
Alignment Distance of Regular Tree Languages

Yo-Sub Han1 and Sang-Ki Ko2(B)

1 Department of Computer Science, Yonsei University, 50 Yonsei-Ro,
Seodaemun-Gu, Seoul 120-749, Republic of Korea

emmous@yonsei.ac.kr
2 Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK

sangkiko@liverpool.ac.uk

Abstract. We consider the tree alignment distance problem between
a tree and a regular tree language. The tree alignment distance is an
alternative of the tree edit-distance, in which we construct an optimal
alignment between two trees and compute its cost instead of directly
computing the minimum cost of tree edits. The alignment distance is
crucial for understanding the structural similarity between trees.

We, in particular, consider the following problem: given a tree t and a
tree automaton recognizing a regular tree language L, find the most simi-
lar tree from L with respect to t under the tree alignment metric. Regular
tree languages are commonly used in practice such as XML schema or
bioinformatics. We propose an O(mn) time algorithm for computing the
(ordered) alignment distance between t and L when the maximum degree
of t and trees in L is bounded by a constant, and O(mn2) time algorithm
when the maximum degree of trees in L is not bounded, where m is the
size of t and n is the size of finite tree automaton for L. We also study
the case where a tree is not necessarily ordered, and show that the time
complexity remains O(mn) if the maximum degree is bounded and MAX
SNP-hard otherwise.

Keywords: Tree alignment · Alignment edit-distance · Regular tree
languages · Tree automata

1 Introduction

Measuring the similarity or dissimilarity between tree-structured data is essential
in many fields such as XML document processing [14], RNA secondary structure
alignment [6], pattern recognition [11]. In particular, much attention has been
paid to research on various metrics for defining the similarity or dissimilarity
of trees [7,15,20]. For example, the tree edit-distance between two ordered trees
is the cost of the optimal edit script required to transform one tree into the
other and is a natural extension of the Levenshtein distance [10]—often called
the edit-distance in the literature—defined for strings.

The tree edit-distance problem have been extensively studied by many
researchers [4,8,15]. Given two trees t and t′ of size m and n (namely, there

c© Springer International Publishing AG 2017
A. Carayol and C. Nicaud (Eds.): CIAA 2017, LNCS 10329, pp. 126–137, 2017.
DOI: 10.1007/978-3-319-60134-2 11

Alignment Distance of Regular Tree Languages 127

Fig. 1. Two trees t and t′ and its optimal alignment A

are m nodes in t and n nodes in t′), the currently best known algorithm for com-
puting the tree edit-distance between t and t′ has been suggested by Demaine
et al. [4] and runs in O(m2n(1 + log n

m)) time, for n ≥ m, using an optimal
decomposition strategy. Similar questions for unordered trees also have been
studied [18,20]. Zhang et al. [20] showed that computing the tree edit-distance
between unordered trees is NP-complete (in fact, MAX SNP-hard [19]).

Jiang et al. [7] introduced the alignment distance as an alternative to the
tree edit-distance. Instead of considering the minimum number of tree editing
operations, they considered the cost of an optimal tree alignment between two
trees. They presented an O(mnk2) time algorithm for computing the alignment
distance of two trees t and t′, where m is the size of t, n is the size of t′, and k is
the maximum degree of t and t′. They also proved that computing the unordered
alignment distance between two trees is MAX SNP-hard if the degree of one of
the trees is not bounded. Lu et al. [13] proposed another constrained variant
called the less-constrained edit-distance but Kuboyama et al. [9] proved that the
less-constrained edit-distance is, in fact, equivalent to the alignment distance.

The alignment distance is useful in terms of visualization since we can obtain
visualizable alignments for multiple trees whereas the tree edit-distance only
cares optimal sequence of tree edits. See Fig. 1 for example. Höchsmann et al. [6]
suggested a systematic approach for comparing RNA secondary structures based
on the alignment distance since we can represent RNA secondary structures as
trees by preserving their structural properties.

The problems of computing the tree edit-distance and its related variants
have been extended to the case when we are given a tree t and a set L of trees—
a regular tree language [2,12]. Here we search for the most similar tree from
L with respect to t under the considered distance metric. Note that in gen-
eral L may be infinite and we need an efficient representation for such infinite L.
Researchers suggested a regular tree grammar (RTG) and a tree automaton (TA)
for recognizing a (infinite) set of trees preserving a certain regularity [3]. RTGs
and TAs are widely used for denoting regular tree languages in several applica-
tions including XML schema [2], bioinformatics [16] and image recognition [11].
For example, we can formally define a set of RNA secondary structures excluding
pseudoknots with a regular tree language. Xing [17] proposed an O(mn log n)
time algorithm for computing the alignment distance between a tree and a regu-
lar tree grammar which recognizes a regular set of unranked trees. Unfortunately,
the proposed algorithm cannot compute optimal alignments in all cases.

