
Transducing Reversibly with Finite
State Machines

Martin Kutrib(B), Andreas Malcher, and Matthias Wendlandt

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{kutrib,malcher,matthias.wendlandt}@informatik.uni-giessen.de

Abstract. Finite state machines are investigated towards their ability
to reversibly compute transductions, that is, to transform inputs into
outputs in a reversible way. This means that the transducers are back-
ward deterministic and hence are able to uniquely step the computation
back and forth. The families of transductions computed are classified
with regard to three types of length-preserving transductions as well as
to the property of working reversibly. It is possible to settle all inclusion
relations between the families of transductions. Finally, the standard
closure properties are investigated and the non-closure under almost all
operations can be shown.

1 Introduction

One main motivation for the study of computational devices performing
reversible computations is the physical observation that a loss of information
results in heat dissipation [13]. It is therefore of great interest to avoid such sit-
uations and to privilege computations in which every configuration has a unique
successor configuration as well as a unique predecessor configuration so that at
every point of the computation no information gets lost. Reversibility has been
studied for many computational devices starting with Lecerf’s [15] and Ben-
nett’s [5] investigations for Turing machines, where it is shown that for every
(possibly irreversible) Turing machine an equivalent reversible Turing machine
can be constructed. This result has been achieved also for deterministic space-
bounded Turing machines in [14]. For deterministic multi-head finite automata,
the results depend on whether or not two-way motion of the heads is allowed.
It is shown in [16] that the general model and the reversible model coincide
for two-way multi-head finite automata, whereas the reversible model is weaker
than the general model in case of one-way motion [12]. A similar result has
been obtained in [10] for deterministic pushdown automata. In both cases, the
loss of information in computations is inevitable. Reversible computations in
deterministic finite automata (DFA) have been introduced in [3] and it is shown
in [17] that there are regular languages which cannot be accepted by any (one-
way) reversible deterministic finite automaton. On the other hand, it is known
due to [9] that the general model and the reversible model coincide if the input
head is two-way. Recent results on reversible regular languages are given in [8],

c© Springer International Publishing AG 2017
A. Carayol and C. Nicaud (Eds.): CIAA 2017, LNCS 10329, pp. 151–162, 2017.
DOI: 10.1007/978-3-319-60134-2 13

152 M. Kutrib et al.

where it is shown that it is NL-complete to decide whether a given one-way DFA
accepts a reversible language. Additionally, exponential upper and lower bounds
for the conversion of one-way DFAs to equivalent reversible DFAs are given.

Computational models are not only interesting from the vantage point of
accepting some input, but also from the viewpoint of transforming some input
into some output. For example, a parser for a formal language should not only
return the information whether or not the input word can be parsed, but also
the parse tree in the positive case. The simplest model in this context is the
finite state transducer which is a finite automaton with an output alphabet that
assigns to each input accepted at least one output word. Transductions computed
by different variants of such transducers are studied in detail in [7]. Determinis-
tic and nondeterministic pushdown transducers are investigated in [2]. Further-
more, characterizations of pushdown transductions as well as applications to the
parsing of context-free languages are given. A more general theory of transducing
devices has been outlined already 1969 in [1]. More recently, transducing variants
of stack automata have been considered in [6], whereas the parallel model of cel-
lular automata has been investigated in [11] towards its transducing capabilities.

Here, we study reversible deterministic finite state transducers (DFST). Since
reversible devices should be able to preserve information and DFSTs use and pro-
duce information concerning the input and the output, the transition function in
DFSTs will be defined depending on the input and the output. Thus, reversible
DFSTs may be considered as reversible Turing machines (see, for example, [4,5])
with a one-way input tape and a one-way output tape. To start with a weak
form of transductions and, again, from the viewpoint of information preserving
computations, we are here considering essentially length-preserving transduc-
tions. In Sect. 2 we give the formal definition of a reversible DFST (REV-DFST)
and define Mealy, strongly, and weakly length-preserving DFSTs which basi-
cally differ by the fact whether or not both heads have to move synchronously.
In Sect. 3, we compare the three notions of length-preserving transducers. It
turns out that the Mealy DFSTs are equivalent to strongly length-preserving
DFSTs, but weaker than weakly length-preserving DFSTs. These results hold
for the reversible case as well. Moreover, the reversible models turn out to be
weaker than the general model. In addition, we obtain the decidability of the
question whether or not the transduction realized by an arbitrary Mealy DFST
can be realized by a Mealy REV-DFST as well. In the affirmative case, the Mealy
REV-DFST can effectively be constructed. Finally, we discuss in Sect. 4 the usu-
ally investigated closure properties for reversible and length-preserving DFSTs.
We obtain closure under intersection, but non-closure under union, complemen-
tation, composition, inversion, concatenation, iteration, and reversal.

