
Arnaud Carayol
Cyril Nicaud (Eds.)

 123

LN
CS

 1
03

29

22nd International Conference, CIAA 2017
Marne-la-Vallée, France, June 27–30, 2017
Proceedings

Implementation 
and Application
of Automata



Lecture Notes in Computer Science 10329

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Arnaud Carayol • Cyril Nicaud (Eds.)

Implementation
and Application
of Automata
22nd International Conference, CIAA 2017
Marne-la-Vallée, France, June 27–30, 2017
Proceedings

123



Editors
Arnaud Carayol
LIGM (UMR 8049), CNRS
Université Paris-Est
Marne-la-Vallée Cedex 2
France

Cyril Nicaud
LIGM (UMR 8049)
Université Paris-Est
Marne-la-Vallée Cedex 2
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-60133-5 ISBN 978-3-319-60134-2 (eBook)
DOI 10.1007/978-3-319-60134-2

Library of Congress Control Number: 2017942998

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

This volume contains the papers presented at the 22nd International Conference on
Implementation and Application of Automata (CIAA 2017) organized by the Labo-
ratoire d’Informatique Gaspard-Monge (CNRS UMR 8049), Université Paris-Est,
during June 27–30, 2017, in Paris, France.

The CIAA conference series is a major international venue for the dissemination of
new results in the implementation, application, and theory of automata. The previous
21 conferences were held in various locations all around the globe: Seoul (2016), Umeå
(2015), Giessen (2014), Halifax (2013), Porto (2012), Blois (2011), Winnipeg (2010),
Sydney (2009), San Francisco (2008), Prague (2007), Taipei (2006), Nice (2005),
Kingston (2004), Santa Barbara (2003), Tours (2002), Pretoria (2001), London Ontario
(2000), Potsdam (WIA 1999), Rouen (WIA 1998), and London Ontario (WIA 1997
and WIA 1996). Like its predecessors, the theme of CIAA 2017 was the implemen-
tation of automata and applications in related fields. The topics of the presented papers
include state complexity of automata, implementations of automata and experiments,
enhanced regular expressions, and complexity analysis.

There were 31 submissions from 20 different counties: Algeria, Brazil, Bulgaria,
Canada, Chile, China, Czech Republic, France, Germany, Iceland, India, Italy, Malta,
Poland, UK, Russia, Slovakia, South Africa, South Korea, and Sweden. Each sub-
mission was reviewed by at least three reviewers and thoroughly discussed by the
Program Committee (PC). The committee decided to accept 17 papers for oral pre-
sentation. The program also includes three invited talks by Véronique Cortier, Kim G.
Larsen, and Damien Pous.

We would like to thank the members of the PC and the external reviewers for their
work and for the thorough discussions that took place. We also thank all the authors of
submitted papers who made CIAA 2017 possible. The work of the PC and the collating
of the proceedings were greatly simplified by the EasyChair conference system.

We would furthermore like to thank the editorial staff at Springer, and in particular
Alfred Hofmann and Anna Kramer, for their guidance and help during the process of
publishing this volume. We are also grateful to the IUT de Marne-la-Vallée for pro-
viding the rooms for the conference. Finally, we are grateful to the conference sponsors
for their generous financial support: Labex Bézout, Laboratoire d’Informatique
Gaspard-Monge (UMR 8049) and Université Paris-Est Marne-la-Vallée.

We all look forward to CIAA 2018 in Charlottetown, Canada.

June 2017 Arnaud Carayol
Cyril Nicaud
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Electronic Voting: How Logic Can Help

Véronique Cortier

LORIA - CNRS, Nancy, France

Electronic voting should offer at least the same guarantees than traditional paper-based
voting systems. In particular, voting systems should ensure ballot privacy (no one
knows how I voted) and verifiability (voters can check the whole voting process). In
order to achieve this, electronic voting protocols make use of cryptographic primitives,
as in the more traditional case of authentication or key exchange protocols. All these
protocols are notoriously difficult to design and flaws may be found years after their
first release. Formal models, such as process algebra, Horn clauses, or constraint
systems, have been successfully applied to automatically analyze traditional protocols
and discover flaws. Electronic voting protocols however significantly increase the
difficulty of the analysis task. Indeed, they involve for example new and sophisticated
cryptographic primitives such as mixnets (e.g. in Civitas [4]) or homomorphic
encryption (e.g. in [1, 5]), new dedicated security properties, and new execution
structures.

Standard protocols like authentication or key-exchange protocols typically involve
trace based properties, for which many procedures and tools have been developed in
the context of security protocols. Tools include for example, ProVerif [3], Avispa [2],
Scyther [6], or Tamarin [8]. However, ballot privacy is modeled as an equivalence
property [7], for which fewer techniques exist.

After an introduction to electronic voting, we will describe the current techniques
for e-voting protocols analysis and review the key challenges towards a fully automated
verification.
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Timed and Untimed Energy Games

Kim Guldstrand Larsen

Department of Computer Science, Aalborg University,
Selma Lagerlöfs Vej 300, 9220 Aalborg, Denmark

kgl@cs.aau.dk

Abstract. Energy games have recently attracted a lot of attention. These are
games played on finite weighted (timed) automata and concern the existence of
infinite runs subject to boundary constraints on the accumulated weight,
allowing e.g. only for behaviours where a resource is always available (non-
negative accumulated weight), yet does not exceed a given maximum capacity.
In this extended abstract we give an overview of the various results that have
been obtained on this topic.

Untimed Energy Games

In [9] we have extend energy games to a multiweighted and parameterized setting,
allowing us to model systems with multiple quantitative aspects. We present reductions
between Petri nets and multiweighted automata and among different types of multi-
weighted automata and identify new complexity and (un)decidability results for both
one- and two-player games. We also investigate the tractability of an extension of
multiweighted energy games in the setting of timed automata.

In [11] we reconsider the multiweighted energy problem assuming an unknown
upper bound and calculate the set of vectors of upper bounds that allow an infinite run
to exist. For both a strict and a weak upper bound we show how to construct this set by
employing results from previous works, including an algorithm given by Valk and
Jantzen for finding the set of minimal elements of an upward closed set.

In [8] we introduce and study average-energy games, where the goal is to optimize
the long-run average of the accumulated energy. We show that this objective arises
naturally in several applications, and that it yields interesting connections with previous
concepts in the literature. We prove that deciding the winner in such games is in NP
inter coNP and at least as hard as solving mean-payoff games, and we establish that
memoryless strategies suffice to win. We also consider the case where the system has to
minimize the average-energy while maintaining the accumulated energy within pre-
defined bounds at all times: this corresponds to operating with a finite-capacity storage
for energy. We give results for one-player and two-player games, and establish
complexity bounds and memory requirements.

In [12] we reconsider average-energy games focusing on the problem of deter-
mining upper bounds on the average accumulated energy or on the capacity while
satisfying a given lower bound, i.e., we do not determine whether a given bound is
sufficient to meet the specification, but if there exists a sufficient bound to meet it. In the



classical setting with positive and negative weights, we show that the problem of
determining the existence of a sufficient bound on the long-run average accumulated
energy can be solved in doubly-exponential time. We consider recharge game, where
all weights are negative, but there are recharge edges that recharge the energy to some
fixed capacity. We show that bounding the long-run average energy in such games is
complete for exponential time.

Weighted Timed Automata and Games

The model of weighted timed automata was introduced in [1] as an extension of timed
automata, with prices on both transitions and locations. For this model we considered
the minimum-cost reachability problem: i.e. given a weighted timed automaton and a
target state, determine the minimum cost of executions from the initial state to the
target state. This problem generalizes the minimum-time reachability problem for
ordinary timed automata. We prove decidability of this problem by offering an algo-
rithmic solution, which is based on a combination of branch-and-bound techniques and
a new notion of priced regions. The latter allows symbolic representation and
manipulation of reachable states together with the cost of reaching them. Later the
associated decision problem has been shown to be PSPACE-complete.

Now considering weighted timed games the cost-optimal reachability problem is
shown to be undecidable in [2] already in the setting of three clocks. For the case of
weighted timed games with a single clock decidability of cost-optimal reachability was
shown decidable in [7] in triple-exponential time. This result is improved in [10] which
provides a single-exponential algorithm. For this improvement a new algorithm for
solving one-clock weighted timed games, based on the sweep-line technique from
computational geometry and the strategy iteration paradigm from the algorithmic
theory of Markov decision processes has been introduced.

Timed Energy Games

The paper [4] introduces the problem of existence and construction of infinite schedules
for finite weighted automata and one-clock weighted timed automata, subject to
boundary constraints on the accumulated weight. More specifically, the paper considers
automata equipped with positive and negative weights on transitions and locations,
corresponding to the production and consumption of some resource (e.g. energy). We
ask the question whether there exists an infinite path for which the accumulated weight
for any finite prefix satisfies certain constraints (e.g. remains between 0 and some given
upper-bound). We also consider a game version of the above, where certain transitions
may be uncontrollable. In the setting of one-player, one-clock weighted timed automata
we show that the problem of deciding the existence of an infinite admissible run is
decidable.

XIV K.G. Larsen



In [3] we study one-clock priced timed automata in which prices can grow linearly
(dp/dt = k) or exponentially (dp/dt = kp), with discontinuous updates on edges. We
propose EXPTIME algorithms to decide the existence of controllers that ensure exis-
tence of infinite runs or reachability of some goal location with non-negative observer
value all along the run. These algorithms consist in computing the optimal delays that
should be elapsed in each location along a run, so that the final observer value is
maximized (and never goes below zero).

In [5, 6] we show that the existence of an infinite lower-bound-constrained run is in
general undecidable for weighted timed automata with four or more clocks.

Also in [13] and [9] it is shown that the lower- and upper-bound-constrained run
problem is undecidable in case of 2 costs or 2 clocks.
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CoInductive Automata Algorithms

Damien Pous

University of Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP
Lyon, France

damien.pous@ens-lyon.fr

We consider the problem of checking equivalence or inclusion of finite automata.
Algorithms for such a task are used in model-checking for instance, where one can
build an automaton for a formula and an automaton for a model, and then check that the
latter is included in the former. More advanced constructions need to build a sequence
of automata by applying a transducer, and to stop whenever two subsequent automata
recognise the same language [4]. Another field of application is that of various
extensions of Kleene algebra [7], whose equational theories are reducible to language
equivalence of various kinds of automata: regular expressions and finite automata for
plain Kleene algebra [12], “closed” automata for Kleene algebra with converse [2, 9],
or guarded string automata for Kleene algebra with tests (KAT) [14].

Equivalence of deterministic finite automata (DFA) can be checked either via
minimisation [10] or, more directly, through Hopcroft and Karp’s algorithm [11]. The
complexity of the latter algorithm has been studied by Tarjan [18]: checking language
equivalence of two states in a DFA with n states over an alphabet of size k requires
O(nka(k,n)) operations, where a(k,n) is a very slow-growing inverse of Ackermann’s
function. This might look rather satisfactory, except that: (1) in most applications one
starts with non-deterministic automata (NFA), and (2) sometimes the alphabet is too
large to be iterated naively.

For the first point, it is well-known that NFA can be determinised using the
powerset construction, and that there can be exponentially many reachable sets. In fact,
language equivalence becomes PSPACE-complete for NFA over an alphabet with at
least two letters [15]—and coNP-complete with one letter. De Wulf, Doyen, Henzinger
and Raskin have proposed algorithms based on antichains [19], that exploit the specific
structure of determinised automata to avoid systematically exploring all reachable
states. Together with Filippo Bonchi, we have discovered that both Hopcroft and
Karp’s algorithm and the antichain algorithms actually make use of a reasoning
principle which is well-known in concurrency theory: coinduction [16]. This lead us to
a new algorithm [3], which can improve exponentially over both Hopcroft and Karp’s
algorithm and more recent antichain-based algorithms [1, 8, 19].

This author is funded by the European Research Council (ERC) under the European Unions Horizon
2020 programme (CoVeCe, grant agreement No 678157). This work was supported by the LABEX
MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements
d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).



The second point is raised for instance with the automata required for deciding
Kleene algebra with tests [13]. We propose to use symbolic automata [17], where the
transition function is represented in a compact way using binary decision diagrams
(BDD) [5, 6]. Coinductive algorithms such as above then make it possible to explore
reachable pairs symbolically, and to avoid redundancies. We show in particular a nice
integration with the disjoint sets forest data-structure from Hopcroft and Karp’s
algorithm.
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Abstract. We examine the determinization of monitors. We demon-
strate that every monitor is equivalent to a deterministic one, which
is at most doubly exponential in size with respect to the original
monitor. When monitors are described as CCS-like processes, this
doubly-exponential bound is optimal. When (deterministic) monitors are
described as finite automata (as their LTS), then they can be exponen-
tially more succinct than their CCS process form.

1 Introduction

Monitors [10,23] are computational entities that execute alongside a system so
as to observe its runtime behavior and possibly determine whether a property
is satisfied or violated from the exhibited (system) execution. They are used
extensively in runtime verification [17] and are central to software engineering
techniques such as monitor-oriented programming [6]. Monitors are often con-
sidered to be part of the trusted computing base and, as a result, are expected to
behave correctly. A prevailing correctness criterion requires monitors to exhibit
deterministic behavior. Determinism is also important for lowering the runtime
overheads of monitoring a system: in order not to miss possible detections of
a non-deterministic monitor, one would need to keep track of all the monitor
states that are reachable for the currently observed execution trace.

Non-determinism is inherent to various computational models used to express
monitors, such as Büchi automata [8,26] or process calculi [5,10,27]. As a
matter of fact, non-deterministic monitor descriptions are often more succinct
than deterministic ones, and thus easier to formulate and comprehend. Non-
deterministic computation is also intrinsic to concurrent and distributed pro-
gramming — used increasingly for runtime monitoring [3,5,9,18,24] —, where
the absence of global clocks makes it hard to rule it out, and interleaving under-
specification can be used to improve execution efficiency.

In [11], Francalanza et al. identified a maximally-expressive monitorable frag-
ment for the branching-time logic μHML [15,16] and their results relied on a
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monitor-synthesis procedure for every monitorable μHML-formula. In order to
achieve a simple compositional definition, this synthesis procedure may yield
non-deterministic monitors. In this paper we tackle the problem of determiniz-
ing monitors in the framework of [11], which are described using syntax close to
the regular fragment of CCS processes [20]. We demonstrate that every monitor
can be transformed into an equivalent deterministic one, which strengthens the
results in [11]. However, we also show that the price of determinization can be a
hefty one: there are monitors which require a doubly exponential blow-up in size
to determinize. Note that, although our results employ the monitor framework of
[11], our methods and findings can be extended to other forms of automata-like
monitor descriptions such as those in [2,5,10,27].

Overview: Section 2 provides the preliminaries. In Sect. 3, we prove that all mon-
itors can be determinized and give methods to transform monitors to automata
and back. Section 4 provides lower bounds to complement the constructions of
Sect. 3. Section 5 discusses the main technical results in this paper. Omitted
proofs and an extensive treatment of the determinization of monitors can be
found in an extended version [1].

2 Background

We overview the main definitions for the monitoring set-up of [11] that we used
in our study.

2.1 Basic Definitions: Monitoring Processes

Systems are denoted as processes whose semantics is given in terms of a labeled
transition system (LTS). An LTS is a triple 〈Proc, (Act∪{τ}),→〉 where Proc
is a set of process states (p ∈ Proc), Act is a finite set of observable actions
(α ∈ Act), τ /∈ Act is the distinguished silent action, and →⊆ (Proc× (Act∪
{τ}) × Proc) is a transition relation. Monitors are described via the specific
syntax given below, but their semantics is also given as an LTS.

Table 1. Monitor and Instrumentation Semantics (α ∈ Act and μ ∈ Act ∪ {τ})

Monitor semantics

Act
α.m

α−→m
Sel mi

μ−→m′ i∈I
∑

i∈I mi

μ−→m′
Rec

recx.m
τ−→m[recx.m/x]

Ver
v

α−→v

Instrumentation semantics
Mon
p

α−→ p′ m
α−→ m′

m � p
α−→ m′ � p′

Ter
p

α−→ p′ m � α−→ m � τ−→
m � p

α−→ end � p′

AsP
p

τ−→ p′

m � p
τ−→ m � p′

AsM
m

τ−→ m′

m � p
τ−→ m′ � p
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Definition 1. A monitor is described by the following grammar:

m ∈ Mon :: = yes | no | end | α.m |
∑

i∈I

mi | rec x.m | x

where x comes from a countably infinite set of variables and I �= ∅ is a finite
index set. We write m + n in lieu of

∑
i∈I mi when |I| = 2. Constants yes, no,

and end are called verdicts (denoted by v) and represent acceptance, rejection
and inconclusive termination respectively. The behavior of a monitor is defined
by the rules of Table 1. �

A monitored system is a monitor m and a system p instrumented to execute
side-by-side, denoted as m � p; its behavior is defined by the instrumentation
rules in Table 1. Intuitively, a monitor m mirrors visible actions performed by p
(rule Mon). Whenever m cannot match an action from p and cannot internally
transition to a state that might enable it to do so, m � τ−→, then m aborts to
the inconclusive end verdict (rule Ter). Finally instrumentation monitors only
for visible actions, and thus we allow m and p to perform internal τ actions
independently of each other (rules AsP and AsM). Given an LTS with a set of
states P (of processes, monitors, or monitored systems) with r, r′ ∈ P and a set
of actions (Act ∪ {τ}), we write r

α=⇒ r′ to mean that r can weakly transition
to r′ using a single α action and any number of τ actions, r( τ−→)∗. α−→ .( τ−→)∗r′.
For each r, r′ ∈ P and trace t = α1.α2. . . . αk ∈ Act∗, we use r

t=⇒ r′ to mean
r

α1=⇒ .
α2=⇒ . . .

αk=⇒ r′ if t is non-empty and r( τ−→)∗r′ if t is the empty trace.
In the monitorability results of [11] the verdicts yes and no (referred to

hereafter as conclusive verdicts) are linked to satisfaction and violation of μHML
formulas, respectively. We say that a monitor m accepts (resp. rejects) process
p when there are a trace t ∈ Act∗ and process p′ such that m � p

t=⇒ yes � p′

(resp. m � p
t=⇒ no � p′). In this setting, acceptance is equivalent to saying that p

can produce a trace t along which the monitor can derive the yes verdict, and
similarly for rejection and verdict no. Thus, we say that a monitor m accepts
(resp. rejects) a trace t ∈ Act∗ when m

t=⇒ yes (resp. when m
t=⇒ no). We say

that two monitors, m and n are (verdict) equivalent, denoted as m ∼ n, if for
every trace t and verdict v ∈ {yes, no}, m

t=⇒ v iff n
t=⇒ v. The utility of this

monitor equivalence relation stems from the following fact: whenever m ∼ n,
then for every process state p, if monitor m accepts (resp. rejects) process p,
then monitor n must accept (resp. reject) process p as well.

Multiple Verdicts. In [11] the authors show that monitors with a single conclusive
verdict suffice to adequately monitor for μHML formulae; these monitors can use
either yes or no, but not both. We therefore confine our study to determinizing
single-verdict monitors (particularly monitors that use the yes verdict), but note
that there is a straightforward approach for dealing with multi-verdict monitors,
which are used in other settings such as in [10]. For details on determinizing
multi-verdict monitors consult [1]. Given a single-verdict monitor m that uses
the yes verdict, L(m) is the set of traces that m accepts.
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Finite Automata. We overview briefly Finite Automata Theory, used in Sect. 3;
the interested reader should consult [25] for further details. A nondeterministic
finite automaton (NFA) is a quintuple A = (Q,Σ, δ, q0, F ), where Q is a finite
set of states, Σ is a finite set of symbols, called the alphabet (in our context,
Σ = Act), δ ⊆ Q × Σ × Q is a transition relation, q0 ∈ Q is the initial state,
and F ⊆ Q is the set of final or accepting states. Given a word t ∈ Σ∗, a run
r of A on t = t1 · · · tk (ti ∈ Σ, 1 ≤ i ≤ k) is a sequence q0q1 · · · qk, such that
(qi−1, ti, qi) ∈ δ for 1 ≤ i ≤ k; r is an accepting run if qk ∈ F . We say that A
accepts t when A has an accepting run on t, and A accepts/recognizes a language
L ⊆ Σ∗ whenever A accepts exactly all t ∈ L. In such cases L is unique and we
call it L(A). If δ is a function δ : Q × Σ → Q then A is a deterministic finite
automaton (DFA). A classical result is that for every NFA A with n states, there
is an equivalent DFA (i.e. a DFA that recognizes the language L(A)) with at
most 2n states [21]; this upper bound is optimal [19].

2.2 Determinism and Other Choices

The purpose of this paper is to examine the determinization of monitors, which
is the process of constructing a deterministic monitor from an equivalent non-
deterministic one. We must therefore establish what we understand by a deter-
ministic monitor. For the purposes of [11], deterministic monitor behavior need
only concern itself with the definite verdicts that can be reached after observ-
ing a particular trace t. Stated otherwise, we can say that a monitor m behaves
deterministically whenever it transitions to verdict-equivalent monitors for every
trace t. The work in [11] contains several examples of monitors that break this
behavioral condition: an easy one is mc = α.α.yes+α.β.yes, because when this
monitor reads an α, it has to make a choice and transition to either α.yes or
β.yes which are not equivalent, α.yes �∼ β.yes. A deterministic monitor that is
equivalent to mc is α.(α.yes + β.yes).

For Turing machines, algorithms, and finite automata, determinism is typi-
cally more restrictive, requiring that from every state (in our case, monitor) and
input symbol (in our case, action), there is a unique transition to follow. In the
case of monitors, we can transition either by means of an observable action, α,
but also via a τ -action, which can occur without reading from a trace. In finite
automata, these τ actions could perhaps correspond to ε-transitions, which are
eliminated from deterministic automata. However, we cannot readily eliminate
τ -transitions from deterministic monitors. For instance, we need to be able to
activate the recursive operators. Instead we require that monitor transitions
denote functions that take us to a unique next state, and moreover that when-
ever a monitor can transition with an observable action α, it cannot perform
silent actions. A closer inspection of the derivation rules of Table 1 immediately
reveals that such choices can only be introduced by sums — that is, monitors
of the form

∑
i∈I mi with |I| ≥ 2; we can therefore attain the required behavior

via syntactic constraints.
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Definition 2. A monitor m is syntactically deterministic (s-deterministic)
iffevery sum of at least two summands that appears in m is of the form∑

α∈A α.mα, where A ⊆ Act. �

As we will see below, this set of monitors is in fact maximally expressive.
Lemma 1 demonstrates that the syntactic determinism of Definition 2 ensures
that such monitors will always arrive at the same verdict for a given trace.
Following Lemma 1, we simply refer to s-deterministic monitors as deterministic
monitors.

Lemma 1. If m is s-deterministic, m
t=⇒ n, and m

t=⇒ n′, then n ∼ n′. ��
The first main result of the paper is that given a nondeterministic monitor,

we can always find an equivalent deterministic monitor.

Theorem 1. For each monitor m ∈ Mon there exists a deterministic monitor,
m′ ∈ Mon, such that m ∼ m′. ��

Besides the constructions we present in this paper, in [1] we present two more
methods to determinize monitors. The first is by reducing monitor determiniza-
tion to the determinization of CCS processes modulo trace equivalence, which
has been accomplished by Rabinovich in [22]. The second method is specific to
the synthesis procedure of [11] via the determinization of μHML formulas. In
either case, it is not easy to extract complexity bounds from these methods. See
[1] for more details.

Size Conventions. When we extract complexity bounds for our constructions,
we assume that the set of actions, Act, is of constant size. The size |m| of a
monitor m is the size of its syntactic description as given in Sect. 2.1, defined
recursively thus: |x| = |yes| = 1; |a.m| = |m|+1; |∑i∈I mi| =

∑
i∈I |mi|+|I|−1;

and |rec x.m| = |m| + 1. Notice that |m| coincides with the total number of
submonitor occurrences — namely, symbols in m.

Example 1. Consider the monitor m = rec x.(0.x + 1.x + 1.2.yes). It accepts
process states that can produce traces from the language (0 + 1)∗12(0 + 1 + 2)∗,
that is, traces (words) in which the action 2 appears at least once and the action
preceding this 2 action is a 1. An equivalent deterministic monitor is

m′ = rec y.(0.y + 1.rec x.(0.y + 1.x + 2.yes))

Notice that the size of the deterministic monitor m′ is greater than that of its
original non-deterministic counterpart m. In fact, |m| = 10 and |m′| = 14. �

2.3 Semantic Transformations

For convenience, we slightly alter the behavior of monitors from [11] to simplify
our constructions and arguments. Specifically, we provide another set of transi-
tion rules and show that the new and old rules are equivalent with respect to the
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Table 2. System N is the result of replacing rule Rec by rules RecF and RecB.

RecF
recx.mx

τ−→mx

RecB
x

τ−→px

traces that can reach a yes verdict (the same applies for no verdicts). Consider
a single monitor, m0, which appears at the beginning of the derivation under
consideration — that is, all other monitors are submonitors of m0. We assume,
without loss of generality, that each variable x appears in the scope of a unique
monitor of the form rec x.m, which we call px; namely, mx is the monitor such
that px = rec x.mx. The monitors may behave according to one of two systems
of rules. System O is the old system of rules, as given in Table 1. System N is
given by replacing rule Rec by the rules given in Table 2. The transition rela-
tions

μ−→ and t=⇒ are defined as before, but they are called
μ−→O and t=⇒O when

they result from System O and
μ−→N and t=⇒N when they result from System N .

We can show that the two LTSs are equivalent with respect to verdicts.

Lemma 2. For a monitor m and trace t, m
t=⇒N yes iff m

t=⇒O yes. ��
There are three reasons for changing the operational semantics rules of monitors.
One is that, for the bounds we prove, we need to track when recursion is used
in a derivation. Another is that in System N (unlike in System O) it is clear
which monitors may appear in a derivation starting from monitor m (namely,
at most all submonitors of m), which in turn makes it easier to construct an
LTS — and also to transform a monitor into an automaton. For instance, consider
m = rec x.(α.x + β.yes). In System O, m

τ−→ α.(rec x.(α.x + β.yes)) + β.yes,
which is not a subterm of m. On the other hand, in System N, m

τ−→ α.x+β.yes,
which is a subterm of m. Finally, and partly due to the previous observation,
we can see that a monitor, viewed as an LTS, has a specific form: it is a rooted
tree with labeled edges provided by

μ−→, with some back edges, which result from
recursion (namely, from the rule RecB in Table 2). For the remainder, we use
system N and drop subscripts from

μ−→N and t=⇒N .
When using System N, we need to be more careful with the definition of deter-

minism. Notice that it is possible to have a nondeterministic monitor, which has
a deterministic submonitor. For instance, px = rec x.(α.x + α.yes) is nondeter-
ministic, while according to our definition of determinism, α.x is deterministic
(specifically, all variables are deterministic). The issue here is that although α.x
is deterministic in form, it can transition to (x and then to) px, which is not.
This is not a situation we encountered in System O, because there variables do
not derive anything on their own and all monitors we consider are closed. In
System N, though, a variable x can appear in a derivation and it can derive px,
so it is not prudent to judge that any variable is deterministic — and thus judge
the determinism of a monitor only from its structure. In other words, our defini-
tion of a deterministic monitor additionally demands that said monitor is closed;
alternatively, for a monitor which appears in a derivation to be deterministic,
we demand that the initial monitor p0 be deterministic (by Definition 2).
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3 Monitor Determinization

We provide methods to transform monitors to automata and back, allowing
us to use the classic subset construction for the determinization of NFAs and
thus determinize monitors. This approach yields upper bounds on the size of
the constructed monitors. Furthermore, when transforming a monitor into an
equivalent automaton, the constructed NFA may be smaller than the original
monitor, thus resulting in a smaller deterministic monitor.

3.1 From Monitors to Finite Automata

A monitor can be seen as a finite automaton with its submonitors as states and
the composition ε=⇒ · α−→ as its transition relation. Here we make this observation
explicit. For a monitor m, we define the automaton A(m) to be (Q,Act, δ, q0, F ),
where

– Q, the set of states, is the set of submonitors of m;
– Act, the set of actions, is also the alphabet of the automaton;
– q′ ∈ δ(q, α) iff q

ε=⇒ · α−→ q′;
– q0, the initial state, is m;
– F = {yes} ∩ Q, that is, yes is the only accepting state (if it exists).

Proposition 1. For every monitor m, A(m) accepts L(m). ��
Thus, all languages recognized by monitors are regular. Notice that A(m)

has at most |m| states (because Q only includes submonitors of m), but possibly
fewer, since two occurrences of the same monitor as submonitors of m give the
same state; we can cut the state size down further by removing submonitors
which can only be reached through τ -transitions. Furthermore, if m is determin-
istic, then A(m) is deterministic.

Corollary 1. For every monitor m, there is an automaton of at most |m| states
that accepts L(m). The automaton is deterministic if so is m. ��

3.2 From Automata to Monitors

We would also like to be able to transform a finite automaton to a monitor
and thus recognize regular languages by monitors. However, this is not always
possible because there are simple regular languages that are not recognized by
any monitor. Consider, for example, the language (11)∗, which includes all strings
of ones of even length. Since ε is in that language, a monitor m for (11)∗ is such
that m

ε=⇒ yes and thus accepts everything (so, this conclusion is also true for
any regular language of the form ε + L �= Act∗).

One of the properties differentiating monitors from automata is that verdicts
are irrevocable for monitors. Therefore, if for a monitor m and finite trace t,

m
t=⇒ yes, then for every trace t′, it is also the case that m

tt′
=⇒ yes (this is due
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to rule Ver which ensures that yes
t′
=⇒ yes, for every t′). Stated otherwise, if L

is a regular language on Act that is recognized by a monitor, then L must be
suffix-closed. Since this property stems from the fact that monitor verdicts are
irrevocable, in the rest of this paper we instead call such languages irrevocable.

Now, consider an automaton that recognizes an irrevocable language L. Then,
if q is any (reachable) accepting state of the automaton, and q can be reached
through a word t, then t is clearly in L but so is every word tα. Thus, we can
safely add an α-transition from q to an accepting state (for example, itself) if no
such transition exists. We call an automaton that can always transition from an
accepting state to an accepting state for each α ∈ Act irrevocable. Note that,
in the case of an irrevocable DFA, all transitions from accepting states must go
to accepting states.

Corollary 2. A language is regular and irrevocable if and only if it is recognized
by an irrevocable NFA (or DFA). ��
Given an irrevocable NFA, we can construct an equivalent monitor through a
procedure that can be described informally as follows (see Fig. 1 for an example).
We first unravel the NFA into a tree: for every transition sequence that starts
from the initial state and that does not repeat any states, we keep a copy of its
ending state. For example, for the automaton of Fig. 1, we can reach q2 through
q0

0−→ q1
1−→ q2 and q0

1−→ q1
1−→ q2, which gives us two copies of q2. Then, we map

each node of this tree to a monitor, so that, at the end, the root is mapped to the
resulting equivalent monitor. The leaves that correspond to an accepting state
are mapped to yes. We use action transitions to describe forward tree edges and
recursion for back edges — there is no need for cross edges. If the automaton is
deterministic, so is the resulting monitor.

Fig. 1. Transforming an automaton into a monitor: DFA to tree unraveling to monitor.

Theorem 2. Given an irrevocable NFA (resp. DFA) A of n states, there is a
monitor (resp. deterministic monitor) of size 2O(n log n) (resp. 2O(n)) that accepts
L(A). ��

We use the transformations from a monitor into an NFA, into a DFA, and into
a deterministic monitor to obtain the following space complexity upper bound.

Corollary 3. For every monitor m, there exists an equivalent deterministic
monitor of size 2O(2|m|). ��
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4 Lower Bounds

We demonstrate that we cannot significantly improve the bounds of Sect. 3.

4.1 Lower Bound for (Nondeterministic) Monitor Size

It is easier to understand the intuition behind the lower bounds for constructing
monitors after realizing that the LTS of a monitor is a rooted tree with additional
back edges (when we consider each submonitor occurrence to be distinct). The
tree is the monitor’s syntactic tree; a transition generated by rules Act and
RecF (and then, possibly, Sel) is a transition from a parent to a child and a
transition generated by rule RecB (and then, possibly, Sel) is a transition to
an ancestor (rule Ver gives self-loops for the leaves). Furthermore, from every
node, distinct actions transition to distinct nodes. This is the form generated
from the construction of Theorem 2.

We initially consider the family of regular languages (Ln)n, where Ln, for n ≥
1, is described by (0+1)∗1(0+1)n−1. This is a well-known example of a regular
language recognizable by an NFA of n+1 states, by a DFA of 2n states, but by no
DFA of fewer than 2n states. As we have previously remarked, monitors do not
behave exactly the same way automata do and can only recognize irrevocable
languages. Therefore, we modify Ln to mark the ending of a word with a special
character, e, and make it irrevocable. Let Mn = {αeβ ∈ {0, 1, e}∗ | α ∈ Ln}.

Note that an automaton (deterministic or not) accepting Ln can easily be
transformed into one (of the same kind) accepting Mn by introducing two new
states, Y and N , where Y is accepting and N is not, so that all transitions from Y
go to Y and from N go to N (N is a junk state, thus unnecessary for NFAs); then
we add an e-transition from all accepting states to Y and from all other states
to N . The reverse transformation is also possible: From an automaton accepting
Mn, we can have a new one accepting Ln by removing all e-transitions and
turning all states that can e-transition to an accepting state of the old automaton
to accepting states. The details are left to the reader.

So, there is an NFA for Mn with n + 2 states and a DFA for Mn with 2n + 2
states, but no fewer. Let m = rec x.(0.x + 1.x + 1.

∑
t∈{0,1}n−1 t.e.yes). Then,

m mimics the behavior of the NFA for Mn and |m| = O(2n).
The idea behind showing that there is no monitor for Mn of size less than

2n is that, for every w ∈ {0, 1}n−1, the trace 1we constitutes an accepted trace.
Furthermore, after reading the first letter, the monitor tree is not allowed to
use a back edge (i.e. recursion), or else it could accept a shorter trace. By the
above observation regarding the tree-form of monitors, the monitor is (at least)
a complete binary tree of height n − 1.

Proposition 2. Let m be a monitor for Mn. Then, |m| ≥ 3 · 2n−1. ��
The above result means that monitors of size exponential with respect to n are
required to recognize languages Mn, and thus we have a lower bound on the
construction of a monitor from an NFA, which is close to the respective upper
bound of Theorem 2.
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4.2 Lower Bounds for the Size of Deterministic Monitors

Theorem 3. Let m be a deterministic monitor for Mn. Then, |m| = 22
Ω(n)

. ��
Therefore, a construction of a deterministic monitor from an equivalent NFA can
result in a doubly-exponential blow-up in the size of the monitor, and building a
deterministic monitor from an equivalent nondeterministic one can result in an
exponential blow-up in the size of the monitor. Hence, the upper bounds provided
by Theorem 2 cannot be improved significantly. As Theorem 4 demonstrates, the
situation is actually even worse for the determinization of monitors.

Theorem 4. For every n ∈ N, there is an irrevocable regular language on two
symbols1 that is recognized by a nondeterministic monitor of size O(n), but which
cannot be recognized by any deterministic monitor of size 22

o(
√

n log n)
. ��

The proof of Theorem 4 relies on a result by Chrobak [7] for unary languages
(languages on only one symbol), who showed that, for every n, there is a unary
language Chn that is recognized by an NFA with n states, but by no DFA with
eo(√

n log n) states. Un is then the set of words w ∈ {0, 1}, such that the 0’s or
the 1’s in w are a word from Chn. Then, from a deterministic monitor for Un we
can extract a unary DFA for Chn by following the 0∗1- or 1∗0-transitions of the
monitor, until the first time recursion was used (i.e. a back edge was followed).
Therefore, the first time the deterministic monitor has a back edge is at distance
at least eΩ(√

n log n) from the root; so, the deterministic monitor contains at least
a complete binary tree of height eΩ(√

n log n).

Table 3. Bounds on the cost of construction (X signifies that the conversion is trivial)

from/to DFA monitor det. monitor

NFA tight: O(2n) upper: 2O(n log n)

lower: 22Ω(
√

n log n)
tight: 2O(2n)

DFA X upper: 2O(n) tight: 2O(n)

nondet.monitor upper: 2O(2n)

lower: 22Ω(
√

n log n)
X upper: 2O(2n)

lower: 22Ω(
√

n log n)

5 Conclusions

We provided a method for determinizing monitors. We have focused on monitors
for the co-safety fragment of μHML, as constructed in [11]. We showed that we
can add a runtime monitor to a system without having a significant effect on
the execution time of the system. Specifically, evaluating a nondeterministic
monitor for a runtime trace may amount to keeping track of all possible monitor
1 For unary languages, determinizing monitors is significantly easier; see [1].
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states reachable along that trace. By using a deterministic monitor, each trace
event leads to a unique monitor state from the current state, which is easier to
compute. However, this speed-up can come at a severe cost, since we may have
to use up to doubly-exponential more space to store the monitor; even if this is
stored in a more efficient form such as its LTS, the deterministic monitor may
require an exponential additional space.

From the established bounds, NFAs can be exponentially more succinct than
monitors as a specification language, and doubly exponentially more succinct
than deterministic monitors; DFAs can be exponentially more succinct than
deterministic monitors. Therefore, it is much more efficient to use monitors not
in their syntactic forms, but as automata — or to use a monitor’s syntax DAG
instead of its syntax tree.

Summary of Bounds: We proved upper and lower bounds for several construc-
tions related to monitor determinization. Table 3 summarizes the bounds we
have proven, those which were known, and the ones we can further infer from
these results. We discuss these below:

– Corollary 3 informs us that from a nondeterministic monitor of size n, we can
construct a deterministic one of size 2O(2n).

– Theorem 4 explains that we cannot do much better, because there is an
infinite family of monitors such that, for each monitor of size n in the family,
there is no equivalent deterministic monitor of size 22

o(
√

n log n)
.

– Theorem 2 tells us that an irrevocable NFA of n states can be converted to
an equivalent monitor of size 2O(n log n).

– Proposition 2 reveals that there is an infinite family of NFAs, for which every
n-state NFA of the family is not equivalent to any monitor of size 2o(n).

– Corollary 3 yields that an irrevocable NFA of n states can be converted to an
equivalent deterministic monitor of size 2O(2n); Theorem 3 makes this bound
tight.

– Theorem 2 also allows us to convert a DFA of n states to a deterministic
monitor of 2O(n) states; Theorem 3 makes this bound tight.

– We can convert a (single-verdict) monitor of size n to an equivalent DFA of
O(2n) states, by first converting the monitor to an NFA of n states (Propo-
sition 1) and then using the classical subset construction.

– If we could convert any monitor of size n to a DFA of 2o(
√

n log n) states,
then we could use the construction in the proof of Theorem 2 to construct a
deterministic monitor of 22

o(
√

n log n)
states, which contradicts the lower bound

of Theorem 4; therefore, 2Ω(
√

n log n) is a lower bound for converting monitors
to equivalent DFAs.

Optimizations: Monitors to be used in runtime verification are expected not to
affect the systems they monitor as much as possible. Therefore, the efficiency of
monitoring must be taken into account to reduce overhead. To use a deterministic
monitor, we would naturally want to keep its size as small as possible. It would
help to preserve space (and time for each transition) to store the monitor in
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its LTS form — as a DFA. We should also aim to use the smallest possible
monitor we can. There are efficient methods for minimizing a DFA, so one can
use these to find a minimal DFA and then turn it into monitor form using the
construction from Theorem 2, if such a form is required. The resulting monitor
will be (asymptotically) minimal.

On the other hand, it would be good to keep things small from an earlier
point of the construction, before the exponential explosion of states of the subset
construction takes place. In other words, it would be good to minimize the NFA
we construct from the monitor, which can already be smaller than the original
monitor. Unfortunately, NFA minimization is a hard problem — specifically
PSPACE- complete [14] — and it remains NP-hard even for classes of NFAs that
are very close to DFAs [4]. NFA minimization is even hard to approximate or
parameterize [12,13]. Still, it would be better to use an efficient approximation
algorithm from [13] to process the NFA and save on the number of states before
we determinize. This raises the question of whether (nondeterministic) monitors
are easier to minimize than NFAs, although a positive answer seems unlikely in
the light of the hardness results for NFA minimization.
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Abstract. Most regular expression matching engines have operators
and features to enhance the succinctness of classical regular expressions,
such as interval quantifiers and regular lookahead. In addition, matching
engines in for example Perl, Java, Ruby and .NET, also provide opera-
tors, such as atomic operators, that constrain the backtracking behavior
of the engine. The most common use is to prevent needless backtracking,
but the operators will often also change the language accepted. As such it
is essential to develop a theoretical sound basis for the matching seman-
tics of regular expressions with atomic operators. We here establish that
atomic operators preserve regularity, but are exponentially more succinct
for some languages. Further we investigate the state complexity of deter-
ministic and non-deterministic finite automata accepting the language
corresponding to a regular expression with atomic operators, and show
that emptiness testing is PSPACE-complete.

1 Introduction

In this paper we study atomic subgroups, a generalization of the feature
described by Jeffrey Friedl, in the first edition of his book on regular expres-
sions, as follows [Fri97]:

“A feature I think would be useful, but that no regex flavor that I know
of has, is what I would call possessive quantifiers. They would act like
normal quantifiers except that once they made a decision that met with local
success, they would never backtrack to try the other option. The text they
match could be unmatched if their enclosing subexpression was unmatched,
but they would never give up matched text of their own volition, even in
deference to an overall match.”

In the five and a half years between the first and second edition of Friedl’s
book, possessive quantifiers were introduced, and in the process gave way to

c© Springer International Publishing AG 2017
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atomic subgroups, making the prior a syntactic sugar for the latter. For exam-
ple, E*+ denotes a regular expression E with a possessive Kleene star applied,
which may also be written as (?>E*), where ?> makes the surrounding parenthe-
sis an “atomic subgroup”. Atomic subgroups “lock up” the part of the pattern it
contains once it has matched, a failure further on in the pattern is not allowed to
backtrack into the atomic group, but backtracking past it to previous subexpres-
sions works as usual. A common use of atomic subgroups is to prevent needless
backtracking and thus speedup matching time. For example, while the matcher
in Java will take exponential time in the length of the input string to estab-
lish that input strings of the form a . . . ab can not be matched by (a|a)*, by
essentially trying each possible way of matching an a in the input string with
respectively the first or the second a in (a|a), matching happens in linear time
when using (?>a|a)*, since the matcher “forgets” each time after using the first
a in (?>a|a) to match an a, that it was also possible to use the second. Atomic
subgroups are implemented in, among others, the Java, .NET, Python, Perl,
PHP, and Ruby standard libraries, and in libraries such as Boost and PCRE.

Paper outline. In the next section we introduce the required notation followed
by a section on the matching semantics of a-regexes (regular expressions with
atomic subgroups). Then a section on the descriptional complexity of a-regexes
and the complexity of deciding emptiness follows. After this, we briefly discuss
how we arrived at our matching semantics definition, followed by our conclusions.

2 Definitions and Notation

An alphabet is a finite set of symbols. When not otherwise specified, Σ denotes
an arbitrary alphabet. A regular expression over Σ is, as usual, an element of Σ∪
{ε, ∅} (ε denotes the empty string), or an expression of one of the forms (E1 |E2),
(E1 · E2), or (E∗

1 ), where E1 and E2 are regular expressions. Some parenthesis
may be elided using the rule that the Kleene closure ‘∗’ takes precedence over
concatenation ‘·’, which takes precedence over union ‘|’. In addition, outermost
parenthesis may be dropped and E1 · E2 abbreviated as E1E2. The language
matched by an expression is defined in the usual way. Furthermore, an alphabet
S = {s1, . . . , sn} used as an expression S is an abbreviation for s1 |· · ·|sn, and for
any expression E we may write Ek as an abbreviation for E · · · E, i.e. k copies
of E (so |Ek| = k|E|, where |E| denotes the number of symbols in |E|, i.e. the
size of E). Regular expressions set in typewriter font are examples of the Java
syntax (same as most other libraries), which is not fully described here.

For a set S let 2S denote the powerset of S. For a string w and a set of strings
S, let w� S = {v | wv ∈ S}. A singleton set S and the single string may be used
interchangeably. The union, concatenation and Kleene star of languages (over
an alphabet Σ) is defined as usual. For a possibly infinite sequence v1, v2, . . .
let dedup(v1, v2, . . .) denote the list (always finite in the uses in this paper)
resulting when only the first instance of each value in the sequence is retained
(e.g. dedup(1, 2, 2, 1, 4, 3, 4) = 1, 2, 4, 3). The concatenation of two sequences
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σ = v1, . . . , vm and σ′ = v′
1, . . . , v

′
n is denoted by σ, σ′ and defined to be the

sequence v1, . . . , vm, v′
1, . . . , v

′
n. For a string w ∈ Σ∗ and sequence σ = v1, . . . , vm

with vi ∈ Σ∗, we denote by wσ the sequence wv1, . . . , wvm.

Remark 1. In many real-world systems the primary primitive for regular expres-
sion matching is a substring finding one, where an input string w is searched
for the left-most longest substring which matches the expression. Here we take
(mostly) the more classical view, concerning ourselves with the strings matched
entirely by the expression (with the exception of Definition 4). When we write
e.g. a∗b the corresponding Java regular expression is ^a*b$, the caret and dollar
sign being special operators which “anchor” the match to the ends of the string.

As usual we will need to consider finite automata in some of the following.

Definition 1. A non-deterministic finite automaton (NFA) is a tuple A =
(Q,Σ, q0, δ, F ) where: (i) Q is the finite set of states; (ii) Σ is the input alpha-
bet; (iii) q0 ∈ Q is the initial state; (iv) δ ⊆ Q × (Σ ∪ {ε}) × Q is the transition
relation; and (v) F ⊆ Q is the set of final states.

The language L(A) accepted by A is precisely the strings w = α1 · · · αn where
αi ∈ Σ ∪ {ε} for all i, such that there exists states q0, . . . , qn ∈ Q, where q0 is
the initial state, (qi, αi+1, qi+1) ∈ δ for each i, and qn ∈ F .

For brevity we may write e.q. AQ to denote the states of A, Aδ for the transition
function, and so on. Also, |A| denotes the number of states in A.

Definition 2. An NFA with negative regular lookaheads (NFA with lookaheads
for short) is an NFA A = (Q,Σ, q0, δ, F ), where δ may contain transitions of
the form (q, α,¬E, q′) ∈ δ, where E is a regular expression over Σ.

The language is as in Definition 1 except a transition (q, α,¬E, q′) ∈ δ may
only be used when the remainder of the input string is not in L(E).

We use lookaheads to demonstrate the regularity of atomic subgroups in an
intuitive way. For this purpose, note that NFA with lookahead can only represent
regular languages, as the lookaheads may be implemented by complementation
and intersection of regular languages (that is, a product automaton tracking all
lookaheads in parallel with the main expression).

3 Regular Expression Semantics and Atomic Subgroups

Informally, atomic subgroups are defined in terms of the depth-first search nature
of matchers (such as in e.g. Java), in that the implementation will discard the
portion of the stack (recording decisions made) corresponding to the atomic sub-
group upon exiting the group. That is, the matcher will not reconsider choices
made within the atomic subgroup once it has started to match the expression
immediately following the group, though it may reconsider the choices made
before entering the atomic subgroup, in which case the atomic subgroup match-
ing will also be reconsidered.



On the Semantics of Atomic Subgroups in Practical Regular Expressions 17

Definition 3. An a-regex over Σ is an element of Σ ∪ {ε, ∅}, or an expression
of the form (E1 |E2), (E1 ·E2), (E∗

1 ), or (�E1), where E1 and E2 are a-regexes. A
subexpression of the form (�E), for an expression E, is referred to as an atomic
subgroup (that is, where it is styled as (?>E) in e.g. Java we write (�E)).

Before going into the definition proper let us first give some informal examples
of the semantics of atomic subgroups (agreeing with those in practical software).

Example 1. The expression (�b∗)b matches nothing, as the atomic subgroup will
consume all bs available and refuse to give one up for the final b subexpression.
Meanwhile, the expression a∗(�ab | b∗)b will match {anb2 | n ≥ 1}. For example,
on a2b2 the matcher will first have the a∗ subexpression consume all as, then the
b∗ in the atomic subgroup “steals” all bs, making the match fail. However, as the
atomic subgroup will not relinquish a b the matcher will backtrack past it into
a∗, having it match one less a, after which reconsidering the atomic subgroup
instead matches its preferred ab, leaving the final b to be matched by the end
of the expression. Note that there exist E such that L(�E) �= L(E), and more
precisely, L(�E) ⊆ L(E) in general. For example (�a |aa) does not match aa as
it will always prefer to just match the first a without possibility of backtracking.

Example 2. A key use of atomic subgroups in practical matching is to limit
ambiguity for performance reasons (e.g. avoiding pitfalls such as those formal-
ized in [WvdMBW16]). Consider the following expression for matching email
addresses, extracted from the RegExLib repository [Reg] (here slightly simplified):

[0-9a-z]([-.\w]*[0-9a-z])*@(([0-9a-z])+([-\w]*[0-9a-z])*\.)+[a-z]{2,9}

We do not give a complete explanation of the syntax and matching behav-
ior of this expression, but there are two dangerous subexpressions here. Firstly,
([-.\w]*[0-9a-z])* is (exponentially) ambiguous on the string a · · · a since
both [-.\w] and [0-9a-z] represents subalphabets containing a, and thus aa
can be matched in more than one way by ([-.\w]*[0-9a-z])*. Using this
regular expression, in e.g. a Java system, to validate that a user has provided
a valid email address, would leave the system open to a regular expression
denial of service attack. To make it safe one would replace this subexpression by
(?>([-.\w]*[0-9a-z])*). The refusal to backtrack, introduced by using ?>,
will have no effect on the language accepted, as the next symbol in the input
sting must be an @, and the subgroup cannot read @. A similar problem, and
solution, exist for the subexpression ([-\w]*[0-9a-z])*). This kind of perfor-
mance concern apply especially in expressions using back references, which are
necessarily very expensive to match in the face of ambiguity (unless P equals
NP [Aho90]).

Example 3. The example eliciting the quote from [Fri97] on the introductory
page concerned writing a regular expression for rounding decimal numbers. The
expression should match a decimal number if it; either has more than two dig-
its on the right of the decimal point; and; if the third is non-zero, it has more
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than three. It would match 12.750001 with the intent of rounding to 12.75, and
match 2.1250 to round to 2.125, but not match 2.125 (in almost all practical
regular expression matchers the substring matched by a certain subexpression
can be extracted after matching, which is used in this example). Friedl suggests
the expression ([1-9][0-9]*\.([0-9][0-9]([1-9]|ε)))[0-9][0-9]*, where [x-z]

is shorthand for x | · · · | z, with the intent of using the first parenthesized subex-
pression (i.e. ([1-9] [0-9]*\.([0-9] [0-9]([1-9]|ε))) ) to “capture” the rounded
number. This is incorrect however, as the number 2.125 would get 2.12 captured
with the 5 being used to satisfy the final [0-9]. It is non-trivial to rewrite with-
out interfering with having the rounded substring be the one matched by the
first subexpression. This suggested the invention of atomic subgroups, i.e. the
ability to force the first subexpression to not not give up the trailing 5 once it
has matched it in for example 2.125, even though this makes the overall match
fail, realizing the intended language.

For classical regular expressions the language being accepted can be defined
inductively in terms of operations on the languages accepted by the subexpres-
sions, e.g. L(E1 · E2) = {wv | w ∈ L(E1), v ∈ L(E2)}, but this is not the case
for a-regexes. Instead we have to opt for a left-to-right approach on a specified
input string w, where a subexpression acts upon some prefix of the suffix of w
left to be matched. This definition was arrived at by careful analysis of the Java
implementation – see Sect. 5 for a discussion on this process.

Definition 4. For any a-regex E and string w let m(E,w) denote the sequence
of (not necessarily strict) prefixes of w which E matches, in order of priority.
Then for all w:

– m(ε, w) = ε, the list consisting of a single element, the empty string,
– m(α,w) = α if α ∈ Σ and w starts with α, otherwise m(α,w) is empty,
– m(E |E′, w) = dedup(m(E,w),m(E′, w)) (the concatenation deduplicated),
– m(E∗, w) = dedup(v1σ1, v2σ2, . . . , vnσn, ε) where m(E,w) = v1, . . . , vn and

for each i, σi = m(E∗, vi � w) if vi �= ε, and σi = ε otherwise,
– m(E ·E′, w) = dedup(v1m(E′, v1 � w), . . . , vnm(E′, vn � w)) where m(E,w) =

v1, . . . , vn,
– m((�E), w) = v1 if m(E,w) is non-empty and equal to v1, . . . , vn, otherwise

m((�E), w) is empty.

The language matched by E is denoted La(E) and defined as

{w | w ∈ Σ∗ occurs in m(E,w)}.

Remark 2. Note that setting σi = ε when vi = ε in the definition of m(E∗, w)
above, is required in order to avoid infinite recursion in the definition. Regular
expressions with subexpressions of the form E∗, such that ε ∈ L(E), are so-
called problematic regular expressions. These are special enough that they are
a source for differences in matching behavior in some implementations, and are
considered in for example [SMV12,BvdM16].
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Remark 3. We can define m(E∗?, w), where E∗? denotes the lazy Kleene star of
E by moving the ε to the front in a definition otherwise similar to m(E∗, w):
m(E∗?, w) = dedup(ε, v1σ1, v2σ2, . . . , vnσn). Intuitively, E∗? repeats match-
ing with E as few times as possible, whereas E∗ does the opposite. Thus
m(E∗?, an) = {ε, a, . . . , an} whereas m(E∗, an) = {an, an−1, . . . , ε}.

Remark 4. Atomic subgroups may be compared to cuts [BBD+13], a proposed
alternative to concatenation, denoted R1 ! R2 for expressions R1 and R2. The
expression R1 !R2 forces a “greedy” (i.e. longest possible prefix) match with R1,
whereas (�R1)R2 forces R1 to pick the “first” match according to a priority
implied by the syntactic details of the expression R1. So, for example, whereas
L((�ε|a)ab∗) equals ab∗, the cut expression (ε|a)!ab∗ would match aab∗. As such
the cut is a normal operator on languages with two arguments, whereas atomic
subgroups depend on the structure of the expressions.

Lemma 1. For a regular expression E the sequence m(E,w) contains each pre-
fix w′ of w with w′ ∈ L(E) precisely once, and m(E,w) contains no other strings.
As a direct effect it holds that L(E) = La(E).

Proof. Follows by induction on the number of operators appearing in E. 	

In the remainder of the paper we simply use the notation L(E), instead of

La(E), for an a-regex E. Let us consider some of the properties of a-regexes.

Lemma 2. For a-regexes E and F we have the following properties.

(i) L(EF ) ⊆ L(E)L(F ) (ii) L(E |F ) = L(E) ∪ L(F ) = L(F |E)
(iii) L(E∗) ⊆ L(E)∗ (iv) L(�E) ⊆ L(E)

Also (i) is an equality if E is a regular expression. In addition, there exists E
and F such that L(EF ) � L(E) · L(F ), L(E∗) � L(E)∗ and L(�E) � L(E).

Proof. Follows from Definition 4, e.g. abab /∈ L((�aba∗)∗) � L((�aba∗))∗ � abab
exemplifies property (iii). 	


In addition to the language captured, let us make the ordered nature of the
semantics which Definition 4 gives to each expression an explicit property.

Definition 5. For a-regexes F and G, we define F and G to be language equiva-
lent, denoted by F ≡L G, if L(F ) = L(G), whereas F and G are order equivalent,
denoted by F ≡O G, if m(F,w) = m(G,w) for all w ∈ Σ∗.

Lemma 3. The following language and order equivalences hold.

(i) (FG)H ≡O F (GH) (ii) (F |G) | H ≡O F |(G | H)
(iii) (F ∗)∗ ≡O F ∗ (iv) F ≡O G implies F ≡L G

However, there exists some F and G fulfilling each of the following inequalities.

(v) F |G �≡O G |F (vi) (�FG) �≡L (�F )(�G) (vii) F ≡L G but F �≡O G
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Proof. Follows directly from Definition 4. For (�FG) �≡O (�F )(�G) take e.g.
F = Σ∗ and G = a, which makes L((�F )(�G)) empty. 	


Order equivalence captures the semantics precisely: if two expressions are not
order-equivalent contexts exist where replacing one with the other (as subexpres-
sions of some expression) will result in different languages being accepted.

Lemma 4. Let F and G be two a-regexes over Σ. Let E and E′ be a-regexes
over Σ ∪ {#} (we assume # /∈ Σ) such that E′ is obtained from E by replacing
the subexpression F by the subexpression G. Then: (i) F ≡O G implies E ≡O E′

for all E; and; (ii) F �≡O G implies E �≡L E′ for some E.

Proof. Statement (i) follows from Definitions 4 and 5, since having order equiv-
alence means that m(F,w) = m(G,w) for all w, and the sequences m(F,w)
and m(G,w) entirely determine the influence of the subexpressions F and G on
m(E,w) and m(E′, w), respectively.

For statement (ii), take w such that m(F,w) �= m(G,w) and let m(F,w) =
v1 · · · vn and m(G,w) = v′

1 · · · v′
n′ . If {v1, . . . , vn} �= {v′

1, . . . , v
′
n′} the languages

L(F ) and L(G) already differ when restricted to prefixes of w, so just take E = F ,
E′ = G and we are done. Otherwise, let i be the smallest index with vi �= v′

i. As
vi and v′

i are both prefixes of w, we may assume without loss of generality that
w = viw2 = v′

iw1w2, with w1 �= ε. Now construct E = (�F (w2## | w1w2#))#,
which makes E′ = (�G(w2## | w1w2#))#. Then w## �∈ L(E), while w## ∈
L(E′). To see, for example, why w## �∈ L(E), note that as a subexpression, F
has to match either vi or v′

i in order to make it through the atomic subgroups
in E, when attempting to match w## with E. However, during this matching
process, the a-regex F will in fact use vi and not v′

i, since vi appears before v′
i in

m(E,w). Since using vi will cause both # end-markers to be used in the atomic
subgroup, we have that w## is not matched by E. 	


4 Automata Construction and Complexity Results

Despite the rather special semantics, adding atomic subgroups to regular expres-
sions does in fact preserve regularity, though with a high state complexity.

Lemma 5. For every a-regex E there exists a finite automaton A with L(E) =
L(A).

Proof. We first consider the case where E contains no subexpression of the form
F ∗, with ε ∈ L(F ). This restriction ensures that the constructed NFA contain
no ε-loops, and thus each input string has only finitely many acceptance paths.

We inductively construct an NFA for each a-regex E, denoted by M(E),
with lookaheads and prioritized ε-transitions (a concept to be defined below),
such that not only L(M(E)) = L(E), but also such that M(E) encodes (to be
made precise below) for each string w the order in which prefixes w′ of w with
w′ ∈ L(E), appear in m(E,w). M(E) has a single accept state with no outgoing
transitions. With the exception of the final state, each state p in M(E) has
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outgoing transitions of one of the following forms: (i) p has a single transition to
a state q on a symbol from Σ ∪ {ε}; (ii) p has transitions on ε to states q1 and
q2, but p → q1 has higher priority (a concept used and defined next to ensure
that each w ∈ L(E) has a unique accepting path in M(E)) than p → q2. Also,
prioritized ε-transitions may have regular lookahead.

Given a string w ∈ L(G), we define an accepting path for w as usual, but
whenever we encounter a state with transitions of type (ii), we always pick the
higher priority transition if taking this transition will still make acceptance of
w possible. By doing this, each w ∈ L(E) will have a unique accepting path in
M(E). Note that in terms of language accepted, the priorities on transitions play
no role. Also, note that if w′ and w′′ are both prefixes of a string w, with w′, w′′ ∈
L(E), then the accepting paths ap(w′) and ap(w′′) of w′ and w′′ respectively,
will be such that at some state p with prioritized outgoing ε-transitions, the one
acceptance path will take the higher priority transition and the other the lower
priority transition. The priorities on transitions at states with two outgoing ε-
transitions can thus be used to define an ordering on all prefixes of w in L(E),
denoted by the sequence M(E,w). By constructing M(E) inductively over the
operators in E, we show that M(E,w) = m(E,w) for all w ∈ Σ∗, which will
also imply that we have L(M(E)) = L(E). See Fig. 1 for examples.

The construction of M(E), when E = ∅, ε or a, for a ∈ Σ, is as usual. Now
suppose M(Ei), for i = 1, 2, is already constructed, and M(Ei, w) = m(Ei, w)
for all w ∈ Σ∗. Also, assume pi and qi are the initial and final states in Ei.
Next we describe the construction of (i) M(E1|E2), (ii) M(E1E2), (iii) M(E1

∗)
and (iv) M((�E1)), and leave it to the reader to verify from Definition 4 that
M(E,w) = m(E,w), for all w ∈ Σ∗, in each of these four cases.

(i) Create a new initial state p and final state q. In addition to these two states,
we use the states and transitions as in E1 and E2. We add prioritized ε-
transitions from p to p1 and p2, with p → p1 having higher priority. We also
add ε transitions from q1 and q2 to q.

(ii) We use the states and transitions as in E1 and E2 and merge states q1 and
p2. We use p1 as initial and q2 as final state.

Fig. 1. NFA with lookahead constructed as defined in Lemma 5. Wavy and dashed lines
represent high and low priority transitions respectively. Negative lookaheads are shown
in angle brackets. On the left the expression ab | b∗, in the middle the same expression
inside an atomic subgroup, getting the prioritized edges augmented by lookaheads on
the low-priority case. Right is the full result for an expression discussed in Example 1.
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(iii) Create a new final state q and relabel the old final state q1 in E1 as the new
initial state. In addition to the state q, we use the states and transitions as
in E1. We add prioritized ε-transitions from q1 to p1 and q, with q1 → p1
having higher priority.

(iv) We keep the states and transitions as in E1, but for all states p′ having
prioritized ε-transitions to q′

1 and q′
2 (with p′ → q′

1 having highest priority),
we add regular lookahead ¬(E1)p′,q′

2
to p′ → q′

2, where (E1)p′,q′
2

is obtained
as follows. Let (E1)q′

1
be a regular expression for the language accepted by

M(E1) when q′
1 is initial, then (E1)p′,q′

2
= (E1)q′

1
Σ∗.

Next we discuss the modifications required for subexpression of the form E1
∗,

with ε ∈ L(E1). In the construction of E1
∗ given in (iii) above we end up with

potentially infinitely many acceptance paths for some strings when ε ∈ L(E1).
This problem can be addressed by a procedure called flattening, described in the
proof of Theorem 3 in [BvdM16]. According to Definition 4, in cases where ε
is the next prefix that should be matched (by the subexpression E1) based on
priority of prefix matching, the process of matching with E1 (again) is disallowed.
Flattening ensures this behavior by replacing consecutive ε-transitions (on a path
in the NFA) with a single ε-transition, while taking all lookaheads on a given
path of ε-transitions and replacing them with a regular expression equivalent
to the intersection of encountered lookaheads. Once we apply this procedure, ε-
selfloops may be obtained, which are simply not used in the flattened version of
M(E1

∗). It should be noted that applying the flattening procedure may produce
states with more than two outgoing prioritized transitions. 	

Remark 5. The proof above can allow for lazy Kleene closures by switching the
priorities of the outgoing ε-transitions from state q1 in M(E∗

1).

Lemma 6. For every a-regex E there exists an NFA A such that L(E) = L(A)
and |A| ∈ 2O((k+1)|E|) where k is the number of atomic subgroups in E.

Proof (sketch). A Boolean automaton with n states can be simulated by an NFA
with 2n + 1 states [HK11], and can be used to implement lookaheads. Without
a complete definition, note that Boolean automata may have transitions of the
form (q, α, (p ∧ ¬p′)), i.e., one can in q accept αw if w can be accepted from p
but it cannot be accepted from p′ ([HK11] does not permit α = ε, but without
ε-loops and each state having either transitions on symbols or ε, but not both,
ε-transitions can be removed by replacing a state with the Boolean formula
defining the transition on ε, in other Boolean formulas). A transition from q to
p with lookahead ¬F can be simulated in a Boolean automaton by constructing
a Boolean automaton A with L(F ) = L(A) and (q, ε, (p ∧ ¬Aq0)) ∈ Aδ.

