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Preface

The automation grade in the food industry differs considerably from that of the

(bio) chemical industry, and this observation is mainly caused by the following

reasons: (1) For food processing, sensors are not available to provide substantial

information about the characteristics of the (raw) material such as microflora,

spoilage, and mouth feeling. (2) The composition of the raw material can change,

depending on strain, growth (climate and soil), fertilization, and harvesting condi-

tions. (3) The raw material is usually soft, slippery, and fragile and has a variable

size, dependent on temperature, pressure, and mechanical stress. (4) The raw

material is not always available (harvest period). (5) During processing, the geom-

etry of the material might change and therefore transport coefficients, concentra-

tion, and temperature gradients change as well. In food processing, fundamental

knowledge is missing on a molecular basis. Consequently, mathematical models are

absent, and these are so fundamental for automation as measurements. Furthermore,

the demand for hygiene has also to be considered.

Because of the lack of automation in food processing, the section M3C (Model-

ling, Monitoring, Measurement and Control) of the European Society of Biochem-

ical Engineering Science has pushed experts in this field to contribute to this book.

Here, different contributions are presented to show how to solve the afore-men-

tioned problems.

Sibel Özilgen and Mustafa Özilgen, after discussing the common steps for the

primary processing of the major food groups, present a literature survey of the

hazards to be considered during food processing. They focus upon cereals, fruits

and vegetables, milk and milk products, meat and meat products, and fats and

oils. To demonstrate how Failure Mode Effect Analysis (FMEA) can contribute

to assure safe food, an FMEA template is presented in their contribution, using a

case study on pasteurized milk production.

Magdalena Kristiawan and coworker present modeling approaches for two cereal

food processes—extrusion and bread making—where the expert knowledge of

the mechanisms underlying the structural changes of the processed material

during the different operations is captured. They demonstrate how scientific
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and expert knowledge can be integrated and represented using these modeling

approaches for solid/liquid transition and expansion. Based on the models,

process simulation can be performed which can contribute to the design of

processes and products.

José Blasco and coworkers discuss the significance of machine vision-based mea-

surements for the postharvest processing of fruits and vegetables. They summa-

rize the state of the art in this field and discuss systems based on color images for

the inspection of conventional color, shape, or external defects. Furthermore,

they consider recent developments in spectral image analysis for internal quality

assessment or contaminant detection.

Jarka Glassey and coworkers use different industrial case studies to demonstrate the

benefits of advanced measurement, modeling, and control in food processes.

First, they show how knowledge elicitation from expert operators and the

consequent improvements in process control can be exploited to increase the

consistency of the resulting product of a potato chip (French fries) process. The

authors discuss the economic benefits of tighter control of the important process

parameters of this process. Furthermore, an application of NIR spectroscopy to

ensure effective mixing of dry multicomponent mixtures and pastes is presented.

Muhammad Haseeb Ahmad and coworkers present a review of fluorescence appli-

cation in food processing. They discuss how this spectroscopic technique can be

used for classification, authentication, and quantification of various parameters,

such as food handling, processing, and storage, of different foods by using

examples from dairy, meat, fish, eggs, cereals, and fruits and vegetables. They

point out that chemometric modeling is required for the evaluation of the

spectra.

Mustafa Özilgen demonstrates how knowledge from thermodynamic, kinetic, heat,

and mass transfer analysis can be used to obtain mathematical models. He

pointed out that ignoring the conditions of models under which they are valid

risks ending up with erroneous conclusions. Therefore, a good balance must be

found between a much too complicated or a much too over simplified model

when describing the food itself or its processing. Using different case studies,

different models are presented, including the Matlab source files, to run

simulations.

It is hoped that the different chapters of this book will inspire the reader to apply

new measurement systems such as those based on spectroscopy, or apply mathe-

matical models to improve the automation of food processes, to improve product

quality and safety and to reduce material and energy consumption. This book will

hopefully be a keystone in the overall puzzle to disprove Max Planck, who said that

a new scientific truth does not triumph by convincing its opponents and making

them see the light, but rather because its opponents eventually die and a new

generation grows up that is familiar with it.

Thanks are offered to the people of Springer for their support and patience.
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Integration of Basic Knowledge Models

for the Simulation of Cereal Foods Processing

and Properties

Magdalena Kristiawan, Kamal Kansou, and Guy Della Valle

Abstract Cereal processing (breadmaking, extrusion, pasting, etc.) covers a range

of mechanisms that, despite their diversity, can be often reduced to a succession of

two core phenomena: (1) the transition from a divided solid medium (the flour) to a

continuous one through hydration, mechanical, biochemical, and thermal actions

and (2) the expansion of a continuous matrix toward a porous structure as a result of

the growth of bubble nuclei either by yeast fermentation or by water vaporization

after a sudden pressure drop. Modeling them is critical for the domain, but can be

quite challenging to address with mechanistic approaches relying on partial differ-

ential equations. In this chapter we present alternative approaches through basic

knowledge models (BKM) that integrate scientific and expert knowledge, and

possess operational interest for domain specialists. Using these BKMs, simulations

of two cereal foods processes, extrusion and breadmaking, are provided by focusing

on the two core phenomena. To support the use by non-specialists, these BKMs are

implemented as computer tools, a Knowledge-Based System developed for the

modeling of the flour mixing operation or Ludovic®, a simulation software for twin

screw extrusion. They can be applied to a wide domain of compositions, provided

that the data on product rheological properties are available. Finally, it is stated that

the use of such systems can help food engineers to design cereal food products and

predict their texture properties.

Keywords Bread, Bubbles, Extrusion, Gluten, Phenomenological model, Starch,

Viscosity
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Abbreviations

a, b, c, d, a0,
b0, c0

Parameters of dough porosity and loss of stability

A, B Coefficients of volume flow rate, depending on extruder screw

geometry

AF Anisotropy factor of extruded products

BKM Basic knowledge models

Ca* Apparent capillary number defined for dough fermentation

Cp Heat capacity at constant pressure (J/g/K)

DOE Design of experiment

DSC Differential scanning calorimetry

E Activation energy in viscosity equation (J/mol)

E0 Storage modulus (Pa)

Ecd, Ef Specific energy supplied by conduction, by friction, respectively

(J/g)

Ev Specific energy produced by viscous dissipation (J/g)

F Fineness of the extruded product cellular structure

FEM Finite element method

H Dough height (m)

K, KE Consistency index in viscosity and elongational viscosity

equation, respectively (Pa.sm)

KBS Knowledge-based system (for dough mixing)

Ks Characteristic of the mixer when applying Metzner–Otto’s
principle

LEI, SEI, VEI Longitudinal, radial (sectional), and volumic expansion indices,

respectively

L/D Length to diameter ratio of die extruder

Lmax Dough maximum width (m)

MC Moisture content

MCS, MWT Mean values for cell size and cell wall thickness of extruded

product cellular structure, respectively (m)
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m Flow (or pseudo plasticity) index in viscosity and elongational

viscosity equation

N, Ω Extruder screw or mixer rotation speed (rpm, rad/s, respectively)

Ps Specific mixing Power (W)

Pv Bubble internal gas pressure (Pa)

P(t) Dough porosity during fermentation

Qv Volume flow rate in extruder (m3/s)

r Bubble radius (m)

R Gas constant in viscous equation (J/mol/K)

SME Specific mechanical energy (kJ/kg or kWh/ton)

S(t) Dough shape ratio during fermentation

T, Ta Absolute temperature of melt (in �C and K, respectively)

Tg, Tm, Tp Temperature of starch glass transition, melting, product,

respectively (�C or K)

V Volume of screw (m3)
_W Power dissipated in extruder (W)

ΔH Specific enthalpy for the state change (starch melting) (J/g)

ΔP Pressure variation (Pa) along the angular screw section of

extruder Δθ
tm Mixing time (s)

ΔT Overall temperature increase up to DSC peak temperature (�C)
_γ Shear rate (s�1)

εb, _ε Elongational strain, strain rate (s�1)

η, ηE Shear, bi-extensional viscosity, respectively (Pa.s)

ρm (Starch) melt density (kg/m3)

σ Dough liquor surface tension (N/m)

τ Elongational stress exerted by gas cell on dough matrix (Pa)

1 Introduction

Whatever the end product, cereal processing covers a range of mechanisms com-

mon to breadmaking and extrusion cooking, although they may involve different

time scales and physical conditions for these processes [1, 2]. They may be first

envisaged as a succession of two phenomena, the modeling of which is still

incomplete. First, the transition from a divided solid medium (the flour) to a

continuous one that can flow, such as a dough or a melt, either gluten network-

entrapping starch granules or a molten phase of starch-encapsulating protein aggre-

gates through hydration, mechanical, biochemical, and thermal actions (mixing,

shearing, fermentation, heating). Second, the continuous matrix becomes porous

because of the expansion of bubble nuclei either by yeast fermentation or by water

vaporization after a sudden pressure drop. For both phenomena, as illustrated in

Fig. 1, rheological properties are of pivotal importance as their determination may

be tricky and knowledge of them is still incomplete. This chapter focuses on the

Integration of Basic Knowledge Models for the Simulation of Cereal Foods. . . 3
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Fig. 1 Schematic representation of cereal-based solid foams processing with main variables and

mechanisms. (a) Bread making process operations (ellipses) with main influencing variables and

properties for texture. Dotted ellipses and frames refer to operations and variables considered to be
of lower importance with regards to the properties. Exponent n means that the sequence of

operations can be repeated n times (n � 3 in practice). Adapted from Della Valle et al. [3]. (b)

Extrusion and vapor expansion as two distinct operations. Expansion involves a succession of

dynamic mechanisms: bubble nucleation and growth, coalescence, shrinkage, and finally setting

when the melt matrix becomes glassy. The input and output variables are presented in the rounded
boxes with dashed border. Tp and Tg denote the temperature of product and that of glass transition,

respectively
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modeling of these two phenomena by illustrating the present capacities whilst

indicating the need for improving these models.

Solid foam is a valuable model for most processed cereal products (biscuits,

bread, breakfast cereals, expanded snacks). The texture, defined by its mechanical

properties, depends on (1) density, (2) cellular structure, and (3) the intrinsic

properties of the solid matrix [4]. Density, or inversely, specific volume, is a

common technological target, and data may be found in the literature. Compara-

tively, cellular structure has scarcely been studied, in spite of its visual importance

for the manufacturer and the consumer. Finally, intrinsic matrix properties refer to

the morphology of the blends of biopolymers (starch, gluten, polysaccharides) and

internal water distribution. They can be predicted by mechanical modeling using

the Finite Element Method (FEM), either for bread or extruded starchy products

[5]. However, FEM is too costly to be applied to the succession of operations of the

breadmaking and extrusion processes at present. This method is not discussed in

detail below but is referred to when relevant.

Despite the large quantity of scientific work dedicated to cereal processing, it is

still difficult to foresee how to set the various operating parameters of the process to

obtain the desired texture. Indeed, some sophisticated deterministic or physics-

based, models based on differential equations have been developed to describe local

flow and temperature fields, or the evolution of a chemical species. Regarding

cereal processing, bread baking has drawn most attention and such models have

been developed considering multiphase transport and evaporation in dough homog-

enized at macroscale as a deformable porous medium [6–8]. Some attempts have

also been made to relate input and output process variables through artificial neural

networks, either for extrusion [9] or bread dough mixing [10, 11]. However, at

present, there is no deterministic model, based on continuum mechanics, able to

describe satisfactorily all physical mechanisms involved at different structural

scales. Conversely, at an industrial level, the design of cereal solid foams by

extrusion and breadmaking processes is still based on a trial and error approach

or, at best, using black box modeling, and it also often relies on experts’ know-how.
Hence, for various reasons, recently reviewed by Datta [12], physics-based models

and their computer implementation are hardly ever used in the industry.

To combine the scientific understanding of material changes during processing

and the ability to predict the final properties of the product, basic knowledge models
(BKMs) can be used. They are defined as elementary models that (1) capture our

knowledge of the mechanisms underlying the structural changes of the product

during the different operations, (2) provide information on use properties, and

(3) are expressed in a mathematical form simple enough to be used by food industry

engineers [3]. The purpose of this chapter is twofold: (1) to show how scientific and

expert knowledge can be integrated and represented by BKMS for the two phe-

nomena – transition solid/liquid and expansion and (2) to illustrate the use of these

BKMs for process simulation. For this purpose, two processes, extrusion and

breadmaking, are examined with a focus on the phenomena of divided/continuous

medium transition and cellular structure creation in both cases. In each case, the

Integration of Basic Knowledge Models for the Simulation of Cereal Foods. . . 5



available modeling approaches – either deterministic or more phenomenological

and based on knowledge engineering – are presented.

2 Basic Knowledge Models for the Transition from Divided

Solid to Continuous Medium

Both processes, extrusion and breadmaking, include a first step, mixing, the main

objective of which is to homogenize ingredients, leading to the distribution of water

in the flour components. Because of mechanical input (shear, extension), a macro-

scopically homogeneous phase is obtained (Fig. 1), either a dough based on gluten

network at low energy (SME< 100 kJ/kg) and ambient temperature or a starch melt

at high temperature (T � Tm melting temperature of starch) and for higher SME
(>100 kJ/kg). Compared to fluid mixing, this operation is complex, because both

dough and melt are non-Newtonian, viscoelastic, and strain-history-dependent

fluids, which is still challenging for modeling. Moreover, material free surface

continuously changes during processing because of the motions of the arm and

bowl in the mixer, or screw in the extruder barrel. Therefore, the use of FEM-based

models (see for instance [13, 14]) would require extensive numerical developments

to take these features into account. However, to achieve a good control of this

operation, it is first necessary to determine the specific mechanical energy delivered

to the material, SME.
Indeed, during starchy product extrusion, the essential step of this transition is

starch melting. This phenomenon may be achieved at temperatures lower than Tm,
the melting temperature, measured by DSC, as shown by Donovan [15]. Various

research results reported subsequently have led to the determination of the starchy

material melting temperature between 100 and 180�C and the enthalpy of fusion

between 3 and 20 kJ/kg for moisture content between 15 and 30% wet basis (see for

instance [16–18]). This temperature can be calculated by the Flory–Huggins equa-

tion, and its value may be ascertained by DSC experiments for specific recipes

[19, 20]. The contribution of SME to this transition, indirect by solid friction or

viscous dissipation, or direct by granule fragmentation, is still a scientific concern.

However, initially, the Tm value may be assumed to be the temperature at the

endothermic peak.

Once molten, the flow of the starchy material is controlled by its shear viscosity

η, which is generally described by a power law:

η ¼ K _γ m�1 ð1Þ

where K is the consistency in Pa.sm, m the flow behavior index, and _γ the shear rate

(s�1). K and m depend on temperature, moisture content MC, and

thermomechanical history (SME) according to

6 M. Kristiawan et al.



K ¼ Koexp
E

R

1

Ta
� αMC� βSME

� �
ð2Þ

m ¼ mo þ α1T þ α2MCþ α3SMEþ α12T �MCþ α13T � SMEþ α23MC
� SME ð3Þ

where T and Ta are the absolute temperatures of melt in �C and K respectively, E is

the activation energy (in J/mol), R is the gas constant (in J/mol/K). The coefficients

K0, . . . α23 can be determined experimentally using specific rheometers, in-line and

off-line, which take into account the effect of the sensitivity of the material on

thermomechanical history [21–23]. Various methods allow the determination of the

viscous properties of starchy melts in relation to extrusion [24]. Off-line methods,

such as Rheoplast, also allow the determination of the elongational viscosity by

performing Bagley corrections and Cogswell analysis, but measuring conditions are

further from the extrusion conditions than in-line methods. The values of the

coefficients can be found in the literature for starches, but they are seldom available

for more complex and realistic recipes. For breakfast cereals, Brugger et al. [25]

found that the effect of SME is not significant. The authors hypothesized that the

minor constituents in the cereal flours could play a role as a lubricant and thus

protect starch granules against thermal and mechanical stresses.

Once determined, the numerical values of the rheological model coefficients,

thermal-physical properties, and melting temperature, can be used in mechanistic
models and introduced into extrusion simulation software based on such models

that allow the determination of the flow profile along the screw. Ludovic®, devel-

oped by Vergnes et al. [26] for computing flow conditions along the extruder, is an

example of such software for co-rotating twin screw extrusion. It allows the

calculation of the main flow variables, melt mean temperature, pressure, shear

rate, shear viscosity, specific mechanical energy (SME), residence time, etc. along

the screws, from the hopper to the die exit. Computation of the various variables is

done separately for each type of screw element (partially or totally filled right-

handed screw elements, totally filled left-handed screw elements, and blocks of

kneading disks) and for the die components. For each screw element, envisioned as

a C-shape chamber, pressure/flow rate relationships are computed considering the

section of the channel as rectangular, with a constant width taking into account the

variations of temperature and viscosity. Under such conditions, axial and tangential

velocity components (radial velocity is null) can be determined in each slice and the

volume flow rate Qv along a screw channel can be written as

QV ¼ AΩþ B
1

η

ΔP
Δθ

ð4Þ

where A and B are coefficients depending on the screw geometry, Ω the screw

rotation speed (rad/s), and ΔP the pressure variation along the angular screw

section Δθ. The shear viscosity η is deduced following the power law equation

(1), from the shear rate _γ averaged over the screw section. In each type of element,

Integration of Basic Knowledge Models for the Simulation of Cereal Foods. . . 7



only a 1D approach is applied and only average values are computed. These

element models are linked together to obtain a global description of the flow field

along the extruder. Summing up relations (4) along the screws, and knowing

viscosity variations, the specific energy produced by viscous dissipation Ev can

also be computed according to

_W ¼
ð
V

η _γ 2dV ð5Þ

and

Ev ¼
_W

ρmQv

ð6Þ

where _W is the power dissipated in the considered volume V of the screw and ρm is

the melt density. Melting is considered to be instantaneous and takes place before

the first restrictive element of the screw profile (kneading disk or left-handed screw

element). The region of the melting process is essential for the design of the screw

machines and the determination of the operating conditions. It is generally consi-

dered to occur in the first restrictive element (kneading disc, left-handed screw for

instance), because of the compression and the friction of particles. The overall

energy balance on the melting phenomenon within the extruder can be written as

ΔH þ CpΔT ¼ Ecd þ Ef ð7Þ

where ΔH is the specific enthalpy for the state change, Cp is the heat capacity at

constant pressure, ΔT is the overall temperature increase up to peak temperature,

Ecd and Ef are the terms of specific energy supplied by conduction from the barrel

and screws by and dissipation by friction, respectively. Several authors found that

the energy input for solid/melt transition in starch, cereal, and vegetables extrusion

is approximately 500 J/g [27]. When (7) cannot be solved easily, the melting

temperature is assumed to be the local temperature at the point before a restrictive

element, where the pressure starts to increase. Afterwards, the material is consi-

dered to be fully molten and can fill the screw channel according to local geometry

and flow conditions. Ludovic® has been applied successfully to various starchy

materials and recipes [28–30], in spite of some uncertainties about rheological data.

These applications have emphasized the significance of SME, suggested early

experimentally [31], in defining starch structural modifications such as

depolymerization.

Simulation is really useful because it describes the material changes during the

complete process and not only in the areas where sensors are located. For thermally

sensitive products, such as extruded cereal foods, it is important to consider the

temperature distribution along the screw during the process and not only at the die,

as shown in Fig. 2 for two breakfast cereal recipes (denoted C and H). Each profile

8 M. Kristiawan et al.



singularity (pressure peak, steep temperature and energy increases) are caused by

the presence of a restrictive screw element downstream. The difference in the

behavior between these two recipes is likely because of the viscosity differences.

Finally, the similarity between SME, Tm, and viscosity profiles underlines the

importance of viscous dissipation, which is first governed by the profile of the

restrictive screw elements. An additional important feature of simulation is the

possibility of the implementation of a virtual design of experiment (DOE). With

DOE, the user can vary one or more input variables within a given simulation to

determine the process sensitivity of specific results of interest on the changes of

these variables. Overall DOE results for extrusion simulation of H recipe are

summarized in contour plots shown in Fig. 2b. They show that the moisture content

(MC) decreases and screw speed (N ) increases, leading to an increase in SME, and
thus the product temperature. Conversely,MC and N increases lead to a decrease in

both viscosity and pressure, which is qualitatively explained by (1) and (2). The

viscous dissipation is also governed by the screw speed and feed flow rate.

In conclusion, the importance of SME for controlling starch modifications and

the significance of viscosity for controlling expansion (see the next section) under-

line the advantage of using such simulation tools for cereal product development by

extrusion. Although the model implemented in this software is fully deterministic,

it is simple and the software can be easily handled by professionals in the area.

Moreover, it captures our knowledge on the mechanisms governing the structural

changes of the product during extrusion and it provides information on use prop-

erties of extruded products. For these reasons, the model can be considered a BKM

for twin-screw extrusion.

In the case of breadmaking, such a deterministic model is, for the moment, not

available. Despite significant work on the modeling of fluid mixing, modeling of

dough mixing has not been developed sufficiently, likely because of the diversity of

mixer geometry and of the complexity of dough rheological behavior, which is

continuously evolving. Assuming dough is a shear-thinning fluid in a filled vessel,

Binding et al. [32] modeled mixing by the finite element method (FEM) and

concluded that the outer part of the mixing arm led to the largest shear rates and

energy input. The knowledge of SME during dough mixing is also important

because its evolution reflects the structuration of the gluten network. SME can be

derived from the torque of the mixing arm or deduced from the measurement of the

dough temperature Td through a simple energy balance [33]. For a given wheat

flour, SME variations may reflect the degree of cross-linking of the gluten network,
but the correlation is not so high as in the case of extruded starchy products

[34]. The measurement of SME is also important because it helps to assess the

viscosity of the dough, the determination of which requires extensive experimental

effort on standard rotational rheometers. Indeed, SME is linked to viscous dissi-

pation and, using Metzner–Otto’s principle from the rotation speed of mixer arm N,
the following can be stated:

Integration of Basic Knowledge Models for the Simulation of Cereal Foods. . . 9
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Fig. 2 Examples of results obtained by simulation of cereal twin screw extrusion by Ludovic®

software. (a) Profile of specific mechanical energy (SME), shear viscosity, temperature, and

pressure along the screws of the extruder, computed for breakfast cereals (Nusselt number ¼ 12)

processed on a Buhler twin screw extruder for the following conditions: flowrate Q ¼ 40 kg/h,

barrel temperature profile: 30, 80, 80, 100�C, die temperature ¼ 100�C, MC ¼ 15%, and a die ∅
4 mm. The products both contain 10% of sugar. Adapted from Brugger et al. [25]. (b) Application

of design of experiment (DOE) in the extrusion simulation of recipe H. Effect of moisture content

(MC) and screw speed (N ) on computed variables, specific mechanical energy SME (left) and
shear viscosity (right). The delimited areas represent the feasible extrusion domain: product
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SME=tm ¼ η: _γ 2 and _γ ¼ Ks:N ð8Þ

where η and _γ , are the dough shear viscosity and shear rate, respectively, tm the

mixing time, and Ks is a characteristic of the mixer which can be determined by

superimposing the specific power consumption curves as a function of N to the flow

curve of the dough η ð _γ Þ, provided it has been determined previously. Shear

viscosity can be represented by the Cross model (Table 1). This model is more

complex than the power law used for starch melts, although it tends to the same at

high shear rates. Using same mixer but different flours, the dough shear viscosity

can be assessed using (8). Conversely, using the same flour, different mixers can be

characterized. Indeed, (8) suggests that the larger Ks the higher the contribution of

shear to dough texture formation. Conversely, it is supposed that low Ks values

indicate a major contribution of stretching (elongational strain), because stretching

is more favorable to gluten network weaving, and intense shearing has been shown

to lead to gluten network degradation [38, 39]. Hermannseder et al. [40] developed

a model involving kinetics equations to describe the torque evolution in

farinograph. This model is a more detailed approach than (8) because it takes into

account the different states of the proteins during the measurement.

However, in industry, rheological properties of the dough are rarely measured.

Dough state is more often described by a whole set of sensory criteria – stickiness,

slackening, consistency, elasticity, for instance. These criteria are not measured

instrumentally but evaluated by the baker. Professional experts relate those criteria

to recipe and operating conditions, which integrates their practical experience and,

sometimes, scientific knowledge. To address such situations, where the lack of

rheological data is supplemented by expert knowledge, alternative modeling tech-

niques can be more relevant. In the case of dough state assessment, qualitative
models were developed to formalize this knowledge and to predict these sensory

criteria from the mixing conditions. Algebra (Q-algebra) was developed for model-

ing in the form of qualitative functions the set of rules used by the experts to assess

the sensory characteristics of the wheat flour dough. It has been used to model the

states of the dough at the end of first mixing and the end of texturing operations, the

two successive steps of mixing [41]. The state of the dough at the end of first mixing

is the only output variable of this step. It is influenced by the characteristics of the

ingredients (percentage flour, water, protein, and pentosan content, for instance).

The state of the dough at the end of texturing (second mixing step) is influenced by

the dough consistency at the start of texturing, by the target temperature at the end

of mixing, and by the mixer settings: the shear velocity between the arm and bowl,

and the specific mechanical energy during texturing. It is defined by the following

descriptors: smoothing velocity SV, smooth aspect SA, extensibility Ext, stickiness

⁄�

Fig. 2 (continued) temperature �190�C to avoid thermal degradation, pressure �20 MPa and

torque �100 N.m for extruder support requirement. Other processing parameters were kept

constant as in (a)

Integration of Basic Knowledge Models for the Simulation of Cereal Foods. . . 11
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Stic, stability Stab, consistency Cons, elasticity Elas, and creamy color CC. The
criteria for describing the behavior of the dough and the bread were selected thanks

to a glossary of terms defining dough quality and bread baking, developed in French

and available on the Web [42]. The terms of language at different levels –

empirical, technological, and scientific – are identified by (1) expressing explicitly

semantic relationships between terms from different levels of knowledge and

(2) accounting for the rheological knowledge that can both describe the behavior

of dough and suggest instrumental methods where only sensory assessments exist.

Expert rules are written as qualitative functions which allow the computation of the

dough state according to the inputs of the operation and the process settings. Radar

plots (Fig. 3), show simulations from a qualitative model where a decrease of SME
has two main effects: (1) decrease of smooth aspect and elasticity and (2) increase

of consistency. Besides practical aspects for dough processing, these results clearly

infer the dough rheological properties because, for instance, it has been shown that

low levels of SME induce an increase of dough viscosity [37]. The KBS has been

validated by comparing the predictions of dough state after mixing with its assess-

ment by expert bakers and using different mixing equipment [43]. The qualitative

functions are rather simple models and are implemented as a KBS with a proper

interface that favors use by professionals. As shown before, they capture the

experts’ knowledge on the main mechanisms governing dough structural changes

during mixing. For these reasons, they can be considered a BKM.

As for extrusion, the software (here the KBS) can be used to screen a wide range

of inputs and to perform a DOE. For instance, Fig. 4 illustrates the common

knowledge that a minimum level of protein is necessary to support more intensive

mixing in order to minimize stickiness. Conversely, at greater protein content, a

larger level of SME is necessary to promote dough elasticity. These trends explain

that a lower energy level (�40 kJ/kg) is used in French breadmaking for mixing

dough of wheat flour with medium protein content (10–11%) and why more intense

mixing processes (SME > 100 kJ/kg), such as the Chorleywood process, are more

adapted for wheat flour with higher protein content [44, 45].

Fig. 3 Examples of the KBS outputs for wheat flour dough mixing: predictions of dough state at

the end of mixing, starting from a standard consistency (350� Cons� 450 UB), a standard dough

temperature (22 � Td � 25�C), an average shear velocity, and a level of specific energy (a)

medium and (b) low. Scale ranges from vvh (very excessive) to vvl (very insufficient)

Integration of Basic Knowledge Models for the Simulation of Cereal Foods. . . 13



For both processes, extrusion and breadmaking, the presented BKMs, based on

rheology and technology, identify SME and average shear rate in the mixer _γ , for
example, in the extruder, as important variables. These variables account for the

transition from solid to continuous medium, and help to predict dough or melt flow.

Fig. 4 Two-dimensional contour plots derived from the KBS computation for simulating dough

mixing, representing (a) dough stickiness and (b) elasticity variations with protein content and

specific mechanical energy for oblique-axis mixer. Adapted from Kansou et al. [43]

14 M. Kristiawan et al.



3 Basic Knowledge Models for Expansion and Cellular

Structure Creation

Expansion covers all the steps during which the volume – and the porosity – of the

dough/melt increase the most, and the cellular structure is created and largely set

(Fig. 1). Imaging methods at different structural scales, especially X-ray micro-

tomography (XRT), are very useful to characterize the final structure. When

dynamics are not too fast, as is the case in breadmaking, the development of the

cellular structure can also be followed. Conversely, the fast kinetics of vapor

expansion at the die outlet prohibits the dynamic approach, as is the case in

extrusion.

Indeed, in this latter case, expansion can be considered as a succession of

different mechanisms occurring in a few fractions of a second: bubbles nucleate

in the melt and grow before they can possibly coalesce and are set, when the melt

becomes glassy, whilst the whole extrudate possibly collapses [46–48]. Given the

complexity and fast kinetics of these mechanisms, few attempts at deterministic

modeling have been found in the literature [49–52]. These models all refer to

uncertainties of the melt rheological properties and bubble number. Clearly, there

is a need to derive BKMs that can be used to model this essential phenomenon.

More recently, using knowledge reasoning from the literature and expertise,

Kristiawan et al. [53] have produced a concept map which provides an overview

of texturing mechanism during extrusion process. This map (Fig. 5) depicts the

relations between input variables (processing variables and rheological properties),

mechanisms of expansion described before, and output variables (foam density ρ*
and anisotropy factor AF). Processing variables are product temperature Tp, mois-

ture contentMC, specific mechanical energy SME, and die geometry. Melt rheology

involves both shear and elongational viscosities. The relations in the concept map

are qualitative: they are expressed by the signs +, positive effect or –, negative

effect. The magnitude of the effect is presented and quantified with a number of

signs. The net effect of one input variable on one output variable is the sum of all

effects between these variables. For instance, it can be seen that shear viscosity

largely affects expansion negatively through its major negative influence on bubble

growth.

As data about elongational viscosity of starchy melts are scarce in the literature

[54–56], it is suggested that the influence of the variable elongational viscosity can

be taken into account by the storage modulus (E0) in the rubbery domain (T > Tg)
because it also reflects elastic property and it has also been shown to take into

account the effect of amylose content on foam expansion [36]. Thereafter, using

the variables presented in the concept map (Fig. 5), given the power law trend for

the variations of VEI with shear viscosity [46, 50, 57], and in agreement with the

model of bubble growth in a viscous fluid [58], a mathematical expression of a

phenomenological expansion model that links the bulk expansion indices to

melt shear viscosity can be proposed:
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VEI ¼ αv
η

η0

� �nV

and SEI ¼ αs
η

η0

� �nS

ð9Þ

where VEI and SEI are the volumic and radial (sectional) expansion indices,

respectively, which were accurately defined by Alvarez-Martinez et al. [59]. The

model parameters (αi and ni) take into account the effect of processing variables and
melt storage modulus (E0(T > Tg)) according to the following equations:

αi ¼ bi0 MC=MC0ð Þbi1 Tp=Tp0

� �bi2 SME=SME0ð Þbi3 E0=E
0
0

� 	bi4
L=Dð Þbi5 ð10Þ

ni ¼ bi6 MC=MC0ð Þbi7 Tp=Tp0

� �bi8 SME=SME0ð Þbi9 E0=E
0
0

� 	bi10
L=Dð Þbi11 ð11Þ

The processing variables with subscript 0 aim to obtain dimensionless values.

The term L/D represents the deformation history in the die. Because of flow

Fig. 5 Concept map of qualitative reasoning of vapor expansion of starchy and cereal products

processed by extrusion cooking [53]. For instance, water (MC) favors the creation of bubbles by

nucleation, which moderately decreases density, leading to a positive influence on expansion
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orientation and melt internal stresses, expansion is often anisotropic, which is

important in determining the cellular structure [30, 60]. The anisotropy factor AF
is then defined by the following relation between longitudinal (LEI) and radial

expansion (SEI):

AF ¼ LEI=SEI0:5 ¼ VEI=SEI3=2 ð12Þ

Hence, for isotropic expansion, LEI¼ SEI0.5, AF ¼ 1. Using the data of mean cell

size and mean cell wall size obtained from granulometry analysis of X-ray tomo-

graphy images, the fineness of the cellular structure can be defined by

F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MCS
MCS

� 	2

þ MWT
MWT

� 	2

2

vuut
ð13Þ

where MCS is the mean cell size, MWT the mean cell wall thickness, andMCS and

MWT their respective average values in the experimental data set, chosen equal to

1 mm and 250 μm, according to Babin et al. [36] and Robin et al. [30]. With such a

definition, the larger F (F > 1), the finer the cellular structure (smaller cells and

walls). Conversely, the coarser structures (large cells and walls) are obtained for

low F values (F < 1). Fineness has been shown to be negatively correlated to

anisotropy (AF): finer cellular structure is favored by longitudinal expansion

[30, 36, 60, 61]. This result allows the prediction of the cellular structure from

the knowledge of macroscopic expansion indices (VEI, SEI). Hence, using (9)–(13),
the variations of SEI and F with viscosity and temperature, for instance, can be

computed. This is illustrated by simulations achieved by using extruder configur-

ation and operating conditions described in Robin et al. [30], results being presented

as contour plots (Fig. 6a–d). Clearly, moisture, between 0.2 and 0.24, and viscosity,

between 100 and 500 Pa.s, have a negative influence on sectional expansion, which

decreases between 2 and 8. A temperature decrease from 170�C to 135�C led to the

same result. These trends could be foreseen qualitatively from the concept map

(Fig. 5) but they are now evidenced quantitatively. In complement, the computation

of the fineness F clearly showed an opposite trend to that of radial expansion. These

results are well in line with those found experimentally.