128 Y.-S. Han and S.-K. Ko

We extend the alignment distance problem to the alignment distance between
a single tree and a regular tree language described as a TA. We separately
consider two problems: the ranked case and the unranked case. For the ranked
case where we fix the maximum degree of t and the maximum rank of A, we
design an O(mn) time algorithm for computing the alignment distance between
a tree of size m and a ranked TA of size n. We also establish an O(mn2) time
algorithm for unranked TAs.

We furthermore examine the unordered alignment distance between a tree
and a regular tree language where the linear ordering of children is ignored. We
show that the time complexity still remains polynomial by fixing the maximum
degree of t and the maximum rank of A and otherwise, becomes MAX SNP-hard.
The basic idea behind our algorithms is that we extend the classical dynamic
programming algorithm [7] to operate with tree automata which can recognize
regular sets of trees by their finite-state control. In order to employ the dynamic
programming, we analyze the possible cases of alignments between a tree and a
tree automaton and break the whole alignment problem into subproblems.

2 Preliminaries

A ranked alphabet Σ is a pair of a finite set of characters and a function r : Σ →
rN ∪{0}. We denote the set of elements of rank m ≥ 0 by Σm ⊆ Σ. The set FΣ

consists of Σ-labelled trees, where a node labelled by σ ∈ Σm for m ≥ 0, always
has m children. We denote the set of trees over Σ by FΣ , which is the smallest
set S satisfying the following condition: if m ≥ 0, σ ∈ Σm and t, . . . , tm ∈ S,
then σ(t, . . . , tm) ∈ S.

A nondeterministic bottom-up TA A over a ranked alphabet Σ is specified
by a tuple A = (Q,Σ,F, δ), where Q is a finite set of states, F ⊆ Q is a set of
final states, and δ associates to each σ ∈ Σm a mapping σδ : Qm → 2Q,m ≥ 0.
For each tree t = σ(t, . . . , tm) ∈ FΣ , we define inductively the set tδ ⊆ Q by
setting q ∈ tg if and only if there exist qi ∈ (ti)δ, for 1 ≤ i ≤ m, such that
q ∈ σδ(q1, . . . , qm). Intuitively, tδ consists of the states of Q that A may reach by
reading the tree t. Thus, the tree language accepted by A is defined as follows:
L(A) = {t ∈ FΣ | tδ ∩ F 	= ∅}. Given a state q of A, A[q] denotes a new TA
obtained from A by making F = {q}. We define the size |A| of a ranked TA A
to be |Q| +

∑
q∈σδ(q1,...,qm)(r(σ) + 1).

Many modern applications of tree automata use automata operating on trees
where the label of a node does not determine the number of children. For this
reason we consider also unranked TAs.

A nondeterministic unranked TA is specified by a tuple A = (Σ,Q,F, δ),
where Σ is an (unranked) alphabet, Q is a finite set of states, F ⊆ Q is a set of
final states, and δ is a transition relation defined in terms of horizontal languages
that consist of regular sets of strings over Q. For each q ∈ Q and σ ∈ Σ, we
define δ(q, σ) to be the horizontal language associated with q and σ. We denote
a finite-state automaton (FA) for the horizontal language δ(q, σ) of A by HA

q,σ,
which is called a horizontal FA. Note that an FA is specified by A = (P,Σ, s, F, δ),

Alignment Distance of Regular Tree Languages 129

Fig. 2. An accepting run of an unranked TA A = ({q0, q1, q2}, {a, b, c}, {q2}, δ) for the
tree t on the left-hand side. Note that horizontal languages are described as regular
expressions.

where P is a set of states, Σ is the input alphabet, s is the start state, F ⊆ P is a
set of final states, and δ is the transition function. Remind that horizontal FAs of
the unranked TA A = (Σ,Q,F, δ) is defined over Q—the state set of A.