2 Preliminaries

We write Σ∗ for the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and we set Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted
by wR, and for the length of w we write |w|. We use ⊆ for inclusions and ⊂ for
strict inclusions.

Transducing Reversibly with Finite State Machines 153

First, we define reversible deterministic finite state transducers. We define
this model as usual with two tapes, namely, an input and an output tape. The
model can be seen as a restricted variant of a Turing machine having a one-way
read-only input tape and a one-way output tape. In the forward computation
the transducer decides its operation depending on the current state, the current
input symbol, and the symbol at the current square of the output tape. It may
perform a right move on the input tape and may rewrite the current tape square
on the output tape and afterwards may perform a right move on the output tape
as well. The output tape is initially filled with blank symbols.

Formally, we define a deterministic finite state transducer (DFST) as a sys-
tem M = 〈Q,Σ,Δ, q0, δ, F 〉, where Q is the set of internal states, Σ is the set of
input symbols, Δ is the set of output symbols containing the blank symbol �, q0
is the initial state, F ⊆ Q is the set of accepting states, and

δ : Q × Σ × Δ → Q × (Δ \ {�}) × {0, 1} × {0, 1}

is the partial transition function.
A configuration of DFST M at some time t ≥ 0 is a quadruple (v, p, w, z),

where v ∈ Σ∗ is the already read part of the input to the left of the input head,
p ∈ Q is the current state, w ∈ Σ∗ is the still unread part of the input to the
right of the input head, and z ∈ Δ+ is the already written part of the output, the
rightmost symbol of z being the currently scanned symbol on the output tape.
The initial configuration for input w is set to (λ, q0, w, �). During the course of
its computation, M runs through a sequence of configurations. One step from
a configuration to its successor configuration is denoted by 	 and defined as
follows. For p ∈ Q, a ∈ Σ, v, w ∈ Σ∗, z ∈ Δ∗, and b ∈ Δ, let (v, p, aw, zb) be a
configuration. Then we define

(v, p, aw, zb) 	 (va, q, w, zc), if δ(p, a, b) = (q, c, 1, 0),
(v, p, aw, zb) 	 (v, q, aw, zc), if δ(p, a, b) = (q, c, 0, 0),
(v, p, aw, zb) 	 (va, q, w, zc�), if δ(p, a, b) = (q, c, 1, 1),
(v, p, aw, zb) 	 (v, q, aw, zc�), if δ(p, a, b) = (q, c, 0, 1).

The reflexive transitive closure of 	 is denoted by 	∗.
A DFST halts if the transition function is undefined for the current con-

figuration. The output written by a DFST M on input w ∈ Σ∗ is denoted by
M(w) ∈ (Δ \ {�})∗ and is defined as M(w) = v, if (λ, q0, w, �) 	∗ (w, q, λ, v′)
with q ∈ F , v is the non-blank part of v′, and M halts. Otherwise, M(w) is
defined to be the empty set. Now, the transduction defined by M is the set
T (M) = { (w,M(w)) | w ∈ Σ∗ and M(w)
= ∅ }. We remark that M may also
be considered as a partial function mapping some w ∈ Σ∗ to v ∈ (Δ \ {�})∗.
If we build the projection on the first components of T (M), denoted by L(M),
then the transducer degenerates to a deterministic language acceptor.

In general, the family of all transductions performed by some device of type X
is denoted by T (X).

Now, we turn to reversible DFST. Basically, reversibility is meant with
respect to the possibility of stepping the computation back and forth.

154 M. Kutrib et al.

So, the machines have also to be backward deterministic. In particular, the
machines reread the symbols which they have read in a preceding forward com-
putation step. So, for reverse computation steps each head is either moved to
the left or stays stationary. Figuratively, one can imagine that in a forward step,
first the current symbols are read and then the heads are moved, whereas in a
backward step first the heads are moved and then the symbols are read.