Assuming that product development would target low density (high expansion)

and fine cellular structure for optimum texture properties (crispiness among others),

these results suggest that a compromise has to be found. For this purpose, simu-

lation can be useful. To address the simultaneous optimization of these two

responses, graphical optimization (overlay contour plots) can be performed by

superimposing the contour plots of each response, in our case SEI and F, as a

function of two input variables, the other variables being held constant. By applying

the constraints to the responses and input variables, the shared area of the overlaid

plots can be obtained as a feasible region of extrusion variables as shown by

example with the overlaid contour plot for wheat flour extrusion (Fig. 7). Given
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the region of extrusion variables selected, it is possible, in turn, to compute the

processing variables leading to this region, using the simulation software of extru-

sion described in the preceding section. Although this approach may not lead to

accurate optimum conditions, it should help to delineate a realistic domain where

experimental trials could be successfully achieved for this purpose.

Whereas several mechanisms interact in the case of expansion by extrusion, in

breadmaking, bubble growth may be considered as the main mechanism responsi-

ble for the creation of cellular structure [1]. This is because of the production of gas

by yeast activity during dough fermentation, which is retained thanks to the exten-

sional properties of the starch-gluten matrix [62]. This mechanism may be

described initially by the growth of a single bubble in a viscous medium [58] and

adapted to the specific case of wheat flour dough to express the growth rate of the

bubble:

Fig. 6 Simulation of the effect of extrusion variables on expansion (SEI) and cellular fineness (F)
of wheat flour extruded under conditions used by Robin et al. [30]: contour plots representing the

effects of moisture content and (a, c) melt viscosity, other input variables being constant (Tp
137�C, SME 87 kWh/ton), and (b, d) product temperature at the die exit (Tp), other input variables
being held constant (SME 87 kWh/ton, Viscosity 100 Pa.s). The variables, such as viscosity and

SME, at the die exit, were computed using Ludovic® software. The melt storage modulus was

approximated using the data of Robin et al. [35]. The fineness (F) was computed from predicted

AF using relation: F ¼ 0.91 AF + 0.53 (R2 ¼ 0.67). Adapted from Kristiawan et al. [53]
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1

r

dr

dt
� Pv

ηE
ð14Þ

r being the bubble radius (m), Pv the internal gas pressure of the bubble (Pa), and ηE
the bi-extensional viscosity of the matrix (Pa.s), defined by the power law model

(Table 1). Equation (3) allows one to check that the strain rate value for bubble

growth in the dough is about 10�3/s. Equation (14) is the simplest expression of the

mechanism. It should be completed by gas diffusion from dough matrix to bubble,

which leads to more complex solutions and involves more uncertainty about the

dough properties and bubble number [63–65]. However, these solutions can be

validated in a pilot plant for the supervision of the dough fermentation process [66].

Fineness (F)
SEI

Fig. 7 Examples of finding

a compromise between

expansion and cellular

fineness of wheat flour

extruded foam, using an

overlaid contour plot

technique. The hatched
area indicates the optimum

region for extrusion of

wheat flour according to the

goals: SEI ¼ 3 and fineness

(F) ¼ 1. The constraints on

the response are

2.5 < SEI < 3.5 and

0.85 < F < 1.25 and on the

extrusion variables:

0.2 < MC < 0.24,

125 < Tp < 165�C,
80 < SME < 200 kWh/ton,

100 < η < 500 Pa. s, and

3 < E0 < 11 MPa
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Bubble growth in fermenting dough has been studied by X-ray tomography

(XRT) which allows the quantifying of the distribution of gas cells width and cell

wall thicknesses, their average valueMCS andMWT, and their kinetics [67]. Results
showed that, after simple bubble growth, bubbles begin to connect to each other and

possibly coalesce, which increases the heterogeneity of cellular structure [68]. In

the second stage, after simple bubble growth, (14) is no longer valid and the

prediction of the cellular structure requires more sophisticated models based on

FEM-3D [69] to take bubble interaction into account. However, this approach

requires extensive computing times and there are still uncertainties regarding rheo-

logical properties and initial cell numbers. Conversely, a BKM for dough ferment-

ing can be built thanks to the Gompertz model [70] for porosity P kinetics, and an

exponential decay for the loss of dough stability, S(t), defined by the ratio of the

dough height H to its maximum width Lmax:

P tð Þ ¼ a ∙ exp �exp � b ∙ e
a

t� cð Þ
� �� �

þ d and S tð Þ

¼ H

Lmax
tð Þ ¼ a0 ∙ exp � t

b0
� 	

þ c0 ð15Þ

t being the proofing time, e¼ exp. (1) and parameters a, b, c, d, a0, b0, c0 are fitted to
experimental data obtained by simple imaging methods at macroscopic scale

[71]. Parameter c is the critical time defining the end of simple bubble growth,

inversely correlated to the growth rate predicted from (14). Besides c, an important

parameter is the characteristic time, b0. The lower the characteristic time b0, the
more rapidly the dough spreads and the less stable it is. Extensive spreading or loss

of stability is clearly undesirable and can be associated with internal collapse

caused by gas cell coalescence [62, 72, 73].

In analogy with the approach described for biphasic media such as emulsions or

liquid foams [74], an apparent capillary number is available to integrate the

influence of the various levels of organization of fermented dough envisioned by

Turbin-Orger et al. [68] as a triphasic medium (gas bubbles /liquid films/starch-

gluten matrix):

Ca∗ ¼ τ:MWT2
� �

= σ :MCSð Þ ð16Þ

where τ is the elongational stress exerted by the gas cell on the starch/gluten matrix,

derived from the knowledge of the elongational viscosity, with strain rate _ε :

τ ¼ KE: _εð Þm�1
for aconstant strainεb ¼ 1 ð17Þ

The values of the consistency index KE and the flow behavior index m are

reported in Table 1 [37] for the same dough compositions at a strain value εb ¼ 1

and the average strain rate value _ε ¼ 2.10�4/s, in accordance with (14) [68]. They
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can be determined by measurements performed with a uniaxial compression test

under lubricated conditions [75, 76].

The surface tension σ of dough liquor, taken as a model for liquid films

separating bubbles, varies from 35 to 41 mN/m, according to the content of

arabino-galactan-protein [77]. The values of the mean cell wall thickness (MWT),
taken here as the value of gluten filament thickness, andMCS, chosen as the average
radius of gas cells, are determined by XRT and the ratio MWT2/MCS defines the

cellular structure. Ca* has been shown to be linked to the characteristic stability

time b0 defined in (15), according to the relation

b0 ¼ a00 : Ln Ca∗ þ b00 ð18Þ

with a00 ¼ 3.07 and b00 ¼ 26 min as defined by experimental values found by

Turbin-Orger et al. [68]. Equations (16)–(18) can be considered as BKM for

fermenting dough. Using these equations, it is possible compute the cellular

structure ratio for various values of extension stress and stability time (Fig. 8),

taking liquid surface tension constant σ ¼ 40 mN/m. This value should be modified

in the case of addition of surface active agents. These curves show that, for the same

value of cellular ratio, dough is more stable because it leads to greater stability time

for higher τ values. Because cellular structure is mainly acquired during ferment-

ation, and set during baking, they show that it is possible to assess the cellular
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Fig. 8 Variations of fermented dough cellular structure ratio, defined by MWT2/MCS, mean cell

wall thickness of gluten filaments to mean gas cell size, respectively, with dough extensional stress τ
and macroscopic stability time b0, for a constant value of dough liquor surface tension σ ¼ 40mN/m.

τ is computed for a constant strain ¼1 and constant strain rate ¼ 2.10–4/s and b0 is defined by (15)
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structure once dough rheological measurements and macroscopic imaging of

fermenting dough follow-ups are performed.

4 Example of the Use of BKMs for Process Integration:

From Divided Solid to Cellular Structure

Process integration can be achieved by coupling BKMs. This is achieved for

extrusion by coupling the expansion model with simulation software. In the case

of breadmaking, BKMs can be integrated to couple the mixing and fermenting

operation. By assuming that rheological properties are set after the mixing stage,

and not modified during proofing, one may predict, for a specific range of dough

composition, the dough porosity and stability during proofing by simply measuring

specific energy after mixing, more precisely, specific mixing power Ps and time tm
(SME � Ps.tm), and apply the following regression model [78]:

α ¼ k0 ∙
Ps �min Psð Þ

max Psð Þ �min Psð Þ
� �k1

∙
tm �min tmð Þ

max tmð Þ �min tmð Þ
� �k2

ð19Þ

α being any coefficient of (15). The three parameters k0, k1, and k2 have been

determined by fitting the values of the α coefficients to Ps and tm for a set of mixing

conditions previously defined [33]. Subsequently, it is possible to draw the vari-

ations of the characteristic times c and b0 as functions of Ps and tm for a given

composition of wheat flour dough (Fig. 9).

From these curves it is possible to understand the mixing strategies to obtain

dough with desirable porosity and stability, and hence orientate cellular structure

using Ca* rationale, during fermentation. For instance, Fig. 9a clearly shows that

intense mixing (high SME) leads to rapid volume increase (low c values) which is

typical of industry requirements. These conditions may lead to rapid loss of

Fig. 9 Contour plots of characteristic times of (a) porosity and (b) stability from (15) as function

of mixing time and specific power, using (19) and experimental data available from Shehzad et al.

[33] and Turbin-Orger et al. [37]
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stability, but more homogeneous cellular structure, which is solved by fermenting

dough in pans. Conversely, mixing at lower SME (mild conditions, craft bakery)

leads to longer dough development and larger stability time to favor flavor devel-

opment and structure heterogeneity, characteristic of the traditional “baguette.”

5 Conclusion

In this chapter, Basic Knowledge Models for cereals processing, operations have

been defined, focusing on the transition to continuous medium and on the creation

of cellular structure. By using such models, food engineers can design cereal food

products and predict their texture properties. For this purpose, the available tech-

nological and scientific knowledge for specific process should be integrated when

the use of models based on partial differential equations is still difficult. Subse-

quently, they should be implemented in computer tools such as a KBS, developed

for the modeling of the flour mixing operation, or Ludovic®, software for twin

screw extrusion, as exemplified in this chapter. Finally, they could be applied to a

wide domain of compositions, provided data on product rheological properties are

available.

Such an approach would enable one to cope with the sustainability challenges in

the food industry, by contributing to an eco-design of food processes and products.

It would also help to design products with improved nutritional properties. For

instance, the dietary fiber increase and protein reinforcement in recipes greatly

modify the rheological behavior of dough and melts, slightly changing the mech-

anisms of divided/continuous medium transition and cellular structure creation

[79]. Thus the use of integrated models would help one to design products with

target nutritional and sensory properties, provided their porosity and cellular struc-

ture are precisely characterized. Subsequently, the pathways for reaching these

targets could be defined according to the so-called reverse engineering approach.
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Applications in Primary Food Processing
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Abstract Data on the hazards involved in the primary steps of processing cereals,

fruit and vegetables, milk and milk products, meat and meat products, and fats and

oils are compiled with a wide-ranging literature survey. After determining the

common factors from these data, a general FMEA template is offered, and its use

is explained with a case study on pasteurized milk production.
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1 What Is Primary Processing?

Transformation of inedible raw ingredients into foods for human consumption is

achieved through primary, secondary, and tertiary processing. Primary processing
is the conversion of the inedible raw products into food ingredients. Growing,

raising, cultivation, slaughtering, harvesting, storing, processing, packing, and

transportation are among the basic stages of primary processing. Agriculture of

wheat and production of flour from it is an example of primary processing. The

products from primary processing are either send to the market for retail or to the

factories as ingredients for secondary or tertiary processes. Secondary processing
involves the conversion of food ingredients into edible foods. Different types of

food ingredients from the primary processes are combined at this stage of pro-

cessing. Secondary processed foods are prepared either at home or at the industrial

level. Bread making at home or in a factory starting with flour, yeast, salt, and other

ingredients is an example of secondary processing [1]. Baklava is a traditional

sweet pastry made in Turkey. Its ingredients may include wheat flour, eggs, milk,

water, semolina, sugar, lemon juice, minced pistachio nuts, and butter. Bringing

these ready-to-use ingredients for the baklava making process into a pastry shop or

factory is another typical example of secondary food processing [2]. Tertiary
processed foods are commercially prepared foods such as ready-to-eat pouched,

boxed, canned, or frozen meals or TV dinners. Besides industrial manufacturing,

hotel kitchens and catering companies, including air travel food service providers

are mostly involved with tertiary processing. In a tertiary production process, food

may be served by the people providing the service after reconstituting or reheating.

Products from primary processes make up the major part of our diet as they are

either consumed raw or used as ingredients in secondary and tertiary processes.

Failures in primary processing might cause widespread health problems. Globali-

zation of trade and travel may lead to rapid distribution of unsafe or contaminated

foods to great numbers of consumers and increase the risk [3, 4]. Chemical and

microbial contamination as exemplified in studies by Borgen et al. [5] and Fenlon

et al. [6], including pesticides [7, 8], allergens [9], and other biological hazards as

exemplified by Bassett and McClure [10], are among the threats challenging

primary processing.

2 What Is FMEA?

In a food plant the production line is integrated with quality control, HACCP

(Hazard Analysis Critical Control Point), and FMEA (Failure Mode Effect Ana-

lysis) practices to assure production of safe food. Quality assurance has become

highly efficient with the advanced development of equipment and measurement

techniques of quality attributes and statistical techniques including sampling
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methods and quality control charts [11]. Safety and high quality are both offered by

the food industry to satisfy their consumers [12].

Information provided by Uljas and Ingham [13] about how and to what extent

food safety is achieved in apple cider production is highly significant, as it reveals

inefficiencies of processes carried by small-scale manufacturers without taking

appropriate measures. The fundamental principles of the HACCP help to locate

the critical points on the process flow diagram, where the loss of control may have

heath-threatening consequences [14–18]. There is a possibility that a risk or threat

may escape the HACCP plan, especially when there is no obvious relationship

between risk and physical, chemical, and microbiological hazards. FMEA may be

applied as an additional systematic preventive procedure to eliminate potential

failures, to assess their causes and effects, and to improve the reliability of the

products to address customer and government requirements. The FMEA methodo-

logy has been successfully employed to assess risk in the production processes of

corn curls [19], strudels [20], smoked trout [21], Turkish delight [22], powdered red

pepper [23], salmon [24], and dairy products [25]. Although HACCP and FMEA

have similarities, they differ significantly in operation: HACCP aims at reducing

the risks at the critical points whereas the practitioners applying FMEA methodo-

logy divide the manufacturing process into phases and then detect the potential

failures of each phase individually. The basic steps in FMEA methodology include

(1) drawing a process flow diagram, (2) identifying the potential failure modes,

(3) identifying possible effects and causes of each failure mode, (4) assessing the

risk level of each failure mode, (5) suggesting corrective actions to reduce and

eliminate the potential failures; and (6) re-designing and testing the risk level of the

corrected design [20, 23–29]. Quantitative evaluation of the risks is the main

advantage of FMEA methodology over the other risk analysis methods. The risk

levels of the potential failures are identified by calculating a risk priority numbers

(RPN) from the frequency of the occurrence of each failure (O), seriousness of the

failure to the health of the consumers (S), and the possibility of detecting the failure

(D) before consumption. Epidemiological studies, previous observations, and the

best expert opinion from the scientific literature regarding similar ingredients or

processes that share similar technology for production are considered when esti-

mating the values of S, D, and O [11, 17]. The likelihood of each failure mode is

identified (O) on a scale of 1–10. The highest rank indicates the greatest probability

of the failure to occur. The possibility for detecting the failure prior to occurring

(D) and the seriousness of the failure to the consumer (S) are also rated on a scale of

1–10, where 10 is the least likely chance of detecting the failure and the highest

level of the severity of the failure, respectively. Then the risk priority number

(RPN) is calculated for each failure by multiplying the values of the variables

(O)� (S)� (D). The risk priority numbers higher than 100 are considered as the

potential failure modes which require corrective actions. Possible corrective actions

are suggested for those potential failure modes, and the RPNs are recalculated to

assess the influence of the corrective actions. This chapter offers a systematic

approach for quantification of the risk in primary processing of five major groups

of food as defined by the USDA [30] – cereals, fruit and vegetables, milk and
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milk products, meat and meat products, fats and oils – to improve their safety and

quality. Seeds and nuts are analyzed together using the same procedure as cereals

because their primary processes are similar. The most common primary processing

steps of each group are shown in Fig. 1.

Table 1 is an FMEA template for the most common steps in the primary
processing of the major food groups with the potential failure modes, their causes,

and suggested corrective actions. For better understanding, a sample FMEA table

has been prepared for pasteurized milk production (Fig. 2) by using the real data

obtained in a recent study in Turkey (Table 2) [25]. Model Pareto graphs (Fig. 3)

have been constructed to identify the higher risk level stages and to assess the

improvements in the process after implementing the corrective actions.

3 Potential Biological Failure Modes, Causes, Effects,

and Preventive Actions in Primary Food Processing

Food poisoning caused by biological contaminants is a common, usually mild, but

sometimes deadly, illness [31, 32]. Pathogens were identified as the basic reason for

the 14 million food-borne diseases, 60,000 hospitalizations, and 1,800 deaths

annually in the United States [33]. Contamination of fruit and vegetables [34, 35]

and meat [36–38] with microorganisms is a common problem in many countries.

Some pathogenic microorganisms are particularly important in the food industry

because they occur frequently and/or cause the most serious health problems. For

example, Clostridium perfringens is abundant in the environment and causes severe

CULTIVATION or HUSBANDRY 

HARVESTING, SLAUGHTERING or MILKING

TRANSPORTATION AND STORAGE

PACKAGING

CEREALS
•Cleaning
•Dehulling 
and soaking

•Crushing
•Milling
•Sieving

FRUIT AND VEGETABLES
•Cleaning and washing
•Cutting and slicing

FATS AND OILS
• Cleaning and 

washing
• Crushing
• Centrifugation
• Filtration

MILK AND MILK 
PRODUCTS
•Cleaning and 
filtration

•Heat treatment

MEAT AND MEAT 
PRODUCTS
•Deboning
•Cutting / dicing

Fig. 1 Schematic

description of the common

steps for the primary

processing of the major

food groups
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abdominal cramps and diarrhea when ingested. Some strains can cause more severe

illnesses and even death. Clostridium botulinum toxin causes paralysis and death if

not treated immediately and properly. Water diarrhea, abdominal cramps, nausea,

and pain are the basic symptoms of poisoning caused by Bacillus cereus toxins

[33]. Food contaminated with Salmonella may cause diarrhea, fever, vomiting, and

abdominal cramps 12–72 h after ingestion. In severe cases of diarrhea the consumer

may be dangerously dehydrated. In 1998, after excluding unreported cases, 12,330

food poisoning incidences involving Brucella ssp, 120 cases involving Clostridium
botulinum, 30,269 cases involving Salmonella typhi, and 1,457 cases involving

Shigella ssp. were reported in Turkey [29].

At the cultivation or husbandry stage of primary processing (Fig. 1), foods may

be contaminated with microorganisms coming from water and soil, wild and

domestic animals, untreated manure, sick animals, and cross contamination

from inadequately cleaned or improperly stored field equipment (Table 1)

receiving the 
raw milk

filtration

thermisation

cooling

cold storage

clarification waste

pasteurization

filling packaging 
material 

cold storage 
prior to 

transportation 

Fig. 2 Stages of

pasteurized milk processing
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Table 2 FMEA implementation of corrective actions to pasteurized milk production

Common biological

failures and their cause

Before corrective

actions

Corrective actions

After corrective

actions

O S D RPN O S D RPN

Processing stage: receiving of raw milk

High number of patho-

gen (E. coli O157:H7,
Salmonella spp., Myco-
bacterium tuberculosis,
Shigella dysenteria, etc.)
in milk caused by

improper handling

8 10 9 720 Supplier must be reli-

able. Immediate cooling

below 5�C is required

after receiving. Cold

chain must be kept from

farm to receiving. The

pH and/or acidity con-

trols must be done for

each batch. Periodic

pathogen analysis must

be done for verification

3 10 3 90

High number of spoilage

microorganisms in milk

caused by improper

handling before and

during receiving

9 7 5 315 Supplier must be reli-

able. Immediate cooling

below 5�C is required

after receiving. Cold

chain must be kept from

farm to receiving. The

pH and/or acidity con-

trols must be done for

each batch

4 7 2 56

Isolation of Staphylo-
coccus spp. and Strepto-
coccus spp. in milk

which might be the

indication of animals

with mastitis disease

5 8 5 200 Periodic veterinary con-

trols on fields are

required. Somatic cell

count must be done

regularly

2 8 2 32

Parasites (Protozoa –
Cryptosporidium spp.
etc.) in milk from

unhealthy animal

sources

3 8 8 192 Supplier must be reli-

able. Parasite analysis

must be carried out reg-

ularly. Periodic veteri-

nary controls on fields

are required

2 8 5 80

Processing stage: filtration

Microbiological con-

tamination caused by

inadequate cleaning of

equipment, utensils or

connectors

5 8 6 240 Proper cleaning proce-

dure must be applied.

Periodic microbiological

(swab) controls must be

carried out for

verification

2 8 4 64

Microbiological con-

tamination caused by

inadequate, for example,

manual, cleaning of the

equipment

5 8 4 160 Proper cleaning proce-

dure must be applied.

Periodic microbiological

(swab) controls must be

carried out for

verification

2 8 2 32

(continued)
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Table 2 (continued)

Common biological

failures and their cause

Before corrective

actions

Corrective actions

After corrective

actions

O S D RPN O S D RPN

Microbiological con-

tamination from inap-

propriate cleaning

materials, for example,

sponge

6 7 2 84 Not required – – – –

Microbiological con-

tamination (E. coli
O157:H7, Shigella spp.,
Salmonella spp.) attracts
pests such as flies

7 9 3 189 The milk receiving

facility must be isolated.

Effective pest control

management is required

2 9 3 54

Processing stage: thermisation

Microbiological con-

tamination caused by

inadequate cleaning of

equipment, utensils or

connectors

5 8 6 240 Proper cleaning proce-

dure must be applied.

Periodic microbiological

(swab) controls must be

carried out for

verification

2 8 4 64

Microbial growth caused

by improper process

time and/or temperature

6 8 5 240 The process control

must be computerized.

Thermometers and

probes must be cali-

brated regularly.

Approved maintenance

procedures must be

followed. Staff must be

trained about food safety

and controlling the

system

1 8 1 8

Processing stage: cooling

Microbiological con-

tamination caused by

inadequate cleaning of

equipment, utensils or

connectors

5 8 6 240 Proper cleaning proce-

dure must be applied.

Periodic microbiological

(swab) controls must be

carried out for

verification

2 8 4 64

Microbial growth caused

by improper process

time and/or temperature

6 8 5 240 The process control

must be computerized.

Thermometers and

probes must be cali-

brated regularly.

Approved maintenance

procedure must be

followed. Staff must be

trained about food safety

and controlling the

system

1 8 1 8

(continued)
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Table 2 (continued)

Common biological

failures and their cause

Before corrective

actions

Corrective actions

After corrective

actions

O S D RPN O S D RPN

Processing stage: transportation for cold storage

Microbial growth caused

by increased time lapse

between processes

6 6 3 108 Staff training is

required. Standard food

flow directives must be

obeyed

2 6 2 24

Microbial contamination

caused by mishandling

4 8 7 224 Staff training on per-

sonal hygiene and

washing hands is

required. Personal

hygiene control must be

done regularly

2 8 3 48

Processing stage: cold storage

Microbiological con-

tamination caused by

improper storage

conditions

5 8 6 240 Adequate facilities for

hygienic storage must be

provided. Proper

cleaning procedure must

be applied. Periodic

microbiological (swab)

controls must be carried

out for verification

2 8 4 64

Microbial growth caused

by improper storage

temperature

6 7 6 252 A cooler or heat insu-

lated tank must be

employed. The inner

temperature of the tank

must be measured regu-

larly. Thermometers/

probes for temperature

measurement must be

calibrated regularly

2 7 2 28

Processing stage: clarification

Microbiological con-

tamination caused by

inadequate cleaning

3 8 4 96 Not required – – – –

Processing stage: pasteurization

Microbial growth caused

by temperature fluctua-

tion during the process

6 6 3 108 Staff training is

required. Standard food

flow directives must be

obeyed. Process control

is required

2 6 2 24

Processing stage: packaging

Microbiological con-

tamination caused by

inappropriate practices

7 8 7 392 Process control is

required. Periodic

microbiological (swab)

controls must be carried

out for verification

2 8 3 48
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Table 2 (continued)

Common biological

failures and their cause

Before corrective

actions

Corrective actions

After corrective

actions

O S D RPN O S D RPN

Processing stage: cold storage after packaging

Microbial growth caused

by increased time lapse

between processes

6 6 3 108 Staff training is

required. Standard food

flow directives must be

obeyed.

2 6 2 24

Common chemical

failures and their causes

Before corrective

actions

Corrective actions

After corrective

actions

O S D RPN O S D RPN

Processing stage: receiving of raw milk

Veterinary drug residues

in milk caused by

improper veterinary

practices

7 8 7 392 Supplier must be reliable.

Antibiotics analysis must

be carried out for every

batch with antibiotic kits

2 8 2 32

High level of aflatoxin in

milk caused by improper

agricultural practices and

contaminated feed used

on the field

5 8 9 360 Supplier must be reliable.

Total aflatoxin analysis

must be carried out for

each batch with aflatoxin

kits

2 8 2 32

Chemicals residues in

raw milk caused by adul-

teration of raw milk

(alkaline addition)

5 8 7 280 Supplier must be reliable.

Alkaline analysis must be

carried out for each batch

3 8 3 72

Pesticide residues in milk

from contaminated feed

and/or water (dioxins,

organophosphates, etc.)

3 8 8 192 Supplier must be reliable.

Periodic pesticide analy-

sis must be carried out

2 8 5 80

Processing stage: filtration

Detergent and/or disin-

fectant residues originat-

ing from the filtration

equipment and utensils

caused by inadequate

rinsing

4 7 6 168 Proper cleaning proce-

dure must be applied.

Periodic pH and/or elec-

trical conductivity tests

must be carried out in the

final rinse water of the

equipment

2 7 1 14

Processing stage: thermisation

Detergent and/or disin-

fectant residue from the

thermization equipment

and utensils caused by

inadequate rinsing (CIP

cleaning)

4 7 6 168 Proper cleaning proce-

dure must be applied.

Periodic pH and/or elec-

trical conductivity tests

must be carried out in

final rinsing water of the

process

2 7 1 14

Processing stage: cold storage

Detergent and/or disin-

fectant residue caused by

4 7 6 168 Proper cleaning proce-

dure must be applied.

2 7 1 14

(continued)
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Table 2 (continued)

Common chemical

failures and their causes

Before corrective

actions

Corrective actions

After corrective

actions

O S D RPN O S D RPN

improper storage of

chemicals (CIP cleaning)

Periodic pH and/or elec-

trical conductivity tests

must be carried out the in

final rinsing water of the

process. Detergents and

sanitizers must be stored

in a separate area away

from the foods

Processing stage: clarification

Detergent and/or disin-

fectant residue from the

clarification equipment

and utensils caused by

inadequate rinsing

4 7 6 168 Proper cleaning proce-

dure must be applied.

Periodic pH and/or elec-

trical conductivity tests

must be carried out in

final rinsing water of the

process

2 7 1 14

Processing stage: pasteurization

Detergent and/or disin-

fectant residue from the

pasteurization tank

caused by inadequate

rinsing (CIP cleaning)

4 7 6 168 Proper cleaning proce-

dure must be applied.

Periodic pH and/or elec-

trical conductivity tests

must be carried out in

final rinsing water of the

process

2 7 1 14

Processing stage: packaging

Chemical residues from

the packaging material

5 8 8 320 Food grade materials

must only be used. Sup-

plier must be reliable.

Quality control of pack-

aging materials must be

done periodically

2 8 5 80

Common physical

failures and their causes

Before corrective

actions

Corrective actions

After corrective

actions

O S D RPN O S D RPN

Processing stage: receiving

Physical contaminants in

raw milk caused by

improper handling and

agricultural practices

(glass, metal, insect parts,

etc.)

5 6 2 60 Not required – – – –

Processing stage: filtration

Physical contamination

from torn or damaged fil-

tration equipment

4 4 3 48 Not required – – – –

(continued)
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[32, 38–41]. Johnsen et al. [42] identified horizontal transmission and maintenance

of Escherichia coli O157:H7 on the farm in water, soil, and manure as the cause of

the outbreaks. The producers may obtain water from rivers, underground water

wells, surface water reservoirs, and municipal water mains. Several preventive

actions can be taken to reduce the risk of contamination with pathogenic micro-

organisms from these sources (Table 1). Uncontrolled sources of water must be

avoided. The microbiological quality of wastewater is usually very poor and hence

it requires intensive treatment and control prior to use. Animal fecal contamination

and run-off are the major risks in agricultural surface water sources. Reservoirs and

wells must be properly constructed, isolated, and protected. Chlorination, filtration,

ozone treatment, and solar irradiation are also suggested as possible treatments to

reduce the number of pathogenic microorganisms in livestock drinking water and

irrigation water [43]. Water is used at different stages of primary processing for

cooling or washing food, equipment, and utensils. Recycling the wash water may

cause microbial contamination [44, 45]. Getting water from the public water system

Table 2 (continued)

Common physical

failures and their causes

Before corrective

actions

Corrective actions

After corrective

actions

O S D RPN O S D RPN

Inadequate filtration

caused by torn or dam-

aged filtration equipment

6 4 3 72 Not required – – – –

Processing stage: transportation for cooling

Contamination caused by

improper practices during

processing

5 4 6 120 Staff training is required.

Protective gear (gloves,

arm covers, etc.) must be

provided and used. Per-

sonal hygiene and prac-

tices must be strictly

controlled

2 4 5 40

Foreign materials from

the environment

6 5 4 120 Proper cleaning proce-

dure must be applied.

Environment must be free

from waste and pests. The

sanitary conditions of the

surroundings must be

controlled regularly

2 5 3 30

Processing stage: clarification

Impurities caused by

inadequate clarification

5 6 3 90 Not required – – – –

Processing stage: packaging

Physical contaminants or

small pieces from the

packaging materials

and/or lids

6 5 6 180 Supplier must be reliable.

Staff training is required.

Quality control of pack-

aging materials and lids

must be done periodically

3 4 3 36
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and testing its microbial quality regularly may be the most feasible solution to

water-borne biological contamination.

Pathogenic microorganisms such as E. coli O157:H7, Salmonella, and Campylo-
bacter in organic fertilizers may be sources of pre-harvest contamination if they are

not adequately treated before application [46]. They may directly or indirectly

(through the soil and water) introduce microorganisms onto the foods. UV irradi-

ation, pasteurization, drying, alkali digestion, or combinations of these are the

main treatment methods used to decrease the pathogenic microorganisms in organic

fertilizers. Modification of the animal diet has also been shown to decrease the

number of pathogenic microorganisms in organic fertilizers [38]. The type of fertil-

izer, methods and frequency of application, and the time lapse between fertilizer

application and harvesting must be controlled to decrease the risk of contamination

[38, 47]. Fertilizers should not be stored near the growing location and run-off must

be controlled to avoid soil contamination.

Farms should not be close to areas where land activities may contaminate the

products and the soil. Domestic animals and wild animals may carry pathogenic

microorganisms to crops and livestock (Table 1). They should therefore be

Fig. 3 Pareto diagrams for

total risk classification,

including chemical,

physical, and biological

risks, of pasteurized milk

processing. (a) Prior to

corrective actions. (b) After

corrective actions
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excluded from fields and water sources. Direct or indirect contamination risk would

be high in agricultural areas if they are close to livestock operations. Buffer land

between the livestock operation and agricultural production areas helps to reduce

the risk. Many animal diseases can pose a risk to consumers via the food chain

(Table 1). For example, bovine spongiform encephalopathy, also known as mad

cow disease, brucellosis, and bird-flu can cause severe food-borne illness among

consumers. Standards of animal management practices during transportation, feed-

ing, housing, and husbandry can help to decrease the risk of spreading food-borne

diseases. Proper field sanitation also ensures that consumers are protected from

food-borne illnesses. For example, unsanitary milking conditions and unhealthy

animals are the main sources of pathogenic microorganisms such as Staphylococcus
ssp., Streptococcus ssp., Campylobacter spp., Listeria monocytogenes, E. coli,
Mycoplasma spp., Mycobacterium tuberculosis, Cryptosporidium, Cyclospora,
and Toxoplasma in raw milk [25]. Similarly, E. coli O157:H17 can cross-

contaminate beef carcass during slaughtering if the process is not carried out in

approved facilities. Poor management of wastes in the field can significantly

increase the risk of food contamination. Fields must be free of litter, trash, animal

feces, standing water, and food waste (Table 1) [48].

Equipment coming into direct contact with foods is another primary source of

biological contamination. Clean in place (CIP) techniques may be used in the

cleaning of closed systems such as pipelines, pasteurization equipment, and storage

and process tanks (Table 1). Manual cleaning techniques may be used for small

utensils and equipment. The CIP technique poses lower biological failure risks

compared to manual cleaning, which requires more human involvement. Staff must

be educated on implementing the appropriate cleaning, sanitizing, and handling

procedures for all equipment and utensils, such as harvest bins, harvesting equip-

ment, pasteurization tanks, filters, utensils, and packaging materials. Equipment

and utensils used during primary processing should be maintained in good condi-

tion. The proper maintenance recommendations by the manufacturers must be

followed. For example, malfunctioning equipment used in the process of removing

animals’ intestines may cause contamination of personnel and equipment with feces

and blood, which may eventually cross-contaminate the food. Timeworn equipment

and utensils that cannot be kept in good hygienic conditions must be discarded [25].