We denote an FA HA
q,σ[s1, s2] = (Sq,σ, Q, s1, {s2}, γq,σ) obtained from HA

q,σ

by having the initial state s1 and the only final state s2, where s1, s2 ∈ Sq,σ.
Then, according to the transition relation δ, each σ ∈ Σ defines a partial function
σδ : Q∗ → Q, where, for w ∈ Q∗, q ∈ Q, q ∈ σδ(w) if w ∈ L(HA

q,σ). The transition
relation is, in a natural way, extended as a binary relation on Σ-trees where some
of the leaves can be labelled by elements of Q [3]. The tree language accepted
by A is defined as follows: L(A) = {t ∈ TΣ | t

∗−→ qf ∈ F}. An accepting run of
an unranked TA is described in Fig. 2. We define the size |A| of an unranked TA
A to be |Q| + ∑

q∈Q,σ∈Σ(|HA
q,σ| + 1). Naturally a ranked TA is a special case of

an unranked TA, where for σ ∈ Σm and q ∈ Q we always have L(HA
q,σ) ⊆ Qm.

For a tree t, the postorder traversal of t is obtained by visiting all children in
a left-to-right order and recursively visiting the subtrees rooted at the children,
and then root(t). For a tree t, t[i] denotes the ith node of t in postorder. When
an ordering is specified for all nodes in a tree, the tree is called ordered tree. A
hedge is a sequence of trees. We assume that all trees we discuss are ordered,
unless explicitly stated otherwise. We denote a subhedge of a tree t that consists
of the nodes from i to j by t[i . . . j] where i ≤ j. Here the nodes from i to j should
satisfy one of the following two conditions: (1) a leaf or (2) all of its descendants
are between i and j. We denote a hedge—a sequence ti, . . . , tj of trees for i ≤ j—
by h[ti . . . tj]. A hedge formed from t by deleting the root node is denoted by t̂.
We denote the leftmost leaf descendant of node t[i] by l(i). Similarly, we denote
the leftmost leaf descendant of a tree t by l(t). We define par(t[i]) to be the
parent node of t[i]. Let des(t[i]) be the set of all descendants of t[i] including t[i]
itself. Thus, t[l(i) . . . i] is the subtree rooted at t[i], that is the subtree consisting
of node i and all its descendants. Similarly, we define anc(t[i]) to be the set of
all ancestors of t[i] including t[i]. We also denote the lowest common ancestor of
t[i] and t[j] by lca(t[i], t[j]). The size |t| of t is the number of nodes in t and the
degree deg(t) of t is the maximum number of children a node of t has. Let θ be
the empty tree. We denote the character labelling a node t[i] by σ(i).

130 Y.-S. Han and S.-K. Ko

3 Distance Measures for Comparing Trees

Given an alphabet Σ, let Ω = {(a → b) | a, b ∈ Σ ∪ {λ}} be a set of edit
operations. There are three edit operations: deletion (a → λ), insertion (λ → a)
and substitution (a → b). We associate a non-negative edit cost to each edit
operation ωi ∈ Ω as a function c : Ω → R+. Note that the function c returns
zero for the edit operations of trivial substitution (a → a), where a ∈ Σ ∪ {λ}.
We assume that c is a distance metric satisfying the following conditions:

1. c(a → b) = 0 if and only if a = b,
2. c(a → b) = c(b → a), and
3. c(a → c) ≤ c(a → b) + c(b → c),

where a, b, c ∈ Σ ∪ {λ}.
An edit script S ∈ Ω∗ between two trees t and t′ is a sequence of edit

operations transforming t into t′. The cost c(S) of S = s1s2 · · · sn is c(S) =∑n
i=1 c(si). An optimal edit script between t and t′ is an edit script of minimum

cost and the minimum cost is the tree edit-distance between t and t′.

Definition 1. We define the tree edit-distance d(t, t′) of two trees t and t′ to be
d(t, t′) = min{c(S) | S is an edit script transforming t into t′}. Namely, if S is
an optimal edit script that transforms t into t′, then c(S) = d(t, t′).

Let T and T ′ be sets of nodes in t and t′, respectively. Define a
triple (M,T, T ′) to be a mapping from t to t′, where M ⊆ T × T ′ is a set
of pairs of nodes (i, j) for 1 ≤ i ≤ |T | and 1 ≤ j ≤ |T ′|. We use M instead of
(M,T, T ′) for simplicity when there is no confusion. We assume that trees are
ordered in postorder. For any pair of (i1, j1) and (i2, j2) in M , the mapping M
has the following restrictions:

1. i1 = i2 if and only if j1 = j2 (one-to-one)
2. i1 < i2 if and only if j1 < j2 (sibling order preserved)
3. t[i1] ∈ anc(t[i2]) if and only if t′[j1] ∈ anc(t′[j2]) (ancestor order preserved).

