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Abstract. ABE (Attribute-based encryption) is capable of fine-grained
data encryption, and thus has been studied for secure cloud data shar-
ing. While a number of efforts have been dedicated to resolving the
user revocation issue in the multi-user cloud data sharing setting, the
trust assumption placed upon the cloud server is still high. In this work,
we identify the necessity of achieving verifiability of cloud decryption in
the proxy-assisted user revocation approach, so as to weaken the trust
assumption on the cloud server. We further formulate a model for the
system, and present two independent constructions following the for-
mulation. Experimental results show the practicality of our proposed
schemes.
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1 Introduction

Cloud storage services, e.g., Dropbox, Microsoft’s Azure storage, and Amazon’s
S3, provides a wonderful platform for data sharing, enabling users to upload and
store their data remotely in the cloud storage as well as to authorize other users to
access and download the remotely stored data in real-time [9,11,12]. It is widely
recognized that the user data need to be encrypted in order to safeguard against
the cloud provider [16,19]. Under this rationale, there have been a number of
work proposing to use attribute-based encryption (ABE) [6,14,15,25] to achieve
fine-grained access control over cloud data [18,20,27–29,33,34]. Indeed, ABE is
a one-to-many public key encryption mechanism in nature, capable of enforc-
ing fine-grained encryption/decryption. In particular, ABE can be categorized
into key policy ABE (KP-ABE) and ciphertext policy ABE (CP-ABE). KP-ABE
allows data to be encrypted with a set of attributes, and each decryption key is
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associated with an access policy (defined in terms of attributes); while CP-ABE
is complementary – data are encrypted under an access policy, and a decryp-
tion key is associated with a set of attributes. In either type, a ciphertext can be
decrypted using the corresponding decryption key only if the attributes satisfy the
access policy.

In the setting of encrypting cloud data with ABE, user revocation has been a
primary challenge to be resolved. One approach proposed in e.g., [2,24,26,34], is
key-update based revocation, where secret key materials are updated to exclude
revoked users. This method suffers from poor scalability as all data must be
re-encrypted and all remaining legitimate user keys are to be updated or re-
distributed, in which case the cost is tremendously high when the data volume
or the number of users scales up.

Another approach is to augment ABE schemes with revocation support by
incorporating revocation related mechanisms. The ABE schemes in [6,14] pro-
pose to include an “expiry time” attribute in the attribute set such that each
decryption key is valid only for a limited period of time. The shortcoming of
this method is that it does not allow for immediate revocation. In [22], Ostro-
vsky et. al. propose to include negative constrains in the access policy, such that
a revocation of certain attributes amounts to negating these attributes. This
mechanism is not scalable in revoking individual users, as each encryption has
to involve information of all revoked users each being treated as a distinctive
attribute.

More recently, yet another approach was introduced in [29,33] which imple-
ments proxy-assisted user revocation, where the cloud server acts as a proxy, and
each user’s decryption capability is split and represented by two parts, namely:
one part is held by the cloud server (i.e., proxy key), and the other part is held
by the user. A decryption requires a partial decryption by the cloud server (i.e.,
cloud decryption or proxy decryption, interchangeably), and a final decryption
by the user. For the purpose of user revocation, the cloud server will simply erase
the cloud-held proxy key associated with the user to be revoked. This method
is particularly promising, as it instantly nullifies a user’s decryption privilege
while without affecting the legitimate users, requiring no key update or data
re-encryption.

While the proxy-assisted user revocation approach demonstrated enormous
potential in attaining revocable attribute-based encryption of cloud data, it has
been observed in [32] that the constructions in [29,33] are based on a strong
assumption – the cloud server is trusted so as not to disclose the revoked users’
proxy keys to the revoked users. Considering the possible compromise of the
cloud server or the probable existence of the unscrupulous insiders within the
cloud service provider, [32] managed to weaken the strong assumption by extend-
ing the proxy-assisted with an “all-or-nothing” strategy, such that the cloud
server itself is equipped with a public/private key pair and the private key is
required in the partial decryption by the cloud server. This means that it is of
no use to a revoked user if the cloud server only reveals to the user his/her proxy
key, but not the cloud’s private key.
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Our Contributions. Going along the line of reducing trust upon the cloud
server in the proxy-assisted user revocation approach as in [32], we further
observe the necessity to provide verifiability of cloud decryption to the authorized
users, i.e., to prevent the cloud server from maliciously manipulating encrypted
cloud data. Manipulating cloud data by the cloud server could indeed occur, con-
sidering the case that some encrypted data records get crashed/lost on the cloud
storage, and the cloud server surreptitiously generates bogus records to fool the
data owners. We are thus motivated to achieve verifiability of cloud decryption
whereby an authorized user is equipped to check the legitimacy of the result of
the partial decryption by the cloud server, leading to a further reduction of the
trust assumption upon the cloud server. In particular, our contributions are as
follows:

• We give a formulation of revocable cloud data sharing with verifiable cloud
decryption.

