
Refactoring Tools and Their Kin

Friedrich Steimann(B)

Lehrgebiet Programmiersysteme, Fernuniversität in Hagen, Hagen, Germany
steimann@acm.org

Abstract. Refactoring is the process of changing a program in such a
way that its design improves with respect to some specific goal, while
its observable behaviour remains the same. Trivially, the latter includes
the preservation of the program’s well-formedness, since arguably, a mal-
formed program has no behaviour to be preserved.

While the problem of refactoring is easily stated, casting it into fully
functional refactoring tools for contemporary programming languages
is surprisingly hard. In fact, most refactoring tools in use today can-
not even guarantee to preserve well-formedness, let alone behaviour,
not even for some of the most basic refactorings (such as Rename or
Pull Up Member).

In Part I of this briefing, I will report on some of the most promising
techniques for implementing correct refactoring tools. Common to these
techniques is that they give up the notion of behaviour preservation in
favour of the more basic (and less demanding) notion of invariant preser-
vation: to be correct, a refactoring tool must not accidentally change the
binding of names, the overriding of methods, the synchronization on a
monitor, etc. Preservation of well-formedness is then the preservation of
invariants relating to well-formedness.

With invariant preservation tackled, it is straightforward to trans-
fer refactoring technology to other programming tools, including tools
for automatic repair and completion of programs, mutation testing, and
program generation. How these are related to refactoring tools, and how
they can be developed in concert, I will propose in Part II of this briefing.

Part I: Refactoring Tools

The term refactoring refers to at least:

– a discipline (e.g., when it is used as the label of a session at a conference),
– an activity (when somebody is practicing that discipline),
– the result of such an activity (e.g., one program is said to be a refactoring of

another),
– a pattern of such an activity (for instance, an element of a refactoring cata-

logue; e.g., Rename Field),
– an instance of such a pattern (when the pattern is applied to concrete code;

e.g., “after a Rename Field refactoring”); and
– a programming tool (as in “Which refactorings does your IDE come with?”).

c© Springer International Publishing AG 2017
J. Cunha et al. (Eds.): GTTSE 2015, LNCS 10223, pp. 179–214, 2017.
DOI: 10.1007/978-3-319-60074-1 8



180 F. Steimann

In Part I of this briefing, I will focus on refactoring tools, and will use this term
throughout for disambiguation from all other meanings of refactoring. That said,
I will start with some observations and remarks on refactoring in general.

1 Origins of Refactoring

Refactoring as a tool-supported discipline goes back to the independent works
of William Griswold (with the late David Notkin; see, e.g., [19]), and of William
Opdyke (with Ralph Johnson; see, e.g., [30]). Although Griswold’s PhD thesis
on program restructuring ([18], from 1991) pre-dates Opdyke’s ([29], from 1992),
the latter is usually cited as the origin of refactoring, not least because it has
the term in its title (another reason may be that with C++, Opdyke addressed
a more widespread language than Griswold, who addressed Scheme). Although
Opdyke reports that the term was coined some time earlier, it wasn’t before
the implementation of the Smalltalk refactoring browser [34], the adoption of
refactoring as a core practice in XP [4], and Fowler’s widely recognized book
[12] that it became commonplace.

Refactoring as a manual activity is probably as old as programming itself [26].
Especially in the old days, when computing resources where scarce, programs
had to be restructured regularly so as to reduce memory usage (both program
and data) and execution time. In these days, instruction sets and programs
were small, and development environments consisted largely of brains, pens, and
paper; refactoring was an inherent part of coding, which required the code to be
concise enough to meet the tight space requirements of the machine.

In later years, the task of making the most out of the given hardware
resources was shifted from programmers to compilers, specifically to optimiz-
ing ones. Refactoring shares with compiler optimization the goal (and problem!)
of behaviour preservation. However, compiler optimizations are often local and
can be switched off. The latter is a concession to the state-of-the-art, namely
that guarantees of behaviour preservation are hard to give. Refactorings, on the
other hand, are often non-local; in fact, while coding along, the non-local changes
disrupt the workflow most, so that their automation promises to be the most
rewarding.

2 The Current Refactoring Crisis

Following its original conception, refactoring is today still mostly perceived as
improving the design of a program while preserving its observable behaviour.
Naturally, this definition is challenged by two questions:

1. What does improving the design mean?
2. What does preserving the observable behaviour mean?

While both questions appear natural, if not mandatory, to ask in purely academic
circles, the current mindset of the refactoring community, a sound mixture of
researchers and practitioners, is perhaps best characterized by a third one:

3. Who cares?



Refactoring Tools and Their Kin 181

2.1 The Elusiveness of Design Improvement

Many refactorings presented in Fowler’s catalogue [12] are complemented
by reverse refactorings: Extract Method — Inline Method; Pull Up

Field — Push Down Field; Replace Inheritance with Delegation —
Replace Delegation with Inheritance, to name a few. This fact alone
suggests that improving design is not in the nature of specific refactoring pat-
terns: what results in good design in one context can result in bad design in
another. Furthermore, since refactoring tools today usually tackle only fairly
small changes from which bigger refactorings can be manually composed, each
application of a refactoring tool by itself may result in unimproved design: as
with solving Rubik’s cube, intermediate steps may let the program look dramat-
ically worse temporarily.

A more neutral goal of refactoring is therefore to make subsequent changes
easier. However, even this goal is not universal: Refactorings introducing paral-
lelization, for instance, do not target at better changeability, but at improved
utilization of the underlying hardware (see, e.g., [10]; but note that this could
be considered an optimization rather than a refactoring). Also, it is conceivable
that refactoring is performed for obfuscation, i.e., a design that makes (informed)
code changes largely impossible (which presents an improved design if unchange-
ability is the goal).

2.2 The Elusiveness of Behaviour Preservation

An answer to the second above question is often given as “the program still
compiles and passes the same tests the program passed before the refactoring”
(see, e.g., [12]). While pragmatic, this answer merely suggests a post-hoc check
of whether some concrete changes actually represent a refactoring; for refactor-
ing tool builders, it translates to “for all possible applications to all possible
programs with all possible test suites, the resulting program must still compile
and pass the tests”. Surely, this cannot be proven experimentally1, but would
require some abstract, formal argument, which is however hard to give. In prac-
tice, therefore, tool builders rely on testing their tools, and on users submitting
bug reports.

Even with testing in place, the notion of behaviour that is to be preserved by
refactoring is not unchallenged. For instance, the refactoring Replace Condi-

tional with Polymorphism [12] may adversely affect program performance
(by replacing explicit branching with dynamic dispatch), and this deteriorated
performance may mean an intolerable change of behaviour in certain contexts.
While such a deterioration may be detected by test cases (leading to a sub-
sequent rejection of the refactoring), it cannot lead to a general abandonment
of Replace Conditional with Polymorphism as a refactoring, as other
1 I have gathered some first-hand experience with this, which drove me to lamenting

“whenever we believed that we had made correctness of the refactoring plausible,
testing it on a new project revealed a new problem we had not previously thought
of” [24].



182 F. Steimann

users may not conceive of slower performance as a behavioural change. On the
other hand, a change of performance may be the very purpose of a refactoring:
for instance, when refactoring for parallelization, a better user experience, and
hence externally perceivable behaviour, may be the very goal. While one could
argue again that such a change represents an optimization, this does not seem
enough to expel corresponding work from the refactoring realm.

2.3 Ignoring the Unresolved Correctness Problem

Although correctness of refactoring tools has been a concern from the very begin-
ning of the discipline (see, e.g., [18,29]), it seems that the builders of contempo-
rary refactoring tools have surrendered to the complexity of the problems (see,
e.g., [15,39,40]; Sect. 4 will give a concrete taste of the complexity of the prob-
lems one may encounter). While this has sparked off some research on how the
correctness problems can be tackled (see, e.g., [3,5,13,47]; also, Sect. 6 is devoted
to this entirely), I also observe that the refactoring community has some sympa-
thy for downplaying the correctness problems (see, e.g., [7]), focusing on other
topics instead. Particularly popular seem empirical investigations exploring the
use of refactoring tools (mostly suggesting that the correctness problem is not
one; see, e.g., [28,50]); other work focuses on increasing the utility of existing
(even though buggy) refactoring tools, for instance by automatically discovering
manual refactoring activities and completing them with tool support [11,14], or
by automatically synthesizing larger refactorings from smaller ones [33]. Since
the defectiveness of the underlying refactoring tools is not ironed out by auto-
matically applying or combining them, the tools assembled from them are also
defective. This however is almost consistently ignored.

2.4 The Easy Way Out: Liberation from Academic Chains

The more popular refactoring is becoming, the more its definition is being chal-
lenged (with arguments partly given above). Specifically, practitioners more and
more suggest that refactoring amounts to automated program change, with
behaviour preservation and design improvement, if at all desired, being left to
the responsibility of the user. This culminates in the view that the laxer the pre-
conditions of a refactoring tool, the higher its utility, even if this means that the
tool introduces errors that then need to be fixed manually. Given this mindset,
it may not be so surprising that sentences like “Even though our approach is
neither sound, nor complete, it is still useful.” (cited from a refactoring paper
presented at a highly respected conference) make it into the academic literature.

I do not condemn this departure from the refactoring ideal — whichever tool
works best for a programmer is good (although I maintain that the question,
what works best for the programmer?, cannot be decided by the programmer
alone, but must also be judged by the quality of the result; see [7] for a recent
discussion). However, I grant myself the freedom of pursuing a more scholarly
perspective here (which includes the liberty to choose my challenges indepen-
dently from the purported programming practice), and to uphold the original



Refactoring Tools and Their Kin 183

definition of refactoring. I do however concede that whether or not design is
actually improved is not a part of the definition of a refactoring (more precisely:
a refactoring pattern), only of its application (an instance of the pattern).

3 The Generic Nature of Refactoring Tools

Following the school of Opdyke and Johnson [29,30], implementing a refactoring
tool requires

1. implementing a check of the preconditions of the refactoring and
2. implementing a sequence of changes, also called the mechanics [12] of the

refactoring.

Postconditions are usually considered dispensable by this school, unless refac-
torings are chained, in which case postconditions are to provide guarantees that
the next refactoring’s preconditions are met by the outcome of the present one
[35]. Of course, this view ignores that every refactoring has a purpose, which is
naturally reflected in its postcondition. A more pragmatic argument for dismiss-
ing the need for postconditions is that they follow from the preconditions and
the mechanics of the refactorings and hence are redundant; this of course ignores
that the mechanics could be flawed (see above), or the preconditions too weak.
Both are however not uncommon for today’s refactoring tools.

