
Rapid Engineering of QA Systems Using the
Light-Weight Qanary Architecture

Andreas Both1(B), Kuldeep Singh3, Dennis Diefenbach2, and Ioanna Lytra3,4

1 DATEV eG, Nuremberg, Germany
contact@andreasboth.de

2 Laboratoire Hubert Curien, Saint Etienne, France
3 Fraunhofer IAIS, Sankt Augustin, Germany

4 Enterprise Information Systems, University of Bonn, Bonn, Germany

Abstract. Establishing a Question Answering (QA) system is time
consuming. One main reason is the involved fields, as solving a Ques-
tion Answering task, i.e., answering a user’s question with the correct
fact(s), might require functionalities from different fields like informa-
tion retrieval, natural language processing, and linked data. The archi-
tecture used for Qanary supports the derived need for easy collaboration
on the level of QA processes. The focus of the design of Qanary was
to enable rapid engineering of QA systems as same as a high flexibility
of the component functionality. In this paper, we will present the engi-
neering approach leading to re-usable components, high flexibility, and
easy-to-compose QA systems.

Keywords: Software reusability · Question Answering · Light-weight
web architectures · Service composition · Semantic search · Ontologies ·
Annotation model

1 Introduction

The Web of Data is growing permanently as well as the industrial data sets.
Induced by this movement the challenge for retrieving knowledge from such data
sets has gained much importance in research and industry. Question Answering
(QA) is tackling this challenge by providing an easy-to-use natural language
interface for retrieving knowledge from large data sets. However, as QA is a
challenge requiring to solve research questions from many different fields, a QA
system is mostly consisting of many different components (from different research
fields). Hence, enabling easy collaboration between researchers is an important
engineering path while aiming at supporting the research community. Addition-
ally, a reasonable engineering approach is required to enable a loose cooperation
of different researchers.

Earlier, we established a component-oriented approach named Qanary [1]
on top of a RDF vocabulary qa [6]. This approach provides a methodology for

c© Springer International Publishing AG 2017
J. Cabot et al. (Eds.): ICWE 2017, LNCS 10360, pp. 544–548, 2017.
DOI: 10.1007/978-3-319-60131-1 40



Rapid Engineering of QA Systems Using Qanary 545

creating QA processes using a central knowledge base (KB) to store all avail-
able QA process data. Here, we will focus on the component model and service
composition following the Qanary methodology. In the demonstration, we will
use the Qanary reference implementation to show the achievement w.r.t. to the
rapid engineering process that was established. We will show the engineering
process for creating a Qanary Web service as well as a complete Qanary-based
QA system.

2 Related Work

In the context of QA, a large number of systems and frameworks have been devel-
oped in the last years. For example, more than 20 QA systems (in the last 5 years)
were evaluated against the QALD benchmark (cf., http://qald.sebastianwalter.
org). These reasons led to the idea of developing component-based frameworks
that make parts of QA systems reusable. We are aware of three frameworks
that attempt to provide a reusable architecture for QA systems. QALL-ME [4]
provides a reusable architecture skeleton for building multilingual QA systems.
openQA [5] provides a mechanism to combine different QA systems and evalu-
ate their performance using the QALD-3 benchmark. The Open Knowledge Base
and Question Answering (OKBQA) challenge (cf., http://www.okbqa.org/) is a
community effort to develop a QA system that defines rigid JSON interfaces
between the components. In contrast, Qanary [1] does not propose a rigid skele-
ton for QA pipelines, instead we allow multiple levels of granularity, enable the
community to develop new types of QA systems (not only pipelines), and focus
on the research tasks.

3 The Qanary Component Engineering Process

Requirements. The core requirements of the Qanary architecture are:
�

�

�

�

R1 pro-
gramming language independent approach,

�

�

�

�

R2 combining of components to
different QA processes as easy as possible (no predefinition of specific pattern,
e.g., QA pipeline), and

�

�

�

�

R3 enabling the researches from different communities
to follow their own research tasks with as few as possible restrictions.

