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Preface to the Third Edition

The purpose of this book is to present methods for estimating the accuracy of real

measurements, that is, measurements performed in industry, trade, scientific

research – wherever the production process, quality control decision, or the inter-

pretation of an experiment depends on measurement accuracy. The necessity for

this book arises from the fact that the existing theory of measurement accuracy (the

“classical theory”) contains significant gaps. In particular, the current theory

focuses exclusively on multiple measurements and overlooks single measurements.

Meanwhile, single measurements are the ones most commonly used in practice.

Moreover, the current theory is incomplete even within the scope of multiple

measurements. For example, it does not provide answers to such fundamental

questions as how to translate the inaccuracy of a measuring instrument into the

inaccuracy of a measurement utilizing this instrument, or how to find the full

uncertainty of a measurement result, that is, the uncertainty that reflects both

systematic and random errors.

I devoted many years of research filling these gaps. This book generalizes and

puts into a coherent whole the results of this effort. It presents methods of estimat-

ing the accuracy of both single and multiple measurements. Moreover, it formulates

these methods in a systematic and unified way by formulating and utilizing a new

perspective that single measurements are the basic type of measurements and

multiple measurements represent a series of repeated single measurements. This

new approach, besides being logical and intuitive, makes accounting for the

measuring instruments inaccuracy an inherent part of the calculations of the

inaccuracy of the measurement. This book offers well-grounded and practical

methods to combine the limits of elementary systematic errors and estimate the

overall measurement uncertainty accounting for both the systematic and random

errors.

As part of the general theory of measurements, this book develops the theory of

indirect measurements. For indirect measurements with dependent arguments, this

book proposes the method of reduction in place of the traditional method based on

the Taylor series. This method is more accurate, simpler, and most importantly
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allows one to calculate the confidence limits of the inaccuracy of these measure-

ments, rather than just standard deviation of the measurement result as in the

traditional methods. At the same time, it removes the need to account for the

correlation coefficient, which had been a thorny issue in this area. This book further

includes a discussion of the applicability of the Bayes’ theorem and Monte Carlo

methods in measurement data processing, the topics that are being actively

discussed now in the metrological research community.

This book can serve as a comprehensive reference for data processing of all

types of measurements, including single and multiple measurements, dependent

and independent indirect measurements, and combined and simultaneous measure-

ments. It includes many concrete examples that illustrate typical problems encoun-

tered in measurement practice. Thus, this book encompasses the entire area of

measurement data processing, from general theory to practical applications.

This book is intended for anyone who is concerned with measurements in any

field of science or technology, who design technological processes and choose

instruments with appropriate accuracy as part of their design, and who design and

test new measuring devices. It should also be useful to university students pursuing

science and engineering degrees. Indeed, measurements are of such fundamental

importance for modern science and engineering that everyone in these fields must

know the basics of the theory of measurements and especially how to evaluate their

accuracy.

This monograph first appeared in 2010. The emergence of the method of

enumeration, which provides a solution for measurement data processing in indirect

multiple measurements with independent arguments, was the impetus for the

second edition, published in 2013. A number of further additions and corrections

developed afterwards have led to the present third edition. The most important

changes include the following:

• A new chapter Step-by-Step Guide to Evaluating Measurement Accuracy has

been added. It is a practical guide that distills solutions to most common

measurement data processing tasks into easy-to-follow step-by-step instructions.

This guide can be used as a stand-alone reference by those who want to apply

proper data processing methods but may not want to study all the theory behind

them. It can also serve as the basis for a revision to Guide to the Expression of
Uncertainty in Measurement (GUM) [2]; the need for such a revision has been

widely recognized and planned for almost 10 years, but there has been little

progress so far. We discuss the drawbacks and indeed mistakes in the GUM, as

well as the related document, VIM [1], in detail in this book (Chap. 9).

• A variant of the method of enumeration, which I newly developed, has been

added. This variant retains all advantages of the method of enumeration (remov-

ing the need for linearization of the measurement equation, requiring no assump-

tions about the distribution functions of the experimental data, and utilizing all

information that these data contain), but it is more intuitive and does not rely on

the central limit theorem to ensure that the sample mean is normally distributed.

vi Preface to the Third Edition



• The method for evaluating accuracy of single indirect measurement has been

further developed.

• The systematic error in multiple measurements is described with new details; the

calculations of such errors in different types of multiple measurements are

shown.

• The chapters devoted to the accuracy of multiple direct and indirect measure-

ments (Chaps. 4 and 5) are fully rewritten.

• The addition made to the method of reduction now allows the use of this method

for measurements having several measurands instead of only one.

• The method of transformation has been eliminated because the method of

numeration is better and simpler.

• The section devoted to the accuracy of measurements performed with a chain of

measuring instruments has been rewritten.

• The structure of this book has been improved.

• Besides these changes, this edition also corrects a number of typographical and

other errors throughout this book.

In conclusion, I would like to express my special gratitude to my son,

Dr. Michael Rabinovich, Professor at Case Western Reserve University. He pro-

vided support and assistance throughout my work on this book including editing the

proposal for publication, discussing new results and the presentation, and editing

the whole book. This book would not be possible without his help.

Cleveland, OH

USA

Semyon G. Rabinovich
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Chapter 1

General Concepts in the Theory

of Measurements

1.1 Basic Concepts and Terms

The theory of measurement accuracy is a branch of metrology – the science of

measurements. In presenting the theory we shall adhere, whenever possible, to the

terminology given in the International Vocabulary of Metrology – Basic and
General Concepts and Associated Terms [1]. We shall discuss the terms that are

most important for this book.

A measurable quantity (briefly – quantity) is a property of phenomena, bodies, or

substances that can be defined qualitatively and expressed quantitatively. The first

measurable quantities were probably length, mass, and time, i.e., quantities that

people employed in everyday life and these concepts appeared unconsciously. Later,

with the development of science, measurable quantities came to be introduced

consciously to study the corresponding laws in physics, chemistry, and biology.

The term quantity is used in both the general and the particular sense. It is used in
the general sense when referring to the general properties of objects, for example,

length, mass, temperature, or electric resistance. It is used in the particular sense

when referring to the properties of a specific object: the length of a given rod, the

electric resistance of a given segment of wire, and so on. The principal feature of

quantities in the context of this book is that they can be measured. A measurand is a
quantity intended to be measured.

Measurement is the process of determining the value of a quantity experimen-

tally with the help of special technical means called measuring instruments.
The value of a quantity is the product of a number and a unit adopted for these

quantities. It is found as the result of a measurement. This definition can be

expressed in the form of the equation:

The original version of this chapter was revised. An erratum to this chapter can be found at https://

doi.org/10.1007/978-3-319-60125-0_11
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Q ¼ q Q½ �,

where Q is the value of the measurand, [Q] is a unit adopted for the kind of quantity
represented by the measurand, and q is the number showing how many of these

units constitute the magnitude of the measurand. This equation is sometimes called

the basic measurement equation.Note that the unit is not indicated if the measurand

is dimensionless.

The basic measurement equation reflects the general objective of a measure-

ment: to express with a number a property of an object or natural phenomenon.

Thus measurements allow us to use mathematics in our practical activities and in

the exploration of nature.

The definitions presented above underscore three features of measurement:

1. The result of a measurement must always be a concrete denominated number

expressed in sanctioned units of measurements. The purpose of measurement is

essentially to represent a property of an object by a number.

2. A measurement is always performed with the help of some measuring instru-

ment; measurement is impossible without measuring instruments.

3. Measurement is always an experimental procedure.

The true value of a measurand is the value of the quantity, which, if known,

would ideally reflect, both qualitatively and quantitatively, the corresponding

property of the object according to the purpose of the measurement.

Measurement accuracy reflects the closeness between the measurement result

and the true value of the measurand. Measuring instruments are created by humans,

and every measurement on the whole is an experimental procedure. Therefore,

results of measurements cannot be absolutely accurate.

Accuracy is a “positive” characteristic of the measurement, but in reality it is

expressed through a dual “negative” characteristic – inaccuracy – of the measure-

ment. The inaccuracy reflects the unavoidable imperfection of a measurement. The

inaccuracy of a measurement is expressed as the deviation of the measurement

result from the true value of the measurand (this deviation is called the measure-

ment error) or as an interval that covers the true value of the measurand. We will

call the half-width of this interval uncertainty if it is obtained as a confidence

interval (i.e., the interval that covers the true value with a certain probability) and

limits of error if it has no relation with probabilities. We shall return to these terms

many times later in this book.

The true value of a measurand is known only in the case of calibration of

measurement instruments. In this case, the true value is the value of the measure-

ment standard used in the calibration, whose inaccuracy must be negligible com-

pared with the inaccuracy of the measurement instrument being calibrated.

A measurement error can be expressed in absolute or relative form. The error

expressed in the absolute form is called the absolute measurement error. If A is the

true value of the measurable quantity and ~A is the result of measurement, then the

absolute measurement error is ζ ¼ ~A � A. The absolute error can be identified by

the fact that it is expressed in the same units as the measurable quantity. Absolute

error is a quantity and its value may be positive or negative. One should not confuse
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the absolute error with the absolute value of that error. For example, the absolute

error �0.3 mm has the absolute value 0.3.

The error expressed in relative form is called the relative measurement error.

The relative error is the error expressed as a fraction of the value of the measurand:

ε ¼ ~A � A
� �

=A. Relative errors are normally given as percent and sometimes per

thousand (denoted by %0). Very small errors, which are encountered in the most

precise measurements, are customarily expressed directly as fractions of the mea-

sured quantity, given in parts per million (ppm).

In most cases, however, the true value of the measurand is unknown, and the

inaccuracy is expressed as an interval covering the true value. As mentioned above,

the boundaries of this interval are the uncertainty or limits of error, depending on

whether or not the interval was calculated using a probabilistic approach. The

interval limits are specified as the offsets from the measurement result; just like

measurement errors, these limits can be expressed in the absolute or relative form.

We should note that the above-mentioned equation for the absolute error is often

presented as the general definition of measurement error [1, 2, 6, 10]. From our

discussion, it should be clear that this definition narrows the meaning of the term

measurement error.

The absolutemeasurement error or uncertainty, depends in general on the value of

the measured quantity, and for this reason, it is not a suitable quantitative character-

istic of measurement accuracy. Relative errors or uncertainties do not have this

drawback. For this reason, measurement accuracy can be characterized quantita-

tively by the inverse of the relative error or uncertainty expressed as a fraction (not as

a percentage) of the measured quantity. For example, if the limits of error of a

measurement are�2� 10�3%¼�2� 10�5, then the accuracy of this measurement

will be 5� 104. Note that the accuracy is expressed only as a positive number.

Although it is possible to introduce in this manner the quantitative characteristic

of accuracy, in practice, accuracy is normally not estimated quantitatively and it is

usually characterized indirectly with the help of the measurement error or the

uncertainty of measurement.

The quality of measurements that reflects the closeness of the results of measure-

ments of the same quantity performed under the same conditions is called the repeat-
ability of measurements.Good repeatability indicates that the random errors are small.

The quality of measurements that reflects the closeness of the results of mea-

surements of the same quantity performed under different conditions, i.e., in

different laboratories (at different locations) and using different equipment, is

called the reproducibility of measurements. Good reproducibility indicates that

both the random and systematic errors are small.

Uniformity of measuring instruments refers to the state of these instruments in

which they are all graduated in the established units and their errors and other

relevant properties fall within the permissible limits. Unity of measurements refers
to a common quality of all measurements performed in a region (in a country, in a

group of countries, or in the world) such that the results of measurements are

expressed in established units and agree with one another within the estimated

limits of error or uncertainty.
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Uniformity of measuring instruments is a necessary prerequisite for unity of

measurements. However, the result of a measurement depends not only on the

quality of the measuring instrument employed but also on many other factors,

including human factors (if measurement is not automatic). For this reason, unity

of measurements in general is the limiting state that must be strived for, but which,

as any ideal, is unattainable.

1.2 The Basic Metrological Problems

Comparison is an age-old element of human thought, and the process of making

comparisons lies at the heart of measurement: Homogeneous quantities character-

izing different objects are identified and then compared; one quantity is taken to be

the unit of measurement and all other quantities are compared with it. This is how

measures, i.e., objects that exhibit quantities of unit size (or the size of a known

number of units) came about.

At one time, numerous independent units and measures were used in different

regions; even different cities each had their own units and independent measures.

Then it became necessary to know how different measures of the same quantity

type were related, in order to unify measurements across regions. This problem

gave birth to the study of measures, which later turned into the science of measure-

ments – metrology.

But the content of metrology, as that of most sciences, is not immutable.

Especially profound changes started in the second half of the nineteenth century,

when industry and science developed rapidly and, in particular, electrical technol-

ogy and instrument building began. Measurements were no longer merely a part of

production processes and commerce; they became a powerful means of gaining

knowledge – they became a tool of science. The role of measurements has increased

dramatically today, in connection with the rapid development of science and

technology in the fields of nuclear research, space, electronics, and so on.

The development of science and technology, contacts among peoples, and

international trade has prompted many countries to adopt the same units of physical

quantities. The most important step in this direction was the signing of the Metric

Convention [(Treaty of the Meter), 1875]. This act had enormous significance not

only with regard to the dissemination of the metric system, but also with regard to

unifying measurements throughout the world by means of the creation of interna-

tional measurement standards. The Metric Convention and the institutions created

by it – the General Conference onWeights andMeasures (CGPM), the International

Committee of Weights and Measures (CIPM), and the International Bureau of

Weights and Measures (BIPM) – continue their important work today. In 1960,

the General Conference on Weights and Measures adopted the international system

of units (SI) [1, 3]. Most countries now use this system.

The range of topics encompassed by modern metrology is shown in the block

diagrams in Fig. 1.1.
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Fig. 1.1 Schematic picture of the basic problems of metrology: (a) metrology, (b) applied

metrology, (c) specialized metrology, and (d) general metrology
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While many of the listed topics are self-explanatory, several warrant further

examination. We expand on these topics below, beginning with some blocks in the

diagram of Fig. 1.1d.

1. The Study of Measurable Quantities and their Units

Measurable quantities are introduced in different fields of knowledge, in physics,

chemistry, biology, and so on. The rules for introducing and classifying them and
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Fig. 1.1 (continued)
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for forming systems of units and for optimizing these systems cannot be addressed

in any of these sciences, and already for this reason, they must be included among

the problems addressed in metrology. An important result in this direction was the

creation of the International System of Units SI.

2. General Theory of Measurement Standards

The units of quantities are reproduced with the help of primary measurement
standards, which play an exceptionally important role in supporting the unity of

measurements. The measurement standard of each unit is physically created based

on the laws of specific fields of science and technology. Therefore, general metrol-

ogy cannot answer the question of how a measurement standard should be

constructed. But metrology must determine the criteria when a measurement

standard must be created and how it should be maintained and used. It must also

study the theory and methods of comparing measurement standards and monitoring

their stability, as well as methods for expressing their inaccuracy. Practice raises

many such purely metrological questions.

3. Theory of Transfer of the Sizes of Units into Measurement Practice

In order for the results of all measurements to be expressed in established units,

all means of measurement (measures, instruments, measuring transducers, measur-

ing systems) must be calibrated with respect to primary measurement standards.

However, it is obviously infeasible to calibrate all these devices against primary

standards directly. This problem is solved with the help of a system of secondary
measurement standards, i.e., standards that are calibrated with respect to the

primary standard, and working measurement standards, i.e., standards that are

calibrated with respect to secondary standards. Thus the system of measurement

standards has a hierarchical structure. The entire procedure of calibrating measure-

ment standards and, with their help, the measuring instruments is referred to as

transfer of the sizes of units into measurement practice. The final stages of trans-

ferring the sizes of units consist of calibration of the scales of the measuring

instruments, adjustment of measures, and determination of the actual values of

the quantities that are reproduced by them, after which all measuring instruments

are checked at the time they are issued and then periodically during use.

The procedures involved in the transfer of the size of units into measurement

practice raise a number of questions. For example, how many gradations of

accuracy of measurement standards are required? How many secondary and work-

ing standards are required for each level of accuracy? How does the inaccuracy

increase when the size of a unit is transferred from one measurement standard to

another? How does this inaccuracy increase during the transfer from a measurement

standard to a working measuring instrument? What should be the relation between

the accuracy of a measurement standard and a measuring instrument being

calibrated (verified) with respect to this standard? How should complex measure-

ment systems be checked? Metrology should answer these questions.

The other blocks in the diagram of Fig. 1.1d do not require any explanations.

We shall now turn to Fig. 1.1a.
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Specialized metrology is comprised from specific fields of measurement. Exam-

ples of fields of measurements include linear-angular measurements, measurements

of mechanical quantities, measurements of electric and magnetic quantities, and

so on. The central problem arising in each field of measurement is the problem of

creating conditions under which the measurements of the corresponding quantities

are unified. For this purpose, in each field of measurement, a system of measure-

ment standards is created, and methods for calibrating and checking the working

measuring instruments are developed. The specific nature of each field of measure-

ment engenders many problems characteristic of it. These problems are the domain

of specialized metrology. However, there also arise many problems that are com-

mon to several fields of measurement. The analysis of such common problems and

the development of methods for solving them belong to general metrology.
Applied metrology incorporates the metrological service and legislative metrol-

ogy, and it is of great importance for achieving the final goals of metrology as a

science. The metrological service checks and calibrates measuring instruments and

certifies reference materials; in other words, it maintains the uniformity of measur-

ing instruments employed in the country. The functions of legislative metrology are

to enact laws that would guarantee uniformity of measuring instruments and unity

of measurements. One aspect of legislative metrology concerns the system of

physical quantities and the units to be employed uniformly across a country,

which can only be established by means of legislation. Another aspect legislates

the rules giving the right to manufacture measuring instruments and to check the

state of these instruments when they are in use.

This is a good point at which to discuss the development of measurement

standards. A measurement standard is always a particular measuring device: a

measure, instrument, or measuring system. Such measuring devices were initially

employed as measurement standards arbitrarily by simple volition of the institution

responsible for correctness ofmeasurements in the country.However, there is always

the danger that ameasurement standardwill be destroyed, which can happen because

of a natural disaster, fire, and so on. An arbitrarily establishedmeasurement standard,

which is referred to as a prototype measurement standard, cannot be reproduced.
As a result, scientists have for a long time strived to define units of measurement

so that the primary measurement standards embodying them could be reproducible.

For this, the units of the quantities were defined based on natural phenomena. Thus,

the second was defined based on the period of revolution of the Earth around the

sun; the meter was defined based on the length of the Parisian meridian, and so

on. Scientists hoped that these units would serve “for all time and for all peoples.”

Historically, this stage of development of metrology coincided with the creation of

the metric system.

Further investigations revealed, however, that the chosen natural phenomena are

not sufficiently unique or are not stable enough. This, however, did not undermine

the idea to define units based on natural phenomena. It was only necessary to seek

other natural phenomena corresponding to a higher level of knowledge of nature.

It was found that the most stable or even absolutely stable phenomena are

characteristic of phenomena studied in quantum physics; it was further found that

the physical constants can be employed successfully for the purpose of defining
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units and the corresponding effects can be employed for realizing measurement

standards. The meter, the second, the ohm, and the volt have now been defined in

this manner.

Based on achievements in quantum physics, the second is reproduced now by the

cesium atomic standard. According to NIST, atomic watch NIST-F2 is so accurate

that it takes almost 300 million years to accumulate the drift of 1 s.

One needs to only recall that when the distance between two markings on a

platinum–iridium rod was adopted for the meter, for the most accurate measurement

of length, the inaccuracy was not less than 10�6.When themeter was later defined as

a definite number (1,650,763.73) of wavelengths of krypton-86 radiation in vacuum,

this inaccuracy was reduced to 10�7–10�8. Today, the definition of the meter is

based on the velocity of light in vacuum, which now considered as exactly known

physical constant. As a result, the inaccuracy in measuring length has been reduced

by another order of magnitude (and can be reduced even more). Since 1990, the

primary standard of the volt has been based on the Josephson constant and quantum

Josephson effect. Its inaccuracy, expressed as one standard deviation, is 0.6 ppm.

From the same time, the primary standard of the ohm has been based on the Von

Klitsing constant and quantum Hall effect. Its inaccuracy is 0.2 ppm (one standard

deviation). The accuracy of the standards of volt and ohm can further increase with

the improvements in the accuracy of measuring the constants mentioned above.

It is interesting to consider the situation with the standard of ampere – one of the

base units in SI. Its definition is based on the force between two wires through the

current flows. It is unknown how to reproduce this unit according to this definition

with sufficient accuracy. For example, NIST has achieved reproducing ampere in

this way only with the standard deviation of 15 ppm, and even this accuracy can be

maintained for 5 min. At the same time, ampere can obviously be reproduced using

Ohm’s law, from the standards of volt and ohm, thus obtaining the accuracy of

around 0.7 ppm. In other words, one can create a standard of ampere that would be

20 times more accurate than what is possible through the absolute method (using

direct measurements) according to its definition. In other words, the primary

standard of ampere became unnecessary for measurements! Note that ampere still

remains a base unit of system SI and it is still needed for dimensional equations.

The numerical values of the basic physical constants are widely used in various

calculations, and therefore, these values must be in concordance with each other. To

this end, all values of fundamental physical constants obtained by experiments must

be adjusted. The most recent adjustment was carried out in 2010 and the results

were published in 2012 [40].

As one can see from the problems with which metrology is concerned, it is an

applied science. However, the subject of metrology – measurement – is a tool of

both fundamental sciences (physics, chemistry, and biology) and applied disci-

plines, and it is widely employed in all spheres of industry, commerce, and in

everyday life. No other applied science has such a wide range of applications, as

does metrology.

We shall return once again to specialized metrology. A simple list of the fields of

measurement shows that the measurable quantities and therefore measurement
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methods and measuring instruments are extremely diverse. What then do the

different fields of measurement have in common? They are united by general or

theoretical metrology and, primarily, the general methodology of measurement,

methods for processing measurement data, and evaluating the inaccuracy of mea-

surements. For this reason, the development of these branches of metrology is

important for all fields of science and for all spheres of industry that employ

measurements. The importance of these branches of metrology is also indicated

by the fact that a specialist in one field of measurement can easily adapt to and work

in a different field of measurement.

1.3 New Forms of International Cooperation in Metrology

Modern development of metrology is driven, on one hand, by the ever-increasing

role of measurements in chemistry, biology, laboratory medicine, food production,

environmental protection, and monitoring, with ever-higher requirements for accu-

racy and, on the other hand, with the expansion of international trade and industry

globalization.

The accelerated development of international trade began with the emergence of

the European Union (EU), which resulted in the tariff-free trade zone encompassing

all its member countries. Then other regional trade agreements, such as North

American Free Trade Agreement (NAFTA), appeared, targeting the removal of

barriers in international trade.

Besides international trade, another trend in modern economy is globalization of

industrial production. It is now common that a factory producing a certain product

is situated in one country but uses components from suppliers in other countries, has

research and development divisions yet in other countries, and maintains corporate

and administrative services still elsewhere.

This expansion of international cooperation dramatically increased the demand

for metrology and metrological services. It became obvious that the international

unity of measurements, i.e., when measurements of the same quantities in different

countries would agree with each other, can bring enormous cost savings. Just

considering trade, Kaarls [31] notes that “. . . global trade in commodities amounts

to more than 12 trillion USD, of which 80% affected by standards and regulation.

The compliance costs are estimated to be about 10% of the product costs. The

global markets of clinical chemistry and laboratory medicine and pharmaceuticals

have a value of some 300 billion USD per year. Annual savings as a consequence of

comparable, more accurate measurements results. . . will easily amount up to many

billions of USD.”

Alongside traditional measuring instruments, there emerged a tremendous inter-

nationally distributed bank of reference materials and substances. Their preparation

and usage need to be regimented to ensure the unity of measurements in chemistry,

laboratory medicine, and other areas with wide reliance on these materials. In

principle, methods of solving these issues are similar to those in traditional areas
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of measurements, except for the extremely large number and variety of these

materials.

The current stage of metrology development reflects the emergence of new

international and regional metrological agreements. These agreements are espe-

cially important for developing nations, since every region usually includes at least

one country with a well-established metrological service and a modern metrological

scientific center.

New agreements can be divided into general and targeted. The former include

EUROMET (European Collaboration in Measurement Standards) and NORAMET

(North and Central American Cooperation in Metrology). Among the latter, we

should especially point out EURACHEM/CITAC. EURACHEM is a network of

organizations in Europe having the objective of establishing a system for traceabil-

ity of chemical measurements and the promotion of good quality practice, which

was initially organized by the EU. Subsequently, in 1993, the Cooperation of

International Traceability in Analytical Chemistry (CITAC) was created as an

international addition to EURACHEM. Thus, EURACHEM/CITAC have the mis-

sion to improve traceability in chemical measurements made anywhere in the

world; in other words, they aim at providing unity of chemical measurements on

the global scale.

Several targeted agreements focus on bringing order to the process of assigning

rights to various laboratories to carry out certain types of important measurements,

that is, to regiment laboratory accreditations. These agreements include ILAC

(International Laboratory Accreditation Cooperation) and APLAC (Asia – Pacific

Laboratory Accreditation Cooperation). The work on regimenting laboratory

accreditation is being carried out under the slogan “Measured or tasted once –

everywhere accepted!”

Other targeted agreements have the goal of facilitating the cooperation between

laboratories engaged in measurements in different countries, resolving disputes,

etc. When necessary, the laboratories establish working groups, which focus on

specific issues and issue clarifications of methodological and terminological nature.

But the most important role of regional bodies is the establishment of the procedure

for the comparison of standards of the member countries. These regional compar-

isons avoid the direct comparison of national standards of all countries that joined

the Metric Convention with international standards in BIPM, which would be

physically impossible.

In addition to government-level agreements, successful nongovernment organi-

zations in developed countries are also expanding their international cooperation.

For example, National Conference of Standard Laboratories, which used to be a US

organization, became international (NCSLI).

Many of these organizations often face common problems, and they form joint

working groups to address them. CIPM provides support to these groups, and in

turn, members of these groups often serve as members of CIPM’s Consultative

Committees. We should also mention that BIPM organized a Joint Committee for

Guides in Metrology (JCGM), with BIPM’s Director serving as the Chair of the

Joint Committee. This committee has two working groups whose tasks include the
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improvement of terminology and the development and advocating of the Guide to

the Expression of Uncertainty in Measurement (GUM) [2].

GUM represents the first recommendation for the estimation of inaccuracy of

measurements developed under the auspices of BIPM. Such a recommendation had

been long overdue and the need for is obvious: a uniform solution to this problem is

necessary to correlate different measurement results regardless of where and when

they were obtained. Consequently, this recommendation found an enthusiastic

acceptance by the metrological community and became an unofficial international

standard. It turned out, however, that the recommendation had a number of draw-

backs [13, 32, 42, 44], and Working Group 1 of JCGM set out in 2006 to prepare its

new edition.

In summary, the activities described above indicate vigorous development of

metrology and metrological service at the present time. The role of metrology in the

modern society was the subject of an extensive report by Dr. Quinn, Director of

BIPM, titled “Metrology, Its Role in Today’s World.” This report was included as

the introductory chapter of monograph [36].

1.4 Postulates of the Theory of Measurements

Measurements are so common and intuitively understandable that one would think

there is no need to identify the foundations on which measurements are based.

However, a clear understanding of the starting premises is necessary for the

development of any science, and for this reason, it is desirable to examine the

postulates of the theory of measurements.

When some quantity characterizing a specific object is being measured, this

object ismade to interactwith ameasuring instrument. Thus, tomeasure the diameter

of a rod, the rod is squeezed between the jaws of a vernier caliper; to measure the

voltage of an electric circuit, a voltmeter is connected to it; and so on. The reading of

the measuring instrument – the sliding calipers, voltmeter, and so on – gives an

estimate of the measurable quantity, i.e., the result of the measurement. When

necessary, the number of divisions read on the instrument scale is multiplied by a

certain factor. In many cases, the result of measurement is found by a mathematical

analysis of the indications of an instrument or several instruments. For example, the

density of solid bodies, the temperature coefficients of the electric resistance of

resistors, and many other physical quantities are measured in this manner.

The imperfection of measuring instruments, the inaccuracy with which the sizes

of the units are transferred to them, as well as some other factors that we shall study

below cause measurement errors. Measurement errors are in principle unavoidable,

because a measurement is an experimental procedure and the true value of the

measurable quantity is an abstract concept. As the measurement methods and

measuring instruments improve, however, measurement errors decrease.

The introduction of measurable quantities and the establishment of their units

lay at the foundation of measurements. Any measurement, however, is always
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performed on a specific object, and the general definition of the measurable quantity

must be formulated taking into account the properties of the object and the objective

of the measurement. The true value of the measurable quantity is essentially

introduced and defined in this manner. Unfortunately, this important preparatory

stage of measurements is usually not formulated.

To clarify this question, let us consider a simple measurement problem – the

measurement of the diameter of a disk. First, we shall formulate the problem. The

fact that the diameter of a disk is to be measured means that the disk, i.e., the object

of study, is a circle. We note that the concepts “circle” and “diameter of a circle” are

mathematical, i.e., abstract, concepts. The circle is a representation or model of the

given body. The diameter of the circle is the parameter of the model and is a

mathematically rigorous definition of the measurable quantity. Now, in accordance

with the general definition of the true value of the measurable quantity, it can be

stated that the true value of the diameter of the disk is the value of the parameter of

the model (diameter of the disk) that reflects quantitatively the property of the

object of interest to us; the ideal qualitative correspondence must be predetermined

by the model.

Let us return to our example. The intended usage of the disk predetermines the

permissible measurement error and the choice of an appropriate measuring instru-

ment. By bringing the object into contact with the measuring instrument, we

perform the measurement and obtain the measurement result. But the diameter of

the circle is, by definition, invariant under rotation. For this reason, the measure-

ment must be performed in several places. If the difference between the results of

these measurements is less than the permissible measurement error, then any of the

obtained results can be taken as the result of measurement. After the value of the

measurable quantity, a concrete number, which is an estimate of the true value of

the measurand, has been found, the measurement can be regarded as being

completed.

It is necessary to stress again the importance of the requirement that a measure-
ment result must always be expressed as a concrete number since this requirement

is overlooked in VIM [1] (we analyze VIM in more detail in Chap. 9).Without this

requirement, it would be impossible to introduce a specific quantity (the measurand

estimate) of an object to mathematical formulas. In general, measurement is a

bridge from natural sciences to mathematics, and to fulfill this role, it must result

in a concrete number as a measurand estimate.

But it may happen that the difference among the measurements in different

places exceeds the permissible error. In this situation, we must conclude that within

the required measurement accuracy, our disk does not have a unique diameter, as

does a circle. Therefore, no concrete number can be taken, with prescribed accu-

racy, as an estimate of the true value of the measurable quantity. Hence, the adopted

model does not correspond to the properties of the real object, and the measurement

problem has not been correctly formulated.

If the object is a manufactured article and the model is a drawing of the article

(including all the dimensions and tolerances), then any disparity between them
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means that the article is defective. If, however, the object is a natural object, then

the disparity means that the model is not applicable and it must be reexamined.

Of course, even when measurement of the diameter of the disk is assumed to be

possible, in reality, the diameter of the disk is not absolutely identical in different

directions. But as long as this inconstancy is negligibly small, we can assume that

the circle as a model corresponds to the object and therefore a constant, fixed true

value of the measurable quantity exists, and an estimate of the quantity can be found

as a result of measurement. Moreover, if the measurement has been performed, we

can assume that the true value of the measurand lies somewhere near the obtained

estimate and differs from it by not more than the limits of the measurement error.

Thus the idealization necessary for constructing a model gives rise to an

unavoidable discrepancy between the parameter of the model and the real property

of the object. We shall call this discrepancy the threshold discrepancy.
As we saw above, the error caused by the threshold discrepancy between the

model and the object must be less than the total measurement error. If, however, this

component of the error exceeds the limit of permissible measurement error, then it

is impossible to make a measurement with the required accuracy. This result

indicates that the model is inadequate. To continue the experiment, if this is

permissible for the objective of the measurement, the model must be redefined.

Thus, in the example of the measurement of the diameter of a disk, a different

model could be a circle circumscribing the disk.

Another example, the measurement of the thickness of a sheet of a material, is

given in GUM [2] (Sects. D.3.2 and D.3.4 of GUM). Without additional clarifica-

tions, the problem statement assumes that the sheet has constant thickness. Then,

the model of the object comprises two parallel planes, and the distance between

them is the model parameter that defines the measurand and its true value.

Now let us turn to the measurement. By choosing an appropriate measurement

instrument and bringing it in contact with the object, we obtain the value of the

measurand, i.e., the sheet thickness. To verify the appropriateness of the model, we

need to repeat the measurement in several points of the sheet. If the difference

between the readings turns out to be significant, that is, greater than the limits of

permissible measurement error, then the assumed model or the chosen model

parameter do not correspond to the properties of the object. Hence, the model or

its parameter must be redefined. Depending on the intended use of the sheet, a new

parameter could be the maximum thickness or the thickness in certain given points.

In either case, the model remains the same but the model parameters are different.

In the former case, the parameter is the maximum thickness, and in the latter case

there are different parameters in each point. Thus, in the latter case, we must view

thickness measurements in each point as separate measurements, each with its own

true value.

Similar to the example of disk diameter, different results of measurement of the

sheet thickness indicate a discrepancy between the model and the object and hence

the need to reconsider the model and/or the definition of the true value. In fact, as

we just saw, the new definition may introduce multiple true values and conse-

quently replace a single measurement with several separate measurements.
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Moreover, the new definition may lead to the necessity to use different measure-

ment instruments, for example, instruments with a reduced contact area in the sheet

thickness scenario.

One important corollary from the above discussion is that the concept of the true

value is necessary to understand the process of measurement. The above discussion

also suggests that there is a single underlying true value in every measurement. We

consider this to be a fundamental principle of measurement and include it into the

postulates below. It also reflects a different understanding of the concept of the true

value from VIM [1]. We will carefully examine the VIM position on the concept of

true value in Sect. 9.2.

The above examples are simple, but they exhibit features present in any mea-

surement, although these features are not always so easily and clearly perceived as

when measuring lineal dimensions.

The foregoing considerations essentially reduce to three prerequisites of a

measurement:

1. A model must be specified that corresponds to the object under study, and some

parameter of the model must be defined to correspond to the measurand.

2. The model of the object must permit the assumption that during the time

required to perform the measurement, the parameter of the model corresponding

to the measurand is constant.

3. The error caused by the threshold discrepancy between the model and the object

must be less than the permissible measurement error.

The above prerequisites do not include a basic assumption behind any measure-

ment that the general definition of the measurable quantity (e.g., length, time,

electrical resistance, or whatever quantity is being measured) has been already

introduced, and the corresponding measurement standards exist. The issues of

measurable quantity definitions and the availability of standards are not directly

related to the problem of estimating measurement accuracy, and for this reason,

they are not studied here. These issues are investigated in several works; we in

particular refer the reader to the book by B.D. Ellis [24] and the work of

K.P. Shirokov [50].

Generalizing all three prerequisites, we formulate the following principle of

metrology:

A measurement of a measurable quantity of an object with a given accuracy can be
performed only if it is possible to associate, with no less accuracy, a determinate
parameter of the model with that measurable quantity.

We note that the value of the parameter of the model of an object introduced in

this manner is the true value of the measurable quantity.

The foregoing considerations are fundamental, and they can be represented in

the form of postulates of the theory of measurement [46, 52]:

(α) The true value of the measurable quantity exists.
(β) There is a single true value in each measurement.
(γ) The true value of the measurable quantity is constant.
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(δ) The true value cannot be found.

The threshold discrepancy between the model and the object was employed

above as a justification of the postulate (δ). However, other unavoidable restrictions
also exist on the approximation of the true value of a measurable quantity. For

example, the accuracy of measuring instruments is unavoidably limited. For this

reason, it is possible to formulate a simple statement: The result of any measure-
ment always contains an error. Also, as mentioned above: measurement result must
always be expressed as concrete number.

We shall now discuss some examples of models that are employed for specific

measurement problems.

Example 1.1 Measurement of the Parameters of Alternating Current

The object of study is an alternating current. The model of the object is a

sinusoid

i ¼ Im sin ωtþ φð Þ,

where t is the time and Im, ω, and φ are the amplitude, the angular frequency, and

the initial phase, and they are the parameters of the model.

Each parameter of the model corresponds to some real property of the object and

can be a measurable quantity. But, in addition to these quantities, several other

parameters that are functionally related to them are also introduced. These addi-

tional parameters can also be measurable quantities. Some parameters can be

introduced in a manner such that by definition they are not related with the “details”

of the phenomenon. An example of such a parameter is effective current

I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

ð T

0

i2dt,

s

where T ¼ 2π/ω is the period of the sinusoid.

A non-sinusoidal current is also characterized by effective current. However, in

designing measuring instruments and describing their properties, the form of the

current, i.e., the model of the object of study must be taken into account.

The discrepancy between the model and the object in this case is expressed as a

discrepancy between the sinusoid and the curve of the time dependence of the

current. In this case, however, only rarely it is possible to discover the discrepancy

between the model and the object under study by means of simple repetition of

measurements of some parameters. For this reason, the correspondence between the

model and the object is checked differently, for example, by measuring the form

distortion factor. If the discrepancy is detected, the model is usually redefined by

replacing the sinusoid with a sum of a certain number of sinusoids.

Example 1.2 Measurement of the Parameters of Random Processes

The object of the study is some randomly changing quantity. The usual model is

a stationary ergodic random process on the time interval T. The constant parameters
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of the process are the mathematical expectation E[X] and the variance V[X].
Suppose that we are interested in E[X]. The value of this parameter in the mathe-

matical model of the process is the true value of the measurand in this case. It can be

estimated, for example, with the help of the formula

�x ¼
Pn
i¼1

xi

n

0BB@
1CCA

T

,

where T is the observational time interval, xi are the estimates of the realizations

of the random quantity, whose variation in time forms a random process at times ti
2 T, and n is the total number of realizations obtained.

Repeated measurements on other realizations of the process can give somewhat

different values of �x. The adopted model can be regarded as corresponding to the

physical phenomenon under study, if the differences between the obtained esti-

mates of the mathematical expectation of the process are much smaller than the

permissible measurement error. If, however, these differences are close to the error

or exceed it, then the model must be redefined, which is most simply done by

increasing the observational interval T.
It is interesting to note that the definitions of some parameters seem, at first

glance, to permit arbitrary measurement accuracy (if the errors of the measuring

instrument are ignored). Examples of such parameters are the parameters of sta-

tionary random processes, the parameters of distributions of random quantities, and

the average value of the quantity. One would think that to achieve the required

accuracy in these cases, it is sufficient to increase the number of observations when

performing the measurements. In reality, however, the accuracy of measurement is

always limited, and in particular, it is limited by the correspondence between the

model and the phenomenon, i.e., by the possibility of assuming that to the given

phenomenon, there corresponds a stationary random process or a random quantity

with a known distribution.

When a true value cannot be defined, then a measurement is impossible. For

example, in the last few years, much has been written about measurements of

variable and random quantities. However, these quantities, as such, do not have a

true value, and for this reason, they cannot be measured.

For a random quantity, it is possible to measure the parameters of its distribution

function, which are not random; it is also possible to measure the realization of a

random quantity. For a variable quantity, it is possible to measure its parameters

that are not variable; it is also possible to measure the instantaneous values of a

variable quantity.

We shall now discuss in somewhat greater detail the measurement of

instantaneous values of quantities. Suppose that we are studying an alternating

current, the model of which is a sinusoid with amplitude Im, angular frequency
ω, and initial phase φ. At time t1, there is an instantaneous value in the model,

i1 ¼ Im sin(ωt1 + φ), which corresponds to an instantaneous current. At a different
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time, there will be a different instantaneous value, but at each moment, it has some

definite value.

Thus, there always exists a fixed parameter of the model corresponding to the

measurable property of the object.

Measurement, however, is not instantaneous. The measurable quantity (the

current in the above example) will change while the measurement is taken, and

this will generate a specific error of the given measurement. The objective of the

measurement determines a permissible level that the measurement error, including

its component caused by the change in the measurable quantity during the mea-

surement time, must not exceed. If this condition is satisfied, then the effect of the

measurement time can be neglected, and one can assume to have obtained an

estimate of the measured instantaneous current, i.e., the current strength at a

given moment in time. In the literature, the expressions “measurement of a variable

quantity” and “measurement of a random quantity” often refer to, respectively,

measurement of instantaneous values and measurement of a realization of a random

quantity. Such usage of these expressions is obviously incorrect.

Measurable quantities are divided into active and passive. Active quantities are

quantities that can generate measurement signals without any auxiliary sources of

energy; i.e., they act on the measuring instruments. Such quantities are the EMF, the

strength of an electric current, mechanical force, and so on. Passive quantities

cannot act on measuring instruments, and for measurements, they must be acti-

vated. Examples of passive quantities include mass, inductance, and electric resis-

tance. Mass is usually measured based on the fact that in a gravitational field, a

force proportional to the mass acts on the body. Electric resistance is activated by

passing an electric current through a resistor. When measuring a passive quantity of

an object, the object model is constructed for the active quantity (or quantities) that

arises from the activation of passive quantities.

1.5 Classification of Measurements

In metrology there has been a long-standing tradition to distinguish direct, indirect,

and combined measurements. In the last few years, metrologists have begun to

divide combined measurements into strictly combined measurements and simulta-

neous measurements [12].

Direct measurements are measurements in which the object of study is made to

interact with the measuring instrument, and the value of the measurand is read from

the indications of the latter. Sometimes the instrumental readings are multiplied by

some factor or adjusted by applying certain corrections.

In the case of indirect measurements, the value of the measurable quantity is

found based on a known functional dependence between this quantity and other

quantities called arguments. The arguments are found by means of direct and

sometimes indirect measurements, and the value of the measurand is calculated

according to the known dependence. For example, the density of a homogeneous
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solid body is found as the ratio of the mass of the body to its volume. To obtain the

density, the mass, and volume of the body – the arguments – are measured directly,

and the density is then computed from their measured values.

Sometimes direct and indirect measurements are not easily distinguished. For

example, an AC wattmeter has four terminals. The voltage applied to the load is

connected to one pair of terminals, whereas the other pair of terminals is connected

in series with the load. As is well known, the indications of a wattmeter are

proportional to the power consumed by the load. However, the wattmeter does

not respond directly to the measured power and its operation is based on the

transformation of the strengths of two electric currents into a mechanical rotation.

Given the principle of operation of the instrument, measurement of power by a

wattmeter should be regarded as indirect.

In our case, it is important, however, that the value of the measurable quantity

can be read directly from the instrument (in this case, the wattmeter). In this sense, a

wattmeter is in no way different from an ammeter. For this reason, in this book, it is

not necessary to distinguish measurement of power by a wattmeter and measure-

ment of the strength of current by an ammeter: We shall categorize both cases as

direct measurements. In other words, when considering a specific measurement as

belonging to one or another category, we will ignore the internals of the measuring

instrument employed.

A similar confusion may arise in the case of measurements performed with a

measuring system or a chain of measuring instruments. A simple example of such

measurements is the measurement of temperature with thermocouple and

millivoltmeter. The thermocouple produces for each temperature the corresponding

electromotive force (EMF) and the voltmeter measures this EMF. From the indi-

cation of the millivoltmeter and knowing the characteristics of the thermocouple,

one can determine the temperature being measured.

The last instrument in the chain from which the measurement result is read (the

millivoltmeter in our example) may be graduated directly in units of the measurand

(the temperature) or in other units (for instance, one could just use a general purpose

millivoltmeter in our example). In the former case, we would like to stress that the

entire chain should be viewed as a single (albeit complex) instrument, and it should

be calibrated as such. In particular, its intrinsic and additional errors should be rated

for the entire unit. Inaccuracy of the measurements in this case is estimated using

the methods for measurements with a single instrument as described in Chap. 4. In

the latter case, that is, if the last measuring instrument is graduated in different

units, this becomes an indirect measurement, and its inaccuracy is estimated

according to the methods presented in Chap. 5.

Simultaneous and combined measurements are rather similar types of measure-

ments. In both cases, their distinguishing property is that the objective of the

measurement is to obtain values of several quantities rather than a single quantity

as with direct and indirect measurements. Also, in both cases, measurable quantities

are found by solving a system of equations, whose coefficients and certain terms are

obtained as a result of measurements. Finally, in both cases, the method of least

squares (see Chap. 6) is usually employed. But the difference is that in the case of
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combined measurements, several quantities of the same kind are measured, whereas

in the case of simultaneous measurements, quantities of different kinds are mea-

sured at the same time. For example, a measurement, in which both the electric

resistance of a resistor at temperature +20 �C and its temperature coefficient are

found using the direct measurements of the resistance and temperature performed at

different temperatures, is a simultaneous measurement. A measurement, in which

the masses of separate weights in a set are found based on the known mass of one of

them and by comparing with it the masses of different combinations of weights

from the same set, is a combined measurement.

Depending on the properties of the object of study, the model adopted for the

object, the definition of the measurable quantity given in the model, as well as on

the method of measurement and the properties of the measuring instruments, the

measurements in each of the categories mentioned above are performed either with

single or with repeated observations. The method employed for processing the

experimental data depends on the number of observations – are many measure-

ments required or are one or two observations sufficient? If a measurement is

performed with repeated observations, then, to obtain the result, the observations

must be analyzed statistically. On the other hand, statistical methods are not

required in the case of measurements with single observations. For this reason,

we argue that the number of observations is an important classification criterion.

We shall term measurements performed with single observations as single
measurements and measurements performed with repeated observations as multiple
measurements. These terms have a natural intuitive meaning in direct measure-

ments but need clarification for indirect measurements. An indirect measurement,

in which the value of each of the arguments is found as a result of a single

measurement, must be regarded as a single measurement. If, on the other hand,

the values of the arguments were obtained by multiple measurements, the whole

indirect measurement is considered a multiple measurement.

Measurements are also divided into static and dynamic measurements. Adhering

to the concept presented in [51], we shall classify as static those measurements in

which the measuring instruments are employed in the static regime and as dynamic

those measurements in which the measuring instruments are employed in the

dynamic regime. The static regime of a measuring instrument is a regime in

which the output signal of the instrument can be regarded as constant. For example,

for an indicating instrument, the regime is static if the signal is constant for a time

sufficient to take the reading. A dynamic regime is a regime in which the output

signal changes in time, so that to obtain a result or to estimate its accuracy, this

change must be taken into account.

According to these definitions, static measurements include, aside from trivial

measurements of length, mass, and so on, direct measurements of the average and

effective (mean-square) values of alternating current by indicating instruments. A

typical example of dynamic measurements is tracking the value of a quantity as a

function of time by a recording instrument. Note that one can view such measure-

ment as an infinite set of single instantaneous measurements; in this case, each

instantaneous measurement would be considered static. Other examples of dynamic
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measurements are measurement of the magnetic flux by the ballistic method and

measurement of the high temperature of an object based on the initial portion of the

transfer function of a thermocouple put into contact with the object for a short time

(the thermocouple would be destroyed if the contact time was long).

Static measurements also include measurements performed using digital indi-

cating instruments. According to the definition of static measurements, for a

measurement to be considered static, it is not important that the state of the

elements in the device changes during the measurement. The measurement will

also remain static when the indications of the instrument change from time to time,

but each indication remains constant for a period of time sufficient for the indication

to be read or recorded automatically.

A characteristic property of dynamic measurements is that to obtain results and

estimate their accuracy in such measurements, it is necessary to know a complete

dynamic characteristic of the measuring instrument: a differential equation, transfer

function, and so on. (The dynamic characteristics of measuring instruments will be

examined in Chap. 2.)

The classification of measurements as static and dynamic is justified by the

difference in the methods employed to process the experimental data. At the present

time, however, dynamic measurements as a branch of metrology are still in the

formative stage.

The most important characteristic of the quality of a measurement is accuracy.

The material base, which ensures the accuracy of numerous measurements

performed in the economy, consists of measurement standards. The accuracy of

any particular measurement is determined by the accuracy of the measuring instru-

ments employed, the method of measurement employed, and sometimes by the skill

of the experimenter. However, as the true value of a measurable quantity is always

unknown, the errors of measurements must be estimated computationally. This

problem is solved by different methods and with different accuracy.

In connection with the estimation of measurement accuracy, we shall distinguish

measurements whose accuracy (or, more commonly, inaccuracy) is estimated

before and after the measurement. We shall refer to them as measurements with a

priori estimation of inaccuracy and measurements with a posteriori estimation of

inaccuracy.

Measurements with a priori inaccuracy estimation must be performed according

to an established procedure. Measurements of this type include all mass

measurements.

Mass measurements (also called industrial measurements in [1]) are common.

Their accuracy is predetermined by the types (brands) of measuring instruments

indicated in the procedure, the techniques for using them, as well as the stipulated

conditions under which the measurements are to be performed. Note that, in mass

measurements, procedure for the a priori inaccuracy estimation is implicitly

reflected in the overall measurement procedure: the person performing the mea-

surement is interested only in the result of measurement, simply assuming that the

accuracy will be adequate as long as he or she follows the procedure.
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A posteriori estimation of inaccuracy is characteristic for measurements when it

is important to know the accuracy of each result. We shall further divide measure-

ments with a posteriori estimation of inaccuracy into two groups: measurements

with universal estimation of inaccuracy and measurements with individual estima-

tion of inaccuracy.

Measurements with universal estimation of inaccuracy are measurements in

which the manufacturer specifications (rather than actual properties) of the mea-

suring instruments employed are taken into account. These properties hold for all

instruments of a given type; thus universal estimates remain valid when an instru-

ment is replaced with another instrument of the same type.

Measurements with individual estimation of inaccuracy are measurements in

which the inaccuracy estimation takes into account actual properties of the specific

measuring instruments employed. These properties are usually established by

calibration laboratories and are listed in calibration certificates.

In both cases, the conditions under which the measurements are performed are

taken into account; this is done by obtaining and applying the influence quantities of

the measurement conditions. In many cases, the influence quantities are measured;

in other cases, they are estimated. We will refer to the measurements of influence

quantities as supplementary measurements. Distinguishing supplementary mea-

surements is useful for metrological purposes.

Here we would like to call attention to a fact whose validity and significance will

become obvious from further discussion. Suppose that several measurements are

performed using the same measuring instruments but with different methods of

inaccuracy estimation. Although the same instruments are employed, these mea-

surements will have different accuracy. The inaccuracy established by individual

estimation will be less than the inaccuracy found by universal estimation.

The results of measurements with a priori and a posteriori inaccuracy estimation

will be only rarely equally accurate. However, when measurements employ mea-

suring instruments with different accuracy, the above conclusion will no longer be

true. For example, measurement of voltage with a potentiometer of accuracy class

0.005, performed as a mass measurement, i.e., with a priori inaccuracy estimation,

will be more accurate than measurement with an indicating voltmeter of class 0.5

and individual inaccuracy estimation.

Returning to the discussion of various measurement types, measurements are

often performed during the preliminary study of a phenomenon. We shall call such

measurements as preliminary measurements. The purpose of preliminary measure-

ments is to determine the conditions under which some characteristic of the

phenomenon can be observed repeatedly, so that its regular relations with other

properties of the object, systems of objects, or with an external medium can be

studied. As the objective of natural sciences is to establish and study regular

relations between objects and phenomena, preliminary measurements are important

in these fields. In particular, the first task of a scientist who is studying some

phenomenon is usually to determine the conditions under which the phenomenon

can be observed repeatedly in other laboratories and can be checked and confirmed.
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Preliminary measurements are also required to construct a model of the object

under study. For this reason, preliminary measurements are important in metrology

as well.

Enormous literature exists on different aspects of measurements. As just one

example, we can refer the reader to the book by Massey [38], which considered a

number of these aspects.

1.6 Classification of Measurement Errors

Measurement accuracy is characterized by measurement error, limits of error, or

uncertainty. A measurement of a quantity whose true value is A gives an estimate ~A
of that quantity. The absolute measurement error ζ expresses the difference between
A and ~A: ζ ¼ eA � A. However, this equation cannot be used to find the error of a

measurement for the simple reason that the true value of the measurable quantity is

always unknown.

As mentioned previously, only in calibration of measuring instruments can one

assume that the true value of the measurand is known, by taking the value of the

measurement standard (often called “reference standard” or “primary atalon” in this

context) as the true value of the measurand. Even then, strictly speaking, one finds

the error of the device being calibrated and not of the measurement itself. The error

of the measurement device found during calibration is called a point estimate.
In all other cases, the measurement accuracy is characterized by either limits of

error or uncertainty, that is, by intervallic estimates. The calculation of these

estimates is based on estimating errors contributed by various individual sources

of inaccuracy; the latter are called elementary errors of the measurement.

The necessary components of any measurement are the method of measurement

and the measuring instrument; in addition, measurements are often performed with

the participation of a person. The imperfection of each component of measurement

contributes to the measurement error. For this reason, in the general form,

ζ ¼ ζm þ ζi þ ζp,

where ζ is the measurement error, ζm is the methodological error, ζi is the instru-

mental error, and ζp is the personal error.
Each component of the measurement error can in turn be caused by several

factors. Thus, methodological errors can arise as a result of an inadequate theory of
the phenomena on which the measurement is based and inaccuracy of the relations

that are employed to find an estimate of the measurable quantity. In particular, the

error caused by the threshold discrepancy between the model of a specific object

and the object itself is a methodological error.

Instrumental errors are caused by the imperfection of measuring instruments.

Normally the intrinsic error of measuring instruments, i.e., the error obtained under

reference conditions regarded as normal, is distinguished from additional errors,
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i.e., errors caused by the deviation of the influence quantities from their values

under reference conditions. Properties of measuring instruments that cause the

instrumental errors will be examined in detail in Chap. 2.

Human participants are responsible for personal errors. The individual charac-
teristics of the person performing the measurement give rise to individual errors that

are specific to that person. For example, in a measurement of high temperature

using an optical pyrometer, a human must detect the moment when the image of a

filament vanishes on the screen of the pyrometer. This moment (as detected) will

depend on the person’s perception. Another typical example includes incorrect

reading of an instrument indication when it falls in-between graduation marks of

the instrument scale.

Thanks to improvements in the reading and regulating mechanisms of measuring

instruments, personal errors are usually insignificant for modern measuring instru-

ments. In particular, they are virtually nonexistent for digital instruments.

The foregoing classification of measurement errors is based on the cause of the

errors. Another important classification of measurement errors is based on their

properties. In this respect, systematic and random errors are distinguished.

A measurement error is said to be systematic if it remains constant or changes in

a regular fashion in repeated measurements of one and the same quantity. The

observed and estimated systematic error is eliminated from measurements by

introducing corrections. However, it is impossible to eliminate completely the

systematic error in this manner. Some part of the error will remain and then this

residual error will be the systematic component of the measurement error.

To define a random measurement error, imagine that some quantity is measured

several times. If there are differences between the results of separate measurements

and these differences cannot be predicted individually, then the error from this

scatter of the results is called the random error.
The division of measurement errors into systematic and random is important,

because these components are manifested differently and different approaches are

required to estimate them. Random errors are discovered by performing measure-

ments of one and the same quantity repeatedly under the same conditions, whereas

systematic errors can be discovered experimentally either by comparing a given

result with a measurement of the same quantity performed by a different method or

by using a more accurate measuring instrument. However, systematic errors are

normally estimated by theoretical analysis of the measurement conditions, together

with the known properties of a measurand and of measuring instruments. Other

specifics of the terms systematic and random errors are discussed in Sect. 4.2.

In speaking about errors, we shall also distinguish gross or outlying errors and

blunders. We shall call an error gross or outlying if it significantly exceeds the error
justified by the conditions of the measurements, the properties of the measuring

instrument employed, the method of measurement, and the qualifications of the

experimenter. Such measurements can arise, for example, as a result of a sharp,

brief change in the grid voltage (if the grid voltage in principle affects the

measurements).
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Outlying or gross errors in multiple measurements are discovered by statistical

methods and are usually eliminated from analysis.

Blunders occur as a result of errors made by the experimenter. Examples are a

slip of the pen when writing up the results of observations, an incorrect reading of

the indications of an instrument, and so on. Blunders are discovered by

nonstatistical methods, and they must always be eliminated from the analysis.

Measurement errors are also divided into static and dynamic. Static errors are

exhibited by static measurements. Dynamic errors are present in dynamic measure-

ments and are caused by the inertial properties of measuring instruments. For

example, if a varying quantity is recorded with the help of a recording instrument,

then the difference between the obtained function and the actual quantity as it

changes with time (taking into account the necessary scale transformations) is the

dynamic error of the given dynamic measurement. In this case, the dynamic error is

also a function of time, and the instantaneous dynamic error can be determined for

each moment in time.

We shall now study the case when the process is recorded by measuring

individual instantaneous values. It is clear that if within the time of a single

measurement, the measurable quantity does not change significantly and the instan-

taneous values of the process are obtained at known times and sufficiently fre-

quently, then the collection of points ultimately obtained gives an arbitrarily close

approximation of the continuous recording. Thus, there will be no dynamic

error here.

The inertial properties of an instrument can be such, however, that the changes in

the measurable quantity during the time necessary to perform a point measurement

will lead to a definite error in the measurements of the point values. In this case, the

obtained collection of point values will deviate from the measurable quantity as it

changes in time, and their difference, exactly as in the above case of a recording

instrument, will give the dynamic error. It is natural to call the errors of separate

point measurements as instantaneous dynamic errors.

1.7 General Approach to Evaluation of Measurement

Inaccuracy

Measurements are regarded metrologically to be better the lower their inaccuracy

is. However, measurements must be reproducible, because otherwise they lose their

objective character and therefore become meaningless.

The reproducibility of a measurement depends on proper estimates of its inac-

curacy. For example, consider a measurement of the length of a certain object.

Assume an experimenter measures this length to be 30.0 cm with proper limits of

errors (as warranted by the measurement instruments and procedure) to be�0.3 cm.

If the experimenter estimates the limits of error too conservatively to be �0.5 cm,

then the accuracy of this measurement will be unnecessarily low, but it will be

reproducible: it will be confirmed if someone else measures this length with higher
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accuracy. However, if the first experimenter erroneously estimates the limits of

error to be �0.01 cm, this measurement will no longer be reproducible. A more

accurate measurement will refute it.

Thus, correctly estimated measurement inaccuracy permits comparing the

obtained result with the results obtained by other experimenters. The fact that the

correctness of a given estimate is later confirmed in a more accurate measurement

attests to the high skill of the experimenter. But the above argument exposes

contradictory tendencies. On one hand, every experimenter wants to present his

or her measurement as being as high quality as possible; on the other hand, the

measurement result must be reproducible, and this suggests conservative estimation

of the accuracy.

With regard to the above contradiction, we stress that while high quality of a

measurement is desirable, the reproducibility (or, said differently, reliability) of the

measurement is mandatory. Thus, it is better to err on the side of caution and be

biased toward reliability, that is, conservative inaccuracy estimations. This conclu-

sion should be considered as the following principle of the estimation of measure-

ment inaccuracy:

The estimate of the inaccuracy of measurement must be an upper-bound estimate.

The inaccuracy estimation for any measurement result may be based on the

estimates of elementary errors of this measurement. Therefore, to satisfy the above

principle, the estimates of the elementary errors must also be upper-bound esti-

mates. At the same time, combining the elementary errors into the overall inaccu-

racy estimate of the measurement should be done without introducing unwarranted

additional inaccuracy exaggeration, so that the overall inaccuracy estimate is only

minimally exaggerated.

We should also stress that the correctness of an estimate of inaccuracy of a

measurement cannot be checked based on data obtained in that same measurement.

In any given measurement, all obtained experimental data and other reliable

information, for example, corrections to the indications of instruments, are

employed to find the measurement result, and the error must be estimated with

additional information about the properties of the measuring instruments, the

conditions of the measurements, and the theory. There is no point in performing a

special experiment to check or estimate the measurement error or uncertainty. It

would entail organizing in parallel with the given measurement a more accurate

measurement of the same measurable quantity. Then the given measurement would

be meaningless: Its result would be replaced by the result of the more accurate

measurement. The problem of estimating the error in the given measurement would

be replaced by the problem of estimating the error of the more accurate measure-

ment; i.e., the basic problem would remain unsolved.

The correctness of estimates of errors and uncertainty is nonetheless checked. It

is confirmed either by the successful use of the measurement result for the purpose

intended or by the fact that the measurement agrees with the results obtained by

other experimenters. As in the case of measurement of physical constants, the

correctness of the estimates of uncertainties is sometimes checked with time as a

result of improvements in measuring instruments.

26 1 General Concepts in the Theory of Measurements



1.8 Presentation of Measurement Results

If ~A is the result of a measurement and ΔU and ΔL are the upper and lower limits of

the error in the measurement, then the result of the measurement and the measure-

ment inaccuracy can be written in the form

~A,ΔU,ΔL:

For example, a measurement result and its inaccuracy could be represented as
~A ¼ 1.153 cm, ΔU ¼ +0.002 cm, and ΔL ¼ �0.001 cm. Often, jΔUj ¼ jΔLj ¼ Δ.
Then, the result and the inaccuracy are written in the form ~A � Δ.

But more often, the inaccuracy is expressed as uncertainty. In this case, the

corresponding probability that the error is within the specified limits must be given.

For uniformity, it is recommended that the probability be given in parentheses after

the value of the uncertainty or a symbol of a measurand.

For example, if a measurement gives the value of the voltage, 2.62 V, and

the uncertainty of this result, u ¼ �2%, was calculated for the probability 0.95,

then the result will be written in the form

~U ¼ 2:62V, u ¼ �2% 0:95ð Þ

or, in the more compact form,

U0:95 ¼ 2:62� 0:05ð ÞV:

The compactness remark refers to the method for indicating the probability and

is unrelated to the fact that the uncertainty is given in the relative form in the first

case and in the absolute form in the second case. If the confidence probability is not

indicated in the measurement result, then the inaccuracy must be assumed to have

been estimated without the use of probability methods. Although an inaccuracy

estimate obtained without the use of probability methods can be reliable, it cannot

be associated with any probability value. Thus, the probability should not be

indicated. To repeat, in this case, we have the limits of error of a measurement

rather than the uncertainty.

The above representations of inaccuracy are desirable for the final result,

intended for direct practical application, for example, in quality control. In this

case, it is usually convenient to express the total inaccuracy estimation. In many

cases, however, it is desirable to know not the total inaccuracy estimation but the

characteristics of the random and systematic components separately. Such a repre-

sentation of the inaccuracy makes it easier to analyze and determine the reasons for

any discrepancy between the results of measurements of the same quantity

performed under different conditions. An analysis of this kind is usually necessary

in the case of measurements performed for scientific purposes, for example, mea-

surements of physical constants. It is also desirable to record the components

separately in those cases when the result of a measurement is to be used for
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calculations together with other data that are not absolutely precise. For example, in

indirect measurements, when the arguments are measured directly, separate record-

ing of the random and systematic errors of the measurements of the arguments

makes it possible to estimate more accurately the uncertainty of the result of the

overall indirect measurement. We will see this in Chap. 5.

For scientific measurements, apart from the inaccuracy expressions given above,

it is helpful to describe the basic sources of error together with an estimate of their

contribution to the total measurement uncertainty. For a random error, it is of

interest to present the form and parameters of the distribution function of the

observations and how the distribution function was determined (the method

employed for testing the hypothesis regarding the form of the distribution function,

the significance level used in this testing, etc.).

The inaccuracy in the results of mass measurements is usually not indicated at

all, because it is estimated beforehand, and the estimation is known prior to the

measurement. In mass measurements, the number of significant digits in the result

of a measurement reflects the accuracy of the measurement. In other measurements,

the inaccuracy must be estimated and expressed explicitly.

As measurement inaccuracy determines only the vagueness of the result, the

inaccuracy need not be known precisely. For this reason, in its final form, the

inaccuracy is customarily expressed with only one or two significant digits. Two

digits are retained if needed for the goal of the measurement or if the rounding of the

second digit would change the inaccuracy estimate by more than for 10%. However,

in intermediate calculations, depending on the computational operations performed,

one or two significant digits more than will be needed for the result should be

retained so that the rounding error would not accumulate and distort the result.

The numerical value of the measurement result must have the last decimal digit

of the same rank as the last digit in its inaccuracy estimation. There is no point in

including more digits, because this will not reduce the inaccuracy of the result. But

fewer digits, which can result from further rounding off the number, would increase

the inaccuracy thus artificially reducing the accuracy of the result below that

provided by the measurement employed.

For example, if the result of the measurement is 85.6342 and the limits of error

are �0.04, then the result should retain only four significant digits: 85.63. If the

same result has limits of error �0.012, then it should be expressed as 85.634.

If the rules presented above are used, then the number of significant digits in the

measurement result makes it possible to judge approximately the accuracy of a

measurement: the inaccuracy can reach at most two units in the next-to-last digit of

the result. Returning to the above example, if we only know the result of 85.634, we

can tell that according to the rules, the worse inaccuracy could have been �0.03.

Indeed, any higher inaccuracy would have caused one to retain fewer digits in the

result.

When retaining a proper number of significant digits in observations and mea-

surement results, one must round the numbers involved. The rounding should be

done according to the following rules:
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1. The last retained digit is not changed if the adjacent digit being discarded is less

than 5. Discarded digits in the whole part of the number are replaced by 0’s and
dropped in decimal fraction part.

Examples. Rounding the number 32.453 to four significant digits results in the

number 32.45. Rounding the number 165.245 to four significant digits results in the

number 165.2.

2. The last digit retained is increased by 1 if the adjacent digit being discarded is

greater than 5 or if it is equal to 5 and there are digits other than 0 to its right.

Examples. If three significant digits are retained, the number 18.598 is rounded

to 18.6 and the number 152.56 is rounded to 153.

3. If the digit being discarded is equal to 5 and the digits to its right are unknown or

are equal to 0, then the last retained digit is not changed if it is even and it is

increased by 1 if it is odd.

Examples. If two significant digits are retained, the number 10.5 is rounded to

10 and the number 11.50 is rounded to 12.

4. If the decimal fraction in the numerical value of the result of a measurement

terminates in 0’s, then the 0’s are dropped only up to the digit that corresponds to
the rank of the least significant digit of the numerical value of the inaccuracy

estimation.

The foregoing rules were established by convention, and for calculations

performed by humans, they are entirely satisfactory. In the case of calculations

performed with the help of computers, however, rounding depending on the even-

ness or oddness of the last retained digit [rule (3)] is inconvenient, because it

complicates the algorithm. It has been suggested that this rule be dropped and the

last retained figure not be changed, irrespective of whether it is even or odd. This

suggestion, however, has not been adopted. The main objection is that such

rounding, if applied consecutively to intermediate results, can significantly distort

the final result.

We shall now estimate the relative rounding error, based on the observation that

the limits of error caused by the rounding are equal to one-half the last digit in the

numerical value of the result of the measurement. Assume, for example, that the

measurement result is expressed as a number with two significant figures. Then the

minimum number will be equal to 10 and the maximum number will be equal to 99.

Therefore, the relative rounding error ε2 of a result with two significant digits will

be 0.5% < δ2 � 5%.

If the result of a measurement is expressed with three significant figures, this

error will fall in the range 0.05% < δ3 � 0.5%, and so on. Thus, the limits of error

obtained above show the effect of rounding off the result on the measurement error.
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Chapter 2

Measuring Instruments and Their Properties

2.1 Types of Measuring Instruments

Measuring instruments are the technical objects that are specially developed for the

purpose of measuring specific quantities. A general property of measuring instru-

ments is that their accuracy is known. Measuring instruments are divided into

material measures, measuring transducers, indicating instruments, recording

instruments, and measuring systems.

A material measure is a measuring instrument that reproduces one or more

known values of a given quantity. Examples of measures are balance weights,

measuring resistors, measuring capacitors, and reference materials. Single-valued

measures, multiple-valued measures, and collections of measures are distinguished.

Examples of multiple-valued measures are graduated rulers, measuring tapes,

resistance boxes, and so on. Multiple-valued measures are further divided into

those that reproduce discrete values of the corresponding quantities, such as

resistance boxes, and those that continuously reproduce quantities in some range,

for example, a measuring capacitor with variable capacitance. Continuous mea-

sures are usually less accurate than discrete measures.

When measures are used to perform measurements, the measurands are com-

pared with the known quantities reproduced by the measures. The comparison is

made by different methods, but so-called comparators are a specific means that are

used to compare quantities. A comparator is a measuring device that makes it

possible to compare similar quantities and has a known sensitivity. The simplest

comparator is the standard equal-armed pan balance.

In some cases, quantities are compared without comparators, by experimenters,

with the help of their viewing or listening perceptions. For instance, when measur-

ing the length of a body with the help of a ruler, the ruler is placed on the body and
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the observer fixes visually the graduations of the ruler (or fractions of a graduation)

at the corresponding points of the body.

A measuring transducer is a measuring instrument that converts the measurement

signals into a form suitable for transmission, processing, or storage. Themeasurement

information at the output of a measuring transducer typically cannot be directly

observed by the experimenter.

One must distinguish measuring transducers and the transforming elements of a

complicated instrument. The former are measuring instruments, and as such, they

have rated (i.e., listed in documentation) metrological properties (see below). The

latter, on the other hand, do not have an independent metrological significance and

cannot be used separately from the instrument of which they are a part.

Measuring transducers are diverse. Thermocouples, resistance thermometers,

measuring shunts, and the measuring electrodes of pH meters are just a few

examples of measuring transducers. Measuring current or voltage transformers

and measuring amplifiers are also measuring transducers. This group of transducers

is characterized by the fact that the signals at their inputs and outputs are a quantity

of the same kind, and only the magnitude of the quantity changes. For this reason,

these measuring transducers are called scaling measuring transducers.
Measuring transducers that convert an analog signal at the input into a discrete

signal at the output are called analog-to-digital converters. Such converters are

manufactured either as autonomous, i.e., independent measuring instruments, or as

units built into other instruments, in particular, in the form of integrated microcir-

cuits. Analog-to-digital converters are a necessary component of a variety of digital

devices, but they are also employed in monitoring, regulating, and control systems.

An indicating instrument is a measuring instrument that is used to convert

measurement signals into a form that can be directly perceived by the observer.

Based on the design of the input circuits, indicating instruments are just as diverse

as measuring transducers, and it is difficult to survey all of them. Moreover, such a

review and even classification are more important for designing instruments than

for describing their general properties.

A common feature of all indicating instruments is that they all have readout

devices. If these devices are implemented in the form of a scale and an indicating

needle, then the indications of the instrument are a continuous function of the

magnitude of the measurable quantity. Such instruments are called analog instru-

ments. If the indications of instruments are in a digital form, then such instruments

are called digital instruments.

The above definition of digital instruments formally includes two types of

devices. The first type, which includes automatic digital voltmeters, bridges, and

similar instruments, performs all measuring transformations in a discrete form; in

the second type, exemplified by induction meters for measuring electrical energy,

all measuring transformations of signals occur in an analog form and only the

output signal assumes a discrete form. The conversions of measurement informa-

tion into a discrete form have several specific features. Therefore, only instruments

in which the measurement conversions occur in a discrete form are usually consid-

ered to be digital instruments.
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The indications of digital instruments can be easily recorded and are convenient

for entering into a computer. In addition, their design usually makes it possible to

obtain significantly higher accuracy than the accuracy of analog instruments.

Moreover, when digital instruments are employed, no reading errors occur. How-

ever, with analog instruments, it is easier to judge trends in the variation of the

measurands.

In addition to analog and digital instruments, there also exist analog-discrete

measuring instruments. In these instruments, the measuring conversions are

performed in an analog form, but the readout means are discrete (but not digital).

Analog-discrete instruments combine the advantages of both analog and digital

instruments. Mentioned above induction meters for measuring electric energy are

examples of such hybrid instruments.

In many cases, measuring instruments are designed to record their indications.

Such instruments are called recording instruments. Data can be recorded in the

form of a continuous record of the variation of the measurand in time, or in the form

of a series of discrete points. Instruments of the first type are called automatic-

plotting instruments, and instruments of the second type are called printing instru-

ments. Printing instruments can record the values of a measurand in digital form.

Printing instruments give a discrete series of values of the measurand with some

time interval. The continuous record provided by automatic-plotting instruments

can be regarded as an infinite series of values of the measurand.

Sometimes measuring instruments are equipped with induction, photo-optical,

or contact devices and relays for purposes of control or regulation. Such instruments

are called regulating instruments. Regulating units typically lead to some reduction

of the accuracy of the measuring instrument.

Measuring instruments also customarily include null indicators, whose primary

purpose is to detect the presence of a nonzero signal. The reason for them to be

considered measuring instruments is that a null indicator, such as a galvanometer,

can often be used as a highly sensitive indicating instrument.

A measuring system is a collection of functionally integrated measuring, comput-

ing, and auxiliary devices connected to each other with communication channels.

2.2 Metrological Characteristics of Measuring Instruments

We shall divide all characteristics of measuring instruments into two groups:

metrological, which are significant for using a measuring instrument in the manner

intended, and secondary. We shall include in the latter such characteristics as mass,

dimensions, and degree of protection from moisture and dust. We shall not discuss

secondary characteristics because they are not directly related with the measure-

ment accuracy, even though they sometimes influence the selection and application

of an instrument.

By metrological characteristics of a measuring instrument, we mean the char-

acteristics that make it possible to judge the suitability of the instrument for

performing measurements in a known range with known accuracy. A simple
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example of a metrological characteristic common to all measuring instruments

except single measures (i.e., measures reproducing a single value of a quantity) is

the measurement range of the instrument. We will call metrological characteristics

that are established before or during the design and development of the instrument

as nominal metrological characteristics. Examples of such a characteristic are the

nominal value of a measure (10Ω, 1 kG, etc.), the measurement range of an

instrument (0–300 V, 0–1,200 �C, etc.), the conversion range of a transducer, the

value of the scale factor of an instrument scale, and so on.

The relation between the input and the output signals of indicating instruments and

transducers is determined by the transfer function. For indicating instruments, this

relation is determined by the instrument scale, whereas for measuring transducers, it

is determined by a graph or an equation. If this graph or equation had been deter-

mined and specified before the transducer was developed (or during its development),

then the graph or equation represents a nominal metrological characteristic.

The real characteristics of measuring instruments differ from the nominal char-

acteristics because of fabrication inaccuracies and changes occurring in the

corresponding properties in time. These differences between nominal and real

metrological characteristics lead to the error of the instrument.

Ideally, a measuring instrument would react only to the measured quantity or to

the parameter of the input signal of interest, and its indication would not depend on

the external conditions, such as the power supply regime, temperature, and so on. In

reality, the external conditions do affect the indications of the instrument. The

quantities characterizing the external conditions affecting the indications of a

measuring instrument are called influence quantities.
For some types of measuring instruments, the dependence of the output signal or

the indications on a given influence quantity can be represented as a functional

dependence, called the influence function. The influence function can be expressed

in the form of an equation (e.g., the temperature dependence of the EMF of standard

cells) or a graph. In the case of a linear dependence, it is sufficient to give the

coefficient of proportionality between the output quantity and the influence quan-

tity. We call this coefficient the influence coefficient. Influence coefficients and

functions make it possible to take into account the conditions under which mea-

suring instruments are used, by introducing the corresponding corrections to the

obtained results.

The imperfection of measuring instruments is also manifested because when the

same quantity is measured repeatedly under identical conditions, the results can

differ somewhat from one another. If these differences are significant, the indica-

tions are said to be nonrepeatable.

The inaccuracy of a measuring instrument is usually characterized by its error.

Taking an indicating instrument as an example, let the true value of a quantity at

the input of the instrument be At and the instrument indication be the value Ar. The

absolute error of the instrument will be

ζ ¼ Ar � At:
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If the indications of the repeated measurements of At are somewhat different,

(but not enough to be considered nonrepeatable), one can talk about a random

component of instrument error. For analog instruments, the random component of

instrument error is normally caused by friction in the supports of a movable part of

the instrument and/or by hysteresis phenomena. The limits of this error component

can be found directly if the quantity measured by the instrument can be varied

continuously, which is the case with, e.g., the electric current or voltage. The

common method involves driving the indicator of the instrument continuously up

to the same scale marker, once from below and once from above the marker. To

compensate for friction (and/or hysteresis), the input signal that drives the indicator

to the marker from below needs to be higher than what it would have been without

friction; the input signal that drives the indicator to the same marker from above

will be smaller. We will call the dead band the absolute value of the difference

between the two values of the measurand that are obtained in such a test

corresponding to a given scale marker of the instrument. The dead band gives the

range of possible values of the random component of instrument error, and one half

of this length is the limiting value of the random error.

There are also several instrument types, notably, weighing scales, whose indi-

cations cannot vary continuously. The random error of weighing scales is usually

characterized by the standard deviation [7]. This characteristic of an instrument is

calculated from the changes produced in the indications of the scales by a load with

a known mass; the test is performed at several scale markers, including the limits of

the measurement range. One method for performing the tests and the computational

formula for calculating the standard deviation of weighing scales are presented

in [7].

Measuring instruments are created to bring certainty into the phenomena studied

and to establish regular relations between the phenomena. Thus, the uncertainty

created by the nonrepeatability of instrument indications interferes with using an

instrument in the manner intended. For this reason, the first problem that must be

solved when developing a new measuring device is to make its random error

insignificant, i.e., either negligibly small compared with other errors or falling

within permissible limits of error for measuring devices of the given type. We

should note here that because uncertainty of instrument indications represents only

a random component of its inaccuracy, the term “uncertainty” cannot replace the

term “limits of error” as applied to measuring instruments.

If the random error is insignificant and the elements determining instrument

accuracy are stable, then by calibration, the measuring device can always be “tied”

to a corresponding measurement standard and the potential accuracy of the instru-

ment can be realized.

The value of the measurand corresponding to the interval between two neigh-

boring markers on the instrument scale is called the value of a scale division.
Similarly, the value of the least significant digit is the value of the measurand

corresponding to one increment of the least significant digit of a digital readout

device.
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The sensitivity of a measuring instrument is the ratio of the change in the output

value of the measuring instrument to the corresponding change in the input value of

the quantity that causes the output value to change. The sensitivity can be a nominal

metrological characteristic or an actual characteristic of a real instrument.

