
Chapter 8

Examples of Measurements and Measurement

Data Processing

8.1 Voltage Measurement with a Pointer-Type Voltmeter

Our first example concerns a measurement of voltage with a pointer-type voltmeter.

Such a measurement clearly represents an example of a single direct measurement.

We shall study two examples of such measurements with a Class 1.0 pointer-type

DC voltmeter that operates using the energy of the source of the voltage being

measured. Note that the energy consumption by the voltmeter causes interaction

between the voltmeter and the object under study.

Let the voltmeter have the following characteristics:

1. The upper limits of measurement ranges are 3 V, 7.5 V, 15 V, 30 V, and so on, up

to 300 V.

2. The scale of the instrument has 75 graduations and starts at the 0 marker.

3. The limits of permissible intrinsic error are �1.0% of a span (it is a fiducial

error).

4. Full deflection of the pointer corresponds to the current of 15� 10�6A� 1%.

5. Reference conditions include temperature of +20� 5 �C and the requirement

that the measurement be performed with the instrument positioned horizontally.

6. Additional errors are as follows. A deviation of the temperature from the

reference range causes the indications of the instrument to change by no more

than �1.0% for each 10 �C change in temperature. Inclination of the instrument

by 5� from the horizontal position changes the indications by not more than

�1%.
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8.1.1 Single Measurement Under Reference Condition
of the Voltmeter

The value of the measured quantity supposedly will be less than 3 V, so the 3 V

range is used on the voltmeter. Let the indication of the voltmeter be 62.3 gradu-

ations at the range 3 V. Hence, the voltage indicated by the voltmeter is

U ¼ 62:3
3

75
¼ 2:492V:

The accuracy of a measurement under reference condition is determined by the

limits of intrinsic error of the instrument involved, and it does not have additional

errors. But before the limits of intrinsic error of the instrument involved are

re-calculated for the indication point, it is necessary to estimate the effect of

interaction between the voltmeter and the object under study.

The goal of the measurement is to find the voltage between the two points on the

electrical circuit (“the voltage source”) to which the voltmeter is connected. But the

voltmeter shows the voltage on its terminals, which is always lower than the voltage

being measured due to the voltage drop across the resistance of the voltage source.

In other words, the measuring instrument (the voltmeter) interacts with the object of

study (the voltage source), and this interaction affects the observed value of the

measurand (causes voltage drop). The extent of this voltage drop depends on the

relation between the internal resistance of the voltmeter, RV, and the resistance of

the source of the voltage being measured, R. From the parameters of the voltmeter,

the internal resistance of the voltmeter at the range 3 V can be found as

RV ¼ 3

15� 10�6
¼ 2� 105Ω:

Let the source resistance R be 1 kΩ and constant. Then we can estimate the

absolutely constant error caused by the above interaction between the voltmeter and

the voltage source. The voltmeter indication U shows the voltage on its terminals.

Without the above interaction it would have been E>U. Let I denote the power of
current flowing through the voltmeter and the external circuit under study. Then the

relative error δU of the indication of voltmeter due to the voltage drop is

δU ¼ IRV � I RV þ Rð Þ
I RV þ Rð Þ ¼ �R

RV þ R
:

Then

δU ¼ � 1kΩ=201kΩð Þ∗100% ¼ �0:5%,

or in absolute form,
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ΔU ¼ �2:492∗ 0:5∗ 10�2 ¼ �0:0124V:

This error can be removed by correction

CU ¼ þ0:0124V:

The corrected indication is therefore

UC ¼ 2:492þ 0:012 ¼ 2:504V:

In our case, the limit of permissible intrinsic error in relative form is equal to the

fiducial error γ ¼ 1%, and the fiducial value xf¼ 3 V. The limit of absolute error ⊿in

is computed in accordance to Sect. 4.6 as follows:

Δin ¼ γ
xf
100

¼ 1∗3

100
¼ 0:03V:

The number of significant figures in this error shows that the (corrected) indica-

tion UC has one extra significant figure. After rounding off, it becomes

UC ¼ 2:50V:

The intrinsic error in absolute form is the same across the entire scale of the

chosen range of the instrument. This allows us to find the limit of relative error of

the indication:

δin ¼ 0:03

2:50
∗100 ¼ 1:18%:

Another source of error, characteristic of an analog measurement device with

analog scale, is reading error δr, which is the error with which the experimenter

reads the indication of the device in the course of the measurement. While this error

generally depends on the indication (it disappears when the indication happens to

fall on a graduation mark, and is larger for indications between marks), it does not

exceed 0.25 of a graduation, and we will assume for simplicity this upper bound in

our calculations. The value of one graduation is 3
75
¼ 0:04V and at the reading point

the 0.25 of a graduation produces

δr ¼ 0:25∗0:04∗100

2:50
¼ 0:39%:

The measurement uncertainty in relative form is computed according to formula

(4.3) for confidence probability 0.95:

θ0:95, rel ¼ k0:95

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δin

2 þ δr
2

q
¼ 1:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:182 þ 0:392

p
¼ 1:36%:
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In absolute form, this becomes

θ0:95 ¼ 1:36∗10�2∗2:50V ¼ 0:034V:

Since as noted earlier, the accuracy of the measuring instrument stipulates the

measurement result with no more than three significant figures, the value of

measurement uncertainty must also be rounded to three significant figures, leading

to θ0.95 , rel¼ 1.4% and θ0.95¼ 0.03V. Finally, the result of the measurement is

presented in the form

U ¼ 2:50� 0:03ð ÞV or ~U ¼ 2:50V� 1:4%:

8.1.2 Single Measurement Under Rated Condition
of the Voltmeter

The inaccuracy of measurement under rated condition is determined not just by the

intrinsic error but also by additional errors. Let us consider the example of 8.1.1, but

now under rated rather than reference condition. Assume that the instrument

indicated has been observed to be 63.1 graduations, which translates into

U0 ¼ 63:1∗
3

75
¼ 2:524V:

The electrical resistance of the voltmeter RV and R of the chain are the same.

Therefore the absolutely constant error caused by interaction between voltmeter

and the chain is the same as it was in the measurement under reference condition

and it may be removed by the correction CU¼ + 0.0124V as obtained in Sect. 1.1.

The measurement result after correction is

U
0
C ¼ 2:524þ 0:012 ¼ 2:54V:

Now we need to calculate the accuracy of this result. The sources of error are as

follows:

1. The intrinsic error of the voltmeter

2. The reading error

3. The temperature error

4. The error introduced by the inclination of the instrument

5. The error caused by the limited accuracy of internal resistance of the voltmeter.

All errors listed above are conditionally constant. We shall now estimate the

errors of the measurement.