• We present two concrete schemes under the formulation, by extending and
progressing the scheme in [32].

• We implement our schemes for experiments, in order to test the practicality
of the proposed schemes.

Organization. The remainder of the paper is as follows. Section 2 presents a
formulation of the system, followed by two concrete schemes in Sect. 3. Exper-
imental results are given in Sect. 4, and Sect. 5 reviews related works. Section 6
contains concluding remarks.

2 Description and Formulation of the System

2.1 System Setting

As in the proxy-assisted user revocation approach [29,32,33], we consider a cloud
storage system consisting of a data owner, a group of data consumers/users, and
a cloud server, depicted in Fig. 1. The data owner needs to store its data records
at the cloud server, and authorizes the group of users to access the stored data.
An example of the entities would be such that the data owner is a company and
the data users are the company’s employees. Without fully trusting the cloud
server, the data owner encrypts its data to ensure the privacy of the data against
the cloud server. Data encryption further serves as a measure of built-in fine-
grained access control, in such a way that the users have different decryption
capabilities based on a pre-defined need-to-know basis. Particular to this system
using ABE for data encryption, a user is specified by a set of attributes, e.g.,
according to the user’s functional role in the company, and the user’s decryption
capability is thus attached to her attributes. The data owner encrypts each data
record under an access control policy (specified in terms of attributes), such that
a user can successfully decrypt the encrypted record, if and only if the user’s
attributes satisfy the access policy. As the system works in a multi-user data
sharing setting, user revocation is a critical requirement, e.g. when a user leaves
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the company. User revocation allows the data owner to revoke a user’s ability
to decrypt the data (rather than prohibiting the user’s access to the encrypted
data).

Fig. 1. An overview of the cloud data sharing system

Proxy-assisted User Revocation. To facilitate an understanding of the ensu-
ing formulation of the system, we briefly recall the proxy-assisted user revocation
approach [29,32,33]. Specifically, a user’s decryption capability is rendered by
a proxy key and the user’s private key, where the former is held by the cloud
server and the latter is possessed by the user. To manage users’ proxy keys, the
cloud server maintains a list, with each entry containing a user’s identity and
her corresponding proxy key. When the user requests a data record, the cloud
server executes a proxy decryption operation over the data with the user’s proxy
key (also the cloud’s own private key in [32]), generating an intermediate value.
The intermediate value is then returned to the user, who gets the plaintext data
by a user decryption operation using her private key. As such, to revoke a user
it is as simple as to erase the user’s proxy key from the cloud server.

2.2 Formulation of the System

As our subsequent constructions will progress the scheme in [32], our formulation
extends the model thereof as well by adding in the property of verifiability of
cloud/proxy decryption. As such, we first review the formulation in [32], followed
by an exposition on the differences incurred due to the addition of verifiability of
cloud decryption. Hereafter, familiarity with “attribute” and “access structure”
(or “access policy” or “access tree”) as introduced in [6,14] is assumed.

Let Λ denote the universe of attributes. A revocable cloud data encryption
system specified in [32] comprises the following algorithms:

Setup(1κ) → (params,msk): Taking as input a security parameter 1κ, the
data owner executes the algorithm to set up public parameters params, and
a master secret key msk. As usual, params is assumed implicit in the input
of the below algorithms.
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UKGen(u) → (pku, sku): The user key generation algorithm takes as input a
user identity, u, and outputs a pair of public/private keys, (pku, sku), for u.
Note that (pku, sku) is a pair for a standard public key cryptosystem.

PxKGen(msk, pkCS, pku,Au) → PxKu: The proxy key generation algorithm
takes as input msk, the cloud server’s public key pkCS, a user u’s public
key pku, and the user’s attributes, Au ⊂ Λ, and outputs a proxy key PxKu

for u.
Encrypt(m, T ) → c: The encryption algorithm takes as input a message m, and

an access tree T which specifies an access policy, and outputs a ciphertext c.
PxDec(skCS, PxKu, c) → v: The proxy/cloud decryption algorithm takes as

input the cloud server’s private key skCS, a user’s proxy key PxKu, and a
ciphertex, c, and outputs an intermediate value v.

UDec(sku, v) → m: The user decryption algorithm takes as input a user’s
private key sku, and an intermediate value v, and outputs a plaintext message
m.

Revoke(u,LPxK) → L′
PxK : Taking as input a user identity u, and the Proxy

Key list LPxK , the algorithm revokes u’s decryption capability by updating
and outputting an updated Proxy Key list, L′

PxK .

Upon the model, three security requirements, i.e., Data Privacy Against
Cloud Server, Data Privacy Against Users and User Revocation Support are
specified in [32]. To avoid repetition, we skip the details.