The discrimination threshold is the minimum change in the input signal that

causes an appreciable change in the output signal.

The resolution is the smallest interval between two distinguishable neighboring

discrete values of the output signal.

Instability (of a measuring instrument) is a general term that expresses the

change in any property of the measuring instrument in time.

Drift is the change occurring in the output signal (always in the same direction)

in the absence of the input signal over a period of time that is significantly longer

than the time needed to perform a measurement with a given measuring instrument.

The presence of drift entails the need to reset the zero indication of the instrument.

The drift and the instability do not depend on the input signal, but they can

depend on the external conditions. The drift is usually determined in the absence of

the signal at the input.

The metrological characteristics of measuring instruments should also include

their dynamic characteristics. These characteristics reflect the inertial properties of

measuring instruments. It is necessary to know them to correctly choose and use

many types of measuring instruments. The dynamical characteristics are examined

below in Sect. 2.5.

The properties of measuring instruments can normally be described based on the

characteristics enumerated above. For specific types of measuring instruments,

however, additional characteristics are often required. Thus, for the gauge rods,

the flatness and degree of polish are important. For voltmeters, the input resistance

is important. We shall not study such characteristics, because they refer only to

individual types of measuring instruments.

2.3 Rating of the Errors of Measuring Instruments

Measuring instruments can only be used as intended when their metrological

properties are known. In principle, the metrological properties can be established

by two methods. One method is to find the actual characteristics of a specific

instrument. In the second method, the nominal metrological characteristics and

the permissible deviations of the real characteristics from the nominal characteris-

tics are given.

The first method is laborious, and for this reason, it is used primarily for the most

accurate and stable measuring instruments. Thus, the second method is the main

method. The nominal characteristics and the permissible deviations from them are

given in the technical documentation when measuring instruments are designed,

which predetermines the properties of measuring instruments and ensures that they

are interchangeable.
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In the process of using measuring instruments, their real properties are checked

to determine whether these properties deviate from the established nominal char-

acteristics. If some real property deviates from its nominal value by an amount

more than allowed, then the measuring instrument is adjusted, refurbished, or

discarded and no longer used.

Thus, the choice of the nominal characteristics of measuring instruments and the

designation of permissible deviations of the real characteristics from them – rating

of the metrological characteristics of measuring instruments – are of great impor-

tance for measurement practice. The practice of rating the metrological character-

istics of measuring instruments has evolved over time, and we will examine it next.

Both the production of measuring instruments and the rating of their character-

istics initially arose spontaneously in each country. Later, rules that brought order to

the rating process were established in all countries with significant instrument

production. The recommendations developed at this time by international organi-

zations, primarily Publication 51 of the International Electrotechnical Commission

(IEC) and a number of publications by the International Organization of Legal

Metrology (OIML), were of great importance for standardizing the expression of

rated characteristics [8, 9]. The terminological documents are also extremely

valuable for developing rating procedures [1, 10, 12].

We shall now return to the gist of the problem. The values of nominal metro-

logical characteristics, such as the upper limits of measurement ranges, the nominal

values of the measures, the scale factors of instruments and so on, are chosen from a

standardized series of values of these characteristics. A more difficult task is to rate

the accuracy characteristics: errors and instability.

Despite the efforts of designers, the real characteristics of measuring instruments

depend to some extent on the external conditions. For this reason, the conditions are

determined under which the measuring instruments are to be calibrated and

checked, including the nominal values of all influence quantities and the ranges

of their permissible deviation from the nominal values. These conditions are called

reference conditions. The error of measuring instruments under reference condi-

tions is called the intrinsic error.
In addition to the reference conditions and intrinsic errors, the rated operating

conditions of measuring instruments are also established, i.e., the conditions under

which the characteristics of measuring instruments remain within certain limits and

the measuring instruments can be employed as intended. Understandably, errors in

the rated operating conditions are larger than errors under the reference conditions.

This change is characterized by specifying the limits of the additional error (the

additional error the instrument can have due to deviation of the corresponding

influence quantity from the reference condition), the permissible value of the

corresponding influence quantity, or by indicating the limits of the permissible

error under the rated operating conditions (the overall possible error of the

instrument).

The errors of measuring instruments are expressed not only in the form of

absolute and relative errors, adopted for estimating measurement errors, but also

in the form of fiducial errors. The fiducial error is the ratio of the permissible limits
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of the absolute error of the measuring instrument to some standardized value –

fiducial value. The latter value is established by standards on separate types of

measuring instruments; we discuss these rules later in this section. The fiducial

error is somewhat similar to relative error but, since it is normalized to a constant

standardized value, the fiducial error is constant across the entire measurement

range of the device. The purpose of fiducial errors is that they make it possible to

compare the accuracy of measuring instruments that have different measurement

ranges. For example, the accuracy of an ammeter with a measurement limit of 1A

and permissible absolute error of 0.01A has the same fiducial error of 1% (and in

this sense, the same accuracy) as an ammeter with a measurement limit of 100A

and permissible absolute error of 1A.

For measuring transducers, the errors can be represented relative to either the

input or output signals. Let us consider the relationship between these two error

representations.

Figure 2.1 shows the nominal and, let us assume, the real transfer functions of

some transducer. The nominal transfer function, as done in practice whenever

possible, is assumed to be linear. We denote the input quantity by x and the output

quantity by y. They are related by the dependency

x ¼ Ky,

where K is the nominal transduction constant.

1
2y

yt

xt0 xa x

ya

Fig. 2.1 Nominal (curve 1)

and real (curve 2) transfer

functions of a measuring

transducer
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At the point with true values of the quantities xt and yt, the true value of the

transduction constant will be Kt¼ xt /yt. Calculations based on the nominal constant

K, however, result in an error.

Let xa ¼ Kyt and ya ¼ xt /K be determined based on yt and xt (see Fig. 2.1). Then
the absolute transducer error with respect to the input will be

Δa ¼ ya � yt ¼
1

K
� 1

Kt

� �
xt:

The error with respect to the output is expressed analogously:

Δy ¼ ya � yt ¼
1

K
� 1

Kt

� �
xt:

We note, first, that Δx and Δy always have different signs: If (K – Kt) >0, then

(1/K – 1/Kt) <0.

But this is not the only difference. The quantities x and y can also have different

dimensions; i.e., they can be physically different quantities, so that the absolute

input and output errors are not comparable. For this reason, we shall study the

relative errors:

δx ¼ Δx
xt

¼ K � Ktð Þyt
xt
¼ K � Kt

Kt
,

δy ¼ Δy
yt

¼ Kt � Kð Þ
KKt

xt
yt
¼ Kt � K

K
:

As Kt 6¼ K, we have |δx| 6¼ |δy|.
We denote the relative error in the transduction constant at the point (xt, yt) as δk,

where δk ¼ (K – Kt)/Kt. Then

δx
δy

¼ � 1þ δkð Þ:

However, δk � 1, and in practice relative errors with respect to the input and

output can be regarded as equal in magnitude.

In measures, the rated error is determined as the difference between the nominal

value of the measure and the “true value” of the quantity reproduced by the

measure; the “true value” is obtained by another, known to be much more precise,

measurement. This is analogous to indicating instruments if one considers the

nominal value of a measure as the indication of the instrument.

It is interesting to note that single measures that reproduce passive quantities, for

example, mass, electric resistance, and so on, have only systematic errors. The error

of measures of active quantities (electric voltage, electric current, etc.) can have

both systematic and random components. Multiple-valued measures of passive

quantities can have random errors introduced by the switching elements.
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To summarize, when the errors of measuring instruments are rated, the permissible

limits of the intrinsic and all additional errors are specified. At the same time, the

reference and rated operating conditions are indicated.

Of all forms enumerated above for expressing the errors of measuring instru-

ments, the best is the relative error, because in this case, the indication of the

permissible limit of error gives the clearest idea of the level of measurement

accuracy that can be achieved with the given measuring instrument. The relative

error, however, usually changes significantly over the measurement range of the

instrument, and for this reason, it is difficult to be rated.

The absolute error is frequently more convenient than the relative error. In the

case of an instrument with a scale, the limit of the permissible absolute error can be

rated with the same numerical value for the entire scale of the instrument. But then

it is difficult to compare the accuracies of instruments having different measure-

ment ranges. This difficulty disappears when the fiducial errors are rated.

Let us now consider how the limits of permissible errors are expressed. For our

discussion below, we shall follow primarily [9]. The limit of the permissible

absolute error can sometimes be expressed by a single value (neglecting the sign):

Δ ¼ �a,

sometimes in the form of the linear dependence:

Δ ¼ � aþ bxð Þ, ð2:1Þ

where x is the nominal value of the measure, the indication of a measuring

instrument, or the signal at the input of a measuring transducer, and a and b are

constants, and sometimes by a general equation,

Δ ¼ f xð Þ:

When the last dependence is complicated, it is given in the form of a table or

graph.

The fiducial error γ (in percent) is defined by the formula

γ ¼ 100Δ=xf ,

where xf is the fiducial value.
The fiducial value is assumed to be equal to the following:

1. The value at the end of the instrument scale.

2. The nominal value of the measurand, if it has been established.

3. The length of the scale, if the scale graduations narrow sharply toward the end of

the scale. In this case, the error and the length of the scale are expressed in the

same units of length (e.g., centimeters).
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The rules above are in accordance with Recommendation 34 of OIML [9].

However, Publication 51 of IEC [8] foresees that if the zero marker falls within

the scale, the fiducial value is equal to the span of the scale, which is a sum of the

end values of the scale (neglecting their signs). This is controversial and we will

discuss it in detail below.

A better between these two recommendations is the one by OIML. Indeed,

consider, for example, an ammeter with a scale –100-0-100A and with a permissi-

ble absolute error of 1 A. In this case, the fiducial error of the instrument will be 1%

according to OIML and 0.5% according to IEC. But when using this instrument, the

possibility of performing a measurement with an error of up to 0.5% cannot be

guaranteed for any point of the scale, which makes the interpretation of the fiducial

error confusing. An error not exceeding 1%, however, can be guaranteed when

measuring a current of 100 A under reference conditions.

The tendency to choose a fiducial value such that the fiducial error would be

close to the relative error of the instrument was observed in the process of

improving IEC Publication 51. Indeed, in the previous edition of this publication,

the fiducial value for instruments without a zero marker on the scale was taken to be

equal to the difference of the end values of the range of the scale, and now it is taken

to be equal to the larger of these values (neglecting the sign). Consider, for example,

a frequency meter with a scale 45–50–55 Hz and the limit of permissible absolute

error of 0.1 Hz. According to the previous edition of IEC Publication 51, the

fiducial error of the frequency meter was assumed to be equal to 1%, and the current

edition makes it equal to 0.2%. But when measuring the nominal 50 Hz frequency,

the instrument relative error indeed will not exceed 0.2% (under reference condi-

tions), while the 1% error has no relation to the accuracy of this instrument. Thus,

the current edition is better. We hope that IEC will take the next step in this

direction and take into account the recommendation of OIML for setting the

fiducial value of instruments with a zero marker within the scale.

The limits of permissible relative error are rarely listed as rated but can be

computed. If the rated error is expressed as the fiducial error γ (in percent), the

permissible relative error for each value of the measurand must be calculated

according to the formula

δ ¼ γ
xf
x
:

If the rated error is expressed as the limits of absolute error Δ, the limit of

permissible relative error δ is usually expressed in percent according to the formula

δ ¼ 100Δ
x

¼ �c:

For digital instruments, the errors are often rated in the conventional form

� bþ qð Þ, ð2:2Þ
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where b is the relative error in percent and q is some figure of the least significant

digit of the digital readout device. For example, consider a digital millivoltmeter

with a measurement range of 0–300 mV and with the indicator that has four digits.

The value of one unit in the least significant digit of such an instrument is 0.1 mV.

If this instrument is assigned the limits of permissible error (0.5% + 2), then number

“2” in the parentheses corresponds to 0.2 mV. Now the limit of the relative error

of the instrument when measuring, for example, a voltage of 300 mV can be

calculated as follows:

δ ¼ � 0:5þ 0:2� 100

300

� �
¼ �0:57%:

Thus, to estimate the limit of permissible error of an instrument from the rated

characteristics, some calculations must be performed. For this reason, although the

conventional form (2.2) gives a clear representation of the components of instru-

ment error, it is inconvenient to use.

A more convenient form is given in Recommendation 34 of OIML [9]:

According to this recommendation, the limit of permissible relative error is

expressed by the formula

δ ¼ � cþ d
xe
x
� 1

� �h i
, ð2:3Þ

where xe is the end value of the measurement range of the instrument or the input

signal of a transducer and c and d are relative quantities.

In (2.3), the first term on the right-hand side is the relative error of the instrument

at x ¼ xe. The second term characterizes the increase of the relative error as the

indications of the instrument decrease.

Equation 2.3 can be obtained from (2.2) as follows. To the figure q, there
corresponds the measurand qD, where D is the value of one unit in the least

significant digit of the instrument’s readout device. In the relative form, it is

equal to qD/x. Now, the physical meaning of the sum of the terms b and qD/x is

that it is the limit of permissible relative error of the instrument. So,

δ ¼ bþ qD

x

� �
:

Using identity transformation, we obtain

δ ¼ bþ qD

x
þ qD

xe
� qD

xe
¼ bþ qD

xe

� �
þ qD

xe

xe
x
� 1

� �
:

If we denote

c ¼ bþ qD

xe
, d ¼ qD

xe
,

we obtain (2.3).
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In application to the example of a digital millivoltmeter studied above, we have

δ ¼ � 0:57þ 0:07
xe
x
� 1

� �h i
:

It is clear that the last expression is more convenient to use, and in general, it is

more informative than the conventional expression (2.2).

Note that for standardization of analog instruments, the error limits are

established for the total instrument error and not for the separate components. If,

however, the instrument has an appreciable random component, then permissible

limits for it are established separately, in addition to the limits of the total error. For

example, aside from the limits of the permissible intrinsic error, the limits of the

permissible variation are also established.

Additional errors (recall that these are errors due to the deviation of the

corresponding influence quantities from their values falling within the reference

condition) of measuring instruments are rated by prescribing the limits for each

additional error separately. The intervals of variation of the corresponding influence

quantities are indicated simultaneously with the limits of the additional errors. The

collection of ranges provided for all influence quantities determines the rated

operating conditions of the measuring instrument. The limits of permissible addi-

tional errors are often represented in proportion to the values of their corresponding

influence quantities or the deviation of these quantities from the limits of the

intervals determining their reference values. In this case, the corresponding coef-

ficients are rated. We call them the influence coefficients.

In the case of indicating measuring instruments, additional errors are often

referred to by the term variation of indications. This term is used, in particular,

for electric measuring instruments [8].

The additional errors arising when the influence quantities are fixed are system-

atic errors. For different instruments of the same type, however, systematic errors

can have different values and, moreover, different signs. For this reason, the

documentation for the overwhelming majority of instrument types sets the limits

of additional errors as both positive and negative with equal numerical values. For

example, the change in the indications of an electric measuring instrument caused

by a change in the temperature of the surrounding medium should not exceed the

limits �0.5% for each 10 �C change in temperature under rated operating condi-

tions (the numbers here are arbitrary).

If, however, the properties of different measuring devices of a given type are

sufficiently uniform, it is best to standardize the influence function, i.e., to indicate

the dependence of the indications of the instruments or output signals of the trans-

ducers on the influence quantities and the limits of permissible deviations from each

such dependence. If the influence function can be standardized, then it is possible to

introduce corrections to the indications of the instruments and thereby to use the

capabilities of the instruments more fully.

Figure 2.2 shows how the instrument errors depend on the values of an influence

quantity, assuming two basic alternatives for rating the additional errors. The upper
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figure represents the case where the documentation lists the limits of the intrinsic

and additional errors. Such rating stipulates that the instrument accuracy is deter-

mined by the limits of the intrinsic error as long as the influence quantity is within

reference condition and by the sum of the limits of the intrinsic and constant limits

of the additional errors if the influence quantity is within rated operating condition.

The lower figure depicts the case when the documentation lists the limits of the

intrinsic error and the influence coefficients for the additional errors. Here, when the

influence quantity is outside the reference condition, the limits of the additional

error expand linearly with the deviation of the influence quantity from the reference

condition (as long as the influence quantity stays within the rated operating

conditions).

The interval (x2, x3) corresponds to reference conditions; the interval (x1, x4)
corresponds to the rated operating conditions; d is the absolute value of the limits of

permissible intrinsic error; c is the absolute value of the limits of permissible error

in the rated operating conditions; and (c–d) is the absolute value of the limits of

permissible additional error.

It should be emphasized that the actual additional errors that can arise in a

measurement will depend not only on the properties of the measuring instrument

but also on the accuracy of obtaining the values of the corresponding influence

quantities.
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Fig. 2.2 Two variants of rating limits of additional errors of measuring instruments

44 2 Measuring Instruments and Their Properties



Often a measuring instrument has an electrical signal on its input. This input

signal can be characterized by several parameters. One of them reflects the magni-

tude of the measurand. This parameter is called the informative parameter: By
measuring its magnitude, we can find the value of the measurand. All other

parameters do not have direct connections with the magnitude of the measurand,

and they are called noninformative parameters.
Measuring instruments are constructed with the goal to make them insensitive to

all noninformative parameters of the input signal. This goal, however, cannot be

achieved completely, and in the general case, the effect of the noninformative

parameters can only be decreased but not eliminated. But, for all noninformative

parameters, it is possible to determine limits such that when the noninformative

parameters vary within these limits, the total error of the measuring instrument will

change insignificantly, which makes it possible to establish the reference ranges of

the noninformative parameters.

If some noninformative parameter falls outside the reference limits, then the

error arising is regarded as another additional error. The effect of each

noninformative parameter is rated separately, as for influence quantities. Further-

more, rating the additional errors arising from noninformative parameters is done

based on the same assumptions as those used for rating the additional errors caused

by the influence quantities.

The errors introduced by changes in the noninformative parameters of the input

signals are occasionally called dynamic errors. In the presence of multiple param-

eters, however, this term is not expressive. It is more intuitive to give each error a

characteristic name, as is usually done in electric and radio measurements. For

example, the change in the indications of an AC voltmeter caused by changes in the

frequency of the input signal is called the frequency error. In the case of the

measurements of the peak variable voltages, apart from the frequency errors, the

errors caused by changes in the widths of the pulse edges, the decay of the flat part

of the pulse, and so on are called the shape errors.

Another property of measuring instruments that affects their accuracy and is also

rated is stability. Stability, like accuracy, is a positive quality of a measuring

instrument. Just as the accuracy is characterized by inaccuracy (error, uncertainty),

stability is characterized by instability. An important particular case of instability is

drift. Drift is usually not rated. Instead, when it is discovered, the zero indication of

the instrument is reset.

The first method of rating the instability involves stipulating the time period after

which the instrument must be checked and calibrated if needed. The second method

consists of indicating different limits for the error of the instrument for different

periods of time after the instrument was calibrated. For example, the following

table (taken with modifications from [18]) can be provided in the specifications of a

digital instrument:
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Time after

calibration 24 h 3 months 1 year 2 years

Temperature 23� 1 �C 23� 5 �C 23� 5 �C 23� 5 �C
Limits of error �(0.01%+ 1

unit)

�(0.015%+ 1

unit)

�(0.02%+ 1

unit)

�(0:03% + 2

units)

In the last line entries, the first number in the parentheses specifies the percent of

the instrument indication and the second is a figure of the least significant digit

(from 0 to 9). The second number lists the absolute error in units of the least

significant digit of the instrument. To find the corresponded part of the limits of

error of that instrument, one must calculate the value of this number in units of

measurement. For example, if the above table is given in the documentation of a

millivoltmeter with the range of 300 mV and 4-digit readout device, then the value

of the least-significant digit is 0.1 mV. Assume that a user utilizes this instrument

2 years after calibration and the readout is 120.3 mV. Then, the limits of error of this

instrument for this measurement are �(120.3� 0.0003 + 0.2)¼� 0.24 mV. The

second number is constant for a given instrument range. It was called the floor error
in [18].

Obviously, specifying how instrument accuracy changes with time since cali-

bration conveys more information about the instrument characteristics than simply

rating the interval between calibrations, and this extra information is beneficial to

the users.

Below is another example of specification of a digital multirange voltmeter, also

from [18] (the specification for only two ranges is shown).

The last two rows in the above table give the limits of error of the instrument

depending on the time from the calibration. The numbers in parentheses specify

limits of two additive parts of the error in ppm. A confusing aspect here is that the

first part is expressed as a relative error since the first number gives the limits of

error relative to the indication of the instrument for a given measurement, while the

second number specifies the error relative to the instrument range, the same as the

floor error in the previous example.

Time after

calibration 24 h 90 days 12 months Temperature coefficient

Temperature 23� 1 �C 23� 5 �C 23� 5 �C 0–18� and 28–55 �C
Per 1 �C

10 V – – �(35 + 5 ppm) �(5 ppm+ 1 ppm)

1,000 V � (20 + 6 ppm) �(35 + 10 ppm) �(45 + 10 ppm) �(5 ppm+ 1 ppm)

The last column specifies the limits of the additional error due to temperature

deviation from reference conditions. These limits are rated in the form shown in the

lower graph of Fig. 2.2: the limits of the additional error grow by the specified

amount for each 1 �C of temperature deviation.
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We provide examples of using this table in Sect. 4.6 for a measurement under

reference temperature conditions and in Sect. 4.7 for a measurement under rated

conditions.

The above excerpts of instrument specifications show the importance of under-

standing conventions used by the manufacturer of the instrument in specifying the

instrument accuracy in its certificate. This is especially true if the manufacturer

does not follow recommendations for rating the accuracy of instruments that have

been issued by organizations such as OIML.

Rating of errors predetermines the properties of measuring instruments and is

closely related with the concept of accuracy classes of measuring instruments. The

purpose of this concept is the unification of the accuracy requirements of measuring

instruments, the methods for determining them, and the accuracy-related notation in

general, which is certainly useful to both the manufacturers of measuring instru-

ments and to users. Indeed, such unification makes it possible to limit, without

harming the manufacturers or the users, the list of instruments, and it makes it easier

to use and check the instruments. We shall now discuss this concept in greater

detail.

Accuracy classes were initially introduced for indicating electric measuring

instruments [8]. Later this concept was also extended to all other types of measuring

instruments [9]. In [1], the following definition is given for the term accuracy class:

The accuracy class is a class of measuring instruments or measuring systems that

meet certain stated metrological requirements intended to keep instrumental errors

or uncertainties within specified limits under specified operating conditions.

Unfortunately, this definition does not entirely reflect the meaning of this term.

Including measurement systems into the definition is incorrect because systems are

usually unique and thus are not divided into classes. Further, instrumental errors

and uncertainties are properties of measurements – not instruments – and hence

should not be used to define instrument classes. A better definition is given in the

previous edition of VIM: The accuracy class is a class of measuring instruments

that meets certain metrological requirements that are intended to keep errors within

specified limits.

Every accuracy class has conventional notation, established by agreement – the

class index – that is presented in [8, 9]. On the whole, the accuracy class is a

generalized characteristic that determines the limits for all errors and all other

characteristics of measuring instruments that affect the accuracy of measurements

performed with their help.

For measuring instruments whose permissible limits of intrinsic error are

expressed in the form of relative or fiducial errors, the following series of numbers,

which determine the limits of permissible intrinsic errors and are used for denoting

the accuracy classes, was established in [9]:

1; 1:5; 1:6; 2; 2:5; 3; 4; 5; and6ð Þ � 10n,

where n ¼ +1, 0, �1, �2,. . .; the numbers 1.6 and 3 can be used, but are not

recommended. For any one value of n, not more than five numbers of this series
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(i.e., no more than five accuracy classes) are allowed. The limit of permissible

intrinsic error for each type of measuring instrument is set equal to one number in

the indicated series.

Table 2.1 gives examples of the adopted designations of accuracy classes of

these measuring instruments.

In those cases when the limits of permissible errors are expressed in the form of

absolute errors, the accuracy classes are designated by Latin capital letters or roman

numerals. For example, [41] gives the accuracy classes of block gauges as Class X,

Y, and Z. Gauges of Class X are the most accurate; gauges of Class Y are less

accurate than Class X, and gauges of Class Z are the least accurate.

If (2.3) is used to determine the limit of permissible error, then both numbers

c and d are introduced into the designation of the accuracy class. These numbers are

selected from the series presented above, and in calculating the limits of permissible

error for a specific value of x, the result is rounded so that it would be expressed by
not more than two significant digits.

In conclusion, we shall formulate the basic rules for rating errors of measuring

instruments:

1. All properties of a measuring instrument that affect the accuracy of the results of

measurements must be rated.

2. Every property that is to be rated should be rated separately.

3. Rating methods must make it possible to check experimentally, and as simply as

possible, how well each individual measuring instrument corresponds to the

established requirements.

Sometimes, exceptions must be made to these rules. In particular, an exception is

necessary for strip strain gauges that can be glued on an object only once. Since

these strain gauges can be applied only once, the gauges that are checked can no

longer be used for measurements, whereas those that are used for measurements

cannot be checked or calibrated.

Table 2.1 Designations of accuracy classes

Form of the expression for the error

Limit of permissible error

(examples)

Designation of the

accuracy class

(for the given example)

Fiducial error, if the fiducial value

is expressed in units of the

measurand

γ ¼ �1.5% 1.5

Fiducial error, if the fiducial value

set equal to the scale length

γ ¼ �0.5% 0.5

Relative error, constant δ ¼ �0.5% 0.5

Relative error, increasing as the

measurand decreases
δ ¼ � 0:02þ 0:01 xe

x � 1
� �� 	

% 0.02/0.01
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In this case, it is necessary to resort to regulation of the properties of a collection
of strain gauges, such as, for example, the standard deviation of the sensitivity and

mathematical expectation of the sensitivity. The sensitivity of a particular strain

gauge, which is essentially not a random quantity in the separate device, is a

random quantity in a collection of strain gauges. Since we cannot check all the

gauges, a random sample, representing a prescribed p percent of the entire collec-

tion (which could be, e.g., all gauges produced in a given year), is checked. Once

the sensitivity of every selected gauge has been determined, it is possible to

construct a statistical tolerance interval, i.e., the interval into which the sensitivity

of any random sample of p percent of the entire collection of strain gauges will fall
with a chosen probability α. As α 6¼ 1 and p 6¼ 1, there is a probability that the

sensitivity of any given strain gauge falls outside these tolerance limits. For this

reason, the user must take special measures that address such a case. In particular,

several strain gauges, rather than one, should be used.

2.4 Dynamic Characteristics of Measuring Instruments

The dynamic characteristics of measuring instruments reflect the relation between

the change in the output signal and an action that produces this change. The most

important such action is a change in the input signal. In this case, the dynamic

characteristic is called the dynamic characteristic for the input signal. Dynamic

characteristics for various influence quantities and for a load (for measuring

instruments whose output signal is an electric current or voltage) are also studied.

Complete and partial dynamic characteristics are distinguished [28].

The complete dynamic characteristics determine uniquely the change in time of

the output signal caused by a change in the input signal or by other action.

Examples of such characteristics include a differential equation, transfer function,

amplitude-and phase-frequency response, and the transient response. These char-

acteristics are essentially equivalent, but the differential equation is the basic

characteristic from which the other characteristics are derived.

A partial dynamic characteristic is a parameter of the full dynamic characteristic

(introduced shortly) or the response time of the instrument. Examples are the

response time of the indications of an instrument and the transmission band of a

measuring amplifier.

Measuring instruments1 can most often be regarded as inertial systems of first or

second order. If x(t) is the signal at the input of a measuring instrument and y(t) is
the corresponding signal at the output, then the relation between them can be

expressed with the help of first-order (2.4) or second-order (2.5) differential

1The rest of this section requires familiarity with control theory. The reader can skip this portion

without affecting the understanding of the rest of the book.
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equations , respectively, which reflect the dynamic properties of the measuring

instrument:

Ty0 tð Þ þ y tð Þ ¼ Kx tð Þ, ð2:4Þ

1

ω2
0

y00 tð Þ þ 2β

ω0

y0 tð Þ þ y tð Þ ¼ Kx tð Þ: ð2:5Þ

The parameters of these equations have specific names: T is the time constant of

a first-order device, K is the transduction coefficient in the static state, ωo is the

angular frequency of free oscillations, and β is the damping ratio. An example of a

real instrument whose properties are specified by the second-order differential

equation is a moving-coil galvanometer. In this instrument type, ωo¼ 2π/To,

where To is the period of free oscillations (the reverse of the natural frequency)

and β is the damping ratio, which determines how rapidly the oscillations of the

moving part of the galvanometer will subside.

Equations 2.4 and 2.5 reflect the properties of real devices, and for this reason, they

have zero initial conditions: for t �0, x(t) ¼ 0 and y(t) ¼ 0, y0(t) ¼ 0 and y00(t) ¼ 0.

To obtain transfer functions from differential equations, it is first necessary to

move from signals in the time domain to their Laplace transforms, and then to

obtain the ratio of the transforms. Thus,

ℒ x tð Þ½ � ¼ x sð Þ ℒ y tð Þ½ � ¼ y sð Þ,
ℒ y0 tð Þ½ � ¼ sy sð Þ ℒ y00 tð Þ½ � ¼ s2y sð Þ,

where s is the Laplace operator.
For the first-order system, in accordance to (2.4), we obtain

W sð Þ ¼ y sð Þ
x sð Þ ¼

K

1þ sT
,

and for the second-order system, from (2.5), we obtain

W sð Þ ¼ y sð Þ
x sð Þ ¼

K

1=ω2
0

� �
s2 þ 2β=ω0ð Þsþ 1

: ð2:6Þ

Let us consider the second-order equation in more detail. If in the transfer

function the operator s is replaced by the complex frequency jω (s ¼ jω), then we

obtain the complex frequency response. We shall now study the relation between

the named characteristics for the example of a second-order system. From (2.5)

and (2.6), we obtain
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W jωð Þ ¼ K

1� ω2=ω2
0

� �þ j2βω=ω0

, ð2:7Þ

where ω ¼ 2πf is the running angular frequency.

The complex frequency response is often represented with its real and imaginary

parts,

W jωð Þ ¼ P ωð Þ þ jQ wð Þ:

In our case,

P ωð Þ ¼ K 1� ω2=ω2
0

� �� �
1� ω2=ω2

0

� �� �2 þ 4β2 ω2=ω2
0

� � ,
Q ωð Þ ¼ 2β ω=ω0ð ÞK

1� ω2=ω2
0

� �� �2 þ 4β2 ω2=ω2
0

� � :
The complex frequency response can also be represented in the form

W jωð Þ ¼ A ωð Þejφ ωð Þ,

where A(ω) is the amplitude-frequency response and φ(ω) is the frequency

response of phase. In the case at hand,

A ωð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 ωð Þ þ Q2 ωð Þ

q
¼ Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ω2=ω2
0

� �� �2 þ 4β2 ω2=ω2
0

� �q
φ ωð Þ ¼ arctan

Q ωð Þ
P ωð Þ ¼ �arctan

2β ω=ω0ð Þ
1� ω2=ω2

0

� � :
ð2:8Þ

Equation (2.8) has a well-known graphical interpretation using the notion of

transient response. The transient response is the function h(t) representing the

output signal produced by a unit step function 1(t) at the input. (The unit step

function, which we denote 1(t), is a function whose value is 0 for t < 0 and 1 for

t	 0.) As the input is not periodic, h(t) is calculated with (2.4) or (2.5). Omitting the

technical but, unfortunately, complicated calculations, we arrive at the final form of

the transient response of the instrument under study:

h tð Þ ¼
1� e�βτ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� β2
p sin τ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

q
þ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� β2

p
β

 !
if β < 1,

1� e�τ τ þ 1ð Þ if β ¼ 1,

1� e�βτa
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

β2 � 1
p sinh τ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � 1

q
þ arctanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � 1

p
β

 !
if β > 1:

8>>>>>><
>>>>>>:
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(Note that the last case utilizes hyperbolic trigonometric functions.) In this

expression, τ ¼ ωot is normalized time, and the output signal is normalized to

make its steady-state value equal to unity, i.e., h(t) ¼ y(t)/K. Thus, the formulas

above and the corresponding graphs presented in Fig. 2.3 are universal in the sense

that they do not depend on the specific values of ωo and K.
It should be noted that some types of measuring instruments do not have

dynamic characteristics at all; these include measures of length, weights , vernier

calipers, and so on. Some measuring instruments, such as measuring capacitors

(measures of capacitance), do not have an independent dynamic characteristic by

themselves. But when they are connected into an electric circuit, which always has

some resistance and sometimes an inductance, the circuit always acquires, together

with a capacitance, definite dynamic properties.

Measuring instruments are diverse. Occasionally, to describe adequately their

dynamic properties, it is necessary to resort to nonlinear equations or equations with

distributed parameters. However, complicated equations are used rarely, and it is

not an accident. After all, measuring instruments are created specially to perform

measurements, and their dynamic properties are made to guarantee convenience of

use. For example, in designing a recording instrument, the transient response is

made to be short, approaching the steady state level monotonically or oscillating

insignificantly. In addition, the scale of the recording instrument is typically made

to be linear. But when these requirements are met, the dynamic properties of the

instrument can be described by one characteristic corresponding to a linear differ-

ential equation of order no higher than second.

Rating of the dynamic characteristics of measuring instruments is performed in

two stages. First, an appropriate dynamic characteristic to be rated must be chosen,

and second, the nominal dynamic characteristic and the permissible deviations from

it must be established.

For recording instruments and universal measuring transducers, a complete

dynamic characteristic, such as transient response, must be rated: Without having

the complete dynamic characteristic, a user cannot effectively use these

instruments.

0 t

1

b< 1

b>1

b= 1

h(t)

Fig. 2.3 The transient response of an instrument described by a second-order differential equa-

tion; β is the damping ratio
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For indicating instruments, it is sufficient to rate the response time. In contrast to

the complete characteristics, this characteristic is a partial dynamic characteristic.

The dynamic error is another form of a partial dynamic characteristic. Rating the

limits of a permissible dynamic error is convenient for the measuring instruments

employed, but it is justified only when the shape of the input signals does not

change much.

For measuring instruments described by linear first- and second-order differen-

tial equations, the coefficients of all terms in the equations can be rated. In the

simplest cases, the time constant is rated in the case of a first-order differential

equation, and the natural frequency and the damping ratio of the oscillations are

standardized in the case of a second-order differential equation.

When imposing requirements on the properties of measuring instruments, it is

always necessary to keep in mind how compliance will be checked. For dynamic

characteristics, the basic difficulties have to do with creating test signals of

predetermined form (with sufficient accuracy), or with recording the input signal

with a dynamically more accurate measuring instrument than the measuring instru-

ment whose dynamic properties are being checked.

If adequately accurate test signals can be created and used to obtain the dynamic

characteristic, i.e., a transient response as a response of a unit step function signal

and frequency response as a response of a sinusoidal test signal, then in principle

the instrument can be checked without any difficulties.

But sometimes the problem must be solved with a test signal that does not

correspond to the signal intended for determining the complete dynamic character-

istic. For example, one would think that tracing of signals at the input and output of

a measuring instrument could solve the problem. In this case, however, special

difficulties arise: small errors in recording the test signal and reading the values of

the input and output signals often render the dynamic characteristic obtained from

them physically meaningless and not corresponding to the dynamic properties of

the measuring instrument. Such an unexpected effect occurs because the problem at

hand is a so-called improperly posed problem. A great deal of attention is currently

being devoted to such problems in mathematics, automatics, geophysics, and other

disciplines. Improperly posed problems are solved by the methods of regulariza-

tion, which essentially consist of the fact that the necessary degree of filtering

(smoothing) of the obtained solution is determined based on a priori information

about the true solution. Improperly posed problems in dynamics in application to

measurement engineering are reviewed in [28, 51].

A separate problem, which is important for some fields of measurement, is the

determination of the dynamic properties of measuring instruments directly when

the instruments are being used. An especially important question here is the

question of the effect of random noise on the accuracy with which the dynamic

characteristics are determined.

This section, then, has been a brief review of the basic aspects of the problem of

rating and determining the dynamic properties of measuring instruments.
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2.5 Calibration and Verification of Measuring Instruments

Every country wishes to have trustworthy measurements. One of the most impor-

tant arrangements to achieve this goal is to have a system for keeping errors of all

measuring instruments within permissible limits. Therefore, all measuring instru-

ments in use are periodically checked. In the process, working standards are used

either to verify that the errors of the measuring instruments being checked do not

exceed their limits or to recalibrate the measuring instruments.

The general term for the above procedures is calibration. But one should

distinguish between a real calibration and a simplified calibration.

Real calibration results in the determination of a relation between the indications

of a measuring instrument and the corresponding values of a working measurement

standard. This relation can be expressed in the form of a table, a graph, or a

function. It can also be expressed in the form of the table of corrections to the

indications of the measuring instrument. In any case, as the result of real calibra-

tion, the indications of the working standard are mapped to the instrument being

calibrated. Consequently, the accuracy of the instrument becomes close to the

accuracy of the working standard.

Real calibration can be expensive, complex, and time-consuming.

Therefore, calibration is mostly used for precise and complex instruments. For

other instruments, the simplified calibration suffices.

The simplified calibration (also called verification) simply reveals whether the

errors of a measuring instrument exceed their specified limits. Essentially, verifi-

cation is a specific case of quality control, much like quality control in manufactur-

ing. And because it is quality control, verification results do have some rejects.

Further, verification can take the form of a complete or element-wise check. A

complete check determines the error of the measuring instrument as a whole. In the

case of an element-wise check, the errors of the individual elements comprising the

measuring instrument are determined. The overall error of the measuring instru-

ment is then calculated using methods that were examined in [44].

A complete check is always preferable as it gives the most reliable result. In

some cases, however, a complete check is impossible to perform and one must

resort to an element-wise check. For example, element-wise calibration is often

employed to check measuring systems when the entire system cannot be delivered

to a calibration laboratory and the laboratory does not have necessary working

standards that could be transported to the system’s site.
The units of a system are verified by standard methods. When the system is

verified, however, in addition to checking the units, it is also necessary to check the

serviceability of the system as a whole. The methods for solving this problem

depend on the arrangement of the system, and it is hardly possible to make general

recommendations here. As an example, the following procedure can be used for a

system with a temperature-measuring channel comprising a platinum–rhodium–

platinum thermocouple as the primary measuring transducer and a voltmeter.
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After all units of the system have been checked, we note the indication of the

instrument at the output of the system. Assume that the indication is +470 �C. For
the most common types of thermocouples, there exists known standardized transfer

function, while specific brands of thermocouple products have rated limits of

deviation from the standardized function.

From the standardized transfer function of the primary measuring transducer, we

obtain the output signal that should be observed for the given value of the measured

quantity. For our thermocouple, when the temperature of 470 �C is measured, the

EMF at the output of the thermocouple must be equal to 3.916 mV. Next,

disconnecting the wires from the thermocouple and connecting them to the voltage

exactly equal to the nominal output signal of the thermocouple, we once again note

the indication of the voltmeter. If it remains the same or has changed within the

limits of permissible error of the thermocouple and voltmeter, then the system is

serviceable.

Of course, this method of checking will miss the case in which the errors of both

the thermocouple and voltmeter are greater than their respective permissible errors

but these errors mutually cancel. However, this result can happen only rarely.

Moreover, such a combination of errors is in reality permissible for the system.

Let us now consider complete check verification in more detail. Here, the values

represented by working standards are taken as true values, and the instrument

indication is compared to these values. In fact, a working standard has errors.

Therefore, some fraction of serviceable instruments, i.e., instruments whose errors

do not exceed the limits established for them, is rejected in a verification – false

rejection – and some fraction of instruments that are in reality unserviceable are

accepted – false retention. This situation is typical for monitoring production

quality, and just as with quality control, a probabilistic analysis of the procedure

is useful to understand the extent of a potential issue.

Without loss of generality, suppose for simplicity that the complete check

verification is performed by measuring the same quantity simultaneously using a

working standard (which in this case is an accurate measuring instrument) and the

instrument being checked. Accordingly, we have

A ¼ x� ζ ¼ y� γ,

where A is the true value of the quantity, x and y are the indications of the

instrument and working standard, and ζ and γ are the errors of the instrument and

working standard. It follows from the above equation that the difference z between
the indications of the instrument and the standard is equal to the difference between

their errors,

z ¼ x� y ¼ ζ � γ: ð2:9Þ

We are required to show that jζj � Δ, where Δ is the limit of permissible error of

the instrument. From the experimental data (i.e., from the indications), we can find

z; because γ is supposed to be much smaller than ζ, we shall assume that if jzj � Δ,
then the checked instrument is serviceable, and if jzj > Δ, then it is not serviceable.
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To perform probabilistic analysis of when the above assumption is wrong, it is

necessary to know the probability distribution for the errors of the checked and

standard instruments. Let us suppose we know these distributions. The probability

of a false rejection is

p1 ¼ P ζ � γj j > Δ ζj j�Δ
� �

,

and the probability of a false retention is

p2 ¼ P ζ � γj j � Δ ζj j>Δ
� �

:

A false rejection is obtained for |ζ| � Δ when |ζ – γ| > Δ, i.e.,

ζ � γ > Δ, ζ � γ < �Δ,

or

γ < ζ � Δ, γ > ζ þ Δ:

If the probability density functions of the errors of the instrument and working

standard are f(ζ) and φ(γ), respectively, then

p1 ¼
ðΔ
�Δ

f ζð Þ
ðζ�Δ

�1
φ γð Þdγ þ

ðþ1

ζþΔ

φ γð Þdγ

0
B@

1
CAdζ:

A false retention is possible when jζj > Δ, i.e., when ζ > +Δ and ζ < �Δ.
In this case, jζ – γj � Δ, i.e.,

ζ � γ � Δ, ζ � γ 	 �Δ,

or

ζ � Δ � γ � ζ þ Δ:

Therefore,

p2 ¼
ð�Δ

�1
f ζð Þ

ðζþΔ

ζ�Δ

φ γð Þdγ

0
B@

1
CAdζ þ

ðþ1

Δ

f ζð Þ
ðζþΔ

ζ�Δ

φ γð Þdγ

0
B@

1
CAdζ:

Thus, if the probability densities are known, then the corresponding values of p1
and p2 can be calculated; one can furthermore understand how these probabilities
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depend on the difference between the limits of permissible errors of the instrument

being checked and the working standard.

If, in addition, cost considerations are added, then one would think about the

problem of choosing the accuracy of the working standard that would be suitable

for checking a given instrument. In reality, when the accuracy of working standards

is increased, the cost of verification increases also. A rejection also has a certain

cost. Therefore, by varying the limits of error of working standards, it is possible to

find the minimum losses, and this accuracy is regarded as optimal.

Mathematical derivations aside, it is unfortunately difficult to estimate the losses

from the use of instruments whose errors exceed the established limits, when these

instruments pass the verification. In general, it is hard to express in monetary terms

the often-significant economic effect of increasing measurement accuracy. For this

reason, it is only in exceptional cases that economic criteria can be used to justify

the choice of the relation between the limits of permissible error of the working

standard and the checked instruments.

In addition, as has already been pointed out above, the fundamental problem is to

determine the probability distribution of the errors of the instruments and standards.

The results, presented in Sect. 2.7 below, of the statistical analysis of data from the

verification of a series of instruments showed that the sampling data of the instru-

ment errors are statistically unstable. Therefore, the distribution function of the

instrument errors cannot be found from these data. However, there are no other

data; it simply cannot be obtained anywhere.

Thus, it is impossible to find a sufficiently convincing method for choosing the

relation between the permissible errors of the working standard and the instrument

to be checked. For this reason, in practice, this problem is solved by a volitional

method, by standardizing the relation between the limits of permissible errors. In

practice, the calibration laboratories accept that the accuracy of a working standard

must be four times higher than the accuracy of the checked instrument [18]. This

means that some instruments that pass the verification may have errors exceeding

by 25% the permissible level. Yet more aggressive ratios between the limits of

permissible errors of the standard and the instrument, such as 1:10, are usually

technically difficult to achieve.

It turns out, however, that a change in the verification process can eliminate this

problem. Let us consider this method.

By definition, a serviceable instrument is an instrument for which |x – A|�Δ and

an instrument is unserviceable if |x�A| > Δ. Analogous inequalities are also valid

for a working standard: |y�A|� Δs, if the instrument is serviceable and |y�A|> Δs

if it is not serviceable.

For x > A, for a serviceable instrument, x�A � Δ. But y – Δs � A � y + Δs. For

this reason, replacing A by y�Δs, we obtain for a serviceable instrument,

x� y � Δ� Δs: ð2:10Þ

Analogously, for x < A, for a serviceable instrument,

x� y 	 � Δ� Δsð Þ: ð2:11Þ

2.5 Calibration and Verification of Measuring Instruments 57



Repeating the calculations for an unserviceable instrument, it is not difficult to

derive the corresponding inequalities:

x� y > Δþ Δs: ð2:12Þ

x� y < � Δþ Δsð Þ: ð2:13Þ

Figure 2.4 graphically depicts the foregoing relations. Let the scale of the

checked instrument be the abscissa axis. On the ordinate axis, we mark the points

+ Δ and –Δ, and around each of these points, we mark the points displaced from

them by +Δs and –Δs. If Δ and Δs remain the same for the entire scale of the

instrument, then we draw from the marked points on the ordinate axis straight lines

parallel to the abscissa axis.

Region I corresponds to inequalities (2.10) and (2.11). The instruments for

which the differences x – y fall within this region are definitely serviceable

irrespective of the ratio of the errors of the standard and checked instruments.

Inequalities (2.12) and (2.13) correspond to regions II and III. The instruments for

which the differences x�y fall within the regions II or III are definitely

unserviceable.

Some instruments can have errors such that

Δ� Δs < x� yj j < Δþ Δs:

IV

II

I

I

0
y

III

V–D

+D2D
s

2D
s

zFig. 2.4 Zones of definite

serviceability (I), definite

rejection (II and III), and

uncertainty (IV and V)

during verification of

measuring instruments with

the limit of permissible

error Δ based on a working

standard whose limit of

permissible error is Δs,
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These errors correspond to regions IV and V in Fig. 2.4. Such instruments

essentially cannot be either rejected or judged to be serviceable, because in reality,

they include both serviceable and unserviceable instruments. If they are assumed to

pass verification, then the user will get some unserviceable instruments. This can

harm the user. If, however, all such doubtful instruments are rejected, then in

reality, some serviceable instruments will be rejected.

For instruments that are doubtful when they are manufactured or when they are

checked after servicing, it is best that they be judged unserviceable. This tactic is

helpful for the users and forces the manufacturers to employ more accurate stan-

dards to minimize the rejects. But this approach is not always practical. When the

percentage of doubtful instruments is significant and the instruments are expensive

and difficult to fix, it is best to check them again. Here, several variants are possible.

One variant is to recheck the doubtful instruments with the help of more accurate

working standards. When this is impossible, the verification can also be performed

using other samples of working standards that are rated at the same accuracy as

those used in the initial check. As different working standards have somewhat

different errors, the results of comparing the instruments with them will be some-

what different. Thus, some doubtful instruments will move to the regions in Fig. 2.4

that allow definitive verification outcomes.

Ideally, the best way to deal with the doubtful instruments is to increase the

accuracy of the working standard. However, the question then arises as to how

much the accuracy of the standard instruments should be increased. If there are no

technical limitations, then the accuracy of the working standard can be increased

until the instrument can be judged as being either serviceable or unserviceable.

However, the limits of permissible error of the standard instrument rarely need to be

decreased beyond about ten times less than the limit of permissible error of the

instrument: The errors of instruments are usually not stable enough to be estimated

with such high accuracy.

Rejection of instruments under verification is eliminated completely if instead of

verification the instruments are recalibrated. The accuracy of the newly calibrated

instrument can be almost equal to the accuracy of the working standard, which

makes this method extremely attractive. The drawback of this method is that the

result of a calibration is most often presented in the form of a table of corrections to

the indications of the instrument, which is inconvenient for using the instrument.

2.6 Designing a Calibration Scheme

Calibration is a metrological operation whose goal is to transfer decreed units of

quantities from a primary measurement standard to a measuring instrument. To

protect the primary standards and to support calibration of large numbers of

instruments, this transfer is performed indirectly, with the help of intermediate

standards. In fact, intermediate standards may themselves be calibrated against

primary standards not directly but through other intermediary standards. Thus, the
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sizes of units reproduced by primary standards are transferred to intermediary

standards and through them to measuring instruments.

The hierarchical relations of standards with each other and with measuring

instruments that are formed to support calibration can be represented as a calibra-
tion scheme. Note that the discussion in this section also fully applies to verification
and verification schemes, which are the analog of calibration schemes in the context

of verification. The standards at the bottom of the calibration schemes, which are

used to calibrate measuring instruments, are called working standards; the inter-

mediate standards, situated between the primary and working standards in the

scheme, are called secondary standards. For the purpose of the discussion in this

section, we will refer to secondary standards, working standards, and measuring

instruments together as devices.
Measurement standards belonging to a calibration scheme are divided into ranks.

The rank of a standard indicates the number of steps included in transferring the size

of a unit from the primary measurement standard to a given standard, i.e., the

number of standards on the path from this standard to the primary standard in the

calibration scheme.

One of the most difficult questions arising in the construction of calibration

schemes is the question of how many ranks of standards should be provided. Three

main factors play a role in deciding this question: accuracy, cost, and capacity. As

the number of ranks increases, the error with which the size of a unit is transferred

to the measuring instrument increases, because some accuracy is lost at every

calibration step. For this reason, to obtain high accuracy, the number of ranks of

standards should be reduced to a minimum. On the other hand, the more the number

of ranks the greater the overall capacity of the scheme in terms of the number of

measuring instruments it can calibrate. In addition, the higher the accuracy of

standards, the more expensive they are, and the more expensive they are to use.

Thus, from the cost perspective, it is desirable to reduce the number of high-

accuracy standards by increasing the number of ranks in the scheme.

One would think that it should be possible to find an economically optimal

number of ranks of the calibration scheme. Such optimization, however, would

require information about the dependence between the cost of the equipment and

labor and the accuracy of calibration. This information is usually not available. For

this reason, in practice, the optimal calibration schemes cannot be determined, and

calibration schemes are commonly constructed in an ad hoc manner. However, a

method proposed below allows designing a calibration scheme in a methodical way

at least to satisfy its capacity requirements with the minimum number of ranks, and

hence with the highest possible calibration accuracy. Accuracy constrains permit-

ting; one can always then increase the number of ranks in the resulting scheme to

reflect specific economic considerations.

Figure 2.5 shows a typical structure of a calibration scheme. In the simplest case,

when all measuring instruments in the calibration scheme have similar accuracy, a

calibration scheme can be represented as a chain; for example, the entire calibration

scheme on Fig. 2.5 would consist of just branch 1. The chain has the primary

standard at the root, then certain number of secondary standards of the rank 1 below
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that are periodically calibrated against the primary standard, followed by a larger

number of secondary standards of rank 2, each periodically calibrated against one

of the standards of rank1, and so on until the measuring instruments at the leafs of

the hierarchy.

However, some measuring instruments may be more accurate than others and

cannot be calibrated by working standards at the bottom of the chain. These

instruments must be “grafted” to the middle of the first branch, at the point where

they can be calibrated by a standard of sufficient accuracy. These instruments form

branch 2 on Fig. 2.5. The standard at the branching point in the calibration scheme

acts as a secondary standard for one branch and a working standard for another.

Finally, there may be instruments of significantly different type than those in

other branches, whose calibration requires some auxiliary devices between them

and their working standards (such as scaling transducers in front of high-accuracy

voltmeter for high voltage). The auxiliary devices introduce accuracy loss in

calibration, and therefore they require the working standard to have a higher

accuracy to account for this loss. In other words, if normally the accuracy ratio of

the measuring instrument to working standard must be at most 1:4, (see Sect. 2.5 for

the discussion on this accuracy relationship), this ratio must be lower (e.g., 1:10) for

these instruments. To avoid the confusion, we place these instruments, along with

the auxiliary devices, into distinct branches in the calibration scheme (such as

branch 3 in Fig. 2.5). Such a branch can be grafted to another branch at an

intermediary standard such that the ratio of its accuracy to the accuracy of the

instruments corresponds to the requirement specific to the instruments’ branch.
Secondary standards are usually calibrated with the highest possible accuracy, so

that they can be also used as working standards for more accurate types of

measuring instruments if needed. However, there is inevitable loss of accuracy

with each calibration step. Consequently, different types of secondary standards are

Primary Standard

First rank

Lowest rank

jth rank

Measuring
instruments

Branch 1 Branch 2 Branch 3

Fig. 2.5 A typical

calibration scheme structure
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typically used for different ranks, and calibration at different ranks has different

performance characteristics, such as time required to calibrate one device or time to

prepare a standard for calibration (see below). At the same time, the types of

devices that can be used at a given rank are usually known in advance, and it is

only necessary to decide how many of them to procure and how to arrange them in

an appropriate calibration scheme. Therefore, one can assume that the calibration

frequency of secondary and working standards of a given rank, and how long each

calibration takes, is known. Furthermore, we assume that the calibration frequency

and time required to calibrate are known for all measuring instruments. Finally, the

keepers of primary standards typically impose their own usage limits (e.g., they

limit the number of calibrations that can be performed against the primary standard

in 1 year). We assume that these limits are known as well.

We begin by considering the branch leading to the least accurate instruments as

if it were the only branch in the scheme (e.g., branch 1 in Fig. 2.5). We call this

branch a stem.
In such a single-branch calibration scheme, if the jth rank has Nj standards, then

the maximum number of devices in the rank ( j + 1) that can be supported will be

Njþ1 ¼ Nj

ηjTjþ1

tjþ1

ð2:14Þ

where Tj+1 is the time interval between calibrations of a device of rank j + 1, tj+1 is

the time necessary to calibrate one device in the rank ( j + 1), and ηj is the utilization
factor of the standards of rank j, considered below. Note that at the first calibration

step, the number of secondary standards of rank 1 is determined as the minimum

between the number given by (2.14) and the restrictions imposed by the keepers of

the primary standards as mentioned earlier.

The utilization factor nj reflects the fraction of time a corresponding standard can

be used for calibration. In particular, nj reflects the fact that the standard may only

be used during the work hours; any losses of work time must also be taken into

account. For example, if some apparatus is used 8 h per day and 1 h is required for

preparation and termination, and preventative maintenance, servicing, etc. reduce

the effective working time by 10%, then

η ¼ 8� 1

24
0:9 ¼ 0:3375:

Applying (2.14) to every step of the chain, we determine the capacity of the

stem, which is the maximum number of standards of each rank and ultimately the

number of measuring instruments N maxð Þ
m that can be supported by this calibration

chain:

N maxð Þ
m ¼ N

maxð Þ
0 N

maxð Þ
1 . . .N

maxð Þ
m�1 ¼

Ym�1

j¼0

ηj
Tjþ1

tjþ1

, ð2:15Þ
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where m is the total number of steps in transferring the size of a unit from the

primary standard to the measuring instrument, inclusively and N
maxð Þ
j is the

maximum number of devices at each rank that a “full” calibration scheme can have.

On the other hand, to design a calibration chain, that is, to decide on the number

of ranks in the calibration chain that can support a given number Ninstr of instru-

ments, one can use the following procedure.

To protect the primary standards, they are never used to calibrate the working

standards directly. Thus, at least one rank of secondary standards is always needed.

We compute the maximum number of the secondary standards of rank 1 N1, which

could be calibrated against the primary standard in our calibration chain, using

(2.14). Next, we check using (2.14) again, if N1 secondary standards can support

calibration of Ninstr instruments. If not, we know that we need more ranks in the

calibration scheme.

In the latter case, we first check if the accuracy of the secondary standards of the

new rank will still be sufficient to calibrate the instruments, given the instruments’
accuracy. If not, we have to assume that the calibration of the given number of

instruments is impossible with the required calibration frequency (this outcome is

extremely rare in practice). Otherwise, we apply (2.14) again to compute the

maximum number of secondary standards of rank 2, N2, which can be supported

by N1 standards of rank 1. [Note that we apply (2.14) twice because the calibration

time of a measuring instrument and secondary standard can be – and typically is –

different]. We continue in this manner until we find the smallest number of ranks of

secondary standards that can support Ninstr measuring instruments.

We should mention that, after each iteration of the above algorithm, if the

resulting capacity of the calibration scheme is close to required, an alternative to

increasing the number of ranks is to raise the efficiency of calibration. This could be

achieved by either increasing standard utilization ηj or by reducing the calibration

time tj. If the desired number of supported instruments cannot be achieved by

increasing calibration efficiency, we proceed to increment the number of ranks.

Once we have determined the required number of ranks in the scheme, we

compute the actual necessary number of standards at each rank in the bottom-up

manner, starting from Ninstr and computing the number of the next rank up by a

resolving (2.14) relative to Nj:

Nj ¼ Njþ1

tjþ1

ηjTjþ1

: ð2:16Þ

Once we are done with the stem of the calibration scheme, we can add remaining

branches one at a time as follows. Let jattach be the rank of the lowest-accuracy

secondary standards on the stem suitable to calibrate the instruments of the new

branch, and N
maxð Þ
jattachþ1 be the maximum number of devices that could be serviced by

standards at this rank according to (2.15). Then,N slackð Þ ¼ N
maxð Þ
jattachþ1 � Njattachþ1 gives

the number of devices that could be added.
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If the number of instruments at the new branch according to (2.16) does not

exceed N(slack), we attach the new branch at rank jattach, add the necessary number of

standards at rank jattach, and, moving from this rank up one step at a time, add the

necessary number of standards at each rank (we are guaranteed that there will be

enough capacity at each higher rank because the total number of devices at rank

jattach+1 does not exceed N
maxð Þ
jattachþ1).

Otherwise, that is, if the existing slack is insufficient, we must increase the

capacity of the stem by adding an extra rank to add capacity. Accordingly, we

recompute the number of devices at each rank of the stem in the bottom-up manner

using (2.16), for the new number of ranks. After that, we repeat an attempt to attach

the new branch from scratch.

If at some point we are unable to increment the number of ranks of the stem

because the standard at the newly added rank would have insufficient accuracy, we

would have to conclude that the given set of instruments is impossible to calibrate

with the required accuracy using the available types of standards and the limitations

on the use of the primary standard. However, given that the capacity of calibration

schemes grows exponentially with the number of ranks, this outcome is practically

impossible.

As the number of ranks increases, the capacity of the calibration network,

represented by the checking scheme, increases rapidly. The calibration schemes

in practice have at most five of ranks of standards, even for fields of measurement

with large numbers of measuring instruments.

The relations presented above pertained to the simplest case, when at each step

of transfer of the size of the unit, the period of time between calibrations and the

calibration time were the same for all devices. In reality, these time intervals can be

different for different types of devices. Taking this into account makes the calcu-

lations more complicated, but it does not change their essence. We consider these

calculations next.

First, it is necessary to move from different time intervals between calibrations

of different types of devices to one virtual constant time interval Tvc and to find the
number of measuring instruments of each typeNvc

k that must be checked within this

period. This is done using the obvious formula:

Nvc
k ¼ Nk

Tvc

Tk
:

Next, it is necessary to find the average time t avj required to check one device for

each step of the checking scheme:

t avj ¼
Pn
k¼1

tkN
vc
k

Pn
k¼1

Nvc
k

ð2:17Þ
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Here n is the number of different types of devices at the j-th step of the checking

scheme.

We shall give a numerical example. Suppose it is required to organize a

calibration of instruments of types A and B and the following data are given:

1. Instruments of type A: NA ¼ 3 � 104; the time interval between calibrations

TA1 ¼ 1 year for NA1 ¼ 2.5 � 104 and TA2 ¼ 0.5 year for NA2 ¼ 5 � 103; the

calibration time tA ¼ 5 h.

2. Instruments of type B: NB ¼ 105; TB ¼ 1 year; the calibration time tB ¼ 2 h.

3. Primary measurement standard: Four comparisons per year are permitted, and

the utilization factor of the primary standard is ηo ¼ 0.20.

4. Secondary standards: the frequency of the calibration of secondary standards of

rank 1 is 2 years; i.e., T1 ¼ 2 years; the time to perform one calibration is 60 h,

and utilization factor η1¼ 0.25. For the devices of rank 2, T2¼ 2 years, t2¼ 40 h,

and η2 ¼ 0.25. The calibration parameters of higher-rank standards are the same

as those of the rank-2 standards.

The possible number of first-rank standards in this case is limited by the

restrictions on the primary standards use and can be found as

N
maxð Þ
1 ¼ N0fT1 ¼ 8

because No ¼ 1; f ¼ 4 is the maximum number of comparisons with a reference

standard per year, and T1 ¼ 2. Obviously, eight standards are not enough to check

130,000 measuring instruments. We shall now see how many ranks of standards

will be sufficient.

As the time between calibrations is different for different instruments, we pick

the illusory constant time interval Tvc ¼ 1 year and find the number of instruments

that must be checked within this time period. Conversion is necessary only for

instruments of type A with TA2 ¼ 0.5 years, since the calibration interval of the rest

of the instruments matches Tvc:

N vc
A2 ¼ NA2

Tvc

T2

¼ 5� 103 � 1

0:5
¼ 10� 103

Therefore, X
k¼A,B

N vc
k ¼ NAB ¼ NA1 þ N vc

A2 þ NB ¼ 135� 103

instruments must be calibrated within the time Tvc.
Different amounts of time are required to calibrate instruments of types A and

B. The average calibration time t avinstr of these working instruments, in accordance

with (2.17), is
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t avinstr ¼
NA1 þ Nvc

A2

� �
tA þ NBtB

NAB
¼ 35� 103 � 5þ 100� 103 � 2

135� 103
¼ 2:78h:

Now, using (2.14), we shall find the maximum number of second-rank standards:

N
maxð Þ
2 ¼ N1

η1T2

t2
¼ 8� 0:25� 2� 6� 103

40
¼ 600:

The maximum number of instruments that can be calibrated with the above

number of rank-2 secondary standards is

N
maxð Þ
instr ¼ N

maxð Þ
2

η2Tvc

tavinstr
¼ 600� 0:25� 365� 24

2:78
¼ 472661:

Here, Tvc¼ 365� 24¼ 8.76� 103 because 1 year¼ 365 days and η2 was calculated
for 24 h. The above number exceeds the total number of instruments NAB to be

calibrated; we thus conclude that two ranks are sufficient.

Next, we perform bottom-up calculations to find the necessary number of

standards at each rank. The number of rank-2 standards is

N2 ¼ NAB
tavinstr
η2Tvc

¼ 135� 103 � 2:78

0:25� 365� 24
¼ 171:

Similarly, one can check that all eight rank-1 secondary standards are needed,

thus concluding the design of this calibration scheme.

Calculations similar to those in the above example allow one to choose in a well-

grounded manner the structure of a calibration scheme and to estimate the required

number of secondary standards of each rank. Calibration schemes in practice

usually have extra capacity, which makes it possible to distribute secondary and

working standards to limit their transport, to maximize the efficiency of calibration.

2.7 Statistical Analysis of Measuring Instrument Errors

A general characteristic of the errors of the entire population of measuring instru-

ments of a specific type could be their distribution function. An important question

then is if it is possible to find this function from experimental data. The studies in

[47, 55] have addressed this question using the data provided by calibration

laboratories on instrument errors they observed during calibration. These data

thus reflected the sample of instruments that were calibrated; because it is impos-

sible to obtain the errors of all instruments of a given type that are in use, the use of

a sampling method is unavoidable.
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To establish a property of an entire group (general population) based on a

sample, the sample must be representative. Sample homogeneity is a necessary

indicator of representativeness. In the case of two samples, to be sure that the

samples are homogeneous, it is necessary to check the hypothesis H0: F1 ¼ F2,

where F1 and F2 are distribution functions corresponding, respectively, to the first

and second sample.

The results of a calibration, as is well known, depend not only on the error of the

measuring instrument being calibrated but also on the error of the standard. For this

reason, measuring instruments calibrated with not less than a fivefold margin of

accuracy (i.e., using a standard at least five times more accurate than the instru-

ment) were selected for analysis.

In addition, to ensure that the samples are independent, they were formed either

based on data provided by calibration laboratories in different regions of the former

USSR or, in the case of a single laboratory, on the data separated by a significant

time interval. The sample sizes were maintained approximately constant. Errors

exceeding twice the limit of permissible error were deemed outliers and eliminated

from the analysis.

The test of hypothesis H0 was performed using the Wilcoxon and Siegel-Tukey

criteria with a significance level q ¼ 0.05. The technique of applying these criteria

is described in Chap. 3. Table 2.2 shows the result of these tests obtained in the

study of [47]. The table includes two samples, obtained at different times, for each

Table 2.2 The homogeneity hypothesis testing for samples of six types of measuring instruments

Instrument type

Samples Result of hypothesis testing

Year

collected Size Tested point on scale Wilcoxon Siegel–Tukey

Э 59 Ammeter 1974 160 30-graduation mark + �
60-graduation mark 0 �

1976 160 80-graduation mark 0 �
100-graduation mark + +

Э 59 Voltmeter 1974 120 70-graduation mark � 0

1976 108 150-graduation mark + +

Д 566 Wattmeter 1974 86 70-graduation mark + +

1976 83 150-graduation mark + +

TH-7 Thermometer 1975 100 �C 0 �
150 �C � +

1976 200 �C + +

Standard spring

manometer

1973 250 9.81 kPa

1976 250 9.81 kPa + +

P331 resistance

measure

1970 400 10 kΩ 0 �
1975 400 100 kΩ 0 �

400 10 kΩ 0 �
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instrument type. Rejection of the hypothesis is indicated by a minus sign, and

acceptance is indicated by a plus sign. The symbol 0 means that a test based on the

given criterion was not performed.

The Wilcoxon and Siegel–Tukey criteria are substantially different: The former

is based on comparing averages, and the latter is based on comparing variances. For

this reason, it is not surprising that there are cases when the hypothesis H0 is

rejected according to one criterion but accepted according to the other. The

hypothesis of sample homogeneity must be rejected if even one of the criteria

rejects it.

Both samples of instruments of a given type were found to be homogeneous only

for the Д566 wattmeters and standard manometers. For other measuring instru-

ments, the compared samples were often found to be nonhomogeneous. It is

interesting that the samples can be homogeneous on one scale marker, and inho-

mogeneous on another (see Э59 voltmeters and ammeters). TH-7 thermometers

had homogeneous samples in one range of measurement and inhomogeneous

samples in a different range. The calculations were repeated for significance levels

of 0.01 and 0.1, but the results were generally the same in both cases.

The above experiment was formulated to check the stability of the distribution

functions of the errors, but because the instruments in the compared samples were

not always the same, the result obtained has a different but no less important

meaning: It indicates that the samples are inhomogeneous. It means that the

parameters of one sample are statistically not the same as these parameters of

another sample of the same type of measuring instruments.

Thus, the results obtained show that samples of measuring instruments are

frequently nonhomogeneous with respect to errors. For this reason, they cannot

be used to determine the distribution function of the errors of the corresponding

instruments.

This result is also confirmed by the study of [55], which compared samples

obtained from the data provided for Э59 ammeters by four calibration laboratories

in different regions of the former USSR. The number of all samples was equal to

150–160 instruments. The errors were recorded at the markers 30, 60, 80, and

100 of the scale. The samples were assigned the numbers 1, 2, 3, and 4, and the

hypotheses H0: F1 ¼ F2, F2 ¼ F3, F3 ¼ F4, and F4 ¼ F2 were checked (the pairs of

samples to compare were selected arbitrarily). The hypothesis testing was based on

the Wilcoxon criterion with q ¼ 0.05. The analysis showed that we can accept the

hypothesis H0: F1 ¼ F2 only, and only at the marker 100. In all other cases, the

hypothesis had to be rejected.

Thus, sampling does not permit finding the distribution function of the errors of

measuring instruments. Moreover, the fact that the sampling data are unstable could

mean that the distribution functions of the errors of the instruments change in time.

There are definite reasons for this supposition.

Suppose that the errors of a set of measuring instruments of some type, at the

moment they are manufactured, have a truncated normal distribution with zero

mean. For measures (measuring resistors, shunts, weights , etc.), a measure with a

too large positive error makes this measure impossible to repair (one could fix a
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weight whose mass exceeds the target by removing some material but one cannot

repair a weight whose mass is too low). Furthermore, as measures age, their errors

trend toward positive errors (e.g., weights lose some material due to polishing off

with use). This is taken into account when manufacturing measures. For example, if

in the process of manufacturing of a weight its mass is found to be even slightly less

than the nominal mass then the weight is discarded. As a result, the distribution of

the intrinsic errors of measures as they leave the factory is usually asymmetric.

Instrument errors change in the course of use. Usually the errors only increase. In

those cases in which, as in the case of weights, the direction of the change of the

errors is known beforehand and is taken into account during manufacturing, the

errors can at first decrease, but then they will still increase. Correspondingly,

changes in the instrument errors deform the distribution functions of the errors.

This process, however, does not occur only spontaneously. At the time of routine

checks, measuring instruments whose errors exceed the established limits are

discarded, which again affects the distribution function of the errors of the

remaining instruments.

The right-hand side of Fig. 2.6 shows the approximate qualitative picture of the

changes occurring in the probability distribution of errors of a batch of weights in

time. It shows the initial distribution of errors with all the errors being negative.

With time, as the measures wear off, their errors decrease, with some positive errors

starting to appear. As this trend continues, at some point some instruments start

being discarded (which is shown in the figure by a vertical cut-off line at +Δ error

limit). The process ultimately terminates when the measuring instruments under

study no longer exist: either their errors exceed the established limits or they are no

longer serviceable for other reasons.

The left-hand side of this figure shows an example of changes in error distribu-

tion in a batch of measuring instruments. In this example, the errors generally

increase in time but the change is biased toward positive errors. Again, at some

+D

0

–D +D–D

f (x) f (x)

x 0 x

t t

Fig. 2.6 Examples of possible changes in the probability densities of the errors of measuring

devices in time. The figure on the left shows an example of changes in error distribution of a batch

of measurement instruments; the figure on the right shows a possible change in error distribution of
a batch of weights
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point instruments start to be discarded, but most of the discarded instruments are

those with positive errors.

There are other evident reasons for this result. One reason is that the stock of

instruments of each type is not constant. On the one hand, new instruments that

have just been manufactured are added to the stock. On the other hand, in the

verification, some instruments are rejected, and some instruments are replaced. The

ratio of the numbers of old and new instruments is constantly changing. Another

reason is that groups of instruments are often used under different conditions, and

the conditions of use affect differently the rate at which the instrumental errors

change.

The temporal instability of measuring instruments raises the question of whether

the errors of measuring instruments are in general sufficiently stable so that a

collection of measuring instruments can be described by some distribution function.

At a fixed moment in time, each type of instruments without doubt can be described

by distribution function of errors. But the problem is how to find this distribution

function. The simple sampling method, as we saw above, is not suitable. Moreover,

even if the distribution function could be found by some complicated method, after

some time, it would have to be redetermined, because the errors, and the compo-

sition of the stock of measuring instruments, change. Therefore, we have to

conclude that the distribution of errors of measuring instruments cannot be found

based on the experimental data.

The results presented above were obtained in the former USSR, and instruments

manufactured in the former USSR were studied. However, there is no reason to

expect that instruments manufactured in other countries will have different statis-

tical properties.
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Chapter 3

Statistical Methods for Experimental Data

Processing

3.1 Methods for Describing Random Quantities

The presence of random errors in measurements leads to the wide usage of the

concept of random quantity as a mathematical model for random errors and,

equivalently, for measurement results. The realization of the random error in a

given act of measurement is called the random error of a separate measurement, and

the word “separate” is often omitted for brevity. Where it can cause confusion

between a separate measurement and a complete measurement (which may com-

prise multiple separate measurements), we will refer to the results of separate

measurements as observations.
Random quantities are studied in the theory of probability, a well-developed

field of mathematics. The properties of a random quantity are completely described

by the distribution function F(x), which determines the probability that a random

quantity X will assume a value less than x:

F xð Þ ¼ P X < xf g:

The distribution function is a nondecreasing function, defined so that F(�1) ¼
0 and F(+1) ¼ 1. It is said to be cumulative or integral.

Continuous and discrete random variables are distinguished. For continuous

random variables, together with the cumulative distribution function F(x), the
differential function, usually called the probability density f(x), is also widely

employed:

f xð Þ ¼ dF xð Þ
dx

:
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We call attention to the fact that the probability density is a dimensional function:

dim f xð Þ ¼ dim
1

X
:

In the practice of precise measurements one most often deals with normal and

uniform distributions. Figure 3.1a shows integral functions of these distributions,

and Fig. 3.1b shows the probability densities of the same distributions.

For the normal distribution, we have

f xð Þ ¼ 1

σ
ffiffiffiffiffi
2π

p e� x�Að Þ2=2σ2 ,

F xð Þ ¼ 1

σ
ffiffiffiffiffi
2π

p
ðx

�1
e� x�Að Þ2=2σ2dx

ð3:1Þ

The parameter σ2 is the variance, and A is the mathematical expectation of the

random quantity. A normal distribution is fully determined by its mathematical

expectation and variance, and is often denoted as N(A, σ2).
The value of F(x) for some fixed xf gives the probability P{X< xf}¼Pf. When

the graph of f(x) is used to calculate this probability, it is necessary to find the area

under the curve to the left of the point xf . The left side of Fig. 3.1 illustrates finding
Pf from cumulative distribution and density functions.

To avoid tabulating functions (3.1) for every specific values of σ and A, calcula-
tions widely rely on the standard normal distribution, which is obtained by

transforming the random quantity X to Z¼ (X –A)/σ. Random variable Z is

F (x)

f(x)

x1

P1

A

1

x

x1 xA

F (x)

d bA

1

x

f(x)

d bA x

a

b

Fig. 3.1 (a) Cumulative distribution function of a normally (left) and uniformly (right) distributed
continuous random quantity and (b) Corresponding probability density functions
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normally distributed with mathematical expectation 0 and variance 1. Its probability

distribution and density functions are:

f zð Þ ¼ 1ffiffiffiffiffi
2π

p e�z2=2, F zð Þ ¼ 1ffiffiffiffiffi
2π

p
ð z
�1

e�y2=2dy: ð3:2Þ

Customarily, calculations related to normal distribution are based on the func-

tion Ф(z) below, instead of (3.2):

Φ zð Þ ¼ 1ffiffiffiffiffi
2π

p
ð z
0

e�y2=2dy ð3:3Þ

Function Ф(z) is called the standard Gaussian function, and its values are given

in Table A.1 in the Appendix.

It is obvious that for z �0

F zð Þ ¼ 0:5þΦ zð Þ:

The branch for z <0 is found based on symmetry considerations:

F zð Þ ¼ 0:5�Φ zð Þ:

The normal distribution is remarkable in that according to the central limit

theorem, the sum of a number of random quantities with arbitrary distributions

tends to a normal distribution as the number of random quantities grows to infinity.

In practice, the distribution of the sum of a comparatively small number of random

quantities already is found to be close to a normal distribution.

The uniform distribution is defined as

f xð Þ ¼
0, x < d,

1

b� d
, d � x � b,

0, x > b,

8>>><>>>:
F xð Þ ¼

0, x < d,

x� d

b� d
, d � x � b,

1, x > b,

8>>><>>>:
ð3:4Þ

We shall also use the uniform distribution often.

In addition to continuous random variables, discrete random variables are also

encountered in metrology. An example of an integral distribution function and the

probability density of a discrete random variable are given in Fig. 3.2.
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Distribution functions are complete characteristics of random quantities, but

they are not always convenient to use in practice. For this reason, random quantities

are also characterized by their numerical parameters called moments. The initial

moments mk (moments about zero) and central moments μk (moments about the

mean value) of order k are defined by the formulas

mk ¼ E Xk
� � ¼ Ð1�1 xkf xð Þdx,

mk ¼ E Xk
� � ¼Xn

i¼1

xki pi,
ð3:5Þ

and

μk ¼ E X � E X½ �½ �k ¼ Ð1�1 x� E X½ �ð Þkf xð Þdx,
μk ¼ E X � E X½ �½ �k ¼

Xn
i¼1

xi � E X½ �ð Þkpi:
ð3:6Þ

In the relations (3.5–3.8), the first formulas refer to continuous and the second to

discrete random quantities.

Of the initial moments, the first moment (k¼ 1) is most often employed. It gives

the mathematical expectation of the random quantity

m1 ¼ E X½ � ¼
ð1

�1
xf xð Þdx

m1 ¼ E X½ � ¼
Xn
i¼1

xipi:

ð3:7Þ

It is assumed that
Pn

i¼1 pi ¼ 1; i.e., the complete group of events is considered.

0
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P i
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0.2
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a b

Fig. 3.2 (a) The probability distribution and (b) the probability density of a discrete random

quantity
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Of the central moments, the second moment (k ¼ 2) plays an especially

important role. It is the variance of the random quantity

μ2 ¼ V X½ � ¼ E X � m1ð Þ2
h i

¼ Ð1�1 x� m1ð Þ2f xð Þdx,

μ2 ¼ V X½ � ¼ E X � m1ð Þ2
h i

¼
Xn
i¼1

xi � m1ð Þ2pi:
ð3:8Þ

The square root of the variance is called the standard deviation of the random

quantity

σ ¼ þ
ffiffiffiffiffiffiffiffi
V x½ �

p
ð3:9Þ

Correspondingly, V[X] ¼ σ2.
The third and fourth central moments are also used in applications. They are

used to characterize the symmetry and sharpness of distributions. The symmetry is

characterized by the skewness a ¼ μ3/σ
3, and the sharpness is characterized by the

excess e ¼ μ4/σ
4. The latter is sometimes defined as e0 ¼ μ4/σ

4–3 because normal

distribution has e ¼ 3.

The normal distribution is completely characterized by two parameters: m1 ¼
A and σ. For it, characteristically, a¼ 0 and e0 ¼ 0. The uniform distribution is also

determined by two parameters: m1 ¼ A and l ¼ d – b. It is well known that

m1 ¼ d þ b

2
, V X½ � ¼ d � bð Þ2

12
¼ l2

12
: ð3:10Þ

Instead of l, the quantity h ¼ l/2 is often used. Then V[X] ¼ h2/3 and σ ¼ h=
ffiffiffi
3

p
:

3.2 Requirements for Statistical Estimates

As mentioned in the previous section, the probability distribution function and the

probability density fully describe the properties of a random quantity. Unfortu-

nately, they are rarely available. Consequently, one has to estimate parameters of a

random quantity from statistical data, that is, from the observations of the random

quantity.