A DFST is said to be reversible, abbreviated as REV-DFST, if for any two
distinct transitions

δ(p, x0, x1) = (q, y1, d0, d1) and
δ(p′, x′

0, x
′
1) = (q′, y′

1, d
′
0, d

′
1),

if q = q′, then (d0, d1) = (d′
0, d

′
1) and (x0, y1)
= (x′

0, y
′
1). The first condition

means that transitions reaching the same state have to move both heads in the
same way. The second condition ensures that for any configuration the prede-
cessor state can uniquely be determined from the state (which then implies the
head movements), the input symbol read and the output symbol written.

A consequence of the definition of reversibility is the following property usu-
ally required for reversible devices.

Lemma 1. For any REV-DFST holds that any configuration has at most one
predecessor configuration.

In this paper, we consider in particular length-preserving DFST and differ-
entiate between three notions. We call a DFST a Mealy transducer (M-DFST)
if the transition function δ maps from Q × Σ × Δ to Q × (Δ \ {�}) × {1} × {1}.
That is, in every time step an input symbol is read, an output symbol is writ-
ten, and both heads proceed one position to the right. We call a DFST strongly
length-preserving (s-DFST) if the transition function δ maps from Q × Σ × Δ
to Q × (Δ \ {�}) × {(1, 1), (0, 0)}. That is, both heads are moved synchronously.
Finally, we call a DFST M weakly length-preserving (w-DFST), if |w| = |M(w)|,
for all (w,M(w)) ∈ T (M). That is, the length of the input word read and the
length of the output word written is equal at the end of the transduction.

In order to clarify the definitions we present an example.

Example 2. The transduction { (anbm, anbcm−1) | m ≥ 1, n ≥ 0 } can be com-
puted by some Mealy REV-DFST M = 〈{q0, q1}, {a, b}, {�, a, b, c}, q0, δ, {q1}〉.
For every a, the transducer writes an a on the output tape and makes a right
move. When the first b appears in the input, it changes its state, emits b and
makes a right move. Subsequently, M writes for every b a c in the output and
makes a right move. Formally, the transition function δ is defined as

δ(q0, a, �) = (q0, a, 1, 1), δ(q0, b, �) = (q1, b, 1, 1), δ(q1, b, �) = (q1, c, 1, 1).

The reversibility of M is easily verified by inspecting the transition function and
checking the two conditions of the definition. Thus, the transduction defined
by M belongs to T (M-REV-DFST). We note that the projection of T (M) to
the first component L(M) is the regular language { anbm | m ≥ 1, n ≥ 0 } which
is known to be irreversible. �

Transducing Reversibly with Finite State Machines 155

3 Computational Capacity

We turn to consider the computational capacity of reversible DFSTs. In partic-
ular, whenever two types of devices have different language acceptance power,
then trivial transductions applied to a language from their symmetric difference
would be a witness for separating also the power of the transducers. However, in
the following we consider transductions of languages that are accepted by both
types of devices in question. In this way, we are separating in fact the capabil-
ities of computing transductions. We start with a normalization result stating
that every length-preserving DFST can be transformed into an equivalent one
that moves at least one head in every step of its computation. Moreover, the
construction preserves reversibility.

Lemma 3. Every w-DFST (s-DFST, M-DFST) M can be converted into an
equivalent w-DFST (s-DFST, M-DFST) M ′ such that in any computation step
of M ′ at least one head is moved. Moreover, if M is reversible then M ′ is
reversible as well.

The construction given in Lemma 3 leads to the following corollary.

Corollary 4. The families T (M-DFST) and T (s-DFST) as well as the families
T (M-REV-DFST) and T (s-REV-DFST) are equal.

Proof. Both inclusions T (M-DFST) ⊆ T (s-DFST) and T (M-REV-DFST) ⊆
T (s-REV-DFST) follow from the definition. On the other hand, the construction
in the proof of Lemma 3 leads to an equivalent M-DFST (M-REV-DFST) for a
given s-DFST (s-REV-DFST). �
Theorem 5. Let M be a Mealy transducer. Then it is NL-complete to decide
whether T (M) can be realized by a reversible Mealy transducer. If the question
is answered in the affirmative, an equivalent reversible Mealy transducer can
effectively be constructed.