To complete the proof we argue that the NFA with lookaheads M(E) con-
structed in the proof of Lemma 5 can be converted into a Boolean automaton
with O((k + 1)|M(E)|) states, where k is the number of atomic subgroups in
E. Notice that M(E) has O(|E|) states as constructed. As only the language
matters, prioritized transitions are treated as ε-transitions.
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Consider a lookahead ¬GΣ∗ added to a transition when constructing M(�F )
in Lemma 5. Notice that there will exist some q ∈ M(FΣ∗)Q such that L(GΣ∗)
is accepted by M(FΣ∗) when starting in q (choosing the q which corresponds to
the higher-priority choice). As such, let {E1, . . . , Ek} be all the subexpressions
such that each (�Ei) occurs in E. Then construct the disjoint union of all these
automata A = M(E)∪M(E1Σ

∗)∪· · ·∪M(EkΣ∗) taking Aq0 = M(E)q0 . Then,
for each transition (q, α,¬GΣ∗, p) in A find the state r such that A accepts
L(GΣ∗) when started in r (as noted above r was originally in M(EiΣ

∗)Q for
the Ei most closely enclosing this transition), and replace the transition by
(q, α, (p ∧ ¬r)). The intersected lookaheads created by the flattening at the end
of Lemma 5 can be handled by a conjunction of lookaheads in the formula. 	

Theorem 1. The class of languages matched by a-regexes is precisely the class
of regular languages.

Proof. This follows from the combination of Lemma 1, as a regular expression is
an a-regex representing the same language, and Lemma 5, demonstrating that
a finite automaton can describe the language of an a-regex. 	


We now demonstrate that a-regexes are exponentially more succinct than
regular expressions for some languages. We start with two utility lemmas, which
demonstrate that we can perform a limited set subtraction and intersection of
languages using atomic subgroups.

Lemma 7. For a-regexes F and G over the alphabet Σ with ε �∈ L(G) we have
that L((�(FΣ∗ | ε))G) = L(G) \ L(FΣ∗).

Proof. From L(�FΣ∗) = L(FΣ∗) (both consist of all strings which have a prefix
in L(F )) and ε �∈ L(G) it follows that L((�(FΣ∗ | ε))G) ∩ L(FΣ∗) = ∅. To
complete the proof we need to show that if w ∈ L(G) but w �∈ L(FΣ∗), then
w ∈ L((�(FΣ∗ |ε))G). This is indeed the case since w �∈ L(FΣ∗) implies that ε,
and not FΣ∗, is used when matching a string w with (�(FΣ∗ | ε))G. 	

Lemma 8. Let E1, . . . , En be a-regexes over the alphabet Σ and # �∈ Σ. Then
there is an a-regex E over the alphabet Σ∪{#} such that |E| ≤ cn|Σ|+∑n

i=1 |Ei|,
for some constant c, and L(E) = (L(E1) ∩ . . . ∩ L(En))#.

Proof. Let Γ = Σ ∪ {#}. The language equality when replacing Σ by Γ in
Lemma 7 becomes:

L((�(FΓ ∗ | ε))G) = L(G) \ L(FΓ ∗) (1)

Let E′
1 = (�(E1#Γ ∗ | ε))Σ∗# be the lhs of (1) when setting F = E1# and G =

Σ∗#. Then from (1) we have L(E′
1) = L(Σ∗#)\L(E1#Γ ∗) = (L(Σ∗)\L(E1))#.

Next, let E1,2 = (�(E′
1Γ

∗ | ε))E2#, again forming the lhs of (1) when taking
F = E′

1 and G = E2#. Again from (1) we have L(E1,2) = L(E2#) \ L(E′
1) =

(L(E1) ∩ L(E2))#. The result now follows by repeating this construction. 	

Using the above lemmas we can now demonstrate a lower bound on the

worst-case state complexity of an a-regex.
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Theorem 2. There exists a sequence F1, F2, . . . of a-regexes of increasing size
such that the number of states in a minimal DFA for L(Fn) is in 22

Ω(
√

|Fn|)
.

Proof. By using Lemma 8 we obtain a sequence of a-regexes Fn with L(Fn) =
Σ∗a((Σp1)+ ∩ . . .∩ (Σp1)+)# and |Fn| ∈ Θ(p1 + . . .+ pn), where a ∈ Σ, |Σ| ≥ 2
and p1, . . . , pn the first n prime numbers. Note that L(Fn) = Σ∗a(Σrn)+#,
where rn = p1 · p2 · . . . · pn. Let D(Ln) be the complete minimal DFA for L(Fn)
and s(n) the number of states in D(Fn). Thus s(n) = 2rn+1 + 2 (which can for
example be verified by using derivatives). By showing that rn ∈ 2Ω(

√
p1+...+pn)

we thus have that s(n) ∈ 22
Ω(

√
|Fn|)

. To obtain that rn ∈ 2Ω(
√

p1+...+pn), make use
of the results stating that; the sum of the first n prime numbers is asymptotically
equal to (n2 ln n)/2; and; the product of the first n prime numbers (the so called
primorial function), is equal to e(1+o(1))n lnn. 	


For NFA the lower bound on worst-case state complexity indirectly estab-
lished in Theorem 2 (2Ω(

√
n) for NFA) can be improved upon.

Theorem 3. For every integer k ≥ 1 there exists an a-regex Ek of size O(k)
such that a state minimal NFA (and thus also every regular expression) for L(Ek)
contains 2Ω(k) states. Furthermore, Ek contains only one atomic subgroup.

Proof. Let Σ = {0, 1} and for k ≥ 1 let F = Σ∗(0Σk−11 |1Σk−10) and G = Σ2k

in Lemma 7. Then if Ek = (�(FΣ∗ | ε))G, we have, via Lemma 7, that

L(Ek) = L(G) \ L(FΣ∗) = Σ2k \ L(Σ∗(0Σk−11 |1Σk−10)Σ∗) = {ww |w ∈ Σk}.

To complete the proof, note that from the pigeon-hole principle it follows that
no NFA with fever than 2k states can accept the language L(Ek) (for a detailed
argument see the proof of Theorem 6 in [BBD+13] where a language very similar
to L(Ek) is considered). 	


Finally we show that deciding emptiness of a-regexes is PSPACE-complete.

Theorem 4. The problem of deciding whether L(E) = ∅, for an a-regex E, is
PSPACE-complete.

Proof. First we show that deciding emptiness is PSPACE-hard. With Γ =
Σ ∪ {#}, where # �∈ Σ, and E′

1 = (�(E1#Γ ∗ | ε))Σ∗#, we have from the
proof of Lemma 8 that L(E′

1) = (L(Σ∗) \ L(E1))#. Thus L(E′
1) = ∅ precisely

when L(E1) = Σ∗. Since deciding if L(E1) = Σ∗ for a regular expression E1 is
PSPACE-hard, we have that deciding emptiness for a-regexes is PSPACE-hard.

It can be decided whether L(E) = ∅ in PSPACE by constructing the Boolean
automaton described in the proof of Lemma 6 (polynomial in the size of E),
this automaton can then be converted into an alternating finite automaton and
emptiness-checked in PSPACE using results from [HK11]. 	




On the Semantics of Atomic Subgroups in Practical Regular Expressions 25

5 On Arriving at the Semantics

The atomic subgroups semantics defined in this paper should agree with most
common regular expression libraries, but the reference point primarily used has
been the Java implementation (where they are called “independent subgroups”).
The priorities of Definition 4 follow from the depth-first search implementation
which Java and many others use (or at least simulate the effects of), seman-
tics which are treated at length in [BvdM16], where the specifics of the Java
implementation are also described. For atomic subgroups specifically a further
analysis of the Java source code (version 8u40-25) was performed. In so doing we
informally deduced the stack-discarding behavior which causes the atomic sub-
group semantics in Java. However, the source code for the matcher itself is close
to 6000 lines, supported by several other classes, and has little documentation,
making a truly formal proof of equivalence fall outside the scope of this paper.

To corroborate the semantics of Definition 4 without a formal proof an
implementation computing m(E,w) for any expression E and string w was cre-
ated. This was compared to Java using both a full match (i.e. verifying that
w ∈ m(E,w) if and only if E matches w in Java), and by comparing the pre-
ferred prefixes (where the prefix of a string w matched by an expression E in
Java is compared with the first element in m(E,w)). All strings w ∈ {a, b, c}∗

with |w| ≤ 5 were tested against all expressions with up to three operations,
with no discrepancies found between Java and the definition.

6 Conclusions and Future Work

While this paper gives formal definitions and some key results on the previously
only informally documented atomic subgroups, numerous open questions remain.
Specifically, the complexity of the uniform membership problem (it is linear in
the non-uniform case due to the regularity of a-regexes) remains open (O(n3)
appears likely). Also, the worst-case bounds on the minimum number of states
required to accept the language matched by an a-regex are not tight, with DFA
having the span between 22

Ω(
√

|E|)
and 22

O((k+1)|E|)
(where k is the number of

atomic subgroups in E), and NFA between 2Ω(|E|) and 2O((k+1)|E|).
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Abstract. Order-Preserving DAG Grammars (OPDGs) is a subclass of
Hyper-Edge Replacement Grammars that can be parsed in polynomial
time. Their associated class of languages is known as Ordered DAG Lan-
guages, and the graphs they generate are characterised by being acyclic,
rooted, and having a natural order on their nodes. OPDGs are useful
in natural-language processing to model abstract meaning representa-
tions. We state and prove a Myhill-Nerode theorem for ordered DAG
languages, and translate it into a MAT-learning algorithm for the same
class. The algorithm infers a minimal OPDG G for the target language
in time polynomial in G and the samples provided by the MAT oracle.

1 Introduction

Graphs are one of the fundamental data structures of computer science, and
appear in every conceivable application field. We see them as atomic struc-
tures in physics, as migration patterns in biology, and as interaction networks
in sociology. For computers to process potentially infinite sets of graphs, i.e.,
graph languages, these must be represented in a finite form akin to grammars
or automata. However, the very expressiveness of graph languages often causes
problems, and many of the early formalisms have NP-hard membership prob-
lems; see, for example, [16] and [9, Theorem 2.7.1].

Motivated by applications in natural language processing (NLP) that require
more light-weight forms of representation, there is an on-going search for gram-
mars that allow polynomial-time parsing. A recent addition to this effort was
the introduction of order-preserving DAG grammars (OPDGs) [4]. This is a
restricted type of hyper-edge replacement grammars [9] that generate languages
of directed acyclic graphs in which the nodes are inherently ordered. The authors
provide a parsing algorithm that exploits this order, thereby limiting nondeter-
minism and placing the membership problem for OPDGs in O

(
n2 + nm

)
, where

m and n are the sizes of the grammar and the input graph, respectively. This is
to be compared with the unrestricted case, in which parsing is NP-complete.

The introduction of OPDGs is a response to the recent application [6] of
Hyperedge Replacement Grammars (HRGs) to abstract meaning representations
(AMRs) [2]. An AMR is a directed acyclic graph that describes the semantics
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of a natural language sentence, and a corpus with approx. 8 000 AMRs has been
compiled by the Information Sciences Institute (ISI) at USC.1 The formalisa-
tion of AMRs is still under discussion, but although restricted, OPDGs retain
sufficient expressive power to capture the AMRs in the ISI corpus.

In this paper, we continue to explore the OPDGs mathematical properties.
We provide an algebraic representation of their domain, and a Myhill-Nerode
theorem for the ordered DAG languages. We show that every ordered DAG
language L is generated by a minimal unambiguous OPDG GL, and that this
grammar is unique up to renaming of nonterminals. In this context, ‘unambigu-
ous’ means that every graph is generated by at most one nonterminal. This is
similar the behaviour of deterministic automata, in particular that of bottom-up
deterministic tree automata which take each input tree to at most one state.

One way of understanding the complexity of the class of ordered DAG lan-
guages, is to ask what kind of information is needed to infer its members. MAT
learning [1], where MAT is short for minimal adequate teacher, is one of the most
popular and well-studied learning paradigms. In this setting, we have access to
an oracle (often called the teacher) that can answer membership queries and
equivalence queries. In a membership query, we present the teacher with a graph
g and are told whether g is in the target language L. In an equivalence query,
we give the teacher an OPDG H and receive in return an element in the sym-
metric difference of L(H) and L. This element is called a counterexample. If L
has been successfully inferred and no counterexample exists, then the teacher
instead returns the special token ⊥.

MAT learning algorithms have been presented for a range of language classes
and representational devices [1,5,10,12,14,17,18]. There have also been some
results on MAT learning for graph languages. Okada et al. present an algorithm
for learning unions of linear graph patterns from queries [15]. These patterns are
designed to model structured data (HTML/XML). The linearity of the patterns
means that no variable can appear more than once. Hara and Shoudai con-
sider MAT learning for context-deterministic regular formal graph systems [11].
Intuitively, the context determinism means that a context uniquely determines
a nonterminal, and only graphs derived from this nonterminal may be inserted
into the context. Both restrictions are interesting, but neither is compatible with
our intended applications.

Due to space limitations, most proofs have been omitted, but are available
in a technical report [3].

2 Preliminaries

Sets, sequences, and numbers. The set of non-negative integers is denoted by N.
For n ∈ N, [n] abbreviates {1, . . . , n}, and 〈n〉 the sequence 1 · · · n. In particular,
[0] = ∅ and 〈0〉 = λ. We also allow the use of sets as predicates: Given a set
S and an element s, S(s) is true if s ∈ S, and false otherwise. When ≡ is an

1 The ISI corpus is available at http://amr.isi.edu.

http://amr.isi.edu
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equivalence relation on S, (S/ ≡) denotes the partitioning of S into equivalence
classes induced by ≡. The index of ≡ is |(S/ ≡)|.

Let S◦ be the set of non-repeating sequences of elements of S. We refer to
the ith member of a sequence s as si. When there is no risk for confusion, we use
sequences directly in set operations, as the set of their members. Given a partial
order � on S, the sequence s1 · · · sk ∈ S◦ respects � if si � sj implies i ≤ j.

A ranked alphabet is a pair (Σ, rank) consisting of a finite set Σ of symbols
and a ranking function rank : Σ 
→ N which assigns a rank rank(a) to every
symbol a ∈ Σ. The pair (Σ, rank) is typically identified with Σ, and the second
component is kept implicit.

Graphs. Let Σ be a ranked alphabet. A (directed edge-labelled) hypergraph over
Σ is a tuple g = (V,E, src, tar , lab) consisting of

– finite sets V and E of nodes and edges, respectively,
– source and target mappings src : E 
→ V and tar : E 
→ V ◦ assigning to each

edge e its source src(e) and its sequence tar(e) of targets, and
– a labelling lab : E 
→ Σ such that rank(lab(e)) = |tar(e)| for every e ∈ E.

Since we are only concerned with hypergraphs, we simply call them graphs.
A path in g is a finite and possibly empty sequence p = e1, e2, . . . , ek of edges

such that for each i ∈ [k − 1] the source of ei+1 is a target of ei. The length
of p is k, and p is a cycle if src(e1) appears in tar(ek). If g does not contain
any cycle then it is a directed acyclic graph (DAG). The height of a DAG G
is the maximum length of any path in g. A node v is a descendant of a node
u if u = v or there is a nonempty path e1, . . . , ek in g such that u = src(e1)
and v ∈ tar(ek). An edge e′ is a descendant edge of an edge e if there is a path
e1, . . . , ek in g such that e1 = e and ek = e′.

The in-degree and out-degree of a node u ∈ V is |{e ∈ E | u ∈ tar(e)}| and
|{e ∈ E | u = src(e)}|, respectively. A node with in-degree 0 is a root and a node
with out-degree 0 is a leaf. For a single-rooted graph g, we write root(g) for the
unique root node.

For a node u of a DAG g = (V,E, src, tar , lab), the sub-DAG rooted at u is the
DAG g ↓u induced by the descendants of u. Thus g ↓u = (U,E′, src′, tar ′, lab′)
where U is the set of all descendants of u, E′ = {e ∈ E | src(e) ∈ U}, and
src′, tar ′, and lab′ are the restrictions of src, tar and lab to E′. A leaf v of
g↓u is reentrant if there exists an edge e ∈ E \ E′ such that v occurs in tar(e).
Similarly, for an edge e we write g↓e for the subgraph induced by src(e), tar(e),
and all descendants of nodes in tar(e). This is distinct from g ↓ src(e) iff src(e)
has out-degree greater than 1.

Marked graphs. Although graphs, as defined above, are the objects we are ulti-
mately interested in, we will mostly discuss marked graphs. When combining
smaller graphs into larger ones, whether with a grammar or algebraic opera-
tions, the markings are used to know which nodes to merge with which.

A marked DAG is a tuple g = (V,E, src, tar , lab,X) where (V,E, src, tar , lab)
is a DAG and X ∈ V ◦ is nonempty. The sequence X is called the marking of g,
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Fig. 1. A 2-context c, a 2-graph g, and the substitution c[[g]]. Filled nodes convey the
marking of c and g, respectively. Both targets of edges and external nodes of marked
graphs are drawn in order from left to right.

and the nodes in X are referred to as external nodes. For X = v0v1 · · · vk, we
write head(g) = v0 and ext(g) = v1 · · · vk. We say that two marked graphs are
isomorphic modulo markings if their underlying unmarked graphs are isomor-
phic. The rank of a marked graph g is |ext(g)|.

Graph operations. Let g be a single-rooted marked DAG with external nodes X
and |ext(g)| = k. Then g is called a k-graph if head(g) is the unique root of g,
and all nodes in ext(g) are leaves.

If head(g) has out-degree at most 1 (but is not necessarily the root of g),
and either head(g) has out-degree 0 or ext(g) is exactly the reentrant nodes
of g ↓ head(g), then g is a k-context. We denote the set of all k-graphs over
Σ by G

k
Σ , and the set of all k-contexts over Σ by C

k
Σ . Furthermore, GΣ =

∪k∈NG
k
Σ and CΣ = ∪k∈NC

k
Σ . Note that the intersection GΣ ∩CΣ is typically not

empty. Finally, the empty context consisting of a single node, which is external,
is denoted by ε.

Given g ∈ G
k
Σ and c ∈ C

k
Σ , the substitution c[[g]] of g into c is obtained

by first taking the disjoint union of g and c, and then merging head(g) and
head(c), as well as the sequences ext(g) and ext(c) element-wise. The results is
a single-rooted, unmarked DAG. For an example, see Fig. 1.

Let g be a graph in G
0
Σ , e an edge and let h be the marked graph given by

taking g ↓ e and marking the (single) root, and all reentrant nodes. Then the
quotient of g ∈ G

0
Σ with respect to h, denoted g/h is the unique context c ∈ C

k
Σ

such that c[[h]] = g. The quotient of a graph language L ⊆ GΣ with respect to
g ∈ GΣ is the set of contexts L/g = {c | c[[g]] ∈ L}.

Let A be a symbol of rank k. Then A• is the graph (V, {e}, src, tar , lab,X),
where V = {v0, v1, . . . , vk}, src(e) = v0, tar(e) = v1 . . . vk, lab(e) = A, and
X = v0 . . . vk. Similarly, A� is the very same graph, but with only the root
marked, in other words, X = v0.

3 Well-Ordered DAGs

In this section, we present two formalisms for generating languages of DAGs,
one grammatical and one algebraic. Both generate graphs that are well-ordered
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in the sense defined below. We show that the two formalisms define the same
families of languages. This allows us to use the algebraic formulation as a basis
for the upcoming Myhill-Nerode theorem and MAT learning algorithm.

An edge e with tar(e) = w is a common ancestor edge of nodes u and u′ if
there are t and t′ in w such that u is a descendant of t and u′ is a descendant of
t′. If, in addition, there is no edge with its source in w that is a common ancestor
edge of u and u′, we say that e is a closest common ancestor edge of u and u′.
If e is a common ancestor edge of u and v we say that e orders u and v, with u
before v, if tar(e) can be written as wtw′, where t is an ancestor of u and every
ancestor of v in tar(e) can be found in w′.

The relation �g is defined as follows: u �g v if every closest common ancestor
edge e of u and v orders them with u before v. It is a partial order on the leaves
of g [4]. Let g be a graph. We call g well-ordered, if we can define a total order
� on the leaves of g such that �g⊆ �, and for every v ∈ V and every pair u, u′

of leaves of g↓v, u �g↓v u′ implies u � u′.

3.1 Order-Preserving DAG Grammars

Order-preserving DAG grammars (OPDGs) are essentially hyper-edge replace-
ment grammars with added structural constraints to allow efficient parsing.2

The idea is to enforce an easily recognisable order on the nodes of the gener-
ated graphs, that provides evidence of how they were derived. The constraints
are rather strict, but even small relaxations make parsing NP-hard; for details,
see [4]. Intuitively, the following holds for any graph g generated by an OPDG:

– g is a connected, single-rooted DAG,
– only leaves of g have in-degree greater than 1, and
– g is well-ordered.

Definition 1 (Order-preserving DAG grammar [4]). An order-preserving
DAG grammar is a system H = (Σ,N, I, P ) where Σ and N are disjoint ranked
alphabets of terminals and nonterminals, respectively, I is the set of starting
nonterminals, and P is a set of productions. Each production is of the form
A → f where A ∈ N and f ∈ G

rank(A)
Σ∪N satisfies one of the following two cases:

1. f consists of exactly two nonterminal edges e1 and e2, both labelled by A,
such that src(e1) = src(e2) = head(f) and tar(e1) = tar(e2) = ext(f). In
this case, we call A → f a clone rule.

2. f meets the following restrictions:
– no node has out-degree larger than 1
– if a node has in-degree larger than one, then it is a leaf;
– if a leaf has in-degree exactly one, then it is an external node or its unique

incoming edge is terminal

2 In [4], the grammars are called Restricted DAG Grammars, but we prefer to use a
name that is more descriptive.
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– for every nonterminal edge e in f , all nodes in tar(e) are leaves, and
src(e) �= head(f)

– the leaves of f are totally ordered by �f and ext(f) respects �f .

Fig. 2. Examples right-hand sides f of normal form rules of types (a), (b), and (c) for
a nonterminal of rank 3.

A derivation step of H is defined as follows. Let ρ = A → f be a production, g
a graph, and gA a subgraph of g isomorphic modulo markings to A�. The result
of applying ρ to g at gA is the graph g′ = (g/gA)[[f ]], and we write g ⇒ρ g′.
Similarly, we write g ⇒∗

H g′ if g′ can be derived from g in zero or more derivation
steps. The language L(H) of H are all graphs g over the terminal alphabet Σ
such that S• ⇒∗

H g, for some S ∈ I. Notice that since a derivation step never
removes nodes and never introduces new markings, if we start with a graph g
with |ext(g)| = k, all derived graphs g′ will have |ext(g′)| = k. In particular, if
we start from S•, all derived graphs will have |ext(g′)| = rank(S).

Definition 2 (Normal form [4]). An OPDG H is on normal form if every
production A → f is in one of the following forms:

(a) The rule is a clone rule.
(b) f has a single edge e, which is terminal.
(c) f has height 2, the unique edge e with src(e) = head(f) is terminal, and all

other edges are nonterminal.

We say that a pair of grammars H and H ′ are language-equivalent if L(H) =
L(H ′). As shown in [4], every OPDG H can be rewritten to a language-equivalent
OPDG H ′ in normal form in polynomial time. For an example of normal form
rules, see Fig. 2.

For a given alphabet Σ, we denote the class of graphs ∪H is an OPDGL(H)
that can be generated by some OPDG by HΣ , and by Hk

Σ the class of rank k
marked graphs that can be generated from a rank k nonterminal.

3.2 DAG Concatenation

In Sects. 4 and 5, we need algebraic operations to assemble and decompose
graphs. For this purpose, we define graph concatenation operations that mimic
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the behaviour of our grammars and show that the class of graphs that can be
constructed in this way is equal to HΣ .

In particular, we construct our graphs in two separate ways, mirroring the
cloning and non-cloning rules of the grammars:

– 2-concatenation, which takes 2 rank-m graphs and merges their external
nodes, preserving their order, corresponding to the clone rules in Definition 2.

– a-concatenation, for a ∈ Σ, takes an a-labelled rank(a) terminal edge and a
number (less than or equal to rank(a)) of marked graphs, puts the graphs
under targets of the terminal edge, and merges some of the leaves. This cor-
responds to rules of type (b) or (c) in Definition 2.

The second operation is more complex, since we must make sure that order
is preserved. Given a terminal a of rank k and a sequence g1, . . . , gn, with n ≤ k,
of marked graphs, new graphs are created in the following way. We start with
a� and, for each i ∈ [n] identify head(gi) with a unique leaf of a�, intuitively
“hanging” g1, . . . , gn under an edge labelled a. We then identify some of the
leaves of the resulting graph. To specify the result of such a concatenation, and
to ensure that it preserves order, we equip it with the following parameters.

(1) A number m. This is the number of nodes we will merge the external nodes
of the graphs g1, . . . , gn and the remaining leaves of the a-labelled edge into.

(2) A subsequence s = s1 . . . sn of 〈k〉 of length n. This sequence defines under
which leaves of a� we are going to hang which graph.

(3) A subsequence x of 〈m〉. This sequence defines which of the leaves of the
resulting graph will be external.

(4) An order-preserving function ϕ that defines which leaves to merge. Its domain
consists of the external leaves of the graphs g1, . . . , gn as well as the leaves of
a� to which no graph from g1, . . . , gn is assigned. Its range is [m].

Before we describe the details of the concatenation operation, we must go
into the rather technical definition of what it means for ϕ to be order-preserving.
It has to fulfil the following conditions:

(i) If both u and v are marked leaves of gi, for some i ∈ [n], and u comes before
v in ext(gi), then ϕ(u) < ϕ(v).

(ii) If |ϕ−1(i)| = 1, then either i ∈ x or the unique node v with ϕ(v) = i belongs
to a�.

(iii) If there are i and j in [m], with i < j such that no graph g� for � ∈ [n]
contains both a member of ϕ−1(i) and a member of ϕ−1(j), then there
exists a p ∈ [k] such that either
– p is the qth member of s, and gq contains a member of ϕ−1(i), or
– the pth member of tar(a) is in ϕ−1(i)
and furthermore there is no r < p such that either
– r is the tth member of s and gt contains a member of ϕ−1(j), or
– the rth member of tar(a) is itself in ϕ−1(j)



34 H. Björklund et al.

Definition 3 (a-concatenation). Given a terminal a, the a-concatenation of
g1, . . . , gn, parameterized by m, s, x, φ is the graph g obtained by doing the fol-
lowing. For each i ∈ [n], identify head(gi) with the leaf of a� indicated by si.
For each j ∈ [m], identify all nodes in ϕ−1(j). Finally, ext(g) is the subsequence
of the m nodes from the previous step indicated by x.

We denote by AΣ the class of marked graphs that can be assembled from
Σ through a- and 2-concatenation, and by Ak

Σ ⊆ AΣ the graphs of rank k.
Each concatenation operation can be defined as an algebraic operation that is
defined for a sequence of graphs if they have the appropriate ranks. Let ψ be
a concatenation operator and g1, . . . , gn a sequence of graphs for which it is
defined. Let g = ψ(g1, . . . , gn). For some i ∈ n, let g′ be a graph of the same
rank as gi. Then ψ(g1, . . . , gi−1, g

′, gi+1, . . . , gn) = (g/gi)[[g′]].
The following is the main result of this section.

Theorem 4. AΣ = HΣ, and Ak
Σ = Hk

Σ for all k.

4 A Myhill-Nerode Theorem

This section defines the Nerode congruence ≡L for an ordered DAG language L.
A pair of graphs are congruent with respect to L, if they can be replaced by
one another in any context in CΣ , without disturbing the encompassing graph’s
membership in L. The learning algorithm in Sect. 5 produces increasingly more
refined approximations of ≡L until it reaches ≡L itself. This treats ≡L as a
corner case in a family of relations, each induced by a subset of CΣ .

Definition 5. Let C ⊆ CΣ. The equivalence relation ≡L,C on AΣ is given by:
g ≡L,C g′ if and only if (L/g ∩ C) = (L/g′ ∩ C). The relation ≡L,CΣ

is known
as the Nerode congruence with respect to L and written ≡L.

It is easy to see that for two graphs to be equivalent, they must have equally
many external nodes. The graph g is dead (with respect to L) if L/g = ∅, and
graphs that are not dead are live. Thus, if ≡L has finite index, there must be a
k ∈ N such that every g ∈ AΣ with more than k external nodes is dead.

In the following, we use Ψ(Σ) to denote the set of all concatenation operators
applicable to graphs over Σ.

Definition 6 (Σ-expansion). Given N ⊆ AΣ, we write Σ(N) for the set:

{ψ(g1, . . . , gm) | ψ ∈ Ψ(Σ), g1, . . . , gm ∈ N and ψ(g1, . . . , gm) is defined}.

In the upcoming Sect. 5, Theorem 9 will form the basis for a MAT learn-
ing algorithm. As is common, this algorithm maintains an observation table T
that collects the information needed to build a finite-state device for the tar-
get language L. The construction of an OPDG GT from T is similar to that
from the Nerode congruence, so introducing it here avoids repetition. Intuitively,
the observation table is made up of two sets of graphs N and P , representing
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nonterminals and production rules, respectively, and a set of contexts C used to
explore the congruence classes of N ∪ P with respect to L.

To facilitate the design of new MAT learning algorithms, the authors of [7]
introduce the notion of an abstract observation table (AOT); an abstract data
type guaranteed to uphold certain helpful invariants.

Definition 7 (Abstract observation table, see [7]). Let N ⊆ P ⊆ Σ(N) ⊆
AΣ, with N finite. Let C ⊆ CΣ, and let ρ : P 
→ N . The tuple (N,P,C, ρ) is an
abstract observation table with respect to L if for every g ∈ P ,

1. L/g �= ∅, and
2. ∀g′ ∈ N \ {ρ(g)} : g �≡L,C g′.

The AOT in [7] accommodates production weights taken from general semi-
rings. The version recalled here has a number of modifications: First, we dispense
with the sign-of-life function that maps every graph g ∈ N to an element in L/g.
Its usages in [7] are to avoid dead graphs, and to compute the weights of produc-
tions involving g. From the way new productions and nonterminals are discov-
ered, we already know that they are live, and as we are working in the Boolean
setting, there are no transition weights to worry about. Second, we explicitly
represent the set of contexts C to prove that the nonterminals in N are distinct.
Both realisations of the AOT discussed in [7] collect such contexts, though it is
not enforced by the AOT. Third, we do not require that L(g) = L(ρ(g)), as this
condition is not necessary for correctness, though it may reduce the number of
counterexamples needed. The data fields and procedures have also been renamed
to reflect the shift from automata to grammars. This change is only superficial,
as there is a direct correspondence between states and nonterminals, transitions
and productions, and accepting states and initial nonterminals. From here on, a
bold font is used to refer to graphs as nonterminals.

Definition 8. Let T = (N,P,C, ρ) be an AOT with respect to L. Then GT is
the OPDG (Σ,NT, IT, PT) where NT = N , IT = N ∩ L, and

PT = {ρ(g) → ψ(ρ(g1), . . . ,ρ(gm)) | g = ψ(g1, . . . , gm) ∈ P} .

Given an ODPG G = (Σ,N, I, P ) and a nonterminal f ∈ N , we let Gf =
(Σ,N, {f}, P ). The grammar G is unambiguous if for every g,h ∈ N , L(Gg) ∩
L(Gh) �= ∅ implies that g = h.

Theorem 9 (Myhill-Nerode theorem). The language L ⊆ AΣ can be gen-
erated by an OPDG if and only if ≡L has finite index. Furthermore, there is a
minimal unambiguous OPDG GL with L(GL) = L that has one nonterminal for
every live equivalence class of ≡L, and this is unique up to nonterminal names.

In the following proof sketch, D = {g ∈ AΣ | g is dead}. In the “if” direction,
we consider an AOT (N,P,C, ρ) where N contains representative elements of
(AΣ/ ≡L) \ {D}, P = Σ(N) \ D, C = CΣ , and, for every g ∈ P , ρ(g) is the
representative of g’s equivalence class in N . From the fact that g ∈ L(GT

ρ(g)),
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for every g ∈ AΣ , the first result follows. In the “only if” direction, we note that
if G is an OPDG with nonterminals N , and L(GA)(g) = L(GA)(h) for g, h ∈ AΣ

and all A ∈ N , then g ≡L(G) h. As N is finite, so is the index of ≡L(G).
Notice that when L only contains ordered ranked trees (i.e., when the root

has out-degree one and no node has in-degree greater than one), Theorem 9
turns into the Myhill-Nerode theorem for regular tree languages [13], and the
constructed device is essentially the minimal bottom-up tree automaton for L.

5 MAT Learnability

In Sect. 4, the data fields of the AOT were populated with a so-called charac-
teristic set for L, and this yielded the minimal unambiguous OPDG GL for L.
In this section, we describe how the necessary information can be incrementally
built up by querying a MAT oracle. Due to space restrictions, background results
are covered in brief and we refer to [3] for a detailed exposition.

The learning algorithm (henceforth; the learner) interacts with the oracle
(the teacher) through the following procedures:

– Equals?(H) returns a graph in L(H) � L, or ⊥ if no such exists.
– Member?(g) returns the Boolean value L(g).

The information gathered from the teacher is written and read from the AOT
through the procedures listed below. In the declaration of these, (N,P,C, ρ) and
(N ′, P, C ′, ρ′) are the data values before and after application, respectively.

– Initialise sets N ′ = P ′ = C ′ = ∅.
– AddProduction(g) with g ∈ Σ(N) \ P . Requires that L/g �= ∅, and guar-

antees that N ⊆ N ′ and P ∪ {g} ⊆ P ′.
– AddNonterminal(c, g) with g ∈ P \ N and c ∈ CΣ . Requires that ∀g′ ∈

N : g �≡L,C∪{c} g′, and guarantees that N ∪{g} ⊆ N ′, P ⊆ P ′, and C ⊆ C ′ ⊆
C ∪ {c}.

– grammar returns GT without modifying the data fields.

The learner and the procedure Extend are as they stand in [7]. The learner
maintains an AOT T, from which it induces an OPDG GT. This OPDG is given
to the teacher in the form of an equivalence query. If the teacher responds with
the token ⊥, then the language has been successfully acquired. Otherwise, the
learner receives a counterexample g ∈ L(GT) � L, from which it extracts new
facts about L through the procedure Extend and includes these in T.

The procedure Extend uses contradiction backtracking to gain new knowl-
edge from the counterexample g [8]. This consists in simulating the parsing of
g with respect to the OPDG GT. The simulation is done incrementally, and in
each step a subgraph h ∈ Σ(N) \ N of g is nondeterministically selected. If h is
not in P , this indicates that a production is missing from GT and the problem
is solved by a call to AddProduction. If h is in P , then the learner replaces
it by ρ(h) and checks whether the resulting graph g′ is in L. If L(g) �= L(g′),



On the Regularity and Learnability of Ordered DAG Languages 37

Algorithm 1. The procedure AddProduction

Data: p ∈ Σ(N) \ P
P ← P ∪ {g};
if ∃g′ ∈ N : g ≡L,C g′ then

ρ(g) ← g′;
else

if ∃g′ ∈ N then
ρ(g) ← g′;

else
AddNonterminal(ε, g);

Algorithm 2. The procedure AddNonterminal

Data: g ∈ P \ N , c ∈ CΣ , and ∀g′ ∈ N : g �≡L,C∪{c} g′

N ← N ∪ {g};
if g ≡L,C ρ(g) then

C ← C ∪ {c};

g′ ← ρ(g);
for h ∈ ρ−1(g′) do

if h ≡L,C g then
ρ(h) ← g;

then evidence has been found that h and ρ(h) do not represent the same congru-
ence class and the learner calls AddNonterminal. If the membership has not
changed, then the procedure calls itself recursively with the graph g′ as argu-
ment, which has strictly fewer subgraphs not in P . Since g is a counterexample,
so is g′. If this parsing process succeeds in replacing all of g with a graph g′ ∈ N ,
then L(g) = L(g′) and g ∈ L(GT

g′). Since g′ ∈ N , L(GT)(g′) = L(g′). It follows
that L(GT)(g) = L(g) which contradicts g being a counterexample.

From [7], we know that if Extend adheres to the pre- and postconditions of
the AOT procedures, and the target language L can be computed by an OPDG,
then the learner terminates and returns a minimal OPDG generating L. It thus
remains to discuss the procedures AddProduction and AddNonterminal
(Algorithms 1 and 2, respectively), and show that these behave as desired. The
procedure AddProduction simply adds its argument g to the set P of graphs
representing productions. It then looks for a representative g′ for g in N , such
that g′ ≡L,C g. If no such graph exists, it chooses any g′ ∈ N , or if N is empty,
adds g itself to N with a call to AddNonterminal. Similarly, AddNonter-
minal adds g to the set N of graphs representing nonterminals. If g cannot be
distinguished from ρ(g), which is the only element in N that could possibly be
indistinguishable from g, then c is added to C to tell g and ρ(g) apart. Finally,
the representative function ρ is updated to satisfy Definition 7.

It is easy to verify that (i) the proposed procedures deliver on their guar-
antees if their requirements are fulfilled, (ii) that where they are invoked,
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the requirements are indeed fulfilled, and (iii) the conditions on the observa-
tion table given in Definition 7 are always met. By [7, Corollary 8], we arrive at
Theorem 10.

Theorem 10. The learner terminates and returns GL.

We close this section with a discussion of the learner’s complexity. To infer
the canonical ODGP GL = (Σ,N, I, P ) for L, the learner must gather as many
graphs as there are nonterminals and transitions in GL. In each iteration of the
main loop, it parses a counterexample g in polynomial time in the size of g and
T (the latter is limited by the size of GL), and is rewarded with at least one
production or nonterminal. The learner is thus polynomial in |GL| = |N | + |P |
and the combined size of the counterexamples provided by the teacher.
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Abstract. We introduce a new measure of descriptional complexity on
finite automata, called the number of active states. Roughly speaking,
the number of active states of an automaton A on input w counts the
number of different states visited during the most economic computation
of the automaton A for the word w. This concept generalizes to finite
automata and regular languages in a straightforward way. We show that
the number of active states of both finite automata and regular languages
is computable, even with respect to nondeterministic finite automata.
We further compare the number of active states to related measures for
regular languages. In particular, we show incomparability to the radius of
regular languages and that the difference between the number of active
states and the total number of states needed in finite automata for a
regular language can be of exponential order.

1 Introduction

The concept of finite (state) automata is fundamental for nearly all areas of
computer science. The class of finite automata possesses many nice features,
for instance, decidability properties and algebraic characterizations. This led to
several efficient algorithms available for finite automata, making them accessible
for a bench of different applications. However, the finite automata used in appli-
cations typically have a fairly large number of states, in the sense that minimal
finite automata need hundreds of thousands or even millions of states in order
to express all relevant properties of the systems to be modeled. For example,
in the field of reactive or embedded systems, where concurrent processes cause
an “explosion” of the state space, Mealy automata or Kripke structures used
for modeling controllers may be of enormous size, e.g., see [3] and [7, Table 5.1].
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Consequently, the efficiency of algorithms such as those for model checking may
become less feasible or can be applied only to relatively small subsystems.

In this paper, a new measure of descriptional complexity for finite automata,
namely the number of active states, is introduced, which may contribute to better
cope with huge finite automata. In contrast to other, well-known measures for
finite automata such as the state complexity or the radius, the number of active
states is a dynamic measure: for any computation, the number of different states
is counted that are visited during the computation. This notion generalizes to
words by taking the computation with the smallest number of active states into
account, and it is defined for automata as the number of active states of the “most
expensive” word. Finally, the number of active states of a regular language with
respect to deterministic (nondeterministic) finite automata is the measure of
the best deterministic (nondeterministic, respectively) automaton accepting the
language. The notion of active states is defined in a similar way as the number of
active symbols for Lindenmayer and cooperating distributed grammar systems,
where a symbol is referred to as active if it can be non-identically rewritten,
that is, if there is a production of the form a → x with a �= x [2,6,9]. Then, an
active symbol can contribute to the generation (evolution) of sentential forms
in a similar way as active states are used during the analysis of strings. Clearly,
the measure of active symbols also allows for a dynamic interpretation [2], which
parallels the dynamic definition of the number of active states.

We investigate basic properties of the newly defined measure. It is shown
that the measure is algorithmically computable, even in the nondeterministic
case. While in the deterministic case the number of active states can be read
off from the minimal deterministic finite automaton of the language in question,
the number of active states in the nondeterministic case can be determined
by a brute force search on an exponentially large search space. Moreover, the
number of active states is compared to related measures, the state complexity
and the radius. One of the results shows that there is an infinite sequence of
regular languages for which the number of active states is bounded by some
constant while the (total) number of states in their minimal automata cannot be
bounded. Here, the alphabet grows with the state complexity. If the languages are
restricted to binary alphabets, then the (total) number of states of the minimal
automata can be exponential in the number of active states. That is, in such
cases, the amount of random access memory needed during the computations
can be logarithmic in the size of the automata. In general, the size of the random
access memory needed for the computations of finite automata can be calculated
in advance due to the computability of the measure of active states. In this paper,
most of the proofs are omitted due to space constraints.

2 Definitions

We assume the reader to be familiar with some basic notation of automata
and formal language theory as contained in the book of Wood [8]. In particular,
let Σ be a finite alphabet. Then the cardinality of Σ (or any other set) is denoted
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by |Σ| and the set of finite words over Σ including the empty word λ is referred
to as Σ∗, which is the free monoid over Σ. Let Σ+ = Σ∗ \ {λ}. The length of
a word w is denoted by |w|, where |λ| = 0. By convention, a singleton set will
usually be identified with its element.

A (nondeterministic) finite automaton (NFA) is a 5-tuple A =
(Q,Σ, δ, q0, F ), where Q is the finite set of states, Σ is the finite set of input
symbols, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states, and
δ : Q × Σ → 2Q is the transition function—here 2Q denotes the power-set of Q.
Observe that by our definition the transition function δ is a total mapping. The
set of rejecting states is Q\F . Moreover, a finite automaton is deterministic
(DFA) if and only if for all q ∈ Q and a ∈ Σ the set δ(q, a) is a singleton, i.e.,
|δ(q, a)| = 1. In this case we simply write δ(q, a) = p instead of δ(q, a) = {p}.

Let A = (Q,Σ, δ, q0, F ) be a finite automaton. A configuration of a finite
automaton is a tuple (q, w), where q ∈ Q and w is a string. If a is in Σ and w
in Σ∗, then we write (q, aw) �A (p,w) if p is in δ(q, a). As usual, the reflexive
transitive closure of �A is denoted by �∗

A. The subscript A will be dropped
from �A and �∗

A if the meaning is clear. Then the language accepted by A is
defined as

L(A) = {w ∈ Σ∗ | (q0, w) �∗
A (p, λ) for some p ∈ F }.

Let X ∈ {D,N}. Then L (XFA) refers to the family of languages accepted
by finite automata of type X. Note that L (DFA) = L (NFA) and that this
language class is equal to the family of regular languages REG.

Although DFAs and NFAs are equally powerful their descriptional complexity
may vary significantly. We define the state complexity of a finite automaton A =
(Q,Σ, δ, q0, F ), denoted by sc(A), by sc(A) = |Q|. Then the state complexity of
a regular language with respect to automata of type X is

scXFA(L) = min{ sc(A) | A is anXFA with L = L(A) }.

It is well known that scNFA(L) ≤ scDFA(L) ≤ 2scNFA(L) for all regular lan-
guages L.

Now we are ready to introduce the notion of active states in DFAs and NFAs.

Definition 1. Let X ∈ {D,N} and A = (Q,Σ, δ, q0, F ) be an XFA. The number
of active states in a computation

C = (q0, w) �A (q1, a2 · · · an) �A · · · �A (qn, λ)

of A on word w = a1a2 . . . an in Σ∗ is as(C) = |{ q ∈ Q | q occurs inC }|; the
computation C is accepting, if qn is in F . For a word w ∈ Σ∗, this measure is
defined by

as(w,A) = min{ as(C) | C is an accepting computation on w accordingto A },

if word w is in L(A), and

as(w,A) = min{ as(C) | C is a computation on w according to A },
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otherwise, and for the automaton A, we set as(A) = max{ as(w,A) | w ∈ Σ∗ }.
Finally, we define asXFA(L) = min{ as(A) | L = L(A) and A is an XFA },
for any regular language L.

Observe that in the definition of as(w,A), for w in Σ∗, one has to distinguish
the cases when w is in L(A) and w is not in L(A). This is necessary because of
the following observation: if, for all words w one had the unified definition

as(w,A) = min{ as(C) | C is a computation ofw according to A },

then the counter intuitive fact that asNFA(L) ≤ 2 would be obtained, because
for every NFA one can construct an equivalent finite automaton whose states
are connected to a new sink state. Furthermore, one might wonder whether one
should use the maximum or even the sum norm instead of the minimum in
the definition of as(w,A) since it cannot be determined which computation will
be used on input w. The minimum norm is preferred because of the following
arguments. If A is a DFA and w in Σ∗, the definition of as(w,A) can be simplified
to as(w,A) = as(C), where C is the unique computation for w according to A. In
the nondeterministic case, where one can only speculate about the computation
performed on input w, we are interested in the state space that is indispensable
in order to deal with arbitrary input. This intuition is best captured by the
minimum norm in the definition of as(w,A).

In order to clarify our notation we give an example.

Example 2. Consider the unary regular language

L = { a2n | n ≥ 1 } ∪ { a3n | n ≥ 1 }

accepted by the DFA A = (QA, {a}, δA, q0, FA), where QA = {q0, q1, . . . , q6},
FA = {q2, q3, q4, q6}, and δA(qi, a) = qi+1, if 0 ≤ i < 6, and δA(q6, a) = q1.
The automaton is depicted on the left of Fig. 1. Then it is easy to see that
as(λ,A) = 1, as(a,A) = 2, . . . , as(a5, A) = 6, and as(w,A) = 7, if |w| ≥ 6. Thus,
as(A) = 7. In fact, in this example it is easily seen that asDFA(L) = 7, since

Fig. 1. DFA A (left) and NFA B (right) accepting L = { a2n | n ≥ 1 }∪{ a3n | n ≥ 1 }.
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otherwise words of not appropriate length can be accepted. Later we will see,
that in general asDFA(L) can be computed from the minimal DFA accepting L.

Finally we consider an NFA accepting L. Let B = (QB , {a}, δB , q0, FB),
where QB = {q0, q1, . . . , q5}, FB = {q2, q5}, and δB(q0, a) = {q1, q3}, δB(qi, a) =
{qi+1}, if i = 1 or i ∈ {3, 4}, δB(q2, a) = {q1}, and δB(q5, a) = {q3}. The
automaton B is depicted on the right of Fig. 1. Clearly, as(λ,B) = 1, as(a,B) =
2, as(a2, B) = 3, and as(w,B) ∈ {3, 4}, if |w| ≥ 3. Hence, as(B) = 4. As in the
previous example one can verify that asNFA(L) = 4. We have already mentioned
that asDFA(L) is computable. This is also true for asNFA(L), but as we will see
the situation is much more involved compared to the deterministic case.

By definition, the ordinary state measure for a regular language is an upper
bound for the number of active states, i.e., if L is accepted by an XFA, for
X ∈ {D,N}, with most n states, then asXFA(L) ≤ n. A lower bound statement
on the number of active states reads as follows:

Lemma 3. Let L ⊆ Σ∗ be a non-empty regular language and w be a shortest
word in L. Then asXFA(L) ≥ |w| + 1, for X ∈ {D,N}.

3 On the Number of Active States

In this section we show how to compute the measure of active states both for
a given finite automaton and even for a regular language. First we show that
given some finite automaton A, deterministic or not, the measure as(A) can be
computed.

Theorem 4. Let X ∈ {D,N} and A = (Q,Σ, δ, q0, F ) be an n-state XFA. Then
there is an integer m with 0 ≤ m ≤ n(n+1)

2 −1 and a word w of length at most m,
such that as(A) = as(w,A).

In conclusion measure asDFA(L) is computable via the minimal DFA.

Theorem 5. Let L ⊆ Σ∗ be a regular language. Then asDFA(L) = as(A),
where A is the minimal state DFA accepting the language L.

Before we consider the measure asNFA(L), for a given regular language L, in
detail, we state the following easy observation. Since the proof is straightforward
we omit it.

Lemma 6. For any regular language L ⊆ Σ∗ we have asNFA(L) ≤ asDFA(L). 
�
It is well known that minimal NFAs with respect to the number of states

are not unique in general. The situation is even more involved, since distinct
minimal NFAs A and B can have different measures with respect to the number
of active states, i.e., the inequality as(A) �= as(B) may hold. This shows that one
cannot rely the computation of the measure asNFA(L), for a regular language L,
on some minimal NFA L. Nevertheless, the following theorem shows that for a
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regular language the measure is computable, although the search space is quite
large. In the proof of the next theorem we need the notion of multiple entry finite
automata—see, e.g., [5]. This is a finite-state device with several initial states.
Formally, a multiple entry finite automaton is a quintuple A = (Q,Σ, δ,Q0, F ),
where Q, Σ, δ, and F are as for ordinary (nondeterministic) finite automata
and Q0 ⊆ Q is the non-empty set of initial states. Then L(A) =

⋃
q0∈Q0

L(Aq0),
where Aq = (Q,Σ, δ, q, F ), for q ∈ Q. In order to simplify the presentation
in the proof of the next theorem we also need an operation that takes two
finite automata and returns an equivalent multiple entry automaton. Let A =
(QA, Σ, δA, q0,A, FA) and B = (QB , Σ, δB , q0,B , FB) with QA ∩ QB = ∅. Then
A ⊕ B = (QA ∪ QB , Σ, δ, {q0,A, q0,B}, FA ∪ FB), where

δ(q, a) =

{
δA(q, a) if q ∈ QA and a ∈ Σ

δB(q, a) if q ∈ QB and a ∈ Σ.

Obviously, L(A ⊕ B) = L(A) ∪ L(B) and both automata A and B are sub-
automata of A ⊕ B that are not connected with each other by any transition.
Moreover, the operation ⊕ generalizes to more than two automata and to mul-
tiple entry finite automata as well. Now we are ready to state the next theorem,
which states an upper bound on the number of states of an NFA, if the nonde-
terministic active state complexity is known.

Theorem 7. Let L ⊆ Σ∗ be a regular language with asNFA(L) = n. Then there
is an NFA A with at most n · 2|Σ|·n2+n states that accepts the language L and
satisfies as(A) = n.

Proof. By definition there is an NFA B such that as(B) = asNFA(L). Note that
we do not know how many states B has. Nevertheless, every computation of B
on a word needs at most n states, i.e., every computation induces an n-state
subautomaton of B. Let B = {B1, B2, . . . , Bm} be the set of all n-state subau-
tomata of B that contain the initial state of B. Clearly, B is finite. Without loss
of generality we may assume that the states of all these automata are disjoint
(by appropriately renaming them) and that all automata are non-isomorphic.
But then the multiple entry finite automaton C := B1 ⊕ B2 ⊕ · · · ⊕ Bm is lan-
guage equivalent to B, i.e., L(C) = L(B). The number of states of C is n · m. It
remains to estimate m. An n-state automaton has at most n2 transitions that
can be labeled with letters from a subset of Σ. Thus, there are at most 2|Σ|·n2

possible combinations for transitions. Moreover, there are at most 2n possible
combinations for n states to be either accepting or non-accepting. Thus, 2|Σ|·n2+n

is an upper bound on the number of automata with n states. Therefore the mul-
tiple entry NFA C has at most n · 2|Σ|·n2+n states. See Fig. 2 (left and middle)
for a schematic drawing of this construction.

Then we construct the NFA A from the multiple entry NFA C by identify-
ing all initial states—in A we can still name the subautomata B1, B2, . . . , Bm

from C. We show L(A) = L(C). Obviously, L(C) ⊆ L(A). Conversely, we argue
as follows: consider any computation (not necessarily an accepting one) of a
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Fig. 2. Schematic drawings of the automata from the proof of Theorem 7. (Left): the
NFA B satisfying as(B) = asNFA(L) = n and its n-state subautomata depicted by
rectangles with dashed lines. (Middle): the multiple entry NFA C build from the n-
state subautomata of B. (Right): the NFA A satisfying as(A) = asNFA(L) obtained
from the multiple entry NFA C by identifying all initial states.

word w on A. If the computation only runs through a single subautomaton Bi,
for 1 ≤ i ≤ m, then this computation can also be found in C. On the other hand,
if the computation under consideration runs through at least two different sub-
automata, then the initial state must be part of this computation at least twice.
In fact, whenever the computation changes from one to another subautomaton,
it must pass the initial state. Since C is built from B, we find a corresponding
computation in the original NFA B. Because as(B) = asNFA(L), every word has
a computation that contains at most n states. Thus, for the word w there is a
computation in B that is completely within one n-state subautomaton, say Bi.
Thus, by construction of C and A we can find a corresponding computation in
the subautomaton Bi of C and A. Therefore we conclude L(A) ⊆ L(C). Again
see Fig. 2 (middle and right) for a schematic drawing of this part of the construc-
tion. In fact, the previous argument shows a little bit more than L(A) = L(C),
namely that as(A) = asNFA(L). As the number of states of A is bounded by the
number of states of C, that is, by n · 2|Σ|·n2+n, the proof of the stated claim is
complete. 
�

We summarize the results of the previous theorems:

Corollary 8. Let X ∈ {D,N} and A be a finite automaton. Then the measures
asXFA(L(A)) are algorithmically computable.

The exact complexity of determining the active state complexity in the deter-
ministic and nondeterministic case is left open.
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4 Comparing Number of Active States, Radius,
and Number of States

We examine how the measure of active states for regular languages is related to
other measures of descriptional complexity. These other measures are the radius
of a regular language and more importantly the ordinary state complexity of
a regular language. In particular, the comparison with the latter measure is of
interest, since it tells us how effective the dynamic state savings modelled by the
number of active states can be. We start our investigation with the comparison
to the ordinary state complexity of a regular language.

We have seen that the number of active states is a lower bound on the state
complexity of a regular language. While there are obviously regular languages,
where both measures meet, such as, e.g., the finite language Ln = {an−1}, there
are other languages, where arbitrarily large savings in the number of active states
are possible. This situation is described in the following theorem.

Theorem 9. Let X ∈ {D,N}. There is a sequence of languages (Ln)n≥1 over a
linearly growing size alphabet such that scXFA(Ln) ≥ n + 2 but asXFA(Ln) = c,
for some constant c.

Proof. Let Σn = {a1, a2, . . . , an}. Define the language Ln = { aiai | 1 ≤ i ≤ n }.
In order to determine the nondeterministic state complexity of Ln we use the
extended fooling set technique.1 Now consider the following set

S = {(λ, a1a1), (a1a1, λ)} ∪ { (ai, ai) | 1 ≤ i ≤ n },

which is easily seen to be a fooling set for the language Ln. Thus, the minimal
NFA accepting Ln has at least n + 2 states, i.e., scNFA(Ln) ≥ n + 2.

It remains to determine and upper bound on asDFA(Ln). Define the DFA
An = (Qn, Σn, δn, q0, Fn), where Qn = {q0, q1, . . . , qn+2}, Fn = {qn+1}, and the
transition function δn is given by

δn(qi, aj) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qj if i = 0and 1 ≤ j ≤ n

qn+1 if 1 ≤ i, j ≤ n and i = j

qn+2 if 1 ≤ i, j ≤ n and i �= j

qn+2 if (i = n + 1or i = n + 2) and 1 ≤ j ≤ n.

The automaton An is depicted in Fig. 3. As any computation done in An needs
at most four states, we have asDFA(Ln) ≤ 4. This proves the stated claim. 
�

For languages over a fixed alphabet we still can observe an exponential
increase when going from the active state complexity to the state complexity
when considering regular languages.
1 A set S = { (xi, yi) | 1 ≤ i ≤ n } is an extended fooling set of size n for the regular

language L ⊆ Σ∗, if (i) xiyi ∈ L for 1 ≤ i ≤ n, and (ii) i �= j implies xiyj �∈ L
or xjyi �∈ L, for 1 ≤ i, j ≤ n. Then any NFA accepting language L has at least n
states [1].
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Fig. 3. The n + 3-state minimal DFA An, which proves asDFA(Ln) ≤ 4. The sink
state qn+2 is not shown.

Theorem 10. Let X ∈ {D,N}. There is a sequence of languages (Ln)n≥1 over
a binary alphabet such that scDFA(Ln) ≥ 2n but asDFA(Ln) = 2n + c, for some
constant c.

It is easy to see that the statement of the previous theorem generalizes to
sequences of languages over a k-letter alphabet, for some constant k. On the
other hand, the stated exponential state savings between the state complexity
and the number of active states is best possible for constant size alphabets. The
statement is proven for the deterministic case; whether a similar statement holds
in the nondeterministic case is left open.

Theorem 11. There is no sequence of languages (Ln)n≥1 over a fixed size
alphabet of at least two letters, such that scDFA(Ln) ≥ 2n and asDFA(Ln) = o(n).

In the remainder of this section we investigate the relationship between the
active state complexity and the radius of a regular language. The radius of
a regular language was introduced in [4] and is defined as follows: let A =
(Q,Σ, δ, q0, F ) be a finite automaton. For every state q ∈ Q, the depth of q,
denoted by depthA(q) is defined to be the minimal distance from the initial state
to q. Formally, let

depthA(q) = min
w∈Σ∗

{ |w| | (q0, w) �∗
A (q, λ) }.

If q is not reachable from q0 then depthA(q) is defined to be infinite. Next, the
radius of a finite automaton A = (Q,Σ, δ, q0, F ) is defined to be

rad(A) = max{ depthA(q) | q ∈ Q }.

This is extended to define the radius of a regular language with respect to finite
automata of type X, which is the minimum radius of all XFAs that accept the
language L. Formally, if L is a regular language, then

radXFA(L) = min{ rad(A) | A is anXFA with L = L(A) }.
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The following relation between the radius of a regular language and the
number of active states is obvious and therefore stated without proof.

Lemma 12. Let X ∈ {D,N}. Then radXFA(L) ≤ asXFA(L), if L is a regular
language. 
�

In other words, the radius of a regular language is a lower bound for the
number of active states. When comparing the exact values of these measures we
find the following situation in the nondeterministic case.

Theorem 13. There is a sequence of languages (Ln)n≥2 over a one letter alpha-
bet such that asNFA(Ln) = n but radNFA(Ln) = 1.

Proof. Consider the languages Ln = { ak | 0 ≤ k ≤ n − 1 }. In [4] it was
shown that radNFA(Ln) = 1. An NFA that proves this fact is depicted in Fig. 4.
By this NFA we already know that asNFA(Ln) ≤ n. It remains to show that
asNFA(Ln) = n. To this end assume to the contrary that asNFA(Ln) < n. By
definition there is an NFA An such that as(An) = asNFA(Ln). Now consider
an accepting computation of An on the word an−1. Then by our assumption
as(w,A) = k, for some k with 1 ≤ k ≤ as(An). Note that k < n. Thus, for this
particular accepting computation the NFA An is only allowed to use k different
states, which means that there exists a state q that appears at least twice in
the accepting computation of An on an−1. Then by a simple pumping argument
similar as that used in the proof of Lemma 3 the automaton An is forced to
accept a word that is too long. This is a contradiction, and thus it follows that
asNFA(Ln) = n as stated. 
�

The idea used in the previous proof to keep the radius small can also be
adopted to DFAs, if the underlying input alphabet is growing.

Fig. 4. NFA with n states that accepts Ln = { ak | 0 ≤ k ≤ n − 1 } and shows that
radNFA(Ln) = 1.

Theorem 14. There is a sequence of languages (Ln)n≥1 on a linearly growing
size alphabet such that asDFA(Ln) = n + 1 but radDFA(Ln) = 1.

Finally, let us consider the case where the alphabet is of constant size.

Theorem 15. There is a sequence of languages (Ln)n≥1 over a fixed size alpha-
bet of at least two letters, such that asDFA(Ln) = 2n but radDFA(L) = n.
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5 Hierarchies Induced by the Number of Active States

In this section it is shown that, both for DFA and NFA, the number of active
states induces infinite hierarchies that are strict. To this end, for X ∈ {D,N},
we define the class of automata

XFAn = {A | A is anXFAwith as(A) ≤ n },

for n ≥ 1. Correspondingly, the set of all languages L with asXFA(L) ≤ n is
referred to as L (XFAn), n ≥ 1. By definition

L (DFAn) ⊆ L (DFAn+1) and L (NFAn) ⊆ L (NFAn+1),

for n ≥ 1, and by Lemma 6 we have L (DFAn) ⊆ L (NFAn), for every n ≥ 1. In
the forthcoming we show that all these inclusions are strict. We start with the
bottom level of both hierarchies

Theorem 16. {∅, Σ∗} = L (DFA1) ⊂ L (NFA1) = {∅} ∪ { (Σ′)∗ | Σ′ ⊆ Σ }.
Next we show that the hierarchies on the number of active states for both

types of finite automata are strict.

Theorem 17. Let X ∈ {D,N}. Then L (XFAn) ⊂ L (XFAn+1), for n ≥ 1.

Proof. Both inclusions hold by definition. For their strictness consider the unary
language Ln+1 = ana∗, for n ≥ 1. The shortest word in Ln+1 is an and therefore
we conclude asXFA(L) ≥ n+1, for X ∈ {D,N}, by Lemma 3. Thus language Ln+1

cannot be a member of L (DFAn) or L (NFAn). On the other hand a DFA
accepting Ln+1 consists of a chain of n + 1 states connected by a-transitions,
where the first state in the chain is the initial one and the last state has an a-loop
and is accepting. For this automaton the number of active states is exactly n +
1. Thus we conclude that asDFA(L) = n + 1 and Ln+1 ∈ L (DFAn+1). Since
obviously L (DFAn+1) ⊆ L (NFAn+1), the language Ln+1 is also a member of
L (NFAn+1). This proves the stated claim. 
�

Finally we consider the relation between deterministic and nondeterministic
language families in detail. We find the following situation.

Theorem 18. L (DFAn) ⊂ L (NFAn), for n ≥ 1.

Proof. By Theorem 16 we have L (DFA1) ⊂ L (NFA1). For the other inclusions
L (DFAn) ⊂ L (NFAn) with n ≥ 2 we argue as follows: consider the NFA An =
(Qn, {a}, δn, q0, Fn) where Qn = {q0, q1, . . . , qn−1}, F = {q0}, and the transition
function is defined by

δ(qi, a) =

{
{qi+1} if 0 ≤ i < n − 1
{q0, q1, . . . , qn−1} if i = n − 1.

The NFA An is depicted in Fig. 5. By construction we have asNFA(L(An)) ≤ n
and thus L(An) = {λ}∪{ an+k | k ≥ 0 } ∈ L (NFAn). Since the minimal DFA for
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Fig. 5. The NFA An accepting a language L(An) with asNFA(L(An)) ≤ n. The equiv-
alent minimal DFA proves that asDFA(L(An)) = n + 1.

the language L(An) consists of n+1 states in a chain connected by a-transitions,
where the initial state and the last state in the chain is accepting and the latter
one has an a-loop. The minimal DFA for L(An) is shown on the bottom of
Fig. 5. Thus by Theorem 5 we conclude that asDFA(L(An)) = n+1 and therefore
L(An) �∈ L (DFAn). This proves the stated claim. 
�

Hence both hierarchies on the families L (DFAn) and L (NFAn) are strict
and exhaust the family of regular languages REG.
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Abstract. A language L over an alphabet Σ is prefix-convex if, for
any words x, y, z ∈ Σ∗, whenever x and xyz are in L, then so is xy.
Prefix-convex languages include right-ideal, prefix-closed, and prefix-free
languages, which were studied elsewhere. Here we concentrate on prefix-
convex languages that do not belong to any one of these classes; we call
such languages proper. We exhibit most complex proper prefix-convex
languages, which meet the bounds for the size of the syntactic semigroup,
reversal, complexity of atoms, star, product, and Boolean operations.

Keywords: Atom · Most complex · Prefix-convex · Proper · Quotient
complexity · Regular language · State complexity · Syntactic semigroup

1 Introduction

Prefix-Convex Languages. We examine the complexity properties of a class
of regular languages that has never been studied before: the class of proper
prefix-convex languages [7]. Let Σ be a finite alphabet; if w = xy, for x, y ∈ Σ∗,
then x is a prefix of w. A language L ⊆ Σ∗ is prefix-convex [1,16] if whenever
x and xyz are in L, then so is xy. Prefix-convex languages include three special
cases:

1. A language L ⊆ Σ is a right ideal if it is non-empty and satisfies L = LΣ∗.
Right ideals appear in pattern matching [11]: LΣ∗ is the set of all words in
some text (word in Σ∗) beginning with words in L.

2. A language is prefix-closed [6] if whenever w is in L, then so is every prefix
of w. The set of allowed sequences to any system is prefix-closed. Every prefix-
closed language other than Σ∗ is the complement of a right ideal [1].

3. A language is prefix-free if w ∈ L implies that no prefix of w other than w
is in L. Prefix-free languages other than {ε}, where ε is the empty word, are
prefix codes and are of considerable importance in coding theory [2].
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The complexities of these three special prefix-convex languages were studied
in [8]. We now turn to the “real” prefix-convex languages that do not belong to
any of the three special classes.

Omitted proofs can be found in [7].