Given a specific sample of observations, any estimate derived from this sample

is a specific number. However, across different samples, the estimate will be

different, and it is a random variable for a random sample. Thus, one can talk

about statistical properties of the estimates.

The estimates obtained from statistical data must be consistent, unbiased, and

efficient.
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An estimate ~A is said to be consistent if, as the number of observations increases,

it approaches the true value of the estimated quantity A (it converges probabilisti-

cally to A):

~A x1; : . . . ; xnð Þ
n!1

! A:

The estimate of A is said to be unbiased if its mathematical expectation is equal

to the true value of the estimated quantity:

E ~A
� � ¼ A:

In the case when several unbiased estimates can be found, the estimate that has

the smallest variance is, naturally, regarded as the best estimate. The smaller the

variance of an estimate the more efficient it is.

Methods for finding estimates of a measured quantity and indicators of the

quality of the estimates depend on the form of the distribution function of the

observations. For a normal distribution of the observations, the arithmetic mean

of the observations, as well as their median (which is the point xm such that

P{X< xm}¼P{X> xm}) can be taken as an estimate of the true value of the

measured quantity. The ratio of the variances of these estimates is well known [20]:

σ2�x=σ
2
m ¼ 0:64,

where σ2�x is the variance of the arithmetic mean andσ2m is the variance of the median.

Therefore, the arithmetic mean is a more efficient estimate of A than the median.

In the case of a uniform distribution, the arithmetic mean of the observations or

the half-sum of the minimum and maximum values can be taken as an estimate of A:

~A1 ¼ 1

n

Xn
i¼1

xi, ~A2 ¼ xmin þ xmax

2
:

The ratio of the variances of these estimates is also well known [20]:

V ~A1

� �
V ~A2

� � ¼ nþ 1ð Þ nþ 2ð Þ
6n

:

For n ¼ 2, this ratio is equal to unity, and it increases for n >2. For example, for

n ¼ 10, it is already equal to 2.2, making the half-sum of the minimum and

maximum values in this case a more efficient estimate than the arithmetic mean.
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3.3 Evaluation of the Parameters of the Normal

Distribution

If the available data are consistent with the hypothesis that the observations

belong to a normal distribution, then it is sufficient to estimate the expectation

E[X] ¼ A and the variance σ2 to describe fully the distribution. We will discuss

methods of obtaining these estimates in this section.

When the probability density of a random quantity is known, its parameters can

be estimated by the method of maximum likelihood. We shall use this method to

find the estimates above.

The elementary probability of obtaining some specific observation xi within the

interval � Δxi/2 is equal to fi (xi, A, σ) Δxi, where fi (xi, A, σ) is the value of the

probability density function with parameters A and the σ for point xi. Assume that

all observations are independent. Then, the probability of encountering all exper-

imentally obtained observations within Δx1,. .., Δxn is equal to

Pl ¼
Yn
i¼1

f i xi;A; σð ÞΔx1� � �Δxn:

The idea of the method is to take for the estimate of the parameters of the

distribution (in our case, A and σ), the values that maximize the probability Pl.

These values are found, as usual, by equating to zero the partial derivatives of Pl

with respect to the parameters being estimated. The constant cofactors do not affect

the solution, and for this reason, only the product of the functions fi is considered;
this product is called the likelihood function:

L x1; . . . ; xn;A; σð Þ ¼
Yn
i¼1

f i xi;A; σð Þ:

We now return to our problem. For the available group of observations x1,..., xn,
the values of the probability density will be

f i xi;A; σð Þ ¼ 1

σ
ffiffiffiffiffi
2π

p e� xi�Að Þ2=2σ2 :

Therefore,

L ¼ 1

σ
ffiffiffiffiffi
2π

p
� �2

exp � 1

2σ2

Xn

i¼1
xi � Að Þ2

� �
To find the maximum of L, it is convenient to investigate 1n L:

ln L ¼ �n

2
ln 2π � n

2
ln σ2 � 1

2σ2

Xn
i¼1

xi � Að Þ2:
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The maximum of L will occur when ∂L/∂A¼ 0 and ∂L/∂σ2¼ 0:

∂L
L∂A

¼ 1

σ2

Xn
i¼1

xi � Að Þ ¼ 0,

∂L
L∂ σ2ð Þ ¼ � n

2σ2
þ 1

2σ4

Xn
i¼1

xi � Að Þ2 ¼ 0:

From the first equation, we find an estimate for A:

~A ¼ �x ¼ 1

n

Xn
i¼1

xi: ð3:11Þ

The second equation gives the estimate eσ2 ¼ 1=nð ÞPn
i¼1 xi � Að Þ2. But A is

unknown; taking instead of A its estimate �x, we obtain

eσ2
∗ ¼ 1

n

Xn
i¼1

xi � �xð Þ2:

Let us now check to see whether the obtained estimates are consistent and

unbiased. Because all xi are drawn from the same distribution, the mathematical

expectation of the ith observation in a random sample is equal to A for every i:
E(xi) ¼ A.1 For this reason,

E ~A
� � ¼ 1

n

Xn
i¼1

E xið Þ ¼ A:

Therefore, ~A is an unbiased estimate of A. It is also a consistent estimate, because

as n ! 1, ~A ! A, according to the law of large numbers.

We shall now investigate eσ2
∗. In the formula derived above, the random

quantities are xi and �x. For this reason, we shall rewrite it as follows:

eσ2
∗ ¼ 1

n

Xn
i¼1

xi � Aþ A� �xð Þ2

¼ 1

n

X
i¼1

xi � Að Þ2 � 2 xi � Að Þ �x� Að Þ þ �x� Að Þ2
h i

¼ 1

n

Xn
i¼1

xi � Að Þ2 � 2

n

Xn
i¼1

xi � Að Þ �x� Að Þ þ 1

n

Xn
i¼1

�x� Að Þ2

¼ 1

n

Xn
i¼1

xi � Að Þ2 � �x� Að Þ2,

1With a slight abuse of notation, we use xi to denote the i th observation in both a specific sample

(where it is just a number) and in a random sample (where it is a random variable).
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because

1

n

Xn
i¼1

�x� Að Þ2 ¼ �x� Að Þ2

and

2

n

Xn
i¼1

xi � Að Þ �x� Að Þ ¼ 2

n
�x� Að Þ

Xn
i¼1

xi � Að Þ ¼ 2 �x� Að Þ2:

We shall find E eσ2
∗

� �
. To this goal, the following relations must be used. By

definition, according to (3.8), we have E(xi�A)2¼ σ2. Therefore,

E
1

n

Xn
i¼1

xi � Að Þ2
" #

¼ 1

n
E
Xn
i¼1

xi � Að Þ2
" #

¼ σ2:

For the random quantity �x, we can write analogously E �x� Að Þ2 ¼ V �x½ �:We can

express V �x½ � in terms of σ2 as follows

V �x½ � ¼ V
1

n

Xn
i¼1

xi

" #
¼ 1

n2

Xn
i¼1

V xið Þ ¼ 1

n
V X½ � ¼ σ2

n
:

Thus

E eσ2
∗

� � ¼ E
1

n

Xn
i¼1

xi � Að Þ2
" #

� E �x� Að Þ2
h i

¼ σ2 � σ2

n
:

Therefore, the obtained estimate eσ2
∗ is biased. But as n ! 1,E eσ2

∗

� �! σ2, and
therefore, this estimate is consistent.

To correct the estimate, i.e., to make it unbiased, eσ2
∗ must be multiplied by the

correction factor n/(n – 1). Then we obtain

eσ2 ¼ 1

n� 1

Xn
i¼1

xi � �xð Þ2: ð3:12Þ

This estimate is also consistent, but, as one can easily check, it is now unbiased.

Some deviation from the maximum of the likelihood function is less important for

us than the biasness of the estimate.

The standard deviation of the random quantity X is σ ¼ ffiffiffiffiffiffiffiffiffi
V X½ �p

, and it is not a

random quantity. Instead of σ2 we must use the estimate of the variance from (3.12)

– a random quantity. Extracting the square root is a nonlinear procedure; it
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introduces bias into the estimate a. To correct this estimate, a factor kn, depending
on n as follows, is introduced:

n 3 4 5 6 7 10

kn 1.13 1.08 1.06 1.05 1.04 1.03

So,

eσ ¼ kn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

xi � �xð Þ2:
s

ð3:13Þ

While the correction factor can improve the accuracy of the standard deviation

estimate, taking it into account is usually not important in multiple measurements

with 3–5 observations as these measurements typically cannot produce high accu-

racy anyway. Moreover, for n >5, the error of the standard deviation estimate due

to the square root extraction is already insignificant. For this reason, in practice, the

correction factor kn can usually be neglected. Thus, instead of (3.13), the estimate of

the standard deviation is commonly found as the square root of the variance given

by (3.12). Therefore, the estimate of the standard deviation is calculated as follows:

eσ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi � �xð Þ2

n� 1

vuuut
: ð3:14Þ

We have obtained estimates of the parameters of the normal distribution, but

they are also random quantities: When the measurement is repeated, we obtain a

different group of observations with different values of �x and eσ . The spread in these
estimates can be characterized by their standard deviations σ �xð Þ and σ eσð Þ. We

already obtained above that V �x½ � ¼ σ2=n: Therefore,

σ �xð Þ ¼
ffiffiffiffiffiffiffiffi
V �x½ �

p
¼ σffiffiffi

n
p : ð3:15Þ

By replacing σ in (3.15) with its estimate from (3.14), we can obtain an estimate

of σ �xð Þ, denoted as eσ �xð Þ or, more commonly, S�x or S �xð Þ:

S �xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi � �xð Þ2

n n� 1ð Þ

vuuut
: ð3:16Þ

Uncertainty of the estimate given in (3.16) depends on the number of measure-

ments n and on the confidence probability α. The method of computing this

uncertainty as confidence interval is described in Sect. 3.5.

Methods of estimation reliability of the estimate of variance calculated using

formula (3.12) are given in Sect. 3.6 and the same regarding standard deviation

calculated using formula (3.16) – in Sect. 3.7.
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3.4 Elimination of Outlying Data

If in the group of observations, one or two differ sharply from the rest, and no slips

of the pen, reading errors, and similar blunders have been found, then it is necessary

to decide whether they are extreme events that should be excluded. This problem is

solved by statistical methods based on the assumption that the distribution from

which the observations are drawn is normal. The methodology for solving the

problem is presented in the standard [4].

The solution scheme is as follows. An ordered series x1< . . .< xn is constructed
from the obtained observations. The candidate to be tested for outlier is obviously

x1 or xn. From all xi, we calculate �xand, using (3.14), the estimate of the standard

deviation of this group of observations, S. We next compute how much the potential

outlier candidate deviates from the mean value:

t1 ¼ �x� x1
S

ð3:17Þ

and

tn ¼ xn � �x

S
: ð3:18Þ

Now we select the candidate to be tested that has the bigger deviation among the

two above. Let us assume that it is x1. We resort to the Table A.3 reproduced in

Appendix, which is read as follows. For a given number of observations n and

chosen percentage q (referred to as significance level) and corresponding value T,
q is the probability that t1 exceeds T.

In other words, if the value of t1 is greater than T for a selected significance level,

then the corresponding value of x1 can be discarded: The probability that a

“legitimate” observation (i.e., an observation belonging to the distribution) would

produce t > T is less than or equal to the adopted significance level. Thus, the

significance level gives the probability that we erroneously discard an observation

that in fact belongs to the distribution.

If we want to estimate probability of encountering an outlier in a future similar

measurement, we must take into account that the outlier can be either too big or too

small. Either observation can occur with an equal probability, due to the symmetry

of the normal distribution. Thus, the probability of encountering either of them is

equal to 2q.
The described procedure is quite useful and is widely employed in statistical data

processing. But one could say that an “abnormal” observation may actually reflect

some unknown feature of the subject under study and thus should not be discarded

lightly. Let us consider this issue in more detail.

Imagine a measurement in which an observation occurred that seems atypically

different from others. What will an expert performing this measurement do? First,

he or she will check if any physical properties of the object under study, or any other
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physical reasons, might have caused the unusual observation. If this check does not

lead to an explanation for this observation, the expert will analyze all the aspects of

the measurement procedure, measurement conditions, and records documenting the

measurement execution. If there is still no rational explanation for the unusual

observation, the expert will conduct a statistical analysis using methods described

earlier in this section, to check if this observation could be an outlier. If this analysis

confirms that the observation is an outlier, it can be discarded. However, in

especially important cases, such as when the decision can affect public safety, the

expert may chose to continue the experiment collecting more observations. More

observations may reveal physical or other reasons behind the abnormality. If not,

the expert will repeat the statistical analysis, this time using all the accumulated

data, and based on its result, will make the final decision on accepting or discarding

the observation. When will the expert stop collecting more data? Only his or her

experience and intuition will tell.

Unfortunately, there is no prescribed procedure here to follow. However, there

are the following two general reasons to discard the observation detected as an

outlier by statistical analysis:

1. A real measurement as a rule consists of a small number of observations, and the

probability of them including more than one outlier is extremely small. There-

fore, this outlier cannot be compensated with another one having the

opposite sign.

2. Because the outlier deviates significantly from the rest of the results, it skews the

average value of the set of data. In other words, not only does it increase the

inaccuracy of a measurement, but also affects the measurement result.

Thus, if there are no physical reasons for the outlying result, it must be discarded.

Example 3.1 Assume ten repeated measurements of the current strength in mA

gave the following results: 10.07, 10.08, 10.10, 10.12, 10.13, 10.15, 10.16, 10.17,

10.20, and 10.40. The value 10.40 differs sharply from the other values. We shall

check to see whether or not it can be discarded. We shall use the criterion presented,

though we do not have the data that would allow us to assume that these observa-

tions satisfy the normal distribution.

The mean and standard deviation of this group of observations are �x ¼ 10:16
mA and S¼ 0.094 mA. According to the procedure, we compute

t10 ¼ 10:40� 10:16ð Þ
0:094

¼ 2:55:

Let us select significance level of 0.5%. Turning to Table A.3, we find critical

value T for n¼ 10 and q¼ 0.5%. This value is T¼ 2.48. Since t10> T, we conclude
that assuming this observation to be an outlier would be incorrect only with

probability at most 0.5%.
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3.5 Construction of Confidence Intervals

Having obtained the estimate ~A, it is of interest to determine by how much it can

change in repeated measurements performed under the same conditions. This

question is clarified by constructing the confidence interval for the true value of

the measured quantity.

The confidence interval is the interval that includes, with a prescribed probabil-

ity called the confidence probability, the true value of the measurand. The concepts

of confidence interval and confidence probability can be interpreted as follows.

Imagine a quantity that is measured multiple times under the same conditions,

where each measurement can itself comprise multiple observations. Assume that

we use the data obtained from each of these measurements to build the confidence

interval corresponding to the same confidence probability 0.95. Then, 95% of the

obtained confidence intervals will cover the true value of the measured quantity.

Confidence intervals are often expressed as (x � Δx) or (x � δ%), where x is the
center of the interval and Δx and δ% represent the half-length of the interval in the

absolute or relative form. The latter values define the limits of the confidence

interval. We will, therefore, refer to the half-length of the confidence interval as

the confidence limit.
In principle, the confidence interval could be constructed based on the

Chebyshev’s inequality [20]:

P jX � Aj � tσf g � 1

t2

where t is a parameter dependent on the confidence probability, which will be

explained shortly.

For the random quantity �x, we obtain, using (3.15):

P j�x� Aj � tσffiffiffi
n

p
� �

� 1

t2
: ð3:19Þ

Let us transform the inequality (3.19) so that it would determine the probability

that a deviation of the random quantity from its true value is less than a certain

value. After simple transformations, we obtain

P j�x� Aj � t
σffiffiffi
n

p
� �

� 1� 1

t2
:

Without knowing anything about the distribution of the random errors, the

coefficient t can be calculated based on a prescribed confidence probability α
from the right-hand side of the above inequality, which gives
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t ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1� α

p :

Then, the confidence interval for α follows from the above inequality and is:

�x� t
σffiffiffi
n

p ; �xþ t
σffiffiffi
n

p
	 


:

If the distribution of the random errors can be assumed to be symmetric relative

to A, then the confidence interval can be narrowed somewhat [20], using the

inequality

P j�x� Aj � t
σffiffiffi
n

p
� �

� 1� 4

9

1

t2
:

where

t ¼ 2

3
ffiffiffiffiffiffiffiffiffiffiffi
1� α

p :

In either case, the standard deviation of the results of measurements σ can be

estimated with (3.16) and then the confidence interval can be found.

Using Chebyshev’s inequality is attractive because it does not require one to

know the form of the distribution function of the observations. It uses the arithmetic

mean as the estimation of the measured quantity, which can practically always be

done (although in the case when the distribution differs from a normal distribution,

the estimate will not be the most efficient estimate). However, the confidence

intervals constructed in this manner are only approximate, because the effect of

replacing the standard deviation by its estimate is not taken into account. More

importantly, the intervals obtained with the help of the Chebyshev’s inequality are

too wide for practice, and so this method is rarely (if ever) used.

If the distribution of the observations can be regarded as normal with a known

standard deviation, then the confidence interval is constructed based on the

expression

P j�x� Aj � z1þα
2

σffiffiffi
n

p
� �

¼ α:

where α is the selected confidence probability and z 1þα
2

is the quantile of the

standard normal distribution for probability 1þα
2
. (By the quantile of a distribution

with cumulative distribution function F for probability p we mean the value x such
that F(x) ¼ p).
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For example, let α ¼ 0.95. With this probability, the interval

�x� z1þα
2

σffiffiffi
n

p ; �xþ z1þα
2

σffiffiffi
n

p
� �

should include the true value A. The probability that A falls outside this

interval is equal to 1 – α ¼ 0.05. As the normal distribution is symmetric, the

probabilities that A falls beyond either limit of the interval are the same and equal to

(1 – α)/2 ¼ 0.025. It is obvious that the cumulative probability of the upper limit of

this interval is (1–0.025) ¼ 0.975. It can be calculated as

P ¼ 1� 1� α

2
¼ 1þ α

2
:

We shall now show how to find the value of z1þα
2
, using the standard Gaussian

function, whose values are given in Table A.1 of the Appendix. The standard

Gaussian function Ф(z) is related to the standard normal distribution function F(z)
by the relation F(z) ¼ 0.5 + Ф(z), or Ф(z) ¼ F(z) – 0.5. Therefore, the quantile of

F(z) for probability 1þα
2

¼ 0:975 is the same as the quantile of Ф(z) for probability

0.975–0.5 ¼ 0.475. Using Table A.1, we find the quantile z0.975 ¼ 1.96

corresponding to the argument 0.475.

Often, on the other hand, the value of the quantile z1þα
2

is given and the

corresponding probability α needs to be found. For example, for z1þα
2
¼ 1, we see

from Table A.1 that Φ(z(1 + α)/2)¼ 0.3413 and thus F(z(1 + α)/2)¼Φ(z(1 + α)/2)
+ 0.5¼ 0.841. Then F z 1þαð Þ=2

 � ¼ 1þα
2

¼ 0:841 and α ¼ 0.682. Analogously, for

z1þα
2
¼ 3, we find Φ(z(1 + α)/2)¼ 0.49865, F z 1þαð Þ=2

 � ¼ 1þα
2

¼ 0:99865 , and

α ¼ 0.9973.
So far we explained how we could build the confidence interval from the

quantile z 1þα
2

assuming we know the standard deviation σ. In practice, however,

the standard deviation is rarely known. Usually we know only its estimate S and,

correspondingly, S�x ¼ S=
ffiffiffi
n

p
. Then, still assuming that the observations can be

viewed as belonging to a normal distribution, the confidence intervals are

constructed based on Student’s t distribution. The applicability of Student’s distri-
bution is based on the property that if a random quantity x is normally distributed,

then the random quantity

t ¼ �x� A

S�x
,

obtained from random samples of size n, belongs to Student’s distribution with (n – 1)
degrees of freedom. In the above formula,S�x is the estimate of the standard deviation of

the arithmetic mean �x, calculated from (3.16). Then, the confidence interval

�x� tqS�x; �xþ tqS�x
� �

corresponds to the probability
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P j�x� Aj � tqS�x
� � ¼ α,

where tq is the q th percentile of Student’s distribution with the degrees of freedom

v¼ n – 1. Traditionally, tables for Student’s distribution list percentiles for proba-

bility function P{t > tq}. We present such a table as Table A.2 in Appendix. Thus,

given α, we obtain the significance level q – 1 – α, then look up tq in Table A.2 for

this significance level and the degrees of freedom v – n – 1, and finally compute the

confidence interval above that corresponds to α. The confidence interval is com-

monly represented by confidence limits:

u ¼ tqS�x: ð3:20Þ

In measurement practice, the confidence probability is increasingly often set to

0.95. Further, confidence intervals are in practice constructed almost always based

on Student’s distribution as just described. This method is widely applicable

because experimental data are typically symmetrical around the mean, and in this

case, this method is used even when the distribution of the underlying random

quantity x deviates from normal. Indeed, as seen from (3.20), Student’s distribution
is determined by �x and S�x, and is not directly dependent on x and therefore is robust.

Sometimes confidence intervals are constructed for the standard deviation. In

these cases, the χ2 distribution is employed. This method relies on the property that

if a random quantity x is normally distributed, then the random quantity

χ2 ¼ n� 1ð Þeσ2

σ2
,

obtained from random samples of size n, belong to χ2 distribution. Unlike Student’s
distribution, χ2 distribution is asymmetrical, and we must use different quantiles to

compute lower χL and upper χU limits of the confidence interval. Consequently, the

confidence interval for the confidence probability

P

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

χL

� �eσ � σ �
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

χU

� �eσ� �
¼ α ð3:21Þ

is found as follows. Table A.4 gives percentiles of the probability function

P χ2 > χ2q

n o
. Given confidence probability α, we find the probabilities

corresponding to the lower and upper limits of the confidence interval:

pL¼ (1� α)/2 and pU¼ (1 + α)/2. We then, conceptually, obtain significance levels

qL¼ 1 – pL and qU¼ 1 – pU. Next, from Table A.4, we look up the pL-th and pU-th
percentiles (denote them, respectively, as χ2L and χ2U ) for the probability function

P χ2 > χ2q

n o
. Again, we use the degree of freedom v ¼ n – 1 because there is an

unknown quantity σ2 in the expression for χ2. Finally, we use χ2L and χ
2
U to compute

the confidence interval for σ. Because σ has inverse dependence on χ, pL determines

the upper limit of the confidence interval and χ2U the lower limit.
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For example, leteσ ¼ 1:2� 10�5 and n¼ 10. Take α¼ 0.90. Then pU¼ (1 + 0.9)/

2¼ 0.95 and pL¼ (1 – 0.9)/2¼ 0.05. The degree of freedom v ¼ 10–1 ¼ 9. From

Table A.4, we find χ2U ¼ 3:325 and χ2L ¼ 16:92. The confidence interval will then beffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 1

p ffiffiffiffiffiffiffiffiffiffiffi
16:92

p � 1:2� 10�5;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10� 1

p ffiffiffiffiffiffiffiffiffiffiffi
3:325

p � 1:2� 10�5

	 

;

i.e.,

0:88� 10�5 � σ � 2:0� 10�5
� �

:

When constructing confidence intervals for standard deviation, the confidence

probability can be taken to be less than the confidence probability in the case of

constructing the confidence interval for the true value of the measured quantity.

Often α ¼ 0.80 is assumed to be sufficient. However, this low confidence proba-

bility is considered sufficient not because higher confidence is unnecessary but

because the confidence interval based on the Pearson distribution seems unnaturally

wide, and it would be even wider for higher confidence probabilities.

We should note that the confidence interval for standard deviation of the mean is

not used in computing the confidence interval for the mean (i.e., the estimate of the

measurand) because a possible change of the estimate of the standard deviation

from one experiment to another is already accounted for through a significance

level when utilizing Student distribution, or simply through confidence probability

in other cases. But if we consider the confidence interval for standard deviation of

the mean to be an indicator of reliability of the estimate of the standard deviation of

the mean, then the wide confidence interval makes this indicator unreliable. We

revisit the reliability of the estimates of both the variance of a distribution and the

standard deviation of its mean in Sec. 3.6 and 3.7.

Confidence intervals should not be confused with statistical tolerance intervals
(first mentioned at the end of Sect. 2.3). The statistical tolerance interval is the

interval that, with prescribed probability a, contains not less than a prescribed

fraction p0 of the entire collection of values of the random quantity (population).

Thus, the statistical tolerance interval is the interval for a random quantity, and this

distinguishes it principally from the confidence interval that is constructed to cover

the value of a nonrandom quantity.

If, for example, the sensitivity of a group of strain gauges is measured, then the

obtained data can be used to find the interval with limits l1 and l2 in which, with

prescribed probability a, the sensitivity of not less than the fraction P0 of the entire

batch (or the entire collection) of strain gauges of the given type will fail. This is the

statistical tolerance interval. Methods for constructing this tolerance interval can be

found in books on the theory of probability and mathematical statistics.

One must also guard against confusing the limits of statistical tolerance

and confidence intervals with the tolerance range for the size of some parameter.

The tolerance or the limits of the tolerance range are, as a rule, determined before

3.5 Construction of Confidence Intervals 87



the fabrication of a manufactured object, so that the objects for which the value of

the parameter of interest falls outside the tolerance range are unacceptable and are

discarded. In other words, the limits of the tolerance range are strict limits that are

not associated with any probabilistic relations.

The statistical tolerance interval, however, is determined by objects that have

already been manufactured, and its limits are calculated so that with a prescribed

probability, the parameters of a prescribed fraction of all possible manufactured

objects fall within this interval. Thus, the limits of the statistical tolerance interval,

as also the limits of the confidence interval, are random quantities, whereas the

tolerance limits or tolerances are nonrandom quantities.

3.6 Reliability of Estimation of the Variance of a Sample

from a Normal Distribution

As mentioned in Sect. 3.5, the estimates of the variance of a distribution and of

standard deviation of the mean of a sample play an important role in methods for

evaluating measurement accuracy. Thus, it is important to understand how reliable

these estimates. More precisely, consider a sample of observations from the normal

distribution and the estimate of some parameter of this distribution computed from

this sample. If we took another independent sample from the same distribution, how

different can we expect the new value of the estimate of the same parameter will be?

We refer to this aspect of an estimate as the “reliability” of the estimate. Recalling

that the values of an estimate computed from different independent samples are a

random variable, the reliability of the estimate is characterized by the standard

deviation of this random variable. We now consider the question of how estimate

reliability depends on the number of observations. This section considers the reli-

ability of the estimation of the variance of a sample from the normal distribution

while the next section focuses on the estimation of the standard deviation of themean.

The book [20] gives a general solution to the problem of finding this depen-

dency. For the variance of the variance estimate, it obtains the formula

V m2½ � ¼ μ4 � μ22
 �

=n� 2 μ4 � 2μ22
 �

=n2 þ 3 μ4 � 3μ22
 �

=n3,

where:

m2 is an estimate of the variance of a group of n observations (sample of size n);
μ2 is the second central moment of the distribution (the true value of the variance

of the distribution);

μ4 is the forth central moment of the distribution.

For normal distribution, it is known that μ4=μ
2
2 ¼ 3. Given this relation, the

above equation becomes

V m2½ � ¼ 2μ22 n� 1ð Þ=n2:
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Using the notations from Sect. 3.3, m2 	 σ2∗ and μ2	 σ2. Then, with these

notations, we have

V eσ2
∗

� � ¼ 2σ4 n� 1ð Þ=n2,
or

V eσ2
∗

� �
=σ4 ¼ 2 n� 1ð Þ=n2:

We can transform the above expression from variance V eσ2
∗

� �
to standard

deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffi
V eσ2

∗

� �q
¼ s eσ2

∗

� �
since the latter is more intuitive. Obviously,

s eσ2
∗

� �
=σ2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 n� 1ð Þp
=n.

We showed previously that estimate eσ2
∗, while efficient, is biased, and that the

following somewhat less efficient but unbiased estimate is commonly used in its

place:

S2 xð Þ ¼ eσ2
∗

� �
n=n� 1:

The variance of this unbiased estimate is

V S2 xð Þ� � ¼ V eσ2
∗

� � n

n� 1

� �2
¼ σ4

2

n� 1
:

From this formula, we have

s S2 xð Þ� � ¼ σ2
ffiffiffiffiffiffiffiffiffiffiffiffi
2

n� 1
:

r
As an indicator of reliability of the variance estimate S2 (x) in relation to the

number of observation we will use

ε ¼ s S2 xð Þ� �
=σ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= n� 1ð Þ

p
:

We illustrate the above dependency with values of ε computed for several

numbers of observations n:

n 3 5 7 10 15 20 30 40 50 100 200

ε, % 100 71 58 47 38 32 26 23 20 14 10

3.7 Reliability of Estimation of the Standard Deviation

of the Mean of a Sample from a Normal Distribution

Analogously, consider reliability of the estimate of the standard deviation of the

mean. The mathematical expression for the variance of the standard deviation is as

follows:
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V
ffiffiffiffiffiffi
m2

p½ � ¼ μ4 � μ22
4nμ2

þ 0 1=
σ2Þ:


In our case,μ4 ¼ 3μ22. Thus, neglecting the residual term and because μ2	 σ2, we

obtain

V
ffiffiffiffiffiffi
m2

p½ � ¼ 3μ22 � μ22
 �

=4nμ2 ¼ μ2=2n ¼ σ2=2n:

Recall that
ffiffiffiffiffiffi
m2

p 	 σ∗ is a biased estimate of the standard deviation of a sample.

Therefore, V eσ∗½ � ¼ σ2=2n: From this, we arrive at the expression for the standard

deviation of a sample:

s
ffiffiffiffiffiffi
m2

p½ � ¼ σ=
ffiffiffiffiffi
2n

p
:

Let us now turn to the standard deviation of the unbiased estimate of the standard

deviation of a sample S xð Þ ¼ eσ∗

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n= n� 1ð Þ:p

. The variance of this estimate is

V S xð Þ ¼ V½ ½eσ∗�n= n� 1ð Þ ¼ σ2=2 n� 1ð Þ:

However, we are interested in the reliability of the unbiased estimate of the

standard deviation of the mean rather than the sample, i.e., of S �xð Þ: As shown

earlier, S �xð Þ ¼ S xð Þ= ffiffiffi
n

p
: Therefore,

S �xð Þ ¼ eσ∗ffiffiffi
n

p
ffiffiffiffiffiffiffiffiffiffiffi
n

n� 1

r
¼ eσ∗ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p :

The variance of this expression is

V S �xð Þ½ � ¼ V eσ∗=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð Þ

ph i
¼ V eσ∗½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n� 1ð Þp ¼
1

n�1ð Þ
h i

σ2

2n
¼ σ2

2n n� 1ð Þ :

Since σ2 �xð Þ ¼ σ2=n, we obtain the following expression for the estimate of the

standard deviation of the estimate of the standard deviation of the mean of a sample:

s S �xð Þ½ � ¼ σ �xð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 n� 1ð Þ:

p
Let us express the reliability of the estimate of the standard deviation of the mean

as the ratio of this estimate over its true value, which we denote with symbol φ:

φ ¼ s S �xð Þ½ �=σ �xð Þ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 n� 1ð Þ

p
:

Comparing the expressions for φ and ε, one can easily observe that

φ ¼ 1

2
ε:

90 3 Statistical Methods for Experimental Data Processing



Thus, the standard deviation of the estimate of the standard deviation of the

mean of a sample of, say, size 10 from a population with the normal distribution

may reach a quarter of the estimate itself, and of course the estimate itself of another

sample of the same size could differ from the estimate of the first sample by an even

greater amount. A more specific limit on possible differences between estimates of

the standard deviation can be obtained with the help of a confidence interval

constructed using from Pearson’s distribution χ2. An example of constructing

such an interval is given above in Sect. 3.5. We should emphasize that this

significant source of uncertainty of the estimate of the standard deviation of the

mean of the sample is typically not taken into account in practice.

3.8 Testing Hypotheses About the Form

of the Distribution Function

The problem is usually posed as follows: For a group of measurement results, it is

hypothesized that these results can be regarded as realizations of a random quantity

with a distribution function having a chosen form. Then this hypothesis is checked

by the methods of mathematical statistics and is either accepted or rejected.

For a large number of observations (n >50), Pearson’s test (χ2 test) for grouped
observations and the Kolmogorov-Smirnov test for nongrouped observations are

regarded as the best tests. These methods are described in many books devoted to

the theory of probabilities and statistics. For example, see [20, 49, 54]. We shall

discuss the χ2 test, and for definiteness, we shall check the data on belonging to a

normal distribution.

The idea of this method is to monitor the deviations of the histogram of the

experimental data from the histogram with the same number of intervals that is

constructed based on the normal distribution. The sum of the squares of the

differences of the frequencies over the intervals must not exceed the values of χ2

for which tables were constructed as a function of the significance level q and the

degree of freedom v¼ L� 3, where L is the number of intervals and minus 3 is

because the measurement data have two unknown parameters (the mathematical

expectation and variance) and χ2 distribution has one more unknown parameter (its

degree of freedom).

The calculations are performed as follows:

1. The arithmetic mean of the observations and an estimate of the standard devi-

ations are calculated.

2. Measurements are grouped according to intervals. For about 100 measurements,

five to nine intervals are normally taken. For each interval, the number of

measurements eφi falling within the interval is calculated.

3. The number of measurements that corresponds to the normal distribution is

calculated for each interval. To accomplish this, the range of data is first centered

and standardized.
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Let xmin¼ a0 and xmax¼ b0, and let the range [a0,b0] be divided into L intervals

of length h0¼ (b0 – a0)/L. The transformed limits of the range of the data for us will

be as follows:

ac ¼ a0 � �xeσ , bc ¼ b0 � �xeσ :

The length of the transformed interval hc ¼ (bc�ac)/L. Then we mark the limits

{zi}, i ¼ 0, 1,..., L, of all intervals of the transformed range [ac, bc]:

z0 ¼ ac, z1 ¼ ac þ hc, z2 ¼ ac þ 2hc, . . . , zL ¼ ac þ Lhc ¼ bc:

Now we calculate the probability that a normally distributed random quantity

falls within each interval:

pi ¼
1ffiffiffiffiffi
2π

p
ðziþ1

zi

e�x2=2dx

After this we calculate the number of measurements that would fall within each

interval if the population of measurements is normally distributed:

φi ¼ pin,

where n is the total number of observations.

4. If less than five measurements fall within some interval, then this interval in both

histograms is combined with the neighboring interval. Then the degree of

freedom v¼ L� 3, where L is the total number of intervals (if the intervals are

enlarged, then L is the number of intervals after the enlargement), is determined.

5. The indicator χ2 of the difference of frequencies is calculated:

χ2i ¼
eφi � φið Þ2

φi

, χ2 ¼
XL
i¼1

χ2i :

6. The significance level of the test q is chosen. The significance level must be

sufficiently small so that the probability of rejecting the correct hypothesis

(committing false rejection) would be small. On the other hand, too small

value of q increases the probability of accepting the incorrect hypothesis, that

is, of committing false retention.

From the significance level q and a degree of freedom v in Table A.4, we find the

critical threshold χ2q, so that P χ2 < χ2q

� �
¼ q: The probability that the value

obtained for χ2 in step 5 above exceeds χ2q is equal to q and is small. For this

92 3 Statistical Methods for Experimental Data Processing



reason, if it turns out that χ2 < χ2q, then the hypothesis that the distribution is normal

is rejected. Ifχ2 < χ2q, then the hypothesis that the distribution is normal is accepted.

The smaller the value of q, the larger is the value of χ2q for the same value of ν,

hence the more easily the condition χ2 < χ2q is satisfied and the hypothesis being

tested is accepted. But, in this case, the probability of committing false retention

increases. For this reason, q should not be taken to be less than 0.01. For too large a
value of q, as pointed out above, the probability of false rejection increases and,

in addition, the sensitivity of the test decreases. For example, for q ¼ 0.5 the value

of χ2 may be greater or less than χ2q with equal probability, and therefore it is

impossible to accept or reject the hypothesis.

To achieve a uniform solution of the problem at hand, it would be desirable to

standardize the significance levels q adopted in metrology.

It should be noted that the test examined above makes it possible to check the

conformance of the empirical data to any theoretical distribution, not only a normal

distribution. This test, however, as also, by the way, other goodness-of-fit tests, does

not make it possible to establish the form of the distribution of the observations; it

only makes it possible to check whether the observations conform to a normal or

some other previously selected distribution.

3.9 Testing for Homogeneity of Samples

Measurements with large random errors require careful attention. One must make

sure that the obtained results are statistically under control, stable, i.e., that the

measurement results cluster around the same central value and have the same

variance. If the measurement method and the object of investigation have been

little studied, then the measurements must be repeated until one is sure that the

results are stable [25]. This process determines the duration of the investigation and

the required number of measurements.

The stability of measurements is often estimated intuitively based on prolonged

observations. Mathematical methods exist that are useful for assessing the stability

of measurements, so-called methods for testing homogeneity. A necessary condi-

tion for measurement stability is that the data passes the homogeneity tests.

However, this is not sufficient for homogeneity in reality, because of a possibility

of an unfortunate choice of groups of measurements.

Figure 3.3 shows the results of measurements of some quantities, presented in

the sequence in which they were obtained. Consider three groups of measurements

performed in the time intervals t2� t1, t3� t2, and t4� t3. They apparently will be

homogeneous. Meanwhile, subsequent measurements would differ significantly

from the first measurements. On the whole, the results obtained from the first

group of measurements will give a picture of a stable, statistically under control,

measurement, which is actually not the case.
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The choice of groups for monitoring homogeneity remains a problem for the

experimenter. In general, it is best to have on the order of ten measurements in a

group, and it is better to have several such groups than two groups with a large

number of measurements. Once the groups have been reliably determined to be

homogeneous, they can be combined and later regarded as one group of data.

We shall consider first the most common methods for testing homogeneity that

assume the normal distribution of a population. These methods are called paramet-

ric; before using these methods, each group of data must first be checked for

normality.

The admissibility of differences between estimates of the variances is checked

with the help of Fisher’s test in the case of two groups of observations and Bartlett’s
test if there are more than two groups. We shall present both methods.

Consider two groups of observations, and let the unbiased estimates of the

variances of these groups be S21 and S
2
2, where S

2
1 > S22. The number of observations

in the groups is n1 and n2, so that the degrees of freedom for these groups are,

respectively, v1 ¼ n1� 1 and v2 ¼ n2� 1. We form the ratio

F ¼ S21
S22

Next, from Tables A.5 and A.6, which present the probabilities P{F>Fq}¼ q
for different degrees of freedom v1 and v2 and for two values of q (1 % and 5 %), we

choose the value Fq for a chosen value of q. The hypothesis is accepted, i.e.,

estimates of the variances can be regarded as corresponding to the same variance, if

F< Fq. The significance level of the test, i.e., the probability of the wrong decision,
is equal to 2q.

x

tt1 t2 t3 t4

Fig. 3.3 Example of a sequence of single-measurement results obtained in an unstablemeasurement
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Now assume that there are L groups. Assume unbiased estimates of the

variances of groups of observations are known, S21, . . . , S
2
L (L > 2) and each

group j has vj ¼ nj – 1 degrees of freedom; in addition, all vj >3. The test of the

hypothesis, that the variances of the groups are equal, is based on the statistic

M ¼ N ln
1

N

XL
j¼1

vjS
2
j

 !
�
XL
j¼1

vj ln S
2
j ,

where

N ¼
XL

j¼1
vj:

If the hypothesis that the variances are equal is correct, then the ratio

χ21 ¼
M

1þ 1
3 L�1ð Þ

PL
j¼1

1
vj
� 1

N

 !

is distributed approximately as χ2 with v ¼ L – 1 degrees of freedom.

Given the chosen significance level q, from Table A.4, we find χ2q, such that

P χ2 < χ2q

� �
¼ q. If the inequality χ21 < χ2q is satisfied, then differences between the

estimates of the variances are admissible, i.e., they could be due to randomness of

the data.

The admissibility of differences between the arithmetic means is also checked

differently in the case of two or more groups of observations. We shall first examine

the comparison of the arithmetic means for two groups of observations, when there

are many observations, so that each estimate of the variances can be assumed to be

equal to its variance.

We denote by �x1, σ21, and n1 the parameters of one group and by �x2, σ22, and n2 the
parameters the other group. We form the difference �x1 � �x2 and estimate its

variance:

σ2 �x1 � �x2ð Þ ¼ σ21
n1

þ σ22
n2

:

Next, having chosen a certain significance level q, we find α ¼ 1 – q, and from

Table A.1, we find the quantile z1þα
2
of the Gaussian function corresponding to the

probability 1þα
2

. A difference between the arithmetic means is considered admis-

sible if

j �x1 � �x2 j� z1þα
2
σ �x1 � �x2ð Þ:
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If the variances of the groups are unknown (e.g., if the number of observations is

not sufficient to take variance estimations for the true values of variances), then the

problem can be solved only if both groups have the same variances (the estimates of

this variance eσ2
1 and eσ2

2 can, naturally, be different). In this case, the statistic

t ¼ j �x1 � �x2 jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð Þeσ2

1 þ n2 � 1ð Þeσ2
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2 n1 þ n2 � 2ð Þ

n1 þ n2

s

is distributed approximately according to Student’s distribution.
Then, given the significance level q, from Table A.2 for Student’s distribution

with v ¼ (n1 + n2–2) degrees of freedom, we find tq such that P{t> tq}¼ q. The
difference between the arithmetic means is regarded as admissible if t < tq.

If the number of groups is large, the admissibility of differences between the

arithmetic means is checked with the help of another variant of Fisher’s test. The
first step in Fisher’s test includes a check that all groups have the same variance,

using the methods above. Then, Fisher’s method involves comparing estimates of

the intergroup variance S2L and the average variance of the groups S2 :

S2L ¼ 1

L� 1

XL
j¼1

nj �xj � �x
 �2

,

where

�x ¼

PL
j¼1

nj�xj

N
, N ¼

XL
j¼1

nj

and

S2 ¼ 1

N � L

XL
j¼1

Xnj
i¼1

xij � �xj
 �2

:

Both estimates of the variances have a χ2 distribution with v1 ¼ L – 1 and v2 ¼
N – L degrees of freedom, respectively. Their ratio has Fisher’s distribution with the
same degrees of freedom.

The spread of the arithmetic means is admissible if F ¼ S2L=S
2 for the selected

probability lies within the interval from FL to FU:

P FL � F � FUf g ¼ α

The upper limits of Fisher’s distribution FU are presented in Tables A.5 and A.6;

the lower limits are found from the relation FL¼ 1/FU. If the significance levels in
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finding FU and FL are taken to be the same q1¼ q2¼ q, then the overall significance
level of the test will be 2q and

α ¼ 1� 2q:

A method for checking the admissibility of the spread in the arithmetic means of

the groups when the variances of the groups are different has also been developed,

but it is more complicated.

It should be noted that a significant difference between the arithmetic means

could indicate that systematic errors exist in the observational results of some of the

groups, and these errors are different in different groups. Therefore, measurements

cannot be performed with the required accuracy.

We shall now discuss nonparametric methods for testing homogeneity. These

methods do not require any assumptions about the distribution function of the

population and are widely used in mathematical statistics.

We begin withWilcoxon rank sum test for checking if two groups of observation
belong to the same probability distribution. More formally, assume that we have

two samples: {xi} , i ¼ 1,..., n1, of random quantity X, and {yi}, j ¼ 1,..., n2 of

random quantity Y, and let n1 � n2. We check the hypothesis H0: F1 ¼ F2, where F1

and F2 are the distribution functions of the random quantities X and Y, respectively.
The sequence of steps in checking H0 is as follows. Both samples are combined,

and an ordered series is constructed from N¼ n1 + n2 elements; i.e., all observations

xi and yj are arranged in increasing order, irrespective of the sample to which these

observations belong. Next, each element is assigned a rank as follows. Elements

with unique values receive the rank equal to their order number in the series. All

elements sharing the same values (which will obviously always appear next to each

other in the series) receive the same rank equal to the arithmetic mean of their

position numbers.

For example, the series (2.3, 2.5, 2.5, 2.6, 2.6, 2.6) will have ranks (1, 2.5, 2.5,

5, 5, 5). Indeed, the first element has a unique value so it receives its order number as

its rank. The next two elements are equal and they get rank 2.5 equal to their average

of their order numbers (2 and 3) in the series. The last three elements are also equal

and receive the rank 5, which is the average of their positions (4, 5, and 6).

Next the sum of the ranks of all elements of sample {xi} is calculated. The sum

T obtained is then compared with the critical value Tq for a selected significance

level q. For small values of n1 and n2, tables listing Tq(n1, n2) are given in most

modern books on statistics. (These tables usually list values of Tq only for n1 � n2,
which is why we compute T for the smaller sample.) For n1, n2 > 25, the critical

value Tq can be calculated using the normal distribution N(m1, σ
2):

Tq ¼ mþ z1�qσ,

where

m ¼ n1 N þ 1ð Þ
2

, σ2 ¼ n1n2 N þ 1ð Þ
12
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and z1–q is the quantile of the standard normal distribution N(0,1) for probability
(1 – q). The hypothesis H0 is rejected with significance level q against the alterna-

tive and it means that X is stochastically greater (i.e., has greater mathematical

expectation) than Y if T > Tq. For a two-sided alternative, H0 is rejected against the

alternative that X is stochastically different from Y with significance level 2q if T >
Tq or if

T < n1 N þ 1ð Þ � Tq:

Another nonparametric method for checking homogeneity is the Siegel-Tukey
test, which also considers two samples, {xi} and {yi}, where n1 � n2 and tests the

hypothesis H0: F1 ¼ F2. The Siegel-Tukey test assumes that both distributions have

the same mathematical expectation. All N ¼ n1 + n2 values of the two samples are

again arranged into one sequence in the increasing order, and each element is

assigned a rank based on its position in the sequence. However, the procedure for

rank assignment is different. First, preliminary ranks are assigned as follows:

rank 1 is given to the first element, rank 2 to the last (N-th) element, rank 3 to the

(N – 1)-st element, rank 4 to the second element, rank 5 to the third element, rank

6 to the (N – 2)-nd element, and so on. Then, all neighboring elements with equal

values receive the same final rank equal to the average of the preliminary ranks of

all these elements.

Next, we compute the sum R of the ranks of the elements of sample {Xi}. Assume

for simplicity that samples are sufficiently large (n1, n2 > 25). From R, we calculate
the standardized variable z, defined as

z ¼
R� n1 Nþ1ð Þ

2

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2 Nþ1ð Þ

12

q
For significance level q, the hypothesisH0 is rejected if z> z1� q, where z1� q is a

quantile for probability (1 – q) of the standard normal distribution N(0 1).

The Wilcoxon’s test is based on comparing the average values of two samples,

whereas the Siegel-Tukey test is based on estimates of the variances. Indeed, in

Wilcoxon’s test, if the two expectations were dissimilar, observations of one sample

would tend to group toward one side of the combined sequence. Then its rank sum

T would tend to be either large or small. In contrast, ranks in Siegel-Tukey test are

assigned so that elements away from the middle of the sequence receive smaller

ranks than those close to the middle. If one sample had lower variance, its elements

would tend to be clustered around the middle of the sequence. Thus, the sum of their

ranks R would be high. For this reason, these two tests supplement one another.

As an example of the complimentary nature of these tests, consider again the

experiment from Sect. 2.7 that checked the homogeneity of two batches of the same

types of measuring instruments. Table 3.1 gives calculation data for homogeneity

checking of two batches of 160 ammeters for a moving-iron instrument Э59 with

respect to the error at marker 30 of the graduated scale [47].
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For the Wilcoxon’s test, we obtain T ¼ 25,403. Let q ¼ 0.05. Then z0.95 ¼ 1.96,

and

Tq ¼ 160∗321

2
þ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
160þ 160þ 321

12

r
¼ 27, 620:

As 25,403<27,620, the hypothesis that the samples are homogeneous is

accepted based on Wilcoxon’s test.
Consider now the Siegel-Tukey test. According to the data in the table,

R ¼ 23,713. We thus obtain

z ¼ 23; 713� 160�321
2

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
160�160�321

12

q ¼ 2:3:

Table 3.1 The example of rank determination for nonparametric homogeneity testing

Value

of the

error

Number of

instruments

with a given

error in the

sample

Wilcoxon’s test Siegel–Tukey test

Average rank

of a given

value the

of the error

Sum of ranks for

a given value of

the error in

sample x

Average rank

of a given

value of the

error

Sum of ranks for

a given value of

the error in the

sample xx y x + y

�0.50 1 1 2 1.5 1.5 2.5 2.5

�0.40 3 0 3 4.0 12.0 7.3 22.0

�0.30 3 0 3 7.0 21.0 13.7 41.0

�0.25 1 0 1 9.0 9.0 17.0 17.0

�0.20 13 5 18 18.5 240.5 36.5 474.5

�0.15 2 2 4 29.5 59.0 58.5 117.0

�0.10 10 8 18 40.5 405.0 80.5 805.0

�0.05 3 2 5 52.0 156.0 103.6 310.8

0.00 15 28 43 76.0 1,140.0 151.5 2,272.5

0.05 5 5 10 102.5 512.5 204.5 1,022.5

0.10 26 35 61 138.0 3,588.0 573.5 7,108.4

0.15 7 4 11 174.0 1,218.0 293.5 2,054.5

0.20 34 41 75 217.0 7,378.0 207.5 7,055.0

0.25 1 3 4 256.5 256.5 128.5 128.5

0.30 17 11 28 272.5 4,632.5 96.5 1,640.5

0.40 13 11 24 298.5 3,880.5 44.5 578.5

0.45 1 1 2 311.5 311.5 18.5 18.5

0.50 4 2 6 315.5 1,262.0 10.5 42.0

0.60 0 1 1 319.0 0.0 3.0 0.0

0.80 1 0 1 320.0 320.0 2.0 2.0
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Let us take q ¼ 0.05 and therefore z0.95 ¼ 1.96, the same values we used in the

Wilcoxon’s test. As z > z0.95, the hypothesis that the samples are homogeneous is

rejected based on the Siegel-Tukey test. Thus, the two tests bring different

outcomes.

3.10 Robust Estimates

The distribution function by its nature is a mathematical concept. It is used in

measurements as a theoretical model for a set of measurements. As always, a

complete conformance between the model and the real set of data is impossible.

Therefore, different models can be chosen for the same data. A small difference

between the models may lead to significantly different estimation of the measurand.

A solution to this problem was offered by so-called robust estimations [30]. Among

the earliest known robust estimations, the most popular are the truncated means, the

Winsor’s means, and the weighted means [33]. These methods assume that mea-

surement observations are arranged in an ordered series; i.e.,x1� x2� � � � � xn.

• The Truncated Means. Given the ordered series above, the method of truncated

means discards k values from the left and the right ends of this series. The

number k is obtained as k¼bnpc, where 0< p< 0.5 and the notation bnpcmeans

that k is the greatest integer number that is equal to or smaller than np. The rest of
the series provides the robust estimate of the measurand by the formula

~AT ¼ 1

n� 2k

Xn�k

i¼kþ1

xi:

Note that the truncating procedure is similar to the usual practice of eliminating

the outlying result from the sample, which is described in Sect. 3.4.

• The Winsor’s Means. Rather than discarding extreme items in the ordered series,

the Winsor’s method replaces them with the neighboring items. The robust

estimate of the measurand is calculated by the formula:

~AW ¼ 1

n

Xn� kþ1ð Þ

i¼kþ1

xi þ k þ 1ð Þ xkþ1 þ xn�kð Þ
( )

:

• The Weighted Means. The weighted means method obtains a robust estimate by

computing a linear combination of the measurement data. There are numerous

variations in this method [30]. Here we present one such variation, which uses

the weighted average of the median of the series and two items symmetrically

located around the median in the series [33].
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Median M is determined by the formula:

M ¼
xkþ1 if n ¼ 2k þ 1;
1

2
xk þ xkþ1ð Þ if n ¼ 2k:

(

The robust estimate of the mean according to this method is then given by the

following formula:

~AC ¼ 1� 2εð ÞM þ 2ε
xl þ xn�lþ1ð Þ

2
,

where (1 –2ε) and 2ε are the weights, ε<<1, and x1 and xn – l + 1 are the positions of

the two symmetrical items chosen for the estimation.

Numerous other robust estimates were also proposed. Thus, it is not clear which

method to choose for a given measurement. Hogg [30] addressed this difficulty as

follows. His method takes advantage of the natural assumption that all density

distributions are symmetrical, the assumption on which all other robust estimates

are based anyway. Symmetrical distributions can be characterized by one parameter

– the excess e (see Sect. 3.1):

e ¼ μ4
σ4

:

Hogg proposed to divide all distributions into several classes depending on the

value of e, in such a way that for all distributions in the same class, the mean value

can be calculated with the same formula. Thus, the estimate of the measurand for

each class will not depend on the distribution function. The estimate of the excess

e is found from the formula:

æ ¼
Pn

i¼1 xi � ~A
 �4
nS4

:

The price this method pays for the robust estimate is the loss in the efficiency of

the estimate. Therefore, a desired solution would find a compromise between the

number of classes and the loss of the efficiency. Hogg studies the system of four

classes named classes A, B,C, andD. The range of values of æ for each class and the

corresponding formulas for estimating the mean value of the data are given in

Table 3.2. Hogg found that the four classes he proposed lead to loss in efficiency of

no more then 20%, which is acceptable.

Another system of classes was proposed later by Mechanikov [39]. This system

contains only three classes, which are also determined by the values of æ. These

classes and the corresponding formulas for the estimation of the mean are shown in

Table 3.3. As one can see, the formulas in Table 3.3 are the same as those used in

the Hogg system: Class 1 uses the same formula as Class D, Class 2 as Class B, and
Class 3 as Class A, but Class C is eliminated.
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The estimations of variances of robust estimates are calculated in a common

way, but constructing confidence intervals presents a difficult problem that is

generally not discussed in the robust estimates literature. A simple nonparametric

(i.e., not relying on a particular probability distribution) method to construct these

intervals has been proposed in [29]. In this method, the confidence interval is

defined by two elements located symmetrically about the median in the ordered

series.

For a given confidence probability α, the symmetrical positions l and r, which
define the confidence interval [xl, xr], are found as follows2:

l ¼ 1

2
nþ 1� z

1þ α

2

ffiffiffi
n

p� �� �
and r ¼ 1

2
nþ 1þ z

1þ α

2

ffiffiffi
n

p� �� �
,

where z1þα
2
is the corresponding quantile of the standard normal distribution.

For example, for the ordered series of size n ¼ 49 and α ¼ 0.95, ~A ¼ M ¼ x25
and l ¼ 19 and r ¼ 31. The confidence interval is thus [x19, x31].

The inverse calculation was proposed in [39]. Here, we first choose the sym-

metrical elements in the ordered series as the confidence interval boundaries

and then calculate the corresponding confidence probability for this interval. Let

k be the distance of the boundary elements from their corresponding ends of

the sequence, so that the interval is [xk, xn—k+1]. The confidence probability that

Table 3.2 Classes of

distribution functions

and formulas for estimation

of their mean values

after Hogg

Distribution

class æ

Formula for the

measurand estimation

A æ <2 ~Aa ¼ 1

2
x1 þ xnð Þ

B 2< æ <4
~Ab ¼ �x ¼ 1

n

Xn
i¼1

xi

C 4< æ

<5.5 ~Ac ¼ 1

n� 2 n=4b c
Xn� n=4b c

i¼ n=4b cþ1

xi

D 5.5< æ ~Ad ¼ M

Table 3.3 Classes of

distribution functions and

formulas for estimation of

their average values after

Mechanikov

Distribution

class æ

Formula for the

measurand estimation

1 4< æ ~A1m ¼ M

2 2.5< æ <4
~A2m ¼ �x ¼ 1

n

Xn
i¼1

xi

3 1.8< æ <2.5 ~A3m ¼ x1 þ xn
2

2As usual, bxc denotes the greatest integer equal to or smaller than x and dxe stands for the smallest

integer equal to or greater than x.
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the true value A is covered by that confidence interval is computed according the

formula:

P xk � A � xn�kþ1f g ¼ 1

2n

Xn� kþ1ð Þ

i¼k

i
n

 �
:

In particular, for

k ¼ 2, P x2 < A < xn�1f g ¼ 1� nþ 1

2n�1
,

k ¼ 3, P x3 < A < xn�2f g ¼ 1� n2 þ nþ 2

2n�1
:

For k > 3, the formulas become much more complicated. But for k ¼ 4 and

5, one can use approximate relations presented in [39]:

k ¼ 4, P x4 < A < xn�3f g 
 1� 0:17n3

2n�1
,

k ¼ 5, P x5 < A < xn�4f g 
 1� 0:037n4

2n�1
:

Nonparametric methods are widely used in statistical analysis. However, to

construct confidence intervals, they require many more observations than paramet-

ric methods.

3.11 Bootstrap Construction of Confidence Intervals

At the end of the twentieth century a new method for statistical analysis emerged,

which came to be known as the bootstrap method [23]. We can explain the essence

of this method on a simple example. Assume some quantity was measured and ten

observations were obtained, x1 , . . . , x10. In other words, we have a sample of ten

observations from an unknown distribution. Then one can perform so-called boot-
strap sampling, which boils down to repeated sampling with replacement from the

ten observations at hand. One can imagine a bag with ten identical chips, with

numbers from 1 to 10 written on each chip. The numbers on the chips denote the

measurement observations. We take one random chip, write down its number and

return the chip back into the bag. Once we repeat this step ten times and write down

ten numbers, we obtain one bootstrap sample, and can start producing another. This

way we can generate an arbitrary number of bootstrap samples. (Obviously in

reality we would use a computer program with pseudorandom numbers to obtain

the bootstrap samples and perform the rest of the data processing here.)
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Then for each bootstrap sample, we can compute the estimates of the parameters

of interest. In the case of measurement data processing, one obtains an estimate of

the measurand produced by each sample, as the mean value of the sample. With a

sufficient number of the samples, one can construct the cumulative distribution

function of the means. Having the distribution function and cutting off its tails at the

levels of P¼ (1� α)/2 on the left and P¼ (1 + α)/2 on the right, we obtain the limits

of the confidence interval that covers with probability α the true value of the

measurand. For the estimate of the measurand, one can take any of the means

within the obtained interval.

3.12 Application of the Bayes’ Theorem

The Bayes’ Theorem is well studied in the probability theory. Also widely held

among mathematicians has been an opinion that this theorem allows one to utilize a

priori information about the measurand and in this way to improve the accuracy of

the measurement. Further, it is appealing to consider a measurement as a process of

increasing the amount of acquired information and, correspondingly, of increasing

the accuracy of the obtained results.

The initial or a priori information in the Bayes’ Theorem is usually considered to

be the probability density function of the measured quantity [20]. Unfortunately,

this information is not, and cannot be, available for parameters like mathematical

expectation in statistics and for the quantities to be measured in metrology. Besides

that R. Willink in the book [54] states that in the Bayes Theorem meaning of the

term probability is not the same as it has in statistics. Perhaps for these reasons the
Bayes’ Theorem became not popular in mathematics [20] and did not find practical

usage in measurement data processing.

A new possibility to use Bayes’ Theorem in metrological practice was offered by

research based on the concept of likelihood [22, 36]. Following the monograph [36],

the propositions of interest in metrological applications are usually (a) the

measurand Q belongs to an infinitesimal interval (q, q+ dq) and (b) d is the data

obtained in the result of the measurement.

Let f(q) be the PDF of measurand Q before the measurement; it represents a

priori knowledge about Q, and let f(q|d ) be the conditional PDF of Q given the

measurement data d. Then, according to Bayes’ Theorem,

f qjdð Þ ¼ f qð Þf djqð Þ
f dð Þ :

Integrating both parts of the above equation by q, under the assumption that f(d)

is constant, and after applying the normalization condition that
Ðþ1

�1
f qjdð Þdq ¼ 1,

we can obtain
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f dð Þ ¼
ðþ1

�1
f qjdð Þf qð Þdq:

It is suggested to consider f(d|q) as the PDF of variable d assuming Q takes given

values q, if d is referred to the possible values of some random quantityD. To return
to the original meaning of notations d and q, a function l is introduced. Function
l differs from f in that its arguments d and q switch places; furthermore, l is defined
so that

f djqð Þ ¼ l qjdð Þ:

Function l is called likelihood. With its introduction, Bayes’ Theorem takes the

form

f djqð Þ ¼ l qjdð Þf qð ÞÐþ1
�1 f qjdð Þf qð Þdq :

Monograph [36] points out that the new function cannot be considered as a PDF

but it represents a new concept, which is called likelihood. This concept is then

applied to a direct multiple measurement and several indirect measurements.

Let us consider the direct measurement. The a priori information is that the

measurement method employed produces observations that belong to a normal

distribution. The monograph compares the results obtained using the modified

Bayes’ Theorem with the results produced by a traditional method of maximum

likelihood with the same normal distribution of the observations.

It turned out that while both methods produce the same estimate of the

measurand, their estimates of the variance are different. The estimate produces

using the modified Bayes’ Theorem is

S2 �qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1ð Þ= n� 3ð Þ

p ∗
S2,

where n is the number of repeated measurements in the multiple measurement, S2 is
the variance estimate produced by the maximum likelihood method and S2 �qð Þ is the
same estimate produced by the new method based on the modified Bayes’ Theorem.

The increase in the variance estimate is small but significant, and this discrep-

ancy requires an explanation. First, it is noteworthy that while the primary motiva-

tion for using the Bayes’ Theorem was to extract more accuracy from the

measurement data, the variance estimate it produced turned out to be higher,

meaning the opposite outcome. Moreover, long practice of utilizing the maximum

likelihood method has not given reason to suspect that it produces results with

artificially overestimated accuracy. Second, both methods cannot be correct given

that they produce different variance estimates. These issues must be resolved before

one can recommend applying the Bayes’ Theorem in practical measurements. Also,

the concept of the likelihood function should be made clear.
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Chapter 4

Direct Measurements

4.1 Relation Between Single and Multiple Measurements

The classical theory of measurement errors is constructed based on the well-

developed statistical methods and pertains to multiple measurements (we refer

the reader back to Chap. 1 for the introduction of basic terms such as multiple

and single measurements, uncertainty, error, and limits of errors). In practice,

however, the overwhelming majority of measurements are single measurements,

and however strange it may seem, for this class of measurements, there is no

accepted method for estimating their inaccuracy [43].

In searching for a solid method for estimating errors in single measurements, it is

first necessary to establish the relation between single and multiple measurements.

At first glance, it seems natural to regard single measurements as a particular case of

multiple measurements, when the number of measurements is equal to 1. Formally

this is correct, but it does not serve any purpose, because statistical methods do not

work for single observations. In addition, the question of when one measurement is

sufficient remains open. In the seemingly natural approach above, to answer this

question – and this is a fundamental question – it is first necessary to perform a

multiple measurement and then, analyzing the results, to decide whether a single

measurement was possible. But such an answer is in general meaningless: A

multiple measurement has already been performed, and nothing is gained by

knowing, in the hindsight, one measurement would have sufficed. Admittedly, it

can be countered that such an analysis will make it possible not to make multiple

measurements when future such measurements are performed. Indeed, that is how

the above approach is used, but only when preliminary measurements are

performed, i.e., in scientific investigations when some new object is studied. This

is not done in practical measurements.

The original version of this chapter was revised. An erratum to this chapter can be found at https://

doi.org/10.1007/978-3-319-60125-0_11
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When one needs to measure, for example, the voltage of some source with a

given accuracy, they choose a voltmeter with suitable accuracy and perform the

measurement. If, however, the numbers on the voltmeter indicator dance about,

then it is impossible to perform a measurement with the prescribed accuracy, and

one must reexamine the measurement task and objective rather than performing a

multiple measurement.

For practical applications, we can state the opinion that single measurements are

well grounded in experience, distilled in the construction of the corresponding

measuring instruments, and measuring instruments are manufactured so that single

measurements could be performed.

From the foregoing assertion, a completely different point of view follows regard-

ing the relationship between single and multiple measurements. Namely, single

measurements are the primary, basic form of measurement, whereas multiple mea-

surements are derived from single measurements and in essence are simply repeated

single measurements. But multiple measurements are more accurate then single

because they permit to minimize and even eliminate the random errors. Therefore

they are performed when necessary get the most precision results of measurement: in

scientific research. It is interesting that measurement problems that require multiple

measurements are known beforehand: they can even be enumerated. Namely, the

multiple measurements are performed in the following cases:

(a) When investigating a new phenomenon or a new object and relationships

between the quantities characterizing the object, as well as their connection

with other quantities, are being determined; in other words, when preliminary

measurements, according to the classification given in Chap. 1, are performed.

(b) When measuring the average value of some parameter, according to the goal of

the measurement problem.

(c) When the effect of random errors of measuring instruments must be reduced.

There is another point of view, namely, that any measurement must be a multiple

measurement, because otherwise it is impossible to judge the measurement process

and its stability and to estimate its inaccuracy. We cannot agree with this opinion.

First, it contradicts practice, where single measurements dominate. Second, it also

does not withstand fundamental analysis.

Imagine that the same constant quantity is measured simultaneously using a

multiple and a single measurement. In both cases, the measurements are performed

with the same analog instrument whose response time is tr. In Fig. 4.1a, the dots

show the results of individual measurements comprising the multiple measurement,

and the curve in Fig. 4.1b represents a continuous photorecording of the indications

of the instrument in the single measurement. The single measurement makes it

possible to obtain the value of the measurand immediately after the instrument

response time tr, while the multiple measurement takes at least this time multiplied

by the number of individual measurements.

If it is desirable to check the stability of the measurement, then one can continue

the observation using the single measurement. The measurement process is stable if

the readings of the instrument over a chosen time ΔT do not change appreciably.

Furthermore, it is possible to estimate the inaccuracy of the result of a single

measurement. Methods for calculating errors and uncertainty of the results of single
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measurements are given later in this chapter. Thus, in this case, a single measure-

ment is sufficient to obtain the measurement result, to estimate its inaccuracy, and

to assess the stability of the measurement process. In fact, a single measurement

allows one to make a better judgment than a multiple measurement because the

latter represents only separate moments of the process, whereas the former gives the

whole continuous picture.

The above example does not say that a single measurement is better than a

multiple measurement. It says only that a multiple measurement should not be

performed when a single measurement is possible. But when a multiple measure-

ment is necessary, a single measurement cannot possibly replace it, and in this case

and in this sense, a multiple measurement is better than a single measurement.

Yet the above example supports our argument that single measurements must be

regarded as independent and the basic form of measurement. Correspondingly, the

problem of developing methods for estimating the accuracy of single measurements

must be regarded as an independent and important problem of the theory of

measurements.

This is a good point at which to discuss another aspect of the question at hand. In

many fields of measurements, modern digital measuring instruments can operate so

fast that over the time allotted for a measurement, say, 1 s, hundreds of measure-

ments can be performed. By carrying out these measurements and averaging their

results, we utilize all of the time allotted for measurement, and, thanks to this, we

reduce correspondingly the effect of interference and noise.

Consider now an analog instrument having the same accuracy as a fast measur-

ing device, but with the response time equal to the time allotted to the measurement,

i.e., in our case, 1 s. From the time constant of the instrument, the effect of

interference and noise will be suppressed to the same degree as for discrete

averaging in the first case; i.e., we shall obtain the same result.

In other words, the measurement time is of fundamental importance, and there is

no significance in how the interference and noise are filtered – in the discrete or

analog form – over this time. In practice, discrete averaging is often more conve-

nient, because in this case, the averaging time can be easily changed.

a

+ + + ++

b

0

ΔT

x

ttr
0

ΔT

x

ttr

Fig. 4.1 Results of measurements in the case of (a) a multiple measurement and in (b) a single

measurement with continuous photorecording of the indication
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4.2 Classification of Elementary Errors

The classification of measurement errors presented in Chap. 1 also applies, of

course, to elementary errors. Continuing the analysis, this classification must be

further developed as it applies to elementary errors. The main two types of

elementary errors are systematic and random errors.

Taking into account and eliminating systematic errors is an important problem in

every accurate measurement. In the theory of errors, however, little attention has

been devoted to systematic errors. In most books on methods of data processing, the

question of systematic errors is either neglected or it is assumed that these errors

have been eliminated. In reality, however, systematic errors cannot be completely

eliminated; some unexcluded residuals always remain. These residuals must be

taken into account to estimate the limits of the unexcluded systematic error of the

result.

In addition, many measurements are performed without special actions taken to

eliminate systematic errors, because either it is known a priori that they are small or

the conditions of measurement make them impossible to be eliminated. For exam-

ple, in measurements of the mass of a body, corrections are often not applied to the

values of the balance weights employed, either because the corrections are small or

because the errors of the weight values are unknown (only their limits are known).

Sometimes the unexcluded residuals of the systematic errors are assumed to be

random errors based on the fact that their values are unknown. We cannot agree

with this point of view. When classifying errors as systematic or random, attention

should be focused on their properties rather than on whether their values are known.

For example, suppose that the resistance of a resistor is being measured and a

correction is applied to compensate for the influence of the temperature. The

systematic error would be eliminated if we knew exactly the temperature coefficient

of the resistor and the temperature. But we only know both quantities with limited

accuracy, and for this reason, we cannot completely eliminate this error. An

unexcluded residual of the error will remain. It can be small or large; this we can

and should estimate, but its real value remains unknown. Nonetheless, this residual

error has a deterministic value, which remains the same when the measurement is

repeated under the same conditions, and for this reason, it is a systematic error.

Errors that have been eliminated are no longer errors. Therefore, the unexcluded

residuals become the systematic error in the measurement if they cannot be

neglected.

The error in a measurement can be both systematic and random, but after the

measurement has already been performed, the measurement error becomes a

systematic error. Indeed, the result of a measurement has a definite numerical

value, and its difference from the true value of the measured quantity is also

constant. Even if the entire error in a measurement was random, for a measurement

result, it becomes systematic; i.e., it seemingly freezes.

We shall now discuss the classification of systematic errors. Our discussion on

systematic errors classification is based on the work of M.F. Malikov, and following
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this work, we shall distinguish systematic errors according to their sources and

properties [37]. The sources of systematic errors can be three components of the

measurement: the method of measurement, the measuring instrument, and

the experimenter. Correspondingly, methodological, instrumental, and personal

systematic errors are customarily distinguished.

Methodological errors arise from imperfections of the method of measurement

and from the limited accuracy of the formulas used to describe the phenomena on

which the measurement is based. We shall also classify as methodological errors

the errors arising as a result of the influence of the measuring instrument on the

object whose property is being measured.

For example, the moving-coil voltmeter draws current from the measurement

circuit. Because of the voltage drop on the internal resistance of the source of the

voltage being measured, the voltage on the terminals of the voltmeter will be less

than the measured value. The indications of the voltmeter, however, reflect the

voltage on its terminals. The error that arises – a methodological error – should be

insignificant or eliminated by a correction.

A methodological error can also arise in connection with the use of the measur-

ing instrument. For example, the gain of a voltage amplifier is determined by

measuring the voltages at the input and the output. If these voltages are measured

successively using the same voltmeter, as is often done in practice, then, aside from

the voltmeter error, the measurement error will include the error from some

uncontrollable change in voltage at the amplifier input over time. This error does

not arise when two voltmeters are employed to measure the input and output

voltage at the same time. (Of course, in the case of the two voltmeters, the overall

measurement error is impacted by the instrumental errors of both of the voltmeters,

so the choice of the measurement method must depend on the particular circum-

stances. For instance, if the input voltage was known to be stable, the one-voltmeter

method would be preferable.)

We note that the error from the threshold discrepancy between the model and the

object (see Sect. 1.4) is also a methodological error.

Instrumental systematic errors are errors caused by imperfections of the mea-

suring instrument. One example of such errors is errors caused by imprecise

calibration of the instrument scale. Other examples include the inaccuracy of

balance weights and the error of a resistive voltage divider from the inaccurate

adjustment of the resistances of its resistors.

Another group of such errors is additional and dynamic errors. These errors also

depend on the imperfections of the measuring instruments, but they are caused

by influence quantities and noninformative parameters of the input signal

(see Sect. 2.3) as well as by the change in the input signal in time. Most often the

additional and dynamic errors are systematic errors. When the influence quantities

and the forms of the input signal are unstable, however, they can become random

errors.

Setup errors, i.e., errors arising from the arrangement of the measuring instru-

ments in conducting the measurement and their effect on one another, are also

instrumental errors.
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Personal systematic errors are systematic errors caused by the individual

characteristics of the observer. Specifically, we shall discuss the errors in the

reading of the indications of indicating instruments. Such errors were investigated

by H. Bäkstr€om [17]. He studied the question of how people estimate tenths of the

graduations of an instrument scale when reading the instrument indication.

Although Bäkstr€om’s work simulated real devices by drawings depicting the

edges of a scale graduation and the indicator of the instrument, the results obtained

are plausible.

In his study, Bäkstr€om presented the drawings to human subjects and asked them

to estimate the tenths of the graduation given by the indication. He found that the

systematic errors made by every observer when estimating tenths of a graduation of

an instrument scale can reach 0.1 of the graduation and are much larger than

random errors. These systematic errors are manifested by the fact that for different

positions of the indicator within the graduation, different observers characteristi-

cally produce estimates with different frequencies, and in addition, the distribution

characteristic of the estimates for every observer remains constant for a long period

of time. This phenomenon can be explained by the conjecture that one observer

tends to refer indications relative to the lines forming the edges of graduation and to

the middle (fraction 0.5) of a graduation. Another observer refers indications to the

fractions 0.4 and 0.6 of a graduation. A third observer prefers fractions 0.2 and 0.8

of graduations and so on.

The error in estimation of tenths of graduations depends on the thickness of the

markers – the lines forming the scale. The optimal thickness of these markers is 0.1

of the length of a graduation. The length of a graduation also significantly affects

the error in reading tenths of a graduation. Instrument scales for which tenths of a

graduation can be read are usually made so that the length of a graduation is equal to

about 1 mm (not less than 0.7 mm and not more than 1.2 mm). On the whole, for a

random observer, the distribution of systematic errors in the readings of tenths of a

graduation can be assumed to be uniform with limits of �0.1 graduations.

Let us now consider types of systematic errors according to their properties.

In this regard, constant systematic errors are distinguished from regularly varying

systematic errors. The latter, in turn, are subdivided into progressing and periodic

errors and errors that vary according to a complicated law.

A constant systematic error is an error that remains constant, and for this reason,

it is repeated in each observation or measurement. For example, such an error will

be present in measurements performed using the same instruments and devices that

have a systematic error: balance weights, measuring resistors, and so on. The

personal errors made by experienced experimenters can also be classified as

constant (for inexperienced experimenters, they are usually of a random character).

Progressing errors are errors that increase or decrease with passing of time, so

every later observation will have a higher or lower error. Such errors are caused, for

example, by the change in the working current of a potentiometer from the voltage

drop of the storage battery powering it.

Periodic errors are errors that vary with a definite period. In the general case, a

systematic error can vary according to a complicated aperiodic law.
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The detection of systematic errors in a measurement is a complicated problem.

It is especially difficult to detect a constant systematic error. To solve this problem,

several measurements (at least two) should be performed by fundamentally differ-

ent methods. This method is ultimately decisive. It is often realized by comparing

the results of measurements of the same quantity that were obtained by different

experimenters in different laboratories.

It is easier to discover variable systematic errors, which can be done with the

help of statistical methods, correlation, and regression analysis. But

nonmathematical possibilities also should not be avoided. Thus, in the process of

performing a measurement, it is helpful to employ a graph on which the results of

the measurements are plotted in the sequence in which they were obtained. The

overall arrangement of the points obtained makes it possible to discover the

presence of a systematic change in the results of observations without mathematical

analysis. If a regular change in observational results has been found and it is known

that the measured quantity did not change in the process, then this indicates the

presence of a regularly varying systematic error. The human capability of perceiv-

ing such regularities is widely employed in metrology, although this capability has

apparently still not been thoroughly studied.

It is also helpful to measure the same quantity using two different instruments

(methods) or to measure periodically a known quantity instead of the unknown

quantity.

If the presence of a systematic error has been discovered, then it can usually be

estimated and eliminated. In precise measurements, however, this often presents

great difficulties and is not always possible.

In most fields of measurements, the most important sources of systematic errors

are known and measurement methods have been developed that eliminate the

appearance of such errors or prevent them from affecting the result of a measure-

ment. In other words, systematic errors are eliminated not by mathematical analysis

of experimental data but rather by the use of appropriate measurement methods.

The analysis of measurement methods and the systematization and generalization

of measurement methods are important problems, but they fall outside the scope of

this book, which is devoted to the problem of analysis of experimental data. For this

reason, we shall confine our attention to a brief review of the most widely dissem-

inated general methods for studying such problems.

Most constant systematic errors are estimated analytically before the measure-

ment and not from the experimental data obtained during the measurement. These a

priori estimates usually produce definite (nonprobabilistic) limits for these errors.

We shall further divide constant systematic errors into absolutely constant and

conditionally constant errors.

By absolutely constant errors, we mean errors that, although they are specified

by definite limits, remain the same in repeated measurements performed under the

same conditions with every instance of measuring instrument of a given type. These

measurements will all contain the same absolutely constant elementary errors.

Consider for example a thermocouple. The errors of thermocouples of each type

are rated by specifying their standard characteristic (the dependency of the output
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EMF on the temperature difference at input). Every point of this characteristic has

its own error, which is constant for this point. There are known limits of error for the

thermocouple characteristic as a whole, so that the error at any point of the

characteristic falls within these limits. This information should be taken into

account when estimating the inaccuracy of the measurement of temperature.

By conditionally constant errors, we mean errors that have definite limits but

can vary within these limits due to the individual properties of particular measuring

instruments used in the measurement. A typical example of such an error is the

measurement error caused by the intrinsic error of the measuring instrument.

