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Abstract. We study the properties of syntactic monoids of bifix-free
regular languages. In particular, we solve an open problem concerning
syntactic complexity: We prove that the cardinality of the syntactic
semigroup of a bifix-free language with state complexity n is at most
(n− 1)n−3 + (n− 2)n−3 + (n− 3)2n−3 for n � 6. The main proof uses a
large construction with the method of injective function. Since this bound
is known to be reachable, and the values for n � 5 are known, this com-
pletely settles the problem. We also prove that (n−2)n−3+(n−3)2n−3−1
is the minimal size of the alphabet required to meet the bound for n � 6.
Finally, we show that the largest transition semigroups of minimal DFAs
which recognize bifix-free languages are unique up to renaming the states.

1 Introduction

The syntactic complexity [11] σ(L) of a regular language L is defined as the size of
its syntactic semigroup [17]. It is known that this semigroup is isomorphic to the
transition semigroup of the quotient automaton D and of a minimal deterministic
finite automaton accepting the language. The number n of states of D is the state
complexity of the language [19], and it is the same as the quotient complexity [2]
(number of left quotients) of the language. The syntactic complexity of a class
of regular languages is the maximal syntactic complexity of languages in that
class expressed as a function of the quotient complexity n.

Syntactic complexity is related to the Myhill equivalence relation [16], and
it counts the number of classes of non-empty words in a regular language which
act distinctly. It provides a natural bound on the time and space complexity of
algorithms working on the transition semigroup. For example, a simple algorithm
checking whether a language is star-free just enumerates all transformations and
verifies whether none of them contains a non-trivial cycle [15].

Syntactic complexity does not refine state complexity, but used as an addi-
tional measure it can distinguish particular subclasses of regular languages
from the class of all regular languages, whereas state complexity alone cannot.
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For example, the state complexity of basic operations in the class of star-free
languages is the same as in the class of all regular languages (except the reversal,
where the tight upper bound is 2n−1 − 1 see [8]).

Finally, the largest transition semigroups play an important role in the study
of most complex languages [3] in a given subclass. These are languages that meet
all the upper bounds on the state complexities of Boolean operations, product,
star, and reversal, and also have maximal syntactic semigroups and most complex
atoms [10]. In particular, the results from this paper enabled the study of most
complex bifix-free languages [12].

A language is prefix-free if no word in the language is a proper prefix of
another word in the language. Similarly, a language is suffix-free if there is no
word that is a proper suffix of another word in the language. A language is bifix-
free if it is both prefix-free and suffix-free. Prefix-, suffix-, and bifix-free languages
are important classes of codes, which have numerous applications in such fields
as cryptography and data compression. Codes have been studied extensively;
see [1] for example.

Syntactic complexity has been studied for a number of subclasses of regular
languages (e.g., [4–6,8,13,14]). For bifix-free languages, the lower bound (n −
1)n−3 + (n − 2)n−3 + (n − 3)2n−3 for the syntactic complexity for n � 6 was
established in [6]. The values for n � 5 were also determined.

The problem of establishing tight upper bound on syntactic complexity can
be quite challenging, depending on the particular subclass. For example, it is
easy for prefix-free languages and right ideals, while much more difficult for
suffix-free languages and left ideals. The case of bifix-free languages studied in
this paper requires an even more involved proof, as the structure of maximal
transition semigroup is more complicated.

Our main contributions are as follows:

1. We prove that (n − 1)n−3 + (n − 2)n−3 + (n − 3)2n−3 is also an upper bound
for syntactic complexity for n � 8. To do this, we apply the general method
of injective function (cf. [7,9]). The construction here is much more involved
than in the previous cases, and uses a number of tricks for ensuring injectivity.

2. We prove that the transition semigroup meeting this bound is unique for
every n � 8.

3. We refine the witness DFA meeting the bound by reducing the size of the
alphabet to (n − 2)n−3 + (n − 3)2n−3 − 1, and we show that it cannot be any
smaller.

4. Using a dedicated algorithm, we verify by computation that two semigroups
W�5

bf and W�6
bf (defined below) are the unique largest transition semigroups

of a minimal DFA of a bifix-free language, respectively for n = 5 and n = 6, 7
(whereas they coincide for n = 3, 4).