Proof. Given a Mealy transducer M = 〈Q,Σ,Δ, q0, δ, F 〉, we construct a deter-
ministic finite automaton M ′ = 〈Q,Σ × Δ, q0, δ

′, F 〉, where for q, q′ ∈ Q, x ∈ Σ
and y ∈ Δ, δ′(q, (x, y)) = q′ if and only if δ(q, x, �) = (q′, y, 1, 1). Since a Mealy
machine moves its heads in every step, it sees in every computation step a blank
symbol on the output tape and, thus, no other situations have to be considered.
Both machines work deterministically, so for each pair (w,w′) ∈ T (M) there is
a word (w,w′) ∈ L(M ′) and vice versa. In particular, the construction reveals
that there are no two distinct transitions δ′(q, (x, y)) and δ′(q, (x, y′)). More-
over, the construction preserves reversibility: If M is reversible, then for any
two distinct transitions δ(p, x0, x1) = (q, y, 1, 1) and δ(p′, x′

0, x
′
1) = (q′, y′, 1, 1)

we have that q = q′ implies (x0, y)
= (x′
0, y

′). So, for the constructed tran-
sitions δ′(p, (x0, y)) = q and δ′(p′, (x′

0, y
′)) = q′ the equality q = q′ implies

(x0, y)
= (x′
0, y

′) as well, which means that M ′ is reversible.
Conversely, given a deterministic finite automaton M ′ = 〈Q,Σ ×Δ, q0, δ

′, F 〉
with no two distinct transitions δ′(q, (x, y)) and δ′(q, (x, y′)), we construct a

156 M. Kutrib et al.

Mealy transducer M = 〈Q,Σ,Δ, q0, δ, F 〉, where for q, q′ ∈ Q, x ∈ Σ and y ∈ Δ,
δ(q, x, �) = (q′, y, 1, 1) if and only if δ′(q, (x, y)) = q′. Since M ′ is determin-
istic and meets the property there are not two distinct transitions δ′(q, (x, y))
and δ′(q, (x, y′)), M is deterministic as well. So, by construction, for each word
(w,w′) ∈ L(M ′) there is a pair (w,w′) ∈ T (M) and vice versa. Again, the
construction preserves reversibility: Let M ′ be reversible. Since Mealy machines
move both heads in each computation step, for M the first condition of working
reversibly is fulfilled. For every pair of a state and an input symbol, M ′ has
a unique predecessor state, since it is reversible. Thus the second condition of
reversibility of M can be concluded. So, M is reversible as well.

Now, let L(M ′) be the language of a deterministic finite automaton M ′

that has been constructed from a Mealy transducer M . For each transduction
M(zxz′) = uyu′ with |z| = |u|, x ∈ Σ, and y ∈ Δ, there is no transduction
M(zxz′′) = uy′u′′ with y
= y′ since M works deterministically. It can be con-
cluded that the property that there are no two distinct transitions δ′(q, (x, y))
and δ′(q, (x, y′)) is met by any automaton accepting L(M ′).

So far, we have shown that given a Mealy transducer M there exists an
equivalent reversible Mealy transducer M̂ if and only if the DFA M ′ constructed
from M accepts a language that can be accepted by some reversible DFA M̂ ′,
where a DFA is reversible, if every input letter a induces an injective partial
mapping from the state set to itself via the mapping δa : Q → Q with p �→ δ(p, a).
In [8] it has been shown that the regular language reversibility problem – given
a DFA M ′, decide whether L(M ′) is accepted by any reversible DFA – is NL-
complete. If the question is answered in the affirmative, an equivalent reversible
DFA can effectively be constructed.

These results together with the constructions shown above prove the asser-
tion. �

We turn to show that the condition to work reversibly strictly weakens
the computational capacity of Mealy transducers, thus, separating the families
T (M-REV-DFST) and T (M-DFST). Note that the witness transduction relies
on an input language that is accepted by the weaker devices.

Theorem 6. The family T (M-REV-DFST) is strictly included in the family
T (M-DFST).

