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Abstract. We propose adaptively secure attribute-based encryption
(ABE) schemes for boolean formulas over large universe attributes from
the decisional linear (DLIN) assumption, which allow attribute reuse in
an available formula without the previously employed redundant multi-
ple encoding technique. Thus our KP-(resp. CP-)ABE has non-redundant
ciphertexts (resp. secret keys). For achieving the results, we develop a
new encoding method for access policy matrix for ABE, by decoupling
linear secret sharing (LSS) into its matrix and randomness, and par-
tially randomizing the LSS shares in simulation. The new techniques are
of independent interest and we expect it will find another application
than ABE.

Keywords: Attribute-based encryption · Multi-use attributes in
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1 Introduction

1.1 Backgrounds

Attribute-based encryption (ABE) introduced by Sahai and Waters [21] presents
an advanced vision for encryption and provides more flexible and fine-grained
access control in sharing and distributing sensitive data than traditional sym-
metric and public-key encryption as well as recent identity-based encryption. In
ABE systems, either one of the parameters for encryption and secret key is a
set of attributes, and the other is an access policy (structure) over a universe of
attributes, e.g., a secret key for a user is associated with an access policy and
a ciphertext is associated with a set of attributes. A secret key with a policy
can decrypt a ciphertext associated with a set of attributes, iff the attribute set
satisfies the policy. If the access policy is for a secret key (resp. for encryption),
it is called key-policy ABE (KP-ABE) (resp. ciphertext-policy ABE (CP-ABE)).

All the existing practical ABE schemes have been constructed by (bilinear)
pairing groups, and the largest class of relations supported by the ABE schemes
is (non-monotone or arithmetic) span programs [3,9,12,13] (or (non-monotone)
span programs with inner-product relations [18]). While general polynomial
size circuits are supported [8,11] recently, they are much less efficient than the
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pairing-based ABE schemes and non-practical when the relations are limited to
span programs. Hereafter, we focus on pairing-based ABE with span program
access structures. An example of such span program predicate over attributes is
given by (Institute = Univ. A) AND ((Department = Biology) OR (Position =
Professor)), which we simply denote by X1 ∧ (X2 ∨ X3) where X1 := Univ. A,
X2 := Biology and X3 := Professor. We define attribute-multiplicity k for a pred-
icate as the maximum number of appearances of attribute variables, i.e., k = 2
for predicate (X1 ∧ X2) ∨ (X1 ∧ X3) ∨ (X2 ∧ X4) since X1 and X2 appear twice
and others appear just once. While adaptive security for ABE is the standard,
realistic and desirable security notion, previously, either efficiency or security
is sacrificed for achieving the “multi-use” property in adaptively secure ABE.
See adaptively secure ABE in Tables 1 and 2. Our aim is to achieve short (i.e.,
non-redundant) ciphertexts (resp. keys) in adaptively secure multi-use KP-ABE
(resp. CP-ABE) from static assumptions.

In previous static assumption based schemes [9,14,18], for allowing reuse of
attributes in a policy in the adaptive security setting, for example, in KP-ABE,
multiple ciphertext components whose number is linear in the product kn′ of
the number n′ of attributes for the ciphertext and the attribute multiplicity k
for available policies are necessary, which leads to a very long ciphertext. More
precisely, the same information representing attribute set Γ is duplicated over
multiple ciphertext components depending linearly on the multiplicity k. (See
OT10 and CGW15 KP-ABE schemes in Table 1.)

Lewko-Waters [16] first constructed adaptively-secure CP-ABE and KP-ABE
schemes for span programs with allowing reuse of attributes in a policy without
the above redundant multiple encoding technique. While Lewko-Waters’s (CP-)
ABE scheme ([16] and subsequent work [2,3] in Table 1) shows an interesting
approach to allowing reuse of attributes in a policy, the security is proven
only based on q-type assumptions with q the maximum number of attribute-
multiplicities in access structures. However, the assumptions (and also the asso-
ciated schemes) suffered a special attack which was presented by Cheon [10] at
Eurocrypt 2006, which leads to inefficiency. Consequently, it is very desirable
that the q-type assumption should be replaced by a static (non-q type) assump-
tion with keeping compact ciphertexts.

Moreover, we note that there exist no multi-use CP-ABE scheme with short,
i.e., non-redundant, secret keys even in the selective security setting from a static
assumption (Table 2). Now, an important open question is:

Is there an adaptively secure KP-(resp. CP-)ABE scheme for span pro-
grams from a static (standard) assumption whose ciphertext (resp. secret
key) size is not linear in kn′ for the attribute number n′ in ciphertext
(resp. secret key) and the maximum attribute-multiplicity k of available
policies ?

This work makes a significant step for addressing the problem.
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1.2 Our Results

We obtain the following results.

Table 1. Comparison with the existing pairing-based multi-use KP-ABE schemes,
where PK, SK, CT stand for public key, secret key, ciphertext, respectively, and n′

represents the number of attributes in CT, n the max of n′, � the number of rows in
access matrix in SK, r the max of the number of columns in access matrix in SK, k
(the max of) the “attribute-multiplicity” of an access matrix in SK, respectively. The
fourth row describes the warm-up scheme in Sect. 5.3.

Security Assump. PK size SK size CT size

GPSW06 [12] Selective DBDH O(n)|G| O(�)|G| O(n′)|G|
Tak14 [22] Semi-adaptive DLIN O(n)|G| O(�n)|G| O(1)|G|
(Warm-up) O(�)|G| O(n)|G|
OT10 [18] Adaptive DLIN O(n)|G| O(�)|G| O(kn′)|G|
LW12 [16] �-Parallel BDHE (+α) O(n)|G| O(�)|G| O(n′)|G|
Att15 [2,3] EDHE3 & 4 para-

metrized by n, �, r

O(n)|G| O(�n)|G| O(1)|G|

CGW15 [9] s-Lin for ∀s O(n) |G| for

s = 2

O(�)|G| for

s = 2

O(kn′)|G|
for s = 2

Proposed Adaptive DLIN O(n + r)|G| O(�)|G| O(n + r)|G|

– We propose an adaptively secure multi-use KP-ABE construction for boolean
formulas (or span programs) over large universe attribute matching predicates
with non-redundant ciphertexts from the DLIN assumption (in Sect. 5). The
size of a ciphertext for attributes is not linear in the product kn′ of the number
of ciphertext attributes n′ and the attribute multiplicity k in available access
structures, but has only a linear dependence on some size parameter r of
access structures. For comparison with existing ones, refer to Table 1.

– We also propose an adaptively secure multi-use CP-ABE construction for the
same access structures as the above KP-ABE with short (non-redundant)
keys from DLIN. The CP-ABE scheme is obtained from the above KP-ABE
by the natural dual conversion, in particular, the key size is not linear in kn′

for the number n′ of key attributes and the attribute multiplicity k in available
access structures. We note that it is the first multi-use CP-ABE construction
with short keys from a static assumption even including the selective secure
schemes (Table 2). For the concrete scheme, see Appendix B.

We used two techniques, decoupling of linear secret sharing (LSS) into two (dual)
components, i.e., span program matrix and randomness, and the partial random-
ization of LSS. A new sparse matrix machinery (Sect. 4) underlies them. The
techniques can be extended naturally to arithmetic span programs (ASP), then,
our results can be extended to ASP based ABE proposed by Ishai and Wee [13].
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Table 2. Comparison with the existing pairing-based multi-use CP-ABE schemes,
where PK, SK, CT stand for public key, secret key, ciphertext, respectively, and n′

represents the number of attributes in SK, n the max of n′, � the number of rows in
access matrix in CT, r the max of the number of columns in access matrix in CT, k
(the max of) the “attribute-multiplicity” of an access matrix in CT, respectively.