For this briefing, I will adopt a more fundamental viewpoint and regard refac-
toring tools as metaprograms, specifically as programs that implement source-
to-source program transformations [18,21,27]. Metaprograms are programs and
hence are specified using preconditions and postconditions. While this may seem
overly academic, the reader will learn below that the pre- and postconditions of
refactoring tools are, to a large extent, generic so that identifying and expressing
them for a specific tool should not present too much of an effort. At the same
time, the reader will (hopefully) join me in appreciating the ready availability of
pre- and postconditions for refactoring tools as a (rare) occasion of being able
to derive an implementation directly from its specification.

3.1 Generic Pre- and Postconditions

A generic precondition of all refactoring tools is that input programs must be
well-formed.2 Generic postconditions are that

2 Practitioners may find this precondition too strong. Indeed, it seems that it could
be relaxed to requiring well-formedness only for the parts of the program that are in
some way connected to the intended refactoring. However, it seems difficult, if not
impossible, to decide if a malformed part of a program is connected to a refactoring.
For example, what if the refactoring makes the formerly malformed part well-formed,
for instance by renaming a declared element so that a formerly unbound reference
now binds to this element?



184 F. Steimann

– the refactored program is still well-formed, that
– it behaves the same, and that
– the program either exhibits at least the changes immediately associated with

the refactoring (the refactoring intent), or remains unchanged.

3.2 Specific Pre- and Postconditions

Beyond the generic preconditions, preconditions specific to a concrete refactoring
tool are to protect the tool from input (programs to be refactored and user-
supplied parameters of the refactoring) that it cannot handle, either because the
refactoring is undefined for them, or because of unresolved technical challenges
(including the impossibility to guarantee behaviour preservation, if this escapes
the current capabilities of static program analyses). If preconditions are violated,
the refactoring tool should leave the program unchanged, and report the violation
to the user, who can then try to prepare the program manually (by performing
required changes, arguably refactorings) for successful tool application.

The postconditions specific to a concrete refactoring assert that the changes
associated with the refactoring are actually seen in the refactored program. Basi-
cally, they have the form “the refactored program shall exhibit property X”,
where X expresses a change (such as a change in the type hierarchy etc.). Some
(if not most) refactorings require additional changes to be made, changes that
complement the refactoring intent to restore the program’s well-formedness or
its behaviour (see Sects. 4.3 and 6 for examples). These changes are typically not
part of the specific postconditions; indeed, computing them is the hard part of
refactoring tool implementation. However, as we will see, the required additional
changes can sometimes be derived from the (generic and specific) postconditions.

3.3 Generic Refactoring Invariants

That a program must be well-formed before and after a refactoring, and that
the behaviour must remain the same (conditions included in the generic pre-
and postconditions of a refactoring tool) can be viewed as generic invariants. If
behaviour is specified in terms of a test suite, preservation of these invariants
is easily checked: by running the compiler and test suite before and after the
refactoring.

If however a test suite sufficient for checking behaviour preservation is
unavailable, or if behaviour preservation is to be specified independently of any
given program, checking invariant preservation requires the following generic
procedure:

1. check well-formedness
2. extract the behaviour-critical invariants
3. perform refactoring
4. check well-formedness
5. check extracted invariants



Refactoring Tools and Their Kin 185

Here, it is understood that the behaviour-critical invariants extracted from the
program before the refactoring (Step 2) hold at the time of extraction. A failure
of any the refactoring invariants after a refactoring can be interpreted as the
violation of specific preconditions, which are however not explicitly specified
(see Sect. 6.1 for a brief discussion of the pros and cons of this). This observation
(limited to the behaviour-critical invariants) was already made by Max Schäfer
[36], and also by Jeffrey Overbye [31].

4 Why Building Refactoring Tools Is Hard: A Case Study

In his refactoring book [12], Fowler provides the following synopsis for the
Replace Inheritance with Delegation refactoring:

A subclass uses only part of a superclasses interface
or does not want to inherit data.

Create a field for the superclass, adjust methods to delegate to the superclass,
and remove the subclassing.

The prototypical example of a class one might want to rid of its superclass
using Replace Inheritance with Delegation is that of Stack extending
Vector:

class Stack
extends Vector {

void push(Object o) {
add(o);

}
...

}

⇒

class Stack {
Vector elems = new Vector();
void push(Object o) {

elems.add(o);
}
...

}
Fowler prescribes the following mechanics for this refactoring [12]:

1. Create a field in the subclass that refers to an instance of the superclass.
Initialize it to this.

2. Change each method defined in the subclass to use the delegate field. Compile
and test after changing each method.

3. Remove the subclass declaration and replace the delegate assignment with an
assignment to a new object.

4. For each superclass method used by a client, add a simple delegating method.
5. Compile and test.

What the prescription does not say is what to do if the program does not compile
during step 2 or 5, or if any of the test cases fail. A yielding reaction would be to
undo all changes and give up on the refactoring (assuming that the refactoring was
not intended for the given case or,more formally, that the programdid notmeet the
preconditions of the intended refactoring); apersisting reactionwouldbe tofindout
the source of the problems, and work around them (suggesting that the mechanics
failed to cover the special conditions — in the community often marginalized as
“corner cases” — that led to the failure). Either way, a user of this refactoring, and
even more so a tool builder, is left alone with learning its particulars.



186 F. Steimann

Fig. 1. Programs for which Fowler’s Replace Inheritance with Delegation [12]
does not work out-of-the box.

4.1 The Precondition Surprise

Although Fowler’s treatise of Replace Inheritance with Delegation does
not mention preconditions, it gives a few clues as to the refactoring’s applica-
bility. A trivial precondition that can be derived from Step 3 of its mechanics
given above is that the inheriting class (the subclass to which the refactoring
is to be applied) has a superclass other than Object, since in Java at least,
every class implicitly inherits from Object. Other, slightly less obvious precon-
ditions are that the superclass must be instantiable (i.e., not abstract) and that
the superclass constructors (called from the subclass either implicitly or using
super) must be accessible from the subclass even when it is no longer a subclass
(Fig. 1(a)); also suggested by Step 3. Steps 2 and 3 together suggest a similar
requirement: replacing this with the delegate field means that the members
accessed via this field must still be accessible after the inheritance has been
removed. This is not the case, for instance, if superclass and subclass reside in
different packages and superclass members are declared protected (Fig. 1(a)).
Not mentioned in Fowler’s tractate is that the program must not require



Refactoring Tools and Their Kin 187

assignment compatibility between the subclass and the superclass; specifically,
no instance of the (former) subclass must occur where an instance of the (former)
superclass is expected.3 While one could argue that removing subclassing, and
with it subtyping, is the very purpose of the refactoring (which therefore cannot
be applied when subtyping is required), the situation is actually less clear-cut
for instance when the superclass implements interfaces (including marker inter-
faces) the subclass no longer implements (Fig. 1(b)). Also, subclassing cannot be
removed without breaking the program if the subclass inherits from a class with
special semantics, on which the program relies (Fig. 1(c)). Last but not least,
the refactoring will fail if clients access fields (rather than methods as in Step
4) of the (former) superclass through the (former) subclass (Fig. 1(d)). This is
so since in Java at least, field access cannot be delegated. For this, it would be
necessary to introduce accessor methods for the fields first (the Encapsulate

Field refactoring), and to let the clients use them.
While violations of the above preconditions of the Replace Inheritance

with Delegation refactoring are unveiled by the error reports of the compiler
(if only after the fact; see Sect. 3.3 for how this relates to invariant preservation),
the really nasty preconditions are discovered only by testing behaviour preserva-
tion. One is that the refactoring does not replace inheritance with delegation (as
it claims), but with forwarding. For true delegation, it would be necessary that
the use of this in a delegated method call refers back to this in the delegat-
ing method (the delegator), whereas with forwarding, this refers to the object
being delegated to. This is a problem when the (fake) delegation calls a method
on this that used to be overridden in the (former) subclass, as exemplified
in Fig. 1(e) (using a home-brew implementation of Thread). This overriding,
and with it the dynamic dispatching to the subclass, are however gone, usually
resulting in changed behaviour.

Another hard to discover precondition arises in the context of multi-
threading. In Java, synchronized method calls are guarded by a monitor asso-
ciated with the receiver of the method call. After application of the Replace

Inheritance with Delegation refactoring, however, invocations of meth-
ods formerly inherited are now “delegated” (actually: forwarded) to a different
object, which has a different monitor. Synchronization may therefore fail, as in
the case of Fig. 1(f).

One might argue that both of the above are corner cases that will rarely
occur in practice, so that their neglect can be tolerated. However, it is somewhat
assuming to claim that certain constructions are or will be rarely used4; at the
same time, no one can predict the harm their neglect may cause.

3 This includes instanceof tests, which will become ill-typed.
4 In a study conducted by the author, dynamic dispatching affected 41%, and syn-

chronization affected 3.5% of all attempted applications of Replace Inheritance

with Delegation [24].



188 F. Steimann

4.2 The Mechanics Adventure

While Fowler leaves the preconditions of Replace Inheritance with Del-

egation mostly for the discovery by others, he leaves only little doubt as to
its mechanics, i.e., what needs to be done to perform the refactoring. The only
pitfall is hidden in Step 4, which requires that all method calls from clients
of the (formerly) inheriting class are identified (so that the required delegating
methods can be introduced). Precise identification of the calls is crucial to the
success of the refactoring: adding delegating methods that are never called by
clients counteracts the very purpose of the refactoring (the deflation of the class
interface), while missing out required delegating methods will lead to compile
errors. Unfortunately, an analysis of the class members required by the class’s
clients is only seemingly simple; factually, it requires the type analysis under-
lying the Extract Interface refactoring [48], which is not trivial. Without
such an analysis at hand, performing the refactoring will be a trial and error
adventure (delegating methods are added until all type errors are resolved).

Generally, to keep the mechanics of a refactoring simple, the definition of
strong preconditions seems a good idea. However, as suggested by the precondi-
tions of Replace Inheritance with Delegation derived from the examples
of Fig. 1, it may render the refactoring unusable in too many cases, making the
user perform preparatory refactorings required for doing the refactoring any-
how. Figuring out precisely which preparatory refactorings are required is an
adventure in its own right, in particular when considering that each preparatory
refactoring may suffer from the same problem recursively.