In summary, for every n we have determined the syntactic complexity, the unique
largest semigroups, and the minimal sizes of the alphabets required; this com-
pletely solves the problem for bifix-free languages.

The full version of this paper is available at [18].
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2 Preliminaries

Let Σ be a non-empty finite alphabet, and let L ⊆ Σ∗ be a language. If w ∈ Σ∗

is a word, L.w denotes the left quotient or simply quotient of L by w, which is
defined by L.w = {u | wu ∈ L}. The number of quotients of L is its quotient
complexity [2] κ(L). From the Myhill-Nerode Theorem, a language is regular if
and only if the set of all quotients of the language is finite. We denote the set
of quotients of regular L by K = {K0, . . . ,Kn−1}, where K0 = L = L.ε by
convention.

A deterministic finite automaton (DFA) is a tuple D = (Q,Σ, δ, q0, F ), where
Q is a finite non-empty set of states, Σ is a finite non-empty alphabet, δ : Q×Σ →
Q is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of
final states. We extend δ to a function δ : Q × Σ∗ → Q as usual.

The quotient DFA of a regular language L with n quotients is defined by
D = (K,Σ, δD,K0, FD), where δD(Ki, w) = Kj if and only if Ki.w = Kj ,
and FD = {Ki | ε ∈ Ki}. Without loss of generality, we assume that Q =
{0, . . . , n − 1}. Then D = (Q,Σ, δ, 0, F ), where δ(i, w) = j if δD(Ki, w) = Kj ,
and F is the set of subscripts of quotients in FD. A state q ∈ Q is empty if its
quotient Kq is empty. The quotient DFA of L is isomorphic to each complete
minimal DFA of L. The number of states in the quotient DFA of L (the quotient
complexity of L) is therefore equal to the state complexity of L.

In any DFA D, each letter a ∈ Σ induces a transformation on the set Q
of n states. We let Tn denote the set of all nn transformations of Q; then Tn

is a monoid under composition. The image of q ∈ Q under transformation t
is denoted by qt, and the image of a subset S ⊆ Q is St = {qt | q ∈ S}. If
s, t ∈ Tn are transformations, their composition is denoted by st and defined by
q(st) = (qs)t. The identity transformation is denoted by 1, and we have q1 = q
for all q ∈ Q. By (S → q), where S ⊆ Q and q ∈ Q, we denote a semiconstant
transformation that maps all the states from S to q and behaves as the identity
function for the states in Q \ S. A constant transformation is the semiconstant
transformation (Q → q), where q ∈ Q. A unitary transformation is ({p} → q),
for some distinct p, q ∈ Q; this is denoted by (p → q) for simplicity.

The transition semigroup of D is the semigroup of all transformations gen-
erated by the transformations induced by Σ. Since the transition semigroup of
a minimal DFA of a language L is isomorphic to the syntactic semigroup of
L [17], the syntactic complexity of L is equal to the cardinality of the transition
semigroup of D.

The underlying digraph of a transformation t ∈ Tn is the digraph (Q,E),
where E = {(q, qt) | q ∈ Q}. We identify a transformation with its underlying
digraph and use usual graph terminology for transformations: The in-degree of
a state q ∈ Q is the cardinality |{p ∈ Q | pt = q}|. A cycle in t is a cycle in its
underlying digraph of length at least 2. A fixed point in t is a self-loop in its under-
lying digraph. The orbit of a state q ∈ Q in t is a connected component containing
q in its underlying digraph, that is, the set {p ∈ Q | pti = qtj for some i, j � 0}.
Note that every orbit contains either exactly one cycle or one fixed point. The
distance in t from a state p ∈ Q to a state q ∈ Q is the length of the path in
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the underlying digraph of t from p to q, that is, min{i ∈ N | pti = q}, and is
undefined if no such path exists. If a state q does not lie in a cycle, then the tree
of q is the underlying digraph of t restricted to the states p such that there is a
path from p to q.

2.1 Bifix-Free Languages and Semigroups

Let Dn = (Q,Σ, δ, 0, F ), where Q = {0, . . . , n−1}, be a minimal DFA accepting
a bifix-free language L, and let T (Dn) be its transition semigroup. We also define
QM = {1, . . . , n − 3} (the set of the “middle” non-special states).

