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Abstract. Advanced Encryption Standard (AES), published by NIST,
is widely used in data encryption algorithms, hash functions, authenti-
cation encryption schemes and so on. Studying distinguishing attacks on
(reduced round) AES can help designers and cryptanalysts to evaluate the
security of target ciphers. Since integral attack is one of the most power-
ful tool in the field of symmetric ciphers, in this paper, we evaluate the
security of AES by integral cryptanalysis. Firstly we put forward a new
statistical integral distinguisher with multiple structures on input and
integral properties on output, which enables us to reduce the data com-
plexity comparing to the traditional integral distinguishers under mul-
tiple structures. As illustrations, we propose a secret-key distinguisher
on 5-round AES with secret S-box under chosen-ciphertext mode. Its
data, time and memory complexities are 2114.32 chosen ciphertexts, 2110

encryptions and 233.32 blocks. This is the best integral distinguisher on
AES with secret S-box under secret-key setting so far. Then we present
improved known-key distinguishers on 8-round and full 10-round AES-128
with reduced complexities based on Gilbert’s work at ASIACRYPT’14.
These distinguishers are the best ones according to the time complexity.
Moreover, the proposed statistical integral model could be used to pro-
ceed known-key distinguishing attacks on other AES-like ciphers.

Keywords: Statistical integral model · Secret S-box · Secret key ·
Known key · AES

1 Introduction

Advanced Encryption Standard (AES) [8], published by NIST, is widely used in
the field of symmetric ciphers. For instances, AES and reduced-round versions of
AES are usually used as components for hash functions, authentication encryp-
tion schemes and so on. Since the goal of distinguishing attack is to distinguish
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a target cipher from random permutations with some special property, studying
the distinguishers on AES can help designers and cryptanalysts to evaluate the
security of target cipher, which is meaningful.

In secret-key distinguishing attack, adversary needs to distinguish the target
cipher from random permutations without knowing the key and internal states.
Such distinguisher can be used in key-recovery attack. Furthermore, reduced
round AES are often utilized to design authentication encryptions such as the
third-round candidates AES-OTR [20] in CAESAR competition [6]. It is necessary
to research the secret-key distinguisher on AES. Beside that, the performances of
block ciphers under known key settings need be considered. Block ciphers, because
of their security and simplicity, are often adopted as components of hash func-
tions by designers, such as Whirlpool [3] and Photon [13]. Since the attacker can
fully control the inter behaviour of a hash function, if a block cipher is used to
design hash function, its resistance to known-key attack or chosen-key attack,
where the adversaries know the key or can choose the key, should be considered.
The first known-key security model is proposed by Knudsen and Rijmen for block
cipher in [15] where the secret key is known to the attacker and the goal is to
distinguish the block cipher from a random permutation by constructing a set of
plaintext/ciphertext pairs satisfying a special property. Such a property is easy
to check but impossible to achieve for any random permutation with the same
complexity and a non-negligible probability by using oracle accesses to this ran-
dom permutation and its inverse. Since its establishment, several types of known-
key distinguishers have been proposed, such as distinguishers with integral prop-
erty [1,12,15,21], subspace distinguishers [17,18], (multiple) limited-birthday dis-
tinguishers [11,14], and the known-key distinguisher for PRESENT by combining
meet-in-the-middle technique and truncated differential [5]. Moreover, the chosen-
key distinguishing attack on the full AES-256 has been provided in [4].

Integral attack is an important cryptanalytic technique for symmetric-key
ciphers, which was firstly put forward by Daemen et al. in [7], then unified as
integral attack by Knudsen and Wagner in [16]. In an integral distinguisher, one
fixes a part of plaintext bits and takes all possible values for the other plaintext
bits such that the values on partial bits of ciphertext are uniformly distributed,
to distinguish an actual cipher from a random permutation. If one additional lin-
ear layer is considered, the property will be that the XOR of all possible values of
the specific part of ciphertext becomes zero, which is referred as zero-sum prop-
erty [2]. In order to reduce the data complexity, Wang et al. applied statistical
technique on original integral distinguisher and proposed a statistical integral
distinguisher at FSE’16 [24], which consists of applying a statistical technique
to the original integral distinguisher with the active property. As a result, this
statistical integral distinguisher requires less data complexity than that of the
original integral distinguisher. However, Wang et al. only considered the case
that only one integral property on ciphertext, they didn’t discuss the cases that
there are several integral properties on ciphertext and multiple structures of data
should be used at the same time. These limit the effect of integral attacks on
block ciphers, especially for known-key distinguishing attacks.
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In this paper, we consider the cases omitted in [24] and use our statistical
integral model to improve secret-key and known-key distinguishing attacks on
AES with further less data and time complexities.

1.1 Our Contributions

Statistical Integral Distinguisher with Multiple Structures. We propose
a statistical integral distinguisher with multiple structures on input and integral
properties on output. In some situations of integral attacks such as known-key
distinguishing attack on AES, multiple structures of input have to be used where
for each structure s input bits take all possible values and the corresponding
b t-bit outputs are uniformly distributed respectively. The statistical integral
distinguisher in [24] can reduce the data complexity from O(2s) to O(2s−t/2)
by using one t-bit integral property if only one structure is used. But if there
are Ns structures involved, the model in [24] cannot be applied. For the sake
of reducing the data requirements for the original integral distinguisher with
multiple structures, we construct a new statistical integral distinguisher. In our
new distinguisher, the data complexity is

O(
√

Ns/b · 2s− t
2 ),

while the data complexity of the original distinguisher is

O(Ns · 2s).

In order to verify our theoretical model, we implement the experiments for mini
version of AES. It shows that the experimental results are in good accordance
with the theoretic results.