Complexities of Operations. If L ⊆ Σ∗ is a language, the (left) quotient of L
by a word w ∈ Σ∗ is w−1L = {x | wx ∈ L}. A language is regular if and only if
it has a finite number of distinct quotients. So the number of quotients of L, the
quotient complexity [3] κ(L) of L, is a natural measure of complexity for L. An
equivalent concept is the state complexity [15,17,18] of L, which is the number
of states in a complete minimal deterministic finite automaton (DFA) over Σ
recognizing L. We refer to quotient/state complexity simply as complexity.

If Ln is a regular language of complexity n, and ◦ is a unary operation, the
complexity of ◦ is the maximal value of κ(L◦

n), expressed as a function of n, as
Ln ranges over all languages of complexity n. If L′

m and Ln are regular languages
of complexities m and n respectively, and ◦ is a binary operation, the complexity
of ◦ is the maximal value of κ(L′

m ◦ Ln), expressed as a function of m and n, as
L′
m and Ln range over all languages of complexities m and n. The complexity of

an operation is a lower bound on its time and space complexities. The operations
reversal, (Kleene) star, product (concatenation), and binary boolean operations
are considered “common”, and their complexities are known; see [4,17,18].

Witnesses. To find the complexity of a unary operation we find an upper bound
on this complexity, and languages that meet this bound. We require a language
Ln for each n, that is, a sequence, (Lk, Lk+1, . . . ), called a stream of languages,
where k is a small integer, because the bound may not hold for small values of n.
For a binary operation we need two streams. The same stream cannot always be
used for both operands, but for all common binary operations the second stream
can be a “dialect” of the first, that is it can “differ only slightly” from the first [4].
Let Σ = {a1, . . . , ak} be an alphabet ordered as shown; if L ⊆ Σ∗, we denote it
by L(a1, . . . , ak). A dialect of L is obtained by deleting letters of Σ in the words
of L, or replacing them by letters of another alphabet Σ′. More precisely, for an
injective partial map π : Σ �→ Σ′, we get a dialect of L by replacing each letter
a ∈ Σ by π(a) in every word of L, or deleting the word if π(a) is undefined. We
write L(π(a1), . . . , π(ak)) to denote the dialect of L(a1, . . . , ak) given by π, and
we denote undefined values of π by “−”. Undefined values for letters at the end
of the alphabet are omitted; for example, L(a, c,−,−) is written as L(a, c). Our
definition of dialect is more general than that of [5], where only the case Σ′ = Σ
was allowed.

Finite Automata. A deterministic finite automaton (DFA) is a quintuple D =
(Q,Σ, δ, q0, F ), where Q is a finite non-empty set of states, Σ is a finite non-
empty alphabet, δ : Q × Σ → Q is the transition function, q0 ∈ Q is the initial
state, and F ⊆ Q is the set of final states. We extend δ to a function δ : Q×Σ∗ →
Q as usual. A DFA D accepts a word w ∈ Σ∗ if δ(q0, w) ∈ F . The set of all words
accepted by D is the language of D. If q ∈ Q, then the language Lq of q is the
language accepted by the DFA (Q,Σ, δ, q, F ). A state is empty or dead or a sink
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if its language is empty. Two states p and q of D are equivalent if Lp = Lq.
A state q is reachable if there exists w ∈ Σ∗ such that δ(q0, w) = q. A DFA
is minimal if all of its states are reachable and no two states are equivalent.
A nondeterministic finite automaton (NFA) is a quintuple D = (Q,Σ, δ, I, F ),
where Q, Σ and F are defined as in a DFA, δ : Q × Σ → 2Q is the transition
function, and I ⊆ Q is the set of initial states. An ε-NFA is an NFA in which
transitions under the empty word ε are also permitted.

Transformations. We use Qn = {0, . . . , n−1} as the set of states of every DFA
with n states. A transformation of Qn is a mapping t : Qn → Qn. The image of
q ∈ Qn under t is qt. In any DFA, each letter a ∈ Σ induces a transformation
δa of the set Qn defined by qδa = δ(q, a); we denote this by a : δa. Often we use
the letter a to denote the transformation it induces; thus we write qa instead of
qδa. We extend the notation to sets: if P ⊆ Qn, then Pa = {pa | p ∈ P}. We
also write P

a−→ Pa to indicate that the image of P under a is Pa. If s, t are
transformations of Qn, their composition is (qs)t.

For k � 2, a transformation (permutation) t of a set P = {q0, q1, . . . , qk−1} ⊆
Qn is a k-cycle if q0t = q1, q1t = q2, . . . , qk−2t = qk−1, qk−1t = q0. This k-cycle
is denoted by (q0, q1, . . . , qk−1). A 2-cycle (q0, q1) is called a transposition. A
transformation that sends all the states of P to q and acts as the identity on
the other states is denoted by (P → q), and (Qn → p) is called a constant
transformation. If P = {p} we write (p → q) for ({p} → q). The identity
transformation is denoted by 1. Also, (ji q → q + 1) is a transformation that
sends q to q + 1 for i � q � j and is the identity for the remaining states;
(ji q → q − 1) is defined similarly.

Semigroups. The syntactic congruence of L ⊆ Σ∗ is defined on Σ+: For x, y ∈
Σ+, x≈L y if and only if wxz ∈ L ⇔ wyz ∈ L for all w, z ∈ Σ∗. The quotient
set Σ+/≈L of equivalence classes of ≈L is the syntactic semigroup of L. Let
Dn = (Qn, Σ, δ, q0, F ) be a DFA, and let Ln = L(Dn). For each word w ∈ Σ∗,
the transition function induces a transformation δw of Qn by w: for all q ∈ Qn,
qδw = δ(q, w). The set TDn

of all such transformations by non-empty words is
a semigroup under composition called the transition semigroup of Dn. If Dn is
a minimal DFA of Ln, then TDn

is isomorphic to the syntactic semigroup TLn

of Ln, and we represent elements of TLn
by transformations in TDn

. The size of
the syntactic semigroup has been used as a measure of complexity for regular
languages [4,10,12,14].

Atoms. are defined by a left congruence, where two words x and y are equivalent
if ux ∈ L if and only if uy ∈ L for all u ∈ Σ∗. Thus x and y are equivalent if
x ∈ u−1L if and only if y ∈ u−1L. An equivalence class of this relation is an
atom of L [9,13].

One can conclude that an atom is a non-empty intersection of complemented
and uncomplemented quotients of L. That is, every atom of a language with
quotients K0,K1, . . . , Kn−1 can be written as AS =

⋂
i∈S Ki ∩

⋂
i∈S Ki for some

set S ⊆ Qn. The number of atoms and their complexities were suggested as
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possible measures of complexity [4], because all the quotients of a language and
the quotients of its atoms are unions of atoms [9].

Most Complex Regular Stream. The stream (Dn(a, b, c) | n � 3) of Defini-
tion 1 and Fig. 1 will be used as a component in the class of proper prefix-convex
languages. This stream together with some dialects meets the complexity bounds
for reversal, star, product, and all binary boolean operations [7,8]. Moreover, it
has the maximal syntactic semigroup and most complex atoms, making it a most
complex regular stream.

Definition 1. For n � 3, let Dn = Dn(a, b, c) = (Qn, Σ, δn, 0, {n − 1}), where
Σ = {a, b, c}, and δn is defined by a : (0, . . . , n − 1), b : (0, 1), c : (1 → 0).

Fig. 1. Minimal DFA of a most complex regular language.

Most complex streams are useful in systems dealing with regular languages
and finite automata. To know the maximal sizes of automata that can be handled
by a system it suffices to use the most complex stream to test all the operations.

2 Proper Prefix-Convex Languages

We begin with some properties of prefix-convex languages that will be used
frequently in this section. The following lemma and propositions characterize
the classes of prefix-convex languages in terms of their minimal DFAs.

Lemma 1. Let L be a prefix-convex language over Σ. Either L is a right ideal
or L has an empty quotient.

Proposition 1. Let Ln be a regular language of complexity n, and let Dn =
(Qn, Σ, δ, 0, F ) be a minimal DFA recognizing Ln. The following are equivalent:

1. Ln is prefix-convex.
2. For all p, q, r ∈ Qn, if p and r are final, q is reachable from p, and r is

reachable from q, then q is final.
3. Every state reachable in Dn from any final state is either final or empty.

Proposition 2. Let Ln be a non-empty prefix-convex language of complexity n,
and let Dn = (Qn, Σ, δ, 0, F ) be a minimal DFA recognizing Ln.
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1. Ln is prefix-closed if and only if 0 ∈ F .
2. Ln is prefix-free if and only if Dn has a unique final state p and an empty

state p′ such that δ(p, a) = p′ for all a ∈ Σ.
3. Ln is a right ideal if and only if Dn has a unique final state p and δ(p, a) = p

for all a ∈ Σ.

A prefix-convex language L is proper if it is not a right ideal and it is neither
prefix-closed nor prefix-free. We say it is k-proper if it has k final states, 1 �
k � n − 2. Every minimal DFA for a k-proper language with complexity n has
the same general structure: there are n − 1 − k non-final, non-empty states, k
final states, and one empty state. Every letter fixes the empty state and, by
Proposition 1, no letter sends a final state to a non-final, non-empty state.

Next we define a stream of k-proper DFAs and languages, which we will show
to be most complex.

Definition 2. For n � 3, 1 � k � n − 2, let Dn,k(Σ) = (Qn, Σ, δn,k, 0, Fn,k)
where Σ = {a, b, c1, c2, d1, d2, e}, Fn,k = {n− 1− k, . . . , n− 2}, and δn,k is given
by the transformations

a :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1, . . . , n − 2 − k)(n − 1 − k, n − k), if n − 1 − k is even and k � 2;
(0, . . . , n − 2 − k)(n − 1 − k, n − k), if n − 1 − k is odd and k � 2;
(1, . . . , n − 2 − k), if n − 1 − k is even and k = 1;
(0, . . . , n − 2 − k), if n − 1 − k is odd and k = 1.

b :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(n − k, . . . , n − 2)(0, 1), if k is even and n − 1 − k � 2;
(n − 1 − k, . . . , n − 2)(0, 1), if k is odd and n − 1 − k � 2;
(n − k, . . . , n − 2), if k is even and n − 1 − k = 1;
(n − 1 − k, . . . , n − 2), if k is odd and n − 1 − k = 1.

c1 :

{
(1 → 0), if n − 1 − k � 2;

1, if n − 1 − k = 1.

c2 :

{
(n − k → n − 1 − k), if k � 2;

1, if k = 1.

d1 : (n − 2 − k → n − 1)(n−3−k
0 q → q + 1).

d2 : (n−2
n−1−k q → q + 1).

e : (0 → n − 1 − k).

Also, let En,k = {0, . . . , n − 2 − k}; it is useful to partition Qn into En,k, Fn,k,
and {n − 1}. Letters a and b have complementary behaviours on En,k and Fn,k,
depending on the parities of n and k. Letters c1 and d1 act on En,k in exactly the
same way as c2 and d2 act on Fn,k. In addition, d1 and d2 send states n − 2 − k
and n − 2, respectively, to state n − 1, and letter e connects the two parts of the
DFA. The structure of Dn(Σ) is shown in Figs. 2 and 3 for certain parities of
n − 1 − k and k. Let Ln,k(Σ) be the language recognized by Dn,k(Σ).
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Fig. 2. DFA Dn,k(a, b, c1, c2, d1, d2, e) of Definition 2 when n − 1 − k is odd, k is even,
and both are at least 2; missing transitions are self-loops.

Fig. 3. DFA Dn,k(a, b, c1, c2, d1, d2, e) of Definition 2 when n − 1 − k is even, k is odd,
and both are at least 2; missing transitions are self-loops.

Theorem 1 (Proper Prefix-Convex Languages). For n � 3 and 1 � k �
n − 2, the DFA Dn,k(Σ) of Definition 2 is minimal and Ln,k(Σ) is a k-proper
language of complexity n. The bounds below are maximal for k-proper prefix-
convex languages. At least seven letters are required to meet these bounds.

1. The syntactic semigroup of Ln,k(Σ) has cardinality nn−1−k(k+1)k; the max-
imal value n(n − 1)n−2 is reached only when k = n − 2.

2. The non-empty, non-final quotients of Ln,k(a, b,−,−,−, d2, e) have complex-
ity n, the final quotients have complexity k + 1, and ∅ has complexity 1.

3. The reverse of Ln,k(a, b,−,−,−, d2, e) has complexity 2n−1; moreover, the
language Ln,k(a, b,−,−,−, d2, e) has 2n−1 atoms for all k.

4. For each atom AS of Ln,k(Σ), write S = X1 ∪ X2, where X1 ⊆ En,k and
X2 ⊆ Fn,k. Let X1 = En,k \ X1 and X2 = Fn,k \ X2. If X2 �= ∅, then
κ(AS) =

1 +

|X1|∑

x1=0

|X1|+|X2|−x1∑

x2=1

|X1|∑

y1=0

|X1|+|X2|−y1∑

y2=0

(n − 1 − k

x1

)( k

x2

)(n − 1 − k − x1

y1

)(k − x2

y2

)
.

If X1 �= ∅ and X2 = ∅, then κ(AS) =

1 +

|X1|∑

x1=0

|X1|−x1∑

x2=0

|X1|∑

y1=0

k∑

y2=0

(n − 1 − k

x1

)( k

x2

)(n − 1 − k − x1

y1

)(k − x2

y2

)
− 2

k
|X1|∑

y=0

(n − 1 − k

y

)
.

Otherwise, S = ∅ and κ(AS) = 2n−1.
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5. The star of Ln,k(a, b,−,−, d1, d2, e) has complexity 2n−2 + 2n−2−k + 1. The
maximal value 2n−2 + 2n−3 + 1 is reached only when k = 1.

6. L′
m,j(a, b, c1,−, d1, d2, e)Ln,k(a, d2, c1,−, d1, b, e) has complexity m − 1 − j +

j2n−2 +2n−1. The maximal value m2n−2 +1 is reached only when j = m−2.
7. For m,n � 3, 1 � j � m − 2, and 1 � k � n − 2, define the languages

L′
m,j = L′

m,j(a, b, c1,−, d1, d2, e) and Ln,k = Ln,k(a, b, e,−, d2, d1, c1). For
any proper binary boolean function ◦, the complexity of L′

m,j◦Ln,k is maximal.
In particular,
(a) L′

m,j ∪ Ln,k and L′
m,j ⊕ Ln,k have complexity mn.

(b) L′
m,j \ Ln,k has complexity mn − (n − 1).

(c) L′
m,j ∩ Ln,k has complexity mn − (m + n − 2).

Proof. The remainder of this paper is an outline of the proof of this theorem.
The longer parts of the proof are separated into individual propositions and
lemmas.

DFA Dn,k(a, b,−,−,−, d2, e) is easily seen to be minimal. Language Ln,k(Σ)
is k-proper by Propositions 1 and 2.

1. See Lemma 2 and Proposition 3.
2. If the initial state of Dn,k(a, b,−,−,−, d2, e) is changed to q ∈ En,k, the new

DFA accepts a quotient of Ln,k and is still minimal; hence the complexity of
that quotient is n. If the initial state is changed to q ∈ Fn,k then states in
En,k are unreachable, but the DFA on {n−1−k, . . . , n−1} is minimal; hence
the complexity of that quotient is k + 1. The remaining quotient is empty,
and hence has complexity 1. By Proposition 1, these are maximal.

3. See Proposition 4 for the reverse. It was shown in [9] that the number of atoms
is equal to the complexity of the reverse.

4. See [7].
5. See Proposition 5.
6. See [7].
7. By [3, Theorem 2], all boolean operations on regular languages have the upper

bound mn, which gives the bound for (a). The bounds for (b) and (c) follow
from [3, Theorem 5]. The proof that all these bounds are tight for L′

m,j ◦Ln,k

can be found in [7]. ��
Lemma 2. Let n � 1 and 1 � k � n−2. For any permutation t of Qn such that
En,kt = En,k, Fn,kt = Fn,k, and (n − 1)t = n − 1, there is a word w ∈ {a, b}∗

that induces t on Dn,k.

Proof. Only a and b induce permutations of Qn; every other letter induces a
properly injective map. Furthermore, a and b permute En,k and Fn,k separately,
and both fix n − 1. Hence every w ∈ {a, b}∗ induces a permutation on Qn

such that En,kw = En,k, Fn,kw = Fn,k, and (n − 1)w = n − 1. Each such
permutation naturally corresponds to an element of Sn−1−k × Sk, where Sm

denotes the symmetric group on m elements. To be consistent with the DFA,
assume Sn−1−k contains permutations of {0, . . . , n − 2 − k} and Sk contains
permutations of {n − 1 − k, . . . , n − 2}. Let sa and sb denote the group elements
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corresponding to the transformations induced by a and b respectively. We show
that sa and sb generate Sn−1−k × Sk.

It is well known that (0, . . . , m−1), and (0, 1) generate the symmetric group
on {0, . . . , m − 1} for any m ≥ 2. Note that (1, . . . , m − 1) and (0, 1) are also
generators, since (0, 1)(1, . . . ,m − 1) = (0, . . . , m − 1).

If n−1−k = 1 and k = 1, then Sn−1−k×Sk is the trivial group. If n−1−k = 1
and k � 2, then sa = (1, (n−1−k, n−k)) and sb is either (1, (n−1−k, . . . , n−2))
or (1, (n − k, . . . , n − 2)), and either pair generates the group. There is a similar
argument when k = 1.

Assume now n−1−k � 2 and k � 2. If n−1−k is odd then sa = ((0, . . . , n−
2 − k), (n − 1 − k, n − k)), and hence sn−1−k

a = ((0, . . . , n − 2 − k)n−1−k, (n −
1 − k, n − k)n−1−k) = (1, (n − 1 − k, n − k)). Similarly if n − 1 − k is even then
sa = ((1, . . . , n−2−k), (n−1−k, n−k)), and hence sn−2−k

a = (1, (n−1−k, n−k)).
Therefore (1, (n−1−k, n−k)) is always generated by sa. By symmetry, ((0, 1),1)
is always generated by sb regardless of the parity of k.

Since we can isolate the transposition component of sa, we can isolate the
other component as well: (1, (n − 1 − k, n − k))sa is either ((0, . . . , n − 2 − k),1)
or ((1, . . . , n − 2 − k),1). Paired with ((0, 1),1), either element is sufficient to
generate Sn−1−k ×{1}. Similarly, sa and sb generate {1}×Sk. Therefore sa and
sb generate Sn−1−k × Sk. It follows that a and b generate all permutations t of
Qn such that En,kt = En,k, Fn,kt = Fn,k, and (n − 1)t = n − 1. ��
Proposition 3 (Syntactic Semigroup). The syntactic semigroup of Ln,k(Σ)
has cardinality nn−1−k(k + 1)k, which is maximal for a k-proper language. Fur-
thermore, seven letters are required to meet this bound. The maximum value
n(n − 1)n−2 is reached only when k = n − 2.

Proof. Let L be a k-proper language of complexity n and let D be a minimal
DFA recognizing L. By Lemma 1, D has an empty state. By Proposition 1, the
only states that can be reached from one of the k final states are either final
or empty. Thus, a transformation in the transition semigroup of D may map
each final state to one of k + 1 possible states, while each non-final, non-empty
state may be mapped to any of the n states. Since the empty state can only
be mapped to itself, we are left with nn−1−k(k + 1)k possible transformations
in the transition semigroup. Therefore the syntactic semigroup of any k-proper
language has size at most nn−1−k(k + 1)k.

Now consider the transition semigroup of Dn,k(Σ). Every transformation t
in the semigroup must satisfy Fn,kt ⊆ Fn,k ∪ {n − 1} and (n − 1)t = n − 1, since
any other transformation would violate prefix-convexity. We show that the semi-
group contains every such transformation, and hence the syntactic semigroup of
Ln,k(Σ) is maximal.

First, consider the transformations t such that En,kt ⊆ En,k ∪ {n − 1} and
qt = q for all q ∈ Fn,k∪{n−1}. By Lemma 2, a and b generate every permutation
of En,k. When t is not a permutation, we can use c1 to combine any states p
and q: apply a permutation on En,k so that p → 0 and q → 1, and then apply
c1 so that 1 → 0. Repeat this method to combine any set of states, and further
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apply permutations to induce the desired transformation while leaving the states
of Fn,k ∪ {n − 1} in place. The same idea applies with d1; apply permutations
and d1 to send any states of En,k to n − 1. Hence a, b, c1, and d1 generate
every transformation t such that En,kt ⊆ En,k ∪ {n − 1} and qt = q for all
q ∈ Fn,k ∪ {n − 1}.

We can make the same argument for transformations that act only on Fn,k

and fix every other state. Since c2 and d2 act on Fn,k exactly as c1 and d1 act
on En,k, the letters a, b, c2, and d2 generate every transformation t such that
Fn,kt ⊆ Fn,k∪{n−1} and qt = q for all q ∈ En,k∪{n−1}. It follows that a, b, c1,
c2, d1, and d2 generate every transformation t such that En,kt ⊆ En,k ∪{n− 1},
Fn,kt ⊆ Fn,k ∪ {n − 1}, and (n − 1)t = n − 1.

Note the similarity between this DFA restricted to the states En,k ∪ {n − 1}
(or Fn,k∪{n−1}) and the witness for right ideals introduced in [7]. The argument
for the size of the syntactic semigroup of right ideals is similar to this; see [10].

Finally, consider an arbitrary transformation t such that Fn,kt ⊆ Fn,k∪{n−1}
and (n−1)t = n−1. Let jt be the number of states p ∈ En,k such that pt ∈ Fn,k.
We show by induction on jt that t is in the transition semigroup of D. If jt = 0,
then t is generated by Σ \ {e}. If jt � 1, there exist p, q ∈ En,k such that
pt ∈ Fn,k and q is not in the image of t. Consider the transformations s1 and
s2 defined by qs1 = pt and rs1 = r for r �= q, and ps2 = q and rs2 = rt
for r �= p. Then (rs2)s1 = rt for all r ∈ Qn. Notice that js2 = jt − 1, and
hence Σ generates s2 by inductive assumption. One can verify that s1 = (n −
1 − k, pt)(0, q)(0 → n − 1 − k)(0, q)(n − 1 − k, pt). From this expression, we see
that s1 is the composition of transpositions induced by words in {a, b}∗ and the
transformation (0 → n − 1 − k) induced by e, and hence s1 is generated by Σ.
Thus, t is in the transition semigroup. By induction on jt, it follows that the
syntactic semigroup of Ln,k is maximal.

Now we show that seven letters are required to meet this bound. Two letters
(like a and b) are required to generate the permutations, since clearly one letter
is not sufficient. Every other letter will induce a properly injective map. A letter
(like c1) that induces a properly injective map on En,k and permutes Fn,k is
required. Similarly, a letter (like c2) that permutes En,k and induces a properly
injective map on Fn,k is required. A letter (like d1) that sends a state in En,k

to n − 1 and permutes Fn,k is required. Similarly, a letter (like d2) that sends
a state in Fn,k to n − 1 and permutes En,k is required. Finally, a letter (like e)
that connects En,k and Fn,k is required.

For a fixed n, we may want to know which k ∈ {1, . . . , n − 2} maximizes
sn(k) = nn−1−k(k+1)k; this corresponds to the largest syntactic semigroup of a
proper prefix-convex language with n quotients. We show that sn(k) is largest at
k = n − 2. Consider the ratio sn(k+1)

sn(k)
= (k+2)k+1

n(k+1)k
. Notice this ratio is increasing

with k, and hence sn is a convex function on {1, . . . , n − 2}. It follows that the
maximum value of sn must occur at one the endpoints, 1 and n − 2.

Now we show that sn(n−2) � sn(1) for all n � 3. We can check this explicitly
for n = 3, 4, 5. When n � 6, sn(n−2)/sn(1) = n

2

(
n−1
n

)n−2 � 3 (1/e) > 1; so the
largest syntactic semigroup of Ln,k(Σ) occurs only at k = n − 2 for all n � 3. ��
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Proposition 4 (Reverse). For any regular language L of complexity n with an
empty quotient, the reversal has complexity at most 2n−1. Moreover, the reverse
of Ln,k(a, b,−,−,−, d2, e) has complexity 2n−1 for n � 3 and 1 � k � n − 2.

Proof. The first claim is left for the reader to verify. For the second claim, let
Dn,k = (Qn, {a, b, d2, e}, δn,k, 0, Fn,k) denote the DFA Dn,k(a, b,−,−,−, d2, e) in
Definition 2 and let Ln,k = L(Dn,k). Construct an NFA N recognizing the reverse
of Ln,k by reversing each transition, letting the initial state 0 be the unique final
state, and letting the final states in Fn,k be the initial states. Applying the subset
construction to N yields a DFA DR whose states are subsets of Qn−1, with initial
state Fn,k and final states {U ⊆ Qn−1 | 0 ∈ U}. We show that DR is minimal,
and hence the reverse of Ln,k has complexity 2n−1.

Recall from Lemma 2 that a and b generate all permutations of En,k and Fn,k

in Dn,k and, although the transitions are reversed in DR, they still generate all
such permutations. Let u1, u2 ∈ {a, b}∗ be such that u1 induces (0, . . . , n−2−k)
and u2 induces (n − 1 − k, . . . , n − 2) in DR.

Consider a state U = {q1, . . . , qh, n − 1 − k, . . . , n − 2} where 0 � q1 <
q2 < · · · < qh � n − 2 − k. If h = 0, then U is the initial state. When h � 1,
{q2 − q1, q3 − q1, . . . , qh − q1, n − 1 − k, . . . , n − 2}euq1

1 = U . By induction, all
such states are reachable.

Now we show that any state U = {q1, . . . , qh, p1, . . . , pi} where 0 � q1 < q2
< · · · < qh � n − 2 − k and n − 1 − k � p1 < p2 < · · · < pi � n − 2 is reachable.
If i = k, then U = {q1, . . . , qh, n − 1 − k, . . . , n − 2} is reachable by the argument
above. When 0 � i < k, choose p ∈ Fn,k \U and see that U is reached from U ∪{p}
by un−1−p

2 d2u
p−(n−2−k)
2 . By induction, every state is reachable.

To prove distinguishability, consider distinct states U and V . Choose q ∈
U ⊕V . If q ∈ En,k, then U and V are distinguished by un−1−k−q

1 . When q ∈ Fn,k,
they are distinguished by un−1−q

2 e. So DR is minimal. ��
Proposition 5 (Star). Let L be a regular language with n � 2 quotients,
including k � 1 final quotients and one empty quotient. Then κ(L∗) � 2n−2 +
2n−2−k+1. This bound is tight for prefix-convex languages; in particular, the lan-
guage (Ln,k(a, b,−,−, d1, d2, e))∗ meets this bound for n � 3 and 1 � k � n − 2.

Proof. Since L has an empty quotient, let n−1 be the empty state of its minimal
DFA D. To obtain an ε-NFA for L∗, we add a new initial state 0′ which is final
and has the same transitions as 0. We then add an ε-transition from every
state in F to 0. Applying the subset construction to this ε-NFA yields a DFA
D′ = (Q′, Σ, δ′, {0′}, F ′) recognizing L∗, in which Q′ contains non-empty subsets
of Qn ∪ {0′}.

Many of the states of Q′ are unreachable or indistinguishable from other
states. Since there is no transition in the ε-NFA to 0′, the only reachable state in
Q′ containing 0′ is {0′}. As well, any reachable final state U �= {0′} must contain
0 because of the ε-transitions. Finally, for any U ∈ Q′, we have U ∈ F ′ if and
only if U ∪ {n − 1} ∈ F ′, and since δ′(U ∪ {n − 1}, w) = δ′(U,w) ∪ {n − 1} for
all w ∈ Σ∗, the states U and U ∪ {n − 1} are equivalent in D′.



62 J.A. Brzozowski and C. Sinnamon

Hence D′ is equivalent to a DFA with the states {{0′}}∪{U ⊆ Qn−1 | U∩F =
∅} ∪ {U ⊆ Qn−1 | 0 ∈ U and U ∩ F �= ∅}. This DFA has 1 + 2n−1−k + (2n−2 −
2n−2−k) = 2n−2 + 2n−2−k + 1 states. Thus, κ(L∗) � 2n−2 + 2n−2−k + 1.

This bound applies when L is a prefix-convex language and n � 3. By
Lemma 1, L is either a right ideal or has an empty state. If L is a right ideal,
then κ(L∗) � n + 1, which is at most 2n−2 + 2n−2−k + 1 for n � 3.

For the last claim, let Dn,k(a, b,−,−, d1, d2, e) of Definition 2 be denoted by
Dn,k = (Qn, {a, b, d1, d2, e}, δn,k, 0, Fn,k) and let Ln,k = L(Dn,k). We apply the
same construction and reduction as before to obtain a DFA D′

n,k recognizing L∗
n,k

with states Q′ = {{0′}} ∪ {U ⊆ En,k} ∪ {U ⊆ Qn−1 | 0 ∈ U and U ∩ Fn,k �= ∅}.
We show that the states of Q′ are reachable and pairwise distinguishable.

By Lemma 2, a and b generate all permutations of En,k and Fn,k in Dn,k.
Choose u1, u2 ∈ {a, b}∗ such that u1 induces (0, . . . , n − 2 − k) and u2 induces
(n − 1 − k, . . . , n − 2) in Dn,k.

For reachability, we consider three cases. (1) State {0′} is reachable by ε.
(2) Let U ⊆ En,k. For any q ∈ En,k, we can reach U \ {q} by un−2−k−q

1 d1u
q
1;

hence if U is reachable, then every subset of U is reachable. Observe that state
En,k is reachable by eun−2−k

1 dk2 , and we can reach any subset of this state.
Therefore, all non-final states are reachable. (3) If U ∩ Fn,k �= ∅, then U =
{0, q1, q2, . . . , qh, r1, . . . , ri} where 0 < q1 < · · · < qh � n− 2− k and n− 1− k �
r1 < · · · < ri < n − 1 and i � 1. We prove that U is reachable by induction
on i. If i = 0, then U is reachable by (2). For any i � 1, we can reach U from
{0, q1, . . . , qh, r2 − (r1 − (n−1−k)), . . . , ri − (r1 − (n−1−k))} by eu

r1−(n−1−k)
2 .

Therefore, all states of this form are reachable.
Now we show that the states are pairwise distinguishable. (1) The initial state

{0′} is distinguishable from any other final state U since {0′}u1 is non-final and
Uu1 is final. (2) If U and V are distinct subsets of En,k, then there is some
q ∈ U ⊕ V . We distinguish U and V by un−1−k−q

1 e. (3) If U and V are distinct
and final and neither one is {0′}, then there is some q ∈ U ⊕ V . If q ∈ En,k,
then Udk2 = U \ Fn,k and V dk

2 = V \ Fn,k are distinct, non-final states as in (2).
Otherwise, q ∈ Fn,k and we distinguish U and V by un−1−q

2 dk−1
2 . ��

Table 1. Complexities of prefix-convex languages

Right-ideal Prefix-closed Prefix-free Proper

SeGr nn−1 nn−1 nn−2 nn−1−k(k + 1)k

Rev 2n−1 2n−1 2n−2 + 1 2n−1

Star n+ 1 2n−2 + 1 n 2n−2 + 2n−2−k + 1

Prod m+ 2n−2 (m+ 1)2n−2 m+ n − 2 m − 1 − j+ j2n−2 + 2n−1

∪ mn − (m+ n − 2) mn mn − 2 mn

⊕ mn mn mn − 2 mn

\ mn − (m − 1) mn − (n − 1) mn − (m+ 2n − 4) mn − (n − 1)

∩ mn mn − (m+ n − 2) mn − 2(m+ n − 3) mn − (m+ n − 2)
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3 Conclusions

The bounds for prefix-convex languages (see also [8]) are summarized in Table 1.
The largest bounds are shown in boldface type, and they are reached either in
the class of right-ideal languages or the class of proper languages. Recall that for
regular languages we have the following results: semigroup nn, reverse 2n, star
2n−1 + 2n−2, product m2n − 2n−1, boolean operations mn.
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Abstract. An important characteristic of Kozen’s µ-calculus is its
strong connection with parity alternating tree automata. Here, we show
that the probabilistic µ-calculus µp-calculus and p-automata (parity
alternating Markov chain automata) have an equally strong connection.
Namely, for every µp-calculus formula we can construct a p-automaton
that accepts exactly those Markov chains that satisfy the formula. For
every p-automaton we can construct a µp-calculus formula satisfied in
exactly those Markov chains that are accepted by the automaton. The
translation in one direction relies on a normal form of the calculus and
in the other direction on the usage of vectorial µp-calculus. The proofs
use the game semantics of µp-calculus and automata to show that our
translations are correct.

1 Introduction

The verification of probabilistic systems is an increasingly important area that
has led to the development of new formalisms and tools for the evaluation of
quantitative properties over stochastic models. These tools range from temporal
logics and quantitative variants of Kozen’s modal μ-calculus [15] to probabilistic
automata and games [2,13,17–19].

This work focuses on two such formalisms, μp-calculus and p-automata. The
μp-calculus has been introduced in [8] as a probabilistic extension of Kozen’s
modal μ-calculus. The so-called p-automata [9] are probabilistic alternating par-
ity automata that read Markov chains as input. Acceptance of a Markov chain by
a p-automaton is decided by an obligation game, that is, a turn-based stochastic
parity game with obligations.

The key contribution given by this paper is the proof of the equivalence
between μp-calculus and p-automata. We provide a framework to translate μp-
formulas into p-automata and, using the vectorial syntax, define the inverse
conversion from p-automata into μp-calculus. Thus, we show that the two for-
malisms have the same expressive power and that they enjoy a close relationship
similar to those of Kozen’s μ-calculus and alternating tree automata (see below).

Related Work. This study belongs to a general field of research that aims to
define a connection between logics and automata theory. An interesting sur-
vey conducted by Kupferman et al. in [16] provides insights into this relation-
ship by presenting translations from a number of temporal logics – linear-time,
c© Springer International Publishing AG 2017
A. Carayol and C. Nicaud (Eds.): CIAA 2017, LNCS 10329, pp. 64–75, 2017.
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branching-time, μ-calculus, and its alternation-free fragment – into different
classes of alternating tree automata.

Over the last three decades, several studies have focused on the definition
of an automata-theoretic approach to Kozen’s μ-calculus. In [10], Emerson and
Jutla proposed a framework to convert μ-calculus formulas into alternating tree
automata, then reduced to their non-deterministic counterpart. Their result com-
plements previous studies by Niwiński [20] that defined the inverse translation
from non-deterministic tree automata to μ-calculus, thus showing that Kozen’s
μ-calculus is equivalent to tree automata in expressive power. In [14], Janin and
Walukiewicz introduced μ-automata, alternating automata with a parity accep-
tance condition that easily translate to and from μ-calculus formulas in disjunc-
tive normal form. In a subsequent work, [21], Niwiński extends his previous result
to a broader scope establishing the equivalence between alternating automata
over arbitrary algebraic structures – thus including trees – and fixed point terms,
a general fixpoint formalism that finds a natural interpretation as a system of
equations. Wilke, in [23], addresses the interplay among μ-calculus, alternating
tree automata, and games. In particular, he gives a translation from logic to
automata and then defines the acceptance problem for automata by reduction
to the winner problem in parity games. A comprehensive outline of the rela-
tionship among logics, automata, and parity games is given in [12]. Overviews of
μ-calculus, including its mathematical foundation, axiomatic system, properties,
guarded form, vectorial syntax, game semantics, and equivalence with automata,
can be found in [1,3–5].

Huth and Kwiatkowska suggested a quantitative μ-calculus to reason about
Markov chains [13]. This calculus was extended in [7] by adding a bounded
number of probabilistic quantifications and allowing to define PCTL*. The μp-
calculus allows to nest probabilistic quantifications inside fixpoint operators and,
thus, allows for unbounded probabilistic quantifications. It is a subset of the cal-
culus defined in [17,19]. The μp-calculus expressive enough to include PCTL and
PCTL*, the complexity of its decision procedures is reduced, and the algorithms
involved wrap up standard algorithms for solution of (quantitative) two-player
stochastic parity games in extra layer rather than bespoke algorithms.

2 Background

2.1 Markov Chains

A Markov chain M over a set AP of atomic propositions is a probabilistic labelled
transition system defined by the tuple M = (S, sin, L, P ), where S is the set of
locations; sin ∈ S is the initial location; L is a labelling function, overloaded to
both denote L : S → 2AP and L : AP → 2S ; and P is the probability transition
function P : S × S → [0, 1]. For every location s we define the set succ(s) of its
successors as the set of locations s′ such that P (s, s′) > 0. Clearly, the sum of
the probabilities of moving from a location to all its successors must be equal to
1, that is

∑
s′∈succ(s) P (s, s′) = 1, and every location has at least one successor.
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2.2 Obligation Games

Obligation games [9] are two-player stochastic parity games with obligations that
are played on a graph amongst a probabilistic system and two players, called
Player 0 and Player 1.

Definition 1 (Obligation Game). An obligation game G is the tuple

G =
(
(V,E), (V0, V1, Vp),K, 〈α,O〉 )

,

where V is the set of configurations, partitioned in Player 0 (V0), Player 1 (V1),
and probabilistic configurations (Vp); E ⊆ V ×V is the set of edges; K : Vp×V →
[0, 1] is the probability function such that (v, v′) /∈ E implies K(v, v′) = 0 and
for every v ∈ Vp we have

∑
v′∈V K(v, v′) = 1; and the pair 〈α,O〉 defines the

goal: α : V → [0..k] is the parity condition, and O : V → ({>,≥} × [0, 1]) ∪ {⊥}
marks the obligations, with the symbol ⊥ denoting no obligation.

Obligations are statements applied to some configurations that impose con-
straints on the winning paths that depart from them. An obligation has the
form >x or ≥x, where x ∈ [0, 1], so as to indicate that the measure of the paths
starting from that configuration must be greater than, or greater than or equal
to, a given value x. Fixing a pair of strategies – σ for Player 0 and π for Player 1 –
and a prefix of configurations w ∈ V +, the game is reduced to only probabilistic
vertices and, hence, can be seen as a Markov chain enriched with a goal 〈α,O〉,
that is, a winning condition and a set of obligations. We denote such structure
as Gw(σ,π). Value and winner of G are decided by analysing Gw(σ,π) using the
notion of choice set.

A choice set is the set of finite paths that extend the prefix w and end
in a configuration with an obligation that can be met. It must be extended
through infinite paths that either reach another obligation or never reach another
obligation and are winning. The measure of the choice set is the measure of these
infinite paths and determines the value of the game on every configuration for
each player, denoted as vali(v) for i ∈ {0, 1}. We refer the reader to [9] for further
details concerning the measure of choice sets and the value of obligation parity
Markov chains. We write the value of game G on configuration v as valG(v) and
we define it as the value for Player 0 on v.

Player 0 wins the game G from prefix w with a value of 1 if for every value
r < 1 there exists a strategy σ such that for all Player 1’s strategies π in the
corresponding Markov chain Gw(σ,π) it is possible to determine a choice set whose
measure is at least r.

2.3 The μp-Calculus

The μp-calculus [8] is an extension of Kozen’s μ-calculus [15] that allows one
to specify properties that are bounded by a specific probability. This is done
through the distinction between qualitative (Φ) and quantitative (Ψ) formu-
las that are evaluated to values in the sets {0, 1} and [0, 1], respectively.
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A μp-calculus sentence is qualitative and might contain one or more quanti-
tative sub-formulas within a probabilistic quantification operator [·]J . The oper-
ator [·]J checks whether the value of the enclosed formula satisfies the bound J
and gets the value 1 or 0 accordingly. The syntax of the μp-calculus is given by
the following BNF grammar.

J ::= {≥, >} × [0, 1]
Φ ::= p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [Ψ ]J | μXi.ϕ | νXi.ϕ
Ψ ::= Φ | Xi | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | ©ψ | μXi.ψ | νXi.ψ

Fixed point formulas are of the form σXi.ϕ, where σ ∈ {μ, ν} and Xi is a variable
in the set V = {X0,X1, ...}. Variable Xi is bound by the fixed point operator to
the formula ϕ, which we also denote by ϕ(Xi) or ϕXi

.

Semantics. The semantics of a μp-calculus formula ϕ is given with respect to a
Markov chain M and an interpretation ρ : V → (S → [0, 1]). That is, ρ associates
a function from locations to values in the domain [0, 1] with each variable Xi

appearing in ϕ. Therefore, the semantics is a mapping of type S → [0, 1] denoted
by �ϕ�

ρ
M and defined as follows:

�p�ρ
M = χL(p) �¬p�ρ

M = 1 − χL(p)

�ϕ1 ∧ ϕ2�
ρ
M = min{�ϕ1�

ρ
M , �ϕ2�

ρ
M} �ϕ1 ∨ ϕ2�

ρ
M = max{�ϕ1�

ρ
M , �ϕ2�

ρ
M}

�X�ρ
M = ρ(X)

�[ϕ]J�ρ
M =

{
1 If �ϕ�ρ

M (s)J
0 Otherwise�©ϕ�ρ

M = λs.
∑

s′ P (s, s′)�ϕ�ρ
M (s′)

�μX.ϕ�ρ
M = lfp(λf.�ϕ�

ρ[f/X]
M ) �νX.ϕ�ρ

M = gfp(λf.�ϕ�
ρ[f/X]
M )

where χL(p) is the function that associates to a location s the value 0 if s /∈
L(p), or the value 1 if s ∈ L(p). The only elements of the calculus that are
evaluated exclusively to values in the set {0, 1} are p, ¬p, and [·]J . All the
other operators get real values in [0, 1], thus, can specify both quantitative and
qualitative properties depending on their nested sub-formulas.

Alternation Depth. The alternation depth of a formula ϕ, denoted by ad(ϕ), is
the maximum number of fixed point operators that occur nested and alternated
[8,11]. A formula, or sub-formula, with no fixpoints has an alternation depth of 0.
A formula with a single fixed point operator has alternation depth 1. In addition
to the alternation depth, with every μp-calculus sub-formula ψ of ϕ is associated
a colour c(ψ). If ψ is a greatest fixed point then c(ψ) = 2

(
ad(ϕ) − ad(ψ)

)
; if ψ

is a least fixed point then c(ψ) = 2
(
ad(ϕ) − ad(ψ)

)
+ 1; and in every other case

c(ψ) = 2ad(ϕ) − 1.

Game Semantics. Given a μp-calculus formula ϕ and a Markov chain M , we
construct an obligation game GM,ϕ and we refer to such game as semantics
game. Game GM,ϕ is the tuple

(
(V,E), (V0, V1, Vp),K, 〈α,O

〉
), where:
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– V = S × sub(ϕ)
– V0 = {(s, ϕ1 ∨ ϕ2) | ϕ1 ∨ ϕ2 ∈ sub(ϕ)}
– V1 = {(s, ϕ1 ∧ ϕ2) | ϕ1 ∧ ϕ2 ∈ sub(ϕ)}
– Vp = V \ (V0 ∪ V1)
– E = {(

(s, p), (s, p)
)
,
(
(s,¬p), (s,¬p)

)} ∪ {((s,X), (s, σX.ϕ(X))
)} ∪

{(
(s, ϕ1∨ϕ2), (s, ϕi)

) | i ∈ {1, 2}}∪ {((s, ϕ1∧ϕ2), (s, ϕi)
) | i ∈ {1, 2}} ∪

{(
(s,©ϕ), (s′, ϕ)

) | s′ ∈ succ(s)} ∪ {((s, [ϕ]J ), (s, ϕ)
)} ∪

{(
(s, σX.ϕ(X)), (s, ϕ(X))

) | σ ∈ {μ, ν}}
– K((s,©ψ), (s′, ψ)) = P (s, s′)

– α(s, ψ) =

⎧
⎪⎨

⎪⎩

0 if ψ = p, p ∈ L(s) or ψ = ¬p, p /∈ L(s)
1 if ψ = p, p /∈ L(s) or ψ = ¬p, p ∈ L(s)
c(ψ) otherwise

– O(s, [ψ]J ) = J, O(v) = ⊥ for all other v ∈ V

Lemma 1 [8]. For every Markov chain M , every location s, and every formula
ϕ we have �ϕ�ρ

M (s) = val0(s, ϕ), where val0(s, ϕ) is the value of configuration
(s, ϕ) in game GM,ϕ.

For a qualitative μp-calculus formula ϕ we say that M satisfies ϕ, denoted M,
sin |= ϕ or M |= ϕ, iff �ϕ�ρ

M (sin) = 1. That is, M |= ϕ iff valGM,ϕ
(sin, ϕ) = 1.

2.4 p-Automata

A p-automaton A is an alternating parity automaton that reads Markov chains as
input [9]. From a state q, the p-automaton reads a location s of a Markov chain M
and, according to the labelling L(s), performs a transition. Since Markov chains
have probabilities and the paths starting from a location s are characterised by
a measure, the p-automaton A might need to mark the states by a bound J .
The bound J is an element of the set ({≥, >} × [0, 1]) and, analogously to the
obligations over configurations of games, imposes a constraint over the measure
of the accepted paths starting in s.

For the set of states Q, we denote by �Q�> the set of states q ∈ Q that are
marked by a bound J defined as {�q�J | q∈Q, J ∈ ({≥, >} × [0, 1])}. Moreover,
we denote by B+(X) the set of positive boolean formulas over elements x in the
set X, given by the following grammar:

θ ::= x | true | false | θ1 ∧ θ2 | θ1 ∨ θ2

Given a formula θ ∈ B+(X) its closure cl(θ) is the set of all sub-formulas of θ
defined according to the grammar above. For a set Θ of formulas, the closure is
computed as cl(Θ) =

⋃
θ∈Θ cl(θ).

Definition 2 (p-Automata). A p-automaton A over the set AP of atomic
propositions is defined by the tuple:

A = (Σ,Q,ϕin, δ, Ω)

where Σ = 2AP is a finite input alphabet, Q is a possibly infinite set of states,
ϕin ∈ B+(�Q�>) is the initial condition, δ : Q × Σ → B+(Q ∪ �Q�>) is the
transition function, and Ω : Q → [0 . . . k] is the parity acceptance condition.
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Acceptance Game. The set of Markov chains accepted by a p-automaton A
is the language of A, denoted by L(A). Acceptance of a Markov chain M by A
is decided through the obligation game GM,A = (V,E, (V0, V1, Vp),K,G), where:

– V = S × cl(δ(Q,Σ))
– V0 = {(s, θ1 ∨ θ2) | s ∈ S and θ1 ∨ θ2 ∈ cl(δ(Q,Σ))}
– V1 = {(s, θ1 ∧ θ2) | s ∈ S and θ1 ∧ θ2 ∈ cl(δ(Q,Σ))}
– Vp = V \ (V0 ∪ V1)
– E = {(

(s, θ1 ∧ θ2), (s, θi)
) | i ∈ {1, 2}} ∪

{(
(s, θ1 ∨ θ2), (s, θi)

) | i ∈ {1, 2}} ∪
{(

(s, q), (s′, δ(q, L(s)))
) | s′ ∈ succ(s)} ∪

{(
(s, �q�J ), (s′, δ(q, L(s)))

) | s′ ∈ succ(s)}
– K(

(s, q), (s′, δ(q, L(s)))
)

= K(
(s, �q�J ), (s′, δ(q, L(s)))

)
= P (s, s′)

– G = 〈α,O〉, where α(s, q) = α(s, �q�J ) = Ω(q), and O(s, �q�J ) = J .

The Markov chain M is accepted if the configuration (sin, ϕin) has value 1 in
GM,A. That is, M ∈ L(A) iff valGM,A

(sin, ϕin) = 1.

3 Vectorial μp-Calculus

We introduce the vectorial form as an alternative syntax for formulas in μp-
calculus. This form exposes the distinction between the fixpoint operators, which
appear as a prefix of the formula, and the modal formulas that they bind, allow-
ing one to focus on the modal properties rather than on an intricate nesting of
fixed-point terms. Through this syntax, the alternation depth of a sentence is
easier to identify, as the number of pairwise distinct fixpoint operators within
the prefix of the formula, and the most complex properties can be expressed in
a succinct way.

Let Fi be the set of functions (S → [0, 1])i from locations to values in the
unit interval, and ϕi be a modal μp-formula over the product lattice (F1 × . . . ×
Fn)m with range Fi, i.e. ϕi takes m vectors of n variables 〈X1

1 , . . . , X1
n, . . . , Xm

1 ,
. . . , Xm

n 〉 and evaluates to a single function in Fi. If we consider the vector ϕ of
all modal terms 〈ϕ1, . . . , ϕn〉, each of which has range Fi, then, ϕ can be seen as a
mapping of type ϕ : (F1×. . .×Fn)m → F1×. . .×Fn, whose monotonicity derives
from the monotonicity of each single component and for which, by the Knaster-
Tarski theorem, least and greatest fixpoints are always defined. For m = 1, we
denote as μX.ϕ, resp. νX.ϕ, the least, resp. greatest, fixpoint of the mapping
ϕ, as a compact notation for:

σ

⎛

⎜
⎝

X1

...
Xn

⎞

⎟
⎠ .

⎛

⎜
⎝

ϕ1(X1, . . . , Xn)
...

ϕn(X1, . . . , Xn)

⎞

⎟
⎠ =

⎛

⎜
⎝

f1
...

fn

⎞

⎟
⎠ .

Vectorial μp-calculus has the same expressive power as scalar μp-calculus. By
the application of the Bekič principle [1], whose effect is to push the fixpoint
operators inwards, every vectorial formula σX.ϕ can be reduced to a vector f
of scalar formulas 〈f1, . . . , fn〉.
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Semantics. Given a Markov chain M and a valuation ρ : (V1 × . . . × Vn)m →
(F1×. . .×Fn)m that associates a vector of functions with a vector of variables, the
semantics of ϕ is defined as �ϕ�ρ

M = �ϕ1�
ρ
M ×. . .×�ϕn�ρ

M ; that is, the semantics
of a vector of μp-formulas is the vector of the semantics of each component.
Accordingly, the semantics of σX.ϕ is the vector of semantics:

�σX.ϕ�ρ
M = �σX1.ϕ�ρ

M × . . . × �σXn.ϕ�ρ
M .

We use the projection operator on vectors ↓i to select the i-th component:
�σX.ϕ ↓i�

ρ
M = �σXi.ϕ�ρ

M = fi. The meaning of choosing a component is to
define an entry point to the computation performed by the vectorial formula [6].

Game Semantics. The semantics of a vectorial μp-calculus sentence σ1X1 . . .
σmXm.ϕ of depth m and height n for a Markov chain M is given by the oblig-
ation game GM,ϕ defined by the tuple (V,E, (V0, V1, Vp),K, 〈α,O〉). The set of
configurations of the game is the set of pairs of a location from the Markov chain
and a subformula in

⋃
i≤n sub(ϕi) and, since ϕ is a vector of modal formulas, do

not contain pairs whose second element is a fixpoint term. As a consequence of
the absence of such configurations, vertices of the form (s,Xj

i ) link directly to
(s, ϕi) and carry the relevant priority j, which is the depth of the fixpoint that
the variable Xj

i binds in the vectorial formula. The remaining components are
defined exactly as in the semantics game for the scalar μp-calculus.

The value of the game GM,ϕ on the initial location sin of a Markov chain
M is the vector of values: valGM,ϕ

= valGM,ϕ
(sin, ϕ1) × . . . × valGM,ϕ

(sin, ϕn),
where the value of the i-th component is valGM,ϕ

(sin, ϕi).

Lemma 2. For every Markov chain M , every location s, every μp-calculus vec-
torial sentence σ1X1 . . . σmXm.ϕ of height n, and index i ≤ n we have

�σ1X1 . . . σmXm.ϕ ↓i�
ρ
M (s) = valGM,ϕ

(s, ϕi).

Proof. The proof is conducted as that of Theorem 6 in [8] with the exception
that configurations (s, σX.ϕ(X)) do not appear in the game and those of the
form (s,Xi) link directly to (s, ϕi). ��

4 From μp-Calculus to p-Automata

We show that every qualitative μp-calculus formula can be translated into an
equivalent p-automaton. The translation relies on the formulas satisfying some
syntactic requirements.

Well-Formedness. The set of well-formed μp-calculus formulas is semantically
equivalent to the standard form of the calculus; however, it poses some con-
straints on the syntax allowing for the conversion into p-automata. We require
that the variables be bound exactly once and that well-formed formulas be
guarded ; that is, all the occurrences of a variable must be in the scope of a
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next modality, which is itself in the scope of a fixpoint operator. To this end,
formulas can be re-written in guarded form, as explained in [5,16], by the iter-
ated replacement of every open occurrence of a variable X by false in least fixed
point formulas and by true in greatest fixed point formulas. Also, we consider
the probabilistic quantification operator over a bound J that is restricted to
the set ({≥, >} × [0, 1])\{≥0, >1}; this restriction does not affect the expressive
power of the language since properties of the form [·]≥0 and [·]>1 correspond to
true and false statements. Moreover, we are interested in formulas where all the
instances of the probabilistic quantification operator [·]J are directly applied to
a next ©. This requirement is necessary because the statements enclosed in a
probabilistic operator will translate into states of the corresponding automaton
that performs a transition moving to read the next locations of the model. One
can achieve this form by transforming the formulas according to the equivalences
stated in the lemma below.

Lemma 3. The following μp-calculus formulas are semantically equivalent.

[p]J ≡ p

[¬p]J ≡ ¬p

[ϕ1 ∧ ϕ2]J ≡ [ϕ1]J ∧ [ϕ2]J
[ϕ1 ∨ ϕ2]J ≡ [ϕ1]J ∨ [ϕ2]J

[σX.ϕ(X)]J ≡ [
ϕ
(
σX.ϕ(X)

)]
J

Proof. The proof arises from the semantics of the μp-calculus and the fixed point
axioms. ��

Translation. Let ϕ be a qualitative well-formed μp-calculus formula over the set
AP of atomic propositions. The p-automaton Aϕ is the tuple (2AP , Q, δ, ϕin, Ω),
where 2AP is the alphabet, Q is the set of states {⊥,�}∪{p,¬p, (©ψ, c) | for all
p,¬p, ©ψ ∈ sub(ϕ) and c ∈ [0 . . . 2ad(ϕ) − 1]}, the transition function δ (and
the auxiliary function δε) is defined by the rules in Fig. 1.

Fig. 1. Transition of Aϕ.
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The initial condition ϕin is the expression δε

(
ϕ, c(ϕ)

)
; the priority Ω is

Ω(⊥) = 1, Ω(�) = 0, Ω(©ψ, c) = c, and maximum colour otherwise.
Transitions of Aϕ always consume the input label a of a location in a Markov

chain and move forward to its successors. The computation starts from the states
within the initial condition ϕin. From a state p or ¬p, the p-automaton reads the
current label a and moves to one of the special states � or ⊥ defining an infinite
computation that is accepting or rejecting, respectively. When in a state (©ψ, c)
reading a label a, the p-automaton moves to a new set of states determined by
unfolding the formula ψ through the epsilon transition function δε. The outcome
of δε, as well as of δ, is a positive boolean formula over states q and bounded
states �q�J that represents the requirement from the system. States within such
formula are evaluated over the successor locations in M . Acceptance of a Markov
chain M by the p-automaton Aϕ is decided by the acceptance game GM,Aϕ

: if
the value in such game of the initial configuration is 1 M is accepted, otherwise,
it is rejected.

The following theorem states the correctness of the translation from μp-
calculus into p-automata.

Theorem 1. Let ϕ be a well-formed μp-calculus formula and Aϕ the automaton
resulting from its translation. Then, ϕ and Aϕ are equivalent: the set of Markov
chains that satisfy the formula ϕ corresponds to the language L(Aϕ) recognised
by the p-automaton Aϕ. That is, M |= ϕ iff M ∈ L(Aϕ).

The proof is conducted by showing that for all Markov chains M the accep-
tance game GM,Aϕ

simulates the semantics game GM,ϕ. In particular, there is a
mapping between prefixes of paths in the two games, within which probabilities,
obligations, and infinite winning sets are preserved. Therefore, the acceptance
game has the same value as that of the semantics game, leading the p-automaton
Aϕ to accept all the Markov chains that satisfy the formula ϕ.

5 From p-Automata to μp-Calculus

We show that every p-automaton can be translated into an equivalent μp-calculus
formula. Transitions of p-automata define an infinite computation tree whose
nodes are states marked by priorities. The sequence of such priorities within the
paths of the tree determines whether the computation is accepted or not: infi-
nitely many visits to a minimal even priority mean acceptance, whereas passing
infinitely often through a minimal odd priority causes rejection. All these ele-
ments have their analogue in μp-calculus: transitions and modal formulas, apply-
ing a transition from a state and passing through variables, odd/even priorities
and least/greatest fixpoints, and levels of priorities and nesting of fixpoint for-
mulas. We exploit this analogy in the conversion from p-automata to μp-calculus,
using the syntax that most emphasises the role of each component, the vectorial
form.
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Translation. Let A be a p-automaton over the set AP of atomic propositions
defined by the tuple (2AP , Q, δ, ϕin, Ω), with n the number of states of the
automaton. Let i1, . . . , im be the ordered chain of increasing priorities in the
set

⋃
q∈Q Ω(q). For each index j ≤ m we introduce a vector Xij

of n + 1 fresh
variables. The first variable of each j-th vector is a dummy variable that refers to
the initial condition of the automaton, and we indicate it as Xin

ij
. The remaining

n variables of each j-th vector bind the n formulas corresponding to the transi-
tions that the p-automaton A performs from each of its n states; we write such
variables as X1

ij
, . . . , Xn

ij
. Accounting for the initial condition of the automaton

as the first component of these vectors allows one to retrieve the semantics of
the resulting formula as the semantics of its first element. As a consequence, the
ordering of the other n components is not relevant.

In order to turn states into variables we use a function t that takes a formula
in B+(Q ∪ �Q�>) and returns a formula over variables and bounded variables:

t(θ1 ∨ θ2) = t(θ1) ∨ t(θ2)
t(θ1 ∧ θ2) = t(θ1) ∧ t(θ2)

t(�q�J) = [Xq
Ω(q)]J

t(q) = Xq
Ω(q)

We employ this function in the definition of the vector ϕ of modal μp-formulas.
The first component of ϕ is t(ϕin), the other n components are denoted by ϕk

for k ≤ n and are specified by the following modal formula

ϕk =
∨

a∈2AP

⎛

⎝© t
(
δ
(
qk, a

)) ∧
∧

p∈a

p ∧
∧

p/∈a

¬p

⎞

⎠ .

Finally, the vectorial μp-calculus formula ϕA is defined as the prefix chain of
ordered fixpoints and vectors enclosing ϕ, where σij

= μ if ij is odd or σij
= ν

if ij is even:

ϕA = σi1

⎛

⎜
⎜
⎜
⎝

Xin
i1

X1
i1
...

Xn
i1

⎞

⎟
⎟
⎟
⎠

. . . σim

⎛

⎜
⎜
⎜
⎝

Xin
im

X1
im

...
Xn

im

⎞

⎟
⎟
⎟
⎠

.

⎛

⎜
⎜
⎜
⎝

t
(
ϕin

)

ϕ1

...
ϕn

⎞

⎟
⎟
⎟
⎠

.

The semantics of the vectorial formula ϕA for a Markov chain M and a valuation
ρ is the semantics of its first component over the initial location sin of M and
it is equivalent to the value of the configuration

(
sin, t

(
ϕin

))
in the semantics

game GM,ϕA
. That is, �ϕA ↓1�ρ

M (sin) = valGM,ϕA

(
sin, t

(
ϕin

))
.

It is worth noticing that only a maximum of n out of m×(n+1) variables are
bound within the formula ϕA. Therefore, ϕA can be seen as a system of n + 1
equations in n variables that can be reduced by substitution and Gauss elimina-
tion techniques to a single scalar μp-calculus sentence (see [22]). In particular,
it is sufficient to derive a solution, or expression, for each of the n variables and
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by syntactical substitution embed such expressions in t(ϕin). However, we are
interested in giving a characterization in terms of semantics game GM,ϕA

, in
which the effect of the syntactical substitution of variables is handled by the
edges connecting configurations (s,Xk) to (s, ϕk).

Theorem 2. Let A be a p-automaton over the set AP of atomic propositions
and ϕA the vectorial μp-calculus formula resulting from its conversion. Then,
A and ϕA are equivalent: the set of Markov chains that constitute the language
L(A) recognised by the p-automaton A coincides with the set of Markov chains
that satisfy the vectorial formula ϕA. That is, M ∈L(A) iff M |= ϕA.

Similarly to the case of the inverse translation, the proof shows that the semantics
game GM,ϕA

for the vectorial formula ϕA simulates the acceptance game GM,A

for the original p-automaton A. As a result, the two games have the same value
and, therefore, the Markov chains that satisfy the formula ϕA are exactly those
that are accepted by A.

6 Conclusion

The aim of this paper was to investigate the connection between μp-calculus and
p-automata and to assess their equivalence in expressive power. We introduced
the vectorial syntax and focused on its semantics in terms of obligation games.
We presented the notion of well-formed formulas as a necessary preliminary step
for their translation into p-automata. We showed that for every well-formed μp-
calculus sentence there exists an equivalent p-automaton that recognises exactly
all the Markov chains that model the formula. Conversely, we proved that for
every p-automaton there is an equivalent μp-formula that is satisfied by the same
Markov chains that form the language of the p-automaton.

Throughout this work, obligation games have played a key linking role in
defining the semantics of the structures resulting from the conversions and, there-
fore, proving the correctness of our claims.
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Abstract. We study descriptive complexity properties of the class of
regular bifix-free languages, which is the intersection of prefix-free and
suffix-free regular languages. We show that there exist universal bifix-
free languages that meet all the bounds for the state complexity of basic
operations (Boolean operations, product, star, and reversal). This is in
contrast with suffix-free languages, where it is known that there does not
exist such languages. Then we present a stream of bifix-free languages
that is most complex in terms of all basic operations, syntactic com-
plexity, and the number of atoms and their complexities, which requires
a superexponential alphabet. We also complete the previous results by
characterizing state complexity of product, star, and reversal, and estab-
lishing tight upper bounds for atom complexities of bifix-free languages.
Moreover, we consider the problem of the minimal size of an alphabet
required to meet the bounds, and the problem of attainable values of
state complexities (magic numbers).

Keywords: Bifix-free · Most complex · Prefix-free · State complexity ·
Suffix-free · Transition semigroup

1 Introduction

A language is prefix-free or suffix-free if no word in the language is a proper prefix
or suffix, respectively, of another word from the language. If a language is prefix-
free and suffix-free then it is bifix-free. Languages with these properties have
been studied extensively. They form important classes of codes, whose applica-
tions can be found in such fields as cryptography, data compression, information
transmission, and error correction methods. In particular, prefix and suffix codes
are prefix-free and suffix-free languages, respectively, while bifix-free languages
can serve as both kinds of codes. For a survey about codes see [1,19]. Moreover,
they are special cases of convex languages (see e.g. [7] for the related algorithmic
problems). Here we are interested how the descriptive complexity properties of
prefix-free and suffix-free languages are shared in their common subclass.

There are three natural measures of complexity of a regular language that
are related to the Myhill (Myhill-Nerode) congruence on words. The usual state
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complexity or quotient complexity is the number of states in a minimal DFA
recognizing the language. Therefore, state complexity measures how much mem-
ory we need to store the language in the form of a DFA, or how much time we
need to perform an operation that depends on the size of the DFA. Therefore,
we are interested in finding upper bounds for complexities of the resulting lan-
guages obtained as a result of some operation (e.g. union, intersection, product,
or reversal). Syntactic complexity measures the number of transformations in
the transition semigroup or, equivalently, the number of classes of words that
act differently on the states [21]; this provides a natural bound on the time and
space complexity of algorithms working on the transition semigroup (for exam-
ple, a simple algorithm checking whether a language is star-free just enumerates
all transformations and verifies whether no one of them contains a non-trivial
cycle [20]). The third measure is called the complexity of atoms [11], which is
the number and state complexities of the languages of words that distinguish
exactly the same subset of states (quotients).

Most complex languages and universal witnesses were proposed by
Brzozowski in [3]. The point here is that, it is more suitable to have a sin-
gle witness that is most complex in the given subclass of regular languages,
instead of having separate witnesses meeting the upper bound for each partic-
ular measure and operation. Besides theoretical aspects, this concept has also
a practical motivation: To test efficiency of various algorithms or systems oper-
ating on automata (e.g. computational package GAP [15]), it is natural to use
worst-case examples, that is, languages with maximal complexities. Therefore,
it is preferred to have just one universal most complex example than a set of
separate examples for every particular case. Of course, it is also better to use a
smallest possible alphabet.

It may be surprising that such a single witness exists for most of the natural
subclasses of regular languages: the class of all regular languages [3], right-, left-,
and two-sided ideals [4], and prefix-convex languages [8]. However, there does
not exist a single witness for the class of suffix-free languages [10], where two
different witnesses must be used.