The following properties of bifix-free languages, slightly adapted to our ter-
minology, are well known [6]:

Lemma 1. A minimal DFA Dn = (Q,Σ, δ, 0, F ) of a bifix-free languages L
satisfies the following properties:

1. There is an empty state, which is n − 1 by convention.
2. There exists exactly one final quotient, which is {ε}, and whose state is n− 2

by convention, so F = {n − 2}.
3. For u, v ∈ Σ+, if L.v �= ∅, then L.v �= L.uv.
4. In the underlying digraph of every transformation of T (Dn), there is a path

starting at 0 and ending at n − 1.

The items (1) and (2) are sufficient and necessary for prefix-free languages, while
(3) and (4) follow from the properties of suffix-free languages. Following [9], we
say that an (unordered) pair {p, q} of distinct states in QM is colliding (or p
collides with q) in T (Dn) if there is a transformation t ∈ T (Dn) such that 0t = p
and rt = q for some r ∈ QM . A pair of states is focused by a transformation
u ∈ T (n) if u maps both states of the pair to a single state r ∈ QM ∪ {n − 2}.
We then say that {p, q} is focused to the state r. By Lemma 1(3), it follows that
if {p, q} is colliding in T (Dn), then there is no transformation u ∈ T (Dn) that
focuses {p, q}. Hence, in the case of bifix-free languages, colliding states can be
mapped to a single state only if the state is n − 1. In contrast with suffix-free
languages, we do not consider the pairs from QM × {n − 2} being colliding, as
they cannot be focused.

For n � 2 we define the set of transformations

Bbf(n) = {t ∈ Tn | 0 �∈ Qt, (n − 1)t = n − 1, (n − 2)t = n − 1, and for all j � 1,

0tj = n − 1 or 0tj �= qtj ∀q, 0 < q < n − 1}.

In [6] it was shown that the transition semigroup T (Dn) of a minimal DFA of a
bifix-free language must be contained in Bbf(n). It contains all transformations
t which fix n−1, map n−2 to n−1, and do not focus any pair which is colliding
from t.

Since Bbf(n) is not a semigroup, no transition semigroup of a minimal DFA
of a bifix-free language can contain all transformations from Bbf(n). Therefore,
its cardinality is not a tight upper bound on the syntactic complexity of bifix-
free languages. A lower bound on the syntactic complexity was established in [6].
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We study the following two semigroups that play an important role for bifix-free
languages.

Semigroup W�6
bf (n). For n � 3 we define the semigroup:

W�6
bf (n) = {t ∈ Bbf(n) | 0t ∈ {n − 2, n − 1}, or

0t ∈ QM and qt ∈ {n − 2, n − 1} for all q ∈ QM}.

The following remark summarizes the transformations of W�6
bf (n) (illustrated

in Fig. 1):

Remark 2. W�6
bf (n) contains all transformations that:

1. map {0, n − 2, n − 1} to n − 1, and QM into Q \ {0}, or
2. map 0 to n − 2, {n − 2, n − 1} to n − 1, and QM into Q \ {0, n − 2}, or
3. map 0 to a state q ∈ QM , and QM into {n − 2, n − 1}. �

Fig. 1. The three types of transformations in W�6
bf (n) from Remark 2.

The cardinality of W�6
bf (n) is (n − 1)n−3 + (n − 2)n−3 + (n − 3)2n−3.

Proposition 3. W�6
bf (n) is the unique maximal transition semigroup of a min-

imal DFA Dn of a bifix-free language in which there are no colliding pairs of
states.

In [6] it was shown that for n � 5, there exists a witness DFA of a bifix-
free language whose transition semigroup is W�6

bf (n) over an alphabet of size
(n−2)n−3 +(n−3)2n−3 +2 (and 18 if n = 5). Now we slightly refine the witness
from [6, Proposition 31] by reducing the size of the alphabet to (n − 2)n−3 +
(n − 3)2n−3 − 1, and then we show that it cannot be any smaller.

Definition 4 (Bifix-free witness). For n � 4, let W(n) = (Q,Σ, δ, 0, {n−2}),
where Q = {0, . . . , n − 1} and Σ contains the following letters:
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1. bi, for 1 � i � n − 3, inducing the transformations (0 → n − 1)(i → n − 2)
(n − 2 → n − 1),

2. ci, for every transformation of type (2) from Remark 2 that is different from
(0 → n − 2)(QM → n − 1)(n − 2 → n − 1),

3. di, for every transformation of type (3) from Remark 2 that is different from
(0 → q)(QM → n − 1)(n − 2 → n − 1) for some state q ∈ QM .