Security Assump. PK size SK size CT size

Wat11 [25] Scheme 2 Selective ν-BDHE O(n)|G| O(kn′)|G| O(�)|G|
Wat11 [25] Scheme 3 DBDH O(nr)|G| O(kn′ + r)|G| O(�2)|G|
AHY15 [4]a Parameterized O((n�)2λ)|G| O((n�)4λ2)|G| O(1)|G|
OT10 [18] Adaptive DLIN O(n)|G| O(kn′)|G| O(�)|G|
LW12 [16] �-Parallel BDHE (+α) O(n)|G| O(n′)|G| O(�)|G|
CGW15 [9] s-Lin for ∀s O(n) |G| for

s = 2

O(kn′)|G| for

s = 2

O(�)|G| for

s = 2

Proposed Adaptive DLIN O(n + r)|G| O(n + r)|G| O(�)|G|
a Since k ≤ �, the size of secret keys of the AHY15 scheme [4] is very large compared
with others. Also, in [1], a selective-secure constant-size ciphertext, but, large secret
keys CP-ABE scheme was proposed, recently

1.3 Key Techniques

Our results are related to KP- and CP-ABEs, however, for simplicity, we mainly
treat on KP-ABE. According to a new framework introduced by Attrapadung,
doubly selective security (i.e., selective and co-selective) leads to achieving adap-
tive one. Since selective security is easily obtained in KP-ABE, we should con-
centrate on achieving co-selectively secure KP-ABE below.

Based on the technique in [5,22], we have DLIN-based, multi-use and semi-
adaptively secure KP-ABE with short ciphertext size. We give the underlying
scheme in Sect. 5.3 (as a warm-up) and extend it to our adaptive one. Here,
access structure S is given by � × r matrix M and each row Mi ∈ F

r
q of the

matrix is associated to an attribute value by a map ρ, i.e., labeled with attributes
vi := ρ(i). An attribute set Γ satisfies S iff �1 ∈ span〈Mi | vi ∈ Γ 〉 for a fixed
special (all-one) vector �1. First, to achieve short ciphertexts in the underlying
KP-ABE, attributes Γ := {xj}j=1,...,n′ are encoded in an n-dimensional (with
n ≥ n′ +1) vector �y := (y1, . . . , yn) such that

∑n−1
j=0 yn−jz

j = zn−1−n′ ∏n′

j=1(z −
xj). Each (non-zero) attribute value vi (for i = 1, . . . , �) associated with a row
of access structure matrix M (in S) is encoded as �vi := (vn−1

i , . . . , vi, 1), so
�y · �vi = vn−1−n′

i

∏n′

j=1(vi − xj), and the value of inner product is equal to zero
if and only if vi = xj for some j, i.e., vi ∈ Γ . Here, the relation between S

and Γ is determined by the multiple inner product values �y · �vi for one vector �y
which is equivalent to Γ . As in previous works (e.g., [5,22]), a ciphertext element
c1 is encoded with ω�y (for random ω), and key elements k∗

i are encoded with
�vi and shared secret values Mi · �f (i = 1, . . . , �) for a central secret �1 · �f with
uniformly random �f , respectively. We change the encoding method for our new
proof method as indicated below.
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Fig. 1. Decoupling of LSS matrix from randomness and partial LSS randomization in
semi-functional parts. Here, (M = (Mi), ρ) is an access structure, uniformly random
�f

U← F
r
q , ξ, ξ′, ξ′

i, θ
′
i

U← Fq, �y := (y1, . . . , yn) such that
∑n−1

j=0 yn−jz
j = zn−1−n′∏n′

j=1(z−
xj), and �vi := (vn−1

i , . . . , vi, 1) for vi := ρ(i).

Basic Idea: Decoupling of LSS Matrix from Randomness. Secret keys
in all previous KP-ABE schemes contain shared secret values s0 := �1 · �f and
si := Mi · �f , which means that randomness �f is fixed at the key generation phase.
Moreover, since, for pre-challenge queried keys (in simulation), the challenge �y
is not yet revealed to the challenger, i.e., simulator, at the query phase, we have
never had a co-selective simulation strategy for achieving compact ciphertexts
together with multi-use leaf attributes vi in the queried access matrix.

For addressing the problem, we change an encoding method of LSS (Fig. 1).
First, we decouple LSS encoding into LSS matrix and randomness, and random-
ness is encoded on the ciphertext side. (Then, the simulation of the randomness
is delayed until the challenge phase.) Precisely, in the secret key, concatenated
Vi := (θi�vi, ξMi) ∈ F

n+r
q are encoded in the i-th component k∗

i for i = 1, .., �
with random θi, ξ. We note that the key component k∗

i has no randomness for
LSS (except for connecting randomness ξ), instead, LSS matrix M := (Mi)�

i=1 is
directly encoded in {k∗

i }. In ciphertext, Y := (ω�y, �f) ∈ F
n+r
q is encoded. Hence,

in decryption, inner-product values are

Y · Vi = ωθi(�y · �vi) + ξMi · �f = ωθi(�y · �vi) + ξsi for i = 1, . . . , �,

therefore, if �y · �vi = 0, secret share ξsi for central secret ξs0 is obtained, and if
�y · �vi �= 0, si is totally hidden from the decryptor since θi is freshly random.

New Proof Techniques: Partial LSS Randomization in Simulation and
New Underlying Lemma. At the top level of strategy of the security proof,
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we follow the dual system encryption methodology proposed by Waters [24]. The
above change of encoding enables the simulator to simulate the randomness of
LSS depending on both of the h-th queried access structure S := (M,ρ) and
attributes Γ := {xt} (equivalently, vector �y). We use the simulated randomness
�ah, which is not fully random in F

r
q , but satisfies Mi · �ah = 0 if vi ∈ Γ and

�1·�ah �= 0. Such a vector exists since Γ does not satisfy S, and it has been used for
security in previous works, for example, in [12]. In ciphertext, the concatenated
vector Y ′ := (ω′�y,�ah) ∈ F

n+r
q is encoded in the semi-functional space. And, in

the semi-functional space of the h-th queried key, V ′
i := (θ′

i�vi, ξ
′Mi) ∈ F

n+r
q are

encoded in the i-th component k∗
i for i = 1, .., �. Since V ′

i is independent of Γ ,
it can be simulated for the pre-challenge key. Then,

Y ′ · V ′
i = ω′θ′

i(�y · �vi) + ξ′Mi · �ah =
{

0 if �y · �vi = 0,
ω′θ′

i(�y · �vi) + ξ′Mi · �ah if �y · �vi �= 0,

for i = 1, . . . , �. Here, if �y · �vi �= 0, Y ′ · V ′
i is uniformly random and independent

from other variables since θ′
i are freshly random. Let V ′′

i := (θ′
i�vi, ξ

′
iMi) ∈ F

n+r
q

with uniformly random ξ′
i which are independent of each other for i = 1, . . . , �.