4.3 The Tool User’s Dream: Relaxed Preconditions

Given the above, rather long list of preconditions for Replace Inheritance

with Delegation, it is indeed questionable whether a refactoring tool requiring
them all will be useful in practice, or will deny its service on too many occasions5.
Also, given that at least some of the precondition violations seem easy to work
around (for instance, access modifiers can be adjusted, accessor methods can be
introduced), it is foreseeable that users will ask for a refactoring tool that can fix
these issues by itself, rather than suggest corresponding manual changes (see [50]
for some evidence of this). However, as other work has shown, changing access
modifiers consistently is not as easy as it may seem, and in Java can even lead to
changes of behaviour (by changing binding) [45]. Also, setter invocations cannot
generally replace for field assignments, so that both changes are rather complex
refactorings by themselves. As for the remaining preconditions: Even if there are
ways to do away with them, as we will see below this takes far more than can be
straightforwardly handled in an imperative (as opposed to declarative) fashion,
that is, through a sequence of steps (“mechanics”). If building correct refactoring
tools is hard, relaxing their preconditions is harder.

5 In the same study [24], they prevented 84% of all naive refactoring applications in
four subject programs.



Refactoring Tools and Their Kin 189

4.4 The Tool Builder’s Nightmare: Evolving Languages

While creating correct refactoring tools for programming languages as complex
as Java or C# is already hard, evolving them to keep up with the further devel-
opment of these languages is a nightmare. This is not only so because, after the
compiler has been updated, the refactoring tools need to follow to accommodate
the same set of new language features, but also because it raises expectations
regarding tool support for migrating now legacy programs to the new language
version. For instance, the introduction of generics to Java not only broke literally
all type-related refactorings, it also led to the formulation of new refactorings
introducing generics to legacy code [48]. Not surprisingly, developing these tools
occupied some of the brightest minds in our field, and still left us with tools that
are, strictly speaking, neither sound nor complete.6

5 Current Refactoring Practice and Research Challenge

Given the hardness of the refactoring problems exposed by the above case study,
and given that most contemporary refactoring tools have not found good means
of dealing with these problems, refactoring practice today often follows the pat-
tern

1. Perform the refactoring as specified (using a tool, if available).
2. If the refactored program exhibits compile errors or changed behaviour,

(a) either undo the refactoring or
(b) perform corrective changes compensating for shortcomings in the mechan-

ics of the refactoring.

In case 2(a), violation of the generic postconditions (Sect. 3.1) and assuming that
the performed mechanics are correct suggest that the preconditions of the refac-
toring have not been met. In this case, the user can try to prepare the program
manually for the refactoring. If the preconditions are not explicitly specified (as
in Fowler’s above specification of Replace Inheritance with Delegation),
the reported compile errors or failed test cases may provide some hints for the
necessary preparation; in any case, they are the sole instance deciding that the
program is ready for the refactoring as implemented by its mechanics.

In case 2(b), the task of complementing the mechanically performed refac-
toring with the required additional changes is guided by the compiler and test
suite, which serve as oracles of manual task completion. If the refactoring user is
happy with this situation, one may indeed suggest that preconditions are relaxed
as much as possible — as long as the resulting program can be easily fixed, it
does not matter whether violations of the generic postconditions are due to vio-
lated preconditions or to shortcomings in the specification of the mechanics.
From a tool builder’s perspective, this is a pleasant prospect, since it makes the
implementation of refactoring tools a much simpler task.
6 I freely admit that I spent one summer trying to understand what it takes to cover

Java’s generics in every detail, and gave up highly frustrated.



190 F. Steimann

No matter whether the tool user opts for (a) or (b): In either case, making
a failing refactoring work relies on the knowledge encoded in the compiler and
test suite. From an academic perspective, it is somewhat saddening that this
knowledge is not exploited by the refactoring tools, for computing all changes
required by a refactoring upfront. In fact, I find the prospect of being able to do
so, so intriguing that it leads me to posing the following

Research challenge for the future of refactoring tools:
to evolve the decision procedure

“does this change constitute a refactoring?”
(as implemented, e.g., by the compiler and test suite) into a search

procedure
“which additional changes are required to make this change a refactoring?”

Ideally, we can use the same implementation used for solving the decision prob-
lem for solving the search problem also. This would not only greatly reduce the
effort required to create new refactoring tools, it would also allow us to keep com-
piler and refactoring tools so closely coupled that changing (fixing or evolving)
one suffices for both.

In the next section, I will shed some light on systematic approaches to imple-
menting refactoring tools known from the literature, with a special focus on how
they exploit (program-independent) knowledge also encoded in the compiler. I
will not address in the following how the knowledge captured in test cases (which
is program-dependent) can be exploited; however, I do point out here that the
Smalltalk Refactoring Browser can actually make some use of it [35].

6 Principled Approaches to Implementing Refactoring
Tools

Considering the nature of refactoring tools as delineated in Sect. 3, it seems
clear that any principled implementation of a refactoring tool must observe the
generic pre- and postconditions of refactoring or, equivalently, preservation of
its invariants. The research challenge phrased above additionally suggests that
a refactoring tool should rely on the language expertise implemented in the
compiler. The approaches presented in the following do both.

6.1 Dependency Preservation

In light of the problems with framing behaviour preservation (Sect. 2.2), it seems
advisable to replace it with a notion that is better tractable. Dependency preser-
vation as put forward by Schäfer [36] is such a notion.

Dependency preservation abstracts from behaviour preservation in that it
promises to maintain all behaviour-critical relationships between program ele-
ments. For instance, it is perfectly plausible to require that, except for deliberate
changes, after a refactoring



Refactoring Tools and Their Kin 191

– all names in a program should bind to the same declarations,
– all method calls should be synchronized on the same monitors, and
– all methods should override the same methods

as before the refactoring. Indeed, any accidental change of binding, synchroniza-
tion, or overriding (collectively referred to as a change of dependency by Schäfer)
may lead to a change of behaviour and hence provides a reason for the rejec-
tion of the refactoring that causes it. Schäfer demonstrated the effectiveness of
dependency preservation by implementing a large number of refactoring tools
with correctness scores surpassing that of the Eclipse JDT’s built-in refactoring
tools, as measured by their own test suites [36].

Dependency preservation also solves some of the problems of the Replace

Inheritance with Delegation refactoring presented in Sect. 4. For instance,
in the code of Fig. 1(a), the method invocation m() in the body of B.n() is
bound to the definition of m() in class A before the refactoring; since it cannot
be bound after the refactoring (because m() has become inaccessible for n()),
a dependency of the name on its declaration could not be preserved. Similarly,
the binding of the field access b.i to A.i cannot be preserved, since after the
refactoring, class B no longer offers such a field (Fig. 1d).

Going beyond name binding, the loss of synchronization arising from naively
refactoring the code of Fig. 1(f) can be detected by the fact that wait() and
notify() are now invoked on different objects (making synchronization depend
on different monitors), whereas they were invoked on the same before. While such
a change of dependency is hard to detect statically in the general case, in the case
of Replace Inheritance with Delegation it is fairly simple, since this in
the delegating class and this in the class being delegated to can never point to
the same object. For the preservation of dynamic binding (Fig. 1e), the situation
seems more complex, as it would require a static analysis of dynamic dispatch-
ing behaviour even for Replace Inheritance with Delegation; however,
requiring that all overriding dependencies are preserved (independently of the
fact whether or where overriding actually leads to dynamic binding) is suffi-
cient for guaranteeing binding invariance (even though it may be too strong a
condition in certain cases).

Thus, we have that dependency preservation can cover a broad spectrum
of conditions that are otherwise difficult to express. However, as these exam-
ples also suggest, much of the art of implementing correct refactoring tools
using dependency preservation relies on identifying and being able to extract
the dependencies that guarantee behaviour preservation for arbitrary programs.
Particularly for refactorings that change the control or data flow of a program,
this may prove beyond reach.

6.1.1 Technical Enforcement
It is fairly obvious that dependency preservation is a special case of (generic)
invariant preservation as delineated in Sect. 3.3. Technically, it is enforced by
recording all dependencies before the refactoring (replacing for Step 2 in the
procedure of Sect. 3.3), and by re-computing and comparing them after the



192 F. Steimann

refactoring (Step 5). If any dependency has changed as a result of the refac-
toring, it is rejected and all associated changes are undone. Since computing
the dependencies can usually be trusted to the compiler, the refactoring tool
implementation is spared from repeating some of the language specification in
its own code. As noted by Schäfer, this is a huge advancement over traditional
precondition checking, which often requires laborious reverse engineering of the
language specification. On the downside, however, the fact that violated precon-
ditions are now implicit makes it harder for the refactoring tool user to figure
out what exactly led to a refusal.

For large programs, retrieving and storing all dependencies can be rather
expensive. Therefore, in all practical applications of dependency preservation,
only those dependencies that can be affected by a refactoring will actually be
recorded. Unfortunately, deciding which these are is a problem in its own right;
dependencies may stretch across several modules, and are not always obvious.
Making mistakes here will make refactorings relying on dependency preservation
unreliable.

6.1.2 Actively Preserving Dependencies
While being able to replace explicit precondition checking with attempting
dependency preservation is certainly an advancement for the conscientious refac-
toring tool builder, it still leaves the tool user with the problem of “too strong
preconditions”, i.e., the rejection of a refactoring in cases in which some moder-
ate additional changes would have made it possible. However, as has also been
shown by Schäfer [36], in certain cases the compiler can be exploited to compute
these additional changes also.

The original example of how this can work was given by Schäfer in his imple-
mentation of the Rename refactoring [36]. The idea here is to let the refactoring
tool compute the inverse of the binding function implemented by the compiler:
rather than computing for a given name in a given location the declaration to
which it binds (the binding function), a name is computed from a given dec-
laration (the one originally bound to) and a given location (where the name is
to be used; the same location as that of the original name) such that name, if
it exists, is guaranteed to bind to the declaration. This not only propagates a
change of the name of a declared entity to all references to (or accesses of) it, it
also introduces name qualification where needed.

A simple example showcasing the power of active dependency preservation
is given by the following code snippet (taken from [36]):

class A {
int x;
A(int newX) {

x = newX;
}

}

Supposing that the formal parameter newX is naively renamed to x, the decla-
ration of the field of the same name, x, will be shadowed inside the constructor,
so that the left-hand side of the assignment (now reading x = x) will also bind



Refactoring Tools and Their Kin 193

to the formal parameter, likely changing the behaviour of the program. How-
ever, computing the fully qualified name of field x referenced from the location
of the assignment yields this.x; replacing the left-hand side of the assignment
accordingly keeps the program intact. As Schäfer showed, this naming function
can be constructed systematically with little effort and high accuracy, by revers-
ing the name lookup function implemented by the compiler (see Sect. 6.3.2 for a
constraint-based account). Whenever this lookup function needs to be adjusted
(for instance, because the language evolves), its reverse can be adjusted in par-
allel, keeping all refactoring tools relying on it up-to-date (cf. Sect. 4.4).