Altogether, we have |Σ| = (n − 3) + ((n − 2)n−3 − 1) + (n − 3)(2n−3 − 1) = (n −
2)n−3+(n−3)2n−3−1. For n = 4 three letters suffice, since the transformation of
b1 is induced by cidi, where ci : (0 → 2)(2 → 3) and di : (0 → 1)(1 → 2)(2 → 3).

Proposition 5. The transition semigroup of W(n) is W�6
bf (n).

Proposition 6. For n � 5, at least (n− 2)n−3 +(n− 3)2n−3 − 1 generators are
necessary to generate W�6

bf (n).

Semigroup W�5
bf (n). For n � 3 we define the semigroup

W�5
bf (n) = {t ∈ Bbf(n) | for all p, q ∈ QM where p �= q, pt = qt = n − 1 or pt �= qt}.

Proposition 7. W�5
bf (n) is the unique maximal transition semigroup of a min-

imal DFA Dn of a bifix-free language in which all pairs of states from QM are
colliding.

In [6] it was shown that for n � 2 there exists a DFA for a bifix-free language
whose transition semigroup is W�5

bf (n) over an alphabet of size (n−2)!. We prove
that this is an alphabet of minimal size that generates this transition semigroup.

Proposition 8. To generate W�5
bf (n) at least (n − 2)! generators must be used.

3 Upper Bound on Syntactic Complexity

Our main result shows that the lower bound (n−1)n−3+(n−2)n−3+(n−3)2n−3

on the syntactic complexity of bifix-free languages is also an upper bound for
n � 8.

We consider a minimal DFA Dn = (Q,Σ, δ, 0, {n − 2}), where Q = {0, . . . ,
n − 1} and whose empty state is n − 1, of an arbitrary bifix-free language. Let
T (Dn) be the transition semigroup of Dn. We will show that T (Dn) is not larger
than W�6

bf (n).
Note that the semigroups T (Dn) and W�6

bf (n) share the set Q, and in both
of them 0, n − 2, and n − 1 play the role of the initial, final, and empty state,
respectively. When we say that a pair of states from Q is colliding we always
mean that it is colliding in T (Dn).

First, we state the following lemma, which generalizes some arguments that
we use frequently in the proof of the main theorem.
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Lemma 9. Let t, t̂ ∈ T (Dn) and s ∈ W�6
bf (n) be transformations. Suppose that:

1. All states from QM whose mapping is different in t and s belong to C, where
C is either an orbit in s or is the tree of a state in s.

2. All states from QM whose mapping is different in t̂ and s belong to Ĉ, where
Ĉ is either an orbit in s or is the tree of a state in s.

3. The transformation sitj, for some i, j � 0, focuses a colliding pair whose
states are in C.

Then either C ⊆ Ĉ or Ĉ ⊆ C. In particular, if C and Ĉ are both orbits or both
trees rooted in a state mapped by s to n − 1, then C = Ĉ.

The following is our main theorem:

Theorem 10. For n � 8, the syntactic complexity of the class of bifix-free lan-
guages with n quotients is (n − 1)n−3 + (n − 2)n−3 + (n − 3)2n−3.

Proof (Idea). We construct an injective mapping ϕ : T (Dn) → W�6
bf (n). Since ϕ

will be injective, this will prove that |T (Dn)| � |W�6
bf (n)| = (n − 1)n−3 + (n −

2)n−3 + (n − 3)2n−3.
The mapping ϕ is defined by 23 (sub)cases covering all possibilities for a

transformation t ∈ T (Dn). Let t denote a transformation of T (Dn), and s denote
the assigned transformation ϕ(t).

The whole proof is split into three Supercases, depending on t. Supercase 2 and
Supercase 3 are split into a number of cases, and the cases are split into subcases.
To show injectivity, in every (sub)case we prove external injectivity, which is that
there is no other transformation t̂ that fits to one of the previous (sub)cases and
results in the same s, and we prove internal injectivity, which is that no other
transformation t̂ that fits to the same (sub)case results in the same s. We use there
various kinds of arguments of analysis orbits, cycles, longest paths, and focused
states. Often, we use Lemma 9 to argue that if another t̂ yields the same s (so ϕ is
not injective) and s is obtained by a local modification of t or t̂, then the difference
between t and t̂ is also only local – restricted to the same orbit or tree. All states
and variables related to t̂ are always marked by a hat.