Wrong temperature settings or temperature fluctuations during slaughtering,

milking, processing, storage, and transportation may contribute to the growth of

bacteria (Table 1). Most microorganisms grow fast in high-risk foods at temper-

atures between 5 and 60�C, and therefore high-risk foods should be kept out of this

temperature range. Milk, meat, and fresh produce must be cooled rapidly as soon as

possible after milking, slaughtering, and harvesting. Temperatures of the storage

units, refrigerators, and freezers need to be checked regularly with an appliance

thermometer. Product-specific process design and control are very important to

minimize the risk of microbial growth and the growth of spore-forming micro-

organism in foods. Sanitary conditions, humidity, and temperature of the environment

must be optimized, especially during storage and transportation [49–52]. Under-

processing or improper process design may increase the risk of food contamination.
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Spore-forming bacteria such as Clostridium perfringens, Clostridium botulinum,
and Bacillus cereus are among the main concerns in different food groups as they

produce very harmful toxins when the food is subject to inappropriate conditions.

Under-processing may promote growth of vegetative cells from the spores as soon

as conditions become favorable. This problem occurs mainly during storage and

transportation of canned and vacuumed meat and vegetables [53–55].

Conditions during transportation between the processing stages, such as trans-

portation from the field to the processing unit or from processing unit to the storage

area, also have a great effect on the microbial load of final food products (Table 1).

Contamination should be controlled through sanitizing the environment, containers

employed in transportation, crates, harvesting bins, and cages. Increased time gaps

between the stages resulting from improper manufacturing practices must be

avoided. Standardization of the process flow and education of staff on procedures

are highly recommended. Air quality is commonly neglected but it is a very impor-

tant factor affecting the safety of foods. Precautions have been suggested to control

the quality of air at different stages of the process. Positive pressured air ventilation

with HEPA (high-efficiency particulate arresting) filters must be installed. Positive

pressured air prevents unfiltered air from entering, so preventing airborne micro-

organisms being brought into facilities. Ventilation systems and filters must be

checked for proper operation and maintained. The microbiological quality of the air

must be controlled regularly [25].

Packaging is the final operation in primary food processing if the products are not

sold un-packaged. Packaging should be carried out under hygienic conditions.

Sanitary conditions of the packaging materials, containers, and lids must be con-

trolled regularly to avoid cross-contamination. Insufficient heat application during

sealing, malfunctioning of sealing machine, use of unsuitable covers, and operator

mistakes must be avoided as they may result in post-process contamination (Table 1).

People are the major source of contamination in the food industry [25]. Although

some behavior is persistent and difficult to change, personal hygiene, food safety,

proper food handling, and sanitation training of all employees working at different

stages of the process decreases the risk of contamination arising from human activ-

ities (Table 1) [17, 28]. Hygiene and sanitation facilities with hot water and soap

must be provided and staff should be encouraged to use them. Toilets must be

placed in appropriate locations. Staff suffering from diseases or illness should not

be allowed to enter the food processing area.

4 Potential Chemical Failure Modes, Causes, Effects,

and Corrective Actions in Primary Food Processing

Direct or indirect contamination of food by chemical toxicants such as heavy metals

[56, 57], biological toxins, pesticides [7, 8], growth hormones, and veterinary drug

residues pose the highest risk in the primary processing of food (Table 1). Cases of
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heavy metals such as lead, mercury, and cadmium contamination on fruit and

vegetables has been reported in many countries around the world [56–60]. Inten-

tional and incidental disposal of sewage sludge and industrial wastes onto agri-

cultural lands, mining, use of polluted water for irrigation, and increased use of

nitrogen-containing fertilizers might be the primary pathway for heavy metal accu-

mulation in the soil and the environment. Large amounts of heavy metal contami-

nants may enter the food chain because some cereals and vegetables have absorbed

them from these sources. In China, lead contamination in lettuce and cadmium

contamination in broccoli were reported in products cultivated in soil contaminated

by electronic waste processing [57]. Meat and milk products may contain heavy

metals if animals are reared on contaminated soils or fed with contaminated feed

[58, 59, 61–68]. Heavy metals are mostly not biodegradable and therefore can

accumulate in the vital organs of humans. They may cause neurological disorders,

Alzheimer’s and Parkinson’s deceases, cancer, and low birth weight in people if

consumption exceeds levels given in the Food Codex [65, 69]. Potential sources of

heavy metals in foods need to be detected and removed from the process because

concentrations of heavy metals are rarely modified by processing once they enter

the foods.

Pesticides and herbicides are chemicals used intentionally to protect crops and

to increase yield in agriculture (Table 1). Although the use of these chemicals is

controlled by legislation, improper agricultural practices, contamination of water

and animals feeds, lack of control may lead to contamination of human by with

pesticide and herbicide residues (Table 1) [25, 60, 70–79]. Various preparation

activities such as peeling and trimming may remove residues from the outer parts,

but the remainder of the food may still contain substantial amount of pesticides

because some pesticides are absorbed by the food. The concentration of pesticide

residues increases in foods after reducing the water content in drying and conden-

sation processes. Processing such as cooking, boiling, steaming, baking, and refin-

ing may reduce the amounts of pesticides remaining in foods depending upon the

type of pesticide and length of treatment [80]. Prolonged exposure to pesticides,

especially at high concentrations, may result in harmful effects on human health

such as soft tissue, brain, lung, liver, digestive system and urinary tract cancers,

birth defects, and damage to the nervous system [79].

Veterinary drugs used to treat diseases and to improve the health of animals are a

potential chemical hazard in food if they are not administered properly (Table 1)

[5]. Drug residues excreted by animals may spread in the environment. Contami-

nation of rice by antibiotics originating from the urine of cattle reaching fields via

underground water is reported by Hawker et al. [81]. Antibiotics and growth pro-

moters are the most common veterinary drugs. A decrease in the total number of

useful bacteria in the human intestine and increased microbial resistance are possi-

ble adverse effects of prolonged exposure of humans to antibiotics [82, 83]. Growth

promoter residues in food products create human health concerns [82] and conse-

quently the use of substances with hormonal action in animal feed is banned in

many countries [84]. Production of biological toxins such as aflatoxin is another

potential chemical hazard in cereal grains, milled cereals, nuts, dried fruits,
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dried vegetables, and herbs if temperature and humidity are not controlled appro-

priately during production, processing, transportation, and storage (Table 1)

[23, 49, 85]. Biological toxins may also be found in the milk and meat of animals

fed with toxin-containing feed [86–88]. Aflatoxin may be detected in oils if they are

produced from contaminated seeds, vegetables, or nuts [89, 90].

The FMEA methodology aims to prevent or reduce potential risks at each stage

of a process before entering the next stage. Potential sources of contaminants in a

process need to be detected and removed because prolonged exposure to these

chemicals can have severe effects on human health. Ensuring proper agricultural

and industrial practices, inspection and investigation of pipework in buildings,

connecting to a public water system, or installing water treatment devices onto

the production units are important preventive measures in minimizing heavy metal

and pesticide contamination risks (Table 1) [52, 91]. Veterinary drugs must be used

as prescribed by veterinarians and regular animal health controls by veterinarians

are required. Withdrawal periods for drugs must be followed strictly [92, 93]. The

presence of antibiotics and animal hormones in foods must be controlled strictly by

official inspection [83, 94]. Farmers need to be educated about basic animal welfare

and the proper use of veterinary drugs (Table 1). Food producers must only use

food-grade packaging materials (Table 1). Time, temperature, and humidity control

during storage and transportation of foods is the major preventive action in con-

trolling the biological toxin production. Regular internal and governmental controls

minimize the risk of potential chemical failure modes (Table 1).

Surfaces contacted by the foods, such as packaging materials, may be a source

of chemical contamination through migration into foods (Table 1)

[95, 96]. Perfluorinated organic chemicals, chemicals used for coating wrapping

materials of cartons for burgers, fried chicken, etc., are reported to be contaminat-

ing foods [97]. The use of newspaper as a packing material for cooked food items is

another common source of chemical contamination in some countries [98]. The

amount of contaminants diffusing into foods from contact surfaces should not

exceed the acceptable limits defined in the codex [99]. Only food grade materials

must be used.

5 Potential Physical Failure Modes, Causes, Effects,

and Corrective Actions in Primary Food Processing

Poor agricultural and manufacturing practices are the primary reasons for physical

contamination in food products (Table 1) [100]. The most common potential

physical threats include soil, dirt, dust, stones, bone pieces, jewelry, and metal

fragments from worn or chipped utensils and containers. The physical hazards need

to be detected and removed from each stage of the process before entering the next

stage. Processing facilities must be isolated first. Proper cleaning and sanitation

procedure must be applied to keep equipment, tools, and utensils free from physical
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contaminants such as mud, metal fasteners, soil, and dirt. Premises maintenance is

required periodically. Doors and windows must be securely closed. Effective pest

control management should be applied.

6 Case Study: FMEA Analysis for the Pasteurization

of Milk

The general list of the precautions needed to achieve food safety by implementing

FMEA methodology is given in Table 1. These principles are applied to a special

case here. Figure 2 shows that milk is filtered and thermized after its receipt in the

factory. Thermization is a method of sterilization with heat. It is similar to pasteur-

ization, reduces the microbial load [101], but carried out at a lower temperature to

allow milk to maintain its original taste. Milk is cooled, cold stored, and goes

through a clarification process before pasteurization. The pasteurized milk is filled

into containers and then cold stored before being sent out to the retail stores.

HACCP can be used as a tool for continual monitoring of a milk processing facility

and provides a mechanism for ensuring that appropriate corrective actions are taken

in the event of any failure [14]. FMEA may be used to improve the safety of a

pasteurization process. The columns labeled O, D, S, and RPN are not filled with

numbers in Table 1, although, for the given case study, their estimates are filled in

the respective columns in Table 2 [25]. The risk of a high number of pathogens in

raw milk because of improper handling practices has an RPN number of 720 before

the corrective actions. The corrective actions may include purchasing the raw milk

from a reliable supplier, cooling it to 5�C immediately on receipt, carrying out pH

or acidity controls, and periodical pathogen analysis. The RPN number is reduced

8-fold to 90 after implementing these actions. There are numerous stages where

drastic reductions in the RPNs result upon implementing the corrective actions, and

these are listed in Table 2. Figure 3 shows how the RPN percentages of the stages

and their relative values, for example, the horizontal axis of Fig. 3a, b, change after

implementing the corrective actions.
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Abstract Individual items of any agricultural commodity are different from each

other in terms of colour, shape or size. Furthermore, as they are living thing, they

change their quality attributes over time, thereby making the development of

accurate automatic inspection machines a challenging task. Machine vision-based

systems and new optical technologies make it feasible to create non-destructive

control and monitoring tools for quality assessment to ensure adequate accomplish-

ment of food standards. Such systems are much faster than any manual

non-destructive examination of fruit and vegetable quality, thus allowing the

whole production to be inspected with objective and repeatable criteria. Moreover,

current technology makes it possible to inspect the fruit in spectral ranges beyond

the sensibility of the human eye, for instance in the ultraviolet and near-infrared

regions. Machine vision-based applications require the use of multiple technologies

and knowledge, ranging from those related to image acquisition (illumination,

cameras, etc.) to the development of algorithms for spectral image analysis.

Machine vision-based systems for inspecting fruit and vegetables are targeted

towards different purposes, from in-line sorting into commercial categories to the

detection of contaminants or the distribution of specific chemical compounds on the

product’s surface. This chapter summarises the current state of the art in these

techniques, starting with systems based on colour images for the inspection of

conventional colour, shape or external defects and then goes on to consider recent
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developments in spectral image analysis for internal quality assessment or contami-

nant detection.

Keywords Hyperspectral, Image processing, In-line inspection, Postharvest,

Quality, Real-time, Spectral imaging
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1 Introduction

Food standards are evolving both to ensure the sustainability of agriculture and to

address consumer concerns. The reputation of producers, and consequently their

position in the market, is based on the quality of the product, which makes quality

controls essential. The market and consumer exigencies, as well as increasing

social concerns about good practices, including environmental, economic and

social sustainability and traceability, require guarantees of optimal quality from

the earliest stages of the crop to postharvest storage and treatments.

Optical devices and sensors have been introduced in the industry as

non-destructive techniques for inspecting fruit [1]. Such technological advance-

ments have been used for various purposes, ranging from the automatic sorting of

products into categories to the control of processes which are difficult to observe,

for instance, because of their long duration [2]. At this point it is important to note

that the quality of biological products is not easy to assess, as individuals of the

same category may differ greatly from one to another in terms of colour, shape or

size. Furthermore, because they are living products, their physiochemical properties

evolve over time. Their inherent variability sometimes introduces a certain amount

of subjectivity into quality control, thus increasing the difficulty involved in

developing automated inspection systems. Addressing these challenges often

requires research in advanced and multidisciplinary technologies, and sometimes

the use of expensive equipment.
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Machine vision inspection is aimed at ensuring the quality of each product and

the correct classification (including rejection) of those individual items based on

quality standards. Automation is aimed at reducing production, processing and

handling costs, but also at delivering the produce to the appropriate markets, thus

optimising the overall profit. Furthermore, the excellence of a commodity is often

achieved by ensuring correct and regular sizes, suitable colouring, and absence of

external damage, optimal organoleptic properties and the absence of harmful

residues. However, despite the great amount of research devoted to machine

vision-based inspection systems [2, 3], the introduction of this technology in the

industry is still relatively scarce because of its relatively high cost, the complexity

of the equipment needed and the particular requirements for each implementation.

Current computer-based applications for the inspection of fruit and vegetables

are described in the following sections. Most of these systems use visible (VIS)

information to inspect the external quality of the produce using conventional tech-

niques. However, recent advances include hyperspectral imaging to assess chemical

composition, inspection of the internal quality of the produce or the detection of

invisible damage, almost always for the real-time implementation of automated,

in-line inspection and quality control systems.

2 Machine Vision Systems Based on Visible Information

The success of computer vision-based systems for the external inspection of fruit or

vegetables depends largely on the quality and resolution of the acquired images,

which is closely related to the cameras employed and the illumination of the scene.

Frequently, such systems measure and compare colours, and for this reason illumi-

nation with a good colour rendering index is required. This index is a quantitative

measure of the degree to which a test illuminant renders colours similar to their

appearance under a reference illuminant [4]. The illumination must be uniform and

avoid specular reflection, which produces bright spots that can mask certain blem-

ishes. This is especially important for the estimation of two of the main external

properties associated with the quality of the fruit by consumers, namely the colour

and the presence of external defects.

2.1 Measurement of Colour

Colour is one of the most important attributes of many agricultural products that can

be expressed using several standard colour spaces, themost used in image processing

in agriculture being RGB (Red, Green, Blue), HSI (Hue, Saturation, Intensity) and

CIELAB. The first is the native colour space of computers and digital devices and the

others try to imitate human perception better. Figure 1 show some examples of

apples and the distribution of their colour in different colour spaces obtained using

the program FoodColorInspector (available at http://www.cofilab.com).
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As fruit ripens, chlorophyll degrades and new pigments such as anthocyanins or

carotenoids start to be synthesised, resulting in the fruit turning from green to a

wide variety of colours, mainly ranging from red to blue [5]. Hence, the consumer

normally associates colour with the stage of maturity or ripeness of fruit and thus it

plays an important role in the purchase decision. For this reason, colour has mainly

been studied as an indicator of maturity. However, the presence of discoloration or

stains on the skin can make it difficult to measure the average colour of the whole

fruit, leading to inaccurate results. For this reason, Mohammadi et al. [6] developed

an algorithm to classify persimmon into three maturity stages. In their work, black

stains on persimmon were segmented and removed from the analysis. Then they

used colour bands such as R and G from the RGB colour space, b* from the

CIELAB colour space, S from the HSI colour space and grey levels and linear

(LDA) and quadratic discriminant analysis (QDA) to assess fruit maturity stages

with a 90% rate of success. Another approach is reported by Taghadomi-Saberi

Fig. 1 Apples of Royal Gala and Golden cultivars with different colours and the distribution of

the colours in the RGB, HSI and CIELAB colour spaces
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et al. [7], who used the CIELAB colour space to study the evolution of the ripening

of sweet cherries. The colour coordinates were measured using a chroma meter and

a CCD camera-based device that employed an artificial neural network (ANN)

classifier. They achieved a coefficient of determination R2¼ 0.99 between both

measurements. They also observed that L* and b* values decreased during the

ripening of the cherries, whereas a* values first increased and then decreased.

Baltazar et al. [8] sorted tomatoes using a colorimeter and a firmness sensor. The

ratio a*/b* and the L* coordinate of the CIELAB colour space were used to study

the changes in colour associated with storage time. El-Bendary et al. [9] used HSV

colour coordinates and the first three colour moments (mean, standard deviation and

skewness) to sort tomatoes. They employed Principal Components Analysis (PCA)

for feature extraction and Support Vector Machines (SVM) and LDA for classifi-

cation. The performance of the system was evaluated by means of the area under the

curve of the receiver-operating characteristic (ROC curve) [10].

The colour of fruit is often expressed using indexes. Guzmán et al. [11] set up a

maturity index for olives to determine the optimal harvest time. The index was

based on colour segmentation of the olives using the k-nearest neighbour (KNN)

algorithm, and calculating the percentage of the area of the olives that belonged to

one of four predefined classes (bright-green, greenish-yellow, reddish-brown or

black). From these data, olives were assigned a maturity index ranging from 0 to

4. The citrus colour index (CCI) is an industrial standard index to estimate the

maturity of oranges and mandarins based on Hunter Lab coordinates. Vidal et al.

[12] developed a computer vision system for on-line estimation of this index at a

rate of eight fruits per second. The algorithm converted RGB coordinates into

Hunter Lab coordinates and calculated the CCI of each fruit individually. Four

images from each fruit were acquired as they rotated under the camera, the CCI

being assigned an average of the four images.

Apart from colour, other external properties of fruit can be related to maturity

and quality. The advantage of image analysis is that it allows several of them to be

estimated simultaneously from the same image. For instance, Surya Prabha and

Satheesh Kumar [13] developed an image analysis system to assess colour intensity

and different geometric features (area, perimeter, major axis length and minor axis

length) of bananas.

Furthermore, colour has often been combined with other information for better

assessment of ripeness. For example, Vélez-Rivera et al. [14] classified Manila

mangoes into four stages of ripeness. They built a PCA-based model that included

colour information (CIELAB and HSB colour coordinates), soluble solid contents,

total acidity, firmness and a ripening index based on these physical properties.

2.2 Detection of External Defects

Most consumers associate fruit and vegetable quality with good appearance, that is

colour, shape and total absence of external defects. Deformations and presence of
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skin damage or diseases are the most influential factors affecting price. However,

skin damage and diseases are more difficult to assess or detect than colour, shape or

size because of the wide diversity of potential defects that can be found in packing

houses [15]. Moreover, particular types of defects may present diverse colourations

in the same piece or batch, or even coincide with the colour of the sound skin of

other fruit of the same commodity [16]. This can be seen in Fig. 2, which shows

images of different types of external defects in oranges cv. ‘Navel’ and the images

after a segmentation process.

Many authors report inspection systems based on colour information alone.

Al-Rahbi et al. [17] classified dates into three categories (no-crack, low crack

level, high crack level) depending on the extension of the damaged surface found

by image analysis. They used the R coordinate of the RGB colour space and the H

and V coordinates of the HSV space after selecting the most discriminant ones

using LDA. They achieved more than 70% accuracy and more than 80% when the

problem was reduced to only two classes (sound and cracked dates).

In some machine vision applications, the calyx or the stem-end can be confused

with some skin defects. The colour of the stem/calyx region often differs from the

typical colour of the skin of the fruit and it is therefore identified as a defect. For this

reason, authors report exploiting other information sources such as morphological

or multispectral parameters. Blasco et al. [16] developed a system to detect these

elements and 11 different types of defects in oranges developing a region-growing

algorithm. A region of the image was considered to be a defect when its colour

Fig. 2 External defects in oranges cv. ‘Navel’ and the images after a segmentation process

76 J. Blasco et al.



diverged from the colour of the largest region of homogenous colour, which was

assumed to be the sound skin. The system could detect the defects in 94% of cases,

with only 4% of false detections, the stem being distinguished from the defects in

100% of cases. Later, Blasco et al. [18] identified these types of defects, achieving

70% correct identification using colour information alone and 76% on adding

multispectral information. These results increased to 86% when morphological

information about the regions was included in the decision algorithm [19]. How-

ever, correct identification of the stem was achieved in only 66% of cases. Li et al.

[20] described a system to discriminate seven types of common defects in oranges

with a 99% rate of success by employing colour and morphological information.

However, they could not discriminate between these types of defects.

Rokunuzzaman and Jayasuriya [21] also used morphological information to differ-

entiate skin defects and calyxes for the automatic inspection of tomatoes at a rate of

180 fruits per minute. They used colour thresholding to detect blossom end rot and a

shape factor to discriminate between cracks and calyxes with 87% success. Xu et al.

[22] reported a complete machine vision system to grade kiwifruits based on their

appearance, including the presence of skin defects. The system was able to grade

them by size, shape and defective surface at 1.2 kg/min, with a success rate of 89%,

91% and 94%, respectively.

3 Use of Hyperspectral Imaging for Qualitative Assessment

of Fruit and Vegetables

Systems based on the visible spectrum have been described in the previous para-

graphs. Such systems have been designed with the intention of emulating the

human eye. Nowadays they are relatively low-priced and fast. However, current

technology offers the possibility of going far beyond the capabilities of the human

eye. For instance, some damage or the presence of contaminant agents can often be

observed in particular regions outside the visible spectrum, or their detection may

be enhanced at certain specific wavelengths. Initial approaches found in the liter-

ature took advantage of the acceptable sensitivity to near-infrared (NIR) of most

charge-coupled device (CCD) sensors in many cameras, and combined this infor-

mation with colour information. The first successful applications were aimed at

detecting visible and invisible blemishes [23].

Multispectral systems have been considered to be the first based on non-standard

optical devices for simultaneously processing the same scene in different spectral

regions. Originally, they consisted of a series of interferometric filters coupled to a

wheel placed between a monochrome camera and the scene [24]. These systems

had several drawbacks, such as their low acquisition speed and the small number of

images that could be acquired. Recent technological progress has allowed faster

simultaneous acquisition of images, thereby opening up the possibility of develop-

ing new applications in fields such as remote sensing [25] and pest detection

Machine Vision-Based Measurement Systems for Fruit and Vegetable Quality. . . 77



[26, 27] among others. Moreover, the price of the equipment has gradually become

more affordable, thus enabling the use of related technologies in many applications

to agriculture [28].

Although capturing images in stationary applications can be accomplished by

swapping narrow band pass filters in front of the camera lens, a more sophisticated

and versatile solution is offered by the use of electronically tuneable filters, capable

of acquiring a large number of images at different consecutive wavelengths, thus

making it possible to develop new inspection systems based on hyperspectral

images [29]. Hyperspectral imaging systems allow spatial and reflectance informa-

tion to be acquired at the same time, which can be decisive for certain applications

[3]. Such systems acquire a huge amount of information, but this is also their major

drawback because some of this information is redundant or unnecessary

[30, 31]. For this reason, much work using this technology has focused on reducing

the amount of redundant information by projecting the high-dimensional data space

into a lower-dimensional space and trying to preserve most of the meaningful infor-

mation [10, 32]. In parallel, spectroscopy has been used to assess certain properties

of food and even to detect some pathogens [33, 34]. Figure 3 shows a hyperspectral

imaging of an orange with a windscar defect captured in the range 430–1,050 nm

with a resolution of 10 nm.

Fig. 3 Hyperspectral image of an orange cv. ‘Navelate’ with an external defect captured in the

range 430–1,050 nm
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Electronically tuneable filters are devices whose spectral transmission can be

electronically controlled by applying a voltage or acoustic signals. Three main

technologies are currently available for acquiring hyperspectral images for fruit

analysis: image spectrophotometers [35], Acousto-Optical Tunable Filters (AOTF)

[36–38] and Liquid Crystal Tunable Filters (LCTF) [39]. AOTF consist of a crystal

in which selected wavelengths of light are separated from a broadband source using

acoustic waves at specific radio frequencies. Alternative compression and relax-

ation of the crystal lattice generates density changes that produce refractive index

variations which act as a transmission diffraction grating. Unlike a classical dif-

fraction grating, AOTF only diffract one specific wavelength of light, so they act

more as a filter than a diffraction grating. LCTF use a stack of successively thicker,

polariser birefringent liquid crystal plates which can generate a tuneable retardation

of light transmission. Switching speed is limited by the relaxation time of the

crystal and is of the order of 50 ms. Spectral resolution of LCTF is typically of

the order of several nanometres.

Image spectrophotometers acquire spectral data by scanning the scene line by

line, making use of the relative movement of the objects in the scene with respect to

the instrument. These sensors usually offer an excellent spectral resolution, but

require precise synchronisation of the image acquisition with the movement of the

sample or the instrument [40]. This is probably the most extended configuration of

AOTF-based systems, offering good tuning times (around 50 ms) and accurate

frequency selectivity. However, they have a limited field of view [41]. In general,

LCTF-based devices are usually more compact than those based on AOTF and

provide a wider field of view. Nonetheless, their major drawback is related to their

greater requirements in terms of time needed for tuning [42].

Even if the use of this equipment is expanding, one has still to take into account

important requirements for them to work properly, such as adequate spatial and

spectral distribution of the lighting, correct focusing of the scene across all the

different wavelengths or spectral regions and proper spatial matching of the images,

or at least of the objects in the scene, when using changeable filters or when the

object of interest is moving during the acquisition. Furthermore, the sensitivity of

the different components of the acquisition sensors is not uniform across the

spectrum, and this should be taken into account in the design. Suitable calibrations

and adjustments are always necessary to keep the results of the image analysis

independent of undesired phenomena [43].

Proper lighting is also crucial when acquiring hyperspectral images. Unwanted

bright spots must be prevented when providing high-quality, homogenous scene

illumination. Light sources have different characteristic spectral emissions.

Daylight-type fluorescent tubes rarely go beyond 700 nm and should be discarded

in work that uses near-infrared (NIR). Incandescent lamps generate strong NIR

emissions but produce directional light which is difficult to diffuse. In addition, it is

important to take into account the shape of the object to be analysed to avoid

specular reflections. This is particularly important for spherical or quasi spherical

shapes. On the other hand, cameras should be sensitive to the specific spectral

region used in each application. Standard CCD cameras are almost insensitive to

Machine Vision-Based Measurement Systems for Fruit and Vegetable Quality. . . 79



wavelengths from 900 nm and beyond, which can make it impossible to take full

advantage of the possibilities of tuneable filters. Cameras based on InGaAs sensors

with a stabilised temperature are sensitive beyond 1,000 nm, thus enabling an

optimal use of NIR information. Lenses are also critical and must be properly

selected for each particular application. Optical paths through the lens change

depending on the frequency of the transmitted light (refraction indexes depend on

wavelength). This makes the focus planes vary considerably between bands that are

separated by relatively far distances in the spectrum (e.g. between some visible and

some infrared bands), resulting in scenes that are focused in some bands being out

of focus in others.

3.1 Automatic Assessment of Bio-Chemical Properties
of Fruit and Vegetables

Assessment of the ripening stage of many fruits still relies on trained people’s
experience or on destructive measurements of certain physicochemical properties.

These approaches are inefficient and incompatible with large-scale production and

trading. Machine vision systems based on hyperspectral imaging offer new tools to

assess the concentration of some chemical compounds or properties related to

maturity. This is the case of the work reported by Schmilovitch et al. [44], who

presented a method for the non-destructive measurement of total soluble solids

(TSS), ascorbic acid, chlorophyll and carotenoid contents in three bell pepper

cultivars using hyperspectral images obtained using AOTF cameras. By means of

partial least squares (PLS) regression models developed throughout the grooving

session and specific to each variety, they managed to estimate the distribution of

such internal components in whole peppers. Rajkumar et al. [45] analysed hyper-

spectral images of bananas at different ripening stages, and stored at different

temperatures, to develop calibration models for the prediction of some quality para-

meters (moisture content, TSS and firmness). Munera et al. [46] used hyperspectral

images to predict astringency in persimmons and to build the astringency distri-

bution maps.

Hyperspectral image processing can also be used to obtain information about the

presence of biochemical substances related to certain damage or physiological

disorders of some agricultural produce. For instance, Gaston et al. [47] investigated

the potential of visible and near-infrared (VIS/NIR) (445–945 nm) hyperspectral

imaging for the prediction of polyphenol oxidase (PPO) enzyme activity, which

produces browning on mushroom caps and is the major cause of their quality loss,

accounting for a reduction in their market value. Yang et al. [48] studied the antho-

cyanin contents of the pericarp of lychees, because it is related to postharvest

browning. They processed hyperspectral images of fruits in the range

308–1,105 nm by removing differences in light intensity between different areas

of the samples, extracting the average spectra from the regions of interest (ROI) and
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selecting two sets of optimal wavelengths using successive projection and stepwise

regression algorithms. Finally, they built models for mapping the anthocyanin

distribution in the samples.

Long-distance transoceanic shipment of fruit requires delivery of high quality,

consistent fresh fruit in the country of origin so as to meet the quality standards

upon arrival at the destination. Hua et al. [49] investigated the potential of hyper-

spectral imaging to study how the mechanical properties of blueberries are related

to their organoleptic quality, storability, transportability, resistance to mechanical

damage and susceptibility to spoilage during postharvest and marketing handling.

They tried to link spectral data to mechanical properties obtained from texture

profiles and puncture analysis. Similarly, Leiva-Valenzuela et al. [50, 51] acquired

reflectance and transmittance hyperspectral images of blueberries in the range

400–1,000 nm to build calibration models to predict TSS and firmness, and to

assess the effect of fruit orientation on the durability of the fruit during

transportation.

Consumers are willing to pay higher prices for fruit with health-stimulating

properties such as bioactive compounds or antioxidant ingredients, for example

lycopene and phenolic compounds. Liu et al. [52] reported an application of

multispectral imaging for predicting the contents of such compounds in tomatoes,

and compared the performance of different prediction models based on PLS, least

squares support vector machines (LS-SVM) and back-propagation neural networks

(BPNN).

Similarly, anthocyanins are phenolic components of red wine grapes which have

a great influence on the quality of wine. Nogales-Bueno et al. [53] developed a

non-destructive method, based on hyperspectral images, for the assessment of the

important parameters that determine the technological and phenolic maturity of

white and red grapes (pH, total acidity, sugar concentration and total phenols).

Later, Nogales-Bueno et al. [54] used a similar approach to estimate maturity and

sugar content and investigated the possibility of using anthocyanin profiles, colour

image analysis and near-infrared hyperspectral imaging tools to distinguish

between the varieties Tempranillo, Graciano, Garnacha and Mazuelo. Chen et al.

[55] developed a model to estimate the anthocyanin contents of wine grape skins

using NIR hyperspectral imaging. They used this information to assess the phenolic

maturation stage of grapes after veraison, with the final goal of predicting the best

harvest time. Baiano et al. [56] also used hyperspectral imaging to predict the

physicochemical indices and sensory characteristics of table grapes. Furthermore,

Leiva-Valenzuela et al. [50] studied the potential of VIS/NIR spectroscopy and

hyperspectral imaging to estimate the internal or external constituents of potato

tubers, which are important to the processing industries.
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3.2 Detection of Skin Defects and Diseases

Machine vision systems based on hyperspectral imaging open up the possibility of

automatically detecting early stages of fruit damage invisible to the human eye

because they can provide information from outside the visible spectrum. For

instance, Lü et al. [57] developed a VIS/NIR hyperspectral imaging system cover-

ing the spectral region 408–1,117 nm for the automatic detection of bruising caused

by excessive mechanical loading and stress of kiwifruits during harvest, transport,

handling and storage. Such bruises are very difficult to detect in the first hours after

they have been produced. For this purpose they selected particular wavelengths to

develop algorithms to differentiate between bruised and sound tissues. Likewise,

Baranowski et al. [58] worked on the early detection of bruises in apples, using

VIS/NIR and short-wave infrared (SWIR) wavelength ranges. Similarly, Vélez-

Rivera et al. [59] reported on the feasibility of an automatic system for early

detection of mechanical damage in ‘Manila’ mangoes using specific spectral

bands. Lee et al. [60] investigated an extended range of NIR to detect bruises on

pears.

The presence of a few fruits infested by a pest or affected by fungus in a ship-

ment can render the entire consignment unmarketable. Furthermore, many other

kinds of skin damage must be detected during postharvest quality control because

they can be the starting point of fungal infestations. For instance, tomato cracking is

one of the main causes of produce rejection by retailers because it creates a path for

the potential entrance of pathogens. Cho et al. [61] investigated the feasibility of an

inspection system based on hyperspectral fluorescence and determined optimal

wavebands to distinguish between defective areas and sound surfaces to detect

cuticle cracks. Analogously, Yu et al. [62] investigated the potential of hyper-

spectral imaging for crack detection in fresh jujubes. They identified some wave-

lengths to develop image processing algorithms for locating the cracks, but reported

that the best option was to use ratios of bands instead.

Pests themselves are also a major cause of fruit rejection in the market. As an

example, the Mediterranean fruit fly causes damage to many different fruits and

significant economic losses for growers, processers and exporters, and is impossible

to detect using colour information alone [18]. Haffa et al. [63] proposed a system

for detecting infested mangoes using greyscale images generated from absorbance

levels at particular NIR wavelengths. Another approach was taken by Wang et al.