It would seem that reversing name lookup can be extended to repair the
broken binding introduced by applying Replace Inheritance with Dele-

gation to the example of Fig. 1(a) also. Indeed, the compiler knows that for
a non-inherited method to be accessed across package boundaries, the method
must be declared public. It would therefore seem feasible to introduce a second
function which computes, for a given location and declared entity to be accessed
from that location, the set of access modifiers granting this access. However,
making a corresponding adjustment affects a declaration, rather than a reference
(as above insertion of a qualified name did); it will therefore affect all other
references to this declaration, too, and may interfere with other existing declara-
tions. While this may not seem problematic at first glance, as has been shown
elsewhere [45], changing access modifiers in an ad-hoc fashion may not only lead
to malformedness (for instance, in presence of overriding), but can also break
binding dependencies. This will be picked up again in Sect. 6.3.

And yet, active dependency preservation is not limited to adjusting names at
reference sites. For instance, as Schäfer demonstrated, synchronization depen-
dencies can also be actively preserved, by making sure that method invocations
remain synchronized on the same monitors as before a refactoring. Transferred
to the synchronization problem of Replace Inheritance with Delegation

(as exemplified by applying it to the code of Fig. 1e), dependency preservation
requires that the delegating object is passed (as a parameter) to the method
being delegated to. Following this advice, the naively refactored code below on
the left (which exhibits the lost synchronization) is changed to that on the right
(which preserves the original dependency):

class A {
void m() {

notify();
}

}
class B {

A a = new A();
void m() { a.m(); }
synchronized void n() {

wait();
}

}

⇒

class A {
void m(Object o) {

o.notify();
}

}
class B {

A a = new A();
void m() { a.m(this); }
synchronized void n() {

wait();
}

}



194 F. Steimann

6.2 Language Extensions and Restrictions

While dependency preservation is a powerful concept, Schäfer also showed that
it gets even more powerful when combined with language extensions and restric-
tions [36]. For instance, he observes that the synchronized method modifier in
Java merely provides syntactic sugar for the more general synchronized block:
a synchronized instance method is equivalent to a non-synchronized method
whose body is wrapped by a block explicitly synchronizing on this. Java with-
out synchronized methods, but with synchronized blocks, is thus a restricted
language to which any Java program can be straightforwardly transformed. This
restricted language is helpful, for instance, when performing the Move Method

refactoring, as exemplified by moving method m() in the following code from
class A to class B:

class A {
synchronized void n() {}
synchronized void m() {

n();
}

}

class B {}

class A {
synchronized void n() {}

}

class B {
void m(A a) {

synchronized(a) {a.n();}
}

}

⇓ ⇑
class A {

void n() {
synchronized(this) {}

}
void m() {

synchronized(this) {
this.n();

}
}

}

class B {}

⇒

class A {
void n() {

synchronized(this) {}
}

}

class B {
void m(A a) {

synchronized(a) {a.n();}
}

}

Here, the first step (indicated by the down arrow) is to convert the classes to
Java without synchronized methods (and without assuming this as the default
receiver). In the next step (right arrow), the method m() is moved as usual,
making sure that this is converted to a formal parameter (Schäfer actually
uses a language extension for this [37]). The last step (up arrow) converts the
classes back to Java with synchronized methods; note that, since the body of
m(A) is synchronized on a different object than this, conversion is possible
only for n(). Were class B a subclass of A, this and a would always point to
the same object, so that both methods could use the synchronized keyword.

As it turns out, name binding preservation can also be framed in terms of a
restricted language [38]. For this, all names used in references and declarations of
a program are replaced with unique names, or labels. Because each declaration



Refactoring Tools and Their Kin 195

now uses a different label, the binding rules of the language become extremely
simple: Each reference binds to the sole declaration carrying the same label.7 In
particular, no hiding, shadowing, obscuring, or overloading may get in the way
of a refactoring. After a refactoring, the declared entities can adopt their original
names, and the inverted lookup function can be used to compute the names of
the references.

However, as already noted in Sect. 6.1, there are refactoring problems that
exceed the capabilities of dependency preservation and language extensions or
restrictions. For instance, in the course of the Replace Inheritance with

Delegation refactoring access modifiers may need to be adapted at the declara-
tion site to keep a program well-formed (see Fig. 1a). In addition, if qualifiers (as
part of the name computed by inverting the lookup function) must be introduced
at the reference site, the names used for qualification may refer to inaccessible
entities, requiring additional access modifier adjustments to avoid malformedness
[38]. However, adjusting access modifiers can itself lead to a change of name bind-
ing, not only making binding preservation a recursive problem, but also inter-
mingling well-formedness preservation with dependency preservation. The same
applies to refactorings that may make a program ill-typed: For instance, when
the subtype relationship is removed (again as with Replace Inheritance with

Delegation), assignments (as in Fig. 1c) or member accesses (as in Fig. 1d) may
become ill-typed. For dealing with these kinds of problems, another principled
approach to implementing refactoring tools seems better suited: constraint-based
refactoring.

6.3 Constraint-Based Refactoring

Constraint-based refactoring was pioneered by Frank Tip et al., who adopted
Jens Palsberg and Michael Schwartzbach’s constraint-based capture of object-
oriented type systems [32] for the implementation of type generalization refactor-
ings such as Generalize Declared Type or Use Supertype where Pos-

sible [48,49]. However, rather than following the historic trail of this seminal
work, I present constraint-based refactoring as a way of preserving refactoring
invariants in the spirit of Sect. 3.3 here.

6.3.1 Preserving Dependencies with Constraints
To show how refactoring invariants can be expressed in terms of constraints, I
will start with preserving dependencies, as this allows me to draw some parallels
to Schäfer’s work. Below, I will address how well-formedness can be preserved,
using the examples of accessibilities and types.

7 Note the relationship to projectional editing, which uses references, or pointers,
rather than names.



196 F. Steimann

For the first part, we return to the name capture problem of Sect. 6.1:

class A {
int x;
A(int newX) {

x = newX;
}

}

A binding invariant of this snippet is expressed by the two simple constraints

refx .name = declx.name (1)
refnewX .name = declnewX .name (2)

Here, declx and declnewX represent the declared entities of the program (cur-
rently named “x” and “newX”, resp.), and declx.name and declnewX .name rep-
resent constraint variables holding the names of these entities. Analogously, refx
and refnewX represent references to the declared entities, and refx .name and
refnewX .name their names.

As invariants, (1) and (2) enforce that the names of the references must
always equal those of the declared entities they bind to, where the binding has
been determined prior to the constraint generation (e.g., by querying the com-
piler; but see Sect. 6.3.2 for how binding can be computed using constraints). A
Rename refactoring is hence expressed as changing the value of one of the con-
straint variables; the violation of constraints that this immediately causes flags
the loss of a dependency. For instance, if declnewX .name is changed to “x”, (2)
is immediately violated, since refnewX .name still holds the value “newX”. How-
ever, the lost binding can easily be restored, simply by letting a constraint solver
assign the other constraint variable (refnewX .name in the above example) the
same name (representing a corresponding name change in the program), hence
curing the violation. Thus, using a single set of constraints, we cannot only check
dependency preservation, but also compute the corrective changes required to
preserve dependencies actively (as in Sect. 6.1).

In constraint-based refactoring the name capture caused by renaming the
formal parameter newX to “x” is avoided by adding a third constraint

declnewX .name �= declx.name (3)

The generation of this constraint is justified by the fact that newX is declared in a
scope in which it would shadow the declaration of x, if their names were the same.
While not necessary for the program as is, it helps preserve the name binding
under renaming either newX or x, by requiring that their names are always
different. In fact, a constraint-based implementation of the Rename refactoring
would not need to reject the renaming of the formal parameter newX to “x”;
rather, it would rename the field x to a different name and, observing (1), the
reference to x with it. While this measure of actively achieving dependency
preservation differs from Schäfer’s (which worked by introducing qualifiers; see
Sect. 6.1), it is equally successful. In fact, it works even in cases in which name
qualification is impossible.



Refactoring Tools and Their Kin 197

6.3.2 Aside: Implicit Specification of Name Lookup and Its Reversal
Using Constraints

It is instructive to observe that, despite their technological differences, Schäfer’s
computation of the inverse of the binding function presented in Sect. 6.1 and the
constraint-based capture of active dependency preservation presented above are
closely related. This is revealed by the following slight modification of (1) and (2):

refx .name = refx .binding.name (4)
refnewX .name = refnewX .binding.name (5)

Here, the variable declarations to which the references refx and refnewX bind have
been replaced by the constraint variables refx .binding and refnewX .binding , resp.
Assuming that all names in a program are fixated (so that the name variables do
not change their values), a constraint solver will determine the bindings of refx
and refnewX by finding values for refx .binding and refnewX .binding such that the
constraints are satisfied. This corresponds to computing the lookup function.

Using the same constraints (4) and (5), that a binding must not change under
refactoring (the binding invariance) is expressed by fixating the values of the con-
straint variables refx .binding and refnewX .binding (the values just computed by
the solver). Renaming declarations (by assigning declx.name or declnewX .name
new values) and making the values of the refx .name and refnewX .name variable,
then corresponds to inverting the lookup function as proposed by Schäfer, in
that it propagates a changed name of a declared entity to its references. How-
ever, unlike for Schäfer’s procedural approach, which needs to provide related,
but still independent implementations for name lookup and name computation,
constraint-based refactoring exploits that constraints are generally undirected
(“n-way”), and makes do with a single specification. In fact, a single constraint-
based specification can be used to

1. extract dependencies before the refactoring (corresponding to Step 2 in the
generic procedure of Sect. 3.3),

2. check dependencies after the refactoring (Step 5), and
3. compute required corrective changes (part of Step 3).

As we will see next, constraints can also be used to

4. check well-formedness before and after a refactoring (Steps 1 and 4 in the
generic procedure of Sect. 3.3), and to

5. compute corrective changes required to preserve well-formedness (again part
of Step 3).

Note that Item 4 is also done by the compiler, which needs to check the same
constraints. Elements of Item 1 must also be implemented by the compiler (for
instance when resolving names or when creating tables for dynamic method
dispatch), even though most compilers will not use constraints and constraint



198 F. Steimann

solving for this purpose.8 Items 3 and 5 are actually part of the mechanics of a
refactoring; I will return to this at the end of this section.

6.3.3 Accessibility Constraints
One of the refactoring problems classified in Sect. 6.1 as not being amenable to
dependency preservation is that of adapting access modifiers. To get an impres-
sion of the problem, we adapt the code snippet of Fig. 1(a), adding C as a second
subclass of A defining an overriding method m():

package a;
class A {

protected void m() {...}
}
package b;
class B extends A {

void n() { m(); }
}
class C extends A {

@override protected void m() {...}
}

Recall that the problem of applying Replace Inheritance with Delega-

tion on class B was that it makes A.m() inaccessible from the body of class B.
This problem appears to be readily fixed by increasing the accessibility of A.m()
to public; however, this makes the program malformed, since Java requires that
overriding methods must be declared at least as accessible as the methods they
override. In this particular case, this means that accessibility of C.m() needs to
be adjusted to public as well; in other cases, other rules may apply.