The intrinsic error, by its nature, can be a purely systematic error, but it can also

have a random component. For example, for weights, the intrinsic error does not

have a random component, but the actual magnitude of the intrinsic error varies from

oneweight to another. The intrinsic error of an electric measuring instrument with an

indicator needle has both systematic and random components, but on the whole, the

intrinsic error has definite limits that are the same for any instrument of a given type.

A conditionally constant error can even be purely random. Examples are the

rounding error in reading the indications of analog instruments and the error caused

by the limited resolution of digital instruments.

In summary, a fundamental property of conditionally constant elementary errors

is that although they have definite limits, they can vary within these limits.

Let us now turn to random errors. Before we proceed, it is interesting to note that

the random errors are usually not classified into categories based on their causes,

because a random error occurs in the course of a multiple measurement and is not

predicted from an a priori analysis like systematic errors.

The random error is estimated using data obtained in the course of the measure-

ment. If the random error is significant for that measurement, then the measurement

is performed many times. The primary characteristic of a random error is usually

the standard deviation, which is calculated from the experimental data. The entire

standard deviation, and not its separate components, is estimated directly. For this

reason, there is no need to qualify the term random measurement error with the

additional word elementary.
When performing an analysis, it is important to distinguish purely random and

quasirandom errors. Purely random errors can arise from different reasons. For

example, they can arise from noise or small (regarded as permissible) variations in

the influence quantities or the random components of the errors of the measuring

equipment.

Quasirandom errors appear in measurements of quantities that are by definition

averages, when the quantities being averaged are constant. As the simplest (albeit

artificial) example, one could measure a side of a (assumed to be) square object as

the average of its all four sides. Each side will be somewhat different from the

others, but will remain constant.

With quasirandom errors, the differences between individual quantities being

averaged are not random but are regarded as random. Using this assumption, the

quasirandom error of the measurement result can be characterized, just as in the

case of a purely random error, by an estimate of the standard deviation.
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4.3 Modeling of Elementary Errors

Ultimately, elementary errors are needed to assess the overall inaccuracy of the

measurement, which usually means estimating the uncertainty of the measurement

result. In other words, the measurement uncertainty is calculated from the elemen-

tary errors that are components of the overall measurement inaccuracy; i.e., this is a

problem of synthesis, performed mathematically. Correspondingly, elementary

errors must be represented by mathematical models. We shall examine the most

common types of elementary errors (according to their properties) from this

viewpoint: absolutely constant errors, conditionally constant errors, purely random

errors, and quasirandom errors. We will not consider models of the variable,

progressing, and periodic systematic errors because it is impossible to specify

general models for these types. Thus, these errors should be taken into account

differently in each particular case.

4.3.1 Absolutely Constant Errors

An absolutely constant error has the same value in any repeated measurement,

although this value is unknown. Only the limits of these errors are known. Modeling

of these errors depends on how one intends to estimate the accuracy of the

measurement that employs a measuring instrument with these errors.

If universal estimation of measurement accuracy is planned, then the estimation

must apply no matter what particular measuring instrument instance of a given type

is utilized. Then, over the entire set of these instrument instances, their absolute

constant errors should be modeled mathematically as a random variable. It is well

known that among distributions with given limits, the uniform distribution has the

highest uncertainty (in the sense of information theory). As an analogy, the

rounding error also has known limits, and in mathematics, this error has for a

long time been regarded as a random quantity with a uniform probability distribu-

tion. For this reason, we shall also assume that the model of such errors will be a

random quantity with a uniform probability distribution within prescribed limits.

One can also imagine a situation where the error of the measuring instruments

remains the same in all instruments of a given type and thus the probabilistic model

cannot be used. Let us go back to the example with measuring thermocouples from

Sect. 4.2. For all thermocouples of a given type, the same transfer function is

specified in their documentation as a standard characteristic of this type of thermo-

couples. If we assumed that the thermocouples were made from ideally pure

materials, all the thermocouples of this type would have exactly the same transfer

function. The function listed as their characteristic would still include the approx-

imation error as discussed in Sect. 4.2. But since this error is constant within the

same known limits for all devices, the probabilistic model is not suitable in this

case. A mathematical model of such errors should rather be considered a
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deterministic quantity whose magnitude has a deterministic interval estimate; i.e., it

lies within an interval of known limits. We discuss this model in more detail later in

this section, and show how to combine this deterministic quantity with other errors

in Sect. 4.7.

Obviously this deterministic model only applies to idealized scenarios. In our

example, real thermocouples use materials with impurities, and their characteristics

will not be identical from one device to the next. Thus, deterministic model in

universal estimation of measurement accuracy has limited applicability.

If individual estimation of measurement accuracy is planned, then the accuracy

estimation must account for the properties of the specific measuring instrument

instance used. For instance, assume that an electrical resistor with nominal resis-

tance 10Ω and the limits of error� 0.01% is used in a measurement with individual

accuracy estimation. The actual resistance of the resistor is unknown, and all we

know is that it cannot differ from the nominal value by more than 0.01%. Yet its

resistance is constant in all measurements using this particular instrument, hence its

deviation from the nominal value is an absolutely constant error. In contrast with

the universal accuracy estimation, we should model this error as a deterministic

quantity with a deterministic interval estimate. Unlike our earlier idealistic ther-

mocouple example, this case is often encountered in practice.

However, with individual accuracy estimation, the error of the given device is

often removed by an appropriate correction. The correction is determined from the

data in a calibration laboratory, which also specifies the inaccuracy of the calibra-

tion. Thus, instead of the model for the instrument error, we now need to find a

model for the error of the calibration of the instrument. The model of this error is

always a random variable, and its distribution function should in principle be

specified in the certificate from the calibration laboratory. But if the certificate

does not provide it, the model for the calibration error needs to be selected based on

what is known about the inaccuracy of the calibration. If the calibration inaccuracy

is given in the form of the limits, then, for the information-theoretic reasons

mentioned earlier, a random variable with uniform distribution should be taken as

the model. If the inaccuracy is given in the form of standard deviation, then based

on the information theory again, a random variable with the normal distribution

must serve as the model. In both cases, the mathematical expectation of the

distribution is taken to be zero.

Returning to our example with the electrical resistor, assume that this resistor has

undergone attestation and as the result has received the value10.0003 Ω and the

limits of inaccuracy �0.001%. The deviation from the nominal value (0.0003 Ω) is
strictly speaking no longer an error since the corresponding correction can be

applied. The calibration error (represented by the limits �0.001%) should be

considered a conditionally constant error, and its model should be a random

variable uniformly distributed within the specified limits.

In addition to the cases (as in our first resistor example) where the absolutely

constant error is not known due to lack of calibration, there are situations where

calibration is not feasible. For example, the measurement may utilize a unique

measuring instrument, such as a measurement standard (etalon) of a measurement
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unit, for which the value of its uncorrected systematic error is unknown although

the limits covering this error are known. In this case, the mathematical model of this

error should be considered a certain deterministic quantity with a deterministic

interval estimate �h, i.e., the error lies within an interval of known limits; in this

case, value h should be arithmetically added to the previously estimated uncertainty

of measurement result.

We can foresee an objection to this model. There is an opinion that if the value of

the error is unknown, then it can be regarded as a random quantity. However, this is

not correct. A model of an object can be constructed only based on what we know

about it and not based on what we do not know.

There is another objection. If the deterministic model above is adopted, then

when several absolutely constant errors are summed, their limits must be added

arithmetically. This process is equivalent to the assumption that all terms have

limiting values and the same sign, which is unlikely. The objection then is that the

deterministic model leads to overestimation of the overall measurement inaccuracy.

This objection also is invalid. First, the argument “unlikely” is not correct here,

because we are not using a probabilistic model. Second, the fact that we do not like

the result – the answer seems exaggerated – is also not an argument. In mathemat-

ics, precisely the same situation arises in methods of approximate calculations and

the limits of errors are added arithmetically in those methods.

Fortunately, in a measurement, rarely more than one or two absolutely constant

errors exist, and they are, as a rule, insignificant. Thus, summing their limits

arithmetically does not usually lead to overly exaggerated uncertainty in practice.

4.3.2 Conditionally Constant Errors

The values of these errors characteristically vary from one measurement to another

and from one measuring instrument to another, and they are different under

different conditions. In all cases, however, in each such error, the limits of the

interval containing any possible realization of the error remain unchanged and are

typically known to the experimenter.

As a mathematical model of conditionally constant errors, one would like to use

a random quantity. To specify this model, however, it is necessary to know the

probability distribution function of this random quantity. Ideally, one would like to

find this function based on the experimental data. Such an attempt was made for the

intrinsic error of measuring instruments. The results of that investigation were

presented in Chap. 2. Unfortunately, they showed that the distribution function of

the intrinsic error and, of course, the distribution function of the additional errors

could not be found from sample data.

Thus, to adopt the probabilistic model for conditionally constant errors, the

distribution function must be specified. Using the same information-theoretic

considerations discussed in Sect. 4.3.1, we assume that the model of conditionally

constant errors is a random quantity with a uniform probability distribution within
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specified limits. This suggestion was made a long time ago [48]. At the present

time, this model is widely employed in the theory of measurement errors [2, 5, 11].

An overwhelming majority of instrument errors belong to the conditionally

constant errors. Absolutely constant errors are rarely encountered in measurement

data processing. We will distinguish the absolutely constant errors only when we

need to use the deterministic model in accounting for these errors during data

processing.

4.3.3 Purely Random Errors

Such errors, often referred to as just “random errors” for short, appear in multiple

measurements. They are characterized by the standard deviation that is computed

from the experimental data.

The form of the distribution function of random errors can, in principle, be found

based on the data from each multiple measurement. In practice, however, the

number of measurements performed in each experiment is insufficient for this.

Thus, every time measurements are performed, it is assumed that the purely random

errors have a normal distribution, relying on the implicit assumption is that the

hypothesis of the normal distribution was checked in a preceding experiment.

Unfortunately, the normal distribution hypothesis is rarely directly checked. Yet

the results obtained using these assumptions are not inconsistent with the practice

so that this assumption is evidently justified. Thus, we shall assume that the

mathematical model of random errors is, as a rule, a normally distributed random

quantity.

4.3.4 Quasirandom Errors

As noted above, these errors occur when measuring quantities that are averages by

definition, and the value of each separate quantity being averaged remains constant.

These quantities are essentially not random, but can sometimes be regarded as a

random sample from a general population of quantities. Whether or not such an

assumption is justified depends on the goal of the measurement, and it is a judgment

call based on agreement of experts. If one does assume the randomness of the

underlying quantities, the parameters to be used to characterize their distribution

should also be determined by agreement. Most often the standard deviation is

chosen as this parameter.

We will conclude this section with a discussion on the question of

interdependence and correlation of elementary errors. Mathematically, it is prefer-

able to regard these errors as correlated quantities, because this approach is

extremely general. However, such an approach complicates the inaccuracy estima-

tion, and most of the time it is not justified. Under reference conditions, all
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elementary errors are independent and thus are uncorrelated. Exceptions can be

encountered in measurements performed under rated operating conditions, espe-

cially in the case of indirect measurements and measurements performed with the

help of measuring systems, when the same influence quantity causes appreciable

additional errors in several instruments or components in the measuring channel of

the system. An example is a measurement in which a measuring transducer,

amplifier, and automatic-plotting instrument are employed. A change in the tem-

perature of the medium can cause these devices to acquire an additional

temperature-induced error. Obviously, these additional errors will be interrelated.

Accounting for the dependency between additional errors is considered in Chap. 5.

4.4 Composition of Uniform Distributions

In Sect. 4.3, we have adopted the uniform distribution as the mathematical model of

conditionally constant elementary errors. Given several conditionally constant

elementary errors that contribute to the overall measurement error, how can we

assess the overall error? As already mentioned, this is a problem of synthesis of the

overall error from its components. To solve this problem, one must know how to

construct the composition of uniform distributions. The theoretical solution of this

problem is well known and is presented, for example, in [53]. However, our applied

problem at hand allows us to construct a simplified solution. We will consider this

solution in the current section, and then, in subsequent sections, use the described

apparatus to estimate the inaccuracy of both direct and indirect measurements.

Consider n random quantities xi (i ¼ 1, . . ., n), each of which has a uniform

distribution centered at zero in the interval �1
2
;þ1

2

� �
, and denote ϑ ¼ Pn

i¼1 xi: The

probability density function of the sum of these random quantities has the form

f n ϑð Þ¼ 1

n�1ð Þ! ϑþn

2

� �n�1

� n
1

� �
ϑþn

2
�1

� �n�1

þ n
2

� �
ϑþn

2
�2

� �n�1

� . . .

� 	

where the sum must include only the terms in which power bases, i.e.,

ϑþ n
2
,ϑþ n

2
� 1, and so on, are nonnegative. Note that the number of terms

therefore depends on both the number of components being summed, n, and the

argument ϑ. For example, if n ¼ 2, then

f 2 ϑð Þ ¼ ϑþ 1ð Þ � 2ϑ ¼
0, ϑ � �1,

ϑþ 1, �1 < ϑ � 0,

1� ϑ, 1 � ϑ < 1,

0 1 < ϑ:

8>><
>>:

The probability density function of the sum of two terms has the form of a

triangle. For n ¼ 3, the graph of f3(ϑ) consists of three segments of a quadratic
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parabola and looks very much like the curve of a normal distribution. For n¼ 4, this

distribution is almost indistinguishable from the normal distribution. Given the

above equation for the probability density, it is not difficult to find the probability

distribution function

Fn ϑð Þ ¼ 1

n!
ϑþ n

2

� �n
� n

1

� �
ϑþ n

2
� 1

� �n
þ n

2

� �
ϑþ n

2
� 2

� �n
� . . .

� 	
ð4:1Þ

In practice, however, it is desirable to have a simpler and more convenient

solution. Such a solution can be found by observing that we only need to find the

confidence interval for the combined error and not its full distribution function. In

other words, we are interested in limits�θα for the sum of the components such that

the probability.

P ϑj j � θαf g ¼ α, α > 0:90:

Bearing this in mind, we shall examine the distribution function Fn(ϑ) in the

extreme intervals of its argument range with nonzero probability density,

[�n/2, �n/2 + 1] and [n/2–1, n/2].
For these intervals, (4.1) assumes the form

Fn ϑð Þ ¼
1

n!
ϑþ n

2

� �n
for � n

2
< ϑ < �n

2
þ 1,

1� 1

n!
ϑ� n

2

� �n
for

n

2
� 1 < ϑ < �n

2
:

8><
>:

The composition of the distributions is symmetric relative to the ordinate axis.

We shall discuss how to calculate, given the probability distribution, the limits of

the confidence interval corresponding to a fixed value α of the confidence proba-

bility. The limits of the confidence interval corresponding to α are �θα.
By definition, the probability that the true value of a quantity ϑ lies within the

confidence interval [�θα, + θα] is α. Therefore, the probability that the quantity does
not lie in the confidence interval is (1 – α). If the distribution is symmetric relative to

0 (and we are studying a symmetric distribution), then the probability that the

quantity will take on a value less than �θα will be equal to the probability that it

will take on a value greater than +θα. These probabilities are obviously equal to

(1 � α)/2.
Consider first the left-hand branch of the distribution function. The probability

corresponding to the point �θα is equal to P{ϑ� � θα+}¼ (1� α)/2. Considering
now the right-hand branch, the probability that ϑ� + θα will obviously be equal to

1� [(1� α)/2]¼ (1 + α)/2.
We shall now return to our problem. Given Fn(ϑ) and α, we are required to find

the quantiles �θα and +θα (recall that the quantile of a distribution function for a

given probability level is the argument on which the distribution function takes the
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value equal to the specified probability level). Since these quantiles have equal

absolute values, we shall only calculate �θα.
Since the confidence probability is usually high (e.g., 0.95), quantile �θα is

likely to fall into the left extreme interval [�n/2, �n/2 + 1] (we can check if that is

indeed the case once we calculate it, or even beforehand as we will see shortly).

Then, we have

P ϑ � �θαf g ¼ Fn �θαð Þ ¼ 1

n!
�θα þ n

2

� �2

¼ 1� α

2
, ð4:2Þ

from which θα can be calculated.

For example, let α ¼ 0.99 and n ¼ 4. Then (1�α)/2 ¼ 0.005. Let us check

whether the value (�θα) corresponding to this probability falls within the left

extreme interval [�2,�1]. To do so, we can simply find the value of the cumulative

distribution function for the upper limit of this interval, i.e., �1:

F4 �1ð Þ ¼ 1

4!
�1þ 2ð Þ4 ¼ 1

1� 2� 3� 4
¼ 0:041:

As 0.005 <0.041, and because the cumulative distribution function is a mono-

tonically growing function, we know that the value (�θα) is less than (�1) and

hence lies in the interval [�2, �1].

We shall represent θα found from formula (4.2) in the following form:

θα ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
θ2i

q
ð4:3Þ

where θi represents the range of each component error xi, (�θi� xi� + θi), and kα is
a correction factor. In the case at hand, θi; ¼ 1/2 for all i ¼ 1, . . ., n; i.e.,

θα ¼ kα

ffiffiffi
n

p
2

, kα ¼ 2θα=
ffiffiffi
n

p
: ð4:4Þ

Formula (4.3) is convenient for calculations, and for this reason, we shall

investigate the dependence of the coefficient kα on α and n. The calculations are

performed as follows. Given α and n, we find θα from (4.2). Next, the correction

factor kα is found for the given values of α and n from formula (4.3).

Continuing with our example of α ¼ 0.99 and n ¼ 4, we find θα by substituting

these values into (4.2):

1

4!
�θα þ 2ð Þ4 ¼ 0:005, θα ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24� 0:005

4
p

¼ 1:41:

Having found θα we obtain from formula (4.4):

kα ¼ 2∗1:41ffiffiffi
4

p ¼ 1:41:

4.4 Composition of Uniform Distributions 121



Table 4.1 presents the values of kα for other values of α and n; these values were

calculated similarly to the method above. The value of kα for n ! 1 was found

using the fact that by the central limit theorem, the resulting distribution can be

assumed normal. The values denoted with “*” are not calculated because critical

values �θα and +θα fall outside the extreme intervals of the cumulative distribution

function domain.

Recalling the notation ϑ ¼ PN
i¼1 xi, we can obtain the standard deviation of ϑ as

follows:

V ϑ½ � ¼ V
Xn
i¼1

xi

" #
¼

Xn
i¼1

V xi½ �:

But, as is well known, V xi½ � ¼ θ2i =3. Therefore

V ϑ½ � ¼
Pi
i¼1

θ2i

3
, σ ϑ½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

Xn
i¼1

θ2i :

s
ð4:5Þ

Furthermore, the mathematical expectation of ϑ is zero because the mathemat-

ical expectation of each xi is zero. Thus, if n!1, we have random quantity ϑ with

a normal distribution N(0, σ). We can then now calculate the absolute value of the

limits of the confidence interval as θα¼ zpσ, where Zp is the quantile of the standard

normal distribution N(0, 1) corresponding to the probability p¼ (1 + α)/2 (see above
for the explanation of computing probability p). Thus, we obtain

θα ¼ zpffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

θ2i

s
ð4:6Þ

Table 4.1 Values of the coefficient kα for various numbers of component errors and confidence

probability

Number of component errors, n

Values of the coefficient kα for confidence probability α

0.90 0.95 0.99 0.9973

2 0.97 1.10 1.27 1.34

3 0.96 1.12 1.37 1.50

4 * 1.12 1.41 1.58

5 * * * 1.64

. . . . . . . . . . . . . . .

1 0.95 1.13 1.49 1.73
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Comparing (4.6) with (4.3) and considering that n is large (more then 5), we find

kα ¼ zpffiffiffi
3

p :

For example, for α ¼ 0.9973, we obtain Zp ¼ 3 and thus, when the number of

component errors n is large, kα ¼ 1.73.

Considering Table 4.1, one can observe that the correction factor kα has the

interesting property that for α �0.99, it is virtually independent of the number of

components. We can make use of this property and take for kα the average values in
each column. These values of kα are given in Table 4.2.

The error caused by using the average values of kα, as one can see by comparing

them with the exact values given in Table 4.1, does not exceed 10% for α ¼ 0.99

and 3% for α ¼ 0.95.

The small effect of the number of components indicates indirectly that it is not

always necessary to assume, as was done above, that all θi, are equal. For instance,
assume that one of the limits, θl, is gradually reduced. The effect on factor kαwill be
negligible because even in the extreme, when θl is reduced all the way to zero and

the lth component disappears, the values of kα for (n�1) and n components are

virtually the same. If, on the other hand, θl is gradually increased, then the factor kα
will decrease.

Figure 4.2 depicts the dependence of kα on the ratio c ¼ θl/θ0 for α ¼ 0.99,

where θ0 is the absolute value of the remaining terms, which are assumed to be equal.

Table 4.2 Average values

for coefficient kα
α 0.90 0.95 0.99

kα 0.95 1.1 1.4

0
1.0

1.1

1.2

1.3

1.4

1.5
k

n=4

n=3 a=0.99

c =

n=2

1 2 3 4 5 6 7 8
qi
qa

Fig. 4.2 Coefficient kα as a function of the change in limits of one of the component errors relative

to the other component errors (the number of components n ¼ 2, 3, 4) [35]
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This figure can be used to find kαmore precisely than using Table 4.2. The figure also

shows that for every n, coefficient kα is at the maximum when all θi are equal.
Factor kα can also be calculated using formulas approximating the curves

presented in Fig. 4.2. For α ¼ 0.99 and n ¼ 4, a good approximation formula is

k0:99 ¼ 1:45� 0:05
θl
θ0

:

Formula (4.6) can be used instead of (4.3) to calculate θα when the number of

terms is large. However, as follows from the above-presented estimate of the error

of calculations based on formula (4.3), the accuracy cannot be increased by more

than 10% (for α¼ 0.99). At the same time, formula (4.3) is also useful for summing

a small number of terms. For this reason, for practical calculations, relation (4.3) is

preferable.

With a confidence probability α ¼ 0.99 and n � 4, it could turn out that our

approximate calculation of θα would produce θα >
Pn

i¼1 θi. But this obviously

cannot happen in reality. In this case, one can take

θα ¼
Xn

i¼1
θi:

Of course, a more correct alternative in using the above value would be to obtain

a more accurate value of the coefficient kα from the curves in Fig. 4.2.

There arises, however, the question of how well founded the confidence prob-

ability choice α ¼ 0.99 is. In most cases, this limit does not correspond to the

reliability of the initial data, and the limit α ¼ 0.95 is more appropriate. For

α ¼ 0.95, Table 4.2 gives kα ¼ 1.1, and formula (4.3) assumes the form

θ0:95 ¼ 1:1

ffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

θ2i

s
:

In this case, θα <
Pn

i¼1 θi, always holds. To see this, first let n ¼ 2 and assume

without loss of generality that θ1 � θ2. It is not difficult to verify that the inequality

θα ¼ 1:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ21 þ θ22

q
< θ1 þ θ2ð Þ holds as long as θ1/θ2> 0.11. But the last condition

is always satisfied in practice because an elementary error that is about ten times

smaller than any other elementary error can be neglected.

Consider now three components, and assume θ3� θ2� θ1. Denoting T¼ θ3 + θ2,
we obtain an equivalent inequality

1:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ θ22 � 2θ3θ2

q
< T þ θ1ð Þ:

The term 2θ3θ2 >0, and therefore it is enough to prove the above inequality

without this term under the square root (indeed, if the simplified inequality holds,

the original inequality will only be stronger). Then, similar to the case with two

124 4 Direct Measurements



components we have just studied, we can show that the simplified (and hence the

original) inequality holds as long as

θ1
θ2 þ θ3

> 0:11:

It is obvious that this condition holds easier than for two components and is

always satisfied in practice. On the whole, as the number of component elementary

errors increases, the inequality θα <
Pn

i¼1 θi is satisfied only more easily. Since we

showed that this inequality is satisfied in practice even for two components, we can

conclude that it always holds in practice for an arbitrary number of components.

4.5 Methods for Precise Measurements

Methods for precise measurements attempt to eliminate systematic errors. They

also reduce random errors by means of repeating the measurement many times and

statistical processing of the obtained results. The most common methods for precise

measurements are the following.

Method of replacement This method involves replacing the quantity to be mea-

sured with a known quantity in a manner so that no changes occur in the indication

of all measuring instruments employed. Then, we can assume that the measured

quantity is equal to the known quantity that replaced it. The method of replacement

is the most accurate method of measurement.

Consider, for example, Borda’s method for weighing. The method is designed to

eliminate the systematic error from the inequality of the arms of the balance. Let

x be the measured mass, P be the mass of the balancing weights, and 11 and l2 be the
lengths of the arms of the balances. The measurement is performed as follows. First,

the body being weighed is placed in one pan of the balance and is balanced with the

help of a weight with mass T. Then,

x ¼ l2
l1
T:

Next, the mass x is removed and a known mass P that once again balances the

pans is placed in the empty pan:

P ¼ l2
l1
T:

As the right-hand sides of both equations are the same, the left sides are also

equal to one another, i.e., x ¼ P, and the fact that l1 6¼ l2 has no effect on the result.
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The resistance of a resistor can be measured in an analogous manner with the

help of a sensitive but inaccurate bridge and an accurate magazine of resistances.

Several other quantities can be measured analogously.

Method of contraposition The measurement is performed with two observations,

and it is performed so that the reason for the constant error would affect the results

of observations differently but in a known, regular fashion.

An example of this method is Gauss’s method of weighing. First, the body being
weighed is balanced by balance weights P1. Using the notation of the preceding

example, we have

x ¼ l2
l1
P1:

Next the unknown weight is placed into the pan that previously held the

balancing weights and is again balanced by the balance weights. Now we have

x ¼ l1
l2
P2:

We now eliminate the ratio l2/l1 from these two equalities and find

x ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
P1P2:

p

The sign method of error compensation. This method involves two measure-

ments performed so that the constant systematic error would appear with different

signs in each measurement.

For example, consider the measurement of electromotive force (EMF) x with the
help of a DC potentiometer that has external wires with a parasitic thermo-EMF.

One measurement gives E1. Next, the polarity of the measured EMF is reversed, the

direction of the current in the potentiometer is also reversed, and once again the

measured EMF is balanced. This process gives E2. If the thermo-EMF produces

error ϑ and E1¼ x+ ϑ, then E2¼ x� ϑ. From here,

x ¼ E1 þ E2

2
:

Elimination of progressing systematic errors The simplest and most frequent case

of a progressing error is an error that changes linearly in proportion to time. An

example of such an error is the error in the measurement of voltage with a

potentiometer, if the voltage of the storage battery, generating the working current,

drops appreciably.

Formally, if it is known that the working current of the potentiometer changes

linearly in time, then to eliminate the arising error, it is sufficient to perform two

observations at known times after the working current along the standard cell is

regulated. Let
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E1 ¼ xþ Kt1, E2 ¼ xþ Kt2,

where t1 and t2 are the time intervals between regulation of the working current and

the observations, K is the coefficient of proportionality between the measurement

error and the time, x is the voltage being measured, and E1 and E2 are the results of

the observations. From the above equations, we obtain

x ¼ E1t2 � E2t1
t2 � t1

:

For accurate measurements, however, it is best to use a somewhat more com-

plicated method of symmetric observations. In this method, several observations are

performed equally separated in time and then the arithmetic means of the pairs of

symmetric (i.e., the first and last, the second and the second-to-last, etc.) observa-

tions are calculated. Theoretically, with linearly changing systematic errors, these

averages must be equal, which makes it possible to control the course of the

experiment and to eliminate these errors.

4.6 Accuracy of Single Measurements Using a Measuring

Instrument Under Reference Conditions

The great majority of measuring instruments were created for single measurements.

Some of these instruments are so simple that the inaccuracy of corresponding

measurements can be estimated without calculation. For example, the inaccuracy

of the length measurement performed with a ruler is determined simply by rounding

the readings on the ruler. Also, calculating the inaccuracy is not necessary when it is

known beforehand that the accuracy of that measurement will be “good enough” for

the goal of this measurement. This includes most of the household measurements,

such as measuring the voltage of a car battery with an industrial tester or weighing

the ingredients for a cooking recipe. In other measurements, the inaccuracy must be

calculated.

Under reference conditions, the inaccuracy of single measurement is determined

by the limits of the intrinsic error: there are no additional errors by definition. The

limits of the intrinsic errors of measuring instruments are known; they are listed in

the documentation provided by the manufacturers or in the certificates from the

calibration laboratories. The problem is only to recalculate these limits, if neces-

sary, for a given indication of the instrument, i.e., for the measurement result.

If the limits of the intrinsic error are given in the form of absolute or relative

errors and are the same for the whole range of the instrument, then recalculations

are not required and these limits are the limits of the given elementary error. But

often the limits of intrinsic error of a measuring instrument are given in the form of

a fiducial error, i.e., as a percentage of the fiducial value. The conversion into

relative error is then made using the formula
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δin ¼ γ
xf
x

ð4:7Þ

where δin is the limit of the intrinsic error in relative form, γ is the limit of the

fiducial error, xf is the fiducial value, and x is the reading of the instrument in the

corresponding units. Conversion into the form of absolute errors is done according

to the formula

Δin ¼ δinx ¼ γxf : ð4:8Þ

It was mentioned in Sect. 2.3 that the fiducial errors are expressed in percents.

Therefore, to obtain Δin in proper form of absolute errors, it must be divided by 100.

When the estimate of inaccuracy of a single measurement is obtained using the

limits of intrinsic errors listed in the manufacturer’s documentation, the estimate

remains correct even if the instrument used in the measurement is replaced with

another instrument of the same type. Indeed, the limits of the intrinsic error listed in

the manufacturer’s documentation apply to all instruments of this type. Recall that

measurement inaccuracy estimates obtained from such data were termed universal

in Chap. 1. In contrast, the estimates obtained using data from a certificate of a

calibration laboratory that applies to a specific instrument were called individual.

In some cases, a measurement error may arise from the interaction between the

object of study and the measuring instrument employed. For instance, when mea-

suring an electric voltage with an indicating voltmeter, the voltmeter reacts on the

strength of the electric current it consumes, and as it was mentioned above in Sect.

4.2, its indication shows not the voltage being measured but the voltage on the

voltmeter’s terminals. This creates a systematic error, which depends on the relative

values of the input impedance of the voltmeter and the internal impedance of the

source of the voltage being measured. Most often, this error is negligibly small. But

in some cases it needs to be taken into account and be compensated with a

correction. Then only the error of the correction will remain as a contributing factor

in the inaccuracy of the measurement. We consider in detail an example of this kind

of error in Sect. 8.1.

We shall now consider several examples of calculating the universal estimates of

the inaccuracy of single measurements.

1. Industrial tester WV-531A (RCA). This is a multifunctional instrument, and its

accuracy is different for different measurement ranges. Let us assume, for

example, that we need to measure the AC voltage using the 150 V range. The

manufacturer specification says that the instrument’s inaccuracy in this range for
AC voltage measurements is �4% of the full-scale value.

So, we have here the limits of fiducial error γ ¼ �4% and the fiducial value

xf ¼ 150 V. Assume the instrument indication in our measurement was 117.5 V.

In accordance with (4.7), the limits of error of this measurement result are
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δ ¼ �4%� 150

117
¼ �5%:

In the form of absolute error, these limits are

Δ ¼ 4%� 150

100%
¼ �6 V:

Thus, the result of this measurement must be presented as

118V� 5% or 118� 6ð Þ V:

2. Fluke 5700 A [26]. Assume we need to perform a measurement at the scale range

of 11 V. The limits of intrinsic error at this range are� (5 ppm of output +4 μV).
If the indication of the instrument in our measurement is 10.000463 V, then the

limits of error of this measurement will be

Δ ¼ � 10:000463 � 5� 10�6 Vþ 4 μV
� � ¼ �54 μV:

Since this can be considered a precise measurement, we can retain both signif-

icant digits in the inaccuracy above and present the measurement result as

(10.000463 � 0.000054) V.

3. Consider the digital multirange voltmeter example from Chap. 2 with specifica-

tions listed again below:

Time after calibration 24 h 90 days 12 months

Temperature 23 � 1 �C 23 � 5 �C 23 � 5 � C
10 V – – �(35 + 5 ppm)

1000 V � (20 ppm + 6 ppm) �(35 ppm +10 ppm) �(45 + 10 ppm)

We refer the reader to Chap. 2 for the clarifications on the meaning of the entries

in this table. We will only recall here that when the error of an instrument is listed

using two terms as in this table, the first term expresses the error relative to the

instrument indication, while the second term, even though it is expressed in the

relative form, is not a relative error. As explained in Chap. 2, this term is a fiducial

error and is expressed relative to the value that corresponds to the end of the

measurement range of the instrument; this error is therefore the same for any

indication in the entire range when recalculated to the absolute form.

Assume the voltmeter is used to measure 500.0 V immediately after calibration

and then again 12 months later, both times under reference conditions. Using the

above specification (in particular, the columns corresponding to 24 h and 12 months

since calibration), we shall evaluate the limits of absolute measurement error in

both cases. Note that since the instrument is used under reference condition, the last

column of the specification is not considered.
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For the first measurement, we have:

Δ1 ¼ � 500� 20� 10�6 þ 1000� 6� 10�6
� �

V ¼ �16 mV:

After 12 months, the limits of error become:

Δ2 ¼ � 500� 45� 10�6 þ 1000� 10� 10�6
� �

V ¼ �32:5 mV:

4.7 Accuracy of Single Measurements Using a Measuring

Instrument Under Rated Conditions

When measurement is performed under rated operating conditions, the measure-

ment result, as before, is given by the instrument indication. However, the calcu-

lation of the measurement inaccuracy turns into a more complex problem. Solving

this problem starts with estimating the elementary errors of the measurement.

It is difficult to formulate a single method for estimating elementary errors,

because these errors are by their nature extremely diverse. The general recommen-

dations for solving this problem can nonetheless be formulated.

To estimate elementary measurement errors, it is first necessary to determine

their possible sources. If it is known that some corrections will be (or have been)

introduced, then the errors in determining the corrections must be included among

the elementary errors.

All elementary measurement errors must be estimated in the same manner, i.e.,

in the form of either absolute or relative errors. Relative errors are usually more

convenient for a posteriori error estimation, and absolute errors are more conve-

nient for a priori error estimation. However, the tradition of each field of measure-

ment should be kept in mind. Thus, for lineal-angular measurement, absolute errors

are typically used, whereas for measurements of electromagnetic quantities, rela-

tive errors are preferred.

An unavoidable elementary error in any measurement is the intrinsic error of the

measuring instrument. We presented the methodology of recalculating the intrinsic

error of the instrument into the elementary error of the measurement in Sect. 4.6.

Additionally, the environmental conditions, characterized by the temperature,

pressure, humidity, vibrations, and so on, also affect the result of a measurement.

Each influence quantity, in principle, engenders its elementary error. To estimate it,

it is first necessary to estimate the possible value of the corresponding influence

quantity and then compare it with the limits of the range of values of this quantity

concerning the reference condition. If the influence quantity falls outside the limits

of reference values, then it causes a corresponding additional error; this error is also

an elementary error.

Consider an error due to the temperature. Let the temperature of the medium

exceed its reference values by ΔT. If, according to the rated operating conditions,

the limit of the additional error due to ΔT is the same for an interval [T1, T2] then
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this limit is the limit of the given additional error. If, however, for this interval, the

upper bound of the temperature coefficient is given, then the limits of temperature

error are calculated according to the formula

δT ¼ �wTΔT,

where δT is the limit of additional temperature error in the relative form and wT is

the upper bound of the absolute value of the temperature coefficient of the instru-

ment expressed as the percentage of the instrument indication.

In general, for influence quantity i, the dependence of the limit of additional

error δi or Δi on the deviations of the influence quantity outside the limits of its

reference values can be given in the form of a graph or expressed analytically. In

either case, the manufacturer’s specifications of the instrument sometimes provide

the influence function in the form of two components – the nominal influence

function and an admissible deviation from it. This form allows one to take into

account the deviation from the reference range by the corresponding correction to

the measurement result. In the process, the elementary error decreases significantly,

even if the influence function is specified with a large margin of error.

Suppose, for example, instead of the upper bound of the temperature coefficient

wT, the temperature coefficient is listed in the form w0
T¼ (1� ε)wT ,N, where wT, N

is the nominal temperature coefficient and ε is the admissible deviation from it,

expressed in the relative form as a fraction of wT, N. For temperature deviation ΔT
from the upper limit of reference range, T, the additional error will be

δT ¼ wT,NΔT � εwT,NΔT: ð4:9Þ

Because the first term in the above equation reflects a deterministic nominal

dependency, we can account for it with the help of the correction

c ¼ �wT,NΔT � x,

where x is the instrument indication. There then remains the temperature error

δ0T ¼ �εwT,NΔT: ð4:10Þ

Even if the influence function is listed comparatively inaccurately, for example

ε¼ 0.2 (20%), the temperature error still decreases greatly, by a factor of 4–6 in this

case:

δT
δ0T

¼ 1� 0:2

0:2
¼ 4 or 6:

Finally, one should keep in mind that if the influence quantity itself is estimated

with an appreciable error, then this error must also be taken into account when

calculating the corresponding additional error.
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In many cases, the input signal in a measurement is a function of time and

therefore the measurement result may have a dynamic error. This error is also an

elementary error that needs to be taken into account. Unfortunately, although the

treatment of dynamic elementary errors has been discussed in research literature

(e.g., [28]), the proposed methods are not mature enough to include here.

Once the errors of a single measurement have been analyzed, we have an

estimate of the limits of all elementary errors of the measurement. We now proceed

to the problem of synthesis, that is, the calculation of the overall inaccuracy of the

measurement. In general, this calculation can be done using the following step-by-

step procedure.

1. Identify all possible sources of elementary errors. The list of elementary errors

always includes the intrinsic error of instrument involved and additional errors

due to influence quantities whose values fall outside the limits of the reference

condition. Also, the interaction between that instrument and the object whose

parameter is being measured, the discrepancy between the object and its model,

and so on, must be taken into consideration.

2. Estimate the limits of all elementary errors. General recommendations to accom-

plish this step were described earlier. If point estimates have been obtained for

some elementary errors, then one must apply the corresponding corrections to

the instrument indication. In this case, the inaccuracy of the corrections must be

taken into account along with the other elementary errors. We gave an example

of a correction and of accounting for its inaccuracy earlier in this section, when

considering the nominal temperature coefficient of an instrument. Another

example can be found in Sect. 8.1.

3. Express the estimates of all elementary errors in the same form, either absolute

or relative. Note that, as discussed in Sect. 4.6, the intrinsic error is often

expressed as fiducial error. In this case, the fiducial error must be recalculated

to the absolute or relative error of the measuring instrument reading in the actual

measurement in question.

4. Calculate the inaccuracy of the measurement result. The procedure for this

calculation is described next.

When one comes to step 4, all elementary errors have been estimated with their

limits. Further calculations will require us to distinguish conditionally constant

errors, absolute constant errors, and random errors. In single measurements, the vast

majority of elementary errors are conditionally constant errors. Random errors are

usually insignificant and can be accounted for as part of those conditionally

constant errors in which they manifest themselves. Absolute constant errors occur

infrequently.

We will begin with the conditionally constant errors. Among them, let ζ0 be the
intrinsic error of the measuring instrument and ζi, i ¼ 1, . . .,m, be the other

elementary errors.
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We now need to combine, or “sum up” these errors:

ζ ¼ ζ0 þ
Xm
i¼1

ζi, ð4:11Þ

where ζ is the overall conditionally constant error. We know the limits θ0 and θi of
the elementary errors:

ζ0j j � θ0 and ζij j � θi:

Combining the elementary errors is often done by summing up their limits

arithmetically. This is obviously the safest estimate, reflecting the worst-case

scenario that all conditionally constant errors simultaneously reached their upper

or lower limits. However, unlike in the case of absolute constant errors (where the

errors are what they are and thus the question about the practicality of a particular

combination of error values is invalid), the above scenario is unacceptable in the

case of conditionally constant errors. A more realistic solution to this problem is

provided by a probabilistic approach. To this end, we can utilize the mathematical

model that we accepted for conditionally constant errors, which is to consider them

as random variables uniformly distributed within their limits. If we in addition

assume that these random variables are independent,1 we can apply the discussion

from Sect. 4.4 to calculate the measurement uncertainty as follows.

According to Sect. 4.4, the measurement uncertainty can be calculated using

simple formula (4.3), which in our case is more convenient to rewrite as

uα ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ20 þ

Xm
i¼1

θ2i

s
: ð4:12Þ

As it was mentioned above in Sect. 4.4 for the most common confidence

probability α ¼ 0.95, coefficient k0.95 ¼ 1.1 and, remarkably, its value is indepen-

dent of the number of components n ¼ m + 1. The inaccuracy of using (4.12) with

this constant value for kα is less than 3%. For α¼ 0.99, if we assume k0.99 ¼ 1.4, the

inaccuracy of the calculation using (4.12) ranges from +10% for n ¼ 2 to �6% for

n tending to infinity.

One can increase the accuracy of this calculation in the last case by utilizing

Table 4.1 or the graph on Fig. 4.2 to select the specific value of coefficient kα for the
measurement at hand. However, when the number of component errors is five or

higher, it is justified in practice (and more convenient) to follow the analysis from

Sect. 4.4 for the case of a large number of variables, which assumes that the

combined variable has a normal distribution.

1This assumption in fact follows naturally from the way instrument’s additional errors are rated

separately for individual influence quantities. However, further discussion on the validity of this

assumption is outside the scope of this book.
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According to (4.5), the variance σ2 of the resulting error can be obtained as

σ2 ¼ θ20=3þ
1

3

Xm
i¼1

θ2I : ð4:13Þ

Knowing the variance and the shape of the distribution function, one can

construct the confidence interval that covers the true value of the measurand with

a given confidence probability α, i.e., to calculate the uncertainty of the measure-

ment result as follows:

uα ¼ zpσ, ð4:14Þ

where zp is the quantile of the standard normal distribution for probabilityP ¼ 1þαð Þ
2

.

For α ¼ 0.95, (4.14) brings a well-known result u0.95¼ 1.96∗σ, and u0.99¼ 2.58∗σ
for α ¼ 0.99.

We would like to conclude the discussion of combining conditionally constant

errors with an important practical recommendation. As we mentioned in Sect. 4.4,

when the number of component errors is particularly small, i.e., four or less, and α
�0.99, it is possible that the probabilistically combined error could produce an

exaggerated estimate, which can even exceed the arithmetic sum of the component

errors. Thus, for small number of components, it is advisable to combine the

elementary errors in both ways, arithmetically and probabilistically, and use as

the result the smaller of the two uncertainty values produced. Note that this does not

contradict the principle of upper-bound error estimates because the error can never

exceed the arithmetic sum of its components.

Now consider the case where the measurement also has an absolutely constant

error, in addition to conditionally constant errors we just examined. As we already

mentioned, absolutely constant errors are relatively rare. In any case, one instrument

can introduce only one absolutely constant error component to the overall measure-

ment inaccuracy. In Sect. 4.3.1, we said that if an absolutely constant error is present

and we know only its limits �h, then the overall measurement uncertainty is.

Ut ¼ hþ uα :

Because absolutely constant errors are the same in all instruments of the same

type, these errors cannot be described using a probabilistic model. Thus, we have no

choice but to add the limits of these errors arithmetically to the probabilistic sum of

the conditionally constant errors.

It could happen that m of the n conditionally constant errors have asymmetric

limits:

θjl � ϑj � θjr, j ¼ 1, . . . ,m,
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where θjl, is the left-hand limit and θjr is the right-hand limit of component error j.
The remaining (n – m) conditionally constant errors are symmetric:

�θj � ϑj � θj, j ¼ mþ 1, . . . , n:

For calculations, asymmetric limits must be represented as symmetric limits

around center aj, where

aj ¼ θjl þ θjr
2

:

The limits of the interval that is symmetric relative to aj, are calculated

according to the formula

θj ¼ θjr � θjl
2

:

Note that the above calculation cannot be used to transform asymmetric errors

into symmetric by introducing corrections into the measurement results: The error

estimates are too unreliable to change the measurement result.

Next, the limits of the overall conditionally constant error must be calculated

from the following formulas:

θr,α ¼
Xm
j¼1

aj þ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

θ2j¼1 þ
Xn
j¼mþ1

θ2j

vuut ð4:15Þ

θl,α ¼
Xm
j¼1

aj � kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

θ2j¼1 þ
Xn

j¼mþ1

θ2j

vuut

We do not combine the two sums under square roots above to stress that one sum

contains originally symmetric errors and the other – the errors that were originally

asymmetric but which have been recomputed to become symmetric.

The absolutely constant elementary error must now be taken into account, and it

too can have asymmetric limits. Again, these limits must be summed arithmetically

with the limits θrα and θl,α:

Ur,α ¼ Ur þ θr,α and Ul,α ¼ Ul þ θl,α ð4:16Þ

As an example of estimating the inaccuracy of a single measurement under rated

conditions, consider the measurement of voltage using, again, a digital

multivoltmeter whose errors are rated in Table 4.3. Assume it is known (from

other parts of the documentation) that this instrument’s indication has six and a half
digits: if the seventh, invisible, digit is less than 5, then the sixth digit will not

increase whereas if the seventh digit is 5 or greater, the sixth digit will increase by

1. Thus, the random rounding error is limited to half the value of the sixth digit.
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Assume the measurement occurs 12 months after the last calibration of the

instrument and the voltmeter is used in the range of 10 V. Assume further the

voltmeter is mounted in an automated test rack with internal temperature of 32 �C
and is indicating 5.00135 V. We need to calculate the uncertainty of this

measurement.

Using the 12-month specifications, the limits of the intrinsic error of this meter

are (5.00135 V� 35� 10�6 + 10 V� 5� 10�6)¼ 0.225 mV. Since the instrument

works in temperature outside the reference conditions, the temperature coefficient,

according to the last column, is (5.0135 V� 5� 10�6 + 10 V� 1� 10�6) per 1 �C,
or 35 � 10�6 V/�C. Thus, with the operating condition being 4 �C over 28 �C, the
additional error is 4 � 35 � 10�6 ¼ 0.14 mV. The rounding error does not exceed

5 � 10�6 V ¼ 0.005 mV.

We now combine the elementary errors in two ways. The arithmetic sum of the

obtained limits is �(0.225 + 0.14 + 0.005) mV ¼ �0.37 mV. Probabilistic sum-

mation according to (4.3) with α ¼ 0.95 gives �1.1 � 0.265 mV ¼ �0.29 mV.

Because the probabilistic result is smaller, we should take as uncertainty of the

measurement � 0.29 mV or, after rounding, �0.3 mV.

Another example of estimating the inaccuracy of a single measurement under

rated condition is given in Sect. 8.1.

4.8 Comparison of Standard Deviation and Confidence

Interval as Measurement Accuracy Indicators

First of all we need to establish precisely the meaning of the terms standard
deviation and confidence interval as indicators of measurement accuracy. Both

these terms are mathematical concepts used in statistics and in experimental data

processing in metrology. In statistics, the accuracy of an estimate of mathematical

expectation is characterized by confidence interval while its efficiency by variance,

i.e., the square of the standard deviation. In GUM [2], however, the standard

deviation is used to express the accuracy of measurement. Before we analyze the

appropriateness of such usage, we should make a disclaimer that we will limit

ourselves to a multiple measurement free of systematic error; the widely accepted

mathematical model for measurement error in this case is a normally distributed

Table 4.3 A fragment of specification of a multirange voltmeter

Time after

calibration 24 h 90 days 12 months

Temperature

coefficient

Temperature 23� 1 �C 23� 5 �C 23� 5 �C 0–18� and 28–55 �C
per 1 �C

10 V – – � (35 + 5 ppm) � (5 + 1 ppm)

1000 V � (20 + 6 ppm) � (35 + 10 ppm) � (45 + 10 ppm) � (5 + 1 ppm)
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random quantity. These concepts were discussed in Chap. 3, but let us recall a few

basic notions.

The normal distribution is specified by two parameters, mathematical expecta-

tion A and variance σ2 although our discussion will be mostly concerned with not

variance or it estimate S2 but estimate of standard deviation S ¼ þ
ffiffiffiffiffi
S2

p
. A multiple

measurement represents a series of repeated measurements of the same quantity

under the same conditions. These individual measurements are called observations.

Under the conditions of the experiment, all observations have equal probability and

considered as a sample from the general population of observations with a certain

distribution – the normal distribution in our case. The task of processing the

observations obtained in the course of measurement is to find the most accurate

estimate of the mathematical expectation of the above distribution function and to

determine the accuracy of this estimate. In metrology, the mathematical expectation

of the distribution function is called the true value of the measurand. This point

corresponds to the abscissa of the knee point of the normal distribution function, or

the maximum point of the probability density function. As defined in Sect. 1.1, the

accuracy of measurement expresses how close the result of measurement is to the

true value of the measurand. In practice, instead of the positive notion “accuracy”,

its negative dual concept – error – is commonly used.

We now turn to comparing the accuracy indicators. Confidence interval and the

methods of its construction were described in Sect. 3.5. In the practice of measure-

ments, it is overwhelmingly constructed using Student’s distribution. As shown in

Sect. 3.5, Student’s distribution defines interval

�x� Aj j � tqS �xð Þ,

where tq is the q-th percentile point of Student’s distribution, �x is the mean of the

observations, which also represents an estimate of the true value of the measurand,

and S �xð Þ is an estimate of standard deviation of the mean of the observations.

The above interval specifies directly the limits of the measurement error. It can

also be represented in a different form:

�x� tqS �xð Þ� � � A � �xþ tqS �xð Þ� �
:

This form shows the limits of an interval that covers the true value of the

measurand.

An important aspect of Student’s distribution is that it depends only on integral

estimates �x and S �xð Þ of the parameters of the distribution. Therefore, the confidence

interval built based on Student’s distribution has low sensitivity to the distribution

of input data and can be used with any distributions as long as they are convex and

symmetrical. The percentile tq depends on the number of observations, which

determines degree of freedom ν, and on the confidence probability α.
The confidence interval, as we know (see Sect. 3.5), with probability α covers

the true value of the measurand. Thus, the uncertainty expressed as a confidence

interval correctly reflects the accuracy of the estimate of the true value. Since
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confidence probability is known a-priori as it is set by the experimenter to suit

specific objectives of the measurement, confidence interval is an unambiguous and

precise (in the probabilistic sense) indicator of measurement accuracy.

Now let us consider standard deviation. For a sample from a normal distribution,

it is estimated using formula

S �xð Þ ¼ 1

n n� 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � �xð Þ2

q
,

where �x is the mean value of observations xi , (i¼ 1, . . . , n).
This estimate characterizes how widely the random variable is spread out

relative to the mean value of the sample. But it does not directly quantify how far

the measurement result is from the true value. Thus the estimate of standard

deviation does not reflect how close or far the mean of observations (commonly

taken as the measurement result) is from the true value. Therefore the estimate of

standard deviation does not characterize the measurement accuracy.

We note that standard deviation can be is used to characterize the repeatability
of measurements (see Sect. 1.1), which is often useful it its own right.2 But even in

this case, standard deviation has a drawback: the reliability3 of its estimate strongly

depends on the number of observations obtained in the course of the measurement,

and as shown in Sect. 3.7, to be reliable, the number of observation should be no

less than one hundred. The great majority of measurements don’t have this many

observations.

A general conclusion from this discussion is that the question on whether

confidence interval or standard deviation is a better indicator for measurement

accuracy is improperly formulated. Indeed, standard deviation only characterizes

how spread-out – and not how accurate – the repeated observations are. Observa-

tions may be tightly clustered but around a point that is far removed from the true

value. Thus, it is not a matter of standard deviation being better or worse as a

characteristic of measurement accuracy, but a matter of it not being appropriate to

be a measure of accuracy at all. The only proper indicator of measurement accuracy

is confidence interval.

2In particular, the repeatability of the measurement in itself is useful for preliminary measurements

in which a new object is being studied and the task is to determine conditions under which the

quantity being measured is stable enough to be measured in another laboratory (see Sect. 1.5 for

more discussion of preliminary measurements).
3Recall from Sect. 3.7 that by reliability of an estimate – in this case of the standard deviation – we

mean an indication of how much different estimates obtained from different samples of the same

number of observations, can differ from each other.
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4.9 Accuracy of Multiple Direct Measurements

Multiple direct measurements are a classic object of mathematical statistics and the

base for the theory of measurement accuracy. Under certain restriction on the

starting data, mathematical statistics give elegant methods for analyzing observa-

tions and estimating measurement errors. Unfortunately, the restrictions required by

mathematics are not often satisfied in practice. Then these methods cannot be used

and practical methods for solving the problems must be developed. But even in this

case, the methods of mathematical statistics provide a point of reference and a

theoretical foundation.

Direct measurements are widely used in general, and almost always used in

indirect measurements. Therefore they must be considered as basic type of multiple

measurements. We previously argued for a position that a multiple direct measure-

ment is in essence a series of repeated single measurements performed with the

same measuring instrument under the same conditions. We will call the indications

of the measuring instrument used in multiple measurement as observations.
Repeated observations allow one to control the stability of the measurement process

as well as reduce the influence of random errors of the measuring instrument on the

measurement result and in that way they increase the accuracy of measurement.

Due to their complexity, multiple measurements are typically used in scientific

experiments, and – as a rule – under reference conditions of the measuring instru-

ments. Thus, multiple measurements under rated conditions are not

considered here.

Multiple measurement has one important peculiarity in comparison to the pure

statistics: it has not only random but systematic error also. The random error is

estimated by statistical analysis of the set of observations obtained from the

measurement. The systematic error can’t be detected in the course of measurement

and must be calculated independently.

Each multiple measurement has the same repeated single measurement in all
observations. Therefore one may consider that the systematic part of the error of

this single measurement becomes the systematic error of the multiple measurement.

Its limits can be derived from the instrument documentation, which specifies the

limits of the intrinsic errors of the device. Unfortunately, this approach results in an

exaggerated estimation of the systematic error in a multiple measurement.

The estimation is inflated for two reasons. First, the specifications provide the

error limits that are valid for all instruments of the given model, and the actual error

can be significantly smaller in the specific instrument used. Second, the limits of

errors given in the instrument documentation may include the random component;

in other words, the specified limits may be wider than warranted purely by the

systematic imperfection of the device. As a consequence of the random part in the

intrinsic error limit, when one consider the intrinsic error limit equal to systematic

error of the measurement and combines it with the random errors obtained from the

variation of the repeated observations, the random component of the instrument

errors is accounted for twice: once through the wider limits of the systematic error
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derived from the documentation and then again through statistical processing of

random errors of observations.

Fortunately there is another and much better way for the estimation of the

systematic error in multiple measurements. The essence of this approach is to

perform correction to the instrument indication using a preliminary calibration of

the instrument to be used in the multiple measurement. Furthermore, the limits of

the error (or uncertainty) of calibration, which obviously become the limits of

systematic error of the multiple measurement, will narrow – often greatly –

compared to the limits of error obtained from the measurement device documen-

tation. In particular, this removes the random component of the error listed in the

device documentation. Because the purpose of a multiple measurement is improve

as much as possible the accuracy of the result, such preliminary calibration of the

measuring instrument intended for a multiple measurement is highly desirable.

Let us turn to processing of experimental data. Having n observations xi ,
i¼ 1 , . . . , n we need to find an estimate of the true value A of the measurand and

its accuracy. The set of observations usually is considered as a sample taken from a

normal distribution (methods for testing this are presented in Sect. 3.8). In accor-

dance with statistical methods described in Sect. 3.3, the estimate of the measurand

is taken as the arithmetic mean of the observations. As noted there, this gives an

unbiased, consistent, and efficient estimate of the true value of the measurand if the

observations, or equivalently the measurement errors, have a normal distribution. In

fact, irrespective of the form of the distribution of the measurement errors, the

arithmetic mean has three important properties.

1. The sum of the deviations from the arithmetic mean is equal to 0. Let xi, . . ., xn
be a group of observations whose arithmetic mean is �x. We construct the

differences xi � �x for all i ¼ 1, . . ., n and find their sum:

Xn
i¼1

xi � �xð Þ ¼
Xn
i¼1

xi �
Xn
i¼1

�x:

As both
Pn

i¼1 xi ¼ n�x and
Pn

i¼1 �x ¼ n�x,

Xn
i¼1

xi � �xð Þ ¼ 0:

This property of the arithmetic mean can be used to check the calculations.

2. The sum of the squares of the deviations from the arithmetic mean is smaller

than the sum of the squares of the deviations from any other estimate ~A of true

value A. Consider the function

Q ¼
Xn
i¼1

xi � ~A
� �2

:
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We shall find ~A that minimizes Q. To this end, we find

dQ

d~A
¼ �2

Xn
i¼1

xi � ~A
� �

and set it to zero; hence, we obtain

Xn
i¼1

xi � ~A
� � ¼ 0,

Xn
i¼1

xi ¼ n~A, and ~A ¼ �x ¼
Pn
i¼1

xi

n
:

As dQ

d~A
< 0 if ~A < x and dQ

d~A
> 0 if ~A > x, the value ~A ¼ �x minimizes function Q.

3. According to the central limit theorem, the sum of independent random quanti-

ties, regardless of their distribution functions, tends to a normal distribution as

the number of the random quantities grows to infinity. Equivalently, the arith-

metic mean of independent observations tends to a normal distribution when the

number of observations grows to infinity. In practice, a relatively few random

quantities lead to a sum that can be viewed as normally distributed. In particular,

in the context of measurement accuracy, one can consider the sum – or the

arithmetic mean – of five random quantities with uniform distribution function to

be normally distributed.

A drawback of the arithmetic mean is its high sensitivity to outlying observations.

Another popular estimate of the measurand is the median. The median is less

sensitive to the outliers, but it is also less efficient: its variance exceeds the variance

of the arithmetic mean. Indeed, let m* be the sample median, and A the true value of

the measured quantity. It is known [20] that m* has asymptotically normal distri-

bution with mathematical expectation A and standard deviation

σ m∗ð Þ ¼
ffiffiffiffiffiffiffiffi
π=2

p
� σ �xð Þ ¼ 1:25σ �xð Þ,

where σ �xð Þ is standard deviation of the arithmetic mean. Since the median is a less

efficient estimate, one needs more data to obtain the same confidence interval for

the measurement result using the median than arithmetic mean.

Although the arithmetic mean produces the minimum sum of the squares of the

deviations, this only means that it is the most efficient estimate of the measured

quantity in the class of estimates that are a linear function of the observations. This

estimate becomes most efficient among all possible estimates if the errors are

distributed normally. For other distributions, as pointed out in Chap. 3, estimates

exist that are more efficient.

We will assume that we use the arithmetic mean for the estimate of the measured

quantity:
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~A ¼
Pn
i¼1

xi

n
: ð4:17Þ

Because the measurement result is a mean of a set of random quantities it is also

random quantity; if another series of measurements is performed, then the new

arithmetic mean obtained may differ somewhat from the previously found estimate.

That spread of the arithmetic means is caused by random error and characterized

either by the variance of the arithmetic means or by the standard deviation. In

accordance with (3.12) and (3.16), they are estimated from the experimental data as

follows:

S2�x ¼
1

n n� 1ð Þ
Xn
i¼1

xi � �xð Þ2, or S�x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi � �xð Þ2

n n� 1ð Þ

vuuut ð4:18Þ

Accuracy of these estimates depends on the number of observation and, as

shown in Sects. 3.6 and 3.7, for 10% accuracy of the estimate of a variance one

needs no less than 200 observations. The same accuracy for the estimate of standard

deviation needs 100 observations.

More reliable is the confidence interval, which covers the true value A with

chosen probability. Confidence intervals can be used also for measurements having

small number of observations because the number of observations is reflected in the

quantile of Student’s distribution tq. For more details on comparison between

standard deviations and confidence intervals see Sect. 4.8. We would like to

reiterate from the discussion there that the parameters calculated above belong to

the random error and therefore they characterize only repeatability of the

measurement.

The confidence interval �Ψα for confidence probability α is determined by

formula

Ψα ¼ tqS�x

where tq is the quantile of Student’s distribution for the significance level q ¼ 1� α
and the degree of freedom ν¼ n� 1 (see Table A.2). The obtained limits extend out

from the measurement result as the center of the interval:

uα ¼ ~A � Ψα:

The random error varies from observation to observation, and it is this compo-

nent of the measurement error that one tries to reduce by repeating the measurement

multiple times.

In order to characterize the accuracy of the measurement it is necessary to know

not only parameters of random errors but parameters of systematic errors as well.
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The systematic error is determined by the inaccuracy of the calibration laboratory

where the instruments were calibrated, as described in the beginning of this section.

The systematic error may consist of an absolutely constant component H and a

conditionally constant component. Component H may not always be present and if

it is present, we only know its limits�h. These limits are deterministic numbers and

must be added to other errors arithmetically. The conditionally constant component

can be specified as a random quantity with a certain probability distribution, which

can take various forms, from uniform to normal distribution. We will denote the

conditionally constant component of error as ϑ. The random component will be

denoted as ψ .
As mentioned earlier, after the measuring instrument is calibrated and correc-

tions are applied, the systematic errors of the measurement are represented by the

correction errors, which are specified by the calibration laboratory in a calibration

certificate. The certificate specifies the correction errors in one of two ways: either

as deterministic limits �θ0 or as limits of uncertainty θα listed together with

standard deviation Sϑ and chosen confidence probability α. These parameters of

measuring instrument calibration become the parameters of systematic error of the

multiple measurement.

The systematic error, no matter in which of the two ways above it is specified, is

a conditionally constant error. If the calibration laboratory specified this error by the

limits �θ0, then in accordance with the information theory, as the worst case,

the systematic error is commonly considered as having uniform distribution; if

the laboratory specified it by uncertainty θα and standard deviation Sϑ, then the

systematic error may have different types of distribution.

To assess the overall inaccuracy of measurement, one must combine the sys-

tematic and random errors. The summation of random and systematic errors is

described below in Sect. 4.10.

4.10 Universal Method for Summation of Random

and Systematic Errors

In the general form, the error of a measurement result ζ has three components:

ζ ¼ ηþ ϑþ ψ ,

where η is the absolutely constant error, ϑ is the conditionally constant error, and ψ
is the random error. Therefore, the variance of measurement result is

V ζ½ � ¼ V ϑ½ � þ V ψ½ �:

Note that V[ζ] has only two terms because V[η] ¼ 0. The conditionally constant

errors are determined by the limits of error of correction, provided by the
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Calibration laboratory. The random error reflects imperfection of the measuring

instrument involved and depends also on the instability of measurement conditions.

Estimates of V[ϑ] must be calculated (see below) and V[ψ] can be found using

formula (4.18). Denote them S2ϑ and S�x2. Denote also the estimate of the combined

variance S2c . Then the combined standard deviation Sc is

Sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ϑ þ S�x

q 2

: ð4:19Þ

Given Sc, the uncertainty of the measurement result could be calculated from the

formula

uc ¼ tcSc ð4:20Þ

if the coefficient tc was known; unfortunately, this coefficient is unknown. We will

now consider how to estimate it.

As the initial data, i.e., the data on the components of the measurement uncer-

tainty are not known accurately, an approximate estimate of the coefficient tc can be
used. In [48], the following formula was proposed for this purpose:

tc ¼ Ψα þ θα
S�xþ Sϑ

,

where θα is the confidence limit of the conditionally constant error ϑ and Ψα is the

confidence limit of the random error ψ (determined using Student’s distribution as

described earlier).

This formula was constructed based on the following considerations. The coef-

ficient tq, determining the ratio of the confidence limit and the standard deviation of

the random error, is determined by Student’s distribution and is known. Given

estimates for the confidence limit θα and standard deviation Sϑ of the conditionally
constant error, we can introduce an analogous coefficient tϑ as their ratio:

tϑ ¼ θα=Sϑ ð4:21Þ

It is natural to assume that the coefficient sought tc is some function of tq and tϑ.
It is obvious both of tq and tϑ must correspond to the same confidence probability α.
Then the computed tc corresponds to the same confidence probability α.

Now let us take a weighted average of tq and tϑ for the weights Sϑ= S�x þ Sϑð Þ and
S�x= S�x þ Sϑð Þ, respectively, for that coefficient tc . Then we obtain the proposed

formula:

tc ¼ tqS�x þ tϑSϑ
S�x þ Sϑ

¼ Ψα þ θα
S�x þ Sϑ

: ð4:22Þ
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The systematic error as a component of inaccuracy in measurements most often

is characterized – instead of θα and Sϑ – by the limits of error θ0. To find θα and Sϑ
from θ0, we first need to choose the distribution function for the systematic error. As

discussed in Sect. 4.9, the systematic error ϑ is commonly considered to be

uniformly distributed, as this represents the worst (conservative) case in accuracy

estimation. Then, for the uniform distribution, it is known that

Sϑ ¼ θ0ffiffiffi
3

p :

The confidence limit θα for the given confidence probability α can be found

according to a method illustrated in Fig. 4.3. The figure shows the CDF of error

uniformly distributed in [�θ0, +θ0]. The confidence limit for confidence probability

α is the quantile θα for probability p ¼ 1 � (1 � α)/2 ¼ (1 + α)/2. We can compute

this quantile by considering two similar triangles highlighted in the figure with

dotted lines, one with a side of size 2θ0 and the other with the corresponding side of
size (θ0 + θα). From the similarity of the triangles follows the equality

1/(2θ0) ¼ (1 + α)/2(θ0 + θα), which gives

θα ¼ αθ0, ð4:23Þ

The extreme cases for the distribution of systematic error are uniform and

normal distributions. The best case is when the systematic error can be assumed

to be normally distributed over the universe of different instances of measuring

instruments of a given type; then, tϑ¼ tq and tc¼ tq. Thus, in this case the weighting
method is accurate. The worst case is when one has to assume the uniform

distribution with tϑ ¼ θα
Sϑ
: The accuracy analysis of this case is presented below in

Sect. 4.11.

0

1

x

P

Pa

qa q0–q0

Fig. 4.3 Computing limits of confidence interval for uniformly distributed random error
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4.11 Analysis of the Accuracy of the Universal Method

for Summation of Systematic and Random Errors

To use formula (4.22), its accuracy must be estimated. The extreme cases are:

(a) when the conditionally constant error ϑ has a uniform distribution and random

error ψ has a normal distribution and (b) when tϑ ¼ tq. This case is obvious:

tc ¼ tq ¼ tϑ, and the value of tc is exact.
The first case, when the conditionally constant error is uniformly distributed,

needs analyses. The results of calculations based on the approximate formula (4.22)

must be compared with the results obtained from the exactly constructed compo-

sition of normal and uniform distributions. The expression for the distribution

density of the composition of centered uniform and normal distributions is known

from the theory of probability:

f zð Þ ¼ 1

2h

ðh
�h

1

σ
ffiffiffiffiffi
2π

p e� z�yð Þ2=2σ2dy, ð4:24Þ

where h is equal to one half the interval in which the uniform random quantity is

distributed and σ is the standard deviation of the normal random quantity. The

variance of this distribution is

σ2c ¼ σ2 þ h2

3
¼ σ2 1þ 1

3

h

σ

� �2
" #

: ð4:25Þ

The above distribution depends on both the ratio (h/σ) and on σ.We will analyze

it for σ ¼ 1. In addition to simplifying the calculations, this will make the composed

distribution universal, in the same way the standard normal distribution is universal.

Transforming the density to the probability distribution and setting σ ¼ 1, we obtain

F zð Þ
z>0

¼ 0:5þ 1

2h
ffiffiffiffiffi
2π

p
ðz
0

ðh
�h

e� z�yð Þ2=2dydz: ð4:26Þ

The variance of this distribution becomes

σ2c, 1 ¼ 1þ 1

3

h

σ

� �2

ð4:27Þ

The starting distributions are symmetric relative to 0. Hence, the resulting

distribution is also symmetric. For this reason, the limits of the confidence interval

corresponding to the probability α are quantile zp of distribution (4.26) for proba-

bility p and quantile z1�p for probability (1� p), where p¼ (1� α)/2. Indeed,
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jzpj ¼ jz1� pj because the distribution is symmetrical, and the amount of probability

covered by this interval is 1 � 2p ¼ α. Because confidence probability α is always

taken to be more than 0.5, p < 0.5 and therefore quantile zp gives the left limit and

z1�p the right limit of the confidence interval.

Table 4.4 gives values of z1�p calculated using formula (4.26) for confidence

probability α¼ 0.90, 0.95, and 0.99. As mentioned above, z1�p represents the exact

confidence limit of the combined error that corresponds to σc,1. If we instead

compute the overall uncertainty uc,1 for the same σc,1 and confidence probability

using formulas (4.22) and (4.20), the relative error introduced by the use of the

approximate formula (4.22) will be

δ ¼ uc, 1 � z1�p

z1�p
:

Although the above confidence limits were calculated for σ ¼ 1, it is easy to

recompute them for other values of σ. Since the distribution functions for σ 6¼ 1 and

σ ¼ 1 differ only in their scaling factor σc on the abscise axis, recomputation can be

done in a way completely analogous to how one uses quantiles of the standard

normal distribution with σ ¼ 1 to obtain quantiles of normal distributions with

σ 6¼ 1. Specifically,

z 1�pð Þσ ¼ σc z1�p: ð4:28Þ

where z1–p,σ is the quantile of the combined distribution for an arbitrary σ.
For example, consider a measurement where Sx ¼ 2 and θ0 ¼ 2. This corre-

sponds to σ ¼ 2, h ¼ 2 and σc ¼
ffiffiffiffiffiffiffiffiffiffi
4þ 4

3

q
¼ 2:31. Thus, h/σ ¼ 1. If we take

confidence probability 0.90, we obtain from Table 4.4 the quantile z1� p¼ 1.90

and the quantile z1� p , σ¼ 4.44.

Again, the quantile z1�p, represents the precise value of the confidence limit of

the combined error having variance σ2c for confidence probability α. Then, the
inaccuracy of the approximate confidence limit uc in the case of an arbitrary σ
becomes:

δ ¼ uc � σcz1�p

σcz1�p
¼ uc � z1�p,σ

z1�p,σ
ð4:29Þ

To estimate the inaccuracy of formula (4.22) we should contrast the empirical

formula (4.20) with the corresponding theoretical formula z1�p, ¼ trσc. The

Table 4.4 Quantiles for the composition of centered normal and uniform distributions

h/σ 0.50 1.0 2.0 3.0 4.0 5.0 6.0 8.0 10

z0.95 (α ¼ 0.90) 1.71 1.90 2.49 3.22 4.00 4.81 5.65 7.34 9.10

z0.975 (α ¼ 0.95) 2.04 2.25 2.90 3.67 4.49 5.34 6.22 8.00 9.81

z0.995 (α ¼ 0.99) 2.68 2.94 3.66 4.49 5.36 6.26 7.17 9.02 10.90
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comparison should be done for Sc ¼ σc, bringing (4.20) to the form uc ¼ tcσc. Then,
by dividing the nominator and denominator of the right-hand side of (4.29) by σc,
we obtain

δ ¼ tc � tr
tr

:

Thus, we can analyze the accuracy of (4.22) by considering the accuracy of

coefficient tc relative to its “true value” tr. We proceed with this analysis next.

We can compute a series of values of coefficient tc from the data in Table 4.4.

These values are presented in Table 4.5, which also gives the corresponding values

of σc,1.
We shall now compute coefficient tc using the approximate formula (4.22). The

limits of the confidence interval of the conditionally constant error, determined

based on the uniform distribution in accordance to (4.23), give θα. Because in this

case h ¼ θ0, we have

θα ¼ αh:

The limit of the confidence interval for the normal distribution with the same

confidence probability will be

Ψα ¼ z1þα
2
σ,

where z1þα
2
is the quantile of the standard normal distribution for probability 1þα

2
.

Expression (4.22) assumes the form

tc ¼
z1þα

2
σ þ αh

σ þ h=
ffiffiffi
3

p ¼
z1þα

2
þ α h

σ

1þ h
σ

ffiffiffi
3

p :

The values of tc, calculated for the same ratios h/σ and confidence probabilities as

were used for calculating tr, are presented in Table 4.6.

We now can compute the errors δ calculated based on the data given in Tables 4.5
and 4.6; these errors are summarized in Table 4.7. Overall, as Table 4.7 shows, the

errors from using the approximate formula are in all cases negative and their

absolute magnitude does not exceed 12% for α ¼ 0.99, 6% for α ¼ 0.95 and 2%

Table 4.5 Values of the combined standard deviation σc and of the coefficient tr as a function of

the parameters of the normal and uniform distributions

h/σ 0.5 1 2 3 4 5 6 8 10

σc,1 1.04 1.15 1.53 2.00 2.52 3.06 3.51 4.72 5.85

tr (α ¼ 0.90) 1.65 1.64 1.63 1.61 1.59 1.58 1.57 1.56 1.55

tr (α ¼ 0.95) 1.96 1.95 1.90 1.84 1.78 1.75 1.72 1.69 1.67

tr (α ¼ 0.99) 2.57 2.54 2.40 2.24 2.13 2.05 1.99 1.91 1.86
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for α ¼ 0.90. Further, these errors are the highest when h is between σ and 2σ; they
decrease for h less than σ or greater than 2σ.

Observe that Table 4.7 lists the inaccuracy of tc in the extreme case when this

inaccuracy is the highest. Moreover, for this case, when one of the component

errors is uniformly and the other normally distributed, we have obtained the exact

solution, so that the case with the highest inaccuracy can be avoided by using tr
from Table 4.5. But even the worst-case error is acceptable. We would like to repeat

that these errors decrease as the distribution of the systematic errors approaches the

normal distribution.

In summary, the above scheme presents a general method for estimating the

uncertainty of a measurement that contains both random and systematic compo-

nents. Our analysis (with results summarized in Table 4.7) shows that even in the

worst case, when the conditionally constant systematic error is uniformly distrib-

uted, this scheme is sufficiently accurate to be used in practice.

4.12 Comparison of Different Methods for Combining

Systematic and Random Errors

The above method for combining systematic and random errors is not the only

method that has been proposed. In this section, we describe four other methods,

compare all the methods on a specific example, and discuss the applicability of

these methods and other issues.

1. The US National Institute of Standards and Technology (NIST) in publication

[21] presents the following formula (reformulated according to our notation) for

combining the component errors (this formula is also mentioned in [6]):

u ¼ θ þ Ψα, ð4:30Þ

Table 4.6 Values of the coefficient tc as a function of the parameters of the normal and uniform

distributions

h/σ 0.5 1 2 3 4 5 6 8 10

t1c (α ¼ 0.90) 1.63 1.61 1.60 1.59 1.58 1.58 1.58 1.57 1.57

t2c (α ¼ 0.95) 1.89 1.84 1.79 1.76 1.74 1.73 1.72 1.70 1.69

t3c (α ¼ 0.99) 2.38 2.26 2.11 2.03 1.97 1.94 1.91 1.87 1.84

Table 4.7 Deviations of coefficient tc from tr (in %)

h/σ 0.5 1 2 3 4 5 6 8 10

δ1 (α ¼ .90) �1.2 �1.9 �1.8 �1.1 �0.6 0.0 0.8 0.6 1.2

δ2 (α ¼ .95) �3.6 �5.5 �5.7 �4.1 �2.2 �1.3 0.0 0.5 1.0

δ3 (α ¼ .99) �7.4 �11.0 �12.1 �9.4 �7.3 �5.5 �4.0 �2.2 �1.1
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where θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1 θ
2
i

q
if θif g i ¼ 1, . . . ,m, are independent systematic compo-

nents, and θ ¼ Pm
i¼1 θi, if they are dependent, and Ψα ¼ tqS�x:

This method is justified when the absolutely constant elementary errors predom-

inate the overall error. This is often the case in measurements performed in the

context of checking and calibrating measuring instruments, which is an area of a

particular interest to NIST as an organization. But this method cannot be applied

to arbitrary measurements, because in most cases, it results in overestimation of

the uncertainty.

It is necessary to note that NIST issued in l994 Guidelines where the combined

uncertainty is calculated in accordance with the method from GUM [2] (which

we consider shortly) and not based on formula (4.30).

2. The standard reference [6] gives two different formulas for calculating the

uncertainties with confidence probabilities of 0.95 and 0.99:

uc, 0:99 ¼ θ þ t0:95S�x, uc, 0:95 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2 þ t0:95S�xð Þ2

q
:

The coefficient t0.95 is chosen according to Student’s distribution in both cases

for the confidence probability 0.95 (q¼ 0.05) and degrees of freedom v¼ n� 1.

The formulas appear to be ad hoc. They are not grounded in probabilistic

reasoning, and yet they assign a stated confidence probability of 0.99 or 0.95

to the result.

3. Another method appeared in the Fourth Draft of the Guide to the Expression of

Uncertainty in Measurements issued by working group ISO/TAG4/WG3 before

the guide itself was published. In this method, the elementary systematic errors

are regarded as uniformly distributed random quantities. However, the limit of

their sum is calculated with the formula

θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1
θ2i

q
,

i.e., without using the indicated model.

The systematic and random errors are combined with a formula that is almost the

same as (4.20). The only difference lies in the coefficient tc. Here, the coefficient
is found from Student’s distribution corresponding to the selected confidence

probability and the effective degrees of freedom veff. The following formula is

given to calculate veff:

S4c
νeff

¼ S4�x
ν
þ
Xm
i¼1

θ2i
3

� �2

:

It is assumed here that the random component of uncertainty has a degree of

freedom v¼ n� 1, and each component of the systematic error has a degree of
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freedom equal to one. However, the notion of a degree of freedom is not

applicable to random variables with a fully defined distribution function. There-

fore, it is unjustified to assume that a quantity with uniform distribution within

given limits has a degree of freedom equal to one (or to any other finite number).

Thus, the formula under discussion is not mathematically grounded.

4. GUM [2] presents a method that is similar to the method of the Fourth Draft (and

in other drafts), but without the ungrounded computation of coefficient tc.
Instead, GUM assumes tc to be constant: t0c ¼ 2 for α ¼ 0.95 and t00c ¼ 3 for

α ¼ 0.99. As we will see later, this method is good if the systematic error can be

assumed has normal distribution or is small relative to the random error.

5. Finally, this book proposes a method with the resulting formulas (4.20) and

(4.22).