Necessity of Verifiability of Cloud Decryption. In the above formalization,
the cloud server is assumed to manage the data owner’s data intact and honestly
perform the PxDec algorithm. [17,23] studied verifiable outsourced decryption
of ABE (where its setting is quite similar to ours if the above PxDec algorithm is
understood to be the outsourced decryption of ABE) and identified the necessity
of ensuring verifiability of outsourced decryption. We notice that their arguments
for the verifiability of outsourced decryption apply to our setting of cloud storage
as well, and thus the trust assumption upon the cloud server in the above turns
out be a bit strong. This motivates us to investigate providing verifiability to
cloud/proxy decryption, reducing the trust assumption on the cloud server.

We further observe that the level of verifiability obtained in [17,23] does not
suffice in our setting, and in particular [17,23] did not consider the case where the
cloud server who is entrusted for the outsourced decryption to use a bogus but
valid ciphertext (in place of the genuine ciphertext) in the outsourced decryp-
tion. Note that in [17,23] everyone (including the cloud server) can generate
valid ciphertexts (it is public key encryption anyway) and thus the outsourced
decryption of these bogus ciphertexts is still valid to the data users; but these
ciphertexts are not legitimate, as they are not generated by the data owner. In
our setting of cloud data sharing, a higher level of verifiability is desired – it
should not only ensure the verifiability as in [17,23], but also enable the data
users to verify the legitimacy of the result of cloud decryption. Our idea of for-
malizing this property is to involve the data owner’s master secret key in the
Encrypt algorithm.
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System Formalization with Verifiability of Cloud Decryption. For
brevity, we only highlight the differences that are needed to be imposed to the
formulation reviewed above due to the addition of Verifiability of Cloud Decryp-
tion. In particular, the changes are restricted to syntax of the Encrypt and UDec
algorithms, while other algorithms remain unchanged. Note that in our setting,
the verifiability of cloud decryption is checked in the UDec algorithm, rather
than the PxDec algorithm.

Encrypt(msk,m, T ) → c: The encryption algorithm takes as input the master
secret key msk, message m and an access tree T , and outputs a ciphertext c.

UDec(sku, v) → {m,⊥}: The user decryption algorithm takes as input a user’s
private key sku, and an intermediate value v, and outputs a plaintext m or ⊥.

More specifically, the Encrypt algorithm additionally takes as input the mas-
ter secret key, and the UDec algorithm could output ⊥ if the verifiability check
fails.

Besides the tree security requirements, Data Privacy Against Cloud Server,
Data Privacy Against Users and User Revocation Support as defined in [32], one
more security requirement, Verifiability of Cloud Decryption is to be imposed on
the system.

Definition 1 [Verifiability of Cloud Decryption]. A revocable fine-grained cloud
data encryption system satisfies verifiability of cloud decryption if for any PPT
adversary, the probability of the adversary winning the following game is ε(κ),
where ε(κ) is a negligible function with respect to the security parameter κ.

Setup. The challenger runs the Setup algorithm to establish (params,msk),
and returns params to the adversary.
Phase 1. The adversary makes a number of data encryption queries, submit-
ting a message mi and an associated access tree for each query. The challenger
executes the Encrypt algorithm and returns the corresponding ciphertexts to
the adversary.
Challenge. The adversary submits an attributes set A∗ and a public key
pk∗

u (the corresponding private key is sk∗
u), and the challenger returns the

corresponding PxK∗
u generated by executing the PxKGen algorithm.

Phase 2. Phase 1 is repeated.
Output. The adversary outputs a ciphertext c∗. The adversary wins the game
if m = UDec(sk∗

u,PxDec(PxK∗
u, c∗)) �= ⊥ and m �= mi for any data encryption

query mi the adversary has asked in Phase 1 and 2.

The formalization essentially captures the requirement that no one (including
the cloud server) except the data owner can generate genuine encrypted data
records.

3 Our Constructions

As argued above, the level of verifiability obtained in [17,23] does not suffice in
our setting, and thus the constructions thereof is not directly applicable to us. In



Towards Revocable Fine-Grained Encryption of Cloud Data 133

this section, we present two independent schemes by working upon the scheme
in [32] to additionally satisfy Definition 1, giving rise to “authenticated” revo-
cable fine-grained cloud data encryption. The two constructions will take the
scheme in [32] as a building block, which is listed in the Appendix for ease of
reference.

3.1 Scheme One

In practice, the actual data encryption in [32] would follow the common practice
of key encapsulation + data encapsulation (KEM/DEM), namely, an encryption
of a data record m is of the form (Encrypt(k, T ),SE.Enck(m)), where SE is a
symmetric key block cipher and k is a random key for SE. We also present our
two scheme to be working in the mode of KEM/DEM.

This first scheme is inspired by [23] to use randomness extractor as a building
block to compensate for the loss of entropy of the data encryption key.