A constraint-based solution to this problem is to express the well-formedness
rules related to access modifiers in the same style as the name binding rules
above. For instance, accessibility of A.m() from B can be expressed by the
constraint

declA.m().accessibility ≥ (B <: A ? protected : public) (6)

where <: denotes the subtype relation and ? : is the ternary conditional operator
(note that access modifiers are totally ordered in Java: private < package <
protected < public). The constraint says that protected accessibility for A.m()
suffices as long as B is a subclass of A; otherwise, it must be public.9 Note that
this constraint is only justified if B (or any other class from a different package)
requires access to A.m(); in the above example, it is required by the access
through B.n().
8 In fact, for efficiency reasons, it may not be advisable to use standard constraint

solving for this purpose. However, efficient one-way computations may be synthesized
from n-way constraints [22]. A conventionally implemented lookup function is a good
use case for this. See also at the end of Sect. 9 in Part II of this briefing, where this
issue is picked up again.

9 This greatly oversimplifies matters — see [38] for a more thorough account of acces-
sibility in Java.



Refactoring Tools and Their Kin 199

The fact that accessibility of C.m() must be greater or equal than that of
A.m() is expressed as the conditional constraint

C <: A → (declC.m().accessibility ≥ declA.m().accessibility) (7)

which says that if C is a subclass of A, accessibility of C.m() must be equal to
or greater than accessibility of A.m(). Note that both constraints (6) and (7)
use the subtype relation as a condition — this is important, since the Replace

Inheritance with Delegation refactoring changes this relation, and access
modifiers must adapt to the change.

Conditional constraints are commonplace in constraint-based refactoring (see,
e.g., [2]); however, they also impact tractability and hence require special treat-
ment. For instance, for refactorings that move program elements between scopes,
constraint (3) of Sect. 6.3.1 would need to be conditioned on both declared entities
residing in the same scope, so that the constraint is active when they do, and inac-
tive otherwise. In general, it is not trivial to know which constraints will actually
be needed in which form for a given refactoring, and generating all constraints, and
each in its most general form, will be too expensive. Therefore, the constraint gen-
eration process must “foresee” all changes a refactoring may possibly make [43].
Note how this parallels the problem of extracting all and only the dependencies
required for a specific refactoring in Schäfer’s work (cf. Sect. 6.1.1).

6.3.4 Type Constraints
Some of the remaining problems of Replace Inheritance with Delegation

discussed in Sect. 4 can be framed as typing problems, specifically as the loss of
well-typedness. Similar to accessibility above, preserving well-typedness can be
expressed as a constraint satisfaction problem.

To see how this works, we return to the example of Fig. 1, specifically the
code snippet

class A implements I {}
class B extends A {}
I i = new B();

Recall that applying Replace Inheritance with Delegation to class B
makes the assignment ill-typed, since B is no longer a subtype of I.

The corresponding typing invariant is expressed by the constraint

B <: decli.type

Clearly, this constraint, which is satisfied before the refactoring, is violated
after it, since the current type of i, I, is no longer a supertype of B. However, a
constraint solver can repair the broken constraint, either by changing the value
of delci.type to B (corresponding to a change of the declared type of i to B) or
by changing the type hierarchy so that B <: I (corresponding to letting class B
implement interface I). However, in a program larger than the above, we must
expect both changes to be subject to further constraints. For instance, class B
must implement all methods declared in I. Conversely, if members are accessed
on b, these members must be declared in interface I.



200 F. Steimann

The latter constraint also plays a role in refactoring the code of Fig. 1(d),
again repeated here for ease of access:

class A { int i; }
class B extends A {}
B b = new B(); b.i = 0;

Here, the access of i on receiver b requires that i is a field of b, expressed by
the constraint

refb .type <: decli.host

Again, removing the subtype relationship between B and A violates this con-
straint. A constraint solver can compute a fix, however: by setting decli.host to
B, the constraint is satisfied again (and the declaration of field i is pushed down
from class A to class B). In most real programs, however, this fix will be prevented
by other constraints requiring that field i remains a member of class A.

A detailed presentation of the Java type constraints relevant for type-related
refactorings is found in [48].

6.3.5 Generic Constraint-Based Refactoring Tool Implementation
It should be clear from the above that using constraints, we cannot only

– check well-formedness and dependency preservation of a program (and hence
whether a refactoring was successful),

but also

– extract dependencies (as in the name binding example) to be preserved, and
– compute the corrective changes required to actively preserve well-formedness

and dependencies.

What is missing from a completely constraint-based implementation of a refactor-
ing tool is that the refactoring intent (see Sect. 3.1) is also expressed in terms of
constraints. However, in as much as the changes constituting the refactoring intent
can be expressed in terms of new values for constraint variables (as was the case
for most examples presented in this section), this is easy: Simply add constraints
forcing the new value (e.g., adding the constraint declnewX .name = “x” forces
the renaming of newX). The constraint solver is then a generic refactoring engine
capable of computing all changes required to realize a given refactoring intent.

7 Refactoring Résumé: Three Competing Camps

The previous sections suggest that three different perceptions of refactoring tools
have emerged in the refactoring community:

– Tool builders maintain that to implement a refactoring correctly, it suffices
1. to identify its preconditions and
2. to specify the mechanics performing the changes that constitute the

refactoring.



Refactoring Tools and Their Kin 201

– Tool users suggest that for refactoring tools to be useful,
1. an implementation of the mechanics and
2. automated oracles checking the generic postconditions (compiler and test

suite)
are all that is required.

– Tool researchers hope that the necessary changes associated with a refactoring
can be synthesized from
1. the invariants of the refactoring and
2. the specific changes to be seen in the program (the specific postconditions,

or refactoring intent).

Reality catches up with:

– tool builders when the bug reports from users start coming in, and the struggle
against the intricacies of the subject language leads to thoughts of resignation;

– tool users when they lose control over their code, because they are trapped
in fixing bugs they did not introduce, in places they had not dreamt of; and

– tool researchers, when they apply their tools to real programs written in real
programming languages and they learn how complex the semantics of these
languages are.

Undoubtedly, building correct refactoring tools is hard. With the compiler
specifying the semantics of a programming language, it seems that re-using as
much of it as possible for the implementation of refactoring tools is the key to
success.

Part II: Their Kin

Maybe the technical difficulties of producing correct refactoring tools and the
expected benefit do not match well. Maybe the investment necessary to get refac-
toring right pays only if other programming tools profit from it, too. Maybe there
is a common basis of a large variety of programming tools, of which refactoring
tools are just one offspring.

Figure 2 depicts a bunch of such tools that all depend on a single software
artefact, the specification of the static semantics of a programming language.
In this bigger picture, it appears that refactoring merely plays a small, if not
subordinate, role. However, we have seen that refactoring is also one of the
harder problems in this bouquet, requiring some guarantees with respect to
well-formedness and behaviour. For any specification sufficient for refactoring
we may therefore expect that it is sufficient for the other problems as well.

8 Static Checking

Static checking is a central activity of compilers that comes straight after syn-
tactic checking, or parsing. Depending on the language specification, it includes
checks that all names are declared before they are used, that all expressions are



202 F. Steimann

Fig. 2. Single investment, many pay-offs.

well-typed, etc. A program that passes all checks is considered well-formed, and
ready for code generation or interpretation.

Static checkers can be implemented in a number of ways, with speed usually
being a primary concern. However, there is a growing awareness of the fact that
static checking is an option that can be traded for flexibility [6]. In addition,
frameworks and even individual users of a programming language may define
their own rules of well-formedness (“coding conventions”), which they want to
see enforced by a compiler. JavaCOP [1] and the Checker framework [9] are two
representatives of this movement in the Java field; for other, especially modelling,
languages, the Object Constraint Language (OCL) is in use. Note that JavaCOP
and OCL rely on constraints (but not constraint solving!) for static checking;
since constraints are also the basis of constraint-based refactoring (Sect. 6.3),
they are a hot candidate for our central capture of static semantics.

To see how rules of well-formedness can be expressed with constraints, we use
a simple example. For any conventional programming language declaring names,
we have a well-formedness condition stating that for all uses of (or references to)
names there must exist a declaration introducing that name. More formally, we
have that

∀ref ∃decl : ref.name = decl.name (8)

Applied to the program

int i;
bool j;
i = 1;
j = true;



Refactoring Tools and Their Kin 203

this rule gives us the two constraints

∃decl : refi .name = decl.name (9)
∃decl : refj .name = decl.name (10)

Note that this rule does not express to which declaration a name does bind —
it just expresses that for a program to be well-formed, a declaration must exist
to which the name can bind.

Another well-formedness rule that is straightforwardly expressed using con-
straints is usually found in statically type-checked programming languages. It
requires that the types on both sides of an assignment must equal. Expressing
this rule with constraints and applying it to the above program will give us
something like

refi .binding.type = lit1.type (11)
refj .binding.type = littrue.type (12)

As in Sect. 6.3, the constraint variables refi .binding and refj .binding repre-
sent the declarations (declared entities) the references bind to. The above well-
formedness constraints (9) and (10) guarantee that a value can be found for these
variables (because a declaration carrying the same name as the reference must
exist), but for the type checking to be effective, the variables need to have values
assigned. While one could argue that since constraints are generally undirected,
the type constraints (11) and (12) can be used to compute the bindings of i
and j (taking (11) and (12) as implicit specifications of the binding function;
cf. Sect. 6.3.2), generally, type information does not suffice to determine binding
unambiguously (what if i and j had the same type?) — this is what the names
are for.

9 Name Binding

In contemporary programming languages like Java, name binding is the Siamese
twin of static checking: One cannot live without the other. While a more thor-
ough treatment of the interrelationship can be found in a companion briefing on
“Name Binding” by Guido Wachsmuth (in this Volume), I want to emphasize
here that name binding can in principle be expressed as a constraint satisfaction
problem, and thus thrive on the same (constraint-based) specification of static
semantics as all other tools discussed in this part of my briefing. In particular,
expressing both static checking and name binding as one constraint satisfaction
problem, the two tasks are automatically intertwined by the constraint solver.