Y ′ · V ′′
i = ω′θ′

i(�y · �vi) + ξ′
iMi · �ah =

{
0 if �y · �vi = 0,
ω′θ′

i(�y · �vi) + ξ′
iMi · �ah if �y · �vi �= 0,

for i = 1, . . . , �. Again, if �y·�vi �= 0, Y ′·V ′′
i is uniformly random and independent of

other variables. That is, Y ′·V ′
i and Y ′·V ′′

i are equivalently distributed. Therefore,
we can conceptually change V ′

i which contains variable ξ′ to V ′′
i with no ξ′

by using the pairwise independence lemma (Lemma 3) as in the previous dual
system encryption proofs. We stress that V ′′

i are also independent of the challenge
attributes Γ , and then can be used in the pre-challenge key simulation. In this
way, we can sequentially eliminate the randomness ξ′ from all key components, k∗

i

for i = 1, .., �, except for k∗
0, and finally, ξ′ remains only in the central element k∗

0,
and the inner-product of the semi-functional parts of k∗

0 and the corresponding
ciphertext component is uniformly random value ξ′�1 ·�ah since �1 ·�ah �= 0. So, the
proof proceeds successfully (See Sect. 5.4 for proof outline).

We extend the sparse matrix technique on dual pairing vector spaces (DPVS)
developed in [19,22] for achieving compact ciphertexts. Refer to Sect. 5.1 for the
details.

1.4 Notations

When A is a random variable or distribution, y
R← A denotes that y is randomly

selected from A according to its distribution. When A is a set, y
U← A denotes

that y is uniformly selected from A. We denote the finite field of order q by
Fq, and Fq \ {0} by F

×
q . A vector symbol denotes a vector representation over

Fq, e.g., �y denotes (y1, . . . , yn) ∈ F
n
q . For two vectors �y = (y1, . . . , yn) and �v =

(v1, . . . , vn), �y ·�v denotes the inner-product
∑n

i=1 yivi. XT denotes the transpose
of matrix X. A bold face letter denotes an element of vector space V, e.g.,



New Proof Techniques for DLIN-Based Adaptively Secure 91

x ∈ V. When bi ∈ V (i = 1, . . . , n), span〈b1, . . . , bn〉 ⊆ V (resp. span〈�x1, . . . , �xn〉)
denotes the subspace generated by b1, . . . , bn (resp. �x1, . . . , �xn). For bases B :=
(b1, . . . , bN ) and B

∗ := (b∗
1, . . . , b

∗
N ), (x1, . . . , xN )B :=

∑N
i=1 xibi and (y1, . . . ,

yN )B∗ :=
∑N

i=1 yib
∗
i . �ej denotes the canonical basis vector (

j−1
︷ ︸︸ ︷
0 · · · 0, 1,

n+r−j
︷ ︸︸ ︷
0 · · · 0) ∈

F
n+r
q for positive integers n and r. GL(n,Fq) denotes the general linear group

of degree n over Fq.

2 Dual Pairing Vector Spaces (DPVS)

In this paper, for simplicity of description, we will present the proposed schemes
on the symmetric version of dual pairing vector spaces (DPVS) [17] constructed
using symmetric bilinear pairing groups given in Definition 1. Owing to the
abstraction of DPVS, the presentation and the security proof of the proposed
schemes are essentially the same as those on the asymmetric version of DPVS.

Definition 1. “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple
of a prime q, cyclic additive group G and multiplicative group GT of order q,
G �= 0 ∈ G, and a polynomial-time computable nondegenerate bilinear pairing
e : G × G → GT i.e., e(sG, tG) = e(G,G)st and e(G,G) �= 1. Let Gbpg be an
algorithm that takes input 1λ and outputs a description of bilinear pairing groups
(q,G,GT , G, e) with security parameter λ.

“Dual pairing vector spaces (DPVS)” of dimension N by a direct product of
symmetric pairing groups (q,G,GT , G, e) are given by prime q, N -dimensional

vector space V :=

N
︷ ︸︸ ︷
G × · · · × G over Fq, cyclic group GT of order q, and pairing

e : V×V → GT . The pairing is defined by e(x,y) :=
∏N

i=1 e(Gi,Hi) ∈ GT where
x := (G1, . . . , GN ) ∈ V and y := (H1, . . . , HN ) ∈ V. This is nondegenerate
bilinear i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then x = 0.

3 Definition of KP-ABE

3.1 Span Programs and Access Structures

Definition 2 (Span Programs [6] and Access Structures). U (⊂ {0, 1}∗)
is a universe, a set of attributes, which is expressed by a value of attribute, i.e.,
v ∈ F

×
q (:= Fq \ {0}). A span program over Fq is a labeled matrix S := (M,ρ)

where M is a (� × r) matrix over Fq and ρ is a labeling of the rows of M by
literals from {v, v′, . . .} (every row is labeled by one literal), i.e., ρ : {1, . . . , �} →
{v, v′, . . .}. A span program accepts or rejects an input by the following criterion.
Let Γ be a set of attributes, i.e., Γ := {xj}1≤j≤n′ (xj ∈ F

×
q ). The span program

S accepts Γ if and only if �1 ∈ span〈(Mi)ρ(i)=vi∈Γ 〉, i.e., some linear combination
of the rows (Mi)ρ(i)∈Γ gives the all one vector �1.



92 K. Takashima

No row Mi (i = 1, . . . , �) of the matrix M is �0.
We now construct a secret-sharing scheme for a (monotone) span program.

Definition 3. A secret-sharing scheme for span program S := (M,ρ) is:

1. Let M be �×r matrix. Let column vector �f := (f1, . . . , fr)
U← F

r
q . Then, s0 :=

�1 · �f =
∑r

k=1 fk is the secret to be shared, and �s := (s1, . . . , s�)T := M · �fT is
the � shares of the secret s0 and the share si belongs to ρ(i).

2. If span program S := (M,ρ) accepts Γ , i.e., �1 ∈ span〈(Mi)ρ(i)∈Γ 〉, there exist
constants {αi ∈ Fq | i ∈ I} such that I ⊆ {i ∈ {1, . . . , �} | ρ(i) ∈ Γ} and∑

i∈I αisi = s0. Furthermore, these constants {αi} can be computed in time
polynomial in the size of the matrix M .

3.2 Key-Policy Attribute-Based Encryption (KP-ABE)

In key-policy attribute-based encryption (KP-ABE), encryption (resp. a secret
key) is associated with attributes Γ (resp. access structure S). Relation R for
KP-ABE is defined as R(S, Γ ) = 1 iff access structure S accepts Γ .

Definition 4 (Key-Policy Attribute-Based Encryption: KP-ABE). A
key-policy attribute-based encryption scheme consists of probabilistic polynomial-
time algorithms Setup,KeyGen,Enc and Dec. They are given as follows:

Setup takes as input security parameter 1λ, a bound n on the number of attributes
per ciphertext and a bound r on the number of columns of an access matrix
in a secret key. It outputs public parameters pk and master secret key sk.

KeyGen takes as input public parameters pk, master secret key sk, and access
structure S := (M,ρ). It outputs a corresponding secret key skS.

Enc takes as input public parameters pk, message m in some associated message
space msg, and a set of attributes, Γ := {xj}n′

j=1. It outputs a ciphertext ctΓ .
Dec takes as input public parameters pk, secret key skS for access structure S,

and ciphertext ctΓ that was encrypted under a set of attributes Γ . It outputs
either m′ ∈ msg or the distinguished symbol ⊥.

A KP-ABE scheme should have the correctness: for all (pk, sk) R← Setup(1λ, n, r),
all access structures S, all secret keys skS

R← KeyGen(pk, sk,S), all messages m,
all attribute sets Γ , all ciphertexts ctΓ

R← Enc(pk,m, Γ ), it holds that m =
Dec(pk, skS, ctΓ ) if S accepts Γ . Otherwise, it holds with negligible probability.