1. Intrinsic error δin. Its limits, as derived in the previous section, are:

δin ¼ 0:03∗100

2:54
¼ 1:18%:
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2. Reading error δr. This error was also derived in the previous section and is

δr ¼ 0:25∗0:04∗100

2:54
¼ 0:39%:

3. Additional temperature error δT. The maximum deviation of the temperature

from the normal value is 5 �C. Therefore,

δT ¼ 0:5%:

4. Additional inclination error δl. Because of the 5� inclination of the instrument,

the additional error will be 1% of the instrument indication:

δl ¼ 1%:

Since all above errors are conditionally constant, we may sum them using

Eq. (4.3). The resulting sum for confidence probability α ¼ 0.95 will be the

uncertainty limits in relative form:

θ0:95, rel ¼ 1:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:182 þ 0:392 þ 0:52 þ 12

p
¼ 1:1

ffiffiffiffiffiffiffiffiffi
2:79

p
¼ 1:84%:

In the absolute form, this uncertainty limit will be θ0.95¼ 2.54∗ 1.84∗ 10�2

¼ 0.047V. After rounding, the obtained uncertainties will become θ
0
0:95, rel ¼ 2%

and θ
0
0:95 ¼ 0:05V. Thus, the inaccuracy of the result of measurement under rated

condition of the voltmeter is expressed as uncertainty with confidence probability

0.95. The result of measurement should be presented in the form

U ¼ 2:54� 0:05ð ÞV or ~U ¼ 2:54V� 2%:

8.2 Voltage Measurement with a Potentiometer

and a Voltage Divider

Potentiometers with manual control are highly accurate and universal. For these

reasons, they are frequently used in scientific laboratories, although they have

started to be displaced by digital multirange voltmeters in recent years. The latter

are in essence automated potentiometers.

A voltage measurement with a potentiometer requires a two-phase measurement

procedure. First, a standard cell is connected to the potentiometer, and the current

through the potentiometer is adjusted using the potentiometer’s set of accurate

measuring resistors so that the voltage drop on the section of the circuit with

these resistors would balance the EMF of the standard cell. Next, a special
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potentiometer switch is used to disconnect the standard cell, and we connect the

voltage to be measured to the potentiometer.

When the voltage to be measured exceeds the range of the potentiometer, a

voltage divider can be used, which allows only a known fraction of the voltage to be

applied to the potentiometer. We should point out that a voltage divider contains

electrical resistors and thus consumes a certain amount of power from the voltage

source to which it connects. For this reason, a voltage divider can only be used if the

power it consumes is so low that the resulting affect on the measured voltage is

negligible. We assume that this is the case in our example.

The measurement of voltage with a potentiometer is a direct measurement.

However, when the errors of the potentiometer and the errors of the standard cell

are rated separately, and when a voltage divider is involved, the error produced by

such a chain of measuring instruments is estimated with methods that are specifi-

cally designed for indirect measurements. We discussed these methods in

Sect. 5.10. Here, we shall consider an example of a single measurement with

individual inaccuracy estimation.

To be specific, we will consider the measurement of voltage using a class 0.005

potentiometer, a class 0.005 voltage divider, and a standard cell with voltage

accuracy of �10 μV. In particular, we will consider a P309 potentiometer and

P35 voltage divider, which were manufactured in the former USSR. The measuring

resisters in P309 potentiometer are organized in six blocks called decades. Each

decade produces certain decimal digits in the measurement result. For example, if

the measured voltage is 1.256316 V, the digits “1.2 V” are produced by indication

“12” of decade “�100 mV,” the digit “0.05 V” by indication “5” of decade

“�10 mV,” and so on.

Let the current through the potentiometer be Ip and the resistance of the section

of the circuit with the accurate resistors after the adjustment in the first phase be Rsc.

Since the voltage drop on the section of the circuit with the resistance Rsc balances

the EMF of the standard cell, Usc, we have in this case:

Ip ¼ USC=RSC:

When the standard cell is disconnected and a certain voltage, Up, is connected to

the potentiometer circuit, a fraction of the resistors of the potentiometer is intro-

duced into the comparison circuit such that the voltage drop on their resistance Rp

would compensate Up; i.e., Up ¼ IpRp. Then

Up ¼ Rp

RSC

USC,

and knowing the EMF of the standard cell and the ratio Rp/Rsc, we can find Up.

Finally, assuming that the division coefficient of the voltage divider is equal to Kd,

the voltage to be measured, U, is determined from the formula U¼KdUp. There-

fore, we can write the measurement equation in this measurement in the form:
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U ¼ Kd
Rp

RSC

USC: ð8:1Þ

The indications of the potentiometer are proportional to Rp, but its error is

determined not by the errors of the resistances Rp and Rsc, but by the error of the

ratio Rp/Rsc. The uncertainty associated with the operations of comparing the

voltages can be neglected, because the smoothness of the resistance regulation in

the potentiometer and the sensitivity of its zero indicator were designed specifically

to keep this uncertainty extremely small compared to other errors.

The potentiometer has six decades and a built-in self-balancing amplifier. The

limit of permissible error as a function of the measured voltage Up is calculated

using the formula (given in the manufacturer’s documentation):

ΔUp ¼ � 50Up þ 0:04
� �� 10�6V:

The error of the potentiometer does not exceed the above limits if the ambient air

temperature ranges from +15 to +30 �C and differs by not more than 2.5 �C from the

temperature at which the measuring resistors of the potentiometer were adjusted

(the P309 potentiometer has built-in calibration and adjusting systems).

The EMF of the standard cells can be determined with an error of�10 μV that in

relative form is �1� 10�3%. The effect of the temperature is taken into account

using a well-known formula, which describes accurately the temperature depen-

dence of the EMF in a standard cell. Thus, temperature does not introduce addi-

tional errors to the EMF of the standard cell.

Assume that in three repeated measurements of certain voltage, performed using

a voltage divider whose voltage division ratio was set to 1:10, the following

potentiometer indications were obtained:

x1 ¼ 1:256316V, x2 ¼ 1:256321V, x3 ¼ 1:256318V:

The limit of permissible error of the potentiometer in this case is

ΔUp ¼ � 50∗1:26þ 0:04ð Þ∗10�6 ¼ � 63 μV:

For this reason, the difference of 5 μV between the results of the three observa-

tions above can be regarded as resulting from the random error of the measurement,

and the magnitude of this error is negligible. In the calculation, therefore, any one of

these results or their average value can be used.

Assume that in the process of adjusting the measuring resistors before the

measurement, the corrections of the higher order decades were estimated. Let the

correction for the indication “12” of the decade “�100 mV” be +15� 10�6 V, and

the correction for the indication “5” of the decade “�10 mV” be�3� 10�6 V. Each

correction is determined with an error of �5� 10�8 V.

The corrections for the other decades are so small that they are of no interest.

Indeed, the indication of all the remaining decades is 0.0063V; the limit of
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permissible error corresponding to this indication in accordance with the formula

given above is

ΔUp ¼ � 50� 0:0063þ 0:04ð Þ � 10�6 ¼ � 0:32� 10�6 V:

This error is already two orders of magnitude smaller than the permissible error

of the higher decades, and it can be neglected without further corrections.