Section 6.3, specifically constraints (4) and (5), already provided a brief
glimpse of how names can be bound using constraints. Here, we note that for
name binding, we need to complement the well-formedness constraints (9) and
(10) guaranteeing that the names can be bound with a set of rules expressing
how they are bound. Just like the constraints (4) and (5), the constraints



204 F. Steimann

refi .binding.name = refi .name (13)
refj .binding.name = refj .name (14)

provide an implicit specification of the binding function applied to refi and
refj . Interestingly, the well-formedness constraints (9) and (10) and the bind-
ing constraints (13) and (14) are related by Skolemization, with binding being
the Skolem function.10 Given that Skolemization makes (9) and (13), as well as
(10) and (14), equisatisfiable, and given that (13) and (14) are more useful (they
can be used for well-formedness checking and to compute name binding), the
well-formedness constraints (9) and (10) appear dispensable. This is the more
so since (13) and (14) can be used to detect ambiguity: if the constraint solver
finds more than one value for a binding variable, binding cannot be uniquely
determined. (Note how this amounts to replacing ∃ in (9) and (10) with ∃1.)

10 Automatic Repair

If constraints can be used to check the well-formedness of a program, it seems
natural that using constraint solving instead of constraint checking, the same
constraints can also be used to correct a malformed program, simply by replacing
fixated values in the failing constraints with constraint variables for which a
constraint solver can compute new values. These new values then represent the
fixes that mend the program.11 However, contemporary IDEs implement auto-
fixes (also called quick fixes) imperatively.

The auto-fixing implementations offered by contemporary IDEs are often
short-sighted in that they offer fixes that break the program in other places.
As for refactoring tools, there is a discussion whether this presents a bug or a
feature: While a fix introducing a bug may not be a fix to some users, others
may argue that it is still helpful if it saves manual edits. Without delving into
this discussion, we note here that the same erratic behaviour can be obtained by
solving violated constraints locally; if undesired, this behaviour can be cured by
submitting all derivable constraints constraining the variables to the solver [42].
As for constraint-based refactoring (Sect. 6.3), this may turn out to be too expen-
sive; again, as noted at the end of Sect. 6.3.4, much of the art of using constraints
lies in deciding precisely which constraints to generate.

To give the reader an impression of how constraint-based auto-fixing works,
we look at the following piece of malformed code written in our sample language:

int i;
bool j;
i = 1;
k = true;

10 See [41] for some more details on how Skolemization relates well-formedness checking
and binding.

11 Note that we do not consider syntax errors here.



Refactoring Tools and Their Kin 205

Most programmers would agree that the obvious way to fix the name binding
problem is to replace k in the program text with j, but not knowing what the
intention of the programmer was, all fixes

int i;
bool j;
i = 1;
j = true;

int i;
bool j;
i = 1;
i = true;

int k;
bool j;
i = 1;
k = true;

int i;
bool k;
i = 1;
k = true;

are equally conceivable. In fact, all these fixes can be derived from solving the
(combined well-formedness and binding) constraint

refk .name = refk .binding .name (15)

with refk .name, refk .binding , decli.name, and declj .name all being variable. If
a tool user has a preference for changing the names of references rather than
declarations, this can be expressed by fixating the values of the constraint vari-
ables decli.name and declj .name to their current values; if the preference is on
changing the names of declarations, the value of refk .name can be fixated. Note
that tying all variables to their current values makes the constraint unsolvable;
it reflects the malformedness of the program in its present form.

As the alert reader will have noticed, two of the above fixes are short-sighted,
in that they produce malformed programs. However, the resulting programs do
not suffer from name binding problems — they are ill-typed. The problematic
fixes can thus be prevented by adding the relevant type constraints to the con-
straints to be solved, in the above example

refk .type = refk .binding .type
refk .type = littrue .type

decli .type = typeint .val
declj .type = typebool.val

The constraint variable connecting the name constraint (15) with the above type
constraints is refk .binding; if its value is changed in the course of solving the name
constraint, this change propagates to the type constraints, where it leads to the
computation of the (new) type of the reference refk . With all constraint variables
representing types having fixated values, the only solution of the joint constraint
system is setting refk .name to “j”; accepting new values for type variables also
results in alternative fixes adjusting types in declarations or literals. Whether
these additional fixes make sense and should be offered to the user is a different
discussion; here it is important to note that (a) all fixes have been computed
from the very same constraints used for detecting malformedness and (b) no
fix computed by these constraints leaves the program malformed. As can easily
be imagined, obtaining the same guarantee from an imperatively implemented
auto-fix tool is hard.



206 F. Steimann

A first delineation of constraint-based repair (together with constraint-based
code completion) appeared in [46]; a more comprehensive treatise (based on
constraint attribute grammars) has only recently been published [42].

11 Code Completion

Using constraints and constraint solving, auto-completion corresponds to com-
puting values for constraint variables that do not have initial values that could
be derived from a program as is. For instance, when the current program reads

int i;
bool j;
i = ∧

and the user is about to enter a name at the caret position which represents a
new reference, refnew , the constraints

refnew .name = refnew .binding.name

refnew .type = refnew .binding.type
refi .type = refnew .type

known from Sects. 8 and 9, and given that the current value of refi .type, int, is
fixated, suffice to compute refnew .name := “i” as the only valid completion of
the program. Note that, analogously to auto-fixing, not generating all constraints
would give us alternative completions (such as refnew .name := “j”), which would
however give us a malformed program.

Auto-completion is the dual to auto-fixing: most, if not all, incomplete pro-
grams can be thought of as being malformed (if only by introducing a random
program element that renders the program so), so that the repairs represent
the completions; and most, if not all, malformed programs can be thought of as
being incomplete, so that eliminating the parts that are thought to cause the
malformedness, and completing the resulting program, presents a fix. Therefore,
it is highly advisable that auto-completion and auto-fixing are based on the same
implementation; in current IDEs, however, this does not seem to be the case.

12 Controlled Change

It is safe to claim that programming is an alternating sequence of behaviour-
altering change and refactoring. With refactoring being increasingly supported
by corresponding tools, the next challenge is to support behaviour-altering
changes also. At the very least, such support should guarantee that behaviour-
altering changes leave a program well-formed; at a more advanced level, such
support would ensure preservation of arbitrary, selected properties the program
had before the change. We call a change that is guaranteed to preserve selected
properties a controlled change. Refactoring is a controlled change in which the
selected property is behaviour.



Refactoring Tools and Their Kin 207

Arguably, the same discussion that is currently being led with regard to
refactoring can also be led with regard to controlled change: Given some decision
procedure (“oracle”) for the desired properties, a tool or the programmer can go
ahead and change a program in any way they deem appropriate, and the oracle
can report the accidentally introduced errors later. In particular, any property
that can be cast into a static check can be preserved this way. For Java programs
this includes non-nullness, object confinement [20], etc. (see [1,9] for many more
examples).

However, for academics at least, this would seem too modest a solution to be
satisfactory. In fact, given how far we got in Part I of this briefing by computing
from the same specification used for checking the very changes required to pass
a check, why could the same not be achieved for other controlled changes? And
indeed, the principle is the same: Identify the relevant invariants and make sure
that they are preserved.

There is however a major difference between (arbitrary) controlled changes
and refactoring: While refactorings usually follow patterns (refactorings are cata-
logued!), other controlled changes may not. Indeed, unless we go down to atomic
changes (such as the changes used in mutation testing; see below), it is not clear
whether we will ever see a compilation of controlled changes that receives the
same recognition as Fowler’s refactoring catalogue [12]. The source manipulation
menus of contemporary IDEs such as Eclipse (containing entries like “surround
with try-catch”) may provide a starting point for implementing more complex
controlled changes, however.

On the other hand, not all refactorings are catalogued: Firstly, a program-
mer is free to make any changes she pleases manually, and still demand tool
support making sure that these changes constitute a refactoring. Secondly, tools
can be devised for non-catalogued, ad-hoc refactorings (or “refactorings without
names” [44]) also. If these can be made to work, other non-catalogued controlled
changes should work also.

13 Mutation Testing

Mutation testing or, as it is sometimes also referred to, mutation analysis, is
the technique of changing a program in such a way that it still compiles, but
exhibits changed behaviour. Mutation testing is useful for testing the adequacy
of test suites: for each behaviourally changed program — called mutant — that
does not get caught, an additional test case should be added which catches it.

Traditional mutation testing works by applying mutation operators to pro-
grams. This suffers from two major problems: (1) The mutation operators may
make the mutant malformed, and (2) the mutant may exhibit equivalent behav-
iour. While the former can be avoided by applying only mutation operators that
cannot make a program malformed, or (somewhat expensively) by rejecting gen-
erated mutants that do not compile, the latter is a hard problem (undecidable
in general) and in any case requires human inspection.

The attentive reader will have noticed that mutation testing (or, more specif-
ically, the generation of non-equivalent mutants) is a special case of controlled



208 F. Steimann

change (Sect. 12). In fact, it is a complement of refactoring, one in which well-
formedness is to be preserved, but behaviour is to be changed. The great advan-
tages of implementing mutation testing as a controlled change activity are that
(a) it does not limit mutations to the application of (single) mutation operators
that cannot introduce malformedness, without having to pay the price of time-
consuming compiler checks rejecting malformed mutants; and that (b) mutants
are more likely to exhibit changed behaviour, namely when behaviour-critical
dependencies (Sect. 6.1) have been changed by the mutation.

To give a concrete example of how this may work, we use our simple language
again and start with the program

int i;
int j;
bool k;
i = 1;
j = 0;
k = true;
i = j;

A traditional mutation operator would replace the literal 1 with 0 (or vice
versa), or true with false, which cannot make the program malformed. How-
ever, replacing names (identifiers) in the same shallow manner risks making the
program ill-typed, as evidenced by replacing i with k in an assignment. By sep-
arating the set of constraints generated for the above program into ones that
preserve well-formedness and ones that preserve behaviour-critical dependencies
(see Sect. 6.1 for examples of these), and by negating one constraint of the latter
kind, we can let the constraint solver compute a change that leaves the program
well-formed, but (likely) exhibiting changed behaviour. For instance, for the last
line of the above program we get the constraint

refj .binding .name = refj .name

which is solved by the assignment refj .binding := declj (an extracted invariant
in the case of refactoring; cf. Sect. 6.3.2). By adding a constraint

refj .binding �= declj

(which negates the extracted invariant) and solving all constraints we get a new
program in which j in the last line has been replaced with i (assuming that
the names of declarations have been fixated; however, this is not required for
the approach to work). Note that the well-formedness constraints (which have
not been touched) prevent that i is replaced with k, since this would make
the program ill-typed. Standard mutation operators do not have this language
intimacy, and always apply their changes indiscriminately.