[64] who identified effective wavelengths for maximum discrimination of jujube

fruits affected by damage caused by insects. They created a discriminant function to

identify the stem-end/calyx-end, the sound cheek and insect damage, and finally a

method to distinguish damaged fruits from those free of infestation. This approach

has also recently been investigated by Gómez-Sanchis et al. [65, 66] with the aim of

detecting decay lesions in citrus fruits.

Physiological disorders and decay are a consequence of postharvest processes

which also generate important economic losses. Simko et al. [67] developed several

indices to estimate decay and freezing injuries of different cultivars of lettuces,

82 J. Blasco et al.



based on ratios of particular wavelengths obtained from the spectral analysis in the

range 380–1,000 nm.

Fruit and vegetable diseases, often caused by bacteria, are also a major source of

trouble for fruit and vegetable exporters. For instance, citrus canker is a severe

disease of citrus fruit causing enormous socioeconomic loses for those countries

affected. Qin et al. [68] used spectral information divergence estimated from NIR

images as a method for detecting affected fruit, and Zhao et al. [69] introduced the

effect of the harvesting time and its influence on the detection of the damage. Later,

Qin et al. [70] exploited particular bands obtained from the PCA technique and used

ratios between bands to create a fast detection system. Subsequently, Qin et al. [71]

reported a real-time system to detect such canker lesions. A different approach was

taken by Wang et al. [72] who compared the spectral reflectance of onions affected

by sour skin (a bacterial disease) in the spectral region of 950–1,650 nm and

determined optimal bands for identifying infected onions.

3.3 Detection of Pathogens and Contaminants

Foodborne illnesses are also of major concern for consumers and, hence, interest in

methods and technologies for detecting contaminated food and preventing the

presence of pathogens causing such illnesses has grown significantly, both in the

agri-food industries and in regulatory agencies. Hyperspectral imaging offers a vast

potential for detecting contaminants and pathogens in food. For instance, Lee et al.

[60] determined two significant wavelengths and developed multispectral imaging

algorithms to detect faecal contamination on leafy greens (spinach and lettuces) in

an automated system for in-line inspection at the processing plants. At the same

time, Everard et al. [73] used ultraviolet (UV)-induced fluorescence, violet-induced

fluorescence, VIS/NIR reflectance and hyperspectral image processing, in combi-

nation with multivariate statistical analysis, for the detection of faecal contami-

nation on spinach leaves.

Tomato hornworm is one of the several types of large caterpillars that attack

tomatoes in the United States and whose faecal matter is closely related to the

presence of Escherichia coli and Salmonella. Yang et al. [74] studied the develop-

ment of a multispectral imaging algorithm to detect such contamination on the

surface of mature red tomatoes. In similar work, Yang et al. [75] developed a simple

multispectral algorithm to detect faecal contamination on the surface of apples.

Aspergillus flavus generates toxins on dates and logically causes food safety

concerns which greatly depreciate the value of the product. Teena et al. [76] studied

the presence of lesions caused by this fungus using NIR hyperspectral imaging.
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4 Specific Problems To Be Solved for Real-Time,

Automatic Quality Monitoring

To satisfy market demands, producers must inspect the quality of each piece of

fruit or vegetable before shipping. This task is traditionally carried out by workers

situated on one or both sides of a conveyor belt. They visually inspect the produce

and remove those pieces not meeting the quality standards. Pieces are transported

slowly enough to allow the workers to inspect all of them and even manipulate them

to ensure the inspection of most of their surface. The quality of the product is not

always fully guaranteed because workers have different tolerance criteria and, at

the same time, their criteria may vary during the day, as inspection requires concen-

tration and is a tiring, repetitive activity. For all these reasons, this operation is

normally time-consuming, subjective and expensive. The alternative is the use of

electronic sorters based on machine vision.

In most in-line applications, products travel rapidly under the machine vision

system, often carried by a conveyor belt or on top of rollers as shown in Fig. 4. In

such cases, the camera has to be able to acquire images at a very high rate when

freezing the scene, and computer hardware and software has to be set to cope with

very fast image processing. For example, Al-Mallahi et al. [77] developed an

automatic machine vision system for sorting potatoes using UV-induced fluores-

cence capable of discriminating potatoes from undesired material. They processed

one image every 94 ms with a success rate of 98%. ElMasry et al. [78] developed an

automatic system to sort potatoes by size and shape. Roundness and length features

as well as four other parameters calculated from Fourier analysis of the polar

signature of the potato boundary were found to be effective in describing potato

size and shape. The system achieved a high level of accuracy in estimating the

Fig. 4 Machine for the automatic inspection of fruit in-line using computer vision
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shape and size of potatoes travelling at 1 m/s. Nevertheless, real-time inspection

encompasses a number of problems which need to be solved. Some are related to

the need to avoid blurred images and freezing the movement of the pieces when

acquiring the images, whereas others are related to the exact positioning of the

piece. Both require very precise synchronisation between the camera shot and the

movement of the conveyor. Furthermore, adequate intensity and uniform illumi-

nation are always necessary. Other problems to be overcome are associated with

processing speed constraints, which require considerable effort in algorithm opti-

misation and sometimes the use of dedicated hardware. Moreover, the need to

inspect the whole surface of the pieces requires the use of specific mechanisms or

the use of multiple cameras situated to acquire several points of view.

The electronic shutters of the cameras allow proper synchronisation between the

movement of the pieces and the image acquisition and a short exposure time, both

required for a correct freezing effect. The fast development of powerful Light

Emitting Diodes (LED) has allowed the development of very uniform illumination

systems with multiple light sources. Furthermore, it has opened up the possibility of

generating accurate light pulses instead of continuously illuminating the scene.

Pulsed illumination helps to avoid the blurring effect of the movement of the

objects in the images and to save energy, which may be crucial for some appli-

cations, especially those related to machines working outdoors. The use of fast

shutters and strips of pulsed LEDs was reported by Vidal et al. [12] to take different

views of oranges moving at 0.4 m/s on a conveyor. Kohno et al. [79] used this type

of illumination on a mobile platform to inspect citrus fruits during harvesting, but

they needed 12–20 s to process a single fruit because an NIR spectrometer was also

used to estimate the sugar content of fruits. However, Cubero et al. [80] used this

type of illumination and settings for real-time inspection of oranges on a citrus

harvesting machine. The system was able to work at a rate of eight fruit per second,

and captured four images of each fruit to make a decision. They reported a 0.99

coefficient of determination (R2¼ 0.99) for size prediction and R2¼ 0.92 for

colour.

To achieve real-time operation, image segmentation and processing must be

carried out extremely quickly. The work of Aleixos et al. [23], who developed a

camera capable of acquiring multispectral images (VIS/NIR) from the same scene,

is an example of the use of specific hardware and algorithm optimisation to reduce

processing time. They used parallel image processing algorithms run on two digital

signal processors (DSP) to process 10 citrus fruits per second and sort them by

colour, size and presence of defects, using nonlinear discriminant procedures to

segment the images and to sort the pieces. However, the processing speed of current

hardware allows complex algorithms to be implemented in relatively low-cost

devices. Commercial cameras equipped with microprocessors can be used to create

smart equipment for in-line processing, as reported by Cubero et al. [80], who

achieved real-time colour image processing for citrus sorting by implementing

optimised algorithms in a camera with standard computing capability.

Several approaches have been made to solve the problem of inspecting most of

the surface of the pieces. Many inspection machines rotate the pieces when a series
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of images are captured. Leemans and Destain [81] used a roller conveyor to capture

images of apples. They adjusted the rotational speed of the rollers in such a way that

a spherical object with a diameter of 72 mm made one complete rotation in exactly

four images. Images were acquired at a rate of 11 per second. A hierarchical grading

method based on the analysis of 16 external properties including colour, shape,

texture and position was used to classify apples. Bennedsen et al. [82] developed a

system to capture six different views of each apple as the fruit was transported on a

conveyor. Other reported solutions include the use of different cameras to capture

different views of the fruit, as depicted by Xiao-bo et al. [83], who employed three

colour cameras to inspect rotating apples and classify them into two categories

depending on the presence of defects. A cheaper alternative is the use of mirrors

instead of cameras, as described by Reese et al. [84], who used parabolic mirrors to

show parts of the fruits that were hidden from the camera.

Soft or very small processed fruits are more difficult to handle and hence to

inspect, and so may require particular solutions. For instance, Blasco et al. [85]

developed a prototype to grade fragile mandarin segments and to separate market-

able segments from undesired material such as small pieces of peel, broken seg-

ments or segments with seeds. Segments travelled on narrow conveyor belts under

two cameras which acquired images every 48 ms. Their vision system was able to

process 20 images per second, but mechanical limitations related to the difficulty in

handling the segments reduced the operational speed to four images per second.

Semitransparent conveyor belts were employed to illuminate the scene from the

back, enhance the silhouette of the segments and detect the seeds easily. A similar

machine was reported by Blasco et al. [86] for real-time inspection of pomegranate

arils using front illumination and opaque blue conveyor belts. In this case, colour

parameters were used to detect rotten or immature arils and to grade arils into

uniform colour batches, which are more attractive to the consumer.

5 Conclusions

This chapter summarises the current state of the art in computer vision-based fruit

and vegetable inspection. The final aim of the technologies described here is the

implementation of machines capable of automatically inspecting the quality of

these products, removing those not reaching an adequate level of quality and

ensuring an objective sorting in categories that make them more attractive for the

consumer and optimise their value. To enhance current sorting systems giving high

added value to the products, the use of physicochemical and morphological infor-

mation other than simple visual appearance is becoming more and more relevant.

Machine vision-based systems are always under constant evolution thanks to the

development of new types of cameras and imaging devices. UV and NIR acqui-

sition systems are becoming easily available. Hyperspectral systems have demon-

strated their ability to capture information invisible to the human eye, such as the

presence of internal defects or the measurement of chemical compounds. However,
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despite all these technological advancements, a compromise between their increase

in performance (image acquisition rate, resolution) and costs must be found in the

forthcoming years.
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1 Introduction

Food production, quality and the security of supply chains remain critical societal

challenges requiring more and more advanced scientific and engineering methods

to address the arising issues. The benefits of modelling and control approaches in

achieving a better process understanding, higher yields and more consistent product

quality have been widely recognised in other industrial activities, such as

chemical and biochemical processes [1, 2]. Similar benefits of modelling and

control approaches have also been demonstrated in various sectors of the

food industry [3–7].

The strict regulatory environment in which the food industry operates also

necessitates effective use of modelling and control strategies to ensure food safety,

authenticity and quality. For example, Humphrey [8] provides a comprehensive

review of the current food safety and regulatory strategies, highlighting in particular

the differences between the regulatory schemes in the USA and EU. Dora et al. [4],

on the other hand, provide a review of a food quality management system concen-

trating specifically on the assessment strategies and a feasibility study for small and

medium-sized European food enterprises.

Perhaps the most widely recognised and internationally accepted system of

effective food safetymanagement is the Hazard Analysis and Critical Control Points

(HACCP) approach [9–11]. Glassey [12] discusses the implementation steps of

HACCP as well as their interlinkage with the Process Analytical Technologies
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(PAT) and the implications of this and other regulatory frameworks upon

data management in the food industry.

The major emphasis of this chapter is on advanced modelling and control

approaches currently being proposed for use in the food industry sector. Through

case studies, the major challenges and approaches are described and the oppor-

tunities identified.

1.1 Modelling and Control Challenges in the Food Industry

The fundamental requirements of any control scheme include a reliable measure-

ment of the relevant process variables and the ability to modify identified manipu-

lated variables effectively to maintain the desired process state. These requirements

pose specific challenges within the food processing sector, where the ability to

obtain representative measurements throughout the processing chain from the raw

material though intermediate stages to the final product are frequently affected by a

range of external factors. As Hitzmann et al. [13] highlighted in their status report

on PAT in the food industry, the properties of raw materials, the complex trans-

formations during the processing chain [14] and the perishable nature of the

products all contribute to the increased complexity of the challenge. Ropkins and

Beck [15] and Hitzmann et al. [13] argue that traditional end-point food testing

does not provide an effective assurance of food safety for a number of reasons.

These include [8]:

• The challenge of obtaining a representative sample, requiring substantial

sub-sampling of food for analysis

• A limited assurance of safety as only those hazards specifically tested for can be

assured

• A range of difficulties associated with traditional testing procedures, such as

time and resource demand, destructive nature and the difficulty of interpretation

• Reactive nature of control

• The most significant issue of product safety being assured only at the end-point

rather than ‘building it into the product through prevention’

1.1.1 Advanced Measurement

Although this chapter deals predominantly with the modelling and control appli-

cation case studies, it is important to highlight the importance of a representative

measurement of the process state as a critical requirement for effective control. A

wide range of scientific publications deals with detailed descriptions of traditional

and more advanced analytical techniques used to assess the quality and authenticity

of raw materials, intermediates and final products in the food processing chain.

These range from simple physico-chemical sensors, visual inspection and
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image analysis of raw materials and food products (e.g. [16–18]) to more advanced,

non-invasive fingerprinting techniques.

For example, Riedl et al. [19] and Nunes [20] review various applications of

vibrational spectroscopy and chemometrics to assess authenticity, adulteration and

intrinsic quality parameters of food and edible oils and fats, respectively. An

extensive review of the benefits of various spectroscopic approaches in this area

also provides useful reference material highlighting several modelling and data

analysis methods used to interpret the resulting measurements. Similarly,

Gutierrez-Capitan et al. [21] provide a review of the electronic tongue approach

in monitoring the quality of wines. Electronic tongues (similarly to electronic

noses) are devices containing an array of sensors, typically based on ion-selective

field effect transistors, providing a ‘fingerprint’ trace of the analysed food sample

(e.g. [18]).

Hitzmann et al. [13] argue the need for optical analytical methods, such as

various spectroscopic approaches, for a variety of reasons. These include, for exam-

ple, oxidative changes of raw materials during storage and processing, as well as

the critical importance of the visual impression of the final product and the

strict hygiene requirements throughout the production process and storage.

In such circumstances, non-invasive sensor systems are particularly useful.

1.1.2 Data Analysis and Modelling Approaches

The increasing use of fingerprinting analytical techniques, such as the optical

methods mentioned above, has led to increasing amounts and frequency of data

collected during processing, as discussed in Glassey [12]. Multivariate data analysis

methods capable of dealing with large, often highly correlated, data sets, reducing

their dimensionality and enabling correlations to be built between the measured raw

material characteristic, process data and the resulting product quality characteristics

have shown their benefits in a number of industries (e.g. [2, 19]). Principal com-

ponent analysis (PCA) and its variants have been used extensively to identify

underlying features in multidimensional data (e.g. [22]). On the other hand, various

regression methods, such as locally weighted regression, Partial Least Squares

(PLS) and its variants and nonlinear methods including artificial neural networks

were effectively used to develop models capable of quantitatively predicting the

desired process outputs (e.g. [21, 23]). Whilst this chapter does not intend to

provide details on these data analysis methods, they form an essential part of a

successful control of any process where process output measurements cannot be

directly obtained using analytical techniques. Readers are therefore referred to

various sources describing the fundamentals of these methods (e.g. [24, 25]).
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1.1.3 Process Control Approaches

The constantly increasing consumer expectations, market competition and strict

regulatory environment necessitate the use of increasingly more advanced control

approaches in the food industry. Such control approaches could not only contribute

to increased product quality consistency and safety; they could also improve the

manufacturing process efficiencies through reduced levels of finished product

rejections and recalls. These can affect both the economics of the process and the

impact upon the public trust and perception of manufacturers.

Several studies have shown the lack of competitiveness of European food indus-

tries as compared to North America and Australia [4] and the benefits of using

advanced quality management systems and Statistical Process Control (SPC)

approaches [26]. A comprehensive review of the use of SPC in the food industry

is presented by Lim et al. [5]. They provide a detailed analysis of a number of food

sector applications of SPC, with a very helpful time evolution indication for SPC

implementation in the food industry, highlighting its increasing integration in the

HACCP, ISO 9000:2000 and other quality management frameworks. The reviewed

articles highlighted ‘reduced process variation, improved food safety control,

improved knowledge about the process variation and cost savings’ as the most

cited benefits [5]. The most cited challenges included ‘resistance to change, lack of
sufficient statistical knowledge and lack of management support’ [5].

The case studies in this chapter indicate how benefits can be obtained even

through more established control approaches which often represent less of a chal-

lenge in terms of resistance to change or the need for detailed statistical knowledge,

yet still lead to tangible quality and cost benefits.

2 Case Study 1: Potato Chips (French Fries) Production

The first case study considers how an existing operating strategy can be ascertained

and improvements in the control system derived and justified. The process consi-

dered is a French fry line to which lorries transport potatoes from various growers to

the factory in loads of 20–30 tonnes. Each load is a single variety and from a single

supplier. When they arrive at the factory they are subjected to a number of quality

control tests and, if they pass these, they are unloaded into a storage bin. When

required for production, the potatoes from the bin are fed via conveyor belt to the

production line. First, the potatoes are peeled and then fed to a cutter to produce

chips of the required size and characteristics. The size is varied in response to

customer requirements. A sophisticated vision analysis system then removes from

the line any of the cut potatoes that contain defects. Following this, the cut potatoes

are partially cooked in a blancher and then pass into the dryer. The dryer acts to

regulate moisture to give the final product its correct texture. Following the dryer,

the chips are partially fried. The product is then frozen and packed ready for
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distribution to the customer. Quality control tests are carried out on the final packed

product to confirm that it meets customers’ specifications. The paramount produc-

tion objective is to manufacture French fries to quality criteria specified by the

various customers. To do so requires frequent changes to the processing equipment

to make product routinely whose quality falls within the target range.

2.1 Knowledge Elicitation

The first stage in the study involved determining what information existed on

process variations and current plant control policy. At the outset it was clear that

there was a considerable degree of manual intervention in plant operation. Whilst

control loops regulated variables such as blancher, dryer and fryer temperatures, the

set points of these controllers were specified by the plant supervisors based upon

their process expertise. The first step was to check that these controllers were

behaving acceptably. If local loops were not functioning correctly then controller

set point specification would be pointless. Observations of loop behaviour con-

firmed that all local control loops were functioning correctly. Following this, it was

necessary to get an appreciation of how and why the operators modified the

controller set points to regulate product quality. This information gathering

involved a series of knowledge elicitation sessions from the plant technical man-

ager and shift supervisors.

The Knowledge Acquisition Technique (KAT) used was developed by CK

Design and has proved to be an efficient knowledge elicitation tool and to result

in a complete, correct and consistent knowledge base [27]. The knowledge elici-

tation proceeds through successive overturning of the states of belief of the expert

about the core belief state. The line of questioning is carried out until the expert

believes there is no further condition to overturn the belief under the preceding

conditions. The knowledge base is structured in the form of exception graphs that

capture the expert’s decision process. Using the KAT method, working from the

core belief that the product quality was under control, exceptions were sought and

actions in the event of these exceptions occurring were obtained.

It is usually the case that no one person possesses all the knowledge pertaining to

the problem domain. It is therefore necessary in the initial project stages to identify

all those that may contribute to the knowledge base. A degree of overlap of know-

ledge between ‘experts’ is desirable as inconsistencies can be highlighted. In this

project several process supervisors and quality control laboratory staff were inter-

viewed, along with the past and present production manager. A set of several

exception graphs from the various experts resulted. The next stage was to combine

them into a single exception graph. This requires the project ‘owner’ to adjudicate if
conflicts arise. If the degree of inconsistency between ‘expert’ views is significant,
then little can be gained from the knowledge elicitation other than indicating that

the whole process operational strategy requires reconsideration. This was not the
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case in this study, with only minor inconsistencies, primarily in the severity of

response operators took in response to process problems. As a result, the current

control strategy was determined in the form of an exception graph. The exact details

of the current control strategy are confidential as are the precise details of the

CK Design technique, but the information shown in Fig. 1 is typical of the

rules obtained and level of detail produced.

Here it can be seen that State 1 indicates that the chip quality is acceptable unless

State 2 or State 3 is true. To indicate the type of structure and rules that arise,

consider the left hand side of the tree and the situation when a measurement is

received to indicate that State 2 is true (i.e. the moisture is high). Action 1 associated

with State 1 is taken. This confirms that State 1 is in fact true. As moisture is a

measured value and subject to error from a variety of sources, this reconfirmation is

necessary. If State 1 is still true after reconfirmation then State 4 is considered. If the

raw material moisture reduces significantly then it soon results in product moisture

reduction so no action is required. Otherwise Action 2 should be taken. In this

scenario, Action 2 is likely to involve a reduction in product drying.

Chip Quality is
acceptable

Colour is too lightMoisture is
high

Raw material moisture
falling by less than x%

or increasing

Fryer temperature
constant of decreased

State 1

State 3State 2

State 4 State 5

Action 2 Action 3

Action 4

Rule 1
Quality is acceptable unless moisture is high
Take Action 1 to confirm State 2 is true
If Action 1 confirms this is the case then
If moisture in the raw material is falling by more than x%
take no action (moisture will soon fall)
else
take Action 1

Action 1

Example from
States 1, 2 and 4

Fig. 1 Example of control strategy information

Case Studies in Modelling, Control in Food Processes 99



2.2 Control Strategy Development

Moisture was identified as particularly important as product is sold by weight and

moisture targets set by customers are quite tight. At this stage the managing director

of the company not unreasonably asked how much money would be saved by

improving moisture control to ascertain whether it was a worthwhile undertaking.

Answering such a question requires the use of cost benefit analysis techniques. The

fundamental question to answer is how much is a control scheme going to save but

this must be answered before it is implemented. To attempt to resolve this ‘Catch
22’ question, use was made of techniques proposed by Anderson [28] and verified

in other industrial sectors (for example [29]). The underlying philosophy is that

improved control translates to reduced product variance. By decreasing product

quality variance it is still possible to stay within the range of acceptable product but

with a mean value of operation which can be changed. In this case, this could lead to

the mean value of product moisture increasing but still satisfying the customers’
quality control demands. From this situation, a simple financial calculation can be

undertaken to reveal what a move in product quality mean is worth. The current

operational records provide the information to determine existing variance. The

fundamental assumption proposed by Anderson [28] is that, by implementing

sophisticated control procedures on a process plant, the variance of the product

quality is at least halved. Indeed, in plants where significant manual intervention is

currently the norm, this is quite pessimistic. The new product distribution can be

estimated and the new mean operating point determined to ensure that quality

control still remains within the target range. Clearly, the figures relating to the

application are financially sensitive and are unable to be revealed. However, the

procedure outlined above was followed and the potential savings indicated were

significant and justified the continuation of the study.

Although product moisture is influenced by several operations on the line, the

main influence and therefore the control variables are within the dryer. The oper-

ation of the dryer is not an insignificant task. Analysis of the existing control policy

for moisture control revealed two important issues:

1. The severity of control changes to the same deviation varied from operator to

operator

2. The operators acted to correct process deviations using a feedback strategy

acting on information from the quality control laboratory

Whilst the first issue could easily be rectified, the second highlighted a funda-

mental control problem. Feedback control is not a particularly effective means of

controlling the process. Delays in the overall loop of 35 min at best are significant.

This would occur if a sample was taken from the line immediately a change reached

the sampling point. In the worst case, because samples to measure product moisture

are only taken every hour then the delay could amount to 95 min. When the line is

producing many tonnes of product, this could amount to significant

off-specification product. Of equal concern is that, with significant disturbances
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coming from raw material variation, a change in product moisture takes at least

55 min to be observed. Corrective action could then be taken but by this time a new

load of potatoes are being fed to the line because it takes around 60 min to process a

load. Such corrective action would therefore be completely inappropriate. Thus it is

clear that this scheme is fundamentally flawed.

In analysing the existing control scheme it is apparent that the problems are a

result of process and measurement delays and the sampling rate of the quality

variables. Even if the sampling rate could be increased significantly, which given

human resource requirements would be difficult, the fundamental problem remains

of process delay. Overcoming the problem of delay requires a predictive control

philosophy. If the answers to two fundamental questions are obtained then control

performance could be considerably improved upon. The two questions are:

1. If a change is made to the dryer, how does the product quality respond? If the

product is off-target or a change to the operating target is required, information on

how to change the dryer to get the product approximately within range can avoid

major reliance on delayed feedback. Although predictive information is never

perfect, the predictive action moves the product quality close to the desired value

and feedback could provide fine modifications to the operation. This avoids

typically well over an hours’worth of production potentially out of specification.
2. If the raw potato quality is known can its effect on product quality be predicted? If

so, by howmuch and when should the dryer be changed to compensate for it? If it

can be anticipated how a raw material change influences product quality, correc-

tive action can be taken in a feedforward control sense to nullify any changes in

raw material. It is realised that perfect process information is not available but

even approximate process information can serve to provide effective feedforward

control, with feedback control again providing fine modifications.

The modified control strategy is shown in Fig. 2.

Process operators
feedback actions

Influence of dryer
settings on

product moisture

Influence of raw
material on

 product moisture

Σ Σ Σ

Laboratory assays
of product
moisture

Process operators
feedforward actions

Potato moisture
variations

French fry
moisture content

Product desired
moisture content

-

-

++

Fig. 2 Modified control strategy for product moisture
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Two key control strategy parameters had to be specified for the scheme to

function acceptably. First, the feedforward controller gain was determined from

analysis of data produced from some simple plant tests. Observations of indepen-

dent variations of dryer temperature and raw material moisture on product moisture

provided the necessary information to determine the feedforward controller gain.

Second, inversion of the information on dryer temperature/product moisture pro-

vided the predictive information to determine by how much to increase temperature

to correct product moisture deviation.

2.3 Control Strategy Implementation

Trials of the new control scheme took place over a number of days of operation.

From a practical perspective it is important to note that no new instrumentation was

required and few, if any, extra laboratory analyses were undertaken. The essential

aspect of the new control philosophy was to use the available information but to

respond at appropriate times using knowledge of the likely outcomes of process

changes. The initial results were obtained in a series of process tests undertaken by

the development team in collaboration with the process operational staff. During

such tests, closer attention than normal is obviously paid to the process plant

operation. The worry is therefore that, although plant improvements are indicated,

in the longer term, when normal day-to-day operation resumes, without a specific

focus on the new policy little additional benefit is found. Long-term performance

compared with process behaviour prior to the introduction of the scheme is the best

way to judge whether this is indeed the case. This information is shown in

Fig. 3a. Figure 3a shows the performance of the production line prior to the

implementation of the control scheme. Laboratory samples measuring moisture

content are shown along with the tight bounds within which it is desirable to

operate. It can be seen that deviations outside of the bounds were frequent (56%

of the samples fall outside of the bounds). Figure 3b shows the behaviour of the

process following the introduction of the control scheme. Much tighter regulation

of the moisture content is apparent (10% of the samples fall outside of the bounds).

Slight oscillatory behaviour is observed within the bounds of operation. One of the

reasons for this is that potato loads are not selected at random to go through the

production line. The operators make an effort to put a load of similar moisture

content to the previous load through the line, hence introducing the observed

perturbations.

In interpreting these figures it must be remembered that the operational bounds

are tighter than the customers’ requirements but nevertheless, for the reasons

discussed previously, it is important to reduce variation as much as possible.

Returning to the cost/benefit analysis carried out prior to the implementation, it is

interesting to observe that the process variation has been almost exactly halved,

which is in line with the prevailing wisdom on improved control benefits.
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In summary, the case study set out to demonstrate that variations in product

quality in a food processing line could be reduced by the application of advanced

control methods. The KAT knowledge elicitation proved effective at obtaining an

initial idea of the control strategy. It highlighted where problems existed but it did

not provide a total solution. Once the failings of the current control scheme were

identified, cost benefit analysis revealed very clearly that improvements were

possible and the likely savings would more than justify the investment. The control

strategy itself was fairly straightforward to devise from a theoretical viewpoint,

with simple process trials revealing approximate process gains which were suffi-

cient for control design purposes. Implementation on the production line to prove

that the methods worked was remarkably trouble free. In the longer term, whilst the

Fig. 3 (a) Performance prior to control scheme implementation. (b) Performance subsequent to

control scheme implementation
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new control strategy is simple to implement, it does rely upon manual changes to be

made at roughly the correct time. This is a fundamental problem, as staff in a

small company tend to have many calls upon their time and this is seen as one more.

However, failing to respond to raw material changes has serious financial conse-

quences on the production line. A general awareness of the scale of the potential loss

may be encouragement to adopt the new strategy.

3 Case Study 2: Potato Crisps (Chips) Production

The amount of waste generated by food manufacturing processes presents a high

financial cost, making cost reduction one of the priorities for a process analyst. The

initial assessment of the process used for this case study indicated that a significant

amount of waste was generated by unacceptable levels of moisture in the end

product. In terms of moisture levels, the parameters within which the factory

operates for ‘Product A’ are divided into three zones: the Green zone – 1.4–1.8

(product has an optimal moisture level), Amber zone – 1.1–1.3 (the product meets

the process parameters but it can be further improved) and Red zone – below 1.1

and above 2.1 (see Fig. 4). When the moisture levels in the end product are situated

within the Red zone, the product is rejected from the line and it has to be dealt with

as waste. The moisture levels in the end product are measured online by utilising an

NDC online NIR gauge that also measures the amount of fat in the end product. On

a regular basis, the NDC gauge is giving a moisture reading every 30 s, but for the

purposes of this project the NDC gauge was set to give moistures values every 10 s

for more data to be captured so as to understand the process dynamics better. After

analysing the data generated over a 3-week period, it was estimated that, on

Fig. 4 Mechanism of the negative closed loop system utilising the moisture levels in the end

product to modify the fryer oil set point temperature to reduce the amount of waste generated by

unacceptable levels of moisture in the end product
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average, the amount of waste generated on one line by unacceptable levels of

moisture in the end product amounts to a weekly cost of approximately €1,250.
When the fact there are multiple lines within the factory is considered, this presents

a significant opportunity for improvement.

3.1 Developing a Solution

Once the current opportunity was assessed, the next step was to identify possible

solutions for reducing the waste and to achieve better process control in terms of

moisture levels in the end product. The main mechanism for control of moisture

levels in the factory is through the fryer oil temperature. Thus better control over

how the fryer was operated was chosen as the main solution for this challenge. A

closed loop negative feedback control system that utilises the moisture levels in the

end product to modify the set point temperature of the fryer oil to adapt it for the

subsequent product stream was developed. The mechanism through which this

negative feedback system operates is presented in Fig. 4.

Figure 4 illustrates the modifications to be made to the fryer temperature set

point in concordance with the three zones for moisture levels: Green zone, Amber

zone and Red zone. The system also requires that, after a change was made on the

fryer temperature, 4 min must pass before another change is made. The reason

behind this is partly that the time delay of the fryer temperature in this case is

around 4 min and also the desire to improve the robustness of the control system in

the event of spurious measurements.

The system presented above was designed so that it can be developed as an

automatic software solution and installed on the SCADA gauge utilised for con-

trolling the fryers in the factory. Having this negative feedback closed loop system

operating in an automated fashion offers many advantages, being more effective

and more cost efficient in the long term. Nevertheless, before the software was

developed, a series of trials was conducted to identify the efficiency of the system.

3.2 Trials Mimicking the Negative Closed Loop System

Two trials which lasted 12 h each were carried out to assess the efficiency of the

negative feedback closed loop system. For the purposes of these two trials, one

process operator was assigned to monitor closely the fryer at the control panel on

the SCADA gauge and to follow the instructions presented in Fig. 4. By following

exactly the system presented in Fig. 4, without being influenced by the effect of the

changes on the process, the efficiency of the automatic software was tested.

Moisture levels in the end product were measured as usual utilising the online

NDC gauge and data was captured and exported every 10 s so that data could be

further analysed and compared with previous data.
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The results obtained through these two trials were positive, showing lower

rejection rates of product based on unacceptable levels of moisture and also less

time spent in the Amber zone of moisture content. During the first trial there was no

rejected product for poor levels of moisture, although during the second trial 1 min

of rejected product was recorded, amounting to around €30. Although only two

trials have been carried out to date, the results were positive, giving more confi-

dence for developing and utilising the closed loop system. Currently an automatic

software system is being developed and implemented.

4 Case Study 3: Food Mixing Consistency

Consistency of mixing of various dry food mixtures and pastes remains a significant

challenge in food processing, despite years of development in this area. To date, the

mixing operations are predominantly operated using standard operating procedures

with times of mixing specified on the basis of empirically established values to

ensure product homogeneity. This may lead to excessive mixing and thus equip-

ment underutilisation or insufficient mixing and product rejection, neither of which

are desirable in food manufacturing.

This case study demonstrates how NIR may be used to improve the consistency

of mixing processes in food industries. Bread and confectionery powder mixtures

aimed at the bakery market were analysed in this study. The main components of

these mixtures were flour, sugar, gluten and salt. Four different products were taken

into consideration:

1. Product A: blend with small particle size distribution and more than one main

component

2. Product B: blend with small particle size distribution and one main component

that accounts for more than 50%

3. Product C: blend with small particle size distribution and one main component

that counts for more than 90%

4. Product D: blend with large particle size distribution and more than one main

component

The experiments were performed using two conical screw mixers of nominal

capacity of 4,000 L, each equipped with a diffuse reflectance fibre-optic probe

connected to a Bruker Matrix-F FT-NIR spectrometer. Figure 5 shows the configur-

ation of the conical screw mixer (Fig. 5a) and how the NIR probe is connected to the

blender (Fig. 5b). Spectral data were collected using OPUS software version 7.0

provided by Bruker. Homogeneity studies were performed by analysing spec-

tral data with Matlab version R2014a, and calibration models were built using

OPUS software.
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4.1 Homogeneity Measurement

Spectra were collected continuously during the whole production time from the

point of loading the first ingredient until the process was stopped. Dealing with

solid samples, data collected were largely influenced by light scattering, and

therefore different pretreatments algorithms were used to clean data from scatter-

ing. Four types of pretreatment were considered as detailed below.