In this paper we continue the studies concerning the class of regular bifix-
free languages [5,6,23]. In [5] the tight bound on the state complexity of basic
operations on bifix-free languages were established; however, the witnesses were
different for particular cases. The syntactic complexity of bifix-free languages was
first studied in [6], where a lower bound was established, and then the formula
was shown to be an upper bound in [23].

Our main contributions are as follows:

1. We show a single ternary witness of bifix-free languages that meets the upper
bounds for all basic operations. This is in contrast with the class of suffix-free
languages, where such most complex languages do not exist.

2. We show that there exist most complex languages in terms of state complexity
of all basic operations, syntactic complexity, and number of atoms and their
complexities. It uses a superexponential alphabet, which cannot be reduced.
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3. We prove a tight upper bound on the number of atoms and the quotient
complexities of atoms of bifix-free languages.

4. We provide a complete characterization of state complexity for product and
star, and show the exact ranges for the possible state complexities for product,
star, and reversal of bifix-free languages.

5. We prove that at least a ternary alphabet must be used to meet the bound
for reversal, and at an (n+1)-ary alphabet must be used to meet the bounds
for atom complexities.

The full version of this paper is available at [14].

2 Preliminaries

2.1 Regular Languages and Complexities

Let Σ be a non-empty finite alphabet. In this paper we deal with regular lan-
guages L ⊆ Σ∗. For a word w ∈ L, the (left) quotient of L is the set {u | wu ∈ L},
which is also denoted by L.w. Left quotients are related to the Myhill-Nerode
congruence on words, where two words u, v ∈ Σ∗ are equivalent if for every
x ∈ Σ∗, we have ux ∈ L if and only if vx ∈ L. Thus the number of quotients is
the number of equivalence classes in this relation. The number of quotients of L
is the quotient complexity κ(L) of this language [2]. A language is regular if it
has a finite number of quotients.

Let L,K ⊆ Σ∗ be regular languages over the same alphabet Σ. By Boolean
operations on these languages we mean union L∪K, intersection L∩K, difference
L \ K, and symmetric difference L ⊕ K. The reverse language LR of L is the
language {ak . . . a1 | a1 . . . ak ∈ L, a1, . . . , ak ∈ Σ}. By the basic operations on
regular languages we mean the Boolean operations, the product (concatenation),
the star, and the reversal operation. By the complexity of an operation we mean
the maximum possible quotient complexity of the resulted language, given as a
function of the quotient complexities of the operands.

The syntactic complexity σ(L) of L is the number of equivalence classes of the
Myhill equivalence relation on Σ+, where two words u, v ∈ Σ+ are equivalent if
for any words x, y ∈ Σ∗, we have xuy ∈ L if and only if xvy ∈ L.

The third measure of complexity of a regular language L is the number and
quotient complexities of atoms [11]. Atoms arise from the left congruence of
words refined by Myhill equivalence relation: two words u, v ∈ Σ∗ are equivalent
if for any word x ∈ Σ∗, we have xu ∈ L if and only if xv ∈ L [16]. Thus u
and v are equivalent if they belong exactly to the same left quotients of L. An
equivalence class of this relation is an atom [11] of L. It is known that (see [11])
an atom is a non-empty intersection of quotients and their complements, and
the quotients of a language are unions of its atoms. Therefore, we can write AS

for an atom, where S is the set of quotients of L; then AS is the intersection of
the quotients of L from S together with the complements of the quotients of L
outside S.
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2.2 Finite Automata and Transformations

A deterministic finite automaton (DFA) is a tuple D = (Q,Σ, δ, q0, F ), where Q
is a finite non-empty set of states, Σ is a finite non-empty alphabet, δ : Q×Σ → Q
is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of
final states. We extend δ to a function δ : Q × Σ∗ → Q as usual: for q ∈ Q,
w ∈ Σ∗, and a ∈ Σ, we have δ(q, ε) = q and δ(q, wa) = δ(δ(q, w), a), where ε
denotes the empty word.

A state q ∈ Q is reachable if there exists a word w ∈ Σ∗ such that δ(q0, w) =
q. Two states p, q ∈ Q are distinguishable if there exists a word w ∈ Σ∗ such
that either δ(p,w) ∈ F and δ(q, w) /∈ F or δ(p,w) /∈ F and δ(q, w) ∈ F .

A DFA is minimal if there is no DFA with a smaller number of states that
recognizes the same language. It is well known that this is equivalent to that
every state is reachable and every pair of distinct states is distinguishable. Given
a regular language L, all its minimal DFAs are isomorphic, and their number
of states is equal to the number of left quotients κ(L) (see e.g. [2]). Hence, the
quotient complexity κ(L) is also called the state complexity of L. If a DFA is
minimal then every state q corresponds to a quotient of the language, which is
the set of words w such that δ(q, w) ∈ F . We denote this quotient by Kq. We
also write AS , where S is a subset of states, for

AS =
⋂

q∈S

Kq ∩
⋂

q∈S

Kq,

which is an atom if AS is non-empty.
A state q is empty if Kq = ∅.
Throughout the paper, by Dn we denote a DFA with n states, and without

loss of generality we always assume that its set of states Q = {0, . . . , n − 1} and
that the initial state is 0.

In any DFA Dn, every letter a ∈ Σ induces a transformation δa on the set Q
of n states. By Tn we denote the set of all nn transformations of Q; then Tn is
a monoid under composition. For two transformations t1, t2 of Q, we denote its
composition as t1t2. The transformation induced by a word w ∈ Σ∗ is denoted
by δw. The image of q ∈ Q under a transformation δw is denoted by qδw, and
the image of a subset S ⊆ Q is Sδw = {qδw | q ∈ S}. The preimage of a subset
S ⊂ Q under a transformation δ−1

w is Sδ−1
w = {q ∈ Q | qδw ∈ S}. Note that if

w = a1 . . . ak, then δ−1
a1...ak

= δ−1
ak

. . . δ−1
a1

. The identity transformation is denoted
by 1, which is also the same as δε, and we have q1 = q for all q ∈ Q.

The transition semigroup T (n) of Dn is the semigroup of all transformations
generated by the transformations induced by Σ. Since the transition semigroup
of a minimal DFA of a language L is isomorphic to the syntactic semigroup
of L [21], syntactic complexity σ(L) is equal to the cardinality |T (n)| of the
transition semigroup T (n).

Since a transformation t of Q can be viewed as a directed graph with regular
out-degree equal to 1 and possibly with loops, we transfer well known graph
terminology to transformations: The in-degree of a state q ∈ Q is the cardinality
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|{p ∈ Q | pt = q}|. A cycle in t is a sequence of states q1, . . . , qk for k ≥ 2 such
that qit = qi+1 for i = 1, . . . , k − 1, and qkt = q1. A fixed point in t is a state q
such that qt = q; we therefore do not call fixed points cycles.

A transformation that maps a subset S to a state q and fixes all the other
states is denoted by (S → q). If S is a singleton {p} then we write shortly
(p → q). A transformation that acts cyclically on states q1, . . . , qk for k ≥ 2,
that is, q1t = q2, q2t = q3, . . ., qkt = q1, and fixes all the other states is denoted
by (q1, . . . , qk).

A nondeterministic finite automaton (NFA) is a tuple N = (Q,Σ, δ, I, F ),
where Q, Σ, and F are defined as in a DFA, I is the set of initial states, and
δ : Q × Σ ∪ {ε} → 2Q is the transition function.

2.3 Most Complex Languages

A stream is a sequence (Lk, Lk+1, . . . ) of regular languages in some class, where
n is the state complexity of Ln. A dialect L′

n of a language Ln is a language
that differs only slightly from Ln. There are various types of dialects, depending
what changes are allowed. A permutational dialect (or permutationally equivalent
dialect) is a language in which letters may be permuted or deleted. Let π : Σ → Σ
be a partial permutation. If Ln(a1, . . . , ak) is a language over the alphabet Σ =
{a1, . . . , ak}, then we write Ln(π(a1), . . . , π(ak)) for a language in which a letter
ai is replaced by π(ai). In the case a letter ai is removed, so not defined by π(ai),
we write π(ai) = . For example, if L = {a, ab, abc}, then L(b, a, ) = {b, ba}.

A stream is most complex in its class if all the languages and all pairs of the
languages from the stream together with the dialects of these languages meet
all the bounds for the state complexities of basic operations, the syntactic com-
plexity, the number and the complexities of atoms. Note that binary operations
were defined for languages with the same alphabets. Therefore, if the alphabet
is not constant in the stream, to meet the bounds for binary Boolean operations,
for every pair of languages we must use their dialects that restrict the alphabet
to be the same.

Sometimes we restrict only to some of these measures. In some cases, this
allows us to provide an essentially simpler stream over a smaller alphabet when
we are interested only in those measures. In particular, if a syntactic complexity
requires a large alphabet and for basic operations it is enough to use a constant
number of letters, it is desirable to provide a separate stream which is most
complex just for basic operations.

Dialects are necessary for most complex streams of languages, since otherwise
they would not be able to meet upper bounds in most classes. In particular, since
Ln ∪ Ln = Ln, the state complexity of union would be at most n in this case.
Other kinds of dialects are possible (e.g. [8]), though permutational dialects are
the most restricted.
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2.4 Bifix-Free Languages

A language L is prefix-free if there are no words u, v ∈ Σ+ such that uv ∈ L
and u ∈ L. A language L is suffix-free if there are no words u, v ∈ Σ+ such that
uv ∈ L and v ∈ L. A language is bifix-free if it is both prefix-free and suffix-free.

The following properties of minimal DFAs recognizing prefix-free, suffix-free,
and bifix-free languages, adapted to our terminology, are well known (see e.g. [5,
6,12,23]):

Lemma 1. Let Dn(Q,Σ, δ, 0, F ) be a minimal DFA recognizing a non-empty
language L. Then L is bifix-free if and only if:

1. There is an empty state, which is n − 1 by convention (that is, state n − 1 is
not final and (n − 1)δa = n − 1 for all a ∈ Σ).

2. There exists exactly one final state, which is n − 2 by convention, and its
quotient is {ε}; thus (n − 2)δa = n − 1 for all a ∈ Σ.

3. For u ∈ Σ+ and q ∈ Q \ {0}, if qδu �= n − 1, then 0δu �= qδu.

The conditions (1) and (2) are sufficient and necessary for a prefix-free lan-
guage, and the conditions (1) and (3) are sufficient and necessary for a suffix-free
language.

It follows that a minimal DFA recognizing a non-empty bifix-free language
must have at least n ≥ 3 states.

Since states 0, n − 2, and n − 1 are special in the case of DFAs of bifix-free
languages, we denote the remaining “middle” states by QM = {1, . . . , n − 3}.
Condition 3 implies that suffix-free and so bifix-free are non-returning (see [13]),
that is, there is no non-empty word w ∈ Σ+ such that L.w = L.

Note that in the case of unary languages, there is exactly one bifix-free lan-
guage for every state complexity n ≥ 3, which is {an−2}. The classes of unary
prefix-free, unary suffix-free, and unary bifix-free languages coincide and we refer
to it as unary free languages.

The state complexity of basic operations on bifix-free languages was studied
in [5], where different witness languages were shown for particular operations.

The syntactic complexity of bifix-free languages was shown to be (n−1)n−3+
(n − 2)n−3 + (n − 3)2n−3 for n ≥ 6 [23]. Moreover, the transition semigroup of
a minimal DFA Dn of a witness language meeting the bound must be W≥6

bf (n),
which is a transition semigroup containing three types of transformations and
can be defined as follows:

Definition 2 (The Largest Bifix-Free Semigroup)

W≥6
bf (n) = {t ∈ T (n) |

(type 1) {0, n − 2, n − 1}t = {n − 1} and QM t ⊂ QM ∪ {n − 2, n − 1} , or

(type 2) 0t = n − 2 and {n − 2, n − 1}t = {n − 1} and QM t ⊂ QM ∪ {n − 1} , or

(type 3) 0t ∈ QM and {n − 2, n − 1}t = {n − 1} and QM t ⊆ {n − 2, n − 1} }.
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Following [23], we say that an unordered pair {p, q} of distinct states from
QM is colliding in T (n) if there is a transformation t ∈ T (n) such that 0t = p
and rt = q for some r ∈ QM . A pair of states is focused by a transformation
u ∈ T (n) if u maps both states of the pair to a single state r ∈ QM ∪ {n − 2}. It
is known that ([23]) in semigroup W≥6

bf (n) there are no colliding pairs and every
possible pair of states is focused by some transformation, and it is the unique
maximal transition semigroup of a minimal DFA of a bifix-free language with
this property.

3 Complexity of Bifix-Free Languages

In this section we summarize and complete known results concerning state com-
plexity of bifix-free regular languages. We start from the obvious upper bound
for the maximal complexity of quotients.

Proposition 3. Let L be a bifix-free language with state complexity n. Each
(left) quotient of L has state complexity at most n − 1, except L, {ε}, and ∅,
which always have state complexities n, 2, and 1, respectively.

In [5] it was shown that mn−(m+n) (for m,n ≥ 4) is a tight upper bound for
the state complexity of union and symmetric difference of bifix-free languages,
and that to meet this bound a ternary alphabet is required. It was also shown
there that mn−3(m+n−4) and mn−(2m+3n−9) (for m,n ≥ 4) are tight upper
bounds for intersection and difference, respectively, and that a binary alphabet
is sufficient to meet these bounds. Since the tight bound is smaller for unary free
languages, the size of the alphabet cannot be reduced.

It may be interesting to observe that the alphabet must be essentially larger
to meet the bounds in the case when m = 3.

Remark 4. For n ≥ 3, to meet the bound mn − (m + n) for union or symmetric
difference with minimal DFAs D′

3 and Dn at least n − 2 letters are required.

The tight upper bound for the product is m + n − 2, which is met by unary
free languages. We show that there is no other possibility for the product of
bifix-free languages, that is, LmLn has always state complexity m + n − 2.

Theorem 5. For m ≥ 3, n ≥ 3, for every bifix-free languages L′
m and Ln, the

product L′
mLn meets the bound m + n − 2.

The tight upper bound for the star is n − 1, which is met by binary bifix-
free languages [5]. Here we provide a complete characterization for the state
complexity of L∗

n and show that there are exactly two possibilities for its state
complexity: n − 1 and n − 2. This may be compared with prefix-free languages,
where there are exactly three possibilities for the state complexity L∗

n: n, n − 1,
and n − 2 [18].
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Theorem 6. Let n ≥ 3 and let Dn = (Q,Σ, δ, {n − 2}, 0) be a minimal DFA of
a bifix-free language Ln. If the transformation of some a ∈ Σ maps some state
from {0, . . . , n − 3} to n − 1, then L∗

n has state complexity n − 1. Otherwise it
has state complexity n − 2.

For the state complexity of the reversal of a bifix-free language, it was shown
in [5, Theorem 6] that for n ≥ 3 the tight upper bound is 2n−3 + 2, and that a
ternary alphabet is sufficient. We show that the alphabet size cannot be reduced,
and characterize the transition semigroup of the DFAs of witness languages.

Theorem 7. For n ≥ 6, to meet the bound 2n−3 + 2 for reversal, a witness
language must have at least three letters. Moreover, for n ≥ 5 the transition
semigroup T (n) of a minimal DFA Dn(Q,Σ, δ, 0, {n − 2}) accepting a witness
language must be a subsemigroup of W≥6

bf (n).

It is known that in the case of the class of all regular languages the resulting
language of the reversal operation can have any state complexity in the range
of integers [log2 n, 2n] [17,22], thus there are no gaps (magic numbers) in the
interval of possible state complexities. The next theorem states that the situation
is similar for the case of bifix-free languages.

Theorem 8. If Ln is a bifix-free language with state complexity n ≥ 3, then the
state complexity of LR

n is in [3 + log2(n − 2), 2 + 2n−3]. Moreover, all values in
this range are attainable by LR

n for some bifix-free language Ln, whose minimal
DFA has transition semigroup that is a subsemigroup of W≥6

bf (n).

3.1 Atom Complexities

Here we prove tight upper bounds on the number and the state complexities of
atoms of a bifix-free language, and that an alphabet of size n + 1 is sufficient
and necessary to meet the bounds.

Theorem 9. Suppose that Ln is a bifix-free language recognized by a minimal
DFA Dn(Q,Σ, δ, 0, {n − 2}). Then there are at most 2n−3 + 2 atoms of Ln and
the quotient complexity of κ(AS) of atom AS satisfies:

κ(AS)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

≤ 2n−2 + 1 if S = ∅;
= n if S = {0};
= 2 if S = {n − 2};
≤ 3 +

∑|S|
x=1

∑n−3−|S|
y=0

(
n−3

x

)(
n−3−x

y

)
if ∅ �= S ⊆ {1, . . . , n − 3}.

Theorem 10. Let n ≥ 6, and let Ln be the language recognized by the DFA
D(Q,Σ, δ, 0, {n − 2}), where Σ = {a, b, c, d, e1 . . . , en−3} and δ is defined as
follows: δa : (0 → 1)((Q\{0}) → n−1), δb : ({0, n−2} → n−1)(1, 2), δc : ({0, n−
2} → n − 1)(1, . . . , n − 3), δd : ({0, n − 2} → n − 1)(2 → 1), δeq

: ({0, n − 2} →
n − 1)(q → n − 2) for q ∈ QM . Then D is minimal, Ln is bifix-free and it meets
the upper bounds for the number and complexities of atoms from Theorem 9.
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Theorem 11. For n ≥ 7, to meet the upper bounds for the atom complexities
from Theorem 9 by the language of a minimal DFA Dn(Q,Σ, δ, 0, {n − 2}), the
size of the alphabet Σ must be at least n+1. Moreover, the transition semigroup
of Dn must be a subsemigroup of W≥6

bf (n).

4 Most Complex Bifix-Free Languages

First we show a most complex stream of bifix-free languages for basic operations
which uses only a ternary alphabet. The size of this alphabet is the smallest
possible, because for union, symmetric difference, and reversal we require at
least three letters to meet the bounds.

Definition 12 (Most complex stream for operations). For n ≥ 7, we
define the DFA Dn = (Q,Σ, δ, 0, {n−2}), where Q = {0, . . . , n−1}, Σ = {a, b, c},
h = (n − 1)/2� and δ is defined as follows:

– δa : (0 → 1)({1, . . . , n − 3} → n − 2)({n − 2, n − 1} → n − 1),
– δb : ({0, n − 2, n − 1} → n − 1)(1, . . . , n − 3),
– δc : ({0, n−2, n−1} → n−1)(1 → h)(h → n−2)(n−3, . . . , h+1, h−1, . . . , 2).

The DFA Dn is illustrated in Fig. 1.

Fig. 1. Automaton Dn from Definition 12; empty state n− 1 and the transitions going
to n − 1 are omitted
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Theorem 13. The DFA Dn from Definition 12 is minimal, recognizes a bifix-
free language Ln(a, b, c), has most complex quotients, and its transition semi-
group is a subsemigroup of W≥6

bf (n). The stream (Ln(a, b, c) | n ≥ 9) with some
permutationally equivalent dialects meets all the bounds for basic operations as
follows:

– Lm(a, b, c) and Ln(a, c, b) meet the bound mn − (m + n) for union and sym-
metric difference, the bound mn−3(m+n−4) for intersection and the bound
mn − (2m + 3n − 9) for difference.

– Lm(a, b, c) and Lm(a, b, c) meet the bound m + n − 2 for product.
– Lm(a, b, c) meets the bound n − 1 for star.
– Lm(a, b, c) meets the bound 2n−3 + 2 for reversal.

Here we define a most complex stream for all three measures of complexity.
To meet the bound for syntactic complexity an alphabet of size at least (n−3)+
((n − 2)n−3 − 1) + (n − 3)(2n−3 − 1) = (n − 2)n−3 + (n − 3)2n−3 − 1 is required,
and so a witness stream cannot have a smaller number of letters. Our stream
contains the DFAs from [23, Definition 4], which have the transition semigroup
W≥6

bf (n).

Definition 14 (Most complex stream, [23, Definition 4]). For n ≥ 6, we
define the language Wn which is recognized by the DFA Wn with Q = {0, . . . , n−
1} and Σ containing the following letters:

1. bi, for 1 ≤ i ≤ n − 3, inducing the transformations (0 → n − 1)(i → n −
2)(n − 2 → n − 1),

2. ci, for every transformation of type (2) from Definition 2 that is different
from (0 → n − 2)(QM → n − 1)(n − 2 → n − 1),

3. di, for every transformation of type (3) from Definition 2 that is different
from (0 → q)(QM → n − 1)(n − 2 → n − 1) for some state q ∈ QM .

Theorem 15. The stream (Wn | n ≥ 9) is most complex in the class of bifix-free
languages:

1. The quotients of Wn have maximal state complexity (Proposition 3).
2. Wm and W ′

n meet the bounds for union, intersection, difference, symmetric
difference, where W ′

n is a permutationally equivalent dialect of Wn.
3. Wm and Wn meet the bound for product.
4. Wn meets the bounds for reversal and star.
5. Wn meets the bound for the syntactic complexity.
6. Wn meets the bounds for the number of atoms and the quotient complexities

of atoms (see Theorem 9).

Moreover, the size of its alphabet is the smallest possible.



86 R. Ferens and M. Szyku�la

Table 1. A summary of complexity of bifix-free languages for n ≥ 6 with the minimal
sizes of the alphabet required to meet the bounds

Measure Tight upper bound Min. alphabet

Union Lm ∪ Ln mn − (m + n) 3
Symmetric difference Lm ⊕ Ln mn − (m + n) 3
Intersection Lm ∩ Ln mn − 3(m + n − 4) 2
Difference Lm \ Ln mn − (2m + 3n − 9) 2
Product LmLn m + n − 2 1
Star L∗

n n − 1 2
Reversal LR

n 2n−3 + 2 3
Syntactic complexity of Ln (n − 1)n−3 + (n − 2)n−3+ (n − 2)n−3+

(n − 3)2n−3 (n − 3)2n−3 − 1
Atom complexities κ(AS) The bounds from Theorem 9 n + 1

Table 2. The minimal sizes of the alphabet in a universal most complex stream(s) for
some of the studied subclasses of regular languages

Class Min. alphabet Class Min. alphabet

Regular languages [3] 3 Prefix-free [8] n + 2
Right ideals [4] 4 Prefix-closed [8] 4
Left ideals [4] 5 k-proper

prefix-convex [8]
7

Two-sided ideals [4] 6 Suffix-free [10] ≤ 3 and 5
Bifix-free (Theorem 15) (n − 2)n−3 +

(n−3)2n−3 −1
Non-returning [9] n(n − 1)/2

5 Conclusions

We completed the previous results concerning complexity of bifix-free languages.
The bounds for each considered measure are summarized in Table 1. Our par-
ticular contribution is exhibition of a single ternary stream that meets all the
bounds on basic operations. Then we showed a most complex stream that meets
all the upper bounds of all three complexity measures.

It is worth noting how the properties of prefix-free and suffix-free languages
are shared in the class of bifix-free languages. It is known that there does not exist
such a stream in the class of suffix-free languages, even considering only basic
operations. Hence, although the classes of bifix-free and suffix-free languages
share many properties, such as a similar structure of the largest semigroups,
the existence of most complex languages distinguishes them. This is because
the bounds for star and product are much smaller for bifix-free languages and
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are very easily met. Additionally, a most complex stream of bifix-free languages
requires a superexponential alphabet, which is much larger than in most complex
streams of the other studied subclasses; see Table 2.
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Abstract. A graph-controlled insertion-deletion (GCID) system is a
regulated extension of an insertion-deletion system. It has several compo-
nents and each component contains some insertion-deletion rules. These
components are the vertices of a directed control graph. A rule is applied
to a string in a component and the resultant string is moved to the target
component specified in the rule, describing the arcs of the control graph.
We investigate which combinations of size parameters (the maximum
number of components, the maximal length of the insertion string, the
maximal length of the left context for insertion, the maximal length of
the right context for insertion; a similar three restrictions with respect
to deletion) are sufficient to maintain the computational completeness of
such restricted systems with the additional restriction that the control
graph is a path, thus, these results also hold for ins-del P systems.

Keywords: Graph-controlled ins-del systems · Path-structured con-
trol graph · Computational completeness · Descriptional complexity
measures

1 Introduction

The motivation for insertion-deletion system comes from both linguistics [11]
and also from biology, more specifically from DNA processing [14] and RNA
editing [1]. Insertion and deletion operations together were introduced into for-
mal language theory in [9]. The corresponding grammatical mechanism is called
insertion-deletion system (abbreviated as ins-del system). Informally, the inser-
tion operation means inserting a string η in between the strings w1 and w2,
whereas the deletion operation means deleting a substring δ from the string
w1δw2. Several variants of ins-del systems have been considered in the litera-
ture. We refer to the survey article [16] for details.

One of the important variants of ins-del systems is graph-controlled ins-del
systems (abbreviated as GCID systems), introduced in [6] and further studied
in [8]. In such a system, the concept of components is introduced, which are asso-
ciated with insertion or deletion rules. The transition is performed by choosing
c© Springer International Publishing AG 2017
A. Carayol and C. Nicaud (Eds.): CIAA 2017, LNCS 10329, pp. 89–100, 2017.
DOI: 10.1007/978-3-319-60134-2 8
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any applicable rule from the set of rules of the current component and by moving
the resultant string to the target component specified in the rule.

If the underlying graph of a GCID system establishes a path structure (loops,
multiple edges and directions are ignored), then such a GCID system can be seen
as a special form of a P system, namely, an ins-del P system. As P systems (a
model for membrane computing) draw their origins from modeling computations
of biological systems, considering insertions and deletions in this context is par-
ticularly meaningful. There is one small technical issue, namely, in a P system,
usually there is no specific initial membrane where the computation begins, since
the membranes evolve in a so-called maximally parallel way. But if the collec-
tion of axioms in each membrane (except of one) is empty, then this exceptional
membrane can be viewed as an initial membrane to begin with, so that such a
system works in the same way as a GCID system where the membranes of a P
system correspond to the components of a GCID system; see [13].

The mentioned connections motivate to study GCID systems. Much research
has then be devoted to restricting the computational resources as far as possible
while still maintaining computational completeness. To be more concrete, typical
questions are: To what extent can we limit the context of the insertion or of the
deletion rules? How many components are needed? Are there kind of trade-offs
between these questions? All this is formalized in the following.

The descriptional complexity of a GCID system is measured by its size
(k;n, i′, i′′;m, j′, j′′) where the parameters from left to right denote (i) number
of components (ii) the maximal length of the insertion string (iii) the maximal
length of the left context used in insertion rules (iv) the maximal length of the
right context used in insertion rules and the last three parameters follow a similar
representation with respect to deletion. The generative power of GCID systems
for insertion/deletion lengths satisfying n + m ∈ {2, 3} has also been studied
in [4,5,8]. However, the control graph is not a path for many cases.

The main objective of this paper is to characterize recursively enumerable
languages (denoted as RE) by GCID systems with bounded sizes, whose under-
lying (undirected) control graph is a path, as this special case also relates to
ins-del P systems [13]. Also, this objective can be seen as a sort of syntactic
restriction on GCID systems, on top of the usually considered numerical values
limiting the descriptional complexity. We are interested in the question which
type of resources of path-structured GCID systems are still powerful enough
to characterize RE. We prove that GCID system of sizes (k;n, i′, i′′; 1, j′, j′′)
with i′, i′′, j′, j′′ ∈ {0, 1}, i′ + i′′ = 1 and (i) k = 3, n = 1, j′ + j′′ = 2,
(ii) k = 4, n = 1, j′ + j′′ = 1, (iii) k = 3, n = 2, j′ + j′′ = 1, all charac-
terize RE with a path as a control graph. Previously, such results were only
known for GCID systems with arbitrary control graphs [5]. Our results may
also revive interest in the conjecture of Ivanov and Verlan [8] which states that
RE �= GCID(s) if k = 2 in s = (k; 1, i′, i′′; 1, j′, j′′), with i′, i′′, j′, j′′ ∈ {0, 1} and
i′ + i′′ + j′ + j′′ ≤ 3. In the same situation, this statement is known to be true if
k = 1. If the conjecture were true, then our results for k = 3 would be optimal.
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2 Preliminaries

We assume that the readers are familiar with the standard notations used in
formal language theory. We recall a few notations here. Let N denote the set of
positive integers, and [1 . . . k] = {i ∈ N : 1 ≤ i ≤ k}. Given an alphabet (finite
set) Σ, Σ∗ denotes the free monoid generated by Σ. The elements of Σ∗ are
called strings or words; λ denotes the empty string. For a string w ∈ Σ∗, |w| is
the length of w and wR denotes the reversal (mirror image) of w. LR and LR

are understood for languages L and language families L. For the computational
completeness results, we are using as our main tool the fact that type-0 grammars
in Special Geffert Normal Form (SGNF) that characterize RE.

Definition 1. A type-0 grammar G = (N,T, P, S) is said to be in SGNF if

– N decomposes as N = N ′∪N ′′, where N ′′ = {A1, B1, A2, B2} and N ′ contains
at least the two nonterminals S and S′;

– the only non-context-free rules in P are AB → λ, where AB ∈ {A1B1, A2B2};
– the context-free rules are of the form (i) S′ → λ, or (ii) X → Y1Y2, where

X ∈ N ′ and Y1Y2 ∈ ((N ′ \ {X})(T ∪ N ′′)) ∪ ((T ∪ N ′′)(N ′ \ {X})).

The way the normal form is constructed is described in [6], based on [7]. We
assume in this paper that the context-free rules r : X → Y1Y2 either satisfy
Y1 ∈ {A1, A2} and Y2 ∈ N ′, or Y1 ∈ N ′ and Y2 ∈ {B1, B2} ∪ T . This also means
that the derivation in G undergoes two phases: in phase I, only context-free rules
are applied. This phase ends with applying the context-free deletion rule S′ → λ.
Then, only non-context-free deletion rules are applied in phase II. Notice that
the symbol from N ′, as long as present, separates A1 and A2 from B1 and B2;
this prevents a premature start of phase II. We write ⇒r to denote a single
derivation step using rule r, and ⇒G (or ⇒ if no confusion arises) denotes a
single derivation step using any rule of G. Then, L(G) = {w ∈ T ∗ | S ⇒∗ w},
where ⇒∗ is the reflexive transitive closure of ⇒.

Definition 2. A graph-controlled insertion-deletion system (GCID for short)
with k components is a construct Π = (k, V, T,A,H, i0, if , R), where (i) k is
the number of components, (ii) V is an alphabet, (iii) T ⊆ V is the terminal
alphabet, (iv) A ⊂ V ∗ is a finite set of strings, called axiom, (v) H is a set of
labels associated (in a one-to-one manner) to the rules in R, (vi) i0 ∈ [1 . . . k] is
the initial component, (vii) if ∈ [1 . . . k] is the final component and (viii) R is a
finite set of rules of the form l: (i, r, j), where l is the label of the rule, r is an
insertion rule of the form (u, η, v)I or deletion rule of the form (u, δ, v)D, where
u, v ∈ V ∗, η, δ ∈ V + and i, j ∈ [1 . . . k].

If the initial component itself is the final component, then we call the system
returning. The pair (u, v) is called the context, η is called the insertion string, δ
is called the deletion string and x ∈ A is called an axiom. We write rules in R
in the form l: (i, r, j), where l ∈ H is the label associated to the rule. Often, the
component is part of the label name. This will also (implicitly) define H. We
shall omit the label l of the rule wherever it is not necessary for the discussion.
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We now describe how GCID systems work. Applying an insertion rule of the
form (u, η, v)I means that the string η is inserted between u and v; this corre-
sponds to the rewriting rule uv → uηv. Similarly, applying a deletion rule of the
form (u, δ, v)D means that the string δ is deleted between u and v; this corre-
sponds to the rewriting rule uδv → uv. A configuration of Π is represented by
(w)i, where i ∈ [1 . . . k] is the number of the current component and w ∈ V ∗

is the current string. We also say that w has entered component Ci. We write
(w)i ⇒l (w′)j or (w′)j ⇐l (w)i if there is a rule l: (i, r, j) in R, and w′ is obtained
by applying the insertion or deletion rule r to w. By (w)i

⇒l

⇐l′
(w′)j , we mean that

(w′)j is derivable from (w)i using rule l and (w)i is derivable from (w′)j using
rule l′. For brevity, we write (w)i ⇒ (w′)j if there is some rule l in R such that
(w)i ⇒l (w′)j . To avoid confusion with traditional grammars, we write ⇒∗ for the
transitive reflexive closure of ⇒ between configurations. The language L(Π) gen-
erated by Π is defined as {w ∈ T ∗ | (x)i0 ⇒∗ (w)if for some x ∈ A}. For return-
ing GCID systems Π with initial component C1, we also write (w)1 ⇒′ (w′)1,
meaning that there is a sequence of derivation steps (w)1 ⇒ (w1)c1 ⇒ · · · ⇒
(wk)ck ⇒ (w′)1 such that, for all i = 1, . . . , k, ci �= 1.

The underlying control graph of a GCID system Π with k components is
defined to be a graph with k nodes labelled C1 through Ck and there exists a
directed edge from Ci to Cj if there exists a rule of the form (i, r, j) in R of
Π. We also associate a simple undirected graph on k nodes to a GCID system
of k components as follows: there is an undirected edge from a node Ci to Cj
(i �= j) if there exists a rule of the form (i, r1, j) or (j, r2, i) in R of Π (hence,
loops and multi-edges are excluded). We call a returning GCID system with k
components path-structured if its underlying undirected control graph has the
edge set {{Ci,C(i + 1)} | i ∈ [1 . . . k − 1]}.

The descriptional complexity of a GCID system is measured by its size
s = (k;n, i′, i′′;m, j′, j′′), where the parameters represent resource bounds as
given below. Slightly abusing notation, the language class that can be generated
by GCID systems of size s is denoted by GCID(s) and the class of languages
describable by path-structured GCID systems of size s is denoted by GCIDP (s).

k = the number of components
n = max{|η| : (i, (u, η, v)I , j) ∈ R} m = max{|δ| : (i, (u, δ, v)D, j) ∈ R}
i′ = max{|u| : (i, (u, η, v)I , j) ∈ R} j′ = max{|u| : (i, (u, δ, v)D, j) ∈ R}
i′′ = max{|v| : (i, (u, η, v)I , j) ∈ R} j′′ = max{|v| : (i, (u, δ, v)D, j) ∈ R}

3 Computational Completeness

In this section, to prove the computational completeness of GCID system of
certain sizes, we start with a type-0 grammar G = (N,T, P, S) in SGNF as
defined in Definition 1. The rules of P are labelled injectively with labels from
[1 . . . |P |]. We will use these labels and primed variants thereof as nonterminals
in the simulating GCID system. Their purpose is to mark positions in the string
and also to enforce a certain sequence of rule applications. As per the definition
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of SGNF, there are, apart from the easy-to-handle context-free deletion rule,
context-free rules r : X → Y1Y2 and non-context-free deletion rules f : AB → λ.
For these types of rules, we present the simulations in the form of a table, for
instance, as in Table 1. A detailed discussion of the working of this simulation
will follow in the proof of the next theorem.

To simplify our further results, the following observations from [5] are used.

Proposition 1 [5]. Let k, n, i′, i′′,m, j, j′′ be non-negative integers.

1. GCIDP (k;n, i′, i′′;m, j′, j′′) = [GCIDP (k;n, i′′, i′;m, j′′, j′)]R

2. RE = GCIDP (k;n, i′, i′′;m, j′, j′′) iff RE = GCIDP (k;n, i′′, i′;m, j′′, j′)

3.1 GCID Systems with Insertion and Deletion Length One

In [15], it has been proved that ins-del systems with size (1,1,1;1,1,1) characterize
RE. Notice that it is proved in [10,12] that ins-del systems of size (1, 1, 1; 1, 1, 0)
or (1, 1, 0; 1, 1, 1) cannot characterize RE. It is therefore obvious that we need at
least 2 components in a graph-controlled ins-del system of sizes (1, 1, 1; 1, 1, 0)
and (1, 1, 0; 1, 1, 1) to characterize RE. In [5], we characterized RE by path-
structured GCID systems of size (3; 1, 1, 1; 1, 1, 0). Also, in [8], it was shown
that GCIDP (3; 1, 2, 0; 1, 1, 0) = RE and GCIDP (3; 1, 1, 0; 1, 2, 0) = RE. We now
complement these results.

Table 1. Path-structured GCID systems of size (3; 1, 1, 0; 1, 1, 1) simulating type-0
grammars G in SGNF. In the table, c′ ∈ {A1, A2, κ

′} and c ∈ {B1, B2, κ} ∪ T , f, r are
rule markers, while Δ is a dummy symbol that was not part of the alphabet of G.

Component C1 Component C2 Component C3

r1.1 : (1, (X, r, λ)I , 2)
r1.2 : (1, (r, r′, λ)I , 2)
r1.3 : (1, (r′, Δ, λ)I , 1)
r1.4 : (1, (r′, Y2, λ)I , 2)

r2.1 : (2, (λ, X, r)D, 1)
r2.2 : (2, (λ, r, r′)D, 1)
r2.3.c : (2, (Y2, Δ, c)D, 3)
r2.4.c′ : (2, (c′, r′, Y1)D, 1)

r3.1 : (3, (r′, Y1, λ)I , 2)

f1.1 : (1, (λ, f, λ)I , 2) f2.1 : (2, (f, A, B)D, 3)
f2.2 : (2, (λ, f, λ)D, 1)

f3.1 : (3, (f, B, λ)D, 2)

h1.1 : (1, (λ, S′, λ)D, 1)

κ1.1 : (1, (λ, κ, λ)D, 1)
κ′1.1 : (1, (λ, κ′, λ)D, 1)

Theorem 1. RE = GCIDP (3; 1, 1, 0; 1, 1, 1) = GCIDP (3; 1, 0, 1; 1, 1, 1).

At a first glance, the reader might wonder that the simulation would be
straightforward (as initially thought by the authors themselves, as there are
many resources available). However, this is not the case. The problem is that any
rule of a component could be applied whenever a string enters that component.
Since insertion is only left-context-sensitive, the insertion string can be adjoined
any number of times on the right of this context, similar to context-free insertion.
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This issue is handled by inserting some markers and then inserting Y1 and Y2

(from rule X → Y1Y2) after the markers. We have to be careful, since a back-
and-forth transition may insert many Y1’s and/or Y2’s after the marker.

Proof. Consider a type-0 grammar G = (N,T, P, S) in SGNF as in Defin-
ition 1. We construct a GCIDP system Π such that L(Π) = L(G): Π =
(3, V, T, {κ′Sκ},H, 1, 1, R). The alphabet of Π is V ⊂ N ∪ T ∪ {r, r′ : r ∈
[1 . . . |P |]} ∪ {κ′, κ}. The simulation is explained in Table 1, which completes
the description of R and V . Clearly, Π has size (3; 1, 1, 0; 1, 1, 1).

With the rules of Table 1, we prove L(G) ⊆ L(Π) by showing how the differ-
ent types of rules are simulated. Let us look into the context-free rules first. The
simulation of the deletion rule h is obvious and hence omitted. Applying some
rule r : X → Y1Y2, with X ∈ N ′, to w = αXβ, where α, β ∈ (N ′′ ∪ T )∗, yields
w′ = αY1Y2β in G. In Π, we can find the following simulation, with α′c′ = κ′α
and cβ′ = βκ where α′κ, κ′cκ, κ′c′κ, κ′β′ ∈ {κ′}(N ′′ ∪ T )∗{κ}:

(κ′wκ)1 ⇒r1.1 (α′c′Xrcβ′)2 ⇒r2.1 (α′c′rcβ′)1 ⇒r1.2 (α′c′rr′cβ′)2 ⇒r2.2 (α′c′r′cβ′)1
⇒r1.3 (α′c′r′Δcβ′)1 ⇒r1.4 (α′c′r′Y2Δcβ′)2 ⇒r2.3.c (α′c′r′Y2cβ

′)3 ⇒r3.1

(α′c′r′Y1Y2cβ
′)2 ⇒r2.4.c′ (α′c′Y1Y2cβ

′)1 = (κ′αY1Y2βκ)1 = (κ′w′κ)1 .

For the non-context-free case, the simulation of f : AB → λ is straight-
forward; hence, details are omitted. By induction, this proves that whenever
S ⇒∗ w in G, then there is a derivation (κ′Sκ)1 ⇒′

∗ (κ′wκ)1 in Π, and finally
(κ′wκ)1 ⇒′ (w)1 is possible.

In the following we show the converse L(Π) ⊆ L(G) and this is important
since it also proves that Π not only produces intended strings as above but also
does not produce any unintended strings as well.

Conversely, consider a configuration (w)1, with (κ′Sκ)1 ⇒′
∗ (w)1. We assume

now that w starts with κ′ and ends with κ, and that these are the only occur-
rences of these special letters in w, as no malicious derivations are possible when
prematurely deleting κ or κ′. We now discuss five situations for w and prove in
each case that, whenever (w) ⇒′ (w′), then w′ satisfies one of these five situa-
tions, or from (w′)1 no final configuration can be reached. As S ∈ N ′, the base
case κ′Sκ is covered in case (iii) which is presented below. Hence, by induction,
the case distinction presented in the following considers all possibilities.
(i) Assume that w contains one occurrence of r′ (the primed marker of some
context-free rule r), but no occurrence of unprimed markers of context-free rules,
and no occurrence of any nonterminal from N ′, neither an occurrence of Δ. Hence,
w = κ′αr′βκ for appropriate strings α, β ∈ (N ′′ ∪ T )∗. Then, the rules (i.a) r1.3,
(i.b) r1.4, as well as the simulation initiation rules like (i.c) f1.1 are applicable.
Let us discuss these possibilities now. Subcase (i.c): If f1.1 is applied, then, say,
f is introduced to the right of some occurrence of A. In C2, one can then try
to apply (i.c.1) f2.1, (i.c.2) f2, 2, or (i.c.3) r2.4.c′ for an appropriate c′. How-
ever, as we are still simulating phase I of G, B cannot be to the right of A,
so that Subcase (i.c.1) cannot occur. Subcase (i.c.2) simply undoes the effect of
previously applying f1.1, so that we can ignore its discussion. In Subcase (i.c.3),
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we are back in C1 with a string that contains no symbols from N ′, nor any variants
of context-free rule markers, nor any Δ, but one non-context-free rule marker. We
will discuss this in Case (v) below and show that such a derivation cannot termi-
nate. Subcase (i.b): If we apply r1.4 to w immediately, we are stuck in C2. Hence,
consider finally Subcase (i.a): we apply r1.3 first once. Now, we are in a very similar
situation as before, but one Δ is added to the right of r′. This means that contin-
uing with f1.1 will get stuck again in C2. In order to make progress, we should
finally apply r1.4. Now, we are in the configuration (κ′αr′Y2Δ

nβκ)2 for some
n ≥ 1. As Y1 �= Y2, r2.4.c′ is not applicable for any c′, so the derivation is stuck
in C2. If we apply r.2.3.c, then we can only proceed if n = 1, which means that
we applied r1.3 exactly once before. Hence, (κ′αr′Y2Δβκ)2 ⇒ (κ′αr′Y2βκ)3 ⇒
(κ′αr′Y1Y2βκ)2 ⇒ (κ′αY1Y2βκ)1 is enforced. This corresponds to the intended
derivation; the assumed occurrence of r′ in the string was replaced by Y1Y2; this
corresponds to the situation of Case (iii).
(ii) Assume that w contains one occurrence of r (the unprimed marker of some
context-free rule r), but no occurrence of primed markers of context-free rules,
and no occurrence of any nonterminal from N ′, neither an occurrence of Δ.
Hence, w = κ′αrβκ for appropriate strings α, β ∈ (N ′′ ∪ T )∗. Similarly as dis-
cussed in Case (i), trying to start a simulation of some non-context-free rule
gets stuck in C2, in particular, as we are simulating phase I of G and there is no
nonterminal from N ′ in the current string. Hence, we are now forced to apply
r1.2. This means that in C2, we have to apply r2.2, leading us to (w′)1 with
w′ = αr′β, a situation previously discussed in Case (i).
(iii) Assume that w contains one occurrence X ∈ N ′, but no occurrence of
unprimed or primed markers of context-free rules, and no occurrence of Δ. Hence,
w = κ′αXβκ for appropriate strings α, β ∈ (N ′′ ∪T )∗. As we are still simulating
phase I of G, we are now forced to apply r1.1 or simulate the context-free deletion
rule (which gives a trivial discussion that is omitted; the important point is that
this switches to phase II of the simulation of G). This means that in C2, we have
to apply r2.1, leading us to (w′)1 with w′ = κ′αrβκ for some context-free rule
r : X → Y1Y2, a situation already discussed in Case (ii).
(iv) Assume that w ∈ {κ′}(N ′′ ∪ T )∗{κ}. Now, it is straightforward to analyze
that we have to follow the simulation of one of the non-context-free deletion
rules, or finally apply the rule deleting the special symbols κ, κ′.
(v) Assume that w contains no primed or unprimed markers of context-free
rules, nor a symbol from N ′, nor any Δ but contains a non-context-free rule
marker. This means we have to apply some rule f1.1, but although this might
successfully simulate a non-context-free deletion rule, it will bring us back to C1
with a non-context-free rule marker in the string. Hence, we are back in Case (v),
so that this type of derivation can never terminate.

The second claim follows by Proposition 1. The underlying graph of the
simulation is shown in Fig. 1(a). The corresponding undirected graph is a path
and hence the presented GCID system is path-structured. �

In [6], it was shown that GCID systems of sizes (4; 1, 1, 0; 1, 1, 0) and
(4; 1, 1, 0; 1, 0, 1) describe RE, with the underlying control graph not being a
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Fig. 1. Control graphs underlying the GCID systems (characterizing RE) in this paper

path. In [5], the number of components was reduced from 4 to 3, however,
with the underlying graph still not being a path. In the next two theorems
we characterize RE by path-structured GCID systems of sizes (4; 1, 1, 0; 1, 1, 0)
and (4; 1, 1, 0; 1, 0, 1). The former result also complements an earlier result of [8],
which stated that GCIDP (3; 1, 2, 0; 1, 1, 0) = GCIDP (3; 1, 1, 0; 1, 2, 0) = RE. We
trade-off the number of components against the length of the left context of the
insertion/deletion.

Theorem 2. RE = GCIDP (4; 1, 1, 0; 1, 1, 0) = GCIDP (4; 1, 0, 1; 1, 0, 1).

Proof. Consider a type-0 grammar G = (N,T, P, S) in SGNF as in Definition 1.
We construct a GCIDP system Π = (4, V, T, {κS},H, 1, 1, R) such that L(Π) =
L(G). The four columns of the table correspond to the four components of Π.
The rows correspond to the simulation of r : X → Y1Y2, f : AB → λ and of the
context-free deletion rule h : S′ → λ. The last row deletes the left-end marker κ
introduced in the axiom. The alphabet of Π is V ⊂ N ∪ T ∪ {p, p′, p′′, p′′′ : p ∈
[1 . . . |P |]} ∪ {κ}. R is defined as shown in Table 2, depending on G. Clearly, Π
has size (4; 1, 1, 0; 1, 1, 0). We now prove that L(G) ⊆ L(Π). To this end, we show
that if w ⇒ w′ in G, with w,w′ ∈ (N ∪ T )∗, then (κw)1 ⇒′ (κw′)1 according
to Π. From this fact, the claim follows by a simple induction argument. As the
claim is evident for rule h, we only need to discuss w ⇒ w′ due to using a
context-free rule (Case CF) or due to using a non-context-free rule (Case CF).

Case CF: The intended simulation works as follows:

(καXβ)1 ⇒r1.1 (καrXβ)2 ⇒r2.1 (καrXr′β)3 ⇒r3.1 (καrr′β)4 ⇒r4.1

(καrr′r′′β)3 ⇒r3.2 (καrr′r′′r′′′β)2 ⇒r2.2 (καrr′′r′′′β)2 ⇒r2.3 (καrr′′′β)3 ⇒r3.3

(καrr′′′Y2β)4 ⇒r4.2 (καr′′′Y2β)3 ⇒r3.4 (καr′′′Y1Y2β)2 ⇒r2.4.c (καY1Y2β)1.

Table 2. GCID rules of size (4; 1, 1, 0; 1, 1, 0) with axiom κS and c ∈ N ′′ ∪ T ∪ {κ}.

Component C1 Component C2 Component C3 Component C4

r1.1 : (1, (λ, r, λ)I , 2) r2.1 : (2, (X, r′, λ)I , 3)

r2.2 : (2, (r, r′, λ)D, 2)

r2.3 : (2, (r, r′′, λ)D, 3)

r2.4.c : (2, (c, r′′′, λ)D, 1)

r3.1 : (3, (r, X, λ)D, 4)

r3.2 : (3, (r′′, r′′′, λ)I , 2)

r3.3 : (3, (r′′′, Y2, λ)I , 4)

r3.4 : (3, (r′′′, Y1, λ)I , 2)

r4.1 : (4, (r′, r′′, λ)I , 3)

r4.2 : (4, (λ, r, λ)D, 3)

f1.1 : (1, (λ, f, λ)I , 2) f2.1 : (2, (A, f ′, λ)I , 3)

f2.2 : (2, (λ, f, λ)D, 1)

f3.1 : (3, (f ′, B, λ)D, 4)

f3.2 : (3, (f, f ′, λ)D, 2)

f4.1 : (4, (f, A, λ)D, 3)

h1.1 : (1, (λ, S′, λ)D, 1)

κ1.1 : (1, (λ, κ, λ)D, 1)
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Here, c is the last symbol of κα, possibly κ.

Case CF: Let us consider f : AB → λ. This means that w = αABβ and w′ = αβ
for some α, β ∈ (N ∪ T )∗. Within Π, this can be simulated as follows.

(κw)1 = (καABβ)1 ⇒f1.1 (καfABβ)2 ⇒f2.1 (καfAf ′Bβ)3
⇒f3.1 (καfAf ′β)4 ⇒f4.1 (καff ′β)3 ⇒f3.2 (καfβ)2 ⇒f2.2 (κw′)1.

The converse inclusion L(Π) ⊆ L(G) is following an inductive argument as in
the previous theorem and hence is omitted here. The second claim follows by
Proposition 1. The underlying graph of the simulation is shown in Fig. 1(b). �
Theorem 3. RE = GCIDP (4; 1, 1, 0; 1, 0, 1) = GCIDP (4; 1, 0, 1; 1, 1, 0).

Proof. Consider a type-0 grammar G = (N,T, P, S) in SGNF. The rules of P are
labelled injectively with labels from [1 . . . |P |]. We construct a GCIDP system Π
such that L(Π) = L(G), with Π = (4, V, T, {S},H, 1, 1, R). The alphabet of Π
is V ⊂ N ∪T ∪{p, p′, p′′, p′′′ : p ∈ [1 . . . |P |]}. R is defined as shown in Table 3. Π
has the claimed size. The intended simulation of a context-free rule is as follows.

(αXβ)1 ⇒r1.1 (αXrβ)2 ⇒r2.1 (αrβ)1 ⇒r1.2 (αrr′β)2 ⇒r2.2

(αr′β)1 ⇒r1.3 (αr′r′′β)2 ⇒r2.3 (αr′r′′Y2β)3 ⇒r3.1 (αr′Y2β)4 ⇒r4.1

(αr′r′′′Y2β)3 ⇒r3.2 (αr′r′′′Y1Y2β)2 ⇒r2.4 (αr′Y1Y2β)2 ⇒r2.5 (αY1Y2β)1.

The intended simulation of a non-context-free rule is as follows.

(αABβ)1 ⇒f1.1 (αABfβ)2 ⇒f2.1 (αAf ′Bfβ)3 ⇒f3.1

(αf ′Bfβ)4 ⇒r4.1 (αf ′fβ)3 ⇒r3.2 (αfβ)2 ⇒r2.2 (αβ)1.

This shows that L(G) ⊆ L(Π). The main complication for the correctness proof
is the fact that we may return to C1 with strings containing rule markers.
This brings along a detailed discussion of four different situations for w when
considering (S)1 ⇒′

∗ (w)1 ⇒′ (w′)1 according to Π. A detailed explanation of
these different situations follows a similar argument as in Theorem 1 and is
omitted here in view of page constraint. �
Table 3. GCID rules of size (4; 1, 1, 0; 1, 0, 1) simulating a type-0 grammar in SGNF

Component C1 Component C2 Component C3 Component C4

r1.1 : (1, (X, r, λ)I , 2)

r1.2 : (1, (r, r′, λ)I , 2)

r1.3 : (1, (r′, r′′, λ)I , 2)

r2.1 : (2, (λ, X, r)D, 1)

r2.2 : (2, (λ, r, r′)D, 1)

r2.3 : (2, (r′′, Y2, λ)I , 3)

r2.4 : (2, (λ, r′′′, Y1)D, 2)

r2.5 : (2, (λ, r′, Y1)D, 1)

r3.1 : (3, (λ, r′′, Y2)D, 4)

r3.2 : (3, (r′′′, Y1, λ)I , 2)

r4.1 : (4, (r′, r′′′, λ)I , 3)

f1.1 : (1, (λ, f, λ)I , 2) f2.1 : (2, (A, f ′, λ)I , 3)

f2.2 : (2, (λ, f, λ)D, 1)

f3.1 : (3, (λ, A, f ′)D, 4)

f3.2 : (3, (λ, f ′, f)D, 2)

f4.1 : (4, (λ, B, f)D, 3)

h1.1 : (1, (λ, S′, λ)D, 1)
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3.2 GCID Systems with Insertion Length Two

In [6], it is shown that GCIDP (4; 2, 0, 0; 1, 1, 0) = RE. Here, we show that, if
we allow a context (either left or right) for insertion, then we can still describe
RE while decreasing the number of components from 4 to 3, yet obtaining path-
structured GCID systems.

Theorem 4. RE = GCIDP (3; 2, 1, 0; 1, 0, 1) = GCIDP (3; 2, 0, 1; 1, 1, 0).

Table 4. GCID rules of size (3; 2, 1, 0; 1, 0, 1) simulating a type-0 grammar in SGNF.

Component C1 Component C2 Component C3

r1.1 : (1, (X, r, λ)I , 2) r2.1 : (2, (λ, X, r)D, 3)
r2.2 : (2, (λ, r, λ)D, 1)

r3.1 : (3, (r, Y1Y2, λ)I , 2)

f1.1 : (1, (B, f, λ)I , 2) f2.1 : (2, (λ, B, f)D, 3)
f2.2 : (2, (λ, f, λ)D, 1)

f3.1 : (3, (λ, A, f)D, 2)

h1.1 : (1, (λ, S′, λ)D, 1)

Proof. Consider a type-0 grammar G = (N,T, P, S) in SGNF as in Defini-
tion 1. We construct a GCIDP system Π = (3, V, T, {S},H, 1, 1, R) of size
(3; 2, 1, 0; 1, 0, 1) such that L(Π) = L(G). Here, let V ⊂ N ∪ T ∪ [1 . . . |P |]
contain in particular those rule labels used in the rules listed in Table 4. Π is of
size (3; 2, 1, 0; 1, 0, 1). We now prove that L(G) ⊆ L(Π). As the claim is evident
for h : S′ → λ, we show that if w ⇒ w′ in G, then (w)1 ⇒′ (w′)1 according to
Π in two more cases.

Case CF: Here, w = αXβ and w′ = αY1Y2β for some α, β ∈ (N ′′ ∪ T )∗. The
simulation of r : X → Y1Y2 performs as follows:

(αXβ)1 ⇐r2.2⇒r1.1
(αXrβ)2 ⇒r2.1 (αrβ)3 ⇒r3.1 (αrY1Y2β)2 ⇒r2.2 (αY1Y2β)1 .

Note the role of the right context r in r2.1. If the marker r is not present for the
deletion, then after applying r3.1, when we come back to C2, we can apply r2.1
again and could end-up with a malicious derivation.
Case CF: Here w = αABβ and w′ = αβ for some α, β ∈ (N ∪ T )∗. The rules
f : AB → λ can be simulated as follows.

(αABβ)1
⇐f2.2⇒f1.1(αABfβ)2 ⇒f2.1 (αAfβ)3 ⇒f3.1 (αfβ)2 ⇒f2.2 (αβ)1 .

We leave it to the reader to verify that no malicious derivations are possible.
Proposition 1 shows that also GCID systems of size (3; 2, 0, 1; 1, 1, 0) are compu-
tationally complete. Figure 1(a) shows the control graph of the simulation. �
Theorem 5. RE = GCIDP (3; 2, 1, 0; 1, 1, 0) = GCIDP (3; 2, 0, 1; 1, 0, 1).

The simulation is very similar to Theorem 4 and hence we provide only the
simulating rules in Table 5. �
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Table 5. GCID rules of size (3; 2, 1, 0; 1, 1, 0) simulating a type-0 grammar in SGNF.

Component C1 Component C2 Component C3

r1.1 : (1, (λ, r, λ)I , 2) p2.1 : (2, (r, X, λ)D, 3)
r2.2 : (2, (λ, r, λ)D, 1)

r3.1 : (3, (r, Y1Y2, λ)I , 2)

f1.1 : (1, (λ, f, λ)I , 2) f2.1 : (2, (f, A, λ)D, 3)
f2.2 : (2, (λ, f, λ)D, 1)

f3.1 : (3, (f, B, λ)D, 2)

h1.1 : (1, (λ, S′, λ)D, 1)

3.3 Consequences for ins-del P Systems

Representing the family of languages generated by ins-del P system with k
membranes and size (n, i′, i′′,m, j′, j′′), where the size parameters have the
same meaning as in GCID system by ELSPk(INSi′,i′′

n DELj′,j′′
m ) (this nota-

tion was used in [8], based on [13]), we know that ELSP4(INS1,0
1 DEL0,0

2 ),
ELSP4(INS0,0

2 DEL1,0
1 ) ([6]) and ELSP3(INS2,0

1 DEL1,0
1 ), ELSP3(INS1,0

1 DEL2,0
1 )

([8]) are computationally complete. Since the underlying control graph of all
the GCID systems (characterizing RE) in this paper has a path structure, the
results that we obtained correspond to ins-del P systems in the following way,
complementing [6,8].

Corollary 1. For i′, i′′, j′, j′′ ∈ {0, 1} with i′ + i′′ = j′ + j′′ = 1, the following
ins-del P systems are computationally complete.

1. RE = ELSP3(INSi′,i′′
2 DELj′,j′′

1 ) = ELSP4(INSi′,i′′
1 DELj′,j′′

1 ).
2. RE = ELSP3(INS1,0

1 DEL1,1
1 ) = ELSP3(INS0,1

1 DEL1,1
1 ). �

4 Summary and Open Problems

In this paper, we focused on examining the computational power of graph-
controlled ins-del systems with paths as control graphs, which naturally cor-
respond to variants of P systems. We lowered the resource needs to describe RE.
However, we still do not know if these resource bounds are optimal.

Here we considered the underlying graph of GCID systems to be path-
structured only. One may also consider also tree structure, which may give addi-
tional power, especially to ins-del P systems. The resources used in the results of
ins-del P systems need not be optimal since in ins-del P systems, each membrane
can have initial strings and they all evolve in parallel which may reduce the size.

The reader may have noticed that we discussed in detail the case of insertion
strings of length two, but a similar discussion for the case of deletion strings of
length two is missing. More precisely, to state one concrete question, it is open
whether RE = GCIDP (3; 1, 1, 0; 2, 1, 0) = GCIDP (3; 1, 1, 0; 2, 0, 1).

In view of the connections with P systems, it would be also interesting to
study Parikh images of (restricted) graph-controlled ins-del systems, as started
out for matrix-controlled ins-del systems in [3]. This also relates to the macroset
GCID systems considered in [2].
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Théorique Appl. / Theor. Inf. Appl. 25, 473–498 (1991)

8. Ivanov, S., Verlan, S.: About one-sided one-symbol insertion-deletion P systems. In:
Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa,
A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 225–237. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54239-8 16

9. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf.
Comput. 131(1), 47–61 (1996)

10. Krassovitskiy, A., Rogozhin, Y., Verlan, S.: Further results on insertion-deletion
systems with one-sided contexts. In: Mart́ın-Vide, C., Otto, F., Fernau, H. (eds.)
LATA 2008. LNCS, vol. 5196, pp. 333–344. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-88282-4 31

11. Marcus, S.: Contextual grammars. Rev. Roum. Mathématiques Pures Appliquées
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Abstract. We present Stamina, a tool solving three algorithmic prob-
lems in automata theory. First, compute the star height of a regular
language, i.e. the minimal number of nested Kleene stars needed for
expressing the language with a complement-free regular expression. Sec-
ond, decide limitedness for regular cost functions. Third, decide whether
a probabilistic leaktight automaton has value 1, i.e. whether a proba-
bilistic leaktight automaton accepts words with probability arbitrarily
close to 1.

All three problems reduce to the computation of the stabilisation
monoid associated with an automaton, which is computationally chal-
lenging because the monoid is exponentially larger than the automaton.
The compact data structures used in Stamina, together with optimisa-
tions and heuristics, allow us to handle automata with several hundreds
of states. This radically improves upon the performances of ACME, a
similar tool solving a subset of these problems.

The tool Stamina is open source and available from Github, details
are given on the webpage http://stamina.labri.fr.

1 Introduction

Stamina is a tool for deciding properties of automata, through the construction
of an algebraic structure called stabilisation monoid. It solves three problems:

– compute the star height of a regular language,
– decide limitedness for regular cost functions,
– decide whether a probabilistic leaktight automaton has value 1.

The star height problem, introduced by Eggan in 1963 [Egg63], takes as
input a regular language L and an integer h and decides whether there exists
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a regular expression for L with at most h nested Kleene stars. The minimal h
having this property is called the star height of L. An excellent introduction to
the star height problem is given in [Kir05], which mentions some of the important
industrial applications such as speech recognition, database theory and image
compression. This problem was considered as one of the most difficult problems
in the theory of recognizable languages and it took 25 years before being solved
by Hashiguchi [Has88]. Implementing Hashiguchi’s algorithm is hopeless: even
for a language L given by an automaton with 4 states, a “very low minorant”
of the number of languages to be tested with L for equality is c(c

c) with c =
1010

10
[LS02].

It took another 22 years before an algorithm with a better algorithmic com-
plexity was given by Kirsten in [Kir05]. Kirsten’s algorithm takes as input
an automaton recognising a language L and an integer h and constructs an
automaton with counters (nowadays called a B-automaton) inducing a function
f : A∗ → N∪{∞} with the following property: f is limited if, and only if, the star
height of L is at most h. Kirsten’s solution was later adapted to trees [CL08a]
using the framework of regular cost functions.

Stamina aims at solving the star height problem for practical applications,
albeit the doubly exponential space complexity of Kirsten’s algorithm is a chal-
lenge to tackle. To our best knowledge, this is the first time a solution to the
star height problem is implemented.

The limitedness problem for regular cost functions takes as input a
B-automaton inducing a function f : A∗ → N ∪ {∞}, and checks whether the
function f is bounded on its domain (words with a finite value). The theory
of regular cost functions has been introduced by Colcombet [Col09,Col13], as
a general formalism to express limitedness problems. A number of problems
have been solved thanks to this theory (see e.g. [CL08a,CL08b,CKLB13]), and
Stamina includes a general-purpose cost functions library.

The value 1 problem takes as input a probabilistic automaton and checks
whether there are words accepted with probability arbitrarily close to 1. Prob-
abilistic automata are a versatile tool widely used in speech recognition as well
as a modelling tool for the control of systems with partial observations. They
extend classical automata with probabilistic transitions, see [Rab63] for an intro-
duction, and [FGO12] for the value 1 problem. This problem is a reformulation
of a natural controller synthesis problem: assume a blackbox finite state system
with random events is controlled by a blind controller who inputs actions to the
blackbox but has absolutely no feedback on the state of the system. Then the
synthesis of controllers with arbitraily high reliability is equivalent to solving the
value 1 problem.

Stabilisation monoids are the key mathematical object behind the solu-
tions to those three problems. For both B-automata and probabilistic automata,
one can associate a stabilisation monoid generalising the notion of transition
monoid. This monoid carries precise information about the behaviour of the
automaton.



Stamina: Stabilisation Monoids in Automata Theory 103

A seminal paper by Simon [Sim94] provides a combinatorial tool called the
forest factorization theorem, at the heart of the solution of the limitedness prob-
lem for stabilisation monoids associated to B-automata. These algebraic tech-
niques were adapted to solve the value 1 problem for probabilistic leaktight
automata [FGO12,FGKO15].

Related work. Stamina is written in C++ and improves over a previous tool
called Acme [FK14] implemented in OCaml, which was a first proof-of-concept
tool using stabilisation monoids as an algorithmic back-end to solve the limit-
edness problem for regular cost functions. We provide quantitative experiments
showing that Stamina performs much better than Acme, thanks to several opti-
misations. This improvement allows us to provide a new functionality: solving
the star height problem, which was unrealistic with Acme as it could not handle
large automata.

2 Computing the Stabilisation Monoid

The core computation performed by Stamina is the construction of the stabili-
sation monoid generated by a finite set of matrices.