Further, it is necessary to take into account the possible change in the air

temperature in the room. If this change falls within permissible limits, then

according to the specifications of the potentiometer, the error can change approx-

imately by one-forth of the permissible limit, i.e., by 16 μV.
We shall take for the result the average value of the observations performed,

correcting it by the amount C ¼ (15–3)� 10�6 ¼ 12� 10�6 μV:

Up ¼ �x ¼ 1:256318þ 0:000012 ¼ 1:256330V:

The errors of the potentiometer, which enter into this result, include the error

due to temperature (�16� 10�6 V), the error of correction of the higher decades

(� 5� 10�8 V), and the error due to the lower decades (�0.32� 10�6 V). Clearly,

these errors are dominated by the error due to temperature, and the remaining errors

can be neglected. Thus, the limits of error of the potentiometer are

θp ¼ �16� 10�6V:

Next, we must estimate the errors from the standard cell and the voltage divider.

The error of the class 0.005 voltage divider can reach 5� 10�3%. But the actual

division coefficient of the divider can be found and taken into account, which is

precisely what we must do in the case at hand. In the given measurement, assume

that this coefficient has been found to be Kd ¼ 10.0003 and the error in determining

Kd falls within the range �2 � 10–3%. Finally, the discrepancy between the real

and the nominal value of the EMF of the standard cell falls within the limits of error

of the standard cell (�10 μV).
We estimate the voltage being measured U as

~U ¼ KdUp ¼ 10:0003� 1:256330 ¼ 12:56368V:

To estimate the measurement error, we shall employ the usual calculation. First,

we shall take the logarithm of the measurement Eq. (8.1). Then we find the

differential of both sides of the equation and replace them by increments – mea-

surement errors. This process gives

234 8 Examples of Measurements and Measurement Data Processing



ΔU
U

¼ ΔKd

Kd
þ Δ Rp=RSC

� �
Rp=RSC

þ ΔUSC

USC

:

For the terms on the right side of the above formula, we only have estimates of

the limits, and not the values of the error. Thus, we shall estimate the limits of the

measurement error on the left side. We can use formula (4.3) for this purpose. First,

all components must be represented in the form of relative errorss. The limits of the

relative error of the potentiometer, in percent, will be

θp, rel ¼ � 16� 10�6 � 100

1:26
¼ �1:3� 10�3%:

The limits of the relative error of the voltage divider were estimated directly as

θK ¼ �2� 10�3%. The limits of error in determining the EMF of the standard cell

in the form of a relative error are known:

θSC, rel ¼ �1� 10�3%:

We now find the limit of the measurement error according to (4.3):

θα, rel ¼ kα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:32 þ 22 þ 12

p
∗10�3 ¼ kα∗2:6∗10�3%

Let α ¼ 0.95. Then kα ¼ 1.1 and

θ0:95, rel ¼ 1:1∗2:6∗10�3 ¼ 2:9∗10�3%:

Finally, we must check the number of significant figures in the result of mea-

surement. To this end, we shall express the above limit θ0.95 in the absolute form:

θ0:95 ¼ �2:9� 10�3 � 10�2 � 12:6 ¼ �37� 10�5V:

As this is an accurate measurement, the error of the result is expressed by two

significant figures (see Sect. 1.8), and there are no extra figures in the obtained

result to be rounded off. The final result is (omitting alternative representations

from now on) as follows:

U0:95 ¼ 12:56368� 0:00037ð ÞV:
If the measurement was performed with universal estimation of the errors, then

the errors of all components would have to be set equal to 5� 10�3% and the limit

of the measurement error would be

θ00:95, rel ¼ 1:1� 10�3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 52

p
¼ 5:8� 10�3%:
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Then, in absolute form, θ00:95 ¼ �12:6� 5:8� 10�5 ¼ 0:0007Vand the result of

measurement would have to be written with fewer significant figures:

U0:95 ¼ 12:5637� 0:0007ð ÞV:

8.3 Comparison of Mass Measures

Let us consider the calibration of a 1-kg mass measure by comparing it with the

reference standard measure of mass with the same nominal value using a balance.

Assume that the comparison was repeated ten times. Column 1 of Table 8.1 lists the

measurement results obtained from the comparison of the measures. Our goal is to

produce the final measurement result and estimate its inaccuracy.

Assume that the measurement was performed by the methods of precise

weighing, which eliminated the error caused by the arms of the balance not having

precisely equal length. Thus, it can be assumed that there are no systematic errors.

Table 8.1 presents the input and intermediate data involved in producing the

final measurement result and estimating its inaccuracy. Since the systematic errors

were eliminated, the measurement results in column 1 can be viewed to be random

independent quantities {xi}, i, ¼ 1, . . ., n and n ¼ 10, and therefore, the probability

of all xi, is the same and equal to 1/n. To simplify the computations, column

2 presents only the varying last three digits of xi, denoted as xi0.
Their mean value is

�xi0 ¼ 1

n

Xn
i¼1

xi0 ¼ 1

10
� 7210� 10�6 ¼ 721� 10�6g:

Table 8.1 Input measurement data and intermediate processing steps in the measurement of the

mass of a weight

xi g xi0� 10�6g xi0 � �xi0ð Þ � 10�6g xi0 � �xi0ð Þ2 � 10�12g2

999.998738 738 +17 289

999.998699 699 �22 484

999.998700 700 �21 441

999.998743 743 +22 484

999.998724 724 +3 9

999.998737 737 +16 256

999.998715 715 �6 36

999.998738 738 +17 289

999.998703 703 �18 324

999.998713 713 �8 64

Sum 7.210 0 2.676
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Thus, the estimate of the value of the mass is

�x ¼ 999:998000þ �xi0 ¼ 999:998721g:

We can now obtain the estimate of the variance

S2 xið Þ ¼ 1

n� 1

Xn
i¼1

xi0 � �x0ð Þ2:

Hence, the standard deviation is

S xið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2676

9
� 10�12 ¼ 17� 10�6g:

r

An estimate of the standard deviation of the obtained value of the mass

measure is

S�x ¼ 17� 10�6ffiffiffiffiffi
10

p ¼ 5� 10�6g:

We shall find the uncertainty of the result using Student’s distribution for

confidence probability α ¼ 0.95; then, from Table A.2, we find the coefficient tq
for the degree of freedom v ¼ 10�1 ¼ 9 and q ¼ 1� α ¼ 0.05: t0.05 ¼ 2.26. In

accordance with formula (3.20), we obtain the uncertainty of measurement result:

u0:95 ¼ 2:26� 5� 10�6 ¼ 11� 10�6g:

Thus, with the confidence probability α ¼ 0.95, the mass m of the measure

studied lies in the interval

999:998710 g � m � 999:998732g:

This result can be written more compactly as

m0:95 ¼ 999:998 721� 11� 10�6
� �

g::

Note that if the data above were processed by the nonparametric methods, the

estimate of the measurand would be practically the same but its uncertainty would

be much wider (see Sect. 3.10).
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8.4 Measurement of Electric Power at High Frequency

Consider a measurement of electric power generated in a resistor by high-frequency

current. The measurement is conducted by a single measurement of the current and

resistance of the resistor, after which the value of the electric power is computed

using equation P¼ I2R, where P is the power to be measured, I is the effective

current and R is the active resistance of the resistor. This is an example of a single

indirect measurement.

