
A Simple Method for Building Bimachines
from Functional Finite-State Transducers

Stefan Gerdjikov1,2, Stoyan Mihov2(B), and Klaus U. Schulz3

1 Faculty of Mathematics and Informatics, Sofia University,
5, James Borchier Blvd., 1164 Sofia, Bulgaria

stefangerdzhikov@fmi.uni-sofia.bg
2 Institute of Information and Communication Technologies,

Bulgarian Academy of Sciences, 25A, Acad. G. Bonchev Street, 1113 Sofia, Bulgaria
stoyan@lml.bas.bg

3 Centrum für Informations-und Sprachverarbeitung (CIS),
Ludwig-Maximilians-Universität München,
Oettingenstr. 67, 80538 München, Germany

schulz@cis.uni-muenchen.de

Abstract. The standard construction of a bimachine from a functional
transducer involves a preparation step for converting the transducer into
an unambiguous transducer (A transducer is unambiguous if there exists
at most one successful path for each label.). The conversion involves a
specialized determinization. We introduce a new construction principle
where the transducer is directly translated into a bimachine. For any
input word accepted by the transducer the bimachine exactly imitates
one successful path of the transducer. For some classes of transducers
the new construction can build a bimachine with an exponentially lower
number of states compared to the standard construction. We first present
a simple and generic variant of the construction. A second specialized
version leads to better complexity bounds in terms of the size of the
bimachine.

Keywords: Bimachines · Transducers · Rational functions

1 Introduction

Finite-state transducers are used for a large spectrum of translation tasks in
text analysis and natural language processing [4–7]. Many practical translation
tasks are functional in the sense that a given input needs to be transformed into
a unique output. While (non-deterministic versions of) finite-state transducers
can model arbitrary “regular” (s.b.) functions between strings, many regular
functions cannot be recognized by deterministic finite-state transducers. In con-
trast, bimachines as a more powerful type of finite-state device enable a fully
deterministic processing of arbitrary regular string functions [11].

c© Springer International Publishing AG 2017
A. Carayol and C. Nicaud (Eds.): CIAA 2017, LNCS 10329, pp. 113–125, 2017.
DOI: 10.1007/978-3-319-60134-2 10

114 S. Gerdjikov et al.

For a given regular string function f it is often simple to find a non-deter-
ministic finite-state transducer that represents f . Since a deterministic process-
ing via bimachines is more efficient, there is an obvious interest in general meth-
ods for converting functional finite-state transducers into bimachines or equiv-
alent devices [10,12]. The classical algorithm, described in [7], starts with a
preparation step for converting the transducer into an unambiguous transducer.
The conversion requires that the source transducer is “pseudo-deterministic”.
Afterwards it uses a specialized determinization for discarding unwanted paths.
Essentially, only the least accepting paths under some lexicographical order are
left. This construction can be applied to arbitrary output monoids after intro-
ducing a linear order on the outputs of single transitions.

Here we introduce a new single-step method that can be applied to any
functional real-time transducer with output (codomain) in an arbitrary monoid.
States of the right deterministic automaton of the bimachine are sets R of active
states obtained when using inversed transitions of the functional input trans-
ducer T , starting from final states. States of the left deterministic automaton
of the bimachine are sets L of active states of T that are enhanced by a special
function. Using this enhancement the bimachine satisfies the “path reconstruc-
tion” principle: (i) At each step, the bimachine output m represents the output
of a single transducer transition step 〈q, 〈a,m〉, q′〉 for some q ∈ L ∩ R. (ii) for
any input w: the sequence of bimachine outputs w is given by the sequence of
outputs of T for w on a specific path.

After formal preliminaries in Sect. 2 the new construction is described in
Sect. 3. We start with a generic and flexible version that is conceptually sim-
ple. Afterwards a specialized version is added which leads to better complexity
bounds for the number of states of the left and right deterministic automata
of the bimachine. Correctness proofs are given. For the sake of comparison we
sketch the classical bimachine construction in Sect. 4. A class of examples is given
where the new construction leads to an exponentially lower number of states. A
conclusion is presented in Sect. 5.

2 Formal Preliminaries

We assume that the reader is familiar with the basic notions of words over an
alphabet and monoids (see e.g. [2]). The set Σ∗ with concatenation as monoid
operation and the empty word ε as unit element is called the free monoid over
Σ. We list notions needed for the discussion of the paper. A monoidal finite-state
automaton is a tuple of the form A = 〈M, Q, I, F,Δ〉 where

– M = 〈M, ◦, e〉 is a monoid,
– Q is a finite set called the set of states,
– I ⊆ Q is the set of initial states,
– F ⊆ Q is the set of final states, and
– Δ ⊆ Q × M × Q is a finite set of transitions called the transition relation.