Improved Secret-Key Integral Distinguisher on AES. AES is one of
the most famous block ciphers. Until 2015, the best secret-key distinguishers
on AES were 4 rounds, such as impossible differential, zero-correlation linear
hull and integral distinguisher. Then at CRYPTO’16, Sun et al. proposed a 5-
round distinguisher on AES with secret S-box under chosen-ciphertext mode
with integral zero-correlation technique in [23]. But the data complexity of this
distinguisher is up to 2128. Recently, Grassi et al. put forward a 5-round distin-
guisher on AES with secret S-box by utilizing a 4-round impossible differential
in [9]. The data complexity is 298.2. Later, they proposed another one on 5-round
AES in [10]. That distinguisher is independent with the details of S-box, MC
operation and secret-key, and its data complexity is reduced to 232. However,
it utilizes the property of AES structure and has nothing with the secret-key,
this weakness limits it to be used in key recovery attacks. In this paper, we will
evaluate the security of AES from the point of integral distinguishing attack. We
present a secret-key distinguisher on 5-round AES with secret S-box by adopting
our statistical integral model under chosen-ciphertext mode. The data and time
complexities are 2114.32 chosen ciphertexts and 2110 encryptions respectively. Its
memory requirements are 233.32 blocks. This is the best integral distinguisher on
AES with secret S-box under secret-key setting so far (Table 1).
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Improved Known-Key Distinguishers on AES. We apply the statistical
integral distinguisher with multiple structures into the known-key distinguish-
ing attacks on AES. The first known-key distinguisher on AES was proposed
by Knudsen and Rijmen in [15], where they gave an integral known-key distin-
guisher for 7-round AES. At ASIACRYPT’14, Gilbert provided a very impor-
tant untwisted representation of AES and used this representation to distin-
guish 8-round AES and the full 10-round AES with the complexity 264 under
the known-key model in [12]. Besides the integral known-key distinguishers, the
known-key distinguisher with match-in-the-middle technique for 7-round AES
was presented in [19], with rebound technique for 8-round AES were provided
in [11,14] whose complexities are 248 and 244 8-round encryptions respectively.
In this paper, we take advantage of our statistical integral model to improve
known-key distinguisher on 8-round AES and full 10-round AES, whose respec-
tive time complexities are 242.61 computations and 259.60 computations. These
distinguishers are the best known-key ones on AES according to the time com-
plexity so far. See Table 2.

Table 1. Summary of secret-key integral distinguishers on AES

Type Rounds Data (CC) Time Memory Source

Integral 5 2128 2128 - [23]

Statistical integral 5 2114.32 2110 233.32 Section 4

CC: Chosen-cipertext

Table 2. Summary of known-key distinguishing attacks on AES

Type Rounds Time Memory Source

Integral 7 256 − [15]

MITM 7 224 − [19]

Limited-birthday 8 248 235 bytes [11]

Multiple limited-birthday 8 244 235 bytes [14]

Integral 8 264 − [12]

Statistical integral 8 242.61 213 bytes Section 5

Integral 10 264 − [12]

Statistical integral 10 259.60 258.84 bytes Section 5

MITM: Match-in-the-middle

1.2 Ontline of This Paper

In Sect. 2, some preliminaries are given. Then we present a statistical inte-
gral model with multiple structures on input and integral properties on out-
put in Sect. 3. In Sects. 4 and 5, secret-key statistical integral distinguisher and
improved known-key distinguishers on AES are put forward respectively. At last,
we conclude this paper in Sect. 6.
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2 Preliminaries

2.1 Description of AES

AES is a byte-orient Substitution-Permutation Network (SPN). It has three
versions, namely AES-128, -192 and -256. The block-size/key-size/total-rounds
of these versions are 128/128/10, 128/192/12 and 128/256/14 respectively. Each
round function includes 4 components:

– SubBytes (SB): A nonlinear bijective mapping F
8
2 → F

8
2 for each byte of state;

– ShiftRows (SR): Left rotate the i-th row by i bytes, where i = 0, 1, 2, 3;
– MixColumns (MC): Left multiply with an MDS matrix over the field GF (28)

on each column;
– AddRoundKey (AK): XOR with a 128 bits subkey.

It is worth noting that there is a whiten key XORed with plaintext before
the first round function and the MC operation is omitted in the last round. Since
we do not use the key schedule in this paper, we ignore it here.

All in all, 2r-round AES can be described as follows:

AES2r = AK � (SB � SR � MC � AK)2r−1 � SB � SR � AK (1)

where A � B denotes to implement A operation firstly, then B operation.
In [12], Gilbert proposed a new representation of AES. Firstly he defined

two operations T and SC as follows, then built two special byte permutations
P = SR �T �SR−1 and Q = SR−1 �T �SR �SC. With these two permutations,
Gilbert proposed two transformations S = Q−1 � SB � MC � AK � SB � P−1

and R = P � SR � MC � AK � SR � Q, which operate on columns and rows
respectively.

T :

⎛

⎜⎜
⎝

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

⎞

⎟⎟
⎠ �→

⎛

⎜⎜
⎝

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15

⎞

⎟⎟
⎠

SC :

⎛

⎜
⎜
⎝

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

⎞

⎟
⎟
⎠ �→

⎛

⎜
⎜
⎝

a0 a12 a8 a4

a1 a13 a9 a5

a2 a14 a10 a6

a3 a15 a11 a7

⎞

⎟
⎟
⎠

As a result, 2r-round AES has three equivalent representations:

AES2r = AK � SR � Q � (S � R)r−1 � S � P � SR � AK, (2)

AES2r = AK � P −1 � SB � R � (S � R)r−1 � SB � Q−1 � AK, (3)

AES2r = AK � SB � SR � MC � AES2r−2 � AK−1 � MC � AK · SB � SR � AK. (4)
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Throughout this paper, we use X(i) and X(i∼j), i, j = 0, 1, . . . , 15 to denote the
i-th byte and i ∼ j-th bytes of state X respectively.