2.1 Stabilisation Monoids in a Nutshell

Stabilisation monoids are sets of square matrices of fixed dimension n over a finite
semiring (S,+, ·, 0, 1). When solving problems related to probabilistic automata,
S is the boolean semiring ({0, 1},∨,∧, 0, 1). When solving problems related to B-
automata, including the star height problem, S is the semiring of sets of counter
actions, see Subsect. 4.1.

The set of square matrices of dimension n over S inherits from S a monoid
structure, where the product of two matrices is defined as usual:

(M · N)[i, j] =
n∑

k=1

M [i, k] · N [k, j] .

To obtain a stabilisation monoid one furthermore defines a unary operation
on matrices called the stabilisation and denoted �, which satisfies some axioms:

(M �)� = M � (1)

(MN)�M = M(NM)� (2)

The intuition is that every matrix M is the abstraction of a matrix M with
coefficients in an infinite monoid (e.g. for probabilistic automata, the reals with
addition and multiplication) and M � represents the asymptotic behaviour of
the sequence (Mn)n∈N. Some more details are provided in Sect. 4. The formal
definition of a stabilisation monoid involves an order as well [Col09], which plays
no role in Stamina.
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2.2 Efficient Computation of Stabilisation Monoids

We report on our implementation of the following algorithmic task: Given a
set of matrices S, compute the stabilisation monoid it generates, which is the
smallest set of matrices containing S and stable under product and stabilisation.

Since the semiring S is finite then the set of n × n matrices on S is finite as
well and the stabilisation monoid generated by S is computable as follows:

Repeat
Add to S every product M · N for M,N ∈ S
Add to S every M � for M ∈ S

Until no new elements are added to S

Stamina implements this näıve algorithm with two main optimisations, one
saves space and the other saves time.

Saving space: unique identifiers for matrices and vectors. The generated monoid
can be exponential in the size of the matrices, so the crucial aspect here is space
optimisation.

An n×n matrix is not represented as a list of n2 coefficients but as a list of 2n
pointers to vectors representing the rows and columns of the matrix: The vectors
themselves are stored in a compact way, for example on a 64 bit architecture a
single integer is used to store up to 64 coefficients of the boolean semiring.

To save even more space, all vectors and matrices are stored uniquely in
global hashmaps. This induces a constant time comparison for matrices and
vectors, as they are equal if, and only if, their pointers are equal. This allows
Stamina to handle monoids with several billions of elements, and in practice Sta-
mina computes monoids with several millions of elements with a small memory
footprint.

Saving time: rewrite rules. In our application, the initial set of matrices is given
by matrices Ma for a ∈ A, where A is the finite alphabet of the automaton.
Hence we naturally associate to every element of the stabilisation monoid a �-
expression, which is a term on two operations: product and stabilisation. For
instance (Ma · M �

b · Ma)� is associated to (ab�a)�. There are infinitely many �-
expressions and finitely many matrices thus most �-expressions rewrite in an
equivalent and shorter way. Along with the computation of the vectors and
matrices of the monoid, Stamina stores a list of rewrite rules of �-expressions to
a set of minimal non-equivalent expressions.

These rewrite rules are used in conjunction with the axioms (1) and (2)
in order to minimise the number of iterations of the algorithm. For example,
if MN = M � then (MN)� = M � according to (1), so once the rewrite rule
MN → M � is known, Stamina avoids the computation of (MN)�.

Stamina implement the inner loop of the näıve algorithm as follows. It alter-
nates between closure by product and closure by stabilisation. In both cases,
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Stamina keeps a pending list of candidates for new elements. The computation
of the generated monoid is over when the list of candidates is empty. For each
candidate, Stamina checks whether it can be simplified by rewrite rules and
axioms and in this case the candidate is dropped. Otherwise Stamina computes
the corresponding matrix and checks whether this matrix is already known. If
yes, Stamina creates a new rewrite rule. If not, Stamina adds a new element to
the monoid.

3 Benchmarks

We compared the running times of Stamina and its predecessor Acme [FK14].
For the benchmarks we draw random automata which produce larger sta-

bilisation monoids in order to observe the difference in performances between
the two versions. The point of comparison is the size of the computed monoid
rather than the number of states in the automaton, since some large automata
can produce small monoids, and vice-versa, some small automata can produce
large monoids.

To obtain random automata we proceed as follows. First, for each state s we
pick a state t with uniform probability on the set of states and add a transition
between s and t, ensuring that each state has an outgoing transition for each
letter. After this we pick a number p ∈ [0, 1] at random, and for all other states
t′ different from t, we add a transition between s and t′ with probability p.

The results have been plotted in Fig. 1. One can observe that there is a
threshold in the size of the Markov monoid after Acme will not be useful, i.e.
either takes too much time or has a stack overflow. This threshold is depicted
by the vertical line in the graph below (it hovers around 3500 elements).
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Fig. 1. Random automata of size 10.



106 N. Fijalkow et al.

4 Stabilisation Monoids for B- and Probabilistic
Automata

The notion of stabilisation monoids appears in two distinct contexts. It has first
been developed in the theory of regular cost functions, introduced by Colcom-
bet [Col09,Col13]. The underlying ideas have then been transferred to the setting
of probabilistic automata [FGO12].

4.1 Stabilisation Monoids in the Theory of Regular Cost Functions

At the heart of the theory of regular cost functions lies the equivalence between
different formalisms: a logical formalism, cost MSO, two automata model, B-
and S-automata, and an algebraic counterpart, stabilisation monoids.

Here we briefly describe the model of B-automata, and their transformations
to stabilisation monoids. This automaton model generalises non-deterministic
automata by adding a finite set of counters; instead of accepting or rejecting a
word, a B-automaton associates an integer value to each input word. Formally,
a B-automaton is a tuple A = 〈A,Q, Γ, I, F,Δ〉, where A is a finite alphabet, Q
is a finite set of states, Γ is a finite set of counters, I ⊆ Q is the set of initial
states, F ⊆ Q is the set of final states, and Δ ⊆ Q × A × {r, e, ic}Γ × Q is
the set of transitions. A transition (p, a, τ, q) allows the automaton to go from
state p to state q while reading letter a and performing action τ(γ) on counter
γ. The action ic increments the current counter value by 1, e leaves the counter
unchanged, and r resets the counter to 0.

The value of a run is the maximal value assumed by any of the counters
during the run. The semantics of a B-automaton A is defined on a word w by

[[A]](w) = inf{val(ρ) | ρ is a run of A on w}.

In other words, the automaton uses the non determinism to minimise the value
among all runs. In particular, if A has no run on w, then [[A]](w) = ∞.

The main decision problem in the theory of regular cost functions is the
limitedness problem. We say that a B-automaton A is limited if there exists N
such that for all words w, if [[A]](w) < ∞, then [[A]](w) < N .

One way to determine whether a B-automaton A is limited is by computing
its stabilisation monoid. It contains matrices over the semiring of sets of counter
actions {r, e, ic, ω}Γ ; more precisely it is the stabilisation monoid generated by
the matrices corresponding to each letter. Defining the semiring of sets of counter
actions is a bit tedious (see [Col09,Col13]); for the sake of explanations we will
restrict ourselves to the case of one counter. As we will explain for the star height
problem it is enough to work with a subclass of B-automata called hierarchical,
for which this semiring also considerably simplifies.

Assuming the B-automaton A has only one counter, its stabilisation monoid
is a set of matrices over the semiring of counter actions {r, e, ic, ω} defined as
follows: the addition of the semiring is the minimum for the order r < e <
ic < ω, and the multiplication is the maximum for the order e ≺ ic ≺ r ≺ ω.
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This semiring structure induces a product operation on matrices. See [Col09] for
a formal definition of the stabilisation operation on these matrices.

We now give some intuitions about the stabilisation monoid of A. Consider
a �-expression e, as for instance a(ba)�. It induces a sequence of words, in the
example (a(ba)n)n∈N. The goal is to associate to every �-expression e a matrix
Me such that Me summarises the action of A on the sequence of words induced
by e. More precisely, Me[i, j] is a counter action describing the runs from i to j on
the sequence of words. To illustrate, assume that for each word a(ba)n there are
two runs from i to j, performing on the counter the actions e(ic e)n and r(ic r)n,
respectively. The first run gives rise to max(e, (max(ic, e))�) = max(e, ω) = ω,
and the second to max(r, (max(ic, r)�) = max(r, r) = r. The summary of these
two runs is min(ω, r) = r. The use of min and max matches the definition of
a value of a word as the infimum over all runs of the maximum values of the
counter.

An unlimited witness is a �-expression inducing a sequence of words (un)n∈N

such that limn[[A]](un) = ∞. As shown in [Col09,Col13], the stabilisation monoid
of a B-automaton A contains an unlimited witness if, and only if, it is not limited.
This gives a conceptually simple solution to the limitedness problem: compute
the stabilisation monoid and check for the existence of unlimited witnesses.

We briefly discuss the case of hierarchical actions, as it is used for the solution
to the star height problem, and correspond to the nested distance automata
in [Kir05]. We have k + 1 counters numbered from 0 to k. The hierarchical
actions are the following, for j ∈ [0, k]:

– Rj resets all counters p with p ≥ j, the others remain unchanged;
– Ij increments the counter j, resets the counters p with p > j, the others

remain unchanged;
– e leaves all counters unchanged;
– ω means that some counter reached very high values.

The addition of the semiring is the minimum for the order R0 < R1 < · · · <
Rk < e < I0 < I1 < · · · < Ik < ω. The multiplication of the semiring is the
maximum for the order e ≺ Ik ≺ Rk ≺ Ik−1 ≺ Rk−1 ≺ · · · ≺ I0 ≺ R0 ≺ ω.

4.2 Stabilisation Monoids for Probabilistic Automata

The notion of stabilisation monoids also appeared for probabilistic automata,
for the Markov Monoid Algorithm. This algorithm was introduced in [FGO12]
to partially solve the value 1 problem: given a probabilistic automaton A, does
there exist (un)n∈N a sequence of words such that limn PA(un) = 1?

Although the value 1 problem is undecidable, it has been shown that the
Markov Monoid Algorithm correctly determines whether a probabilistic automa-
ton has value 1 under the leaktight restriction. It has been recently shown that all
classes of probabilistic automata for which the value 1 problem has been shown
decidable are included in the class of leaktight automata [FGKO15], hence the
Markov Monoid Algorithm is the most correct algorithm known to (partially)
solve the value 1 problem.
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As for the case of B-automata, the stabilisation monoid of a probabilistic
automaton is the stabilisation monoid generated by the set of matrices cor-
responding to each letter. The underlying semiring is the Boolean semiring;
the definition of the stabilisation is specific to probabilistic automata, we refer
to [FGO12,FGKO15] for details.

5 The Star Height Algorithm

The latest algorithm in the literature for computing star height is designed for
tree automata [CL08a], but we will use it here in the special case of words. The
main improvement over the previous algorithm from [Kir05] is the identification
of the structure of Subset Automata, which allows minimisation. We discuss the
main ideas of the algorithm.

5.1 Subset Automata

We consider deterministic automata with ε-transitions, i.e. such that the transi-
tion relation is of the form Δ ⊆ Q× (A∪{ε})×Q. One can see the ε-transitions
as defining a partial order on states.

Definition 1 ([CL08a]). A subset automaton A is a deterministic automaton
with ε-transitions such that:

– The ε-transitions induce a sup-semi-lattice, i.e. every subset P of Q has a
least upper bound

∨
P . In particular, there is a minimum element

∨ ∅ and a
maximal element

∨
Q.

– The transition function of A is compatible with the sup-semi-lattice structure,
i.e. for all P ⊆ Q and a ∈ A, we have δ(

∨
P, a) =

∨{δ(p, a) | p ∈ P}.
It is proved in [CL08a] that any regular language can be recognized by a

subset automaton, which can be obtained by a powerset construction from a
non-deterministic automaton for the complement language. Note however that
this subset automaton is of exponential size in the original automaton.

An interesting property of subset automata is that they can be minimised.
The states of the minimal subset automaton are intersection of residuals of the
language [CL08a]. We implemented the minimisation algorithm, which turns out
to be a precious optimisation.

5.2 Reduction to the Limitedness Problem for B-Automata

We start from a subset automaton recognising the language L and an integer
k, and want to determine whether L has star height at most k. We construct a
hierarchical B-automaton B with k + 1 counters such that L has star height at
most k if, and only if, B is limited.

The set of states is Q′ =
⋃k+1

i=1 Qi, which we view as a subset of Q∗. The
initial state is q0. A state ρ · p is final if, and only if, p ∈ F . We now define the
transitions:
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– If (p, a, q) ∈ Δ and ρ ∈ Q≤k, we add the transition (ρ ·p, a, I|ρ|, ρ · q). If a = ε,
the action may equivalently be replaced by e, as we do in the implementation.

– If ρ ∈ Q≤k−1 and p ∈ Q, we add the transition (ρ · p, ε, R|ρ·p|, ρ · p · p).
– If ρ ∈ Q≤k−1 and p, q ∈ Q, we add the transition (ρ · p · q, ε, R|ρ·p|, ρ · q).

Example 1. We apply the construction to the following automaton A, and want
to determine whether it has star height at most 1. The minimal subset automaton
of A happens to be isomorphic to A in this case.

1 2

b

a

a

b

We construct the following B-automaton B, where the ε-transitions are the
dashed transitions.

1 2

b : I0
a : I0

a : I0

b : I0

1211

b : I1

a : I1

a : I1

b : I1

21 22

b : I1

a : I1

a : I1

b : I1

R1 R1

R1 R1

Therefore, for any fixed k, we can decide whether a regular language given
by a deterministic automaton has star height at most k. The algorithm is the
following:

– first construct a subset automaton recognising the same language by a pow-
erset construction, yielding an exponentially bigger automaton,

– minimise the subset automaton,
– construct the B-automaton B as above,
– check B for limitedness using the stabilisation monoid algorithm, which means

constructing the stabilisation monoid of B, of exponential size in B.

The best theoretical computational complexity uses exponential space, which
requires to perform the computation of the stabilisation monoid on the fly using
polynomial space. Note that Kirsten’s algorithm uses doubly exponential space
because it takes a non-deterministic automaton as input.

The algorithmic task that we want to perform is the following: given a regular
language L, compute its star height. The section above describes how, given a
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language L and an integer k, we can test whether L has star height at most k, by
constructing a B-automaton B(k) such that L has star height at most k if, and
only if, B(k) is limited. One may thus simply apply this algorithm for increas-
ing values of k. Unfortunately, the automaton B(k) becomes rather quickly very
large. This means that checking it for limitedness may be intractable. We know
that there are short witnesses that B(k) is not limited, given by unlimited wit-
nesses. We will show in the next section how the loop complexity heuristic pro-
vides us with potential such witnesses.

5.3 The Loop Complexity Heuristic

We present a decisive optimisation, based on the notion of loop complexity intro-
duced by Eggan in his seminal paper [Egg63]. Although it is only a heuristic, it
led to huge improvements in test cases.

The loop complexity of an automaton A, denoted LC(A), is the star height
of an expression obtained from the automaton via a standard algorithm. It has
been extensively studied, and many properties of the loop complexity are known.
For instance, the star height of a language L is the loop complexity of some
automaton recognising L [Egg63,LS02]. There are many natural cases where the
star height is equal to the loop complexity, for instance when all transition labels
are distinct, see [Coh70] for further results in this direction.

Computing the loop complexity is very efficient and can be carried out in
polynomial time. Denote eLC the regular expression witnessing the loop com-
plexity. We use this expression for two purposes:

– First, it provides an upper bound for the star height.
– Second, the regular expression eLC induces a list of �-expressions that are

potential unlimitedness witnesses in B(k).

The point is that computing both eLC and the potential witnesses is very
fast compared to actually checking whether B(k) is limited. Hence this gives
fast means to observe that B(k) is unlimited without having to compute its
stabilisation monoid.

Starting from a regular expression, we construct a list of �-expressions in the
following way.

– First, we say that a regular expression is in normal form if the sums appear
only at the root or directly below Kleene stars, i.e. not under a product. One
can easily rewrite a regular expression into one in normal form by distributing
sums over products.

– Given a regular expression in normal form, one obtains a �-expression by
inductively transforming (

∑
i ei)∗ into (

∏
i e�

i)
�. For instance, (a+b)∗ becomes

(a�b�)�. The idea behind this translation if to make the most of loops in the
automaton.

– A regular expression e in normal form is a sum of regular expressions ei, each
in normal form. The list of �-expressions for e is obtained by applying the
previous transformation to each ei.
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Let us return to the example presented above, Example 1. Its loop complexity
is 2, and the expression computed by the algorithm is eLC = (b + (ab∗a))∗. This
regular expression is turned into the �-expression (b�(ab�a)�)� by our heuristic.
It turns out that this �-expression is an unlimited witness for B(1). The simplest
such witness is (b�ab�a)�. This shows that in this example the loop complex-
ity heuristic allows us to instantly pinpoint the unlimited behaviour of B(1),
circumventing the hefty price of computing the stabilisation monoid.

5.4 The Algorithm

Compute the regular expression eLC of star height LC(A)
Compute a subset automaton, and minimise it
k = 0
Repeat

Construct B(k)
Check whether the �-expressions induced by eLC are witnesses of B(k)

If an unlimited witness is found, increment k
Otherwise, check B(k) for limitedness

If B(k) is not limited, increment k
Until k = LC(A) or B(k) is limited
Return k

One may wonder whether the two optimisations, namely the loop complexity
heuristic and minimising the subset automaton, indeed provide a speed-up. As
an evidence that it does, we report on the following experiment. We enumerated
200 automata with three states and computed their star height. The computation
was considered an overflow when the number of pending matrix products was >5
billions.

Settings Overflows AvgTime(s) Avg monoid dim - size

No optimisation 5 12.5 62.1–1328.0

Loop complexity (LC) 4 10.2

Minimisation 0 6.4 45.7–489.1

Minimisation + LC 0 3.5

6 Conclusions

After more than 50 years of research, the star height problem still had the repu-
tation to be intractable, even for very small automata. By implementing state-
of-the-art algorithms together with new heuristics and optimisations, we reached
a new step in the understanding of this problem. In particular, we discovered
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a relationship between expressions of optimal loop complexity and unlimited
witnesses, which could be of theoretical interest. Our tool Stamina shows that
one can compute the star height in non-trivial cases, as it has been successfully
tested on several examples of different nature. It is also a drastic improvement
over its previous version ACME for computing limitedness of B-automata and
value 1 for leaktight probabilistic automata.
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Abstract. The standard construction of a bimachine from a functional
transducer involves a preparation step for converting the transducer into
an unambiguous transducer (A transducer is unambiguous if there exists
at most one successful path for each label.). The conversion involves a
specialized determinization. We introduce a new construction principle
where the transducer is directly translated into a bimachine. For any
input word accepted by the transducer the bimachine exactly imitates
one successful path of the transducer. For some classes of transducers
the new construction can build a bimachine with an exponentially lower
number of states compared to the standard construction. We first present
a simple and generic variant of the construction. A second specialized
version leads to better complexity bounds in terms of the size of the
bimachine.

Keywords: Bimachines · Transducers · Rational functions

1 Introduction

Finite-state transducers are used for a large spectrum of translation tasks in
text analysis and natural language processing [4–7]. Many practical translation
tasks are functional in the sense that a given input needs to be transformed into
a unique output. While (non-deterministic versions of) finite-state transducers
can model arbitrary “regular” (s.b.) functions between strings, many regular
functions cannot be recognized by deterministic finite-state transducers. In con-
trast, bimachines as a more powerful type of finite-state device enable a fully
deterministic processing of arbitrary regular string functions [11].
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For a given regular string function f it is often simple to find a non-deter-
ministic finite-state transducer that represents f . Since a deterministic process-
ing via bimachines is more efficient, there is an obvious interest in general meth-
ods for converting functional finite-state transducers into bimachines or equiv-
alent devices [10,12]. The classical algorithm, described in [7], starts with a
preparation step for converting the transducer into an unambiguous transducer.
The conversion requires that the source transducer is “pseudo-deterministic”.
Afterwards it uses a specialized determinization for discarding unwanted paths.
Essentially, only the least accepting paths under some lexicographical order are
left. This construction can be applied to arbitrary output monoids after intro-
ducing a linear order on the outputs of single transitions.

Here we introduce a new single-step method that can be applied to any
functional real-time transducer with output (codomain) in an arbitrary monoid.
States of the right deterministic automaton of the bimachine are sets R of active
states obtained when using inversed transitions of the functional input trans-
ducer T , starting from final states. States of the left deterministic automaton
of the bimachine are sets L of active states of T that are enhanced by a special
function. Using this enhancement the bimachine satisfies the “path reconstruc-
tion” principle: (i) At each step, the bimachine output m represents the output
of a single transducer transition step 〈q, 〈a,m〉, q′〉 for some q ∈ L ∩ R. (ii) for
any input w: the sequence of bimachine outputs w is given by the sequence of
outputs of T for w on a specific path.

After formal preliminaries in Sect. 2 the new construction is described in
Sect. 3. We start with a generic and flexible version that is conceptually sim-
ple. Afterwards a specialized version is added which leads to better complexity
bounds for the number of states of the left and right deterministic automata
of the bimachine. Correctness proofs are given. For the sake of comparison we
sketch the classical bimachine construction in Sect. 4. A class of examples is given
where the new construction leads to an exponentially lower number of states. A
conclusion is presented in Sect. 5.

2 Formal Preliminaries

We assume that the reader is familiar with the basic notions of words over an
alphabet and monoids (see e.g. [2]). The set Σ∗ with concatenation as monoid
operation and the empty word ε as unit element is called the free monoid over
Σ. We list notions needed for the discussion of the paper. A monoidal finite-state
automaton is a tuple of the form A = 〈M, Q, I, F,Δ〉 where

– M = 〈M, ◦, e〉 is a monoid,
– Q is a finite set called the set of states,
– I ⊆ Q is the set of initial states,
– F ⊆ Q is the set of final states, and
– Δ ⊆ Q × M × Q is a finite set of transitions called the transition relation.
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A proper path in A is a finite sequence of k > 0 transitions, denoted

π = q0 →a1 q1 . . . →ak qk

where 〈qi−1, ai, qi〉 ∈ Δ for i = 1 . . . k. The monoid element w = a1 ◦ . . . ◦ ak is
called the label of π. A successful path is a path starting in an initial state and
ending in a final state.
The generalized transition relation Δ∗ is defined as the smallest subset of Q ×
M × Q with the following closure properties:

– for all q ∈ Q we have 〈q, e, q〉 ∈ Δ∗.
– For all q1, q2, q3 ∈ Q and w, a ∈ M : if 〈q1, w, q2〉 ∈ Δ∗ and 〈q2, a, q3〉 ∈ Δ,

then also 〈q1, w ◦ a, q3〉 ∈ Δ∗.

The monoidal language accepted (or recognized) by A is defined as L(A) :=
{w ∈ M | ∃p ∈ I ∃q ∈ F : 〈p,w, q〉 ∈ Δ∗}.
A monoidal finite-state automaton A is unambiguous iff for every element m ∈ M
there exists at most one successful path in A with label m.
A state q ∈ Q is accessible if q is the ending of a path of A starting from an
initial state. A state q ∈ Q is co-accessible if q is the starting of a path of A
ending in a final state. A monoidal finite-state automaton A is trimmed iff each
state q ∈ Q is accessible and co-accessible.
A deterministic finite-state automaton is a monoidal finite-state automaton over
the free monoid A = 〈Σ∗, Q, I, F,Δ〉, such that |I| = 1 and Δ is a graph of a
(partial) function with domain dom(Δ) ⊆ Q×Σ. In this case we identify Δ with
the function Δ : Q×Σ → Q that it represents. The reversed finite-state automa-
ton for A is Arev = 〈Σ∗, Q, F, I,Δrev〉, where Δrev = {〈q, arev, p〉 | 〈p, a, q〉 ∈ Δ}.

Definition 1. A monoidal finite-state automaton T over a monoid M is a
monoidal finite-state transducer iff M can be represented as the Cartesian prod-
uct of a free monoid Σ∗ with another monoid M′, i.e. M = Σ∗ × M′. For a
monoidal finite-state transducer T = 〈Σ∗ × M, Q, I, F,Δ〉 the underlying finite-
state automaton is the monoidal finite-state automaton AT = 〈Σ∗, Q, I, F,ΔΣ〉
where ΔΣ = {〈p, a, q〉 | ∃m ∈ M(〈p, 〈a,m〉, q〉 ∈ Δ}. A monoidal finite-state
transducer T = 〈Σ∗ × M′, Q, I, F,Δ〉 is said to be real-time if Δ ⊆ Q × (Σ ×
M ′) × Q.

Let M be a monoid. A set L ⊆ M is rational iff it is accepted by a monoidal
finite-state automaton. If M is a Cartesian product, then rational sets are rela-
tions. A rational function is a rational set that is a function.

Definition 2. A bimachine is a tuple B = 〈M,AL,AR, ψ〉, where:

– AL = 〈Σ,L, sL, L, δL〉 and AR = 〈Σ,R, sR, R, δR〉 are deterministic finite-
state automata called the left and right automaton of the bimachine;

– M = 〈M, ◦, e〉 is the output monoid and ψ : (L × Σ × R) → M is a partial
function called the output function.
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Note that all states of AL and AL are final. The function ψ is naturally extended
to the generalized output function ψ∗ as follows:

– ψ∗(l, ε, r) = e for all l ∈ L, r ∈ R;
– ψ∗(l, tσ, r) = ψ∗(l, t, δR(r, σ))◦ψ(δ∗

L(l, t), σ, r) for l ∈ L, r ∈ R, t ∈ Σ∗, σ ∈ Σ.

The function represented by the bimachine is

OB : Σ∗ → M : t 
→ ψ∗(sL, t, sR).

If OB(t) = t′ we say that the bimachine B translates t into t′.

Note that for any states p, q ∈ Q of a monoidal finite-state transducer T =
〈Σ∗ × M, Q, I, F,Δ〉 and word w ∈ Σ∗ holds ∃m ∈ M : 〈p, 〈w,m〉, q〉 ∈ Δ∗ ⇐⇒
〈p,w, q〉 ∈ Δ∗

Σ , where ΔΣ is the transition relation of its underlying automaton.
If Arev = 〈Σ∗, Q, F, I,Δrev〉 is the reversed finite-state automaton of A =

〈Σ∗, Q, I, F,Δ〉, then for any states q, p ∈ Q and any word w ∈ Σ∗ we have
〈p,w, q〉 ∈ Δ∗ ⇐⇒ 〈q, wrev, p〉 ∈ Δrev∗.

After applying the power-set construction to transform a nondeterministic
automaton A = 〈Σ∗, Q, I, F,Δ〉 into an equivalent deterministic one AD =
〈Σ∗, QD, {I}, FD, δD〉 with states QD ⊆ 2Q the following holds:

∀w ∈ Σ∗ ∀P ∈ QD : δ∗
D(P,w) = {q | ∃p ∈ P : 〈p,w, q〉 ∈ Δ∗}.

Proposition 1. (Cf. e.g. [7]) Let A = 〈Σ∗ × M, Q, I, F,Δ〉 be a trimmed mo-
noidal transducer. If A does not contain any cycle of the form 〈p, 〈ε,m〉, p〉 ∈ Δ∗

with m �= e, then A can be effectively transformed into a real-time transducer A′

such that L(A)∩(Σ+×M) = L(A′)∩(Σ+×M). Furthermore, we can effectively
compute the set {m | 〈ε,m〉 ∈ L(A)}.

3 New Bimachine Construction

From now on we assume that T = 〈Σ∗ × M, Q, I, F,Δ〉 is any trimmed
real-time functional monoidal transducer. We assume that 〈ε, e〉 ∈ L(T ). Let
AT = 〈Σ∗, Q, I, F,ΔΣ〉 be the underlying finite-state automaton of T and
Arev

T = 〈Σ∗, Q, F, I,Δrev
Σ 〉 be the reverse finite-state automaton of AT . Let

AT D = 〈Σ∗, 2Q, {I}, FD, δΣD〉 and Arev
T D = 〈Σ∗, 2Q, {F}, ID, δrev

Σ D〉 be the
deterministic finite-state automata for AT and Arev

T , respectively.
For each set of states P ⊆ Q and w ∈ Σ∗, we define the set of w-successors

and w-predecessors of P as

Succw(P ) := δΣ
∗
D(P,w) = {q ∈ Q | ∃p ∈ P,m ∈ M : 〈p, 〈w,m〉, q〉 ∈ Δ∗}

Predw(P ) := δrev
Σ

∗
D(P,w) = {q ∈ Q | ∃p ∈ P,m ∈ M : 〈q, 〈wrev,m〉, p〉 ∈ Δ∗}.

Note that the first (second) clause is based on a left-to-right (right-to-left) read-
ing order.
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Lemma 1 (Butterfly Lemma). Let T be as above. Let u, v ∈ Σ∗, a ∈ Σ, let
L := Succu(I), L′ := Succua(I), R′ := Predv(F ) and R := Predav(F ). Then

1. for all q ∈ L∩R there is q′ ∈ L′ ∩R′ and m ∈ M such that 〈q, 〈a,m〉, q′〉 ∈ Δ,
2. for all q′ ∈ L′ ∩R′ there is q ∈ L∩R and m ∈ M such that 〈q, 〈a,m〉, q′〉 ∈ Δ,
3. L ∩ R �= ∅ iff L′ ∩ R′ �= ∅.

Proof. As to 1, let q ∈ L ∩ R. Since R = Preda(R′) there exists a transition of
the form 〈q, 〈a,m〉, q′〉 ∈ Δ such that q′ ∈ R. Since q ∈ L we have q′ ∈ L′. 2
follows by a symmetric argument. 3 directly follows from 1 and 2. ��

3.1 Generic Construction

We now show how to build an equivalent bimachine B = 〈M,AL,AR, ψ〉, given
the transducer T as input. First, we construct the right automaton AR apply-
ing a determinization procedure to the reversed underlying automaton of T .
Let

AR = Arev
T D = 〈Σ∗, QR, sR, FR, δR〉.

By definition sR = {F} and δR(R, a) = δrev
Σ D(R, a) = Preda(R) for R ∈ QR and

a ∈ Σ. The idea for the left automaton is to use the accessible sets in AT D

Q′
L := {δΣ

∗
D(I, w) |w ∈ Σ∗} = {Succw(I) |w ∈ Σ∗}

as a “core” part of the states, but to enrich this core part by additional infor-
mation that enables the reconstruction of successful paths in T . Let L ∈ Q′

L.
An L-centered state selector function is a partial function φ : QR → Q such that
the following conditions hold for any state of the right automaton R ∈ QR:

1. φ(R) is defined iff R ∩ L �= ∅ and
2. if φ(R) is defined, then φ(R) ∈ R ∩ L.

A state of the left automaton AL = 〈Σ,QL, sL, QL, δL〉 is a pair 〈L, φ〉 where
L ∈ Q′

L and φ is an L-centered state selector function. The following induction
defines sL, the set of states QL, and the transition function δL.

– sL := 〈I, φ0〉 where φ0(R) :=
{

any element of R ∩ I if R ∩ I �= ∅
undefined otherwise.

– For 〈L, φ〉 ∈ QL and a ∈ Σ we define δL(〈L, φ〉, a) := 〈L′, φ′〉 where
• L′ := Succa(L).

• φ′(R′) :=

⎧⎨
⎩

any element of {q′ | ∃m ∈ M : 〈q, 〈a,m〉, q′〉 ∈ Δ}
if q = φ(Preda(R′)) is defined

undefined otherwise.

In the above notions we show that

1. for each state 〈L, φ〉 always φ is an L-centered state selection function, and
2. if φ(Preda(R′)) is defined, then q′ = φ′(R′) is also defined.
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The proof is by induction. For sL := 〈I, φ0〉 clearly φ0 is defined as an I-centered
state selection function. For the induction step, given state 〈L, φ〉 assume that
φ is an L-centered state selection function. Let R′ ∈ QR and R := Preda(R′).
First, if q = φ(R) is defined, then (φ is L-centered) L ∩ R �= ∅ and q ∈ L ∩ R.
By the Butterfly Lemma we have that L′ ∩ R′ �= ∅ and further there exists a
transition 〈q, 〈a,m〉, q′〉 ∈ Δ such that q′ ∈ L′ ∩ R′. Therefore q′ = φ′(R′) is
defined and φ′(R′) ∈ L′ ∩ R′. On the other hand, if φ(R) is undefined, then (φ
is L-centered) L ∩ R = ∅ and (Butterfly Lemma) L′ ∩ R′ = ∅. It follows that φ′

is L′-centered.
It remains to define the output function ψ of the bimachine. Given a pair

of states 〈L, φ〉 and R′ of the left and right automaton and a ∈ Σ, let 〈L′, φ′〉 :=
δL(〈L, φ〉, a) and R := Preda(R′) = δR(R′, a). Then

ψ(〈L, φ〉, a, R′) :=
{

any element of {m | 〈φ(R), 〈a,m〉, φ′(R′)〉 ∈ Δ} if !φ(R)
undefined otherwise

(We have shown above that there always exists a transition of the above form.)

Correctness. We now show that the function defined by the bimachine B =
〈AL,AR, ψ〉 coincides with the language of the transducer T .

Theorem 1. Let u = a1 . . . ak ∈ dom(T ). For i ∈ {0, 1, . . . , k} let 〈Li, φi〉 :=
δ∗
L(sL, a1 . . . ai) and Ri := δ∗

R(sR, ak, . . . , ai+1). Then for any i ≤ k the following
hold:

1. qi := φi(Ri) is defined.
2. mi+1 := ψ(Li, ai+1, Ri+1) is defined and 〈qi, 〈ai+1,mi+1〉, qi+1〉 ∈ Δ.

Furthermore OB = L(T ).

Proof. Let ui = a1 . . . ai and vi = ai+1 . . . ak. Then we have that Li = Succui
(I)

and Ri = Predvi
(F ). Since uivi = u ∈ dom(T ) it follows that Li ∩ Ri �= ∅.

Thus, since φi is Li-centered we deduce that qi = φi(Ri) is defined. Further,
since qi+1 = φi+1(Ri+1) is well-defined it follows that there is a transition
〈qi, 〈ai+1,mi+1〉, qi+1〉 ∈ Δ. As a consequence we obtain

〈q0, 〈u,m1 . . . mk〉, qk〉 ∈ Δ∗.

Since q0 = φ0(R0) ∈ L0 = I and qk = φk(Rk) ∈ Rk = F we have 〈u,m1 . . . mk〉 ∈
L(T ). Furthermore in this case OB(u) = m1 . . . mk = L(T )(u). This proves that
if u ∈ dom(T ), then u ∈ dom(B) and L(T )(u) = OB(u).

Finally, if u �∈ dom(T ), then R0 ∩ I = ∅ and therefore φ0(R0) is not defined.
In particular, OB(u) is not defined. Hence both functions have the same domain
and coincide.

Remark 1. The construction can be applied to a non-functional transducer T
and in this case for the output function of the bimachine we have OB ⊆ L(T ).

Applying the standard conversion of a bimachine to transducer we obtain the
following corollary.
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Corollary 1. For any functional monoidal finite-state transducer T there exists
an unambiguous monoidal finite-state transducer T ′ such that L(T ) = L(T ′).

Proof. After constructing the bimachine B we define the monoidal finite-state
transducer T ′ = 〈Σ∗ × M, QL × QR, {sL} × QR, QL × {sR},Δ′〉, where

Δ := {〈〈l, r〉, 〈a,m〉, 〈l′, r′〉〉 | l′ = δL(l, a), r = δR(r′, a),m = ψ(l, a, r′)}.

It can be shown that L(T ) = L(T ′).

3.2 Complexity Analysis and Specialized Construction

When using the generic construction presented above we obtain the bound
|QR| ≤ |2Q| for the number of states of the right automaton AR. The num-
ber of (partial) functions mapping QR to Q is (|Q| + 1)|QR|. Hence the number
of states of AL satisfies

|QL| ≤ 2|Q|(|Q| + 1)|QR| ≤ 2|Q|(|Q| + 1)2
|Q|

= 2|Q|+2|Q| log(|Q|+1).

A characteristics of the above generic construction is the arbitrariness of the
selection of a state q′ in the second clause of the inductive definition of the
states of the left automaton. Since each new state selection function introduced
during the construction produces its own swarm of followers the question arises
if a more principled approach to select q′ helps to avoid any unnecessary blow-up
and to reduce the upper bound on the number of states of AL.

To this end we apply the idea to compare paths of transducers using the
lexicographic ordering. It has been successfully used in different uniformization
problems related to transducers [3,8,9,12]. In the context of bimachines, we use
the idea to specialize the generic selection mechanism described in the previous
section.

First, we define the states of the left automaton AL as pairs p = 〈L,<p〉,
see also Algorithm 1. As before, the left component L is always an element
of Q′

L := {Succw(I) | w ∈ Σ∗}. The second component <p is a strict linear
order on L. The ordering <p induces a canonical state selector function φ<p

(R):
if L ∩ R �= ∅, then φ<p

(R) is defined as the <p-minimal element of L ∩ R.
Otherwise φ<p

(R) is undefined. Note that in this way state selector functions
are always L-centered. Still, in order to follow this line, we need a method for
defining the a-successor q = 〈L′, <q〉 of a state p = 〈L,<p〉 in such a way that the
<q-minimal element of L′ ∩R′ always represents a state q′ with 〈q, 〈a, .〉, q′〉 ∈ Δ.

Given 〈L,<p〉 and a state r′ ∈ L′ := Succa(L) the set of a-predecessors of r′ in
L is defined as Preda,L(r′) := L∩Preda({r′}). Note that, by the definition of L′,
each set Preda,L(r′) where r′ ∈ L′ is non-empty. The <p-minimal a-predecessor
of r′ in L, denoted min preda,L(r′), is the minimal element of Preda,L(r′) with
respect to the ordering <p.

We define the initial state, sL, the set of states, QL, and the new transition
function, δL, for the new definition of the left automaton, AL, as follows:



120 S. Gerdjikov et al.

Algorithm 1. Direct construction of a bimachine. SeqTrans computes the tran-
sition of the left automaton; SelectMinimal determines the least element in the
left state that is an element of the right state. Out computes the output produced
by a left state, input character, and a right state.

Project(Δ)
@1 return{〈p, a, q〉|∃m〈p, 〈a, m〉, q〉 ∈ Δ}

Reverse(Δ)
@1 return {〈q, a, p〉 | 〈p, a, q〉 ∈ Δ}

SetTrans(Δ, P, a)
@1 return {q | ∃p ∈ P (〈p, a, q〉 ∈ Δ)}

SeqTrans(Δ, P, a)
@1 S ← 〈〉; i ← 0
@2 for j = 0 to |P | − 1 do
@3 for 〈P [j], a, q〉 ∈ Δ do
@4 if q �∈ S[0..i − 1] then
@5 S[i] ← q
@6 i ← i + 1
@7 fi
@8 return S

DetGeneric(A, CmpTrans, i state)
@1 〈Σ, Q, I, F, Δ〉 ← A
@2 Q

(−1)
D ← ∅; Q

(0)
D ← {i state}

@3 δD ← ∅; i ← 0;

@3 while Q
(i)
D �= Q

(i−1)
D do

@4 Q
(i+1)
D ← Q

(i)
D

@5 for P ∈ Q
(i)
D \ Q

(i−1)
D do

@6 for a ∈ Σ do
@7 δD(P, a) ← CmpTrans(Δ, P, a)

@8 Q
(i+1)
D ← Q

(i+1)
D ∪ {δD(P, a)}

@9 i ← i + 1
@10 return 〈Σ, Q

(i)
D , {I}, Q

(i)
D , δD〉

SelectMinimal(L, R)
@1 for i = 0 to |L| − 1 do
@2 if L[i] ∈ R then
@3 return L[i]
@4 fi
@5 done
@6 return ⊥

Out(L, δL, a, R, δR, Δ)
@1 p ← SelectMinimal(L, δR(R, a))
@2 q ← SelectMinimal(δL(L, a), R)
@3 if p = ⊥ or q = ⊥ then
@4 return ⊥
@5 else
@6 let 〈p, 〈a, m〉, q〉 ∈ Δ
@7 return m

ComputeBimachine(T )
@1 〈Σ × M, Q, I, F, Δ〉 ← T
@2 ΔΣ ← Project(Δ)
@3 A ← 〈Σ, Q, I, F, ΔΣ〉
@4 Ar ← 〈Σ, Q, F, I, Reverse(ΔΣ)〉
@5 AR ← DetGeneric(Ar, SetTrans, F )
@6 I ′ ← sequence of I
@6 AL ← DetGeneric(A, SeqTrans, I ′)
@7 〈Σ, QL, sL, QL, δL〉 ← AL

@8 〈Σ, QR, sR, QR, δR〉 ← AR

@9 for 〈L, a, R〉 ∈ QL × Σ × QR do
@10 ψ(L, a, R) ← Out(L, δL, a, R, δR, Δ)
@11 return 〈M, AL, AR, ψ〉

– sL := 〈I,<0〉 where <0 is any fixed linear order of I.
– For 〈L,<〉 ∈ QL and a ∈ Σ we define δL(〈L,<〉, a) := (L′, <′) where L′ :=

Succa(L) and <′ is any linear order on L′ satisfying the condition

∀p′, r′ ∈ L′ : p′ ≤′ r′ ⇒ min preda,L(p′) ≤ min preda,L(r′).

A linear order <′ of this form is obtained by starting with the elements of L′

that have the <-minimal element qmin of L as their <-minimal a-predecessor (the
ordering between these elements of L′ is arbitrary). We then continue with the
elements of L′ that have the <-minimal element of L\{qmin} as their <-minimal
a-predecessor, etc.

The following lemma shows that the new construction is a specialized version
of the former construction described above.
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Lemma 2. Let (L,<) and (L′, <′) be as above. Let φ< and φ<′ denote the
canonical state selector functions corresponding to < and <′, respectively. Let
R′ ∈ QR and R := Preda(R′). Then φ<′(R′) is defined iff φ<(R) is defined.
Furthermore, if q = φ<(R) and q′ = φ′(R′) are defined, then 〈q, 〈a,m〉, q′〉 ∈ Δ
for some m ∈ M .

Proof. The Butterfly Lemma shows that

φ<(R) is defined
def⇐⇒ L ∩ R �= ∅ Butterfly⇐⇒

Lemma
L′ ∩ R′ �= ∅ def⇐⇒ φ<′(R′) is defined

If φ<(R) and φ<′(R′) are defined, then q := φ<(R) is a <-minimal state of L∩R
and q′ := φ<′(R′) is a <′-minimal state of L′ ∩ R′. The Butterfly Lemma shows
that there exist p ∈ L ∩ R, m ∈ M , and a transition 〈p, 〈a,m〉, q′〉 ∈ Δ. Let
p0 be a <-minimal element of L ∩ R with this property. We claim that p0 = q.
The Butterfly Lemma shows that there exist p′ ∈ L′ ∩ R′ and m′ ∈ M with
〈q, 〈a,m′〉, p′〉 ∈ Δ. From the minimality of q′ we obtain q′ ≤′ p′, the definition
of ≤′ shows that p0 ≤ q. Minimality of q implies that in fact p0 = q. It follows
that there exists a transition 〈q, 〈a,m〉, q′〉 ∈ Δ.

Theorem 2. Given a functional real-time transducer T = 〈Σ,M, Q, I,Δ, F 〉
we can construct an equivalent bimachine B = 〈AL,AR, ψ〉 such that the number
of states of AL is O(|Q|!) and the number of states of AR is O(2|Q|).

Proof. Clearly, the number of states of AR is O(2|Q|). Let Seq(Q) denote the
set of linearly ordered subsets of Q. In the specialized construction, the states
of AL can be represented as elements of Seq(Q). We have

|Seq(Q)| =
|Q|∑
k=0

(
|Q|
k

)
k! =

|Q|∑
k=0

|Q|!
(|Q| − k)!

= 2|Q|! +
|Q|−2∑
k=0

|Q|!
(|Q| − k)!

.

Taking into account that (|Q| − k)! ≥ 2|Q|−k for k ≤ |Q| − 2 we obtain:

|Seq(Q)| = 2|Q|! +
|Q|−2∑
k=0

|Q|!
(|Q| − k)!

≤ 2|Q|! +
|Q|−2∑
k=0

|Q|!
2|Q|−k

≤ 3|Q|!

thus showing that |Q′
L| ≤ |Seq(Q)| ≤ 3|Q|!. ��

4 Remark on the Classical Bimachine Construction

The classical construction of bimachines [2] refers to the special case where
M = 〈Ω∗, ◦, ε〉 is the free monoid generated by an alphabet Ω. As described
in [7], but see also the proofs in [1,2,8], it departs from a pseudo-deterministic
transducer, i.e. a transducer T = 〈Σ × Ω∗, Q, I, F,Δ〉 that can be considered
as a deterministic finite-state automaton over the new alphabet Σ × Ω∗. This
means that I contains a single state i and Δ is a finite graph of a function
Q × (Σ × Ω∗) → Q.
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The next step is the core of the construction. The goal is to construct an
unambiguous transducer T ′ equivalent to T . This is achieved by specializing
the standard determinization construction for finite-state automata: the sets
generated by the determinization procedure are split into two parts, a single
guessed positive state – this is our positive hypothesis for the successful path to
be followed, and a set of negative states – these are the alternative hypotheses
that must all fail in order for our positive hypothesis to be confirmed. Formally,
the states in the resulting transducer are pairs 〈p,N〉 ∈ Q×2Q. The initial state
is i′ = 〈i, ∅〉. The algorithm inductively defines transitions in Δ′ and states in
Q′. Let ≺lex denote the lexicographic order on Σ∗. For a generated state 〈p,N〉
and each transition 〈p, 〈a, v〉, p′〉 ∈ Δ we obtain a transition

〈〈p,N〉, 〈a, v〉, 〈p′, N ′〉〉 ∈ Δ′, where
N ′ = Succa(N) ∪ {q | ∃v′ ≺lex v(〈p, 〈a, v′〉, q〉 ∈ Δ}.

The pair 〈p′, N ′〉 is added to Q′. Intuitively, this transition makes a guess about
the lexicographically smallest continuation of the output that can be followed
to a final state f ∈ F . Accordingly, all transitions that have the same input
character, a, but lexicographically smaller output, are implicitly assumed to
fail. To reflect this, we add those states to the set of negative hypotheses, N ′.
To maintain the previously accumulated negative hypotheses along the path to
〈p,N〉 the a-successors of N are added to N ′. Following these lines, the set of
final states of T ′ is defined as:

F ′ = {〈f,N〉 | f ∈ F and N ∩ F = ∅}.

Note, that 〈f,N〉 becomes final only if f ∈ F and there is no final state n ∈ N
reached with smaller output on a parallel path. It can be formally shown [7],
that this construction indeed leads to an unambiguous transducer:

T ′ = 〈Σ × Ω∗, Q′, {i′}, F ′,Δ′〉

equivalent to T .
The final step is to convert the (trimmed part of) T ′ in an equivalent

bimachine. This can be easily done by a determinization of AL = AT ′,D and
AR = Arev

T ′ D and defining an appropriate output function ψ : QL×Σ×QR → Ω∗.
The following points have to be stressed about this construction.

Remark 2. The states of the left automaton are sets L ⊆ 2Q×2Q . Yet, these sets
have an inner structure that enables a non-trivial upper bound on their number,
|QL| = O(|Q|! exp(|Q| + 1)). We sketch the main points of the proof:

– First, if q = 〈p′, N ′〉 ∈ L, then, since q is co-accessible in T ′, it follows that
p′ �∈ N ′. Assume now that 〈p′, N ′〉, 〈p′′, N ′′〉 ∈ L.

– Let 〈p′, N ′〉 �= 〈p′′, N ′′〉 ∈ T ′ be distinct states accessible via the same input
word u ∈ Σ∗. Then either {p′}∪N ′ ⊆ N ′′ or {p′′}∪N ′′ ⊆ N ′ (the proof uses
a simple induction on |u|).
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– Let 〈p′, N ′〉 �= 〈p′′, N ′′〉 ∈ L be distinct. Then, 〈p′, N ′〉 and 〈p′′, N ′′〉 are all
accessible in T via a common word u ∈ Σ. By the above argument we can
assume that {p′} ∪ N ′ ⊆ N ′′. By the first argument we have that p′′ �∈ N ′′

and therefore {p′} ∪ N ′ � {p′′} ∪ N ′′.
– This proves that every left state L = {〈pi, Ni〉 | i ≤ |L|} induces a linear order

on {p1, . . . , p|L|} by defining pi < pj if and only if {pi}∪Ni � {pj}∪Nj . This
shows that the left states L arise as linear orders of the states {p1, . . . , p|L|}
and some additional elements q ∈ Q \ {p1, . . . , p|L|} that belong to some Ni.
By the third point we can assign each such state q to the least Ni with q ∈ Ni.
By the linear order it will belong to all the bigger sets {pj} ∪ Nj .

– With this remarks, the problem becomes a combinatorial one and using ideas
similar to those in the proof of Theorem 2 one can prove that

|QL| ≤
|Q|∑
k=1

(
|Q|
k

)
k!(k + 1)|Q|−k = |Q|!

|Q|∑
k=1

(k + 1)|Q|−k|

(|Q| − k)!
.

Looking at the term for k = |Q|, one sees that the upper bound for QL is at
least Q!. On the other hand, since k ≤ |Q|, substituting k + 1 with |Q| + 1
we easily get that: |QL| ≤ |Q|!

∑|Q|
k=1

(|Q|+1)|Q|−k

(|Q|−k)! ≤ |Q|! exp(|Q| + 1).

Remark 3. Since the transducer T ′ is unambiguous any two states L ∈ QL and
R ∈ QR have at most one common element. This shows that for each L ∈ QL,
there is a unique L-centered function φL and therefore our construction would
find exactly this function if run on T ′. Thus in this case the output function
ψ : QL × Σ × QR → Ω∗ will be defined in exactly the same way.

Fig. 1. A class of ambiguous finite-state transducers representing the rational functions
{〈a, a〉, 〈b, b〉}∗{〈a, a〉, 〈b, ε〉}{〈a, a〉, 〈b, b〉}n−1, which deletes the n-th character from
right-to-left if it is a b. The table shows the number of states of the source transducer,
the pseudo-deterministic transducer, the left and the right automaton of the bimachine
built by the standard and the new constructions.



124 S. Gerdjikov et al.

Remark 4. The classical construction is starting from a pseudo-deterministic
transducer. However, if T is an arbitrary real-time transducer the initial conver-
sion to a pseudo-deterministic transducer may cause an exponential blow-up. In
contrast, our constructions can be applied directly to arbitrary real-time trans-
ducers and thus avoids this blow-up. See Fig. 1 for an example.

5 Conclusion

In this paper we introduced a new generic algorithm and a specialization for
building bimachines from functional finite-state transducers. The generic proce-
dure is conceptually simple. Both constructions avoid the preparatory steps used
in the classical construction, namely pseudodeterminization and disambiguation.

For the specialized construction we derived an upper bound on the size of
the bimachine. We showed that this construction is asymptotically not worse
than the classical construction. Moreover we presented a class of transducers for
which the classical construction generates a bimachine with exponentially more
states than the new construction.

The generic construction described in Subsect. 3.1 is not based on any order
of the successful paths. It provides a simple and general algorithmic scheme for
bimachine constructions, leaving room for other specialization, with new path
selection strategies that might lead to even smaller bimachines. The study of
optimal path selection strategies is a point for future research.
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Formais, Natal - RN, pp. 83–92, November 2016



Alignment Distance of Regular Tree Languages

Yo-Sub Han1 and Sang-Ki Ko2(B)

1 Department of Computer Science, Yonsei University, 50 Yonsei-Ro,
Seodaemun-Gu, Seoul 120-749, Republic of Korea

emmous@yonsei.ac.kr
2 Department of Computer Science, University of Liverpool, Liverpool L69 3BX, UK

sangkiko@liverpool.ac.uk

Abstract. We consider the tree alignment distance problem between
a tree and a regular tree language. The tree alignment distance is an
alternative of the tree edit-distance, in which we construct an optimal
alignment between two trees and compute its cost instead of directly
computing the minimum cost of tree edits. The alignment distance is
crucial for understanding the structural similarity between trees.

We, in particular, consider the following problem: given a tree t and a
tree automaton recognizing a regular tree language L, find the most simi-
lar tree from L with respect to t under the tree alignment metric. Regular
tree languages are commonly used in practice such as XML schema or
bioinformatics. We propose an O(mn) time algorithm for computing the
(ordered) alignment distance between t and L when the maximum degree
of t and trees in L is bounded by a constant, and O(mn2) time algorithm
when the maximum degree of trees in L is not bounded, where m is the
size of t and n is the size of finite tree automaton for L. We also study
the case where a tree is not necessarily ordered, and show that the time
complexity remains O(mn) if the maximum degree is bounded and MAX
SNP-hard otherwise.

Keywords: Tree alignment · Alignment edit-distance · Regular tree
languages · Tree automata

1 Introduction

Measuring the similarity or dissimilarity between tree-structured data is essential
in many fields such as XML document processing [14], RNA secondary structure
alignment [6], pattern recognition [11]. In particular, much attention has been
paid to research on various metrics for defining the similarity or dissimilarity
of trees [7,15,20]. For example, the tree edit-distance between two ordered trees
is the cost of the optimal edit script required to transform one tree into the
other and is a natural extension of the Levenshtein distance [10]—often called
the edit-distance in the literature—defined for strings.

The tree edit-distance problem have been extensively studied by many
researchers [4,8,15]. Given two trees t and t′ of size m and n (namely, there

c© Springer International Publishing AG 2017
A. Carayol and C. Nicaud (Eds.): CIAA 2017, LNCS 10329, pp. 126–137, 2017.
DOI: 10.1007/978-3-319-60134-2 11
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Fig. 1. Two trees t and t′ and its optimal alignment A

are m nodes in t and n nodes in t′), the currently best known algorithm for com-
puting the tree edit-distance between t and t′ has been suggested by Demaine
et al. [4] and runs in O(m2n(1 + log n

m )) time, for n ≥ m, using an optimal
decomposition strategy. Similar questions for unordered trees also have been
studied [18,20]. Zhang et al. [20] showed that computing the tree edit-distance
between unordered trees is NP-complete (in fact, MAX SNP-hard [19]).

Jiang et al. [7] introduced the alignment distance as an alternative to the
tree edit-distance. Instead of considering the minimum number of tree editing
operations, they considered the cost of an optimal tree alignment between two
trees. They presented an O(mnk2) time algorithm for computing the alignment
distance of two trees t and t′, where m is the size of t, n is the size of t′, and k is
the maximum degree of t and t′. They also proved that computing the unordered
alignment distance between two trees is MAX SNP-hard if the degree of one of
the trees is not bounded. Lu et al. [13] proposed another constrained variant
called the less-constrained edit-distance but Kuboyama et al. [9] proved that the
less-constrained edit-distance is, in fact, equivalent to the alignment distance.

The alignment distance is useful in terms of visualization since we can obtain
visualizable alignments for multiple trees whereas the tree edit-distance only
cares optimal sequence of tree edits. See Fig. 1 for example. Höchsmann et al. [6]
suggested a systematic approach for comparing RNA secondary structures based
on the alignment distance since we can represent RNA secondary structures as
trees by preserving their structural properties.

The problems of computing the tree edit-distance and its related variants
have been extended to the case when we are given a tree t and a set L of trees—
a regular tree language [2,12]. Here we search for the most similar tree from
L with respect to t under the considered distance metric. Note that in gen-
eral L may be infinite and we need an efficient representation for such infinite L.
Researchers suggested a regular tree grammar (RTG) and a tree automaton (TA)
for recognizing a (infinite) set of trees preserving a certain regularity [3]. RTGs
and TAs are widely used for denoting regular tree languages in several applica-
tions including XML schema [2], bioinformatics [16] and image recognition [11].
For example, we can formally define a set of RNA secondary structures excluding
pseudoknots with a regular tree language. Xing [17] proposed an O(mn log n)
time algorithm for computing the alignment distance between a tree and a regu-
lar tree grammar which recognizes a regular set of unranked trees. Unfortunately,
the proposed algorithm cannot compute optimal alignments in all cases.
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We extend the alignment distance problem to the alignment distance between
a single tree and a regular tree language described as a TA. We separately
consider two problems: the ranked case and the unranked case. For the ranked
case where we fix the maximum degree of t and the maximum rank of A, we
design an O(mn) time algorithm for computing the alignment distance between
a tree of size m and a ranked TA of size n. We also establish an O(mn2) time
algorithm for unranked TAs.

We furthermore examine the unordered alignment distance between a tree
and a regular tree language where the linear ordering of children is ignored. We
show that the time complexity still remains polynomial by fixing the maximum
degree of t and the maximum rank of A and otherwise, becomes MAX SNP-hard.
The basic idea behind our algorithms is that we extend the classical dynamic
programming algorithm [7] to operate with tree automata which can recognize
regular sets of trees by their finite-state control. In order to employ the dynamic
programming, we analyze the possible cases of alignments between a tree and a
tree automaton and break the whole alignment problem into subproblems.

2 Preliminaries

A ranked alphabet Σ is a pair of a finite set of characters and a function r : Σ →
rN ∪{0}. We denote the set of elements of rank m ≥ 0 by Σm ⊆ Σ. The set FΣ

consists of Σ-labelled trees, where a node labelled by σ ∈ Σm for m ≥ 0, always
has m children. We denote the set of trees over Σ by FΣ , which is the smallest
set S satisfying the following condition: if m ≥ 0, σ ∈ Σm and t, . . . , tm ∈ S,
then σ(t, . . . , tm) ∈ S.

A nondeterministic bottom-up TA A over a ranked alphabet Σ is specified
by a tuple A = (Q,Σ,F, δ), where Q is a finite set of states, F ⊆ Q is a set of
final states, and δ associates to each σ ∈ Σm a mapping σδ : Qm → 2Q,m ≥ 0.
For each tree t = σ(t, . . . , tm) ∈ FΣ , we define inductively the set tδ ⊆ Q by
setting q ∈ tg if and only if there exist qi ∈ (ti)δ, for 1 ≤ i ≤ m, such that
q ∈ σδ(q1, . . . , qm). Intuitively, tδ consists of the states of Q that A may reach by
reading the tree t. Thus, the tree language accepted by A is defined as follows:
L(A) = {t ∈ FΣ | tδ ∩ F 	= ∅}. Given a state q of A, A[q] denotes a new TA
obtained from A by making F = {q}. We define the size |A| of a ranked TA A
to be |Q| +

∑
q∈σδ(q1,...,qm)(r(σ) + 1).

Many modern applications of tree automata use automata operating on trees
where the label of a node does not determine the number of children. For this
reason we consider also unranked TAs.

A nondeterministic unranked TA is specified by a tuple A = (Σ,Q,F, δ),
where Σ is an (unranked) alphabet, Q is a finite set of states, F ⊆ Q is a set of
final states, and δ is a transition relation defined in terms of horizontal languages
that consist of regular sets of strings over Q. For each q ∈ Q and σ ∈ Σ, we
define δ(q, σ) to be the horizontal language associated with q and σ. We denote
a finite-state automaton (FA) for the horizontal language δ(q, σ) of A by HA

q,σ,
which is called a horizontal FA. Note that an FA is specified by A = (P,Σ, s, F, δ),
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Fig. 2. An accepting run of an unranked TA A = ({q0, q1, q2}, {a, b, c}, {q2}, δ) for the
tree t on the left-hand side. Note that horizontal languages are described as regular
expressions.

where P is a set of states, Σ is the input alphabet, s is the start state, F ⊆ P is a
set of final states, and δ is the transition function. Remind that horizontal FAs of
the unranked TA A = (Σ,Q,F, δ) is defined over Q—the state set of A.

We denote an FA HA
q,σ[s1, s2] = (Sq,σ, Q, s1, {s2}, γq,σ) obtained from HA

q,σ

by having the initial state s1 and the only final state s2, where s1, s2 ∈ Sq,σ.
Then, according to the transition relation δ, each σ ∈ Σ defines a partial function
σδ : Q∗ → Q, where, for w ∈ Q∗, q ∈ Q, q ∈ σδ(w) if w ∈ L(HA

q,σ). The transition
relation is, in a natural way, extended as a binary relation on Σ-trees where some
of the leaves can be labelled by elements of Q [3]. The tree language accepted
by A is defined as follows: L(A) = {t ∈ TΣ | t

∗−→ qf ∈ F}. An accepting run of
an unranked TA is described in Fig. 2. We define the size |A| of an unranked TA
A to be |Q| + ∑

q∈Q,σ∈Σ(|HA
q,σ| + 1). Naturally a ranked TA is a special case of

an unranked TA, where for σ ∈ Σm and q ∈ Q we always have L(HA
q,σ) ⊆ Qm.

For a tree t, the postorder traversal of t is obtained by visiting all children in
a left-to-right order and recursively visiting the subtrees rooted at the children,
and then root(t). For a tree t, t[i] denotes the ith node of t in postorder. When
an ordering is specified for all nodes in a tree, the tree is called ordered tree. A
hedge is a sequence of trees. We assume that all trees we discuss are ordered,
unless explicitly stated otherwise. We denote a subhedge of a tree t that consists
of the nodes from i to j by t[i . . . j] where i ≤ j. Here the nodes from i to j should
satisfy one of the following two conditions: (1) a leaf or (2) all of its descendants
are between i and j. We denote a hedge—a sequence ti, . . . , tj of trees for i ≤ j—
by h[ti . . . tj ]. A hedge formed from t by deleting the root node is denoted by t̂.
We denote the leftmost leaf descendant of node t[i] by l(i). Similarly, we denote
the leftmost leaf descendant of a tree t by l(t). We define par(t[i]) to be the
parent node of t[i]. Let des(t[i]) be the set of all descendants of t[i] including t[i]
itself. Thus, t[l(i) . . . i] is the subtree rooted at t[i], that is the subtree consisting
of node i and all its descendants. Similarly, we define anc(t[i]) to be the set of
all ancestors of t[i] including t[i]. We also denote the lowest common ancestor of
t[i] and t[j] by lca(t[i], t[j]). The size |t| of t is the number of nodes in t and the
degree deg(t) of t is the maximum number of children a node of t has. Let θ be
the empty tree. We denote the character labelling a node t[i] by σ(i).
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3 Distance Measures for Comparing Trees

Given an alphabet Σ, let Ω = {(a → b) | a, b ∈ Σ ∪ {λ}} be a set of edit
operations. There are three edit operations: deletion (a → λ), insertion (λ → a)
and substitution (a → b). We associate a non-negative edit cost to each edit
operation ωi ∈ Ω as a function c : Ω → R+. Note that the function c returns
zero for the edit operations of trivial substitution (a → a), where a ∈ Σ ∪ {λ}.
We assume that c is a distance metric satisfying the following conditions:

1. c(a → b) = 0 if and only if a = b,
2. c(a → b) = c(b → a), and
3. c(a → c) ≤ c(a → b) + c(b → c),

where a, b, c ∈ Σ ∪ {λ}.
An edit script S ∈ Ω∗ between two trees t and t′ is a sequence of edit

operations transforming t into t′. The cost c(S) of S = s1s2 · · · sn is c(S) =∑n
i=1 c(si). An optimal edit script between t and t′ is an edit script of minimum

cost and the minimum cost is the tree edit-distance between t and t′.

Definition 1. We define the tree edit-distance d(t, t′) of two trees t and t′ to be
d(t, t′) = min{c(S) | S is an edit script transforming t into t′}. Namely, if S is
an optimal edit script that transforms t into t′, then c(S) = d(t, t′).

Let T and T ′ be sets of nodes in t and t′, respectively. Define a
triple (M,T, T ′) to be a mapping from t to t′, where M ⊆ T × T ′ is a set
of pairs of nodes (i, j) for 1 ≤ i ≤ |T | and 1 ≤ j ≤ |T ′|. We use M instead of
(M,T, T ′) for simplicity when there is no confusion. We assume that trees are
ordered in postorder. For any pair of (i1, j1) and (i2, j2) in M , the mapping M
has the following restrictions:

1. i1 = i2 if and only if j1 = j2 (one-to-one)
2. i1 < i2 if and only if j1 < j2 (sibling order preserved)
3. t[i1] ∈ anc(t[i2]) if and only if t′[j1] ∈ anc(t′[j2]) (ancestor order preserved).

