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Abstract. System performance is one of the most critical quality char-
acteristics of Web applications which is typically expressed in response
time, throughput, and utilization. These performance indicators, as well
as the workload of a system, may be evaluated and analyzed by (i) model-
based or (ii) measurement-based techniques. Given the complementary
benefits offered by both techniques, it seems beneficial to combine them.
For this purpose we introduce a combined performance engineering app-
roach by presenting a concise way of describing user behavior by Markov
models and derive from them workloads on resources. By means of an
empirical user test, we evaluate the Markov assumption for a given Web
2.0 application which is an important prerequisite for our approach.

Keywords: Web application performance engineering · Markov mod-
els · Queueing theory

1 Introduction

Performance quality describes the degree to which a Web application meets its
performance requirements. Typically, performance is expressed in response time,
throughput, and utilization of the application [10]. In this paper, we concentrate
on performance quality with respect to response time, since this is a central
characteristic for users [10]. It is quantified by measuring the time between
sending a request and receiving the response (e.g., response time of compo-
nents/operations).

There are approaches for performance evaluation that are typically used “off-
line” like the traditional performance analysis cycle [8]. In practice, performance
problems mostly occur after the development of an application which means
when the application is deployed and running. In addition to off-line techniques
performance management combines measuring, analyzing, and improving mea-
sures as well as automates their interplay [11]. However, performance manage-
ment is often done ad-hoc by trial & error, rather than based on engineering
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principles [6]. Performance indicators as well as the workload of a system may
be evaluated and analyzed by using (predictive) model-based or (descriptive)
measurement-based techniques [5]. Both approaches have different limitations
that may be mitigated by each other, e.g., to integrate empirical measures in pre-
dictive models over time to re-estimate these models and to use predictive models
to quickly analyse performance aspects already in the design phase instead of
running costly and time-consuming tests on the implementation level.

The essential and most basic elements for describing the performance charac-
teristics of Web applications are (i) resources that offer computing capabilities,
(ii) the workload that describes how the resources are being used, and (iii)
the workload intensity in terms of inter-arrival times. Based on these elements,
we introduce an stochastic-based approach for evaluating the performance of
Web Applications by systematically combining model-based and measurement-
based performance techniques. Thereby, we measure, predict, and evaluate per-
formance indicators by timely responses of components. We outline the approach
by means of a real example for a typical Web 2.0 application. Furthermore, we
present a new concept for describing user behavior by Markov models to derive
workloads on resources.

The remainder of this paper is structured as follows. The next section presents
an overview of relevant concepts underlying our approach. In Sect. 3, we intro-
duce the main concepts of the approach. In Sect. 4, we present a Web 2.0 applica-
tion designed for travellers and an empirical user test based on this application.
In Sect. 5, we discuss related work, and finally, we conclude with an outlook on
future work in Sect. 6.

2 Background

In this section, we briefly describe the theoretic background and main building
blocks necessary for the context of this paper.

Performance Engineering. PE is an engineering discipline within systems
engineering. It represents the whole collection of engineering activities and
related analysis used throughout the development cycle to meet performance
engineering requirements. In this context, it is necessary to distinguish between
two types of models, design models and performance models [21]. Design mod-
els primarily focus on system topologies, workflows and interactions between
entities in a prescriptive way. On the other hand, performance models focus on
the evaluation of performance by using simulations, or other analytical means
(i.e., queueing networks). As mentioned before there are two different approaches
for performance evaluation, the model-based and the measurement-based ones.
Typically, the model-based approach is carried out in an early project phase
to predict the performance quality of the system, while the measurement-based
approach is performed after the system is deployed [21].

Markov model. A Markov model is a stochastic model that fulfills the Markov
property which implies that the future is independent of the past, given the
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present [7]. This means that all necessary information is encoded in the present
state, and therefore, information about the past is not needed. This is why the
Markov property is also known as “memoryless”. A more formal definition of
the Markov property is given here:

Pr(Xtk
|Xtk−1

,Xtk−2
, ...,Xt1

) = Pr(Xtk
|Xtk−1

) (1)

where tk denotes a set of times tk > tk−1 > ... > t1.
Many theories are built upon this simplified Markov model of first order.

However, for modeling real-world systems it is important to check the Markov
assumption, whether the Markov property holds or not. The simplest form of a
Markov model is a Markov chain. Another special form of a Markov model is
a Hidden Markov Model (HMM), where states cannot be directly observed, and
therefore, they are “hidden”.