Preliminaries. Let s ∈R S denote an element s randomly chosen from a set
S. For a discrete distribution X over X , the min-entropy of X is defined to be
H∞(X) = − log(maxx∈X Pr[X = x]). The average min-entropy of X conditioned
on Y (over Y) is defined as H̃∞(X|Y ) = − log Ey∈Y(2−H∞(X|Y =y)). We recall
a lemma in [10] that relates to the security of our scheme: Let X, Y and Z
be random variables. If Y has at most 2r possible values, then H̃∞(X|(Y,Z)) ≥
H̃∞(X|Z) − r.

Random Extractor: An efficient function Ext: X × {0, 1} → Y is an average-
case (k, ε)-strong extractor if for all random variables (X,Z) such that
H̃∞(X|(Y,Z)) ≥ k, we have (Z, s,Ext(X, s)) ≈ε (Z, s, y ←R Y), where s ←R

{0, 1}t, and ≈ε denotes the statistical distance upper-bounding by ε.
In [10], it is shown that any family of pairwise independent hash functions H :

{� : X → Y} is an average-case (H̃∞(X|Z), ε)-strong extractor if H̃∞(X|Z) ≥
log |Y| + 2 log(1/ε).

Construction Details. Following the paradigm of constructing “authenti-
cated” public key encryption, e.g., [1], we reasonably assume the data owner
to possess a pair of signing key/verification key (sk, vk) for a digital signa-
ture scheme Sig. Under the KEM/DEM paradigm, the encryption of a message
m would be (Encrypt(msk, k, T ),SE.Enck(m)). We cannot simply let the data
owner sign SE.Enck(m) with sk to provide verifiability of cloud decryption to
the data users. This is because the PxDec algorithm may well output a bogus
k′. Thus the legitimacy of k must be verified as well to the data users. To this
end, we follow the idea of [23]: H0(k) is published as the verification data for
k, where H0 is a cryptographic hash function. Since H0(k) reveals at most |H0|
bits of k, a random extractor � is then applied to k to generate a good random
key k̃ for SE. Let ε� is the upper-bound parameter of the extractor �, then the
parameters must satisfy 0 ≤ |k̃| ≤ |k| − |H0| − 2 log(1/ε�).
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We are ready to show how to extend the scheme in [32] (see Appendix),
denoted as Basic, to achieve revocable fine-grained cloud data encryption with
verifiability of cloud decryption. To avoid repetition, we only show the algorithms
to be modified and highlight the extra operations to be added in each of such
algorithms.

Setup(1κ): On input a security parameter 1κ, the algorithm does the following:
• execute (params′,msk′) = Basic.Setup(1κ);
• select a cryptographic hash functions, H0 : GT → {0, 1}�0 , where GT is

contained in params′;
• select a semantically secure block cipher SE = (SE.Enc, SE.Dec) with key

space {0, 1}�SE ;
• select an extractor � : G0 → {0, 1}�SE . Note that let ε� be the upper-

bound parameter of the extractor �, then it must satisfy 0 ≤ �SE ≤
|GT | − �0 − 2 log(1/ε�)1

• determine a digital signature scheme Sig = (Sig.Sign, Sig.Verify), and
select a signing/verification key pair (sk, vk) for Sig;

• set params = params′ ∪ {H0,SE, �,Sig, vk} and msk = msk′ ∪ {sk}.
Encrypt(msk,m, T ): Taking as input the master secret key msk, a message m,

and an access tree T , the algorithm works as follows:
• select a random k ∈R GT and compute c′ = Basic.Encrypt(k, T );
• compute k̃ = �(k), and C̃ = SE.Enck̃(m);
• compute σ = (H0(k),Sig.Signsk(H0(k)||C̃)), where sk is contained in

msk;
• set the ciphertext c = (c′, C̃, σ).

PxDec(skCS, PxKu, c = (c′, C̃, σ)): The algorithm works as follows:
• Compute v′ = Basic.PxDec(skCS, PxKu, c′), and set the intermediate

value v = (v′, C̃, σ).
UDec(sku, v = (v′, C̃, σ)): The algorithm works as follows:

• if Sig.Verifyvk(σ) = 0, then output ⊥ and halt;
• compute k = Basic.UDec(sku, v′), and test whether H0(k) equals the cor-

responding value in σ. If not, then output ⊥ and halt;
• compute k̃ = �(k) and m = SE.Deck̃(C̃).

Security Analysis. We show that the proposed scheme satisfies the security
requirements specified in Sect. 2.

Theorem 1. The above scheme achieves Data Privacy Against Cloud Server,
Data Privacy Against Users, and User Revocation Support, respectively, as
specified in [32].