Definition 5 (Adaptive Security). The model for defining the adaptively
payload-hiding security of KP-ABE under chosen plaintext attack is given by the
following game:

Setup. In the adaptive security, the challenger runs the setup,
(pk, sk) R← Setup(1λ, n, r), and gives public parameters pk to the adversary.
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Phase 1. The adversary is allowed to adaptively issue a polynomial num-
ber of key queries, S, to the challenger. The challenger gives skS

R←
KeyGen(pk, sk,S) to the adversary.

Challenge. The adversary submits two messages m(0),m(1), and a challenge
attribute set, Γ , provided that no S queried to the challenger in Phase 1
accepts Γ . The challenger flips a coin b

U← {0, 1}, and computes ct
(b)
Γ

R←
Enc(pk,m(b), Γ ). It gives ct

(b)
Γ to the adversary.

Phase 2. Phase 1 is repeated with the restriction that no queried S accepts
challenge Γ .

Guess. The adversary outputs a guess b′ of b, and wins if b′ = b.

The advantage of adversary A in the adaptive game is defined as AdvKP-ABEA (λ) :=
Pr[A wins]−1/2 for any λ. A KP-ABE scheme is adaptively payload-hiding secure
if all poly-time adversaries have at most a negligible advantage in the game.

Remark 1. The challenge Γ is declared by the adversary just before Phase 1
(resp. before Setup) in the semi-adaptive (resp. selective) game, and the corre-
sponding security notions are defined in the similar manner as above.

4 Special Matrix Subgroups

Let n ≥ 2 and ñ := n + r. Lemmas 1, 2 and 3 are key lemmas for the security
proof for our KP- and CP-ABE schemes.

We start by a motivational argument for introducing our new sparse matrix
technique. Previous sparse matrices in DPVS [19,22] are given by the form
whose diagonal element except for the first one is the same denoted by u. (For
the sparse-matrix DPVS and modified pairwise independence lemma, refer to
Sect. 5.4 in [20].) For achieving our information theoretical change from (Y ′, V ′

i )
to (Y ′, V ′′

i ) described in Sect. 1.3, we use one more randomness in diagonal ele-
ments, i.e., two random u1 and u2, as given in Eq. (1). More precisely, random
U

U← H(n, r,Fq) acts on F
n+r
q = F

n
q × F

r
q by using different scalars u1 and u2

on the first Fn
q and the second F

r
q respectively. The new sparse matrix action is

the key fact for proving Lemma 3. For positive integers n and r, let

H(n, r,Fq) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u′
1

u′
2 u1

...
. . .

u′
n u1

u′
n+1 u2

...
. . .

u′
n+r u2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u1, u2, u
′
l ∈ Fq

for l = 1, . . . , n + r,
a blank element
in the matrix
denotes 0 ∈ Fq

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (1)

and H(n, r,Fq)× := H(n, r,Fq) ∩ GL(ñ,Fq).
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Lemma 1. H(n, r,Fq)× is a subgroup of GL(ñ,Fq), where ñ := n + r.

Lemma 1 is directly verified from the definition of groups. ��
Let

Xi,j :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ′
i,j,1

μ′
i,j,2 μi,j,1

...
. . .

μ′
i,j,n μi,j,1

μ′
i,j,n+1 μi,j,2

...
. . .

μ′
i,j,n+r μi,j,2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ H(n, r,Fq)
for i, j =
1, . . . , 5

(2)

and using Xi,j , we define

L(5, n, r,Fq) :=

⎧
⎪⎨

⎪⎩
X :=

⎛

⎜
⎝

X1,1 · · · X1,5

...
...

X5,1 · · · X5,5

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

Xi,j ∈ H(n, r,Fq)
for i, j = 1, . . . , 5

⎫
⎪⎬

⎪⎭

⋂
GL(5ñ,Fq).(3)

Lemma 2. L(5, n, r,Fq) is a subgroup of GL(5ñ,Fq).

Lemma 2 is given in a similar manner as Lemma 2 in the full version of [19].
For the proof, see the full version of this paper [23]. Next is a generalization of
Lemma 6 in [19].

Lemma 3. Let �ej := (0, . . . , 0,
j

1̌, 0, . . . , 0) ∈ F
n+r
q .

For all �v = (v1, . . . , vn, 0, . . . , 0) ∈ span〈�e1, .., �en〉 \ span〈�e1〉,
�κ = (0, . . . , 0, κ1, . . . , κr) ∈ span〈�en+1, .., �en+r〉 and π ∈ Fq, let

W�v,�κ,π := {(�w, �z) ∈ (span〈�e1, �v,�κ〉 \ span〈�e1〉) × (Fn+r
q \ span〈�e1〉⊥) | �w · �z = π}.

For all (�v,�κ, �x) ∈ (span〈�e1, .., �en〉 \ span〈�e1〉) × span〈�en+1, .., �en+r〉 ×
(
F

n+r
q \ span〈�e1〉⊥)

, and U
U← H(n, r,Fq)×, Z := (U−1)T, the pair ((�v+�κ)U, �xZ)

is uniformly distributed in W�v,�κ, (�v+�κ)·�x except with negligible probability.

For the proof, see the full version of this paper [23].

5 Adaptively Secure Multi-Use KP-ABE Scheme
with Short Ciphertexts

5.1 Key Ideas in Constructing the Proposed KP-ABE Scheme

We extend the techniques developed in [22], where the author presented a semi-
adaptively secure KP-ABE with constant-size ciphertexts by using sparse matrix
DPVS approach. An underlying construction of our proposed one is given in
Sect. 5.3, which is a dual form of the scheme in [22] since the 5n × 5n sparse
basis matrix is used in a dual manner. Hence, while [22] scheme has size O(1)
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ciphertexts and size O(�n) keys, the underlying one has size O(n) ciphertexts
and size O(�) keys (Table 1), where �, n are the number of rows in access struc-
ture matrix M and the max of the number of attributes in Γ , respectively. In
other words, the dual conversion of the scheme in [22] to the underlying scheme
increases ciphertext size O(n)-times and then decreases key size O(n)-times.

As mentioned in Introduction, the top level idea of our construction is the
decoupling technique of LSS encoding. The underlying scheme has a usual encod-
ing of LSS, i.e., encoding a central secret s0 and shares si. Therefore, the com-
prehension of the construction idea of the underlying one is necessary for under-
standing our proposed one. In this section, we will explain key ideas of con-
structing the underlying and our KP-ABE schemes. First, we will show how size
O(n) ciphertexts and size O(�) keys can be achieved in the underlying scheme,
where the IPE scheme given in [19] is used as a building block. Here, we will use
a simplified (or toy) version of the underlying KP-ABE scheme, for which the
security is no more ensured in the standard model under the DLIN assumption.

A ciphertext in the simplified KP-ABE scheme consists of two vector ele-
ments, (c0, c1) ∈ G

5 × G
n, and cT ∈ GT . A secret key consists of � + 1 vec-

tor elements, (k∗
0,k

∗
1, . . . ,k

∗
� ) ∈ G

5 × (Gn)� for access structure S := (M,ρ),
where the number of rows of M is � and k∗

i with i ≥ 1 corresponds to
the i-th row. Therefore, to achieve shorter secret keys, we have to compress
k∗

i ∈ G
n to a constant size in n. We now employ a special form of basis gen-

eration matrix, X :=

⎛

⎜
⎜
⎜
⎝

μ′
1

μ′
2 μ
...

. . .
μ′

n μ

⎞

⎟
⎟
⎟
⎠

∈ H(n, 0,Fq) of Eq. (1) in Sect. 4, where

μ, μ′
1, . . . , μ

′
n

U← Fq and a blank in the matrix denotes 0 ∈ Fq. The master

secret key (DPVS basis) is B
∗ :=

⎛

⎜
⎜
⎜
⎝

b∗
1
...

b∗
n

⎞

⎟
⎟
⎟
⎠

:=

⎛

⎜
⎜
⎜
⎝

μ′
1G

μ′
2G μG
...