The Qanary Component Model. Each Qanary component is an independent
Web service implementing the tiny RESTful interface: process(M). Via the
synchronous interface the component is triggered to process the current user
question. The question (and any process data) is not contained in the message
M, instead it was stored in an RDF KB. Consequently, M = (T, Gi, Go) contains
the endpoint URI of the KB T, and the graph Gi in T containing the inbound
information as well as the graph Go in T that should be used to store the com-
puted information (i.e., outbound data flow) for further use in the QA process
(by other components). Finally, the component is returning the focus to the QA
process where other QA components might be called which can use the gen-
erated data. Hence, after being notified by the QA process a component will

http://qald.sebastianwalter.org
http://qald.sebastianwalter.org
http://www.okbqa.org/


546 A. Both et al.

fetch the information required for its task from Gi (in T) and perform its task
using this information, cf., Fig. 1. To enable an easy data exchange on common
ground, the RDF vocabulary qa [6] was established (built on top of the W3C
WADM, cf., w3.org/TR/annotation-model) holding the computed information
as annotations of the question. Therefore, within the process the computed data
can be interpreted by any Qanary component. Note that all information stored
in Gi is retrievable by each Qanary component. Hence, no restrictions w.r.t. the
accessible data are imposed (cf.,

�

�

�

�

R3 ).

Fig. 1. Qanary component model (note that Gi might be equal to Go).

Service Composition. All Qanary components implement the same lightweight
interface and retrieve/store the data using the qa vocabulary. Hence, the Qanary
services can be integrated by combining these components, analogously to the
Pipes and Filters [2] architecture pattern. The Qanary reference implementation
(cf., github.com/WDAqua/Qanary→qanary pipeline-template) takes advantage
of the characteristics of Qanary components. It contains a service registry
(AdminServer) which is called automatically during the start-up phase by all
components. Hence, all Qanary components are known and can be easily com-
posed (cf.,

�

�

�

�

R2 ), e.g., the following simple user interfaces are provided to create
a QA pipeline using a textual or audio question. There components can easily
be activated and combined by drag and drop (define order in QA pipeline):

http://www.wdaqua.eu/qanary/startquestionansweringwithtextquestion,
http://www.wdaqua.eu/qanary/startquestionansweringwithaudioquestion

Service Implementation. The implementation of a Qanary component is sup-
ported using a Maven archetype (cf., github.com/WDAqua/Qanary→qanary-
component-archetype). It already contains the registration to the AdminServer
and several other functionalities for rapid engineering. Note: There are no restric-
tions on the functionality nor the programming language (cf.,

�

�

�

�

R1 ); however, the
reference implementation is in Java.

Demonstration. As an example, we show how to create a QA pipeline provid-
ing the functionality focusing on the engineering tasks. The pipeline is aiming
at answering the question “What is the real name of Batman?”1 (cf., QALD

1 Full description at https://github.com/WDAqua/Qanary/wiki/ICWE-2017-demo.

http://www.w3.org/TR/annotation-model
https://github.com/WDAqua/Qanary/tree/master/qanary_pipeline-template
http://www.wdaqua.eu/qanary/startquestionansweringwithtextquestion
http://www.wdaqua.eu/qanary/startquestionansweringwithaudioquestion
https://github.com/WDAqua/Qanary/tree/master/qanary-component-archetype
https://github.com/WDAqua/Qanary/tree/master/qanary-component-archetype
https://github.com/WDAqua/Qanary/wiki/ICWE-2017-demo


Rapid Engineering of QA Systems Using Qanary 547

question no. 92). It will use a component that already exists in the Qanary
ecosystem providing functionality for Named Entity Recognition and Disam-
biguation (NER/NED), e.g., the Qanary DBpedia Spotlight component (cf., [3]).
It will interlink the sub-string “Batman” to the DBpedia resource dbr:Batman.
However, additional semantics is required to map the textual question to an
interpretable representation. Therefore, we will interactively implement a new
component C (using Qanary’s Maven archetype) which adds new annotations
to the Qanary KB T while analyzing the user’s question. C will serve only the
purpose to identify the relation dbp:alterEgo (i.e., a DBpedia property) while
searching for the sub-string “real name” in the question.