Proof. We consider the Mealy transducer M = 〈Q,Σ,Δ, q0, δ, F 〉 depicted in
Fig. 1 which is irreversible due to the transitions δ(q1, b, �) = (q3, b, 1, 1) and
δ(q2, b, �) = (q3, b, 1, 1).

In order to show that there is no equivalent reversible Mealy transducer we
apply the constructions of the proof of Theorem 5. The minimal deterministic
finite automaton M ′ = 〈Q,Σ × Δ, q0, δ

′, F 〉 constructed from M is obtained by
merging the two accepting states q5 and q6 in Fig. 1. In [8] it has been shown that
the language L(M ′) can be accepted by a reversible DFA if and only if there do
not exist useful states p, q ∈ Q, a pair (x, y) ∈ Σ × Δ, and a word w ∈ (Σ × Δ)∗

such that p
= q, δ′(p, (x, y)) = δ′(q, (x, y)), and δ′(q, (x, y)w) = q.

Transducing Reversibly with Finite State Machines 157

Due to the two transitions δ′(q1, (b, b)) = δ′(q2, (b, b)), and the computation
path δ′(q1, (b, b)(a′, a)) = q1, it follows that there is no equivalent reversible
DFA and, thus, there is no reversible Mealy transducer realizing the transduc-
tion T (M). �

Our next result separates the families of reversible weakly and reversible
strongly length-preserving finite state transducers. We define the transduction
τ1 = { (aabmbn, abmbn+1) | m,n ≥ 0 } that is realized by a w-REV-DFST as
shown in the following example.

Example 7. The transduction τ1 is realized by the w-REV-DFST

M = 〈{q0, q1, . . . , q4}, {a, b, $}, {a, b, $, �}, q0, δ, {q4}〉,

where the transition function δ is as follows.

δ(q0, a, �) = (q1, b, 1, 0),
δ(q1, a, b) = (q2, a, 1, 1),

δ(q2, b, �) = (q2, b, 1, 1),
δ(q2, $, �) = (q3, $, 0, 1),

δ(q3, $, �) = (q4, b, 1, 1),
δ(q4, b, �) = (q4, b, 1, 1).

The reversibility of M is easily verified by inspecting the transition function. �

Theorem 8. The transduction τ1 is a witness for the strictness of the inclusion
T (s-REV-DFST) ⊂ T (w-REV-DFST). Moreover, transduction τ1 belongs to
T (w-REV-DFST) \ T (s-DFST).

Proof. By Example 7, transduction τ1 belongs to T (w-REV-DFST). The inclu-
sion itself follows for structural reasons. It remains to be shown that τ1 does
not belong to the family T (s-DFST). In contrast to the assertion assume τ1 is
realized by the s-DFST M = 〈Q,Σ,Δ, q0, δ, F 〉.

We consider input prefixes and let (λ, q0, aabm, �) 	∗ (aabm, q1, λ, abm+1�)
be the computation on the input prefix aabm (since both heads of M must
move synchronously, the output head scans the � after abm+1). Now, the com-
putation is extended by a further input symbol b as (aabm, q1, b, abm+1�) 	∗

Fig. 1. A Mealy transducer for which no equivalent reversible Mealy transducer exists,
though the input language is reversible regular.

158 M. Kutrib et al.

(aabmb, q2, λ, abm+1x�) with x ∈ Δ. Since x cannot be rewritten anymore, it
must be either b or $.

If x = b, then the computation cannot be the beginning of a computation
realizing τ1, since on input aabm+1 the output abm+2 has been written, but the
input aabm+1$bn has to be transformed into abm+1$bn+1. On the other hand, if
x = $ then the computation cannot be the beginning of a computation realiz-
ing τ1 either, since on input aabm+1 the output abm+1$ has been written, but
the input aabm+2$bn has to be transformed into abm+2$bn+1. The contradiction
shows the assertion. �

For the next separation, again, the witness transduction relies on an input
language that is accepted by the weaker devices. We define the transduction
τ2 = { (am$bn, am−1$bn+1) | m ≥ 1, n ≥ 0 } that is realized by a w-DFST as
shown in the following example.

Example 9. The transduction τ2 is realized by the w-DFST

M = 〈{q0, q1, . . . , q3}, {a, b, $}, {a, b, $, �}, q0, δ, {q3}〉,

where the transition function δ is as follows.