We consider the alignment distance between trees. Let t and t′ be two labelled
trees. We define an alignment A to be a tree where each node has a label from
the set of edit operations. Let left(A) (right(A), resp.) be the left (right, resp.)
projection of the alignment A. Then, A is the alignment of t and t′ if left(A) = t
and right(A) = t′. See Fig. 1 for example. We define the cost c(A) of an align-
ment A to be the sum of the costs of all pairs of labels in the alignment. In Fig. 1,
the cost c(A) is 4 if we assume unit cost for all pairs in which two labels are
different. We say that an alignment is optimal if the cost of the alignment is
minimum over all possible alignments. Now we define the alignment distance
between two trees as follows:

Definition 2. We define the alignment distance ad(t, t′) of two trees t and t′ to
be ad(t, t′) = min{c(A) | A is an alignment of t and t′}. Note that the distance
is symmetric ad(t, t′) = ad(t′, t).

Alignment Distance of Regular Tree Languages 131

We call a mapping corresponding to the alignment an alignment mapping.
Now we formally define the additional restrictions required a mapping M to be
an alignment mapping. For any triple of (i1, j1), (i2, j2), and (i3, j3) in M , the
alignment mapping M has the following additional restriction:

if lca(t[i1], t[i3]) ∈ anc(lca(t[i1], t[i2])), then lca(t′[j1], t′[j3]) = lca(t′[j2], t′[j3]).

Next we extend the alignment distance between trees to the distance between
a tree and a set of trees—a tree language.

Definition 3. We define the alignment distance ad(t, L) between a tree t and a
tree language L to be ad(t, L) = inf{ad(t, t′) | t′ ∈ L}.

We also consider an unordered variant for which we ignore the linear order-
ing of children called the unordered alignment distance and denote the distance
between two trees t and t′ by uad(t, t′).

4 Alignment Distance Problem

We study the alignment distance between a tree and a regular tree language.
We tackle the following two cases separately: the ranked case and the unranked
case. In the ranked case, we assume that the language is given by a ranked
TA such that the number of children is fixed for every symbol in Σ. For the
unranked case, the language is given by an unranked TA such that there is no
restriction on the number of children. Our approach to these problems is based
on the dynamic programming.

4.1 Ranked Case

We first establish the basis for our dynamic programming algorithm. For a tree t,
we define the cost of a tree c(t) to be the minimum cost of inserting all nodes
of the tree t. We denote the smallest cost among the costs of all trees in L(A)
by mintree(A) = min{c(t) | t ∈ L(A)}. Then, given a tree t and a ranked TA
A = (Σ,Q,F,Δ), we have the following equations for the basis:

1. ad(θ, θ) = 0,
2. ad(t[1 . . . i], θ) = ad(t[1 . . . i − 1], θ) + c(σ(i), λ),
3. ad(θ, q1 . . . qk) =

∑

1≤i≤k

mintree(A[qi]), where qi ∈ Q for 1 ≤ i ≤ k.

It is straightforward to verify that the first two equations hold: The first case
is when no edit operation is required and the second case is when we insert a node
in a hedge t[1 . . . i − 1] to transform into t[1 . . . i]. Notice that ad(θ, t[1 . . . i]) = i
if we assume unit cost for all edit-operations. For the third case, ad(q1 . . . qk, θ) is
the alignment distance between an empty tree and the smallest hedge accepted
by the sequence of states. Now we are ready to present a recursive formula of
the distance between a sequence of states and a subhedge.

132 Y.-S. Han and S.-K. Ko

Lemma 4. Given a tree t and a state q of a ranked TA A = (Σ,Q,F, δ), the
alignment distance ad(t, q) can be computed as follows:

ad(t, q) = min
1≤i1≤l;
1≤i2≤k;

q∈σδ(q1,...,qk)

⎧
⎪⎨

⎪⎩

ad(t, θ) + ad(ti1 , q) − ad(ti1 , θ),
ad(θ, q) + ad(t, qi2) − ad(θ, qi2),
ad(h[t1 . . . tl], q1 . . . qk) + c(root(tl) → σ),

(1)

where qn ∈ Q for 1 ≤ n ≤ k and t̂ = h[t1 . . . tl].

Proof. We prove the recurrence by considering an optimal alignment At,t′

between two trees t and t′, where t′ is a tree accepted by reaching the state q
in A. Especially, we consider the possible root node cases of the optimal align-
ment At,t′ between t and t′. There are three possible cases to consider:

Case 1: The root node of At,t′ is (root(t), λ). Then, the root node root(t′) of t′

is aligned with a descendant of t. Otherwise, At,t′ has a node (λ, root(t′)) and
we can always have a better alignment by replacing (root(t), λ) and (λ, root(t′))
with (root(t), root(t′)), which is considered in Case 3. Suppose that root(t′) is
aligned with a node in the ith subtree of t. Then the cost of the alignment can
be written as follows: min1≤i≤l{ad(t, θ) + ad(ti, t′) − ad(ti, θ)}.