Building Bimachines from Functional Finite-State Transducers 115

A proper path in A is a finite sequence of k > 0 transitions, denoted

π = q0 →a1 q1 . . . →ak qk

where 〈qi−1, ai, qi〉 ∈ Δ for i = 1 . . . k. The monoid element w = a1 ◦ . . . ◦ ak is
called the label of π. A successful path is a path starting in an initial state and
ending in a final state.
The generalized transition relation Δ∗ is defined as the smallest subset of Q ×
M × Q with the following closure properties:

– for all q ∈ Q we have 〈q, e, q〉 ∈ Δ∗.
– For all q1, q2, q3 ∈ Q and w, a ∈ M : if 〈q1, w, q2〉 ∈ Δ∗ and 〈q2, a, q3〉 ∈ Δ,

then also 〈q1, w ◦ a, q3〉 ∈ Δ∗.

The monoidal language accepted (or recognized) by A is defined as L(A) :=
{w ∈ M | ∃p ∈ I ∃q ∈ F : 〈p,w, q〉 ∈ Δ∗}.
A monoidal finite-state automaton A is unambiguous iff for every element m ∈ M
there exists at most one successful path in A with label m.
A state q ∈ Q is accessible if q is the ending of a path of A starting from an
initial state. A state q ∈ Q is co-accessible if q is the starting of a path of A
ending in a final state. A monoidal finite-state automaton A is trimmed iff each
state q ∈ Q is accessible and co-accessible.
A deterministic finite-state automaton is a monoidal finite-state automaton over
the free monoid A = 〈Σ∗, Q, I, F,Δ〉, such that |I| = 1 and Δ is a graph of a
(partial) function with domain dom(Δ) ⊆ Q×Σ. In this case we identify Δ with
the function Δ : Q×Σ → Q that it represents. The reversed finite-state automa-
ton for A is Arev = 〈Σ∗, Q, F, I,Δrev〉, where Δrev = {〈q, arev, p〉 | 〈p, a, q〉 ∈ Δ}.

Definition 1. A monoidal finite-state automaton T over a monoid M is a
monoidal finite-state transducer iff M can be represented as the Cartesian prod-
uct of a free monoid Σ∗ with another monoid M′, i.e. M = Σ∗ × M′. For a
monoidal finite-state transducer T = 〈Σ∗ × M, Q, I, F,Δ〉 the underlying finite-
state automaton is the monoidal finite-state automaton AT = 〈Σ∗, Q, I, F,ΔΣ〉
where ΔΣ = {〈p, a, q〉 | ∃m ∈ M(〈p, 〈a,m〉, q〉 ∈ Δ}. A monoidal finite-state
transducer T = 〈Σ∗ × M′, Q, I, F,Δ〉 is said to be real-time if Δ ⊆ Q × (Σ ×
M ′) × Q.

Let M be a monoid. A set L ⊆ M is rational iff it is accepted by a monoidal
finite-state automaton. If M is a Cartesian product, then rational sets are rela-
tions. A rational function is a rational set that is a function.

Definition 2. A bimachine is a tuple B = 〈M,AL,AR, ψ〉, where:

– AL = 〈Σ,L, sL, L, δL〉 and AR = 〈Σ,R, sR, R, δR〉 are deterministic finite-
state automata called the left and right automaton of the bimachine;

– M = 〈M, ◦, e〉 is the output monoid and ψ : (L × Σ × R) → M is a partial
function called the output function.

116 S. Gerdjikov et al.

Note that all states of AL and AL are final. The function ψ is naturally extended
to the generalized output function ψ∗ as follows:

– ψ∗(l, ε, r) = e for all l ∈ L, r ∈ R;
– ψ∗(l, tσ, r) = ψ∗(l, t, δR(r, σ))◦ψ(δ∗

L(l, t), σ, r) for l ∈ L, r ∈ R, t ∈ Σ∗, σ ∈ Σ.

The function represented by the bimachine is

OB : Σ∗ → M : t
→ ψ∗(sL, t, sR).

If OB(t) = t′ we say that the bimachine B translates t into t′.

Note that for any states p, q ∈ Q of a monoidal finite-state transducer T =
〈Σ∗ × M, Q, I, F,Δ〉 and word w ∈ Σ∗ holds ∃m ∈ M : 〈p, 〈w,m〉, q〉 ∈ Δ∗ ⇐⇒
〈p,w, q〉 ∈ Δ∗

Σ , where ΔΣ is the transition relation of its underlying automaton.
If Arev = 〈Σ∗, Q, F, I,Δrev〉 is the reversed finite-state automaton of A =

〈Σ∗, Q, I, F,Δ〉, then for any states q, p ∈ Q and any word w ∈ Σ∗ we have
〈p,w, q〉 ∈ Δ∗ ⇐⇒ 〈q, wrev, p〉 ∈ Δrev∗.