Assume single measurements of the electric current and resistance of the resistor

have produced the estimates ~I ¼ 500 mA and ~R ¼ 10:0 Ω. We know also that these

measurements were conducted under reference conditions. The limits of error of ~I
and ~R are estimated using the procedure for direct single measurements under

reference conditions (see Sect. 4.6). Assume these limits in relative form are:

δI ¼ 0:5% and δR ¼ 1%:

Substituting values ~I and ~R in the measurement equation, we obtain the estimate

of the measurand ~P:

~P ¼ 0:5ð Þ2∗10:0 ¼ 2:50 W:

We now estimate the accuracy of the measurement result. The measurement

equation follows the structure of Eq. (5.10) and we have the limits of measurement

errors of arguments represented in relative form. Thus, according to the discussion

following Eq. (5.10), we know the influence coefficients of the arguments: lI¼ 2

and lR¼ 1. Therefore we can transform the limits of measurement errors of the

arguments into the limits of elementary errors of the indirect measurement, θI , rel
and θR , rel in relative form:

θI, rel ¼ 2δI and θR, rel ¼ δR:

We can now combine these elementary errors using formula (5.28). For confi-

dence probability 0.95, coefficient k0 , 95¼ 1.1. Then, we obtain:

θ0:95, rel ¼ 1:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4δ2I þ δ2R

q
¼ 1:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4∗0:25þ 1

p ¼ 1:5%:

Since the number of elementary errors is small, we need to compare the above

probabilistic uncertainty with the arithmetic sum of the two arithmetic errors. The

arithmetic sum is θI , rel + θR , rel¼ 2%, which is greater than θ0.95 , rel¼ 1.5%. Thus,

we take the latter as the estimate of the measurement inaccuracy, which in the

absolute form is
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θ0:95 ¼ 2:50 ∗1:5∗10�2 ¼ 0:0375 W � 0:04 W:

Finally, the measurement result and its uncertainty are recorded as:

~P0:95 ¼ 2:50� 0:04ð ÞW or ~P ¼ 2:50W� 1:5% 0:95ð Þ:

8.5 An Indirect Measurement of the Electrical Resistance

of a Resistor

Consider the measurement of electrical resistance using an ammeter and a voltme-

ter. This is an indirect measurement with measurement equation R¼U/I, where R is

the electrical resistance of the resistor, U is the voltage drop on the resistor, and I is
the strength of the current. Furthermore, it is a dependent indirect measurement

because the value of I depends on the value of U.
The connections of the instruments and the resistor are shown in Fig. 8.1.

Assume that the measurement was performed under reference conditions for the

instruments, and that the input resistance of the voltmeter is so high that its

influence on the accuracy of the measurement can be neglected.

Both voltage and current have been measured with the limits of error �0.1% of

the indications. The results of measurements of the strength of current and voltage

are given in Table 8.2. In accordance with the discussion from Sect. 5.2 and 5.6, all

results presented in the table were obtained in pairs: the results with the same

subscript belong to the same measurement vector.

We can use in this example both the traditional method and the method of

reduction. Let us use each in turn and compare the calculations and results.

8.5.1 Application of the Traditional Method

The traditional method of experimental data processing for dependent indirect

measurements was described in Sect. 5.4.

A

+

–

V R

Fig. 8.1 The schema for

indirect measurement of an

electrical resistance
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The calculations are illustrated by Table 8.3, which also repeats the input

measurement data for convenience. Using the values of Ui, and Ii, we obtain the

estimates of the arguments:

�U ¼ 66:002=11 ¼ 6:00018V, �I ¼ 0:65997=11 ¼ 0:059997A:

We can now compute the estimate of the measurand R. But because the number

of measurements of the arguments is the same, one can avoid the inaccuracy of

calculation of the argument estimates by obtaining R from the sums of the individ-

ual measurement results of the arguments (given in columns 2 and 3, the last row of

Table 8.3) rather than from their estimates:

Table 8.2 Input

measurement data in indirect

measurement of a resistor

Num. Ii (A) Ui (V)

1 0.05996 6.003

2 0.06001 6.001

3 0.05998 5998

4 0.06003 6.001

5 0.06001 5.997

6 0.05998 5.999

7 0.06003 6.004

8 0.005995 5.997

9 0.06002 6.001

10 0.06001 6.003

11 0.05999 5.998

Table 8.3 Data processing for indirect measurement of electrical resistance using the traditional

method

Num.

Ii
A

Ui

V

Ii � �Ið Þ
�10�5 A

Ii � �Ið Þ2
�10�10 A2

Ui � �Uð Þ
�10�3 V3

Ui � �Uð Þ2
�10�6 V2

Ii � �Ið Þ Ui � �Uð Þ
�10�8 AV

1 2 3 4 5 6 7 8

1 0.05996 6.003 �3.7 13.69 +2.82 7.95 �10.4

2 0.06001 6.001 +1.3 1.69 +0.82 0.67 +1.1

3 0.05998 5.998 �1.7 2.89 �2.18 4.75 +3.7

4 0.06003 6.001 +3.3 10.89 +0.82 0.67 +2.7

5 0.06001 5.997 +1.3 1.69 �3.18 10.11 �4.1

6 0.05998 5.999 �1.7 2.89 �1.18 1.39 +2.0

7 0.06003 6.004 +3.3 10.89 +3.82 14.59 +12.6

8 0.05995 5.997 �4.7 22.09 �3.18 10.11 +14.9

9 0.06002 6.001 +2.3 5.29 +0.82 0.67 +1.9

10 0.06001 6.003 +1.3 1.69 +2.82 7.95 +3.7

11 0.05999 5.998 �0.7 0.49 �2.18 4.75 +1.5

Sum 0.65997 66.002 74.19 63.61 29.6
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~R ¼ �U=�I ¼
Pn
i¼1

Ui

Pn
i¼1

Ii

¼ 66:002=0:65997 ¼ 100:0075Ω:

Now we must calculate the variance and the standard deviation of this result.