Since t′ is accepted by reaching the state q in A, the first term in the recur-
rence captures this case.

Case 2: The optimal alignment At,t′ has (λ, root(t′)) as a root node. This case
is completely symmetric with Case 1 and described in the second term.

Case 3: The root node of At,t′ is (root(t), root(t′)). Since the root nodes of
two trees are aligned, it remains to compute an optimal alignment between
two ordered sequences of trees under the root nodes. This also implies that we
need to compute the alignment distance ad(h[t1 . . . tl], h[t′1 . . . t′k]) between two
subhedges obtained from t and t′ by removing the root nodes.

Now we define the alignment distance between two subhedges—two ordered
sequences of trees. Since we are considering the alignment distance between a
tree and a regular tree language, we use a sequence of states on the right-hand
side in the distance function.

Lemma 5. Given a subhedge h[t1 . . . tl] of t and a sequence q1, . . . , qk of states of
a ranked TA A = (Σ,Q,F, δ), we can compute ad(h[t1 . . . tl], q1 . . . qk) as follows:

ad(h[t1 . . . tl], q1 . . . qk) =

min
1≤i1≤l;
1≤i2≤k;

qk∈σδ(q
′
1,...,q′

j)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ad(h[t1 . . . tl], q1 . . . qk−1) + ad(θ, qk),
ad(h[t1 . . . tl−1], q1 . . . qk) + ad(tl, θ),
ad(f [t1 . . . tl−1], q1 . . . qi2−1) + ad(t̂l, qi2 . . . qk) + c(root(tl) → λ),
ad(h[t1 . . . ti1−1], q1 . . . qk−1)+ad(h[ti1 . . . tl], q′

1 . . . q′
j)+c(λ → σ),

ad(h[t1 . . . tl−1], q1 . . . qk−1) + ad(t̂l, q′
1 . . . q′

j) + c(root(tl) → σ),
(2)

Alignment Distance of Regular Tree Languages 133

where qn, q′
m ∈ Q for 1 ≤ n ≤ k and 1 ≤ m ≤ j.

Now we are ready to present an efficient algorithm for computing the align-
ment distance between a tree t and a regular tree language L(A) described by a
ranked TA A.

Theorem 6. Given a tree t and a ranked TA A = (Σ,Q,F, δ), we can compute
ad(t, L(A)) in O(mnk2) in the worst-case, where m = |t|, n = |A| and k =
deg(t) + max{r(σ) | σ ∈ Σ}.
Proof. Notice that we need to compute the alignment distance for each sub-
hedge t[l(i) . . . i − 1] of t and transition q ∈ σg(q1, . . . , ql) of A. Let mi be the
number of children of a node t[i] and denote the subhedge t[l(i) . . . i − 1] by
h[t1 . . . tmi

] for notational convenience.
Let us analyze the time complexity for computing ad(h[t1 . . . tmi

], q1 . . . ql),
which is the alignment distance between a sequence of states of length l and a
hedge that consists of mi trees. There are in total m2

i l +mil
2 values to compute

and computing each ad value takes O(minδ + l) time in the worst-case, where nδ

is the number of transitions of A. Since mi + l ≤ k, the time complexity required
to compute each ad value is bounded by O(n), where n is the size of A.

Hence, the total time complexity is bounded by

m∑

i=1

O((mil) · (mi + l) · n) ≤
m∑

i=1

O(mik
2n) ≤ O(mnk2).

Note that if both the degree of t and the rank of A are bounded by a constant,
the time complexity for computing ad(t, L(A)) is O(mn). ��

4.2 Unranked Case

We consider the case when we have an unranked TA for a regular tree language
of unranked trees. Contrary to the ranked TAs where we consider a sequence of
states in each bottom-up computation, we instead consider a horizontal language
that contains a set of sequences of states. Let A = (Σ,Q,F, δ) be an unranked
TA, q ∈ Q and σ ∈ Σ. We define the alignment distance between a horizontal
language δ(q, σ) and a subhedge h[t1 . . . tl] of t as follows:

ad(h[t1 . . . tl], δ(q, σ)) = min{δ(h[t1 . . . tl], w) | w ∈ δ(q, σ)}.