The demonstration will finish while creating and executing the QA pipeline
using the service composition and showing the result of the question.

Discussion. Here, we have demonstrated the main advantage a developers
receives while integrating a component in the Qanary ecosystem. A rapid engi-
neering process is provided and a created component can easily be interweaved
with the already existing ones. A basic installation of a QA pipeline provided
with a user interface called Trill can be found at http://www.wdaqua.eu/qa.

4 Conclusion

In this paper we presented the component model of the reference implemen-
tation of the Qanary framework. Qanary components are easy to implement
as it was shown in the paper. However, one of the core features is the option
to (re)combine components to QA systems without adopting the component’s
source code, while still having the full freedom of dedicating a (new) component
to a completely new functionality. This new functionality might use data from
the Qanary triplestore never used before in this particular combination. Hence,
as all features are data-driven, allowing to add new functionality to the whole
QA system from a local component independently. Additionally, the component
model is language-independent and driven by the power of linked data which
enables additional features like polymorph data types included in the inbound
data. Our main contribution is a component-based architecture enabling devel-
opers to create or re-combine components following a plug-and-play approach.
While aiming at an optimal system w.r.t. a given use case (scientific) developers
are enabled to rapidly create new/adapted QA systems from the set of Qanary
components available. Hence, we are handing the scientific QA community an
easy-to-use approach reducing the investments for engineering tasks during typ-
ical tasks.

Acknowledgments. This project has received funding from the European Union’s
Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant
agreement No 642795.

http://www.wdaqua.eu/qa


548 A. Both et al.

References

1. Both, A., Diefenbach, D., Singh, K., Shekarpour, S., Cherix, D., Lange, C.: Qanary
– a methodology for vocabulary-driven open Question Answering systems. In:
Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.)
ESWC 2016. LNCS, vol. 9678, pp. 625–641. Springer, Cham (2016). doi:10.1007/
978-3-319-34129-3 38

2. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture - Volume 1: A System of Patterns. Wiley, New
York (1996)

3. Diefenbach, D., Singh, K., Both, A., Cherix, D., Lange, C., Auer, S.: The Qanary
ecosystem: getting new insights by composing Question Answering pipelines. In:
International Conference on Web Engineering, ICWE. Springer (2017)

4. Ferrández, Ó., Spurk, Ch., Kouylekov, M., Dornescu, I., Ferrández, S., Negri, M.,
Izquierdo, R., Tomás, D., Orasan, C., Neumann, G., Magnini, B., González, J.L.V.:
The QALL-ME framework: a specifiable-domain multilingual Question Answering
architecture. J. Web Seman. Sci. Serv. Agents WWW 9, 137–145 (2011)

5. Marx, E., Usbeck, R., Ngonga Ngomo, A., Höffner, K., Lehmann, J., Auer, S.:
Towards an open Question Answering architecture. In: SEMANTiCS (2014)

6. Singh, K., Both, A., Diefenbach, D., Shekarpour, S.: Towards a message-driven
vocabulary for promoting the interoperability of Question Answering systems. In:
IEEE International Conference on Semantic Computing, ICSC (2016)

http://dx.doi.org/10.1007/978-3-319-34129-3_38
http://dx.doi.org/10.1007/978-3-319-34129-3_38

	Rapid Engineering of QA Systems Using the Light-Weight Qanary Architecture
	1 Introduction
	2 Related Work
	3 The Qanary Component Engineering Process
	4 Conclusion
	References