Supercase 1: t ∈ W�6
bf (n).

We take s = t. The internal and external injectivity are obvious. �
For all the remaining cases let p = 0t. Note that all t with p ∈ {n − 2, n − 1} fit
in Supercase 1. Let k � 0 be a maximal integer such that ptk �∈ {n − 2, n − 1}.
Then ptk+1 is either n − 1 or n − 2, and we have two supercases covering these
situations.

Supercase 2: t �∈ W�6
bf (n) and ptk+1 = n − 1.

Here we have the chain

0 t→ p
t→ pt

t→ · · · t→ ptk
t→ n − 1.

Within this supercase, we always assign transformations s focusing a colliding
pair, and this will make them different from the transformations of Supercase 1.
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Also, we use only transformations s of type 1 from Remark 2, that is, we will
always have 0s = n − 1.

As an example, we show the full proof of the first case:

Case 2.1: t has a cycle.
Let r be the minimal state among the states that appear in cycles of t, that is,

r = min{q ∈ Q | q is in a cycle of t}.

Let s be the transformation illustrated in Fig. 2 and defined by:

0s = n − 1, ps = r,
(pti)s = pti−1 for 1 � i � k,

qs = qt for the other states q ∈ Q.

Fig. 2. Case 2.1.

Let z be the state from the cycle of t such that zt = r. We observe the
following properties:

(a) Pair {p, z} is a colliding pair focused by s to state r in the cycle, which is
the smallest state of all states in cycles. This is the only colliding pair which
is focused to a state in a cycle.
Proof: Note that p collides with any state in a cycle of t, in particular, with
z. The property follows because s differs from t only in the mapping of states
pti (0 � i � k) and 0, and the only state mapped to a cycle is p. �

(b) All states from QM whose mapping is different in t and s belong to the same
orbit in s of a cycle. Hence, all colliding pairs that are focused by s consist
only of states from this orbit.

(c) s has a cycle.
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(d) For each i with 1 � i < k, there is precisely one state q colliding with pti−1

and mapped by s to pti, and that state is q = pti+1.
Proof: Clearly q = pti+1 satisfies this condition. Suppose that q �= pti+1.
Since pti+1 is the only state mapped to pti by s and not by t, it follows that
qt = qs = pti. So q and pti−1 are focused to pti by t; since they collide, this
is a contradiction. �

External injectivity: By (a), {p, z} is a colliding pair focused by s, therefore t
and s cannot be both present in Tn and so s was not used in Supercase 1. �
Internal injectivity: Let t̂ be any transformation that fits in this case and results
in the same s; we will show that t̂ = t. From (a), there is the unique colliding
pair {p, z} focused to a state in a cycle, hence {p̂, ẑ} = {p, z}. Moreover, p and
p̂ are not in this cycle, so p̂ = p and ẑ = z, which means that 0t = 0t̂ = p. Since
there is no state q �= 0 such that qt = p, the only state mapped to p by s is pt,
hence pt̂ = pt. From (d) for i = 1, . . . , k − 1, state pti+1 is uniquely determined,
hence pt̂i+1 = pti+1. Finally, for i = k there is no state colliding with ptk−1 and
mapped to ptk, hence pt̂k+1 = ptk+1 = n − 1. Since the other transitions in s
are defined exactly as in t and t̂, we have t̂ = t. �

Then we have four other cases, which together cover all possibilities for t.

Fig. 3. Map of the (sub)cases of Supercase 3 in the proof of Theorem 10 (part 1).

Supercase 3: t �∈ W�6
bf (n) and ptk+1 = n − 2.

Here we have the chain

0 t→ p
t→ pt

t→ · · · t→ ptk
t→ n − 2 t→ n − 1.
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Fig. 4. Map of the (sub)cases of Supercase 3 in the proof of Theorem 10 (part 2).

We always assign transformations s such that s together with t generate a trans-
formation that focuses a colliding pair, which distinguishes such transformations
s from those of Supercase 1. Moreover, we always assign transformations of type 2
from Remark 2, that is, we always have 0s = n − 2. This distinguishes s from all
the transformations used in Supercase 2.