First, we will estimate the variances of �I, �U, their standard deviations, and the

correlation coefficient. According to the discussion in Sect. 5.2, we obtain

S2 �Ið Þ ¼
Pn

i¼1 Ii � �Ið Þ2
n n� 1ð Þ ¼ 74:19� 10�10

11� 10
¼ 0:674� 10�10A2,

S2 �Uð Þ ¼
Pn

i¼1 Ui � �Uð Þ2
n n� 1ð Þ ¼ 63:61� 10�6

11� 10
¼ 0:578� 10�6V2:

The estimates of standard deviations are

S �Ið Þ ¼ 0:82� 10�5A, S �Uð Þ ¼ 0:76� 10�3V:

The estimate of the correlation coefficient is

rI,U ¼
Pn

i¼1 Ii � �Ið Þ
n n� 1ð ÞS Ið ÞS Uð Þ ¼

29:6� 10�8

110� 0:82� 10�5 � 0:76� 10�3
¼ 0:43:

In our example, inserting the obtained values into (5.20) we can calculate the

desired estimation of standard deviation S ~R
� �

. But first we have to calculate the

influence coefficients. Thus, the calculations are

w1 ¼ ∂R
∂U

¼ 1

I
, w2 ¼ ∂R

∂I
¼ U

I2
,

S2 ~R
� �¼ �U

�I2

� �
� S2 �Ið Þ þ 1

�I2
� S2 �Uð Þ � rI,U

�U

I2
� 1

I
� S �Ið ÞS �Uð Þ

¼ 6
36�10�4

� �2

� 0:674� 10�10 þ 1

36� 10�4
� 0:578� 10�6

�2� 0:43� 6

36� 10�4

1

6� 10�2
� 0:82� 10�5 � 0:76� 10�3

¼ 1:87� 10�4 þ 1:61� 10�4 � 1:49� 10�4

¼ 1:99� 10�4Ω2,

and
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S �Rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
S2 Rð Þ

q
¼ 1:41� 10�2Ω:

The next step is to find the uncertainty of the obtained result. Unfortunately, we

have the standard deviation, but no information about the distribution function of

the measurement error, and it is unclear how to find the degree of freedom of the

measurement result to account for the dependency between the arguments. Thus,

with dependent indirect measurements, we have to use standard deviation of the

measurement result as the indication of measurement accuracy rather than its

uncertainty. Furthermore, because in the traditional method, we are unable to

calculate the random uncertainty of that measurement and hence cannot combine

it with the systematic uncertainty, we did not calculate the latter.

8.5.2 Application of the Method of Reduction

We now turn to the method of reduction described in Sect. 5.6. Table 8.4 lists the

intermediate data involved in the calculations. The initial data are again provided in

columns 2 and 3.

According to the method of reduction, we first compute values of the measurand

using the measurement equation for each measurement vector. The calculated

values of Ri, (i ¼ 1, . . .,11) are given in column 4. Treating these values as if

they were obtained by direct measurements, we obtain immediately the estimate of

R as

Table 8.4 Data processing for indirect measurement of electrical resistance using the method of

reduction

Num.

Ii
A

Ui

V

Ri

Ω
Ri � �Rð Þ
Ω

Ri � �Rð Þ
�10�2 Ω2

1 2 3 4 5 6

1 0.05996 6.003 100.117 +0.109 1.188

2 0.06001 6.001 100.000 0.002 0.000

3 0.05998 5.998 100.000 0.002 0.000

4 0.06003 6.001 99.967 0.041 0.168

5 0.06001 5.997 99.933 0.075 0.562

6 0.05998 5.999 100.017 +0.009 0.008

7 0.06003 6.004 100.017 +0.009 0.008

8 0.05995 5.997 100.033 +0.025 0.0625

9 0.06002 6.001 99.983 �0.025 0.0625

10 0.06001 6.003 100.033 +0.025 0.0625

11 0.05999 5.998 99.983 �0.025 0.0625

Sum 1100.083 2.184
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�R ¼ 1

n

Xn
i¼1

Ri ¼ 100:0075Ω

and the estimates of its variance and standard deviation as

S2 �Rð Þ ¼ 1

n n� 1ð Þ
Xn
i¼1

Ri � �Rð Þ2 ¼ 2:184� 10�2

11� 10
¼ 1:99� 10�4Ω2,

S �Rð Þ ¼ 1:41� 10�2Ω:

As one can see from this example, the calculations using the method of reduction

are much simpler than using the traditional method, even in this case with a

measurement equation having only two arguments. More importantly, we now

have a set of output data {Ri} that does not differ in any way from data obtained

in direct measurements. Thus, we know the degree of freedom v ¼ 11–1 ¼ 10 and

can compute the uncertainty of the measurement result. Using confidence proba-

bility α ¼ 0.95 we find the corresponding value of Student’s coefficient tq ¼ 2.23

and uncertainty

u0:95 ¼ 2:23∗1:41∗10�2 ¼ 3:14∗10�2Ω:

Turning to the systematic error, the measurement equation conforms to the

structure studied in Sect. (5.10) and therefore we immediately know the influence

coefficients: lU¼ 1 and lI¼ � 1. Then, keeping in mind that for our chosen confi-

dence probability α ¼ 0.95, k0.95 ¼ 1.1, we obtain:

θ0:95, rel ¼ 1:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 12

p
∗10�3 ¼ 1:1∗1:41∗10�3 ¼ 1:55∗10�3,

and

Sϑ, rel ¼ 1ffiffiffi
3

p ∗
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 12

p
∗10�3 ¼ 0:82∗10�3:

In the absolute form,

θ0:95 ¼ 1:55∗10�3∗100 Ω ¼ 0:155Ω and Sϑ ¼ 0:82∗10�3∗100Ω ¼ 0:082Ω:

We now combine the random and systematic components of the measurement

uncertainty according to Sect. 4.10. The combined standard deviation is computed

by formula (4.19):

Sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:41∗10�2
� �2 þ 8:2∗10�2

� �2q
¼ 8:31∗10�2Ω:
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Coefficient tc – by formula (4.22):

tc ¼ 3:14∗10�2 þ 15:5∗10�2

1:41∗10�2 þ 8:31∗10�2
¼ 1:92:

Now, by formula (4.20) we obtain the overall uncertainty of the measurement

result:

Uc ¼ 1:92∗8:31∗10�2 ¼ 0:16Ω:

The final measurement result is recorded as

R0:95 ¼ 100:01� 0:16ð ÞΩ:

8.6 Measurement of the Density of a Solid Body

The accurate measurement of the density of a solid body can serve as an example of

a multiple nonlinear independent indirect measurement. The density of a solid body

is given by the formula

ρ ¼ m=V,

where m is the mass of the body and V is the volume of the body. In the experiment

considered, the mass of the body was measured by methods of precise weighing

using a balance and a collection of standard weights whose errors did not exceed

0.01mg. The volume of the body was determined by the method of hydrostatic

weighing using the same set of weights. The results of measurements are presented

in Table 8.5 in columns 2 and 5.