1 Let’s assume to achieve 80-bit security: GT could be instantiated such that |GT | =
512, �0 = 160, ε� = 2−80, then |GT | − �0 − 2 log(1/ε�) = 512 − 160 − 160 = 192.
It is thus more than enough to enable 160-bit block cipher, which can work in an
appropriate mode to encrypt message of an arbitrary length.
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Intuitively, compared to the scheme [32], the only place that reveals more
information in terms of data privacy with respect to both the cloud server and
the users is H0(k). However, this leakage has already been accommodated by the
use of the random extractor �. Hence data privacy of the scheme is warranted.
Formally, we can prove Theorem 1 by a series of hybrid arguments, following the
rationale in [23], but we omit the details.

Theorem 2. The above scheme achieves Verifiability of Cloud Decryption as
specified in Definition 1, given that Sig is universally unforgeable, and H0 is
collisions resistant.

Proof. Recall that c∗ = (c′∗, C̃∗, σ∗ = (H∗
0 (k),Sig.Signsk(H∗

0 (k)||C̃∗)) and the
corresponding v∗ = (v′∗, C̃∗, σ∗) = PxDec(skCS, PxK∗

u, c∗). If the adversary wins
the game, then it means that σ∗ is a valid signature, but SE.Dec�(k)(C̃∗) �= mi

for any asked query mi. From this, two cases can be derived:

1. (C̃∗, σ∗) is the reply of one of the data encryption queries the adversary has
ever asked, or

2. (C̃∗, σ∗) is not the reply of any data encryption queries the adversary has
ever asked.

For case 1, it means that the k∗ decrypted from v∗ is such that k∗ �= k, but
H0(k∗) = H0(k), in which case a collision of H0 is found.

For case 2, it means that (C̃∗, σ∗) is a forged signature of the underlying
digital signature scheme Sig.

The details are tedious and standard, thus omitted. This completes the proof.
�

3.2 Scheme Two

The crust of the first scheme is the explicit protection of the authenticity of
the data encryption key k used in the symmetric key cipher, resulting in H0(k)
which leaks information on k; to compensate for the leakage, random extractor �

is employed. In this section, we present an alternative scheme which is logically
simpler. The rationale is to avoid the explicit protection of k (which has led to
H0(k) and the use of random extractor � in the first scheme); instead, authen-
ticated encryption (e.g., [5,7]) keyed by k is used for data encryption, replacing
the symmetric key cipher used in the first scheme.

A Review of Authenticated Encryption. Authenticated encryption [5,7] is
a well-established symmetric key cryptosystem, simultaneously providing con-
fidentiality and integrity protection of the encrypted messages. Specifically, an
authenticated encryption scheme is AE = (AE.Enc,AE.Dec), where Enc and Dec
are encryption algorithm and decryption algorithm, respectively. Compared to
symmetric key block cipher, authenticated encryption not only protects the con-
fidentiality/privacy of the messages, but also the integrity of the messages. Con-
cretely, AE.Dec could output ⊥ if the ciphertext to be decrypted is invalid. This
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property is often naturally formalized as integrity of ciphertexts, i.e., AE.Dec
checks the integrity of a ciphertext and gives up if the ciphertext is not legiti-
mate/authenticated.

The formalization of confidentiality/privacy protection of authenticated
encryption is identical to block cipher, so we do not repeat. For a better under-
standing of integrity protection, below is a formulation of integrity protection of
ciphertexts of authenticated encryption.

1. The challenger chooses a key k for AE.
2. The adversary makes a number of encryption queries, submitting messages

m1,m2, · · · . For each query mi, the challenger computes ci = AE.Enck(mi)
and returns ci to the adversary.

3. Finally, the adversary outputs a ciphertext c∗. The adversary wins if
AE.Deck(c∗) �= ⊥ and c∗ is not any ci returned by the challenger in
step 2.

Integrity protection of ciphertexts stipulates that the probability of the adver-
sary wins is negligible.

NOTE. We point out that implicit in this formulation is that the adversary
cannot make a valid ciphertext under a key k still valid under a different key
k′. To see this, in a strive to output a valid v∗ under k, the adversary itself can
anyway generate a different k′ and in turn generate as many valid ciphertexts
under k′ as it wishes to. So an alternative formalism would be such that at the
end, the adversary outputs a key k∗ �= k and a ciphertext c∗ ∈ {c1, c2, · · · }, and
the adversary wins if AE.Deck∗(c∗) �= ⊥.

Construction Details. Based on the above discussions, encryption of a mes-
sage m is of the form (Encrypt(msk, k, T ),AE.Enck(m)), where AE is an authenti-
cated encryption scheme. This time, the data owner can simply sign AE.Enck(m)
to attain verification of cloud decryption. Since k is directly used to key-up AE,
there is no extra leakage of k.

The presentation of the scheme is still in the form of extending Basic, as in
the earlier first scheme.

Setup(1κ): The algorithm does the following:
• execute (params′,msk′) = Basic.Setup(1κ);
• select an authenticated encryption scheme AE = (AE.Enc, AE.Dec) with

key space {0, 1}�AE ;
• determine a digital signature scheme Sig = (Sig.Sign, Sig.Verify), and

select a signing/verification key pair (sk, vk) for Sig;
• set params = params′ ∪ {AE,Sig, vk} and msk = msk′ ∪ {sk}.