After applying the power-set construction to transform a nondeterministic
automaton A = 〈Σ∗, Q, I, F,Δ〉 into an equivalent deterministic one AD =
〈Σ∗, QD, {I}, FD, δD〉 with states QD ⊆ 2Q the following holds:

∀w ∈ Σ∗ ∀P ∈ QD : δ∗
D(P,w) = {q | ∃p ∈ P : 〈p,w, q〉 ∈ Δ∗}.

Proposition 1. (Cf. e.g. [7]) Let A = 〈Σ∗ × M, Q, I, F,Δ〉 be a trimmed mo-
noidal transducer. If A does not contain any cycle of the form 〈p, 〈ε,m〉, p〉 ∈ Δ∗

with m �= e, then A can be effectively transformed into a real-time transducer A′

such that L(A)∩(Σ+×M) = L(A′)∩(Σ+×M). Furthermore, we can effectively
compute the set {m | 〈ε,m〉 ∈ L(A)}.

3 New Bimachine Construction

From now on we assume that T = 〈Σ∗ × M, Q, I, F,Δ〉 is any trimmed
real-time functional monoidal transducer. We assume that 〈ε, e〉 ∈ L(T). Let
AT = 〈Σ∗, Q, I, F,ΔΣ〉 be the underlying finite-state automaton of T and
Arev

T = 〈Σ∗, Q, F, I,Δrev
Σ 〉 be the reverse finite-state automaton of AT . Let

AT D = 〈Σ∗, 2Q, {I}, FD, δΣD〉 and Arev
T D = 〈Σ∗, 2Q, {F}, ID, δrev

Σ D〉 be the
deterministic finite-state automata for AT and Arev

T , respectively.
For each set of states P ⊆ Q and w ∈ Σ∗, we define the set of w-successors

and w-predecessors of P as

Succw(P) := δΣ
∗
D(P,w) = {q ∈ Q | ∃p ∈ P,m ∈ M : 〈p, 〈w,m〉, q〉 ∈ Δ∗}

Predw(P) := δrev
Σ

∗
D(P,w) = {q ∈ Q | ∃p ∈ P,m ∈ M : 〈q, 〈wrev,m〉, p〉 ∈ Δ∗}.

Note that the first (second) clause is based on a left-to-right (right-to-left) read-
ing order.

Building Bimachines from Functional Finite-State Transducers 117

Lemma 1 (Butterfly Lemma). Let T be as above. Let u, v ∈ Σ∗, a ∈ Σ, let
L := Succu(I), L′ := Succua(I), R′ := Predv(F) and R := Predav(F). Then

1. for all q ∈ L∩R there is q′ ∈ L′ ∩R′ and m ∈ M such that 〈q, 〈a,m〉, q′〉 ∈ Δ,
2. for all q′ ∈ L′ ∩R′ there is q ∈ L∩R and m ∈ M such that 〈q, 〈a,m〉, q′〉 ∈ Δ,
3. L ∩ R �= ∅ iff L′ ∩ R′ �= ∅.

Proof. As to 1, let q ∈ L ∩ R. Since R = Preda(R′) there exists a transition of
the form 〈q, 〈a,m〉, q′〉 ∈ Δ such that q′ ∈ R. Since q ∈ L we have q′ ∈ L′. 2
follows by a symmetric argument. 3 directly follows from 1 and 2. ��

3.1 Generic Construction

We now show how to build an equivalent bimachine B = 〈M,AL,AR, ψ〉, given
the transducer T as input. First, we construct the right automaton AR apply-
ing a determinization procedure to the reversed underlying automaton of T .
Let

AR = Arev
T D = 〈Σ∗, QR, sR, FR, δR〉.

By definition sR = {F} and δR(R, a) = δrev
Σ D(R, a) = Preda(R) for R ∈ QR and

a ∈ Σ. The idea for the left automaton is to use the accessible sets in AT D

Q′
L := {δΣ

∗
D(I, w) |w ∈ Σ∗} = {Succw(I) |w ∈ Σ∗}

as a “core” part of the states, but to enrich this core part by additional infor-
mation that enables the reconstruction of successful paths in T . Let L ∈ Q′

L.
An L-centered state selector function is a partial function φ : QR → Q such that
the following conditions hold for any state of the right automaton R ∈ QR:

1. φ(R) is defined iff R ∩ L �= ∅ and
2. if φ(R) is defined, then φ(R) ∈ R ∩ L.

A state of the left automaton AL = 〈Σ,QL, sL, QL, δL〉 is a pair 〈L, φ〉 where
L ∈ Q′

L and φ is an L-centered state selector function. The following induction
defines sL, the set of states QL, and the transition function δL.

– sL := 〈I, φ0〉 where φ0(R) :=
{

any element of R ∩ I if R ∩ I �= ∅
undefined otherwise.