δ(q0, a, �) = (q1, b, 1, 0),
δ(q1, a, b) = (q1, a, 0, 1),

δ(q1, a, �) = (q1, b, 1, 0),
δ(q1, $, b) = (q2, $, 0, 1),

δ(q2, $, �) = (q3, b, 1, 1),
δ(q3, b, �) = (q3, b, 1, 1).

Transducer M is not reversible due to, for example, the first two rules. �

Theorem 10. The transduction τ2 is a witness for the strictness of the inclusion
T (w-REV-DFST) ⊂ T (w-DFST).

Proof. By Example 9, transduction τ2 belongs to T (w-DFST). The inclusion
itself follows for structural reasons. It remains to be shown that τ2 does not
belong to the family T (w-REV-DFST). In contrast to the assertion assume τ2
is realized by the w-REV-DFST M = 〈Q,Σ,Δ, q0, δ, F 〉.

We consider input prefixes am, for m large enough. While M processes these
prefixes, its input head always sees the symbol a, regardless of the moves of the
input head. The transition function, besides on the input symbol a, depends
on the current state and the output symbol currently scanned by the output
head. Within at most |Q| · |Δ| transitions, one pair of these parameters appears
twice. Let c0 	 c1 	 · · · 	 ct, for some t ≥ 0, be the sequence of configurations
passed through by M while processing the prefix am. Assume that the first time
where such pairs of parameters appear twice is in ci and ci+j with i, j ≥ 1. Let
ci = (ui, qi, vi, wixi) with uivi ∈ a∗, qi ∈ Q, xi ∈ Δ, and wi ∈ Δ∗. Then we
conclude δ(qi−1, a, xi−1) = (qi, y, d0, d1) and δ(qi+j−1, a, xi+j−1) = (qi, y, d0, d1).
Since on the right-hand sides the states are identical and M is reversible, d0 as
well as d1 are the same in both transitions. If d1 = 1 then in both configurations
the output head scans a blank. If d1 = 0 then in both configurations the output
head scans the currently written symbol y ∈ Δ. However, the two transitions

Transducing Reversibly with Finite State Machines 159

Fig. 2. Relations between the families of transductions discussed, where an arrow
denotes a proper inclusion.

violate the reversibility of M . The contradiction shows that the assumption i ≥ 1
was wrong.

Now let i = 0. Then M runs through cycles of length j, that is, the sequence of
configurations passed through is c0 	 c1 	 · · · 	 cj 	 · · · , with c0 = (λ, q0, a

m, �),
cj = (ak, q0, a

m−k, a��), and c2j = (a2k, q0, a
m−2k, a2��), for some k, � ≥ 0 (since

the computation is in a cycle, state and currently scanned output symbol are
identical, that is, q0 and �). If k
= � and M transduces am$bn to am−1$bn+1, then
it also transduces am+k$bn to am−1+�$bn+1 which does not belong to τ2. There-
fore, we derive k = �. But this implies (λ, q0, a

k·m$bn, �) 	∗ (ak·m, q0, $bn, ak·m�)
which cannot be the beginning of a computation realizing τ2, since the number
of a’s written is already too large by one. So, we have a contradiction to the
assumption that τ2 is realized by some w-REV-DFST. �

The relations between the families of transductions shown in this section are
summarized in Fig. 2.

4 Closure Properties

In this section, we will essentially show that the families T (w-REV-DFST)
and T (M-REV-DFST) (hence also T (s-REV-DFST)) are not closed under the
usually studied operations for transductions. We start with the easy observation
that any transduction realized by some DFST M has to be functional, that is,
any input w is transduced into at most one output M(w). This fact will be used
in the following lemma.

Lemma 11. The families T (w-REV-DFST) and T (M-REV-DFST) are nei-
ther closed under union nor under complementation.

Proof. Consider the two transductions τ1 = { (ambn, ambn) | m,n ≥ 0 } and
τ2 = { (ambn, cmdn) | m,n ≥ 0 }, that can be realized by some M-REV-DFST
(w-REV-DFST). But the transduction τ1 ∪τ2 is no longer functional, since some
inputs have to be transduced to at least two different words. Thus, transduction
τ1 ∪ τ2 cannot be computed by any M-REV-DFST (w-REV-DFST).