. . .
μ′

nG μG

⎞

⎟
⎟
⎟
⎠

. Let the i-

th component of a secret key associated with S := (M := (Mi)�
i=1, ρ) con-

sists of k∗
i := (θiv

n−1
i + si, θiv

n−2
i , . . . , θivi, θi)B∗ = (θiv

n−1
i + si)b∗

1 + θi(vn−2
i b∗

2

+ · · · + vib
∗
n−1 + b∗

n) =
((

θi(
∑n

j=1 vn−j
i μ′

j) + siμ
′
1

)
G, vn−2

i θiμG, . . . , θiμG
)
,

where vi := ρ(i), θi
U← Fq, �f

U← F
r
q and si := Mi· �f . Then, k∗

i can be compressed to

only two group elements
(
K∗

i,1 :=
(
θi(

∑n
j=1 vn−j

i μ′
j) + siμ

′
1

)
G, K∗

i,2 := θiμG
)

as well as vi, since k∗
i can be obtained by (K∗

i,1, v
n−2
i K∗

i,2, . . . , viK
∗
i,2,K

∗
i,2) (note

that vj
i K

∗
i,2 = vj

i θiμG for j = 0, . . . , n − 2). That is, the i-th component of a
secret key (excluding vi) can be just two group elements, or the size is constant
in n, then (k∗

i )�
i=0 can be compressed into size O(�).

Let B := (bi) be the dual orthonormal basis of B
∗ := (b∗

i ), and B be
the public key in the simplified KP-ABE scheme. We specify (c0,k∗

0, cT ) such
that e(c0,k∗

0) = gζ−ξs0
T and cT := gζ

T m ∈ GT with s0 is a center secret of
shares {si}i=1,...,� associated with access structure S, which are embedded into
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{k∗
i }i=1,...,� as indicated above. We also set a ciphertext for Γ := {x1, . . . , xn′} as

c1 := (ω�y)B where �y := (y1, . . . , yn) such that
∑n−1

j=0 yn−jz
j = zn−1−n′ ∏n′

j=1(z−
xj), and ω

U← Fq. From the dual orthonormality of B and B
∗, if S accepts Γ ,

there exists a system of coefficients {αi}ρ(i)∈Γ such that e(c1,k′∗) = gξs0
T , where

k′∗ :=
∑

ρ(i)∈Γ αik
∗
i . Hence, a decryptor can compute gξs0

T if and only if S accepts
Γ , i.e., can obtain plaintext m. We can extend the simplified KP-ABE to a semi-
adaptively secure KP-ABE scheme under the DLIN assumption just by enlarging
the dimension of the underlying vector space, which is shown in Sect. 5.3. The
security proof is based on the Waters’s dual system technique and given in a
similar manner to [22]. The provably secure scheme has the same asymptotic
sizes of keys and ciphertexts, i.e., O(�)-sized keys and O(n)-sized ciphertexts.

Our goal is to construct an adaptively secure KP-ABE with a compara-
ble asymptotic data sizes, i.e., O(�)-sized keys and O(n + r)-sized ciphertexts,
from the underlying one. We use a decoupling technique of LSS matrix from
randomness for achieving the goal. First, we enlarge the space from O(n) to
O(n + r) dimension. As described in Fig. 1, a uniformly random vector �f ∈ F

r
q

for LSS is encoded on the ciphertext component c1. In the simplified scheme,
c1 := (ω�y, �f)B ∈ G

n+r where �y ∈ F
r
q is defined as above. For encoding each row

Mi of access matrix M on k∗
i , the above matrix X is extended to a (n+r)×(n+r)

matrix in H(n, r,Fq) (Eq. (1)), then the master secret key is given by

B
∗ :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b∗
1

...

b∗
n

b∗
n+1

...
b∗
n+r

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

:=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ′
1G

μ′
2G μ1G
...

. . .

μ′
nG μ1G

μ′
n+1G μ2G

...
. . .

μ′
n+rG μ2G

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where

μ1, μ2, μ
′
1, . . . , μ

′
n+r

U← Fq. Here, note that two independent diagonal elements
μ1, μ2 are used for the first n-dimension and the second r-dimension. (Refer to
the argument given in the beginning of Sect. 4.) Hence, k∗

i is given by k∗
i :=

(θi�vi, ξMi)B∗ . We note k∗
i is compressed to three group elements as before, i.e.,

K∗
i,1 :=

(
θi(

∑n
l=1 vn−l

i μ′
l) + ξ(

∑r
l=1 Mi,lμ

′
n+l)

)
G, K∗

i,2 := θiμ1G, K∗
i,3 := ξμ2G

for i = 1, .., �, and the secret key size is O(�). The pairing value of c1 and k∗
i

is e(c1,k∗
i ) = gωθi�y·�vi+ξMi·�f

T = gωθi�y·�vi+ξsi

T where si := Mi · �f . These values are
equivalent to the previous underlying scheme. Therefore, the decryption algo-
rithm is the same as before.

We then explain how our full KP-ABE scheme is constructed on the above-
mentioned simplified KP-ABE scheme. The target of designing the full KP-ABE
scheme is to achieve the adaptive security under the DLIN assumption. Here, we
adopt and extend a strategy initiated in [18], in which the dual system encryption
methodology is employed in a modular or hierarchical manner. That is, three
top level assumptions, the security of Problems 1–3, are directly used in the dual
system encryption methodology and the assumptions are reduced to a primitive
assumption, the DLIN assumption. To meet the requirements for applying to the
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dual system encryption methodology and reducing to the DLIN assumption, the
underlying vector space is five times greater than that of the above-mentioned
simplified scheme. For example, k∗

i := ( θi�vi, ξMi, 02n+2r, ψi�vi, ηiMi, 0n+r )B∗

for ρ(i) = vi, c1 = ( ω�y, �f, 02n+2r, 0n+r, �ϕ1 )B with �ϕ1
U← F

n+r
q , and

X :=

⎛

⎜
⎝

X1,1 · · · X1,5

...
...

X5,1 · · · X5,5

⎞

⎟
⎠ ∈ L(5, n, r,Fq) of Eq. (3) in Sect. 4, where each Xi,j is

of the form of X ∈ H(n, r,Fq) in the simplified scheme. The vector space con-
sists of four orthogonal subspaces, i.e., real encoding part, hidden part, secret
key randomness part, and ciphertext randomness part. The simplified KP-ABE
scheme corresponds to the first real encoding part.

A key fact in the security reduction is that L(5, n, r,Fq) is a subgroup of
GL(5(n+r),Fq) (Lemma2),which enables a random-self-reducibility argument for
reducing the intractability of Problems 1–3 to theDLINassumption. For the reduc-
tion, see [19]. We employ a new simulation technique in dual system encryption
using random vector �f in c1. For the details, refer to the proof outline in Sect. 5.4.

5.2 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator GKP
ob below, which is used

as a subroutine in the proposed KP-ABE scheme.