The difference between the observational results of the body mass is explained

by the random error of the balance and the inevitable fluctuations of the environ-

mental conditions. As follows from the data presented, this error is so much larger

than the systematic errors in the masses of the weights that the latter errors can be

neglected.

8.6.1 Application of the Traditional Method

As the mass of the solid body and its volume are constants, to estimate the density

of the body, the mass and volume of the body must be estimated with the required

accuracy and their ratio must be formed. For this reason, we find the average values

of the measurement results of the arguments and estimates of the standard devia-

tions of these averages (Table 8.5 lists intermediate results for these calculations –
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the deviations of individual measurements from their mean as well as the squares of

these deviations):

�m ¼ 252:9120� 10�3kg, �V ¼ 195:3798� 10�6m3,

S2 �mð Þ ¼ 1

n1 n1 � 1ð Þ
Xn1
i¼1

mi � �mð Þ2 ¼ 2132� 10�14

11 � 10 ¼ 19:38� 10�14kg2,

S2 �Vð Þ ¼ 1

n2 n2 � 1ð Þ
Xn2
i¼1

Vi � �Vð Þ2 ¼ 1805� 10�20

11 � 10 ¼ 16:41� 10�20m6:

The standard deviations of the measurement results of the arguments in the

relative form are as follows:

Srel �mð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
19:38∗10�14

p

252:9∗10�3
¼ 1:74∗10�6:

Srel �Vð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16:41∗10�20

p

195:4∗10�6
¼ 2:08∗10�6:

We can now find the uncertainty of the obtained estimates of the arguments.

Both were measured 11 times. Therefore, their degree of freedom is v ¼ 10.

Exploiting the robustness of Student’s distribution, we will make use of this

distribution. We thus obtain, for confidence probability α¼ 0.95 and the

corresponding value of Student’s coefficient tq ¼ 2.23, the following confidence

limits in relative form:

u0:95, rel �mð Þ ¼ 2:23∗1:74∗10�6 ¼ 3:88∗10�6,

u0:95, rel �Vð Þ ¼ 2:23∗2:08∗10�6 ¼ 4:64∗10�6:

The estimate of the measurand is

eρ ¼ �m
�V
¼ 252:9120� 10�3

195:3798� 10�6
¼ 1:2944634� 103kg=m3:

To calculate the uncertainty of the overall measurement result we use here the

traditional method of linearization. It is not difficult to see that, in our example,

using just the first term from the Taylor series is sufficient. (To this end, one must

estimate the remainder R2 of the Tailor series according to (5.15); we omit these

details here.)

We shall now find the uncertainty of the result. This can be done in two ways:

using the root sum of the squares formula (5.24) or by taking advantage of the fact

that due to the expansion into the Taylor series, the measurement error of the result

took the form of a linear combination of the measurement errors of the arguments,

making it possible to compute the effective degree of freedom. In the first method,

according to (5.24), the combined uncertainty in relative form is as follows:
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u0:95, rel ρð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2rel �mð Þ þ u2rel

�Vð Þ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:882 þ 4:642

p
∗10�6 ¼ 6:0∗10�6:

In absolute form the uncertainty is:

u ρð Þ ¼ 1:29� 103 � 6� 10�6 ¼ 7:7� 10�3 kg=m3:

The measurement result, including its uncertainty in absolute form, can be

expressed as:

ρ0:95 ¼ 1:294463∗103 � 7:7∗10�3
� �

kg=m3:

Uncertainty in that result represents the random error of the measurement. The

systematic error of it is negligible because the errors of the used weights were

sufficiently small.

In principle, one could combine random errors of argument measurements after

the linearization of the measurement equation, using Welch- Satterthwaite formula.

But this formula is only applicable if the errors can be considered as normally

distributed, which in our case would be unfounded. Another possibility is to apply

corrections as discussed in Sect. 5.5. But these corrections are also only possible

when the errors being combined can be considered normally distributed. Thus,

neither method could be used to reduce the uncertainty of the measurement result.

8.6.2 Application of Method of Enumeration

Let us consider again a precise measurement of density of a solid body, with

measurement data from Sect. 6.1. The sought density ρ is determined using

measurement equation

ρ ¼ m=V

and is computed from the measurements of the mass of the body m and its volume

V. The estimate of the measurand (density) was obtained in Sect. 6.1:

ρ ¼ 1:294463� 103kg=m3:

Now we will apply the method of enumeration to data processing in this

measurement example using the procedure described in Sect. 5.7.

Note that the measurement results of the arguments are analogous to realizations

ai,k of the discrete random quantities ηi from Sect. 5.3. The measurements of the

mass are analogous to a1,k and of the volume to a2,k. Substituting all possible

combinations of ai,k and a2,k (for k ¼ 1,. . .,11) we obtain 121 values of density ρt
similarly to how we obtained values of at in Sect. 5.3.
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All 11 realizations of each argument have equal probability hence the probabil-

ity of each is 1/11, and the probability of each of the obtained values ρt is 1/121.
Sorting these values in the increasing order and knowing the probability of each

value, we construct the stepped and then linear approximation of the cumulative

distribution function of the realizations of measurand ρ. The resulting CDF is

shown in Fig. 8.2.

To estimate the parameters of this experimental distribution, following the

procedure from Sect. 5.7, we generate an independent sample from this distribution

of size K ¼ 1,000 by sequentially going through the probability interval [0,1] with

step 0.001 and taking realizations of the measurand corresponding to each proba-

bility. From this sample, we obtain the estimates of the parameters of the

distribution

ρt ¼ 1:29446299� 103kg=m3 and S2 ρtð Þ ¼ 1:163� 10�4 kg=m3
� �2

:

After rounding-off, the estimate ρt precisely matches the rounded-off estimate of

the measurand obtained in Sect. 6.1.

Having the variance of the distribution, we now find the variance of the estimate

of the mean for the sample of size 11:

0

0.25

0.5

0.75

F(ρ)

1.29442 1.29443 1.29444 1.29445 1.29446 1.29447 1.29448 ρ*103,
kg/m3.

Fig. 8.2 The cumulative distribution function of realizations ρt
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S2 ρ11ð Þ ¼ S2 ρtð Þ=11 ¼ 1:057� 10�5 kg=m3
� �2

:

Thus, the standard deviation of the mean is

S ρ11ð Þ ¼ 3:25� 10�3kg=m3,

and in relative form,

Srel ρ11ð Þ ¼ S ρ11ð Þ
ρt

¼ 2:51� 10�6:

The 0.95 quintile of normal distribution is z0.95¼ 1.96 and thus the uncertainty of

the measurement result is

u0:95, rel ρ11ð Þ ¼ 1:96� 2:51� 10�6 ¼ 4:92� 10�6:

Uncertainties, as measurement errors, are conventionally written with no more

than two significant figures and expressed as percentage. Thus, in the final form we

have:

u0:95, rel ρ11ð Þ ¼ 4:9∗10�6 ¼ 4:9� 10�4%:

Uncertainties of input experimental data were computed in Sect. 6.1:

u0:95, rel �mð Þ ¼ 3:88� 10�4%,

u0:95, rel �Vð Þ ¼ 4:64� 10�4%:

The obtained uncertainty of measurement result slightly higher than the uncer-

tainty of the experimental data, and this is quite natural. This measurement uncer-

tainty is more than 10% less than the one obtained using the traditional method

(6.0� 10�4%). We should also stress that the obtained uncertainty reflects all the

information contained in the experimental data, unlike the traditional method where

residual terms in the Taylor series are neglected.