– For 〈L, φ〉 ∈ QL and a ∈ Σ we define δL(〈L, φ〉, a) := 〈L′, φ′〉 where
• L′ := Succa(L).

• φ′(R′) :=

⎧⎨
⎩

any element of {q′ | ∃m ∈ M : 〈q, 〈a,m〉, q′〉 ∈ Δ}
if q = φ(Preda(R′)) is defined

undefined otherwise.

In the above notions we show that

1. for each state 〈L, φ〉 always φ is an L-centered state selection function, and
2. if φ(Preda(R′)) is defined, then q′ = φ′(R′) is also defined.

118 S. Gerdjikov et al.

The proof is by induction. For sL := 〈I, φ0〉 clearly φ0 is defined as an I-centered
state selection function. For the induction step, given state 〈L, φ〉 assume that
φ is an L-centered state selection function. Let R′ ∈ QR and R := Preda(R′).
First, if q = φ(R) is defined, then (φ is L-centered) L ∩ R �= ∅ and q ∈ L ∩ R.
By the Butterfly Lemma we have that L′ ∩ R′ �= ∅ and further there exists a
transition 〈q, 〈a,m〉, q′〉 ∈ Δ such that q′ ∈ L′ ∩ R′. Therefore q′ = φ′(R′) is
defined and φ′(R′) ∈ L′ ∩ R′. On the other hand, if φ(R) is undefined, then (φ
is L-centered) L ∩ R = ∅ and (Butterfly Lemma) L′ ∩ R′ = ∅. It follows that φ′

is L′-centered.
It remains to define the output function ψ of the bimachine. Given a pair

of states 〈L, φ〉 and R′ of the left and right automaton and a ∈ Σ, let 〈L′, φ′〉 :=
δL(〈L, φ〉, a) and R := Preda(R′) = δR(R′, a). Then

ψ(〈L, φ〉, a, R′) :=
{

any element of {m | 〈φ(R), 〈a,m〉, φ′(R′)〉 ∈ Δ} if !φ(R)
undefined otherwise

(We have shown above that there always exists a transition of the above form.)

Correctness. We now show that the function defined by the bimachine B =
〈AL,AR, ψ〉 coincides with the language of the transducer T .

Theorem 1. Let u = a1 . . . ak ∈ dom(T). For i ∈ {0, 1, . . . , k} let 〈Li, φi〉 :=
δ∗
L(sL, a1 . . . ai) and Ri := δ∗

R(sR, ak, . . . , ai+1). Then for any i ≤ k the following
hold:

1. qi := φi(Ri) is defined.
2. mi+1 := ψ(Li, ai+1, Ri+1) is defined and 〈qi, 〈ai+1,mi+1〉, qi+1〉 ∈ Δ.

Furthermore OB = L(T).

Proof. Let ui = a1 . . . ai and vi = ai+1 . . . ak. Then we have that Li = Succui
(I)

and Ri = Predvi
(F). Since uivi = u ∈ dom(T) it follows that Li ∩ Ri �= ∅.

Thus, since φi is Li-centered we deduce that qi = φi(Ri) is defined. Further,
since qi+1 = φi+1(Ri+1) is well-defined it follows that there is a transition
〈qi, 〈ai+1,mi+1〉, qi+1〉 ∈ Δ. As a consequence we obtain

〈q0, 〈u,m1 . . . mk〉, qk〉 ∈ Δ∗.

Since q0 = φ0(R0) ∈ L0 = I and qk = φk(Rk) ∈ Rk = F we have 〈u,m1 . . . mk〉 ∈
L(T). Furthermore in this case OB(u) = m1 . . . mk = L(T)(u). This proves that
if u ∈ dom(T), then u ∈ dom(B) and L(T)(u) = OB(u).

Finally, if u �∈ dom(T), then R0 ∩ I = ∅ and therefore φ0(R0) is not defined.
In particular, OB(u) is not defined. Hence both functions have the same domain
and coincide.

Remark 1. The construction can be applied to a non-functional transducer T
and in this case for the output function of the bimachine we have OB ⊆ L(T).

Applying the standard conversion of a bimachine to transducer we obtain the
following corollary.

Building Bimachines from Functional Finite-State Transducers 119

Corollary 1. For any functional monoidal finite-state transducer T there exists
an unambiguous monoidal finite-state transducer T ′ such that L(T) = L(T ′).

Proof. After constructing the bimachine B we define the monoidal finite-state
transducer T ′ = 〈Σ∗ × M, QL × QR, {sL} × QR, QL × {sR},Δ′〉, where

Δ := {〈〈l, r〉, 〈a,m〉, 〈l′, r′〉〉 | l′ = δL(l, a), r = δR(r′, a),m = ψ(l, a, r′)}.

It can be shown that L(T) = L(T ′).