Since the complement of a transduction realized by a DFST is in general not
functional, we obtain the non-closure under complementation for the families
T (w-REV-DFST) and T (M-REV-DFST) as well. �

160 M. Kutrib et al.

However, using the well-known Cartesian product construction for the family
of transductions realized by M-REV-DFSTs the closure under intersection can
be shown.

Lemma 12. Family T (M-REV-DFST) is closed under intersection.

Next, we consider the composition M ◦ M ′ of two transducers M and M ′

which means that the output produced by M is considered as input for M ′.

Lemma 13. The family T (M-REV-DFST) is not closed under composition.

Proof. We consider the M-DFST M depicted in Fig. 1. It has been shown in
Theorem 6 that T (M) cannot be computed by any M-REV-DFST. Now, M
is reconstructed to M ′ in such a way that every edge e labeled with (x, y) is
changed to (x, yi) where i is a unique number for the edge e. Clearly, M ′ is
an M-REV-DFST, since the output symbol uniquely indicates the predecessor
state. Next, we construct another M-REV-DFST M ′′ with a single state that
translates every symbol xi to x. So, M ′′(M ′(w)) = M(w), for every word w.
Since T (M) cannot be computed by any M-REV-DFST, it can be concluded
that the composition M ′ ◦ M ′′ cannot be computed by any M-REV-DFST. �
Theorem 14. The family T (w-REV-DFST) is not closed under composition.

Proof. Let M = 〈{q0, q1, q2, q3}, {a, b, $}, {a, b, c, $, $0, �}, q0, δ, {q3}〉 with

δ(q0, a, �) = (q1, c, 1, 1),
δ(q1, a, �) = (q2, c, 1, 1),

δ(q1, $, �) = (q3, $0, 1, 1),
δ(q2, a, �) = (q2, a, 1, 1),

δ(q2, $, �) = (q3, $, 1, 1),
δ(q3, b, �) = (q3, b, 1, 1),

be an M-REV-DFST that computes the transduction

τ1 = { (am$bn, ccam−2$bn) | m ≥ 2, n ≥ 0 } ∪ { (abn, c0b
n) | n ≥ 0 }.

Let M ′ = 〈{q0, q1, . . . , q4}, {a, b, c, $, $0}, {a, b, $, �}, q0, δ
′, {q4}〉 with

δ′(q0, c, �) = (q1, c, 1, 0),
δ′(q1, c, c) = (q2, a, 1, 1),

δ′(q1, $0, c) = (q5, $, 0, 1),

δ′(q2, a, �) = (q2, a, 1, 1),
δ′(q2, $, �) = (q3, $, 0, 1),
δ′(q3, $, �) = (q4, b, 1, 1),

δ′(q4, b, �) = (q4, b, 1, 1),
δ′(q5, $0, �) = (q4, b, 1, 1),

be a w-REV-DFST that realizes

τ2 = { (ccam$bn, am+1$bn+1) | m,n ≥ 0 } ∪ { (c$0bn, $bn+1) | m,n ≥ 0 }.

The transduction realized by the composition M ◦ M ′ is

{ (am$bn, am−1$bn+1) | m ≥ 1, n ≥ 0 }
which cannot be computed by any w-REV-DFST due to Theorem 10. �

Let T (M) be a transduction computed by some DFST M . Then the inverse
transduction T−1(M) is defined as { (w,w′) | (w′, w) ∈ T (M) }.

Transducing Reversibly with Finite State Machines 161

Lemma 15. The families T (w-REV-DFST) and T (M-REV-DFST) are not
closed under inversion.

Proof. Let M be a M-REV-DFST computing { (w, a|w|) | w ∈ {a, b}∗ }. For any
n ≥ 0, M transduces 2n words to the same image an. Thus, the inverse transduc-
tion is no longer functional and hence cannot be computed by any M-REV-DFST
or w-REV-DFST. �

For the non-closure under reversal we need the following lemma stating that
in length-preserving transductions the distance between input head and output
head is always bounded by some constant.

Lemma 16. Let M be a w-DFST with state set Q and w be any input such that
M(w)
= ∅. Then the length difference between the words on the input tape and
the output tape during the transduction of w is at most |Q|.
Lemma 17. The families T (w-REV-DFST) and T (M-REV-DFST) are not
closed under reversal.