4.2 Derivatives

Derivatives of spectra are calculated using the Savitzky–Golay algorithm. First and

second order derivatives are most common: first order derivatives remove baseline

from spectra and second order also eliminate linear trends [30]. Derivatives are

very good at enhancing differences between spectra and differentiate the over-

lapping signature, but they also increase noise.

4.3 Detrending

Detrending subtracts a polynomial fit from the original spectra to correct the

baseline [31]. The resulting spectrum is given by

XDt ¼ X � a0 þ a1λð Þ ð1Þ

Fig. 5 Conical screw mixer configuration. (a) Configuration of the conical screw mixer.

(b) Connection of the probe to the blender
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4.4 Normalisation

The same weight is given to all the absorbances: each spectrum is in fact normalised

to a length of 1 by dividing it by the Euclidian norm [30]:

Xnorm ¼ Xorig
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

X2
orig

� �

r ð2Þ

4.5 Standard Normal Variate (SNV)

SNV normalises each spectrum to zero mean and unit variance by subtracting the

mean of each spectrum and dividing by its standard deviation [30]:

XSNV ¼ Xorig � Xmean

σ
ð3Þ

Deviation from the target spectrum was investigated to establish the mixing

time; it was calculated as the Euclidean distance between all the spectra collected

and the ideal spectrum referred to the homogeneous blend:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

spectra matrixi, j � ideal spectrum
� �2

q

ð4Þ

In all the experiments the change of spectra over time was observed, eventually

converging to the same steady-state spectrum (see example in Fig. 6). Green spectra

represent the beginning of the production, when the blend is still under the level of

the probe. The characteristic flat shape is because only the air present in the mixer is

scanned at this phase. As soon as the probe starts getting covered by the powder

mixture, spectra begin to show some peaks. This is represented by the blue spectra.

These spectra are shown to change over time, indicating the composition is chang-

ing. In fact, during the process, different ingredients are added and blends are

continuously mixed, leading to different powders being scanned by the NIR

probe. Spectra are seen to start overlapping after a certain time, as illustrated by

the red spectra. Because each sample of a given composition and concentration is

uniquely identified by a spectrum, the overlap demonstrates that the powder inside

the mixer has the same concentration, thus indicating that the blend is

homogeneous.

Mixing time is therefore determined by the time it takes for the spectra to start

overlapping with each other and a steady-state fully mixed spectrum is reached.
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The effect of component distribution was evaluated by comparing results

obtained for Products A, B and C, and particle size distribution was studied by

investigating the different effects on Products A and D. The entire blend run was

analysed, employing different combinations of pre-processing techniques. In Fig. 7

the blending profiles of deviation from the target spectrum for all the products are

shown using Normalization+SNV+Detrending and Normalization+second deriv-

ative. Variations in profiles were observed when using different pretreatments;

however, for all the experiments an overall behaviour was observed and plots

were generally divided into four parts:

1. First stationary phase: the deviation is stable over time and its highest value is

recorded. Powder is still under the level of the probe and NIR is scanning only

air. Green spectra shown in Fig. 6 represent this phase

2. Decreasing phase: deviation suddenly decreases because of the powder

approaching the probe level. Referring to Fig. 6, this phase illustrates the passage

from green to blue spectra

3. Oscillations: deviation changes over time as a consequence of the variation in

composition during the production process. Blue spectra shifting over time in

Fig. 6 describe the same phenomenon of oscillations

4. Second stationary phase: deviation finally approaches zero value and remains

stable over time. Red spectra overlapping each other represent the second

stationary phase

Fig. 6 Example of spectra collected during the production phase. Green spectra are recorded

when the powder is still under the level of the probe. Blue spectra show powder reaching the level

of the probe. Red spectra represent the homogeneous mixture
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Fig. 7 Comparison of pretreatment combinations for Products A, B, C and D. Data were first

pretreated using Normalisation+SNV+Detrending and Normalisation+second derivative. Subse-

quently, deviation from the target spectrum was calculated. The red vertical line represents the
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Mixing time is thus identified by the starting point of the second stationary

phase, which may change depending on the pretreatment chosen. The value of

d (deviation from target) which determines the homogeneity starting point is set

depending on the product analysed. There is not a general recommended value, but

d is rather based on experience by analysing previous batches of the same product

and establishing the average minimum value when the profile becomes stationary.

Product A mixing time to reach homogeneity was identified with both combi-

nations as shown by the stationary phase achieved at minute 35 in both cases

(Fig. 7a, b). The homogeneity of Product B instead could only be identified using

Normalisation+SNV+Detrending (Fig. 7c, d) because of the reduced variability of

the system. This blend has one main component which counts for more than 50%,

whereas Product A has more than one main component. The smaller variation in the

component distribution of Product B causes, in turn, a smaller variation in the

spectra, which makes it more difficult to detect the changes during production and

therefore to understand at which point homogeneity begins. SNV and Detrending,

compared to derivatives, accentuate more the spectral differences, so making more

evident the homogeneity starting point. Product C homogeneity point could not be

identified properly by any of the combinations employed (Fig. 7e, f): the blend in

fact appears homogeneous as soon as the powder reached the probe (minute 12),

and no variations are shown when different ingredients are added. The main com-

ponent of Product C is present for more than 90%, so making the quantities of the

remaining ingredients very small. Changes in composition are minimised and NIR

is unable to detect such small variations. Product D homogeneity could be esti-

mated accurately using Normalisation+derivative, but not by Normalisation +SNV

+Detrending (Fig. 7g, h). The large variation in the particle size distribution of

Product D is in fact responsible for the increase in variability, and SNV and

Detrending accentuate these differences too much, causing oscillations in the

second stationary phase too. Derivatives, on the other hand, do not present the

issue as they enhance these variations less and are able to show more clearly

the homogeneity starting point.

Normalisation+SNV+Detrending gives all the benefits provided by these three

techniques: initial scattering is removed, oscillation phase is emphasised and the

homogeneity starting point is clearly detectable. This combination can be generally

used for products with average or small component distribution, but not for

products with a single component concentration higher than 90%. For this kind of

material, represented here by Product C, deviation from the target spectrum cannot

identify the mixing time required to achieve homogeneity. With regard to the

⁄�

Fig. 7 (continued) homogeneity starting point. Where the red line is missing it was not possible to

determine the mixing time. (a) Product A – Normalisation+SNV+Detrending; (b) Product A –

Normalisation+second derivative; (c) Product B – Normalisation+SNV+Detrending; (d) Product
B – Normalisation+second derivative; (e) Product C – Normalisation+SNV+Detrending;

(f) Product C – Normalisation+second derivative; (g) Product D – Normalisation+SNV

+Detrending; (h) Product D – Normalisation+second derivative
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particle size distribution, it is preferred to employ Normalisation+derivative as

differences would be accentuated too much by SNV-Detrending because of the

high variability involved in these products.

4.6 Calibration

Following the homogeneity analyses described in Sect. 4.1, the process was stopped

when the mixture was believed to be homogeneous and spectra collected inline

were analysed to measure the composition of the blend inside the vessel. To evalu-

ate the concentration of the blend components and to check whether they are within

the specifications, calibration models for Near-Infrared probe installed inline were

required.

An additional probe of Bruker Matrix-F, the same as installed inline into the two

conical screw vessels, was used and it was connected to the spectrometer with fibre

optic cable. The probe was placed under a bench in the laboratory in an upside down

position so that the sample could be placed on top of the probe and scanned (see

Fig. 8). This allowed the making of samples of known composition with a wider

range of concentrations, and reducing the time to build a calibration model. Fifty

samples of Product D were prepared with varying concentrations of each compo-

nent and scanned with the spare probe; calibration models were built using a

PLS algorithm and data were first pretreated and screened with PCA to eliminate

eventual outliers.

Results of cross-validation showed a very good correlation for most of the

organic components in the mixture, and gluten is illustrated here as an example.

Two factors were checked to measure the quality of predictive capability of the

calibration model: Root Mean Square Error of Cross-Validation (RMSECV) and

coefficient of determination (R2). The model for gluten prediction achieved 0.476

for RMSECV and 94.74% for R2, indicating a very low prediction error and a high

correlation. The plot of predicted vs actual values displayed in Fig. 9 shows the

Fig. 8 Additional probe of Bruker Matrix-F installed offline for sample calibration. (a) Scheme

showing the same NIR spectrometer connected to two Bruker probes, one installed in the conical

screw mixer and one installed offline under the bench. (b) Top view of the offline probe
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values lying on the parity line, which indicates that the predictions are very close to

the actual values for the whole studied range.

4.7 Tumble Mixer

To evaluate the effectiveness of this methodology independent of the unit operation

used, Product E, a bread roll powder mixture mainly composed of flour, salt and

sugar, was considered. The blending process of a Matcon tumble blender (see

Fig. 10a) of a nominal capacity of 2,000 L was monitored in this experiment.

Because in this case the blender itself is always in motion, it would not be possible

to apply a traditional NIR probe as seen in Sect. 4.1. The fibre and power cables

would rotate together with the mixer, so eventually snapping. Moreover, the

considerable size of the probe would not allow it to be applied to the tumble

blender, as it would certainly crash against either the floor or the ceiling of the

mixer. A MicroNIR PAT (shown in Fig. 10b) was considered for this purpose

because of its reduced dimensions and its cable free nature, being Wi-Fi and battery

powered.

MicroNIR PAT was applied to the lid of the tumble blender and spectra were

collected every time the lid was in the bottom position. Spectral data were collected

using the MicroNIR PAT software and then analysed with Matlab version R2014a.

Deviation from the target spectrum, as described in Sect. 4.1, was monitored to

establish the starting point at which the spectra overlap.

As with the convective mixer, the change of spectra over time was observed,

eventually converging to the same steady-state spectrum. However, in this case the

only spectra that can be seen are those varying over time, representing the change of

composition (Fig. 11, coloured in blue), and those overlapping each other that

exemplify the homogeneity phase (red).
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Blending profile pretreating data with Normalisation+second derivative is

shown in Fig. 12. In contrast to the convective mixer, given the initial flat spectra

absence, the first stationary phase is not observed here. The other phases are

evident: the profile starts with the decreasing phase, then continues with the oscil-
lation phase and ends with the second stationary phase.

The homogeneity starting point can be clearly identified using “Deviation from

target” and is indicated by a red line in Fig. 12.

Fig. 10 Matcon tumble blender (a) and MicroNIR PAT (b)

Fig. 11 Spectra collected during production in a tumble mixer. Initial flat spectra are not present

as probe was always covered by powder. Blue spectra indicate composition changes over time and

red spectra overlapping each other refer to the homogeneity phase
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4.8 Mixing and Cooking Vessel: Mixing of Pastes

For this part of the case study, paste products, in particular caramel and custard,

were analysed. They consist of high density and high viscosity products, produced

through high temperature processes. The main ingredients in both products are

water and sugar.

NIR spectroscopy was applied to a Giusti mixing and cooking vessel (see

Fig. 13), which has a nominal capacity of 2,000 L and is surrounded by a jacket

used for cooling and heating. Temperatures vary during the process, from

room temperature to a maximum of 120�C.
The spectrometer employed in this case (as in Sect. 4.3) was the MicroNIR PAT.

Because of the high temperatures involved in the process, and given the instrument

operative temperature range is only 0–40�C, an extended probe was applied to

MicroNIR PAT so that the product was not in direct contact with the spectrometer.

MicroNIR PAT was applied to the recirculation pipe and not to the vessel itself,

because the presence of the jacket surrounding the Giusti mixer does not allow

welding the flange. Working with high density and high viscosity materials, it is

very likely they stick to the probe surface. To avoid this problem, the spectrometer

was placed in the pipe, just above the recirculation pump, so there was enough

pressure to remove the product layer and NIR was able to scan the product flowing

into the pipe.

The production of caramel was monitored by taking samples every 15 min

during the process and analysing them offline to measure different physical prop-

erties: colour (light +), refractive index, water activity and moisture. Meanwhile,

spectra were collected inline and retrieved at the end of the production process.

Four batches were monitored: data from the first three batches were used to build

the model and data from the remaining batch were used to test the model and predict

the properties. The model was built based on the full spectrum, pretreating data with
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Fig. 12 Blending profiles analysed with “Deviation from target”
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SNV+first derivative, screening with PCA to check for potential outliers and

finally regressing using the PLS algorithm.

The results of the calibration model for caramel for the four physical properties

considered – colour, refractive index, moisture and water activity – are shown in

Fig. 14.

Figure 14a shows the predicted vs actual values of the model for colour pre-

diction where a high correlation is evident, as values lay along the parity line. This

is also supported by the high value of R2 equal to 82.29% and the low value of

RMSE equal to 1.72. Figure 14b shows the results of the calibration model of

refractive index for caramel. A very low correlation is evident, with an R2 equal to

50.79%. Values in the lower calibration range (around 28–29) are actually well-

distributed along the parity line, but for higher values of refractive index, points

are lying on a horizontal line, which indicates a lack of correlation. RMSE in this

case was equal to 1.50. Results of the calibration model of moisture for caramel are

reported in Fig. 14c, where the predicted values are very close to the actual values.

R2 was quite high (95.92%) and RMSE was low (0.77), indicating a very high

correlation for moisture. Finally, results of water activity are shown in

Fig. 14d. A high correlation of predicted vs actual values can be observed,

which is confirmed by the value of R2 equal to 74.37% and of RMSE equal to

0.03.

Fig. 13 Giusti mixing and cooking vessel. (a) View from the bottom of the entire vessel. (b) View
from the top showing the opening where raw materials are added
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The models built so far were subsequently tested to assess their potential in

predicting physical properties of inline products. Data from the fourth batch were

analysed using the models previously built and predicted vs actual values were

plotted for the different properties as shown in Fig. 15.

Most of the values of colour are overpredicted (Fig. 15a) whereas refractive

index is underestimated (Fig. 15b). Values of moisture (Fig. 15c) and water activity

(Fig. 15d) are closer to the parity line, but few outliers are present. Despite the

calibration models showing high correlation, the predictions for an unseen batch are

not very accurate. However it should be noted that only three batches were used in

this study to build the model, so it is not surprising that the model is not sufficiently

robust. More data need to be included and more batches have to be monitored to

improve the calibration.
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Fig. 14 Inline calibration model results for caramel for different properties: colour (a), refractive
index (b), moisture (c), and water activity (d)
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5 Conclusions

This chapter discussed the drivers and some methods of food process modelling and

control. A range of case studies was used to demonstrate the benefits and the chal-

lenges associated with the implementation of established control approaches as well

as more advanced monitoring methodologies. Clearly significant benefits can be

gained either by reducing waste generation or by increasing product consistency/

reducing unit operation time requirements, although care needs to be taken when

analysing multivariate spectral data and using this to predict product characteristics.
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Fluorescence Spectroscopy

for the Monitoring of Food Processes
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Abstract Different analytical techniques have been used to examine the complex-

ity of food samples. Among them, fluorescence spectroscopy cannot be ignored in

developing rapid and non-invasive analytical methodologies. It is one of the most

sensitive spectroscopic approaches employed in identification, classification,

authentication, quantification, and optimization of different parameters during

food handling, processing, and storage and uses different chemometric tools.

Chemometrics helps to retrieve useful information from spectral data utilized in

the characterization of food samples. This contribution discusses in detail the

potential of fluorescence spectroscopy of different foods, such as dairy, meat,

fish, eggs, edible oil, cereals, fruit, vegetables, etc., for qualitative and quantitative

analysis with different chemometric approaches.
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1 Introduction

Application of fluorescence spectroscopy in developing new analytical methodol-

ogies in food analysis has drawn the attention and interest of food researcher and

industries. This is probably because of increased public interest toward high quality

standards in food applications; it has become necessary to acquire qualitative and

quantitative information on raw materials and intermediate and final product for

optimal processing [1, 2]. Fluorescence is known for its sensitivity and specificity.

It is rapid, non-invasive, and cost effective, requiring no sample preparations and

producing no pollutants. It is considered to be a promising tool for process moni-

toring and controlling the important parameters during production to achieve

efficiently the required quality of end product and safety standards [3]. It also has

a great potential to validate and standardize the different conventional methodolo-

gies such as chemical measurements. This contribution therefore reviews the recent

application of fluorescence in food analysis, providing an overview of its impor-

tance for further research and development for establishing a system with sensor

technology on an industrial scale.

2 Fluorescence Spectroscopy

Fluorescence is the process of emission of light with greater wavelength than the

light absorbed beforehand by certain molecules (fluorophores) during its excitation

from the ground energy state to a higher level. This process can be categorized in

three steps and explained by the Jablonski diagram which is presented in Fig. 1. The

first step deals with the excitation process caused by absorbed light which transfers

the electron in the molecule from the ground state (S0) to the excited state (S1) with

different vibrational energy levels. The excited state of the molecule is unstable and

undergoes some vibrational relaxation and internal conversion to stabilize, resulting

in dissipation of energy (step 2). The excited electron returns to its ground state (S0)

by the emission of light with lower energy and larger wavelength (step 3). This

emission of light is called fluorescence [2].

Conventionally, there are two types of spectra, namely excitation spectra and

emission spectra. Excitation spectra are measured by fixing the emission wave-

length whereas emission spectra are recorded as a function of constant excitation

wavelength [4]. When emission spectra are taken at a wide range of excitation
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wavelength, it results in excitation-emission matrix (EEM) which has more infor-

mation about the different fluorophores in the sample matrix. However, there is

overlapping of different peaks in this type of spectral data, which can be replaced by

synchronous fluorescence spectra (SFS). In SFS, excitation and emission spectra

are taken simultaneously by fixing a constant interval (offset) between excitation

and emission wavelength [5].

Fluorescence emission caused by the presence of naturally occurring chemicals

(fluorophores) present in the sample matrix is sometimes called auto-fluorescence.

Food is a complex mixture of different types of fluorophors such as proteins

(aromatic amino acid tryptophan, tyrosine, and phenylalanine), cofactors (NADH,

FADH, and FMN), vitamins (pyridoxine, vitamin A, tocopherol, and riboflavin),

chlorophyll, and porphyrins. Furthermore, during processing and storage, Millard

reaction products and oxidation of lipid generate the compounds which induce

fluorescence [2]. These fluorophores show the fluorescence in the specific region of

spectra which are presented in Fig. 2.

3 Data Analysis

Chemometrics data analysis is being employed that extracts the useful information

from spectral data for different applications. There are different chemometric

approaches used for qualitative and quantitative analysis which are further catego-

rized into supervised and non-supervised tools as presented in Fig. 3.

Non-supervised chemometric tools are also called exploratory analysis, which

requires no previous information to analyze the data. Principal component analysis

(PCA), hierarchical cluster analysis (HCA), parallel factor analysis (PARAFAC),

common component specific weight analysis (CCSWA), and canonical component

Fig. 1 Process of fluorescence illustrated with the Jablonski diagram comprises three steps –

excitation (1), internal conversion (2), and fluorescence (3)
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Fig. 2 Contour plot for 2D fluorescence spectrum to show different fluorophors phenylalanine

(1), tyrosine (2), tryptophan (3), vitamin E (4), pyridoxine and its derivatives (5 and 7), NADH (6),
FMN, FAD, and riboflavin (8 and 9)

Fig. 3 Overview of chemometric tools for qualitative and quantitative data analysis
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analysis (CCA) fall within the category of non-supervised chemometric methods.

On the other hand, supervised chemometric tools need prior knowledge of each

class to which the spectrum was assigned. Linear discriminant analysis (LDA),

factorial discriminate analysis (FDA), and partial least square discriminant analysis

(PLS-DA) fall under the umbrella of this category. For quantitative data analysis,

multi linear regression (MLR), partial least square (PLS), and principle component

regression (PCR) are widely used, whereas locally weighted regression has proved

its role in improving the prediction of different parameters [6, 7]. A list of various

multi-variant analysis techniques is shown in Table 1. For a complete description of

these chemometric methods see [1, 3, 5].

4 Applications of Fluorescence Spectroscopy

Fluorescence spectroscopy has a wide range of applications in food analysis. The

major applications include characterization of food products, identification of

thermal changes during food processing, detection of food adulteration, monitoring

geographical origin of foods, detection of food authenticity, monitoring of chemical

and rheological properties of foods, determination of microbial spoilage of foods,

and detection of lipid oxidation in foods. Detection capability of fluorescence

spectroscopy is based on the presence of various fluorophores in different types

of foods. Table 2 gives an overview of the presence of fluorophores in different

types of foods.

4.1 Dairy Products

Different fluorescent molecules are present naturally in dairy products, including

aromatic amino acids (tryptophan, tyrosine, and phenylalanine), cofactors (NADH,

Table 1 Reported use of various chemometric analyses for interpretation of fluorescence spectra

obtained from different food samples

Food samples Chemometric tools References

Dairy products PCA, FDA, CCSW [8]

Meat PCA, PLS, PARAFAC, N-PLS, PLSDA [5]

Fish PCA, FDA, PARAFAC [9]

Eggs PCA, FDA [10, 11]

Olive oil PCA, PARAFAC, LDA, PLSR [12]

Vegetable oils LDA [13]

Honey PCA, PARAFAC, PLS-DA [14, 15]

Wines PCA, FDA [16]

Beers PCA, LDA [17]
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FADH, and FMN), vitamins (retinol, riboflavin, and pyridoxine), chlorophyll, and

porphyrins, which induce the fluorescence employed by this methodology for

classification, monitoring, and optimization of process and storage. This technique

has therefore been widely used in the dairy industry for the last few decades

[8]. Different ranges of emission and excitation wavelengths are selected for

characterization of dairy products as presented in Table 3.

4.1.1 Milk Characterization

The composition of milk is strongly influenced by the feed and the genotype of the

lactating animals. Zaı̈di et al. [25] therefore explored the potential of fluorescence

to differentiate the sheep milk during the 15 weeks of lactation based on the

genotypes. Only the spectra recorded in aromatic amino acid and nucleic acid

region generated a good identification of the milk samples using PCA. Similarly,

Hammami et al. [26] described the suitability of fluorescence to classify sheep milk

-corresponding to the feeding system (soybean-rich and scotch bean-rich diets)

Table 2 Applications of fluorescence spectroscopy in the food industry for detecting various

fluorophores present in foods

Types of foods Fluorophores References

Dairy products Amino acids, nucleic acids, Maillard reaction products, NADH,

FADH, oxidation products, retinol, riboflavin

[2]

Meat Amino acids, nucleic acids, collagen, oxidation products [18]

Fish Amino acids, nucleic acids, NADH, oxidation products [19]

Eggs and egg

products

Amino acids, nucleic acids, Maillard reaction products, oxida-

tion products, polyphenols, retinol

[10, 11]

Edible oils Chlorophylls, ferulic acid, tocopherols [20]

Cereals Amino acids, nucleic acids, polyphenols [21]

Sugar Amino acids, nucleic acids, Maillard reaction products, NADH [22]

Fruits and

vegetables

Amino acids, nucleic acids, chlorophylls [23]

Table 3 Classification of dairy products by fluorescence spectroscopy at varied emission and

excitation wavelengths

Fluorescent molecules

present in dairy products

Emission wavelength

(nm) suitable for

detection

Excitation wavelength

(nm) suitable for

detection References

Tryptophan residues 345 290 [5]

Maillard reaction

products

305–450 – [8, 24]

Riboflavin 525–531 380 [8]

Vitamin A 410 250–350 [24]

Lipid oxidation products 400–640 380 [5]

Lumichrom 310–590 270–550 [5]

Fluorescence Spectroscopy for the Monitoring of Food Processes 127



using PCA and FDA. The authors found poor discrimination using PCA whereas

FDA generated a good classification of the milk based on different feeding systems.

A similar approach was used by combining the fluorescence with mid-infrared

spectroscopy in further investigations which generated a successful classification of

sheep milk quality during the lactation period of 11 weeks [27].

4.1.2 Changes During Thermal Processing of Milk and Its Products

In different processing operations, thermal treatment of the milk is necessary to

reduce microbial contamination to increase shelf life. Proper labeling of milk

samples according to thermal treatment is an important issue for commercialization

of milk in international markets. Ntakatsane et al. [28] described the feasibility of

using fluorescence in characterization of thermally treated milk, that is, pasteurized

and UHT having different compositions according to origin. Emission spectra were

recorded in the region of 400–600 nm for Millard products/riboflavin and

300–400 nm for tryptophan by fixing the excitation wavelength at 360 nm and

290 nm, respectively. PCA differentiated different samples of milk according to

composition and origin. Similarly, Hougaard et al. [29] reported the characteriza-

tion of pasteurized milk at different temperature and time combinations using

fluorescence. Multi-way PARAFAC was employed to extract useful information

from spectral data using two components that are attributed to protein and vitamin

A. Previously, Kulmyrzaev et al. [30] investigated the effect of different processing

time (0.5–30 min) and temperature (57–72�C) combinations on the composition of

the milk with the help of fluorescence spectroscopy. PCA recognized a clear

discrimination of the sample treated at different time and temperature combina-

tions. The high correlations between measured and predicted data for alkaline

phosphatase and β-lactoglobulin with fluorescence were one of the interesting

findings of this research work. Furthermore, Mungkarndee et al. [31] reported the

successful identification and classification of commercially available milk samples

such as pasteurized, sterilized, UHT, and recombined milk (UHT processed milk

obtained from the combination of fresh milk and dried milk powder) with respect to

their thermal processing using LDA out of spectral data. This classification of milk

samples with respect to their thermal processing is based on the induction of

fluorescence fingerprints generated by different fluorophore and protein

interactions.

Heat treatment of milk not only changes the molecular structure by inducing the

Millard reaction but also alters the organoleptic and nutritional parameters of dairy

products. Diez et al. [32] therefore explored the potential of fluorescence spectros-

copy to predict the nutritional parameters of heat treated infant formulas. Fluores-

cence spectra were recorded in the tryptophan and advance Millard products for

intact milk samples at different processing temperatures (70–115�C) and time

(2–9.5 min). Vitamin C content and ratio of Millard reaction products to soluble

whey proteins showed a prediction error of 12% and 18%, respectively,

using PLSR.
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Different biochemical changes in milk taking place during storage and

processing were investigated by Liu and Metzger [33]. Nonfat dry milk samples

were stored for 8 weeks at different temperatures (4, 22, 35, and 50�C) and

fluorescence spectra were recorded. Milk samples stored at high temperature

(50�C) showed a clear differentiation by using PCA, as the biochemical changes

such as the Millard reaction, degradation of riboflavin, and alteration of tryptophan

catalyze at this temperature.

4.1.3 Monitoring of Cheese Processing

Cheese manufacturing and ripening is an important step which not only generates

desirable physico-chemical, rheological, and organoleptic characteristics, espe-

cially the aroma to get a high quality end product but also produces undesirable

changes such as oxidation of lipids. Fluorescence was utilized in determining the

aforementioned parameters. Karoui et al. [24] investigated the potential of fluores-

cence for monitoring the oxidation of semi-hard cheese during the ripening period

of 60 days. The authors found that the spectra recorded (λex ¼ 380 nm and

λem ¼ 400–640 nm) on the surface layer of the cheese showed good discrimination

(90%) compared to the inner layer (62%) using FDA. Karoui et al. [34] reported the

suitability of fluorescence to predict the rheological parameters of the cheese from

days 2 to 60 of the ripening period. The authors found a high correlation (R2> 0.80)

of different rheological parameters such as storage and loss moduli, strain and

viscosity from out of spectral data taken in the tryptophan and riboflavin regions

using PLSR. Karoui et al. [35] have continued their work for characterization of

cheese by predicting the chemical parameters (dry matter, fat, pH, total nitrogen,

and water-soluble nitrogen) with the help of fluorescence by taking the spectra in

the tryptophan (λex¼ 290 nm and λem¼ 305–450 nm), riboflavin (λex¼ 380 nm and

λem ¼ 400–640 nm), and vitamin A (λex ¼ 270–350 nm and λem ¼ 410 nm) regions.

The authors found high correlation (R2 > 0.85) for the aforementioned parameters

with the fluorescence data using PLSR. Karoui et al. [36] has extended the previous

approach to discriminate cheese on the basis of manufacturing process and sam-

pling zone. The spectra recorded in the vitamin A region showed good discrimina-

tion with the help of PCA whereas CCSWA was efficiently used to identify cheese

according to manufacturing process and sampling zone with spectra in the trypto-

phan, riboflavin, and vitamin A regions. Kraggerud et al. [37] investigated the

spectroscopic methods to predict the sensory characteristics of the cheese during

the ripening process. They found that the combination of spectral data improved the

prediction performance of sensory parameters compared to single-spectral data. In

a recent publication, Kokawa et al. [38] used fluorescence to study the maturation

process of cheese up to 329 days of ripening. The results obtained in this study

showed high correlation with R2 of 0.93, 0.79, and 0.90 for maturation time,

proteolysis index, and free amino acid, respectively, from spectral data using

PLSR modeling. Emission spectra at 345 nm excitation wavelength showed an
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increase in the intensity which was caused by the Millard products and lipid

oxidation with the passage of the maturation process.

4.1.4 Detection of Adulteration

Fluorescence was employed to detect the adulteration of low quality ingredients in

dairy products. Dankowska et al. [39] has investigated the detection of plant oil in

cheese using SFS. The authors found the lowest detection limit of 4.4% by taking

spectra in the range of 240–700 nm with different offsets (10, 20, . . ., 80 nm). MLR

established a high correlation with less than 2% error in predicting the level of

adulteration. The classification results described the better performance of succes-

sive projection algorithm linear discriminant analysis as compared to PCA-LDA in

terms of errors, especially with the offset of 60 nm. A similar approach was made

by Ntakatsane et al. [40], who reported the adulteration of milk fat with vegetable

oil in the concentration range of 0–40% using two-dimensional and multi-wave

fluorescence spectroscopy in combination with gas chromatography. The authors

found that adulterated and pure milk fat sample can be classified based on the

saturated fatty acid profile, tryptophan, tocopherol, and riboflavin using PCA. The

lowest detection limit was found 5% whereas saturated fatty acid has a better

prediction performance (R2 ¼ 0.73–0.92) than the unsaturated fatty acids (R2

¼ 0.20–0.65) using PLSR modeling.

4.2 Meat and Meat-Based Products

Meat is one of the perishable food commodities which increase interest in the

measurement of quality parameters and their composition to produce an efficient

processing and monitoring operation in the industry. Fluorescence spectroscopy is a

promising tool to determine the different parameters that are relevant to the quality

of the end product and to ensure safe food for consumers.

4.2.1 Chemical and Rheological Parameters

Collagen content not only determines the economic value of meat but also imparts

its role in texture and tenderness of meat and meat based products. Egelandsdal

et al. [41] used fluorescence spectroscopy for its quantification in beef masseter and

latissimus dorsi and pork glutens medius muscles based on the variation in color

and quality of connective tissues. Application of PLS regression helped to predict

the collagen content in meat in the range of 1.3–4.0% with a prediction error of

0.55% using different pre-processing tools. Redness of the meat showed a high

influence on the emission spectra generated by myoglobin variations. Fluorescence
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showed a better prediction of collagen in sausage batter as compared to NIR

spectroscopy, another interesting finding of this investigation [41].

Different rheological and chemical parameters are important and can be utilized

for classification of beef muscles because of their different dry matter, fat, collagen,

protein, and cooking loss as reported by Sahar et al. [42]. Excitation wavelengths

were fixed at 290, 322, and 382 nm to produce emission spectra in the range of

305–400 nm and 410–700 nm using front-face fluorescence spectroscopy, respec-

tively, for seven beef muscles. ANOVA showed a clear distinction in different

types of muscles on the basis of chemical and rheological parameters. However,

PLS-DA showed poor validation of 53% and 55% based on cooking loss and

protein, respectively, in the range of 305–400 nm, whereas good classification of

75% for fat content in the range of 340–540 nm was observed. Similarly, the above-

mentioned approach was further investigated using three different muscles with the

application of PLSR and PLS-DA, which show its feasibility in identification and

classification of muscles [43]. Furthermore, the fat and fatty acid profile of meat

plays a vital role in human nutrition as well as for determination of sensory

characteristics. Front face and synchronous fluorescence spectroscopy was applied

in estimating the fat and fatty acid profile of beef, which showed correlation with R2

of 0.66 for saturated fatty acid, whereas mono- and polyunsaturated fatty acid gives

the correlation (R2 < 0.48) by using spectral data. Front face fluorescence showed

better prediction performance than SFS, which is another notable finding of this

investigation [44].

4.2.2 Analysis of Meat Cooking

Cooking of meat is one of the most important processing operation which not only

catalyzes the Millard reaction but also alters the molecular structure because of the

denaturation of the protein. Sahar et al. [18] reported fluorescence spectroscopy in

combination with PARAFAC to investigate the effect of cooking meat. Fluores-

cence spectra were recorded for meat at 237�C for 1–10 min by fixing the excitation

wavelength of 250–550 nm using an offset of 0–160 nm with an interval of 10 nm

between excitation and emission wavelength. The best PARAFAC model has used

two components which were attributed to Millard reaction products and tryptophan

residues generated from the effect of cooking. In a recent application, Sahar et al.

[45] reported the same approach using three different temperatures (66, 90, and

237�C) with the same cooking times of 1–10 min. They clearly showed the effect of

cooking by separating the meat sample using PCA and PARAFAC. Furthermore,

SFS was employed to investigate heterocyclic aromatic amino acids (2-amino-I-

methyl-6-phenylimidazo [4,5-b]pyridine, 2-amino-3,4,8-trimethylimidazo[4,5-f]
quinoxaline, etc.) during the cooking of meat using PARAFAC and N-PLS. The

best PARAFAC model has two components and N-PLS resulted in a good corre-

lation between heterocyclic aromatic amino acids and spectral data

[46]. Undercooked meat products can pose a severe health problem to the con-

sumer. Fluorescence and Raman spectroscopy were therefore used in combination
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to determine the endpoint temperature to ensure the proper cooking of ready-to-eat

meat products. Fluorescence was applied to determine the changes in aromatic

amino acids during the process of cooking, which supported well the results of

Raman spectroscopy [47].