3.2 Complexity Analysis and Specialized Construction

When using the generic construction presented above we obtain the bound
|QR| ≤ |2Q| for the number of states of the right automaton AR. The num-
ber of (partial) functions mapping QR to Q is (|Q| + 1)|QR|. Hence the number
of states of AL satisfies

|QL| ≤ 2|Q|(|Q| + 1)|QR| ≤ 2|Q|(|Q| + 1)2
|Q|

= 2|Q|+2|Q| log(|Q|+1).

A characteristics of the above generic construction is the arbitrariness of the
selection of a state q′ in the second clause of the inductive definition of the
states of the left automaton. Since each new state selection function introduced
during the construction produces its own swarm of followers the question arises
if a more principled approach to select q′ helps to avoid any unnecessary blow-up
and to reduce the upper bound on the number of states of AL.

To this end we apply the idea to compare paths of transducers using the
lexicographic ordering. It has been successfully used in different uniformization
problems related to transducers [3,8,9,12]. In the context of bimachines, we use
the idea to specialize the generic selection mechanism described in the previous
section.

First, we define the states of the left automaton AL as pairs p = 〈L,<p〉,
see also Algorithm 1. As before, the left component L is always an element
of Q′

L := {Succw(I) | w ∈ Σ∗}. The second component <p is a strict linear
order on L. The ordering <p induces a canonical state selector function φ<p

(R):
if L ∩ R �= ∅, then φ<p

(R) is defined as the <p-minimal element of L ∩ R.
Otherwise φ<p

(R) is undefined. Note that in this way state selector functions
are always L-centered. Still, in order to follow this line, we need a method for
defining the a-successor q = 〈L′, <q〉 of a state p = 〈L,<p〉 in such a way that the
<q-minimal element of L′ ∩R′ always represents a state q′ with 〈q, 〈a, .〉, q′〉 ∈ Δ.

Given 〈L,<p〉 and a state r′ ∈ L′ := Succa(L) the set of a-predecessors of r′ in
L is defined as Preda,L(r′) := L∩Preda({r′}). Note that, by the definition of L′,
each set Preda,L(r′) where r′ ∈ L′ is non-empty. The <p-minimal a-predecessor
of r′ in L, denoted min preda,L(r′), is the minimal element of Preda,L(r′) with
respect to the ordering <p.

We define the initial state, sL, the set of states, QL, and the new transition
function, δL, for the new definition of the left automaton, AL, as follows:

120 S. Gerdjikov et al.

Algorithm 1. Direct construction of a bimachine. SeqTrans computes the tran-
sition of the left automaton; SelectMinimal determines the least element in the
left state that is an element of the right state. Out computes the output produced
by a left state, input character, and a right state.

Project(Δ)
@1 return{〈p, a, q〉|∃m〈p, 〈a, m〉, q〉 ∈ Δ}

Reverse(Δ)
@1 return {〈q, a, p〉 | 〈p, a, q〉 ∈ Δ}

SetTrans(Δ, P, a)
@1 return {q | ∃p ∈ P (〈p, a, q〉 ∈ Δ)}

SeqTrans(Δ, P, a)
@1 S ← 〈〉; i ← 0
@2 for j = 0 to |P | − 1 do
@3 for 〈P [j], a, q〉 ∈ Δ do
@4 if q �∈ S[0..i − 1] then
@5 S[i] ← q
@6 i ← i + 1
@7 fi
@8 return S

DetGeneric(A, CmpTrans, i state)
@1 〈Σ, Q, I, F, Δ〉 ← A
@2 Q

(−1)
D ← ∅; Q

(0)
D ← {i state}

@3 δD ← ∅; i ← 0;

@3 while Q
(i)
D �= Q

(i−1)
D do

@4 Q
(i+1)
D ← Q

(i)
D

@5 for P ∈ Q
(i)
D \ Q

(i−1)
D do

@6 for a ∈ Σ do
@7 δD(P, a) ← CmpTrans(Δ, P, a)

@8 Q
(i+1)
D ← Q

(i+1)
D ∪ {δD(P, a)}

@9 i ← i + 1
@10 return 〈Σ, Q

(i)
D , {I}, Q

(i)
D , δD〉

SelectMinimal(L, R)
@1 for i = 0 to |L| − 1 do
@2 if L[i] ∈ R then
@3 return L[i]
@4 fi
@5 done
@6 return ⊥

Out(L, δL, a, R, δR, Δ)
@1 p ← SelectMinimal(L, δR(R, a))
@2 q ← SelectMinimal(δL(L, a), R)
@3 if p = ⊥ or q = ⊥ then
@4 return ⊥
@5 else
@6 let 〈p, 〈a, m〉, q〉 ∈ Δ
@7 return m