2.2 Brief Description of Known-Key Distinguishers on AES in [12]

In this subsection, we briefly recall the known-key distinguishers for 8-round and
10-round AES proposed by Gilbert at ASIACRYPT’14 [12].

In order to mount a known-key distinguisher for AES8, Gilbert firstly pro-
posed two integral distinguishers shown in Fig. 1, where (Aj

1, A
j
2, A

j
3, A

j
4), j =

0, 1, . . . , 4, A and C denote uniform distribution on 4 bytes, uniform dis-
tribution on 1 bytes and constant respectively. Then given 264 data Z =
{R(x, 0, 0, 0) ⊕ (y, 0, 0, 0)|x, y ∈ (0, 1)32}, this set Z can be divided into 232

structures according to different values of x, and each structure takes all 232

values on the first column and constants on other columns. So the set Z sat-
isfies the first integral distinguisher in Fig. 1. Since R operation is an affine
mapping, R(Z−1) = {(x, 0, 0, 0) ⊕ R−1(y, 0, 0, 0)} can be divided into 232 struc-
tures according to different values of y, thus the set R(Z−1) satisfies the second
integral distinguisher in Fig. 1.

Combining with these two integral distinguishers with R operation above,
a known-key distinguisher on AES8 is built that all input and output bytes
resulted from 264 middle texts Z are uniformly distributed. However, for ran-
dom permutations, the upper bound of the probability satisfying the uniformly
distributed property for each byte is 1

2128−1 with q ≤ N = 264 oracle queries.
Furthermore, with the representation of Eq. (3), Gilbert mounted a known-

key distinguisher for AES10. This distinguisher is implemented by extending
one round on each side based on the distinguisher for AES8. The same 264

middle texts Z as for the known-key distinguisher on AES8 are used. For the
corresponding input-output pairs (pi, ci), i = 1, . . . , 264, the adversary can find
at least one value (Δ,Γ ), where Δ,Γ ∈ (0, 1)128, to make each byte of R ◦
SB(P−1(pi) ⊕ Δ) and R−1 ◦ SB−1(Q(ci) ⊕ Γ ) be uniform distribution within
time complexity 264. However, for a random permutation, the upper bound of
the probability satisfying the uniformly distributed property for each byte is
2−16.5 with q ≤ N = 264 oracle queries.

Since Gilbert’s work is based on the integral distinguisher and uses the active
property1, if we can improve the statistical integral model proposed by Wang
et al. in [24], we can further improve Gilbert’s work and widely utilize the new
method to all AES-like ciphers. With the improved known-key distinguishers,
10-round AES-like ciphers cannot be regarded as ideal random permutations,
and the time complexities of new distinguishers are less than previous ones.

1 Active property means that the values on target bits are uniform distributed.



408 T. Cui et al.

⎡
⎢⎢⎣
A0

1CCC
A0

2CCC
A0

3CCC
A0

4CCC

⎤
⎥⎥⎦

S−1
−−−→

⎡
⎢⎢⎣
A0

1CCC
A0

2CCC
A0

3CCC
A0

4CCC

⎤
⎥⎥⎦

R−1
−−−→

⎡
⎢⎢⎣
A1

1A
2
1A

3
1A

4
1

A1
2A

2
2A

3
2A

4
2

A1
3A

2
3A

3
3A

4
3

A1
4A

2
4A

3
4A

4
4

⎤
⎥⎥⎦

S−1
−−−→

⎡
⎢⎢⎣
A1

1A
2
1A

3
1A

4
1

A1
2A

2
2A

3
2A

4
2

A1
3A

2
3A

3
3A

4
3

A1
4A

2
4A

3
4A

4
4

⎤
⎥⎥⎦

(AK�SR�Q)−1
−−−−−−−−−−−→

⎡
⎢⎣
AAAA
AAAA
AAAA
AAAA

⎤
⎥⎦

⎡
⎢⎢⎣
A0

1CCC
A0

2CCC
A0

3CCC
A0

4CCC

⎤
⎥⎥⎦

S−→

⎡
⎢⎢⎣
A0

1CCC
A0

2CCC
A0

3CCC
A0

4CCC

⎤
⎥⎥⎦

R−→

⎡
⎢⎢⎣
A1

1A
2
1A

3
1A

4
1

A1
2A

2
2A

3
2A

4
2

A1
3A

2
3A

3
3A

4
3

A1
4A

2
4A

3
4A

4
4

⎤
⎥⎥⎦

S−→

⎡
⎢⎢⎣
A1

1A
2
1A

3
1A

4
1

A1
2A

2
2A

3
2A

4
2

A1
3A

2
3A

3
3A

4
3

A1
4A

2
4A

3
4A

4
4

⎤
⎥⎥⎦

P�SR�AK−−−−−−−−→

⎡
⎢⎣
AAAA
AAAA
AAAA
AAAA

⎤
⎥⎦

Fig. 1. Two integral distinguishers under the new representation of AES in [12]

2.3 Statistical Integral Distinguisher

In this subsection, we recall the statistical integral distinguisher proposed by
Wang et al. in [24].

Assume that H : Fn
2 → F

n
2 is a part of a block cipher, its input and output

both can be split into two parts as follows:

H : Fr
2 × F

s
2 → F

t
2 × F

u
2 ,H(x, y) =

(
H1(x, y)
H2(x, y)

)
.

If the first r bits of input are fixed as a constant λ and only the first t bits of
output are considered, then the function H can be denoted as Tλ:

Tλ : Fs
2 → F

t
2, Tλ(y) = H1(λ, y).

When y takes over all possible values, the outputs Tλ(y) are uniformly distrib-
uted, then an integral distinguisher is constructed.