Encrypt(msk,m, T ): The algorithm works as follows:
• select a random k ∈R {0, 1}�AE and compute c′ = Basic.Encrypt(k, T );
• compute C̃ = AE.Enck(m);
• compute σ = Sig.Signsk(C̃));
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• set the ciphertext c = (c′, C̃, σ).
PxDec(skCS, PxKu, c = (c′, C̃, σ)): The algorithm works as follows:

• Compute v′ = Basic.PxDec(skCS, PxKu, c′), and set the intermediate
value v = (v′, C̃, σ).

UDec(sku, v = (v′, C̃, σ)): The algorithm works as follows:
• if Sig.Verifyvk(σ) = 0, then output ⊥ and halt;
• compute k = Basic.UDec(sku, v′);
• compute m = AE.Deck(C̃).

Security Analysis. Since authenticated encryption and block cipher is the
same in terms of data privacy protection, we only show that this scheme achieves
verifiability of cloud decryption.

Theorem 3. The scheme shown above achieves Verifiability of Cloud Decryp-
tion as specified in Definition 1, given that Sig is universally unforgeable and AE
satisfies integrity protection of ciphertexts.

Proof. Recall that c∗ = (c′∗, C̃∗, σ∗ = Sig.Signsk(C̃∗)). If the adversary wins the
game, then it means that σ∗ is a valid signature upon C̃∗, but SE.Deck(C̃∗) �= mi

for any asked query mi, where k = Basic.UDec(sk∗
u, c′∗). From this, two cases

can be derived:

1. (C̃∗, σ∗) is the reply of one of the data encryption queries the adversary has
ever asked, or

2. (C̃∗, σ∗) is not the reply of any data encryption queries the adversary has
ever asked.

For case 1, it means that k = Basic.UDec(sk∗
u, c′∗) is not the same as the

original key used to generate C̃∗. This directly contradicts integrity of ciphertexts
of authenticated encryption (see the alternative formalism discussed earlier).

For case 2, it means that (C̃∗, σ∗) is a forged signature of the underlying
digital signature scheme Sig.

Due to limited space, we omit the details of the proof which will be provided
in the full version of this paper. This completes the proof. �

4 Experimental Results

To evaluate the performance of our proposed schemes, we did extensive experi-
ments. The implementation is based on the Pairing-Based Cryptography (PBC)
library (https://crypto.stanford.edu/pbc/). The bilinear map e : G0 ×G0 → GT

in our schemes is instantiated with a 512-bit supersingular curve of embedding
degree, with |p| = 160 (p is the prime order of G0 and GT ). Other cryptographic
primitives used include RSA digital signature, AES for block cipher, AES-GCM
for authenticated encryption. In addition, SHA256 is used in place of a random
extractor.

https://crypto.stanford.edu/pbc/
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Experimental Results. In practical cloud storage services, the performance at
the cloud server’s side and at the user’s side is of concern, which directly relates to
the PxDec algorithm and the UDec algorithm in our schemes. Our experiments
thus mainly gauge the computational performance of these two algorithms in
our schemes. Since our schemes are built upon Basic, the scheme in [32], we also
implemented Basic as the baseline for comparison.

Performance of Proxy Decryption. We run the PxDec algorithm on a desktop
PC with 2.66 GHz Intel Core2Duo and 3.25 GB RAM. The PxDec algorithm
is fed a set of all-AND access trees, i.e., an access tree with all non-leaf being
“AND” gates. The reason is that an access policy in the form of all-AND tree is
expected to impose the heaviest workload in the PxDec algorithm, compared to
the access tree with the same number of leaf nodes. The experimental results are
shown in Fig. 2, which demonstrates timing (i.e., computational performance of
the three schemes) with respect to the number of attributes (leaf nodes). The
experimental results are the average of repeating each experiment for 100 times.

Fig. 2. Computational performance of PxDec of three schemes

As evident from the Figure, (1) the three schemes have identical performance
in proxy decryption. This is apparent from the construction of our two schemes;
(2) the experimental results show that the PxDec algorithm performs linear
computations with respect to the number of attributes; (3) it takes about 1.2 s
to perform the PxDec algorithm in case of 100 attributes. Such a performance
should be acceptable for practical applications.

Performance of User Decryption. We run the UDec algorithm of the three
schemes on a smartphone configured with a 1.2 GHz CPU and 2 GB RAM. The
experimental results are depicted in Fig. 3, which indicates that on average, it
takes about 50 ms to decrypt a ciphertext in the Basic scheme, and about 110 ms
by our two schemes. The extra time taken in our schemes is mainly for digital
signature verification. These results suggest that it is indeed affordable for a
resource constraint device to perform the UDec algorithm.
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Fig. 3. Computational performance of user decryption

5 Related Work

Cloud Data Encryption with ABE. A large number of cloud data encryption
schemes have been proposed in the literature. Of particular relevance to us are
those utilizing ABE. As an one-to-many encryption scheme, ABE is required to
provide user revocation support if deployed for encryption of cloud data.