We consider the alignment distance between trees. Let t and t′ be two labelled
trees. We define an alignment A to be a tree where each node has a label from
the set of edit operations. Let left(A) (right(A), resp.) be the left (right, resp.)
projection of the alignment A. Then, A is the alignment of t and t′ if left(A) = t
and right(A) = t′. See Fig. 1 for example. We define the cost c(A) of an align-
ment A to be the sum of the costs of all pairs of labels in the alignment. In Fig. 1,
the cost c(A) is 4 if we assume unit cost for all pairs in which two labels are
different. We say that an alignment is optimal if the cost of the alignment is
minimum over all possible alignments. Now we define the alignment distance
between two trees as follows:

Definition 2. We define the alignment distance ad(t, t′) of two trees t and t′ to
be ad(t, t′) = min{c(A) | A is an alignment of t and t′}. Note that the distance
is symmetric ad(t, t′) = ad(t′, t).
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We call a mapping corresponding to the alignment an alignment mapping.
Now we formally define the additional restrictions required a mapping M to be
an alignment mapping. For any triple of (i1, j1), (i2, j2), and (i3, j3) in M , the
alignment mapping M has the following additional restriction:

if lca(t[i1], t[i3]) ∈ anc(lca(t[i1], t[i2])), then lca(t′[j1], t′[j3]) = lca(t′[j2], t′[j3]).

Next we extend the alignment distance between trees to the distance between
a tree and a set of trees—a tree language.

Definition 3. We define the alignment distance ad(t, L) between a tree t and a
tree language L to be ad(t, L) = inf{ad(t, t′) | t′ ∈ L}.

We also consider an unordered variant for which we ignore the linear order-
ing of children called the unordered alignment distance and denote the distance
between two trees t and t′ by uad(t, t′).

4 Alignment Distance Problem

We study the alignment distance between a tree and a regular tree language.
We tackle the following two cases separately: the ranked case and the unranked
case. In the ranked case, we assume that the language is given by a ranked
TA such that the number of children is fixed for every symbol in Σ. For the
unranked case, the language is given by an unranked TA such that there is no
restriction on the number of children. Our approach to these problems is based
on the dynamic programming.

4.1 Ranked Case

We first establish the basis for our dynamic programming algorithm. For a tree t,
we define the cost of a tree c(t) to be the minimum cost of inserting all nodes
of the tree t. We denote the smallest cost among the costs of all trees in L(A)
by mintree(A) = min{c(t) | t ∈ L(A)}. Then, given a tree t and a ranked TA
A = (Σ,Q,F,Δ), we have the following equations for the basis:

1. ad(θ, θ) = 0,
2. ad(t[1 . . . i], θ) = ad(t[1 . . . i − 1], θ) + c(σ(i), λ),
3. ad(θ, q1 . . . qk) =

∑

1≤i≤k

mintree(A[qi]), where qi ∈ Q for 1 ≤ i ≤ k.

It is straightforward to verify that the first two equations hold: The first case
is when no edit operation is required and the second case is when we insert a node
in a hedge t[1 . . . i − 1] to transform into t[1 . . . i]. Notice that ad(θ, t[1 . . . i]) = i
if we assume unit cost for all edit-operations. For the third case, ad(q1 . . . qk, θ) is
the alignment distance between an empty tree and the smallest hedge accepted
by the sequence of states. Now we are ready to present a recursive formula of
the distance between a sequence of states and a subhedge.
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Lemma 4. Given a tree t and a state q of a ranked TA A = (Σ,Q,F, δ), the
alignment distance ad(t, q) can be computed as follows:

ad(t, q) = min
1≤i1≤l;
1≤i2≤k;

q∈σδ(q1,...,qk)

⎧
⎪⎨

⎪⎩

ad(t, θ) + ad(ti1 , q) − ad(ti1 , θ),
ad(θ, q) + ad(t, qi2) − ad(θ, qi2),
ad(h[t1 . . . tl], q1 . . . qk) + c(root(tl) → σ),

(1)

where qn ∈ Q for 1 ≤ n ≤ k and t̂ = h[t1 . . . tl].

Proof. We prove the recurrence by considering an optimal alignment At,t′

between two trees t and t′, where t′ is a tree accepted by reaching the state q
in A. Especially, we consider the possible root node cases of the optimal align-
ment At,t′ between t and t′. There are three possible cases to consider:

Case 1: The root node of At,t′ is (root(t), λ). Then, the root node root(t′) of t′

is aligned with a descendant of t. Otherwise, At,t′ has a node (λ, root(t′)) and
we can always have a better alignment by replacing (root(t), λ) and (λ, root(t′))
with (root(t), root(t′)), which is considered in Case 3. Suppose that root(t′) is
aligned with a node in the ith subtree of t. Then the cost of the alignment can
be written as follows: min1≤i≤l{ad(t, θ) + ad(ti, t′) − ad(ti, θ)}.

Since t′ is accepted by reaching the state q in A, the first term in the recur-
rence captures this case.

Case 2: The optimal alignment At,t′ has (λ, root(t′)) as a root node. This case
is completely symmetric with Case 1 and described in the second term.

Case 3: The root node of At,t′ is (root(t), root(t′)). Since the root nodes of
two trees are aligned, it remains to compute an optimal alignment between
two ordered sequences of trees under the root nodes. This also implies that we
need to compute the alignment distance ad(h[t1 . . . tl], h[t′1 . . . t′k]) between two
subhedges obtained from t and t′ by removing the root nodes.

Now we define the alignment distance between two subhedges—two ordered
sequences of trees. Since we are considering the alignment distance between a
tree and a regular tree language, we use a sequence of states on the right-hand
side in the distance function.

Lemma 5. Given a subhedge h[t1 . . . tl] of t and a sequence q1, . . . , qk of states of
a ranked TA A = (Σ,Q,F, δ), we can compute ad(h[t1 . . . tl], q1 . . . qk) as follows:

ad(h[t1 . . . tl], q1 . . . qk) =

min
1≤i1≤l;
1≤i2≤k;

qk∈σδ(q
′
1,...,q′

j)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ad(h[t1 . . . tl], q1 . . . qk−1) + ad(θ, qk),
ad(h[t1 . . . tl−1], q1 . . . qk) + ad(tl, θ),
ad(f [t1 . . . tl−1], q1 . . . qi2−1) + ad(t̂l, qi2 . . . qk) + c(root(tl) → λ),
ad(h[t1 . . . ti1−1], q1 . . . qk−1)+ad(h[ti1 . . . tl], q′

1 . . . q′
j)+c(λ → σ),

ad(h[t1 . . . tl−1], q1 . . . qk−1) + ad(t̂l, q′
1 . . . q′

j) + c(root(tl) → σ),
(2)
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where qn, q′
m ∈ Q for 1 ≤ n ≤ k and 1 ≤ m ≤ j.

Now we are ready to present an efficient algorithm for computing the align-
ment distance between a tree t and a regular tree language L(A) described by a
ranked TA A.

Theorem 6. Given a tree t and a ranked TA A = (Σ,Q,F, δ), we can compute
ad(t, L(A)) in O(mnk2) in the worst-case, where m = |t|, n = |A| and k =
deg(t) + max{r(σ) | σ ∈ Σ}.
Proof. Notice that we need to compute the alignment distance for each sub-
hedge t[l(i) . . . i − 1] of t and transition q ∈ σg(q1, . . . , ql) of A. Let mi be the
number of children of a node t[i] and denote the subhedge t[l(i) . . . i − 1] by
h[t1 . . . tmi

] for notational convenience.
Let us analyze the time complexity for computing ad(h[t1 . . . tmi

], q1 . . . ql),
which is the alignment distance between a sequence of states of length l and a
hedge that consists of mi trees. There are in total m2

i l +mil
2 values to compute

and computing each ad value takes O(minδ + l) time in the worst-case, where nδ

is the number of transitions of A. Since mi + l ≤ k, the time complexity required
to compute each ad value is bounded by O(n), where n is the size of A.

Hence, the total time complexity is bounded by

m∑

i=1

O((mil) · (mi + l) · n) ≤
m∑

i=1

O(mik
2n) ≤ O(mnk2).

Note that if both the degree of t and the rank of A are bounded by a constant,
the time complexity for computing ad(t, L(A)) is O(mn). ��

4.2 Unranked Case

We consider the case when we have an unranked TA for a regular tree language
of unranked trees. Contrary to the ranked TAs where we consider a sequence of
states in each bottom-up computation, we instead consider a horizontal language
that contains a set of sequences of states. Let A = (Σ,Q,F, δ) be an unranked
TA, q ∈ Q and σ ∈ Σ. We define the alignment distance between a horizontal
language δ(q, σ) and a subhedge h[t1 . . . tl] of t as follows:

ad(h[t1 . . . tl], δ(q, σ)) = min{δ(h[t1 . . . tl], w) | w ∈ δ(q, σ)}.

Note that we use the definition for the alignment distance between a sequence
of states and a subhedge given in Lemma 5.

We also define the following notation that is essential for computing the
alignment distance ad(h[t1 . . . tl], δ(q, σ)) between a subhedge and a horizontal
language. Let HA

q,σ = (Sq,σ, Q, sq,σ, Fq,σ, γq,σ) be a horizontal FA that accepts
δ(q, σ), namely, L(HA

q,σ) = δ(q, σ). We define the alignment distance between a
subhedge h[t1 . . . tl] and two horizontal states s1, s2 ∈ Sq,σ as follows:

ad(h[t1 . . . tl], [s1, s2]) = min{ad(h[t1 . . . tl], w) | w ∈ L(HA
q,σ[s1, s2])}.



134 Y.-S. Han and S.-K. Ko

Let HA
q,σ = (Sq,σ, Q, sq,σ, Fq,σ, γq,σ) be a horizontal FA. Then, the following

holds: ad(h[t1 . . . tl], δ(q, σ)) = min{ad(h[t1 . . . tl], [sq,σ, fq,σ]) | fq,σ ∈ Fq,σ}. Now
we are ready to establish the alignment distance between a tree t and a state q
of an unranked TA A as follows:

Lemma 7. Given a tree t and a state q of an unranked TA A = (Σ,Q,F, δ),
the alignment distance ad(t, q) can be computed as follows:

ad(t, q) = min
w∈δ(q,σ);
1≤i1≤l;

1≤i2≤|w|;

⎧
⎪⎨

⎪⎩

ad(t, θ) + ad(ti1 , q) − ad(ti1 , θ),
ad(θ, q) + ad(t, wi2) − ad(ti1 , wi2),
ad(h[t1 . . . tl], w) + c(root(tl) → σ),

(3)

where t̂ = h[t1 . . . tl].

We can see that the computation of Eq. (3) requires the computation of the
alignment distance between a subhedge of t and a horizontal language δ(q, σ).

Lemma 8. Let A = (Σ,Q,F, δ) be an unranked TA and HA
q,σ = (Sq,σ, Q, sq,σ,

Fq,σ, γq,σ) be a horizontal FA of A associated with a state q ∈ Q and σ ∈ Σ.
Given a subhedge h[t1 . . . tl] of t and two horizontal states s1, s2 of HA

q,σ, the
alignment distance ad(h[t1 . . . tl], [s1, s2]) can be computed as follows:

ad(h[t1 . . . tl], [s1, s2]) =

min
1≤i≤l;

w∈δ(q′,σ);
s2∈γq,σ(s

′,q′)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ad(h[t1 . . . tl], [s1, s′]) + ad(θ, q′),
ad(h[t1 . . . tl−1], [s1, s2]) + ad(tl, θ),
ad(f [t1 . . . tl−1], [s1, r]) + ad(t̂l, [r, s2]) + c(root(tl) → λ),
ad(h[t1 . . . ti−1], [s1, s′]) + ad(h[ti . . . tl], w) + c(λ → σ),
ad(h[t1 . . . tl−1], [s1, s′]) + ad(t̂l, w) + c(root(tl) → σ),

where s′, r ∈ Sq,σ and q′ ∈ Q.

Now we describe how we compute the alignment distance for the unranked
case. We use the weighted directed graph for computing ad(h[t1 . . . tl], δ(q, σ))
between a hedge h[t1 . . . tl] and a horizontal language δ(q, σ).

Let HA
q,σ = (Sq,σ, Q, sq,σ, Fq,σ, γq,σ) be a horizontal FA recognizing δ(q, σ).

We construct a weighted directed graph W(h[t1 . . . tl],HA
q,σ) = (V,E) where

V = Sq,σ × {0, 1, . . . , l} is a set of vertices and E ⊆ V × N0 × V is a set of
weighted directed edges. For each transition s2 ∈ γq,σ(s1, q) of HA

q,σ, we define
E to contain the following edges:

– ((s1, i), ad(θ, q), (s2, i)) for 0 ≤ i ≤ l,
– ((s1, i), ad(h[ti+1 . . . tj ], δ(q, σ)) + c(λ → σ), (s2, j)) for 0 ≤ i < j ≤ l, and
– ((s1, i), ad(t̂i+1, δ(q, σ)) + c(root(ti+1) → σ), (s2, i + 1)) for 0 ≤ i ≤ l − 1.

For each state s ∈ Sq,σ, we also define E to contain the following edges:

– ((s, i), ad(ti+1, θ), (s, i + 1)) for 0 ≤ i ≤ l − 1.
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Finally, for each pair of states s1, s2 ∈ Sq,σ, we add the following edges to E:

– ((s1, i), ad(t̂i+1, [s1, s2]) + c(root(ti+1) → λ), (s2, i + 1)) for 0 ≤ i ≤ l − 1.

By the construction, we know that the cost of the minimum cost path
from (s1, i) to (s2, j), where 1 ≤ i ≤ j ≤ l, in W(h[t1 . . . tl],HA

q,σ) implies
ad(h[ti+1 . . . tj ], [s1, s2]). Now we are ready to present a polynomial time algo-
rithm in the unranked case.

Theorem 9. Given a tree t and an unranked TA A = (Σ,Q,F, δ), we can
compute ad(t, L(A)) in O(mn2k2) in the worst-case, where m = |t|, n = |A|,
and k = deg(t).

Proof. We can compute the alignment distance between a horizontal language
and a hedge by constructing a weighted directed graph and computing the min-
imum cost path from (sq,σ, 0) to (fq,σ, l) where fq,σ ∈ Fq,σ.

Given that the size of HA
q,σ has x states and y transitions, the construction

of the weighted directed graph W(h[t1 . . . tl],HA
q,σ) yields O(xl) vertices and

O(x2l2) edges. Note that Dijkstra’s algorithm based on a min-priority queue
for finding the minimum cost path runs in O(|V | log |V | + |E|) time [5] for a
graph G = (V,E) where V is a set of vertices and E is a set of edges. Therefore,
we can find the minimum cost path in W(h[t1 . . . tl],HA

q,σ) in O(x2l2) time. Since
we construct W(h[ti . . . tl],HA

q,σ) for all q ∈ Q, 1 ≤ i ≤ l and compute the
minimum cost path, the total time complexity is upper bounded by

m∑

i=1

∑

q∈Q

O(mi · x2m2
i ) ≤

m∑

i=1

∑

q∈Q

O(mi · x2k2) ≤
∑

q∈Q

O(mx2k2) ≤ O(mn2k2).

Note that if the degree of t is bounded by a constant, the time complexity is
upper bounded by O(mn2). ��

5 Unordered Alignment Distance Problem

We study the unordered version of the alignment distance problem. The main
difference from the ordered case is that here we treat sequences of trees (resp.,
sequences of states) as sets of trees (resp., multisets of states) because we do not
care about the order of nodes.

Lemma 10. Given a set T1,l of subtrees of t and a multiset Q1,k of states of
a ranked TA A = (Σ,Q,F, δ), the unordered alignment distance uad(T1,l, Q1,k)
can be computed as follows:

uad(T1,l, Q1,k) =

min
1≤i1≤l;
1≤i2≤k;

qi2∈σδ(q
′
1,...,q′

j)

⎧
⎪⎨

⎪⎩

uad(T1,l \ {ti1}, Q1,k \ Q′) + uad(t̂i1 , Q
′) + c(root(ti1) → λ),

uad(T1,l \ T,Q1,k \ {qi2}) + uad(T, P ) + c(λ → σ),
uad(T1,l \ {ti1}, Q1,k \ {qi2}) + uad(t̂i1 , P ) + c(root(ti1) → σ),

where T ⊆ T1,l, Q
′ ⊆ Q1,k, and P = {q′

1, . . . , q
′
j}.
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Proof. This lemma is an unordered extension of Lemma 5. The main difference
between the ordered and unordered versions is that we treat sequences of subtrees
(resp., sequences of states) as sets of trees (resp., multisets of states). Notice
that a multiset (or bag) is a generalization of a set in which multiple instances
of elements are allowed. Consider a transition q ∈ σδ(q1, . . . , qk) of A. We cannot
convert the sequence q1, . . . , qk of states into the set {q1, . . . , qk} as we may have
multiple instances of a state. Therefore, we replace a sequence q1, . . . , qk of states
by a multiset {q1, . . . , qk} of states and a hedge h[t1 . . . tl] by a set {t1, . . . , tl} of
trees. For the sake of simplicity, we denote {q1, . . . , qk} by Q1,k and {t1, . . . , tl}
by T1,l.

For sequences of trees, it is enough to use sets as there is no chance of
containing multiple instances of the same subtree. We also mention that the
hedge t̂i1 used in the equation also denotes the set of subtrees of ti1 , not the
sequence of subtrees of ti1 . ��

Based on Lemma 10, we design an algorithm that computes the unordered
alignment distance uad(T1,l, Q1,k) between a set of subtrees of t and a multiset
of states.

Theorem 11. Given a tree t and a ranked TA A = (Σ,Q,F, δ), we can compute
uad(t, L(A)) in O(mn2k) in the worst-case, where m = |t|, n = |A| and k =
deg(t) + max{r(σ) | σ ∈ Σ}.
Proof. Note that the algorithm for computing the unordered alignment distance
follows almost the same procedure except that we use the recurrence given in
Lemma 10 instead of Lemma 5. This gives rise to the following time complexity:

m∑

i=1

O(min · 2mi+l) ≤
m∑

i=1

O(min2k) ≤ O(mn2k).

Note that the time complexity remains polynomial if we fix k to be a constant. ��
Given two trees t and t′, it is known that computing uad(t, t′) is MAX SNP-

hard [7] if the degree of one of the two trees is not bounded by a constant. This
means that unless P = NP there is no polynomial-time approximation scheme
for the problem [1]. We can immediately obtain the following results.

Corollary 12. Let t be a tree and A be a ranked TA. Then, we can compute
the unordered alignment distance uad(t, L(A)) in O(mn) time if deg(t) = k for
some k < ∞, otherwise, the problem is MAX SNP-hard.

Corollary 13. Let t be a tree and A be an unranked TA. Then, the problem of
computing the unordered alignment distance uad(t, L(A)) is MAX SNP-hard.
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12. López, D., Sempere, J.M., Garćıa, P.: Error correcting analysis for tree languages.
Int. J. Pattern Recogn. Artif. Intell. 14(03), 357–368 (2000)

13. Lu, C.L., Su, Z.-Y., Tang, C.Y.: A new measure of edit distance between labeled
trees. In: Proceedings of the 7th Annual International Conference on Computing
and Combinatorics, pp. 338–348 (2001)

14. Nierman, A., Jagadish, H.V.: Evaluating structural similarity in XML documents.
In: Proceedings of the 5th International Workshop on the Web and Databases, pp.
61–66 (2002)

15. Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26(3), 422–433 (1979)
16. Voß, B., Giegerich, R., Rehmsmeier, M.: Complete probabilistic analysis of RNA

shapes. BMC Biol. 4(1), 1–23 (2006)
17. Xing, G.: Approximate matching of XML documents with schemata using tree

alignment. In: Proceedings of the 2014 ACM Southeast Regional Conference, pp.
43:1–43:4 (2014)

18. Zhang, K.: A constrained edit distance between unordered labeled trees. Algorith-
mica 15(3), 205–222 (1996)

19. Zhang, K., Jiang, T.: Some MAX SNP-hard results concerning unordered labeled
trees. Inf. Process. Lett. 49(5), 249–254 (1994)

20. Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered
labeled trees. Inf. Process. Lett. 42(3), 133–139 (1992)



Nondeterministic Complexity of Operations
on Free and Convex Languages

Michal Hospodár(B), Galina Jirásková, and Peter Mlynárčik
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Abstract. We study the nondeterministic state complexity of basic reg-
ular operations on the classes of prefix-, suffix-, factor-, and subword-free
and -convex regular languages. For the operations of intersection, union,
concatenation, square, star, reversal, and complementation, we get the
tight upper bounds for all considered classes except for complementa-
tion on factor- and subword-convex languages. Most of our witnesses
are described over optimal alphabets. The most interesting result is the
describing of a proper suffix-convex language over a five-letter alphabet
meeting the upper bound 2n for complementation.

1 Introduction

The nondeterministic state complexity of a regular language L, nsc(L), is the
smallest number of states in any nondeterministic finite automaton (NFA) with
a single initial state accepting the language L. The nondeterministic state com-
plexity of a regular operation is defined as the maximal nondeterministic state
complexity of languages resulting from the operation, considered as a function
of nondeterministic state complexities of the operands. The languages that meet
this maximal complexity for an operation are called witnesses for the opera-
tion. The (deterministic) state complexity of a regular language and a regular
operation are defined analogously.

If operands for an operation satisfy some additional properties, the resulting
complexity may be smaller than in the general case. In this paper we focus on
the classes of prefix-, suffix-, factor-, subword-free and -convex languages. In the
deterministic case, the complexity of basic regular operations on the classes of
closed, ideal, and free languages was examined by Brzozowski et al. [2,4,5]. Some
partial results in the classes of convex languages can be found in [3].

The nondeterministic state complexity of basic operations on regular lan-
guages was investigated by Holzer and Kutrib [9], and binary witnesses for
reversal and complementation were presented in [11]. Han et al. [7,8] studied
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the nondeterministic complexity of operations on prefix-free and suffix-free lan-
guages; some of their results were improved in [13]. Mlynárčik [15] examined
the nondeterministic complexity of complementation on the classes of free and
ideal languages. The remaining operations on ideal languages as well as all basic
operations on closed languages were investigated in [10].

In this paper we continue this research and study the nondeterministic com-
plexity of operations of intersection, union, concatenation, square, star, reversal,
and complementation on the classes of prefix-, suffix-, factor-, subword-free and
-convex languages. Except for complementation on factor- and subword-convex
languages, we provide tight upper bounds, and to prove tightness, we use a small
fixed alphabet in most cases. In some cases, we improve the known results by
decreasing the size of alphabet for witness languages. We fix a small bug from
the literature [8, Theorem 3.2] concerning union on prefix-free languages.

2 Preliminaries

We use a standard model of a nondeterministic finite automaton (NFA), as
explained, for example, in [16]. An NFA A = (Q,Σ, · , s, F ) is a (complete)
deterministic finite automaton (DFA) if for each state q in Q and each input
symbol a in Σ, the set q · a has exactly one element. If |q · a| ≤ 1 for each q
and a, then A is an incomplete DFA. In an ε-NFA, we also allow the transitions
on the empty string. It is known that for each ε-NFA there exists an equivalent
NFA with the same number of states [17, Theorem 2.3]. Sometimes, we allow an
NFA to have multiple initial states and use the shortcut NNFA for this model.

A state q of an NFA A is called a dead state if no string is accepted by A
from q, that is, if q ·w∩F = ∅ for each string w. An NFA A is a trim NFA if each
its state q is reachable, that is, there is a string u in Σ∗ such that q ∈ s · u, and,
moreover, no state of A is dead. We say that (p, a, q) is a transition in NFA A if
q ∈ p · a. We also say that the state q has an in-transition on symbol a, and the
state p has an out-transition on symbol a. An NFA is non-returning if its initial
state does not have any in-transitions, and it is non-exiting if each final state of
A does not have any out-transitions.

Definition 1. A set of pairs of strings {(u1, v1), (u2, v2), . . . , (un, vn)} is called
a fooling set for a language L if for all i, j in {1, 2, . . . , n},

(F1) uivi ∈ L, and
(F2) if i �= j, then uivj /∈ L or ujvi /∈ L.

Lemma 2 ([1, Lemma 1]). Let F be a fooling set for a language L. Then
every NNFA for the language L has at least |F| states. ��

Let us emphasize that the size of a fooling set for L provides a lower bound
on the number of states in any NNFA for L. If we insist on having just one initial
state, then the following modification of a fooling set method can be used.
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Lemma 3 ([12, Lemma 4]). Let A and B be sets of pairs of strings and let
u and v be two strings such that A ∪ B, A ∪ {(ε, u)}, and B ∪ {(ε, v)} are fooling
sets for a language L. Then every NFA for L has at least |A| + |B| + 1 states. ��

Let A = (Q,Σ, · , I, F ) be an NNFA and S, T ⊆ Q. We say that S is reachable
in A if there is a string w in Σ∗ such that S = I · w. Next, we say that T is
co-reachable in A if T is reachable in AR obtained from A by swapping the
role of initial and final states and by reversing all the transitions. The next two
observations are used throughout this paper.

Lemma 4. Let A be an NNFA. Let for each state q of A, the singleton set {q}
be reachable as well as co-reachable in A. Then A is minimal.

Proof. Let A = (Q,Σ, · , I, F ). Since {q} is reachable in A, there is a string uq

such that I ·uq = {q}. Since {q} is co-reachable in A, there is a string vq accepted
by A from and only from the state q. Then {(uq, vq) | q ∈ Q} is a fooling set for
L(A). By Lemma 2, the NNFA A is minimal. ��
Lemma 5. Let A be a trim NFA. If both A and AR are incomplete DFAs, then
A and AR are minimal NFAs.

Proof. If A is a trim incomplete DFA, then for each state q of A, the singleton set
{q} is reachable. If moreover AR is an incomplete DFA, then {q} is co-reachable
in A. By Lemma 4, A and AR are minimal NFAs. ��

If u, v, w, x ∈ Σ∗ and w = uxv, then u is a prefix of w, x is a factor of w,
and v is a suffix of w. If w = u0v1u1 · · · vnun, where ui, vi ∈ Σ∗, then v1v2 · · · vn

is a subword of w. A prefix v (suffix, factor, subword) of w is proper if v �= w.
A language L is prefix-free if w ∈ L implies that no proper prefix of w is

in L; it is prefix-closed if w ∈ L implies that each prefix of w is in L; and it
is prefix-convex if u,w ∈ L and u is a prefix of w imply that each string v
such that u is a prefix of v and v is a prefix of w is in L. Suffix-, factor-, and
subword-free, -closed, and -convex languages are defined analogously. It is known
that a minimal NFA for a prefix-free (suffix-free) language is non-exiting (non-
returning) [7,8]. The next lemma gives a sufficient condition for an incomplete
DFA accepting a suffix-free language.

Lemma 6. ([6, Lemma 1]). Let A be a non-returning incomplete DFA that
has a unique final state. If each state of A has at most one in-transition on every
input symbol, then L(A) is suffix-free. ��

3 Unary Convex Languages

We start with examination of unary free and unary convex languages. Notice
that if i ≤ j, then ai is a prefix, suffix, factor, and subword of aj . It follows
that in the unary case, all free classes and all convex classes coincide. Moreover,
if n ≥ 2 then L = {an−1} is the only unary free language with nsc(L) = n.
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Let L be a unary convex language and k be the length of the shortest string
in L. If L is infinite, then L = {ai | i ≥ k}. If L is finite and � is the length of the
longest string in L, then L = {ai | k ≤ i ≤ �}. The set {(ai, at−i) | 0 ≤ i ≤ t}
is a fooling set for L, where t = k for infinite L and t = � for finite L. Thus the
minimal incomplete DFA for L, which has t + 1 states, is a minimal NFA for L.

The next theorem provides tight upper bounds for unary convex languages.
All the results, except for the intersection and complementation, hold true for
free languages too. On unary free languages, the complexity of intersection is n
if m = n and 1 if m �= n, and the complexity of complementation is Θ(

√
n) [13].

Theorem 7 (Unary Convex Languages). Let m,n ≥ 2. Let K and L be
unary convex languages with nsc(K) = m and nsc(L) = n. Then

(a) nsc(K ∩ L),nsc(K ∪ L) ≤ max{m,n},
(b) nsc(KL) ≤ m + n − 1 and nsc(L2) ≤ 2n − 1,
(c) nsc(L∗) ≤ n − 1, nsc(LR) ≤ n, and nsc(Lc) ≤ n + 1,

and all these upper bounds are tight.

Proof. The upper bound for intersection and union can be verified by the case
analysis, where K and L can be finite or infinite. The upper bounds for con-
catenation, square, and complementation follow from the fact that the minimal
NFAs can be incomplete deterministic. The upper bound for reversal follows
from the fact that LR = L.

Now we prove an upper bound for star. Let L be a unary convex language
with nsc(L) = n. If L is infinite, then L = an−1a∗, and the language L∗ is
accepted by the (n − 1)-state NFA N = ({0, 1, . . . , n − 2}, {a}, · , 0, {0}) where
i · a = {i + 1} if i < n − 2 and i · a = {0, n − 2} if i = n − 2.

If L is finite, then there is an integer k such that L = {ai | k ≤ i ≤ n − 1}.
Then the (n−1)-state NFA for L∗ can be constructed from a minimal incomplete
DFA ({0, 1, . . . , n − 1}, {a}, · , 0, {k, k + 1, . . . , n − 1}) for L by making the state
n − 1 initial, adding the transition (n − 1, a, 1), and removing the state 0.

The languages am−1a∗ and an−1a∗ meet the upper bound for intersection, the
languages am−1 and an−1 meet the upper bound for union and concatenation,
the language an−1 meets the upper bound for square, star, and reversal, and the
language {ai | i ≤ n − 1} meets the upper bound for complementation. ��
Table 1 summarizes our results on unary convex languages and compares them
to the known results on unary regular and free languages [9,13].



142 M. Hospodár et al.

Table 1. The nondeterministic complexity of operations on unary classes; the results
are from [13] (first row), Theorem 7 (second row), and [9] (third row).

K ∩ L K ∪ L KL L2 L∗ Lc

Unary free n;m = n max{m, n} m + n − 1 2n − 1 n − 1 Θ(
√

n)

Unary convex max{m, n} max{m, n} m + n − 1 2n − 1 n − 1 n + 1

Unary regular mn; gcd(m, n) = 1 m + n + 1;
gcd(m, n) = 1

≥m+n−1
≤m + n

≥2n − 1
≤2n

n + 1 2Θ(
√

n log n)

4 Prefix-, Suffix-, Factor-, Subword-Free Languages

The nondeterministic complexity of operations on prefix- and suffix-free lan-
guages was studied by Han et al. [7,8], where tight upper bounds were obtained
for basic regular operations. Some of their results were improved by decreasing
the size of the alphabet for witness languages in [14]. The aim of this section is to
get tight upper bounds on the nondeterministic state complexity of basic regular
operations on factor- and subword-free languages as they are shown in Table 2.
We also fix a small bug in [8] concerning union on prefix-free languages. For
tightness, we use a unary or binary alphabet in all cases except for intersection
on subword-free languages, and these alphabets are always optimal. The size of
alphabet is shown in the right part of each column. The dot denotes the same
complexity as in the previous column. The results for complementation are from
[13], and the ternary alphabet is also optimal here. We start with intersection.

Theorem 8 (Intersection). Let K and L be regular languages over an alpha-
bet Σ such that nsc(K) = m and nsc(L) = n.

(a) If K and L are prefix-free (suffix-free) then nsc(K ∩L) ≤ mn− (m+n− 2),
and the bound is tight if m ≥ 4, n ≥ 2, and |Σ| ≥ 2.

(b) If K and L are factor-free, then nsc(K ∩ L) ≤ mn − 2(m + n − 3), and the
bound is tight if m ≥ 5, n ≥ 3, and |Σ| ≥ 2.

(c) If m,n ≥ 3, then there exist subword-free regular languages K and L over
an (m + n − 5)-letter alphabet such that nsc(K) = m, nsc(L) = n, and
nsc(K ∩ L) = mn − 2(m + n − 3).

Proof. We first prove the upper bounds. Let A and B be minimal NFAs for
K and L, respectively. We may assume that the state sets of A and B are
{0, 1, . . . ,m − 1} and {0, 1, . . . , n − 1}, respectively, with the initial state 0 in
both automata. Construct the product automaton A × B for K ∩ L.

If K and L are prefix-free with the final states m − 1 and n − 1 respectively,
then all states in the last row and last column, except for (m−1, n−1), are dead,
so we can omit them. If K and L are suffix-free, then A and B are non-returning,
so all states in the first row and first column, except for (0, 0), are unreachable.
Since every factor-free language is both prefix-free and suffix-free, all the three
upper bounds follow from these observations.
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Table 2. The nondeterministic state complexity of operations on free classes; com-
plementation is from [13]. The dot means that the complexity is the same as in the
previous column.

Regular |Σ| Prefix-free |Σ| Suffix-free |Σ| Factor-free |Σ| Subword-free |Σ|
K ∩ L mn 2 mn−(m+n−2) 2 · 2 mn−2(m+n−3) 2 · m+n−5

K ∪ L m + n + 1 2 m + n 2 m + n − 1 2 m + n − 2 2 · 2

KL m + n 2 m + n − 1 1 · 1 · 1 · 1

L2 2n 2 2n − 1 1 · 1 · 1 · 1

L∗ n + 1 1 n 2 · 2 n − 1 1 · 1

LR n + 1 2 n 1 n + 1 2 n 1 · 1

Lc 2n 2 2n−1 3 · 3 2n−2 + 1 3 · 2n−2

To prove tightness, we first consider factor-free languages. Let m ≥ 5, n ≥ 3.
Let K and L be the languages accepted by the NFAs A and B shown in Fig. 1.

Every string w in K begins and ends with a, and |w|b mod (m−2) = (m−3).
Every proper factor v of w which begins and ends with a has a computation in A
which either starts in the state 0 and ends in the state 2, or starts and ends in 2,
or starts in 2 and ends in m − 1. However, in all three cases, |v|b mod (m − 2) �=
(m − 3), so v /∈ L. Hence the language K is factor-free. Next, every string in L
has exactly n − 1 a’s, but every proper factor of every string in L has less than
n − 1 a’s. Hence L is factor-free.

Construct the product automaton A × B and remove all the unreachable
and dead states to get a trim NFA N for K ∩ L. Since the NFA N and its
reverse NR are incomplete DFAs, the NFA N is minimal by Lemma 4. So we
have nsc(K ∩ L) = mn − 2(m + n − 3). Notice that there is no need to prove
that NFAs A and B are minimal because the upper bound cannot be met by
languages of a smaller complexity. For this reason we do not prove the minimality
of witnesses in what follows.

Next, the left quotients of K and L by the string a, that is, the languages
a\K and a\L, are prefix-free and meet the upper bound mn − (m + n − 2).
Similarly, the right quotients K/a and L/a are suffix-free witnesses.

Finally, we consider the complexity of intersection on subword-free languages.
Let Σ = {a} ∪ {bk | 2 ≤ k ≤ m − 2} ∪ {c� | 2 ≤ � ≤ n − 2}. Let K and L be

Fig. 1. Binary factor-free witnesses for intersection.
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languages accepted by incomplete DFAs A = ({0, 1, . . . ,m−1}, Σ, · , 0, {m−1})
and B = ({0, 1, . . . , n − 1}, Σ, ◦ , 0, {n − 1}), where for each i (0 ≤ i ≤ m − 2),
j (0 ≤ j ≤ n − 2), k (2 ≤ k ≤ m − 2), and � (2 ≤ � ≤ n − 2), we have

i · a = i + 1, j ◦ a = j + 1,
0 · bk = k and (k − 1) · bk = m − 1, 0 ◦ bk = 1 and (n − 2) ◦ bk = n − 1,
0 · c� = 1 and (m − 2) · c� = m − 1, 0 ◦ c� = � and (� − 1) ◦ c� = n − 1.

We can prove that K and L are subword-free and meet the upper bound for
intersection. ��

As a result of the previous theorem, we get the nondeterministic state com-
plexity of intersection on each of the four classes of free languages, as it is shown
in the corresponding row of Table 2.

Now we consider the union operation. In [8] it is claimed that the upper
bound m + n is met by the union of prefix-free languages K = (am−1)∗b and
L = (cn−1)∗d, and a set P of pairs of strings of size m+n is described in [8, Proof
of Theorem 3.2]. The authors claimed that P is a fooling set for K ∪L. However,
the language K ∪ L is accepted by an NNFA of m + n − 1 states. Therefore P
cannot be a fooling set for K∪L. Here we prove the tightness of the upper bound
m + n for union of prefix-free languages using a binary alphabet and a modified
fooling set method given by Lemma 3. Next we get the tight upper bound for
union of suffix-, factor-, and subword-free languages. To get tightness, we always
use a binary alphabet which is optimal for all four classes.

Theorem 9 (Union). Let K and L be regular languages over an alphabet Σ
such that nsc(K) = m and nsc(L) = n.

(a) If K and L are prefix-free then nsc(K ∪ L) ≤ m + n, and the bound is tight
if m ≥ 3, n ≥ 3, and Σ ≥ 2.

(b) If K and L are suffix-free then nsc(K ∪ L) ≤ m + n − 1, and the bound is
tight if m ≥ 3, n ≥ 3, and Σ ≥ 2.

(c) If K and L are factor-free, then nsc(K ∪ L) ≤ m + n − 2, and the bound is
met by binary subword-free languages if m ≥ 2 and n ≥ 2.

Proof. We first prove the upper bounds. Let A and B be minimal NFAs for K
and L, respectively, with disjoint state sets, and the initial states sA and sB ,
respectively.

Fig. 2. Binary prefix-free witnesses for union meeting the upper bound m + n.
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(a) If K and L are prefix-free, then NFAs A and B are non-exiting and have a
unique final state. To get an (m + n)-state NFA for K ∪ L from A and B,
add a new initial (non-final) state connected through ε-transitions to sA and
sB , make the states sA and sB non-initial, and merge the final states of A
and B.

(b) If K and L are suffix-free, then A and B are non-returning. We can get an
(m + n − 1)-state NFA for K ∪ L from A and B by merging their initial
states.

(c) If K and L are factor-free, then they are both prefix- and suffix-free. To get
an (m + n − 2)-state NFA for K ∪ L from A and B, we merge their initial
states, and then we merge their final states.

To prove tightness, consider languages K and L accepted by an m-state and
n-state NFAs A and B, respectively, shown in Fig. 2 (left). Notice that K is
prefix-free since every string in K ends with b while every proper prefix of every
string in K is in a∗. Similarly, L is prefix-free.

Construct the (m + n)-state NFA for their union by adding a new initial
state s, by adding transitions (s, a, p1) and (s, b, q1), by making states p0 and
q0 non-initial, and by merging their final states as shown in Fig. 2 (right). The
resulting trim NFA is an incomplete DFA, and its reverse is an incomplete DFA
as well. By Lemma 5, this NFA is minimal. It follows that nsc(K ∪ L) ≥ m + n.

Next, the languages KR and LR are suffix-free, and they are accepted by m-
state and n-state NFAs AR and BR, respectively. To get an NFA for KR∪LR, we
merge the initial states of AR and BR. For each state q of the resulting automa-
ton, the singleton set {q} is reachable, as well as co-reachable. By Lemma 4, this
NFA is minimal. Hence we get nsc(KR ∪LR) ≥ m+n− 1. Finally, we again use
Lemma 5 to show that the union of binary subword-free languages {am−1} and
{bn−1} meets the upper bound m + n − 2. ��

The theorem above gives the nondeterministic state complexity of union on
free languages, as it is shown in the corresponding row of Table 2.

The nondeterministic state complexity of concatenation on regular languages
is m + n with binary witnesses [9, Theorem 7]. For prefix-free and suffix-free
languages, the upper bound is m + n − 1 [7,8], and to prove tightness, a binary
alphabet was used in [8, Theorem 3.1] and [7, Theorem 4]. In this section, we
show that this upper bound is tight for all four classes of free languages, and to
prove tightness, we use a unary alphabet.

Theorem 10 (Concatenation, Square). Let K and L be prefix-free (suffix-
free) languages with nsc(K) = m and nsc(L) = n. Then nsc(KL) ≤ m + n − 1,
nsc(L2) ≤ 2n − 1, and these bounds are met by unary subword-free languages.

Proof. Let A and B be minimal NFAs for K and L, respectively. In the prefix-
free case, we can merge the final state of A and the initial state of B to get an
NFA for KL. In the suffix-free case, automata A and B are non-returning. To
get an NFA for KL, we add the transition (p, a, q) for each final state p of A
and each transition (sB , a, q) of B. Next, we make final states of A non-final,
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and remove the unreachable state sB. As a result, we get an NFA for KL of
m + n − 1 states in both cases. This upper bound is met by the concatenation
of unary subword-free languages {am−1} and {an−1}. Since the witnesses have
the same structure, the complexity 2n − 1 for square follows. ��

Using the theorem above, we obtain the nondeterministic state complexity
of concatenation and square on free languages, as shown in Table 2.

We next consider the Kleene star and reversal operations. Both operations
have nondeterministic complexity n + 1 on regular languages with a unary wit-
ness for star [9, Theorem 9] and a binary witness for reversal [11, Theorem 2].
The following theorem provides tight upper bounds for star on all four classes of
free languages, as shown in Table 2. To get tightness, we use an optimal binary
alphabet in the prefix- and suffix-free case, and a unary alphabet otherwise.

Theorem 11 (Star). Let L be a language over an alphabet Σ with nsc(L) = n.

(a) If L is prefix- or suffix-free then nsc(L∗) ≤ n. These upper bounds are tight
if |Σ| ≥ 2, and the size of alphabet cannot be decreased.

(b) If L is factor-free, then nsc(L∗) ≤ n − 1, and the bound is met by a unary
subword-free language.

Proof. Let A = (Q,Σ, · , s, F ) be a minimal NFA for L.

(a) If L is prefix-free, then A is non-exiting and has a unique final state qf . We
can construct an n-state ε-NFA for the language L∗ from A by making state
qf initial and state s non-initial, and by adding the ε-transition from qf to
s. If L is suffix-free, then A is non-returning. Now we construct an n-state
ε-NFA for L∗ from A by making the initial state s final, and by adding the
ε-transition from every final state to the initial state s. Suffix-free language
an−1b∗ and prefix-free language b∗an−1 meet the upper bound n.

(b) If L is factor-free, then A is non-returning, non-exiting, and it has a unique
final state qf . We construct an NFA for L∗ by making state qf initial, by
adding transition (qf , a, q) for each transition (s, a, q), and by omitting the
state s. The unary subword-free language {an−1} meets this upper bound. ��
Now we turn our attention to the reversal operation. Han et al. obtained

tight upper bounds for reversal on prefix-free and suffix-free languages and they
provided a binary prefix-free witness [8, Theorem 3.4] and a ternary suffix-free
witness [7, Theorem 9]. As shown in the next theorem, the upper bound for
reversal on prefix-free languages is n, so it is met by any unary language. In the
suffix-free case, we provide a binary witness meeting the upper bound n + 1.
Notice that the reverse of a language accepted by an n-state NFA is accepted
by an n-state NNFA. This means that we cannot use a fooling set method to
prove the tightness of the bound n + 1. However, a modified fooling set method
described in Lemma 3 can be successfully used here. As a result of this theorem,
we get the corresponding row of Table 2.
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Theorem 12 (Reversal).

(a) Let L be a prefix-free language with nsc(L) = n. Then nsc(LR) ≤ n, and this
bound is met by a unary subword-free language.

(b) If n ≥ 5, then there exists a binary suffix-free regular language L such that
nsc(L) = n and nsc(LR) = n + 1.

Proof.

(a) If L is prefix-free, then every minimal NFA for L has a unique final state.
Thus nsc(LR) ≤ n. The bound is met by the language {an−1}.

(b) Set L=ban−4(an−3)∗ + ab(bb)∗. Since every string in L contain both a and
b, but every proper suffix of every string in L is in a∗ ∪ b∗, the language L
is suffix-free. Let

A = {(an−3, an−4b)} ∪ {(ai, an−4−ib) | 1 ≤ i ≤ n − 4} ∪ {(an−4b, ε)},
B = {(bb, ba), (b, a)},
u = ba, and v = an−4b.

Using Lemma 3, we show that every NFA for LR needs at least n + 1 states. ��

5 Convex Languages

In this section, we examine the nondeterministic state complexity of basic reg-
ular operations on convex languages. Recall that prefix-closed and right ideal
languages are prefix-convex, and similar inclusions exist for suffix-, factor-, and
subword-closed, and left, two-sided, and all-sided ideal classes.

The complexity of operations on closed and ideal languages was studied
in [10], where for each operation, except for complementation, and for each of the
four convex classes, a closed or an ideal witness, meeting the complexity of the
operation in the class of regular languages, is described: binary subword-closed
languages meeting the upper bound mn for intersection, and binary subword-
closed witnesses meeting the upper bound m + n + 1 for union are given in
Theorems 4 and 5, ternary subword-closed languages meeting the bound m + n
for concatenation and 2n for square, are described in Theorem 6 and Corollary 7,
the binary all-sided ideal meeting the upper bound n + 1 for star is provided in
Theorem 16, and for reversal, the binary prefix-closed, ternary factor-closed, and
subword-closed witness defined over an alphabet of size 2n−2 are described in
Theorem 9. Therefore, as shown in Table 3, the complexity of operations on con-
vex languages, except for complementation, is the same as for regular languages,
although, to get tightness, larger alphabets are used in some cases.

The nondeterministic state complexity of complementation on regular lan-
guages is 2n with a binary witness [9,11]. The upper bound 2n is met by binary
prefix-closed languages [10, Theorem 10]. On the other hand, this upper bound
cannot be met by suffix-closed, suffix-free, or left ideal languages [10,13,15].

Our last result shows that the upper bound 2n for complementation is tight
on suffix-convex languages. We describe a proper suffix-convex language, that is,
a suffix-convex languages which is neither suffix-free, nor suffix-closed, nor left
ideal, that meets this upper bound for complementation.
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Table 3. The nondeterministic state complexity of operations on convex classes. The
results for regular languages are from [9]. All the remaining results, except for comple-
mentation on suffix-convex languages, follow from [9,10].

Regular |Σ| Prefix-convex |Σ| Suffix-convex |Σ| Factor-convex |Σ| Subword-convex |Σ|
K ∩ L mn 2 · 2 · 2 · 2 · 2

K ∪ L m + n + 1 2 · 2 · 2 · 2 · 2

KL m + n 2 · 3 · 3 · 3 · 3

L2 2n 2 · 3 · 3 · 3 · 3

L∗ n + 1 1 · 2 · 2 · 2 · 2

LR n + 1 2 · 2 · 3 · 3 · 2n − 2

Lc 2n 2 · 2 · 5 ≥2n−1 + 1 ≤ 2n 2 ≥2n−1 + 1 ≤ 2n 2n

Theorem 13 (Complementation on Suffix-Convex Languages). Let
n ≥ 3. There exists a suffix-convex regular language L over a 5-letter alphabet
such that nsc(L) = n and nsc(Lc) = 2n.

Proof. Let L be the language accepted by the nondeterministic finite automaton
A = ({0, 1, . . . , n − 1}, {a, b, c, d, e}, · , 0, {1, 2, . . . , n − 1}), where the transitions
on a and b are shown in Fig. 3, the transitions on c, d, e are as follows: 0 · c =
{0, 1, . . . , n−1}, 0 ·d = {1, 2, . . . , n−1}, q ·e = {n−1} for each state q of A, and
all the remaining transitions go to the empty set. In the NFA AR, the final state
0 goes to itself on a, b, c and to the empty set on d and e. Next, every other state
of AR goes to 0 on d, and the state n−1 goes to {0, 1, . . . , n−1} on e. Thus in the
subset automaton of AR, each final subset, that is, a subset containing the state
0, goes either to a final subset containing 0 or to the empty set on each input
symbol. It follows that the language LR is prefix-convex, so L is suffix-convex.
We can show that each subset of the state set of A is reachable and co-reachable.
Hence for each subset S, there exists a string uS in Σ∗ such that s · uS = S.
Next, Sc is co-reachable, so there is a string vS which is accepted by A from
each state in Sc, but rejected from each state in S. Thus {(uS , vS) | S ⊆ Q} is
a fooling set for Lc of size 2n, so nsc(Lc) ≥ 2n by Lemma 2. ��

Fig. 3. Transitions on a and b in suffix-convex witness for complementation.
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6 Conclusions

We investigated the nondeterministic state complexity of basic operations on
the classes of prefix-, suffix-, factor-, subword-free and -convex languages. For
each class and for each operation, except for complementation on factor- and
subword-convex languages, we obtained the tight upper bounds.

Our results are summarized in Tables 1, 2, and 3. For complementation on
factor- and subword-convex languages we do not know whether or not the upper
bound 2n is tight. All the remaining upper bounds are tight. Whenever we used
a binary alphabet, it is always optimal in the sense that the upper bound is not
tight for any smaller alphabet. In any other case, we do not know whether the
upper bounds are tight for a smaller alphabet. The complexity of complementa-
tion on factor- and subword-convex languages remains open as well.

Acknowledgment. We would like to thank Jozef Jirásek, Jr., for his help with finding
the suffix-convex witness for complementation and for fruitful discussions on the topic.
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Abstract. Finite state machines are investigated towards their ability
to reversibly compute transductions, that is, to transform inputs into
outputs in a reversible way. This means that the transducers are back-
ward deterministic and hence are able to uniquely step the computation
back and forth. The families of transductions computed are classified
with regard to three types of length-preserving transductions as well as
to the property of working reversibly. It is possible to settle all inclusion
relations between the families of transductions. Finally, the standard
closure properties are investigated and the non-closure under almost all
operations can be shown.

1 Introduction

One main motivation for the study of computational devices performing
reversible computations is the physical observation that a loss of information
results in heat dissipation [13]. It is therefore of great interest to avoid such sit-
uations and to privilege computations in which every configuration has a unique
successor configuration as well as a unique predecessor configuration so that at
every point of the computation no information gets lost. Reversibility has been
studied for many computational devices starting with Lecerf’s [15] and Ben-
nett’s [5] investigations for Turing machines, where it is shown that for every
(possibly irreversible) Turing machine an equivalent reversible Turing machine
can be constructed. This result has been achieved also for deterministic space-
bounded Turing machines in [14]. For deterministic multi-head finite automata,
the results depend on whether or not two-way motion of the heads is allowed.
It is shown in [16] that the general model and the reversible model coincide
for two-way multi-head finite automata, whereas the reversible model is weaker
than the general model in case of one-way motion [12]. A similar result has
been obtained in [10] for deterministic pushdown automata. In both cases, the
loss of information in computations is inevitable. Reversible computations in
deterministic finite automata (DFA) have been introduced in [3] and it is shown
in [17] that there are regular languages which cannot be accepted by any (one-
way) reversible deterministic finite automaton. On the other hand, it is known
due to [9] that the general model and the reversible model coincide if the input
head is two-way. Recent results on reversible regular languages are given in [8],
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where it is shown that it is NL-complete to decide whether a given one-way DFA
accepts a reversible language. Additionally, exponential upper and lower bounds
for the conversion of one-way DFAs to equivalent reversible DFAs are given.

Computational models are not only interesting from the vantage point of
accepting some input, but also from the viewpoint of transforming some input
into some output. For example, a parser for a formal language should not only
return the information whether or not the input word can be parsed, but also
the parse tree in the positive case. The simplest model in this context is the
finite state transducer which is a finite automaton with an output alphabet that
assigns to each input accepted at least one output word. Transductions computed
by different variants of such transducers are studied in detail in [7]. Determinis-
tic and nondeterministic pushdown transducers are investigated in [2]. Further-
more, characterizations of pushdown transductions as well as applications to the
parsing of context-free languages are given. A more general theory of transducing
devices has been outlined already 1969 in [1]. More recently, transducing variants
of stack automata have been considered in [6], whereas the parallel model of cel-
lular automata has been investigated in [11] towards its transducing capabilities.

Here, we study reversible deterministic finite state transducers (DFST). Since
reversible devices should be able to preserve information and DFSTs use and pro-
duce information concerning the input and the output, the transition function in
DFSTs will be defined depending on the input and the output. Thus, reversible
DFSTs may be considered as reversible Turing machines (see, for example, [4,5])
with a one-way input tape and a one-way output tape. To start with a weak
form of transductions and, again, from the viewpoint of information preserving
computations, we are here considering essentially length-preserving transduc-
tions. In Sect. 2 we give the formal definition of a reversible DFST (REV-DFST)
and define Mealy, strongly, and weakly length-preserving DFSTs which basi-
cally differ by the fact whether or not both heads have to move synchronously.
In Sect. 3, we compare the three notions of length-preserving transducers. It
turns out that the Mealy DFSTs are equivalent to strongly length-preserving
DFSTs, but weaker than weakly length-preserving DFSTs. These results hold
for the reversible case as well. Moreover, the reversible models turn out to be
weaker than the general model. In addition, we obtain the decidability of the
question whether or not the transduction realized by an arbitrary Mealy DFST
can be realized by a Mealy REV-DFST as well. In the affirmative case, the Mealy
REV-DFST can effectively be constructed. Finally, we discuss in Sect. 4 the usu-
ally investigated closure properties for reversible and length-preserving DFSTs.
We obtain closure under intersection, but non-closure under union, complemen-
tation, composition, inversion, concatenation, iteration, and reversal.

2 Preliminaries

We write Σ∗ for the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and we set Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted
by wR, and for the length of w we write |w|. We use ⊆ for inclusions and ⊂ for
strict inclusions.
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First, we define reversible deterministic finite state transducers. We define
this model as usual with two tapes, namely, an input and an output tape. The
model can be seen as a restricted variant of a Turing machine having a one-way
read-only input tape and a one-way output tape. In the forward computation
the transducer decides its operation depending on the current state, the current
input symbol, and the symbol at the current square of the output tape. It may
perform a right move on the input tape and may rewrite the current tape square
on the output tape and afterwards may perform a right move on the output tape
as well. The output tape is initially filled with blank symbols.

Formally, we define a deterministic finite state transducer (DFST) as a sys-
tem M = 〈Q,Σ,Δ, q0, δ, F 〉, where Q is the set of internal states, Σ is the set of
input symbols, Δ is the set of output symbols containing the blank symbol �, q0
is the initial state, F ⊆ Q is the set of accepting states, and

δ : Q × Σ × Δ → Q × (Δ \ {�}) × {0, 1} × {0, 1}

is the partial transition function.
A configuration of DFST M at some time t ≥ 0 is a quadruple (v, p, w, z),

where v ∈ Σ∗ is the already read part of the input to the left of the input head,
p ∈ Q is the current state, w ∈ Σ∗ is the still unread part of the input to the
right of the input head, and z ∈ Δ+ is the already written part of the output, the
rightmost symbol of z being the currently scanned symbol on the output tape.
The initial configuration for input w is set to (λ, q0, w, �). During the course of
its computation, M runs through a sequence of configurations. One step from
a configuration to its successor configuration is denoted by 	 and defined as
follows. For p ∈ Q, a ∈ Σ, v, w ∈ Σ∗, z ∈ Δ∗, and b ∈ Δ, let (v, p, aw, zb) be a
configuration. Then we define

(v, p, aw, zb) 	 (va, q, w, zc), if δ(p, a, b) = (q, c, 1, 0),
(v, p, aw, zb) 	 (v, q, aw, zc), if δ(p, a, b) = (q, c, 0, 0),
(v, p, aw, zb) 	 (va, q, w, zc�), if δ(p, a, b) = (q, c, 1, 1),
(v, p, aw, zb) 	 (v, q, aw, zc�), if δ(p, a, b) = (q, c, 0, 1).

The reflexive transitive closure of 	 is denoted by 	∗.
A DFST halts if the transition function is undefined for the current con-

figuration. The output written by a DFST M on input w ∈ Σ∗ is denoted by
M(w) ∈ (Δ \ {�})∗ and is defined as M(w) = v, if (λ, q0, w, �) 	∗ (w, q, λ, v′)
with q ∈ F , v is the non-blank part of v′, and M halts. Otherwise, M(w) is
defined to be the empty set. Now, the transduction defined by M is the set
T (M) = { (w,M(w)) | w ∈ Σ∗ and M(w) 
= ∅ }. We remark that M may also
be considered as a partial function mapping some w ∈ Σ∗ to v ∈ (Δ \ {�})∗.
If we build the projection on the first components of T (M), denoted by L(M),
then the transducer degenerates to a deterministic language acceptor.

In general, the family of all transductions performed by some device of type X
is denoted by T (X).

Now, we turn to reversible DFST. Basically, reversibility is meant with
respect to the possibility of stepping the computation back and forth.
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So, the machines have also to be backward deterministic. In particular, the
machines reread the symbols which they have read in a preceding forward com-
putation step. So, for reverse computation steps each head is either moved to
the left or stays stationary. Figuratively, one can imagine that in a forward step,
first the current symbols are read and then the heads are moved, whereas in a
backward step first the heads are moved and then the symbols are read.

A DFST is said to be reversible, abbreviated as REV-DFST, if for any two
distinct transitions

δ(p, x0, x1) = (q, y1, d0, d1) and
δ(p′, x′

0, x
′
1) = (q′, y′

1, d
′
0, d

′
1),

if q = q′, then (d0, d1) = (d′
0, d

′
1) and (x0, y1) 
= (x′

0, y
′
1). The first condition

means that transitions reaching the same state have to move both heads in the
same way. The second condition ensures that for any configuration the prede-
cessor state can uniquely be determined from the state (which then implies the
head movements), the input symbol read and the output symbol written.

A consequence of the definition of reversibility is the following property usu-
ally required for reversible devices.

Lemma 1. For any REV-DFST holds that any configuration has at most one
predecessor configuration.

In this paper, we consider in particular length-preserving DFST and differ-
entiate between three notions. We call a DFST a Mealy transducer (M-DFST)
if the transition function δ maps from Q × Σ × Δ to Q × (Δ \ {�}) × {1} × {1}.
That is, in every time step an input symbol is read, an output symbol is writ-
ten, and both heads proceed one position to the right. We call a DFST strongly
length-preserving (s-DFST) if the transition function δ maps from Q × Σ × Δ
to Q × (Δ \ {�}) × {(1, 1), (0, 0)}. That is, both heads are moved synchronously.
Finally, we call a DFST M weakly length-preserving (w-DFST), if |w| = |M(w)|,
for all (w,M(w)) ∈ T (M). That is, the length of the input word read and the
length of the output word written is equal at the end of the transduction.

In order to clarify the definitions we present an example.

Example 2. The transduction { (anbm, anbcm−1) | m ≥ 1, n ≥ 0 } can be com-
puted by some Mealy REV-DFST M = 〈{q0, q1}, {a, b}, {�, a, b, c}, q0, δ, {q1}〉.
For every a, the transducer writes an a on the output tape and makes a right
move. When the first b appears in the input, it changes its state, emits b and
makes a right move. Subsequently, M writes for every b a c in the output and
makes a right move. Formally, the transition function δ is defined as

δ(q0, a, �) = (q0, a, 1, 1), δ(q0, b, �) = (q1, b, 1, 1), δ(q1, b, �) = (q1, c, 1, 1).

The reversibility of M is easily verified by inspecting the transition function and
checking the two conditions of the definition. Thus, the transduction defined
by M belongs to T (M-REV-DFST). We note that the projection of T (M) to
the first component L(M) is the regular language { anbm | m ≥ 1, n ≥ 0 } which
is known to be irreversible. �
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3 Computational Capacity

We turn to consider the computational capacity of reversible DFSTs. In partic-
ular, whenever two types of devices have different language acceptance power,
then trivial transductions applied to a language from their symmetric difference
would be a witness for separating also the power of the transducers. However, in
the following we consider transductions of languages that are accepted by both
types of devices in question. In this way, we are separating in fact the capabil-
ities of computing transductions. We start with a normalization result stating
that every length-preserving DFST can be transformed into an equivalent one
that moves at least one head in every step of its computation. Moreover, the
construction preserves reversibility.

Lemma 3. Every w-DFST (s-DFST, M-DFST) M can be converted into an
equivalent w-DFST (s-DFST, M-DFST) M ′ such that in any computation step
of M ′ at least one head is moved. Moreover, if M is reversible then M ′ is
reversible as well.

The construction given in Lemma 3 leads to the following corollary.

Corollary 4. The families T (M-DFST) and T (s-DFST) as well as the families
T (M-REV-DFST) and T (s-REV-DFST) are equal.

Proof. Both inclusions T (M-DFST) ⊆ T (s-DFST) and T (M-REV-DFST) ⊆
T (s-REV-DFST) follow from the definition. On the other hand, the construction
in the proof of Lemma 3 leads to an equivalent M-DFST (M-REV-DFST) for a
given s-DFST (s-REV-DFST). �
Theorem 5. Let M be a Mealy transducer. Then it is NL-complete to decide
whether T (M) can be realized by a reversible Mealy transducer. If the question
is answered in the affirmative, an equivalent reversible Mealy transducer can
effectively be constructed.

Proof. Given a Mealy transducer M = 〈Q,Σ,Δ, q0, δ, F 〉, we construct a deter-
ministic finite automaton M ′ = 〈Q,Σ × Δ, q0, δ

′, F 〉, where for q, q′ ∈ Q, x ∈ Σ
and y ∈ Δ, δ′(q, (x, y)) = q′ if and only if δ(q, x, �) = (q′, y, 1, 1). Since a Mealy
machine moves its heads in every step, it sees in every computation step a blank
symbol on the output tape and, thus, no other situations have to be considered.
Both machines work deterministically, so for each pair (w,w′) ∈ T (M) there is
a word (w,w′) ∈ L(M ′) and vice versa. In particular, the construction reveals
that there are no two distinct transitions δ′(q, (x, y)) and δ′(q, (x, y′)). More-
over, the construction preserves reversibility: If M is reversible, then for any
two distinct transitions δ(p, x0, x1) = (q, y, 1, 1) and δ(p′, x′

0, x
′
1) = (q′, y′, 1, 1)

we have that q = q′ implies (x0, y) 
= (x′
0, y

′). So, for the constructed tran-
sitions δ′(p, (x0, y)) = q and δ′(p′, (x′

0, y
′)) = q′ the equality q = q′ implies

(x0, y) 
= (x′
0, y

′) as well, which means that M ′ is reversible.
Conversely, given a deterministic finite automaton M ′ = 〈Q,Σ ×Δ, q0, δ

′, F 〉
with no two distinct transitions δ′(q, (x, y)) and δ′(q, (x, y′)), we construct a
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Mealy transducer M = 〈Q,Σ,Δ, q0, δ, F 〉, where for q, q′ ∈ Q, x ∈ Σ and y ∈ Δ,
δ(q, x, �) = (q′, y, 1, 1) if and only if δ′(q, (x, y)) = q′. Since M ′ is determin-
istic and meets the property there are not two distinct transitions δ′(q, (x, y))
and δ′(q, (x, y′)), M is deterministic as well. So, by construction, for each word
(w,w′) ∈ L(M ′) there is a pair (w,w′) ∈ T (M) and vice versa. Again, the
construction preserves reversibility: Let M ′ be reversible. Since Mealy machines
move both heads in each computation step, for M the first condition of working
reversibly is fulfilled. For every pair of a state and an input symbol, M ′ has
a unique predecessor state, since it is reversible. Thus the second condition of
reversibility of M can be concluded. So, M is reversible as well.

Now, let L(M ′) be the language of a deterministic finite automaton M ′

that has been constructed from a Mealy transducer M . For each transduction
M(zxz′) = uyu′ with |z| = |u|, x ∈ Σ, and y ∈ Δ, there is no transduction
M(zxz′′) = uy′u′′ with y 
= y′ since M works deterministically. It can be con-
cluded that the property that there are no two distinct transitions δ′(q, (x, y))
and δ′(q, (x, y′)) is met by any automaton accepting L(M ′).

So far, we have shown that given a Mealy transducer M there exists an
equivalent reversible Mealy transducer M̂ if and only if the DFA M ′ constructed
from M accepts a language that can be accepted by some reversible DFA M̂ ′,
where a DFA is reversible, if every input letter a induces an injective partial
mapping from the state set to itself via the mapping δa : Q → Q with p �→ δ(p, a).
In [8] it has been shown that the regular language reversibility problem – given
a DFA M ′, decide whether L(M ′) is accepted by any reversible DFA – is NL-
complete. If the question is answered in the affirmative, an equivalent reversible
DFA can effectively be constructed.

These results together with the constructions shown above prove the asser-
tion. �

We turn to show that the condition to work reversibly strictly weakens
the computational capacity of Mealy transducers, thus, separating the families
T (M-REV-DFST) and T (M-DFST). Note that the witness transduction relies
on an input language that is accepted by the weaker devices.

Theorem 6. The family T (M-REV-DFST) is strictly included in the family
T (M-DFST).

Proof. We consider the Mealy transducer M = 〈Q,Σ,Δ, q0, δ, F 〉 depicted in
Fig. 1 which is irreversible due to the transitions δ(q1, b, �) = (q3, b, 1, 1) and
δ(q2, b, �) = (q3, b, 1, 1).