Queueing theory. The queueing theory provides a formalism to describe sys-
tems in which “waiting” plays a key role. Waiting lines occur whenever the
demand exceeds the service availability. The main goals of queueing theory are
prediction as well as proposing design improvements of systems. There are two
basic elements in a queueing system: (i) a number of (limited) resources that are
capable of executing tasks, called servers, and (ii) customers that request tasks
handled by servers. In terms of software systems, a server might be, e.g., an image
server or a CPU. Examples for customers in the context of Web applications are
users browsing a website.

3 Stochastic Performance Models for Web Applications

In this section, we present our approach based on two metamodels to system-
atically combine model-based with measurement-based techniques. This hybrid
approach bases on the assumption that the software development process is done
in an agile manner. In this context “agile” means that parts of the software sys-
tem can be continuously delivered to a test- or production environment in which
the running software can be profiled. This means that as much information as
possible is gathered from continuously observing parts of the running system.
Based on these observations a mix of predictive models and measured data can
be derived for computing performance indicators.

CETO (Components Emission and Timely Observations). CETO repre-
sents the central data format. It is enriched over time with static information like
the functionality and topology of the system as well as predictive and measured
data of user behavior. After every development iteration the system is deployed
and profiled. In particular, CETO tracks the observations of use case and oper-
ation calls and the duration time of operations. There are existing models such
as the Core Scenario Model [14], or the Performance Model Interchange For-
mat [19] that also provide capabilities to model static and predictive data, but
no measurement data during development.
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MUPOM (Markov Usage Process and Operation Measurements).
MUPOM is designed with the goal to model stochastic processes of user behavior.
We use this model to describe user behavior by applying the Markov formalism.
A single state in this model represents a single use case. The user behavior com-
bined with the workload intensity represents the workload of the system. This
workload is described by arrival rates of resources, which we compute by using
queueing networks (QN). The arrival rate of resources is determined by exter-
nal and internal arrivals. There are three available distributions to model these
arrivals: Poisson, Exponential, and Normal distribution.

Transfer CETO to MUPOM. In order to combine the CETO and
MUPOM metamodels, we apply model-to-model transformations as introduced
in Berardinelli et al. [2]. We apply these transformations to transform: (i) the
use cases and operation topology to CETO, (ii) CETO to MUPOM, and (iii)
MUPOM to QN. This means that all necessary information is kept in a CETO
model and solved by transforming it to a MUPOM model. To utilize these trans-
formations the following ten steps are needed: (i) to (optional) classify user
types, (ii) to (optional) unveil the underlying Markov chain, (iii) to canoni-
calize operation durations, (iv) to calculate probability distributions for think
times and operation durations, (v) to construct the transformation matrix Pij

of the Markov model, (vi) to check whether the Markov property holds, (vii)
to calculate the steady state distribution, (viii) to (optional) derive the causal
orderings and parallelisms of operations, (viv) to check whether the system sat-
isfies the product form assumption of QN, and finally, (vv) to construct a per-
formance model.

Transferring Markov Models to QN. Resource utilization in software sys-
tems is mainly a result of user behavior. The MUPOM model, besides the Markov
model itself, also contains the solution for a steady state if it exists. A Markov
chain has a limiting distribution if it is irreducible and all its states are posi-
tive recurrent [17]. If such a limiting distribution exists, it can be referred to
as steady state that describes the long-run behavior of a system independent
of the starting state. For calculating the steady state in our approach we use
approximations.

In order to transfer a Markov models to QN, we have to achieve the charac-
teristics of an ergodic system. Such a system requires the following assumptions
that must hold: (i) irreducibility, if it is possible to reach each state from any
other state; (ii) aperiodicity, if the system state is not systematically connected
to time; and (iii) recurrence, if all states are recurrent. The reasons therefore
are defined in Little’s law, which is a very prominent operational law applied
to queueing theory. It states that the long-term average number of customers
in a stable system L is equal to the long-term average effective arrival rate λ
multiplied by the average time a customer spends in the system W ; or expressed
formally: L = λW .

Given these findings, we are able to translate MUPOM models to QN. In a first
step, we calculate the average number of users in a system by applying Little’s law:
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E(N) = λ ∗ E(T ). In a second step, we calculate the average number of users in
each state by the approximated steady state distribution (π): Ni = πi ∗ E(N).

The Markov chains in the MUPOM model are described in discrete time.
The time step is in steps of seconds. Since, we know how many users are in each
stage on average, the transition rates between each state can be simply calculated
by multiplying the average number of users with the corresponding transition
probability: λj = pij ∗ Ni. In a final step, we calculate the total number of new
enterings on average to a state per second and sum up all of these incoming
transitions: ΛJ =

∑k
j=1 λj . The final outcome is the sum of all arrival rates to a

certain state. By the inverse, we get the inter arrival rate, which forms together
with the service rate, the basis for analyzing queuing networks for the purpose
of performance evaluation.