ComputeBimachine(T)
@1 〈Σ × M, Q, I, F, Δ〉 ← T
@2 ΔΣ ← Project(Δ)
@3 A ← 〈Σ, Q, I, F, ΔΣ〉
@4 Ar ← 〈Σ, Q, F, I, Reverse(ΔΣ)〉
@5 AR ← DetGeneric(Ar, SetTrans, F)
@6 I ′ ← sequence of I
@6 AL ← DetGeneric(A, SeqTrans, I ′)
@7 〈Σ, QL, sL, QL, δL〉 ← AL

@8 〈Σ, QR, sR, QR, δR〉 ← AR

@9 for 〈L, a, R〉 ∈ QL × Σ × QR do
@10 ψ(L, a, R) ← Out(L, δL, a, R, δR, Δ)
@11 return 〈M, AL, AR, ψ〉

– sL := 〈I,<0〉 where <0 is any fixed linear order of I.
– For 〈L,<〉 ∈ QL and a ∈ Σ we define δL(〈L,<〉, a) := (L′, <′) where L′ :=

Succa(L) and <′ is any linear order on L′ satisfying the condition

∀p′, r′ ∈ L′ : p′ ≤′ r′ ⇒ min preda,L(p′) ≤ min preda,L(r′).

A linear order <′ of this form is obtained by starting with the elements of L′

that have the <-minimal element qmin of L as their <-minimal a-predecessor (the
ordering between these elements of L′ is arbitrary). We then continue with the
elements of L′ that have the <-minimal element of L\{qmin} as their <-minimal
a-predecessor, etc.

The following lemma shows that the new construction is a specialized version
of the former construction described above.

Building Bimachines from Functional Finite-State Transducers 121

Lemma 2. Let (L,<) and (L′, <′) be as above. Let φ< and φ<′ denote the
canonical state selector functions corresponding to < and <′, respectively. Let
R′ ∈ QR and R := Preda(R′). Then φ<′(R′) is defined iff φ<(R) is defined.
Furthermore, if q = φ<(R) and q′ = φ′(R′) are defined, then 〈q, 〈a,m〉, q′〉 ∈ Δ
for some m ∈ M .

Proof. The Butterfly Lemma shows that

φ<(R) is defined
def⇐⇒ L ∩ R �= ∅ Butterfly⇐⇒

Lemma
L′ ∩ R′ �= ∅ def⇐⇒ φ<′(R′) is defined

If φ<(R) and φ<′(R′) are defined, then q := φ<(R) is a <-minimal state of L∩R
and q′ := φ<′(R′) is a <′-minimal state of L′ ∩ R′. The Butterfly Lemma shows
that there exist p ∈ L ∩ R, m ∈ M , and a transition 〈p, 〈a,m〉, q′〉 ∈ Δ. Let
p0 be a <-minimal element of L ∩ R with this property. We claim that p0 = q.
The Butterfly Lemma shows that there exist p′ ∈ L′ ∩ R′ and m′ ∈ M with
〈q, 〈a,m′〉, p′〉 ∈ Δ. From the minimality of q′ we obtain q′ ≤′ p′, the definition
of ≤′ shows that p0 ≤ q. Minimality of q implies that in fact p0 = q. It follows
that there exists a transition 〈q, 〈a,m〉, q′〉 ∈ Δ.

Theorem 2. Given a functional real-time transducer T = 〈Σ,M, Q, I,Δ, F 〉
we can construct an equivalent bimachine B = 〈AL,AR, ψ〉 such that the number
of states of AL is O(|Q|!) and the number of states of AR is O(2|Q|).

Proof. Clearly, the number of states of AR is O(2|Q|). Let Seq(Q) denote the
set of linearly ordered subsets of Q. In the specialized construction, the states
of AL can be represented as elements of Seq(Q). We have

|Seq(Q)| =
|Q|∑
k=0

(
|Q|
k

)
k! =

|Q|∑
k=0

|Q|!
(|Q| − k)!

= 2|Q|! +
|Q|−2∑
k=0

|Q|!
(|Q| − k)!

.

Taking into account that (|Q| − k)! ≥ 2|Q|−k for k ≤ |Q| − 2 we obtain:

|Seq(Q)| = 2|Q|! +
|Q|−2∑
k=0

|Q|!
(|Q| − k)!

≤ 2|Q|! +
|Q|−2∑
k=0

|Q|!
2|Q|−k

≤ 3|Q|!

thus showing that |Q′
L| ≤ |Seq(Q)| ≤ 3|Q|!. ��

4 Remark on the Classical Bimachine Construction

The classical construction of bimachines [2] refers to the special case where
M = 〈Ω∗, ◦, ε〉 is the free monoid generated by an alphabet Ω. As described
in [7], but see also the proofs in [1,2,8], it departs from a pseudo-deterministic
transducer, i.e. a transducer T = 〈Σ × Ω∗, Q, I, F,Δ〉 that can be considered
as a deterministic finite-state automaton over the new alphabet Σ × Ω∗. This
means that I contains a single state i and Δ is a finite graph of a function
Q × (Σ × Ω∗) → Q.