Yu et al. [34] suggested adopting KP-ABE to achieve fine-grained data shar-
ing. To support user revocation, they proposed using the proxy re-encryption
(PRE) technique [3] to update users’ decryption keys. In this approach, the bulk
of the computationally expensive operations (e.g. re-generation of encrypted
cloud data due to user revocation) are performed by the cloud server. Although
a cloud server generally has significantly more computational resources, each
user’s quota is cost based. Similar limitation is observed in the scheme proposed
by Wang et al. [26]. Sahai et al. [24] proposed an attribute revocable CP-ABE
scheme, using ciphertext delegation and the piecewise property of private keys.
In particular, the system proceeds in epochs, and in each epoch, the attribute
authority generates a set of update keys (as the other piece of each private key)
according to the revocation list. All the ciphertexts are then re-encrypted with a
new access policy (the principal access policy remains unchanged, but the extra
access policy changes in each epoch). A similar attribute revocation method has
also been explored in the multi-authority setting [30,31], where users’ attributes
are issued by multiple independent attribute authorities. Similar to other ABE
schemes with built-in attribute revocation support (such as expiry time and
negative attributes), these schemes face the challenge of transforming attribute
revocation into efficient revocation for individual users. For example, the lim-
itation in the scheme proposed by Liu et al. [21] that uses the “expiry time”
mechanism for user revocation is the inability to support real-time or immedi-
ate revocation. To sum up, the overhead introduced by these schemes in the
re-generation of encrypted data and key update is large, although some have
managed to push much of the overhead for the cloud server to perform.

Yang et al. [29] were the first to propose proxy-assisted user revocation in
using ABE for secure cloud data sharing. The proxy-assisted user revocation
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approach actually implements decryption capability splitting, where a data user’s
complete decryption capability is split into two parts – one is taken on by the
cloud server as a proxy while the other is taken on by the user herself. Subsequent
work such as [32,33] improved over [29] by reducing the strong trust assumption
upon the cloud server. Our work in this paper goes along this same line of
research, progressing [29,32,33] by further weakening the trust assumption.

We point out that “decryption capability splitting” contrasts with “decryp-
tion key splitting” to be reviewed shortly, and the two differ mainly in the way
keys are generated: in the latter, the key shares held by the proxy and the user
are generated by a single trusted entity; as a result, it suffers from the issue of
key escrow, from the user’s point of view. In contrast, “decryption capability
splitting” does not have the key escrow problem, as a user can generate her
own key and does need not disclose it to others. It is expected that “decryption
capability splitting” would be advantageous over “decryption key splitting” in
many applications.

Key-Split Cryptography. Boneh et al. [4] proposed “mediated RSA” to split
the private key of RSA into two shares, such that one share is delegated to an
online “mediator” (mediator is a similar concept as proxy in our setting) and
the other is given to the user. As RSA decryption and signing require the col-
laboration of both parties, the user’s cryptographic capabilities are immediately
revoked if the mediator does not cooperate. Recently, Chen et al. [8] presented
a mediated CP-ABE scheme, where the mediator’s key is issued over a set of
attributes. The scheme in [13] and the follow-up work [17,23] can also be viewed
as mediated ABE, although the purpose of these work is to outsource the costly
ABE decryption to the mediator, instead of for immediate revocation. As a final
note, our work in this paper is inspired by [17,23] to provide verifiability of cloud
decryption, but we end up desiring and attaining a higher level of verifiability.

6 Conclusions

In this paper, we went further along the line of reducing trust assumption upon
the cloud server in the proxy-assisted user revocation approach. In particular,
we first identified the necessity of achieving verifiability of cloud decryption, and
then gave a formulation of the system; then two concrete schemes were presented;
experiments were conducted and promising experimental results were obtained.
Our work in this paper walked revocable fine-grained cloud data sharing a step
further towards practical deployment.

Acknowledgments. Joseph K. Liu is supported by the Science and Technology Inno-
vation Projects of Shenzhen (GJHZ20160226202520268). Xinyi Huang is supported by
the Distinguished Young Scholars Fund of Fujian (2016J06013) and the State Key
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Appendix: A Review of the Scheme in [32]

The details of the scheme in [32] are as follows.
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Setup(1κ): On input a security parameter 1κ, the algorithm:
– determines a bilinear map, e : G0 × G0 → GT , where G0 and GT are

cyclic groups of κ-bit prime order p;
– selects g, which is a generator of G0;
– selects a cryptographic hash function, H : {0, 1}∗ → G0;
– picks α, β ∈R Zp, and sets params = (e,G0, g, h = gβ ,Gα = e(g, g)α) and

msk = (α, β).
UKGen(u): On input a user identity u, the algorithm chooses xu ∈R Zp, and

sets (pku = gxu , sku = xu). It can be seen that (pku, sku) is a standard
ElGamal type key pair. The cloud server also uses this algorithm to generate
a key pair, (pkCS = gxCS , skCS = xCS).

