉 of length n. This sequence defines under
which leaves of a� we are going to hang which graph.

(3) A subsequence x of 〈m〉. This sequence defines which of the leaves of the
resulting graph will be external.

(4) An order-preserving function ϕ that defines which leaves to merge. Its domain
consists of the external leaves of the graphs g1, . . . , gn as well as the leaves of
a� to which no graph from g1, . . . , gn is assigned. Its range is [m].

Before we describe the details of the concatenation operation, we must go
into the rather technical definition of what it means for ϕ to be order-preserving.
It has to fulfil the following conditions:

(i) If both u and v are marked leaves of gi, for some i ∈ [n], and u comes before
v in ext(gi), then ϕ(u) < ϕ(v).

(ii) If |ϕ−1(i)| = 1, then either i ∈ x or the unique node v with ϕ(v) = i belongs
to a�.

(iii) If there are i and j in [m], with i < j such that no graph g� for � ∈ [n]
contains both a member of ϕ−1(i) and a member of ϕ−1(j), then there
exists a p ∈ [k] such that either
– p is the qth member of s, and gq contains a member of ϕ−1(i), or
– the pth member of tar(a) is in ϕ−1(i)
and furthermore there is no r < p such that either
– r is the tth member of s and gt contains a member of ϕ−1(j), or
– the rth member of tar(a) is itself in ϕ−1(j)
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Definition 3 (a-concatenation). Given a terminal a, the a-concatenation of
g1, . . . , gn, parameterized by m, s, x, φ is the graph g obtained by doing the fol-
lowing. For each i ∈ [n], identify head(gi) with the leaf of a� indicated by si.
For each j ∈ [m], identify all nodes in ϕ−1(j). Finally, ext(g) is the subsequence
of the m nodes from the previous step indicated by x.

We denote by AΣ the class of marked graphs that can be assembled from
Σ through a- and 2-concatenation, and by Ak

Σ ⊆ AΣ the graphs of rank k.
Each concatenation operation can be defined as an algebraic operation that is
defined for a sequence of graphs if they have the appropriate ranks. Let ψ be
a concatenation operator and g1, . . . , gn a sequence of graphs for which it is
defined. Let g = ψ(g1, . . . , gn). For some i ∈ n, let g′ be a graph of the same
rank as gi. Then ψ(g1, . . . , gi−1, g

′, gi+1, . . . , gn) = (g/gi)[[g′]].
The following is the main result of this section.

Theorem 4. AΣ = HΣ, and Ak
Σ = Hk

Σ for all k.

4 A Myhill-Nerode Theorem

This section defines the Nerode congruence ≡L for an ordered DAG language L.
A pair of graphs are congruent with respect to L, if they can be replaced by
one another in any context in CΣ , without disturbing the encompassing graph’s
membership in L. The learning algorithm in Sect. 5 produces increasingly more
refined approximations of ≡L until it reaches ≡L itself. This treats ≡L as a
corner case in a family of relations, each induced by a subset of CΣ .

Definition 5. Let C ⊆ CΣ. The equivalence relation ≡L,C on AΣ is given by:
g ≡L,C g′ if and only if (L/g ∩ C) = (L/g′ ∩ C). The relation ≡L,CΣ

is known
as the Nerode congruence with respect to L and written ≡L.

It is easy to see that for two graphs to be equivalent, they must have equally
many external nodes. The graph g is dead (with respect to L) if L/g = ∅, and
graphs that are not dead are live. Thus, if ≡L has finite index, there must be a
k ∈ N such that every g ∈ AΣ with more than k external nodes is dead.

In the following, we use Ψ(Σ) to denote the set of all concatenation operators
applicable to graphs over Σ.

Definition 6 (Σ-expansion). Given N ⊆ AΣ, we write Σ(N) for the set:

{ψ(g1, . . . , gm) | ψ ∈ Ψ(Σ), g1, . . . , gm ∈ N and ψ(g1, . . . , gm) is defined}.

In the upcoming Sect. 5, Theorem 9 will form the basis for a MAT learn-
ing algorithm. As is common, this algorithm maintains an observation table T

that collects the information needed to build a finite-state device for the tar-
get language L. The construction of an OPDG GT from T is similar to that
from the Nerode congruence, so introducing it here avoids repetition. Intuitively,
the observation table is made up of two sets of graphs N and P , representing
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nonterminals and production rules, respectively, and a set of contexts C used to
explore the congruence classes of N ∪ P with respect to L.