14 Code Generation

Code generation is the big brother of code completion (Sect. 11): it can be seen
as the iterative completion of a program, starting with no (or the empty) pro-
gram. A trivial approach to generating (arbitrary) well-formed code follows



Refactoring Tools and Their Kin 209

Listing 1. Definite clause grammar generating (and accepting) only well-formed pro-
grams of a given length.

program(LOCs) -->
decls([], Tab, LOCs, LOCsR),
assigns(Tab, LOCsR, 0).

decls(Tab, Tab, LOCs, LOCs) --> [].
decls(In, Out, LOCs, LOCsR) -->

{LOCs > 0},
decl(In, Tmp),
{LOCsD is LOCs - 1},
decls(Tmp, Out, LOCsD, LOCsR).

decl(Tab, [var(Name, Type)|Tab]) -->
type(Type),
var(Name),
{nonmember(var(Name, _), Tab)}.

type(int) --> [int].
type(bool) --> [bool].
var(i) --> [i].
var(j) --> [j].
assigns(Tab, LOCs, LOCs) --> [].
assigns(Tab, LOCs, LOCsR) -->

{LOCs > 0},
assign(Tab),
{LOCsD is LOCs - 1},
assigns(Tab, LOCsD, LOCsR).

assign(Tab) -->
var(Name),
{member(var(Name, Type), Tab)},
[=],
lit(Type).

assign(Tab) -->
var(Name1),
{member(var(Name1, Type), Tab)},
[=],
var(Name2),
{member(var(Name2, Type), Tab)}.

lit(int) --> [0] | [1].
lit(bool) --> [true] | [false].

the generate-and-test paradigm: Syntactically well-formed programs, generated
using the language’s grammar or constructor invocations on an object-oriented
capture of the language’s abstract syntax, are subjected to static checking, dis-
missing all (semantically) malformed programs. However, while straightforward,
this approach is usually too expensive for practical use.

A more practical approach to generating (arbitrary) well-formed code is to
use attribute grammars enhancing the syntax rules of a target language with the
rules of (static) semantics [25]. By replacing the computation of the attribute



210 F. Steimann

values of such a grammar with constraint solving, we can make sure that all
programs generated by this grammar are well-formed [42]. For instance, the
definite clause grammar (DCG) of Listing 1 can be used to generate all well-
formed programs of our little sample language having a given number of lines
of code (LOCs). Note that it uses unification and backtracking for constraint
solving, which are also the main mechanisms of parsing in Prolog.

However, the use cases for generating arbitrary well-formed programs are
fairly limited (but note that they include model checking language specifications
[17] and testing programming tools [8], which both are highly relevant in the
context of this briefing). What is needed more often is the generation of pro-
grams devised to fulfil some given purpose. In the most general case, a program
generator would be an arbitrary program (written in a generator, or meta, lan-
guage) that produces, from some given input, an output program in a target, or
object, language that is well-formed according to the rules of that language.

The problems of and solutions for safe program generation are the topic of
the companion briefing on “Structured Code Generation Techniques” provided
by Yannis Smaragdakis et al. in this Volume, to which I would like to refer
interested readers at this point. However, I will not leave them without noting
that any proof of correctness of such program-generating programs via their
compiler (the meta-language compiler), i.e., the proof of the fact that a given
program-generating program can produce, for any input, only output programs
that are well-formed in the target language, requires a full and formal capture
of the well-formedness rules of the host language, for instance in first-order logic
[23]. The constraints presented throughout this briefing are first order; hence, it
seems justified to add structured code generators to the circle of programming
tools profiting from the same single specification of a language’s static semantics.

Acknowledgements. The work presented in this briefing has been supported by
Deutsche Forschungsgemeinschaft (DFG) under grants STE 906/4-1&2 and STE 906/
5-1. I thank Andreas Thies, Jens von Pilgrim, Frank Tip, Max Schäfer, and Bastian Ulke
for their collaboration.

References

1. Andreae, C., Noble, J., Markstrum, S., Millstein, T.D.: A framework for imple-
menting pluggable type systems. In: Tarr, P.L., Cook, W.R. (eds.) Proceedings of
the 21th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2006, 22–26 October 2006, Port-
land, Oregon, USA, pp. 57–74. ACM (2006). http://doi.acm.org/10.1145/1167473.
1167479

2. Balaban, I., Tip, F., Fuhrer, R.M.: Refactoring support for class library migra-
tion. In: Johnson, R.E., Gabriel, R.P. (eds.) Proceedings of the 20th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2005, 16–20 October 2005, San Diego, CA, USA, pp. 265–
279. ACM (2005). http://doi.acm.org/10.1145/1094811.1094832

http://doi.acm.org/10.1145/1167473.1167479
http://doi.acm.org/10.1145/1167473.1167479
http://doi.acm.org/10.1145/1094811.1094832


Refactoring Tools and Their Kin 211

3. Bannwart, F., Müller, P.: Changing programs correctly: refactoring with specifica-
tions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085,
pp. 492–507. Springer, Heidelberg (2006). doi:10.1007/11813040 33

4. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Longman Publishing Co. Inc., Boston (2000)

5. Borba, P., Sampaio, A., Cavalcanti, A., Cornélio, M.: Algebraic reasoning
for object-oriented programming. Sci. Comput. Program. 52, 53–100 (2004).
http://dx.doi.org/10.1016/j.scico.2004.03.003

6. Bracha, G.: Pluggable type systems. In: OOPSLA Workshop on Revival of
Dynamic Languages, vol. 1. Citeseer (2004)

7. Brant, J., Steimann, F.: Refactoring tools are trustworthy enough
and trust must be earned. IEEE Softw. 32(6), 80–83 (2015).
http://dx.doi.org/10.1109/MS.2015.145

8. Daniel, B., Dig, D., Garcia, K., Marinov, D.: Automated testing of refactoring
engines. In: Crnkovic, I., Bertolino, A. (eds.) Proceedings of the 6th Joint Meeting
of the European Software Engineering Conference and the ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, 2007, Dubrovnik,
Croatia, 3–7 September 2007, pp. 185–194. ACM (2007). http://doi.acm.org/10.
1145/1287624.1287651

9. Dietl, W., Dietzel, S., Ernst, M.D., Muslu, K., Schiller, T.W.: Building and using
pluggable type-checkers. In: Taylor, R.N., Gall, H.C., Medvidovic, N. (eds.) Pro-
ceedings of the 33rd International Conference on Software Engineering, ICSE 2011,
Waikiki, Honolulu, HI, USA, 21–28 May 2011, pp. 681–690. ACM (2011). http://
doi.acm.org/10.1145/1985793.1985889

10. Dig, D., Marrero, J., Ernst, M.D.: Refactoring sequential Java code for concurrency
via concurrent libraries. In: 31st International Conference on Software Engineering,
ICSE 2009, 16–24 May 2009, Vancouver, Canada, Proceedings, pp. 397–407. IEEE
(2009). http://dx.doi.org/10.1109/ICSE.2009.5070539

11. Foster, S.R., Griswold, W.G., Lerner, S.: Witchdoctor: IDE support for real-time
auto-completion of refactorings. In: Glinz et al. [16], pp. 222–232. http://dx.doi.
org/10.1109/ICSE.2012.6227191

12. Fowler, M.: Refactoring - Improving the Design of Existing Code. Addison Wesley
Object Technology Series. Addison-Wesley, Boston (1999)

13. Garrido, A., Meseguer, J.: Formal specification and verification of Java refactorings.
In: Proceedings of the Sixth IEEE International Workshop on Source Code Analysis
and Manipulation, SCAM 2006, pp. 165–174 (2006). http://dx.doi.org/10.1109/
SCAM.2006.16

14. Ge, X., DuBose, Q.L., Murphy-Hill, E.R.: Reconciling manual and automatic refac-
toring. In: Glinz et al. [16], pp. 211–221. http://dx.doi.org/10.1109/ICSE.2012.
6227192

15. Gligoric, M., Behrang, F., Li, Y., Overbey, J., Hafiz, M., Marinov, D.: Systematic
testing of refactoring engines on real software projects. In: Castagna, G. (ed.)
ECOOP 2013. LNCS, vol. 7920, pp. 629–653. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-39038-8 26

16. Glinz, M., Murphy, G.C., Pezzè, M. (eds.): 34th International Conference on Soft-
ware Engineering, ICSE 2012, 2–9 June 2012, Zurich, Switzerland. IEEE (2012)

http://dx.doi.org/10.1007/11813040_33
http://dx.doi.org/10.1016/j.scico.2004.03.003
http://dx.doi.org/10.1109/MS.2015.145
http://doi.acm.org/10.1145/1287624.1287651
http://doi.acm.org/10.1145/1287624.1287651
http://doi.acm.org/10.1145/1985793.1985889
http://doi.acm.org/10.1145/1985793.1985889
http://dx.doi.org/10.1109/ICSE.2009.5070539
http://dx.doi.org/10.1109/ICSE.2012.6227191
http://dx.doi.org/10.1109/ICSE.2012.6227191
http://dx.doi.org/10.1109/SCAM.2006.16
http://dx.doi.org/10.1109/SCAM.2006.16
http://dx.doi.org/10.1109/ICSE.2012.6227192
http://dx.doi.org/10.1109/ICSE.2012.6227192
http://dx.doi.org/10.1007/978-3-642-39038-8_26
http://dx.doi.org/10.1007/978-3-642-39038-8_26


212 F. Steimann

17. González, C.A., Büttner, F., Clarisó, R., Cabot, J.: EMFtoCSP: a tool for the
lightweight verification of EMF models. In: Gnesi, S., Gruner, S., Plat, N., Rumpe,
B. (eds.) Proceedings of the First International Workshop on Formal Methods in
Software Engineering - Rigorous and Agile Approaches, FormSERA 2012, Zurich,
Switzerland, 2 June 2012, pp. 44–50. IEEE (2012). http://dx.doi.org/10.1109/
FormSERA.2012.6229788

18. Griswold, W.G.: Program restructuring as an aid to software maintenance. Ph.D.
thesis, University of Washington (1991)

19. Griswold, W.G., Notkin, D.: Automated assistance for program restruc-
turing. ACM Trans. Softw. Eng. Methodol. 2(3), 228–269 (1993).
http://doi.acm.org/10.1145/152388.152389

20. Grothoff, C., Palsberg, J., Vitek, J.: Encapsulating objects with confined types.
ACM Trans. Program. Lang. Syst. 29(6) (2007). http://doi.acm.org/10.1145/
1286821.1286823

21. Heuzeroth, D., Aßmann, U., Trifu, M., Kuttruff, V.: The COMPOST, COMPASS,
Inject/J and RECODER tool suite for invasive software composition: invasive com-
position with compass aspect-oriented connectors. In: Lämmel, R., Saraiva, J.,
Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 357–377. Springer, Heidelberg
(2006). doi:10.1007/11877028 14