PxKGen(msk, pkCS, pku,Au): On input msk = (α, β), pkCS = gxCS , pku = gxu

and Au, the algorithm chooses r1, r2, ri ∈R Zp,∀i ∈ Au, and sets

PxKu = (k = (pkr1
CSpkα

ugr2)
1
β , k′ = gr1 ,∀i ∈ Au : {ki1 = gr2H(i)ri , ki2 = gri})

Encrypt(m, T ): Taking as input a message, m, and T , the algorithm works
as follows: Firstly, it selects a polynomial, qn, for each node, n, (including
the leaf nodes) in T . These polynomials are chosen in a top-down manner
starting from the root node, rt. For each node n, set the degree dn of the
polynomial qn to be dn = tn − 1, where tn is the threshold value of node n.
Starting with the root node, rt, the algorithm chooses an s ∈R Zp, and sets
qrt(0) = s. It next selects drt other random points to define qrt completely.
For any other node n, it sets qn(0) = qparent(n)(index(n)), and chooses dn

other points to define qn. Let L be the set of leaf nodes in T . The algorithm
sets the ciphertext, c, as

c = (T , C = m · Gs
α, C ′ = hs, C ′′ = gs,

∀� ∈ L : {C�1 = gql(0), C�2 = H(att(�))ql(0)})

PxDec(skCS, PxKu, c): On input skCS = xCS, and PxKu = (k, k′,∀i ∈
Au : {ki1, ki2}) associating with a set of attributes, Au, and a ciphertext,
c = (T , C, C ′, C ′′,∀� ∈ L : {C�1, C�2}), the algorithm outputs an interme-
diate value, v if T (Au) = 1, and ⊥ otherwise. Specifically, the algorithm is
recursive. We first define an algorithm, DecNdn(PxKu, c), on a node, n, of
T . If node, n, is a leaf node, we let z = att(n) and define as follows: z /∈ Au,
DecNdn(PxKu, c) = ⊥; otherwise DecNdn(PxKu, c) = Fn, where

Fn =
e(kz1, Cn1)
e(kz2, Cn2)

=
e(gr2H(z)rz , gqn(0))
e(grz ,H(z)qn(0))

= e(g, g)r2.qn(0) (1)

We now consider the recursive case when n is a non-leaf node. The algorithm,
DecNdn(PxKu, c), then works as follows. For each child node ch of n, it calls
DecNdch(PxKu, c), and stores the output as Fch. Let Sn be an arbitrary tn-
sized set of child nodes, ch, such that Fch �= ⊥. If such a set does not exist,
then the node is not satisfied and DecNdn(PxKu, c) = Fn = ⊥. Otherwise,
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we let the Lagrange coefficient, �i,S for i ∈ Zp, and a set S of elements in
Zp be �i,S(x) =

∏
j∈S,j �=i

x−j
i−j . We next compute

Fn =
∏

ch∈Sn

F
�i,S′

n
(0)

ch ,where i=index(ch),
S′

n={index(ch):ch∈Sn}

=
∏

ch∈Sn

(e(g, g)r2.qch(0))�i,S′
n
(0)

=
∏

ch∈Sn

(e(g, g)r2.qparent(ch)(index(ch)))�i,S′
n
(0)

=
∏

ch∈Sn

(e(g, g)r2.qn(i))�i,S′
n
(0)

= e(g, g)r2.qn(0) (2)

In this way, DecNdrt(PxKu, c) for the root node rt can be computed if
Trt(Au) = 1, where DecNdrt(PxKu, c) = e(g, g)r2.qrt(0) = e(g, g)r2.s = Frt.
Next, the proxy decryption algorithm computes

e(k,C ′)
e(k′, C ′′)xCSFrt

=
e((pkr1

CSpkα
ugr2)

1
β , hs)

e(gr1 , gs)xCSe(g, g)r2.s
= e(pku, g)s.α.

Finally, it sets v = (C = m · Gs
α, e(pku, g)s.α).

UDec(sku, v): On input a user private key, sku = xu, and an intermediate
value, v = (C = m·Gs

α, e(pku, g)s.α), the user decryption algorithm computes
m·Gs

α

(e(pku,g)s.α)x
−1
u

= m.

Revoke(u,LPxK): On input a user identity, u, and the Proxy Key list, LPxK ,
the user revoking algorithm deletes the entry corresponding to u from the
list – i.e. L′

PxK = LPxK\{u, PxKu}. In a real world application, an interface
should be provided to the data owner for the data owner to perform the
update in real-time.
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