If the adversary only takes N < 2s different y, sets a counter V [Tλ(y)] and
initializes this counter as zero, a statistical integral distinguisher can be con-
structed by investigating the distribution of the statistic as follows:

T =
2t−1∑

i=0

(V [Tλ(y)] − N · 2−t)2

N · 2−t
(5)

For the right key guess (the target cipher), the statistic T follows a χ2 distri-
bution with mean μ0 = (2t−1) 2

s−N
2s−1 and variance σ2 = 2(2t−1)(2

s−N
2s−1 )2, but for

the wrong key guess (a random permutation), it follows a χ2 distribution with
mean μ0 = (2t −1) and variance σ2 = 2(2t −1). The relation of data complexity,
type-I error probability α0 and type-II error probability α1 is as follows

N =
(2s − 1)(q1−α0 + q1−α1)√

(2t − 1)/2 + q1−α1

+ 1, (6)
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3 Statistical Integral Distinguisher with Multiple
Structures on Input and Integral Properties on Output

In some integral distinguishers, there are b groups of t output bits with the active
property. If we can utilize all properties at the same time, the data complexity
can be further reduced. What’s more, in some attack settings, Ns structures,
i.e. that Ns different λ, should be used together. For these special settings, we
construct the new statistical integral distinguisher in this section.

Firstly, we split the input into two parts and output into b + 1 parts.

H : Fr
2 × F

s
2 → F

t
2 × F

t
2 × . . . × F

t
2 × F

u
2 , H(x, y) =

⎛

⎜
⎜
⎝

H1(x, y)
H2(x, y)

. . .
Hb+1(x, y)

⎞

⎟
⎟
⎠ .

Then we use T i
λ to denote the function Hi where the first r bits of its input are

fixed to the value λ and b outputs Hi, 1 ≤ i ≤ b, are considered:

T i
λ : Fs

2 → F
t
2, T i

λ(y) = Hi(λ, y), i = 1, 2, . . . , b.

For a special integral distinguisher, when y iterates all possible values of F
s
2,

T i
λ(y), i = 1, 2, . . . , b are all uniformly distributed with probability one. Further

more, if we take Ns values for λ, i.e. Ns structures and in each structure y
iterates all possible values of Fs

2, the integral properties on output are satisfied
as well.

Now assume we need N < 2s values of y under each structure and we use
Ns structures which are independent. T i

λ(y) ∈ F
t
2, i = 1, 2, . . . , b are computed

for each y and we allocate a counter vector Vi[T i
λ(y)] to store the occurrences of

T i
λ(y). Then we investigate the distribution of the following statistic:

C =
Ns∑

λ=1

b∑

i=1

2t−1∑

T i
λ(y)=0

(Vi[T i
λ(y)] − N · 2−t)2

N · 2−t
. (7)

The statistic C follows different distributions determined by whether we are
dealing with an actual cipher or a random permutation.

Proposition 1. For sufficiently large N , and t, the statistic 2s−1
2s−N Ccipher

(Ccipher is the statistic C for cipher) follows a χ2-distribution with degree of
freedom b ·Ns ·(2t −1), which means that Ccipher approximately follows a normal
distribution with mean and variance

μ0 = Exp(Ccipher) = b ·Ns ·(2t −1)
2s − N

2s − 1
, σ2

0 = V ar(Ccipher) = 2b ·Ns · (2t−1)(
2s − N

2s − 1
)2.

The statistic Crandom (Crandom is the statistic C for randomly drawn permu-
tation) follows a χ2-distribution with degree of freedom b · Ns · (2t − 1), which
means that Crandom approximately follows a normal distribution with mean and
variance

μ1 = Exp(Crandom) = b ·Ns · (2t −1) and σ2
1 = V ar(Crandom) = 2b ·Ns · (2t −1).
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Proof. Deduced from Proposition 1 in [24], for a randomly drawn permutation,
the statistic

∑2t−1
T i

λ(y)=0
(Vi[T

i
λ(y)]−N ·2−t)2

N ·2−t follows a χ2-distribution with degree of
freedom 2t − 1 for any λ and i. Then the statistic C ′

random for the randomly
drawn permutation

Crandom =
Ns∑

λ=1

b∑

i=1

2t−1∑

T i
λ(y)=0

(Vi[T i
λ(y)] − N · 2−t)2

N · 2−t

is the sum of Ns ·b independent χ2 statistics with degree of freedom 2t −1, so the
statistic Crandom follows a χ2-distribution with degree of freedom b ·Ns · (2t −1).
Then for sufficiently large N and t, Crandom approximately follows a normal
distribution with the expected value and variance:

Exp(Crandom) = b · Ns · (2t − 1) and V ar(Crandom) = 2b · Ns · (2t − 1).

Since the statistic for the cipher 2s−1
2s−N

∑2t−1
T i

λ(y)=0
(Vi[T

i
λ(y)]−N ·2−t)2

N ·2−t , for any λ

and i, follows a χ2-distribution with degree of freedom 2t − 1 deduced from [24].
Then the statistic 2s−1

2s−N C ′
cipher for the cipher

2s − 1

2s − N
Ccipher =

Ns∑

λ=1

b∑

i=1

2s − 1

2s − N

2t−1∑

T i
λ
(y)=0

(Vi[T
i
λ(y)] − N · 2−t)2

N · 2−t

is the sum of Ns · b independent χ2 statistics with degree of freedom 2t − 1, so the statistic
2s−1
2s−N

Ccipher follows a χ2-distribution with degree of freedom b · Ns · (2t − 1). Then for suffi-
ciently large N and t, Ccipher approximately follows a normal distribution with the expected
value and variance:

Exp(Ccipher) = b · Ns · (2t − 1) · 2s − 1

2s − N
and V ar(Ccipher) = 2b · Ns · (2t − 1) · ( 2s − 1

2s − N
)2.


�
Corollary 1. Under the assumption of Proposition 1, for type-I error probability
α0 (the probability to wrongfully discard the cipher), and type-II error probability
α1 (the probability to wrongfully accept a randomly chosen permutation as the
cipher), to distinguish a cipher and a random permutation based on b independent
t-bit outputs when randomly choosing Ns values for r-bit inputs and N values
for s-bit inputs, then the following equation holds.