To show briefly how the construction looks like, in Figs. 3 and 4 we present
a map of the (sub)cases for Supercase 3. The black solid edges are the edges
of t, and the dashed edges (also red in a color printout) are the edges of the
corresponding s. �

4 Uniqueness of Maximal Semigroups

Here we show that W�6
bf (n) for n � 6 and W�5

bf (n) for n ∈ {3, 4, 5} (whereas
W�6

bf (n) = W�5
bf (n) for n ∈ {3, 4}) have not only the maximal sizes, but are

also the unique largest semigroups up to renaming the states in a minimal DFA
Dn = (Q,Σ, δ, 0, {n − 2}) of a bifix-free language.

Theorem 11. If n � 8, and the transition semigroup T (Dn) of a minimal DFA
Dn of a bifix-free language has at least one colliding pair, then

|T (Dn)| < |W�6
bf (n)| = (n − 1)n−3 + (n − 2)n−3 + (n − 3)2n−3.
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Proof (Idea). This is done by finding one more s (under the assumption that
there exists a colliding pair) that was not assigned by ϕ in the proof of Theo-
rem 10. Thus, since ϕ is injective and ϕ(T (Dn)) ⊆ W�6

bf (n), s ∈ W�6
bf (n) but

s �∈ ϕ(T (Dn)), it follows that ϕ(T (Dn)) � W�6
bf (n), so |T (Dn)| < |W�6

bf (n)|. 	


Corollary 12. For n � 8, the transition semigroup W�6
bf (n) is the unique

largest transition semigroup of a minimal DFA of a bifix-free language.

Proof. From Theorem 11, a transition semigroup that has a colliding pair can-
not be largest. From Proposition 3, W�6

bf (n) is the unique maximal transition
semigroup that does not have colliding pairs of states. 	


The following theorem solves the remaining cases of small semigroups:

Theorem 13. For n ∈ {6, 7}, the largest transition semigroup of minimal DFAs
of bifix-free languages is W�6

bf (n) and it is unique. For n = 5, the largest tran-
sition semigroup of minimal DFAs of bifix-free languages is W�5

bf (n) and it is
unique. For n ∈ {3, 4}, W�6

bf (n) = W�5
bf (n) is the unique largest transition

semigroup of minimal DFAs of bifix-free languages.

Proof (Idea). We have verified this with the help of computation, basing on
the idea of conflicting pairs of transformations from [6, Theorem 20]. We have
developed an algorithm which verified for a given n � 7 that no transformation
from Bbf(n) can belong to a transition semigroup of a minimal DFA D of a
bifix-free language of size at least max{W�5

bf (n),W�6
bf (n)} that is different from

W�6
bf (n) and W�5

bf (n). 	


Since the largest transition semigroups are unique, from Propositions 6 and 8
we infer the sizes of the alphabets required in order to meet the bound for the
syntactic complexity.

Corollary 14. To meet the bound for the syntactic complexity of bifix-free lan-
guages, (n−2)n−3 +(n−3)2n−3 −1 letters are required and sufficient for n � 6,
and (n − 2)! letters are required and sufficient for n ∈ {3, 4, 5}.

5 Conclusions

We have solved the problem of syntactic complexity of bifix-free languages and
identified the largest semigroups for every number of states n. In the main the-
orem, we used the method of injective function (cf. [7,9]) with new techniques
and tricks for ensuring injectivity (in particular, Lemma9 and the constructions
in Supercase 3). This stands as a universal method for solving similar problems
concerning maximality of semigroups. Our proof required an extensive analysis
of 23 (sub)cases and much more complicated injectivity arguments than those for
suffix-free (12 cases), left ideals (5 subcases) and two-sided ideals (8 subcases).
The difficulty of applying the method grows quickly when characterization of
the class of languages gets more involved.
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It may be surprising that we need a witness with (n−2)n−3+(n−3)2n−3−1
(for n � 6) letters to meet the bound for syntactic complexity of bifix-free
languages, whereas in the case of prefix- and suffix-free languages only n+1 and
five letters suffice, respectively (see [6,9]).

Finally, our results enabled establishing existence of most complex bifix-free
languages ([12]).
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