In order to show that there is no equivalent reversible Mealy transducer we
apply the constructions of the proof of Theorem 5. The minimal deterministic
finite automaton M ′ = 〈Q,Σ × Δ, q0, δ

′, F 〉 constructed from M is obtained by
merging the two accepting states q5 and q6 in Fig. 1. In [8] it has been shown that
the language L(M ′) can be accepted by a reversible DFA if and only if there do
not exist useful states p, q ∈ Q, a pair (x, y) ∈ Σ × Δ, and a word w ∈ (Σ × Δ)∗

such that p 
= q, δ′(p, (x, y)) = δ′(q, (x, y)), and δ′(q, (x, y)w) = q.
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Due to the two transitions δ′(q1, (b, b)) = δ′(q2, (b, b)), and the computation
path δ′(q1, (b, b)(a′, a)) = q1, it follows that there is no equivalent reversible
DFA and, thus, there is no reversible Mealy transducer realizing the transduc-
tion T (M). �

Our next result separates the families of reversible weakly and reversible
strongly length-preserving finite state transducers. We define the transduction
τ1 = { (aabm$bn, abm$bn+1) | m,n ≥ 0 } that is realized by a w-REV-DFST as
shown in the following example.

Example 7. The transduction τ1 is realized by the w-REV-DFST

M = 〈{q0, q1, . . . , q4}, {a, b, $}, {a, b, $, �}, q0, δ, {q4}〉,

where the transition function δ is as follows.

δ(q0, a, �) = (q1, b, 1, 0),
δ(q1, a, b) = (q2, a, 1, 1),

δ(q2, b, �) = (q2, b, 1, 1),
δ(q2, $, �) = (q3, $, 0, 1),

δ(q3, $, �) = (q4, b, 1, 1),
δ(q4, b, �) = (q4, b, 1, 1).

The reversibility of M is easily verified by inspecting the transition function. �

Theorem 8. The transduction τ1 is a witness for the strictness of the inclusion
T (s-REV-DFST) ⊂ T (w-REV-DFST). Moreover, transduction τ1 belongs to
T (w-REV-DFST) \ T (s-DFST).

Proof. By Example 7, transduction τ1 belongs to T (w-REV-DFST). The inclu-
sion itself follows for structural reasons. It remains to be shown that τ1 does
not belong to the family T (s-DFST). In contrast to the assertion assume τ1 is
realized by the s-DFST M = 〈Q,Σ,Δ, q0, δ, F 〉.

We consider input prefixes and let (λ, q0, aabm, �) 	∗ (aabm, q1, λ, abm+1�)
be the computation on the input prefix aabm (since both heads of M must
move synchronously, the output head scans the � after abm+1). Now, the com-
putation is extended by a further input symbol b as (aabm, q1, b, abm+1�) 	∗

Fig. 1. A Mealy transducer for which no equivalent reversible Mealy transducer exists,
though the input language is reversible regular.
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(aabmb, q2, λ, abm+1x�) with x ∈ Δ. Since x cannot be rewritten anymore, it
must be either b or $.

If x = b, then the computation cannot be the beginning of a computation
realizing τ1, since on input aabm+1 the output abm+2 has been written, but the
input aabm+1$bn has to be transformed into abm+1$bn+1. On the other hand, if
x = $ then the computation cannot be the beginning of a computation realiz-
ing τ1 either, since on input aabm+1 the output abm+1$ has been written, but
the input aabm+2$bn has to be transformed into abm+2$bn+1. The contradiction
shows the assertion. �

For the next separation, again, the witness transduction relies on an input
language that is accepted by the weaker devices. We define the transduction
τ2 = { (am$bn, am−1$bn+1) | m ≥ 1, n ≥ 0 } that is realized by a w-DFST as
shown in the following example.

Example 9. The transduction τ2 is realized by the w-DFST

M = 〈{q0, q1, . . . , q3}, {a, b, $}, {a, b, $, �}, q0, δ, {q3}〉,

where the transition function δ is as follows.

δ(q0, a, �) = (q1, b, 1, 0),
δ(q1, a, b) = (q1, a, 0, 1),

δ(q1, a, �) = (q1, b, 1, 0),
δ(q1, $, b) = (q2, $, 0, 1),

δ(q2, $, �) = (q3, b, 1, 1),
δ(q3, b, �) = (q3, b, 1, 1).

Transducer M is not reversible due to, for example, the first two rules. �

Theorem 10. The transduction τ2 is a witness for the strictness of the inclusion
T (w-REV-DFST) ⊂ T (w-DFST).

Proof. By Example 9, transduction τ2 belongs to T (w-DFST). The inclusion
itself follows for structural reasons. It remains to be shown that τ2 does not
belong to the family T (w-REV-DFST). In contrast to the assertion assume τ2
is realized by the w-REV-DFST M = 〈Q,Σ,Δ, q0, δ, F 〉.

We consider input prefixes am, for m large enough. While M processes these
prefixes, its input head always sees the symbol a, regardless of the moves of the
input head. The transition function, besides on the input symbol a, depends
on the current state and the output symbol currently scanned by the output
head. Within at most |Q| · |Δ| transitions, one pair of these parameters appears
twice. Let c0 	 c1 	 · · · 	 ct, for some t ≥ 0, be the sequence of configurations
passed through by M while processing the prefix am. Assume that the first time
where such pairs of parameters appear twice is in ci and ci+j with i, j ≥ 1. Let
ci = (ui, qi, vi, wixi) with uivi ∈ a∗, qi ∈ Q, xi ∈ Δ, and wi ∈ Δ∗. Then we
conclude δ(qi−1, a, xi−1) = (qi, y, d0, d1) and δ(qi+j−1, a, xi+j−1) = (qi, y, d0, d1).
Since on the right-hand sides the states are identical and M is reversible, d0 as
well as d1 are the same in both transitions. If d1 = 1 then in both configurations
the output head scans a blank. If d1 = 0 then in both configurations the output
head scans the currently written symbol y ∈ Δ. However, the two transitions
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Fig. 2. Relations between the families of transductions discussed, where an arrow
denotes a proper inclusion.

violate the reversibility of M . The contradiction shows that the assumption i ≥ 1
was wrong.

Now let i = 0. Then M runs through cycles of length j, that is, the sequence of
configurations passed through is c0 	 c1 	 · · · 	 cj 	 · · · , with c0 = (λ, q0, a

m, �),
cj = (ak, q0, a

m−k, a��), and c2j = (a2k, q0, a
m−2k, a2��), for some k, � ≥ 0 (since

the computation is in a cycle, state and currently scanned output symbol are
identical, that is, q0 and �). If k 
= � and M transduces am$bn to am−1$bn+1, then
it also transduces am+k$bn to am−1+�$bn+1 which does not belong to τ2. There-
fore, we derive k = �. But this implies (λ, q0, a

k·m$bn, �) 	∗ (ak·m, q0, $bn, ak·m�)
which cannot be the beginning of a computation realizing τ2, since the number
of a’s written is already too large by one. So, we have a contradiction to the
assumption that τ2 is realized by some w-REV-DFST. �

The relations between the families of transductions shown in this section are
summarized in Fig. 2.

4 Closure Properties

In this section, we will essentially show that the families T (w-REV-DFST)
and T (M-REV-DFST) (hence also T (s-REV-DFST)) are not closed under the
usually studied operations for transductions. We start with the easy observation
that any transduction realized by some DFST M has to be functional, that is,
any input w is transduced into at most one output M(w). This fact will be used
in the following lemma.

Lemma 11. The families T (w-REV-DFST) and T (M-REV-DFST) are nei-
ther closed under union nor under complementation.

Proof. Consider the two transductions τ1 = { (am$bn, am$bn) | m,n ≥ 0 } and
τ2 = { (am$bn, cm$dn) | m,n ≥ 0 }, that can be realized by some M-REV-DFST
(w-REV-DFST). But the transduction τ1 ∪τ2 is no longer functional, since some
inputs have to be transduced to at least two different words. Thus, transduction
τ1 ∪ τ2 cannot be computed by any M-REV-DFST (w-REV-DFST).

Since the complement of a transduction realized by a DFST is in general not
functional, we obtain the non-closure under complementation for the families
T (w-REV-DFST) and T (M-REV-DFST) as well. �
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However, using the well-known Cartesian product construction for the family
of transductions realized by M-REV-DFSTs the closure under intersection can
be shown.

Lemma 12. Family T (M-REV-DFST) is closed under intersection.

Next, we consider the composition M ◦ M ′ of two transducers M and M ′

which means that the output produced by M is considered as input for M ′.

Lemma 13. The family T (M-REV-DFST) is not closed under composition.

Proof. We consider the M-DFST M depicted in Fig. 1. It has been shown in
Theorem 6 that T (M) cannot be computed by any M-REV-DFST. Now, M
is reconstructed to M ′ in such a way that every edge e labeled with (x, y) is
changed to (x, yi) where i is a unique number for the edge e. Clearly, M ′ is
an M-REV-DFST, since the output symbol uniquely indicates the predecessor
state. Next, we construct another M-REV-DFST M ′′ with a single state that
translates every symbol xi to x. So, M ′′(M ′(w)) = M(w), for every word w.
Since T (M) cannot be computed by any M-REV-DFST, it can be concluded
that the composition M ′ ◦ M ′′ cannot be computed by any M-REV-DFST. �
Theorem 14. The family T (w-REV-DFST) is not closed under composition.

Proof. Let M = 〈{q0, q1, q2, q3}, {a, b, $}, {a, b, c, $, $0, �}, q0, δ, {q3}〉 with

δ(q0, a, �) = (q1, c, 1, 1),
δ(q1, a, �) = (q2, c, 1, 1),

δ(q1, $, �) = (q3, $0, 1, 1),
δ(q2, a, �) = (q2, a, 1, 1),

δ(q2, $, �) = (q3, $, 1, 1),
δ(q3, b, �) = (q3, b, 1, 1),

be an M-REV-DFST that computes the transduction

τ1 = { (am$bn, ccam−2$bn) | m ≥ 2, n ≥ 0 } ∪ { (a$bn, c$0b
n) | n ≥ 0 }.

Let M ′ = 〈{q0, q1, . . . , q4}, {a, b, c, $, $0}, {a, b, $, �}, q0, δ
′, {q4}〉 with

δ′(q0, c, �) = (q1, c, 1, 0),
δ′(q1, c, c) = (q2, a, 1, 1),

δ′(q1, $0, c) = (q5, $, 0, 1),

δ′(q2, a, �) = (q2, a, 1, 1),
δ′(q2, $, �) = (q3, $, 0, 1),
δ′(q3, $, �) = (q4, b, 1, 1),

δ′(q4, b, �) = (q4, b, 1, 1),
δ′(q5, $0, �) = (q4, b, 1, 1),

be a w-REV-DFST that realizes

τ2 = { (ccam$bn, am+1$bn+1) | m,n ≥ 0 } ∪ { (c$0bn, $bn+1) | m,n ≥ 0 }.

The transduction realized by the composition M ◦ M ′ is

{ (am$bn, am−1$bn+1) | m ≥ 1, n ≥ 0 }
which cannot be computed by any w-REV-DFST due to Theorem 10. �

Let T (M) be a transduction computed by some DFST M . Then the inverse
transduction T−1(M) is defined as { (w,w′) | (w′, w) ∈ T (M) }.
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Lemma 15. The families T (w-REV-DFST) and T (M-REV-DFST) are not
closed under inversion.

Proof. Let M be a M-REV-DFST computing { (w, a|w|) | w ∈ {a, b}∗ }. For any
n ≥ 0, M transduces 2n words to the same image an. Thus, the inverse transduc-
tion is no longer functional and hence cannot be computed by any M-REV-DFST
or w-REV-DFST. �

For the non-closure under reversal we need the following lemma stating that
in length-preserving transductions the distance between input head and output
head is always bounded by some constant.

Lemma 16. Let M be a w-DFST with state set Q and w be any input such that
M(w) 
= ∅. Then the length difference between the words on the input tape and
the output tape during the transduction of w is at most |Q|.
Lemma 17. The families T (w-REV-DFST) and T (M-REV-DFST) are not
closed under reversal.

Lemma 18. The families T (w-REV-DFST) and T (M-REV-DFST) are nei-
ther closed under concatenation nor under iteration.

Proof. We consider two transductions { ($bmean, $bmean) | m,n ≥ 0 }∪{(λ, λ)}
and { (#bmean, #dmecn) | m,n ≥ 0 } ∪ {(λ, λ)} that can be computed by some
M-REV-DFSTs M and M ′. Since the transductions T (M) and T (M ′), hence
also T (M) ∪ T (M ′), are contained in the concatenation T (M)T (M ′), we can
apply a similar argumentation as in Lemma 17 and obtain that T (M)T (M ′)
cannot be computed by any w-REV-DFST which gives the non-closure under
concatenation.

For the non-closure under iteration we consider the transduction

{ (an$bm$al, an$bm$cl) | m,n, l ≥ 0 }

that can be computed by some M-REV-DFST M . Let us consider an input
word w = an$bm$al$bm′

$al′ with l > 2 and m,n,m′, l′ ≥ 0 for the transduc-
tion T (M)∗.

Since l > 2, we always can find four non-negative integers l1, l2, l
′
1, l

′
2 such that

l = l1 + l2 = l′1 + l′2 with (l1, l2) 
= (l′1, l
′
2). Then both (w, an$bm$cl1al2$bm′

$cl′)
and (w, an$bm$cl′1al′2$bm′

$cl′) belong to T (M)∗. So, the transduction is no longer
functional and cannot be realized by any w-REV-DFST. �

The closure properties obtained in this section are summarized in Table 1.
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Table 1. Closure properties of the transduction families discussed.

Family ∪ ∩ ◦ −1 · ∗ R

L (M-REV-DFST) No No Yes No No No No No

L (w-REV-DFST) No No ? No No No No No
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Abstract. This paper deals with the conversion of expressions denoting
Hadamard series into weighted rotating automata. We prove that any
algorithm converting rational series into one-way weighted automata can
be extended to provide an algorithm which achieves our goal. We apply
this to define the derivation and the follow automata of a Hadamard
expression. Our method is also used to extend algorithms which perform
the inverse conversion, up to some adjustment in order to fulfill some
constraints.

1 Introduction

Rotating automata are a natural extension of (one-way) automata. They have
been introduced in [11]. Such an automaton can read its input several time as if
this input is a cyclic word endowed with a marker to separate the last and the
first letters. In the Boolean case, i.e. for unweighted rotating automata, accepted
languages are regular languages, but they have been studied (cf. e.g. [6,9]) since
they can be much more succint than NFA, and simpler than two-way automata.
In particular, the intersection of two languages recognised by such automata
can be realised with a linear number of states. These automata are sometimes
introduced as restrictions of two-way automata, but we present them here as an
extension of one-way automata, endowed with rewinding transitions that allow
to come back at the beginning of the input.

Like two-way automata, rotating automata may have an infinite number of
computations accepting a given finite word. This may lead to some issues in the
definition of the behaviour of weighted rotating automata, since the weight of a
word accepted by a weighted automaton is the sum of the weights of its accepting
computations. In this paper, we focus on rotating automata with weights in
rationally additive semirings [3]. In this framework, the behaviour of rotating
automata is always defined.

Moreover, the series realised by these automata are exactly the Hadamard
series [4,7]. The set of Hadamard series is the closure of rational series under
sum, Hadamard product – entrywise product – and Hadamard iteration – sum of
Hadamard powers. If the semiring of coefficients is commutative, the Hadamard
product of two rational series is rational, but it is no more the case if the coeffi-
cients are not commutative, and, even in the commutative case, the Hadamard
iteration does not preserve the rationality of series (cf. [7]).
c© Springer International Publishing AG 2017
A. Carayol and C. Nicaud (Eds.): CIAA 2017, LNCS 10329, pp. 163–174, 2017.
DOI: 10.1007/978-3-319-60134-2 14
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Fig. 1. The transformation of Hadamard expressions into rotating automata.

This paper presents a generic framework to extend any algorithm that con-
verts a rational expression to a (weighted) one-way automaton, into an algorithm
that converts a Hadamard expression to a rotating automaton. More precisely,
we show that every Hadamard expression E can be rewritten into a rational
expression ρ(E) such that the conversion of ρ(E) into a (one-way) automaton A
by some algorithm σ can be interpreted as a rotating automaton Ar that realises
the series denoted by the original Hadamard expression E. These transformations
are presented in Fig. 1. The proof of our main theorem amounts to prove that this
diagram – where �.� is the interpretation of expressions and | · | is the behaviour
of automata – is actually commutative. We then apply this result to two meth-
ods of automata synthesis: the derivation automaton and the follow automaton,
and prove rules that allow in each of these cases to directly handle Hadamard
expressions.

The inverse conversion can also be extended, even if some extra conditions
are required on the algorithm. A variant of the well-known State Elimination
method is described; this variant is used in the core of an algorithm converting
weighted rotating automata into Hadamard expressions.

The results stated in this paper are generic and can be applied to any semi-
ring, commutative or not. If the semiring of weight is not rationally additive,
the same methods can be applied, but the fact that the interpretation of expres-
sions and the behaviour of automata are defined, as well as the validity of the
transformations, depend on specific properties of the expressions or automata.

2 Rational and Hadamard Formal Power Series

Let A be a finite alphabet and let A∗ be the set of words over A, where ε
denotes the empty word. A language over A is a subset of A∗. Let (K,+, .) be a
semiring. In this paper, we assume that K is a rationally additive semiring [3].
Two important axioms of these semirings are: for every element x of K, the
family of powers of x is summable and this sum is denoted x∗ (the star of x;
for every partition of a family, if the sum over each part is defined, as well as
the sum s of these sums, then the family is summable with sum s. This later
property is used in the proof of Lemma 1. For instance, the Boolean semiring B,
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every complete lattice, Q+∪{∞}, the rational languages over a given alphabet,
([0; 1],max, .) are all rationally additive semirings.

We consider the set K〈〈A∗〉〉 of formal power series over A∗ with coefficients
in K. A series s in K〈〈A∗〉〉 is a mapping from A∗ into K; the coefficient of
a word w in s is denoted 〈s, w〉, and s itself is denoted as a formal sum. The
support of s is the language of words with a coefficient different from 0. If it is
finite, s is a polynomial. Different products can be defined for series:

Cauchy product : s · t =
∑

w∈A∗

∑

u,v∈A∗
uv=w

(〈s, u〉.〈t, v〉)w;

Hadamard product : s � t =
∑

w∈A∗
(〈s, w〉.〈t, w〉)w.

(1)

The Hadamard and the Cauchy products are both associative operations which
distribute over the sum. From [3], if K is a rationally additive semiring, so are
the semirings (K〈〈A∗〉〉,+, ·) and (K〈〈A∗〉〉,+,�); the star of a series s in each
of these semirings is respectively called the Kleene star denoted s∗ and the
Hadamard iteration denoted s�. Notice that, for every word w, 〈s�, w〉 = 〈s, w〉∗.

Definition 1. The set KRatA∗ of rational series is the closure of polynomi-
als in K〈〈A∗〉〉 under the rational operations: sum, Cauchy product, and Kleene
star. The set KHadA∗ of Hadamard series is the closure of KRatA∗ under the
entrywise operations: sum, Hadamard product, and Hadamard iteration.

3 Weighted Rotating Automata

Definition 2. Let K be a semiring and A an alphabet. A rotating K-automaton
over A is a tuple (Q,E,R, I, T ), where

– Q is a finite set of states;
– E : Q × A × Q −→ K is the transition function, and R : Q × Q −→ K is the

rewinding function;
– I : Q −→ K is the initial function, and T : Q −→ K is the final function.

The set of rotating K-automata over A is denoted RKAutA.

The rewinding function allows the head of the automaton to return to the
beginning of the input when the end of the input is reached.

A state p is initial if I(p) �= 0; it is final if T (p) �= 0. In order to define
the labels of computations and the behaviour of the automaton, we assume that
there exists a special letter r which does not belong to A. In the sequel we denote
Ar = A ∪ {r}. A transition is a triple (p, a, q) in Q × Ar × Q such that either a
is in A and E(p, a, q) �= 0, or a = r and R(p, q) �= 0. The letter a in Ar is the
label of such a transition, E(p, a, q) is the weight of the transition.

Like in graphs, a path is a sequence of consecutive transitions. The label of a
path is the concatenation of labels of its transitions. A computation over a word



166 L.-M. Dando and S. Lombardy

w in A∗ is a path which starts in an initial state and ends in a final state, with
a label in (wr)∗w.

The weight of a computation is the product of the initial weight of the starting
state, the weight of each transition, and the final weight of the ending state. The
weight of a word w in a rotating K-automaton A, denoted 〈A, w〉, is defined if
and only if the family of weights of computations over w is summable. In this
case, 〈A, w〉 is equal to this sum.

Definition 3. An automaton A is valid if for every word w, the weight of w in
the automaton exists. In this case, the behaviour of A is the series

|A| =
∑

w∈A∗
〈A, w〉w.

It is proved in [7] that, if K is a rationally additive semiring, then every two-way
K-automaton is valid. This result naturally translates to the rotating automata
considered in this paper.

In our setting, one-way automata are rotating K-automata without any
rewinding transition. 1KAutA is the set of one-way K-automata over A, and
every automaton in 1KAutA is characterised by a tuple (Q,E, I, T ). More-
over, an automaton A = (Q,E,R, I, T ) in RKAutA can be considered as
a one-way K-automaton 1w(A) = (Q,E′, I, T ), over the alphabet Ar, with
E′ = E∪{(p, r, q) 	→ R(p, q) | (p, q) ∈ Q2}. Conversely, if A is in 1KAutAr, Ar is
the corresponding automaton in RKAutA, obtained by replacing every transition
with label r by a rewinding transition.

The canonical bijection between transitions of A and 1w(A) extends to paths,
and every pair of corresponding paths has the same label and the same weight. In
particular, for every word w in A∗, every computation in A over w corresponds to
a computation in the automaton 1w(A) over a word u in (wr)∗w. To characterise
the behaviour of the rotating K-automaton A with respect to the behaviour of
the one-way K-automaton 1w(A), we define a linear function from K〈〈A∗

r〉〉 to
K〈〈A∗〉〉:

∀s ∈ K〈〈A∗
r〉〉, ϕ

( ∑

u∈A∗
r

〈s, u〉u
)

=
∑

w∈A∗

( ∑

u∈w(rw)∗
〈s, u〉

)
w. (2)

Notice that ϕ is partially defined; for every series s, ϕ(s) is defined if and only
if, for every word w, the family (〈s, u〉)u∈w(rw)∗ is summable.

The following proposition naturally follows:

Proposition 1. Let K be a rationally additive semiring. For every automaton A
in RKAutA, ϕ(|1w(A)|) is defined and equal to |A|.

Since every rational series is the behaviour of a one-way automaton, and
every Hadamard series is the behaviour of a rotating automaton (cf. [7]), the
following corollary holds.

Corollary 1. The image of ϕ restricted to KRatA∗
r is the set KHadA∗.
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4 Hadamard Expressions

Like rational series, Hadamard series are naturally denoted by expressions. In the
following grammar, where A is an alphabet, R generates K-rational expressions
in KRatExpA, while H generates K-Hadamard expressions in KHadExpA.

R → 0 | 1 | a ∈ A | kR, k ∈ K | R + R | RR | R∗ ,

H → R | kH, k ∈ K | H + H | H � H | H � H.
(3)

As usual, parentheses can be added to prevent ambiguity. In the following, the
classical rules of priority apply. Notice that we use in the Hadamard expressions
a binary iteration operator that appears to be more suitable with the definitions
below (definition of ρ in particular). It is straightforward that the expressiveness
of this operator is equivalent to a unary star operator: if E denotes the series s, s�

is denoted by E � (a1 + . . . + an)∗, where A = {a1, . . . an}.

Definition 4. The interpretation of an expression in KHadExpA is a series
in KHadA∗ inductively defined by :

�0� = 0K, �1� = 1K, ∀a ∈ A, �a� = a, ∀k ∈ K, �kF� = k�F�,

�F + G� = �F� + �G�, �FG� = �F� · �G�, �F∗� = �F�∗,

�F � G� = �F� � �G�, �F � G� = �F�� � �G�.

(4)

In Sect. 3, we showed that every Hadamard series is the image by ϕ of a rational
series. In this section, we describe a formal inverse of ϕ: this is a syntactic
transformation ρ which turns an expression E in KHadExpA into an expression
in KRatExpAr, inductively defined by:

ρ(E) = E if E ∈ KRatExpA, ∀k ∈ K, ρ(kE) = kρ(E),
ρ(F + G) = ρ(F) + ρ(G), ρ(F � G) = ρ(F)rρ(G), ρ(F � G) = (ρ(F)r)∗ρ(G).

(5)

Proposition 2. Let E be a Hadamard expression. It holds �E� = ϕ(�ρ(E)�).

Proposition 2 is based on the following lemma. The proof involves some
summation exchanges which are licit in rationally additive semirings; using this
result in other semirings may require a new proof.

Lemma 1. Let E be an expression in KHadExpA. Then, for every word w in A∗,

〈E, w〉 =
∞∑

i=0

〈ρ(E), w(rw)i〉. (6)

The following proposition characterises the images of Hadamard expressions
by ρ, on which ρ−1(E) can be computed in reversing identities in Eq. (5).

Proposition 3. The image of ρ is the set KPreHadExpA of K-pre-Hadamard
expressions over A generated by the following grammar:

P → E ∈ KRatExpA | kP, k ∈ K | P + P | PrP | (Pr)∗P. (7)
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5 From Hadamard Expressions to Weighted Rotating
Automata

5.1 A Generic Extension of Automata Synthesis

An algorithm which turns a rational expression into a (one-way) automaton
realises a mapping σ from rational expressions to automata which is consistent
with the interpretation of expressions and the behaviour of automata.

This property, as well as Propositions 1 and 2, can be summarised by the
commutative diagram of Fig. 1, which proves the following theorem. In the dia-
gram as in the theorem, r is the reverse function of 1w; it converts a one-way
automaton in 1KAutAr into a rotating automaton in RKAutA.

Theorem 1. If σ is an algorithm that converts a rational expression into an
equivalent one-way automaton, then r ◦σ ◦ ρ converts a Hadamard expression to
an equivalent rotating automaton.

The complexity of the transformation of a Hadamard expression into a rational
expression by ρ is linear, and the complexity of r is constant, since it is only
a different interpretation of the same object. Therefore, since the complexity of
the conversion σ of a rational expression to an automaton is at least linear, the
complexity of r ◦ σ ◦ ρ is equal to the complexity of σ.

Notice that when the number of letters in the rational expression is a para-
meter of the complexity of the conversion, this paramater must also count the
number of Hadamard operators to get the complexity of the extension of the
conversion from Hadamard expressions to rotating automata.

5.2 Derivation

We first apply Theorem 1 to the derivation of weighted rational expressions
defined in [8].

Definition 5. The derivatives of an expression E in KRatExpA by a letter is a
polynomial1 of expressions inductively defined for all a in A as:

∂

∂a
0 =

∂

∂a
1 = 0, ∀b ∈ A,

∂

∂a
b =

{
1 if a = b,

0 otherwise ,
∀k ∈ K,

∂

∂a
kE = k

∂

∂a
E,

∂

∂a
(E + F) =

∂

∂a
E � ∂

∂a
F,

∂

∂a
(EF) =

[
∂

∂a
E

]
.F � Null(E)

∂

∂a
F,

∂

∂a
(E∗) = Null(E∗)

[
∂

∂a
E

]
.E∗.

(8)

The definition of derivatives involves the function Null such that Null(E) = 〈E, ε〉.
1 The formal sum in polynomials of expressions (like in polynomials of positions in

the next part) is denoted � to avoid any confusion with the sum in expressions or
with Hadamard operators.
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Proposition 4. If E is a rational expression, the weight of the empty word in �E�
is given by the function Null from KRatExpA into K inductively defined as

∀a ∈ A, Null(a) = Null(0) = 0, Null(1) = 1,
Null(F + G) = Null(F) + Null(G), ∀k ∈ K, Null(kF) = kNull(F),

Null(F.G) = Null(F)Null(G), Null(F∗) = Null(F)∗.
(9)

By linearity, the interpretation of rational expressions extends to polynomials of
expressions. The derivation is defined in such a way that, for every expression E
and every letter a, � ∂

∂aE� = a−1�E�. Moreover, there is only a finite number of
expressions that arise in the iterated derivation of an expression E. Therefore, a
weighted (one-way) automaton can be built, where each state is an expression,
the initial state is E itself, there is a transition from F to G with label a and
weight k if 〈 ∂

∂aF,G〉 = k, and the final weight of a state F is 〈F, ε〉.

Example 1. Let E0 = ((12 (a+b))∗b(a+b)∗)� (ab)∗. We set F1 = (12 (a+b))∗b(a+
b)∗, then E1 = ρ(E0) = (F1r)∗(ab)∗. The derivatives of E1, as well as the
derivation automaton of E1 are shown on Fig. 2. By Theorem 1, this automaton
can be interpreted as the rotating derivation automaton of E0.

Fig. 2. The derivatives of E1 and the one-way derivation automaton of E1 = ρ(E0).

We define now an extension of the derivation rules to directly derive Hada-
mard expressions. We define first Null(E) which is no more equal to 〈E, ε〉, but
is forged to be equal to 〈ρ(E), ε〉.
Definition 6. For every Hadamard expression E, if E is a rational expression,
Null(E) follows the definition of Proposition 4, otherwise, it is defined as:

∀k ∈ K, Null(kE) = kNull(E), Null(E + F) = Null(E) + Null(F),
Null(E � F) = 0, Null(E � F) = Null(F).

(10)

Definition 7. The derivation over Hadamard expressions is extended as follows;
for every letter a, if E is a rational expression, the derivation follows Definition 5,
otherwise, the derivation is inductively defined as:
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∀k ∈ K,
∂

∂a
kE = k

∂

∂a
E ,

∂

∂a
(E + F) =

∂

∂a
E � ∂

∂a
F,

∂

∂a
(E � F) =

[
∂

∂a
E

]
� F,

∂

∂a
(E � F) =

[
∂

∂a
E

]
� (E � F) � ∂

∂a
F.

(11)

A derivation with respect to the Hadamard operators is also defined:

∂

∂�E = 0 if E ∈ KRatExp, ∀k ∈ K,
∂

∂� (kE) = k
∂

∂�E,

∂

∂� (E + F) =
∂

∂�E � ∂

∂�E,
∂

∂� (E � F) = Null(E)F �
[

∂

∂�E

]
� F,

∂

∂� (E � F) =
[

∂

∂�E

]
� (E � F) � Null(E) (E � F) � ∂

∂�F.

(12)

The correctness of this definition comes from Theorem 1 and the following propo-
sition, whose proof is by induction.

Proposition 5. For every Hadamard expression E, Null(E) = Null(ρ(E)),

∀a ∈ A,
∂

∂a
E = ρ−1

(
∂

∂a
ρ(E)

)
, and

∂

∂�E = ρ−1

(
∂

∂r
ρ(E)

)
. (13)

5.3 Follow Automata

The definition of the Follow automaton for rational expressions is described in [5].
In every rational expression E, we consider the list of occurrences of letters; each
of these occurrences is called a position, and we denote pos(E) the set of positions
of the expression E. We consider (formal) linear combinations of positions, and
we denote the set of linear combinations of positions of E with K〈pos(E)〉.2

The Follow automaton requires the definition of four functions:

– Null(E) in K is the weight of the empty word in �E� (already defined in
Proposition 4);

– First(E) is in K〈pos(E)〉: 〈First(E), p〉 shows with which weight the letter at
position p can appear as first letter in �E�;

– Last(E) in K〈pos(E)〉 is similar to First(E) for last letters in �E�;
– Follow(E, p) is in K〈pos(E)〉: 〈Follow(E, p), q〉 shows with which weight the

letter at position q can follow a letter at position p in �E�.

As shown in [2], these functions can be inductively computed on rational expres-
sions. It is convenient to extends pos(E) with an initial position i0 and to
extend Follow by Follow(E, i0) = First(E), and to set 〈Last(E), i0〉 = Null(E).

The weighted Position automaton [2] can then be defined, where the set of
states is the set of positions, the initial state is the initial position, there is a
2 Notice that K〈pos(E)〉 is not a semiring, since pos(E) is not a monoid; nevertheless,

we use the same notations as series for denoting the coefficient of such a linear
combination.
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Fig. 3. The Follow and Last functions and the Follow automaton of E1 = ρ(E0).

transition from p to q with label a and weight k if there is a letter a in position q
and 〈Follow(E, p), q〉 = k; the final weight of state p is 〈Last(E), p〉.

The Follow automaton is a quotient of the Position automaton: if Follow
and Last coincide on two positions p and q, then the corresponding states can
be merged.

Example 2. Let E1 be the expression with 8 positions defined in Example 1.
For convenience, we add indices to identify positions: ((12 (a1 + b2))∗b3(a4 +
b5)∗r6)∗(a7b8)∗. The Follow and Last functions are described on Fig. 3 (left);
they induce an equivalence on positions: {{i0, 6}, {1, 2}, {3, 4, 5}, {7}, {8}}; the
Follow automaton of E1 is drawn on Fig. 3 (right); seen as a rotating automaton,
this automaton realises �E0�.

Like for derivatives, the functions First, Last and Follow can be extended to
Hadamard expressions in order to get a direct construction. Notice that, for
every Hadamard expression E, an occurrence of letter r appears in ρ(E) for each
Hadamard operator which appears in E. This leads to extend the positions to
the occurrences of Hadamard operators. The extension of function Null is done
in Definition 6.

Definition 8. For every Hadamard expression E, if E is a rational expression,
First, Last and Follow follows definitions of [2], otherwise, they are inductively
defined for all k in K by

First(kF) = k First(F), Last(kF) = Last(F),

First(F + G) = First(F) � First(G), Last(F + G) = Last(F) � Last(G),

First(F �i G) = First(F) � Null(F) i, Last(F �i G) = Last(G) � Null(G) i,

First(F �i G) = First(F �i G) � First(G), Last(F �i G) = Last(G) � Null(G) i,

Follow(kF, p) = Follow(F, p),
Follow(F + G, p) = Follow(F, p) � Follow(G, p),
Follow(F �i G, p) = Follow(F + G, p) � 〈Last(F), p〉 i � 〈i, p〉First(G),
Follow(F �i G, p) = Follow(F + G, p) � 〈Last(F), p〉 i � 〈i, p〉First(F �i G),

(14)

where 〈i, p〉 is equal to 1 if i = p, and to 0 otherwise.
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Since a position is assigned to each Hadamard operator of a Hadamard
expression E, and each Hadamard operator has a corresponding occurrence of r
in ρ(E), there is a natural bijection between positions of E and positions of ρ(E).
The soundness of Definition 8 comes hence from the following proposition.

Proposition 6. For every Hadamard expression E, E and ρ(E) have the same
images by functions First, Last and Follow.

We have applied Theorem 1 to derivation and follow automata; likewise, it
can be applied to any algorithm that converts rational expressions to automata.

6 From Weighted Rotating Automata to Hadamard
Expressions

We apply the method used in the previous section to get an algorithm which
converts rotating automata to Hadamard expressions. An algorithm that turns
a one-way automaton into a rational expression is a function τ from 1KAutA
to KRatExpA which is consistent with the interpretation of expressions and the
behaviour of automata. Thus, if an inverse of ρ existed, a commutative diagram
similar to Fig. 1 could be drawn, and a result similar to Theorem 1 would be
proved. Unfortunately, the inverse of ρ is only defined on pre-Hadamard expres-
sions defined in Proposition 3. Hence, to apply our method, we must ensure that
the algorithm τ outputs pre-Hadamard expressions.

Theorem 2. If τ is an algorithm that converts an automaton in 1KAutAr to
an equivalent pre-Hadamard expression, then ρ−1 ◦τ ◦1w converts an automaton
in RKAutA to an equivalent Hadamard expression.

6.1 State Elimination on an r-local Automaton

We show in this part that the State Elimination method introduced in [1] can
be applied on some particular automata over Ar in such a way that it outputs
pre-Hadamard expressions. These automata are r-local automata.

Definition 9. An automaton (Q,E, I, T ) in 1KAutAr is r-local if there is a
partition {Q1, Q2} of Q with no initial state in Q2, and such that the label of a
transition is r if and only if this transition ends in Q2.

We briefly recall the principle of the State Elimination method applied to an
automaton A = (Q,E, I, T ) in KAutA. It requires to convert A into a slightly
different automaton: first, A is turned to an automaton where labels are expres-
sions: every transition (p, a, q) with weight k is replaced by a transition from p
to q with label ka; if there are several transitions between the same pair of
states, they are merged into one transition whose label is the sum of the former
labels. Second, two fresh states i0 (pre-initial) and t0 (post-final) are added, and
a transition with the expression k1 as label is created from i0 to every initial
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state with initial weight k, and a transition with label k1 is created from every
final state with weight k to t0.

Then, the elimination method runs as follow. At each step, a state p is con-
sidered. For every predecessor q of p, for every successor r of p, the transition
from q to r is updated as follow:

Then, the state p is deleted. If the state p has no loop, there is no factor F ∗

in the resulting expression.
At the end, only states i0 and t0 remain, and the label of the transition

from i0 to t0 denotes the behaviour of A. Notice that the result heavily depends
on the ordering on states during the elimination.

We present a variant of this algorithm for r-local automata in order to obtain
a pre-Hadamard expression. First, the states with incoming transitions with label
different from r are deleted before the other ones. Second, to get well-formed pre-
Hadamard expressions, the following rewriting is applied when two expressions
are added: if the expressions are of the form Er and Fr, then Er+Fr = (E+F)r.

Proposition 7. The variant of the elimination method applied to an r-local
automaton A yields a pre-Hadamard expression E(A) such that �E(A)� = |A|.
Proof. Let A = (Q1 ∪ Q2, E, I, T ) be an r-local automaton in 1KAutAr. Let i0
and t0 be respectively the pre-initial and post-final states added to A. Let R be
the set of states that remain at each step of the elimination. The first stage is
the removing of states in Q1; the following properties are invariant during this
stage :

∀p ∈ R, ∀q1 ∈ R \ Q2, p
E−→ q1 =⇒ E ∈ KRatExpA,

∀q2 ∈ Q2 ∩ R, p
E−→ q2 =⇒ E = Fr with F ∈ KRatExpA.

(15)

The second stage is the removing of states in Q2, and the invariants are:

∀p ∈ R, ∀q2 ∈ Q2 ∩ R, p
E−→ q2 =⇒ E = Fr with F ∈ KPreHadExpA,

p
E−→ t0 =⇒ E ∈ KPreHadExpA.

(16)

At the end, the label of the transition from i0 to t0 is in KPreHadExpA. ��

6.2 State Elimination Variant in 1KAutAr.

If an automaton in 1KAutAr is not r-local the algorithm first split states which
violate the r-local property.

Let B = (S, F, J, U) be in 1KAutAr. We define the automaton A = (Q1 ∪
Q2, E, I, T ) in 1KAutAr. Q1 and Q2 are two distinct copies of S; for every
state p in S, the corresponding state in Q1 (resp. Q2) is denoted p1 (resp. p2).
For every p, q in S, for every i in {1, 2},

I(p1) = J(p), I(p2) = 0, T (pi) = U(p),
∀a ∈ A, E(pi, a, q1) = F (p, a, q), E(pi, a, q2) = 0,

E(pi, r, q1) = 0, E(pi, r, q2) = F (p, r, q).
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Automaton A is r-local and is a covering (cf. [10]) of B: there is a bijection
from initial states of B onto initial states of A, with the same initial weights,
every state of A has the same final weight as the corresponding state in B, and
for each state pi of A, there is a bijection of transitions outgoing from pi to
transitions outgoing from p in B such that, for every transition (pi, a, qj) in A,
(p, a, q) is a transition in B with the same weight.

This implies a bisimulation between automata A and B: there is one and
only one way to lift up every computation of B in A. Therefore, there is a
canonical one-to-one mapping of computations of B into computations of A that
preserves both the labels and the weights. Hence, automata A and B have the
same behaviour.

Lemma 2. Every automaton in 1KAutAr admits an r-local covering.

Finally, we get an algorithm τ that fulfills the hypothesis of Theorem 2, from
which an algorithm that converts rotating automata to Hadamard expressions
is deduced.

Proposition 8. Let A be in RKAutA and let F be the pre-Hadamard expression
computed by the elimination method on a r-local covering of 1w(A). Then, ρ−1(F)
is a Hadamard expression such that �ρ−1(F)� = |A|.
Remark 1. It is possible to design an algorithm h that turns every expression
in KRatExpAr to a pre-Hadamard expression. Then for every algorithm τ which
converts weighted one-way automata into a rational expressions, the algorithm
ρ−1 ◦ h ◦ τ ◦ 1w converts weighted rotating automata to Hadamard expressions.
Nevertheless, it seems that it is more efficient to modify the algorithm τ such
that it directly outputs pre-Hadamard expressions.

References

1. Brzozowski, J.A., McCluskey, E.J.: Signal flow graph techniques for sequential
circuit state diagrams. IEEE Trans. Electron. Comput. EC–12(2), 67–76 (1963)

2. Caron, P., Flouret, M.: Glushkov construction for series: the non commutative case.
Int. J. Comput. Math. 80(4), 457–472 (2003)
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Abstract. We prove that the class of the languages recognized by one-
way deterministic 1-reversal bounded 1-counter machines is contained
in RCM, a class of languages that has been recently introduced and
that admits interesting properties. This is the first step to prove the
conjecture LDFCM � RCM, which says that for any fixed integer k all
the languages recognized by one-way deterministic 1-reversal bounded
k-counter machines are in RCM. We recall that this conjecture implies
that the generating function of a language in LDFCM is holonomic.

1 Introduction

A well-known result of Chomsky-Schützenberger [1] states that the generating
functions of regular languages are rational whereas the generating functions of
unambiguous context-free languages are algebraic. This fact allows us to use
analytic methods to determine properties of languages. For example, a method
to show that a context-free language L is inherently ambiguous, employed by
Flajolet in [2,3], consists of proving that the generating function of L is tran-
scendental. However, the problem of determining the class of functions to which
the generating function of a context-free language belongs is still open.

It is then interesting to look for suitable classes of languages having generat-
ing functions that belong to particular classes of functions. In this context, the
holonomic functions have been widely investigated since the end of 1980s. The
class of the holonomic functions in one variable is an extension of the class of
the algebraic functions and contains all the functions satisfying a linear differen-
tial equation with polynomial coefficients (see [4,5]). A first use of the holonomic
functions in the context of formal languages was in [6], where the authors proved
that the problem of deciding the holonomicity of the generating function of a
context-free language is equivalent to the problem of deciding whether a context-
free language is inherently ambiguous. Furthermore, a class of languages with
holonomic generating functions, called LCL, was introduced in [7] by means of
linear constraints on the number of occurrences of symbols of the alphabet. A
particular subclass LCLR � LCL was also studied in [6]. The idea of using con-
straints and finite state automata in order to define languages is also at the
basis of a family of automata called Parikh Automata and defined in [8,9]. In
particular, the subclass LPA of Parikh Automata on letters has been defined in
[10] (actually, as noted in [11], LLPA = LCLR). Recently, in [11] a wider class of
c© Springer International Publishing AG 2017
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languages with holonomic generating functions, called RCM, has been defined.
This class of languages is contained in LNFCM, the class of languages recog-
nized by nondeterministic one-way reversal bounded counter machines, whereas
it is not contained in LDFCM, the class of languages recognized by deterministic
one-way reversal bounded counter machines [12]. Lastly, in [11] the conjecture
LDFCM � RCM has been stated.

In this paper we prove that the class LDFCM(1,0,1) of languages recognized
by deterministic counter machines with one-way input tape and one 1-reversal
bounded counter is contained in RCM. This result is obtained by introducing
particular finite automata that we think can be exploited also in the general
case where the deterministic machine has k counters, for any fixed k. In other
words, we introduce a possible basis to prove the conjecture LDFCM � RCM. Fur-
thermore, the relation LDFCM(1,0,1) � RCM, together with the closure properties
of RCM and the results on the left and on the right quotient of languages in
LDFCM(1,0,1) provided in [13], allows us to show that some interesting subclasses
of LDFCM are contained in RCM.

We recall that for any class of languages L, the relation L ⊆ RCM implies
that the generating function of a language in L is holonomic. This provides a
method for proving that a language L is not in L, which resembles in some sense
the Flajolet methodology, used when L is the class of unambiguous context free
languages. Notice that for L = LDFCM(1,0,1) the generating function of a language
L ∈ L is algebraic (hence holonomic) since L is unambiguous context-free [14].

2 Preliminaries

In this section we give some basics about languages, classes of languages and
automata of our interest in the paper. Let Σ = {σ1, σ2, . . . , σh} be a finite
alphabet and w ∈ Σ�. For all σ ∈ Σ we indicate by |w|σ the number of occur-
rences of σ in w. The length of w is |w| =

∑
σ∈Σ |w|σ. Given two finite alphabets

Γ and Σ, a morphism μ : Γ � �→ Σ� is said to be length preserving if for all
w ∈ Γ � one has |μ(w)| = |w|. In particular, we are interested in length preserv-
ing morphisms that are injective on a fixed language L ⊆ Γ �, that is, morphisms
μ such that for all v, w ∈ L, if v �= w then μ(v) �= μ(w). We also define a function
κ : N �→ {0, 1} as κ(x) = 0 if x = 0 else 1.

2.1 Classes of Languages

Linear constraints on the number of occurrences of symbols in an alphabet have
been used in [7,11] to define two classes of languages with holonomic generating
functions, called LCL and RCM, respectively. In those papers, linear constraints
were formally defined as follows.

Definition 1 (linear constraint). A linear constraint on the occurrences of
symbols of Γ = {γ1, γ2, . . . , γh} in w ∈ Γ � is an expression of the form

h∑

i=1

ci|w|γi
� ch+1, with ci ∈ Z,� ∈ {<,≤,=, �=,≥, >}.
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Definition 2 (system of linear constraints). A system of linear constraints
C is either a linear constraint, or C1 ∨ C2 or C1 ∧ C2 or ¬C1, where C1, C2 are
systems of linear constraints.

We denote by [C] the language consisting of the words in Γ � that satisfy the
system of linear constraints C. Let L be a language on Γ , C a system of linear
constraints on the number of occurrences of symbols in Γ and μ : Γ � �→ Σ� a
morphism. We indicate by 〈L,C, μ〉 the language μ(L ∩ [C]) ⊆ Σ�. In [11] the
class of languages RCM has been defined as follows.

Definition 3 (RCM). RCM is the class of the languages 〈R,C, μ〉 where R is a
regular language on an alphabet Γ , C a system of linear constraints on Γ and
μ : Γ � �→ Σ� a length preserving morphism that is injective on R ∩ [C].

Example 1. Let EQUAL ⊆ {a, b, �}� be the language {a, b}� · {an�an|n ∈ N},
which is used in [10] to show that the class of languages recognized by determin-
istic Parikh Automata is strictly included in the class of languages recognized
by Parikh Automata. Let Γ = {a1, a2, a3, b1, c1}, R = (a1 + b1)�a�

2c1a
�
3, and

consider the linear constraint C given by |w|a2 = |w|a3 , together with the mor-
phism μ : Γ � �→ {a, b, �}� defined by μ(a1) = μ(a2) = μ(a3) = a, μ(b1) = b and
μ(c1) = �. It is immediate to see that μ is length preserving and injective on
R ∩ [C] (but not on R). Thus, one has EQUAL = 〈R,C, μ〉 ∈ RCM.

The class RCM admits several interesting properties. Indeed, it is closed under
union and intersection, it contains languages with holonomic generating func-
tion, and most of the decision problems (i.e. equivalence, inclusion, disjointness,
emptiness, universe) are decidable, see [11].

In Sect. 4, the class RCM will be compared to a class of languages recognized
by a particular family of counter machines. So, we recall that a two-way k-
counter machine is a finite automaton equipped with k counters. The operations
admitted on a counter are the increment or the decrement by 1, as well as the
comparison with 0. The machine is called l-reversal bounded if the count in
each counter alternately increases and decreases at most l times. We refer to
[12] for all definitions and for main results concerning the class DFCM(k,m, n)
(NFCM(k,m, n)) of deterministic (non-deterministic) (m,n)-reversal bounded k-
counter machines, that is, n-reversal bounded k-counter machines with a two-
way input tape, where the input head reverses direction at most m times. In
particular, we are interested in the class DFCM(k, 0, 1) where the input tape
is one-way and the counters can change from increasing to decreasing mode at
most once. Formally, M ∈ DFCM(k, 0, 1) is a 7-tuple M = (k,Q,Σ, $, δ, q̇, F ),
where k indicates the number of counters, Q is a finite set of states, Σ is the
input alphabet, $ is the right end-marker, δ is the transition function, q̇ ∈ Q is
the initial state and F ⊆ Q is the set of final states. The transition function is a
mapping from Q × (Σ ∪ {$}) × {0, 1}k into Q × {S,R} × {−1, 0,+1}k such that
if δ(q, a, c1, . . . , ck) = (p, d, d1, . . . , dk) and ci = 0 for some i, then di has to be
nonnegative to prevent negative values in a counter. The symbols S and R are
used to indicate the movement of the input tape head (S = stay, R = right).
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A configuration of M is a tuple (q, x$, n1, . . . , nk) where q ∈ Q, x ∈ Σ∗ is
the unread suffix of the input word and ni ∈ N represents the value of the i-th
counter. The transition relation on the set of configurations is denoted by →, and
its transitive closure by ∗→. Hence, we write (p, v, n1, . . . , nk) → (q, z, n′

1, . . . , n
′
k)

if and only if δ(p, σ, n1, . . . , nk) = (q, d, d1, . . . , dk), n′
i = ni + di for all i with

1 ≤ i ≤ k, and v = σz (if d = R) or z = v (if d = S). When there is only
one counter, we say that a transition (p, v, c) → (q, z, c′) is negative (positive,
nonnegative, stable, resp.) if c′ < c (c′ > c, c′ ≥ c, c′ = c, resp.). In the sequel,
we are interested in the relation ⇒, called one-symbol transition.

Definition 4 (⇒). Let A = (1, Q,Σ, $, δ, q̇, F ) ∈ DFCM(1, 0, 1). For any x ∈
Σ� and σ ∈ Σ we write (p, σx$, c) ⇒ (q, x$, c′) if and only if p, q ∈ Q, and
either δ(p, σ, κ(c)) = (q,R, d) with c′ = c + d, or δ(p, σ, κ(c)) = (q1, S, d1),
δ(q1, σ, κ(c + d1)) = (q2, S, d2), . . . , δ(qh, S, κ(c +

∑
i=1..h di)) = (q,R, dh+1),

with c′ = c +
∑

i=1..h+1 di.

Notice that the transition (p, σx$, c) ⇒ (q, x$, c′) uniquely identifies a sequence
{di} of integers in {−1, 0, 1} and a sequence {qi} of states in Q. A sequence of

|w| one-symbol transitions that reads a word w is shortened as (p,wx$, c)
|w|⇒

(q, x$, c′). A word w ∈ Σ� is accepted by M if and only if (q̇, w$, 0, . . . , 0)
|w|⇒

(p, $, c1, . . . , ck) ∗→ (q, $, c′
1, . . . , c

′
k), for some q ∈ F , with ci, c

′
i ≥ 0 for 1 ≤ i ≤ k.

The language recognized by M , denoted by L(M), is the set of all the words
accepted by M . Without loss of generality, we suppose that M always terminates
and has only one final state, denoted by q̈, and that a word is accepted with all
the counters equal to 0.

3 s-Automata and m-Automata

Let A = (1, Q,Σ, $, δ, q̇, {q̈}) be a counter machine in DFCM(1, 0, 1). A word
w ∈ L(A) can be uniquely written as w = vxyz where:

– v consists of the longest prefix of w that is read by a sequence of stable
transitions (the counter is always zero);

– the first symbol of x is associated with the first positive transition; the remain-
ing symbols of x are read by nonnegative transitions (the counter is always
greater than 0);

– the first symbol of y is associated with the first negative transition; the
remaining symbols of y are read by a sequence of negative or stable tran-
sitions with the counter greater than 0;

– z consists of the symbols read by a sequence of stable transitions occurring
on a zero counter.

So, in w we can distinguish between symbols that are not counted (all the
symbols in v and z, and possibly some symbols in x, y), symbols that are counted
positively (some of the symbols in x) and symbols that are counted negatively
(some of the symbols in y). Furthermore, at each step of the computation of A
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the counter is exactly in one of four different states, denoted by a value in the set
{0, 1, 2, 3}, called the global state of the counter. More precisely, 0 is the state of
a zero counter that has not been increased yet, 1 is the state of a counter that
has been increased but not decreased, 2 is the state of a counter that has been
increased and decreased and is greater than zero and, finally, 3 is the state of a
counter that has been increased and decreased and is equal to zero. The global
state of the counter may change from i to i+1, for 0 ≤ i ≤ 2, but not vice versa,
hence the ordering 0 < 1 < 2 < 3 naturally arises. A sequence {di} of integers
in {−1, 0, 1} is called 1-reversal acceptable if and only if di = −1 implies dj ≤ 0
for all j > i. Moreover, {di} is compatible with the global state α of the counter
if it is 1-reversal acceptable and:

– if α = 3 then ∀i di = 0;
– if α = 2 then ∀i di ≤ 0;
– if α = 0 then |{i|di = −1}| ≤ |{i|di = 1}|.
Let 0 ≤ α ≤ β ≤ 3 and consider a sequence s = {di}, with a = |{i|di = −1}|
and b = |{i|di = 1}|. We say that s changes the global state of the counter from
α to β if s is compatible with α and the conditions in the following table hold
(a dash indicates a case that can not occur).

β = 0 β = 1 β = 2 β = 3

α = 0 a = b = 0 b > a = 0 b > a > 0 a = b

α = 1 – a = 0 a > 0 a > b ≥ 0

α = 2 – – a ≥ b = 0 a > b = 0

α = 3 – – – a = b = 0

Let α, β be two global states of the counter, with α ≤ β. We say that a tran-
sition t = (p, σx$, c) ⇒ (q, x$, c′) changes α to β if the associated sequence of
increments {di} is compatible with α and changes α to β (the global state of the
counter in (q, x$, c′) becomes β). In particular, t is stable if it changes α to β
and α = β. (i.e. the global state of the counter in (q, x$, c′) is still α).

In the following we are interested in particular sets of states Qβ ⊆ Q associ-
ated with the global state β of the counter.

Definition 5 (Q0, Q1, Q2, Q3). Let (1, Q,Σ, $, δ, q̇, {q̈}) ∈ DFCM(1, 0, 1). For
any β, with 0 ≤ β ≤ 3, we define the subsets of states Qβ by considering only
the transitions occurring on symbols σ �= $:

(β = 0) Q0 is the set of all q ∈ Q that can be reached from q̇ by a sequence of
stable transitions (in each transition the counter is zero),

Q0 = {q ∈ Q|∃w ∈ Σ�, (q̇, wx$, 0)
|w|⇒ (q, x$, 0) is made of stable transitions};
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(β > 0) Consider the set of states Q′
β = {q ∈ Q|∃α, p, σ, c, 0 ≤ α < β, p ∈

Qα, σ ∈ Σ, c ≥ 0 s.t (p, σx$, c) ⇒ (q, x$, c′) changes α to β}. Then, Qβ =

Q′
β ∪ Q′′

β where Q′′
β = {q ∈ Q|∃w ∈ Σ�, p ∈ Q′

β , s.t. (p,wx$, c)
|w|⇒

(q, x$, c′) is made of stable transitions}.
A nonnegative cycle on σ ∈ Σ is a sequence of k different states q1, . . . , qk such
that δ(q1, σ, 0) = (q2, S, 0), δ(q2, σ, 0) = (q3, S, 0), . . . , δ(qk, σ, 0) = (q1, S, 0) or
δ(q1, σ, 1) = (q2, S, c1), δ(q2, σ, 1) = (q3, S, c2), . . . , δ(qk, σ, 1) = (q1, S, ck), with
ce ≥ 0 for 1 ≤ e ≤ k. Since A is deterministic and always terminates, we
can not find in A a nonnegative cycle. In other words, there is not a sequence
of nonnegative transitions that do not consume an input symbol (i.e. the input
head always stays) and lead A from a state q to itself. On the contrary, a negative
cycle may exist. Indeed, a sequence of k different states q1, q2, . . . , qk such that
δ(q1, σ, 1) = (q2, S, c1), δ(q2, σ, 1) = (q3, S, c2), . . . , δ(qk, σ, 1) = (q1, S, ck), with
ce ≤ 0 for all e and d =

∑
e ce < 0, corresponds to a cycle that resets the

counter. The integer d is called the weight of the cycle. Once A enters a state
q that belongs to a negative cycle (of weight d) on σ then, if the input symbol
is σ, the integer r stored in the counter is replaced by 0, and the state that is
reached when the counter becomes 0 can be associated with the modulus of the
value r by the weight d. This, together with the unread suffix of the input word
w, is the only information that A can exploit to accept or to reject w. Since A is
deterministic, the number of different negative cycles in A is finite. Every word
w is accepted (or rejected) by a computation of A with at most one negative
cycle. By recalling the previous decomposition w = vxyz of a word in L(A),
if no negative cycle is traversed then the sum C+ of all the increments caused
by symbols (in x) that are counted positively is just the opposite of the sum
C− of all the decrements caused by symbols (in y) that are counted negatively,
i.e. C+ + C− = 0. Otherwise, before entering a negative cycle on a symbol σ
of y, the relations r = C+ + C− > 0 and r mod d = k hold, for a suitable k
associated with a state of a negative cycle of weight d. In this case the value C−
does not consider the decrement −r caused by the symbol σ (associated with
the negative cycle that resets the counter). Thus, let D be the set of the weights
of all the negative cycles in A. If D �= ∅ we define π =

∏
d∈D d. By the previous

remarks, it follows that the exact value r of the counter is not needed when a
word is accepted through a negative cycle. Indeed, it is sufficient to know the
value r′ = r mod π, since r mod d = k if and only if r′ mod d = k.

All the previous remarks lead directly to a particular deterministic finite
state automaton A′, associated with a given A ∈ DFCM(1, 0, 1) and used in
Theorem 1 to show that LDFCM(1,0,1) � RCM. Actually, the construction of A′

depends on the occurrence in A of negative cycles of weight less than −1. Thus,
we first consider the case of deterministic 1-reversal bounded 1-counter machines
without negative cycles of weight less than −1. This leads to the notion of s-
automaton (s for simple). The construction is based on the definition of a new
(larger) alphabet Γ for A′, where the symbols are obtained by encoding the
possible events that occur during a transition of A on a symbol σ (that is, how
the counter is changed and how its global state evolves).
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Definition 6 (s-automaton). Let A = (1, Q,Σ, $, δ, q̇, {q̈}) ∈ DFCM(1, 0, 1)
be a counter machine without negative cycles of weight less than −1. The s-
automaton of A is the deterministic finite state automaton A′ = (Q′, Γ, δ′, q̇0, F )
where

Q′ = {qα|0 ≤ α ≤ 3, q ∈ Qα},

Γ = {σi, σ
′
j , σ

′′|σ ∈ Σ,−|Q| ≤ i ≤ |Q|,−|Q| ≤ j < 0},

F = {qα|α ∈ {0, 3}, q ∈ Q0 ∪ Q3 and inAone has (q, $, 0) ∗→ (q̈, $, 0)}.

and δ′ : Q′ × Γ �→ Q′ is defined by setting δ′(pα, γ) = qβ if and only if in A
there exists a transition (p, σx$, c) ⇒ (q, x$, c + d), for a suitable c ∈ N, which
changes the global state of the counter from α to β, and where γ (depending on
σ and d) is determined by Table 1-S below.

Table 1. Table 1-S (left) and Table 1-M (right)

α d β γ
1) 0 0 0 σ0

2) 0 > 0 1 σd

3) 0 > 0 2 σd

4) 0 0 3 σ0

5) 1 ≥ 0 1 σd

6) 1 any 2 σd

7) 1 < 0 3 σ′
d

8) 1 −c (neg. cycle) 3 σ′′

9) 2 ≤ 0 2 σd

10) 2 < 0 3 σ′
d

11) 2 −c (neg. cycle) 3 σ′′

12) 3 0 3 σ0

α d β γ j
1) 0 0 0 σ0 0
2) 0 > 0 1 σd d
3) 0 > 0 2 σd d
4) 0 0 3 σ0 0
5) 1 ≥ 0 1 σd (i + d) mod π
6) 1 any 2 σd (i + d) mod π
7) 1 < 0 3 σ′

d 0 (if i ≡ d mod π)
8) 1 −c (neg. cycle) 3 σ′′ 0
9) 2 ≤ 0 2 σd (i + d) mod π

10) 2 < 0 3 σ′
d 0 (if i ≡ d mod π)

11) 2 −c (neg. cycle) 3 σ′′ 0
12) 3 0 3 σ0 0

Notice that Table 1-S defines a deterministic automaton since A is deter-
ministic. For instance, the transitions 2 and 3 are not in conflict since they are
associated with sequences {di} with different properties. Indeed, the former cor-
responds to a sequence {di} with di ≥ 0 for all i and de = 1 for at least one e,
which changes the state of the counter from 0 to 1, whereas the latter implies
that |{di = 1}| > |{di = −1}| > 0, and then the state of the counter changes
from 0 to 2. Transitions 8 and 11 correspond to negative cycles. Here the decre-
ment d corresponds to the current value c of the counter. Since a computation
traverses a negative cycle at most once, a symbol σ′′ occurs at most once in a
word of A′.

Example 2. Let Σ = {a, b} and consider the language L of the words w1bbw2,
with w1, w2 ∈ Σ+, such that the factor bb does not occur in w1 and the number
of occurrences of bb in bbw2 is equal to the number of b’s in w1. It is imme-
diate to see that L is the unambiguos context free language recognized by the



182 P. Massazza

automaton A ∈ DFCM(1, 0, 1) at the top of Fig. 1, where each transition con-
sumes an input symbol (i.e. the input head always moves to the right) and an
arrow from p to q with label σ, c, d stands for δ(p, σ, c) = (q,R, d). By Defin-
ition 5, one has Q0 = {q̇, p, t}, Q1 = {q̇, p}, Q2 = {r, s} and Q3 = {r, s, t}.
Since A does not have a negative cycle, by Definition 6 the alphabet and the
set of states of the s-automaton A′ of A are Γ = {a0, a1, b−1, b0, b

′
−1} and

Q′ = {q̇0, p0, t0, q̇1, p1, r2, s2, r3, s3, t3}, respectively. Note that Γ is a proper
subset of the alphabet specified in Definition 6, as we consider only symbols
associated with existing transitions (e.g. a′′, b′′ or a′

−1 are not added to Γ ). The
automaton A′ is shown at the bottom of Fig. 1.

Fig. 1. The reversal bounded automaton A and the associated s-automaton A′.

When a counter machine A has a negative cycle of weight less than −1, the
finite state automaton associated with A can be obtained by considering the
modulus of the counter as a part of the information represented by a state. Such
automaton is called the m-automaton of A (m stands for modulus).

Definition 7 (m-automaton). Let A = (1, Q,Σ, $, δ, q̇, {q̈}) ∈ DFCM(1, 0, 1)
be a counter machine with at least one negative cycle of weight less than −1 and
let π =

∏
d∈D |d|, where D is the set of the weights of the negative cycles of A.
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The m-automaton of A is the finite state automaton A′ = (Q′, Γ, δ′, q̇0, F ) where

Q′ = {pα(0), qβ(i), |α ∈ {0, 3}, β ∈ {1, 2}, p ∈ Qα, q ∈ Qβ , 0 ≤ i < π},

Γ = {σi, σ
′
j , σ

′′|σ ∈ Σ,−|Q| ≤ i ≤ |Q|,−|Q| ≤ j < 0},

F = {pα(0)|α ∈ {0, 3}, p ∈ Q0 ∪ Q3 and in A one has(p, $, 0) ∗→ (q̈, $, 0)}.

and δ′ : Q′ × Γ �→ Q′ is defined by setting δ′(pα(i), γ) = qβ(j) if and only if in
A there exists a transition (p, σx$, c) ⇒ (q, x$, c + d), for suitable c ∈ N, p ∈ Qα

and q ∈ Qβ, which changes the global state of the counter from α to β, where γ
and j (depending on α, β, d) are given in Table 1-M above.

We point out that a word accepted by an s-automaton A′ (or by an m-
automaton) is either a word on the alphabet Σ0 = {σ0|σ ∈ Σ} or it contains
exactly one occurrence of a symbol in Σ′ = {σ′′, σ′

i|σ ∈ Σ, i < 0}. Such a symbol
is used to guess that the counter of A is zero.

4 LDFCM(1,0,1) and RCM

In this section we compare RCM to LDFCM(1,0,1). We recall that RCM is not
contained in LDFCM [11, Theorem 9], whereas it is contained in LNFCM [11, The-
orem 10]. In order to prove that LDFCM(1,0,1) � RCM it is sufficient to show that
for any L ∈ LDFCM(1,0,1) one can find a regular language R, a set C of linear
constraints and a morphism μ (injective on R ∩ [C]) such that L = 〈R,C, μ〉.
Theorem 1. LDFCM(1,0,1) � RCM.