N =
(2s − 1)(q1−α0 + q1−α1)√
(b · Ns · (2t − 1))/2 + q1−α0

+ 1, (8)

where q1−α0 and q1−α1 are the respective quantiles of the standard normal
distribution.

Corollary 1 is obtained from the equation about the decision threshold τ =
μ0 +σ0q1−α0 = μ1 −σ1q1−α1 . And the statistic test is also based on the decision
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threshold τ : if C ≤ τ , the test outputs ‘cipher’; Otherwise, if the statistic C >
τ , the test outputs ‘random’. Note that in this statistical method the success
probability Ps = 1 − α0, and the relation between α1 and the advantage of the
attack a is α1 = 2−a.

In order to verify the theoretical model in Corollary 1, we implement the
experiments for mini version of AES in Appendix A.1. It shows that the exper-
imental results are in good accordance with the theoretic results.

From Eq. (8), we know that the data complexity for the statistical distin-
guisher is N · Ns. For the given values of n, s, t, α0, α1, the ratio of the data
complexity with Ns structures to that with one structure is

√
Ns. It means that

more structures will result in high data complexity, so we should avoid to utilize
more structures. However, for the known-key integral distinguisher for AES etc.,
we have to use enough structures to make the plaintexts and the ciphertexts
satisfying the desired properties simultaneously. Moreover, if b is increased, the
data complexity can be reduced, but as b increases, the time complexity in some
situations will be increased accordingly. Thus, we should take the proper value
for b according to the time-data tradeoff.

4 Secret-Key Statistical Integral Distinguisher
on Reduced 5-Round AES

In this section, we propose a secret-key distinguisher on 5-round AES with our
statistical integral model based on the work of Sun et al. in [23]. In this distin-
guisher, the S-box used in AES is secret.

Firstly, we slightly modify the zero-correlation linear hull for 5-round decryp-
tion of AES under chosen-ciphertext mode proposed by Sun et al. in [23] (Lemma
3). Let V = {(x(i)) ∈ F 16

28 |x(0) ⊕ x(13) = (k5)(0) ⊕ (k5)(13)}, and assume that the
input mask ΓI = (a(i))0≤i≤15 and output mask Γ 0

O = (β(i))0≤i≤15 satisfy:

a(i) =

{
a, i = 0, 13,

0, otherwise.
β(j) =

{
nonzero, j = {0, 5, 10, 15}
0, otherwise.

Then the correlation for ΓI → Γ 0
O on V is always 0. Note that there are three

other zero-correlation linear hulls as well, when j = {1, 6, 11, 12}, {2, 7, 8, 13},
{3, 4, 9, 14}. The corresponding output masks are Γ 1

O, Γ 2
O and Γ 3

O respectively.
One of the four cases is shown in Fig. 2.

With the technique proposed by Sun et al. in [22], these four zero-correlation
linear hulls can be transformed into integral ones. Taking the linear hull ΓI → Γ 0

O

as an example, the corresponding integral distinguisher is that if the adver-
sary takes over 2120 different values of ciphertexts c satisfying c(0) ⊕ c(13) =
(k5)(0) ⊕ (k5)(13), then the values on 4 bytes of plaintext (p(0), p(5), p(10), p(15))
are uniformly distributed.

Based on these integral distinguishers, we can implement a statistical integral
distinguisher for each candidate Δ = (k5)(0)⊕(k5)(13), where s = 120 and t = 32.
In order to have the success probability (1 − α0)2

8
= (1 − α1)2

8
= 95%, we set
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b
b

a
a

SB SR MC

SB SR MC

SB SR MC

SB SR MC

SB SR

k1

k2

k3

k4

k5

Contradiction

Fig. 2. Zero-correlation linear hull on 5-round AES with secret S-box under secret-key
setting. Gray and white cells denote nonzero and zero masks respectively. The two cells
with a or b are exactly the same mask.

Algorithm 1. Secret-key statistical integral distinguisher on 5-round AES
with secret S-box
1 for 28 candidates of Δ do
2 Set a counter V [4][232] and initialize it to zero;
3 for N chosen ciphertext/plaintext pairs (c, p) do

// Consider those four integrals together.

4 for i ← 0 ∼ 3 do
5 Increment counter V [i][ci

part] by one according to the related 4 bytes

ci
part ∈ (0, 1)32 of ciphertext c;

6 Calculate the statistic TΔ =
∑3

b=0

∑232−1
z=0

(V [b][z]−N·2−32)2

N·2−32 ;

7 if Only one Δ such that TΔ < τ then
8 return AES;

9 return random permution;

α0 = α1 = 0.0002, then q1−α0 = q1−α1 ≈ 3.54. Meanwhile, we can use these
four integral distinguishers above together within one structure, so b = 4 and
Ns = 1. Thus by Eq. (8), N = 2106.32 chosen ciphertexts. The decision threshold
is about τ ≈ 17179212992.15. As there are 28 different values of Δ, the total data
complexity of this distinguisher is N ′ = 2106.32×28 = 2114.32 chosen ciphertexts.
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What’s more, we can see from Algorithm 1, the main time complexity hap-
pens on Step 5, which is about 28×2106.32×4×1/16×1/5 ≈ 2110 encryptions, if
we regard one simple operation as 1

16 one round encryption. Beside that, memory
requirements are about 4 × 232 × 10 ≈ 237.32 bytes = 233.32 blocks.

As far as we know, this distinguisher is the best secret-key integral one on
5-round AES with secret S-box.

5 Improved Known-Key Distinguishers on AES

In this section, we will use our new statistical integral model to reduce the
complexities of known-key distinguishers on AES proposed by Gilbert at ASI-
ACRYPT’14 in Sects. 5.1 and 5.2.2 The time complexity is reduced to 242.61 in
the known-key distinguisher on 8-round AES. For the 10-round AES, the time
complexity is reduced to 259.60. Compared to all the public known-key distin-
guishers for 8-round AES, our distinguisher is the best one according to both
time and memory complexities. Moreover, our known-key distinguisher on 10-
round AES is the best one according to the time complexity.