GKP
ob (1λ, 5, (n, r)) : paramG :=(q,G,GT , G, e)

R← Gbpg(1
λ), N0 := 5, N1 := 5(n + r),

paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1

λ, Nt, paramG) for t = 0, 1,

ψ
U← F

×
q , gT := e(G, G)ψ, param(n,r) := ((n, r), {paramVt

}t=0,1, gT ),

X0 := (χ0,i,j)i,j=1,...,5
U← GL(N0,Fq), X1

U← L(5, n, r,Fq), hereafter,

{μi,j,ι, μ
′
i,j,l}i,j=1,...,5;ι=1,2

l=1,...,n+r denotes non-zero entries of X1 as in Eq. (2),

b∗
0,i := (χ0,i,1, .., χ0,i,5)A =

∑5
j=1 χ0,i,jaj for i = 1, .., 5, B

∗
0 := (b∗

0,1, .., b
∗
0,5),

B∗
i,j,ι := μi,j,ιG, B′∗

i,j,l := μ′
i,j,lG for i, j = 1, . . . , 5; ι = 1, 2; l = 1, . . . , n + r,

for t = 0, 1, (ϑt,i,j)i,j=1,...,Nt
:= ψ · (XT

t )−1,

bt,i := (ϑt,i,1, .., ϑt,i,Nt
)A =

∑Nt
j=1 ϑt,i,jaj for i = 1, .., Nt, Bt := (bt,1, .., bt,Nt

),

return (param(n,r),B0,B
∗
0,B1, {B∗

i,j,ι, B
′∗
i,j,l}i,j=1,...,5;ι=1,2

l=1,...,n+r ).

Remark 2. Let sparse block matrix

⎛

⎜
⎜
⎝

b∗
1,(i−1)(n+r)+1

...

b∗
1,i(n+r)

⎞

⎟
⎟
⎠ := (Xi,1 · G · · · Xi,5 · G)

for i = 1, . . . , 5, and B
∗
1 := (b∗

1,1, . . . , b
∗
1,5(n+r)), where Xi,j · G means the

componentwise multiplication. B1 is the dual orthonormal basis of B
∗
1, i.e.,

e(b1,i, b
∗
1,i) = gT and e(b1,i, b

∗
1,j) = 1 for 1≤ i �=j ≤5(n + r).
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5.3 Warm-Up: Underlying Semi-adaptively Secure Construction

As a warm-up, we describe a semi-adaptively secure KP-ABE scheme, which is
a dual construction of [22] whose secret keys are compressed by using a sparse
matrix while [22] scheme has compressed ciphertexts. Namely, we use the sparse
matrix in a dual manner of [22]. We refer to Sect. 1.4 for notations on DPVS.

Setup(1λ, n) : / ∗ N0 := 5, N1 := 5n ∗ /

(paramn,B0,B
∗
0,B1, {B∗

i,j,ι, B
′∗
i,j,l}i,j=1,...,5; ι=1,2

l=1,...,n ) R← GKP
ob (1λ, 5, (n, 0)),

B̂0 := (b0,1, b0,2, b0,5), B̂
∗
0 := (b∗

0,1, b
∗
0,2, b

∗
0,4),

B̂1 := (b1,1, .., b1,n, b1,4n+1, .., b1,5n),

return pk := (1λ, paramn, {B̂t}t=0,1), sk := (B̂∗
0, {B∗

i,j,ι, B
′∗
i,j,l}i=1,4;j=1,...,5

ι=1,2; l=1,...,n).

KeyGen(pk, sk, S := (M,ρ)) : �f
U← F

r
q , s0 := �1 · �f, η0

U← Fq,

k∗
0 := (1, s0, 0, η0, 0)B∗

0
,

for i = 1, . . . , �, if ρ(i) = vi, �vi := (vi,l)n
l=1 := (vn−1

i , .., vi, 1),

si := Mi · �f, θi, ψi, ηi
U← Fq,

for j = 1, . . . , 5, K∗
i,1,j :=

∑n
l=1 vi,l(θiB

′∗
1,j,l + ψiB

′∗
5,j,l) + siB

′∗
1,j,1 + ηiB

′∗
5,j,1,

K∗
i,2,j := θiB

∗
1,j,1 + ψiB

∗
5,j,1,

return skS := (S, k∗
0, {K∗

i,1,j ,K
∗
i,2,j}i=1,...,�;j=1,...,5).

Enc(pk, m, Γ := {x1, . . . , xn′ |xj ∈ F
×
q , n′ ≤ n − 1}) :

�y := (y1, . . . , yn) such that
∑n−1

j=0 yn−jz
j = zn−1−n′ ∏n′

j=1(z − xj),

ω, ϕ0, ζ
U← Fq, �ϕ1

U← F
n
q , c0 := (ζ, ω, 0, 0, ϕ0)B0 ,

n
︷ ︸︸ ︷

2n
︷ ︸︸ ︷

n
︷ ︸︸ ︷

n
︷ ︸︸ ︷

c1 := ( ω�y, 02n, 0n, �ϕ1 )B1

cT := gζ
T m, ctΓ := (Γ, c0, c1, cT ), return ctΓ .

Dec(pk, skS := (S, k∗
0, {K∗

i,1,j ,K
∗
i,3,j}i=1,...,�

j=1,...,5), ctΓ := (Γ, c0, c1, cT )) :
If S := (M,ρ) accepts Γ , then compute I and {αi}i∈I such that

�1 =
∑

i∈I αiMi, where Mi is the i-th row of M, and
I ⊆ {i ∈ {1, . . . , �} | [ρ(i) = vi ∧ vi ∈ Γ ] }.

for i ∈ I, if ρ(i) = vi, �vi := (vi,l)n
l=1 := (vn−1

i , . . . , vi, 1),
n

︷ ︸︸ ︷
n

︷ ︸︸ ︷

k∗
i := ( K∗

i,1,1, vi,2K
∗
i,2,1, .., vi,nK∗

i,2,1, · · · K∗
i,1,5, vi,2K

∗
i,2,5, .., vi,nK∗

i,2,5 ),
n

︷ ︸︸ ︷
2n

︷ ︸︸ ︷
n

︷ ︸︸ ︷
n

︷ ︸︸ ︷

that is, k∗
i := ( θi�vi + si�e1, 02n, ψi�vi + ηi�e1, 0n )B∗

1
,

k′∗ :=
∑

i∈I αik
∗
i , K := e(c0,k∗

0) · e(c1,k′∗), return m′ := cT /K.
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[Correctness] If S := (M,ρ) accepts Γ , K = e(c0,k∗
0) · e(c1,k ′∗) =

g−ωs0+ζ
T g

ω
∑

i∈I αisi

T = gζ
T where s0 := �1 · �f, si := Mi · �f for i = 1, . . . , �.

We note that secret key skS consists of 5� + 5 group elements and ciphertext
ctΓ consists of 5n + 5 group elements (and one GT element).

The standard DLIN assumption is defined in Appendix A.

Theorem 1. The above multi-use KP-ABE scheme is semi-adaptively payload-
hiding against chosen plaintext attacks under the DLIN assumption.

Theorem 1 is proven in a similar manner as in [22].
In the semi-adaptive security model, the challenge attribute set Γ is declared

by the adversary at the start of the game, but after receiving the public key pk
from the challenger. Therefore, for each key query S := (M,ρ), the challenger
can determine whether ρ(i) ∈ Γ or not for i = 1, . . . , �. The challenger in the
security proof makes use of this information to simulate a component k∗

i of a
queried key for each i = 1, . . . , � in a refined dual system encryption proof. The
main part of the game sequence is similar (but not equal) to the Game 3 sequence
in the proof of Theorem 2 below.

5.4 Proposed Adaptively Secure Construction

By decoupling LSS coefficients si := Mi · �f ∈ Fq to Mi ∈ F
r
q in the key side and

�f ∈ F
r
q in the ciphertext side (of the underlying scheme in Sect. 5.3), we obtain

our proposed adaptively secure KP-ABE scheme.