Proof. First, by [11, Theorem 9] one has LDFCM(1,0,1) �= RCM. So, let A ∈
DFCM(1, 0, 1) be a counter machine with at least one negative cycle of weight
less than −1, A = (1, Q,Σ, $, δ, q̇, {q̈}), and let A′ = (Q′, Γ, δ′, q̇0, F ) be the m-
automaton of A (if A does not have a negative cycle of weight less than −1 we
construct the s-automaton of A and proceed similarly). We determine a system
of linear constraints C such that L(A) = 〈L(A′), C, μ〉, where μ : Γ � �→ Σ� is an
injective morphism on L(A′) ∩ [C] defined by μ(σ′′) = μ(σ′

i) = μ(σi) = σ.
We associate with each symbol σi, σ

′
i in Γ its weight W (σi) = W (σ′

i) = i. By
convention, the weight of σ′′ ∈ Γ is W (σ′′) = 1. Weights are used to determine
the set of constraints C. Indeed, A′ has been defined so that it reads a symbol
σi or σ′

i if and only if A adds i to the counter on reading σ = μ(σi) = μ(σ′
i).

Hence, the weight of a word of n symbols, w = γ1γ2 · · · γn ∈ L(A′), is W (w) =∑n
j=1 W (γj) =

∑
σ′′∈Γ |w|σ′′ +

∑
σ′
i∈Γ i|w|σ′

i
+

∑
σi∈Γ i|w|σi

. As observed at
the end of Sect. 3, a word w ∈ L(A′) either belongs to Σ∗

0 or has exactly one
occurrence of a symbol in Σ′. Thus, we consider the system of linear constraints
C given by C1 ∨ C2 ∨ C3, where
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C1 :
∑

σ′
i

|w|σ′
i
= 0 ∧

∑

σ′′
|w|σ′′ = 0 ∧

∑

i�=0

|w|σi
= 0,

C2 :
∑

σ′
i

|w|σ′
i
= 1 ∧

∑

σ′′
|w|σ′′ = 0 ∧

∑

σi,σ′
i

(i|w|σi
+ i|w|σ′

i
) = 0,

C3 :
∑

σ′
i

|w|σ′
i
= 0 ∧

∑

σ′′
|w|σ′′ = 1 ∧

∑

σi

i|w|σi
> 0.

Now, we prove that μ is injective on L(A′) ∩ [C]. Suppose that there exist
x1, x2 ∈ L(A′) ∩ [C] such that x1 = xτ1z1 and x2 = xτ2z2, with x, z1, z2 ∈ Γ �,
τ1, τ2 ∈ Γ , τ1 �= τ2, μ(τ1) = μ(τ2) = σ and z = μ(z1) = μ(z2). Let y = μ(x).
Note that no negative cycle is traversed when reading x, otherwise one has
τ1z1, τ2z2 ∈ Σ�

0 and then μ(τ1z1) = μ(τ2z2) implies τ1z1 = τ2z2, hence x1 = x2

(see Transitions 8, 11 and 12 of Table 1-M). Since A is deterministic, there is

only one pair (p, k), with p ∈ Q and k ≥ 0, such that (q̇, yσz$, 0)
|y|⇒ (p, σz$, k).

Furthermore, also s = (p, σz$, k) ⇒ (p̂, z$, k + i) is uniquely determined, as well
as i ∈ Z. If s contains a negative cycle, Transitions 8 and 11 of Table 1-M imply
that τ1 = τ2 = σ′′. Since τ1 and τ2 have to be different, we necessarily have
τ1 = σi and τ2 = σ′

i, and this implies i < 0. Once A′ makes Transition 7 or 10
(the only ones associated with a symbol σ′

i), all the subsequent input symbols
have weight zero (see Transition 12), since the transition guesses that the value
of the counter is −i. Thus, one has W (x1) = W (x)+ i+W (z1), with W (z1) < 0,
whereas W (x2) = W (x) + i + W (z2), with W (z2) = 0. In fact, Transitions 6
and 9 with i < 0 (corresponding to τ1 = σi) imply that all the subsequent input
symbols have weight at most 0, and that at least one of them has a negative
weight, hence W (z1) < 0. So, it is not possible to have x1, x2 ∈ [C]. Indeed, if
W (x) + i = 0 then W (x1) < 0 and x1 does not satisfy C. Otherwise, one has
W (x2) = W (x) + i > 0 and x2 does not satisfy C (note that z2 ∈ Σ�

0 ). So, μ is
injective on L(A′) ∩ [C].

Now, we prove that L(A) = L(A′) ∩ [C].
(L(A) ⊆ L(A′) ∩ [C]) Let w ∈ L(A). If w is accepted without incrementing

the counter then, on the input w̃ obtained from w by replacing each symbol σ
with σ0, the automaton A′ enters a final state (see Transition 1 of Table 1-M),
hence w̃ ∈ L(A′). Moreover, one has w̃ ∈ [C1] and so w̃ ∈ [C]. Otherwise, A
increases the counter at least once and then decreases it before accepting w, and
we write w = xσy, where σ is the rightmost symbol that is counted negatively.

Consider the sequence of transitions (q̇, xσy$, 0)
|x|⇒ (p, σy$, r) and note that no

negative cycle is traversed when reading x (otherwise the counter drops to zero
and can not be decreased on reading σ). One can find a word x′ ∈ Γ � such
that μ(x′) = x and, for any σ and i, the symbol σ′

i does not occur in x′ (x′ is
obtained by replacing σ by σi if A adds i to the counter on reading σ in x). Once
x′ has been read, A′ enters either the state p1(j) or p2(j), where j = r mod π
and r is equal to the sum of the weights of the symbols in x′, r = W (x′). Now,
consider the transition s = (p, σy$, r) ⇒ (q, y$, 0) of A. If s contains a negative
cycle, then the corresponding transition in A′ necessarily occurs on σ′′ and A′
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enters the state q3(0) (see Transitions 8 and 11 of Table 1-M). If in A one has

(q, y$, 0)
|y|⇒ (v, $, 0) ∗→ (qF , $, 0) then, on the input ỹ obtained by replacing

each σ in y with σ0, A′ will enter the final state v3(0) (starting from q3(0)).
Therefore, the word w′ = x′σ′′ỹ ∈ Γ �, with μ(w′) = w, is accepted by L(A′) and
satisfies C3,

∑
σ′′ |w′|σ′′ = 1 ∧ ∑

σ′
i
|w′|σ′

i
= 0 ∧ ∑

σi
i|w′|σi

= W (x′) = r > 0.

Otherwise, s does not contain a negative cycle and so when A′ is in p1(j) (or
in p2(j)) and reads σ′

−r it enters the state q3(0) (see Transitions 7 and 10 of
Table 1-M). Lastly, let ỹ be the word obtained from y by replacing each symbol
σ with σ0. Then, w′ = x′σ′

−rỹ ∈ Γ � is accepted by L(A′) and satisfies C2,
since

∑
σ′
i
|w′|σ′

i
= 1 ∧ ∑

σ′′ |w′|σ′′ = 0 and
∑

σi,σ′
i
(i|w′|σi

+ i|w′|σ′
i
) = W (x′) +

W (σ′
−r) + W (ỹ) = r − r + 0 = 0.

(L(A′)∩ [C] ⊆ L(A)) Let w ∈ L(A′)∩ [C]. If w ∈ Σ�
0 then, by Definition 7, in

A one has (q̇, μ(w)$, 0)
|w|⇒ (p, $, 0) ∗→ (q̈, $, 0), that is, μ(w) ∈ L(A). Otherwise,

w can be uniquely written as w = xτy, where y ∈ Σ�
0 and τ is either σ′

−r (for a
suitable r > 0) or σ′′. By Definition 7, it follows that the state reached by A′ on
reading x is either p1(j) or p2(j), with j = r mod π, where r = W (x) and p is the

state of A such that (q0, μ(xτy)$, 0)
|x|⇒ (p, μ(τy)$, r). By Transitions 8 and 11 of

Table 1-M, if τ = σ′′ then A has a negative cycle that resets the counter and such
that (p, σμ(y)$, r) ⇒ (u, μ(y)$, 0). This means that, on reading xσ′′, A′ enters

the state u3(0), and then (u3(0), y)
|y|⇒ (q3(0), ε) for a suitable q3(0) ∈ F ′. So, by

Definition 7, there exists a sequence of stable transitions such that (u, μ(y)$, 0)
|y|⇒

(q, $, 0) ∗→ (q̈, $, 0), that is, μ(xτy) = μ(w) ∈ L(A). Lastly, if τ = σ′
−r one has

W (x) = r, W (y) = 0 and W (σ′
−r) = −r (w satisfies C2). This implies that in

A one has (q̇, μ(x)σμ(y)$, 0)
|x|⇒ (p, σμ(y)$, r) ⇒ (u, μ(y)$, 0). Since in A′ one

has (u3(0), y)
|y|⇒ (q3(0), ε), it follows that in A there exists a sequence of stable

transitions (u, μ(y)$, 0)
|y|⇒ (q, $, 0) ∗→ (q̈, $, 0), hence μ(w) ∈ L(A). ��

Example 3. The language L of Example 2 is in RCM. Indeed, one has L =
〈R,C, μ〉 where R is the language recognized by the s-automaton of Fig. 1, μ
is the morphism defined by μ(a0) = μ(a1) = a and μ(b−1) = μ(b0) = μ(b1) =
μ(b′

−1) = b, and C is given by |w|b′
−1

= 1 ∧ |w|a1 − |w|b−1 − |w|b′
−1

= 0.

A language in LDFCM(1,0,1) is unambiguos context-free [14] and then its generating
function is algebraic, hence holonomic (any algebraic function is also holonomic).
This result can also be obtained as an immediate consequence of Theorem 1
and [11, Theorem 3], which states that the generating function of a language in
RCM is holonomic. A more significant result can be obtained by considering a
property [13] regarding the left or the right quotient of languages in LDFCM(1,0,1)

with languages from many families. In particular, by considering the class LNPCM

of the languages recognized by nondeterministic pushdown automata augmented
by a fixed number of reversal bounded counters, one has:

Corollary 1. Let L ∈ LDFCM(1,0,1) and L1, L2 ∈ LNPCM. Then, both (L−1
1 L)L−1

2

and L−1
1 (LL−1

2 ) are in RCM.
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Proof. By [13, Theorem 3], both (L−1
1 L)L−1

2 and L−1
1 (LL−1

2 ) belong to DFCM
and are a finite union of languages in LDFCM(1,0,1). As RCM is closed under union
[11, Theorem 4], the result follows from Theorem 1. ��
Since RCM is closed under union and intersection [11, Theorems 4 and 5], from
Theorem 1 we also obtain the following corollary.

Corollary 2. Let Lfin
DFCM(1,0,1) be the class containing all the languages L such

that L = L1op1L2 · · · Lk−1opk−1Lk, where k ∈ N, L1, . . . , Lk ∈ LDFCM(1,0,1) and
op1, . . . , opk−1 ∈ {∩,∪}. Then, one has Lfin

DFCM(1,0,1) ⊆ RCM.

5 Conclusions

We have shown that LDFCM(1,0,1) � RCM. This result may be considered as
the first step in the investigation of the relationship between RCM and other
well-known classes of languages defined by means of reversal bounded counter
machines or Parikh automata. In particular, the ideas behind s-automata and
m-automata seem to be generalizable to counter machines in DFCM(k, 0, 1),
for any fixed k > 1. This would prove the conjecture LDFCM � RCM stated in
[11]. We stress that proving this conjecture would lead to an important result
concerning the holonomicity of the generating functions of languages in LDFCM.
As far as we know, there is not a general result regarding the generating functions
of languages recognized by suitable classes of reversal bounded counter machines
(apart the case k = 1). This makes the previous conjecture of particular interest.
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Synchronization Problems in Automata
Without Non-trivial Cycles
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Abstract. We study the computational complexity of various problems
related to synchronization of weakly acyclic automata, a subclass of
widely studied aperiodic automata. We provide upper and lower bounds
on the length of a shortest word synchronizing a weakly acyclic automa-
ton or, more generally, a subset of its states, and show that the problem of
approximating this length is hard. We also show inapproximability of the
problem of computing the rank of a subset of states in a binary weakly
acyclic automaton and prove that several problems related to recognizing
a synchronizing subset of states in such automata are NP-complete.

Keywords: Synchronizing automata · Computational complexity ·
Weakly acyclic automata · Subset rank

1 Introduction

The concept of synchronization is widely studied in automata theory and has
a lot of different applications in such areas as manufacturing, coding theory,
biocomputing, semigroup theory and many others [25]. Let A = (Q,Σ, δ) be
a deterministic finite automaton (which we simply call an automaton in this
paper), where Q is a set of states, Σ is a finite alphabet and δ : Q × Σ → Q is a
transition function. Note that our definition of an automaton does not include
initial and accepting states. An automaton is called synchronizing if there exists a
word that maps all its states to a fixed state. Such word is called a synchronizing
word. A state q ∈ Q is called a sink state if all letters from Σ map q to itself.

In this paper synchronization of weakly acyclic automata is studied. A simple
cycle in an automaton A = (Q,Σ, δ) is a sequence q1, . . . , qk of its states such that
all the states in the sequence are different and there exist letters x1, . . . , xk ∈ Σ
such that δ(qi, xi) = qi+1 for 1 ≤ i ≤ k − 1 and δ(qk, xk) = q1. A simple
cycle is a self-loop if it consists of only one state. An automaton is called weakly
acyclic if all its simple cycles are self-loops. In other words, an automaton is
weakly acyclic if and only if there exists an ordering q1, q2, . . . , qn of its states
such that if δ(qi, x) = qj for some letter x ∈ Σ, then i ≤ j (such ordering is
called a topological sort [6]). Using topological sort, this class can be recognized in
polynomial time. Weakly acyclic automata are called acyclic in [10] and partially
c© Springer International Publishing AG 2017
A. Carayol and C. Nicaud (Eds.): CIAA 2017, LNCS 10329, pp. 188–200, 2017.
DOI: 10.1007/978-3-319-60134-2 16
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ordered in [4], where in particular the class of languages recognized by such
automata is characterized.

Weakly acyclic automata arise naturally in synchronizing automata theory.
Section 3 of this paper shows several examples of existing proofs where weakly
acyclic automata appear implicitly in complexity reductions. Surprisingly, most
of the computational problems that are hard for general automata remain very
hard in this class despite of its very simple structure. Thus, investigation of
weakly acyclic automata provides good lower bound on the complexity of many
problems for general automata. An automaton is called aperiodic if for any word
w ∈ Σ∗ and any state q ∈ Q there exists k such that δ(q, wk) = δ(q, wk+1),
where wk is a word obtained by k concatenations of w [23]. Obviously, weakly
acyclic automata form a proper subclass of aperiodic automata, thus all hardness
results hold for the class of aperiodic automata.

One of the most important questions in synchronizing automata theory is the
famous Černý conjecture stating that any n-state synchronizing automaton has
a synchronizing word of length at most (n−1)2. The conjecture is proved for var-
ious special cases, including orientable, Eulerian, aperiodic and other automata
(see [25] for references), but is still open in general. For more than 30 years, the
best upper bound was n3−n

6 , obtained in [15]. Recently, a small improvement
on this bound has been reported in [22]: the new bound is still cubic in n but
improves the coefficient 1

6 at n3 by 4
46875 .

The concept of synchronization is often used as an abstraction of returning
control over an automaton when there is no a priori information about its cur-
rent state, but the structure of the automaton is known. If the automaton is
synchronizing, we can apply a synchronizing word to it, and thus it will transit
to a known state. If we want to perform the same operation when the current
state is known to belong to some subset of states of the automaton, we come
to the definition of a synchronizing set. A set S ⊆ Q of states of an automaton
A is called synchronizing if there exists a word w ∈ Σ∗ and a state q ∈ Q such
that the word w maps each state s ∈ S to the state q. The word w is said to
synchronize the set S. It follows from the definition that an automaton is syn-
chronizing if and only if the set Q of all its states is synchronizing. Consider the
problem Sync Set of deciding whether a given set S of states of an automaton
A is synchronizing.

Sync Set
Input: An automaton A and a subset S of its states;
Output: Yes if S is a synchronizing set, No otherwise.

The Sync Set problem is PSPACE-complete [20], even for binary strongly
connected automata [26] (an automaton is called binary if its alphabet has size
two, and strongly connected if any state can be mapped to any other state by some
word). In [14] it is shown that the Sync Set problem is solvable in polynomial
time for orientable automata if the cyclic order respected by the automaton is
provided in the input. The problem of deciding whether the whole set of states
of an automaton is synchronizing is also solvable in polynomial time [25]. In [19]
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the complexity of finding a synchronizing set of maximum size in an automaton
is investigated.

While there is a simple cubic bound on the length of a synchronizing word
for the whole automaton, there exist examples of automata where the length of
a shortest word synchronizing a subset of states is exponential in the number of
states [26]. On the other hand, a trivial upper bound 2n − n − 1 on the length
of a shortest word synchronizing a subset of states in a n-state automaton is
known [26]. In [5] Cardoso considers the length of a shortest word synchronizing
a subset of states in a synchronizing automaton.

We assume that the reader is familiar with the notions of an NP-complete
problem (refer to the book by Sipser [21]), an approximation algorithm and a
gap-preserving reduction (for reference, see the book by Vazirani [24]).

Given an automaton A, the rank of a word w with respect to A is the number
|{δ(s, w) | s ∈ Q}|, i.e., the size of the image of Q under the mapping defined
in A by w. More generally, the rank of a word w with respect to a subset S of
states of A is the number |{δ(s, w) | s ∈ S}|. The rank of an automaton (resp.
of a subset of states) is the minimum among the ranks of all words w ∈ Σ∗ with
respect to the automaton (resp. to the subset of states).

In this paper we provide various results concerning computational complexity
and approximability of the problems related to the subset synchronization in
weakly acyclic automata. In Sect. 2 we prove some lower and upper bounds
on the length of a shortest word synchronizing a weakly acyclic automaton or,
more generally, a subset of its states. In Sect. 3 we investigate the computational
complexity of finding such words. In Sect. 4 we give strong inapproximability
results for computing the rank of a subset of states in binary weakly acyclic
automata. In Sect. 5 we show that several other problems related to recognizing
a synchronizing set in a weakly acyclic automaton are hard.

2 Bounds on the Length of Shortest Synchronizing Words

Each synchronizing weakly acyclic automaton is a 0-automaton (i.e., an automa-
ton with exactly one sink state), which gives an upper bound n(n−1)

2 on the length
of a shortest synchronizing word [18]. The same bound can be deduced from the
fact that each weakly acyclic automaton is aperiodic [23]. However, for weakly
acyclic automata a more accurate result can be obtained, showing that weakly
acyclic automata of rank r behave in a way similar to monotonic automata of
rank r (see [1]).

Theorem 1. Let A = (Q,Σ, δ) be a n-state weakly acyclic automaton, such that
there exists a word of rank r with respect to A. Then there exists a word of length
at most n − r and rank at most r with respect to A.

Proof. Observe that the rank of a weakly acyclic automaton equals to the number
of sink states in it. The conditions of the theorem imply that A has at most r
sink states.
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Consider a topological sort q1, . . . , qn of the set Q. Consider sets S1, . . . , St

constructed in the following way. Let xi, 1 ≤ i ≤ t, be a letter mapping the state
in Si−1 with the smallest index in the topological sort which is not a sink state
to some other state, where Si = {δ(q, xi) | q ∈ Si−1}, 1 ≤ i ≤ t, and S0 = Q.
Since A has at most r sink states, the word w = x1 . . . xt exists for any t ≤ n− r
and has rank at most r with respect to A. ��

The following simple example shows that the bound is tight. Consider an
automaton A = (Q,Σ, δ) with states q1, . . . , qn. Let each letter except some
letter x map each state to itself. For the letter x define the transition function
δ(qi, x) = qi+1 for 1 ≤ i ≤ n−r and δ(qi, x) = qi for n−r+1 ≤ i ≤ n. Obviously,
A has rank r and shortest words of rank r with respect to A have length n − r.

Theorem 2. Let S be a synchronizing set of states of size k in a weakly acyclic
n-state automaton A = (Q,Σ, δ). Then the length of a shortest word synchro-
nizing S is at most k(2n−k−1)

2 .

Proof. Consider a topological sort q1, . . . , qn of the set Q. Let qs be a state
such that all states in S can be mapped to it by some word w = x1 . . . xt. We
can assume that the images of all words x1 . . . xj , j ≤ t, are pairwise distinct,
otherwise some letter in this word can be removed. Then a letter xj maps at
least one state of the set {δ(q, x1 . . . xj−1) | q ∈ S} to some other state. Thus the
maximum total number of letters in w sending all states in S to qs is at most
(n − k) + (n − k + 1) + . . . + (n − 1) = k(2n−k−1)

2 , since application of each letter
of w increases the sum of the indices of reached states by at least one. ��

Consider a binary automaton A = (Q, {0, 1}, δ) with n states q1, . . . , qk−1,
s1, . . . , s�, t, where � = n − k. Define δ(qi, 0) = qi, δ(qi, 1) = qi+1 for 1 ≤
i ≤ k − 2, δ(qk−1, 1) = s1. Define also δ(si, 0) = si+1 for 1 ≤ i ≤ � − 1,
δ(si, 1) = t for 1 ≤ i ≤ � − 1. Define both transitions for s� and t as self-loops.
Set S = {q1, . . . , qk−1, s�}. The shortest word synchronizing S is (10l−1)k−1 of
length (k − 1)(n − k). The automaton in this example is binary weakly acyclic,
and even has rank 2. As was noted by an anonymous reviewer, for alphabet of
size n − 2, a better lower bound of (k−1)(2n−k−2)

2 can be shown.

3 Complexity of Finding Shortest Synchronizing Words

Now we proceed to the computational complexity of some problems, related
to finding a shortest synchronizing word for an automaton. Consider first the
following problem.

Shortest Sync Word
Input: A synchronizing automaton A;
Output: The length of a shortest synchronizing word for A.

First, we note that the automaton showing inapproximability of Shortest
Sync Word in the construction of Berlinkov [2] is weakly acyclic.
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Proposition 1. For any γ > 0, the Shortest Sync Word problem for n-state
weakly acyclic automata with alphabet of size at most n1+γ cannot be approxi-
mated in polynomial time within a factor of d log n for any d < csc unless P =
NP, where csc is some constant.

In Berlinkov’s reduction to the binary case, the automaton is no longer
weakly acyclic. However, the binary automaton showing NP-hardness of Short-
est Sync Word in Eppstein’s construction [7] is weakly acyclic.

Proposition 2. Shortest Sync Word is NP-hard for binary weakly acyclic
automata.

Consider now the following more general problem.

Shortest Set Sync Word
Input: An automaton A and a synchronizing subset S of its states;
Output: The length of a shortest word synchronizing S.

It follows from Theorem 2 that the decision version of this problem (asking
whether there exists a word of length at most k synchronizing S) is in NP for
weakly acyclic automata, so it is reasonable to investigate its approximability.

Theorem 3. The Shortest Set Sync Word problem for n-state binary
weakly acyclic automata cannot be approximated in polynomial time within a
factor of O(n

1
4−ε) for any ε > 0 unless P = NP.

Proof. To prove this theorem, we construct a gap-preserving reduction from
the Shortest Sync Word problem in p-state binary automata, which cannot
be approximated in polynomial time within a factor of O(p1−ε) for any ε > 0
unless P = NP [8]. Let a binary automaton A = (Q, {0, 1}, δ) be the input of
Shortest Sync Word. Let Q = {q1, . . . , qp}. Construct a binary automaton
A′ = (Q′, {0, 1}, δ′) with the set of states Q′ = {q

(j)
i | 1 ≤ i ≤ p, 1 ≤ j ≤ p3 +1}.

Define δ′(q(j)i , x) = q
(j+1)
k for 1 ≤ i ≤ p, 1 ≤ j ≤ p3, x ∈ {0, 1}, where k is such

that qk = δ(qi, x). Define δ′(q(p
3+1)

i , x) = q
(p3+1)
i for 1 ≤ i ≤ p and x ∈ {0, 1}.

Take S′ = {q
(1)
i | 1 ≤ i ≤ p}.

Observe that any word synchronizing S′ in A′ is a synchronizing word for A
because of the definition of δ′. In the other direction, as a shortest synchronizing
word for a p-state automaton has length at most p3 [15], a shortest synchronizing
word for A also synchronizes S′ in A′. Thus, the length of a shortest synchroniz-
ing word for A equals to the length of a shortest word synchronizing S′ in A′,
and we get a gap-preserving reduction with gap O(p1−ε) = O(n

1
4−ε), as A′ has

O(p4) states. Finally, it is easy to see that A′ is binary weakly acyclic. ��
As was kindly reported by an anonymous reviewer, by reducing from the

automata in the construction of Gawrychowski and Straszak [8], the inap-
proximability factor in the theorem can be improved to O(n

1
3−ε), because the

automata in their construction satisfy the Černý conjecture.
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4 Computing the Rank of a Subset of States

Assume that we know that the current state of the automaton A belongs to
a subset S of its states. Even if it is not possible to synchronize S, it can be
reasonable to minimize the size of the set of possible states of A, reducing the
uncertainty of the current state as much as possible. One way to do it is to map
S to a set S′ of smaller size by applying some word to A. Recall that the size of
the smallest such set S′ is called the rank of S. Consider the following problem
of finding the rank of a subset of states in a given automaton.

Set Rank
Input: An automaton A and a set S of its states;
Output: The rank of S in A.

The rank of an automaton, that is, the rank of the set of its states, can be
computed in polynomial time [16]. However, since the automaton in the proof
of PSPACE-completeness of Sync Set in [17] has rank 2 (and thus each subset
of states in this automaton has rank either 1 or 2), it follows immediately that
there is no polynomial c-approximation algorithm for the Set Rank problem
for any c < 2 unless P = PSPACE. It is possible to get much stronger bounds,
as it is shown by the results of this section.

We shall need the Chromatic Number problem. A proper colouring of a
graph G = (V,E) is a colouring of the set V in such a way that no two adjacent
vertices have the same colour. The chromatic number of G, denoted χ(G), is the
minimum number of colours in a proper colouring of G. A set of vertices in a
graph is called independent if no two vertices in this set are adjacent. A proper
colouring of a graph can be also considered as a partition of the set of its vertices
into independent sets.

Chromatic Number
Input: A graph G;
Output: The chromatic number of G.

This problem cannot be approximated within a factor of O(p1−ε) for any ε > 0
unless P = NP, where p is the number of vertices in the graph [27].

Theorem 4. The Set Rank problem for n-state weakly acyclic automata with
alphabet of size O(

√
n) cannot be approximated within a factor of O(n

1
2−ε) for

any ε > 0 unless P = NP.

Proof. We shall prove this theorem by constructing a gap-preserving reduc-
tion from the Chromatic Number problem. Given a graph G = (V,E),
V = {v1, v2, . . . , vp}, we construct an automaton A = (Q,Σ, δ) as follows.
The alphabet Σ consists of letters ṽ1, . . . , ṽp corresponding to the vertices
of G, together with a switching letter ν. We use p identical synchronizing
gadgets T (k), 1 ≤ k ≤ p, such that each gadget synchronizes a subset of
states corresponding to an independent set in G. Gadget T (k) consists of a set
{s

(k)
i , t

(k)
i | 1 ≤ i ≤ p} ∪ {f (k)} of states.
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The transition function δ is defined as following. For each gadget T (k), for each
1 ≤ i ≤ p, the state s

(k)
i is mapped to f (k) by the letter ṽi. For each vivj ∈ E the

state s
(k)
i is mapped to t

(k)
i by the letter ṽj , and the state s

(k)
j is mapped to t

(k)
j

by the letter ṽi. All yet undefined transitions corresponding to letters ṽ1, . . . , ṽp

map a state to itself.
It remains to define the transitions corresponding to ν. For each 1 ≤ k ≤ p−1,

ν maps t
(k)
i and s

(k)
i to s

(k+1)
i , and f (k) to itself. Finally, ν acts on all states in

T (p) as a self-loop.
Define S = {s

(1)
i | 1 ≤ i ≤ p}. We shall prove that the rank of S is equal to

the chromatic number of G. Consider a proper colouring of G with the minimum
number of colours and let I1 ∪ . . . ∪ Iχ(G) be the partition of G into indepen-
dent sets defined by this colouring. For each Ij , consider a word wj obtained
by concatenating the letters corresponding to the vertices in Ij in some order.
Consider now the word w1νw2ν . . . νwχ(G). This word maps the set S to the set
{f (i) | 1 ≤ i ≤ χ(G)}, which proves that the rank of S is at most χ(G).

In the other direction, note that after each reading of ν all states except
f (k), 1 ≤ k ≤ p − 1, are mapped to the next synchronizing gadget (except the
last gadget T (p) which is mapped to itself). By definition of δ, only a subset of
states corresponding to an independent set of vertices can be mapped to some
particular f (k), and the image of S after reading any word is a subset of the
states in some gadget together with some of the states f (k), 1 ≤ k ≤ p. Hence,
the rank of S is at least χ(G).

Thus we have a gap-preserving reduction from the Chromatic Number
problem to the Set Rank problem with gap Θ(p1−ε) for any ε > 0. It is easy to
see that n = Θ(p2), A is weakly acyclic and its alphabet has size O(

√
n), which

finishes the proof of the theorem. ��
Using the classical technique of reducing the alphabet size (see [26]), O(n

1
3−ε)

inapproximability can be proved for binary automata. To prove the same bound
for binary weakly acyclic automata, we have to refine the technique of the proof
of the previous theorem.

Theorem 5. The Set Rank problem for n-state binary weakly acyclic
automata cannot be approximated within a factor of O(n

1
3−ε) for any ε > 0

unless P = NP.

Proof. To prove this theorem we construct a gap-preserving reduction from the
Chromatic Number problem, extending the proof of the previous theorem.

Given a graph G = (V,E), V = {v1, v2, . . . , vp}, we construct an automaton
A = (Q, {0, 1}, δ). In our reduction we use two kinds of gadgets: p synchronizing
gadgets T (k), 1 ≤ k ≤ p, and p waiting gadgets R(k), 1 ≤ k ≤ p. Gadget T (k)

consists of a set {v
(k)
i,j | 1 ≤ i, j ≤ p} of states, together with a state f (k), and

R(k), 1 ≤ k ≤ p, consists of the set {u
(k)
i,j | 1 ≤ i, j ≤ p}.
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For each i, j, k, 1 ≤ i, j, k ≤ p, the transition function δ is defined as:

δ(v(k)
i,j , 0) =

{
u
(k)
i,j if i = j,

v
(k)
i+1,j otherwise

δ(v(k)
i,j , 1) =

{
u
(k)
i,j if there is an edge vivj ∈ E,

v
(k)
i+1,j otherwise

Here all v
(k)
p+1,j , 1 ≤ j ≤ p, coincide with f (k). We set δ(u(k)

i,j , x) = u
(k)
i+1,j for

x ∈ {0, 1}, 1 ≤ i, k ≤ p − 1, 1 ≤ j ≤ p, and δ(u(k)
p,j , x) = v

(k+1)
1,j for 1 ≤ j ≤ p,

1 ≤ k ≤ p − 1, x ∈ {0, 1}. The states u
(p)
i,j are sink states: both letters 0 and 1

act on them as self-loops. Finally, we set S = {v
(1)
1,j | 1 ≤ j ≤ p}.

The idea of the presented construction is similar to the construction in the
proof of Theorem 4. A synchronizing gadget T (k) synchronizes a set S(k) ⊆ S of
states corresponding to some independent set in G. All the states corresponding
to the vertices adjacent to vertices corresponding to S(k) are mapped to the
corresponding waiting gadget R(k), and get to the next synchronizing gadget
T (k+1) only after the states of S(k) are synchronized (and thus mapped to f (k)).
Hence, the minimum size of a partition of V into independent sets equals to the
rank of S. We omit the details because of the space limitations. The number of
states in A is O(p3). Thus, we get O(n

1
3−ε) inapproximability. ��

Mycielski [13] provides an example of a series of graphs which do not have
three pairwise adjacent vertices, but have arbitrary large chromatic number.
The reduction in Theorem 5 together with this example can be used to prove
the following result showing that there is almost no connection between subset
rank and pairwise synchronization of elements in this subset in binary weakly
acyclic automata.

Corollary 1. There exists a pair of a binary weakly acyclic automaton A and
a subset S of its states such that for any three states in S at least two of them
form a synchronizing subset, but the rank of S is arbitrary large.

5 Subset Synchronization

In this section, we obtain complexity results for several problems related to
subset synchronization in weakly acyclic automata. We adapt Eppstein’s con-
struction from [7], which is a powerful and flexible tool for such proofs. We shall
need the following NP-complete SAT problem [21].

SAT
Input: A set X of n boolean variables and a set C of m clauses;
Output: Yes if there exists an assignment of values to the variables in X

such that all clauses in C are satisfied, No otherwise.
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Theorem 6. The Sync Set problem in binary weakly acyclic automata is NP-
complete.

Proof. Because of the polynomial upper bound on the length of a shortest word
synchronizing a subset of states proved in Theorem 2, we can use such word as
a certificate. Thus, the problem is in NP.

We reduce the SAT problem. Given X and C, we construct an automaton
A = (Q, {0, 1}, δ). For each clause cj , we construct n+1 states y

(j)
i , 1 ≤ i ≤ n+1,

in Q. We introduce also a state f ∈ Q. The transitions from y
(j)
i correspond to the

occurrence of xi in cj in the following way: for 1 ≤ i ≤ n, 1 ≤ j ≤ m, δ(y(j)
i , a) =

f if the assignment xi = a, a ∈ {0, 1}, satisfies cj , and δ(y(j)
i , a) = y

(j)
i+1 otherwise.

The transition function δ also maps y
(j)
n+1 to itself for all 1 ≤ j ≤ m and both

letters 0 and 1.
Let S = {y

(j)
1 | 1 ≤ j ≤ m}. The word w = a1a2 . . . an synchronizes S if ai

is the value of xi in an assignment satisfying C, and vice versa. Thus, the set is
synchronizing if and only if all clauses in C can be satisfied by some assignment
of binary values to the variables in X. ��

The proof of Theorem 6 can be used to prove the hardness of a special case
of the following problem, which is PSPACE-complete in general [11].

Finite Automata Intersection
Input: Automata A1, . . . , Ak (with initial and accepting states);
Output: Yes if there is a word which is accepted by all automata, No

otherwise.

Theorem 7. Finite Automata Intersection is NP-complete when all
automata in the input are binary weakly acyclic.

Proof. Observe first that if a word which is accepted by all automata exists then
a shortest such word w has length at most linear in the total number of states
in all automata. Indeed, for each automaton consider a topological sort of the
set of its states. Each letter of w maps at least one state in some automaton
to some other state, which has larger index in the topological sort of the set of
states of this automaton. Thus, the considered problem is in NP.

For the hardness proof, we use the same construction as in Theorem 6.
Provided X and C, define A in the same way as in Theorem 6. Define Aj =
(Qj , {0, 1}, δj) as following. Take Qj = {y

(j)
i , 1 ≤ i ≤ n + 1} ∪ {f} and δj to

be the restriction of δ to the set Qj . Set y
(j)
1 to be the input state and f to be

the only accepting state of Aj . Then there exists a word accepted by automata
A1, . . . , Am if and only if all clauses in C are satisfiable by some assignment. ��

To obtain the next results, we shall need a modified construction of the
automaton from the proof of Theorem 6, as well as some new definitions. A
partial automaton is a triple (Q,Σ, δ), where Q and Σ are the same as in the
definition of a finite deterministic automaton, and δ is a partial transition func-
tion (i.e., the transition function which may be undefined for some argument
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values). Given an instance of the SAT problem, construct a partial automaton
Abase = (Q, {0, 1}, δ) as following. We introduce a state f ∈ Q. For each clause
cj , we construct n + 1 states y

(j)
i , 1 ≤ i ≤ n + 1, in Q. For each cj , construct

states z
(j)
i for hi + 1 ≤ i ≤ n + 1, where hi is the smallest index of a variable

occurring in cj . The transitions from y
(j)
i correspond to the occurrence of xi in

cj in the following way: for 1 ≤ i ≤ n, δ(y(j)
i , a) = z

(j)
i+1 if the assignment xi = a,

a ∈ {0, 1}, satisfies cj , and δ(y(j)
i , a) = y

(j)
i+1 otherwise. For x ∈ {0, 1}, we set

δ(z(j)i , a) = z
(j)
i+1 for hi + 1 ≤ i ≤ n, 1 ≤ j ≤ m, a ∈ {0, 1}. The transition

function δ also maps z
(j)
n+1, 1 ≤ j ≤ m, and f to f for both letters 0 and 1.

A word w is said to carefully synchronize a partial automaton A if it maps all
its states to the same state q, and each mapping corresponding to a prefix of w
is defined for each state. The automaton A is then called carefully synchronizing.
We use Abase to prove the hardness of the following problem.

Careful Synchronization
Input: A partial automaton A;
Output: Yes if A is carefully synchronizing, No otherwise.

For binary automata, Careful Synchronization is PSPACE-complete
[12]. We call a partial automaton aperiodic if for any word w ∈ Σ∗ and
any state q ∈ Q there exists k such that either δ(q, wk) is undefined, or
δ(q, wk) = δ(q, wk+1).

Theorem 8. Careful Synchronization is NP-hard for aperiodic partial
automata over a three-letter alphabet.

Proof. We reduce the SAT problem. Given X and C, we first construct Abase.
Then we add an additional letter r to the alphabet of Abase and introduce m new
states s(m). For 1 ≤ i ≤ n, 1 ≤ j ≤ m, we define δ(s(j), r) = y

(j)
1 , δ(y(j)

i , r) = y
(j)
1 ,

δ(z(j)i , r) = y
(j)
1 , δ(f, r) = f . All other transitions are left undefined. Let us call

the constructed automaton A.
The automaton A is carefully synchronizing if and only if all clauses in C can

be satisfied by some assignment of binary values to the variables in X. Moreover,
the word w = rw1w2 . . . wn0, is carefully synchronizing if wi is the value of xi in
such an assignment.

Indeed, note that the first letter of w is necessarily r, as it is the only letter
defined for all the states. Moreover, each word starting with r maps Q to a subset
of {y

(j)
i , z

(j)
i | 1 ≤ j ≤ m + 1} ∪ {f}. The only way for a word to map all states

to f is to map them first to the set {z
(j)
n+1 | 1 ≤ j ≤ m}, because there are no

transitions defined from any y
(j)
n+1, except the transitions defined by r. But this

exactly means that there exists an assignment satisfying C.
The constructed automaton is aperiodic, because each cycle which is not a

self-loop contains exactly one letter r. ��
By using the trick from [9] of adding one new letter mapping the state f to all

states and undefined for all other states, and considering the transition matrices
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of the obtained non-deterministic automaton, the complexity of the following
problem can be obtained from Theorem 8.

Positive Matrix
Input: A set M1, . . . , Mk of n × n binary matrices;
Output: Yes if there exists a sequence Mi1 × . . . × Mik of multiplications

(possibly with repetitions) providing a matrix with all elements equal to
1, No otherwise.

Corollary 2. Positive Matrix is NP-hard for two upper-triangular and two
lower-triangular matrices.

Finally, we show the hardness of the following problem (PSPACE-complete
in general [3]).

Subset Reachability
Input: An automaton A = (Q,Σ, δ) and a subset S of its states;
Output: Yes if there exists a word w such that {δ(q, w) | q ∈ Q} = S, No

otherwise.

Theorem 9. Subset Reachability is NP-complete for weakly acyclic
automata.

Proof. Consider a topological sort of Q. Let w be a shortest word mapping Q to
some reachable set of states. Then each letter of w maps at least one state to a
state with a larger index in the topological sort. Thus w has length O(|Q|2), since
the maximum total number of such mappings is (|Q|−1)+(|Q|−2)+ . . .+1+0.
Thus, the considered problem is in NP.

For the NP-hardness proof, we again reduce the SAT problem. Given an
instance of SAT, construct Abase first. Next, add a transition δ(y(j)

n+1, a) = f for
1 ≤ j ≤ m, a ∈ {0, 1}, resulting in a deterministic automaton A.

Similar to the proof of Theorem 8, C is satisfiable if and only if the set
{z

(n+1)
j | 1 ≤ j ≤ m} ∪ {f} is reachable in A. ��
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Abstract. We study the properties of syntactic monoids of bifix-free
regular languages. In particular, we solve an open problem concerning
syntactic complexity: We prove that the cardinality of the syntactic
semigroup of a bifix-free language with state complexity n is at most
(n− 1)n−3 + (n− 2)n−3 + (n− 3)2n−3 for n � 6. The main proof uses a
large construction with the method of injective function. Since this bound
is known to be reachable, and the values for n � 5 are known, this com-
pletely settles the problem. We also prove that (n−2)n−3+(n−3)2n−3−1
is the minimal size of the alphabet required to meet the bound for n � 6.
Finally, we show that the largest transition semigroups of minimal DFAs
which recognize bifix-free languages are unique up to renaming the states.

1 Introduction

The syntactic complexity [11] σ(L) of a regular language L is defined as the size of
its syntactic semigroup [17]. It is known that this semigroup is isomorphic to the
transition semigroup of the quotient automaton D and of a minimal deterministic
finite automaton accepting the language. The number n of states of D is the state
complexity of the language [19], and it is the same as the quotient complexity [2]
(number of left quotients) of the language. The syntactic complexity of a class
of regular languages is the maximal syntactic complexity of languages in that
class expressed as a function of the quotient complexity n.

Syntactic complexity is related to the Myhill equivalence relation [16], and
it counts the number of classes of non-empty words in a regular language which
act distinctly. It provides a natural bound on the time and space complexity of
algorithms working on the transition semigroup. For example, a simple algorithm
checking whether a language is star-free just enumerates all transformations and
verifies whether none of them contains a non-trivial cycle [15].

Syntactic complexity does not refine state complexity, but used as an addi-
tional measure it can distinguish particular subclasses of regular languages
from the class of all regular languages, whereas state complexity alone cannot.
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For example, the state complexity of basic operations in the class of star-free
languages is the same as in the class of all regular languages (except the reversal,
where the tight upper bound is 2n−1 − 1 see [8]).

Finally, the largest transition semigroups play an important role in the study
of most complex languages [3] in a given subclass. These are languages that meet
all the upper bounds on the state complexities of Boolean operations, product,
star, and reversal, and also have maximal syntactic semigroups and most complex
atoms [10]. In particular, the results from this paper enabled the study of most
complex bifix-free languages [12].

A language is prefix-free if no word in the language is a proper prefix of
another word in the language. Similarly, a language is suffix-free if there is no
word that is a proper suffix of another word in the language. A language is bifix-
free if it is both prefix-free and suffix-free. Prefix-, suffix-, and bifix-free languages
are important classes of codes, which have numerous applications in such fields
as cryptography and data compression. Codes have been studied extensively;
see [1] for example.

Syntactic complexity has been studied for a number of subclasses of regular
languages (e.g., [4–6,8,13,14]). For bifix-free languages, the lower bound (n −
1)n−3 + (n − 2)n−3 + (n − 3)2n−3 for the syntactic complexity for n � 6 was
established in [6]. The values for n � 5 were also determined.

The problem of establishing tight upper bound on syntactic complexity can
be quite challenging, depending on the particular subclass. For example, it is
easy for prefix-free languages and right ideals, while much more difficult for
suffix-free languages and left ideals. The case of bifix-free languages studied in
this paper requires an even more involved proof, as the structure of maximal
transition semigroup is more complicated.

Our main contributions are as follows:

1. We prove that (n − 1)n−3 + (n − 2)n−3 + (n − 3)2n−3 is also an upper bound
for syntactic complexity for n � 8. To do this, we apply the general method
of injective function (cf. [7,9]). The construction here is much more involved
than in the previous cases, and uses a number of tricks for ensuring injectivity.

2. We prove that the transition semigroup meeting this bound is unique for
every n � 8.

3. We refine the witness DFA meeting the bound by reducing the size of the
alphabet to (n − 2)n−3 + (n − 3)2n−3 − 1, and we show that it cannot be any
smaller.

4. Using a dedicated algorithm, we verify by computation that two semigroups
W�5

bf and W�6
bf (defined below) are the unique largest transition semigroups

of a minimal DFA of a bifix-free language, respectively for n = 5 and n = 6, 7
(whereas they coincide for n = 3, 4).

In summary, for every n we have determined the syntactic complexity, the unique
largest semigroups, and the minimal sizes of the alphabets required; this com-
pletely solves the problem for bifix-free languages.

The full version of this paper is available at [18].
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2 Preliminaries

Let Σ be a non-empty finite alphabet, and let L ⊆ Σ∗ be a language. If w ∈ Σ∗

is a word, L.w denotes the left quotient or simply quotient of L by w, which is
defined by L.w = {u | wu ∈ L}. The number of quotients of L is its quotient
complexity [2] κ(L). From the Myhill-Nerode Theorem, a language is regular if
and only if the set of all quotients of the language is finite. We denote the set
of quotients of regular L by K = {K0, . . . ,Kn−1}, where K0 = L = L.ε by
convention.

A deterministic finite automaton (DFA) is a tuple D = (Q,Σ, δ, q0, F ), where
Q is a finite non-empty set of states, Σ is a finite non-empty alphabet, δ : Q×Σ →
Q is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of
final states. We extend δ to a function δ : Q × Σ∗ → Q as usual.

The quotient DFA of a regular language L with n quotients is defined by
D = (K,Σ, δD,K0, FD), where δD(Ki, w) = Kj if and only if Ki.w = Kj ,
and FD = {Ki | ε ∈ Ki}. Without loss of generality, we assume that Q =
{0, . . . , n − 1}. Then D = (Q,Σ, δ, 0, F ), where δ(i, w) = j if δD(Ki, w) = Kj ,
and F is the set of subscripts of quotients in FD. A state q ∈ Q is empty if its
quotient Kq is empty. The quotient DFA of L is isomorphic to each complete
minimal DFA of L. The number of states in the quotient DFA of L (the quotient
complexity of L) is therefore equal to the state complexity of L.

In any DFA D, each letter a ∈ Σ induces a transformation on the set Q
of n states. We let Tn denote the set of all nn transformations of Q; then Tn

is a monoid under composition. The image of q ∈ Q under transformation t
is denoted by qt, and the image of a subset S ⊆ Q is St = {qt | q ∈ S}. If
s, t ∈ Tn are transformations, their composition is denoted by st and defined by
q(st) = (qs)t. The identity transformation is denoted by 1, and we have q1 = q
for all q ∈ Q. By (S → q), where S ⊆ Q and q ∈ Q, we denote a semiconstant
transformation that maps all the states from S to q and behaves as the identity
function for the states in Q \ S. A constant transformation is the semiconstant
transformation (Q → q), where q ∈ Q. A unitary transformation is ({p} → q),
for some distinct p, q ∈ Q; this is denoted by (p → q) for simplicity.

The transition semigroup of D is the semigroup of all transformations gen-
erated by the transformations induced by Σ. Since the transition semigroup of
a minimal DFA of a language L is isomorphic to the syntactic semigroup of
L [17], the syntactic complexity of L is equal to the cardinality of the transition
semigroup of D.

The underlying digraph of a transformation t ∈ Tn is the digraph (Q,E),
where E = {(q, qt) | q ∈ Q}. We identify a transformation with its underlying
digraph and use usual graph terminology for transformations: The in-degree of
a state q ∈ Q is the cardinality |{p ∈ Q | pt = q}|. A cycle in t is a cycle in its
underlying digraph of length at least 2. A fixed point in t is a self-loop in its under-
lying digraph. The orbit of a state q ∈ Q in t is a connected component containing
q in its underlying digraph, that is, the set {p ∈ Q | pti = qtj for some i, j � 0}.
Note that every orbit contains either exactly one cycle or one fixed point. The
distance in t from a state p ∈ Q to a state q ∈ Q is the length of the path in
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the underlying digraph of t from p to q, that is, min{i ∈ N | pti = q}, and is
undefined if no such path exists. If a state q does not lie in a cycle, then the tree
of q is the underlying digraph of t restricted to the states p such that there is a
path from p to q.

2.1 Bifix-Free Languages and Semigroups

Let Dn = (Q,Σ, δ, 0, F ), where Q = {0, . . . , n−1}, be a minimal DFA accepting
a bifix-free language L, and let T (Dn) be its transition semigroup. We also define
QM = {1, . . . , n − 3} (the set of the “middle” non-special states).

The following properties of bifix-free languages, slightly adapted to our ter-
minology, are well known [6]:

Lemma 1. A minimal DFA Dn = (Q,Σ, δ, 0, F ) of a bifix-free languages L
satisfies the following properties:

1. There is an empty state, which is n − 1 by convention.
2. There exists exactly one final quotient, which is {ε}, and whose state is n− 2

by convention, so F = {n − 2}.
3. For u, v ∈ Σ+, if L.v �= ∅, then L.v �= L.uv.
4. In the underlying digraph of every transformation of T (Dn), there is a path

starting at 0 and ending at n − 1.

The items (1) and (2) are sufficient and necessary for prefix-free languages, while
(3) and (4) follow from the properties of suffix-free languages. Following [9], we
say that an (unordered) pair {p, q} of distinct states in QM is colliding (or p
collides with q) in T (Dn) if there is a transformation t ∈ T (Dn) such that 0t = p
and rt = q for some r ∈ QM . A pair of states is focused by a transformation
u ∈ T (n) if u maps both states of the pair to a single state r ∈ QM ∪ {n − 2}.
We then say that {p, q} is focused to the state r. By Lemma 1(3), it follows that
if {p, q} is colliding in T (Dn), then there is no transformation u ∈ T (Dn) that
focuses {p, q}. Hence, in the case of bifix-free languages, colliding states can be
mapped to a single state only if the state is n − 1. In contrast with suffix-free
languages, we do not consider the pairs from QM × {n − 2} being colliding, as
they cannot be focused.

For n � 2 we define the set of transformations

Bbf(n) = {t ∈ Tn | 0 �∈ Qt, (n − 1)t = n − 1, (n − 2)t = n − 1, and for all j � 1,

0tj = n − 1 or 0tj �= qtj ∀q, 0 < q < n − 1}.

In [6] it was shown that the transition semigroup T (Dn) of a minimal DFA of a
bifix-free language must be contained in Bbf(n). It contains all transformations
t which fix n−1, map n−2 to n−1, and do not focus any pair which is colliding
from t.

Since Bbf(n) is not a semigroup, no transition semigroup of a minimal DFA
of a bifix-free language can contain all transformations from Bbf(n). Therefore,
its cardinality is not a tight upper bound on the syntactic complexity of bifix-
free languages. A lower bound on the syntactic complexity was established in [6].
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We study the following two semigroups that play an important role for bifix-free
languages.

Semigroup W�6
bf (n). For n � 3 we define the semigroup:

W�6
bf (n) = {t ∈ Bbf(n) | 0t ∈ {n − 2, n − 1}, or

0t ∈ QM and qt ∈ {n − 2, n − 1} for all q ∈ QM}.

The following remark summarizes the transformations of W�6
bf (n) (illustrated

in Fig. 1):

Remark 2. W�6
bf (n) contains all transformations that:

1. map {0, n − 2, n − 1} to n − 1, and QM into Q \ {0}, or
2. map 0 to n − 2, {n − 2, n − 1} to n − 1, and QM into Q \ {0, n − 2}, or
3. map 0 to a state q ∈ QM , and QM into {n − 2, n − 1}. �

Fig. 1. The three types of transformations in W�6
bf (n) from Remark 2.

The cardinality of W�6
bf (n) is (n − 1)n−3 + (n − 2)n−3 + (n − 3)2n−3.

Proposition 3. W�6
bf (n) is the unique maximal transition semigroup of a min-

imal DFA Dn of a bifix-free language in which there are no colliding pairs of
states.

In [6] it was shown that for n � 5, there exists a witness DFA of a bifix-
free language whose transition semigroup is W�6

bf (n) over an alphabet of size
(n−2)n−3 +(n−3)2n−3 +2 (and 18 if n = 5). Now we slightly refine the witness
from [6, Proposition 31] by reducing the size of the alphabet to (n − 2)n−3 +
(n − 3)2n−3 − 1, and then we show that it cannot be any smaller.

Definition 4 (Bifix-free witness). For n � 4, let W(n) = (Q,Σ, δ, 0, {n−2}),
where Q = {0, . . . , n − 1} and Σ contains the following letters:
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1. bi, for 1 � i � n − 3, inducing the transformations (0 → n − 1)(i → n − 2)
(n − 2 → n − 1),

2. ci, for every transformation of type (2) from Remark 2 that is different from
(0 → n − 2)(QM → n − 1)(n − 2 → n − 1),

3. di, for every transformation of type (3) from Remark 2 that is different from
(0 → q)(QM → n − 1)(n − 2 → n − 1) for some state q ∈ QM .

Altogether, we have |Σ| = (n − 3) + ((n − 2)n−3 − 1) + (n − 3)(2n−3 − 1) = (n −
2)n−3+(n−3)2n−3−1. For n = 4 three letters suffice, since the transformation of
b1 is induced by cidi, where ci : (0 → 2)(2 → 3) and di : (0 → 1)(1 → 2)(2 → 3).

Proposition 5. The transition semigroup of W(n) is W�6
bf (n).

Proposition 6. For n � 5, at least (n− 2)n−3 +(n− 3)2n−3 − 1 generators are
necessary to generate W�6

bf (n).

Semigroup W�5
bf (n). For n � 3 we define the semigroup

W�5
bf (n) = {t ∈ Bbf(n) | for all p, q ∈ QM where p �= q, pt = qt = n − 1 or pt �= qt}.

Proposition 7. W�5
bf (n) is the unique maximal transition semigroup of a min-

imal DFA Dn of a bifix-free language in which all pairs of states from QM are
colliding.

In [6] it was shown that for n � 2 there exists a DFA for a bifix-free language
whose transition semigroup is W�5

bf (n) over an alphabet of size (n−2)!. We prove
that this is an alphabet of minimal size that generates this transition semigroup.

Proposition 8. To generate W�5
bf (n) at least (n − 2)! generators must be used.

3 Upper Bound on Syntactic Complexity

Our main result shows that the lower bound (n−1)n−3+(n−2)n−3+(n−3)2n−3

on the syntactic complexity of bifix-free languages is also an upper bound for
n � 8.

We consider a minimal DFA Dn = (Q,Σ, δ, 0, {n − 2}), where Q = {0, . . . ,
n − 1} and whose empty state is n − 1, of an arbitrary bifix-free language. Let
T (Dn) be the transition semigroup of Dn. We will show that T (Dn) is not larger
than W�6

bf (n).
Note that the semigroups T (Dn) and W�6

bf (n) share the set Q, and in both
of them 0, n − 2, and n − 1 play the role of the initial, final, and empty state,
respectively. When we say that a pair of states from Q is colliding we always
mean that it is colliding in T (Dn).

First, we state the following lemma, which generalizes some arguments that
we use frequently in the proof of the main theorem.
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Lemma 9. Let t, t̂ ∈ T (Dn) and s ∈ W�6
bf (n) be transformations. Suppose that:

1. All states from QM whose mapping is different in t and s belong to C, where
C is either an orbit in s or is the tree of a state in s.

2. All states from QM whose mapping is different in t̂ and s belong to Ĉ, where
Ĉ is either an orbit in s or is the tree of a state in s.

3. The transformation sitj, for some i, j � 0, focuses a colliding pair whose
states are in C.

Then either C ⊆ Ĉ or Ĉ ⊆ C. In particular, if C and Ĉ are both orbits or both
trees rooted in a state mapped by s to n − 1, then C = Ĉ.

The following is our main theorem:

Theorem 10. For n � 8, the syntactic complexity of the class of bifix-free lan-
guages with n quotients is (n − 1)n−3 + (n − 2)n−3 + (n − 3)2n−3.

Proof (Idea). We construct an injective mapping ϕ : T (Dn) → W�6
bf (n). Since ϕ

will be injective, this will prove that |T (Dn)| � |W�6
bf (n)| = (n − 1)n−3 + (n −

2)n−3 + (n − 3)2n−3.
The mapping ϕ is defined by 23 (sub)cases covering all possibilities for a

transformation t ∈ T (Dn). Let t denote a transformation of T (Dn), and s denote
the assigned transformation ϕ(t).

The whole proof is split into three Supercases, depending on t. Supercase 2 and
Supercase 3 are split into a number of cases, and the cases are split into subcases.
To show injectivity, in every (sub)case we prove external injectivity, which is that
there is no other transformation t̂ that fits to one of the previous (sub)cases and
results in the same s, and we prove internal injectivity, which is that no other
transformation t̂ that fits to the same (sub)case results in the same s. We use there
various kinds of arguments of analysis orbits, cycles, longest paths, and focused
states. Often, we use Lemma 9 to argue that if another t̂ yields the same s (so ϕ is
not injective) and s is obtained by a local modification of t or t̂, then the difference
between t and t̂ is also only local – restricted to the same orbit or tree. All states
and variables related to t̂ are always marked by a hat.

Supercase 1: t ∈ W�6
bf (n).

We take s = t. The internal and external injectivity are obvious. �
For all the remaining cases let p = 0t. Note that all t with p ∈ {n − 2, n − 1} fit
in Supercase 1. Let k � 0 be a maximal integer such that ptk �∈ {n − 2, n − 1}.
Then ptk+1 is either n − 1 or n − 2, and we have two supercases covering these
situations.

Supercase 2: t �∈ W�6
bf (n) and ptk+1 = n − 1.

Here we have the chain

0 t→ p
t→ pt

t→ · · · t→ ptk
t→ n − 1.

Within this supercase, we always assign transformations s focusing a colliding
pair, and this will make them different from the transformations of Supercase 1.
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Also, we use only transformations s of type 1 from Remark 2, that is, we will
always have 0s = n − 1.

As an example, we show the full proof of the first case:

Case 2.1: t has a cycle.
Let r be the minimal state among the states that appear in cycles of t, that is,

r = min{q ∈ Q | q is in a cycle of t}.

Let s be the transformation illustrated in Fig. 2 and defined by:

0s = n − 1, ps = r,
(pti)s = pti−1 for 1 � i � k,

qs = qt for the other states q ∈ Q.

Fig. 2. Case 2.1.

Let z be the state from the cycle of t such that zt = r. We observe the
following properties:

(a) Pair {p, z} is a colliding pair focused by s to state r in the cycle, which is
the smallest state of all states in cycles. This is the only colliding pair which
is focused to a state in a cycle.
Proof: Note that p collides with any state in a cycle of t, in particular, with
z. The property follows because s differs from t only in the mapping of states
pti (0 � i � k) and 0, and the only state mapped to a cycle is p. �

(b) All states from QM whose mapping is different in t and s belong to the same
orbit in s of a cycle. Hence, all colliding pairs that are focused by s consist
only of states from this orbit.

(c) s has a cycle.
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(d) For each i with 1 � i < k, there is precisely one state q colliding with pti−1

and mapped by s to pti, and that state is q = pti+1.
Proof: Clearly q = pti+1 satisfies this condition. Suppose that q �= pti+1.
Since pti+1 is the only state mapped to pti by s and not by t, it follows that
qt = qs = pti. So q and pti−1 are focused to pti by t; since they collide, this
is a contradiction. �

External injectivity: By (a), {p, z} is a colliding pair focused by s, therefore t
and s cannot be both present in Tn and so s was not used in Supercase 1. �
Internal injectivity: Let t̂ be any transformation that fits in this case and results
in the same s; we will show that t̂ = t. From (a), there is the unique colliding
pair {p, z} focused to a state in a cycle, hence {p̂, ẑ} = {p, z}. Moreover, p and
p̂ are not in this cycle, so p̂ = p and ẑ = z, which means that 0t = 0t̂ = p. Since
there is no state q �= 0 such that qt = p, the only state mapped to p by s is pt,
hence pt̂ = pt. From (d) for i = 1, . . . , k − 1, state pti+1 is uniquely determined,
hence pt̂i+1 = pti+1. Finally, for i = k there is no state colliding with ptk−1 and
mapped to ptk, hence pt̂k+1 = ptk+1 = n − 1. Since the other transitions in s
are defined exactly as in t and t̂, we have t̂ = t. �

Then we have four other cases, which together cover all possibilities for t.

Fig. 3. Map of the (sub)cases of Supercase 3 in the proof of Theorem 10 (part 1).

Supercase 3: t �∈ W�6
bf (n) and ptk+1 = n − 2.

Here we have the chain

0 t→ p
t→ pt

t→ · · · t→ ptk
t→ n − 2 t→ n − 1.
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Fig. 4. Map of the (sub)cases of Supercase 3 in the proof of Theorem 10 (part 2).

We always assign transformations s such that s together with t generate a trans-
formation that focuses a colliding pair, which distinguishes such transformations
s from those of Supercase 1. Moreover, we always assign transformations of type 2
from Remark 2, that is, we always have 0s = n − 2. This distinguishes s from all
the transformations used in Supercase 2.

To show briefly how the construction looks like, in Figs. 3 and 4 we present
a map of the (sub)cases for Supercase 3. The black solid edges are the edges
of t, and the dashed edges (also red in a color printout) are the edges of the
corresponding s. �

4 Uniqueness of Maximal Semigroups

Here we show that W�6
bf (n) for n � 6 and W�5

bf (n) for n ∈ {3, 4, 5} (whereas
W�6

bf (n) = W�5
bf (n) for n ∈ {3, 4}) have not only the maximal sizes, but are

also the unique largest semigroups up to renaming the states in a minimal DFA
Dn = (Q,Σ, δ, 0, {n − 2}) of a bifix-free language.

Theorem 11. If n � 8, and the transition semigroup T (Dn) of a minimal DFA
Dn of a bifix-free language has at least one colliding pair, then

|T (Dn)| < |W�6
bf (n)| = (n − 1)n−3 + (n − 2)n−3 + (n − 3)2n−3.
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Proof (Idea). This is done by finding one more s (under the assumption that
there exists a colliding pair) that was not assigned by ϕ in the proof of Theo-
rem 10. Thus, since ϕ is injective and ϕ(T (Dn)) ⊆ W�6

bf (n), s ∈ W�6
bf (n) but

s �∈ ϕ(T (Dn)), it follows that ϕ(T (Dn)) � W�6
bf (n), so |T (Dn)| < |W�6

bf (n)|. 	


Corollary 12. For n � 8, the transition semigroup W�6
bf (n) is the unique

largest transition semigroup of a minimal DFA of a bifix-free language.

Proof. From Theorem 11, a transition semigroup that has a colliding pair can-
not be largest. From Proposition 3, W�6

bf (n) is the unique maximal transition
semigroup that does not have colliding pairs of states. 	


The following theorem solves the remaining cases of small semigroups:

Theorem 13. For n ∈ {6, 7}, the largest transition semigroup of minimal DFAs
of bifix-free languages is W�6

bf (n) and it is unique. For n = 5, the largest tran-
sition semigroup of minimal DFAs of bifix-free languages is W�5

bf (n) and it is
unique. For n ∈ {3, 4}, W�6

bf (n) = W�5
bf (n) is the unique largest transition

semigroup of minimal DFAs of bifix-free languages.

Proof (Idea). We have verified this with the help of computation, basing on
the idea of conflicting pairs of transformations from [6, Theorem 20]. We have
developed an algorithm which verified for a given n � 7 that no transformation
from Bbf(n) can belong to a transition semigroup of a minimal DFA D of a
bifix-free language of size at least max{W�5

bf (n),W�6
bf (n)} that is different from

W�6
bf (n) and W�5

bf (n). 	


Since the largest transition semigroups are unique, from Propositions 6 and 8
we infer the sizes of the alphabets required in order to meet the bound for the
syntactic complexity.

Corollary 14. To meet the bound for the syntactic complexity of bifix-free lan-
guages, (n−2)n−3 +(n−3)2n−3 −1 letters are required and sufficient for n � 6,
and (n − 2)! letters are required and sufficient for n ∈ {3, 4, 5}.

5 Conclusions

We have solved the problem of syntactic complexity of bifix-free languages and
identified the largest semigroups for every number of states n. In the main the-
orem, we used the method of injective function (cf. [7,9]) with new techniques
and tricks for ensuring injectivity (in particular, Lemma9 and the constructions
in Supercase 3). This stands as a universal method for solving similar problems
concerning maximality of semigroups. Our proof required an extensive analysis
of 23 (sub)cases and much more complicated injectivity arguments than those for
suffix-free (12 cases), left ideals (5 subcases) and two-sided ideals (8 subcases).
The difficulty of applying the method grows quickly when characterization of
the class of languages gets more involved.
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It may be surprising that we need a witness with (n−2)n−3+(n−3)2n−3−1
(for n � 6) letters to meet the bound for syntactic complexity of bifix-free
languages, whereas in the case of prefix- and suffix-free languages only n+1 and
five letters suffice, respectively (see [6,9]).

Finally, our results enabled establishing existence of most complex bifix-free
languages ([12]).
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