5.1 Improved Known-Key Distinguisher on 8-Round AES

As described in Subsect. 2.2, the known-key distinguisher for AES8 is based on
the uniformly distributed integral property with 232 structures and each struc-
ture takes 232 texts. This integral property can be transformed to a statistical
integral property by using Proposition 1. So in our known-key distinguisher on
AES8, we utilize the statistical integral properties on each byte of input and
output to distinguish the actual cipher and random permutations. In this way,
the required number of structures and texts of one structure can be reduced. The
process to distinguish the actual cipher AES8 from the random permutation is
described in Algorithm 2.

Since in the middle of the distinguisher, the numbers of structures before
and after R operation should be the same, i.e. that N = Ns. By applying
Proposition 1 in above case, we have s = 32, t = 8, b = 16 and N = Ns. If we set
the error probabilities α0 = 2−128 and α1 = 2−128 (the values of α0 and α1 can be
different and take any suitable values), then q1−α0 = q1−α1 ≈ 13.06. According
to Eq. (8), N = Ns ≈ 220.81 and the threshold value τ ≈ 7478730631.39.

For the case of AES8, as α0 = 2−128, the probability to wrongly regard AES8

as a random permutation is α0+(1−α0)α0 ≈ 2−127, which means that the success
probability to correctly identify AES cipher is about (1 − α0)2 ≈ 1 − 2−127.

While for the case of random permutation, the adversary can implement
encryption and decryption oracle queries to the cipher and random permuta-
tion. But statistical integral property (exploiting χ2 distribution) is different
2 These improved known-key distinguishers on AES in this paper follow the idea in

Gilbert’ work at ASIACRYPT’14, but we adopt statistical integral method instead
of integral method and more delicate processes to reduce the data and time com-
plexities.
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Algorithm 2. Improved known-key distinguisher on AES8

1 Initialize the statistic C′ and C′′ as zero;
2 for all N values of x ∈ (0, 1)32 do
3 Initialize the counter vector V [16][28] to zero;
4 for all N values of y ∈ (0, 1)32 do
5 Compute 16 bytes of input p(l), l = 0, . . . , 15 from

Z = (x, 0, 0, 0) ⊕ R(y, 0, 0, 0);
6 Increment the corresponding counter V [l][p(l)] by one;

7 C′ = C′ +
∑15

l=0

∑28−1
p(l)=0[

(V [l][p(l)]−N×2−8)2

N×2−8 ];

8 if C′ > τ then
9 return ⊥; // The distinguishing attack is failed.

10 for all N values of y ∈ (0, 1)32 do
11 Initialize the counter vector V [16][28] to zero;
12 for all N values of x ∈ (0, 1)32 do
13 Compute 16 bytes of output c(l), l = 0, . . . , 15 from

Z = (x, 0, 0, 0) ⊕ R(y, 0, 0, 0);
14 Increment the corresponding counter V [l][c(l)] by one;

15 C′′ = C′′ +
∑15

l=0

∑28−1
c(l)=0[

(V [l][c(l)]−N×2−8)2

N×2−8 ];

16 For AES8, C′′ ≤ τ ;
17 For any random permutation, C′′ > τ .

from traditional integral property (utilizing uniform distribution). At the best
of times the adversary chooses the data which automatically satisfy the statisti-
cal property on the input, but to satisfy the statistical property on the output,
the probability is α1 = 2−128. In order to satisfy the statistical properties both
on the input and output, the probability to wrongly regard this random permu-
tation as AES cipher is 1 × α1 = 2−128.

To summarize, the advantage to distinguish AES cipher from random permu-
tation is not negligible. The total time complexity of this known-key distinguisher
is about 2 × 241.61 = 242.61 computations. The memory requirements are about
16 × 28 × 2 = 213 bytes used for storing the counter vector V [16][28].

5.2 Improved Known-Key Distinguisher on 10-Round AES

The statistical integral distinguisher on AES10 is based on the distinguishing
property of AES10 in [12], which is represented according to Eq. (4), see Fig. 3.

Along with the idea within the distinguisher on AES10 in [12], in our known-
key distinguisher on AES10, we use Ns < 232 structures, each of which takes
N = Ns middle texts, to obtain N2 input/output pairs. For AES cipher,
there is one value for (Δ,Γ ) to let each byte of R ◦ SB(R−1(input ⊕ Δ)) and
R−1 ◦ SB−1(Q(output ⊕ Γ )) satisfy the statistical integral property with a high
probability. But for any random permutation, the probability to have one solu-
tion for (Δ,Γ ) to obtain the same property is very low.
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However, in above way, the distinguisher has high time complexity. In order to
reduce the time complexity, we implement the distinguisher in the following way.
As Ns structures are used, we divide them into Ns/ns groups and each group has
ns structures. Then we compute the statistic value for each group. There is one
value (Δ,Γ ) to make all the statistics for Ns/ns groups on both states Input′ =
MC ◦SR◦SB(input⊕Δ) and Output′ = MC−1 ◦SB−1 ◦SR−1(output⊕Γ ) less
than the given threshold τ for AES10. However, for the random permutation,
even if the attacker can carefully choose the inputs to find one value of Δ to
satisfy the statistical property on the state Input′ with probability one, the
probability to find one value Γ to satisfy the statistical property on the state
Output′ is very low.

In order to further reduce the time complexity, we focus on statistics on
8-byte states – Input′(0∼3) and Output′(0∼3). So we only need to find two 32-
bit values for Δ′ = (Δ(0),Δ(5),Δ(10),Δ(15)) and Γ ′ = (Γ(0), Γ(7), Γ(10), Γ(13)).
The detailed process for this known-key distinguisher on AES10 is described in
Algorithm 3.