Setup(1λ, (n, r)) : / ∗ N0 := 5, N1 := 5(n + r) ∗ /

(param(n,r),B0,B
∗
0,B1, {B∗

i,j,ι, B
′∗
i,j,l}i,j=1,...,5; ι=1,2

l=1,...,n+r ) R← GKP
ob (1λ, 5, (n, r)),

B̂0 := (b0,1, b0,2, b0,5), B̂
∗
0 := (b∗

0,1, b
∗
0,2, b

∗
0,4),

B̂1 := (b1,1, .., b1,n+r, b1,4(n+r)+1, .., b1,5(n+r)),

return pk := (1λ, param(n,r), {B̂t}t=0,1),

sk := (B̂∗
0, {B∗

i,j,ι, B
′∗
i,j,l}i=1,4;j=1,..,5

ι=1,2; l=1,..,n+r).

KeyGen(pk, sk, S := (M,ρ)) : ξ, η0
U← Fq, k∗

0 := (1, ξ, 0, η0, 0)B∗
0
,

for i = 1, .., �, if ρ(i) = vi, �vi := (vi,l)n
l=1 := (vn−1

i , .., vi, 1), θi, ψi, ηi
U← Fq,

for j = 1, . . . , 5,

K∗
i,1,j :=

∑n
l=1 vi,l(θiB

′∗
1,j,l + ψiB

′∗
5,j,l) +

∑r
l=1 Mi,l(ξB′∗

1,j,n+l + ηiB
′∗
5,j,n+l),

K∗
i,2,j := θiB

∗
1,j,1 + ψiB

∗
5,j,1, K∗

i,3,j := ξB∗
1,j,2 + ηiB

∗
5,j,2,

return skS := (S, k∗
0, {K∗

i,1,j ,K
∗
i,2,j ,K

∗
i,3,j}i=1,...,�;j=1,...,5).
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Enc(pk, m, Γ := {x1, . . . , xn′ |xj ∈ F
×
q , n′ ≤ n − 1}) :

�y := (y1, . . . , yn) such that
∑n−1

j=0 yn−jz
j = zn−1−n′ ∏n′

j=1(z − xj),

�f
U← F

r
q , ω, ϕ0, ζ

U← Fq, �ϕ1
U← F

n+r
q , c0 := (ζ, �1 · �f, 0, 0, ϕ0)B0 ,

n+r
︷ ︸︸ ︷

2n+2r
︷ ︸︸ ︷

n+r
︷ ︸︸ ︷

n+r
︷ ︸︸ ︷

c1 := ( ω�y, �f, 02n+2r, 0n+r, �ϕ1 )B1

cT := gζ
T m, ctΓ := (Γ, c0, c1, cT ), return ctΓ .

Dec(pk, skS := (S, k∗
0, {K∗

i,1,j ,K
∗
i,2,j ,K

∗
i,3,j}i=1,...,�

j=1,...,5), ctΓ := (Γ, c0, c1, cT )) :
If S := (M,ρ) accepts Γ, then compute I and {αi}i∈I such that

�1 =
∑

i∈I αiMi, where Mi is the i-th row of M, and
I ⊆ {i ∈ {1, .., �} | [ρ(i) = vi ∧ vi ∈ Γ ] }.

for i ∈ I, if ρ(i) = vi, �vi := (vi,l)n
l=1 := (vn−1

i , . . . , vi, 1),
n+r

︷ ︸︸ ︷

k∗
i := ( K∗

i,1,1, vi,2K
∗
i,2,1, .., vi,nK∗

i,2,1, Mi,1K
∗
i,3,1, ..,Mi,rK

∗
i,3,1, · · ·

K∗
i,1,5, vi,2K

∗
i,2,5, .., vi,nK∗

i,2,5, Mi,1K
∗
i,3,5, ..,Mi,rK

∗
i,3,5 ),

n+r
︷ ︸︸ ︷

2n+2r
︷ ︸︸ ︷

n+r
︷ ︸︸ ︷

n+r
︷ ︸︸ ︷

that is, k∗
i := ( θi�vi, ξMi, 02n+2r, ψi�vi, ηiMi, 0n+r )B∗

1
,

k′∗ :=
∑

i∈I αik
∗
i , K := e(c0,k∗

0) · e(c1,k′∗), return m′ := cT /K.

[Correctness] If S := (M,ρ) accepts Γ , K = e(c0,k∗
0) · e(c1,k ′∗) =

g−ξs0+ζ
T g

ξ
∑

i∈I αisi

T = gζ
T where s0 := �1 · �f, si := Mi · �f for i = 1, . . . , �.

We note that secret key skS consists of 5� + 5 group elements and ciphertext
ctΓ consists of 5(n + r) + 5 group elements (and one GT element).

While our adaptively secure KP- and CP-ABE schemes have the maxi-
mum of size r as one of public parameters, they allow several useful class of
access structures. According to the explicit construction of span programs from
boolean formulas (e.g., Appendix of [15]), while appending AND gate gets r
(and �) larger, appending OR gate gets only � larger. Therefore, for exam-
ple, available access structures for our adaptive ABE include any r-CNF for-
mula with any arbitrarily long disjunctions (for a bounded r), i.e., length r
conjunctions of length t1, . . . , tr disjunctions for arbitrarily large t1, . . . , tr like

(X1 ∨ arb. long· · · · · · ∨Xt1)∧· · ·∧ (Z1 ∨ arb. long· · · · · · ∨Ztr
), where multi-use of attributes for

X1, . . . ,Xt1 , . . . ,Z1, . . . ,Ztr
is allowed. The j-th column of the LSS matrix M

is given by (

∑j−1
ι=1 tι

︷ ︸︸ ︷
0, . . . , 0,

tj

︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)T with length � =

∑r
ι=1 tι for j = 1, . . . , r

when the target is all 1 vector �1 ∈ F
r
q .

The standard DLIN assumption is defined in Appendix A.
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Theorem 2. The proposed multi-use KP-ABE scheme is adaptively payload-
hiding against chosen plaintext attacks under the DLIN assumption.

The proof of Theorem 2 is given in the full version of this paper [23].

Acknowledgement. This work was supported by JST CREST Grant Number
JPMJCR14D6.

A Decisional Linear (DLIN) Assumption

Definition 6 (DLIN: Decisional Linear Assumption [7]). The DLIN
problem is to guess β ∈ {0, 1}, given (paramG, G, ξG, κG, δξG, σκG, Sβ) R←
GDLIN

β (1λ), where GDLIN
β (1λ) : paramG := (q,G,GT , G, e) R← Gbpg(1λ), κ, δ, ξ, σ

U←
Fq, S0 := (δ + σ)G,S1

U← G, return (paramG, G, ξG, κG, δξG, σκG, Sβ), for

β
U← {0, 1}. For a probabilistic machine E, we define the advantage of E

for the DLIN problem as: AdvDLIN
E (λ) :=

∣
∣
∣Pr

[
E(1λ, �)→1

∣
∣
∣�

R←GDLIN
0 (1λ)

]
−

Pr
[
E(1λ, �)→1

∣
∣
∣�

R← GDLIN
1 (1λ)

]∣
∣ . The DLIN assumption is: For any proba-

bilistic polynomial-time adversary E, the advantage AdvDLIN
E (λ) is negligible in λ.

B Adaptively Secure Multi-Use CP-ABE Scheme with
Short Secret Keys

B.1 Definition of CP-ABE

Definition 7 (Ciphertext-Policy Attribute-Based Encryption: CP-
ABE). A ciphertext-policy attribute-based encryption scheme consists of four
algorithms.

Setup takes as input security parameter. It outputs the public parameters pk and
a master key sk.