To facilitate the design of new MAT learning algorithms, the authors of [7]
introduce the notion of an abstract observation table (AOT); an abstract data
type guaranteed to uphold certain helpful invariants.

Definition 7 (Abstract observation table, see [7]). Let N ⊆ P ⊆ Σ(N) ⊆
AΣ, with N finite. Let C ⊆ CΣ, and let ρ : P 
→ N . The tuple (N,P,C, ρ) is an
abstract observation table with respect to L if for every g ∈ P ,

1. L/g �= ∅, and
2. ∀g′ ∈ N \ {ρ(g)} : g �≡L,C g′.

The AOT in [7] accommodates production weights taken from general semi-
rings. The version recalled here has a number of modifications: First, we dispense
with the sign-of-life function that maps every graph g ∈ N to an element in L/g.
Its usages in [7] are to avoid dead graphs, and to compute the weights of produc-
tions involving g. From the way new productions and nonterminals are discov-
ered, we already know that they are live, and as we are working in the Boolean
setting, there are no transition weights to worry about. Second, we explicitly
represent the set of contexts C to prove that the nonterminals in N are distinct.
Both realisations of the AOT discussed in [7] collect such contexts, though it is
not enforced by the AOT. Third, we do not require that L(g) = L(ρ(g)), as this
condition is not necessary for correctness, though it may reduce the number of
counterexamples needed. The data fields and procedures have also been renamed
to reflect the shift from automata to grammars. This change is only superficial,
as there is a direct correspondence between states and nonterminals, transitions
and productions, and accepting states and initial nonterminals. From here on, a
bold font is used to refer to graphs as nonterminals.

Definition 8. Let T = (N,P,C, ρ) be an AOT with respect to L. Then GT is
the OPDG (Σ,NT, IT, PT) where NT = N , IT = N ∩ L, and

PT = {ρ(g) → ψ(ρ(g1), . . . ,ρ(gm)) | g = ψ(g1, . . . , gm) ∈ P} .

Given an ODPG G = (Σ,N, I, P ) and a nonterminal f ∈ N , we let Gf =
(Σ,N, {f}, P ). The grammar G is unambiguous if for every g,h ∈ N , L(Gg) ∩
L(Gh) �= ∅ implies that g = h.

Theorem 9 (Myhill-Nerode theorem). The language L ⊆ AΣ can be gen-
erated by an OPDG if and only if ≡L has finite index. Furthermore, there is a
minimal unambiguous OPDG GL with L(GL) = L that has one nonterminal for
every live equivalence class of ≡L, and this is unique up to nonterminal names.

In the following proof sketch, D = {g ∈ AΣ | g is dead}. In the “if” direction,
we consider an AOT (N,P,C, ρ) where N contains representative elements of
(AΣ/ ≡L) \ {D}, P = Σ(N) \ D, C = CΣ , and, for every g ∈ P , ρ(g) is the
representative of g’s equivalence class in N . From the fact that g ∈ L(GT

ρ(g)),
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for every g ∈ AΣ , the first result follows. In the “only if” direction, we note that
if G is an OPDG with nonterminals N , and L(GA)(g) = L(GA)(h) for g, h ∈ AΣ

and all A ∈ N , then g ≡L(G) h. As N is finite, so is the index of ≡L(G).
Notice that when L only contains ordered ranked trees (i.e., when the root

has out-degree one and no node has in-degree greater than one), Theorem 9
turns into the Myhill-Nerode theorem for regular tree languages [13], and the
constructed device is essentially the minimal bottom-up tree automaton for L.

5 MAT Learnability

In Sect. 4, the data fields of the AOT were populated with a so-called charac-
teristic set for L, and this yielded the minimal unambiguous OPDG GL for L.
In this section, we describe how the necessary information can be incrementally
built up by querying a MAT oracle. Due to space restrictions, background results
are covered in brief and we refer to [3] for a detailed exposition.

The learning algorithm (henceforth; the learner) interacts with the oracle
(the teacher) through the following procedures:

– Equals?(H) returns a graph in L(H) � L, or ⊥ if no such exists.
– Member?(g) returns the Boolean value L(g).

The information gathered from the teacher is written and read from the AOT
through the procedures listed below. In the declaration of these, (N,P,C, ρ) and
(N ′, P, C ′, ρ′) are the data values before and after application, respectively.