122 S. Gerdjikov et al.

The next step is the core of the construction. The goal is to construct an
unambiguous transducer T ′ equivalent to T . This is achieved by specializing
the standard determinization construction for finite-state automata: the sets
generated by the determinization procedure are split into two parts, a single
guessed positive state – this is our positive hypothesis for the successful path to
be followed, and a set of negative states – these are the alternative hypotheses
that must all fail in order for our positive hypothesis to be confirmed. Formally,
the states in the resulting transducer are pairs 〈p,N〉 ∈ Q×2Q. The initial state
is i′ = 〈i, ∅〉. The algorithm inductively defines transitions in Δ′ and states in
Q′. Let ≺lex denote the lexicographic order on Σ∗. For a generated state 〈p,N〉
and each transition 〈p, 〈a, v〉, p′〉 ∈ Δ we obtain a transition

〈〈p,N〉, 〈a, v〉, 〈p′, N ′〉〉 ∈ Δ′, where
N ′ = Succa(N) ∪ {q | ∃v′ ≺lex v(〈p, 〈a, v′〉, q〉 ∈ Δ}.

The pair 〈p′, N ′〉 is added to Q′. Intuitively, this transition makes a guess about
the lexicographically smallest continuation of the output that can be followed
to a final state f ∈ F . Accordingly, all transitions that have the same input
character, a, but lexicographically smaller output, are implicitly assumed to
fail. To reflect this, we add those states to the set of negative hypotheses, N ′.
To maintain the previously accumulated negative hypotheses along the path to
〈p,N〉 the a-successors of N are added to N ′. Following these lines, the set of
final states of T ′ is defined as:

F ′ = {〈f,N〉 | f ∈ F and N ∩ F = ∅}.

Note, that 〈f,N〉 becomes final only if f ∈ F and there is no final state n ∈ N
reached with smaller output on a parallel path. It can be formally shown [7],
that this construction indeed leads to an unambiguous transducer:

T ′ = 〈Σ × Ω∗, Q′, {i′}, F ′,Δ′〉

equivalent to T .
The final step is to convert the (trimmed part of) T ′ in an equivalent

bimachine. This can be easily done by a determinization of AL = AT ′,D and
AR = Arev

T ′ D and defining an appropriate output function ψ : QL×Σ×QR → Ω∗.
The following points have to be stressed about this construction.

Remark 2. The states of the left automaton are sets L ⊆ 2Q×2Q . Yet, these sets
have an inner structure that enables a non-trivial upper bound on their number,
|QL| = O(|Q|! exp(|Q| + 1)). We sketch the main points of the proof:

– First, if q = 〈p′, N ′〉 ∈ L, then, since q is co-accessible in T ′, it follows that
p′ �∈ N ′. Assume now that 〈p′, N ′〉, 〈p′′, N ′′〉 ∈ L.

– Let 〈p′, N ′〉 �= 〈p′′, N ′′〉 ∈ T ′ be distinct states accessible via the same input
word u ∈ Σ∗. Then either {p′}∪N ′ ⊆ N ′′ or {p′′}∪N ′′ ⊆ N ′ (the proof uses
a simple induction on |u|).

Building Bimachines from Functional Finite-State Transducers 123

– Let 〈p′, N ′〉 �= 〈p′′, N ′′〉 ∈ L be distinct. Then, 〈p′, N ′〉 and 〈p′′, N ′′〉 are all
accessible in T via a common word u ∈ Σ. By the above argument we can
assume that {p′} ∪ N ′ ⊆ N ′′. By the first argument we have that p′′ �∈ N ′′

and therefore {p′} ∪ N ′ � {p′′} ∪ N ′′.
– This proves that every left state L = {〈pi, Ni〉 | i ≤ |L|} induces a linear order

on {p1, . . . , p|L|} by defining pi < pj if and only if {pi}∪Ni � {pj}∪Nj . This
shows that the left states L arise as linear orders of the states {p1, . . . , p|L|}
and some additional elements q ∈ Q \ {p1, . . . , p|L|} that belong to some Ni.
By the third point we can assign each such state q to the least Ni with q ∈ Ni.
By the linear order it will belong to all the bigger sets {pj} ∪ Nj .

– With this remarks, the problem becomes a combinatorial one and using ideas
similar to those in the proof of Theorem 2 one can prove that

|QL| ≤
|Q|∑
k=1

(
|Q|
k

)
k!(k + 1)|Q|−k = |Q|!

|Q|∑
k=1

(k + 1)|Q|−k|

(|Q| − k)!
.