4.2.3 Microbial Spoilage and Lipid Oxidation

Microbial spoilage and lipid oxidation of raw and processed meat products have

attained special interest as they are considered critical points for health concerns

and limiting factors for acceptability of these items. For example, cooking of meat

before consumption becomes a source oxidation of protein and fat in meat and meat

products, spoiling the quality of the end product. Therefore, Gatellier et al. [48] has

reported fluorescence to be a fast and rapid tool to investigate the accumulation of

fluorescent pigments generated in cooked meat during storage. The strong correla-

tion of thiobarbituric acid (TBA) reactive substances and protein carbonyls with

fluorescence emission demonstrated that the interaction between proteins and

aldehyde products of lipid peroxidation is mainly involved in the production of

fluorescent pigments in cooked meat. Similarly, lipid oxidation was investigated in

chicken breast of different genotypes (a fast-growing line, a medium-growing line,

and a slow growing line) with the help of fluorescence spectroscopy using TBA. No

change was observed in lipid oxidation for the first 3 days although it increased in

certified and labeled genotypes of chicken. Fluorescence and TBA show a correla-

tion with R2 of 0.73 which determines its feasibility in predicting the lipid oxidation

rapidly and non-destructively [49].

Microbial spoilage was investigated in minced meat using a portable spectro-

fluorometer [50]. In this investigation, total viable counts (TVC), Pseudomonas,

lactic acid bacteria, and yeast/mold counts were quantified using PLSR out of

fluorescence spectra. The results showed a correlation of R2 ¼ 0.5–0.99 using

cross-validation with ratio to standard deviation RPDCV settled in the range of

1.40–8.95, which proved its feasibility for determination of microbial spoilage.

Furthermore, Sahar et al. [51] investigated the potential of SFS for determination of

microbial load on the chicken fillet during 1–8 days aerobic storage at 5�C and 1–5

days storage at 15�C. Total viable count (TVC), Pseudomonas, Enterobacteriaceae,

and Brochothrix thermosphacta were estimated from the spectral data, which were

taken at the excitation range of 250–550 nm with an offset of 20–180 nm using an

interval of 20 nm. The best PARAFAC model showed three and two components

for 5 and 15�C respectively whereas PLS-DA resulted in clear classification of TVC

during the storage using four factors. N-PLS showed a high correlation of 0.99 with

a low error of 0.1–0.2 log cfu/cm2 for estimation of TVC, Pseudomonas,

Enterobacteriaceae, and B. thermosphacta out of fluorescence spectra.

Yoshimura et al. [52] reported the estimation of aerobic plate count on the

surface of the beef from 0–48 h using fluorescence signature by the application of

PLSR. As the result of the metabolic activity of the microbes, peaks were observed

in NADH, vitamin A, porphyrin, tryptophan, and flavin regions of the spectra. The
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microbial count was predicted with a small prediction error of 0.752 log cfu/cm2

from the spectral data recorded for both excitation and emission wavelengths in the

range of 200–900 nm using PLSR. This approach was extended using fiber optic

fluorescence spectroscopy to determine the aerobic plate count on beef surface by

increasing the storage time to 3 days at 15�C. However, the prediction error was

found to be 0.831 log cfu/cm2, a bit higher than previous work [53]. Similarly, the

surface of pork was used to estimate ATP content and plate count with the help of

fluorescence. Spectra were taken in the tryptophan (λex¼ 295 nm and λem¼ 335 nm)

and NADH (λex ¼ 335 nm and λem ¼ 450 nm) regions which revealed a change

under the influence of microbial activity. The result obtained showed R2 to be in the

range of 0.84–0.87 for ATP and plate count using PLSR [54].

Porphyrin fluorescence is an important indicator to determine the quality of fresh

meat during the whole process chain. Fluorescence spectroscopy was used to

determine the age of the meat by using protoporphyrins [55]. In this study, fluores-

cence spectra of Porcine musculus longissimus dorsi (MLD) were recorded at

excitation of 420 nm and an emission range of 550–750 nm during storage in slices

over 20 days at 5 and 12�C. PCA was applied showing a clear separation of

fluorescence of meat slices at day 5 when stored at 12�C and day 10 stored at

5�C. The reason for the differences in the fluorescence signals were further reported
by Durek et al. [56]. The potential of fluorescence spectroscopy for monitoring of

microbial contamination using porphyrin fluorescence was investigated. Pork and

lamb meat were stored at 5�C for a period of 20 days. Fluorescence spectral data in

NADH and porphyrin were used to correlate the microbial contamination. The

porphyrin peaks increased after 9 days in pork and 2 days in lamb meat slices. The

percent absolute error was found to be 12% and 16% for pork and lamb,

respectively.

4.3 Fish and Seafood

Fish and other seafood are susceptible to spoilage rapidly because of high water

activity, neutral pH, low content of connective tissues, and the presence of autolytic

enzymes that cause the production of unpleasant odor and flavor during storage

[9]. Different processing operations such as freezing and refrigerating of the fish are

therefore adopted to minimize the process of autolysis and maintain freshness.

4.3.1 Determination of Fish Freshness

Most focused studies of fluorescence application in fish are evaluation of freshness

and classification of fish based on species, geographic origin, and processing

conditions. However, some applications also elaborate the lipid oxidation and

other physico-chemical parameters during storage. Dufour et al. [19] have used

fluorescence to distinguish between fresh and aged fish during storage of 1, 5, 8, and
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13 days. Spectra were recorded for different species of fish (cod, mackerel, and

whiting fillets) in aromatic amino acid + nucleic acid (AAA + NA) (λex ¼ 250 nm,

λem ¼ 280–480 nm), NADH (λex ¼ 336 nm, λem ¼ 360–600 nm), and tryptophan

(λex ¼ 290 nm, λem ¼ 305–400 nm) regions. Applying PCA to the spectra recorded

for AAA + NA allowed good discrimination of fresh and aged fish fillets for

different species of fish. Similarly, Karoui et al. [57] expanded this approach to

distinguish between fresh and frozen-thawed fish fillets. Slow and fast thawing

processes were applied to the frozen fish. Spectra were recorded in the tryptophan

and NADH regions with slight modifications. Applying PCA allowed a good

separation between fresh and thawed fish samples from spectra taken in the

NADH region. Further application of FDA to the five PCs gave 71% and 100%

discrimination between fresh and thawed fillets for the tryptophan and NADH

spectra, respectively. Hassoun and Karoui [58] have recently confirmed the

above-mentioned idea by applying fluorescence to whiting fish fillets under differ-

ent refrigeration conditions during storage for 12 days. The authors also investi-

gated some parameters such as TBA and pH, which were found to increase during

the storage of fish fillets. The reasons for the changes in these parameters are further

elaborated with fluorescence by storing the fish under modified atmospheres (50%

N2/50% CO2 and 80% N2/20% CO2) for up to 15 days at 4�C. The best classifica-
tion was observed with different fish fillets using PCA from fluorescence spectral

data. A modified atmosphere allowed the reduction of pH and TBA during storage

and the authors recommend this to maintain the quality of fish fillets [59]. Further-

more, Elmasry et al. [60] used EEM for estimating the freshness of horse mackerel

(Trachurus japonicus) during storage. K-value (the ratio of non-phosphorylated

ATP metabolites to the total ATP breakdown products) was used as a freshness

index. Applying PLSR allowed a good prediction of K-value (R2 ¼ 0.90 with

RMSECV ¼10%) from spectral data. Elmasry et al. [61] continued their work

and found that excitation at 390 nm is most promising and induces fluorescence of

fluorophors responsible for predicting the K-value. By fixing this excitation, eight

emission wavelengths – 440, 450, 480, 500, 530, 600, 640, and 710 nm – in the

normalized EEM spectra were found to be very sensitive in predicting K-values in
frozen whole fish (R2 ¼ 0.85, RMSECV ¼12%), whereas seven emission wave-

lengths – 500, 520, 530, 540, 650, 660, and 670 nm – in the normalized EEM

spectra of fillet samples were found to be very important in predicting K-values (R2

¼ 0.94, RMSECV ¼ 7%). Moreover, shelf life stability of cod caviar paste was

assessed by using fluorescence under exposure of light with concentration of

oxygen in the headspace. Applying PLSR allowed the high correlation for fresh

(R2 ¼ 0.92), rancid (R2 ¼ 0.94), and TBA (R2 ¼ 0.89) content from spectral data

during storage [62]. On the other hand, SFS was used in determining the pyrene

concentration in the gills of carp [63]. Spectra were recorded in the range of

280–450 nm by maintaining the offset of 50 nm. The excitation and emission

peaks for pyrene were observed at 334.5 nm and 384.5 nm, respectively. The

authors found a high correlation of 0.99 between pyrene and spectral data which

is a notable finding of this investigation.
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4.3.2 Geographical Classification of Seafood

Application of fluorescence to other seafood is scarce in the literature, although the

classification of shrimps based on geographic region was reported by Eaton et al.

[64]. Spectra were recorded in excitation (230–600 nm) and emission

(240–600 nm) ranges to classify two species of shrimp collected from four different

countries (Ecuador, Philippines, Thailand, and the USA). PARAFAC in combina-

tion with SIMCA generated a good discrimination (95%) of shrimps corresponding

to the country of origin. Hence, fluorescence fingerprints can help to classify

shrimps on the basis of their geographic region, which is an interesting finding of

this investigation. The emission and excitation wavelengths used for the character-

ization of meat and fish are presented in Table 4.

4.4 Egg and Egg-Based Products

Freshness of eggs is an important attribute which has a strong impact on the quality

of egg-based products as it alters the different physicochemical parameters, includ-

ing thinning of albumin, increase of water content of yolk, pH value, and weakening

of vitelline membrane. All these parameters affect the functional characteristics of

the egg albumin and yolk. Karoui et al. [10] therefore performed a series of

experiments to explore the potential of fluorescence spectroscopy to determine

the freshness of eggs, a non-invasive and non-destructive tool for screening. In

the first experiment, fluorescence spectra were recorded directly from the thin and

thick albumin in tryptophan (λex ¼ 290 nm and λem ¼ 305–430 nm) and Millard

Table 4 Characterization of meat and fish using fluorescence spectroscopy

Fluorophores in meat and fish

Emission

wavelength

(nm) suitable for

detection

Excitation

wavelength

(nm) suitable for

detection References

Fat (collagen and NADH) 390–475 340 [5]

Bone, cartilage, and connective

tissues (collagen and NADH)

455 340 [5]

Meat oxidation products 300–400 290 [65]

Wholesome and unwholesome

chicken carcasses differentiation

386–538 380 [5]

Tryptophan residues in fish 305–400 290 [19]

Aromatic amino acids and nucleic

acids in fish

280–480 250 [19]

Proteins and NADH 360–600 336 [5]

Differentiation of frozen-thawed

and fresh fish (NADH fluores-

cence spectra)

455 (fresh fish)

379 (frozen-thawed

fish)

340 [57]
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reaction (λex ¼ 360 nm and λem ¼ 380–580 nm) regions during a storage period of

29 days. Applying PCA on the tryptophan spectra for thin albumin allowed a better

classification of 69% as compared to the thick egg albumin of 54%. The authors

also found a similar trend for the spectra taken in the Millard reaction region of the

spectra. However, FDA allowed a much better classification of 91% of thick egg

albumin into four groups as a function of storage. In the second part of this work,

Karoui et al. [11] used egg yolk in place of egg albumin to determine the freshness

of the egg. In this approach, they recorded the spectra in the tryptophan region as

described before but spectra in the vitamin A (λex¼ 270–350 nm and λem¼ 410 nm)

region were taken instead of Millard reaction products. Applying FDA allowed a

better classification with respect to the spectra taken for vitamin A (91%) as

compared to the tryptophan (52%). The authors pooled the spectral data (tryptophan

and vitamin A) extracted from the first five PCs into a single matrix and observed an

improvement in classification (96%) using the FDA. Karoui et al. [66] continued his

investigations and determined the freshness of eggs under modified atmospheric

conditions during storage. The authors stored the eggs in daylight at 12.2�C with a

relative humidity of 87% and in other treatment 2–4.6% CO2 was used during a

storage period of 29 weeks. Spectra were recorded in AAA + NA (λex ¼ 250 nm;

λem ¼ 280–450 nm), Millard reaction products, and vitamin A regions for thick

albumin and egg yolk. Applying PCA to spectral data taken in the region of vitamin

A allowed better classification in terms of storage time and conditions as compared

to the other fluorophors which showed poor discriminations. The authors

recommended that vitamin A fluorescence can be used as the best tool to discrim-

inate between aged and fresh egg samples. Philippidis et al. [67] recently reported

the investigation of amino acids and egg proteins using 2D fluorescence and

surface-enhanced Raman spectroscopy. The fluorescence spectra recorded from

fresh and aged films indicate the formation of new fluorophores, which revealed

alteration and degradation of the proteins taking place during aging.

4.5 Edible Oils

Fluorescence applications in edible oil have not only focused on their classification

but also monitored the lipid oxidation which degrades the quality of oils. On the

other hand, detection of adulteration of edible oils has gained the interest of food

researchers using fluorescence spectroscopy because of the increasing demand for

better quality and safety standards. Details about the collection of fluorescence

spectra obtained from various fluorophores for characterization of edible oils are

described in Table 5.
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4.5.1 Characterization of Edible Oils

Kongbonga et al. [70] have used fluorescence spectroscopy to characterize the

different vegetable oils (sweet almond oil, corn oil, sesame oil, high oleic sunflower

oil, extra virgin olive oil, argan oil, cotton seed oil, soybean oil, refined palm oil,

palmist oil, rape seed oil, walnut oil, pear oil, and grape seed oil). Fluorescence

spectra were recorded at excitation and emission wavelengths of 370 nm and

525 nm, respectively, induced by the fluorescence of vitamin E. Applying PCA

allowed a clear differentiation of refined and unrefined oils. The authors also

reported a better heat stability for high oleic sunflower oil than for extra virgin

olive oil. Furthermore, differences in Argan cosmetic and edible oil revealed by the

fluorescence spectra were one of the notable findings of this investigation. Simi-

larly, Silva et al. [71] further explored this approach for classification of different

vegetable oils (canola, sunflower, corn, and soybean). In this approach, artificial

neural networks (ANNs) were applied which allowed the discrimination of differ-

ent vegetable oils with 72% accuracy. Moreover, palm oil was classified using

handheld fluorescence corresponding to the oil quality extracted from ripe,

underripe, and overripe fruit [72]. The authors found 90% successful classification

in this investigation.

4.5.2 Monitoring of Oxidation Process

Lipid oxidation is one of the notable processes which spoil the quality of oil by

producing undesirable changes. This process can be accelerated by different factors

including thermal treatment and UV stress, and this was investigated by Poulli et al.

[73] using fluorescence techniques in olive oil. The authors found that, because of

the accelerated oxidation process when storing samples at high temperatures (80�C
for 12 h) and under UV light, there was a large increase in peroxide and anisidine

values. These changes showed a linear correlation between fluorescence spectra and

parameters of oxidization (peroxide and anisidine value) under UV at different

temperatures (20, 40, 60, and 80�C). PCA allowed the discrimination of different

samples stored at temperature of 80�C under UV, stress explaining the 95% of

Table 5 Characterization of edible oils through fluorescence spectroscopy

Fluorescent compounds in

edible oils

Emission wavelength

(nm) suitable for

detection

Excitation wavelength

(nm) suitable for

detection References

Chlorophylls in virgin

olive oil

681 365 [68]

Vitamin E 445–525 365 [69]

Oxidation products 400–500 365 [69]

Differentiation of edible

and lampante virgin

olive oil

429–445 – [69]
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variance by the first two PCs generating five different classes. Similarly, Tena et al.

[74] reported the monitoring of the deterioration process of virgin olive oil during

thermal processing using fluorescence. Fluorescence spectra were acquired from

the oil samples (taken every 2 h from the fryer up to 94 h) of diluted and undiluted

samples by fixing the excitation at 350 nm with an emission wavelength of

390–690 nm, whereas HPLC was used to determine the α-tocopherol and different

types of phenolic compounds which showed high correlation with R2 > 0.90 from

the spectral data. The spectral data was also used to explain the increase in the polar

compounds produced by thermoxidation of oil. Diluted samples showed less polar

compounds as compared to undiluted heated samples reported by the authors.

Furthermore, oxidative stability of baru seed oil (a native Brazilian fruit) was

monitored using fluorescence by heating the samples at 110�C for 24 h. The authors

reported that the primary compound responsible for oxidation was generated in the

first 16 h whereas secondary degrading compound start to be produced after

14 h [75].

4.5.3 Detection of Adulteration in Oils

Olive oil is considered one of the premier oils because of its health benefits and

economic value. It is classified according to quality parameters into different grades

such as pure, extra virgin, virgin, refined, and olive pomace oil. Adulteration

reduces the quality of the olive oil as investigated by [76], who reported the

detection of sunflower oil in extra virgin olive oil. Synchronous fluorescence

spectra were recorded in the excitation region of 270–720 nm with offset range of

10–120 nm. A contour plot of virgin olive oil showed a clear discrimination with

the sunflower oil in the excitation region of 325–385 nm. Applying PLSR reported

the quantification of adulteration of sunflower oil with olive oil (0.5–95%) with a

detection limit of 3.4% using offset of 80 nm. Poulli et al. [77] continued his

investigation to detect the adulteration of other edible oils (olive-pomace, corn,

sunflower, soybean, rapeseed, and walnut) with olive oil using the same approach.

This time a wavelength interval of 20 nm was found promising to discriminate the

different levels of adulteration in the excitation region of 315–400 nm,

315–392 nm, 315–375 nm, 315–365 nm, 315–375 nm, and 315–360 nm for olive-

pomace, corn, sunflower, soybean, rapeseed, and walnut oils, respectively. Appli-

cation of PLSR allowed detection limits of detection of olive-pomace, corn,

sunflower, soybean, rapeseed, and walnut oil in virgin olive oil at levels of 2.6,

3.8, 4.3, 4.2, 3.6, and 13.8 wt%, respectively.

Thermal treatment of edible oils accelerates the process of degradation by

altering the physico-chemical changes which not only create the off-odor and

off-flavor but also produces carcinogenic and other hazardous compounds. Mabood

et al. [78] investigated the potential of SFS to discriminate the pure extra virgin

olive oil and extra virgin olive oil adulterated with sunflower oil stored at different

temperatures (25 and 75�C) with exposure to light and air, which accelerates the

process of oxidation. Spectra were recorded in the excitation range of 250–720 nm
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with offset of 20, 40, 60, and 80 nm. Applying PLS-DA on difference spectra

(75–25�C) reported a good classification between pure and adulterated samples at

an adulteration level of 2%. PLSR modeling quantified the level of adulteration of

olive oil with sunflower oil with a prediction error of 1.75%. Similarly, Mabood

et al. [79] expanded their approach to study the impact of thermal treatment to

detect the adulteration of olive oil using the same methodology by storing the oils at

two temperatures (25 and 75�C for 8 h). The best PLS-DA models built on

difference spectra showed the clear classification of pure and adulterated oil

samples. However, quantification of adulteration showed a higher prediction error

of 3.2% as compared to the previous work using PLSR. Furthermore, Tao et al. [80]

reported the detection of fried oil in edible oil using multiwave fluorescence

spectroscopy. The authors found the fluorescence intensity decreases corresponding

to the vitamin E level by increasing the concentration of fried oil dosage. Similarly,

Xu et al. [81] expanded the idea to detect the vegetable oils in blended oils (peanut,

soybean, and sunflower) using cluster analysis and the quasi-Monte Carlo integral

method. Spectra were acquired at 250–400 nm (excitation) and 260–750 nm (emis-

sion) which showed different peaks for different types of oils induced by the

variation in the fatty acid profile for various types of oil. The authors found

promising results for detection and quantifications of vegetable oil in blended oil

using this approach.

Walnut oil adulteration with sunflower oil was detected using total synchronous

spectroscopy [82]. The spectra were recorded in the excitation range of

250–700 nm with a wavelength interval in the region of 10–100 nm. Contour

plots of walnut oil showed a clear distinction with sunflower oil at an excitation

wavelength of 280 nm. Applying PLSR allowed the limit of detection of 0.3 vol%

by using a wavelength interval of 80 nm. Similarly, this approach was expanded by

Li et al. [83] by comparing the FTIR with fluorescence spectroscopy to detect the

adulteration of walnut oil with soybean oil using SIMCA and PLSR. The authors

reported that fluorescence is a more reliable tool in detecting the presence of

soybean oil in walnut oil (classification limit less than 5%) than FTIR (classification

limit ¼10%).

4.6 Cereals and Cereal-Based Products

Fluorescence has gained a lot of attention and interest in cereal applications in the

last decade because of the increasing use of chemometrics to extract useful infor-

mation from spectral data using different pre-processing tools.

4.6.1 Determination of Ferulic Acid in Cereal Grains

Ferulic acid is an important fluorophor and therefore the concentration of it has

been analyzed in pigmented and non-pigmented cereals using HPLC and
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fluorescence [84]. The authors reported the distribution of ferulic acid across the

grain, which resulted in variation of fluorescence in the outer as compared to the

inner part of grain. Overall correlation (r ¼ 0.421 with p < 0.0001) was found

between ferulic acid concentration and spectral data, which suggested that fluores-

cence is a promising tool for estimation of ferulic acid in different cereal grains.

4.6.2 Characterization of Wheat Flour

In recent years, Ahmad and coworkers have developed new methods to determine

the analytical, rheological, and baking parameters of wheat flours by just taking the

spectra signature without any sample preparation using fluorescence [85]. The

authors found the best prediction of dough development time (DDT) with a

correlation of 0.95 showing error of prediction less than 10% using PLSR. Simi-

larly, the coefficient of determination (R2) of protein, wet gluten, sedimentation

value, water absorption, and volume of bread loaf was found to lie in the range of

0.77–0.95 with a low error of prediction from the spectra of flour. The authors

concluded that fluorescence can be used as a rapid method in the cereal industry to

replace the laborious and tedious conventional techniques. Similarly, linear and

nonlinear chemometrics were applied to predict the nutritional parameters of wheat

flours from fluorescence spectral data [6]. The author found a good correlation with

R2 of 0.86–0.89 for fat carbohydrate and moisture. However, application of locally

weighted regression (LWR) improved the prediction results of all parameters (fat,

carbohydrates, sugars, salt, protein, and saturated fatty acids), showing the corre-

lation with R2 of 0.88–0.99.

4.6.3 Classification of Cereal Flour and Its Products

Karoui et al. [21] have implemented their preliminary investigations to differentiate

cereal products (flours, pasta and semolina obtained from complete kamut,

semicomplete kamut, and hard wheat flour) using fluorescence. Spectra were

recorded in the tryptophan region by fixing the excitation at 290 nm with emission

wavelength of 305–400 nm. Applying PCA not only allowed a good classification

between complete kamut and semicomplete kamut and its products made from soft

wheat flour but also a similar trend was noticed for pasta prepared from hard wheat

flour. However, poor classification was reported in the case of pasta (62%) whereas

flours and semolina showed good discrimination of 86% and 87%, respectively.

Furthermore, Zeković et al. [86] explored the potential of SFS classification of the

different cereal flours (wheat, corn, rye, buckwheat, rice, and barley). The authors

found that the contour plots showed a clear discrimination, the rice being especially

different from the other types of flour. PCA and cluster analysis showed a clear

discrimination using different offset values (2, 7, 10, and 20 nm). The authors

concluded that discrimination is possible with low wavelength intervals (< 20 nm).

140 M.H. Ahmad et al.



4.6.4 Determination of Gluten and Starch

Kokawa et al. [87] have performed a series of experiments to determine gluten and

starch distribution of dough and bread characteristics using fluorescence imaging

techniques. Quantification of the gluten and starch was obtained by extracting the

information from fluorescence images in underdeveloped, optimum, and

overdeveloped doughs [88]. This approach was further expanded to visualize the

gluten starch and butter in pie pastry. Fluorescence images were acquired in the

excitation and emission ranges of 270–320 nm and 350–420 nm, respectively, with

an interval of 10 nm. The useful information was extracted from the image analysis

using the least squares method and clearly visualized the gluten, starch and butter in

pie pastry [89].

4.6.5 Monitoring of Kneading Process of Dough

Kneading of the dough is one of the most important operations for getting the

desired characteristics to obtain a high quality end product. Ahmad et al. [90]

therefore characterized the farinographic kneading process using fluorescence.

Applying PCA classified the farinographic curve into four phases (hydration,

DDT, dough stability, and softening) out of spectra data using generalized least

squares weighting (GLSW) and standard normal variate (SNV). The authors used

the same approach to differentiate the different quality of wheat flours (E: elite, A:

quality, B: bread, and C: other purposes wheat flour) during the process of

kneading. PLSR modeling resulted in the prediction of a middle curve of the

farinograph with R2 of 0.75 out of spectra data, which is one of the notable finding

of this investigation. Similarly, Garcia et al. [91] reported the monitoring of the

dough process with the help of multiwave fluorescence spectroscopy. The authors

found that fluorescence of wheat flour has three peaks which were attributed to

protein, ferulic acid, and riboflavin regions of spectra. Addition of ferulic acid

resulted in an increase in the intensity of ferulic acid and riboflavin regions and

decrease was observed in the protein region of the spectra which may be because of

the reabsorption of protein fluorescence by ferulic acid. Application of PCA

allowed a clear discrimination of flour with ferulic acid and without it. After the

hydration process, there is a decrease in the protein and riboflavin regions of the

spectra which was later confirmed by Ahmad et al. [90]. On the other hand, Grote

et al. [92] reported the prediction of sour dough parameter (pH and degree of

acidity) out of fluorescence spectra using different chemometric tools (PLSR,

PCR, and PCA coupled with ANN). The best prediction results were obtained

using PLSR as compared to PCR and PCA + ANN. The author reported the

prediction error to be in the range of 2.5–5.1% for pH and 6–8.1% in the case of

degree of acidity. Using the different temperature and dough yields improved the

prediction error by 2%, whereas reduction in error (0.6%) was found caused by the

smoothing of noisy spectral data.
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4.6.6 Monitoring of Neoformed Contaminants in Cereal Products

Neoformed compounds which are the resultant of Millard reaction products and lipid

oxidation during the processing and storage of cereal-based products have also been

well-investigated using fluorescence. Rizkallah et al. [93] investigated the potential of

fluorescence to monitor the formation of neoformed compounds during the processing

of cookies on an industrial scale. Spectral data attained during the process of cookies

were decomposed using PARAFAC which were used to identify tryptophan, ribofla-

vin, and other neoformed contaminants (hydroxymethylfurfural, carboxymethyllysine,

and acrylamide). The authors found high correlation (R2 ¼ 0.90–0.98) of these

neoformed contaminants with the fluorescence spectra, which is one of the

interesting finding of this investigation. Similarly, Botosoa et al. [94] described

the role of fluorescence in monitoring lipid oxidation during the process of

aging of cakes. The authors stored cakes for up to 20 days and spectra were

recorded by fixing the excitation at 325 and 380 nm with emission in the range

of 340–490 and 390–680, respectively, and excitation spectra were acquired at

excitation of 250–390 nm after emission of 410 nm. Applying PCA allowed a

clear classification of cakes according to the aging period. The authors also

reported the correlation R2 ¼ 0.73 of anisidine value with a spectral intensity of

521 nm which assumed that fluorescence can be used for monitoring primary

and secondary lipid oxidation products. Botosoa et al. [95] expanded this

approach by applying other chemometric models and establishing a correlation

of texture with fluorescence to investigate the aging of cakes during storage for

20 days. The author reported that the tryptophan fluorescence (λex ¼ 290 nm,

λem ¼ 305–490 nm) has three peaks which were attributed to tryptophan

(382 nm) and Millard reaction products (435 nm and 467 nm). Applying PCA

allowed a clear differentiation between fresh 1, 6, and 9 days and aged cakes

(16 and 20 days). Texture of the cake and tryptophan fluorescence spectral data

showed a high correlation with R2 of 0.99 using canonical correlation analysis,

which is an interesting finding of this investigation.

4.7 Fruit and Vegetables

Chlorophyll is an important constituent of fruit and vegetables and serves as an

intrinsic fluorophore to induce fluorescence for determination of ripeness and

physiological growth of different plant-based products. Kolb et al. [96] reported

on chlorophyll fluorescence for analyzing the degree of ripeness of grapes. The

authors found a curvilinear trend for glucose, fructose, and total sugars, whereas a

linear relationship was established between ratios of fructose/glucose with the

spectral data. The authors concluded that sugar accumulation determination during

the ripening process of grapes with chlorophyll fluorescence is one of the important

finding of this investigation. Similarly, this approach was used by Jiang et al. [97]
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with fig fruit to predict the fructose, glucose, and sucrose during ripening. Applying

PCA allowed a good discrimination of the fig with respect to the degree of maturity.

The authors found a high correlation with R2 of 0.96, 0.99, and 1.0 for fructose,

glucose, and sucrose, respectively, with a low prediction error from spectral data

using PLSR modeling. Furthermore, fluorescence coupled with hyperspectral imag-

ing methodology was also used to determine the different quality parameters of

apples (fruit skin and flesh color, firmness, soluble solids content, and titratable

acidity) by using PCA in combination with ANNs [23]. The spectral images were

taken at an excitation wavelength of 408 nm with a blue laser to induce fluorescence

with different illumination times (0–5 min). The authors reported a good prediction

for apple skin color (R2 ¼ 0.94) whereas other parameters (fruit firmness, skin

chroma, and flesh color) showed R2 of 0.74. Total soluble solid and titratable acidity

were predicted using this approach.

Zhu et al. [98] studied the non-enzymatic browning in thermally processed apple

juice with the help of fluorescence in combination with different multivariate tools

such as PCA, PLSR, and PARAFAC. Spectra were acquired for fruit juices by

fixing the excitation at 355 nm and 400 nm in the emission range of 385–600 nm

and 430–600 nm, respectively. Applying PCA allowed a good classification (85%)

of fresh, heat treated stored apple juices. The authors reported a correlation with R2

of 0.80 between concentration of 5-hydroxymethylfurfural and spectral data, which

suggested the feasibility of this approach for measuring the non-enzymatic brow-

ning in fruit. Similarly, Acharid et al. [99] expanded this approach to monitor the

neoformed compounds (furosine, carboxymethyllysine, and furan) in carrot-based

baby foods. PARAFAC was used to decompose the spectral data which showed an

enhanced production of neoformed compounds in thermally processed carrots as

compared to fresh and pasteurized carrot puree. The authors reported a high

correlation (R2 > 0.94) between neoformed compounds and fluorescence spectra

data which concluded that this approach is a practical way to determine the quality

of vegetables as well as fruit during storage and processing. Furthermore, Ammari

et al. [100] detected the adulteration of orange juice with grapefruit by using 3D

fluorescence with the help of free radical scavenging activity and flavonoid content.

Applying ICA, allowed a detection limit of 1% of grapefruit in the orange juice,

which suggested this approach can be used to prevent fraudulent practices and to

attain higher quality and safety standards.

Sensory attributes which increase the acceptability of food products are very

important. Fluorescence was therefore used to assess the sensory characteristics of

tomato juice [101]. The authors reported two peaks which were found at excitation/

emission wavelengths of 290 nm/350 nm and 315 nm/425 nm. Applying PCA

resulted in the capturing of a large amount of variance in the first PC which settled

at 74% and 75% for aroma and combined flavor and taste of tomato juice, respec-

tively. The authors reported the prediction of the sensory profile of tomato juice

(aroma and combined flavor and taste parameters) from fluorescence spectra from

the first PC using PLSR with a correlation of 0.8. On the other hand, mangoes were

geographically identified using a fluorescence approach [102]. The spectra were

taken from the skin and pulp of mangoes obtained from different regions of Japan
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(Miyazaki and Okinawa) and China (Taiwan). Application of canonical discrimi-

nation analysis for determination of origin showed a misclassification of up to 19%

for data collected in 2010 although the spectral data of harvesting season

2010 + 2011 showed a reduced level of misclassification (13%). The authors

reported that the selected excitation/emission wavelengths of 260–290 nm/

340–360 nm gave a better classification of mangoes corresponding to the origin

with spectra taken from the skin than from the pulp.

4.8 Miscellaneous Applications

Fluorescence in combination with chemometrics is widely used in other food

applications for classification, authentication, and identification of food products.

For instance, Sádecká et al. [103] reported the classification of brandies and wine

distillates using fluorescence. Emission spectra were recorded in the region of

360–650 nm by fixing the excitation wavelength at 350 nm whereas SFS spectra

were acquired in the range of 200–700 nm with an offset of 90 nm. Application of

PCA and HCA allowed clear differentiation between brandies and wines. More-

over, the authors reported that the contour plots of brandies were different from

wines as they showed peaks in the excitation/emission range of 390–430 nm/

470–520 nm whereas contour plots of wines concentrated in excitation

(360–390 nm and 230–250 nm) and emission (450–500 nm and 440–490 nm)

regions. Similarly, Airado-Rodrı́guez and his coworkers [104] investigated fluores-

cence with PARAFAC to discriminate the wines according to appellation and

ripening. Spectra were acquired in excitation (245–345 nm) and emission ranges

of (300–500 nm). Applying PARAFAC allowed the decomposition of the spectra

into four components which were further used to differentiate the wines

corresponding to appellation. The authors reported the discrimination of Rioja
and Ribera del Guadiana samples by plotting the scores of second and third

PARAFAC components. The aged and young wine samples were also discrimi-

nated by using the same approach. Furthermore, non-enzymatic browning of the

wines during storage was analyzed using fluorescence spectroscopy in combination

with PARAFAC [105]. The authors reported that the best PARAFAC model has

four components in which the first (λex/λem 280 nm/380 nm) and third factors (λex/
λem 465 nm/530 nm) showed a high correlation with the process of browning.