Lemma 18. The families T (w-REV-DFST) and T (M-REV-DFST) are nei-
ther closed under concatenation nor under iteration.

Proof. We consider two transductions { ($bmean, $bmean) | m,n ≥ 0 }∪{(λ, λ)}
and { (#bmean, #dmecn) | m,n ≥ 0 } ∪ {(λ, λ)} that can be computed by some
M-REV-DFSTs M and M ′. Since the transductions T (M) and T (M ′), hence
also T (M) ∪ T (M ′), are contained in the concatenation T (M)T (M ′), we can
apply a similar argumentation as in Lemma 17 and obtain that T (M)T (M ′)
cannot be computed by any w-REV-DFST which gives the non-closure under
concatenation.

For the non-closure under iteration we consider the transduction

{ (anbmal, anbmcl) | m,n, l ≥ 0 }

that can be computed by some M-REV-DFST M . Let us consider an input
word w = anbmal$bm′

$al′ with l > 2 and m,n,m′, l′ ≥ 0 for the transduc-
tion T (M)∗.

Since l > 2, we always can find four non-negative integers l1, l2, l
′
1, l

′
2 such that

l = l1 + l2 = l′1 + l′2 with (l1, l2)
= (l′1, l
′
2). Then both (w, anbmcl1al2$bm′

$cl′)
and (w, anbmcl′1al′2$bm′

$cl′) belong to T (M)∗. So, the transduction is no longer
functional and cannot be realized by any w-REV-DFST. �

The closure properties obtained in this section are summarized in Table 1.

162 M. Kutrib et al.

Table 1. Closure properties of the transduction families discussed.

Family ∪ ∩ ◦ −1 · ∗ R

L (M-REV-DFST) No No Yes No No No No No

L (w-REV-DFST) No No ? No No No No No

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: A general theory of translation. Math.
Syst. Theor. 3, 193–221 (1969)

2. Aho, A.V., Ullman, J.D.: The theory of parsing, translation, and compiling. Pars-
ing, vol. I. Prentice-Hall (1972)

3. Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982)
4. Axelsen, H.B., Jakobi, S., Kutrib, M., Malcher, A.: A hierarchy of fast reversible

turing machines. In: Krivine, J., Stefani, J.-B. (eds.) RC 2015. LNCS, vol. 9138,
pp. 29–44. Springer, Cham (2015). doi:10.1007/978-3-319-20860-2 2

5. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532
(1973)

6. Bensch, S., Björklund, J., Kutrib, M.: Deterministic stack transducers. In: Han,
Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 27–38. Springer, Cham
(2016). doi:10.1007/978-3-319-40946-7 3

7. Berstel, J.: Transductions and Context-Free-Languages. Teubner (1979)
8. Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite

automata. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 276–287. Springer,
Cham (2015). doi:10.1007/978-3-319-21500-6 22

9. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:
Foundations of Computer Science (FOCS 1997), pp. 66–75. IEEE Computer Soci-
ety (1997)

10. Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. System Sci.
78, 1814–1827 (2012)

11. Kutrib, M., Malcher, A.: One-dimensional cellular automaton transducers. Fun-
dam. Inform. 126, 201–224 (2013)

12. Kutrib, M., Malcher, A.: One-way reversible multi-head finite automata. Theor.
Comput. Sci., to appear

13. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 183–191 (1961)

14. Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space.
J. Comput. Syst. Sci. 60, 354–367 (2000)

15. Lecerf, Y.: Logique mathématique: machines de Turing réversible. C.R. Séances
Acad. Sci. 257, 2597–2600 (1963)

16. Morita, K.: Two-way reversible multi-head finite automata. Fund. Inform. 110,
241–254 (2011)

17. Pin, J.-E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol.
583, pp. 401–416. Springer, Heidelberg (1992). doi:10.1007/BFb0023844

http://dx.doi.org/10.1007/978-3-319-20860-2_2
http://dx.doi.org/10.1007/978-3-319-40946-7_3
http://dx.doi.org/10.1007/978-3-319-21500-6_22
http://dx.doi.org/10.1007/BFb0023844

	Transducing Reversibly with Finite State Machines
	1 Introduction
	2 Preliminaries
	3 Computational Capacity
	4 Closure Properties
	References