In this setting, by applying Proposition 1, s = 32, t = 8, b = 1 and ns = 28.
If we set the error probabilities α0 = 2−50 and α1 = 2−10.51, then N = 227.92

and τ = 64123.53 according to Eq. (8).

ZR−1(Z)

(input)
(I∗)−1

←−−−−−

⎡
⎢⎣�

AAAA
AAAA
AAAA
AAAA

⎤
⎥⎦ (AK�SR�Q�S�R�S)−1

←−−−−−−−−−−−−−−−−−

⎡
⎢⎣
A1CCC
A2CCC
A3CCC
A4CCC

⎤
⎥⎦ R−1

←−−−

⎡
⎢⎣
A1CCC
A2CCC
A3CCC
A4CCC

⎤
⎥⎦ S�R�S�P�SR−−−−−−−−−−→

⎡
⎢⎣
AAAA
AAAA
AAAA
AAAA

⎤
⎥⎦ F∗

−−→ (output)

(I∗)−1 = (AK � SB � SR � MC)−1 F∗ = MC � AK � SB � SR � AK

Fig. 3. Known-key distinguisher for AES10. (A1, A2, A3, A4) and A denote uniform
distribution on 4 bytes and 1 byte respectively. C denotes constant byte.

In Algorithm 3, we filter out the wrong values for Δ′ = (Δ(0),Δ(5),Δ(10),
Δ(15)) with the statistics on Input′(0∼3) one by one. At last, the probability
that one wrong Δ′ is remained after all 227.92−8 filtering processes is about
(232 − 1) ·α4×219.92

1 ≈ 0, while the probability that the right candidate Δ cannot
pass the filtering process is 1 − (1 − α0)4×219.92 ≈ 2−28.08.

In the similar way, we filter out the wrong values for Γ ′ = (Γ(0), Γ(7),
Γ(10), Γ(13)) with the statistics for Output′(0∼3) one by one. Finally, the prob-
ability that one wrong Γ ′ can pass the filtering process is also about 0, while
the probability that the right Γ ′ cannot pass the filtering process is also 2−28.08.
Therefore, for the case of AES10, the probability to correctly identify the AES10

cipher is about (1 − 2−28.08)2 ≈ 1 − 2−27.08.
While for the case of random permutation, at the best of the times the

adversary can choose the inputs that there is always at least one value of Δ′

remaining after the filtering process, but the probability that there is at least
one Γ ′ surviving after the filtering process is about 0.
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Algorithm 3. Improved known-key distinguisher on AES10

1 Allocate vectors V [N ][N ], V ′[N ][N ];
2 for all N2 values of (yi, xj), 0 ≤ i, j < N do
3 Calculate input p and output c from Z = (xj , 0, 0, 0) ⊕ R(yi, 0, 0, 0) and let

V [j][i] = (p(0), p(5), p(10), p(15)), V ′[i][j] = (c(0), c(7), c(10), c(13));

// Steps 4 ∼ 30 proceed the first group with ns structures.

4 for all 216 values of (Δ(0), Δ(5)) do
5 Allocate vectors V1[ns][2

24];
6 for all ns values of j and N values of i do
7 Get (p(0), p(5), p(10), p(15)) from V[j][i];
8 Compute W0 = 2 · SB(p(0) ⊕ Δ(0)) ⊕ 3 · SB(p(5) ⊕ Δ(5)); // · operate

on F 8
2 .

9 Let V1[j][W0, p(10), p(15)] increase one;

10 for all 28 values of Δ(10) do
11 Allocate a counter vectors V2[ns][2

16], and initialize to zero;
12 for all ns values of j and all 224 values of W0‖p(10)‖p(15) do
13 Compute W1 = W0 ⊕ (SB(p(10) ⊕ Δ(10)));
14 Let V2[j][W1, p(15)] += V1[j][W0, p(10), p(15)];

15 for all 28 values of Δ(15) do
16 Allocate counter vectors V3[ns][2

8], and initialize to zero;
17 for all ns values of j and all 216 values of (W1, p(15)) do
18 W ′ = W1 ⊕ (SB(p(15) ⊕ Δ(15))), let V3[j][W

′] +=
V2[j][W1, p(15)];

19 C1 =
∑ns−1

j=0

∑28−1
W ′=0

(V3[j][W
′]−N×2−8)2

N×2−8 ;

20 if C1 ≤ τ then
21 Put Δ′ = (Δ(0), Δ(5), Δ(10), Δ(15)) into Vk. // About remain

232 · α1 values.

22 for all values of Δ′ ∈ Vk do
23 Allocate counter vectors V4[ns][2

8], and initialize to zero;
24 for all ns values of j and N values of i do
25 Get (p(0), p(5), p(10), p(15)) from V[j][i] and compute Input′

1 = SB(p(0) ⊕
Δ(0)) ⊕ 2 · SB(p(5) ⊕ Δ(5)) ⊕ 3 · SB(p(10) ⊕ Δ(10)) ⊕ SB(p(15) ⊕ Δ(15));

26 Increment V4[j][Input′
1] by one;

27 C2 =
∑ns−1

j=0

∑28−1
W=0

(V4[j][W ]−N×2−8)2

N×2−8 ;

28 if C2 ≤ τ then
29 Put Δ′ into Vk1 [·]. // About 232 · α2

1 values are remained.

30 Proceed the similar steps as 22-29 for the other 2 bytes Input′
(2∼3). // About 1

value is remained.

31 Check if this Δ′ satisfies the other N/ns − 1 groups of ns structures;
32 if there is no solution for Δ′ remained then
33 return ⊥. // The distinguishing attack is failed.