We shall compare all the methods above using two numerical examples.

Consider a multiple measurement comprising n ¼ 16 single measure-

ments. Suppose that as a result of some measurement, the following indicators of

its errors were obtained:

S�x ¼ 1, θ0 ¼ 3:

Suppose also that the random errors have a normal distribution and that the

(conditionally constant) systematic errors have a uniform distribution. Then for the

exact solution we can take the confidence limits presented in Table 4.4. As usual,

we shall take α1 ¼ 0.95 and α2 ¼ 0.99. Then

uT, 0:99 ¼ 4:49, uT, 0:95 ¼ 3:67:

There is a slight inaccuracy in viewing the above as “exact solution” as we

assumed that S�x ¼ σ�x.

When applied to this measurement, the considered methods give the following

results.

1. The coefficients of Student’s distribution with v¼ n� 1¼ 15 and the indicated

values of the confidence probabilities will be as follows:

t0:99 15ð Þ ¼ 2:95, t0:95 15ð Þ ¼ 2:13,
Ψ0:99 ¼ 2:95� 1 ¼ 2:95, Ψ0:95 ¼ 2:13� 1 ¼ 2:13:

Therefore, u1,0.99 ¼ 3 + 2.95 ¼ 5.95 and u1,0.95 ¼ 3 + 2.13 ¼ 5.13.

2. We shall make use of the calculations t0.95 and Ψ0.95 that were just performed:

u2,0:99 ¼ 3þ 2:13� 1 ¼ 5:13, u2,0:95 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 þ 2:13ð Þ2

q
¼ 3:68:

3. We will need the following values to apply this method,
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S2ϑ ¼ 9=3 ¼ 3, Sϑ ¼ 1:73,
S2c ¼ 1þ 3 ¼ 4, Sc ¼ 2:

We shall calculate the effective number of degrees of freedom:

42

νeff
¼ 1

15
þ 32,

16

νeff
¼ 9:07, and νeff ¼ 2:

Next, we find from Student’s distribution t3,0.99 ¼ 9.9 and t3,0.95 ¼ 4.3. Corre-

spondingly, we obtain

u3,0:99 ¼ 9:9� 2 ¼ 19:8, u3,0:95 ¼ 4:3� 2 ¼ 8:6:

4. We have, in this case, Sc ¼
ffiffiffiffiffi
S�x

p 2 þ S2ϑ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ 3

p ¼ 2:0: Because t0.99 ¼ 3 and

t0.95 ¼ 2, we obtain

u4,0:99 ¼ 3∗2 ¼ 6, u4,095 ¼ 2∗2 ¼ 4:

5. Formulas (4.20) and (4.22) give Sϑ ¼ 1.73 and Sc ¼ 2.0. Then,

t5,0:99 ¼ 2:95� 1þ 0:99� 3

1þ 1:73
¼ 5:92

2:73
¼ 2:17,

t5,0:95 ¼ 2:13� 1þ 0:95� 3

1þ 1:73
¼ 4:98

2:73
¼ 1:82,

u5,0:99 ¼ 2:17� 2 ¼ 4:34, u5,0:95 ¼ 1:82� 2 ¼ 3:64:

Let us compare the estimated uncertainties with the exact values uT , 0.99 and

uT , 0.95. The errors of these computations as compared to the exact values are

summarized in Table 4.8. Furthermore, Table 4.9 presents these errors for the

case θ0 ¼ 0.5 and the same values Sx ¼ 1 and n ¼ 16, calculated similarly. In

comparison with the previous example, method 4 and especially method 3 in this

case show a significant decrease in error. It is not surprising because now the

systematic component is insignificant relative to the random component.

We can make the following observations from these examples:

Table 4.8 Errors of different

methods of uncertainty

calculation for the case where

θ0 ¼ 3, Sx ¼ 1, n ¼ 16

Method of Computation

(ui � uT)/uT � 100%

α ¼ 0.99 α ¼ 0.95

1 32 39

2 14 0.3

3 340 132.0

4 34 6.0

5 3 0.8
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1. As expected, method 3 cannot be used when the systematic error is significant, as

in the first example. This method shows a significant decrease in error in the

second example, where the systematic component is relatively small.

2. Methods 2 and 4 are acceptable for α ¼ 0.95 only.

3. Method 1, as expected, produced estimates that were too high in both examples.

4. Our proposed method 5 gave the best results in both examples.

Examples are not, of course, proof, but they nonetheless illustrate well the

considerations stated earlier.

Table 4.9 Errors of different

methods of uncertainty

methods for uncertainty

calculation, for the

calculation, for the case where

θ0 ¼ 0.5, Sx ¼ 1, n ¼ 16

Method of computation

(ui � uT)/uT � 100%

α ¼ 0.99 α ¼ 0.95

1 29 30

2 2 7

3 13 8

4 12 2

5 4 3
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Chapter 5

Indirect Measurements

5.1 Terminology and Classification

As introduced in Chap. 1, indirect measurement is a measurement in which the

value of the unknown quantity sought is calculated using measurements of other

quantities related to the measurand by some known relation. These other quantities

are called measurement arguments or, briefly, arguments. Among examples of

indirect measurements, we can list measurement of the area of a plot of land

presumed to have a rectangular shape (obtained from length measurements of the

sides of the plot), measurement of wattage dissipated by a resistor under high-

frequency current (obtained, e.g., by measurement of the voltage and current),

measurement of temperature using a separately calibrated thermocouple and

millivoltmeter and so on.

In an indirect measurement, the true value of a measurand A is related to the true

values of arguments Aj ( j¼ 1, . . . ,N ) by a known function f. This relationship can

be represented in a general form as

A ¼ f A1; . . . ;ANð Þ: ð5:1Þ

This equation is called a measurement equation. The specific forms of measure-

ment equations can be considered as mathematical models of specific indirect

measurements.

Various classifications of indirect measurement are possible. We shall limit

ourselves to classifications that will be useful for our purposes. From the perspec-

tive of conducting a measurement, we shall distinguish single and multiple indirect
measurements. In single indirect measurements, all arguments are measured once.
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In a multiple indirect measurement, at least one of arguments is measured multiple

times, although typically all arguments are.

Multiple indirect measurements differ in a subtle but important way from

multiple direct measurements. Whereas the latter involves obtaining a measurand

estimate in every constituent single measurement and then processing these esti-

mates to obtain the overall measurement result, the former typically involves

estimating arguments from the corresponding multiple argument measurements

and then obtaining the overall indirect measurement result (except for the method

of reduction considered later in this chapter). Thus, the indirect measurement itself

is not repeated: the estimate of the measurand is obtained once all argument

measurements are completed. This is why, unlike direct measurements, single

indirect measurements cannot be considered as a base form of multiple indirect

measurements.

According to the type of the functional dependency (5.1), we shall distinguish

linear and nonlinear indirect measurements. In the case of a linear indirect mea-

surement, the measurement equation has the form

A ¼ b0 þ
XN
j¼1

bjAj, ð5:2Þ

where {bj}( j¼ 0, . . . ,N ) are constant coefficients.

Nonlinear indirect measurements are diverse, and therefore, it is impossible to

represent all of them with one general form of measurement equation.

The physics of the processes of indirect measurements gives us another impor-

tant classification criterion. To motivate this classification, let us compare the

accurate measurement physics of the processes of indirect measurements gives us

another important classification of the density of a solid with the measurement of

the temperature coefficient of the electrical resistance of a resistor. To measure the

density of a solid, its mass and volume should be measured independently, with

consistent accuracy. In the temperature coefficient measurement, the resistance of

the resistor and its temperature are measured simultaneously, which means that the

measurements of these arguments are not independent. Thus, we shall distinguish

dependent and independent indirect measurements.
Indirect measurements, like any measurements, are divided into static and

dynamic. Recall that we call a measurement dynamic if it utilizes a measuring

instrument in the dynamic regime [51]. According to this definition, a multiple

indirect measurement should be considered dynamic if any of its arguments are

measured with instruments in the dynamic regime. Such measurements are theo-

retically possible but hardly encountered in practice. For this reason, multiple

indirect measurements are usually static; only single indirect measurements can

be either static or dynamic.

While calculated very differently from direct measurements, the inaccuracy

of an indirect measurement in the end is expressed in the same way, as the limits
of error or uncertainty, and has the same components: random and systematic

errors.
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5.2 Correlation Coefficient and Its Calculation

The traditional methods for estimating the uncertainty of indirect measurements

include the calculation of the correlation coefficient. Later in this book, we shall

develop a new theory, which obviates any need for the correlation coefficient.

However, given the traditional importance of the correlation coefficient and a

great deal of confusion in metrology with its calculation, it makes sense to describe

here a clear procedure for calculation of the correlation coefficient.

The mathematical foundation and methods of the correlation coefficient calcu-

lations can be found in many books on the probability theory and mathematical

statistics, for example, [53]. Consider two random quantities X and Y with mathe-

matical expectations equal to zero and finite variances. Denote their variances as

V X½ � ¼ σ2x and Y½ � ¼ σ2y .

The variance of a random quantity Z ¼ X + Y can be calculated using the

equation

V Z½ � ¼ E X þ Yð Þ � X þ Y½ �ð Þ2
h i

¼ E X þ Yð Þ2
h i

¼ E X2
� �þ E Y2

� �þ 2E XY½ �: ð5:3Þ

The last term E[XY] is named second mixed moment or covariance.

The covariance divided by the square root of the product of variances σ 2
x σ

2
y gives

the correlation coefficient ρXY:

ρXY ¼ E XYð Þ
σXσY

:

The value of the correlation coefficient always lies within [�1, +1], and if

|ρXY|¼ 1, then there is a linear functional dependency between X and Y. When

ρXY¼ 0, X and Y are uncorrelated, although it does not mean that they are indepen-

dent. Otherwise, when 0< jρXYj< 1, the nature of the dependency between X and

Y cannot be determined unambiguously: it can be stochastic as well as functional

nonlinear dependency. Therefore, in the last case, if the knowledge about the nature

of the dependency between X and Y is required, it can only be obtained based on

physical properties of the problem rather than inferred mathematically.

From the above formulas, we obtain

σ 2
X ¼ σ2X þ σ 2

Y þ 2ρXYσXσY : ð5:4Þ

In practice, we have to work not with the exact values of parameters of random

quantities but with their estimates. So, instead of variances σ2Z, σ
2
X, σ

2
,Y and the

correlation coefficient ρXY, we have to use their estimates S2Z, S
2
X, S

2
Y and rXY (we will

also use interchangeably S2(X) to denote an estimate of the variance of random

quantity X). If n is the number of measured pairs (xi, yi) of random quantities X and

Y i ¼ 1; . . . ; nð Þ, and �x and �y are averages over n observed values of X and Y, then
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S2x ¼
Pn
i¼1

xi � �xð Þ2

n� 1
, S2y ¼

Pn
i¼1

yi � �yð Þ2

n� 1
:

The estimate of E[XY], which we denote as mXY, will be

mXY ¼
Pn
i¼1

xi � �xð Þ yi � �yð Þ
n� 1

:

Then,

rXY ¼ mXY=SXSY :

Thus, the calculation formulas for the correlation coefficient of two random

quantities and the variance of their sum are as follows:

rXY ¼
Pn
i¼1

xi � �xð Þ yi � �yð Þ
n� 1ð ÞSXSY , ð5:5Þ

S2Z ¼ S2X þ S2Y þ 2rXYSXSY : ð5:6Þ

The estimates of the variances of the average values �x and �y are known to be

S2�x ¼
S2Z
n

and S2�y ¼
S2Y
n
,

Then, by dividing (5.6) by n, we obtain the estimate of the variance of the mean

value of Z:

S2�Z ¼ S2�x þ S2�y þ 2rXYS�xS�y: ð5:7Þ

The correlation coefficient estimation here is the same as in (5.5). One can also

use S�yand S�y for the calculation of the correlation coefficient estimation using the

fact that SXSY ¼ nS�xS�y: Then, (5.5) will change to the following:

rXY ¼
Pn
i¼1

xi � �xð Þ yi � �yð Þ
n n� 1ð ÞS�xS�y : ð5:8Þ

It is necessary to stress that, in order to compute the correlation coefficient

between random quantities X and Y, the number of realizations of X and Y (e.g., the

number of measurements of X and Y ) must be the same. Moreover, each pair of
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these realizations must be obtained under the same conditions, for example, at the

same time, at the same temperature, and so on.

The theory of correlations says that realizations xi, and yi, must belong to the

same event i. A clear illustration of this statement is given by the classic example of

the accuracy analysis of firing practice. Here, each event is one shot. Each shot i is

described by a pair of values xi, and yi, which express the deviation of the bullet

from the center of the target in orthogonal coordinates. In the case of an indirect

measurement, one event is the set of matched measurement results of all arguments.

This event corresponds to a point in the multidimensional space with arguments as

coordinates. We shall call this set of coordinates a measurement vector.
In the above-mentioned example of the measurement of the temperature coeffi-

cient of the electrical resistance of a resistor, each pair of measurements of the

resistance and temperature is a measurement vector.

5.3 Constructing the Composition of Histograms

In the general case, to combine random quantities, it is necessary to construct the

composition of the distributions of the component quantities. If the distribution

functions are given analytically, then their composition is found either by direct

integration of the derivatives of the functions, or by using the characteristic

functions, which usually simplifies the solution, or by the Monte Carlo method.

In practice, however, the analytical form of the distribution functions is usually

unknown. Based on the experimental data, one can only construct a histogram, and

moving from the histogram to the distribution function unavoidably introduces an

error. For this reason, we shall study the summation of independent random

quantities whose distribution is given by histograms and not by distribution

functions [27].

Suppose we need to find the distribution function of random quantity

ζ¼ ζ1 + � � � + ζn, where ζi is a random quantity given by a histogram with mi

intervals in the range of possible values of ζi, with the boundaries li1 and limi
(see Fig. 5.1). Denote the mi intervals as li1, . . . , limi

. Thus,

ai; bi½ � ¼ li1 þ li2 þ � � � þ limi
, i ¼ 1, . . . , n:

We shall assume that the probability that the random quantity falls within a

given interval of the histogram is equal to the area of the part of the histogram that

corresponds to this interval (the area of the corresponding bar of the histogram):

P ζi2 likf g ¼ pik,

where k¼ 1 , . . . ,mi is the number of intervals of the histogram.

Figure 5.1 shows as an example a histogram with five intervals of equal length

li ¼ l, so that bi� ai¼ 5l. For this histogram,
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pi1 ¼ W1l, pi2 ¼ W2l . . . pi5 ¼ W5l,

where W1, . . .,W5 are the heights of the columns of the histogram; by construction,

the area of the entire histogram is equal to unity; i.e.,
P5

k¼1 pik ¼ 1.

We recall that in constructing histograms (which is done based on empirical

data), the height of each bar is found by dividing the relative frequency with which

the values fall within the corresponding interval by the length of this interval. This

frequency is an empirically obtained estimate of the probability of the

corresponding event.

Next, we shall represent continuous random quantities ζi by corresponding

discrete random quantities ηi as follows. Let aik be the center of each interval lik.
Then random quantity ηi assumes the value aik with probability pik . Note that this
construction defines a proper discrete distribution because the probabilities of all

possible discrete values add to unity:Xmi

k¼1

pik ¼ 1 for all i ¼ 1, . . . , n:

It is useful to represent each random quantity ηi by a table:

ηi ai1 ai2 . . . aimi

pi1 pi2 . . . pimi

We shall now study the random variable η¼ η1 + η2 + � � � + ηm. We obtain all its

possible values by enumerating all combinations of realizations aik of all compo-

nents ηi. For the calculations, it is convenient to list all possible values of all the

random quantities in a single table of the form

η1 a11 . . . a1m1
,

η2 a21 . . . a2m2
,

....

ηn an1 . . . anmn
:

0

W1

W2

W (li)

lai bi zi

Fig. 5.1 Histogram of the

distribution of a random

quanity
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Next we calculate the values at of the random quantity η that correspond to each
possible combination of realizations of the random quantities ηi:

at ¼ a1k1 þ a2k2 þ . . .þ ankn

where each ki(i¼ 1, . . . , n) iterates from 1 to mi, and the corresponding probabil-

ities, which can be found from the formula

pt ¼ P η1 ¼ a1k1 ; η2 ¼ a2k2 ; . . .f g ¼
Yn
i¼1

piki: ð5:9Þ

The number of these combinations is
Qn

i¼1 mi but because some combined values

may be equal, the total number of realizations N of the combined random quantity is

N �
Yn
i¼1

mi: ð5:10Þ

Adding up the probabilities of all the combinations (computed from the Eq. (5.9)

above) that correspond to the same combined realization, we obtain the probability

of random quantity η assuming each possible combined value a1 , � � � , aN.
The obtained data makes it possible to construct the step distribution function

F1(x) of random quantity η:

F1 xð Þ ¼
XN
t¼1

P η ¼ atf g, at � x

The curve F1(x) is the first approximation to the distribution function sought,

F(x). The obtained step function can be smoothed by the method of linear interpo-

lation as follows (an example of applying this procedure is given later in this

section). We find the center of the intervals [at, at+1] with t¼ 1 , . . . ,N� 1:

βt ¼
atþ1 þ at

2
: ð5:11Þ

From the points βt, we raise perpendiculars up to the step line F1(x). We obtain

points with the coordinates (βt,F1(x)) for t¼ 1 , . . . ,N� 1. To these points, we add

points at which the distribution function assumes the values F1(β0)¼ 0 and

F1(βN)¼ 1:

β0 ¼
Xn
i¼1

ai, βN ¼
Xn
i¼1

bi: ð5:12Þ

Joining the N + 1 points so obtained with straight lines, we arrive at the function

F2(x), which is the approximation sought.
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The method presented above gives a solution of the problem using all available

information and does not introduce any distortions. In the general case, however,

V[ζi] 6¼V[ηi] and the variance of the random quantity with the distribution F1(x) or
F2(x) can differ from the variance of the random quantity ζ. For this reason, if the
component random variables are independent, the variance of their sum must be

calculated in the standard manner using the formula

V ζ½ � ¼ V
Xn
i¼1

ζi

" #
¼
Xn
i¼1

V ζið Þ:

It should be noted that the method presented above for constructing a composi-

tion of histograms is also useful in the case when the distributions of the random

quantities are given in analytic form. The smooth curve expressing the density of

the distribution of the random quantity ζi is replaced by a step curve with mi steps,

in a manner so that the area it bounds is equal to unity. If the tails of the

original distribution density function approach the abscissa axis asymptotically,

this distribution is replaced by a truncated distribution. The rest of the approach

follows the steps described above for the histograms. It is also obvious that this

method is useful both for the case of discrete quantities ζi and for the mixed case. In

general, the presented method is essentially an algorithm for constructing numer-

ically the composition of distributions and can be easily implemented as a computer

program.

We shall illustrate the method with an example. Let ζ¼ ζ1 + ζ2, where ζ1 has a
normal distribution with the density

f 1 xð Þ ¼ 1ffiffiffi
2

p e� x�2ð Þ2=2,

and ζ2 has a distribution with a uniform density f2(x)¼ 1/6 over interval [�3, 3].

The parameters of the above distribution of random quantity ζ1 are A ¼ 2 and

σ ¼ 1, and we shall truncate the domain of ζ1 to be [A� 3σ,A+ 3σ]¼ [�1, 5]. We

divide this interval into five intervals (m1 ¼ 5), symmetrically arranged relative to

the point 2, which is the mathematical expectation:

�1; 5½ � ¼ �1; 0:5½ � þ 0:5; 1:5½ � þ 1:5; 2:5½ � þ 2:5; 3:5½ � þ 3:5; 5½ �:
For the random quantity ζ2, we assume m2 ¼ 3, dividing its domain into three

intervals:

�3; 3½ � ¼ �3;�1½ � þ �1; 1½ � þ 1; 3½ �:

Next we calculate the probability that the random quantities fall into the

corresponding intervals. For the normal distribution, we have
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p11 ¼
ð0:5
�1

1ffiffiffiffiffi
2π

p e� x�2ð Þ2=2dx ¼ 0:067,

p12 ¼
ð1:5
0:5

1ffiffiffiffiffi
2π

p e� x�2ð Þ2=2dx ¼ 0:242,

p13 ¼
ð2:5
1:5

1ffiffiffiffiffi
2π

p e� x�2ð Þ2=2dx ¼ 0:382:

In view of the symmetry of the normal distribution,

p14 ¼ p12 ¼ 0:242, p15 ¼ p11 ¼ 0:067:

For the uniform distribution,

p21 ¼
ð�1

�3

1

6
dx ¼ 1

3
, p22 ¼

ð1
�1

1

6
dx ¼ 1

3
, p23 ¼

ð3
1

1

6
dx ¼ 1

3
:

Next we find the centers of the constructed intervals:

a11 ¼ �1þ 0:5

2
¼ �0:25, a12 ¼ 0:5þ 1:5

2
¼ 1,

a13 ¼ 1:5þ 2:5

2
¼ 2, a14 ¼ 2:5þ 3:5

2
¼ 3, a15 ¼ 3:5þ 5

2
¼ 4:25,

a21 ¼ �3� 1

2
¼ �2, a22 ¼ �2þ 1

2
¼ 0, a23 ¼ 1þ 3

2
¼ 2:

This process determines η1, which assumes values a2k with probabilities p1k.
where k ¼ 1,. . ., 5, and η2. which assumes values a2k with probabilities p2k, where
k ¼ 1. 2. and 3, As a result of the calculations we have obtained

η1
a1k �0:25 1 2 3 4:25,

p1k 0:067 0:242 0:385 0:242 0:067,

(

η2
a2k �2 0 2,

p2k 0:333 0:333 0:333:

(

Next we turn to the random quantity η ¼ η1 + η2. We estimate the number of

distinct values N of random quantity η from formula (5.10). In our case, m1 ¼ 5,

m2¼ 3, and N� 15. We shall represent the values obtained for η1 and η2 in the form
of a table:
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η1 �0.25 1 2 3 4.25

η2 �2 0 2 – –

Based on this table, we find the sums of all possible combinations of the values

of the component random quantities and their corresponding probabilities, as

illustrated in Table 5.1. Two pairs of the combinations produce the same values

(values 1 and 3 are encountered twice in Table 5.1.), thus we add up their

corresponding probabilities, obtaining the following list of all distinct values of η
and their probabilities:

at �2.25 �1 �0.25 0 1 1.75 2 2.25 3 4 4.25 5 6.25

pt 0.022 0.081 0.022 0.12 0.162 0.022 0.127 0.022 0.162 0.127 0.022 0.081 0.022

Based on the data obtained, we can construct F1(x). The values of this function
are presented in Table 5.2, and the corresponding graph is given by the stepped line

in Fig. 5.2.

We find βt for t¼ 1 , . . . , 12 from (5.11), and β0 and β13 from (5.12). Using

these calculations as well as the data of Table 5.2, we construct the distribution

function F2(x).
The function F2(x) is plotted in Fig. 5.2 as a broken line connecting the points.

(βt,F1(βt)) for t¼ 0 , . . . , 13. The numerical values of F2(x) for x¼ βt, where

t¼ 0 , . . . , 13 are presented in Table 5.3. Figure 5.2 also shows points belonging

to the combined distribution function precisely constructed using the Monte Carlo

method. One can see that all these points are close to the linear approximation

F2(x). Note that this high approximation accuracy was obtained despite the fact that

we used just three points to represent the uniform distribution and only five points to

represent the normal distribution.

Table 5.1 Computing

realizations of the combined

random quantity η and their

probabilities

η p

�0.25 � 2 ¼ �2.25 0.067 ✕ 0.333 ¼ 0.022

�0.25 + 0 ¼ �0.25

�0.25 + 2 ¼ 1.75

1 � 2 ¼ �1 0.242 ✕ 0.333 ¼ 0.081

1 + 0 ¼ 1

1 + 2 ¼ 3

2 – 2 ¼ 0 0.382 ✕ 0.333 ¼ 0.127

2 + 0 ¼ 2

2 + 2 ¼ 4

3 � 2 ¼ 1 0.242 ✕ 0.333 ¼ 0.081

3 + 0 ¼ 3

3 + 2 ¼ 5

4.25 � 2 ¼ 2.25 0.067 ✕ 0.333 ¼ 0.022

4.25 + 0 ¼ 4.25

4.25 + 2 ¼ 6.25
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Obviously, the approximation of the distribution function of the combined

random quantity by F2(x) can be improved by making finer grained subdivisions

of the domains of the component random quantities, e.g., in our example, by

dividing the domain of η1 into 10 intervals instead of 5 and the domain of η2 into
6 intervals instead of 3.

We should stress that the key aspect of the presented method of constructing the

composition of histograms is that the probability of each combination of data points

is computed as the product of probabilities of the component data points.

Table 5.2 Stepped approximation of the

distribution function of the combined random

quantity η

X

F1(x)From To

–1 �2.25 0.000

�2.25 �1.00 0.022

�1.00 �0.25 0.103

�0.25 0.00 0.125

0.00 1.00 0.252

1.00 1.75 0.414

1.75 2.00 0.436

2.00 2.25 0.563

2.25 3.00 0.585

3.00 4.00 0.747

4.00 4.25 0.874

4.25 5.00 0.896

5.00 6.25 0.978

6.25 +1 1.000

Fig. 5.2 Stepped and linear approximations of the distribution function
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This works for an arbitrary composition function used to combine the input

quantities, not just the summation as we consider here for simplicity.

Let us consider another example. Take the case when random quantities have

distribution functions such that there is a known closed form for the distribution

function of the combined random quantity. For instance, we know that the distri-

bution density function of the composition of two identical uniform distributions

has the form of an equilateral triangle with easily computed parameters.

Thus, let us consider two random quantities ζ1 and ζ2 both uniformly distributed

on the interval [�0.5, 0.5]. Let us replace the distribution density function of each

quantity (which has value 1 within and 0 outside the interval) by a histogram with

five equal-width bars. Since the overall interval length is 1, each bar in either

histogram has width l1¼ l2¼ 0.2, and the height of all the bars remains 1. Hence the

area of each bar – which gives the probability of the quantities ζ1 and ζ2 to fall into
that bar – is 0.2. In this way, the interval of possible values of each random quantity

[�0.5, 0.5] is divided into five equal-sized segments: [�0.5, �0.3], [�0.3, �0.1],

[�0.1, 0.1], [0.1, 03], [0.1, 03], [0.3, 05].

For either random quantity ζi (i¼ 1, 2) denote the midpoints of the bars as

aik (k¼ 1, . . . , 5) and introduce, as described earlier, a discrete random quantity ηi
that takes values aikwith probability pik equal to the area of bar k. In our case, pik¼ 0.2

for all i and k. As before, let us represent the values of aik in the tabular form:

η1 a11 a12 a13 a14 a15
�0.4 �0.2 0 0.2 0.4

η2 a21 a22 a23 a24 a25
�0.4 �0.2 0 0.2 0.4

Since the probabilities of all values aik are the same, we omit them from the

tables above.

Table 5.3 Linear

approximation of the

distribution function of the

combined random quantity η

t βt F2(x)

0 �4.00 0.000

1 �1.62 0.022

2 �0.62 0.103

3 �0.14 0.125

4 0.50 0.252

5 1.14 0.414

6 1.87 0.436

7 2.12 0.563

8 2.62 0.585

9 3.50 0.747

10 4.12 0.874

11 4.62 0.896

12 5.62 0.978

13 8.00 1.000
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Let us now move to the random quantity η¼ η1 + η2. Its possible values at
represent combinations of the possible values of η1 and η2 and are given in

Table 5.4.

Because all values of η1 and η2 have equal probability p1k¼ p2k¼ 0.2, all values

at of the combined quantity have probability pt¼ p1k � p2k¼ 0.04.

As seen from Table 5.4, most of the combined values repeat multiple times. The

probability of each distinct value is obviously the sum of the probabilities of all the

occurrences of this value in Table 5.4, with each occurrence having the probability

0.04 in our case. Table 5.5 lists, for the combined random quantity η, all distinct
values at and their probabilities pt. The number of occurrences of each distinct value

is listed in parentheses after the value.

Table 5.5 represents a stepped approximation of the distribution function of the

combined random quantity ζ we are seeking. At this point, we could apply

Eqs. (5.11) and (5.12) to find linear approximation of this distribution function.

Instead, we will build an approximation of the density function of ζ by applying

essentially numerical differentiation to the function specified in Table 5.5.

The discrete random quantity η represents a histogram of random quantity ζ,
with values at representing midpoints of the histogram bins and probabilities pt the
probabilities that realizations of ζ will fall into the corresponding bin (i.e., the areas
of the corresponding histogram bars). The boundaries of the histogram bins are

computed using Eqs. 5.11 and 5.12 and in our case, the bins all have the same width

0.2. The areas of the bins are given in Table 5.5 as probabilities pt. Dividing these

probabilities by the width 0.2, we obtain the heights of the histogram bars Wt:

at �0.8 (1) �0.6 (2) �0.4 (3) �0.2 (4) 0 (5) 0.2 (4) 0.4 (3) 0.6 (2) 0.8 (1)

Wt 0.2 0.4 0.6 0.8 1.0 0.8 0.6 0.4 0.2

The resulting histogram, along with the exact density function, is depicted in

Fig. 5.3. The ordinates corresponding to the midpoints of the histogram bins fall

onto the exact density function.

In general, the points obtained through enumeration of combinations as

described here cannot be used to compute the parameters of the obtained

Table 5.4 Possible values at of random quantity η ¼ η1 + η1

at a11 + a21¼ � 0.8 a11 + a22¼ � 0.6 a11 + a23¼ � 0.4 a11 + a24¼ � 0.2 a11 + a25¼ 0

a12 + a21¼ � 0.6 a12 + a22¼ � 0.4 a12 + a23¼ � 0.2 a12 + a24¼ 0 a12 + a25¼ 0.2

a13 + a21¼ � 0.4 a13 + a22¼ � 0.2 a13 + a23¼ 0 a13 + a24¼ 0.2 a13 + a25¼ 0.4

a14 + a21¼ � 0.2 a14 + a22¼ 0 a14 + a23¼ 0.2 a14 + a24¼ 0.4 a14 + a25¼ 0.6

a15 + a21¼ 0 a15 + a22¼ 0.2 a15 + a23¼ 0.4 a15 + a24¼ 0.6 a15 + a25¼ 0.8

Table 5.5 The distinct values at of random quantity η and their probabilities

at �0.8 (1) �0.6 (2) �0.4 (3) �0.2 (4) 0 (5) 0.2 (4) 0.4 (3) 0.6 (2) 0.8 (1)

pt 0.04 0.08 0.12 0.16 0.20 0.16 0.12 0.08 0.04
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distribution because these points do not represent independent observations.

Nonetheless, it is interesting to see how the estimate of the variance computed on

these points would differ from the actual variance. This is easy to do in our

example.

The variance of the random variable uniformly distributed on interval [�0.5,

0.5] is known: σ21,2 ¼ 0.5∗
2=
3 ¼ 0.083. Thus the variance of the sum of these two

distributions will be σ2 ¼ 2σ21,2 ¼ 0.166. The combined distribution is symmet-

rical around zero. Thus, using the points obtained,

S2 ¼
XN
t¼1

a2t pt ¼ 2 0:82 � 0:04þ 0:62 � 0:08þ 0:42 � 0:12þ 0:22 � 0:16� � ¼ 0:160:

Thus, this estimation of the resulting variance is different from the actual

variance.

5.4 Traditional Method of Measurement Data Processing

The traditional method of experimental data processing is only able to handle

multiple measurements. It consists of two steps. In the first step, we estimate the

value of the measurand, and in the second step, we calculate the inaccuracy of this

estimate.

In an indirect measurement, the first step traditionally is based on the

assumption that the estimate ~A of the measurand A can be obtained by substitution

of ~Aj for Aj in (5.1):

~A ¼ f ~A1; . . . ; ~AN

� �
, ð5:13Þ

where the argument estimations are usually computed as the mean values of the

argument observations.

Fig. 5.3 The probability density function of the composition of two uniform distributions

obtained by the numerical integration method
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The second step is commonly solved by expansion of the function (5.1) in a

Taylor series. Usually the Taylor series is written in the form of an approximate

value of the given function, which is brought to its true value with the help of

corrections. We want, however, to work with errors rather than with corrections.

Thus, we shall write the series in such a form that the approximate value of the

function is expressed by adding something to its true value. To simplify further

calculation, suppose that the number of arguments N ¼ 2. Then, we have the

Taylor series in the form:

f ~A1; ~A2

� � ¼ f A1;A2ð Þ þ ∂
∂A1

ζ1
∂

∂A2

ζ2

� �
f A1;A2ð Þ

þ1

2!

∂
∂A1

ζ1
∂

∂A2

ζ2

� �2

f A1;A2ð Þ þ � � �

þ 1

m!

∂
∂A1

ζ1
∂

∂A2

ζ2

� �m

f A1;A2ð Þ þ Rmþ1,

ð5:14Þ

where eA 1 ¼ A1 þ ζ1, eA 2 ¼ A2 þ ζ2 (ζ1 and ζ2, the errors of ~A1 and ~A2), Rm+1 is the

remainder term, and partial derivatives are computed at the point ( ~A1, ~A2).

The remainder term can be expressed in the Lagrange form:

Rmþ1 ¼ 1

mþ 1ð Þ!
∂

∂A1

ζ1 þ
∂

∂A2

ζ2

� �mþ1

f A1 þ ν1ζ1;A2 þ ν2ζ2ð Þ, ð5:15Þ

where 0 < ν1,2 < 1.

If the indirect measurement is linear, all terms, except the linear one, are equal

to zero.

The general form of the error of an indirect measurement is

ζ ¼ eA � A ¼ f ~A1; ~A2

� �� f A1;A2ð Þ:

Turning to the Taylor series, one obtains

ζ ¼ ∂
∂A1

ζ1 þ
∂

∂A2

ζ2

� �
f A1;A2ð Þ

þ 1

2

∂
∂A1

ζ1 þ
∂

∂A2

ζ2

� �2

f A1;A2ð Þ þ � � � þ Rmþ1:

ð5:16Þ

In practice, however, only the first linear term is used for error calculations:

ζ ¼ ∂
∂A1

ζ1 þ
∂

∂A2

ζ2:
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One can check if neglecting the higher terms is possible by estimating the

remainder term R2.

Thus, the estimation of inaccuracy of nonlinear indirect measurements is done

through linearization of the measurement equation. We will call the partial deriv-

atives above argument influence coefficients (not to be confused with influence

quantities and coefficients considered in measurements under rated conditions). We

shall denote them as follows:

wj ¼ ∂f
∂Aj

, j ¼ 1, . . . ,N:

The previous equation then can be written in the general form:

ζ ¼
XN
j¼1

wjζj ð5:17Þ

We emphasize again that all partial derivatives are calculated at the estimates

point ( ~A1, ~A2) because the true values A1, A2 are unknown.

Putting aside for now absolutely constant errors, we can write

ζj ¼ ϑj þ ψ j,

where ϑj and ψ j are conditionally constant and random components of the error,

respectively. So, (5.17) takes the form:

ζ ¼
XN
j¼1

wjϑj þ
XN
j¼1

wjψ j: ð5:18Þ

The last formula says that, in indirect measurements, not only the systematic

error consists of components, but so also does the random error. However, we

should emphasize that the traditional method for accuracy estimation of indirect

measurements, as traditional methods for other measurement types, only considers

random errors and leaves systematic errors unaccounted for.

An extremely important characteristic of a random error is its variance. In

accordance with the mathematical definition of the variance, we obtain from

(5.17), for N ¼ 2,

V ζ½ � ¼ E w1ζ1 þ w2ζ2ð Þ2
h i

¼ w2
1E ζ21
� �þ ζ22E ζ22

� �þ 2w1w2E ζ1
∗ζ2½ �:

This formula is different from (5.3) only in the notations. Therefore, one can

write

σ2 ¼ w2
1σ

2
1 þ w2

2σ
2
2 þ 2ρ1,2w1w2σ1σ2, ð5:19Þ
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where

σ2 ¼ V ζ½ � ¼ E ζ2
� �

, σ21 ¼ E ζ21
� �

,

σ22 ¼ E E2
2

� �
, and ρ1,2 ¼

E ζ1 � ζ2½ �
σ1σ2

:

We should like to point out that the variance of a random error of the measure-

ment result is identical to the variance of the measurement result:

V ζ½ � ¼ V ~A
� �

:

Also note that (5.19) has three terms, which correspond to the case when N ¼ 2.

When N ¼ 3, we shall have six terms. So, with the number of arguments

increasing, the complexity of calculations increases rapidly.

In (5.19), the values of variance σ2j and correlation coefficient ρk,l are

unknown and, in practice, their estimations S2j and rk,l are used instead. Taking

into account this substitution and assuming the general case of N arguments, (5.19)

becomes

S2 ¼
XN
j¼1

w2
j S

2 ~Aj

� �þ 2
X
k<l

rk, lwkwlS ~Ak

� �
S ~Al

� � ð5:20Þ

To estimate the variance of the estimation of an argument and correlation

coefficient between pairs of arguments, we have the formulas

S2j ¼ S2 ~Aj

� � ¼ 1

n n� 1ð Þ
Xn
i¼1

xji � �xj
� �2

,

rk, l ¼

Xn
i¼1

xki � �xkð Þ xli � �xlð Þ

n n� 1ð ÞS ~Ak

� �
S ~Al

� � :

9>>>>>>=>>>>>>;
Here, n is the number of measurement vectors, and xki is the realization of argument

Ak from measurement vector i. In particular, in the formula for the correlation

coefficient, the fact that realizations xki and xli have the same subscript i means that

these realizations must be taken from the same vector i. Having the estimates S2j and

rk,l, one can use (5.20) to obtain the estimate of variance S2.
If all arguments are independent, i.e., ρk,l ¼ 0, then (5.20) is simplified:

S2 ¼
XN
j¼1

w2
j S

2 ~Aj

� � ð5:21Þ
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This equation gives the following expression for the standard deviation:

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1S

2 ~A1

� �þ � � � þ w2
NS

2 ~AN

� �q
ð5:22Þ

The last two formulas are often called the error propagation formulas, although
in reality they express the propagation of variances. Although (5.22) was derived

for the random errors only, it has a wide use as universal formula for the summation

of all kinds of errors. This way of error calculation even has a specific name: the
root sum of the squares (RSS) method.

The next problem is to calculate the confidence interval for the true value of the

measurand and hence the uncertainty of the measurement result. Within the frame-

work of traditional methods, this problem can only be solved in a mathematically

grounded way for linear independent indirect measurements, although even in this

case, the solution is only approximate. For nonlinear independent measurements,

this problem is solved by linearization of the measurement equation, which leads to

additional inaccuracy. However, for dependent indirect measurements the tradi-

tional method does not provide any solution, because in this case it is impossible to

obtain the probability distribution of the measurement error and to find the appro-

priate number of degrees of freedom. Thus, the inaccuracy of dependent indirect

measurements in the traditional method is commonly expressed by the standard

deviation of the measurement result. However, as we argued in Sect. 4.8, standard

deviation is a poor characteristic of measurement accuracy.

Let us consider this simplest case of a linear indirect measurement Eq. 5.2 with

normally distributed argument errors. In this case, in principle, one could use

Student’s distribution, but the exact expression for the degrees of freedom is not

known. An approximate solution, which gives an estimate of the degrees of

freedom, called the effective degrees of freedom, is given by the well-known

Welch-Satterthwaite formula:

νeff ¼

PN
j¼1

b2j S
2 ~Aj

� � !2

PN
j¼1

b4j S
4 ~Ajð Þ
νj

ð5:23Þ

where vj is the number of degrees of freedom for argument Aj, determined by the

number of measurements nj of Aj: vj ¼ nj – 1. The uncertainty in this case can be

calculated

u ¼ tqS

where tq is found from Student’s distribution table for the degrees of freedom νeff
and the significance level q ¼ 1 – α (recall that α is the chosen confidence

probability). The obtained uncertainty is approximate because, not knowing the

actual degree of freedom, we used its estimate – the effective degrees of freedom.
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For nonlinear independent indirect measurements, as already mentioned, the

problem of constructing confidence intervals can be solved using linearization of

the measurement equation. Linearization is done using the expansion of the mea-

surement equation into Taylor series. In this method, one estimates the standard

deviation of the measurement result using (5.22), computes the effective degree of

freedom from (5.23) (replacing coefficients bj with wj), and then finds the quantile

of Student’s distribution corresponding to the just-found degree of freedom and

chosen confidence probability. Having obtained the quantile, one can calculate the

confidence interval for the measurement result, that is, the measurement uncertainty

in the same way as for a linear indirect measurement.

In practice, instead of linearization, the uncertainty is often calculated simply by

summation of measurement uncertainties of the arguments using the following

formula (5.24), which is based on (5.22):

uf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
u2j

r
, ð5:24Þ

where uf is the uncertainty of the measurement result and uj is the uncertainty of the
estimation of j-th argument. The uncertainty uj is calculated by the usual formula

uj ¼ tq wjSj
� �

,

where tq is the quantile of Student’s distribution that corresponds to degree of

freedom νj and significance q¼ (1� α) and wj is the influence coefficient of the

j-th argument.

Unfortunately, the root sum of squares formula (5.24), as well as Eq. 5.22, is

correct for summing variances, not confidence limits or uncertainties; thus it is

unclear if one can call the result a confidence interval or uncertainty. We discuss

this and other shortcomings of the traditional method in the next section.

5.5 Shortcomings of the Traditional Method

The traditional method is based on the Taylor series expansion (5.14). Although the

method is universal and has generally satisfied the practice, it has a number of

shortcomings.

First, a fundamental shortcoming of the traditional method is that it produces a

biased estimate of the measurand. This deficiency was found long ago [44], but

because of its importance, we discuss this issue further below. The bias of the

measurand estimate stems from the fact that for a nonlinear function f of several
random variables, the mathematical expectation of the function is generally not

equal to the function of the mathematical expectations of the arguments:

E f X1; . . . ;XNð Þ½ � 6¼ f E X1½ �; . . . ;E XN½ �ð Þ,
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where X1, . . . , XN are random quantities. The left-hand side of this inequality is an

unbiased estimate of the measurand, but the traditional method takes the right-hand

side as the estimate. Therefore, the estimate of the measurand given by (5.13) can

be incorrect when the measurement equation is nonlinear. Let us estimate the extent

of this problem.

Let us go back to (5.14) and now retain not only the first term but the second one

also. Again, assuming N ¼ 2 for simplicity, we get

ζ ¼ ∂f
∂A1

ζ1 þ
∂f
∂A2

ζ2

� �
þ 1

2

∂
∂A1

ζ1 þ
∂

∂A2

ζ2

� �2

f A1;A2ð Þ:

Assume, as before, ζ1 and ζ2 to be free from systematic errors: E[ζ1] ¼ 0 and

E[ζ2] ¼ 0. Then, the mathematical expectation of the first term is equal to zero:

E
∂f
∂A1

ζ1 þ
∂f
∂A2

ζ2

� �	 

¼ w1E ζ1½ � þ w2E ζ2½ � ¼ 0:

But the variances of the errors ζ1 and ζ2 are

V ζ1½ � ¼ σ21 > 0 and V ζ2½ � ¼ σ22 > 0,

and therefore the mathematical expectation of the second term in the above Taylor

series is not equal to zero. Indeed,

E ζ½ � ¼ E
1

2

∂
∂A1

ζ1
∂

∂A2

ζ2

� �2

f A1;A2ð Þ
" #

¼ 1

2

∂2
f

∂A2
1

E ζ21
� �þ 1

2

∂2
f

∂A2
2

E ζ22
� �þ ∂f

∂A1

� ∂f
∂A2

E ζ1 � ζ2½ �

¼ 1

2

∂2
f

∂A2
1

σ21 þ
1

2

∂2
f

∂A2
2

σ22 þ
∂f
∂A1

� ∂f
∂A2

ρ1,2σ1σ2:

ð5:25Þ

As σ21 > 0, σ22 > 0 and ρ1:2j j < 1,E ζ½ � ¼ B 6¼ 0. The value B represents the bias

of the measurand estimate. The bias of the measurement result can be reduced by

correction C:

C ¼ �B:

But even after correction, the estimate of a measurand will not be exact because

it takes into account only two terms, whereas the Taylor series may have an infinite

number of terms. This deficiency of the traditional theory of indirect measurements

must be considered as an essential disadvantage for it affects the result of

measurement.
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A second limitation is that the traditional method does not offer a general

solution to the problems of how to calculate the uncertainty of the indirect mea-

surement result due to systematic error, and how to combine this uncertainty with

the uncertainty due to random error to obtain the overall uncertainty of the indirect

measurement result. A reasonable solution to the former problem is given in

Sect. 4.9 and a solution to the latter will be discussed later in this chapter.

Another drawback is that, as we already pointed out in Sect. 5.4, the traditional

method cannot produce a confidence interval for dependent indirect measurements

and has to resort to standard deviation to characterize the inaccuracy of the

measurement. However, as shown in Sect. 4.8, standard deviation isn’t a proper

expression of inaccuracy of measurements.

A further deficiency is that the estimate of the variance of the measurement

result, given by (5.20), is imperfect because it is derived using only one linear term

in the Taylor series. In other words, the traditional method does not use all of the

information contained in the results of measurements of arguments.

The next disadvantage of the traditional method is the problem of the confidence

intervals. As we already mentioned, this method does not provide a grounded

foundation for constructing the confidence intervals in the case of dependent

indirect measurements because in this case it is impossible to obtain the probability

distribution of the measurement error and to find the appropriate number of degrees

of freedom.

A further drawback is the above-mentioned problem of estimating correlation

coefficients that are an inherent part of the traditional method.

Let us now come back to the use of the root sum of the squares method in this

context. As we mentioned earlier, the traditional method allows one to construct a

confidence interval for linear – or linearized with Taylor series – independent

indirect measurements. We also said that for nonlinear independent indirect mea-

surements, a commonly used method for summing uncertainties utilizes the root

sum of the squares (RSS) but that the justification of applying RSS in this situation

is unclear. Let us investigate this question.

Consider two samples of independent observations of a measurand, each of size

n, from the same normal distribution. Let the estimates of their variances be

S21 andS
2
2. The confidence limits of the true value of the measurand, according to

Student’s distribution are

u1 ¼ tn�1S1 and u21 ¼ tn�1S2:

Coefficient tn–1 for both samples is the same since they have the same degree of

freedom and the same confidence probability. Let us now combine these samples

into one. The combined sample is also from the same normal distribution but with

2n observations. The estimate of variance of this sample is S20 ¼ S21 þ S22, and the

confidence limit is

u0 ¼ t2n�1S0:
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Compare the above confidence limit with the one obtained from (5.24):

u00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ u22

q
¼ tn�1S0:

Obviously, u0 6¼ u00:
Let us further look at how big the difference between the two can be. For n¼ 10

and confidence probability α¼ 0.95, we have u00 ¼ 2:26� S0 and u0 ¼ 2:10� S0.

Thus, in this case, (5.24) exaggerates the inaccuracy by 8%.We can find in a similar

way that with n¼ 10 and three arguments, the difference will be 11%, and with four

arguments, 13%. For n¼ 5 and two arguments, the difference reaches 25% and for

four arguments, 35%. When n¼ 20, the inaccuracy of (5.24) is 5% and does not

depend on the number of arguments.

We can conclude that using (5.24) can be generally acceptable when the number

of measurements of each argument is around 20 or more. At the same time, the

above analysis reveals several rules one should follow in using (5.24). First, one

must keep in mind that this formula exaggerates the uncertainty of the measure-

ment, and the fewer the number of argument measurements the greater the amount

of overestimation. Second, to use this formula, one must make sure that measure-

ment uncertainty of each argument has the same degree of freedom. In other words,

each argument must be measured the same number of times. Finally, the measure-

ment uncertainty of every argument must be computed for the same confidence

probability.

The above analysis also suggests a possibility of introducing a corrective factor

Wt¼ t2n� 1/tn� 1. In the particular example we considered,

Wt ¼ t2n�1=tn�1 ¼ 2:10=2:26 ¼ 0:93:

However, an important point to keep in mind is that the entire analysis is

conducted for the case when argument measurement errors are normally distrib-

uted. Generalizing the above analysis, a natural suggestion would be to use (5.22) in

place of (5.24) for the estimate of combined standard deviation, and then use

Student’s distribution to build the confidence interval. The degree of freedom in

this case with N ¼ 2 is, as we have seen, v¼ 2n – 1.

5.6 Method of Reduction

As we discussed above, the traditional method of experimental data processing

allows one to estimate the uncertainty of the measurement result for independent

indirect measurements. But for dependent indirect measurements, this problem

remained unsolved. The following method of reduction fully solves this problem

[35, 44–46].
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Let x1i , x2i , � � � , xNi be the measurement results of arguments from a measure-

ment vector i. Recall that a measurement vector compiles measurements of all

arguments performed under the same conditions and at the same time. Each

dependent indirect measurement always consists of a certain number of measure-

ment vectors.

So, let n be the number of measurement vectors obtained. These vectors can be

represented as a set:

x1i; x2i; � � �; xNif g, i ¼ 1, . . . , n:

Substituting the results from the i-th vector into the measurement equation, we

obtain the i-th value of the measurand. Denote it by yi. This transformation is

obviously justified because it reflects the physical relationship between the

measurand and the measurement arguments. In the same way, n measurement

vectors give us a set of n observations of the measurand:

yif g, i ¼ 1, . . . , n:

This set is no different from a set of data obtained by direct measurements of the

measurand A. Hence, we can now use all simple and well-understood methods of

direct measurements, which immediately provides an estimate of the measurand

~A ¼ �y ¼ 1

n

Xn
i¼1

yi, ð5:26Þ

and an estimate of the variance

S �yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n n� 1ð Þ
Xn

i¼1
yi � �yð Þ2

s
ð5:27Þ

The method of reduction also solves the problem of the calculation of confidence

intervals, because we now have the set of n observations of the measurand. The

confidence limits and therefore the uncertainty of the measurement result due to

random error are

uα ¼ tq S �yð Þ,

where tq is found from Student’s distribution for the chosen confidence probability

α and the exact number of degrees of freedom obtained, v¼ n – 1.
The uncertainty due to the systematic error of estimate of each argument is

calculated in the standard manner as described in Sect. 4.9. Let the source of this

error is the calibration error with known limits θ0j, and let influence coefficient for

each argument j be wj . Each measurand observation yi is derived from all

N arguments. Therefore all measurand observations have the same systematic
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error and this error becomes the systematic error of the measurement result �y . Then
the systematic uncertainty θα of the �y and its standard deviation Sϑ are

θα ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
w2
j θ

2
0, j

r
and Sϑ ¼ 1ffiffiffi

3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
w2
j θ

2
0, j

r
:

Having the parameters of random and systematic errors and following the

universal method of their summation described in Sect. 4.10, we obtain the uncer-

tainty (i.e., confidence interval) of the measurement result.

Method of reduction can be used in more complicated situations. Consider as

example the simultaneous measurements for finding parameters of the equation that

expresses the dependence of impedance on the temperature in an accurate measur-

ing resistor:

R ¼ R20 þ a t� 20ð Þ þ b t� 20ð Þ2,

where R is the resistance of the resister, t is its temperature, R20 is the resistance of

the resistor at t ¼ 20 �C, and a and b are the temperature coefficients. By measuring

simultaneously R and t and by varying the temperature, we obtain several equations,

from which it is necessary to find R20 and the temperature coefficients. Thus, we

have here two dependent arguments R and t and three measurands: R20, a and b. To
obtain one observation of all three measurands we need three pairs of simulta-

neously measured R and t. In order to have n observation of each measurand, we

need 3n measurement vectors:

Ri; tif g i ¼ 1 . . . 3n:

Substituting the realization of each group of three measurement vectors into the

measurement equation, we obtain one value of each measurand R0 , j , aj and bj. In
the same way, 3n measurement vectors give us sets of n observations of the

measurands:

R0, j

� �
, aj
� �

, bj
� �

, j ¼ 1 . . . n:

These sets of observations are equivalent to data obtained by direct measure-

ments of the measurands. Hence, we can apply to each set the calculations to

estimate the measurement accuracy described above.

One might think that the method of reduction imposes special requirements for

performing the measurement, namely that the measurements of arguments be

performed so that the results can be represented as a number of measurement

vectors. However, the traditional method imposes this requirement as well. Indeed,

if we have a dependent indirect measurement, all arguments must be measured

under the same conditions for the traditional method also, because, otherwise, it is

impossible to calculate the correlation coefficients and therefore impossible to

estimate the variance of the measurement result.
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Thus, the method of reduction transforms the indirect dependent measurements

into usual direct measurements and therefore has some important advantages over

the traditional method:

1. It eliminates the need for linearization of a measurement equation and therefore

produces an unbiased estimate of the measurand.

2. It gets rid of the correlation coefficient in the measurement uncertainty

calculations.

3. It uses the exact degree of freedom and allows one to calculate the confidence

intervals for the true value of the measurand.

4. It uses all of the information obtained in the course of the measurement.

These advantages lead us to conclude that the method of reduction is the

preferable method for all kinds of dependent indirect measurements.

It is important to emphasize here that data processing in independent indirect

measurements does not require correlation coefficients. As the method of reduction

eliminates the need for correlation coefficients in the case of dependent indirect

measurements, the concept of the correlation coefficient is no longer necessary in
measurement data processing.

To conclude, I would like to note that I first proposed this method of reduction

approximately in 1970. It found immediate application in national and international

comparisons of standards of unit radium mass and in measurements of other

radioactive quantities carried at All-Union State Research Institute of Metrology

named under D. I. Mendeleev in the former Soviet Union. With the reports of these

measurements, the information about the method of reduction spread outside that

Institute and outside the country. The first formal publication describing this

method appeared in 1975 [35]. By now this method has become well known; it is

mentioned in the GUM [2] under the name “Approach 2.” However, while

containing a note that this approach is preferable to “Approach 1” (which is the

traditional method), GUM does not explain what the advantages of Approach 2 are.

5.7 Method of Enumeration

Method of enumeration is an alternative method for experimental data processing in

independent indirect measurements. It represents a special case of the Monte Carlo

method. The peculiarity of this case is that the Monte Carlo technique is applied to

experimental data while normally this method is used for exactly defined distribu-

tion functions [13].

Consider an independent indirect measurement with a given measurement equa-

tion. In the method of enumeration, the data produced by the measurements of

arguments are treated as realizations of random quantities. All combinations of

these realizations are enumerated and for each combination, the corresponding

virtual observation of the measurand is computed by substituting the corresponding
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argument realizations into the measurement equation. We refer to these computed

measurand realizations as virtual because they were never obtained in reality.

If all arguments are measured the same number of times n and observations of

each argument are independent among themselves, then the probability of each

observation is 1/n. Furthermore, because the arguments are independent of each

other, the probability of each virtual observation of the measurand then becomes

1/Z, where Z is the number of virtual observations. Clearly, Z¼ nN, where N is the

number of arguments and n is the number of measurement observations of the

arguments. Sorting all virtual observations in the increasing order and summing up

their corresponding probabilities, we can obtain the experimental cumulative dis-

tribution function, and use this distribution function as the basis for estimating the

overall accuracy of the measurement.

With the distribution function found, we can now obtain its parameters – the

mathematical expectation and variance – and estimate the uncertainty of the

measurement. Unfortunately the virtual observations used to obtain the experimen-

tal cumulative distribution function are not independent. Therefore, they can’t be
used as a sample to compute the parameters of the distribution. Instead, we should

produce a sample of independent realizations from this distribution. The simplest

way is to choose the desired sample size K, then go sequentially through the

probability interval [0, 1] with step 1/K and for every such probability level, take

the argument of the distribution function producing this probability level as a

realization of the measurand. These K virtual realizations are independent, and

they will allow us to estimate the parameters of the distribution function. By

choosing sufficiently large K, we can assume that we obtain precise values of

these parameters.

We take the mathematical expectation as the estimate of the measured quantity.

The calculation of uncertainty, however, has an important subtlety.1 Namely, we

must compute it based on the real number of measurement observations of the

arguments (and not based on the size of the virtual sample K ) since repeated

measurements of the arguments can lead to somewhat different results. Thus, the

uncertainty is computed as follows.

Having precise value of variance, we can also obtain precise value of the

standard deviation. Since the number of virtual realizations is always high, in

accordance with the central limit theorem, the distribution of the estimate of the

measurand as parameter of the distribution function can always be considered

normal. Thus, we can find the uncertainty of the measurement result using tables

for the standard normal distribution as described in Sect. 3.6:

1As a historical note, when I originally proposed this method long time ago, I missed this subtlety,

and we computed the uncertainty of the result based on the number of virtual realizations. This led

to an apparent paradox of obtaining confidence interval of the result that was 2–3 times narrower

than that of the arguments. This problem forced me to reject this method until recently, when I

finally resolved this issue and arrived at the solution described here. This solution first appeared

in [56].
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P �x� Aj j � z 1þαð Þ=2σ=
ffiffiffi
n

p� � ¼ α,

where z(1 + α)/2 is the quantile of level (1 + α)/2 of the normal distribution. From this,

it follows that the uncertainty of measurement result due to random error then is

computed according to formula

uα ¼ z 1þαð Þ=2σ=
ffiffiffi
n

p
:

In general, the number of measurement observations of different arguments can

be different. We can in this case still construct the experimental CDF of the virtual

observations as demonstrated in Sect. 5.3. However, a question arises how to find

the averaged number of real observations of arguments to be used in constructing

the confidence interval for the measurement result. We believe this question can be

resolved in a similar way to the solution to the problem of calculation of the

effective degree of freedom of an indirect measurement, which we discussed in

Sect. 5.4. However, we do not pursue this question further because in practice all

arguments usually are measured with equal number of observations.

In summary, the schema of calculations of uncertainty of measurement result

using method of enumeration is as follows.

1. Substituting into the measurement equation all combinations of the measure-

ment data of the arguments, obtain the series of Z virtual observations of the

measurand. With independent arguments, the probability of each value is 1/Z.
2. Sort the above series in the increasing order and construct point approximation

of the cumulative distribution function of the virtual observations of the

measurand. Connecting these points, obtain the linear approximation of

the CDF.

3. Choose the desired number of virtual realizations K of the measurand and, going

through the probability interval [0, 1] with step 1/K, obtain a sample of

K independent virtual realizations.

4. Compute the estimates of mathematical expectation, variance, and standard

deviation of the distribution using the above sample of K virtual realizations.

Calculations use standard formulas.

5. Take the estimate of the mathematical expectation as the measurement result.

6. Compute the uncertainty of the measurement result due to random error using

the formula for uα given above, based on the normal distribution, selected

confidence probability, and the actual number of observations n that were

obtained during measurement of the arguments. Note that we assume that all

arguments are measured an equal number of times.

7. Compute the uncertainty due to systematic error of measurement result. Each

virtual observation of the measurand is produced from a combination of single

measurements of the arguments and thus represents a single indirect measure-

ment. The limits of error or uncertainty in these single measurements are the

same in all observations of a given argument, and therefore they determine the

systematic error of the measurement result. It can be estimated based on the
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inaccuracy of the correction to the instrument indications given by the calibra-

tion laboratory as described in Sect. 4.9. Let the inaccuracy of single measure-

ments of argument j be determined as calibration error θ0j given by the

calibration laboratory. From the measurement equation we calculate influence

coefficient wj for each argument. Then the uncertainty θα due to systematic error

of the measurement result and its standard deviation Sϑ are:

θα ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
w2
j θ

2
0, j

r
, Sϑ ¼ 1ffiffiffi

3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
w2
j θ

2
0, j

r
:

8. Combine the systematic and random uncertainties in accordance to the method

described in Sect. 4.10.

A detailed example of applying this method is given in Sect. 8.6.2.

Although the described method of enumeration is very attractive, I recently

found a further enhancement to this method that does not rely on the central limit

theorem. Although this enhancement has not yet been properly analyzed and

verified, it is described below as a conjecture.

The first two steps of the method of enumeration do not change. The subsequent

steps, starting from Step 3, are listed below.

1. After Step 2 we have a CDF of virtual observations of the measurand. Using

inverse transform sampling, obtain L samples of n realizations from this CDF,

where n is the number of observations of each argument. The inverse transform

sampling involves using a pseudo-random numbers generator to draw a univer-

sally distributed random numbers from interval [0,1] and taking the arguments

of the CDF that produces these numbers as the realizations. Note that, similar to

the basic method of enumeration where used the degree of freedom based on the

number of actual argument observations, we use samples of size n to make sure

the number of actual observations of the arguments determines the measurement

uncertainty. Thus, we have now L samples, each with n items.

2. Compute the mean value of each sample �A Lj
� �

:

�A Lj
� � ¼ 1

n

Xn
k¼1

xk Lj
� �

where xk(Lj) is the k-th item in sample Lj , j¼ 1 , . . . ,L.

3. Construct the CDF of the mean values �A Lj
� �

and cut off its tails at the desired

level of confidence probability α. For example, if α ¼ 0.95, the lower level of

probability is Pl ¼ 1�α
2

¼ 0:025 and the upper level is Pu¼ 1� 0.025¼ 0.975.

4. Find the estimates �Al, �Au corresponding to the probabilities Pl, Pu The interval
�Al; �Auð Þ is the confidence interval or uncertainty of the measurement for confi-

dence probability α. The global mean of all sample mean values �A Lj
� �

provides

the estimate of the measurand. In the unlikely event that the global mean falls
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outside the confidence interval �Al; �Auð Þ, the outlier sample with the greatest mean

(if the global mean exceeds �Au) or the smallest mean (if the global mean falls

below �Al) should be replaced with another sample.

5. The standard deviation σ of the obtained distribution function is calculated by a

known formula

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L� 1

XL

l¼1
�A Lj
� �� ��A

 �2r
where ��A is the global mean of all sample means �A Lj

� �
.

As stressed in the beginning of this section, the standard deviation Sψ of the

measurement result, even though it is obtained essentially as the mean of L � n
virtual observations, must be calculated using the number of real – not virtual –

observations. Thus, this standard deviation is calculated by the formula:

Sψ ¼ σ=
ffiffiffiffi
n

p
:

6. Finally, the uncertainty due to systematic error is calculated and then combined

with the uncertainty due the random error. These steps are the same as steps

7 and 8 of the basic method of enumeration.

In conclusion, we would like to stress again that the method of enumeration uses

all the information contained in experimental data. As such, it is more accurate and

can be recommended instead of the traditional method, or for verification of the

traditional method. An especially attractive feature of this method is that it removes

the need for any assumptions about the kinds of distribution functions of the

observations obtained by measurement of the arguments. Indeed, these observa-

tions of the arguments are used directly to construct the combined distribution

function sought, without resorting to either distributions of the input data or their

histograms.

We should also note that the method we are considering is only needed for

indirect measurements with independent arguments: indirect measurements with

dependent arguments are transformed, using method of reduction, to direct mea-

surements for which data processing methods are well developed.

5.8 Accuracy of Single Indirect Measurements Under

Reference Conditions for Instruments Involved

The estimation of a measurand in indirect single measurements, as was explained in

Sect. 1.5, is performed in two steps. First, one gets the estimates of all the arguments

of the measurand. Second, by substituting the arguments into the measurement

equation, one calculates the estimate of the measurand. The estimates of the

arguments and their inaccuracy are typically obtained using direct measurements.

We have described the methods to accomplish these tasks in Chap. 4.
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Before getting to the specific methods, we would like to emphasize the issue of

absolutely constant systematic errors in indirect measurements and the importance

of having a well defined measurement equation to keep these errors within an

acceptable limits. Consider an already mentioned simple example of measuring the

area of a plot of land that is conceptualized to be a rectangle. Here, the rectangle is

the model of the object. Its area is Sm¼ abwhere a and b are the lengths of the sides
of the rectangle. The discrepancies between the model and the object can in this

case stem the fact that the angle between the sides is not exactly 90�, that the
opposite sides of the area are not precisely identical, and that the lines bounding the

area are not strictly straight. Each discrepancy can be estimated quantitatively and

then the error introduced by it can be calculated. It is usually obvious beforehand

which source of error will be most important.

Suppose that in our example the most important source of error is that the angle

between adjoining sides differs from 90� by β. Then the area of the plot would have
to be calculated according to the formula St¼ ab cos β. Therefore, the (absolutely

constant) error from this discrepancy in this case will be

Sm � St ¼ ab 1� cos βð Þ:

The admissible angle βa must be estimated from the required accuracy in

determining the area of the plot. If β�βa, then the model must be redefined, and

the measured quantity must be defined differently. Correspondingly, we must use a

different formula for calculating the measured area.

We now turn to the actual data processing methods for these measurements. The

estimation of inaccuracy of single indirect measurements is in principle analogous

to that of direct measurements; the only difference is that in measurements under

reference conditions, the inaccuracy of direct measurements is determined by the

intrinsic error of a single measuring instrument while in indirect measurements, of

several instruments. Therefore, inaccuracy of indirect measurements involves sum-

mation of errors. The summation methods themselves remain the same as those

used for summation of elementary errors in single direct measurements with

measuring instruments under rated condition. The fact that errors of argument

measurements must be viewed as elementary errors (even though each argument

has its own elementary errors) and that the number of elementary errors in the case

of indirect measurements is typically greater is not principally significant. How-

ever, the calculation formulas take a different form because the meaning of

influence coefficients changes. Consequently, we rewrite these formulas below.

The inaccuracy of measurements of the arguments is expressed in the form of

limits of error Δj for each argument Aj ( j ¼ 1, . . ., N ). These limits are transformed

into the limits of elementary error of indirect measurement θj as follows:

θj ¼ wjΔj,

where wj ¼ ∂j
∂Aj

is the influence coefficient of argument Aj computed at the point

~Aj, j ¼ 1, . . . ,N.
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We should note that the above expressions for influence factors represent the

first-order terms in the Taylor series expansion of the measurement equation.

Earlier, in Sect. 5.5, we criticized the traditional method for data processing in

multiple indirect measurements because it is based on the Taylor series expansion,

resulting in imprecision in the estimation of the measurand. We were able to

remove this drawback with the methods of reduction and enumeration. However,

those methods become possible thanks to the information contained in multiple

observations of the arguments. Single measurements do not provide this informa-

tion, and for them the less precise solution based on the Taylor series remains

necessary.

As explained in Chap. 4, we can take a uniform distribution for the model of

elementary errors with given limits. Further, in Sect. 4.4, we proposed and analyzed

a method for summation of the limits of uniform distributions, and we applied this

method for summation of the elementary errors of single direct measurements

under rated conditions in Sect. 4.7. Thus, we will utilize the recommendations

formulated in Sect. 4.7, taking into account that the measurement errors of the

arguments, multiplied by the corresponding argument influence coefficients,

become elementary errors of the indirect measurement. Accordingly, (4.3), which

expresses the uncertainty of a single measurement, becomes

θα ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
j¼1

w2
jΔ

2
j

vuut ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiXN
j¼1

θ2j

vuut ð5:28Þ

From the discussion in Sect. 4.7, it follows that with confidence probability

α ¼ 0.95, Eq. (5.28) can be used with any number of component errors, and with

the same value of k0.95 ¼ 1.1. With α ¼ 0.99, the calculations depend on the

number of components and are the same as with direct measurements under rated

conditions (see Sect. 4.7).

5.9 Accuracy of Single Indirect Measurements Under

Rated Conditions for Instruments Involved

When some of the instruments are used under rated conditions, one must account

for additional errors besides the intrinsic errors. There are two ways to combine

them. One method involves estimating the measurement uncertainty of each argu-

ment in rated condition and then combining them in the way shown by formula

(5.28) for single indirect measurements under reference conditions. The other

combines all measurement errors caused by intrinsic errors and by additional errors

as elementary errors of all the arguments. The latter method appears preferable

because all errors being combined become homogeneous in a sense that they all are

specified by their limits. Therefore, they can be combined according to the same
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recommendation that were described in Sect. 4.7 for direct measurement. The one

peculiarity arising in indirect measurements is due to the fact that additional errors

in different instruments can be caused by the same influence quantity and therefore

can be mutually dependent.

For example, assume that two measuring instruments used in an indirect mea-

surement have additional temperature error. When the temperature changes, these

errors will also change, and both of them can change either in the same direction or

in opposite directions. Thus, the additional errors caused by the same influence

quantity can to some degree cancel each other. In order to take advantage of such

error cancellation, one must combine such additional errors before summing up the

squared limits of other elementary errors. Let us consider these calculations.

For simplicity, we will consider an indirect measurement with four arguments

(N ¼ 4). We will further assume that the measurements of arguments 1 and 2 have

additional errors caused by a change of influence quantity t, for example, temper-

ature. Denote these additional errors θ1t and θ2t, respectively. They cause the

resulting measurement error θ1,2t, equal to

θ1,2t ¼ w1θ1t þ w2θ2t:

Note that θ1t and θ2t in the above equation preserve their signs. Taking into

consideration that θ1t and θ2t are just two of the errors of arguments 1 and 2, and that

we have four arguments altogether, (5.28) becomes as follows:

θα ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ21,2tþw2

1

Xk1�1

i¼1
θ21,iþw2

2

Xk2�1

i¼1
θ22,iþw2

3

Xk3�1

i¼1
θ23,iþw2

4

Xk4�1

i¼1
θ24,i

r
:

ð5:29Þ

Let us repeat here that, with confidence probability α ¼ 0.95, this formula can

be used with any number of component errors and with the same value of kα ¼ 1.1.

5.10 Accuracy of a Single Measurement with a Chain

of Instruments

Single measurements are often performed using several measuring instruments

connected in a chain. A chain of serially connected instruments is also commonly

called a measurement system. As mentioned in Sect. 1.5, the chain of serially

connected instruments can be organized in two ways. In the first way, each

instrument has its scale in its corresponding “native” units. The estimate of a

measurand and its accuracy in this case must be calculated using a measurement

equation, which must be known to the user. In the second way, the last instrument in

the chain has the scale in the units of the measurand. From the physical nature of the

measurement process, the second setup should be considered as a direct measure-

ment. If these measurement systems are mass-produced, their inaccuracy can be
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estimated on the basis of calibration data as described in Sect. 4.6. But even in this

setup, at the stage of developing such a measurement system, it is still necessary to

know its measurement equation, to predict its accuracy. Thus, in both cases a

measurement equation is necessary to know at some point. We will concentrate

on the first setup, with each instrument graduated in its “native” units, as it affects

data processing by the experimenter.

Consider, as example, the measurement of temperature with thermocouple and

millivoltmeter, the thermocouple produces for each temperature Tx the

corresponding electromotive force (EMF) U, and the voltmeter measures this

EMF. The measurement equation has the form here:

Tx ¼ KU,

where K is the thermopower of the thermocouple.

The above measurement equation is a particular case of the general form the

measurement equation takes when measurement is conducted using a serial chain of

measuring instruments:

A ¼ Al1
1 A

l2
2 . . .A

lN
N :

Since a single measurement with a chain of instruments uses a measurement

equation like indirect measurements, the estimation of the measurand and measure-

ment accuracy in this case is done with the methods used for single indirect

measurements. But the special form of the measurement equation brings some

particularity to the analysis.

The estimation of a measurand is obtained as usual in single indirect measure-

ments, by substituting in the measurement equation the true values of all arguments

by the readings of measuring instruments connected in the chain. Then, having the

limits of errors of the instruments involved, we can calculate the uncertainty of

the measurement result using liniarization of the measurement equation or another

common approximate method. Let us use the latter. Moving from the measurement

equation to the differentials on both sides, we obtain:

dA ¼ l1A
l1�1
1 Al2

2 . . .AlN
N dA1 þ l2A

l1
1 A

l2�1
2 . . .AlN

N dA2 þ lNA
l1
1 A

l2
2 . . .A

lN�1
N dAN:

Dividing both sides by A, and replacing A with its expression on the right side of

the measurement equation, we get:

dA

A
¼ l1

dA1

A1

þ l2
dA2

A2

þ � � � þ lN
dAN

AN
:

Because measurement errors are small, the differentials above can be replaced

by increments – measurement errors. This brings the above equation to the expres-

sion for the combined error:

δ ¼ l1
ζ1
A1

þ l2
ζ2
A2

. . . lN
ζN
AN

:
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The coefficients l1, l2. . .lN are known exactly a priori. The sum of errors of

arguments estimates can be done as described in Sect. 5.9.

An example of a serial connection of several instruments is described in detail in

Chap. 8 (Sect. 8.2), where we consider a measurement of voltage with a potenti-

ometer, a voltage divider, and a standard cell.

5.11 The Monte Carlo Method

The Monte Carlo method is a numerical method of obtaining a composition of

independent random quantities with known distribution functions. In the old days of

manual computations, this method used to be too laborious to be used in measure-

ments, but thanks to modern computers, it can be employed widely. The recom-

mendation [13] may facilitate wide adoption of the Monte Carlo method in

measurements.

The essence of the Monte Carlo method can be explained as follows. For

simplicity, let us consider random quantity Z related with a known dependency

f with only two independent quantities X and Y, each having a known distribution

function:

Z ¼ f X; Yð Þ:

Imagine that our goal is to find the distribution function of Z. This task can be

accomplished as follows. The first step is to choose the numbers of realizations of

arguments X and Y, respectively n and m. The second step is to transform contin-

uous random variables X and Y into sequences of numeric values xi and yj. To obtain
values xi, we go through the probability range [0,1] with stride p¼ 1/n, and for each
such probability value pi, take the corresponding value xi that, when used as the

argument for the cumulative distribution function of X, would produce value pi. In
other words, we take xi such that g(xi) ¼ pi, where g(x) is the CDF of X. We obtain

m values yj analogously. Next, we form K ¼ n � m realizations of Z by computing

the value of function f for all possible combinations of xi and yj. From all these

realizations zl, we build a histogram with a large number of bars. Each bar

comprises the probability mass equal to the fraction of the realizations that fall

into this bar, out of the total number of realizations K. Finally, adding these

probabilities cumulatively, we obtain the cumulative distribution function sought.

By selecting sufficiently large n and m, we can have an arbitrarily large number of

bars in the histogram and a good approximation of this CDF.

It is important to realize that realizations zk are not independent and therefore

cannot be used directly for calculating parameters of the distribution function

obtained above. In order to find the parameters of this distribution, one must create

a sample of independent realizations z
0
k:. To get this sample, we follow the

procedure similar to the one we used in Sect. 5.7 to generate samples of arguments.

We again first choose the desired sample size K. Then go sequentially through the
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probability interval [0, 1] with step 1/K and take realizations of the quantity

Z corresponding to each probability. By choosing sufficiently large K, we can

assume that we obtain precise values of these parameters of the obtained distribu-

tion function.

It may seem that by applying the Monte Carlo method to the measurement

equation (5.1), one could immediately use it for accuracy estimation of indirect

measurements. However, the application of the Monte Carlo method to accuracy

estimation of multiple indirect measurements is not straightforward.

A key complication is that experimental data in a multiple measurement provide

not the distribution function of the arguments but a set of observations. Thus, a

crucial step before the Monte Carlo method can be utilized becomes a transition

from the discrete series of observations obtained from measurements of the argu-

ments to their distribution functions. Unfortunately, this step has no precise solution

as the distribution function can only be approximated from the discrete series.

Furthermore, these approximations are often obtained subjectively to a large

degree, as in the case of the recommendation from [13], which specifies a menu

of distribution functions from which to select the ones to be used for subsequent

calculations. This fundamental drawback limits the applicability of the Monte Carlo

method in metrology. The method of enumeration presented in this book addresses

this drawback for the task of experimental data processing in multiple indirect

measurements with independent arguments.

The above concern does not apply, however, to the one particular metrological

application of the Monte Carlo method, namely, for verifying the accuracy of

methods for estimating uncertainty of measurement that are used in practice. The

Monte Carlo method is valuable in this application because it allows one to

investigate theoretical scenarios with precisely specified distribution functions. It

may also be possible that such investigations would lead to discovery of new

approaches, which would be more accurate than the existing methods.
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Chapter 6

Combined and Simultaneous Measurements

6.1 General Remarks About the Method of Least Squares

Combined and simultaneous measurements, as pointed out in Chap. 1, are mea-

surements performed to find values of several quantities related by a known

equation. In either case, a measurement experiment involves multiple measure-

ments, with each individual measurement producing one equation instance. Typi-

cally, the number of measurements is such that there are more equations than the

unknown parameters and measurands. Because of measurement errors, it is impos-

sible to find values of the unknowns such that all equations would be satisfied

simultaneously. Under these conditions, the estimated values of the unknowns

usually are found with the help of the method of least squares.
The method of least squares is a widely employed computational technique that

makes it possible to handle the inconsistency of experimental data. This method is

easily implemented with the help of computers, and good least-squares software is

available.

There is extensive literature on the method of least squares, and it has been well

studied. It is known that the estimates obtained with this method satisfy the

requirements for estimates from Sect. 3.2 only if all the errors in the measurements

are random and normally distributed. Nevertheless, the method of least squares is

widely employed, because it is simple and in general, the biasness of the estimates

obtained is usually not significant even when the above condition does not hold.

Moreover, in measurement practice, the least squares method is also used to reduce

the systematic errors if the measurement experiment can be organized in such a way

that different measurements of the same quantities have different systematic errors.

An alternative to the least squares method is the method of minimizing the sum

of absolute deviations. This method is even more intuitive than the method of the
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least squares although it involves more complex calculations. While the advent of

computers has made the complexity of calculations irrelevant, it is still

seldom used.

An example of simultaneous measurements is finding the parameters of the

equation that expresses the temperature dependence of an accuratemeasuring resistor:

R ¼ R20 þ a t� 20ð Þ þ b t� 20ð Þ2,

where R is the resistance of the resister, t is its temperature, R20 is the resistance of

the resistor at t¼ 20 �C, and a and b are the temperature coefficients. By measuring

simultaneously R and t and by varying the temperature, we obtain several equations,

from which it is necessary to find R20 and the temperature coefficients. When the

number of measurements exceeds 3, the least squares method usually is used to find

the estimates of the parameters. As a side note, the measurement just discussed has

dependent arguments and therefore the processing of its data can be done by the

method of reduction (see Sect. 5.6).

Because both combined and simultaneous measurements utilize the method of

least squares, and the technique is exactly the same in both cases, for brevity, we

will use the term “combined measurements” in this chapter to refer to both these

types of measurements. We shall now discuss the method of least squares because

of its importance to combined measurements and because understanding its basic

ideas is necessary to use this method properly.