22. Hottelier, T., Bod́ık, R.: Synthesis of layout engines from relational constraints.
In: Aldrich, J., Eugster, P. (eds.) Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, 25–
30 October 2015, pp. 74–88. ACM (2015). http://doi.acm.org/10.1145/2814270.
2814291

23. Huang, S.S., Zook, D., Smaragdakis, Y.: Statically safe program gen-
eration with safegen. Sci. Comput. Program. 76(5), 376–391 (2011).
http://dx.doi.org/10.1016/j.scico.2008.09.007

24. Kegel, H., Steimann, F.: Systematically refactoring inheritance to delegation in
Java. In: Schäfer, W., Dwyer, M.B., Gruhn, V. (eds.) 30th International Conference
on Software Engineering (ICSE 2008), Leipzig, Germany, 10–18 May 2008, pp. 431–
440. ACM (2008). http://doi.acm.org/10.1145/1368088.1368147

25. Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theory 2(2), 127–
145 (1968). http://dx.doi.org/10.1007/BF01692511

26. Lämmel, R.: Towards generic refactoring. In: Fischer, B., Visser, E. (eds.) Proceed-
ings of the 2002 ACM SIGPLAN Workshop on Rule-Based Programming, Pitts-
burgh, Pennsylvania, USA, 2002, pp. 15–28. ACM (2002). http://doi.acm.org/10.
1145/570186.570188

27. Ludwig, A., Heuzeroth, D.: Metaprogramming in the large. In: Butler, G., Jarz-
abek, S. (eds.) GCSE 2000. LNCS, vol. 2177, pp. 179–188. Springer, Heidelberg
(2001). doi:10.1007/3-540-44815-2 13

28. Murphy-Hill, E.R., Parnin, C., Black, A.P.: How we refactor, and
how we know it. IEEE Trans. Softw. Eng. 38(1), 5–18 (2012).
http://doi.ieeecomputersociety.org/10.1109/TSE.2011.41

29. Opdyke, W.F.: Refactoring object-oriented frameworks. Ph.D. thesis, University
of Illinois at Urbana-Champaign (1992)

30. Opdyke, W.F., Johnson, R.E.: Creating abstract superclasses by refactoring. In:
Kwasny, S.C., Buck, J.F. (eds.) Proceedings of the ACM 21th Conference on Com-
puter Science, CSC 1993, Indianapolis, IN, USA, 16–18 February 1993, pp. 66–73.
ACM (1993). http://doi.acm.org/10.1145/170791.170804

http://dx.doi.org/10.1109/FormSERA.2012.6229788
http://dx.doi.org/10.1109/FormSERA.2012.6229788
http://doi.acm.org/10.1145/152388.152389
http://doi.acm.org/10.1145/1286821.1286823
http://doi.acm.org/10.1145/1286821.1286823
http://dx.doi.org/10.1007/11877028_14
http://doi.acm.org/10.1145/2814270.2814291
http://doi.acm.org/10.1145/2814270.2814291
http://dx.doi.org/10.1016/j.scico.2008.09.007
http://doi.acm.org/10.1145/1368088.1368147
http://dx.doi.org/10.1007/BF01692511
http://doi.acm.org/10.1145/570186.570188
http://doi.acm.org/10.1145/570186.570188
http://dx.doi.org/10.1007/3-540-44815-2_13
http://doi.ieeecomputersociety.org/10.1109/TSE.2011.41
http://doi.acm.org/10.1145/170791.170804


Refactoring Tools and Their Kin 213

31. Overbye, J.L.: A toolkit for constructing refactoring engines. Ph.D. thesis, Univer-
sity of Illinois at Urbana-Champaign (2011)

32. Palsberg, J., Schwartzbach, M.I.: Object-Oriented Type Systems. Wiley Profes-
sional Computing. Wiley, Chichester (1994)

33. Raychev, V., Schäfer, M., Sridharan, M., Vechev, M.T.: Refactoring with synthesis.
In: Hosking, A.L., Eugster, P.T., Lopes, C.V. (eds.) Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis,
IN, USA, 26–31 October 2013, pp. 339–354. ACM (2013). http://doi.acm.org/10.
1145/2509136.2509544

34. Roberts, D., Brant, J., Johnson, R.E.: A refactoring tool for Smalltalk. TAPOS
3(4), 253–263 (1997)

35. Roberts, D.B.: Practical analysis for refactoring. Ph.D. thesis, University of Illinois
at Urbana-Champaign (1999)

36. Schäfer, M.: Specification, implementation and verification of refactorings. Ph.D.
thesis, Oxford University Computing Laboratory (2010)

37. Schäfer, M., de Moor, O.: Of gnats and dragons: sources of complexity in imple-
menting refactorings. In: Workshop on Refactoring Tools (WRT) (2009)

38. Schäfer, M., Thies, A., Steimann, F., Tip, F.: A comprehensive approach to naming
and accessibility in refactoring Java programs. IEEE Trans. Softw. Eng. 38(6),
1233–1257 (2012). http://doi.ieeecomputersociety.org/10.1109/TSE.2012.13

39. Soares, G., Gheyi, R., Massoni, T.: Automated behavioral testing of
refactoring engines. IEEE Trans. Softw. Eng. 39(2), 147–162 (2013).
http://dx.doi.org/10.1109/TSE.2012.19

40. Soares, G., Mongiovi, M., Gheyi, R.: Identifying overly strong conditions in refac-
toring implementations. In: IEEE 27th International Conference on Software Main-
tenance, ICSM 2011, Williamsburg, VA, USA, 25–30 September 2011, pp. 173–182.
IEEE Computer Society (2011). http://dx.doi.org/10.1109/ICSM.2011.6080784

41. Steimann, F.: From well-formedness to meaning preservation: model
refactoring for almost free. Softw. Syst. Model. 14(1), 307–320 (2015).
http://dx.doi.org/10.1007/s10270-013-0314-z

42. Steimann, F., Hagemann, J., Ulke, B.: Computing repair alternatives for mal-
formed programs using constraint attribute grammars. In: Visser, E., Smarag-
dakis, Y. (eds.) Proceedings of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands, 30 October – 4
November 2016, pp. 711–730. ACM (2016). http://doi.acm.org/10.1145/2983990.
2984007

43. Steimann, F., von Pilgrim, J.: Constraint-based refactoring with foresight. In:
Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 535–559. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31057-7 24

44. Steimann, F., von Pilgrim, J.: Refactorings without names. In: Goedicke, M., Men-
zies, T., Saeki, M. (eds.) IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2012, Essen, Germany, 3–7 September 2012, pp. 290–293.
ACM (2012). http://doi.acm.org/10.1145/2351676.2351726

45. Steimann, F., Thies, A.: From public to private to absent: refactoring Java

programs under constrained accessibility. In: Drossopoulou, S. (ed.) ECOOP
2009. LNCS, vol. 5653, pp. 419–443. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03013-0 19

http://doi.acm.org/10.1145/2509136.2509544
http://doi.acm.org/10.1145/2509136.2509544
http://doi.ieeecomputersociety.org/10.1109/TSE.2012.13
http://dx.doi.org/10.1109/TSE.2012.19
http://dx.doi.org/10.1109/ICSM.2011.6080784
http://dx.doi.org/10.1007/s10270-013-0314-z
http://doi.acm.org/10.1145/2983990.2984007
http://doi.acm.org/10.1145/2983990.2984007
http://dx.doi.org/10.1007/978-3-642-31057-7_24
http://doi.acm.org/10.1145/2351676.2351726
http://dx.doi.org/10.1007/978-3-642-03013-0_19
http://dx.doi.org/10.1007/978-3-642-03013-0_19


214 F. Steimann

46. Steimann, F., Ulke, B.: Generic model assist. In: Moreira, A., Schätz, B., Gray,
J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107, pp. 18–34.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-41533-3 2

47. Sultana, N., Thompson, S.J.: Mechanical verification of refactorings. In: Glück,
R., de Moor, O. (eds.) Proceedings of the 2008 ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-based Program Manipulation, PEPM 2008, San
Francisco, California, USA, 7–8 January 2008, pp. 51–60. ACM (2008). http://doi.
acm.org/10.1145/1328408.1328417

48. Tip, F., Fuhrer, R.M., Kiezun, A., Ernst, M.D., Balaban, I., Sutter, B.D.: Refac-
toring using type constraints. ACM Trans. Program. Lang. Syst. 33(3), 9 (2011).
http://doi.acm.org/10.1145/1961204.1961205

49. Tip, F., Kiezun, A., Bäumer, D.: Refactoring for generalization using type con-
straints. In: Crocker, R., Jr., G.L.S. (eds.) Proceedings of the 2003 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and Applica-
tions, OOPSLA 2003, 26–30 October 2003, Anaheim, CA, USA, pp. 13–26. ACM
(2003). http://doi.acm.org/10.1145/949305.949308

50. Vakilian, M., Chen, N., Negara, S., Rajkumar, B.A., Bailey, B.P., Johnson, R.E.:
Use, disuse, and misuse of automated refactorings. In: Glinz et al. [16], pp. 233–243.
http://dx.doi.org/10.1109/ICSE.2012.6227190

http://dx.doi.org/10.1007/978-3-642-41533-3_2
http://doi.acm.org/10.1145/1328408.1328417
http://doi.acm.org/10.1145/1328408.1328417
http://doi.acm.org/10.1145/1961204.1961205
http://doi.acm.org/10.1145/949305.949308
http://dx.doi.org/10.1109/ICSE.2012.6227190

	Refactoring Tools and Their Kin
	1 Origins of Refactoring
	2 The Current Refactoring Crisis
	2.1 The Elusiveness of Design Improvement
	2.2 The Elusiveness of Behaviour Preservation
	2.3 Ignoring the Unresolved Correctness Problem
	2.4 The Easy Way Out: Liberation from Academic Chains

	3 The Generic Nature of Refactoring Tools
	3.1 Generic Pre- and Postconditions
	3.2 Specific Pre- and Postconditions
	3.3 Generic Refactoring Invariants

	4 Why Building Refactoring Tools Is Hard: A Case Study
	4.1 The Precondition Surprise
	4.2 The Mechanics Adventure
	4.3 The Tool User's Dream: Relaxed Preconditions
	4.4 The Tool Builder's Nightmare: Evolving Languages

	5 Current Refactoring Practice and Research Challenge
	6 Principled Approaches to Implementing Refactoring Tools
	6.1 Dependency Preservation
	6.2 Language Extensions and Restrictions
	6.3 Constraint-Based Refactoring

	7 Refactoring Résumé: Three Competing Camps
	8 Static Checking
	9 Name Binding
	10 Automatic Repair
	11 Code Completion
	12 Controlled Change
	13 Mutation Testing
	14 Code Generation
	References