Looking at the term for k = |Q|, one sees that the upper bound for QL is at
least Q!. On the other hand, since k ≤ |Q|, substituting k + 1 with |Q| + 1
we easily get that: |QL| ≤ |Q|!

∑|Q|
k=1

(|Q|+1)|Q|−k

(|Q|−k)! ≤ |Q|! exp(|Q| + 1).

Remark 3. Since the transducer T ′ is unambiguous any two states L ∈ QL and
R ∈ QR have at most one common element. This shows that for each L ∈ QL,
there is a unique L-centered function φL and therefore our construction would
find exactly this function if run on T ′. Thus in this case the output function
ψ : QL × Σ × QR → Ω∗ will be defined in exactly the same way.

Fig. 1. A class of ambiguous finite-state transducers representing the rational functions
{〈a, a〉, 〈b, b〉}∗{〈a, a〉, 〈b, ε〉}{〈a, a〉, 〈b, b〉}n−1, which deletes the n-th character from
right-to-left if it is a b. The table shows the number of states of the source transducer,
the pseudo-deterministic transducer, the left and the right automaton of the bimachine
built by the standard and the new constructions.

124 S. Gerdjikov et al.

Remark 4. The classical construction is starting from a pseudo-deterministic
transducer. However, if T is an arbitrary real-time transducer the initial conver-
sion to a pseudo-deterministic transducer may cause an exponential blow-up. In
contrast, our constructions can be applied directly to arbitrary real-time trans-
ducers and thus avoids this blow-up. See Fig. 1 for an example.

5 Conclusion

In this paper we introduced a new generic algorithm and a specialization for
building bimachines from functional finite-state transducers. The generic proce-
dure is conceptually simple. Both constructions avoid the preparatory steps used
in the classical construction, namely pseudodeterminization and disambiguation.

For the specialized construction we derived an upper bound on the size of
the bimachine. We showed that this construction is asymptotically not worse
than the classical construction. Moreover we presented a class of transducers for
which the classical construction generates a bimachine with exponentially more
states than the new construction.

The generic construction described in Subsect. 3.1 is not based on any order
of the successful paths. It provides a simple and general algorithmic scheme for
bimachine constructions, leaving room for other specialization, with new path
selection strategies that might lead to even smaller bimachines. The study of
optimal path selection strategies is a point for future research.

References

1. Berstel, J.: Transductions and Context-Free Languages. Springer Fachmedien
Wiesbaden GmbH, Wiesbaden (1979)

2. Eilenberg, S.: Automata, Languages and Machines. Academic Press, New York and
London (1974)

3. Filiot, E., Servais, F.: Visibly pushdown transducers with look-ahead. In: Bieliková,
M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM
2012. LNCS, vol. 7147, pp. 251–263. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-27660-6 21

4. Kempe, A.: Part-of-speech tagging with two sequential transducers. In: Yu, S.,
Păun, A. (eds.) CIAA 2000. LNCS, vol. 2088, pp. 337–339. Springer, Heidelberg
(2001). doi:10.1007/3-540-44674-5 34

5. Mohri, M.: On some applications of finite-state automata theory to natural lan-
guage processing. J. Nat. Lang. Eng. 2, 1–20 (1996)

6. Mohri, M.: Finite-state transducers in language and speech processing. Comput.
Linguist. 23(2), 269–311 (1997)

7. Roche, E., Schabes, Y.: Finite-State Language Processing. MIT Press, Cambridge
(1997)

8. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, Cam-
bridge (2009)

9. Sakarovitch, J., de Souza, R.: Lexicographic decomposition of k-valued trans-
ducers. Theor. Comp. Sys. 47(3), 758–785 (2010). http://dx.doi.org/10.1007/
s00224-009-9206-6

http://dx.doi.org/10.1007/978-3-642-27660-6_21
http://dx.doi.org/10.1007/978-3-642-27660-6_21
http://dx.doi.org/10.1007/3-540-44674-5_34
http://dx.doi.org/10.1007/s00224-009-9206-6
http://dx.doi.org/10.1007/s00224-009-9206-6

Building Bimachines from Functional Finite-State Transducers 125

10. Santean, N.: Bimachines and structurally-reversed automata. J. Automata Lang.
Comb. 9(1), 121–146 (2004)

11. Schützenberger, M.P.: A remark on finite transducers. Inf. Control 4, 185–196
(1961)

12. Souza, R.: A note on bimachines. In: 1a Escola de Informática Teórica e Métodos
Formais, Natal - RN, pp. 83–92, November 2016

	A Simple Method for Building Bimachines from Functional Finite-State Transducers
	1 Introduction
	2 Formal Preliminaries
	3 New Bimachine Construction
	3.1 Generic Construction
	3.2 Complexity Analysis and Specialized Construction

	4 Remark on the Classical Bimachine Construction
	5 Conclusion
	References