Note that we use the definition for the alignment distance between a sequence
of states and a subhedge given in Lemma 5.

We also define the following notation that is essential for computing the
alignment distance ad(h[t1 . . . tl], δ(q, σ)) between a subhedge and a horizontal
language. Let HA

q,σ = (Sq,σ, Q, sq,σ, Fq,σ, γq,σ) be a horizontal FA that accepts
δ(q, σ), namely, L(HA

q,σ) = δ(q, σ). We define the alignment distance between a
subhedge h[t1 . . . tl] and two horizontal states s1, s2 ∈ Sq,σ as follows:

ad(h[t1 . . . tl], [s1, s2]) = min{ad(h[t1 . . . tl], w) | w ∈ L(HA
q,σ[s1, s2])}.

134 Y.-S. Han and S.-K. Ko

Let HA
q,σ = (Sq,σ, Q, sq,σ, Fq,σ, γq,σ) be a horizontal FA. Then, the following

holds: ad(h[t1 . . . tl], δ(q, σ)) = min{ad(h[t1 . . . tl], [sq,σ, fq,σ]) | fq,σ ∈ Fq,σ}. Now
we are ready to establish the alignment distance between a tree t and a state q
of an unranked TA A as follows:

Lemma 7. Given a tree t and a state q of an unranked TA A = (Σ,Q,F, δ),
the alignment distance ad(t, q) can be computed as follows:

ad(t, q) = min
w∈δ(q,σ);
1≤i1≤l;

1≤i2≤|w|;

⎧
⎪⎨

⎪⎩

ad(t, θ) + ad(ti1 , q) − ad(ti1 , θ),
ad(θ, q) + ad(t, wi2) − ad(ti1 , wi2),
ad(h[t1 . . . tl], w) + c(root(tl) → σ),

(3)

where t̂ = h[t1 . . . tl].

We can see that the computation of Eq. (3) requires the computation of the
alignment distance between a subhedge of t and a horizontal language δ(q, σ).

Lemma 8. Let A = (Σ,Q,F, δ) be an unranked TA and HA
q,σ = (Sq,σ, Q, sq,σ,

Fq,σ, γq,σ) be a horizontal FA of A associated with a state q ∈ Q and σ ∈ Σ.
Given a subhedge h[t1 . . . tl] of t and two horizontal states s1, s2 of HA

q,σ, the
alignment distance ad(h[t1 . . . tl], [s1, s2]) can be computed as follows:

ad(h[t1 . . . tl], [s1, s2]) =

min
1≤i≤l;

w∈δ(q′,σ);
s2∈γq,σ(s

′,q′)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ad(h[t1 . . . tl], [s1, s′]) + ad(θ, q′),
ad(h[t1 . . . tl−1], [s1, s2]) + ad(tl, θ),
ad(f [t1 . . . tl−1], [s1, r]) + ad(t̂l, [r, s2]) + c(root(tl) → λ),
ad(h[t1 . . . ti−1], [s1, s′]) + ad(h[ti . . . tl], w) + c(λ → σ),
ad(h[t1 . . . tl−1], [s1, s′]) + ad(t̂l, w) + c(root(tl) → σ),

where s′, r ∈ Sq,σ and q′ ∈ Q.

Now we describe how we compute the alignment distance for the unranked
case. We use the weighted directed graph for computing ad(h[t1 . . . tl], δ(q, σ))
between a hedge h[t1 . . . tl] and a horizontal language δ(q, σ).

Let HA
q,σ = (Sq,σ, Q, sq,σ, Fq,σ, γq,σ) be a horizontal FA recognizing δ(q, σ).

We construct a weighted directed graph W(h[t1 . . . tl],HA
q,σ) = (V,E) where

V = Sq,σ × {0, 1, . . . , l} is a set of vertices and E ⊆ V × N0 × V is a set of
weighted directed edges. For each transition s2 ∈ γq,σ(s1, q) of HA

q,σ, we define
E to contain the following edges:

– ((s1, i), ad(θ, q), (s2, i)) for 0 ≤ i ≤ l,
– ((s1, i), ad(h[ti+1 . . . tj], δ(q, σ)) + c(λ → σ), (s2, j)) for 0 ≤ i < j ≤ l, and
– ((s1, i), ad(t̂i+1, δ(q, σ)) + c(root(ti+1) → σ), (s2, i + 1)) for 0 ≤ i ≤ l − 1.

For each state s ∈ Sq,σ, we also define E to contain the following edges:

– ((s, i), ad(ti+1, θ), (s, i + 1)) for 0 ≤ i ≤ l − 1.