Monitoring of beer is important to assure its organoleptic properties, nutritional

aspects, and safety concerns. Therefore the quality of beer was analyzed during

storage using fluorescence spectroscopy [17]. The authors stored fresh beer samples

for 3 weeks in darkness and light at different temperatures (4 and 22�C). Recorded
spectra showed a decrease in fluorescence intensity in the riboflavin region caused

by the exposure to light which resulted in its oxidation. Applying PCA, k nearest

neighbor clustering method (kNN) and LDA allowed clear differentiation of sam-

ples corresponding to the storage time. Sikorska et al. [106] expanded this approach

and develop the calibration model for predicting the riboflavin and aromatic amino
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acid in beers using PLSR and N-PLS. The authors found a good correlation (R2

> 0.95) from fluorescence showing the low RMSECV of 14%, 4%, 19%, and 4%

for riboflavin, tryptophan, phenylalanine, and tyrosine, respectively.

Phytic acid is an anti-nutrient agent which forms a stable complex and hinders

the absorption of different types of nutrients. Cao and colleagues [107] investigated

the potential of SFS to determine the phytic acid in different foodstuffs such as bean

curd, wheat bran, beans, soybean, corn, and sesame. A stable complex formation by

chelating the Cu2+ ion with CuII-2,20-bipyridine complex that changed to 2-2

bipyridine which induced fluorescence was noted. The limit of detection and

quantification for phytic acid was reported to be 0.12 mg/L and 0.18 mg/L,

respectively, which is an interesting finding of this contribution. Culinary spices

are subjected to adulteration with different dyes which were detected and classified

by using SFS [108]. SFS spectra were acquired in the range of 400–690 nm with

wavelength intervals of 20–60 nm. Applying PLS-DA classified the adulterated and

unadulterated samples with dye in the range of 1–5 mg/L, showing 100% accurate

discrimination by using the wavelength interval of 60 nm.

5 Conclusion

Various authors have demonstrated the potential of fluorescence spectroscopy in

classification, authentication, and quantification of various parameters in different

food applications, which has led to development of sensors based on this spectro-

scopic method. Research into spectroscopic applications has increased in food

analysis over the last few decades but these applications are restricted to the

laboratory scale with lower numbers of samples. However, a few applications are

being used on the industrial scale, only reducing evaluation costs and time but also

replacing conventional methodologies with no sample preparation procedures.

Those involved in the industry are still reluctant to utilize these sensor technologies

because of the high cost of installation and maintenance. In addition, fluorescence

always involves pretreatment and different chemometric tools to extract and

retrieve useful information from the spectral data for calibration to quantify the

different parameters. This can involve laborious and costly procedures which are

limiting factors in the adoption by industry. However, a valuable and cheap tool is

the result after development of calibration modeling for estimation of different

parameters in the food system. Hence, fluorescence not only has great potential in

measurements of food systems, as described in the present contribution, but also

can become a valuable tool in other fields (pharmaceutical and biological sciences,

etc.) and in chemometric data analysis. This contribution has discussed the potential

of fluorescence in food systems, serving as a reliable, non-destructive, and afford-

able analytical method for monitoring and controlling the whole food production

process, leading to high quality standards in the future.
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face fluorescence spectroscopy coupled with parallel factors (PARAFAC) analysis to study

the effects of cooking time on meat. J Food Sci 74(9):E534–E539
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42. Sahar A, Boubellouta T, Lepetit J, Dufour É (2009) Front-face fluorescence spectroscopy as a

tool to classify seven bovine muscles according to their chemical and rheological character-

istics. Meat Sci 83(4):672–677
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51. Sahar A, Boubellouta T, Dufour É (2011) Synchronous front-face fluorescence spectroscopy

as a promising tool for the rapid determination of spoilage bacteria on chicken breast fillet.

Food Res Int 44(1):471–480

52. Yoshimura M, Sugiyama J, Tsuta M, Fujita K, Shibata M, Kokawa M, Oshita S, Oto N (2014)

Prediction of aerobic plate count on beef surface using fluorescence fingerprint. Food

Bioprocess Technol 7(5):1496–1504

53. Mita Mala D, Yoshimura M, Kawasaki S, Tsuta M, Kokawa M, Trivittayasil V, Sugiyama J,

Kitamura Y (2016) Fiber optics fluorescence fingerprint measurement for aerobic plate count

prediction on sliced beef surface. LWT--Food Sci Technol 68:14–20

54. Oto N, Oshita S, Makino Y, Kawagoe Y, Sugiyama J, Yoshimura M (2013) Non-destructive

evaluation of ATP content and plate count on pork meat surface by fluorescence spectros-

copy. Meat Sci 93(3):579–585

55. Schneider J, Wulf J, Surowsky B, Schmidt H, Schwägele F, Schlüter O (2008) Fluorimetric
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How to Decide on Modeling Details: Risk

and Benefit Assessment

Mustafa €Ozilgen

Abstract Mathematical models based on thermodynamic, kinetic, heat, and mass

transfer analysis are central to this chapter. Microbial growth, death, enzyme inactiva-

tion models, and the modeling of material properties, including those pertinent to

conduction and convection heating, mass transfer, such as diffusion and convective

mass transfer, and thermodynamic properties, such as specific heat, enthalpy, andGibbs

free energy of formation and specific chemical exergy are also needed in this task. The

origins, simplifying assumptions, and uses of model equations are discussed in this

chapter, together with their benefits. The simplified forms of these models are some-

times referred to as “laws,” such as “the first law of thermodynamics” or “Fick’s second
law.” Starting to modeling a study with such “laws” without considering the conditions
under which they are valid runs the risk of ending up with erronous conclusions. On the

other hand, models started with fundamental concepts and simplified with appropriate

considerations may offer explanations for the phenomena which may not be

obtained just with measurements or unprocessed experimental data. The discussion

presented here is strengthened with case studies and references to the literature.

Keywords 80% to 20% rule, Efficiency, Forcasting, Heat transfer, Mass transfer,

Mathematical modeling, Simplifying assumptions, Thermodynamics
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1 Modeling

Mathematical modeling is quite a comprehensive subject and may mean different

things to different scientists. The ideas presented in this chapter depend on the

experience gained in previous books [1–3]. In a typical food production process,

material inputs are converted into a set of desired material outputs. In the paper

“energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt
production process” Sorgüven and Özilgen [4] discussed the flavored yogurt

production process from the raw materials as described in Figs. 1 and 2. In these

figures, material and energy flow are described in detail. It may be possible to

extract data regarding the quality, for example, color, aroma, or taste of the inputs

and outputs of the process with direct measurements. Mathematical modeling

makes it possible to extract more information from this system, which may not be

obtained by direct measurements only. Within the context of this study, the inputs

are mostly the ingredients and energy, the outputs food. The process units are the

equipment, designed to achieve the purpose. A mathematical model is an approx-

imate representation of a process in mathematical terms (Fig. 3). A mathematical

model is a shorthand description of the processing of data and estimates the values

of the outputs (Y1, Y2 . . . Yk), when the values of the inputs (X1, X2 . . . Xn) are

entered. The model may help one to understand the details of the relation between

Fig. 1 Flavored yogurt-making process (data adapted from [4])
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the inputs and the outputs, which may not be achieved just by plotting the data, and

may explain the mechanism of the events. A mathematical model can never be an

actual representation of a process, as it would be very difficult, confusing, or

impossible to describe the whole system with mathematical formulations. The

way that people describe real life in mathematical terms is highly subjective and

depends on their previous experience and education. The selection of the parame-

ters for inclusion in the model is highly subjective, and probably the most sensitive

point of the model, where invalid decisions may be made. In typical process inputs,

X1, X2 . . . Xn may generate the outputs Y1, Y2 . . . Yk, (Fig. 3). A real modeling case

study is presented in Fig. 4 where the color of tomatoes changes during a tomato

paste production process because of the chemical reactions occurring in the toma-

toes. We may use the Barreiro–Milano–Sandoval model [5] to simulate the color

change by plugging in the processing conditions and the Hunter Lab (L: lightness;
a: redness; b: yellowness when positive, grayness when zero, and blueness when

negative) color parameters of the input tomatoes. With a model the cause-and-result

relation between the numerical values of the major process inputs (Z1, Z2 . . . Zj) and
outputs (W1, W2 . . . Wh) may be formulated in mathematical terms after simplifi-

cation (Fig. 5). Negligible inputs and outputs are not included in the model. The

decision about designation of the negligible and non-negligible inputs or outputs

involves personal preferences. That is the point where modeling becomes a sub-

jective operation, not an objective work. One of the common difficulties

Raw Milk 2367 kg

Fat 82.9 kg

Fat Separation
Electricity 0.94MJ

Skim Milk 2284 kg

Milk Powder 138 kg

Microbial Culture Production
Microbial Culture

Non-fat Yogurt

Natural Gas 336 kg

960 kg
28.8 kg

Yogurt Production

Water 1280 kg
Spray Drying

Electricity 1539 MJ

Electricity 4 MJ

Electricity 483 MJ

1419 kg

Fig. 2 Mass and energy flow in the flavored yogurt-making process (data adapted from [4])
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experienced in modeling is to get lost in the complexity of the process. Referring to

“modeling” with the word “kinetics” in drying studies is an out of standard

reference to modeling [6]. Studies which prefer using the phrase “drying kinetics”
to imply “modeling” usually start analysis with “Fick’s second law”, for example,

Koukouch et al. [6]. There are also some drying studies in the literature where

“Fick’s second law” was chosen as the starting point of analysis without using the

term “kinetics” [7]. Gomez de la Cruz et al. [7] referred to the diffusion coefficient

they calculated as “effective diffusivity” and found it to be related to the sample

thickness. There are also some studies in the literature where the term “kinetics”
refers to the variation of the molecular profile with time without building a

mathematical model [8].

The difficulty or complexity level of a mathematical model is a serious decision

depending on the aim of the model builder. A model including a lot of detail may be

both difficult to build and discouraging to use, and at the same time incur the risk of

not including sufficient detail. What is referred to as Fick’s second law is actually a

Process unit

X1
X2
X3
.
.
.
.
Xn

y1

y2

y3

.

.

.

.

yk

z1
z2
z3
.
.
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.
zj

w1

w2

w3

.

.

.

.
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Fig. 3 Comparison of input

and output of a process and

its model

156 M. Özilgen



simplified form of the equation of continuity and predicts how diffusion causes the

concentration to change with time in a homogeneous media in one dimension:

∂cA
∂t

¼ D
∂2

c

∂x2

Starting an analysis with “Fick’s second law” may actually oversimplify the

mathematical analysis at the expense of the modeling accuracy. Starting such an

analysis after choosing the appropriate terms of the equation of continuity without

truncating the significant terms would lead to a more complicated mathematical

equation; its solution would probably be more difficult than simply plotting the data

but could yield a material-dependent diffusivity, which would not be referred to as

Fig. 4 Schematic description of the color change of the tomatoes during tomato paste production

and its simulation with a model
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“apparent” and not be a function of thickness. One of the best working guides in

process modeling is the 80% to 20% rule, which states “you get 80% of the benefit
with the first 20% of the model complexity” [9]. It is a loosely defined rule and, in

addition to its application within different contexts [10, 11], it is also used in

mathematical modeling [2, 3]. It is described as a rule of thumb, that is, a useful

principle having wide application but not intended to be accurate or reliable in

every situation.

Mathematical models for microbial growth, survival, and inactivation are essen-

tial elements in food process modeling [12]. To be useful in a real case, predictive

Fig. 5 Coordinate systems employed with transport phenomena models
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microbial or enzyme inactivation models must be used together with material

properties of the food and simulation of heat and mass transfer to the food by

employing the transport phenomena models and a predictive microbial model

[13]. The material properties may be regarded as the physical properties, such as

specific heat or the conduction heat transfer coefficient and the thermodynamic

properties of the food. Modeling of each of these properties is explained as a

separate issue in this chapter.

2 Transport Phenomena Models

Bird et al. [14] in their monumental book present the derivation of the governing

equations of momentum, heat, and mass transfer models (Fig. 5) starting with the

shell balances. Özilgen [2] adapted these equations by referring to Bird et al. [14]

Fig. 5 (continued)
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without going into the shell balances. It has been almost seven decades since the

first edition of the book written by Bird et al. [14]. Information presented therein is

regarded as very fundamental knowledge by many chemical engineers, but time has

swept away the details, at least for some people, and made it necessary to write this

chapter.

The first step of building a mathematical model is definition of the system. The

answer to the question “What is going to be predicted by the model by what input

data?” should be given when defining the system. Controlling factors of the system

should be identified and the data should show the effects of the individual control-

ling factors. The system may be simplified after neglecting the effects of the

marginal inputs, and outputs. The form of the mathematical model may be

suggested by an empirical, analog, or phenomenological approach. Availability of

information in the literature about the system, skills, and education of the modeler

and the purpose of modeling usually determine the form of the model suggested.

Comparison of the mathematical model, that is, solution of the equations with the

experimental data is the final stage of modeling. The model is validated if it agrees

with the data. If such an agreement should not be obtained, all the steps of

modeling, starting with the definition of the system, are repeated until a satisfactory

representation is reached (Fig. 6).

In Fig. 5, the energy equation is given for the spherical coordinate system as

∂T
∂t þ vr

∂T
∂r þ

vθ
r

∂T
∂θ þ

vφ
r sin θ

∂T
∂φ ¼

ψ •
G

ρc þ 1
r2

∂
∂r r2α ∂T

∂r

� �þ 1
r2 sin θ

∂
∂θ α sin θ ∂T

∂θ

� �þ 1
r2sin 2θ

∂
∂φ

α ∂T
∂φ

� �
This equation originates from shell energy balance [14] where each term

has a special meaning, where the term ∂T
∂t represents the time rate of temperature

change at a single point, and where the terms vr
∂T
∂r ,

vθ
r

∂T
∂θ, and

vφ
r sin θ

∂T
∂φ represent

the temperature change along the radial direction produced by the flow in the r,

θ, and ϕ directions with velocity v in these directions. The term
ψ •
G

ρc represents the

heat generation and the terms 1
r2

∂
∂r r2α ∂T

∂r

� �
, 1

r2 sin θ
∂
∂θ α sin θ ∂T

∂θ

� �
, and

1
r2sin 2θ

∂
∂φ α ∂T

∂φ

� �
represent the conduction heat transfer rates along the radial, θ,

and ϕ directions. Here α is the thermal diffusivity of the food and defined in

terms of the density ρ, specific heat cp, and thermal conductivity k of the food as

α ¼ ρcp/k.
Case study 1. Özilgen and Özilgen [15], when developing a model for pasteur-

ization with microwaves in a tubular flow reactor, started with the energy equation

as given in Fig. 5 for the cylindrical coordinate systems:

∂T
∂t

þ vr
∂T
∂r

þ vθ
r

∂T
∂θ

þ vz
∂T
∂z

¼ ψ •
G

ρc
þ 1

r

∂
∂r

rα
∂T
∂r

� �

þ 1

r2
∂
∂θ

α
∂T
∂θ

� �
þ ∂
∂z

α
∂T
∂z

� �
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In such a flow system, the term representing heat transfer with conduction is

substantially smaller than heat transfer caused by flow in:

vr
∂T
∂r

� 1

r

∂
∂r

rα
∂T
∂r

� �
vθ
r

∂T
∂θ

� 1

r2
∂
∂θ

α
∂T
∂θ

� �

vz
∂T
∂z

� ∂
∂z

α
∂T
∂z

� �

The authors, by referring to the 80% to 20% rule, therefore neglected the

conduction terms when proceeding with modeling. They knew that they were losing

some valuable information here and the apparent convection rates would include

those attributable to conduction. On the other hand, the researchers also knew that

the molecular mechanism of conduction heat transfer is based on delivering heat

from the hotter to the colder molecules with vibration and, in a flow system, heat

transfer with conduction would occur at a few orders of magnitudes less than to

convection. When indicating such a preference, the authors also knew that their

YESNO

REFER TO THE 
GENERAL 

CONSERVATION 
LAWS

ESTABLISH ANALOGY
BETWEEN A WELL KNOWN 
AND THE LITTLE-KNOWN 

PROCESSES

ESTABLISH 
MATHEMATICAL 
FORMULATIONS

OBSERVE THE PROCESS

IMPLEMENT SIMPLIFYING ASSUMPTIONS

SOLVE THE EQUATIONS

COMPARE THE SOLUTION 
WITH DATA

ARE YOU 
SATISFIED
WITH THE 

COMPARISON?

MODEL IS 
VALID

Fig. 6 Schematic
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data were not precise enough to calculate all of these factors separately. When the

data are not precise enough, trying to get information at such a significant level

would actually mean attempting to model the experimental error. The energy

equation gets simpler when ∂T
∂t ¼ 0, for example, under steady-state conditions

and when there is no flow in the r and θ directions, for example, vr ¼ vθ ¼ 0. Then

the final form of the energy equation is

vz
∂T
∂z

¼ 1

r

∂
∂r

rα
∂T
∂r

� �

Case study 2. Özilgen [2], when developing a model for deep fat frying a slab of

beef (length z¼ 10 cm, radius r¼ 0.8 cm) started with the equation of energy at the

cylindrical coordinates:

∂T
∂t

þ vr
∂T
∂r

þ vθ
θ

r

∂T
∂θ

þ vz
∂T
∂z

¼ ψ •
G

ρc
þ 1

r

∂
∂r

rα
∂T
∂r

� �

þ 1

r2
∂
∂θ

α
∂T
∂θ

� �
þ ∂
∂z

α
∂T
∂z

� �

The process conditions imply vθ ¼ vr ¼ vz ¼ 0 andψ •
G ¼ 0. The sausage is a thin

symmetric cylinder and therefore there is no change produced by θ and conduction

through the longer dimension may be neglected. So 1
r2

∂
∂θ α ∂T

∂θ

� � ¼ 0, ∂
∂z α ∂T

∂z

� � ¼ 0,

and the equation becomes

∂T
∂t

¼ 1

r

∂
∂r

rα
∂T
∂r

� �

As α is constant it may be rearranged as

1

α

∂T
∂t

� 1

r

∂
∂r

r
∂T
∂r

� �
¼ 0

In the same book [2], when modeling drying of rice (radius 1.13 mm, length

6.5 mm) when mass transfer in longitudinal direction was not neglected, the model

equation to be solved was

∂c
∂t

¼ D
1

r

∂
∂r

r
∂c
∂r

� �
þ ∂
∂z

∂c
∂z

� �� 	

A good mathematical model should be general (apply a wide variety of situa-

tions), realistic (based on correct assumptions), precise (its estimates should be

finite numbers, or definite mathematical entities), accurate (its estimates should be

correct or very near to correct), and there should be no trend in the deviations of the

162 M. Özilgen



model from the experimental data. A good model should be robust (relatively

immune to errors in the input data) and fruitful (its conclusions are useful or points

the way to other good models).

The 20% to 80% rule employed in mathematical modeling [2] is similar in

nature to the diminishing returns hypothesis of economics. This hypothesis states

the expected decrease in the incremental output of a production process, as the

amount of a single input of production increases continuously while all the others

are kept constant [16]. There is evidence that this hypothesis has some applications

in nature. Niklas and Cobb [17], when studying the relation between the total leaf

area and mass, argued that increases in total leaf area fails to keep pace with

increases in total leaf mass across plants differing in size using data from 46 plants

with diameters ranging from 0.125 to 0.485 m across 25 woody dicot species.

Choosing an appropriate coordinate system (Fig. 5) with an appropriate origin

may facilitate the modeling process substantially. A cylindrical coordinate system

with the z axis located on the center line of the cylinder is preferred when the

equation of continuity is used to describe the drying behavior of a cylindrical rice

grain; a spherical coordinate system with the origin located at the center of the tuber

is preferred when the equation of energy is used to evaluate the temperature profiles

along a spherical potato.

3 Thermodynamic Modeling

The entire theme of the science of thermodynamics is based on modeling. We may

refer to Table 1 for the equations employed in thermodynamic analysis. In a closed

system no mass passes through the system boundaries, and the first law may be

expressed as

X
i

_Q i � _W ¼
d m uþ epþpek

� �h i
system

dt

When the kinetic and potential energy changes in the system are negligibly small

in comparison with the change of the internal energy, we may obtain the following

expression:

Δu ¼ qþ w

where Δu is the change in the internal energy per unit mass of the contents of the

system between the end and the beginning of the process; similarly, q and w refer to

the heat transferred to the closed system and the work done by the unit mass of the

contents of this closed system, respectively. In thermodynamic studies, which are

often carried out by scientists unfamiliar with mathematical modeling, it is cus-

tomary to refer to Δu ¼ qþ w as the first law of thermodynamics. Daniels and
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Alberty [18], when presenting this equation in their book “Physical Chemistry,”
indicated very clearly that this equation is valid for “closed systems.” Unfortu-

nately, this expression is used without considering that it is valid for a closed system

only as the starting point of a very large number of studies in the literature.

Entropy generation refers to the extent of the irreversibilities (losses) in a

process. For an actual process, it is always positive. For an ideal system that

undergoes a totally reversible process, entropy generation is zero. However,

entropy generation can never be negative when we consider an entire system.

There are numerous studies in the literature in which, when the researchers do

not start with the open system thermodynamic equations as listed in Table 1, an

attempt is made to use the closed system equations to model an open system. In a

closed system, entropy change refers to the difference between the final and initial

entropies of a system. When we use the entropy balance equation of Table 1 to

describe the entropy balance around an open system (Fig. 7),
P
in

_ms½ �in describes the

entropy input to a system,
P
out

_ms½ �out the entropy output from the system,
P
i

_Q i

Tb, i
the

entropy generation produced by the heat exchange between the system and its

environment, _S gen the entropy generation from any source other than heat transfer,

and
d m s½ �system

dt the entropy accumulation rate in the system.

Entropy of a system may:

• Remain constant (if the system undergoes a steady-state process)

• Increase (if the system gets “disordered”)

• Decrease (if the system achieves a higher ordered state)

Table 1 Governing equations of mass, energy, entropy, and exergy

Mass balance
P
in

_m in �
P
out

_m out ¼ dmsystem

dt

Energy balance (first law of thermodynamics)P
in

_m hþ ep þ ek
� �
 �

in
�P

out

_m hþ ep þ ek
� �
 �

out
þP

i

_Q i � _W ¼ d m uþepþpekð Þ½ �
system

dt

Entropy balance (second law of thermodynamics)P
in

_ms½ �in �
P
out

_ms½ �out þ
P
i

_Q i

Tb, i
þ _S gen ¼ d m s½ �system

dt

Exergy balance (second law of thermodynamics)P
in

_mex½ �in �
P
out

_mex½ �out þ
P
i

1� T0

Tb, i

� �
_Q i �W � _E xdestr ¼ d m ex½ �system

dt

where u, h, ep, and ek are the internal energy, enthalpy, potential energy, and kinetic

energy, respectively; subscripts “in” and “out” refer to the “input” and “output,”

“system” refers to the contents within the system boundaries, _m , _Q i, and _W are the

mass, heat flow, and work performance rates, respectively; s is entropy, ex is exergy;
_S gen and _E xdestr are the entropy generation and the exergy destruction rates,

respectively
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Mass, energy, and exergy balances establish the basis for thermodynamic

modeling (Table 1) [1]. Figure 7 describes a nutrient uptake process, where the

nutrients such as proteins, starch, and others have highly ordered, low-specific-

entropy, structures and the food waste consists of smaller, for example, high-

specific-entropy, molecules. After remembering that specific entropy implies

entropy per mass, we may conclude that the waste has higher entropy than the

inputs. The living creatures such as the fish in Fig. 7 maintain highly ordered

structures [1, 19, 20]. According to the “behavioral homeostasis theory,” in the

case of external changes an organism rapidly rearranges itself to cope with new

stimuli and minimizes unnecessary energy expenditure [21]. Neglecting the fact

that the fish described in Fig. 7 represents an open system can definitely lead to a

wrong conclusion. Unfortunately there are numerous studies in the literature ignor-

ing this fact.

After the Arab–Israeli wars of the 1970s, oil prices quadrupled between October

1973 and January 1974 [22]. The perception of energy changed after this price hike

and energy sources are starting to be regarded as valuable commodities, research for

their conservation having increased dramatically. In the 1990s, reducing the green-

house gas emissions from food consumption was recognized as an important issue

[23]. In the following decades, reports were prepared [24, 25] on work to reduce the

impact of food production on the environment. A major fraction of these emissions is

related to energy utilization. Between 1970 and 2010, the world-average annual

energy utilization for food production increased from 10,008 to 11,850 kJ/person

[26].Within this context, studies were carried out to calculate the energy utilization in

the farm-to-fork food production chains, including production of hamburgers [27],

bread [28], and meat [29]. The results of these studies make it possible to determine

the most energy inefficient and greatest carbon dioxide emitting steps of food

production. In a comprehensive review, Rodriguez-Gonzales et al. [30] examined

the energy requirements of alternative food-processing technologies, including high-

pressure processing, membrane filtration, pulsed electric fields, and ultraviolet radi-

ation, to determine the less-energy-efficient technologies and suggest their replace-

ment with more-energy-efficient ones. The first law of thermodynamics states that

energy is conserved; that is, energy can neither be created nor destroyed. However,

energy can be transferred from one system to another via heat, work, or mass transfer.

The first law does not differentiate between the different modes of energy transfer.

Fig. 7 Schematic

description of the entropy

balance around a

living body
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The second law makes this differentiation by defining “entropy,” which is a measure

for randomness and increases because of losses involved in the processes. It provides

insight on the irreversibilities, helps to quantify the energy losses, and proposes

measures for minimization of the loss. The exergy balance equation can be derived

by multiplying the entropy balance equation with T0 and subtracting it from the

energy balance equation. In the modeling studies aiming at increasing the energy

efficiency of the processes, the models were based on the first law of thermodynamics

until the 1980s. The basic concept that the models are based on shifted after this date

and they were then based on the second law of thermodynamics.

Based on the second law, exergy (also called availability) is defined as the useful

work potential above the dead state (Fig. 8). There are some attempts to define

internationally recognized reference points for exergy calculations [31]. Exergy of

a system is the maximumwork that this system can produce if it is brought to thermal,

mechanical, and chemical equilibrium with its surroundings via reversible processes.

In other words, exergy is the maximum energy content that can be extracted from a

system without violating the laws of thermodynamics [32]. The term exergy comes

from the Greek words “ex, from” and “ergon, work” [33]. There are numerous

modeling studies in the literature based on exergy analysis. Özilgen and Sorgüven
[34] used energy- and exergy-based models for determination of their use and carbon

dioxide emission in vegetable oil production; Sorgüven and Özilgen [4] performed a

similar modeling study for the flavored yogurt production process. Çatak et al. [35]

suggested referring to lifespan entropy generation by the masseter muscle during

chewing as an indicator of life expectancy. After noting that the people living in

different regions of Turkey have different food habits, Kuddusi [36] calculated the

lifetime entropy generation per unit mass of a person and found substantial differ-

ences in their life expectancy. Rodriguez-Illera et al. [37] employed a similar

SYSTEM 
at T and P

Exergy above 
the dead state

DEAD 
STATE at 
T and P ash 

Fig. 8 Schematic

description of the exergy of

model foods with respect to

the common reference

“dead state”
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methodology to determine the exergy efficiency from staple food ingredients to body

metabolism by focusing on carbohydrates.

Drying is among the higher amounts of energy utilizing food processing opera-

tions because of the energy requirement for the phase change of water. There is a very

large number of exergy modeling studies in the literature which analyze drying [38–

42]. Icier et al. [43] carried out exergy efficiency studies by using tray, fluidized bed,

and heat pump dryers during the processing of broccoli florets and found that the

fluidized bed dryer had the highest exergy efficiency (90.86%). Aghbashlo et al. [44]

studied the exergy efficiency of the fish oil microencapsulation process by spray

drying and reported that the process exergy efficiency was between 1.64% and

14.43%. Tea processing consists of numerous drying stages. Individual stages of

the tea production have been the subject of thermodynamic analysis, including

withering [45] and drying [46–48]. Erbay and Koca [39] studied the performance

of a pilot scale spray dryer during white cheese powder production. Saygi et al. [40]

evaluated the performance of a spray drying process of a fruit puree by means of

energy and exergy analyses. Experimental exergy analysis is a time-consuming and

costly process. With the use of mass, momentum, energy, entropy, and exergy

balance equations, the times and costs can be reduced with determination of the

most efficient conditions [38]. Nasiri et al. [49] carried out a detailed exergy analysis

of an industrial scale ultrafiltered (UF) cheese production plant and Lokadan et al.

[50] carried out similar studies with an industrial scale yogurt production plant in

order to provide comprehensive insights into the performance of the whole plant and

its main subcomponents, including the steam generator, above-zero refrigeration

system, pasteurization line, and UF cheese production line.

4 Kinetic Modeling

There are basic differences between the reactions occurring in chemical reactors

and food systems. In food systems, numerous chemicals are present in the same

location. Therefore, chain reactions are common. In such a system, numerous

products and reactants may react [51, 52]. Factors such as light and packaging

[52, 53] and the presence of natural antioxidants [53] are among the factors

complicating this scheme. It is a very difficult task to present a mathematical

model based on the real mechanism in such a sophisticated system. The vast

majority of the kinetic models employed for such systems are either apparent or

analogy models. Deterioration of foods is usually simulated in analogy with first- or

zero-order irreversible monatomic reactions [54]:

dcA
dt

¼ �kcA

or
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dcA
dt

¼ �k

This does not mean that the reactions taking place are very simple reactions but

rather shows that complex systems can be simulated with an apparently simple

mathematical models. A first-order apparent reaction may imply that the variation

of the other chemicals either has no influence or is relatively negligible in compar-

ison with the chemical of interest. A zero-order apparent reaction implies that the

variation is not related to chemical reactions but rather related to other factors, such

as mass transfer.

Temperature dependence of reaction rate constants is generally expressed with

the Arrhenius expression:

k ¼ k0 exp �Ea

RT

� 


The Arrhenius equation is empirical in nature. Eyring and coworkers [18, 55]

offered a theoretical explanation for its parameters:

Ea ¼ ΔH∗ þ RT

k0 ¼ 2:72
RT

NAh

� �
exp

ΔS∗

R

� 


where h is the Planck’s constant, NA is Avagadro’s number, and ΔS* is the

activation entropy. Parameter k0 is related to Ea:

ln k0 ¼ αEa þ β

and the activation entropy ΔS* is related to the activation enthalpy ΔH* through

the kinetic compensation relations:

ΔS∗ ¼ δΔH∗ þ ϕ

implying that any change in parameter ln k0 would be compensated by the

change in Ea and any change in ΔS* would be compensated by a change in ΔH*.

Although parameters k0, Ea, ΔS*, and ΔH* change with the experimental condi-

tions, parameters α, β, δ, and ϕ are constants. Because of the kinetic compensation,

parameters Ea, ΔS*, ΔH*, and ϕ are not actually independent of each other and

when one of them changes with the experimental conditions the others are affected

by it. The possible relation between these constants is explained in detail by

Özilgen and Özilgen [56].

Predictive microbial models may be used to describe the behavior of microor-

ganisms under different physical and chemical conditions, such as temperature, pH,

and water activity. A comprehensive review of these models allows the prediction

of microbial safety or shelf life of the products and facilitates development of the
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HACCP programs [57]. Microbial kinetics are mostly based on the analogy

between the microbial processes and the chemical- or enzyme-catalyzed reactions.

Specific growth rate μ is a constant in the exponential growth phase, which

implies that the growth rate is proportional to the viable microbial population,

where all the members have equal potential for growth. The specific growth rate

may be regarded as the frequency of producing new microorganisms by those

already present. When microbial proliferation occurs in a substrate-limited

medium, specific growth rate may be related to the substrate concentration by the

Monod equation:

μ ¼ μmaxcS
cS þ K

where cS is the substrate, for example, carbon source, concentration K is a

constant, and μ is the specific growth rate of the microorganism. There are numer-

ous variations of the Monod equation available in the literature [58]. The most

common empirical modifications of the Monod equation including substrate and

product inhibition are

μ ¼ μmaxcS

cS þ K þ c2s
Ks

and

μ ¼ μmaxcS
cS þ K

Kp

Kp þ cp

where Ks and Kp are constants and cp is the product concentration.
The logistic model is frequently used to simulate microbial growth when a

microbial population inhibits its own growth via depletion of a limited nutrient,

product accumulation, or unidentified reasons:

dx

dt
¼ μ x 1� x

xmax

� �

where μ is initial specific growth rate and xmax is the maximum attainable value

of x. The logistic equation is an empirical model and it simulates the data when the

microbial growth curve follows a sigmoidal path to attain the stationary phase. It is

mostly based only on experimental observations. When x � xmax, the term in

parenthesis is almost one and is neglected, and then the equation simulates the

exponential growth. When x is comparable with xmax, the term in parenthesis

becomes important and simulates the inhibitory effect of overcrowding on micro-

bial growth. When x ¼ xmax, the term in parenthesis becomes zero, and then the

equation predicts no growth, that is, the stationary phase as described with the

logistic equation and may be integrated as
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x ¼ x0e
μt

1� x0
xmax

1� eμtð Þ

The exponential growth model may be modified after substituting

μ ¼ μ0 þ μ1x� μ2x
2

to simulate the Allee effect, which represents a population with maximum

specific growth rate at intermediate microbial concentrations when μ0, μ1, and μ2
are positive constants [59].