4 Evaluating the Markov Assumption for an Example
Application

In order to combine the model-based with the measurement-based approaches of
performance engineering, we defined a transformation chain based on ten steps
(cf. Sect. 3). Step (vi) of this chain checks whether the Markov property holds
when transferring CETO to MUPOM. Due to page limitations, we primarily
focus on this step in our case study. The evaluation of the validity of the Markov
assumption is an essential pre-condition that must hold before we can check
whether the Web application satisfies the product form assumption of QN to
finally construct a stochastic performance model. For more insights, we refer the
interested reader to our project website1 where all artifacts of the case study,
including the Travelistr software, are available.

Research question. Is it sufficient to describe the transition probability between
pages/features of a Web 2.0 application with Markov models and does the tran-
sition probability fulfill the Markov assumption? Thereby, we assume that Web
2.0 applications are ergodic system. And if not, they can be transferred to one.

Case Study Design. As an essential part of our case study, we evaluate the
Markov assumption for an example Web 2.0 application. For this purpose we use
the approximative approach introduced in Li et al. [13] as a basis. In particular,
we compare transition probabilities of a Markov model of first order to transition
probabilities of a Markov model of second order. If the probabilities of order one
and two are not diverging more than a certain threshold, the Markov assumption
is fulfilled.

Selected Web 2.0 Application. Travelistr is a Web 2.0 application designed
for travellers. It enables people to share pictures of their journey with other
travellers that are nearby. Pictures can be enriched with information, e.g., of the
geographic location of the photograph. Interested users get three pictures and

1 http://www.johannes-artner.at/#ASPE.

http://www.johannes-artner.at/#ASPE
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are able to like one of them. Travelistr is a JavaEE application based on Spring
Web MVC. For database access, Hibernate is used together with the c3pO con-
nection pool. The frontend is created with static HTML pages and dynamic JSP
pages. Log4j is used as logging framework and OperationsAndTraceMonitor
instructions are added at the language level. Travelistr is hosted at an Apache
Tomcat server. The data is stored in a PostgreSQL database and the images are
stored using the external vendor Cloudinary.

Tool Setting for Data Collection. Based on the CETO and MUPOM
metamodels, we implement two Java-based tools to track and analyze obser-
vations, the OperationsAndTraceMonitor tool and the UserTrace2Markov tool.
The observational data is gathered by using the UserTrace component of the
OperationsAndTraceMonitor tool. It writes these observations to a CSV-file in a
thread-safe manner in order to provide an appropriate format to use it as input
to other tools. The UserTrace2Markov tool is a semi-automatic tool to transform
user traces, tracked with the OperationsAndTraceMonitor, from the CSV-format
to a Markov model of first and second order.

Results. We represent the results of applying our approach for the given set up.
The user test took place for one week and in total 32 users participated. The par-
ticipants of our evaluation study were students from our institute. They uploaded
146 pictures, and 839 Likes were received. 4520 transitions between states were
observed within 173 distinct user interactions. Two consecutive transactions from
a user are considered to be in the same user interaction if their timely difference
is equal or less than 120 s. In its first version, the action of the UserTrace2Markov
tool can only be of type GET. The results of the analysis are written to a txt-file
(i.e., path to the output file). The tool calculates transition rates between states
for a first and second ordered Markov model. Furthermore, think times in every
state are calculated and described by mean values on basis of a standard normal
distribution. Additionally, the total aggregated time spent in each state by every
user is summed up. This is useful for analyzing the steady state assumption. The
figure showing the results of the empirical user test is available for downloading
under http://www.sysml4industry.org/?download=811.

To distinguish users, a randomly generated ID was assigned to each session.
A user session was never invalidated during the whole test. So, if a user hasn’t
logged out on purpose, the user could continue where she left previously without
logging in again. Table 1 shows the results of this approximative evaluation of the
Markov assumption. A sample trace of every state and transition logged during
the user test is available at http://www.sysml4industry.org/?download=822.

Interpretation of Results. We conclude that Markov models of order one
are good approximations for describing the user behavior of typical Web 2.0
applications. The Markov assumption is an important prerequisite and holds for
the Travelistr-App. Thus, it can be assumed that it also holds for other Web 2.0
applications.

http://www.sysml4industry.org/?download=811
http://www.sysml4industry.org/?download=822
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Table 1. Results of comparing the first-order with second-order Markov model solu-
tions.