We can write the basic measurement equation of the combined measurement in

the general form

F A;B;C; . . . ; x; y; z; . . .ð Þ ¼ l, ð6:1Þ

where x, y, z, and l are directly measured quantities, and A, B, and C are the

unknowns to be determined.

Substituting the experimentally obtained numerical values of xi, yi, zi, and li into
(6.1), we obtain a series of equations of the form

F A;B;C; . . . ; xi; yi; zið Þ ¼ li, ð6:2Þ

which contain only the unknown quantities A, B, and C to be estimated and the

numerical values of the measured quantities. The quantities sought are found by

solving the obtained equations simultaneously.

An example of a combined measurement is finding the capacitances of two

capacitors from the measurements of the capacitance of each one of them sepa-

rately, as well as when the capacitors are connected in parallel and in series. This

method for measuring the capacitances of the capacitors could be chosen to reduce

somewhat the systematic error of the measurement, which is different at different

points of the measurement range – reducing the random component of the error

could be accomplished by simply measuring each capacitance multiple times.

Each measurement is performed with one observation, but ultimately, we shall

have four equations for the two unknown capacitances C1 and C2:
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C1 ¼ x1,C2 ¼ x2,C1 þ C2 ¼ x3,
C1C2

C1 þ C2

¼ x4�

Substituting into these equations the experimentally found values of xi, we
obtain a system of equations analogous to (6.2).

As we have already pointed out, the number of equations in the system (6.2) is

greater than the number of unknowns, and because of measurement errors, it is

impossible to find values of the unknowns such that all equations would be satisfied

simultaneously. For this reason, (6.2), in contrast to normal mathematical equa-

tions, is said to be conditional equation. Because of the inaccuracy of measure-

ments, when some estimates of the unknowns, ~A, ~B, and ~C, are substituted into the
conditional Eq. (6.2), we do not obtain exact equalities:

F ~A; ~B; ~C; . . .
� �� li ¼ ri 6¼ 0:

The quantities ri are called residuals. The values of the unknowns that minimize

the sum of the squares of the residuals are generally recognized as the solution of

the conditional equation. This proposition was first published by Legendre and is

called Legendre’s principle. He further proposed a method of finding the solution

according to this principle; this method is now called the method of least squares.

6.2 Measurements with Linear Equally Accurate

Conditional Equations

We will first consider the case when each conditional equation is obtained under the

same conditions and either with the same instruments or the instruments of the same

accuracy. Thus, each equation can be viewed as equally accurate and be given equal

consideration in the calculation procedure.

To simplify the presentation, we shall consider the case of three unknowns. Let

the system of conditional equations have the form

Axi þ Byi þ Czi ¼ li i ¼ 1; . . . ; n; n > 3ð Þ, ð6:3Þ

where A, B, and C are the unknowns to be estimated, and xi, yi, zi, and li, are the

results of the i th series of measurements and known coefficients.

In the general case, the number of unknowns m < n; if m¼ n, then the system of

conditional equations can be solved uniquely, although the obtained results are

burdened with errors.

If some estimates of the unknowns, ~A, ~B, and ~C, are substituted into (6.3), then

we obtain the residuals
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ri ¼ ~Axi þ ~Byi þ ~Czi � li:

Because all equations are given equal consideration, we shall find estimates of A,
B, and C from the condition

Q ¼
Xn
i¼1

r2i ¼ min:

To do so, we consider the estimates to be chosen as variables and find the values

of these estimates that minimize Q in a standard way using derivatives:

∂Q

∂~A
¼ ∂Q

∂~B
¼ ∂Q

∂~C
¼ 0:

We shall find these particular derivatives and equate them to 0:

∂Q

∂~A
¼ 2
Xn
i¼1

~Axi þ ~Byi þ ~Czi � li
� �

xi ¼ 0,

∂Q

∂~B
¼ 2
Xn
i¼1

~Axi þ ~Byi þ ~Czi � li
� �

yi ¼ 0,

∂Q

∂~C
¼ 2
Xn
i¼1

~Axi þ ~Byi þ ~Czi � li
� �

zi ¼ 0:

From here, we obtain a system of so-called normal equations:

~A
Xn
i¼1

x2i þ ~B
Xn
i¼1

xiyi þ ~C
Xn
i¼1

xizi ¼
Xn
i¼1

xili,

~A
Xn
i¼1

yixi þ ~B
Xn
i¼1

y2i þ ~C
Xn
i¼1

yizi ¼
Xn
i¼1

yili,

~A
Xn
i¼1

zixi þ ~B
Xn
i¼1

ziyi þ ~C
Xn
i¼1

z2i ¼
Xn
i¼1

zili:

The normal equations are often written using Gauss’s notation:

Xn
i¼1

x2i ¼ xx½ �,
Xn
i¼1

xiyi, andsoon:
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It is obvious that

Xn
i¼1

xiyi ¼
Xn
i¼1

yixi

and therefore [xy]¼ [yx].
In Gauss’s notation, the normal equations assume the simpler form

xx½ �~A þ xy½ �~B þ xz½ �~C ¼ xl½ �,
xy½ �~A þ yy½ �~B þ yz½ �~C ¼ yl½ �,
xz½ �~A þ yz½ �~B þ zz½ �~C ¼ zl½ �:

ð6:4Þ

We call attention to two obvious but important properties of the matrix of

coefficients of the unknowns in the system of Eq. 6.4:

1. The matrix of these coefficients is symmetric relative to the main diagonal.

2. All elements on the main diagonal are positive.

These properties are general. They do not depend on the number of unknowns,

but in this example, they are shown in application to the case with three unknowns.

The number of normal equations is equal to the number of unknowns, and

solving these equations by known methods we obtain estimates of the measured

quantities. The solution can be written most compactly with the help of the

determinants:

~A ¼ Dx

D
, ~B ¼ Dy

D
, ~C ¼ Dz

D
, ð6:5Þ

where

D ¼
xx½ � xy½ � xz½ �
yx½ � yy½ � yz½ �
zx½ � zy½ � zz½ �

������
������:

and the determinants Dx, Dy, and DZ are obtained from the principal determinant

D by replacing, respectively, the first, second, and third columns with the column of

free terms. For example, the determinant Dx is obtained as:

Dx ¼
xl½ � xy½ � xz½ �
yl½ � yy½ � yz½ �
zl½ � zy½ � zz½ �

������
������:

Now we must estimate the errors of the obtained results. We can do it as follows.

Each conditional equation has its own residual. The entire set of these residuals,

similar to the errors of repeated direct measurements, can be characterized by its

own variance. This variance can then serve as an indication of the accuracy of the

obtained results.
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The estimate of the above variance is calculated from the formula

S2 ¼
Pn
i¼1

r2i

n� m
, ð6:6Þ

where ri is the residual of conditional equation i, n is the number of conditional

equations, and m is the number of unknowns. Then the estimates of the variances of

the values found for the unknowns can be calculated using the formulas

S2 ~A
� � ¼ D11

D
S2, S2 ~B

� � ¼ D22

D
S2, S2 ~C

� � ¼ D33

D
S2, ð6:7Þ

where D11, D22, and D33 are the algebraic complements of the elements [xx], [yy],
and [zz] of the determinant D, respectively (they are obtained by removing from the

matrix of the determinant D the column and row whose intersection is the given

element).

The confidence intervals for the true values of the measured quantities are

constructed in a standard way, based on Student’s distribution. In this case, the

degree of freedom for all measured quantities is equal to v ¼ n�m.
Sometimes unknowns are related with a strict known dependency. For example,

in measuring the angles of a triangle, we know that their sum is equal to 180�. Such
a dependency is called a constraint. If we have n conditional equations,

m unknowns, and k constraints, and n > m�k and m > k, then k unknowns can

be eliminated from the conditional equations by expressing these unknowns by the

remaining unknowns. Next, using the method of least square, we find the estimates

of the values of m�k unknowns and the estimates of their standard deviations. The

degree of freedom in this case will be v¼ n – (m – k). We obtain the remaining

k unknowns using the constraint equations.

To find the standard deviations of these remaining unknowns, strictly speaking,

one must perform another cycle of calculations with the conditional equations, in

which the k previously excluded unknowns are retained and the other unknowns are
excluded. However, this is rarely (if ever) done, because usually a specific problem

at hand allows for a simpler method. We will see this in an example in Sect. 6.5.

6.3 Measurements with Linear Unequally Accurate

Conditional Equations

In Sect. 6.2, we studied the case in which all conditional equations could be

assumed to be equally accurate and thus were given equal weight in the calcula-

tions. In practice, there can be cases in which the conditional equations have

different accuracy, which usually happens if equations reflecting the measurements

are performed under different conditions. For instance, some measurements might
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be performed at one temperature while others at a different temperature, leading to

different additional errors.

For unequally accurate conditional equations, the estimates of the unknowns A,
B, C, ... are obtained by minimizing the expression

Q ¼
Xn
i¼1

gir
2
i ,

where gi is the weight of the i th conditional equation.

The immediate question then arises: how to assign weights to the conditional

equations. Currently, the specialists conducting the measurement assign these

weights from their personal experience. Obviously, such an approach is objection-

able because of its subjectivity. It would be desirable to have a systematic solution

using objective indications of the accuracy of measurements.

One could in principle imagine such an objective method along the following

lines. If we view the residual of each conditional equation as its error, we could use

the variance of the residual as the indication of its accuracy. Let us refer to the

variance of the residual of a conditional equation as the variance of the conditional

equation for short.

Pretend for a moment that the variances σ2i of the conditional equations are

known. Then the weights of these equations could be obtained from the conditions:Pn
i¼1 gi ¼ 1

g1 : g2 : � � � : gn ¼
1

σ21
:
1

σ22
: � � � : 1

σ2n
:

(The notation in the second line means that the pair-wise ratios of the weights

should be equal to the ratios of the reverses of the corresponding variances.) Thus,

the weights are

gi ¼
1=σ2iPn

i¼1

1=σ2i

Unfortunately, the variances of the conditional equations are unknown. One can

resolve this situation when there are a large number of conditional equations. In this

case, one can often divide them into groups of equations with equal accuracy.

Assume that each such group has more equations than there are unknowns. Then,

for each group in isolation, one can obtain the estimate of the variance of their

residuals as we did in Sect. 6.2 [see formula (6.6)]. Note that, in applying (6.6), the

number of unknowns remains the same as in the overall system of equations

and the number of conditional equations n is the number of equations in the

group. Once the variance of the residuals in a group is found, this variance is

assigned to all equations in the group.
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We now assume that the weights are known. The introduction of weights is

equivalent to multiplying the conditional equations by
ffiffiffiffi
gi

p
:Further, the cofactors gi

will appear in the coefficients of the unknowns in the normal equations. For

example, the first equation of the system of normal Eq. (6.4) will assume the form:

gxx½ �~A þ gxy½ �~B þ gxz½ �~C þ gxl½ � ¼ 0,

where each coefficient in the above equation is a sum of terms of the form

gxy½ � ¼ g1x1y1 þ g2x2y2 þ � � � þ gnxnyn:

The remaining equations in the system (6.4) will change analogously. After

these transformations, the further solution of the problem proceeds in the manner

described in Sect. 6.2, and finally we obtain estimates of the measured quantities

and their standard deviations.

6.4 Linearization of Nonlinear Conditional Equations

For several fundamental reasons, the method of least squares has been developed

only for linear conditional equations. Therefore, the cases with nonlinear condi-

tional equations require transformation of the conditional equations into a

linear form.

The general method for doing this task is based on the assumption that the

incompatibility of the conditional equations is small; i.e., their residuals are small.

Then, taking from the system of conditional equations as many equations as there

are unknowns and solving them, we find the initial estimates of the unknowns A0,

B0, C0. Next, assuming that

A ¼ A0 þ a,B ¼ B0 þ b,C ¼ C0 þ c,

we substitute these expressions into the conditional equations. Let

F A0 þ a;B0 þ b;C0 þ cð Þ ¼ li

be the resulting conditional equations. We expand these equations in Taylor series

and, retaining only terms with the first powers of the corrections a, b, and c, obtain

F A0;B0;C0ð Þ� liþ ∂F
∂A

� �
A0;B0;C0ð Þ

�aþ ∂F
∂B

� �
A0;B0;C0ð Þ

�bþ ∂F
∂C

� �
A0;B0;C0ð Þ

�c¼0:
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In the above equation, the partial derivatives are found at point (A0, B0, C0): we

differentiate the functions F(A, B, C) with respect to A, B, and C, respectively, and
substitute A0, B0, and C0 into the obtained formulas to find their numerical values.

In addition,

F A0;B0;C0ð Þ � li ¼ ri 6¼ 0:

Thus, we have a system of linear conditional equations for a, b, and c. We can

now use the method of least squares to find their estimates, ~a, ~b, and ~c, and standard
deviations. Then

~A ¼ A0 þ ~a, ~B ¼ B0 þ ~b, ~C ¼ C0 þ ~c:

As A0, B0, and C0 are nonrandom quantities,S2 ~A
� � ¼ S2 ~að Þ, S2 ~B

� � ¼ S2 ~b
� �

, and

S2 ~C
� � ¼ S2 ~cð Þ. In principle, once ~A, ~B, and ~C have been obtained, we can repeat the

above calculations with these values, instead of A0, B0, and C0, as the current

estimates to construct the second approximation, and so on.

In addition to the above method of linearization of the conditional equations, one

can also use the method of substitutions. If, for example, a conditional equation has

the form

yi ¼ xi sin Aþ zi e
�2B,

where x, y, and z are directly measured quantities, and A and Bmust be determined,

then the substitution

U ¼ sin A, E ¼ e�2B

can be made. Then we obtain the linear conditional equation

yi ¼ xiU þ zi E:

The solution of these equations gives ~U and ~E and the estimates of their

variances, which can then be used to find the required quantities A and B.
The method of substitutions is convenient, but it is not always applicable. In

principle, one can imagine one other general method for solving a system of

equations when the number of equations is greater than the number of unknowns.

This method is as follows.

Take from the available conditional equations a group of equations such that

their number is equal to the number of unknowns. Such a group gives a definitive

value for each unknown. Next, replacing in turn the equations in the group by each

of the other equations that were not in the group, we obtain other values of the same

unknowns. For each possible combination, the values of the unknowns can be

found. As a result of such calculations, we produce a set of values for each
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unknown, which could be regarded as the group of observations obtained with

direct measurements.

This method seems intuitive and attractive, but, unfortunately, it is incorrect.

The problem is that the sets of values obtained for the unknowns are not indepen-

dent. This presents difficulties in estimating the variances of the obtained estimates

for the unknowns.

6.5 Examples of the Application of the Method of Least

Squares

The examples below are presented to demonstrate the computational technique as

well as the physical meaning of the method. For this reason, these examples were

chosen so that the calculations would be as simple as possible. The initial data for

the examples are taken from [37]. Note that, strictly speaking, the examples

presented here are not combined or simultaneous measurements because all the

parameters in the equations involved are known. These are rather examples where

one uses the least square method to reconcile multiple measurements of several

measurands whose values are constrained by known dependencies.

Example 6.1 Determine the angles of a trihedral prism. Each angle is measured

three times. The measurements of all angles are equally accurate. The results of all

single measurements are as follows:

x1 ¼ 89
�
550, y1 ¼ 45

�
50, z1 ¼ 44

�
570,

x2 ¼ 89
�
590, y2 ¼ 45

�
60, z2 ¼ 44

�
550,

x3 ¼ 89
�
570, y3 ¼ 45

�
50, z3 ¼ 44

�
580,

We have three unknowns – the angles – and each measurement produces one

conditional equation, relating one of the unknowns to its measurand. Thus, denoting

the unknown angles as A, B, and C, we have the system of nine conditional

equations:

A ¼ 89
�
550, B ¼ 45

�
50, C ¼ 44

�
570,

A ¼ 89
�
590, B ¼ 45

�
60, C ¼ 44

�
550,

A ¼ 89
�
570, B ¼ 45

�
50, C ¼ 44

�
580,

If each angle is found as the arithmetic mean of the corresponding observations,

then we obtain

A0 ¼ 89
�
570, B0 ¼ 45

�
5:330, C0 ¼ 44

�
56:670,
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The sum of the angles of the triangle must satisfy the constraint A+B +C¼ 180
�
.

However, we obtain A0 +B0 +C0¼ 179
�
59

0
. This discrepancy is the result of mea-

surement errors. The values of the estimates must be changed so that the constraint

is satisfied.

We now proceed to the solution of the problem. To simplify the calculations, we

shall assume that

A ¼ A0 þ a,B ¼ B0 þ b,C ¼ C0 þ c,

and we shall find the values of the corrections a, b, and c.
The system of conditional equations transforms into the following system:

a ¼ �20, b ¼ �0:330, c ¼ þ0:330,

a ¼ þ20 b ¼ þ0:670, c ¼ �1:670,

a ¼ 00, b ¼ �0:330, c ¼ þ1:330:

The constraint equation will assume the form

A0 þ aþ B0 þ bþ C0 þ c ¼ 180
�
:

Therefore

aþ bþ c ¼ 180
� � 179

�
590 ¼ 10:

We exclude c from the conditional equations using the relation

c ¼ 10 � a� b,

We thus obtain the following system of conditional equations:

1� aþ 0� b ¼ �20, 0� aþ 1� b ¼ �0:330, 1� aþ 1� b ¼ þ0:670,

1� aþ 0� b ¼ þ20, 0� aþ 1� b ¼ þ0:670, 1� aþ 1� b ¼ þ2:670,

1� aþ 0� b ¼ 00, 0� aþ 1� b ¼ �0:330, 1� aþ 1� b ¼ �0:330:

We now construct the system of normal equations. Its general form will be

xx½ �aþ xy½ �b ¼ xl½ �,
xy½ �aþ yy½ �b ¼ yl½ �:
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Here, we obtain:

xx½ � ¼ 1þ 1þ 1þ 1þ 1þ 1 ¼ 6,

xy½ � ¼ 1þ 1þ 1 ¼ 3,

yy½ � ¼ 1þ 1þ 1þ 1þ 1þ 1 ¼ 6,

xl½ � ¼ �20 þ 20 þ 0:670 þ 2:670 � 0:330 ¼ þ30,
yl½ � ¼ �0:330 þ 0:670 � 0:330 þ 0:670 þ 2:670 � 0:330 ¼ þ30:

Therefore, the normal equations will assume the form

6aþ 3b ¼ 30, 3aþ 6b ¼ 30:

In accordance with the relations (6.5), we calculate

D ¼ 6 3

3 6

���� ���� ¼ 36� 9 ¼ 27,

Da ¼
30 3

30 6

���� ���� ¼ 180 � 90 ¼ 90:

Db ¼
6 30

3 30

���� ���� ¼ 180 � 90 ¼ 90,

and we find

~a ¼ ~b ¼ 90=27 ¼ 0:330:

Therefore, ~c ¼ 0:330 also.
Substituting the obtained estimates into the conditional equations, we calculate

the residuals:

r1 ¼ 2:330 r4 ¼ 0:670 r7 ¼ 0

r2 ¼ 1:670 r5 ¼ �0:330 r8 ¼ 20

r3 ¼ 0:330 r6 ¼ 0:670 r9 ¼ �10

From (6.6), we calculate an estimate of the variance of the equations:

S2 ¼
Pn
i¼1

r2i

n� mþ k
¼
P9
i¼1

r2i

9� 2
¼ 14:34

7
¼ 2:05:

Now D11 ¼ 6, D22 ¼ 6, and (6.7) give
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S2 ~að Þ ¼ S2 ~b
� � ¼ 6

27
� 2:05 ¼ 0:456, and S ~að Þ ¼ S ~b

� � ¼ 0:675:

The conditional equations are equally accurate and the estimates ~a, ~b, and ~c are
equal to one another. Therefore, we can write immediately S ~cð Þ ¼ 0:675: Finally,
we obtain ~A ¼ 89

�
57:330, ~B ¼ 45

�
5:670, ~C ¼ 44

�
57:000, and S ~A

� � ¼ S ~B
� � ¼

S ~C
� � ¼ 0:680.
We now construct the confidence interval for each angle based on Student’s

distribution. The number of degrees of freedom in this case is equal to 9–2 ¼ 7, and

for α ¼ 0.95, Student’s coefficient t0.95¼ 2.36. Therefore, u0.95¼ 2.36� 0.68
0 ¼ 1.6

0
.

Thus, we obtain finally

A 0:95ð Þ ¼ 89
�
57:30 � 1:60, B 0:95ð Þ ¼ 45

�
5:70 � 1:60,

C 0:95ð Þ ¼ 44
�
57:00 � 1:60:

In the above, the notation A(0.95) means the value of A with confidence

probability 0.95, the same for B and C.

Example 6.2 We shall study the example, which was presented at the beginning of

this chapter, of combined measurements of the capacitance of two capacitors. The

results of the direct measurement for the individual capacitors and for the two

capacitors connected in parallel and in series are as follows::

x1 ¼ 0:2071μF, x2 ¼ 0:2056μF,

x1 þ x2 ¼ 0:4111μF,
x1x2

x1 þ x3
¼ 0:1035μF:

The last equation is nonlinear. We expand it in a Taylor series, for which we first

find the partial derivatives

∂f
∂C1

¼ C2 C1 þ C2ð Þ � C1C2

C1 þ C2ð Þ2 ¼ C2
2

C1 þ C2ð Þ2

and analogously

∂f
∂C2

¼ C2
1

C1 þ C2ð Þ2 :

As C1 � x1 and C2 � x2, we can write

C1 ¼ 0:2070þ e1,C2 ¼ 0:2060þ e2:

Note that the above expressions use 0.2070 and 0.2060 instead of original values

of 0.2071 and 0.2056. This simplifies the number manipulations without sacrificing
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the accuracy: because the values are close, we simply allocate the small discrep-

ancies to e1 and e2, respectively.
The expansion into Taylor series is done for the point with the coordinates C1,0¼

0.2070 and C2,0 ¼ 0.2060. We obtain

C1,0C2,0

C1,0 þ C2,0
¼ 0:10325

∂f
∂C1

� 	
C1,0,C2,0

¼ 0:2062

0:207þ 0:206ð Þ2 ¼ 0:249

∂f
∂C2

� 	
C1,0,C2,0

¼ 0:2072

0:207þ 0:206ð Þ2 ¼ 0:251:

Thus, the nonlinear equation is thus linearized into 0.10325

+ 0.249e1 + 0.251e2¼ 0.1035, and, setting x1 ¼ C1 and x2 ¼ C2, the system of

conditional equations becomes

1� e1 þ 0� e2 ¼ 0:0001,

0� e1 þ 1� e2 ¼ �0:0004,

1� e1 þ 1� e2 ¼ �0:0019,

0:249e1 þ 0:251e2 ¼ 0:00025:

We now calculate the coefficients of the normal equations

xx½ � ¼ 1þ 1þ 0:2492 ¼ 2:062, xy½ � ¼ 1þ 0:249� 0:251 ¼ 1:0625,

yy½ � ¼ 1þ 1þ 0:2512 ¼ 2:063,
xl½ � ¼ �0:0004� 0:0019þ 0:249� 0:00025

¼ �0:001738,

yl½ � ¼ �0:0004� 0:0019þ 0:251� 0:00025 ¼ �0:002237:

The normal equations will be

2:062e1 þ 1:0625e2 ¼ �0:001738,

1:0625e1 þ 2:063e2 ¼ �0:002237:

We now find the unknowns e1 and e2. According to (6.5), we calculate

D ¼ 2:062 1:0625

1:0625 2:063

���� ���� ¼ 3:125,

Dx ¼
�0:001738 1:0625

�0:002237 2:063

���� ���� ¼ �0:00122,

Dy ¼
2:062 �0:001738

1:0625 �0:002237

���� ���� ¼ �0:00275:
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From here we find

e1 ¼ Dx

D
¼ �0:00039, e2 ¼ Dy

D
¼ �0:00088:

Therefore,

~C1 ¼ 0:2070� 0:00039 ¼ 0:20661μF,
~C2 ¼ 0:2060 ¼ 0:00088 ¼ 0:20512μF:

We find the residuals of the conditional equations by substituting the estimates

obtained for the unknowns into the conditional equations:

r1 ¼ 0:00049, r3 ¼ �0:00063,
r2 ¼ 0:00058, r4 ¼ 0:00048:

Now we can use formula (6.6) to calculate an estimate of the variance of the

conditional equations:

S2 ¼
P4
i¼1

r2i

4� 2
¼ 120� 10�8

2
¼ 6� 10�7:

The algebraic complements of the determinant D will be D11 ¼ 2.063 and D22 ¼
2.062. As D11 � D22,

S2 ~C1

� � ¼ S2 ~C2

� � ¼ D11

D
S2 ¼ 2:063

3:125
� 6� 10�7 ¼ 4� 10�7,

S ~C1

� � ¼ S ~C2

� � ¼ 6:3� 10�4 μF:

6.6 General Remarks on Determination of the Parameters

in Formulas From Empirical Data

The purpose of almost any investigation in natural science is to find regularities in

the phenomena in the material world, and measurements provide objective data for

achieving this goal.

It is desirable to represent the dependencies between physical quantities deter-

mined from measurements in an analytic form, i.e., in the form of formulas. The

initial form of the formulas is usually established based on an informal analysis of

the collection of data obtained. One important prerequisite of the analysis is the

assumption that the dependence sought can be expressed by a smooth curve;

physical laws usually correspond to smooth curves. Once the form of the formula
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is chosen, its parameters are then found fitting the corresponding curve into the

empirical data, and this is most often done by the method of least squares.

This problem is of great importance, and many mathematical and applied studies

are devoted to it. We shall discuss some aspects of the solution of this problem that

are related to the application of the method of least squares. The application of this

method is based on the assumption that the acceptable optimality criterion for the

parameters sought is that the sum of squares of the deviations of the empirical data

from the curve obtained be minimized. This assumption is often justified, but not

always.

For example, sometimes the curve must be drawn so that it exactly passes

through all prescribed points; this is a natural requirement if the coordinates of

the points are known to be exact. The problem is then solved by the methods of the

interpolation approximation, and it is known that the degree of the interpolation

polynomial will be one less than the number of fixed points. Sometimes the

maximum deviation of the experimental data from the curve, rather than the sum

of the squares of the deviations, is minimized.

As we have pointed out, however, most often the sum of the squares of the

indicated deviations is minimized using the least squares method. For this purpose,

all measured values for the quantities (in physically justified combinations) are

substituted successively into the chosen formula, resulting in a system of condi-

tional equations. The conditional equations are then used to construct the normal

equations; the solution of the latter gives the values sought for the parameters. Next,

substituting the values obtained for the parameters into the conditional equations,

the residuals of these equations can be found and the standard deviation of the

conditional equations can be estimated from them (assuming the equations are of

equal accuracy).

It is significant that in this case, the standard deviation of the conditional

equations is determined not only by the measurement errors but also by the

imperfect structure of the formula chosen to describe the dependence sought. For

example, it is well known that the temperature dependence of the electric resistance

of many metals is reminiscent of a parabola. In engineering, however, it is often

found that some sections of this dependence can be approximated by a linear

function. The inaccuracy of the chosen formula, naturally, is reflected in the

standard deviation of the conditional equations. Even if all experimental data

were free of any errors, the standard deviation would still be nonzero. Thus, in

this case, the standard deviation characterizes not only the error of the conditional

equations, but also that the empirical formula adopted does not correspond to the

true relation between the quantities.

It follows from this discussion that the estimates of the variances of the param-

eters obtained by the above method become virtual in the sense that they charac-

terize not only the random spread in the experimental data, as usual, but also the

inaccuracy of the approximation, which is nonrandom.

206 6 Combined and Simultaneous Measurements



6.7 Construction of Transfer Functions of Measuring

Transducers

We now turn to one particularly important application of the least squares method,

the construction of the transfer functions (sometimes also referred to as calibration

curves) for measuring transducers and instruments. These curves are a common

way in which the results of the calibration of these devices are presented. We shall

discuss the problem of constructing linear transfer functions, which are most often

encountered in practice.

In a linear transfer function, the relation between a quantity y at the output of a
transducer and the quantity x at its input is expressed by the dependence

y ¼ aþ bx: ð6:8Þ

When calibrating the transducer, the values of {xi}, i ¼ 1, . . ., n, in the range

[xmin, xmax] are applied to its input, and the corresponding output values {yi} are

found. Using these data, we have to estimate the coefficients a and b.
Let us start with the least-squares method. Equation (6.8) gives a system of

n conditional equations

bxi þ a� yi ¼ ri:

Following the least-squares scheme presented above, we obtain the system of

normal equations

b
Xn
i¼1

x2i þ a
Xn
i¼1

xi ¼
Xn
i¼1

xiyi, b
Xn
i¼1

xi þ na ¼
Xn
i¼1

yi: ð6:9Þ

The principal determinant of the system (6.9) will be

D ¼

Xn
i¼1

x2i
Xn
i¼1

xiXn
i¼1

xi n

���������

��������� ¼ n
Xn
i¼1

x2i �
Xn
i¼1

xi

 !2

:

The determinant Dx is given by

Dx ¼

Xn
i¼1

xiyi
Xn
i¼1

xiXn
i¼1

yi n

���������

��������� ¼ n
Xn
i¼1

xiyið Þ �
Xn
i¼1

xi
Xn
i¼1

yi:
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From here we find an estimate of the coefficient b:

~b ¼ Dx

D
¼

n
Pn
i¼1

xiyi �
Pn
i¼1

xi
Pn
i¼1

yi

n
Pn
i¼1

x2i �
Pn
i¼1

xi

� �2
¼
Pn
i¼1

xiyi � n�x�y

Pn
i¼1

x2i � n �xð Þ2
:

It is not difficult to show that

Xn
i¼1

xiyi � n�x�y ¼
Xn
i¼1

xi � �xð Þ yi � �yð Þ ð6:10Þ

and that

Xn
i¼1

x2i � n�x2 ¼
Xn
i¼1

xi � �xð Þ2: ð6:11Þ

Then the expression for ~b assumes the simpler form

~b ¼
Pn
i¼1

xi � �xð Þ yi � �yð Þ
Pn
i¼1

xi � �xð Þ2
: ð6:12Þ

The determinant Dy is given by

Dy ¼

Xn
i¼1

x2i
Xn
i¼1

xiyiXn
i¼1

xi
Xn
i¼1

yi

���������

��������� ¼ n�y
Xn
i¼1

x2i � n�x
Xn
i¼1

xiyi:

Therefore,

~a ¼ Dy

D
¼

n�y
Pn
i¼1

x2i � n�x
Pn
i¼1

xiyi

n
Pn
i¼1

x2i � n2 �xð Þ2

Using the identity (6.11), we put the estimate ~a into the form
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~a ¼
�y
Pn
i¼1

x2i � �x
Pn
i¼1

xiyiPn
i¼1

xi � �xð Þ2
ð6:13Þ

Relations (6.12) and (6.13) solve the problem of determining the transformation

function

y ¼ ~a þ ~bx: ð6:14Þ

We now evaluate the uncertainty of the above solution. From the experimental

data and the obtained estimates ea and ~b, we find the residuals of the conditional

equations

ri ¼ ~a þ ~bxi � yi:

Next, according to the general scheme of the least-squares method, we calculate

the estimate of variance of the conditional equations using (6.6),

S2 ¼
Pn
i¼1

r2i

n� 2
,

and estimates of the variances of ea and ~b using (6.7). Finally, we find the confidence
limits ua and ub, which represent the uncertainty of the two parameters. As pointed

out above, the confidence limits are constructed based on Student’s distribution

with n�2 degrees of freedom in our case, because the confidence limits of two

parameters are being determined.

The above confidence limits allow one to construct the so-called uncertainty

band for the transfer function of the transducer. This band is depicted in Fig. 6.1.

The band of uncertainty determines the range of possible transfer functions for the

transducer.

It can be used to determine the accuracy of measurements obtained with the

measuring transducer as follows.

When working with measuring transducers the dependence x ¼ f(y) and not y ¼
φ(x) is typically required: we need to obtain the value of the input signal by the

observed value of the output signal. Consider a transducer with the band of

uncertainty in Fig. 6.1 and let the observed signal be yo. Assuming that the observed

output value could be read precisely, the confidence interval for the input signal,

[xo,l, xo,r], is determined by the intersections of the horizontal line y ¼ yo with the

boundaries of the band of uncertainty.

If the output value itself is read with an uncertainty, yo � uy, then the confidence
interval can be conservatively obtained as x0o, l; x0o, r


 �
in Fig. 6.1. This confidence

6.7 Construction of Transfer Functions of Measuring Transducers 209



interval is conservative because is it not likely that both the output signal and the

transfer function reach their respective boundary values simultaneously.

Note that the confidence intervals for the input value obtained above are not

symmetrical around the “middle” value xo given by the line of the transfer function.

In practice, however, the band of uncertainty is narrow, and for narrow bands this

asymmetry is negligible.

The least-squares method is not the only technique to construct a linear depen-

dency between two measured quantities. In many cases, one can also build a linear

dependency and its uncertainty band using the theory of indirect measurements. We

discuss this last approach below.

During the calibration of transducers, it is common to obtain the output signal for

the zero value of the input signal; this often corresponds to marking the initial value

of the output indication of the transducer when no input signal is applied. Further-

more, this measurement can usually be viewed as precise compared to the other

measurements: while other values of the input signal must be obtained from some

device with certain accuracy, the absence of the signal corresponds to the true zero

value. Then, for x ¼ 0, (6.8) gives ~a ¼ y0, where y0 is the corresponding output

value.

Consider that we now have an estimate ~a of the coefficient a. Then (6.8) can be

transformed into the form

Fig. 6.1 Linear transfer function for the range [xmin, xmax] and its band of uncertainty
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b ¼ y� ~a

x

This equation can be viewed as the measurement equation for the indirect

measurement of the measurand b using the measuring arguments x and y. Because
the values of y depend on the values of x, it is a dependent indirect measurement.

Calibration provides us with n pairs of xi, yi. Using the method of reduction, we

transform this set of {xi, yi} into a set {bi}, i ¼ 1, . . ., n, which allows us to obtain

the estimate of the coefficient b, ~b ¼ �b and its variance S �bð Þ. The uncertainty of

coefficient estimate �b is determined using Student’s distribution:

uα �bð Þ ¼ tqS �bð Þ

where tq is the Student coefficient for a given confidence probability and the degree
of freedom n�1. With this uncertainty, one can draw the transfer function and its

band of uncertainty similar to Fig. 6.1. The only difference in this case is that the

curves are constructed for interval [0, xmax] and all three curves converge to the

same point y ¼ ~a on the y-axis.
We should note that the above application of the method of reduction assumes

that all conditional equations are of equal accuracy, that is, all values of the input

signal, {xi}, are set with the same relative accuracy, and all values of the output

signal, {yi}, are measured also with the same relative accuracy. Otherwise calcu-

lations of the estimate ~b and its variance would be more complex and less accurate

(one would have to calculate ~b as a weighted average of {bi}; we omit further

details).

Finally, it is useful to mention that during calibration, one should utilize diverse

values of the input signal rather than perform repeated measurements of the output

signal at the same value of the input. Indeed, in the latter case, the observed spread

of values {bi} would characterize only one point in the transfer function and would
not reflect the properties of the device in its entire range.
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Chapter 7

Combining the Results of Measurements

7.1 Introductory Remarks

Measurements of the same quantity are often performed in different laboratories

and, therefore, under different conditions and by different methods. Sometimes

there arises the problem of combining these measurement data to find the most

accurate estimate of the measured quantity.

In many cases, in the investigation of new phenomena, measurements of the

quantities involved take a great deal of time. By grouping measurements performed

over a limited time, intermediate estimates of the measurand can be obtained in the

course of the measurements. It is natural to find the final result of a measurement by

combining the intermediate results.

These examples show that the problem of combining the results of measure-

ments is of great significance for metrology. At the same time, it is important to

distinguish situations in which one is justified in combining results from those in

which one is not justified in doing so. It is pointless to combine results of measure-

ments of quantities that in their essence have different magnitude.

We should note that when comparing results of measurements, the data analysis

is often performed based on the intuition of the experimenters without using

formalized procedures. It is interesting that in the process, as a rule, the correct

conclusions are drawn. On the one hand, this indicates that modern measuring

instruments are of high quality and on the other hand that the experimenters, who by

estimating the errors determine all sources of error, are usually highly qualified.
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7.2 Theoretical Principles

The following problem has a mathematically rigorous solution. Consider L groups

of measurements of the same quantity A. Estimates of the measurand �x1, . . . , �xL
were made from the measurements of each group, and

E �x1½ � ¼ � � � ¼ E �xL½ � ¼ A:

The variances of the measurements in each group σ21, . . . , σ
2
L and the number of

measurements in each group n1, . . ., nL are known. The problem is to find an

estimate of the measured quantity based on data from all groups of measurements.

This estimate is denoted as ��x and is called the combined average. Because the

combined average is commonly obtained as a linear combination of group averages,

it is often referred to as the weighted mean.
We shall seek ��x as a linear combination of �xj

� �
, that is, as their weighted mean:

��x ¼
XL
j¼1

gjxj: ð7:1Þ

Therefore, the problem reduces to finding the weights gj. As E �xj
� � ¼ A for all j,

and we obviously want E ��x½ � ¼ A, we obtain from (7.1)

E ��x½ � ¼ E
XL
j¼1

gj�xj

" #
¼
XL
j¼1

gjE �xj
� �

, A ¼ A
XL
j¼1

gj:

Therefore,

XL
j¼1

gj ¼ 1 ð7:2Þ

Next, we require that ��x be an efficient estimate of A; that is, V ��x½ � must be

minimum. V ��x½ � can be found using the formula

V ��x½ � ¼ V
XL
j¼1

gj�xj

" #
¼
XL
j¼1

g2j V �xj
� �

¼ g21σ
2 �x1ð Þ þ g22σ

2 �x2ð Þ þ � � � þ g2Lσ
2 �xLð Þ: ð7:3Þ

We shall now find the weights gj under whichV ��x½ � reaches a minimum. Using the

condition (7.2), we substitute gL¼ 1� g1� g2� � � � � gL� 1 into (7.3), and then

differentiate the resulting expression with respect to each gj and equate each

derivative to 0:
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2g1σ
2 �x1ð Þ � 2 1� g1 � g2 � � � � � gL�1ð Þσ2 �xLð Þ ¼ 0,

2g2σ
2 �x2ð Þ � 2 1� g1 � g2 � � � � � gL�1ð Þσ2 �xLð Þ ¼ 0,

� � �
2gL�1σ

2 �xL�1ð Þ � 2 1� g1 � g2 � � � � � gL�1ð Þσ2 �xLð Þ ¼ 0,

As the second term is identical in each equation, we obtain

g1σ
2 �x1ð Þ ¼ g2σ

2 �x2ð Þ ¼ � � � ¼ gL�1σ
2 �xL�1ð Þ:

Furthermore, if instead of gL we eliminated another weighting coefficient from

(7.3), we would have included the similar term with gL into the above relation.

Thus, we arrive at the following condition:

g1σ
2 �x1ð Þ ¼ g2σ

2 �x2ð Þ ¼ � � � ¼ gLσ
2 �xLð Þ,

or equivalently,

g1 : g2 : � � � : gL ¼
1

σ2 �x1ð Þ :
1

σ2 �x2ð Þ : � � � :
1

σ2 �xLð Þ : ð7:4Þ

The relations (7.2) and (7.4) represent two conditions for the weights to compute

the combined average. To find weight gj, it is necessary to know either the variances

of the arithmetic means or the ratio of the variances. If we have the variances σ2 �x1ð Þ
then we can set g0j ¼ 1=σ2 �x1ð Þ We then obtain

gj ¼
g0jPL

j¼1

g0j

ð7:5Þ

As the weights are nonrandom quantities, it is not difficult to determine the

variance for ��x. According to relation (7.3), we have

V ��x½ � ¼
XL
j¼1

g2j V �xj
� � ¼

PL
j¼1

g0j
� �2

V �xj
� �

PL
j¼1

g0j

 !2
¼

PL
j¼1

1

σ2 �xjð Þ
� 	2

σ2 �xj

 �

PL
j¼1

1

σ2 �xjð Þ

 !2
¼ 1PL

j¼1

1

σ2 �xjð Þ
ð7:6Þ

Let us now consider an important particular case when the variances (7.6) of the

measurements are the same for all groups, although their estimates might still be

different because the number of observations in the groups may be different. In this

case, one can combine the measurements of all groups into one large group of
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measurements. The number of measurements in the combined group is

N ¼PL
j¼1 nj and the combined average will be

��x ¼

PL
j¼1

Pnj
i¼1

xji

N
: ð7:7Þ

Expanding the numerator gives

��x ¼ x11 þ x12 þ � � � þ x1n1ð Þ þ x21 þ x22 þ � � � þ x2n2ð Þ þ � � �
N

¼ n1�x1 þ n2�x2 þ � � � þ nL�xL
N

¼
XL
j¼1

gj�xj,

where gj is the weight of the j th arithmetic mean:

gj ¼ nj=N ð7:8Þ

The variance of the weighted mean in this case (i.e., when measurement results

in each group have equal variances) can be estimated by considering the weighted

mean as the average of the combined group of all the measurements:

S2 ��xð Þ ¼
PN
k¼1

xk � ��xð Þ2

N N � 1ð Þ :

We gather the terms in the numerator by groups

S2 ��xð Þ ¼

PL
j¼1

Pnj
i¼1

xij � ��x

 �2

N N � 1ð Þ :

and perform simple transformations of the numerator to simplify the calculations:

XL
j¼1

Xnj
i¼1

xji � ��x

 �2¼XL

j¼1

Xnj
i¼1

xji � �xj þ �xj � ��x

 �2

¼
XL
j¼1

Xnj
i¼1

xji � ��x

 �2 þ 2

XL
j¼1

Xnj
i¼1

xji � �xj

 �

�xj � ��x

 �þXL

j¼1

Xnj
i¼1

�xj � ��x

 �2

:

The second term in the last expression is equal to zero because, by virtue of the

properties of the arithmetic mean,
Pnj
i¼1

xji � �xj

 � ¼ 0. For this reason,
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S2 ��xð Þ ¼ 1

N N � 1ð Þ
XL
j¼1

Xnj
i¼1

xij � ��x

 �2 þXL

j¼1

Xnj
i¼1

�xj � ��x

 �2 !

Note that

Xnj
i¼1

xji � �xj

 �2 ¼ nj nj � 1


 �
S2 �xj

 �

,

where S2 �xj

 �

is the estimate of the variance of arithmetic mean of the j th group, or,

equivalently, S2 �xj

 � ¼ 1

nj nj�1ð Þ
Pnj
i¼1

xij � �xj

 �2

:

Further,

Xnj
j¼1

�xj � ��x

 �2 ¼ nj �xj � ��x


 �2

Thus, we obtain

S2 ��xð Þ ¼ 1

N N � 1ð Þ
XL
j¼1

nj � 1

 �

njS
2 �xj

 �þXL

j¼1

nj �xj � ��x

 �2" #

: ð7:9Þ

Equation (7.9) can be expressed differently. Moving N in the denominator inside

the square brackets, we have

S2 ��xð Þ ¼ 1

N � 1

XL
j¼1

nj � 1

 �nj

N
S2 �xj

 �þXL

j¼1

nj
N

�xj � ��x

 �2" #

:

Finally, using (7.8), we obtain:

S2 ��xð Þ ¼ 1

N � 1

XL
j¼1

gj nj � 1

 �

S2 �xj

 �þXL

j¼1

gj �xj � ��x

 �2" #

: ð7:10Þ

The first term in the above formula characterizes the spread in the measurements

within groups, and the second term characterizes the spread of the arithmetic means

of the groups.
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7.3 Effect of the Error of the Weights on the Error

of the Weighted Mean

Looking at (7.1) determining the weighted mean, one would think that, because the

weights gj and the weighted values of �xj appear in it symmetrically, they must be

found with the same accuracy. In practice, however, the weights are usually

expressed by numbers with one or two significant figures. How is the uncertainty

of the weights reflected in the error of the weighted mean?

We shall consider weights gj in (7.1) to be fixed, constant values. In addition, as

usual, we shall assume that the weights add up to one [that is, condition (7.2) holds].

This condition is also satisfied for the inaccurately determined weight estimates,

that is, for ~gj. Therefore,

XL
j¼1

Δgj ¼ 0,

where Δgj is the error in determining the weight gj.
Assuming that the exact value of the weighted mean is y, we estimate the error of

its estimate:

Δy ¼
XL
j¼1

~gj�xj �
XL
j¼1

gj�xj ¼
XL
j¼1

Δgj�xj:

We shall express Δg1 with the other errors:

Δg1 ¼ � Δg2 þ � � � þ ΔgLð Þ

and substitute it into the expression for Δy:

Δy ¼ �x2 � �x1ð ÞΔg2 þ �x3 � �x1ð ÞΔg3 þ � � � þ �xL � �x1ð ÞΔgL
or in the form of relative error

Δy
y

¼
g2 �x2 � �x1ð Þ Δg2g2

þ � � � þ gL �xL � �x1ð Þ ΔgLgLPL
j¼1

gj�xj

:

The errors of the weights Δgj/gj are unknown. But let us assume that we can

estimate their limits, and let Δg/g be the largest absolute value of these limits.

Replacing all relative errors Δgj/gj with Δg/g, we obtain the upper limit of the

relative error of the weighted mean:
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Δy
y

� Δg

g

g2 �x2 � �x1ð Þ þ g3 �x3 � �x1ð Þ þ � � � þ gL �xL � �x1ð Þj j½ �PL
j¼1

gj�xj

0
BBB@

1
CCCA:

The numerator on the right-hand side of the inequality can be put into the

following form:

g2 �x2 � �x1ð Þ þ g3 �x3 � �x1ð Þ þ � � � þ gL �xL � �x1ð Þ
¼ g2�x2 þ g3�x3 þ � � � þ gL�xL � g2 þ g3 þ � � � þ gLð Þ�x1:

But g2 + g3 + � � � + gL¼ 1� g1, so that

g2 �x2 � �x1ð Þ þ g3 �x3 � �x1ð Þ þ � � � þ gL �xL � �x1ð Þ ¼
XL
j¼1

gj�xj � �x1 ¼ y� �x1:

Thus,

Δy
y

� Δg
g

y� �x1j j
y

:

It is obvious that if the entire derivation is repeated, but in so doing the error not

in the coefficient g1 but in some other weight is eliminated, then a weighted value

other than �x1 will appear on the right-hand side of the inequality. Therefore, the

above inequality holds for every �xj ; the obtained result can be represented in the

form

Δ��x
��x

� Δg
g

��x� �xj
�� ��

��x
:

This inequality shows that the error introduced into the weighted mean as a

result of the error of the weights is many times smaller than the error of the weights

itself. The cofactor ��x� �xj
�� ��=��x can be assumed to be of the same order of magnitude

as the relative error of the measurement results �xj produced by each group. Thus,

if this error is of the order of 0.01, then the error introduced into the weighted

mean as a result of the error of the weights will be at least 100 times smaller than

the latter.

7.3 Effect of the Error of the Weights on the Error of the Weighted Mean 219



7.4 Combining the Results of Measurements

with Predominately Random Errors

We shall now study a scenario of combining measurement results where measure-

ments in each group have negligibly small systematic errors. Each result being

combined in this case is usually the arithmetic mean of the measurements in the

corresponding group, and the differences between them are explained by the

random spread of the averages of the groups.

Before attempting to combine these results, one must verify that the same

quantity is measured in each case and there are no systematic shifts between the

measurement results produced by each group. This verification is equivalent to

checking that the true value of the measured quantity is the same for all groups and

is accomplished by the methods presented in Chap. 3.

It is important to note that this verification can fail for two reasons: different

quantities could have been measured in different groups or there are systematic

shifts between the means of the groups. In the former case, it is pointless to combine

the measurements. In the latter case the measurements can still be combined but

with the help of another method, which we will discuss in the next section. The

distinction between these two causes of verification failure must be clear from the

physical essence of the measurement and its purpose; one cannot draw this distinc-

tion from statistical methods.

Only if the data pass the above verification can we combine the measurements by

applying the approach from Sect. 7.2. Indeed, the absence or negligible size of the

systematic errors is a necessary condition for the validity of this approach. One may

notice that our verification only checks for the absence of the systematic shift

between the groups, not the absence of the systematic errors themselves. This is

inevitable; if measurements in all the groups have the same systematic error, this

error is impossible to detect with statistical methods and it will also be present in the

combined measurement result. Fortunately, this situation rarely occurs in practice.

Recall that different groups of measurements are typically collected in different

laboratories. Any systematic error that is so pervasive that it is the same across all

the laboratories is likely to have been eliminated during calibration of the instru-

ments involved.

The theory of calculating the weighted mean of several groups of measurements

that we considered in Sect. 7.2 assumes that the variance of the measurement results

in each group is known. However, the experimental data only allow one to obtain

the estimates of these variances. Thus, one has to use the estimates in places of true

variances throughout the calculations. In particular, the variance estimate of the

weighted mean is computed by the following formula, modified from (7.6):

S2 ��xð Þ ¼ 1PL
j¼1

1

S2 �xjð Þ:
ð7:11Þ
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In the case of equal variances in all the groups, (7.9) and (7.10) already contain

estimates of the group variance, and so these formulas can be used directly. Note

that one can check if the estimates of the variances of measurement groups are the

estimates of the same variance using the methods from Chap. 3.

Given this variance estimate, the uncertainty of the weighted mean can be

calculated by considering the combination of the group averages as a linear indirect

measurement and thus by applying (5.23) to calculate the effective degrees of

freedom.

Example 7.1 The mass of some body is being measured. In one experiment, the

value ~m1 ¼ 409:52g is obtained as the arithmetic mean of n1 ¼ 15 measurements.

The variance of the group of measurements is estimated to be S21 ¼ 0:1g2. In a

different experiment, the value ~m2 ¼ 409:44g was obtained with n2 ¼ 10 and

S22 ¼ 0:03g2. It is known that the systematic errors of the measurements are

negligibly small, and the measurement results in each experiment can be assumed

normally distributed. It is necessary to estimate the mass of the body and the

variance of the result using data from both experiments.

We shall first determine whether the unification is justified, that is, whether an

inadmissible difference exists between the estimates of the measured quantity in

each group. Following the method described in Sect. 3.9,

S2 �x1ð Þ ¼ S21
n1

¼ 0:1

15
¼ 0:0067, S2 �x2ð Þ ¼ 0:03

10
¼ 0:003,

S2 �x1 � �x2ð Þ ¼ S2 �x1ð Þ þ S2 �x2ð Þ ¼ 0:0097,

S �x1 � �x2ð Þ ¼ 0:098,

�x1 � �x2 ¼ ~m1 � ~m2 ¼ 0:08:

Assuming that the confidence probability α ¼ 0.95, Table A.1 gives z1þα
2
¼ 1:96.

Then, z1þα
2
S �x1 � �x2ð Þ ¼ 1:96� 0:098 ¼ 0:19: As 0.08 < 0.19, the unification is

possible.

To decide if we can use the simpler method based on (7.8, 7.9, and 7.10), we

shall check whether both groups of observations have the same variance. We do so

using Fisher’s test from Sect. 3.9. We compute:

F ¼ S21=S
2
2 ¼ 0:1 : 0:03 ¼ 3:3:

The degrees of freedom are v1¼ 14 and v2¼ 9. We shall assume the significance

level of 2%. Then, q ¼ 0.01 and Fq ¼ 5 (see Table A.5). As F < Fq, it can be

assumed that the variances of the groups are equal.

We shall now find the weights of the arithmetic means. According to (7.8), we

have g1 ¼ 15/25 ¼ 0.6 and g2 ¼ 10/25 ¼ 0.4. The weighted mean is
��m ¼ 0:6� 409:52þ 0:4� 409:44 ¼ 409:49g. Next we find S ��mð Þ. In accordance

with (7.9), we have
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S2 ��mð Þ ¼ 1

25� 24
14� 0:1þ 9� 0:032 þ 15� 0:032 þ 10� 0:052

 �

¼ 28� 10�4g2,

S2 ��mð Þ ¼ 5:3� 10�2g:

Having found the variance of the combined result, we can now calculate its

uncertainty using Student’s distribution with the effective degrees of freedom

obtained from (5.23).

7.5 Combining the Results of Measurements Containing

Both Systematic and Random Errors

In a general case, measurements within groups have not just random but also system-

atic error. The latter is typically a conditionally constant error or a sum of several

conditionally constant errors. However, occasionally one may encounter absolutely

constant systematic errors, such as methodological errors, as well. Let us start with

considering measurements that do not have absolutely constant systematic errors.

Let us assume again that a quantity A is measured in L laboratories. Each

laboratory produces the result �xj with error ςj ( j¼ 1, . . . ,L ):

�xj ¼ Aþ ςj:

The error ςj is the sum of the conditionally constant error ϑj and random error ψ j

errors: ςj¼ ϑj+ψ j. As discussed in Chap. 4 (Sect. 4.3), the conditionally constant

error is modeled as a uniformly distributed random quantity with limits θj, which
are estimated analytically from the specifications of the instruments and measure-

ment conditions: |ϑj|� θj We will assume that the mathematical expectation of this

error is zero: E[ϑj]¼ 0 We will also assume that θj is symmetrical about �xj.
Occasionally, one can encounter cases of asymmetrical limits; the methodology

of handling this asymmetry is given in Chap. 4.

The random error ψ j is assumed to be a centered quantity; that is, E[ψ j]¼ 0.

Thus, when there are no absolutely constant errors, we have E �xj
� � ¼ A.

To allow the unification of measurement results, each laboratory must report the

result itself, �xj, along with the estimates of the variance of this result that is due to

the random error, S2(ψ j) and the limit of the conditionally constant systematic error

θj The former is calculated in the normal way:

S2 ψ j


 � ¼
Pnj
i¼1

xij � �xj

 �2

nj nj � 1

 � :
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The latter is equivalent to providing an estimate of the variance of this error,

S2(ϑj) since S2 ϑj

 � ¼ θ2j =3:

Similar to the case without systematic errors considered in Sect. 7.4, we will

follow the theory of combining the results of measurements using the weighted

mean while replacing variances with their estimates. As shown in Sect. 4.9, the

estimate of the combined variance of the measurement result �xj is

S2 �xj

 � ¼ S2 ϑj


 �þ S2 ψ j


 �
: ð7:12Þ

Now, the weights of the results being combined can be derived from (7.2) and

(7.4) by substituting the variances appearing in these relations with the estimates of

these variances:

gj ¼
1

S2 ϑjð ÞþS2 ψ jð ÞPL
j¼1

1

S2 ϑjð ÞþS2 ψ jð Þ
ð7:13Þ

Knowing the weights, we can calculate the estimate of the combined result as the

weighted mean of the results from each lab.

We shall now estimate the uncertainty of the weighted mean. In solving this

problem, because the errors of the weights are insignificant (see Sect.7.3), we shall

assume that the weights of the combined measurement results are exact. A neces-

sary prerequisite to find the uncertainty is to estimate the standard deviation. In

principle, we accomplish this by replacing variances in (7.5) with their estimates

from (7.12). However, for subsequent calculations we will need the components of

the combined standard deviation contributed by the random and conditionally

constant systematic errors, denoted respectively as Sψ ��xð Þ and Sϑ ��xð Þ. Thus, we
will compute these components and then obtain the overall standard deviation by

combining these components rather than from (7.5) and (7.12).

Following the calculation procedure of Sect. 4.8, and taking into account the

weights, Sψ ��xð Þ and Sϑ ��xð Þ are computed as follows:

Sψ ��xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
j¼1

g2j S
2 ψ j


 �vuut

Sϑ ��xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
j¼1

g2j S
2 ϑj

 �vuut

ð7:14Þ

Now we can find the combined standard deviation of the weighted mean:

S ��xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ψ ��xð Þ þ S2ϑ ��xð Þ

q
: ð7:15Þ
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To move from the combined standard deviation to the uncertainty of the weighted

mean, according to (4.20), we must obtain coefficient tc. This coefficient can be found
from (4.22), which requires the coefficient tϑ for the systematic component of error

and the quantile tq of Student’s distribution for the random component. To find tϑ we
must first calculate the uncertainty of the systematic component. The easiest way to

do it is by using (4.3) with weights:

uϑ ��xð Þ ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
j¼1

g2j θ
2
j

vuut :

Coefficient kα is determined by the desired confidence probability and is found

from Table 4.1. Now we can find tϑ according to (4.21):

tϑ ¼ uϑ ��xð Þ
Sϑ ��xð Þ :

Quantile tq of Student’s distribution can be found given the effective degrees of

freedom using (5.23), which in this case obtains the form:

veff ¼

PL
j¼1

g2j S
2 ψ j


 �" #2
PL
j¼1

g4j S
4 ψ j


 �
=vj

� �

where vj ¼ nj�1. Note that both tϑ and tq must be obtained for the same confidence

probability.

Now we can apply (4.22) to compute coefficient tc

tc ¼ tqSψ ��xð Þ þ tϑSϑ ��xð Þ
Sψ ��xð Þ þ Sϑ ��xð Þ

and, finally, obtain the uncertainty of the weighted mean:

Uc ¼ tcS ��xð Þ:

We should say a few words on the potential presence of absolutely constant

systematic error. If among the groups being combined there is a group with such

error, then the limit of this error must be re-calculated by taking into account the

weight of this group. For instance if the only group with such error is group number

2 and its absolutely constant error is H2 then the absolutely constant error of the

weighted mean will be H �xð Þ ¼ g2H2. If more than one group has such errors, their

respective limits (again recalculated according to their groups’ weights) are

summed up arithmetically as in direct and indirect measurements. Then, the
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resulting limit is again summed up arithmetically with the confidence limit of the

weighted mean computed using the methodology described here.

An example of a measurement where a weighted mean is used as the estimate of

the measurand is a precise measurement of the activity of a source of alpha

particles. A detailed treatment of this example is given in Chap. 8 (Sect. 8.8).

As a final note, when the results of measurements must be combined, it is always

necessary to check the agreement between the starting data and the obtained result.

If some contradiction is discovered, for example, the combined average falls

outside the permissible limits of error of some group, then the reason for this

must be determined and the contradiction must be eliminated. Sometimes this is

difficult to do and may require special experiments. Great care must be exercised in

combining the results of measurements because in this case information about the

errors is employed to refine the result of the measurement and not to characterize its

uncertainty, as is usually done.
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Chapter 8

Examples of Measurements and Measurement

Data Processing

8.1 Voltage Measurement with a Pointer-Type Voltmeter

Our first example concerns a measurement of voltage with a pointer-type voltmeter.

Such a measurement clearly represents an example of a single direct measurement.

We shall study two examples of such measurements with a Class 1.0 pointer-type

DC voltmeter that operates using the energy of the source of the voltage being

measured. Note that the energy consumption by the voltmeter causes interaction

between the voltmeter and the object under study.

Let the voltmeter have the following characteristics:

1. The upper limits of measurement ranges are 3 V, 7.5 V, 15 V, 30 V, and so on, up

to 300 V.

2. The scale of the instrument has 75 graduations and starts at the 0 marker.

3. The limits of permissible intrinsic error are �1.0% of a span (it is a fiducial

error).

4. Full deflection of the pointer corresponds to the current of 15� 10�6A� 1%.

5. Reference conditions include temperature of +20� 5 �C and the requirement

that the measurement be performed with the instrument positioned horizontally.

6. Additional errors are as follows. A deviation of the temperature from the

reference range causes the indications of the instrument to change by no more

than �1.0% for each 10 �C change in temperature. Inclination of the instrument

by 5� from the horizontal position changes the indications by not more than

�1%.
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8.1.1 Single Measurement Under Reference Condition
of the Voltmeter

The value of the measured quantity supposedly will be less than 3 V, so the 3 V

range is used on the voltmeter. Let the indication of the voltmeter be 62.3 gradu-

ations at the range 3 V. Hence, the voltage indicated by the voltmeter is

U ¼ 62:3
3

75
¼ 2:492V:

The accuracy of a measurement under reference condition is determined by the

limits of intrinsic error of the instrument involved, and it does not have additional

errors. But before the limits of intrinsic error of the instrument involved are

re-calculated for the indication point, it is necessary to estimate the effect of

interaction between the voltmeter and the object under study.

The goal of the measurement is to find the voltage between the two points on the

electrical circuit (“the voltage source”) to which the voltmeter is connected. But the

voltmeter shows the voltage on its terminals, which is always lower than the voltage

being measured due to the voltage drop across the resistance of the voltage source.

In other words, the measuring instrument (the voltmeter) interacts with the object of

study (the voltage source), and this interaction affects the observed value of the

measurand (causes voltage drop). The extent of this voltage drop depends on the

relation between the internal resistance of the voltmeter, RV, and the resistance of

the source of the voltage being measured, R. From the parameters of the voltmeter,

the internal resistance of the voltmeter at the range 3 V can be found as

RV ¼ 3

15� 10�6
¼ 2� 105Ω:

Let the source resistance R be 1 kΩ and constant. Then we can estimate the

absolutely constant error caused by the above interaction between the voltmeter and

the voltage source. The voltmeter indication U shows the voltage on its terminals.

Without the above interaction it would have been E>U. Let I denote the power of
current flowing through the voltmeter and the external circuit under study. Then the

relative error δU of the indication of voltmeter due to the voltage drop is

δU ¼ IRV � I RV þ Rð Þ
I RV þ Rð Þ ¼ �R

RV þ R
:

Then

δU ¼ � 1kΩ=201kΩð Þ∗100% ¼ �0:5%,

or in absolute form,
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ΔU ¼ �2:492∗ 0:5∗ 10�2 ¼ �0:0124V:

This error can be removed by correction

CU ¼ þ0:0124V:

The corrected indication is therefore

UC ¼ 2:492þ 0:012 ¼ 2:504V:

In our case, the limit of permissible intrinsic error in relative form is equal to the

fiducial error γ ¼ 1%, and the fiducial value xf¼ 3 V. The limit of absolute error ⊿in

is computed in accordance to Sect. 4.6 as follows:

Δin ¼ γ
xf
100

¼ 1∗3

100
¼ 0:03V:

The number of significant figures in this error shows that the (corrected) indica-

tion UC has one extra significant figure. After rounding off, it becomes

UC ¼ 2:50V:

The intrinsic error in absolute form is the same across the entire scale of the

chosen range of the instrument. This allows us to find the limit of relative error of

the indication:

δin ¼ 0:03

2:50
∗100 ¼ 1:18%:

Another source of error, characteristic of an analog measurement device with

analog scale, is reading error δr, which is the error with which the experimenter

reads the indication of the device in the course of the measurement. While this error

generally depends on the indication (it disappears when the indication happens to

fall on a graduation mark, and is larger for indications between marks), it does not

exceed 0.25 of a graduation, and we will assume for simplicity this upper bound in

our calculations. The value of one graduation is 3
75
¼ 0:04V and at the reading point

the 0.25 of a graduation produces

δr ¼ 0:25∗0:04∗100

2:50
¼ 0:39%:

The measurement uncertainty in relative form is computed according to formula

(4.3) for confidence probability 0.95:

θ0:95, rel ¼ k0:95

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δin

2 þ δr
2

q
¼ 1:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:182 þ 0:392

p
¼ 1:36%:
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In absolute form, this becomes

θ0:95 ¼ 1:36∗10�2∗2:50V ¼ 0:034V:

Since as noted earlier, the accuracy of the measuring instrument stipulates the

measurement result with no more than three significant figures, the value of

measurement uncertainty must also be rounded to three significant figures, leading

to θ0.95 , rel¼ 1.4% and θ0.95¼ 0.03V. Finally, the result of the measurement is

presented in the form

U ¼ 2:50� 0:03ð ÞV or ~U ¼ 2:50V� 1:4%:

8.1.2 Single Measurement Under Rated Condition
of the Voltmeter

The inaccuracy of measurement under rated condition is determined not just by the

intrinsic error but also by additional errors. Let us consider the example of 8.1.1, but

now under rated rather than reference condition. Assume that the instrument

indicated has been observed to be 63.1 graduations, which translates into

U0 ¼ 63:1∗
3

75
¼ 2:524V:

The electrical resistance of the voltmeter RV and R of the chain are the same.

Therefore the absolutely constant error caused by interaction between voltmeter

and the chain is the same as it was in the measurement under reference condition

and it may be removed by the correction CU¼ + 0.0124V as obtained in Sect. 1.1.

The measurement result after correction is

U
0
C ¼ 2:524þ 0:012 ¼ 2:54V:

Now we need to calculate the accuracy of this result. The sources of error are as

follows:

1. The intrinsic error of the voltmeter

2. The reading error

3. The temperature error

4. The error introduced by the inclination of the instrument

5. The error caused by the limited accuracy of internal resistance of the voltmeter.

All errors listed above are conditionally constant. We shall now estimate the

errors of the measurement.

1. Intrinsic error δin. Its limits, as derived in the previous section, are:

δin ¼ 0:03∗100

2:54
¼ 1:18%:
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2. Reading error δr. This error was also derived in the previous section and is

δr ¼ 0:25∗0:04∗100

2:54
¼ 0:39%:

3. Additional temperature error δT. The maximum deviation of the temperature

from the normal value is 5 �C. Therefore,

δT ¼ 0:5%:

4. Additional inclination error δl. Because of the 5� inclination of the instrument,

the additional error will be 1% of the instrument indication:

δl ¼ 1%:

Since all above errors are conditionally constant, we may sum them using

Eq. (4.3). The resulting sum for confidence probability α ¼ 0.95 will be the

uncertainty limits in relative form:

θ0:95, rel ¼ 1:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:182 þ 0:392 þ 0:52 þ 12

p
¼ 1:1

ffiffiffiffiffiffiffiffiffi
2:79

p
¼ 1:84%:

In the absolute form, this uncertainty limit will be θ0.95¼ 2.54∗ 1.84∗ 10�2

¼ 0.047V. After rounding, the obtained uncertainties will become θ
0
0:95, rel ¼ 2%

and θ
0
0:95 ¼ 0:05V. Thus, the inaccuracy of the result of measurement under rated

condition of the voltmeter is expressed as uncertainty with confidence probability

0.95. The result of measurement should be presented in the form

U ¼ 2:54� 0:05ð ÞV or ~U ¼ 2:54V� 2%:

8.2 Voltage Measurement with a Potentiometer

and a Voltage Divider

Potentiometers with manual control are highly accurate and universal. For these

reasons, they are frequently used in scientific laboratories, although they have

started to be displaced by digital multirange voltmeters in recent years. The latter

are in essence automated potentiometers.

A voltage measurement with a potentiometer requires a two-phase measurement

procedure. First, a standard cell is connected to the potentiometer, and the current

through the potentiometer is adjusted using the potentiometer’s set of accurate

measuring resistors so that the voltage drop on the section of the circuit with

these resistors would balance the EMF of the standard cell. Next, a special
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potentiometer switch is used to disconnect the standard cell, and we connect the

voltage to be measured to the potentiometer.

When the voltage to be measured exceeds the range of the potentiometer, a

voltage divider can be used, which allows only a known fraction of the voltage to be

applied to the potentiometer. We should point out that a voltage divider contains

electrical resistors and thus consumes a certain amount of power from the voltage

source to which it connects. For this reason, a voltage divider can only be used if the

power it consumes is so low that the resulting affect on the measured voltage is

negligible. We assume that this is the case in our example.

The measurement of voltage with a potentiometer is a direct measurement.

However, when the errors of the potentiometer and the errors of the standard cell

are rated separately, and when a voltage divider is involved, the error produced by

such a chain of measuring instruments is estimated with methods that are specifi-

cally designed for indirect measurements. We discussed these methods in

Sect. 5.10. Here, we shall consider an example of a single measurement with

individual inaccuracy estimation.

To be specific, we will consider the measurement of voltage using a class 0.005

potentiometer, a class 0.005 voltage divider, and a standard cell with voltage

accuracy of �10 μV. In particular, we will consider a P309 potentiometer and

P35 voltage divider, which were manufactured in the former USSR. The measuring

resisters in P309 potentiometer are organized in six blocks called decades. Each

decade produces certain decimal digits in the measurement result. For example, if

the measured voltage is 1.256316 V, the digits “1.2 V” are produced by indication

“12” of decade “�100 mV,” the digit “0.05 V” by indication “5” of decade

“�10 mV,” and so on.

Let the current through the potentiometer be Ip and the resistance of the section

of the circuit with the accurate resistors after the adjustment in the first phase be Rsc.

Since the voltage drop on the section of the circuit with the resistance Rsc balances

the EMF of the standard cell, Usc, we have in this case:

Ip ¼ USC=RSC:

When the standard cell is disconnected and a certain voltage, Up, is connected to

the potentiometer circuit, a fraction of the resistors of the potentiometer is intro-

duced into the comparison circuit such that the voltage drop on their resistance Rp

would compensate Up; i.e., Up ¼ IpRp. Then

Up ¼ Rp

RSC

USC,

and knowing the EMF of the standard cell and the ratio Rp/Rsc, we can find Up.

Finally, assuming that the division coefficient of the voltage divider is equal to Kd,

the voltage to be measured, U, is determined from the formula U¼KdUp. There-

fore, we can write the measurement equation in this measurement in the form:
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U ¼ Kd
Rp

RSC

USC: ð8:1Þ

The indications of the potentiometer are proportional to Rp, but its error is

determined not by the errors of the resistances Rp and Rsc, but by the error of the

ratio Rp/Rsc. The uncertainty associated with the operations of comparing the

voltages can be neglected, because the smoothness of the resistance regulation in

the potentiometer and the sensitivity of its zero indicator were designed specifically

to keep this uncertainty extremely small compared to other errors.

The potentiometer has six decades and a built-in self-balancing amplifier. The

limit of permissible error as a function of the measured voltage Up is calculated

using the formula (given in the manufacturer’s documentation):

ΔUp ¼ � 50Up þ 0:04
� �� 10�6V:

The error of the potentiometer does not exceed the above limits if the ambient air

temperature ranges from +15 to +30 �C and differs by not more than 2.5 �C from the

temperature at which the measuring resistors of the potentiometer were adjusted

(the P309 potentiometer has built-in calibration and adjusting systems).

The EMF of the standard cells can be determined with an error of�10 μV that in

relative form is �1� 10�3%. The effect of the temperature is taken into account

using a well-known formula, which describes accurately the temperature depen-

dence of the EMF in a standard cell. Thus, temperature does not introduce addi-

tional errors to the EMF of the standard cell.

Assume that in three repeated measurements of certain voltage, performed using

a voltage divider whose voltage division ratio was set to 1:10, the following

potentiometer indications were obtained:

x1 ¼ 1:256316V, x2 ¼ 1:256321V, x3 ¼ 1:256318V:

The limit of permissible error of the potentiometer in this case is

ΔUp ¼ � 50∗1:26þ 0:04ð Þ∗10�6 ¼ � 63 μV:

For this reason, the difference of 5 μV between the results of the three observa-

tions above can be regarded as resulting from the random error of the measurement,

and the magnitude of this error is negligible. In the calculation, therefore, any one of

these results or their average value can be used.

Assume that in the process of adjusting the measuring resistors before the

measurement, the corrections of the higher order decades were estimated. Let the

correction for the indication “12” of the decade “�100 mV” be +15� 10�6 V, and

the correction for the indication “5” of the decade “�10 mV” be�3� 10�6 V. Each

correction is determined with an error of �5� 10�8 V.

The corrections for the other decades are so small that they are of no interest.

Indeed, the indication of all the remaining decades is 0.0063V; the limit of
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permissible error corresponding to this indication in accordance with the formula

given above is

ΔUp ¼ � 50� 0:0063þ 0:04ð Þ � 10�6 ¼ � 0:32� 10�6 V:

This error is already two orders of magnitude smaller than the permissible error

of the higher decades, and it can be neglected without further corrections.

Further, it is necessary to take into account the possible change in the air

temperature in the room. If this change falls within permissible limits, then

according to the specifications of the potentiometer, the error can change approx-

imately by one-forth of the permissible limit, i.e., by 16 μV.
We shall take for the result the average value of the observations performed,

correcting it by the amount C ¼ (15–3)� 10�6 ¼ 12� 10�6 μV:

Up ¼ �x ¼ 1:256318þ 0:000012 ¼ 1:256330V:

The errors of the potentiometer, which enter into this result, include the error

due to temperature (�16� 10�6 V), the error of correction of the higher decades

(� 5� 10�8 V), and the error due to the lower decades (�0.32� 10�6 V). Clearly,

these errors are dominated by the error due to temperature, and the remaining errors

can be neglected. Thus, the limits of error of the potentiometer are

θp ¼ �16� 10�6V:

Next, we must estimate the errors from the standard cell and the voltage divider.

The error of the class 0.005 voltage divider can reach 5� 10�3%. But the actual

division coefficient of the divider can be found and taken into account, which is

precisely what we must do in the case at hand. In the given measurement, assume

that this coefficient has been found to be Kd ¼ 10.0003 and the error in determining

Kd falls within the range �2 � 10–3%. Finally, the discrepancy between the real

and the nominal value of the EMF of the standard cell falls within the limits of error

of the standard cell (�10 μV).
We estimate the voltage being measured U as

~U ¼ KdUp ¼ 10:0003� 1:256330 ¼ 12:56368V:

To estimate the measurement error, we shall employ the usual calculation. First,

we shall take the logarithm of the measurement Eq. (8.1). Then we find the

differential of both sides of the equation and replace them by increments – mea-

surement errors. This process gives
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ΔU
U

¼ ΔKd

Kd
þ Δ Rp=RSC

� �
Rp=RSC

þ ΔUSC

USC

:

For the terms on the right side of the above formula, we only have estimates of

the limits, and not the values of the error. Thus, we shall estimate the limits of the

measurement error on the left side. We can use formula (4.3) for this purpose. First,

all components must be represented in the form of relative errorss. The limits of the

relative error of the potentiometer, in percent, will be

θp, rel ¼ � 16� 10�6 � 100

1:26
¼ �1:3� 10�3%:

The limits of the relative error of the voltage divider were estimated directly as

θK ¼ �2� 10�3%. The limits of error in determining the EMF of the standard cell

in the form of a relative error are known:

θSC, rel ¼ �1� 10�3%:

We now find the limit of the measurement error according to (4.3):

θα, rel ¼ kα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:32 þ 22 þ 12

p
∗10�3 ¼ kα∗2:6∗10�3%

Let α ¼ 0.95. Then kα ¼ 1.1 and

θ0:95, rel ¼ 1:1∗2:6∗10�3 ¼ 2:9∗10�3%:

Finally, we must check the number of significant figures in the result of mea-

surement. To this end, we shall express the above limit θ0.95 in the absolute form:

θ0:95 ¼ �2:9� 10�3 � 10�2 � 12:6 ¼ �37� 10�5V:

As this is an accurate measurement, the error of the result is expressed by two

significant figures (see Sect. 1.8), and there are no extra figures in the obtained

result to be rounded off. The final result is (omitting alternative representations

from now on) as follows:

U0:95 ¼ 12:56368� 0:00037ð ÞV:
If the measurement was performed with universal estimation of the errors, then

the errors of all components would have to be set equal to 5� 10�3% and the limit

of the measurement error would be

θ00:95, rel ¼ 1:1� 10�3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 52

p
¼ 5:8� 10�3%:
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Then, in absolute form, θ00:95 ¼ �12:6� 5:8� 10�5 ¼ 0:0007Vand the result of

measurement would have to be written with fewer significant figures:

U0:95 ¼ 12:5637� 0:0007ð ÞV:

8.3 Comparison of Mass Measures

Let us consider the calibration of a 1-kg mass measure by comparing it with the

reference standard measure of mass with the same nominal value using a balance.

Assume that the comparison was repeated ten times. Column 1 of Table 8.1 lists the

measurement results obtained from the comparison of the measures. Our goal is to

produce the final measurement result and estimate its inaccuracy.

Assume that the measurement was performed by the methods of precise

weighing, which eliminated the error caused by the arms of the balance not having

precisely equal length. Thus, it can be assumed that there are no systematic errors.

Table 8.1 presents the input and intermediate data involved in producing the

final measurement result and estimating its inaccuracy. Since the systematic errors

were eliminated, the measurement results in column 1 can be viewed to be random

independent quantities {xi}, i, ¼ 1, . . ., n and n ¼ 10, and therefore, the probability

of all xi, is the same and equal to 1/n. To simplify the computations, column

2 presents only the varying last three digits of xi, denoted as xi0.
Their mean value is

�xi0 ¼ 1

n

Xn
i¼1

xi0 ¼ 1

10
� 7210� 10�6 ¼ 721� 10�6g:

Table 8.1 Input measurement data and intermediate processing steps in the measurement of the

mass of a weight

xi g xi0� 10�6g xi0 � �xi0ð Þ � 10�6g xi0 � �xi0ð Þ2 � 10�12g2

999.998738 738 +17 289

999.998699 699 �22 484

999.998700 700 �21 441

999.998743 743 +22 484

999.998724 724 +3 9

999.998737 737 +16 256

999.998715 715 �6 36

999.998738 738 +17 289

999.998703 703 �18 324

999.998713 713 �8 64

Sum 7.210 0 2.676
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Thus, the estimate of the value of the mass is

�x ¼ 999:998000þ �xi0 ¼ 999:998721g:

We can now obtain the estimate of the variance

S2 xið Þ ¼ 1

n� 1

Xn
i¼1

xi0 � �x0ð Þ2:

Hence, the standard deviation is

S xið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2676

9
� 10�12 ¼ 17� 10�6g:

r

An estimate of the standard deviation of the obtained value of the mass

measure is

S�x ¼ 17� 10�6ffiffiffiffiffi
10

p ¼ 5� 10�6g:

We shall find the uncertainty of the result using Student’s distribution for

confidence probability α ¼ 0.95; then, from Table A.2, we find the coefficient tq
for the degree of freedom v ¼ 10�1 ¼ 9 and q ¼ 1� α ¼ 0.05: t0.05 ¼ 2.26. In

accordance with formula (3.20), we obtain the uncertainty of measurement result:

u0:95 ¼ 2:26� 5� 10�6 ¼ 11� 10�6g:

Thus, with the confidence probability α ¼ 0.95, the mass m of the measure

studied lies in the interval

999:998710 g � m � 999:998732g:

This result can be written more compactly as

m0:95 ¼ 999:998 721� 11� 10�6
� �

g::

Note that if the data above were processed by the nonparametric methods, the

estimate of the measurand would be practically the same but its uncertainty would

be much wider (see Sect. 3.10).
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8.4 Measurement of Electric Power at High Frequency

Consider a measurement of electric power generated in a resistor by high-frequency

current. The measurement is conducted by a single measurement of the current and

resistance of the resistor, after which the value of the electric power is computed

using equation P¼ I2R, where P is the power to be measured, I is the effective

current and R is the active resistance of the resistor. This is an example of a single

indirect measurement.