KeyGen takes as input a set of attributes, Γ := {xj}1≤j≤n′ , pk and sk. It outputs
a decryption key.

Enc takes as input public parameters pk, message m in some associated message
space msg, and access structure S := (M,ρ). It outputs the ciphertext.

Dec takes as input public parameters pk, decryption key skΓ for a set of attributes
Γ , and ciphertext ctS that was encrypted under access structure S. It outputs
either m′ ∈ msg or the distinguished symbol ⊥.

A CP-ABE scheme should have the correctness property: for all (pk, sk) R←
Setup(1λ), all attribute sets Γ , all decryption keys skΓ

R← KeyGen(pk, sk, Γ ), all
messages m, all access structures S, all ciphertexts ctS

R← Enc(pk,m,S), it holds
that m = Dec(pk, skΓ , ctS) with overwhelming probability, if S accepts Γ .
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Definition 8. The model for proving the adaptively payload-hiding security of
CP-ABE under chosen plaintext attack is:

Setup. The challenger runs the setup algorithm, (pk, sk) R← Setup(1λ), and gives
the public parameters pk to the adversary.

Phase 1. The adversary is allowed to issue a polynomial number of queries, Γ ,
to the challenger or oracle KeyGen(pk, sk, ·) for private keys, skΓ associated
with Γ .

Challenge. The adversary submits two messages m(0),m(1) and an access struc-
ture, S := (M,ρ), provided that the S does not accept any Γ sent to the
challenger in Phase 1. The challenger flips a random coin b

U← {0, 1}, and
computes ct

(b)
S

R← Enc(pk,m(b),S). It gives ct
(b)
S

to the adversary.
Phase 2. The adversary is allowed to issue a polynomial number of queries, Γ ,

to the challenger or oracle KeyGen(pk, sk, ·) for private keys, skΓ associated
with Γ , provided that S does not accept Γ .

Guess. The adversary outputs a guess b′ of b.

The advantage of an adversary A in the above game is defined as AdvCP-ABE,PH
A (λ)

:= Pr[b′ = b]− 1/2 for any security parameter λ. A CP-FE scheme is adaptively
payload-hiding secure if all polynomial time adversaries have at most a negligible
advantage in the above game.

B.2 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator GCP
ob below, which is

used as a subroutine in the proposed CP-ABE scheme, where GKP
ob is defined

in Sec. 5.2.

GCP
ob (1λ, 5, (n, r)) :

(param(n,r),D0,D
∗
0,D1, {D∗

i,j,ι,D
′∗
i,j,l}i,j=1,...,5;ι=1,2

l=1,...,n+r ) R← GKP
ob (1λ, 5, (n, r)),

B0 := D
∗
0, B

∗
0 := D0, B

∗
1 := D1, Bi,j,ι := D∗

i,j,ι, B′
i,j,l := D′∗

i,j,l for all i, j, l, ι,

return (param(n,r),B0,B
∗
0,B

∗
1, {Bi,j,ι, B

′
i,j,l}i,j=1,...,5;ι=1,2

l=1,...,n+r ).

B.3 Construction

Setup(1λ, (n, r)) : / ∗ N0 := 5, N1 := 5(n + r) ∗ /

(param(n,r),B0,B
∗
0,B

∗
1, {Bi,j,ι, B

′
i,j,l}i,j=1,...,5;ι=1,2

l=1,...,n+r ) R← GCP
ob (1λ, 5, (n, r)),

B̂0 := (b0,1, b0,2, b0,4), B̂
∗
0 := (b∗

0,1, b
∗
0,2, b

∗
0,5),

B̂
∗
1 := (b∗

1,1, .., b
∗
1,n+r, b

∗
1,3(n+r)+1, .., b

∗
1,4(n+r)),

return pk := (1λ, param(n,r), B̂0, {Bi,j,ι, B
′
i,j,l}i=1,4;j=1,...,5

ι=1,2; l=1,...,n+r),

sk := {B̂∗
t }t=0,1.

KeyGen(pk, sk, Γ := {x1, . . . , xn′ |xj ∈ F
×
q , n′ ≤ n − 1}) :



New Proof Techniques for DLIN-Based Adaptively Secure 103

�y := (y1, . . . , yn) such that
∑n−1

j=0 yn−jz
j = zn−1−n′ ∏n′

j=1(z − xj),

�f
U← F

r
q , ω, ϕ0

U← Fq, �ϕ1
U← F

n+r
q , k∗

0 := (1, �1 · �f, 0, ϕ0)B∗
0
,

n+r
︷ ︸︸ ︷

2n+2r
︷ ︸︸ ︷

n+r
︷ ︸︸ ︷

n+r
︷ ︸︸ ︷

k∗
1 := ( ω�y, �f, 02n+2r, 0n+r, �ϕ1 )B∗

1

skΓ := (Γ,k∗
0, k∗

1). return skΓ .

Enc(pk, m, S := (M,ρ)) : ζ, ξ, η0
U← Fq, c0 := (ζ, ξ, 0, η0, 0)B0 ,

for i = 1, ..., �, if ρ(i) = vi, �vi := (vi,l)n
l=1 := (vn−1

i , .., vi, 1), θi, ψi, ηi
U← Fq,

for j = 1, . . . , 5,

Ci,1,j :=
∑n

l=1 vi,l(θiB
′
1,j,l + ψiB

′
4,j,l) +

∑r
l=1 Mi,l(ξB′

1,j,n+l + ηiB
′
4,j,n+l),

Ci,2,j := θiB1,j,1 + ψiB4,j,1, Ci,3,j := ξB1,j,2 + ηiB4,j,2,

cT := gζ
T m, return ctS := (S, c0, {Ci,1,j , Ci,2,j , Ci,3,j}i=1,...,�

j=1,...,5, cT ).

Dec(pk, skΓ := (Γ,k∗
0, k∗

1), ctS := (S, c0, {Ci,1,j , Ci,2,j , Ci,3,j}i=1,...,�
j=1,...,5, cT )) :

If S := (M,ρ) accepts Γ , then compute I and {αi}i∈I such that
�1 =

∑
i∈I αiMi, where Mi is the i-th row of M, and

I ⊆ {i ∈ {1, . . . , �} | ρ(i) ∈ Γ }.

for i ∈ I, if ρ(i) = vi, �vi := (vi,l)n
l=1 := (vn−1

i , . . . , vi, 1),
n+r

︷ ︸︸ ︷

ci := ( Ci,1,1, vi,2Ci,2,1, .., vi,nCi,2,1, Mi,1Ci,3,1, ..,Mi,rCi,3,1, · · ·
Ci,1,5, vi,2Ci,2,5, .., vi,nCi,2,5, Mi,1Ci,3,5, ..,Mi,rCi,3,5 ),

n+r
︷ ︸︸ ︷

2n+2r
︷ ︸︸ ︷

n+r
︷ ︸︸ ︷

n+r
︷ ︸︸ ︷

that is, ci := ( θi�vi, ξMi, 02n+2r, ψi�vi, ηiMi, 0n+r )B1 ,

c ′ :=
∑

i∈I αici, K := e(c0,k∗
0) · e(c ′,k∗

1), return m′ := cT /K.

[Correctness] If Γ satisfies S, K = e(c0,k∗
0) · e(c ′,k∗

1) = g−ξs0+ζ
T g

ξ
∑

i∈I αisi

T =
gζ

T where s0 := �1 · �f, si := Mi · �f for i = 1, . . . , �.

Theorem 3. The proposed multi-use CP-ABE scheme is adaptively payload-
hiding against chosen plaintext attacks under the DLIN assumption.

Theorem 3 is similarly proven to Theorem 2.
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