Systematic errors in this example were negligibly small. In general, they

exist and need to be accounted for. The methodology of accounting for these

errors in computing the uncertainty of measurement result is given in the example

in Sect. 8.5.2.
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8.7 Measurement of Ionization Current

Accurate measurements of weak currents, for example, currents generated by γ rays
from measurement standards of unit radium mass, are performed by the compen-

sation method using an electrometer. Such currents are measured and compared, for

example, in the process of calibration of these standards.

In the compensation method, a high-impedance resistor is inserted into the

circuit with the current to be measured. This resistor is also connected in parallel

to a capacitor, which is charged prior to being connected. The two connections are

arranged so that the measured current and the discharge current from the capacitor

flow in the opposite directions. The difference between the two currents creates

voltage on the resistor, which is detected by the electrometer. When the electrom-

eter indicator shows zero, the two currents are equal. The time from the start of the

capacitor’s discharge to when the two currents equalize is measured; this time

depends on the dynamics of the capacitor discharge, which is determined by the

time constant of the circuit containing the capacitor and resistor. This constant can

be determined accurately because both the capacitance of the capacitor and the

impedance of the resistor are found a priori with high accuracy. Thus, given the

known charge on the capacitor before it is connected to the resistor, one can

determine the ionization current by the discharge time until the moment of

compensation.

The measured strength of current I is defined by the expression

I ¼ CU=τ,

where C is the capacitance of the capacitor used to compensate the ionization

current; U is the initial voltage on the capacitor; and τ is the compensation time.

As U and τ are dependent, it is a dependent measurement. This measurement

equation has the form that is presented in Sect. 5.10. Therefore we know the

influence coefficients lc¼ 1, lu¼ 1, and lc¼�1.

We shall examine the measurement of ionization current on the specific appa-

ratus described in [34]. It employs a capacitor with capacitance C ¼ 4006.3 pF,

which is known to be within 0.005% of the above value. The voltage on the

capacitor is established with the help of a class 0.1 voltmeter with a measurement

range of 0–15 V. The time is measured with a timer whose scale is divided into

tenths of a second. The results of a calibration of one standard of radium mass

against another using this apparatus are presented in [34]; we will use these results

to estimate the accuracy of the measurement of the ionization current involved in

the calibration procedure.

The measurement described in [34] included 27 repeated observations. Each

time the same indication of the voltmeter U ¼ 7V was established and the

compensation time was measured. The results of the 27 observations of time are

given in the first column of Table 8.6. Using the measurement equation, we can

compute the strength of the ionization current from the compensation time. The

27 values of the current corresponding to the measured compensation times are
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listed in column 2 of the table. We now need to obtain the estimate of the result of

this measurement and its inaccuracy.

Let us first obtain the estimate of the current. Because ionization currents are

weak, one has to account for the so-called background current caused by the

background radiation. The average background current is usually equal to

(0.5–1)� 10�12A and can be measured to within 5%. In the measurement in

question, the background current was found to be �Ib ¼ 0:75� 10�12A. The average

value of current observations from Table 8.6 is �I ¼ 3:7687� 10�10A. Thus, the

estimate the ionization current is

~I ¼ �I � �Ib ¼ 3:7612� 10�10A:

Table 8.6 Measurement results and intermediate processing steps in the measurement of ioniza-

tion current

τ (s) Ii � 10�10A (Ii – �I) � 10�14A Ii � �Ið Þ2 � 10�28A2

74.4 3.7694 7 49

74.6 3.7593 �94 8,836

74.3 3.7745 58 3,364

74.6 3.7593 �94 8,836

74.4 3.7694 7 49

74.4 3.7694 7 49

74.4 3.7694 7 49

74.4 3.7694 7 49

74.4 3.7694 7 49

74.3 3.7745 58 3,364

74.5 3.7643 �44 1,936

74.4 3.7694 7 49

74.5 3.7643 �44 1,936

74.4 3.7694 7 49

74.6 3.7593 �94 8,836

74.2 3.7705 18 324

74.5 3.7643 �44 1,936

74.3 3.7745 58 3,364

74.4 3.7694 7 49

74.4 3.7694 7 49

74.5 3.7643 �44 1,936

74.5 3.7643 �44 1,936

74.3 3.7745 58 3,364

74.3 3.7745 58 3,364

74.3 3.7745 58 3,364

74.4 3.7694 7 49

74.5 3.7643 �44 1,936
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Now let us turn to the inaccuracy. First consider the conditionally constant

systematic errors. For a class 0.1 voltmeter, its limit of error in indicating the

voltage of 7V is θU ¼ 0.1%� (15/7) ¼ 0.21%. The limit of error of measuring

compensation time with the timer that has the graduations of 0.1s is equal to half the

graduation or 0.05 s. In relative form, for the time intervals of 74–75 s, this gives

θτ ¼ (0.05/74)� 100 ¼ 0.067%. Although the capacitance of the capacitor is

supposed to be known within 0.005%, the measurement was performed under

rated rather than reference temperature conditions, leading to an additional error.

Thus, the capacitance is known only with the limit of error of 0.05%. The limit of

measurement error of the background current, which is within 0.5% of the value of

the background current, is only 0.013% with respect to the ionization current

estimate, and it can obviously be neglected compared to the error in voltage

indication θU. Turning to formula (5.48) and taking confidence probability

α ¼ 0.95,

θI, 0:95, rel ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2C þ θ2U þ θ2r

q
¼ 1:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:052 þ 0:212 þ 0:0672

p
¼ 0:24%:

Now let us consider random errors. First we shall find an estimate of the standard

deviation of the measurement result, which is

S �Ið Þ ¼ S �Ið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP27
i¼1

Ii � �Ið Þ2

27 � 26

vuuut
¼ 9� 10�14A:

It is obvious that the random error can be neglected compared to the limit of the

conditionally constant systematic error computed above, which in the absolute form

is equal to

θI, 0:95 ¼ 3:7612∗10�10 ∗0:24∗10�2 ¼ 0:90� 10�12A:

The latter therefore determines the overall inaccuracy of the result. Therefore,

our obtained estimate of the ionization current has one extra digit. Rounding it off,

we arrive at the result of the measurement:

I0:95 ¼ 3:761� 0:009ð Þ � 10�10A:

Finally, as a side note, Table 8.6 shows that the random error of an individual

observation in this measurement, which could be explained by the inaccuracy of the

detection of the moment of the equality of the measured and compensating currents

and of the setting of the initial voltage on the capacitor, can reach 0.25% (this can be

seen as the deviation of individual observations in Table 8.6, column 2, from

the average). However, repeating the measurement 27 times allowed us to reduce

the error to the level where it could be neglected compared to the systematic errors.
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8.8 Measurement of the Activity of a Radioactive Source

We shall examine the measurement of the activity of a radioactive source by

absolute counting of α particles emitted by the source. We will use the experiment

described in [15], as well as the measurement data reported there, as the basis for

our discussion. The measurement is performed using a detector that counts the

particles arriving from the source through a diaphragm opening. The number of

particles captured by the detector depends on the geometric configuration of the

experimental setup – the diameter of the diaphragm, the distance between the

detector and the source, and the diameter of the source (assuming the source is

spherical). Following [15], these parameters can be encapsulated into a geometric

factor G, which is calculated from the above quantities. Then the measured radio-

activity is determined from the formula

A ¼ GN0η,

where G is the geometric factor of the apparatus, N0 is the α-particle counting rate,

and η is the α-particle detection efficiency. In the course of the measurement,

G does not change, so that errors of G create a systematic error of measurement

of the activity A. Measurements of the numbers of α particles, however, have

random errors.

To reduce the error arising from the error of the geometric factor, the measure-

ments were performed for different values of this factor (by changing the distance

between the source and detector and the diameter of the diaphragm). All measure-

ments were performed using the same source 239Pu.

All the arguments appear in the measurement equation with the same degree of

1. Thus, as discussed in Sect. 5.10 it is convenient to express their errors in relative

form since all the influence coefficients will then be equal to 1. Table 8.7 gives

measurement results for the five geometric configurations studied. In each case,

50 measurements were performed, and estimates of the measured quantity and their

standard deviation, which are also presented in Table 8.7, were calculated. The

standard deviations of the (conditionally constant) systematic errors of the results

Table 8.7 The results of measurements of the activity of nuclides using a setup with different

geometric factors

Group

number j

Source-detector

distance (mm)

Diaphragm

radius (mm)

Measurand

estimate xj � 105

Estimates of standard

deviation

Random

errors (%)

Systematic

errors (%)

1 97.500 20.017 1.65197 0.08 0.52

2 97.500 12.502 1.65316 0.10 0.52

3 397.464 30.008 1.66785 0.16 0.22

4 198.000 20.017 1.66562 0.30 0.42

5 198.000 30.008 1.66014 0.08 0.42
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were calculated from the estimated limiting values of all error components under

the assumption that they can be regarded as centered uniformly distributed random

quantities.

The data in Table 8.7 show, first of all, that the systematic errors are much larger

than the random errors, so that the number of measurements in the groups is

sufficient. The observed difference between the obtained values of the activity of

the nuclides in the groups can be mostly explained by their different systematic

errors.

In the example studied, the same quantity was measured in all cases. Therefore,

one can use the weighted mean as the overall estimate of the measurand. Based on

the considerations from Sect. 7.5, we shall use (7.13) to calculate the weights. First,

we shall calculate an estimate of the combined variance according to (7.12):

S2 �xj
� � ¼ S2ψ �xj

� �þ S2ϑ �xj
� �

:

The results of the calculations are given in Table 8.8. As an example, we provide

the calculation details of weight g1:

g1 ¼
1

0:28
1

0:28 þ 1
0:28 þ 1

0:07 þ 1
0:27 þ 1

0:18

¼ 3:57

30:7
¼ 0:12:

Now we find the weighted mean:

~A ¼ �x ¼
X5
j¼1

gj�xj ¼ 1:6625� 105:

Using estimates S2 �xj
� �

from Table 8.8 in accordance with (7.6), we obtain

S2 ~A
� � ¼ 0:33 %ð Þ2 and S ~A

� � ¼ 0:182%:

We can now estimate the uncertainty of the measurement result. To do this, we

need to find, using (7.13), the standard deviations of the random and conditionally

constant systematic components of the weighted mean and then, since S ~A
� �

has

Table 8.8 The estimate of

combined variances and

weights of measurement

results in different groups

Group number j

Estimate of combined

variance S2 �xj
� �

(%)2 Weight gi

1 0.28 0.12

2 0.28 0.12

3 0.07 0.46

4 0.27 0.12

5 0.18 0.18
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already been found, calculate tc from (4.22). All data for these calculations are

available in Tables 8.7 and 8.8.

The standard deviations of the random and systematic components of the

weighted mean are as follows:

S2ψ �xð Þ ¼
XL
j¼1

g2j S
2
ψ xj
� � ¼ 71:58� 10�8 and Sψ �xð Þ ¼ 8:46� 10�4

S2θ �xð Þ ¼
XL
j¼1

g2j S
2
θ xj
� � ¼ 261:7� 10�8 and Sθ �xð Þ ¼ 16:2� 10�4

Next, we compute the uncertainty of the systematic component, θα. The easiest
way to do it is by using (4.3). For this, however, we need to transfer from the

standard deviations of the elementary systematic errors back to their limits, which

as we know can be done using factor
ffiffiffi
3

p
(since S2 ¼ θ2/3). Thus,

θα ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
XL
j¼1

g2j S
2
ϑ �xj
� �vuut ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3S2ϑ �xð Þ

q

Taking α¼ 0.95, we have kα ¼ 1.1 and θ0:95 ¼ 1:1� 1:73� Sϑ �xð Þ ¼ 1:90Sϑ �xð Þ.
From here, we obtain tϑ ¼ θ0:95=Sϑ �xð Þ ¼ 1:90. To find quantile tq of Student’s
distribution for the selected confidence probability, we also need the degree of

freedom. In general, when the measurement result represents a weighted mean of

several measurements, the degree of freedom is obtained from (5.23) as an effective

degree of freedom. In our case, however, we have five groups, each comprising a

large number of observations (n ¼ 50 in each group), so it is obvious even without

calculations that the resulting distribution can be considered normal. Then,

tq ¼ z 1þαð Þ
2

¼ 1:96.

We can now use formula (4.22) to find tc:

tc ¼ tϑSϑ �xð Þ þ tqSψ �xð Þ
Sϑ �xð Þ þ Sψ �xð Þ ¼ 1:92::

Finally, we are ready to compute the uncertainty of the measurement result:

uc ¼ tcS �xð Þ ¼ 1:92� 0:182 ¼ 0:35%:

In the form of absolute uncertainty, we obtain u0.95 ¼ 0.006� 105. Thus, the

result of the measurement can be given as follows:

~A0:95 ¼ 1:662� 0:006ð Þ � 105:
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