Assume single measurements of the electric current and resistance of the resistor

have produced the estimates ~I ¼ 500 mA and ~R ¼ 10:0 Ω. We know also that these

measurements were conducted under reference conditions. The limits of error of ~I
and ~R are estimated using the procedure for direct single measurements under

reference conditions (see Sect. 4.6). Assume these limits in relative form are:

δI ¼ 0:5% and δR ¼ 1%:

Substituting values ~I and ~R in the measurement equation, we obtain the estimate

of the measurand ~P:

~P ¼ 0:5ð Þ2∗10:0 ¼ 2:50 W:

We now estimate the accuracy of the measurement result. The measurement

equation follows the structure of Eq. (5.10) and we have the limits of measurement

errors of arguments represented in relative form. Thus, according to the discussion

following Eq. (5.10), we know the influence coefficients of the arguments: lI¼ 2

and lR¼ 1. Therefore we can transform the limits of measurement errors of the

arguments into the limits of elementary errors of the indirect measurement, θI , rel
and θR , rel in relative form:

θI, rel ¼ 2δI and θR, rel ¼ δR:

We can now combine these elementary errors using formula (5.28). For confi-

dence probability 0.95, coefficient k0 , 95¼ 1.1. Then, we obtain:

θ0:95, rel ¼ 1:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4δ2I þ δ2R

q
¼ 1:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4∗0:25þ 1

p ¼ 1:5%:

Since the number of elementary errors is small, we need to compare the above

probabilistic uncertainty with the arithmetic sum of the two arithmetic errors. The

arithmetic sum is θI , rel + θR , rel¼ 2%, which is greater than θ0.95 , rel¼ 1.5%. Thus,

we take the latter as the estimate of the measurement inaccuracy, which in the

absolute form is
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θ0:95 ¼ 2:50 ∗1:5∗10�2 ¼ 0:0375 W � 0:04 W:

Finally, the measurement result and its uncertainty are recorded as:

~P0:95 ¼ 2:50� 0:04ð ÞW or ~P ¼ 2:50W� 1:5% 0:95ð Þ:

8.5 An Indirect Measurement of the Electrical Resistance

of a Resistor

Consider the measurement of electrical resistance using an ammeter and a voltme-

ter. This is an indirect measurement with measurement equation R¼U/I, where R is

the electrical resistance of the resistor, U is the voltage drop on the resistor, and I is
the strength of the current. Furthermore, it is a dependent indirect measurement

because the value of I depends on the value of U.
The connections of the instruments and the resistor are shown in Fig. 8.1.

Assume that the measurement was performed under reference conditions for the

instruments, and that the input resistance of the voltmeter is so high that its

influence on the accuracy of the measurement can be neglected.

Both voltage and current have been measured with the limits of error �0.1% of

the indications. The results of measurements of the strength of current and voltage

are given in Table 8.2. In accordance with the discussion from Sect. 5.2 and 5.6, all

results presented in the table were obtained in pairs: the results with the same

subscript belong to the same measurement vector.

We can use in this example both the traditional method and the method of

reduction. Let us use each in turn and compare the calculations and results.

8.5.1 Application of the Traditional Method

The traditional method of experimental data processing for dependent indirect

measurements was described in Sect. 5.4.

A

+

–

V R

Fig. 8.1 The schema for

indirect measurement of an

electrical resistance
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The calculations are illustrated by Table 8.3, which also repeats the input

measurement data for convenience. Using the values of Ui, and Ii, we obtain the

estimates of the arguments:

�U ¼ 66:002=11 ¼ 6:00018V, �I ¼ 0:65997=11 ¼ 0:059997A:

We can now compute the estimate of the measurand R. But because the number

of measurements of the arguments is the same, one can avoid the inaccuracy of

calculation of the argument estimates by obtaining R from the sums of the individ-

ual measurement results of the arguments (given in columns 2 and 3, the last row of

Table 8.3) rather than from their estimates:

Table 8.2 Input

measurement data in indirect

measurement of a resistor

Num. Ii (A) Ui (V)

1 0.05996 6.003

2 0.06001 6.001

3 0.05998 5998

4 0.06003 6.001

5 0.06001 5.997

6 0.05998 5.999

7 0.06003 6.004

8 0.005995 5.997

9 0.06002 6.001

10 0.06001 6.003

11 0.05999 5.998

Table 8.3 Data processing for indirect measurement of electrical resistance using the traditional

method

Num.

Ii
A

Ui

V

Ii � �Ið Þ
�10�5 A

Ii � �Ið Þ2
�10�10 A2

Ui � �Uð Þ
�10�3 V3

Ui � �Uð Þ2
�10�6 V2

Ii � �Ið Þ Ui � �Uð Þ
�10�8 AV

1 2 3 4 5 6 7 8

1 0.05996 6.003 �3.7 13.69 +2.82 7.95 �10.4

2 0.06001 6.001 +1.3 1.69 +0.82 0.67 +1.1

3 0.05998 5.998 �1.7 2.89 �2.18 4.75 +3.7

4 0.06003 6.001 +3.3 10.89 +0.82 0.67 +2.7

5 0.06001 5.997 +1.3 1.69 �3.18 10.11 �4.1

6 0.05998 5.999 �1.7 2.89 �1.18 1.39 +2.0

7 0.06003 6.004 +3.3 10.89 +3.82 14.59 +12.6

8 0.05995 5.997 �4.7 22.09 �3.18 10.11 +14.9

9 0.06002 6.001 +2.3 5.29 +0.82 0.67 +1.9

10 0.06001 6.003 +1.3 1.69 +2.82 7.95 +3.7

11 0.05999 5.998 �0.7 0.49 �2.18 4.75 +1.5

Sum 0.65997 66.002 74.19 63.61 29.6
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~R ¼ �U=�I ¼
Pn
i¼1

Ui

Pn
i¼1

Ii

¼ 66:002=0:65997 ¼ 100:0075Ω:

Now we must calculate the variance and the standard deviation of this result.

First, we will estimate the variances of �I, �U, their standard deviations, and the

correlation coefficient. According to the discussion in Sect. 5.2, we obtain

S2 �Ið Þ ¼
Pn

i¼1 Ii � �Ið Þ2
n n� 1ð Þ ¼ 74:19� 10�10

11� 10
¼ 0:674� 10�10A2,

S2 �Uð Þ ¼
Pn

i¼1 Ui � �Uð Þ2
n n� 1ð Þ ¼ 63:61� 10�6

11� 10
¼ 0:578� 10�6V2:

The estimates of standard deviations are

S �Ið Þ ¼ 0:82� 10�5A, S �Uð Þ ¼ 0:76� 10�3V:

The estimate of the correlation coefficient is

rI,U ¼
Pn

i¼1 Ii � �Ið Þ
n n� 1ð ÞS Ið ÞS Uð Þ ¼

29:6� 10�8

110� 0:82� 10�5 � 0:76� 10�3
¼ 0:43:

In our example, inserting the obtained values into (5.20) we can calculate the

desired estimation of standard deviation S ~R
� �

. But first we have to calculate the

influence coefficients. Thus, the calculations are

w1 ¼ ∂R
∂U

¼ 1

I
, w2 ¼ ∂R

∂I
¼ U

I2
,

S2 ~R
� �¼ �U

�I2

� �
� S2 �Ið Þ þ 1

�I2
� S2 �Uð Þ � rI,U

�U

I2
� 1

I
� S �Ið ÞS �Uð Þ

¼ 6
36�10�4

� �2

� 0:674� 10�10 þ 1

36� 10�4
� 0:578� 10�6

�2� 0:43� 6

36� 10�4

1

6� 10�2
� 0:82� 10�5 � 0:76� 10�3

¼ 1:87� 10�4 þ 1:61� 10�4 � 1:49� 10�4

¼ 1:99� 10�4Ω2,

and
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S �Rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
S2 Rð Þ

q
¼ 1:41� 10�2Ω:

The next step is to find the uncertainty of the obtained result. Unfortunately, we

have the standard deviation, but no information about the distribution function of

the measurement error, and it is unclear how to find the degree of freedom of the

measurement result to account for the dependency between the arguments. Thus,

with dependent indirect measurements, we have to use standard deviation of the

measurement result as the indication of measurement accuracy rather than its

uncertainty. Furthermore, because in the traditional method, we are unable to

calculate the random uncertainty of that measurement and hence cannot combine

it with the systematic uncertainty, we did not calculate the latter.

8.5.2 Application of the Method of Reduction

We now turn to the method of reduction described in Sect. 5.6. Table 8.4 lists the

intermediate data involved in the calculations. The initial data are again provided in

columns 2 and 3.

According to the method of reduction, we first compute values of the measurand

using the measurement equation for each measurement vector. The calculated

values of Ri, (i ¼ 1, . . .,11) are given in column 4. Treating these values as if

they were obtained by direct measurements, we obtain immediately the estimate of

R as

Table 8.4 Data processing for indirect measurement of electrical resistance using the method of

reduction

Num.

Ii
A

Ui

V

Ri

Ω
Ri � �Rð Þ
Ω

Ri � �Rð Þ
�10�2 Ω2

1 2 3 4 5 6

1 0.05996 6.003 100.117 +0.109 1.188

2 0.06001 6.001 100.000 0.002 0.000

3 0.05998 5.998 100.000 0.002 0.000

4 0.06003 6.001 99.967 0.041 0.168

5 0.06001 5.997 99.933 0.075 0.562

6 0.05998 5.999 100.017 +0.009 0.008

7 0.06003 6.004 100.017 +0.009 0.008

8 0.05995 5.997 100.033 +0.025 0.0625

9 0.06002 6.001 99.983 �0.025 0.0625

10 0.06001 6.003 100.033 +0.025 0.0625

11 0.05999 5.998 99.983 �0.025 0.0625

Sum 1100.083 2.184
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�R ¼ 1

n

Xn
i¼1

Ri ¼ 100:0075Ω

and the estimates of its variance and standard deviation as

S2 �Rð Þ ¼ 1

n n� 1ð Þ
Xn
i¼1

Ri � �Rð Þ2 ¼ 2:184� 10�2

11� 10
¼ 1:99� 10�4Ω2,

S �Rð Þ ¼ 1:41� 10�2Ω:

As one can see from this example, the calculations using the method of reduction

are much simpler than using the traditional method, even in this case with a

measurement equation having only two arguments. More importantly, we now

have a set of output data {Ri} that does not differ in any way from data obtained

in direct measurements. Thus, we know the degree of freedom v ¼ 11–1 ¼ 10 and

can compute the uncertainty of the measurement result. Using confidence proba-

bility α ¼ 0.95 we find the corresponding value of Student’s coefficient tq ¼ 2.23

and uncertainty

u0:95 ¼ 2:23∗1:41∗10�2 ¼ 3:14∗10�2Ω:

Turning to the systematic error, the measurement equation conforms to the

structure studied in Sect. (5.10) and therefore we immediately know the influence

coefficients: lU¼ 1 and lI¼ � 1. Then, keeping in mind that for our chosen confi-

dence probability α ¼ 0.95, k0.95 ¼ 1.1, we obtain:

θ0:95, rel ¼ 1:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 12

p
∗10�3 ¼ 1:1∗1:41∗10�3 ¼ 1:55∗10�3,

and

Sϑ, rel ¼ 1ffiffiffi
3

p ∗
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 12

p
∗10�3 ¼ 0:82∗10�3:

In the absolute form,

θ0:95 ¼ 1:55∗10�3∗100 Ω ¼ 0:155Ω and Sϑ ¼ 0:82∗10�3∗100Ω ¼ 0:082Ω:

We now combine the random and systematic components of the measurement

uncertainty according to Sect. 4.10. The combined standard deviation is computed

by formula (4.19):

Sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:41∗10�2
� �2 þ 8:2∗10�2

� �2q
¼ 8:31∗10�2Ω:
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Coefficient tc – by formula (4.22):

tc ¼ 3:14∗10�2 þ 15:5∗10�2

1:41∗10�2 þ 8:31∗10�2
¼ 1:92:

Now, by formula (4.20) we obtain the overall uncertainty of the measurement

result:

Uc ¼ 1:92∗8:31∗10�2 ¼ 0:16Ω:

The final measurement result is recorded as

R0:95 ¼ 100:01� 0:16ð ÞΩ:

8.6 Measurement of the Density of a Solid Body

The accurate measurement of the density of a solid body can serve as an example of

a multiple nonlinear independent indirect measurement. The density of a solid body

is given by the formula

ρ ¼ m=V,

where m is the mass of the body and V is the volume of the body. In the experiment

considered, the mass of the body was measured by methods of precise weighing

using a balance and a collection of standard weights whose errors did not exceed

0.01mg. The volume of the body was determined by the method of hydrostatic

weighing using the same set of weights. The results of measurements are presented

in Table 8.5 in columns 2 and 5.

The difference between the observational results of the body mass is explained

by the random error of the balance and the inevitable fluctuations of the environ-

mental conditions. As follows from the data presented, this error is so much larger

than the systematic errors in the masses of the weights that the latter errors can be

neglected.

8.6.1 Application of the Traditional Method

As the mass of the solid body and its volume are constants, to estimate the density

of the body, the mass and volume of the body must be estimated with the required

accuracy and their ratio must be formed. For this reason, we find the average values

of the measurement results of the arguments and estimates of the standard devia-

tions of these averages (Table 8.5 lists intermediate results for these calculations –
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the deviations of individual measurements from their mean as well as the squares of

these deviations):

�m ¼ 252:9120� 10�3kg, �V ¼ 195:3798� 10�6m3,

S2 �mð Þ ¼ 1

n1 n1 � 1ð Þ
Xn1
i¼1

mi � �mð Þ2 ¼ 2132� 10�14

11 � 10 ¼ 19:38� 10�14kg2,

S2 �Vð Þ ¼ 1

n2 n2 � 1ð Þ
Xn2
i¼1

Vi � �Vð Þ2 ¼ 1805� 10�20

11 � 10 ¼ 16:41� 10�20m6:

The standard deviations of the measurement results of the arguments in the

relative form are as follows:

Srel �mð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
19:38∗10�14

p

252:9∗10�3
¼ 1:74∗10�6:

Srel �Vð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16:41∗10�20

p

195:4∗10�6
¼ 2:08∗10�6:

We can now find the uncertainty of the obtained estimates of the arguments.

Both were measured 11 times. Therefore, their degree of freedom is v ¼ 10.

Exploiting the robustness of Student’s distribution, we will make use of this

distribution. We thus obtain, for confidence probability α¼ 0.95 and the

corresponding value of Student’s coefficient tq ¼ 2.23, the following confidence

limits in relative form:

u0:95, rel �mð Þ ¼ 2:23∗1:74∗10�6 ¼ 3:88∗10�6,

u0:95, rel �Vð Þ ¼ 2:23∗2:08∗10�6 ¼ 4:64∗10�6:

The estimate of the measurand is

eρ ¼ �m
�V
¼ 252:9120� 10�3

195:3798� 10�6
¼ 1:2944634� 103kg=m3:

To calculate the uncertainty of the overall measurement result we use here the

traditional method of linearization. It is not difficult to see that, in our example,

using just the first term from the Taylor series is sufficient. (To this end, one must

estimate the remainder R2 of the Tailor series according to (5.15); we omit these

details here.)

We shall now find the uncertainty of the result. This can be done in two ways:

using the root sum of the squares formula (5.24) or by taking advantage of the fact

that due to the expansion into the Taylor series, the measurement error of the result

took the form of a linear combination of the measurement errors of the arguments,

making it possible to compute the effective degree of freedom. In the first method,

according to (5.24), the combined uncertainty in relative form is as follows:
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u0:95, rel ρð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2rel �mð Þ þ u2rel

�Vð Þ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:882 þ 4:642

p
∗10�6 ¼ 6:0∗10�6:

In absolute form the uncertainty is:

u ρð Þ ¼ 1:29� 103 � 6� 10�6 ¼ 7:7� 10�3 kg=m3:

The measurement result, including its uncertainty in absolute form, can be

expressed as:

ρ0:95 ¼ 1:294463∗103 � 7:7∗10�3
� �

kg=m3:

Uncertainty in that result represents the random error of the measurement. The

systematic error of it is negligible because the errors of the used weights were

sufficiently small.

In principle, one could combine random errors of argument measurements after

the linearization of the measurement equation, using Welch- Satterthwaite formula.

But this formula is only applicable if the errors can be considered as normally

distributed, which in our case would be unfounded. Another possibility is to apply

corrections as discussed in Sect. 5.5. But these corrections are also only possible

when the errors being combined can be considered normally distributed. Thus,

neither method could be used to reduce the uncertainty of the measurement result.

8.6.2 Application of Method of Enumeration

Let us consider again a precise measurement of density of a solid body, with

measurement data from Sect. 6.1. The sought density ρ is determined using

measurement equation

ρ ¼ m=V

and is computed from the measurements of the mass of the body m and its volume

V. The estimate of the measurand (density) was obtained in Sect. 6.1:

ρ ¼ 1:294463� 103kg=m3:

Now we will apply the method of enumeration to data processing in this

measurement example using the procedure described in Sect. 5.7.

Note that the measurement results of the arguments are analogous to realizations

ai,k of the discrete random quantities ηi from Sect. 5.3. The measurements of the

mass are analogous to a1,k and of the volume to a2,k. Substituting all possible

combinations of ai,k and a2,k (for k ¼ 1,. . .,11) we obtain 121 values of density ρt
similarly to how we obtained values of at in Sect. 5.3.
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All 11 realizations of each argument have equal probability hence the probabil-

ity of each is 1/11, and the probability of each of the obtained values ρt is 1/121.
Sorting these values in the increasing order and knowing the probability of each

value, we construct the stepped and then linear approximation of the cumulative

distribution function of the realizations of measurand ρ. The resulting CDF is

shown in Fig. 8.2.

To estimate the parameters of this experimental distribution, following the

procedure from Sect. 5.7, we generate an independent sample from this distribution

of size K ¼ 1,000 by sequentially going through the probability interval [0,1] with

step 0.001 and taking realizations of the measurand corresponding to each proba-

bility. From this sample, we obtain the estimates of the parameters of the

distribution

ρt ¼ 1:29446299� 103kg=m3 and S2 ρtð Þ ¼ 1:163� 10�4 kg=m3
� �2

:

After rounding-off, the estimate ρt precisely matches the rounded-off estimate of

the measurand obtained in Sect. 6.1.

Having the variance of the distribution, we now find the variance of the estimate

of the mean for the sample of size 11:

0

0.25

0.5

0.75

F(ρ)

1.29442 1.29443 1.29444 1.29445 1.29446 1.29447 1.29448 ρ*103,
kg/m3.

Fig. 8.2 The cumulative distribution function of realizations ρt
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S2 ρ11ð Þ ¼ S2 ρtð Þ=11 ¼ 1:057� 10�5 kg=m3
� �2

:

Thus, the standard deviation of the mean is

S ρ11ð Þ ¼ 3:25� 10�3kg=m3,

and in relative form,

Srel ρ11ð Þ ¼ S ρ11ð Þ
ρt

¼ 2:51� 10�6:

The 0.95 quintile of normal distribution is z0.95¼ 1.96 and thus the uncertainty of

the measurement result is

u0:95, rel ρ11ð Þ ¼ 1:96� 2:51� 10�6 ¼ 4:92� 10�6:

Uncertainties, as measurement errors, are conventionally written with no more

than two significant figures and expressed as percentage. Thus, in the final form we

have:

u0:95, rel ρ11ð Þ ¼ 4:9∗10�6 ¼ 4:9� 10�4%:

Uncertainties of input experimental data were computed in Sect. 6.1:

u0:95, rel �mð Þ ¼ 3:88� 10�4%,

u0:95, rel �Vð Þ ¼ 4:64� 10�4%:

The obtained uncertainty of measurement result slightly higher than the uncer-

tainty of the experimental data, and this is quite natural. This measurement uncer-

tainty is more than 10% less than the one obtained using the traditional method

(6.0� 10�4%). We should also stress that the obtained uncertainty reflects all the

information contained in the experimental data, unlike the traditional method where

residual terms in the Taylor series are neglected.

Systematic errors in this example were negligibly small. In general, they

exist and need to be accounted for. The methodology of accounting for these

errors in computing the uncertainty of measurement result is given in the example

in Sect. 8.5.2.
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8.7 Measurement of Ionization Current

Accurate measurements of weak currents, for example, currents generated by γ rays
from measurement standards of unit radium mass, are performed by the compen-

sation method using an electrometer. Such currents are measured and compared, for

example, in the process of calibration of these standards.

In the compensation method, a high-impedance resistor is inserted into the

circuit with the current to be measured. This resistor is also connected in parallel

to a capacitor, which is charged prior to being connected. The two connections are

arranged so that the measured current and the discharge current from the capacitor

flow in the opposite directions. The difference between the two currents creates

voltage on the resistor, which is detected by the electrometer. When the electrom-

eter indicator shows zero, the two currents are equal. The time from the start of the

capacitor’s discharge to when the two currents equalize is measured; this time

depends on the dynamics of the capacitor discharge, which is determined by the

time constant of the circuit containing the capacitor and resistor. This constant can

be determined accurately because both the capacitance of the capacitor and the

impedance of the resistor are found a priori with high accuracy. Thus, given the

known charge on the capacitor before it is connected to the resistor, one can

determine the ionization current by the discharge time until the moment of

compensation.

The measured strength of current I is defined by the expression

I ¼ CU=τ,

where C is the capacitance of the capacitor used to compensate the ionization

current; U is the initial voltage on the capacitor; and τ is the compensation time.

As U and τ are dependent, it is a dependent measurement. This measurement

equation has the form that is presented in Sect. 5.10. Therefore we know the

influence coefficients lc¼ 1, lu¼ 1, and lc¼�1.

We shall examine the measurement of ionization current on the specific appa-

ratus described in [34]. It employs a capacitor with capacitance C ¼ 4006.3 pF,

which is known to be within 0.005% of the above value. The voltage on the

capacitor is established with the help of a class 0.1 voltmeter with a measurement

range of 0–15 V. The time is measured with a timer whose scale is divided into

tenths of a second. The results of a calibration of one standard of radium mass

against another using this apparatus are presented in [34]; we will use these results

to estimate the accuracy of the measurement of the ionization current involved in

the calibration procedure.

The measurement described in [34] included 27 repeated observations. Each

time the same indication of the voltmeter U ¼ 7V was established and the

compensation time was measured. The results of the 27 observations of time are

given in the first column of Table 8.6. Using the measurement equation, we can

compute the strength of the ionization current from the compensation time. The

27 values of the current corresponding to the measured compensation times are
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listed in column 2 of the table. We now need to obtain the estimate of the result of

this measurement and its inaccuracy.

Let us first obtain the estimate of the current. Because ionization currents are

weak, one has to account for the so-called background current caused by the

background radiation. The average background current is usually equal to

(0.5–1)� 10�12A and can be measured to within 5%. In the measurement in

question, the background current was found to be �Ib ¼ 0:75� 10�12A. The average

value of current observations from Table 8.6 is �I ¼ 3:7687� 10�10A. Thus, the

estimate the ionization current is

~I ¼ �I � �Ib ¼ 3:7612� 10�10A:

Table 8.6 Measurement results and intermediate processing steps in the measurement of ioniza-

tion current

τ (s) Ii � 10�10A (Ii – �I) � 10�14A Ii � �Ið Þ2 � 10�28A2

74.4 3.7694 7 49

74.6 3.7593 �94 8,836

74.3 3.7745 58 3,364

74.6 3.7593 �94 8,836

74.4 3.7694 7 49

74.4 3.7694 7 49

74.4 3.7694 7 49

74.4 3.7694 7 49

74.4 3.7694 7 49

74.3 3.7745 58 3,364

74.5 3.7643 �44 1,936

74.4 3.7694 7 49

74.5 3.7643 �44 1,936

74.4 3.7694 7 49

74.6 3.7593 �94 8,836

74.2 3.7705 18 324

74.5 3.7643 �44 1,936

74.3 3.7745 58 3,364

74.4 3.7694 7 49

74.4 3.7694 7 49

74.5 3.7643 �44 1,936

74.5 3.7643 �44 1,936

74.3 3.7745 58 3,364

74.3 3.7745 58 3,364

74.3 3.7745 58 3,364

74.4 3.7694 7 49

74.5 3.7643 �44 1,936
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Now let us turn to the inaccuracy. First consider the conditionally constant

systematic errors. For a class 0.1 voltmeter, its limit of error in indicating the

voltage of 7V is θU ¼ 0.1%� (15/7) ¼ 0.21%. The limit of error of measuring

compensation time with the timer that has the graduations of 0.1s is equal to half the

graduation or 0.05 s. In relative form, for the time intervals of 74–75 s, this gives

θτ ¼ (0.05/74)� 100 ¼ 0.067%. Although the capacitance of the capacitor is

supposed to be known within 0.005%, the measurement was performed under

rated rather than reference temperature conditions, leading to an additional error.

Thus, the capacitance is known only with the limit of error of 0.05%. The limit of

measurement error of the background current, which is within 0.5% of the value of

the background current, is only 0.013% with respect to the ionization current

estimate, and it can obviously be neglected compared to the error in voltage

indication θU. Turning to formula (5.48) and taking confidence probability

α ¼ 0.95,

θI, 0:95, rel ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2C þ θ2U þ θ2r

q
¼ 1:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:052 þ 0:212 þ 0:0672

p
¼ 0:24%:

Now let us consider random errors. First we shall find an estimate of the standard

deviation of the measurement result, which is

S �Ið Þ ¼ S �Ið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP27
i¼1

Ii � �Ið Þ2

27 � 26

vuuut
¼ 9� 10�14A:

It is obvious that the random error can be neglected compared to the limit of the

conditionally constant systematic error computed above, which in the absolute form

is equal to

θI, 0:95 ¼ 3:7612∗10�10 ∗0:24∗10�2 ¼ 0:90� 10�12A:

The latter therefore determines the overall inaccuracy of the result. Therefore,

our obtained estimate of the ionization current has one extra digit. Rounding it off,

we arrive at the result of the measurement:

I0:95 ¼ 3:761� 0:009ð Þ � 10�10A:

Finally, as a side note, Table 8.6 shows that the random error of an individual

observation in this measurement, which could be explained by the inaccuracy of the

detection of the moment of the equality of the measured and compensating currents

and of the setting of the initial voltage on the capacitor, can reach 0.25% (this can be

seen as the deviation of individual observations in Table 8.6, column 2, from

the average). However, repeating the measurement 27 times allowed us to reduce

the error to the level where it could be neglected compared to the systematic errors.
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8.8 Measurement of the Activity of a Radioactive Source

We shall examine the measurement of the activity of a radioactive source by

absolute counting of α particles emitted by the source. We will use the experiment

described in [15], as well as the measurement data reported there, as the basis for

our discussion. The measurement is performed using a detector that counts the

particles arriving from the source through a diaphragm opening. The number of

particles captured by the detector depends on the geometric configuration of the

experimental setup – the diameter of the diaphragm, the distance between the

detector and the source, and the diameter of the source (assuming the source is

spherical). Following [15], these parameters can be encapsulated into a geometric

factor G, which is calculated from the above quantities. Then the measured radio-

activity is determined from the formula

A ¼ GN0η,

where G is the geometric factor of the apparatus, N0 is the α-particle counting rate,

and η is the α-particle detection efficiency. In the course of the measurement,

G does not change, so that errors of G create a systematic error of measurement

of the activity A. Measurements of the numbers of α particles, however, have

random errors.

To reduce the error arising from the error of the geometric factor, the measure-

ments were performed for different values of this factor (by changing the distance

between the source and detector and the diameter of the diaphragm). All measure-

ments were performed using the same source 239Pu.

All the arguments appear in the measurement equation with the same degree of

1. Thus, as discussed in Sect. 5.10 it is convenient to express their errors in relative

form since all the influence coefficients will then be equal to 1. Table 8.7 gives

measurement results for the five geometric configurations studied. In each case,

50 measurements were performed, and estimates of the measured quantity and their

standard deviation, which are also presented in Table 8.7, were calculated. The

standard deviations of the (conditionally constant) systematic errors of the results

Table 8.7 The results of measurements of the activity of nuclides using a setup with different

geometric factors

Group

number j

Source-detector

distance (mm)

Diaphragm

radius (mm)

Measurand

estimate xj � 105

Estimates of standard

deviation

Random

errors (%)

Systematic

errors (%)

1 97.500 20.017 1.65197 0.08 0.52

2 97.500 12.502 1.65316 0.10 0.52

3 397.464 30.008 1.66785 0.16 0.22

4 198.000 20.017 1.66562 0.30 0.42

5 198.000 30.008 1.66014 0.08 0.42
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were calculated from the estimated limiting values of all error components under

the assumption that they can be regarded as centered uniformly distributed random

quantities.

The data in Table 8.7 show, first of all, that the systematic errors are much larger

than the random errors, so that the number of measurements in the groups is

sufficient. The observed difference between the obtained values of the activity of

the nuclides in the groups can be mostly explained by their different systematic

errors.

In the example studied, the same quantity was measured in all cases. Therefore,

one can use the weighted mean as the overall estimate of the measurand. Based on

the considerations from Sect. 7.5, we shall use (7.13) to calculate the weights. First,

we shall calculate an estimate of the combined variance according to (7.12):

S2 �xj
� � ¼ S2ψ �xj

� �þ S2ϑ �xj
� �

:

The results of the calculations are given in Table 8.8. As an example, we provide

the calculation details of weight g1:

g1 ¼
1

0:28
1

0:28 þ 1
0:28 þ 1

0:07 þ 1
0:27 þ 1

0:18

¼ 3:57

30:7
¼ 0:12:

Now we find the weighted mean:

~A ¼ �x ¼
X5
j¼1

gj�xj ¼ 1:6625� 105:

Using estimates S2 �xj
� �

from Table 8.8 in accordance with (7.6), we obtain

S2 ~A
� � ¼ 0:33 %ð Þ2 and S ~A

� � ¼ 0:182%:

We can now estimate the uncertainty of the measurement result. To do this, we

need to find, using (7.13), the standard deviations of the random and conditionally

constant systematic components of the weighted mean and then, since S ~A
� �

has

Table 8.8 The estimate of

combined variances and

weights of measurement

results in different groups

Group number j

Estimate of combined

variance S2 �xj
� �

(%)2 Weight gi

1 0.28 0.12

2 0.28 0.12

3 0.07 0.46

4 0.27 0.12

5 0.18 0.18
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already been found, calculate tc from (4.22). All data for these calculations are

available in Tables 8.7 and 8.8.

The standard deviations of the random and systematic components of the

weighted mean are as follows:

S2ψ �xð Þ ¼
XL
j¼1

g2j S
2
ψ xj
� � ¼ 71:58� 10�8 and Sψ �xð Þ ¼ 8:46� 10�4

S2θ �xð Þ ¼
XL
j¼1

g2j S
2
θ xj
� � ¼ 261:7� 10�8 and Sθ �xð Þ ¼ 16:2� 10�4

Next, we compute the uncertainty of the systematic component, θα. The easiest
way to do it is by using (4.3). For this, however, we need to transfer from the

standard deviations of the elementary systematic errors back to their limits, which

as we know can be done using factor
ffiffiffi
3

p
(since S2 ¼ θ2/3). Thus,

θα ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
XL
j¼1

g2j S
2
ϑ �xj
� �vuut ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3S2ϑ �xð Þ

q

Taking α¼ 0.95, we have kα ¼ 1.1 and θ0:95 ¼ 1:1� 1:73� Sϑ �xð Þ ¼ 1:90Sϑ �xð Þ.
From here, we obtain tϑ ¼ θ0:95=Sϑ �xð Þ ¼ 1:90. To find quantile tq of Student’s
distribution for the selected confidence probability, we also need the degree of

freedom. In general, when the measurement result represents a weighted mean of

several measurements, the degree of freedom is obtained from (5.23) as an effective

degree of freedom. In our case, however, we have five groups, each comprising a

large number of observations (n ¼ 50 in each group), so it is obvious even without

calculations that the resulting distribution can be considered normal. Then,

tq ¼ z 1þαð Þ
2

¼ 1:96.

We can now use formula (4.22) to find tc:

tc ¼ tϑSϑ �xð Þ þ tqSψ �xð Þ
Sϑ �xð Þ þ Sψ �xð Þ ¼ 1:92::

Finally, we are ready to compute the uncertainty of the measurement result:

uc ¼ tcS �xð Þ ¼ 1:92� 0:182 ¼ 0:35%:

In the form of absolute uncertainty, we obtain u0.95 ¼ 0.006� 105. Thus, the

result of the measurement can be given as follows:

~A0:95 ¼ 1:662� 0:006ð Þ � 105:
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Chapter 9

The International Vocabulary of Metrology

and the Guide to the Expression of Uncertainty

in Measurement: Analysis, Criticism,

and Recommendations

9.1 Introduction

As an independent scientific discipline, metrology needs its own terminological

dictionary. Beginning from 1984, ISO has published three editions of the Interna-

tional Vocabulary of Metrology (VIM). The first such dictionary – “International

Vocabulary of Basic and General Terms in Metrology” appeared in 1984. In 1993

came out the second edition of this document, and in 2007 the third (and current)

edition. All three editions were prepared under the auspices of BIPM. The third

edition has a new name – “International Vocabulary of Metrology – Basic and

General Concepts and Associated Terms (VIM)” [1] – in order to stress the

fundamental differences from the prior editions. The new VIM indeed differs

significantly from the previous ones. Instead of the traditional philosophical foun-

dations of metrology the new VIM adopts the philosophy of the “Guide to the

Expression of Uncertainty in Measurement (GUM)” – the document prepared under

the auspices of BIPM and published by ISO in 1995 [2]. This philosophy was

named in VIM the “uncertainty approach”, and it was a departure from previously

accepted foundational principles as described for instance in [25, 37].

The history of the uncertainty approach started from an article by Burns et al.

that appeared in BIPM journal “Metrologia” [19]. The main idea of that paper was

that the term “measurement error” appears to be used in two different senses. In one
sense it expresses the difference between measurement result and the true value of

the measurand. In this case, in the opinion of the authors, one would use an

expression such as “the error is +1%”. In the other sense it reflects the uncertainty

of the measurement result, where one would say “the error is �1%”. In order to

distinguish the meaning of the word error in these two cases, the paper proposed to
use the word uncertainty in the second case instead of the word error.

The original version of this chapter was revised. An erratum to this chapter can be found at https://

doi.org/10.1007/978-3-319-60125-0_11
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In fact, the terminological ambiguity the paper addressed was caused simply by

an erroneous terminological shortcut. To be precise, the expression “the error

�1%” means that the measurement error of one measurement is simultaneously

both +1% and – 1%. But this cannot be, since there can only be one result of the

measurement, a fixed numerical value, which would obviously have one value of

error. Thus, this expression is incorrect. In this case, in accordance with the

definition of the term error, one should say “the error falls within the range
�1%” or “the limits of error are �1%”. If this correct expression were used,

then the ambiguity pointed out by Burns et al. would not occur.

Still, while strictly speaking unnecessary, the proposal to use the term “uncer-

tainty” in the second case was useful because it allowed one to provide a single term

for a multi-word expression, avoid the confusion with the erroneous shortcut, and

divide the terms “error” and “uncertainty”, which previously were used inter-

changeably.1 Unfortunately, this seemingly small issue has led to consequences

that were hard to foresee at the time.

The most significant consequence that appears to stem from the above termino-

logical change was the mentioned earlier uncertainty approach introduced as a term
in VIM, but which represented the philosophy and a group of methods formulated

in GUM.We will show in Sect. 9.3 that some of these methods are unfounded, some

are arbitrary, and some are simply wrong.

At the heart of the problems with the uncertainty approach is a foundational

mistake, which in essence is that GUM takes standard deviation instead of confi-

dence interval as the indicator of measurement accuracy. GUM does not explicitly

note this crucial substitution; rather it simply replaces the term “standard deviation”

by “standard uncertainty” while what the term means remains exactly the same. We

analyze and compare in Sect. 4.8 standard deviation and confidence interval as

indicators of measurement accuracy and show that standard deviation is not a

suitable indicator in most cases. Based on this analysis, we discuss shortcomings

of VIM and GUM in Sects. 9.2 and 9.3, respectively. We should note that the

comprehensive analysis of VIM goes outside the scope of the present book and thus

we concentrate only on the terms and concepts concerning the estimation of

measurement accuracy.

VIM and GUM attempt to define the vocabulary and foundations of metrology;

as such both documents are vitally needed. However, given the fundamental nature

of their shortcomings, fixing the current documents through corrections and addi-

tions seems impossible – they need to be re-written. All criticisms in this chapter are

accompanied by proposals for addressing the identified problems.

1Indeed, the reader would note that this terminology, which separates the terms error and

uncertainty, is followed in the present book.
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9.2 Critique of the “International Vocabulary

of Metrology”

The “International Vocabulary of Metrology – Basic and General Concepts and

Associated Terms” (VIM) was prepared by Working Group 2 of JCGM and

published by ISO/IEC in 2007. The Foreword of VIM states that this document

replaces all previously published editions of the International Vocabulary of Basic

and General Terms in Metrology. The new VIM differs significantly from the

previous ones and reconsiders the definitions of many terms.

In Introduction it brings several arguments in justifying this change. These

arguments include the detailed explanation of the reasons to move from the

traditional approach to experimental data processing to a group of methods that

VIM named the Uncertainty Approach, and which were established in GUM

[2]. However, these arguments are not compelling, and often invalid.

For example, the Clause 0.1 General of VIM states that the traditional approach2

cannot solve the problem of combining systematic and random errors: “The objec-

tive of measurement in the Error Approach is to determine an estimate of the true

value that is as close as possible to that single true value. The deviation from the

true value is composed of random and systematic errors. The two kinds of errors,

assumed to be always distinguishable, have to be treated differently. No rule can be

derived on how they combine to form the total error of any given measurement

result, usually taken as the estimate” (page vii in [1]).

However, the above statement is mistaken. Long before the uncertainty

approach was introduced in VIM, or the methods underlying this approach were

established in GUM, the fact that the two types of errors, while estimated differ-

ently, must in the end be combined was commonly accepted and several concrete

methods of solving this task were proposed. The most widely used methods are

described, for example, in Sect. 4.11 of the present book but they originated in my

own work and the work of my group long ago – a universal (i.e., suitable for an

arbitrary confidence probability) solution to this problem was developed back in

1970 [48], analyzed in 1978 [46], and later included in the standard “Metrology.

Basic Terms and Definitions” [12] (in Russian, clause 9.30, formulas 9.9). In

English, well-known methods were described in standard [6], which included

formulas for probabilities 0.95 and 0.99. The universal method was described,

analyzed and compared with other methods in my book Measurement Errors:

2Note that while we in this book have also transitioned from traditional theory of measurements to

what we call physical theory, our change retains the concepts of true value of a measurand or

measurement error, and does not substitute standard deviation for measurement accuracy indica-

tor. Our physical theory avoids the use of Taylor series and thus increased accuracy of estimating

measurement uncertainty, as well as solves two fundamental problems in theory of measurement:

constructing confidence intervals for indirect measurements and universal method for combining

systematic and random components of measurement error. The uncertainty approach introduced

by VIM and GUM does not solve new problems, and – as we show in this chapter – produced some

incorrect methods.
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Theory and Practice, published in 1993, as well as in the subsequent editions of that
book [44].

Furthermore, as we show in Sect. 9.3.4 below, GUM and the uncertainty

approach do not actually solve the problem of combining systematic and random

errors. Indeed, we will see that the method for combining these error components

formulated in GUM (which called them uncertainty A and uncertainty B), is

incorrect.

Because of the prominence given to the term uncertainty in GUM and then VIM,

this term has acquired special significance. Thus, it is interesting to trace how its

interpretation changed over time. In the first edition of VIM (1984), the term

uncertainty (clause 3.09) was defined as follows: An estimate characterizing the
range of values within which the true value of a measurand lies. In other words, this
term meant an interval that characterized the accuracy of measurement. The second

edition (1993) has changed this definition to read: Parameter, associated with the
result of a measurement, that characterizes the dispersion of the values that could
reasonably be attributed to the measurand. This definition, unlike the previous one,
is rather vague. It is unclear what “values that could reasonably be attributed to the

measurand” may mean. Moreover, the note to the definition says that uncertainty

can be standard deviation or half of the listed interval with a stated level of

confidence (clause 3.9), thus associated two distinct meanings to the same term –

obviously an undesirable outcome. The new VIM (2007) has retained the definition

of uncertainty (clause 2.26) from the second edition, only in the note the expression

“stated level of confidence” is replaced by “stated coverage probability”.

Let us now consider specific terms in the latest VIM that have a particular

bearing on the present book – measurement result, true value, error, and

uncertainty.
The clause 2.9 of the VIM defines measurement result as a “set of quantity

values being attributed to a measurand together with other available relevant
information.” Note 1 clarifies that “... this may be expressed in the form of a

probability density function (PDF).” According to this definition, a set of observa-

tions obtained from the multiple measurements represents the result of the mea-

surement. However, as known, the goal of the measurement is always a single

estimate for the measured quantity obtained from the analysis of this set, often

augmented with an indication of its accuracy, but not the set itself. Having a single

estimate allows one to use measurement results in mathematical formulas

expressing natural laws. One cannot replace values with distribution functions in

these calculations. Therefore, this definition of measurement result is not produc-
tive, and the traditional definition should be retained, which is that themeasurement
result is a value attributed to a measurand, obtained by measurement.

The definition of true value (VIM, clause 2.11) says that it is the “quantity value
consistent with the definition of a quantity.” However, the value assigned to the

measurand as the result of the measurement is also consistent with the definition of

the quantity – otherwise, it would be useless. In other words, this definition of the

true value suggests that the measured value of the quantity and its true value are the

same. In contrast, the established meaning of the term true value is that it is an
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abstract, unreachable, property of the measurand. Without this established mean-

ing, it is impossible to define the accuracy of a measurement. Therefore, the

following definition, is advisable: true value – the value of a quantity that, were
it known, would ideally reflect the property of an object with respect to the purpose
of the measurement. Note: as any ideal, the true value is impossible to find.

The definition of true value in VIM has three notes, two of which require a

discussion. Note 1 states: “In the Error Approach . . . a true quantity value is

considered unique and, in practice, unknowable. The Uncertainty Approach is to

recognize that, owing to the inherently incomplete amount of detail in the definition

of a quantity, there is not a single true quantity value but rather a set of true quantity

values consistent with the definition. However, this set of values, in principle and in

practice, unknowable. Other approaches dispense altogether with the concept of

true quantity value and rely on the concept of metrological compatibility of

measurement results for assessing their validity.” Two aspects of this note are

objectionable.

First, we would like to disagree with the notion that the incomplete amount of

detail in the definition of a quantity entails a set of true values rather than a single

true value for the quantity. It is well known that the goal of any measurement is to

obtain a numeric value that reflects the measured quantity. Measurement results

realize this goal. It is this aspect of measurements that allows us to apply mathe-

matics to natural sciences, and it is only possible if every measured quantity has a

single true value. Indeed, if we assumed that the measured quantity had multiple

true values, it would be impossible to associate it with a single number and use it in

subsequent mathematical formulas. Although a measurement result often includes

an indication of its accuracy, and this indication is often expressed as an interval,

any measurement result still assigns a value (usually taken as the most likely value

within the interval) to the measurand.

The concept of the true value of a measured quantity is considered in detail in

Sect. 1.4 of the present book. That section also considers the example of the

measurement of the thickness of a sheet of a material, which is presented in

GUM (Sect.D.3.2 and D.3.4) to motivate the idea of a measured quantity having

a set of true values. We explained that when the thickness of the sheet is different in

different places and one must reflect these different thickness values by measuring

the thickness in different places, we have in fact several distinct measurements, one

in each place of the sheet. Each given point of the sheet has its own true value of

thickness and will have its own measurement result. There is no single measure-

ment result here, and the set of true values does not have to do with individual

measurements of the sheet thickness in different points. Thus, this example does not

show the need or the usefulness of having a set of true values for one measured

quantity.

Regarding the inherently incomplete amount of detail reflected in the definition

of the quantity, the definition of the quantity must only reflect the property that is of

interest to the experimenter. The lack of detail in the definition of the quantity is not

a reason for introducing a set of true values for the quantity.
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Second, we question the usefulness of distinguishing two approaches to estima-

tion of the accuracy of measurements. Defining new approaches is beneficial only if

they enable solutions to new problems. However, the VIM does not present any new

problem solved by the Uncertainty Approach with its set of true values for a

quantity. Thus, its introduction appears unwarranted. Further, the sentence follow-

ing the note in question mentions additional approaches but leaves it unclear what

these approaches are. From the above considerations, we conclude that the notion of

a “set of true values” must be removed from VIM.

Note 3 also raises objections. It represents an attempt to justify an erroneous

concept of the “Guide to the Expression of Uncertainty in Measurement” [2] of the

equivalency between the true value and the value of the measured quantity.

However, the true value is an unreachable ideal concept, while the value of a

measured quantity is a measurement result. Thus, the two cannot be equivalent

no matter the accuracy of the measurement in question. We return to this issue in

more detail in Sect. 9.3.

These considerations lead to a conclusion that Notes 1 and 3 should be removed

from VIM.

Clause 2.16 defines measurement error as “measured quantity value minus a
reference quantity value.” Unfortunately, the above sentence cannot be considered
a definition because it does not explain the meaning of the term. Instead it attempts

to provide an algorithm for its calculation but this algorithm is unrealistic: it follows

from clause 5.18 that the reference quantity value in measurements refers to the true

value, which is always unknown. Furthermore, this definition narrows the meaning

of the term since it only covers the absolute error, leaving a commonly used relative

error aside.

I consider measurement error to be properly defined as a deviation of the result
of measurement from the true value of the measurand. This definition is not

algorithmic and makes it clear that just like the true value, measurement error is

impossible to obtain. In fact, the above consideration warrants the following note to

this definition: Because the true value is always unknown, the error of measurement

is estimated indirectly, by analyzing the accuracy of measuring instruments, mea-

surement conditions, and the obtained measurement data. In single measurements

under reference condition of the instruments involved, the measurement error is

determined by the limits of the permissible error of the instruments and is expressed

in the form of limits of measurement error. In multiple measurements, the mea-

surement inaccuracy is usually estimated using statistical methods, in which case

the measurement inaccuracy is characterized using the concept of measurement

uncertainty rather than the limits of error. The proposed definition of the term

“error” is close to that given in [10].

The definition of uncertainty in VIM (clause 2.26) is provided with a note saying

that uncertainty “may be, for example, a standard deviation called standard mea-

surement uncertainty (or a specified multiple of it), or the half-width of an interval,

having a stated coverage probability.” This note creates ambiguity that is unac-

ceptable in scientific terminology. Indeed, what is the uncertainty, a standard
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deviation or an interval? Giving two different meanings to one term must be

avoided in a terminological dictionary.

9.3 Critique of the “Guide to the Expression of Uncertainty

in Measurement”

Another important document published by ISO is the “Guide to the Expression of

Uncertainty in Measurement” (GUM) [2]. The goal of GUM was to unify the

methods of measurement uncertainty estimation and its presentation. The unifor-

mity of estimation and expression of inaccuracy of measurements is a necessary

condition for the economic development of every country and for international

economic cooperation. Thus, GUM was enthusiastically received by the metrolog-

ical community.

However, a number of shortcomings among GUM recommendations have

transpired subsequently. In [16], it was noted that “the evaluation methods in the

GUM are applicable only to linear or linearized models and can yield unsatisfactory

results in some cases.” The same article reported that to address these issues,

Addition 1 to GUM had been prepared and that furthermore, Working Group

1 JCGM decided in 2006 to prepare a new edition of GUM. Other critical comments

regarding GUM can be found in [32]. Our own criticism appeared in [44] and, in

more detail, in [42].

Still, the recently published VIM (which we discussed in the previous section)

clearly reflects GUM’s influence. For example, VIM repeatedly uses the notion of a

set of true values of a measured quantity, which as we showed in Sect. 9.2 is

misguided. In Note 3 to clause 2.11 it makes an attempt to justify a mistaken

concept from GUM about the equivalency of the true value and a value of a

quantity. Apparently, past criticisms of GUM were not sufficiently convincing,

and we revisit its drawbacks here.

9.3.1 Scope of GUM

GUM begins with a statement that “The Guide establishes general rules for

evaluating and expressing uncertainty in measurement that can be followed at

various levels of accuracy and in many fields – from shop floor to fundamental

research.” Unfortunately, the rest of GUM’s content does not support this intended
scope since it is devoted exclusively to multiple measurements. Single measure-

ments, although being the basic type of measurements in industry, trade, quality

assurance, clinical medicine, and other fields, are not even mentioned. This limited

scope is a significant limitation of GUM.
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9.3.2 Philosophy of GUM

The foundational premise of GUM is that the concept of true value of a measurand

is not needed because it is equal to the value of this measurand. This premise is

formulated explicitly in “Guide Comment to Sect. B.2.3” (page 32 of GUM) and

also in Annex D (Sect. D.3.5). However, this premise is in contradiction with VIM,

as well as with fundamental conventions of physics and statistics. According to

VIM, clause 1.19, the value of a quantity is a number and reference together

expressing the magnitude of a quantity. In other words, it is the product of a number

and the unit of measurement. This value is obtained as the result of a measurement.

In contrast, the true value is a purely theoretical concept and cannot be found (see

clause 2.11 of the VIM). Thus, the terms “true value” and “value of a quantity”

cannot be considered the same and the latter cannot replace the former.

In statistics, the terms “parameter” (true value) and “estimate of the parameter”

(the obtained value of the parameter) are strictly distinguished. In physics, the

equations between physical quantities would be impossible without the concept of a

true value; indeed, physical equations would always be only approximately correct

for obtained values of the quantities. Finally, as we will see bellow, the GUM itself

needed a distinction between the true value and the value of the measurand and was

forced to introduce rather awkward new terminology in its place. These consider-

ations bring a conclusion that during the new edition of GUM it should revert to

traditional philosophy.

9.3.3 Terminology of the GUM

The elimination of the term “true value” was motivated by the desire to eliminate

the term “error.” Consequently, the GUM uses the term “uncertainty” in place of

“error” throughout the document. The goal was to eliminate synonymia in using

both terms throughout the document. This goal can be accomplished, however,

without excluding the term “true value” and the corresponding concept; in fact, by

defining the terms “error” and “uncertainty” precisely, we could distinguish the two

clearly and at the same time not impoverish the metrological language by elimi-

nating the term “error” but, to the contrary, enrich it by giving the two terms

different meaning.

Metrology offers every prerequisite to achieve this. Indeed, the uncertainty of a

measurement result is calculated usually from its components and with the help of

statistical methods. In contrast, in the case of a single measurement using measure-

ment instruments under reference conditions, the measurement inaccuracy is fully

determined by the limits of error of the instrument, and statistical methods are not

applicable.

Consequently, the term “uncertainty” may be used for probabilistic estimates of

inaccuracy and the term “limits of error” when the inaccuracy estimates have no
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probabilistic interpretation. Moreover, according to VIM clause 2.26, the term

“uncertainty” is associated with the result of measurement. Thus, it cannot replace

the term “error” in other cases; for example, it cannot be used for components of

uncertainty or to express the inaccuracy of a measuring instrument. We conclude

that the total replacement of “error” with “uncertainty” is unjustified.

The GUM introduces two new terms “type A and type B evaluation of uncer-

tainty,” defining them as methods of evaluation of uncertainty (clause 2.3.2 and

2.3.3) but using them as components of uncertainty. Indeed, clause 5.1.2 describes

how to combine uncertainties type A and type B; clearly, methods cannot be

combined and they are treated there as components of uncertainty in this context.

Such inconsistency should be avoided in a document aiming to introduce rigorous

language for others to follow. In addition, these terms are not expressive. It would

be much better to use the common term “random error” instead of “type A

uncertainty” and the term “rated error” (if the term “systematic error” is

undesirable).

Another inconsistency in the GUM is with the terms “standard uncertainty,”

“combined uncertainty,” and “expanded uncertainty.” The first two are defined as

simply standard deviation and the combined standard deviation, respectively. But

“expanded uncertainty” is presented as an interval. It is confusing to use the same

term “uncertainty” as the basis for derived terms having drastically different

meaning – a standard deviation in one case and an interval in the other.

In general, to calculate measurement uncertainty, the terms “standard devia-

tion,” “combined standard deviation,” and “uncertainty” itself would be sufficient.

The GUM introduced duplicate terms “standard uncertainty” and “combined stan-

dard uncertainty” as the terms that “are used sometimes for convenience” (clause

4.2.3). But it uses them exclusively throughout the rest of the document, creating an

impression that this is the proper terminology to be used. These duplicate terms

cause inconvenience in practice. For example, to follow this terminology, one has

to always point out that standard uncertainty is equal to standard deviation, which is

then computed using known statistical methods. As a typical example, Kacker and

Jones [32] repeatedly use in their article passages the following: “According to the

ISO Guide (Sect. 4.2), the type A standard uncertainty associated with zA from

classical statistics is u zAð Þ ¼ s zAð Þ ¼ s zð Þ= ffiffiffiffi

m
p

.”

In other words, when saying “standard uncertainty,” a methrologist must remem-

ber that in fact the term refers to “standard deviation.” The same holds for the term

“combined standard deviation.”

The standard [14] presents a more confusing example. There are two columns

with indentical numbers, but these numbers in one column are called “standard

deviation” while in the other column – “standard uncertainty”. This is clearly

inconvenient.

Another terminological difficulty has to do with the concept of confidence

interval. As it is known, it is the interval that, with given probability, contains the

true value. Thus, it needs the concept of true value, which the GUM was trying to

eliminate. In an attempt to resolve this logical gap, the GUM replaces the term “true

value” with the expression “letter Y that represents the value attributed to the

measurand” (clause 6.2.1 and Annex G) or “measurand Y.” This proliferation of
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nondescriptive terms makes the terminology nonintuitive, and it is unnecessary

since descriptive terms exist.

9.3.4 Evaluation of the Uncertainty in the GUM

GUM uses standard deviation as measurement uncertainty, calling it standard

uncertainty. The adoption of standard deviation as accuracy indicator forms the

foundation of the entire document. As discussed in Sect. 4.8, standard deviation

fundamentally cannot serve as measurement accuracy indicator because its estima-

tion is calculated relative to the mean of observations and does not reflect the offset

of the mean from the true value of the measurand. Thus, standard deviation can only

be an indicator of repeatability of a measurement but not of its accuracy. Thus

fundamental mistake entails all other drawbacks of GUM.

Let us return to expanded uncertainty which is represented in GUM as an interval.

In Chap. 6 of the GUM this interval is called coverage interval, which is defined as

“an interval about the measurement result that encompasses a large fraction p of the
probability distribution of values that could reasonably be attributed to the

measurand” (clause 6.1.2). GUM further describes the calculation procedure for the

coverage interval using two additional new terms, coverage probability and coverage
factor. However, how to find the above probability distribution, the coverage factor,

and therefore the coverage interval, remains unspecified and is unknown. Changing

the terminology obviously does not solve the problem of obtaining the expanded

uncertainty (or confidence interval in the traditional terminology).

The root of the problem with computing the expanded uncertainty is that the

GUM does not provide a method for combining systematic and random errors of a

measurement result. Consequently, clause 6.3.3 recommends calculating the

expanded uncertainty simply as the product of combined uncertainty and factor

2 or 3; the result is assigned, without any justification, probability 0.95 in the first

case and 0.99 in the second.

Besides assigning unjustified confidence probability, the above method selects

the factors 2 and 3 so that they are almost the same as percentiles tq from Student’s
distribution with v ¼ 1. However, measurements often do not have large enough

observations to justify the assumption that v ¼ 1. Furthermore, Student’s distri-
bution is not applicable in this case. Indeed, recall that estimate of combined

variance is a sum of estimates of variance of random errors (uncertainty A

according to GUM) and conditional constant errors (uncertainty B). Thus, the

combined standard deviation represents the standard deviation of the sum of

random and conditionally constant systematic errors. Student’s distribution estab-

lishes the connection between the mean of a group of observations and the standard

deviation of this mean. In the case in question, the mean is calculated using data

having only random errors, while the standard deviation – the square root of the

sum of the estimates of the variances of random and conditionally constant errors –

reflects both random and systematic errors. Therefore, using Student’s distribution
in this case is incorrect.
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Clauses G.3.1 and G.3.2 of Annex G offer a different method for calculating the

expanded uncertainty. This method is based on the Student’s distribution, which in

this case is not applicable as we just argued.

Another mistake has to do with calculating the effective degree of freedom. Its

essence is that the concept of “degree of freedom” is not applicable to a random

quantity with fully known distribution function. For the model of systematic errors

the GUM takes the uniform distribution with known limits, and this distribution

cannot be assigned degree of freedom v ¼ 1, or any other number.

We should note that there is a known method for computing the uncertainty of a

measurement result with given confidence probability, which accounts for both

systematic and random errors of the result. This method is described in [44, 46] and

discussed in detail in the present book.

The forgoing discussion shows that the upcoming new edition of the GUM must

extend beyond revising its philosophy and terminology and revise its recommen-

dations for data processing as well. Such revision is possible on the basis of existing

methods and traditional philosophical foundation.

The revision of the GUM should utilize the method of reduction for dependent

indirect measurements. In fact, the GUM already mentions the method of reduction

as a second approach (see the note on page 10 in Sect. 4.1.4 of the GUM), but does

not discuss its advantages over the primary method recommended in the main body

of the document. These advantages were pointed out in this book, and the main ones

being that this method allows one to construct the confidence interval for dependent

indirect measurements and that it eliminates the need for the correlation coefficient.

These benefits of the method of reduction are hard to overstate.

Further, we would like to point out again that the revision of the GUM must also

include methods of estimating the inaccuracy of single measurements. These

methods also exist already and are discussed in this book.

The above problems with GUM’s recommendations regarding the estimation of

the uncertainty of a measurement result have been recognized by JCGM, and

Supplement 1 to the GUM is devoted to rectifying these issues [13]. Supplement

1 addresses them through the use of the Monte Carlo method. However, as we

discussed earlier, there exist more accurate and much simpler approaches. Note that

being able to solve these problems without the Monte Carlo method would not

obviate the need for Supplement 1 in the form of a separate recommendation

devoted expressly to the Monte Carlo method, which can have its own significance

in metrology (see Sect. 5.10 in this book).

9.4 Roots of the Drawbacks of GUM and VIM

Given the importance of GUM and VIM for metrology and the severity of the flaws

in the current versions of these documents, it is important to think of ways to correct

these problems. A necessary preliminary step would be to analyze the reasons that
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might have caused the problems in the current documents. This section contains the

author’s thoughts and speculations in this regard.

The flaws in GUM could be explained by two main reasons. The first reason is

that the development of GUM was not properly organized. Indeed, BIPM, for over

140 years of its existence, has dealt with measurements of the highest levels of

accuracy necessary to create measurement standards (etalons). These were always

multiple measurements, both back when the etalons were prototypes and now when

most etalons are based on stable quantum effects and speed of light and their

accuracy has increased dramatically. Thus, the task of developing the foundational

documents that concerned the whole metrology including everyday measurements

did not match the experience and culture of BIPM.

In fact, it is probably for this reason that CIPM transferred this task to ISO,

motivating the decision by its belief that ISO would be able to better reflect the

interests of industry and trade (see the Foreword to GUM). However, the compo-

sition of the working group formed by ISO remained the same as during the time

when the work was conducted under the direction of BIPM. The working group still

included representatives from BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, and OIML.

All these organizations are as authoritative in their respective areas as BIMP in

metrology, but mostly similarly far removed from everyday measurements. Only

IEC and OIML had necessary experience for this task, but we speculate they –

being in a minority – could not set the tone for this work. Thus, the development of

GUM was assigned to organizations that were not suitable for the task.

The second reason might be the way the discussion of the document draft was

carried out. As noted in GUM, its draft was distributed for discussion to national

metrological organizations. Given the great authority and reputation of BIPM, one

could easily see some of these organizations to defer to BIMP without seriously

considering the document. Others, even if they wanted to consider it, could have

suffered from the common issue at the time – a strong dichotomy in metrologists’
expertise, which was either centered on practical measurements but lacked rigorous

mathematical background or focused on applied statistics but was far removed from

measurement practice. Those focused on practical measurements could not

completely assess the document full of mathematical formulas and references. At

the same time, those who could fully understand the mathematics in the document

did not have deep understanding of practice of measurements to understand the

document’s implications in this aspect. And even if there were some comments

straddling the two sides of the coin, they were probably ignored by virtue of being

in a minority. Thus, the GUM draft may not have been properly discussed.

In summary, GUM’s flaws could be that on one hand, its development was

assigned to organizations that did not have experience and culture of dealing with

practical measurements, and on the other hand, it was adopted without effective

discussion. With this understanding, we can now discuss avenues for correcting

GUM and VIM.
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9.5 Perspectives on Fixing GUM and VIM

According to the foreword to VIM and paper [16], the work on enhancing and

correcting GUM and VIM, which used to be under direction of BIPM, was

reorganized in 1997, and a Joint Committee for Guides in Metrology (JCGM)

was created to direct this work. However, the chairperson of JCGM is the director

of BIPM and the committee itself still consists of representatives of the same

organizations that originally developed GUM and VIM. Only at a later stage

JCGM added ILAC. Thus the reorganization that was carried out has not let to

any significant change.

The first document prepared under the direction of JCGM is Addition 1 to GUM

[13]. Addition 1 was presented as the correction of a mistake in GUM in computing

expanded uncertainty using the Monte Carlo method. In another terms the problem

is to improve a mistake in summing the random and systematic errors. However, the

Monte Carlo method inherently includes the inaccuracy of moving from experi-

mental data to their approximated distribution functions, which is not accounted in

the final result. Thus, the Monte Carlo method is not suitable for this problem. We

refer the reader to Sect. 4.9 for the more appropriate method.

The above considerations lead to twofold suggestions for reorganizing the work

on GUM and VIM. Our first suggestion concerns the organization that would direct

the work. The work on GUM under the direction of BIPM took 17 years and in the

end produced a flawed recommendation as showed earlier. Reorganization of this

work through the creation of JCGM has not resulted in a meaningful change. To

make the reorganization effective, the work needs to be assigned to an organization

that possesses the necessary experience in the development of documents of this

kind, such as, for example, OILM.

And second suggestion concerns the problem of organizing the discussion

refereeing of document drafts. The goal here should be to engage specialists and

obtain their input directly, and not through the bureaucratic administration layers of

metrological organizations. This goal can be achieved if the task of considering the

drafts would be assigned to a specially appointed commission of experts, which

would be selected by an authoritative neutral organization. Such an organization

could be, for example, ISO, assuming string rules for expert selection are adopted to

avoid any conflict of interest that might affect the refereeing.
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Chapter 10

Step-by-Step Guide to the Evaluating

of Measurement Accuracy

10.1 Introduction

This Guide represents the practical essence of this book. It distills the various

methods and techniques discussed and analyzed in the book into a collection of

concise procedures for calculating measurement accuracy, starting from simple

single measurements and ending with complex multiple indirect measurements.

This collection aims at everyone who needs to know or apply these methods but

may not want to understand all the theory behind them. Therefore, the justification

of the formulas used in the included methods is not presented here; we refer the

reader to proper parts of this book.

The Guide presents state of the art methods for calculating the measurement

result and its inaccuracy. The only previous relevant recommendation, “Guide to
the expression of uncertainty in measurement”(GUM) [2] has significant drawbacks

(see Sect. 9.3). We thus believe the present Guide can serve as an alternative to

GUM as well as the basis of a revision of GUM, the need for which has long been

established.

10.2 Conventions for Expressing Accuracy of Measuring

Instruments

Measuring instruments are manufactured with a given pre-defined accuracy. An

appropriate classification of instruments based on their accuracy into “accuracy

classes” is established by national standards and recommendations separately for

each area of measurements (e.g., differently for voltmeters, hygrometers, etc.).
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doi.org/10.1007/978-3-319-60125-0_11
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General rules for establishing these classes are specified in International Recom-

mendation [9].

The limits of permissible errors of instruments are listed in instruments’ docu-
mentation which is provided by the manufacturer. This documentation also spec-

ifies the conditions of usage of the device, which can be reference conditions (the
conditions under which the instrument is verified and calibrated) or rated condi-
tions (a wider range of conditions under which the characteristics of the instrument

remain within certain limits and the instrument can be used as intended). The error

of an instrument under reference conditions is called the intrinsic error. Under rated
conditions the instrument acquires additional errors.

Instruments in exploitation are periodically verified or calibrated in calibrating

laboratories. During calibration, corrections to the instrument’s indications are

established, which can increase the precision of the instrument, theoretically up

to the accuracy of the calibration.

10.2.1 Analog Instruments

For analog instruments (i.e., instruments with an indicator moving within a certain

scale), in which the limits of the permissible absolute error Δ are constant across the

entire scale, the permissible error is usually listed in the form of the limits of

fiducial error ϒ. The fiducial error is the ratio (expressed as the percentage) of the

permissible absolute error to some standardized value (fiducial value) xf:

ϒ ¼ Δ=xf *100%:

The fiducial value depends on the scale type. For uniform scales, xf is usually taken
to be the upper measurement limit of the instrument. In this case, the limits of fiducial

error are the same as the limits of the intrinsic error expressed in relative form. For

non-uniform scales (e.g., when the scale’s graduations narrow or widen towards the

upper range of the scale), xf is usually taken to be the length of the scale expressed in
units of length (typically, cm). Accordingly, the limits of errorΔ are also expressed in

units of length (typically, mm). Finally, sometimes fiducial value is taken to be the

nominal value of the measurand if it is defined (e.g., 60 Hz in cymometers).

Note that the instrument error often has a random component, and this compo-

nent is included in the intrinsic error. The parameters of this component – the

variation of indications or standard deviation – are sometimes listed in addition to

the intrinsic error.

10.2.2 Digital Instruments

The accuracy of digital instruments is conventionally expressed in the form

� bþ qð Þ, ð10:1Þ
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where b and q represent the limits of components of the instrument error that remain

constant over a given measurement range of the instrument (we say “a given range”

since some instruments can switch between multiple ranges). The first term repre-

sents the component that is constant when expressed in the form of relative error;

the second is a certain number of units of the least significant digit of the digital

readout device (expressed as a non-dimensional count), which represents the

constant error of the instrument for the given measurement range in absolute

form. To obtain the value of permissible absolute error at a given indication, the

first term in (10.1) is multiplied by the indication and added to the second term

transformed into the measurement units, the latter giving directly the error compo-

nent in the absolute form once the value (in measurement units) of the least

significant digit of the readout device is determined.

Sometimes term q is expressed in percent or in ppm relative to some normalizing

value, typically the upper limit of the measurement range. This might create an

impression that q represents a relative error but in fact it is still an absolute error

albeit expressed in a normalized form.

A more convenient and less error-prone way of expressing instrument accuracy

is given in recommendation [9], where relative permissible error is specified as

δ ¼ � cþ d
Xmax

x
� 1

� �� �
ð10:2Þ

where c is the limit of permissible error in relative form at the top of the given

measurement range, d is the value indicating how the relative error grows for lower

readouts and Xmax is the upper limit of the measurement range (note that it is often

but not always the same as fiducial value xf).
The relationship between the alternatives (10.1) and (10.2) is as follows:

c ¼ bþ qD=Xmax and d ¼ qD=Xmax,

where D is the value of a unit of the least significant digit in the readout device of

the instrument.

As instruments age, their errors usually increase. Therefore, for high-precision

digital instruments, the limits of permissible errors are usually rated both right after

the calibration and for a certain time since the last calibration. An example of such

specification is given in Table 10.1, where the last row specifies the permissible

error limits that grow with time after calibration. The second row lists the reference

conditions of using the instrument, which also may become less stringent with time

as the permissible error grows.

Table 10.1 Limits of permissible error of an instrument depending on time from calibration

Time after calibration 24 h 3 months 1 year 2 years

Temperature 23� 1 �C 23� 5 �C 23� 5 �C 23� 5 �C
Limits of error �(0.01% + 1) �(0.015% + 1) �(0.02% + 1) �(0.03% + 2)
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The last row of Table 10.1 lists the limits of permissible error of the instrument

depending on the time since calibration; these limits are specified in the form (10.1).

The second term in each limit specification is given in units of the least significant

digit of the readout device and must be recalculated into the measurement units of

the measurand. For instance, for the measurement range with the upper value of

15 V and with five digits in the readout, the value of one unit of the least significant

digit is 1 mV.

10.3 Single Measurements

Single measurements are carried out by a single contact of the measuring instru-

ment with the object whose characteristic is being measured. The obtained indica-

tion becomes the estimate of the value of the measured quantity. The accuracy of

this estimate is determined by the accuracy of the instrument used and the mea-

surement conditions.

Measurement instruments are most commonly intended for single measure-

ments. Some instruments are so simple that accuracy of measurements where

these instruments are employed is estimated without any calculations. For instance,

measurement of distance with a ruler, when the indication is obtained with accuracy

of up to one graduation, has measurement error due to rounding and it does not

exceed half the graduation.

Single measurements are ubiquitous in manufacturing, quality control, trade,

and other societal activities. Usually their accuracy is not estimated explicitly, since

it has been estimated during the design of the activity in question (e.g., the

development of the manufacturing process) and by the selection of an appropriate

measuring instrument. In general, the accuracy of measurement need not be calcu-

lated if it is known a-priori to be “sufficient” for its purpose. In all other cases one

has to estimate the measurement accuracy.

Note that the selection of appropriate instrument is in itself an important separate

task. However, it is outside the scope of the present guide and is not considered

here.

10.3.1 Direct Single Measurements Under Reference
Conditions

Direct single measurements under reference conditions of the measuring instrument

involved are conducted according to the following procedure.

Step 1. Prior to conducting the measurement, check to make sure that the measure-

ment conditions correspond to reference conditions of the measuring instrument

used, and that the limits of the intrinsic error of the instrument are known.
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Step 2. Check that before the measuring instrument was brought into contact with

the object of measurement it indication is zero. If it was not zero – adjust it to

zero. After that perform the measurement, i.e., bring the measuring instrument

into contact with the object of measurement and read out the instrument’s
indication.

Step 3. If the instrument has a certificate from a calibrating laboratory, and the

certificate lists actual values of instrument’s indications or corrections to these

indications, use the actual value of instrument’s indication or apply a correction

to the instrument’s indication obtained in Step 2. Note that the certificate lists

corrections only for the numbered points of the scale (i.e., points with

corresponding numbers depicted on the scale) or for the points requested by

the customer.

Note: the above assumes that the corrections are listed in terms of the dimen-

sional values in measurement unit of the measurand. If the corrections are listed

in fractions of a graduation of the scale one needs to first translate it into a

dimensional value.

Step 4. Obtain the estimate of the quantity being measured (the measurand). If the

instrument has the scale in the units of the measurand, then the instrument

indication gives the measurand estimate directly. If the instrument indication

is in the number of graduations on the scale, then the indication must be

recalculated into the units of the measurand. For this, one needs to know the

value of a graduation in the units of the measurand.

Step 5. Estimate the accuracy of the measurement, which in this case is determined

by the intrinsic error of the measuring instrument. Because the intrinsic error is

usually given in the form of fiducial error, it must be converted into the limit of

error. When using an analog instrument, the limit of absolute error Δ is computed

as follows:

Δ ¼ ϒ
xf
100

, ð10:3Þ

where ϒ is fiducial error and xf is fiducial value.

The limit of relative error δ given the instrument indication x is

δ ¼ Δ=x: ð10:4Þ

If corrections were applied (Step 3), then instead of fiducial error one must use

the inaccuracy of calibration specified in the calibration certificate, which may be in

the form of either the limits of correction error or the uncertainty of the corrections.

In the case of an instrument with a non-uniform scale, one first needs to convert

the fiducial error into the limits of the absolute error in units of length (usually in

mm), which is done using formula (10.3) above. Then these limits can be

recalculated into the dimensional units of the measurand using the value

(in measurand units) of a unit of length at the point of the scale corresponding to

the instrument indication.
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Example Measurement of electrical resistance with a megohmmeter.

Let the megohmmeter have the following characteristics: the limit of measure-

ment range is 10 МΩ, the scale length is 75 mm, and the accuracy class is 1.5.

Megohmeters have nonlinear scales, and in these cases the accuracy class reflects

the fiducial error, which, as discussed in Sect. 2.1, for nonlinear scales is computed

as the ratio of the error in units of length to the total length of the scale. Thus, for

accuracy class 1.5, the limit of absolute error of the instrument in units of length is

1.5� 10�2 � 75 ¼ 1.1 mm. Assume that during the measurement, the instrument

indicator has pointed exactly at the mark “3МΩ” on the scale, and that to the right
of this mark the length of one graduation of the scale is 1 mm and its value is

0.1МΩ, while to the left these numbers are 1.5 mm and 0.2 МΩ, respectively.
Assume no corrections from the calibration certificate are available.

Without any corrections to be applied, we take the instrument indication of

3 МΩ as the estimate of the measurand. Given the above characteristics of the

scale, the limits of the error of the measurement will be 1.1mm � (0.1МΩ/1mm)

¼ 0.11МΩ to the right of the indication and 1.1 mm� (0.2 МΩ/1.5mm) ¼
0.15МΩ to the left. Thus, we obtain the interval with the limits of measurement

error to be [�0.11, 0.15]MΩ around the measurand estimate.

When using digital instruments, whose properties are expressed in formula

(10.2), and the instrument indication during the measurement was x, the limits of

the absolute and relative error are calculated as, respectively,

Δ ¼ bxþ qD and δ ¼ bþ qD

x
: ð10:5Þ

Sometimes qD is represented in the form of fiducial error and expressed in

percent or ppm. However, for calculations, qD must always be converted to the

form of absolute error.

If the accuracy of the digital instrument is given by formula (10.2) and the upper

limit of the instrument’s measurement range is Xmax, the limits of the measurement

error at indication x are computed as

δ ¼ � cþ d
Xmax

x
� 1

� �� �
and Δ ¼ δ∗x, ð10:6Þ

where c and d are values described in Sect 2 (see Sect. 2.3 for the derivation of this
formula).

Step 6. Check the number of significant digits in the estimate of the measurand and

the limits of its measurement error. Drop any extra digits according to the

directions in Sect. 1.8 of this book, arriving at the final measurement result

and its accuracy.
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10.3.2 Direct Single Measurements Under Rated Conditions

Necessary input information in this case differs from measurements under reference

conditions in two ways. First, it must include all values of influence quantities that
extend beyond the reference conditions (influence quantities are the physical

quantities that affect the indications of the measuring instrument). Second, in

addition to the limits of intrinsic error, the dependence of the instrument indications

on the values of influence quantities must be known. This dependence can be

expressed in the form of the limits of additional error for various ranges of the

influence quantities or in the form of influence functions. Also, the zero indication

of the measuring device must be checked and adjusted if necessary.

Step 1. Perform the measurement and obtain the estimate of the measurand. To this

end, one needs to bring the instrument into contact with the object and take the

instrument’s indication. The indication gives the estimate of the measurand. If

the instrument indications are in scale graduations, the indication must be

converted into the dimensional units of the measurand.

Step 2. Estimate elementary errors of the measurement. The inaccuracy of a

measurement in rated conditions includes the error that would have been present

at the current indication under reference condition (due to the intrinsic error) and

the additional errors, i.e., the errors caused by the influence quantities that

exceed the limits of their reference values. We refer to all the above errors as

elementary errors of the measurement.

The estimates of elementary errors are usually expressed as limits of their

possible values. Errors for which one can find specific numeric values (i.e., point

estimates) must be removed by applying corrections to the instrument indication

(see Step 3 below). The point estimates of errors can be found, and corrections

applied, if the influence functions are known with sufficient accuracy. Instead of

these errors, one could include in the calculations the inaccuracy of the corrections.

However, these inaccuracies are usually ignored in practice.

Step 3. Use influence functions to compute and apply corrections to the instrument

indication.

The additional error due to a given influence quantity can be significantly

reduced if the corresponding influence function is known, even if approximately

(see an example in Sect. 4.7).

Step 4. Express all elementary errors in the same form, either relative or absolute. If

the intrinsic error is given in the form of fiducial error, recalculate it into the

limits of error of the estimate of the measurand using formulas (10.3, 10.4, 10.5,

and 10.6).

Step 5. Estimate the uncertainty of the measurement result. Let ζi, i¼ 0 . . .m be the

elementary errors of the measurement, with ζ0 being the intrinsic error of the
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instrument and the remaining elementary errors being additional errors. The task

is to combine all these errors into the overall measurement error ζ.
According to accepted rules of rating of instrument errors, all elementary

errors are mutually independent. They are characterized by their limits Δi

(in discussing this step, we assume for simplicity symmetric limits around the

measurand estimate; see Sect. 4.7 for treatment of asymmetric limits):

ζij j < Δi:

If there are few elementary errors, that is, less than three (m � 3) ,then it is

acceptible to compute the limits of the overall error as the arithmetic sum of the

components:

Δ ¼
Xm
i¼0

Δi: ð10:7Þ

A more realistic result is given by a probabilistic approach. While for the

concrete instance of the instrument used in the measurement, its elementary errors

are systematic (i.e., constant), these errors are considered random quantities with

uniform distribution within the intervals defined by limits Δi when viewed across

the set of all instrument instances of the same model. Then, one can use a simple

formula to obtain the limits of the overall inaccuracy:

Δα ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼0
Δ2
i

q
, ð10:8Þ

where Δa is the uncertainty of the sum with confidence probability α, and kα is a

coefficient that depends on the selected confidence probability and in some cases on

the number of components being combined.