Alignment Distance of Regular Tree Languages 135

Finally, for each pair of states s1, s2 ∈ Sq,σ, we add the following edges to E:

– ((s1, i), ad(t̂i+1, [s1, s2]) + c(root(ti+1) → λ), (s2, i + 1)) for 0 ≤ i ≤ l − 1.

By the construction, we know that the cost of the minimum cost path
from (s1, i) to (s2, j), where 1 ≤ i ≤ j ≤ l, in W(h[t1 . . . tl],HA

q,σ) implies
ad(h[ti+1 . . . tj], [s1, s2]). Now we are ready to present a polynomial time algo-
rithm in the unranked case.

Theorem 9. Given a tree t and an unranked TA A = (Σ,Q,F, δ), we can
compute ad(t, L(A)) in O(mn2k2) in the worst-case, where m = |t|, n = |A|,
and k = deg(t).

Proof. We can compute the alignment distance between a horizontal language
and a hedge by constructing a weighted directed graph and computing the min-
imum cost path from (sq,σ, 0) to (fq,σ, l) where fq,σ ∈ Fq,σ.

Given that the size of HA
q,σ has x states and y transitions, the construction

of the weighted directed graph W(h[t1 . . . tl],HA
q,σ) yields O(xl) vertices and

O(x2l2) edges. Note that Dijkstra’s algorithm based on a min-priority queue
for finding the minimum cost path runs in O(|V | log |V | + |E|) time [5] for a
graph G = (V,E) where V is a set of vertices and E is a set of edges. Therefore,
we can find the minimum cost path in W(h[t1 . . . tl],HA

q,σ) in O(x2l2) time. Since
we construct W(h[ti . . . tl],HA

q,σ) for all q ∈ Q, 1 ≤ i ≤ l and compute the
minimum cost path, the total time complexity is upper bounded by

m∑

i=1

∑

q∈Q

O(mi · x2m2
i) ≤

m∑

i=1

∑

q∈Q

O(mi · x2k2) ≤
∑

q∈Q

O(mx2k2) ≤ O(mn2k2).

Note that if the degree of t is bounded by a constant, the time complexity is
upper bounded by O(mn2). ��

5 Unordered Alignment Distance Problem

We study the unordered version of the alignment distance problem. The main
difference from the ordered case is that here we treat sequences of trees (resp.,
sequences of states) as sets of trees (resp., multisets of states) because we do not
care about the order of nodes.

Lemma 10. Given a set T1,l of subtrees of t and a multiset Q1,k of states of
a ranked TA A = (Σ,Q,F, δ), the unordered alignment distance uad(T1,l, Q1,k)
can be computed as follows:

uad(T1,l, Q1,k) =

min
1≤i1≤l;
1≤i2≤k;

qi2∈σδ(q
′
1,...,q′

j)

⎧
⎪⎨

⎪⎩

uad(T1,l \ {ti1}, Q1,k \ Q′) + uad(t̂i1 , Q
′) + c(root(ti1) → λ),

uad(T1,l \ T,Q1,k \ {qi2}) + uad(T, P) + c(λ → σ),
uad(T1,l \ {ti1}, Q1,k \ {qi2}) + uad(t̂i1 , P) + c(root(ti1) → σ),

where T ⊆ T1,l, Q
′ ⊆ Q1,k, and P = {q′

1, . . . , q
′
j}.

136 Y.-S. Han and S.-K. Ko

Proof. This lemma is an unordered extension of Lemma 5. The main difference
between the ordered and unordered versions is that we treat sequences of subtrees
(resp., sequences of states) as sets of trees (resp., multisets of states). Notice
that a multiset (or bag) is a generalization of a set in which multiple instances
of elements are allowed. Consider a transition q ∈ σδ(q1, . . . , qk) of A. We cannot
convert the sequence q1, . . . , qk of states into the set {q1, . . . , qk} as we may have
multiple instances of a state. Therefore, we replace a sequence q1, . . . , qk of states
by a multiset {q1, . . . , qk} of states and a hedge h[t1 . . . tl] by a set {t1, . . . , tl} of
trees. For the sake of simplicity, we denote {q1, . . . , qk} by Q1,k and {t1, . . . , tl}
by T1,l.

For sequences of trees, it is enough to use sets as there is no chance of
containing multiple instances of the same subtree. We also mention that the
hedge t̂i1 used in the equation also denotes the set of subtrees of ti1 , not the
sequence of subtrees of ti1 . ��

Based on Lemma 10, we design an algorithm that computes the unordered
alignment distance uad(T1,l, Q1,k) between a set of subtrees of t and a multiset
of states.