34 Proceed Steps 4 ∼ 31 with V ′[N ][N ] to compute the distributions on
Output′

(0∼3) by guessing Γ ′ = (Γ(0), Γ(7), Γ(10), Γ(13));

35 For AES10, there exists one solution for Γ ′;
36 For any random permutation, there is no solution for Γ ′.
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So the success probability of this distinguisher is about 1 − 2−27.08. The
advantage to distinguish AES10 from random permutation is not negligible.
The time complexity of Steps 2 ∼ 3 is N × N = 255.84 full round encryptions.
Then the time complexity of Steps 4 ∼ 9 is about 216 ×ns ×N = 251.92 memory
accesses (MA). Steps 10 ∼ 14 take 216 × 28 × ns × 224 = 256 MA, and Steps
15 ∼ 21 require about 232×ns×216 = 256 MA. Since α1 = 2−10.51, Steps 22 ∼ 29
take 232 × α1 × ns × N = 257.41 MA and Step 30 needs about (232 × α2

1 + 232 ×
α3
1)×ns ×N ≈ 246.91 MA. After one filter process, the number of candidates for

Δ is about 1. Consequently by filtering with other N/ns −1 groups of structures,
the time complexity of Step 31 is (N/ns − 1) × ns × N ≈ 255.84 MA. Then if we
roughly set one access to a table is equivalent to one full round encryption, the
total complexity from Step 4 ∼ 31 is about 251.92 + 256 + 256 + 257.41 + 246.91 +
255.84 ≈ 258.49 encryptions. Since Step 34 also takes 258.49 encryptions, the total
time complexity of the whole attack is about 255.84 + 2 × 258.49 ≈ 259.60 full
round encryptions. In addition, the dominant memory requirements happen on
V [N ][N ] and V ′[N ][N ], which need about 2 × 4 × N × N = 258.84 bytes.

6 Conclusion

In this paper, we propose a statistical integral distinguisher with multiple struc-
tures on input and multiple integral properties on output based the work of
Wang et al. at FSE’16. With this distinguisher, we give the known-key distin-
guishing attack on 8-round and full round AES-128 based on the Gilbert’s work
at ASIACRYPT’14, which are the best known-key distinguishers for AES so far
according to the time complexity. Beside that, we present a secret-key statistical
integral distinguisher on 5-round AES with secret S-box under chosen-ciphertext
mode. This is the best integral distinguisher on AES with secret S-box under
secret-key setting. As a future work, we try to apply more statistical techniques
into the field of symmetric ciphers and find improved attack on AES and AES-
like ciphers.
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2013CB834205), NSFC Projects (No. 61133013, No. 61572293), Program for New
Century Excellent Talents in University of China (NCET-13-0350), Program from
Science and Technology on Communication Security Laboratory of China (No.
9140c110207150c11050).

A Appendix

A.1 Experiment Results

In order to verify the theoretical model of statistical integral distinguisher in
Sect. 3, we implement the distinguishing attack in Sect. 5 on a mini variant of
AES with the block size 64-bit denoted as AES* here. The round function of
AES* is similar to that of AES, including four operations, i.e., SB, SR,MC and
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AK. 64-bit block is partitioned into 16 nibbles and SB uses S-box S0 in LBlock.
SR is same as that of AES, and the matrix used in MC is

M =

⎛

⎜⎜
⎝

1 1 4 9
9 1 1 4
4 9 1 1
1 4 9 1

⎞

⎟⎟
⎠ ,

which is defined over GF (24). For the multiplication, each nibble and value in
M are considered as a polynomial over GF (2) and then the nibble is multiplied
modulo x4 + x + 1 by the value in M . The addition is simply XOR operation.
The subkeys are XORed with the nibbles in AK operation.

There is similar known-key integral distinguisher for 8-round AES* since
its similarity to AES, see Fig. 1. Given a set of data Z = {(x, 0, 0, 0) ⊕
R(y, 0, 0, 0)|x ∈ (0, 1)16} for fixed y, i.e., the first column of Z takes all 216 possi-
ble values and other columns are fixed to some constants, after S�R�S operation,
each column of output u is active, i.e. that 216 values are uniformly distributed
on each column of output. Since R−1(Z) = {R−1((x, 0, 0, 0) ⊕ (y, 0, 0, 0))} has
216 structures that each one takes all 216 possible values on the first columns
and constants on other columns, after (S � R � S)−1 operation, each column of
output u is active.

In our experiment, we consider the distributions of four 8-bit values in v
including the first and second nibble in each column of v. Here s = 16, t = 8
and b = 4. If we set α0 = 0.2 and take different values for N and Ns, α1 and τ
can be computed using Eq. (8). By randomly choosing Ns values for y and N
values for x, we proceed the experiment to compute the statistics C ′ for AES*
and random permutations. With 2000 times of experiments, we can obtain the
empirical error probabilities α̂0 and α̂1. The experimental results for α̂0 and α̂1

are compared with the theoretical values α0 and α1 in Fig. 4.

7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

log(N)

e
rr

o
r 

p
ro

b
a

b
ili

ty

7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

log(N)

e
rr

o
r 

p
ro

b
a

b
ili

ty

← N
s
=1

← N
s
=10

N
s
=20 →

Fig. 4. Experimental results for AES* considering four input bytes. In detail, set the
value of α0 and change the values of N and Ns, the theoretical and empirical α0 are
shown in the left part of figure, corresponding α1 calculated and tested by Eq. (5) are
shown in the right part of figure.
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Fig. 5. Experimental results for AES* considering two input and output bytes. In
detail, set the theoretical α0 = 0.2 and change the values of N , then the corresponding
theoretical α1 and empirical α0 and α1 are calculated and tested by Eq. (5) in this
figure

Moreover, we implement the second experiment where we set b = 4 including
two bytes of u and two bytes of v. We set α0 = 0.2 and let N = Ns, the
empirical error probabilities are obtained from 1000 times of experiments. The
experimental results for α̂0 and α̂1 are compared with the theoretical values α0

and α1 in Fig. 5.
Figures 4 and 5 show that the test results for the error probabilities are in

good accordance with those for theoretical model.
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