State Avg. information loss from 2nd to 1st
order model

Observed transitions (n)

Nearby 4.36% 1067

Dashboard 11.45% 506

Profile 6.72% 193

Publish 2.87% 190

Published 1.77% 153

Start 7.58% 128

Login 3.14% 106

Register 12.48% 35

Threads to Validity. The empirical user test for evaluating the Markov
assumption was successful for the given example. However, only 32 users took
part in the test and not every state/transition was visited as often as desirable.
We are aware that this sample is not large enough, so that any bias may change
the conclusion. To reduce the risk of evaluating insufficient data, only states and
their respective transitions with more than 20 observed transitions should be
taken into consideration for evaluating the Markov assumption. Furthermore,
there is a risk that the users did not use Travelistr as they would, if Travelistr
would be an application they would use in their daily life. An additional risk is
the time period of the conducted user test. It can be assumed that the behavior
of users over a longer period accordingly will change, e.g., due to a better under-
standing of the system. The fractions of some states (e.g., Register) is therefore
assumed to be different in the long run. And last but not least the results may
differ if a Web application with more functionality had been considered.

5 Related Work

There are measurement methods that need performance probes of different levels
(e.g., resource level, application level), or request-based techniques to estimate
specific parameters of performance models. Kraft et al. [12] present a high-level
request-based measurement technique to estimate service resource consumptions
based on two approaches, a linear regression method and a maximum likeli-
hood function. Their approach has several advantages compared to lower-level
approaches, e.g., request measurements are easy to obtain. Barham et al. [1]
present a tool chain, named “Magpie”, which extracts the workload of a software
system based on hardware, middleware, or application level traces. The result-
ing traces are correlated to requests. The computing demand for the requests is
calculated and dependencies are ordered based on causality. The results of this
procedure are used as basis for computing performance models. Kieker [16] is
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a framework to continuously monitor and analyze a system’s runtime behavior.
It has two main components, Kieker.Tpmon and Kieker.Tpan. Kieker.Tpmon
monitors and logs data, while Kieker.Tpan is an analysis component which logs
the runtime behavior to reverse engineer it (e.g., by sequence diagrams, class
diagrams).

Markov models and QN are two formalisms widely used for performance
engineering of systems as, e.g., introduced in [3,6,7]. Also, Hidden Markov mod-
els (HMM) have been used in many different fields, predominantly in the field
of speech recognition [15]. To use HMMs for performance evaluation of soft-
ware systems is a relatively new application field [18]. Hoorn et al. [20] intro-
duce approaches based on statistical modeling for generating probabilistic and
intensity-varying workloads for Web-based software systems. They present three
models: (i) an application model to specify possible sequences of usage by a hier-
archical finite state machine, (ii) a user behaviour mix-model to define which user
behaviors are used for computing a workload, and (iii) a workload intensity model
to specify the varying numbers of users over time. Based on these models, the
authors extend JMeter to a probabilistic-based workload generator. Jespersen
et al. [9] evaluate the Markov assumption for mining Web usage. The authors
examine the quality of rules derived from two example websites by using the
Hypertext Probabilistic Grammar (HPG) model introduced in [4], which relies
on the Markov assumption and is mostly used for website analysis. The authors
define similarity and accuracy for quality evaluation. On the one hand, simi-
larity compares the amount of rules that are derived by using HPG and that
are equal to the true usage patterns. On the other hand, accuracy compares the
derived probabilities of the rules with the true usage patterns. As a result, the
authors suggest that Markov-based approaches are better suited for tasks which
require less accuracy. In addition, Li et al. [13] present a simple approach for
evaluating the Markov property of Markov chains to model user behavior. In
their approximative approach, they compare transition probabilities only con-
sidering the current state to transition probabilities considering the current and
one previous state. They demonstrate their approach for Web usage profiling.

6 Conclusion and Future Work

Using Markov models to express user behavior is not new. However, to express
the usage profile by Markov models in a model-driven way by model-to-model
transformations is to the best of our knowledge a novel idea. We systematically
combine the model-based and the measurement-based approach in an agile man-
ner. We use Markov models to define the user behavior of a system in a predictive
way. This implies that the underlying stochastic processes of user behavior ful-
fill the Markov assumption. Therefore, we conducted an empirical user study to
show that this assumption holds for our implemented Web 2.0 application.

We outlined how to retrieve QN from Markov models based on user behavior.
For this, necessary conditions have to hold. In addition to the Markov assump-
tion, this is the ergodicity of the system. For Travelistr, both conditions hold.
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Other software system types may be of the same nature. In this context, it is
required to understand the characteristics of software systems that are ergodic.
Furthermore, it is of interest to extrapolate observed user interactions of a limited
set of features to a user behavior model of an entire system, and how the mea-
surements can be validated. The practical benefit would be that usage patterns
can be quantified already during development. Besides enhancing the accuracy of
operation durations, also the user behavior model may be adapted and enriched
with findings from measurements. A possible solution might be to mock the
behavior of missing features.
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