Theorem 11. Given a tree t and a ranked TA A = (Σ,Q,F, δ), we can compute
uad(t, L(A)) in O(mn2k) in the worst-case, where m = |t|, n = |A| and k =
deg(t) + max{r(σ) | σ ∈ Σ}.
Proof. Note that the algorithm for computing the unordered alignment distance
follows almost the same procedure except that we use the recurrence given in
Lemma 10 instead of Lemma 5. This gives rise to the following time complexity:

m∑

i=1

O(min · 2mi+l) ≤
m∑

i=1

O(min2k) ≤ O(mn2k).

Note that the time complexity remains polynomial if we fix k to be a constant. ��
Given two trees t and t′, it is known that computing uad(t, t′) is MAX SNP-

hard [7] if the degree of one of the two trees is not bounded by a constant. This
means that unless P = NP there is no polynomial-time approximation scheme
for the problem [1]. We can immediately obtain the following results.

Corollary 12. Let t be a tree and A be a ranked TA. Then, we can compute
the unordered alignment distance uad(t, L(A)) in O(mn) time if deg(t) = k for
some k < ∞, otherwise, the problem is MAX SNP-hard.

Corollary 13. Let t be a tree and A be an unranked TA. Then, the problem of
computing the unordered alignment distance uad(t, L(A)) is MAX SNP-hard.

Alignment Distance of Regular Tree Languages 137

References

1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

2. Canfield, E.R., Xing, G.: Approximate matching of XML document with regular
hedge grammar. Int. J. Comput. Math. 82(10), 1191–1198 (2005)

3. Comon, H., Dauchet, M., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.:
Tree Automata Techniques and Applications (2007)

4. Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition
algorithm for tree edit distance. ACM Trans. Algorithms 6(1), 2:1–2:19 (2009)

5. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34(3), 596–615 (1987)

6. Höchsmann, M., Töller, T., Giegerich, R., Kurtz, S.: Local similarity in RNA sec-
ondary structures. In: Proceedings of the 2nd IEEE Computer Society Conference
on Bioinformatics, pp. 159–168 (2003)

7. Jiang, T., Wang, L., Zhang, K.: Alignment of trees – an alternative to tree edit.
Theoret. Comput. Sci. 143(1), 137–148 (1995)

8. Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In: Pro-
ceedings of the 6th Annual European Symposium on Algorithms, pp. 91–102 (1998)

9. Kuboyama, T., Shin, K., Miyahara, T., Yasuda, H.: A theoretical analysis of align-
ment and edit problems for trees. In: Proceedings of the 9th Italian Conference on
Theoretical Computer Science, pp. 323–337 (2005)

10. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966)

11. López, D., España, S.: Error-correcting tree language inference. Pattern Recogn.
Lett. 23(1–3), 1–12 (2002)

12. López, D., Sempere, J.M., Garćıa, P.: Error correcting analysis for tree languages.
Int. J. Pattern Recogn. Artif. Intell. 14(03), 357–368 (2000)

13. Lu, C.L., Su, Z.-Y., Tang, C.Y.: A new measure of edit distance between labeled
trees. In: Proceedings of the 7th Annual International Conference on Computing
and Combinatorics, pp. 338–348 (2001)

14. Nierman, A., Jagadish, H.V.: Evaluating structural similarity in XML documents.
In: Proceedings of the 5th International Workshop on the Web and Databases, pp.
61–66 (2002)

15. Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26(3), 422–433 (1979)
16. Voß, B., Giegerich, R., Rehmsmeier, M.: Complete probabilistic analysis of RNA

shapes. BMC Biol. 4(1), 1–23 (2006)
17. Xing, G.: Approximate matching of XML documents with schemata using tree

alignment. In: Proceedings of the 2014 ACM Southeast Regional Conference, pp.
43:1–43:4 (2014)

18. Zhang, K.: A constrained edit distance between unordered labeled trees. Algorith-
mica 15(3), 205–222 (1996)

19. Zhang, K., Jiang, T.: Some MAX SNP-hard results concerning unordered labeled
trees. Inf. Process. Lett. 49(5), 249–254 (1994)

20. Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered
labeled trees. Inf. Process. Lett. 42(3), 133–139 (1992)

	Alignment Distance of Regular Tree Languages
	1 Introduction
	2 Preliminaries
	3 Distance Measures for Comparing Trees
	4 Alignment Distance Problem
	4.1 Ranked Case
	4.2 Unranked Case

	5 Unordered Alignment Distance Problem
	References