For typically used α ¼ 0.95, k0.95 ¼ 1.1 and is independent of the number of

components. The inaccuracy of that calculation is less than 3%. For α ¼ 0.99, kα
depends on the number of components, and its values are listed in Table 10.2

(Reproduced from Table 4.1 in Chap. 4).

When the number of components m is small and one of them happens

to dominate the rest, it can happen that Δα computed according to formula

(10.8) exceeds the arithmetic sum of the limits, which is obviously physically

impossible. Thus, in this case one must compute both Δa using (10.8) and Δ using

(10.7) and take for the estimate of measurement inaccuracy the smaller of the two

values.

Table 10.2 The dependency

of coefficient k0.99 from the

number n of component errors

n ¼ m +1 2 3 4 1
k0.99 1.27 1.37 1.41 1.49
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Step 6. If the sum of component errors can be considered normal, the measurement

uncertainty can be calculated either using formula (10.8) or using the normal

distribution, as a half of the confidence interval corresponding to the chosen

value of confidence probability:

Δα ¼ z 1þαð Þ=2Sc ð10:9Þ

where Sc ¼ 1ffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼0 Δ
2
i

q
and z(1+α)/2 is the quantile of the normal distribution

for confidence probability α. For α¼ 0.95, Δ0.95¼ 1.96Sc and for α¼ 0.99,

Δ0.99¼ 2.58Sc.

Step 7. Check the number of significant digits in the estimate of the measurand and

its inaccuracy. Drop any extra digits according to the directions in Sect. 1.8 of

this book, arriving at the final measurement result and its accuracy.

10.3.3 Indirect Single Measurements Under Reference
Conditions

The input information for this type of indirect measurement differs from a direct

measurment in Sect. 3.1 by the fact that now one measures several quantities

(arguments) with different measuring instruments, and one needs to know the

measurement equation. In its general form the measurement equation can be

represented as

A ¼ f A1 . . .Aj . . .AN

� �
, ð10:10Þ

where A is the measurand, Aj, j ¼ 1, . . ., N are arguments.

Step 1. Obtain the estimates of the arguments. In a vast majority of cases, argu-

ments of an indirect measurement are estimated using direct measurements. If

any argument is measured indirectly, its estimate is obtained using the present

scheme.

Step 2. Estimate the errors of the measurements of the arguments. The errors of the

measurements of the arguments is estimated using formulas (10.3, 10.4, 10.5,

and 10.6) from Sect. 3.1. All of them are considered as elementary errors of the

indirect measurement. Their limits must be expressed in the same form, i.e.,

either as absolute errors Δj or as relative errors δj.
Step 3. Calculate an estimate of the measurand. The estimate of the measurand is

obtained by substituting into the measurement equation the estimates of the

arguments:

~A ¼ f ~A1 . . . ~Aj . . . ~AN

� �
:
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Step 4. Estimate the error of the measurement result. The error of an indirect

measurement is determined by the errors of measurements of the arguments. It

can be estimated either by a minimax method or based on a linearization of the

measurement equation.

In the minimax method, one computes the maximal and minimal possible values

of the arguments (using their limits of errors) and substitutes them into the mea-

surement equation first in the combinations that produce the maximal and minimal

values of the measurand. The difference between the maximal value and the

measurand estimate ~A from Step 3 gives the upper limit of the measurement

error, and the difference between the minimal value and ~A – the lower limit. The

minimax method is very simple but produces exaggerated and often unrealistic

limits of the measurement error.

The linearization method is based on the expansion of the measurement equation

into the Taylor series and retaining only the first-order term. This method is not very

accurate (due to discarding the higher order terms in the Taylor series) and in fact

may produce biased estimates of the measurand (see Sect. 5.5). However, unlike in

multiple indirect measurements where modern methods are free from this problem

(see Sects. 5.6 and 5.7), no better method exists in single indirect measurements.

Thus, because it produces more realistic estimates of measurement accuracy than

the minimax method, the linearization method is the most commonly used for these

measurements.

For simplicity, consider the case of a measurement with two arguments. We can

represent the measurand estimate in terms the true values of arguments and their

measurement errors using the initial terms of Taylor series:

~A ¼ f ~A1; ~A2

� � ¼ f A1;A2ð Þ þ ∂
∂A1

ζ1 þ
∂

∂A2

ζ2

� �
f A1;A2ð Þ,

where ζ1 and ζ2 are measurement errors of the argument estimates (i.e., ~A1 ¼ A
þζ1 and ~A2 ¼ Aþ ζ2 ) and the partial differentials are computed at the point
~A1; ~A2

� �
. The partial derivatives are called influence coefficients since they repre-

sent the weights with which the corresponding measurement errors of the argu-

ments contribute to the overall measurement error; denote them as wj. In the case of
two arguments,

w1 ¼ ∂f
∂A1

				
A1¼~A1,A2¼~A2

and w2 ¼ ∂f
∂A2

				
A1¼~A1,A2¼~A2

:

The measurement error becomes

ζ ¼ ~A � A ¼ w1ζ1 þ w2ζ2 :

In general, for a measurement with N arguments,

ζ ¼
XN

j¼1
wjζj: ð10:11Þ
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Returning now to the measurement data processing procedure, the limits of

measurement error of the arguments Δj, multiplied by their corresponding influence

coefficients, produce the limits of elementary errors of the indirect measurement, θj:

θj ¼ wjΔj: ð10:12Þ

Then the confidence limits of the overall measurement error are obtained by

combining these elementary errors similar to direct measurements under rated

conditions, using formula (10.8), which in this case takes the form

θα ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
θ2j

r
ð10:13Þ

The above summation produces the uncertainty θa of the estimate of the

measurand in the form of the confidence interval with confidence probability α.
As with direct measurements, when N � 3 the result produced by (10.13) must be

compared with the arithmetic sum θ ¼ PN
j¼1 θj, and the smaller of the two should

be used as the characteristic of measurement inaccuracy.

The measurement equation often has a form

A ¼ Al1
1∗� � �∗Alj

j ∗� � �∗AlN
N : ð10:14Þ

In this case, and with all errors expressed in relative form, the influence coeffi-

cients obtain the form (as discussed in Sect. 5.10):

w
0
j ¼ lj:

These coefficients are known a-priory and exactly.

Now we can transform the limits of relative measurement errors of the argu-

ments, δj, to the limits of the relative elementary errors of the indirect measurement,

θj , rel¼ ljδj, and – analogously to formula (10.13) – compute the uncertainty of the

indirect measurement in relative form as:

θα, rel ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
θ2j, rel

r
: ð10:15Þ

Step 5. Having obtained the uncertainty of the indirect measurement, either in the

absolute or relative form, check the number of significant digits in the estimate

of the measurand and its uncertainty. Drop any extra digits according to the

directions in Sect. 1.8 of this book, arriving at the final measurement result and

its accuracy.
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10.3.4 Indirect Single Measurements Under Rated
Conditions

Necessary input information in this case differs from that of Sect. 3.3 in two ways.

First, it must include all values of influence quantities that extend beyond the

reference conditions. Second, as stated in Sect. 3.2, in addition to the limits of

intrinsic error, one must know the dependence of the additional errors of all

instruments involved on the values of influence quantities. This dependence can

be expressed in the form of the limits of additional error for various ranges of the

influence quantities or in the form of influence functions.

Step 1. Obtain the estimates of the arguments and the limits of the intrinsic and

additional elementary errors of each argument. Note that the indirect measure-

ment is considered to occur under rated conditions if any of the arguments are

measured under rated conditions. Thus, some arguments may be measured under

reference conditions. In a vast majority of cases, arguments of an indirect

measurement are estimated using direct measurements. Therefore, depending

on whether a particular argument is measured under reference or rated condi-

tions, its estimate and the limits of elementary errors are obtained according to

Steps 1–5 of Sect. 3.1 or Steps 1–4 of Sect. 3.2. If any argument is measured

indirectly, its estimate is obtained using the present scheme. All elementary

errors of the measurement of all arguments must be expressed in the same form,

i.e., either as absolute errors Δj or as relative errors δj .

Step 2. Obtain the estimate of the measurand. The estimate of the measurand is

calculated by substituting the estimates of the arguments into the measurement

equation, i.e., in the same way as in measurements under reference conditions

(Sect. 10.3.3).

Step 3. Transform elementary measurement errors of the arguments obtained in

Step 1 into elementary errors of the estimate of the measurand. Similar to

formula (10.12), this is done by multiplying each elementary error (which in

this case includes both intrinsic and additional errors) by the corresponding

influence coefficient. For i-th elementary measurement error of j-th argument,

we have:

θji ¼ wjΔji:

Step 4. Estimate the uncertainty of the measurement by combining the elementary

errors obtained in Step 2 using the following formula:

θα ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
θ2j0 þ

Xk1

i¼1
θ21i þ . . .þ

XkN

i¼1
θ2Ni

r
ð10:16Þ

282 10 Step-by-Step Guide to the Evaluating of Measurement Accuracy



where N is the number of arguments, θj0 is the intrinsic measurement error of j-th
argument, and kj ( j ¼ 1. . .N ) is the number of additional elementary measurement

errors of jth argument.

One can often encounter a situation where additional measurement errors of

several arguments are caused by the same influence quantity, for instance, temper-

ature t. Each such error has its own sign (plus or minus), and in their contribution to

the overall error they will either be added together or subtracted from one another.

Because formula (10.16) assumes independent errors, when the dependent errors

have the same sign, the overall error will increase compared to (10.16), and when

they have the opposite signs, the overall error will decrease. To account for this

effect, these errors must first be summated arithmetically according to their signs

and then the result must participate as a single term in (10.16).

Example Take an indirect measurement with three arguments, A1, A2 and A3

(N ¼ 3). Assume the measurement of the arguments have intrinsic errors Δ1,0,

Δ2,0, and Δ3,0, and the measurement of the arguments A1 and A2 have additional

errors due to temperature with limits �Δ1,t and �Δ2,t. Assume the temperature

affects the two arguments in the opposite way (e.g., A1 grows with temperature and

A2 decreases). To account for this dependency, they are first converted into ele-

mentary errors of the indirect measurement according to step 3:

θ1,0 ¼ �w1Δ1,0 θ1, t ¼ �w1Δ1, t

θ2,0 ¼ �w2Δ2,0 θ2, t ¼ �w2Δ2, t

θ3,0 ¼ �w3Δ3,0,

where w1 and w2 are influence coefficients of arguments A1 и A2. Then, since it is

known that the errors have the opposite signs, the limit of their combined error is

equal to the absolute value of their difference:

θ(1, 2) , t¼ � jjθ1 , tj � jθ2 , tjj.

Finally, this combined elementary error takes part as an individual term in

(10.16):

θα ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ21,0 þ θ22,0 þ θ21;2ð Þ, t þ θ23,0

q
ð10:17Þ

Step 5. Check the number of significant digits in the estimate of the measurand and

its inaccuracy. Drop any extra digits according to the directions in Sect. 1.8 of

this book, arriving at the final measurement result and its accuracy.
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10.4 Multiple Measurements

A multiple measurement consists of a certain number of observations, i.e., single

measurements, of the same quantity conducted under the same conditions. Due to

their complexity, multiple measurements are typically used in scientific experi-

ments, and – as a rule – under reference conditions of the measuring instruments.

Thus, multiple measurements under rated conditions are not considered here.

Similar to single measurements, multiple measurements are classified into direct

and indirect. Among the latter, they are further divided into linear and nonlinear

depending on their measurement equation. Finally, fairly recently, indirect multiple

measurements have been divided into dependent and independent measurements

based on the physical properties of their arguments, namely if any arguments

depend on each other.

In estimating accuracy of multiple measurements one must distinguish a sys-

tematic and random error. The random error varies from observation to observation,

and it is this component of the measurement error that is reduced by repeating the

measurement multiple times. The systematic error is due to physical imperfection

of the measuring instruments used. Because it is present at the same level in all

observations, experimental data provides no information for estimating the system-

atic error. The systematic error can be estimated using the known intrinsic error of

the instrument used in the measurement. But the intrinsic error is valid for all
instruments of a given model and can significantly exceed the errors of a specific

instrument used. As discussed in Sect. 4.9, in high precision measurements, it is

desirable to perform a preliminary calibration of the instruments to be used in the

measurement and establish their specific properties. Not only does calibration

produce more accurate limits of error of a measuring instrument but it also allows

one to obtain and apply corrections to the indication of the instrument. If calibration

is performed, the systematic error will be determined by the limit of calibration

error rather than intrinsic error of the instrument. This significantly reduces the

systematic error of the multiple measurement.

10.4.1 Universal Method of Summation of Systematic
and Random Errors

Estimating accuracy of any multiple measurement includes the task of summation

of systematic and random errors. In this section we consider this general task, which

is then used in all methods for multiple measurements. Section 4.10 demonstrates

this method on the example of the summation of a uniform and normal distribution.

Note that this is the most common case given that the systematic error is conven-

tionally considered as the realization of the random variable with uniform distri-

bution within limits �θ0 while random error as normally distributed with mean and

variance equal to the mean and variance of the measurement observations x1 . . . xn
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(see Sect. 4.3 for justification of these assumptions). In indirect measurements, the

uniform distribution is often replaced with a convex and – with enough arguments –

normal distribution, in which case coefficient tϑ below becomes tq (a quantile of

Student’s distribution) and the method becomes precise.

Input data for the summation of these two components of measurement uncer-

tainty include the uncertainty components (i.e., confidence limits) due to systematic

and random errors, θa, and ua, respectively (both corresponding to the same

confidence probability α), known standard deviation of the systematic error, Sϑ,
and an estimate of the standard deviation of the random error, Sψ, for which the

standard deviation of the mean of the measurement observations, S�x, is often used.

These input data are obtained differently for different types of measurements as

described in appropriate subsequent sections.

Step 1. Compute standard deviation of the measurement error. The error of a

multiple measurement ζ has two components – systematic and random:

ζ ¼ ϑþ ψ :

Standard deviation Sc of this error is computed as:

Sc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ϑ þ S2ψ :

q
ð10:18Þ

Step 2. Compute the coefficient tc that, analogously to calculation of confidence

interval of random error using Student’s distribution, relates the combined

uncertainty of multiple measurement with its variance as

Uα ¼ tcSc:

This coefficient is computed as

tc ¼ θα þ uα
Sϑ þ Sψ

: ð10:19Þ

Coefficient tc corresponds to the same probability α as the uncertainties θa and
ua. The reasoning behind (10.20) is as follows (see Sect. 4.10 for details).

The uncertainty component due to random error (i.e., confidence interval ua
which would cover the true value of the measurand in the absence of the systematic

error) is related with the standard deviation Sψ as

uα ¼ tqSψ , ð10:20Þ

where tq is the quantile of Student’s distribution for significance level q¼ (1�α) for
the degree of freedom ν ¼ (n�1) and α is the confidence probability; n is the

number of observations.
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We can also introduce coefficient tϑ that similarly relates the uncertainty com-

ponent due to systematic error with its standard deviation. For example, from the

assumption that systematic error is uniformly distributed within limits θ0 we have
the following facts. First, standard deviation Sϑ of systematic error can be derived

from its limits θ0 by formula:

Sϑ ¼ θ0ffiffiffi
3

p : ð10:21Þ

Second, its uncertainty, or confidence interval, θa corresponding to confidence

probability α can be found by formula (see, Sect. 4.9):

θα ¼ αθ0: ð10:22Þ

Taking into consideration formula (10.21), the last expression can be presented

in the form:

θα ¼ tϑSϑ ¼ α
ffiffiffi
3

p
Sϑ,

where tϑ ¼ α
ffiffiffi
3

p
in our case but could take different value for other distributions of

the systematic error.

Coefficient tc similarly relates the uncertainty with standard deviation but is

unknown and cannot be computed directly since the data for its calculation are

never known with sufficient accuracy. However, given the similar coefficients tϑ for
systematic and tq for random errors, it is natural to take for an estimate of coefficient

tc the weighted average of tϑ and tq:

tc ¼ tϑ
Sϑ

Sϑ þ Sψ
þ tq

Sψ
Sϑ þ Sψ

: ð10:23Þ

Substituting θα¼ tϑSϑ and uα¼ tqSψ into (10.23) we arrive at formula (10.20)

presented earlier.

Step 3. Compute the overall uncertainty Ua of the measurement result. Having tc,
the overall uncertainty of the measurement result is found by formula:

Uα ¼ tcSc: ð10:24Þ

The confidence probability of this uncertainty is the same as the confidence

probability chosen for calculating uncertainties θa and ua. We stress that both these

components of measurement uncertainty must be computed for the same confidence

probability α.
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10.4.2 Direct Multiple Measurements

Input data: a group of observations {xi}, i ¼ 1. . .n, measuring instrument specifi-

cations and the calibration laboratory certificate. We assume that the values of

observations have already been corrected based on the information provided in the

calibration certificate for the measurement instrument used.

Step 1. Estimate the measurand. For the value of the measurand ~A one takes the

mean of the observations:

�x ¼ 1

n

X n

i¼1
xi : ð10:25Þ

Step 2. Estimate the systematic error θ0, its uncertainty θa, and standard deviation

Sϑ. The observations usually include a correction mentioned above. Then the

limit of calibration error θ0, given in the certificate, becomes the systematic error

of the measurement directly. In this case, what remains is to find uncertainty θa
and standard deviation Sϑ. In accordance with (10.22), θα¼ αθ0. Standard

deviation Sϑ is calculated by Eq. (10.21):

Sϑ ¼ 1ffiffiffi
3

p θ0:

Step 3. Calculate the parameters of the random error of the measurement result –

uncertainty ua and the estimate of standard deviation Sψ. Random error mani-

fests itself in variation among observations. Averaging during the calculation of

�x reduces but does not eliminate this error. The estimation of ua and tq begins

from the estimation of variance S2�x of the measurand estimate �x:

S2�x ¼
1

n n� 1ð Þ
Xn
i¼1

xi � �xð Þ2 and S�x ¼
ffiffiffiffiffi
S2�x

q
: ð10:26Þ

Because Sψ ¼ S�x, one can find the random component of the uncertainty of

the measurement result ua:

uα ¼ tqSψ , ð10:27Þ

where tq is the quantile of Student’s distribution for significance level q¼ (1� α)
and degree of freedom ν¼ (n� 1), with n being the number of observations and

α the confidence probability.

Step 4. Combine the systematic and random components of uncertainty into the

overall measurement uncertainty according the method of Sect. 4.1.
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Step 5. Check the number of significant digits in the estimate of the measurand and

its inaccuracy. Drop any extra digits according to the directions in Sect. 1.8 of

this book, arriving at the final measurement result and its accuracy.

10.4.3 Linear Independent Indirect Multiple Measurements

A linear indirect measurement is an indirect measurement with a linear measure-

ment equation. It is further an independent measurement if its arguments do not

affect each other and thus can be measured independently. The input data for

experimental data processing in these measurements include the measurement

equation, the results of measurement of the arguments, and the specifications of

the measuring instruments used. We will assume that in this case the accuracy of

measuring instruments employed is sufficient, and corrections have not been

applied. Applying corrections to measurement observations was discussed in

Sect. 4.2. We further assume for simplicity that each argument is measured using

a direct measurement.

The measurement equation in the current case has the form:

A ¼ b0 þ
XN

j¼1
bjAj, ð10:28Þ

where N is the number of arguments and {bj}, j¼ 0, . . .,N, are constant coefficients.
The results of argument measurements comprise N groups of observation, each

of size nj:

xj, i

 �

where j ¼ 1, . . . ,N and i ¼ 1, . . . , nj:

Step 1. Obtain the estimate of each argument. According to Sect. 4.2, the estimate

of each argument is the mean of the observations in the corresponding group:

~Aj ¼ �xj ¼
Pnj

i¼1 xj, i
nj

:

Step 2. Estimate the variances, S2 �xj
� �

, and standard deviations, S �xj
� �

, of the means

of the groups using formulas (10.26). These are parameters of the random error

of argument measurements, however, we do not calculate the measurement

uncertainty for individual arguments.

Step 3. Calculate the limits of systematic measurement error for each argument, Δj,

and its standard deviation, Sϑj. The limits are obtained in the same way as for

direct multiple measurements, from the instrument specifications according to

Sect. 4.2.
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Step 4. Estimate the measurand. The estimate of measurand, ~A, is obtained by

substituting the estimates of the arguments ~Aj ¼ �xj into the measurement

equation (10.28):

~A ¼ b0 þ
XN

j¼1
bj�xj: ð10:29Þ

Step 5. Calculate the parameters of the random error of the measurement result –

random component of uncertainty ua and standard deviation of random error Sψ.
First we estimate the variance and standard deviation of the random error of

the measurement result:

S2ψ ¼ S2 ~A
� � ¼ XN

j¼1
b2j S

2 �xj
� �

and Sψ ¼
ffiffiffiffiffi
S2ψ

q
: ð10:30Þ

Given the standard deviation above, the random component of uncertainty ua
can be calculated using formula (10.27) except the quantile tq of Student’s
distribution in this case is obtained for the effective degree of freedom veff,
computed according to Welch-Satterthwaite formula:

νeff ¼
PN

j¼1 b2j S
2 �xj
� �� 2

PN
j¼1

b4j S
4 �xjð Þ
νj

, ð10:31Þ

where νj¼ nj� 1.

Step 6. Estimate the parameters of systematic error, θa and Sϑ. The systematic

component of uncertainty, θa, is calculated using formula (10.8), which in the

current case takes the form

θα ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
b2j Δ

2
j

r
, ð10:32Þ

where Δj is the limit of systematic measurement error of argument Aj. Since

according to (10.21), standard deviation of measurement of each argument is

Sϑj ¼ Δj
� ffiffi

3
p , we can compute

Sϑ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
b2j S

2
ϑj

r
¼ 1ffiffiffi

3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
b2j Δ

2
j

r
: ð10:33Þ

Step 7. Estimate the accuracy of the measurement. Having obtained the parameters

of the random and systematic errors, the overall measurement uncertainty Uα for

confidence probability α is produced by the universal method of combining the

two components using the method of Sect. 4.1 in this Chapter.
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Step 8. Check the number of significant digits in the estimate of the measurand and

its inaccuracy. Drop any extra digits according to the directions in Sect. 1.8 of

this book, arriving at the final measurement result and its accuracy.

10.4.4 Nonlinear Independent Indirect Multiple
Measurements: Method of Linearization

The linearization method is based on the expansion of the measurement equation

into the Taylor series and retaining only the first-order term. This method has been

used already in Sect. 3.3 of this Guide for single measurements where its short-

comings could be neglected. But multiple measurements must be more accurate. In

spite of its shortcomings (described in detail in Sect. 5.5 of this book), this method

is widely used in practice. Therefore we include it in the present Guide. But before

describing this method, to which we also refer as “traditional method”, we would

like to remind of its drawbacks discussed in Sect. 5.5 of this book and note that the

methods of reduction and enumeration (presented, respectively, in Sects. 4.5 and

4.6) are free of these drawbacks.

The input data for experimental data processing in this method include, as

always, the measurement equation, the observations of measurement of the argu-

ments, the specifications of the measuring instruments used and calibration labo-

ratory certificate. We assume for simplicity that each argument is measured using a

direct measurement.

Let the measurement equation be A¼ f(A1 . . .Aj . . .AN), where N is the number

of arguments. The results of argument measurements comprise N groups of obser-

vation, each of size nj:

xj, i

 �

where j ¼ 1, . . . ,N and i ¼ 1, . . . , nj:

Step 1. Obtain the estimate of each argument as the mean of its observations:
~Aj ¼ �xj.

Step 2. Estimate the variances, S2�xj , and standard deviations, S�xj , of the argument

estimations using formulas presented at Sect. 4.2 of this Guide. These are

parameters of the random error of the argument measurements. Express the

above parameters in relative form:

S2�xj, rel ¼ S2�xj=�xj
2and S�xj, rel ¼ S�xj=�xj: ð10:34Þ

Step 3. Obtain the estimate of the measurand, ~A, by substituting the estimates of the

arguments into the measurement equation:
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~A ¼ f �x1 . . . �xj . . . �xN
� �

:

It is important to emphasize that this step can produce a biased estimate of

the measurand in the case of a nonlinear measurement equation because in

general E{f(x)} 6¼ f(E{x}).
Step 4. Compute influence coefficients of the arguments. Generalizing the calcu-

lations given in Sect. 3.3, Step 4, the influence coefficients are given by:

wj ¼ ∂f Að Þ
∂Aj

				
A1¼�x1, ���,AN¼�xN

: ð10:35Þ

Step 5. Calculate the parameters of the random error of the measurement result –

standard deviation of random error Sψ and uncertainty ua due to random error.

The measurement error of each argument has a random component ψ �Aj

� �
.

Their sum (weighted by the influence coefficients) forms the random error of the

estimate of the measurand:

ψ ~A
� � ¼ XN

j¼1
wjψ �Aj

� �
:

Its variance is:

S2ψ ¼
XN

j¼1
w2
j S

2
�xj
, ð10:36Þ

where S2�xj is the variance of the corresponding group of observations {xj , i} ,

i¼ 1 , . . . , nj
If the measurement equation has the form of a product of the arguments raised in

some power, i.e.,

A ¼ Al1
1∗ . . .A

lj
j ∗ . . .AlN

N ,

and the limits errors of the arguments are expressed in relative form, the variance of

the random component of the measurement error of the measurand is computed, in

the relative form, as follows:

S2ψ , rel ¼
XN

j¼1
l2j S

2
�xj, rel

: ð10:37Þ

See Sect. 10.3.3, Step 4 for details.

Having the above variances, we can obtain standard deviation:
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Sψ , rel ¼
ffiffiffiffiffiffiffiffiffiffi
S2ψ , rel

q
: ð10:38Þ

Given the standard deviation above, the uncertainty ua can be calculated using a
well known formula uα¼ tqSψ, except the quantile tq of Student’s distribution in this
case is obtained for the effective degree of freedom veff, computed according to

Welch-Satterthwaite formula:

νeff ¼
PN

j¼1 w2
j S

2
ψ

�Aj

� �� 2

PN
j¼1

w4
j S

4
ψ

�Ajð Þ
νj

, ð10:39Þ

where νj¼ nj� 1.

In any case, once quantile tq is obtained, the uncertainty ua is computed as

uα ¼ tqSψ ,

or, in relative form,

uα, rel ¼ tqSψ , rel: ð10:40Þ

Step 6. Estimate the parameters of the systematic error – systematic component of

measurement uncertainty θa and standard deviation of the systematic error Sϑ.
The observations in multiple measurements usually include a correction from

the calibration certificate. Then the limits of error of observations of j th argu-

ment after correction given by the certificate will be equal to the limit of

calibration error θj. In accordance with (4.3), its standard deviation Sϑ, j ¼ 1ffiffi
3

p θj:

The systematic component of measurement uncertainty for confidence proba-

bility α is computed using formula (3.11):

θα ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
w2
j θ

2
j

r

or, in relative form,

θα, rel ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
w2
j θ

2
j, rel

r
: ð10:41Þ

Standard deviation Sϑ of the systematic error of the measurement result is

obtained from its limits θα according to formula (4.3):
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Sϑ, rel ¼ θαffiffiffi
3

p ¼ 1ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
w2
j θ

2
j, rel

r
: ð10:42Þ

Step 7. Combine the systematic and random components of uncertainty into the

overall measurement uncertainty. Having obtained the parameters of the random

and systematic errors, the overall measurement uncertainty Uα for confidence

probability α is produced by the universal method of combining the two com-

ponents using the method of Sect. 4.1 in this Chapter.

Obviously, using relative parameters in formulas (10.19 and 10.20), produce

the relative form of the standard deviation of the measurement error Sc,rel. Then,
we obtain the measurement uncertainty in relative form:

Uα, rel ¼ tcSc, rel:

Step 8. Check the number of significant digits in the estimate of the measurand and

its inaccuracy. Drop any extra digits according to the directions in Sect. 1.8 of

this book, arriving at the final measurement result and its accuracy.

10.4.5 Dependent Multiple Indirect Measurements: Method
of Reduction

The physical distinguishing aspect of this type of indirect measurements is that the

arguments of the measurement depend on each other. For example, a measurement

of electrical resistance by measuring the voltage and current is a dependent mea-

surement because the values of the arguments (voltage and current) affect each

other.

Traditionally, the data processing in these measurements used a method based

on linearization of the measurement equation, which could not produce estimate the

uncertainty of an indirect dependent measurement as a confidence interval for a

given probability. Further, it required the estimation of the correlation coefficients,

which has been a thorny issue in the theory of measurement accuracy. In fact, this

method produced a biased estimate of the measurand (see Sect. 5.5). We recom-

mend using the method of reduction described below for these types of measure-

ments. The method of reduction has long been known and used in Russia but only

recently described in the English-language literature [44]. It brings fundamental

benefits over old methods in that it produces the proper uncertainty of measurement

result and removes the reliance on the correlation coefficients in experimental data

processing.

Let the measurement equation be

A ¼ f A1 . . .Aj . . .AN

� �
:
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Since the arguments are dependent, they need to be measured in cycles, so that in

each cycle all arguments are measured simultaneously. Each cycle can thus pro-

duces one vector of argument observations, called a measurement vector.
A multiple measurement with n observations will have n measurement vectors.

Denote these vectors as

x1i; . . . ; xji; . . . ; xNi

 �

, i ¼ 1, . . . , n, ð10:43Þ

where {x1i, ..., xji, ..., xNi} are observations of the arguments in the i-th cycle.

Step 1. Obtain n observations of the measurand. By substituting the elements of

each measurement vector into the measurement equation, we obtain the

corresponding observation of the measurand. Repeating this for all n vectors,

we obtain n observations yi of the measurand:

yif g, i ¼ 1, . . . , n: ð10:44Þ

This set of data is not different in any way from the data obtained in direct

measurements considered in Sect. 4.2. Thus, the subsequent processing of these

data can follow the simple methods used for direct multiple measurements.

Step 2. Estimate the value of the measurand. Using Eq. (4.8) and replacing symbol

x with symbol y there, the estimate of the measurand is calculated as:

�y ¼ 1

n

X n

i¼1
yi: ð10:45Þ

Step 3. Estimate the parameters of the random error – random component of

uncertainty and standard deviation of the random error of the measurement

result.

The estimates of variance and standard deviations of the measurement result are

found using formula (4.10) where symbol x is replaced with symbol y:

S2ψ ¼ S2�y ¼
Pn

i¼1 yi � �yð Þ2
n n� 1ð Þ and Sψ ¼ S�y ¼

ffiffiffiffiffi
S2�y

q
ð10:46Þ

The random component of uncertainty is calculated using formula from Step 3 of

Sect. 4.2:

uα ¼ tqSψ : ð10:47Þ

Step 4. Estimate the parameters of the systematic error – systematic component of

measurement uncertainty θa and standard deviation of the systematic error Sϑ.
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Each argument observation has the same systematic error across all measure-

ment vectors and so does each observation of the measurand computed from a given

vector. As before, assume that the measurements of the arguments are direct (which

is usually the case). Let us consider that the properties of the instruments used

define the limits of systematic error Δj of measurement of each argument Aj (see

Step 2 of Sect. (4.2) and the limits of the elementary error θj of the estimate of the

measurand due to Δj (see Step 4 of Sect. 3.3):

θj ¼ wj Δj, ð10:48Þ

where wj ¼ ∂f
dAj

is the influence coefficient of argument Aj at point

Aj ¼ �Aj


 �
, j ¼ 1 . . .N.

Although arguments in a dependent measurement affect each other, their sys-

tematic errors are due to instrument inaccuracies and therefore are independent.

Thus, we can use formula (10.13) of Sect. 3.3 to compute the systematic component

of measurement uncertainty for confidence probability α:

θα ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
θ2j

r
ð10:49Þ

and standard deviation Sϑ of the systematic error is obtained as

Sϑ ¼ 1ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
θ2j

r
: ð10:50Þ

Step 5. Estimate the uncertainty of the measurement result. Having obtained

the parameters of the systematic and random components of uncertainty, com-

bine them into the overall measurement uncertainty according the method of

Sect. 4.1.

Step 6. Check the number of significant digits in the estimate of the measurand and

its inaccuracy. Drop any extra digits according to the directions in Sect. 1.8 of

this book, arriving at the final measurement result and its accuracy.

10.4.6 Independent Indirect Multiple Measurements:
Method of Enumeration

The input data for the method of enumeration include the measurement observa-

tions of arguments, the measurement equation, the specifications of the measuring

instruments used and the specifications of the Calibration laboratory which give

corrections to the readings of measuring instruments and limits of error of
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calibration. For simplicity of presentation, we will assume that the measurand has

two arguments and the measurement equation has the form

y ¼ f 1 A1ð Þ � f 2 A2ð Þ ð10:51Þ

where y is the measurand and A1 and A2 are its arguments. The theory of this method

is described in Sect. 5.7 of this book.

Let the multiple measurement of argument A1 produce a group of observations

{x1,i}, i ¼ 1, . . ., n1. All observations in this group have equal probability, and the

probability of each observation is pi ¼ 1
�
n1
. Similarly, for argument A2 we have

observations {x2,j}, j ¼ 1, . . ., n2, each with probability
1
�
n2
.

Step 1. By enumerating all combinations of the argument observations and

substituting these combinations into the measurement equation, obtain the set

of virtual observations of the measurand:

yij ¼ f 1 x1, if g � f 2 x2, j

 �

: ð10:52Þ

Any enumeration algorithm can be used; in the case of two arguments, one

could for instance couple all observations {x1,i} in the first group with each

element from the second group. This algorithm results in a matrix of virtual

observations:

yij
		 		 ¼

f 1 x1,1ð Þ � f 2 x2,1ð Þ, � � � f 1 x1,1ð Þ � f 2 x2,n2ð Þ
� � � � � � � � �

f 1 x1,n1ð Þ � f 2 x2,1ð Þ, � � � f 1 x1,n1ð Þ � f 2 x2,n2ð Þ

						
						 ð10:53Þ

The total number of virtual observations is z¼ n1n2 and the probability of

each is p(yij)¼ 1/z.
Step 2. Build the cumulative distribution function (CDF) of the virtual observa-

tions. To this end, first, one must order the virtual observations in the increasing

order. Then, the value of the CDF corresponding to the smallest observation will

be 1/z, the CDF value corresponding to the next smallest observation – 2/z
(because that’s the probability of either observation), etc. Finally, by connecting
all these CDF points with straight lines, one gets a linear approximation of the

CDF of virtual observations of the measurand.

Step 3. Extract a sample of a desired size from the obtained CDF. Let us pick a

desired number K of observations of the measurand. Using the obtained CDF, we

can go sequentially through the probability interval [0, 1] with step 1/K and take

realizations of the measurand, {yk}, corresponding to each probability. These

virtual realizations are independent, and their number K must be chosen suffi-

ciently large to obtain reliable estimates of the parameters of the probability

distribution of the virtual observations (standard deviation S and mathematical

expectation �y). Usually it is sufficient to have K¼ 1,000 (see Sect. 3.6). Note that
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one can’t compute these parameters directly from virtual observations yij since
these are not independent.

Step 4. Compute the estimates of the parameters of the sample probability distri-

bution of the observations. Mathematical expectation, variance, and standard

deviation of the distribution function are estimated using standard formulas over

the sample of virtual observations of size K:

�y ¼ 1

K

XK
k¼1

yk, ð10:54Þ

σ2 ¼ 1

K � 1

XK
k¼1

yk � �yð Þ2 and σ ¼
ffiffiffiffiffiffiffiffiffi
σ2

p
: ð10:55Þ

The sample size K is large and therefore the CDF found can be considered

accurate enough. Then the distribution function of �y is normal in accordance to

the central limit theorem; thus the standard deviation estimate of �y is accurate

and therefore marked as σ.
Step 5. Take the mean of virtual observations computed in the previous step as the

estimate of the measurand, ~A ¼ �y.
Step 6. Estimate the parameters (standard deviation and uncertainty) of the random

error of the measurand estimate. The estimate of the standard deviation of the

virtual observations σ has been obtained already in Step 4. The standard devi-

ation of the sample mean, i.e., measurand estimate �y, must be calculated using

the number of real – not virtual – observations. All arguments are usually

measured with the same number of observations n. Thus, the standard deviation

of the measurand estimate, Sψ, is calculated as

Sψ ¼ σ=
ffiffiffi
n

p
: ð10:56Þ

Uncertainty ua due to random error can be found, as usual, by formula

uα ¼ tqSψ , ð10:57Þ

where tq is the quantile of Student’s distribution for significance level q¼ (1� α)
and degree of freedom ν¼ (n� 1), with n being the number of observations and

α the confidence probability.

Step 7. Estimate the parameters (uncertainty and standard deviation) of systematic

error.

As we noted earlier, multiple measurements usually target the highest possi-

ble accuracy and therefore the initial observations of the arguments receive

corrections from the calibration laboratory certificate. Then the limits of error

of calibration θ0,j become the systematic error of estimates of arguments.
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Returning to our assumption of just two arguments, let the limits of measure-

ment errors of the arguments be θ0,1 and θ0,2, and their influence coefficients w1

and w2. Following the procedure of Sect. 10.3.3, these limits are statistically

combined to produce the confidence limit for the overall uncertainty due to

systematic error. In the current case, this is done according to formula:

θα ¼ kα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1θ

2
0,1 þ w2

2 θ
2
0,2

q
: ð10:58Þ

With α¼ 0.95, coefficient kα¼ 1.1 and does not depend on the number of

arguments. With α¼ 0.99, the values of this coefficient are listed in Table 10.2.

Standard deviation Sϑ of the systematic error is given by the expression:

Sϑ ¼ 1ffiffiffi
3

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
1θ

2
0,1 þ w2

2 θ
2
0,2

q
: ð10:59Þ

Step 8. Compute the uncertainty of the measurement result. Steps 6 and 7 produce

all necessary data about the random and systematic components of the uncer-

tainty of the measurement. They are combined using the universal method of

Sect. 4.1. Then, the uncertainty of the measurement result is found as

Uα ¼ tcSc: ð10:60Þ

This uncertainty corresponds to the same confidence probability that was

used in calculations of θa and ua.
Step 9. Check the number of significant digits in the estimate of the measurand and

its inaccuracy. Drop any extra digits according to the directions in Sect. 1.8 of

this book, arriving at the final measurement result and its accuracy.
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Errata to: Evaluating Measurement

Accuracy

Semyon G. Rabinovich

Errata to:

S.G. Rabinovich, Evaluating Measurement Accuracy,
Springer Series in Measurement Science and Technology,

https://doi.org/10.1007/978-3-319-60125-0

The original version of the book was inadvertently published with an error in the

numbering of citations and the same has been corrected throughout the book.

In chapter 3, a formula on page 94 was corrected to read as:

v1 ¼ n1� 1 and v2 ¼ n2� 1

In chapter 5, a formula on page 168 was corrected to read as:

σ21,2 ¼ 0.5∗
2=
3 ¼ 0.083

The updated online version of this book can be found at

https://doi.org/10.1007/978-3-319-60125-0

© Springer International Publishing AG 2018
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Conclusion

Measurement Data Processing: Past, Present, and Next Steps

Historically, metrology emerged as a science of measures. Even in the last century,

it was considered to be the science of measurements concerning the creation and

maintenance of measurement standards [37]. With this approach, the theory of

accuracy of measurements was limited to the problems of estimation of the accu-

racy of multiple measurements and only to random errors. Math statistics was a

natural fit for these problems. As a result, the science of measurement data

processing was in essence the reformulation of math statistics in the context of

random errors.

This state of affairs can be clearly seen by examining relatively recent books on

the subject, for example, Data Analysis for Scientists and Engineers by S. Meyer

(1975), Data Reduction and Error Analysis for Physical Sciences by Ph. Bevington

and D. Robinson (1992), and Measurement Theory for Engineers by I. Gertsbakh

(2003). Even the book The Statistical Analysis of Experimental Data (National

Bureau of Standards, 1964) by J. Mandel, which stands out by considering concrete

measurement problems, remained within the above confines. Nevertheless, because

this purely mathematical theory found practical applications, even in a restricted

case of random errors in multiple measurements, this theory obtained the status of

the classical (also referred to as traditional) theory of measurement data processing.

A recently appeared monograph by G. B. Rossi, Measurement and Probability:

A Probabilistic Theory of Measurement with Applications (2014, Springer), is

devoted to problems of the modern theory of measurements. It has a number of

aspects that set it aside from most books on measurement uncertainty. In addition to

measurements where physical quantities have been defined and reference standards

have been created, Rossi considers relative measurements and measurement

The original version of this chapter was revised. An erratum to this chapter can be found at https://

doi.org/10.1007/978-3-319-60125-0_11

© Springer International Publishing AG 2017

S.G. Rabinovich, Evaluating Measurement Accuracy, Springer Series
in Measurement Science and Technology, DOI 10.1007/978-3-319-60125-0

299



approaches in areas where physical quantities have not been defined yet. The

description of measurement problem in each area starts from physical principles

and contains the discussion of specific requirements to the measurement procedure.

These aspects represent the contributions of this book into the science of measure-

ments. At the same time, Rossi’s approach is generally based on Bayes’ theorem,

which has to be viewed as a shortcoming because this turns the measurand into a

random variable, which is incorrect: one can only measure constant values.

In the meantime, the traditional theory does not satisfy practical needs. As a

result, those who encountered these unaddressed problems in their practice resorted

to ad hoc and often incorrect methods. For instance, every practitioner knows that in

addition to random errors, a multiple measurement includes a systematic error, and

the overall inaccuracy of the measurement result combines both of these compo-

nents. But the classical theory ignored this fact and, furthermore, not so long ago

considered it incorrect to combine these two components. Consequently, to account

for systematic errors in a multiple measurement, practitioners often simply added

them to the random errors, which overestimated the inaccuracy of the result.

As another example, the classical theory ignored single measurements whereas

these measurements are the most commonly used in industry, scientific research,

and trade. Without help from theory, the measurement errors in single measure-

ments were often equated to the fiducial error of the measuring device used (see

Chap. 2), which is wrong.

Yet another limitation concerned the calculation of the inaccuracy of multiple

indirect measurements. In particular, for multiple indirect measurements with

dependent arguments, the classical theory did not offer ways to estimate the

measurement inaccuracy as a confidence interval, forcing scientists to make do

with the standard deviation as the characteristic of inaccuracy of the measurement

result. As discussed in this book, standard deviation is fundamentally unsuitable to

serve as a characteristic of measurement inaccuracy, while confidence interval is

intuitive, unambiguous, and reflects the inaccuracy directly.

To address these problems, a new theory started to take shape toward the end of

the last century. This theory does not obviate but subsumes the classical theory and

augments it with accounting for physical meaning of the metrological problems

being addressed. We therefore can call it the physical theory of measurement data

processing.

By considering the physical meaning of metrological problems, the new theory

has offered methods for solving several metrological tasks. Among them, the

method of reduction, which makes it possible to calculate the confidence interval

for the result of a dependent indirect measurement. Furthermore, this method

removes the need for the correlation coefficient in experimental data processing,

leading to a simpler and more accurate calculation procedure.

Another method, the method of enumeration, addresses independent indirect

measurements and allows one to estimate accuracy of these measurements without

linearization of measurement equations and resorting to Student’s distribution. This
method does not rely on any assumptions about the probability distribution of the

errors of the argument measurements and fully utilizes all the information from the

experimental data.

300 Conclusion



The new theory has also resulted in a clear and simple method for combining

systematic and random errors in a measurement result. This new theory has also

revealed an organic connection between single and multiple measurements and thus

introduces into the analysis of inaccuracy of measurements the properties of

measuring instruments. Besides providing solutions to these and other specific

practical problems, the physical theory also considers the foundational issues of

measurements. The present book offers systematic treatment of the physical theory

and in this way defines this new discipline.

No discussion on the current state of affairs in modern metrology would be

complete without mentioning two foundational documents, the “Guide to the Expres-

sion of Uncertainty in Measurement” (GUM) [2] and the “International vocabulary of

metrology – Basic and general concepts and associated terms” (VIM) [1]. GUM was

published in 1995 (with a supplement and minor corrections appearing in 2008) and

VIM in 2007. GUM has codified a new uncertainty approach while VIM has reflected

the main ideas and terms introduced by GUM. Unfortunately, as our detailed analyses

shows (Chap. 9), GUM and VIM contain fundamental flaws. A planned revision of

GUM is intended to rely on using Bayes’ theorem [16], but to use this theorem one

must know the distribution function of the measurand, which the measurand does not

have. Thus, this approach to fix GUM is not promising. As an alternative to GUM, the

present book, in its 3d edition, includes a new Chap. 10 – “The Step-by-Step Guide to

the Evaluation of Measurement Accuracy.”

While this book presents a comprehensive coverage of the physical theory of

measurement data processing in its current state, the book obviously does not

exhaust this subject, and a number of metrological problems still await their

solutions. We list some of these problems below.

• The theory of single measurements requires further development, especially in

regard to accounting for the errors of measuring instruments. A complicating

factor in this problem is a large variety of measuring instrument types for which

suitable techniques must be developed.

• Although the diversity of measuring instruments prohibits the development of

the general theory of their design, it is possible and necessary to develop a

general theory of accuracy of measuring instruments. The accuracy is the

common aspect that unites these devices. This book takes an initial step toward

such a theory, but much more work is required.

• A large and common class of measurements involving recording instruments

(such as analog or digital automatic plotters, XY-recorders, etc.) came to be

known as dynamic measurements [28, 51]. There are many open problems in

dynamic measurements; among them is an attractive problem to find the form

and parameters of an input signal having the recorded output signal and knowing

the dynamic properties of the recorder. Modern computers make solving this

problem feasible.

• Direct estimate of the implications of the assumptions made in inaccuracy

calculation may be achieved by the Monte Carlo method. By comparing the

results of experimental data processing based on certain assumptions (e.g., the

assumption that a conditionally constant error is a uniformly distributed random
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variable) with the results of the Monte Carlo method using simulated data

generated to comply with those assumptions, one can estimate the implications

of the assumptions made.

• The application of the root sum of squares method to uncertainty calculations

requires further investigation. In particular, we analyzed this method in the

present book for random errors having a normal distribution. An important

question is whether this method can be used for other distributions, and how

accurate it would be.

• The applicability of the least-squares method to experimental data processing

when residuals are not purely random quantities should be investigated. It is

known that the least-squares method is optimal when residuals are normally

distributed random quantities. However, residuals can include both systematic

and random errors. Although the least-squares method has been considered for

random residuals only, it is promising in these more general cases because it

naturally accounts for both types of errors. In fact, it is sometimes used in these

cases without theoretical justification. However, its behavior in these cases is

unknown.

• A very important task is to develop a new guide for estimating measurement

accuracy and a new vocabulary of basic terms and concepts in metrology, to

replace the current documents VIM [1] and GUM [2]. This book presents a

detailed analysis and critique of the current documents and, in Chap. 10, a

collection of procedures for measurement data processing that could serve as

an alternative to GUM and a basis for its revision, but any actual revision

requires the consensus of the relevant international standards bodies.

This list of metrological problems is of course subjective and incomplete.

However, a general guiding principle in addressing these and other problems

concerning measurements is that these problems must be approached by taking

into account the problems’ physical essence.
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Appendix

Table A.1 Values of the normalized Gaussian function Φ zð Þ ¼ 1ffiffiffiffiffi
2π

p
Zz

0

e�y
2=
2dy

z 0 1 2 3 4 5 6 7 8 9

0.0 0.00000 0.00399 0.00798 0.01197 0.01595 0.01994 0.02392 0.02790 0.03188 0.03586

0.1 0.03983 0.04380 0.04776 0.05172 0.05567 0.05962 0.06356 0.06749 0.07142 0.07535

0.2 0.07926 0.08317 0.08706 0.09095 0.09483 0.09871 0.10257 0.10642 0.11026 0.11409

0.3 0.11791 0.12172 0.12552 0.12930 0.13307 0.13683 0.14058 0.14431 0.14803 0.15173

0.4 0.15542 0.15910 0.16276 0.16640 0.17003 0.17364 0.17724 0.18082 0.18439 0.18793

0.5 0.19146 0.19497 0.19847 0.20194 0.20540 0.20884 0.21226 0.21566 0.21904 0.22240

0.6 0.22575 0.22907 0.23237 0.23565 0.23891 0.24215 0.24537 0.24857 0.25175 0.25490

0.7 0.25804 0.26115 0.26424 0.26730 0.27035 0.27337 0.27637 0.27935 0.28230 0.28524

0.8 0.28814 0.29103 0.29389 0.29673 0.29955 0.30234 0.30511 0.30785 0.31057 0.31327

0.9 0.31594 0.31859 0.32121 0.32381 0.32639 0.32894 0.33147 0.33398 0.33646 0.33891

1.0 0.34134 0.34375 0.34614 0.34850 0.35083 0.35314 0.35543 0.35769 0.35993 0.36214

1.1 0.36433 0.36650 0.36864 0.37076 0.37286 0.37493 0.37698 0.37900 0.38100 0.38298

1.2 0.38493 0.38686 0.38877 0.39065 0.39251 0.39435 0.39617 0.39796 0.39973 0.40147

1.3 0.40320 0.40490 0.40658 0.40824 0.40988 0.41149 0.41309 0.41466 0.41621 0.41774

1.4 0.41924 0.42073 0.42220 0.42364 0.42507 0.42647 0.42786 0.42922 0.43056 0.43189

1.5 0.43319 0.43448 0.43574 0.43699 0.43822 0.43943 0.44062 0.44179 0.44295 0.44408

1.6 0.44520 0.44630 0.44738 0.44845 0.44950 0.45053 0.45154 0.45254 0.45352 0.45449

1.7 0.45543 0.45637 0.45728 0.45818 0.45907 0.45994 0.46080 0.46164 0.46246 0.46327

1.8 0.46407 0.46485 0.46562 0.46638 0.46712 0.46784 0.46856 0.46926 0.46995 0.47062

1.9 0.47128 0.47193 0.47257 0.47320 0.47381 0.47441 0.47500 0.47558 0.47615 0.47670

2.0 0.47725 0.47778 0.47831 0.47882 0.47932 0.47982 0.48030 0.48077 0.48124 0.48169

2.1 0.48214 0.48257 0.48300 0.48341 0.48382 0.48422 0.48461 0.48500 0.48537 0.48574

2.2 0.48610 0.48645 0.48679 0.48713 0.48745 0.48778 0.48809 0.48840 0.48870 0.48899

2.3 0.48928 0.48956 0.48983 0.49010 0.49036 0.49061 0.49086 0.49111 0.49134 0.49158

2.4 0.49180 0.49202 0.49224 0.49245 0.49266 0.49286 0.49305 0.49324 0.49343 0.49361

2.5 0.49379 0.49396 0.49413 0.49430 0.49446 0.49461 0.49477 0.49492 0.49506 0.49520

2.6 0.49534 0.49547 0.49560 0.49573 0.49585 0.49598 0.49609 0.49621 0.49632 0.49643

(continued)
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Table A.1 (continued)

z 0 1 2 3 4 5 6 7 8 9

2.7 0.49653 0.49664 0.49674 0.49683 0.49693 0.49702 0.49711 0.49720 0.49728 0.49736

2.8 0.49744 0.49752 0.49760 0.49767 0.49774 0.49781 0.49788 0.49795 0.49801 0.49807

2.9 0.49813 0.49819 0.49825 0.49831 0.49836 0.49841 0.49846 0.49851 0.49856 0.49861

Note: The values of Ф(z) for z ¼ 3.0–4.5 are as follows:

3.0 0.49865 3.4 0.49966 3.8 0.49993

3.1 0.49903 3.5 0.49977 3.9 0.4995

3.2 0.49931 3.6 0.49984 4.0 0.499968

3.3 0.49952 3.7 0.49989 4.5 0.499997

Table A.2 Quantiles tq
of Student’s distribution

Degree of

freedom v
Significance level

q¼ (1 – α)� 100(%)

10 5 1

1 6.31 12.71 63.66

2 2.92 4.30 9.92

3 2.35 3.18 5.84

4 2.13 2.78 4.60

5 2.02 2.57 4.03

6 1.94 2.45 3.71

7 1.90 2.36 3.50

8 1.86 2.31 3.36

9 1.83 2.26 3.25

10 1.81 2.23 3.17

12 1.78 2.18 3.06

14 1.76 2.14 2.98

16 1.75 2.12 2.92

18 1.73 2.10 2.88

20 1.72 2.09 2.84

22 1.72 2.07 2.82

24 1.71 2.06 2.80

26 1.71 2.06 2.78

28 1.70 2.05 2.76

30 1.70 2.04 2.75

1 1.64 1.96 2.58
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Table A.3 Critical values of the distribution of Tn ¼ xn � �xð Þ=S or T1 ¼ �x� x1ð Þ=S (with

unilateral check)

Number of

observations, n
Upper 0.5%

significance level

Upper 1%

significance level

Upper 5%

significance level

3 1.155 1.155 1.153

4 1.496 1.492 1.463

5 1.764 1.749 1.672

6 1.973 1.944 1.822

7 2.139 2.097 1.938

8 2.274 2.221 2.032

9 2.387 2.323 2.110

10 2.482 2.410 2.176

11 2.564 2.485 2.234

12 2.636 2.550 2.285

13 2.699 2.607 2.331

14 2.755 2.659 2.371

15 2.806 2.705 2.409

16 2.852 2.747 2.443

17 2.894 2.785 2.475

18 2.932 2.821 2.504

19 2.968 2.854 2.532

20 3.001 2.884 2.557

21 3.031 2.912 2.580

22 3.060 2.939 2.603

23 3.087 2.963 2.624

24 3.112 2.987 2.644

25 3.135 3.009 2.663

26 3.157 3.029 2.681

27 3.178 3.049 2.698

28 3.199 3.068 2.714

29 3.218 3.085 2.730

30 3.236 3.103 2.745
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Table A.4 Percentile points of the χ2 distribution P x2 > x2q

n o

Degree of

freedom v

Significance level q (%)

99 95 90 80 70 30 20 10 5 1

1 0.00016 0.00393 0.0158 0.0642 0.148 1.074 1.642 2.706 3.841 6.635

2 0.0201 0.103 0.211 0.446 0.713 2.408 3.219 4.605 5.991 9.210

3 0.115 0.352 0.584 1.005 1.424 3.665 4.642 6.251 7.815 11.345

4 0.297 0.711 1.064 1.649 2.195 4.878 5.989 7.779 9.488 13.277

5 0.554 1.145 1.610 2.343 3.000 6.064 7.289 9.236 11.070 15.086

6 0.872 1.635 2.204 3.070 3.828 7.231 8.558 10.645 12.592 16.812

7 1.239 2.167 2.833 3.822 4.671 8.383 9.803 12.017 14.067 18.475

8 1.646 2.733 3.490 4.594 5.527 9.524 11.030 13.362 15.507 20.090

9 2.088 3.325 4.168 5.380 6.393 10.656 12.242 14.684 16.919 21.666

10 2.558 3.940 4.865 6.179 7.267 11.781 13.442 15.987 18.307 23.209

11 3.053 4.575 5.578 6.989 8.148 12.899 14.631 17.275 19.675 24.725

12 3.571 5.226 6.304 7.807 9.034 14.011 15.812 18.549 21.026 26.217

13 4.107 5.892 7.042 8.634 9.926 15.119 16.985 19.812 22.362 27.688

14 4.660 6.571 7.790 9.467 10.821 16.222 18.151 21.064 23.685 29.141

15 5.229 7.261 8.547 10.307 11.721 17.322 19.311 22.307 24.996 30.578

16 5.812 7.962 9.312 11.152 12.624 18.418 20.465 23.542 26.296 32.000

17 6.408 8.672 10.085 12.002 13.531 19.511 21.615 24.769 27.587 33.409

18 7.015 9.390 10.865 12.857 14.440 20.601 22.760 25.989 28.869 34.805

19 7.633 10.117 11.651 13.716 15.352 21.689 23.900 27.204 30.144 36.191

20 8.260 10.851 12.443 14.578 16.266 22.775 25.038 28.412 31.410 37.566

21 8.897 11.591 13.240 15.445 17.182 23.858 26.171 29.615 32.671 38.932

22 9.542 12.338 14.041 16.314 18.101 24.939 27.301 30.813 33.924 40.289

23 10.196 13.091 14.848 17.187 19.021 26.018 28.429 32.007 35.172 41.638

24 10.856 13.848 15.659 18.062 19.943 27.096 29.553 33.196 36.415 42.980

25 11.524 14.611 16.473 18.940 20.867 28.172 30.675 34.382 37.652 44.314

26 12.198 15.379 17.292 19.820 21.792 29.246 31.795 35.563 38.885 45.642

27 12.879 16.151 18.114 20.703 22.719 30.319 32.912 36.741 40.113 46.963

28 13.565 16.928 18.939 21.588 23.647 31.391 34.027 37.916 41.337 48.278

29 14.256 17.708 19.768 22.475 24.577 32.461 35.139 39.087 42.557 49.588

30 14.953 18.493 20.599 23.364 25.508 33.530 36.250 40.256 43.773 50.892
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Table A.5 Values of the upper 1% of points of the distribution F0:01 ¼ S21=S
2
2

Degree of freedom

v2

v1
2 3 4 5 6 8 12 16 24 50 1

2 99.00 99.17 99.25 99.30 99.33 99.36 99.42 99.44 99.46 99.48 99.50

3 30.81 29.46 28.71 28.24 27.91 27.49 27.05 26.83 26.60 26.35 26.12

4 18.00 16.69 15.98 15.52 15.21 14.80 14.37 14.15 13.93 13.69 13.46

5 13.27 12.06 11.39 10.97 10.67 10.29 9.89 9.68 9.47 9.24 9.02

6 10.92 9.78 9.15 8.75 8.47 8.10 7.72 7.52 7.31 7.09 6.88

7 9.55 8.45 7.85 7.46 7.19 6.84 6.47 6.27 6.07 5.85 5.65

8 8.65 7.59 7.01 6.63 6.37 6.03 5.67 5.48 5.28 5.06 4.86

9 8.02 6.99 6.42 6.06 5.80 5.47 5.11 4.92 4.73 4.51 4.31

10 7.56 6.55 5.99 5.64 5.39 5.06 4.71 4.52 4.33 4.12 3.91

11 7.20 6.22 5.67 5.32 5.07 4.74 4.40 4.21 4.02 3.80 3.60

12 6.93 5.95 5.41 5.06 4.82 4.50 4.16 3.98 3.78 3.56 3.36

13 6.70 5.74 5.20 4.86 4.62 4.30 3.96 3.78 3.59 3.37 3.16

14 6.51 5.56 5.03 4.69 4.46 4.14 3.80 3.62 3.43 3.21 3.00

15 6.36 5.42 4.89 4.56 4.32 4.00 3.67 3.48 3.29 3.07 2.87

16 6.23 5.29 4.77 4.44 4.20 3.89 3.55 3.37 3.18 2.96 2.75

17 6.11 5.18 4.67 4.34 4.10 3.79 3.45 3.27 3.08 2.86 2.65

18 6.01 5.09 4.58 4.25 4.01 3.71 3.37 3.20 3.00 2.79 2.57

19 5.93 5.01 4.50 4.17 3.94 3.63 3.30 3.12 2.92 2.70 2.49

20 5.85 4.94 4.43 4.10 3.87 3.56 3.23 3.05 2.86 2.63 2.42

21 5.78 4.87 4.37 4.04 3.81 3.51 3.17 2.99 2.80 2.58 2.36

22 5.72 4.82 4.31 3.99 3.76 3.45 3.12 2.94 2.75 2.53 2.31

23 5.66 4.76 4.26 3.94 3.71 3.41 3.07 2.89 2.70 2.48 2.26

24 5.61 4.72 4.22 3.90 3.67 3.36 3.03 2.85 2.66 2.44 2.21

25 5.57 4.68 4.18 3.86 3.63 3.32 2.99 2.81 2.62 2.40 2.17

26 5.53 4.64 4.14 3.82 3.59 3.29 2.96 2.78 2.58 2.36 2.13

27 5.49 4.60 4.11 3.78 3.56 3.26 2.93 2.74 2.55 2.33 2.10

28 5.45 4.57 4.07 3.75 3.53 3.23 2.90 2.71 2.52 2.30 2.06

29 5.42 4.54 4.04 3.73 3.50 3.20 2.87 2.68 2.49 2.27 2.03

30 5.39 4.51 4.02 3.70 3.47 3.17 2.84 2.66 2.47 2.24 2.01

35 5.27 4.40 3.91 3.59 3.37 3.07 2.74 2.56 2.37 2.13 1.90

40 5.18 4.31 3.83 3.51 3.29 2.99 2.66 2.48 2.29 2.05 1.80

45 5.11 4.25 3.77 3.45 3.23 2.94 2.61 2.43 2.23 1.99 1.75

50 5.06 4.20 3.72 3.41 3.19 2.89 2.56 2.38 2.18 1.94 1.68

60 4.98 4.13 3.65 3.34 3.12 2.82 2.50 2.32 2.12 1.87 1.60

70 4.92 4.07 3.60 3.29 3.07 2.78 2.45 2.28 2.07 1.82 1.53

80 4.88 4.04 3.56 3.26 3.04 2.74 2.42 2.24 2.03 1.78 1.49

90 4.85 4.01 3.53 3.23 3.01 2.72 2.39 2.21 2.00 1.75 1.45

100 4.82 3.98 3.51 3.21 2.99 2.69 2.37 2.19 1.98 1.73 1.43

125 4.78 3.94 3.47 3.17 2.95 2.66 2.33 2.15 1.94 1.69 1.37

1 4.60 3.78 3.32 3.02 2.80 2.51 2.18 1.99 1.79 1.52 1.00
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Table A.6 Values of the upper 5% of points of the distribution F0:05 ¼ S21=S
2
2

Degree of freedom

v2

v1
2 3 4 5 6 8 12 16 24 50 1

2 19.00 19.16 19.25 19.30 19.33 19.37 19.41 19.43 19.45 19.47 19.50

3 9.55 9.28 9.12 9.01 8.94 8.84 8.74 8.69 8.64 8.58 8.53

4 6.94 6.59 6.39 6.26 6.16 6.04 5.91 5.84 5.77 5.70 5.63

5 5.79 5.41 5.19 5.05 4.95 4.82 4.68 4.60 4.53 4.44 4.36

6 5.14 4.76 4.53 4.39 4.28 4.15 4.00 3.92 3.84 3.75 3.67

7 4.74 4.35 4.12 3.97 3.87 3.73 3.57 3.49 3.41 3.32 3.23

8 4.46 4.07 3.84 3.69 3.58 3.44 3.28 3.20 3.12 3.03 2.93

9 4.26 3.86 3.63 3.48 3.37 3.23 3.07 2.98 2.90 2.80 2.71

10 4.10 3.71 3.48 3.33 3.22 3.07 2.91 2.82 2.74 2.64 2.54

11 3.98 3.59 3.36 3.20 3.09 2.95 2.79 2.70 2.61 2.50 2.40

12 3.88 3.49 3.26 3.11 3.00 2.85 2.69 2.60 2.50 2.40 2.30

13 3.80 3.41 3.18 3.02 2.92 2.77 2.60 2.51 2.42 2.32 2.21

14 3.74 3.34 3.11 2.96 2.85 2.70 2.53 2.44 2.35 2.24 2.13

15 3.68 3.29 3.06 2.90 2.79 2.64 2.48 2.39 2.29 2.18 2.07

16 3.63 3.24 3.01 2.85 2.74 2.59 2.42 2.33 2.24 2.13 2.01

17 3.59 3.20 2.96 2.81 2.70 2.55 2.38 2.29 2.19 2.08 1.96

18 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.25 2.15 2.04 1.92

19 3.52 3.13 2.90 2.74 2.63 2.48 2.31 2.21 2.11 2.00 1.88

20 3.49 3.10 2.87 2.71 2.60 2.45 2.28 2.18 2.08 1.96 1.64

21 3.47 3.07 2.84 2.68 2.57 2.42 2.25 2.15 2.05 1.93 1.81

22 3.44 3.05 2.82 2.66 2.55 2.40 2.23 2.13 2.03 1.91 1.78

23 3.42 3.03 2.80 2.64 2.53 2.38 2.20 2.11 2.00 1.88 1.76

24 3.40 3.01 2.78 2.62 2.51 2.36 2.18 2.09 1.98 1.86 1.73

25 3.38 2.99 2.76 2.60 2.49 2.34 2.16 2.07 1.96 1.84 1.71

26 3.37 2.98 2.74 2.59 2.47 2.32 2.15 2.05 1.95 1.82 1.69

27 3.35 2.96 2.73 2.57 2.46 2.30 2.13 2.03 1.93 1.80 1.67

28 3.34 2.95 2.71 2.56 2.44 2.29 2.12 2.02 1.91 1.78 1.65

29 3.33 2.93 2.70 2.54 2.43 2.28 2.10 2.00 1.90 1.77 1.64

30 3.32 2.92 2.69 2.53 2.42 2.27 2.09 1.99 1.89 1.76 1.62

35 3.26 2.87 2.64 2.48 2.37 2.22 2.04 1.94 1.83 1.70 1.57

40 3.23 2.84 2.61 2.45 2.34 2.18 2.00 1.90 1.79 1.66 1.51

45 3.21 2.81 2.58 2.42 2.31 2.15 1.97 1.87 1.76 1.63 1.48

50 3.18 2.79 2.56 2.40 2.29 2.13 1.95 1.85 1.74 1.60 1.44

60 3.15 2.76 2.52 2.37 2.25 2.10 1.92 1.81 1.70 1.56 1.39

70 3.13 2.74 2.50 2.35 2.23 2.07 1.89 1.79 1.67 1.53 1.35

80 3.11 2.72 2.49 2.33 2.21 2.06 1.88 1.77 1.65 1.51 1.32

90 3.10 2.71 2.47 2.32 2.20 2.04 1.86 1.76 1.64 1.49 1.30

100 3.09 2.70 2.46 2.30 2.19 2.03 1.85 1.75 1.63 1.48 1.28

125 3.07 2.68 2.44 2.29 2.17 2.01 1.83 1.72 1.60 1.45 1.25

1 2.99 2.60 2.37 2.21 2.09 1.94 1.75 1.64 1.52 1.35 1.00
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Glossary

Absolutely constant error An elementary error of a measurement that remains

the same in repeated measurements performed under the same conditions. The

value of this error is unknown, but its limits can be estimated.

Examples: (1) An error of indirect measurement caused by using imprecise

equation between the measurand and measurement arguments. (2) An error in

voltage measurement that uses a moving-coil voltmeter when the resistance of

the voltage source is unknown.

Accuracy class A class of measuring devices that meets stated metrological

requirements. Accuracy classes are intended to optimize the number of different

accuracy levels of measuring devices and to keep their errors within specified

limits.

Accuracy of measurement Closeness of the result of measurement to the true

value of the measurand.

Accuracy of measuring instrument The ability of a measuring instrument to

perform measurements with results that is close to the true values of the

measurands.

Additional error of measuring instrument The difference between the error of a

measuring instrument when the value of one influence quantity exceeds its

reference value and the error of that instrument under reference condition.

Argument influence coefficient Partial derivative of the function at the right-hand

side of the measurement equation of an indirect measurement with respect to one

argument.

Notes: (1) Argument influence coefficient is calculated by substituting the

arguments in the resulting derivative function with their estimates. (2) Argument

influence coefficients are expressed in absolute or relative form.

Calibration Operation that, under specified conditions, establishes the relation-

ship between values indicated by a measuring instrument and corresponding

values obtained from a measurement standard.

Notes: (1) Results of calibration may be presented by a table, calibration curve or

by a table of additive or multiplicative corrections of the instrument or measure
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indications. (2) The ratio of permissible error limits for measuring instrument or

measure being calibrated and uncertainty of measurement standard are stated in

national or international recommendations or standards or it is adopted by

calibration laboratories and may be different in different fields of measurement.

Conditionally constant error An unknown elementary error of a measurement

that lies inside an interval defined by the known limits of permissible error of the

measuring instrument involved.

Note: The limits of permissible error are the same for all measuring instruments

of particular type and therefore those instruments are interchangeable in that

sense.

Dead band An interval through which a stimulus signal at the input of measuring

instrument may be changed without response in instrument indication.

Direct measurement A measurement in which the value of the measurand is read

from the indication of the measuring instrument; the latter can be multiplied by

some factor or adjusted by applying certain corrections.

Dynamic measurement A measurement in which the measuring instrument is

employed in dynamic regime.

Drift A slow change in output indication of a measuring instrument that is

independent of a stimulus.

Note: The drift is usually checked at the zero point of a measuring instrument

indication and is eliminated by adjusting the instrument indication to the zero

point before measurement.

Elementary error of a measurement A component of error or uncertainty of a

measurement associated with a single source of inaccuracy of the measurement.

Error of a measurement A deviation of the result of a measurement from the true

value of the measurand.

Note: Error of measurement may be expressed in absolute or relative form.

Fiducial error A ratio of the permissible limits of the absolute error of the

measuring instrument to some standardized value – fiducial value. Fiducial
error is expressed as percentage and makes it possible to compare the accuracy

of measuring instruments that have different measurement ranges and different

limits of permissible error when the latter are expressed in absolute form.

Fiducial value Quantity value specified for a particular type of measuring instru-

ments. Fiducial value may be, for example, the span or the upper limit of the

nominal range of the measuring instrument.

Inaccuracy of a measurement A quantitative characteristic of the degree of

deviation of a measurement result from the true value of the measurand.

Note: Inaccuracy of a measurement may be expressed as limits of measurement

error or as measurement uncertainty.

Indirect measurement A measurement in which the estimate of the measurand is

calculated using measurements of other quantities related to the measurand by

known function.

Influence coefficient A factor that after multiplying by a value of deviation of a

specific influence quantity from its reference condition limits gives the addi-

tional error.
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Influence function A metrological characteristic of the measuring instrument

expressing the relationship between errors of that instrument and values of an

influence quantity.

Intrinsic error The error of a measuring instrument determined under reference

conditions.

Limits of measurement error Limits of the deviation of the measurement result

from the true value of the measurand.

Limits of permissible error of a measuring instrument Maximum value of an

error that is permitted by specification for a given measuring instrument.

Material measure A measuring instrument that reproduces a particular kind of

quantity with known value and accuracy.

Note: The indication of a material measure is its assigned quantity value.

Measurand A particular quantity whose value must be obtained by measurement.

Measurement A set of experimental operations, involving at least one measuring

instrument, performed for the purpose of obtaining the value of a quantity.

Measurement chain A set of several measuring instruments connected temporary

in a chain to perform a measurement.

Measurement standard A measuring instrument intended to materialize and/or

conserve a unit of a quantity in order to transfer its value to all other measuring

instruments.

Note: There are primary measurement standard, secondary standards, standards

with specified functions and at the end of this chain – working standards.

Measurement vector A set of matched measurements of all arguments defining

an indirect measurement.

Measuring instrument A technical product that is created for the purpose to be

used in a measurement and which has known metrological characteristics.

Metrological characteristic A characteristic of a measuring instrument that

allows one to judge the suitability of the instrument for measurement in a

given range, or that is necessary for the estimation of the inaccuracy of mea-

surement results.

Metrology Science of measurements regardless of the field to which the quantity

to be measured belongs and of the accuracy of measurements.

Observation An individual measurement from the group of single measurements

comprising a multiple measurement.

Primary measurement standard A measurement standard that has the highest

accuracy in a country.

Note: The primary measurement standard usually is recognized by national

authority as national standard and used for assigning the measurement unit to

other measurement standards for the kind of quantity concerned.

Random error A component of the inaccuracy of a measurement that, in the

repeated measurements of the same measurand under the same conditions, varies

in an unpredictable way.

Rated conditions Operating conditions, determined for specified type of measur-

ing instruments, that are wider than their reference operating conditions and
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nevertheless allow the estimation of the inaccuracy of a measurement performed

by this type instrument under these conditions.

Note: Rated conditions are described as permissible excess value of influence

quantities over those given as limits for reference conditions.

Reference conditions Operating conditions, determined for specified type of

measuring instruments, under which the measurement performed by this type

instrument is more accurate than under other conditions.

Repeatability of a measurement Agreement among several consecutive mea-

surements for the same measurand performed, under the same operating condi-

tions with the same measuring instruments, over a short period of time.

Reproducibility of a measurement Agreement among measurements for the

same measurand performed in different locations, under different operating

conditions, or over a long period of time.

Response time The time interval between the instant when a measuring instru-

ment gets a stimulus and the instant when the response reaches and remains

within specified limits of its final steady value.

Result of measurement The value of a measurand obtained by measurement.

Note: The measurement result is expressed as a product of a number and a

proper unit.

Secondary measurement standard A measurement standard that obtains the

magnitude of a unit from the primary measurement standard.

Span The absolute value of the difference between the two limits of the nominal

range of a measuring instrument.

Example: Voltmeter with the nominal range from – 15 to +15 V has the span of

30 V.

Systematic error A component of the inaccuracy of a measurement that, in the

repeated measurements of the same measurand under the same conditions,

remains constant or varies in a predictable way.

True value of the measurand The value of a quantity that being known would

ideally reflect the property of an object with respect to the purpose of the

measurement.

Note: True value can never be found.

Uncertainty of measurement An interval within which a true value of a

measurand lies with given confidence probability.

Notes: (1) Uncertainty is expressed by its limits, which are listed as offsets from

the result of the measurement. (2) Uncertainty may be presented either in

absolute or relative form.

Verification A kind of calibration that reveals whether the error of a measuring

instrument lies within their permissible limits.

Working standard A measurement standard that is used to calibrate measuring

instruments.
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Index

A
Absolute error, 2, 3, 34, 38, 40, 41, 46, 48,

128–130, 262, 272, 273, 275, 276,

279, 282

Absolutely constant errors, 113, 115–117

Accuracy

of analog instruments, 33

of calibration, 2, 60

classes of, 47, 48

of digital instruments, 272

of measurements, 7, 17, 47, 136, 137, 139,

197, 209, 260, 262, 274

Accuracy class index, 47

Accuracy classes of measuring instruments,

47–49, 52, 53, 55, 60, 61, 271

Additional errors, 19, 23, 37, 40, 42–46, 117,

119, 127, 130–132, 136, 186, 187,

227, 230, 231, 233, 252, 277, 278,

282, 283

Alternating current parameters, 16

A posteriori estimation, 21, 22

A priori estimation, 21, 113

Arguments, 18, 20, 26, 28, 85, 105, 109, 117,

119, 120, 155, 156, 159, 169, 170,

172–174, 177–190, 192, 211, 238,

240, 242, 243, 246–248, 253, 259,

279–285, 288–298

Arithmetic mean, 76, 84, 85, 91, 95–97,

127, 140–142, 200, 215–218,

220–222

B
Bartlett’s test, 94
Bayes’ theorem, 104–105

Bias, 174, 175

Blanders, 24, 25, 81

Bootstrap method

sample, 103, 104

Borda’s weighing method, 125

C
Calibration

curves, 207

schemes, 59–66

verification, 7, 54–60

Central limit theorem, 73, 122, 141, 181,

183, 297

Chain of measurement instruments, 19,

187–189, 232

Chebyshev’s inequality, 83, 84
Combined average, 214–216, 225

Combined measurements, 18–20, 192, 203,

220, 223

Combined standard deviation, 144, 148, 177,

223, 224, 243, 265, 266

Combined uncertainty, 150, 247, 265,

266, 285

Combining results of measurements, 213, 214,

216, 218–225

Conditional equations, 193–207, 209, 211

Conditionally constant errors, 113–115,

117–118, 132–135, 222, 266

Confidence interval, 2, 80, 83–88, 91,

102–104, 120, 122, 134, 136–139,

142, 145, 147, 148, 173, 174,

176–178, 180, 182, 183, 196, 203,
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285, 286, 293
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Confidence probability

component errors and, 121–123, 135,

186, 278, 279

confidence interval, 134, 138, 139, 142,

147, 148, 183, 279, 281, 293

Constraint equations, 196, 201

Constraints, 196, 201

Conventional notations, 47

Correlation coefficients, 157–159, 172, 176,

179, 180, 241, 267, 293, 294

Covariance, 157

D
Dead band, 35

Degree of freedom, 86, 87, 91, 92, 137, 143,

151, 173, 174, 176, 177, 180, 182,

183, 196, 211, 237, 242, 243, 246,

247, 255, 267, 286, 288, 289, 292,

297

Derived physical quantities, 205, 264, 277

Digital instruments, 24, 32, 33, 41, 45,

272–274, 276

Direct measurement, 9, 18–20, 105, 107–113,

119, 120, 122–133

Distribution. See Probability distribution

Distribution function

central moments, 74, 75, 88

composition of, 119, 120, 146, 147, 159,

162, 169

excess, 75, 101

initial moments, 74

mathematical expectation of random

quantity, 74

normal distribution, 73, 75, 85, 137, 138

normalized Gaussian function, 73

probability density, 56, 71–75, 77, 104,
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probability distribution, 56, 73–75, 97,
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stability of, 68, 109
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uniformly distribution, 72, 73, 75, 76,
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variance of random quantity, 158

Dynamic characteristics

amplitude-and phase-frequency, 49

amplitude-frequency response, 51

complete dynamic characteristics, 21,

49, 52, 53

differential equation, 21, 49, 50, 52, 53

dynamic errors, 25, 45, 53, 111, 132

frequency response of phase, 50, 51, 53

partial dynamic characteristics, 49, 53

response time, 49, 52, 53, 108, 109

transfer function, 21, 34, 38, 49, 50, 55, 115

transient response, 49, 51–53

E
Effective degree of freedom, 173, 182, 247,

255, 267, 289, 292

Elementary errors, 23, 26, 110–119, 124, 125,

127, 130–136, 150, 185–187, 238,

277, 278, 281–283, 295

Elimination of systematic errors

method of symmetric observations, 127

progressing systematic errors, 126

Error propagation formula, 172
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individual estimation of, 22, 116

instrumental, 23, 47, 111

instrumental systematic, 111

limit of permissible measurement error, 14
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F
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Fisher’s distribution, 96
Fisher’s test, 94, 96, 221
Fundamental physical constants, 9

G
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General Conference on Weights and
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Guide to the Expression of Uncertainty in
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H
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I
Inaccuracy
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of indirect measurements, 185
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193, 230, 263
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