– Initialise sets N ′ = P ′ = C ′ = ∅.
– AddProduction(g) with g ∈ Σ(N) \ P . Requires that L/g �= ∅, and guar-

antees that N ⊆ N ′ and P ∪ {g} ⊆ P ′.
– AddNonterminal(c, g) with g ∈ P \ N and c ∈ CΣ . Requires that ∀g′ ∈

N : g �≡L,C∪{c} g′, and guarantees that N ∪{g} ⊆ N ′, P ⊆ P ′, and C ⊆ C ′ ⊆
C ∪ {c}.

– grammar returns GT without modifying the data fields.

The learner and the procedure Extend are as they stand in [7]. The learner
maintains an AOT T, from which it induces an OPDG GT. This OPDG is given
to the teacher in the form of an equivalence query. If the teacher responds with
the token ⊥, then the language has been successfully acquired. Otherwise, the
learner receives a counterexample g ∈ L(GT) � L, from which it extracts new
facts about L through the procedure Extend and includes these in T.

The procedure Extend uses contradiction backtracking to gain new knowl-
edge from the counterexample g [8]. This consists in simulating the parsing of
g with respect to the OPDG GT. The simulation is done incrementally, and in
each step a subgraph h ∈ Σ(N) \ N of g is nondeterministically selected. If h is
not in P , this indicates that a production is missing from GT and the problem
is solved by a call to AddProduction. If h is in P , then the learner replaces
it by ρ(h) and checks whether the resulting graph g′ is in L. If L(g) �= L(g′),
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Algorithm 1. The procedure AddProduction

Data: p ∈ Σ(N) \ P
P ← P ∪ {g};
if ∃g′ ∈ N : g ≡L,C g′ then

ρ(g) ← g′;
else

if ∃g′ ∈ N then
ρ(g) ← g′;

else
AddNonterminal(ε, g);

Algorithm 2. The procedure AddNonterminal

Data: g ∈ P \ N , c ∈ CΣ , and ∀g′ ∈ N : g �≡L,C∪{c} g′

N ← N ∪ {g};
if g ≡L,C ρ(g) then

C ← C ∪ {c};

g′ ← ρ(g);
for h ∈ ρ−1(g′) do

if h ≡L,C g then
ρ(h) ← g;

then evidence has been found that h and ρ(h) do not represent the same congru-
ence class and the learner calls AddNonterminal. If the membership has not
changed, then the procedure calls itself recursively with the graph g′ as argu-
ment, which has strictly fewer subgraphs not in P . Since g is a counterexample,
so is g′. If this parsing process succeeds in replacing all of g with a graph g′ ∈ N ,
then L(g) = L(g′) and g ∈ L(GT

g′). Since g′ ∈ N , L(GT)(g′) = L(g′). It follows
that L(GT)(g) = L(g) which contradicts g being a counterexample.

From [7], we know that if Extend adheres to the pre- and postconditions of
the AOT procedures, and the target language L can be computed by an OPDG,
then the learner terminates and returns a minimal OPDG generating L. It thus
remains to discuss the procedures AddProduction and AddNonterminal

(Algorithms 1 and 2, respectively), and show that these behave as desired. The
procedure AddProduction simply adds its argument g to the set P of graphs
representing productions. It then looks for a representative g′ for g in N , such
that g′ ≡L,C g. If no such graph exists, it chooses any g′ ∈ N , or if N is empty,
adds g itself to N with a call to AddNonterminal. Similarly, AddNonter-

minal adds g to the set N of graphs representing nonterminals. If g cannot be
distinguished from ρ(g), which is the only element in N that could possibly be
indistinguishable from g, then c is added to C to tell g and ρ(g) apart. Finally,
the representative function ρ is updated to satisfy Definition 7.

It is easy to verify that (i) the proposed procedures deliver on their guar-
antees if their requirements are fulfilled, (ii) that where they are invoked,
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the requirements are indeed fulfilled, and (iii) the conditions on the observa-
tion table given in Definition 7 are always met. By [7, Corollary 8], we arrive at
Theorem 10.

Theorem 10. The learner terminates and returns GL.

We close this section with a discussion of the learner’s complexity. To infer
the canonical ODGP GL = (Σ,N, I, P ) for L, the learner must gather as many
graphs as there are nonterminals and transitions in GL. In each iteration of the
main loop, it parses a counterexample g in polynomial time in the size of g and
T (the latter is limited by the size of GL), and is rewarded with at least one
production or nonterminal. The learner is thus polynomial in |GL| = |N | + |P |
and the combined size of the counterexamples provided by the teacher.
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