When parameter μ is a function of time such that

dμ

dt
¼ �αμ

we obtain the Gompertz model, which may also be used to simulate the sigmoi-

dal behavior of the microbial growth curve (α ¼ constant). The Gompertz model is

usually expressed in three equivalent versions [59]:

dx

dt
¼ μ x,

dμ

dt
¼ �α μ

dx

dt
¼ λe�α tð Þx

and

dx

dt
¼ κ ln xð Þx

where λ and κ are constants.

Primary metabolites are produced by the microorganism for its own metabolic

activity. Secondary metabolites are usually produced against the external factors,

that is, production of antibiotics starts in the stationary phase to prevent consump-

tion of the limited nutrients by the other microbial species. The yeast Saccharomy-
ces cerevisiae may be regarded as a product itself when produced as an additive to

achieve leavening in the bakery industry. Sugars are consumed in the energy

metabolism. Some microorganisms may not convert them into carbon dioxide but

follow a shorter path and excrete the metabolic end products as ethanol or lactic

acid. Product formation models relate the product formation rate to fermentation

variables, that is, growth rate, biomass, substrate concentration, etc. The Luedeking

and Piret [60] model is among the most popular product formation models of food

processing interest:
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dcPr
dt

¼ αxþ β
dx

dt

where cPr is product concentration and α and β are constants. The microbial

product referred to here is not necessarily a useful product, such as lactic acid [60],

xanthan gum [61], or amino acids [62], but may be a detrimental product for the

microorganisms, such as an exotoxin [63]. The term αx represents the product

formation rate by the microorganisms regardless of their growth; βdxdt represents

the additional product formation rate during growth in proportion with the growth

rate. This is an empirical equation because it simply relates the experimental

observations, mostly without much theoretical basis. When growth-associated

product formation rates are much greater than the non-growth-associated product

formation rates the Luedeking and Piret equation may be written as

dcPr
dt

¼ β
dx

dt

When non-growth associated product formation rates are much greater than the

growth-associated product formation rates, the Luedeking and Piret model becomes

dcPr
dt

¼ αx

Structured and age distribution models relate cellular structure or age distribu-

tion to growth and product formation rates, but need more information for appli-

cation, are generally difficult to use, and are not widely employed in food research.

They are therefore not considered here, but an interested reader may refer to Bailey

and Ollis [64] for a detailed discussion.

Microbial death kinetics has a significant importance in food processing as it is

one of the major phenomena occurring during pasteurization and sterilization

processes. Microbial death is generally described in analogy with a unimolecular,

irreversible, first-order rate expression:

x live microorganismð Þ!kd xd dead microorganismð Þ
dx

dt
¼ �kdx

or

d log xð Þ
dt

¼ � 1

DT

where
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DT ¼ ln 10ð Þ
kd

The DT value is defined as the heating time at constant temperature T to reduce

the microbial population by one log cycle, or 10% of its initial value. The z value is
defined as the temperature difference required to change the DT value by a factor of

ten, or one log cycle:

d logDTð Þ
dT

¼ �1

z

This equation may be rearranged and integrated as

DT ¼ DTref
10 Tref�Tð Þ=z

The z value is related to the activation energy of the Arrhenius expression:

z ¼ ln 10ð ÞRTTref

Ea

A comprehensive list of the thermal death parameters DT and z are provided by

FDA [65]. During thermal processing of foods, microbial death and inactivation of

the enzymes are always accompanied with loss of nutrients because of thermal

degradation, as they share the same medium. Although death of the microorganisms

and destruction of the enzymes and toxins are desired, loss of the nutrients is not. In

most processes, spores, vegetative cells, and enzymes are destroyed whereas it is

desirable that color, flavor, and vitamins survive. Among the constituents to be

destroyed, enzymes usually have the highest D121 values, and therefore enzyme

inactivation is almost the most difficult task to achieve in thermal processing.

5 Modeling of the Material Properties

There are modeling studies in the literature for estimating the physical properties of

the foods.

Cornejo et al. [66] presented a method for the estimation of thermal conductivity

k(T) and apparent volumetric specific heat c(T ) in the freezing temperature range

starting at �40�C. There are also other correlations estimating the thermal conduc-

tivity as parallel or series or another combination of the thermal conductivity of

each constituent [67]):

172 M. Özilgen



keff ¼
Xn
i¼1

viki parallel modelð Þ

1

keff
¼
Xn
i¼1

vi
ki

series modelð Þ

where, ki¼ thermal conductivity of the ith component (W/m K) and vi¼ volume

fraction of the ith component. The Hill–Leitman–Sunderland model simulates heat

transfer through a network in a continuous phase with simultaneous parallel and

series conduction:

keff ¼ 2ϕ� ϕ2
� �

kd þ 1� 4ϕþ 3ϕ2
� �

kc þ
8 ϕ� ϕ2
� �

kckd

ϕkc þ 4� ϕð Þkd

where φ ¼ 2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 2vd

p
keff ¼ effective thermal conductivity (W/m K)

kc ¼ thermal conductivity of the continuous phase (W/m K)

kd ¼ thermal conductivity of the dispersed phase (W/m K)

vd ¼ volume fraction of the dispersed phase

A comprehensive review of biomaterial thermal property measurements in the

cryogenic regime and their use for prediction of equilibrium and non-equilibrium

freezing applications in cryobiology is presented by Choi and Bischo [68].

Most foods and biological solutions contain suspended solids. Atkinson and

Mavituna [69] recommend using the following equations to predict viscosity of the

microbial suspensions:

μm ¼ μ1
1þ 0:5ϕs

1� ϕsð Þ4
( )

Kunitz equation, used when ϕs < 0:4

μm ¼ μ1
1:56ϕs

0:52� ϕs

� 

Mori and Ototake equation, used when ϕs < 0:1

μm ¼ μl + (1 + 2.5ϕs) Einstein equation, used at low volume fractions

ϕs ¼ fraction of the suspended solids

μl ¼ viscosity of the liquid phase

μs ¼ viscosity of the solid suspension

Magerramov et al. [70] suggested the use of the following equation for estimat-

ing the fruit juice viscosities:

η ¼ A Ct � a
ρHg0
ρHg

 !
ρHg � ρ
� �

τ � Bt
ρ

τ
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where the viscometer constants areA ¼ π g r4
0
H0

8V10l0
, Bt ¼ mV10

8π l0
1þ 2αΔTð Þ, Ct ¼

1þ h0þ3α ΔT L0
H0

� �
, and a ¼ h0

H0

� �
where V10 is the measuring volume, ρHg is the

density of mercury at the experimental conditions (at experimental T and P), ρ is the

density of the liquid under study at the experimental conditions, ρHg0 is the density of
mercury at room temperature,H0 is the average mercury level drop, L0 is the average
height of the column at the flowing process, h0 is the height of the column in the

lower vessel at the initial position, α ¼ 4.31 � 10�6/K is the linear expansion

coefficient of the capillary material, r0 is the capillary radius, l0 is the length of

capillary, ΔT is the temperature difference between experimental temperature and

room temperature, and m¼ 1.12 is a constant introduced to take account of the shape

of the capillary ends (correction factor). To calculate the dynamic viscosity from

measured quantities, the values of density of the juice under study at the experimental

conditions ρ(P, T) are needed.
Vagenas and Karathanos’s [71] diffusivity models which relate the effective

diffusivity to those in each phase of the porous solids are similar in nature to the

thermal conductivity equations:

Deff ¼ 1� εð ÞDs þ εDg parallel modelð Þ
1

Deff

¼ 1� εð Þ
Ds

þ ε

Dg
series modelð Þ

1

Deff

¼ 1� fð Þ
1� εð ÞDs þ εDg

þ f
1� ε

Ds
þ ε

Dg

� 	
mixed modelð Þ

where D¼ diffusivity in the solid, Deff ¼ effective diffusivity, Dg ¼ diffusion in

the gas phase, f ¼ constant, and ε ¼ porosity.

When the factors affecting a physical phenomenon are known but the governing

equations are too complicated to solve, the relation between these physical factors

may be expressed by establishing an empirical expression embracing the dimen-

sionless numbers of the affecting factors. It should be noted that such equations are

reliable within the range of the experimental data on which they are based.

Convective heat transfer coefficients are usually expressed as a function of the

dimensionless numbers:

NuD ¼ 0:135 GrPrð Þ0:323 þ 0:391� 10�3

This expression is valid for heat transfer to canned Newtonian liquids in a

Steritort [72] in the range 24 � NuD � 272, 0.4 � ReD � 458, 2.8 � Pr � 476,

2.0 � 104 � Gr � 2.9 � 109, and 1.13 � L/D � 1.37

where

Gr¼ gD3ρ2βΔT/μ2 ¼ Grashof number based on can diameter (dimensionless)
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NuD ¼ hD/k ¼ Nusselt number (based on can diameter, dimensionless)

Pr ¼ cμ/k ¼ Prandl number (dimensionless)

ReD ¼ D2Nρ/μ ¼ Reynolds number (based on can diameter, dimensionless)

D ¼ can diameter (m)

g ¼ gravitational acceleration (m/s2)

h ¼ convective heat transfer coefficient (W/m2 K)

k ¼ thermal conductivity (W/m K)

N ¼ revolutions per second

β ¼ coefficient of volumetric expansion (1/K)

μ ¼ viscosity (Pa s)

ρ ¼ density (kg/m3)

Reynolds number is the ratio of inertial forces to viscous forces within a fluid

which is subject to relative internal movement caused by different fluid velocities.

Grashof number is the ratio of the buoyant to viscous forces used in heat transfer,

when natural convection is involved in the process. Prandtl number is defined as the

ratio of momentum diffusivity to thermal diffusivity and the Nusselt number is the

ratio of the convective to conductive heat transfer rates across a heat transfer

boundary. A comprehensive review of the use of dimensionless numbers in trans-

port phenomena models has been provided by Ruzicka [73].

Özilgen and Sorgüven [1] provided a chapter on the estimation of the thermo-

dynamic properties in their book “Biothermodynamics, principles and examples.”
The same practice is also valid for the estimation of the thermodynamic properties

of foods. Food and biological materials are so sophisticated that their thermody-

namic properties are not usually available in books. In such cases the detailed

chemical formulas of such chemicals may be used to list the groups contributing to

their structure, and then the thermodynamic properties of these contributing

methods are added up to estimate those of the entire structure. The molecular

groups are not chosen randomly. For example, data of radical groups cannot be

calculated separately but are taken as a whole. Benson [74], Shieh and Fan [75],

Szargut et al. [76], Domalski and Hearing [77], Marrero and Gani [78], and

Gharagheizi et al. [79] are among the researchers who made substantial contribu-

tions to the development of this method. Kopp’s rule may be regarded as one of the

pioneering studies of the group contribution methods for the estimation of the

specific heat of solids and liquids. Kopp’s rule states that specific heat of a solid

compound equals the sum of the heat capacities of its constituting atoms as

cp ¼
Xn
i¼1

nicp, i

In this equation, cp of each molecule is determined experimentally and the

number of each atom, ni, in a molecule is set according to the molecular structure.

The equation above stated is written for large data sets that include as many

molecules as possible. Later, the values of cp,i are determined via regression

analysis to minimize the sum of the square error between the measured values of
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cp and their numerical estimates [80]. Enthalpy, Gibbs free energy of formation,

and standard chemical exergy are among the thermodynamic properties which may

be estimated with the group contribution method.

6 Use of MATLAB in Modeling

A real modeling case study is presented in Fig. 4 where the color of tomatoes

changes during tomato paste production process because of the chemical reactions

occurring in the tomatoes. We may use the Barreiro–Milano–Sandoval model [5] to

simulate the color change by plugging in the processing conditions and the Hunter

Lab color parameters (L: lightness; a: redness; b: yellowness when positive,

grayness when zero, and blueness when negative) of the input tomatoes. If we

have a MATLAB code to solve the model equations it should take only a few

seconds to estimate the color of the paste. If the operator does not like the estimated

color, he may change the processing conditions until an acceptable estimate is

obtained.

MATLAB is a high-level scripting computer language which can be used very

easily and efficiently in food process calculations. A scripting language executes

the tasks one by one in the same way as a human operator. Every command is

executed independently in the given order as when asking people to do something

such as:

• Solve the given equation with the given initial conditions for the given time span

• Plot the data with the given legends specifications, plot the model with the given

line specifications, and use the requested labels within the given scale

In such a string, the code solves the given equation first and then plots the model

as the second step of the task. The code written by the user of MATLAB is the

interface provided by the software manufacturer, for example, MATLAB. The

interface communicates with the software (path 2). The computations are actually

carried out by the software. The details of the computational method are usually

explained in detail by the manufacturer. The model equation is obtained as

explained in Fig. 9. When we use the software to solve an equation, such as

ode45, we create an m-function in the interface, which converts the equation into

computer code and communicates the software (path 2). The input data is added to

the syntax (path 1), so ode45 communicates it to the software too (path 2). After

solving the model equation, the results are sent to the interface by following path

3. The code which is employed in the interface may plot or print out the results (path

4). We frequently repeat the sentence “comparison of the experimental data and the
model is shown in Fig. . ..” This sentence actually means that two of the boxes given

in Fig. 3 are compared. Experimental data are presented, usually with symbols, and

represent the process; the mathematical model is obtained through the pertinent

steps in the other box and is presented as solid, dashed, or dotted lines. Özilgen [2]
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and Özilgen and Sorgüven [1] presented fully solved examples of modeling with

MATLAB. The following case studies may help to reiterate this subject.

Case study 3. Kinetics of inactivation of the peroxidase isoenzymes during

blanching of potato tuber

Peroxidase is usually present in fruit and vegetables as a combination of various

isoenzymes with different heat stabilities. During blanching of a spherical potato

tuber the controlling equation of the temperature profile is [81]

T � T1

T0 � T1

¼ R

r

2

π

� � Z1
n¼0

�1ð Þnþ1

n
e� πnð Þ2 αt

R2

� �
sin

π nr

R

� �( )(

Inactivation kinetics of the enzyme may be described with separate first-order

reactions for heat stable and heat labile fractions [81]:

dcE1
dt

¼ �k1cE1

and

dcE2
dt

¼ �k2cE2

Total enzyme activity is

cE ¼ cE1 þ cE2:

Temperature effects on the inactivation rate constants k1 and k2 were described
with the Arrhenius expression:

SOFTWARE

INTERFACE

DATA RESULTS

1 4

2

3

Fig. 9 Schematic

description of implication

of a mathematical model

with MATLAB
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k1 ¼ k10 exp �Ea1

RgT

� 


and

k2 ¼ k20 exp �Ea2

RgT

� 


The MATLAB code of case study 3 describes the variation of temperature and

enzyme activity as a function of time (Fig. 10):

MATLAB CODE CASE STUDY 3

Command Window

clear all

close all

% enter the constants of the model

T1 = [65 70 75]; % blanching water temperature

k = ['k -', 'k :', 'k.- ']; % color and line characteristics

T0 = 15; % initial temperature of the potato

T(1) = T0; 

Rg = 8.3e-3; % gas constant (kJ/mol K)

alpha = (1.93e-7)*60; % thermal diffusivity (m2/min)

k0 = 3e14; % pre-exponential constant 

Ea1 = 101.2; % activation energy (kJ/mol)

Ea2 = 83.6; % activation energy (kJ/mol)

E1(1) = 0.027; E2(1) = 0.028-E1(1); E(1) = E1(1)+E2(1);

% enter the radius of the potato and the radial distance where the calculations will be done
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r = 0.5e-2; % distance from the center (m)

R = 4.1e-2; % radius of the potato (m)

% enter the beginning of the time vector

time(1) = 0;

% determine the temperature profile from the model

for n=0:100

s(n+9)=sin(pi*n*r/R);

end

Csin = sum(s)*(r/R);

for i=1:length(T1)

for t=10:10:70

for n=0:100

s(n+9)=(Csin)*exp(-((pi*n)^2)*alpha*t/(R^2))*sin(n*pi*r/R);

end

T(t/10+1)=(R/(r))*(sum(s))*(T0-T1(i))+T1(i);

time(t/10+1)=t;

ss(t/10+1)=sum(s);

k1(t/10+1) = k0*exp(-Ea1/(Rg*(T(t/10+1)+273)));

k2(t/10+1) = k0*exp(-Ea2/(Rg*(T(t/10+1)+273)));

E1(t/10+1) = E1(1)*exp(-k1(t/10+1)*t);

E2(t/10+1) = E2(1)*exp(-k2(t/10+1)*t);

E(t/10+1) = E1(t/10+1) + E2(t/10+1);

end

figure(1) % start a new figure

% plot the temperature profiles as determined by the model

plot(time,T,k((3*i-2):(3*i)), 'LineWidth',2); hold on

% define the figure labels

ylabel('Temperature (C)');

xlabel('Time (min)');

% enter the legend and grid requirements 

legend('65 oC','70 oC','75 oC',3,'Location','Best')

grid on

% plot the enzyme inactivation model

figure(2)

plot(time,E,k((3*i-2):(3*i)),'LineWidth',2); hold on % enzyme inactivation

ylabel('E (Eu)');

xlabel('Time (min)');

legend('65 oC','70 oC','75 oC',3,'Location','Best')

grid on

end

Case study 4. Continuous processing of liquid foods containing particles

In the holding tube of the aseptic processing equipment, when heat transfer from

the liquid to the particles may be neglected, the temperature of the liquid (TL)
approaches the ambient temperature (Ta) exponentially:

TL � Ta

TL0 � Ta
¼ exp �UtubeAtube

ρLcLVtube

� 
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where TL0 is the initial temperature of the liquid at the entrance of the tube, Atube,

Utube, and Vtube are the heat transfer area, total heat transfer coefficient, and the

volume of the tube, respectively, parameter ρL is the density, and cL is the specific
heat of the liquid. The governing equation of heat transfer into the particle with

conduction is obtained after simplification of the energy equation [82]:
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Fig. 10 Temperature and enzyme activity profiles at r ¼ 0.5 cm distance from the center during

thermal processing of whole potatoes. Constants of the model are adapted from [81]
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ρpcp
∂T
∂t

¼ kp
∂2

T

∂r2
þ kp

β � 1

ρ

∂T
∂r

where β is a geometric factor (β ¼ 1 for infinite slab, β ¼ 2 for infinite cylinder,

β ¼ 3 for sphere), r is the distance in the heat transfer direction, kp, ρp, and cp are
thermal conductivity, density, and specific heat of the particles, respectively. The

initial and the boundary conditions of this equation are

Initial condition T ¼ Tp0 at 0 < r < rp when t ¼ 0

Boundary condition
dT

dr
¼ 0 at r ¼ 0 when t > 0

Boundary condition � kp
dT

dr
¼ hLp TL tð Þ � T½ � at r ¼ rp when t > 0

where rp is the radius of the particle and hLp is the convective heat transfer

coefficient from liquid to particle. With a spherical particle (β ¼ 3), applying the

L’Hopital rule at r ¼ 0 on the second term of the energy equation gives

Boundary condition ρpcp
∂T
∂t

¼ 3kp
∂2

T

∂r2
at r ¼ 0 when t > 0

The thermal process time required to reduce the initial microbial load x0 to a final
safe final concentration x at a constant temperature Tref is

Frequired ¼ DTref
log x0=xð Þ

where log(x0/x) is the number of the log cycles of microbial reduction required

for a safe product andDTref
is the heating time at Tref for one log cycle of reduction.

Parameter DTref
may be used to compute DT at any temperature T as

DT ¼ DTref
10 T�Trefð Þ=z

Thermal processing received under variable temperature T(t) may be calculated

as

Fprocess ¼
Z t

0

10 T�Trefð Þ=zmicroorganismsdt

and the weighted average F value of a particle is

Fprocess ¼
Z 1

0

Fi tð ÞE tð Þdt

where E(t) is the residence time distribution function. The energy equation is the

only equation to be solved to evaluate the time temperature history at the critical
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point of the particle to calculate the average Fprocess of the food. The MATLAB

code of case study 4 computes the time-temperature profile of the fluid and the

particles (at the surface and the center) and the F values of particle (on the surface

and center) (Fig. 11). The results are presented in Fig. 12.

MATLAB CODE CASE STUDY 4

Command Window

clear all

close all

format compact

% define E(t) as a Gaussian distribution function

deltaE=0.5; % notice that sum(E)=1.0

mu=200; % population mean residence time in the holding tube

sigma=10; % variance of the holding times in the holding tube

% Enter the model constants as adapted from Yang et al. (1992) 

kp = 0.556; % W/m2 C

Cpp = 3.27e3; % specific heat of the particles (J/kg C)

Pp = 1040; % particle density (kg/m3) 

Ta = 27; % C (air temperature)

Tfi = 135; % initial temperature of the fluid in the holding tube (C)

Uhd = 10; % convection heat transfer coefficient (W/m2 C)

D = 0.0508; % diameter of the holding tube (m)

Pf = 930.8; % fluid density (kg/m3)

Cpf = 4.266e3; % specific heat of the fluid (J/kg C)

Tref = 121.1; % reference temperature (C)

z = 10; % z value

% compute the minimum and the maximum residence times

RTmin=mu-3*sigma; % the minimum residence time

RTmax=mu+3*sigma; % the maximum residence time

RTincrement=(RTmax-RTmin)/61

RT=[RTmin:RTincrement:RTmax]

% compute the expected fraction of the residence times

for j=1:1:length(RT)

E(j)=(1/(sigma*sqrt(2*pi)))*exp(-(1/2).*((RT(j)-mu)/sigma)^2);

end

% check the sum of the fractions of the residence times (notice sum(E) must be 1)

Esum=sum(E)

n = 22; % n=1 and n=22 refers to fluid, n=2 and n=21 refers to surface, n=12 refers to center
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dr = 0.001; % m

dt = 1; % s

% finite difference solution

T(:,1) = ones(1,(n+1)) * 100; % construct a matrix of 1s only, to replace 1s with the model values later

T(1,1) = Tfi; T((n+1),1) = T(1,1);

% enter the beginning of the time vector

time(1) = 0; 

% calculate the model values 

for t = 1:mu

T(1,(t+1)) = Ta - (Ta - Tfi) * exp(- Uhd * 4 * t / (Pf * Cpf * D));

T((n+1),(t+1)) = T(1,(t+1));

for i = 2:n

T(i,(t+1)) = ((3 * kp / (Pp * Cpp)) * dt / (dr^2)) * (T((i+1),t) - 2*(T(i,t)) + T((i-1),t)) + T(i,t);

F(i,(t+1)) = 10^((T(i,(t+1)) - Tref) / z) * (t / 60); % minutes

end

% convert the time in seconds for plotting

time(t+1) = t;

end

% plot the model 

plot(time, T(1,:), 'k-.','LineWidth', 2.0); hold on % T fluid

[AX,H1,H2] = plotyy(time, T(2,:), time, F(2,:)); hold on % T particle surface and F surface

[AX,H3,H4] = plotyy(time, T(12,:), time, F(12,:)); hold on % T particle center and F particle center

% enter the required line parameters

set(H1, 'LineStyle', '-', 'LineWidth', 1.5, 'Color', 'Black');

set(H2, 'LineStyle', '-', 'LineWidth', 1.5, 'Color', 'Black');

set(H3, 'LineStyle', ':', 'LineWidth', 2.0, 'Color', 'Black');

set(H4, 'LineStyle', '-.', 'LineWidth', 1.5, 'Color', 'Black');

% enter the label requirements

ylabel('Temperature \circ C')

set(get(AX(2),'ylabel'), 'string', 'F (min)')

% enter the limits of the axis in the plot

ylim(AX(2), [0 40])

ylim(AX(1), [80 140])

% enter the legend requirements
legend('T fluid','T particle surface','T particle center','Location','West')  

legend(H2,'F particle surface','F particle center','Location','East') 

legend(H4,'F particle center','Location','SouthEast') 
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% compute the minimum and the maximum processing received by the particle 

for t = 1:RTmin

T(1,(t+1)) = Ta - (Ta - Tfi) * exp(- Uhd * 4 * t / (Pf * Cpf * D));

T((n+1),(t+1)) = T(1,(t+1));

for i = 2:n

T(i,(t+1)) = ((3 * kp / (Pp * Cpp)) * dt / (dr^2)) * (T((i+1),t) - 2*(T(i,t)) + T((i-1),t)) + T(i,t);

F(i,(t+1)) = 10^((T(i,(t+1)) - Tref) / z) * (t / 60); % minutes

end

end

fprintf('\nminimum processing received by the particle surface is %.2g min',F(2,RTmin))

fprintf('\nminimum processing received by the particle center is %.2g min \n',F(12,RTmin))

for t = 1:RTmax

T(1,(t+1)) = Ta - (Ta - Tfi) * exp(- Uhd * 4 * t / (Pf * Cpf * D));

T((n+1),(t+1)) = T(1,(t+1));

for i = 2:n

T(i,(t+1)) = ((3 * kp / (Pp * Cpp)) * dt / (dr^2)) * (T((i+1),t) - 2*(T(i,t)) + T((i-1),t)) + T(i,t);

F(i,(t+1)) = 10^((T(i,(t+1)) - Tref) / z) * (t / 60); % minutes

end

end

fprintf('\nmaximum processing received by the particle surface is %.2g min',F(2,RTmax))

fprintf('\nmaximum processing received by the particle center is %.2g min \n',F(12,RTmax))

% compute the average processing received by the particle on the surface and at the center

for j=1:1:length(RT)

% compute the residence time distribution function

E(j)=(1/(sigma*sqrt(2*pi)))*exp(-(1/2).*((RT(j)-mu)/sigma)^2);

for t = 1:RT(j)

T(1,(t+1)) = Ta - (Ta - Tfi) * exp(- Uhd * 4 * t / (Pf * Cpf * D));

T((n+1),(t+1)) = T(1,(t+1));

for i = 2:n

T(i,(t+1)) = ((3 * kp / (Pp * Cpp)) * dt / (dr^2)) * (T((i+1),t) - 2*(T(i,t)) + T((i-1),t)) + T(i,t);

F(i,(t+1)) = 10^((T(i,(t+1)) - Tref) / z) * (t / 60); % minutes

end

end

% compute the F values

FincrementSurface(j)=F(2,(t+1));

FincrementCenter(j)=F(12,(t+1));

end
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FsurfaceAverage=sum(FincrementSurface.*E);

FcenterAverage=sum(FincrementCenter.*E);

% print the computed F values

fprintf('\naverage processing received by the particle surface is %.2g min',FsurfaceAverage)

fprintf('\naverage processing received by the particle center is %.2g min \n',FcenterAverage)

When we run the code the following lines and Fig. 11 will appear in the screen. 

Esum =

1.0143

minimum processing received by the particle surface is 25 min

minimum processing received by the particle center is 7.5 min 

maximum processing received by the particle surface is 29 min

maximum processing received by the particle center is 19 min 

average processing received by the particle surface is 28 min

average processing received by the particle center is 13 min

Case study 5. Predictive quality modeling by using microbial lag time

Predictive microbial models provide rapid, inexpensive, and reliable estimates

of shelf life. A food may be regarded as safe as long as the microorganisms remain

inactive after processing. Although various other definitions are available, the time

required for the initial microbial load to increase twofold may be referred to as the

lag time. Predictive microbial modeling is usually a two-step process. First kinetic

models are developed to have a full description of the process; then these models,
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Fig. 11 Variation of the temperature and processing received at different locations with time,

when there is no residence time distribution (residence time ¼ population mean residence time)
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together with their predetermined constants, are used to predict the microbial

quality of the food. An extended logistic equation may be used to simulate micro-

bial growth [84]:

dx

dt
¼ μ0 T tð Þ � Tmin½ �2 q tð Þ

1þ q tð Þ
� �

x 1� x

xmax

� �

where μ0 ¼ constant, T(t) ¼ temperature at time t, and Tmin ¼ minimum

temperature required for microbial growth. Most of the intracellular chemical

reactions follow Michaelis–Menten kinetics. The empirical term q(t)/1 + q(t) may

describe the rate-determining step involved in the healing of cellular damage or

adaptation to a new growth medium. It is not possible to associate q(t) with a

specific metabolite because the rate-determining reactions are usually case specific

and may change with time, even in the same case. The temperature dependence

term T(t) � Tmin ¼ 0 when T(t) < Tmin. The MATLAB code of case study 5 gives

prediction of the shelf life of ice cream contaminated with Listeria monocytogenes:

MATLAB CODE CASE STUDY 5

Command window

clear all

close all

% enter the temperature data

Temperature=[7 4 0 -3 5 2 3 4 5 -1 -2 -3  -4 6 7 2 3 3 5 5 7 4  -4  6 7]; % average daily 

storage temperatures

% construct the storage time data vector

n=length(Temperature);

Time=[0:1:n-1]; % storage time

% enter the parameters of the microbial growth kinetics model

mu0=4e-4; % 1/min

Tmin=-2.1; % oC

x0=1; % cfu/g

xMax=1e9; % cfu/g

deltaTime=60*24; % min

% plot the temperature versus time data

plot(Time,Temperature,'k:','LineWidth',2); hold on

ylabel('STORAGE TEMPERATURE (oC)');

xlabel('STORAGE TIME (days)');

% microbial growth model 

counter=1;

xk=1; % ice cream is assumed to be contaminated with 1 cfu/g at the beginning of storage
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for i=1:1:n; % calculate the growth based on the extended logistic equation

time(i)=(i-1)*24; % storage time (hours)

timeDays(i)=time(i)/24; % convert the time in h into number of the days in storage

N=timeDays(i);

TTmin=((Temperature(i)-Tmin))^2;

if Temperature(i)<=Tmin

TTmin=0;

end

% the term describing the healing of the cellular damage 

q(i)=16e-3+3e-4*(Temperature(i)-4);

x(i)=xk+mu0*TTmin*(q(i)/(1+q(i)))*xk*(1-(xk/xMax))*deltaTime;

if x(i)>=80

if counter==1;

% print the number of days in storge

fprintf('\nshelf life of ice cream is %.2f days in storage',N)

counter=2;

end

end

xk=x(i);

end

figure; % plot the microbial concentration versus time

plot(timeDays,x,'k-','LineWidth',2); hold on; ylabel('x (cfu/g)'); xlabel('STORAGE TIME 

(days)');
legend('MICROBIAL GROWTH CURVE', 'Location','North')  

When we run the code the following line and Fig. 12 will appear in the screen:

shelf life of ice cream is 19.00 days in storage
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Fig. 12 Storage temperature fluctuations of the ice cream and predicted microbial population of

ice cream contaminated with x0 ¼ 1 cfu/g of Listeria monocytogenes at t¼ 0 and then subjected to

temperature fluctuations in storage. It was assumed that x0 ¼ 1 cfu/g was sufficient to start

deterioration and ice cream was inedible when x ¼ 80 cfu/g. Model parameters were adapted

from Gougouli et al. [83]
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7 Overview

Mathematical models based on thermodynamic, kinetic, heat, and mass transfer

analysis have been central to this chapter along the same principles as described by

Özilgen [2] and Özilgen and Sorgüven [1]. Microbial growth, death, and enzyme

inactivation models and the modeling of the material properties, including those

pertinent to conduction and convection heating, mass transfer, such as diffusion and

convective mass transfer, the thermodynamic properties, such as specific heat,

enthalpy, and Gibbs free energy of formation, and specific chemical exergy are

the additional models needed in this task. The origins, simplifying assumptions, and

uses of the model equations are discussed in this chapter together with their

benefits. The simplified forms of these models are sometimes referred to as

“laws,” such as “the first law of thermodynamics” or “Fick’s second law.” Starting
to model study with such “laws” without considering the conditions under which

they are valid runs the risk of ending up with erronous conclusions. On the other

hand, models started with the fundamental concepts and simplified with appropriate

considerations may offer explanations to the phenomena which may not be

obtained just with measurements or unprocessed experimental data. The discussion

presented here is strengthened with case studies and references to the literature.
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exergy efficiencies of farm to fork grain cultivation and bread making processes in Turkey and

Germany. Energy 93:421–434

29. Opio C, Gerber P, Mottet A, Falcucci A, Tempio G, MacLeod M, Vellinga T, Henderson B,

Steinfeld H (2013) Greenhouse gas emissions from ruminant supply chains – a global life cycle

assessment. Food and Agriculture Organization of the United Nations (FAO), Rome

30. Rodriguez-Gonzales O, Buckow R, Koutchma T, Balasubramaniam VM (2015) Energy

requirements for alternative processing technologies – principles, assumptions, and evaluation

of efficiency. Compr Rev Food Sci Food Safety 14:536–554

31. Szargut J, Valero A, Stanek W, Valero A (2005) Towards an international reference environ-

ment of chemical exergy. Elsevier Science, Oxford. Available at http://www.exergoecology.

com/papers/towards_int_re.pdf. Accessed 5 Dec 2016

190 M. Özilgen
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56. Özilgen S, Özilgen M (1992) Enthalpy – entropy and frequency factor – activation energy

compensation relations for death of Escherichia coliwith microwaves in a tubular flow reactor.

Acta Aliment Hung 21:195–203

57. Whiting RC, Buchanan RL (1994) Microbial modeling. Food Technol 48(6):113–120

58. Mulchandani A, Luong JHT (1989) Microbial growth kinetics revisited. Enzyme Microb

Technol 11:66–72

59. Edelstein-Keshet L (1988) Mathematical models in biology. Random House, New York

60. Luedeking R, Piret EL (1959) A kinetic study of lactic acid fermentation. Batch process at

controlled pH. Biotechnol Bioeng 1:393–412

61. Weiss RM, Ollis DF (1980) Extracellular microbial polysaccharides. I. Substrate, biomass, and

product kinetic equations for batch xanthan gum fermentation. Biotechnol Bioeng 4:859–870
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