
Improved Integral Attack on HIGHT

Yuki Funabiki1(B), Yosuke Todo2, Takanori Isobe3, and Masakatu Morii1

1 Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
funabiki@stu.kobe-u.ac.jp, mmorii@kobe-u.ac.jp

2 NTT Secure Platform Laboratories, 3-9-11 Midori-cho,
Musashino, Tokyo 180-8585, Japan

todo.yosuke@lab.ntt.co.jp
3 University of Hyogo, 7-1-28 Minatojima-minamimachi,

Chuo-ku, Kobe, Hyogo 650-0047, Japan
takanori.isobe@ai.u-hyogo.ac.jp

Abstract. HIGHT is a lightweight block cipher with 64-bit block length
and 128-bit security, and it is based on the ARX-based generalized Feis-
tel network. HIGHT became a standard encryption algorithm in South
Korea and also is internationally standardized by ISO/ICE 18033-3.
Therefore, many third-party cryptanalysis against HIGHT have been
proposed. Especially, impossible differential and integral attacks are
applied to reduced-round HIGHT, and the current best attack under the
single-key setting is 27 rounds using the impossible differential attack.
In this paper, we propose an improved integral attack against HIGHT.
We first propose new 19-round integral characteristics by using the prop-
agation of the division property, and they are improved by two rounds
compared with previous integral characteristics. Finally, we can attack
28-round HIGHT by appending 9-round key recovery. Moreover, we can
attack 29-round HIGHT if the full code book is used, and it improves by
two rounds compared with previous best attack.

Keywords: Block cipher · HIGHT · Integral attack · Division
property · Partial-sum technique · Bitwise partial-sum technique ·
Meet-in-the-middle technique

1 Introduction

The lightweight cryptography is one of the most actively discussed topics in
the community of symmetric-key cryptographers. The motivation of the light-
weight symmetric-key cryptography is to design high-performance and secure
symmetric-key ciphers under the area-constraining environments. Such ciphers
are expected to be proper for radio frequency identification (RFID), sensor net-
work, and Internet of Things (IoT). Nowadays, a huge number of such ciphers
have been proposed, and please refer to [2], where a list of lightweight ciphers is
well summarized.

The generalized Feistel network (GFN) is suited to the design of lightweight
block ciphers because each F-function is very small. LBlock [23] and TWINE [19]
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 363–383, 2017.
DOI: 10.1007/978-3-319-60055-0 19

364 Y. Funabiki et al.

Table 1. Comparison of attack results on HIGHT.

Model Attack #Rounds Data Time Reference

Single key Imp. Diff 18 246.8 2109.2 [7]

Imp. Diff 26 261 2119.53 [12]

Imp. Diff 26 261.6 2114.35 [3]

Imp. Diff 27 258 2126.6 [3]

Integral 16 242 251 [7]

Integral 22 262 2118.71 [25]

Integral 22 262 2102.35 [14]

Integral 26 257 2120.55 [15]

Integral 28 263 2127 Sect. 4

Integral 29 264 2126 Sect. 5

Related key Imp. Diff 31 264 2127.28 [12]

rectangle 32 (full) 257.84 2125.83 [10]

are examples of such ciphers. HIGHT, which was proposed by Hong et al. at
CHES 2006 [7], is also a lightweight block cipher adopting the GFN. Moreover,
HIGHT was standardized by ISO/IEC 18033-3 [8]. HIGHT only consists of three
operations, i.e., modular additions over 256, bitwise rotations, and bitwise XOR.
Such structure is often called ARX, and HIGHT is regarded as an ARX-based
generalized Feistel network. Some ARX-based ciphers have been proposed, but
there are many unsolved problems in the security analysis compare with the
S-box-based ciphers. Therefore, HIGHT standardized by ISO/IEC is one of the
most attractive ARX-based ciphers and is well analyzed.

In the related-key setting, the full HIGHT was already broken using the
related-key rectangle attack [10]. On the other hand, impossible differential and
integral attacks have been often applied to HIGHT under the single-key setting,
but the full HIGHT has not been attacked yet. The current best attack is pro-
posed by Chen using the impossible differential attack and 27-round HIGHT is
attacked [3] (Table 1).

In this paper, we propose the current best attack by using the improved inte-
gral attacks. The integral attack consists of two parts; an integral characteristic
and key recovery. In the integral characteristic, attackers first prepare a set of
chosen plaintexts, where the XOR of the part of all corresponding states after
several encryption rounds is always 0 for all secret keys. Then, in the key recov-
ery, they guess round keys used in the last several rounds and evaluate whether
the XOR of partially decrypted texts is 0 or not. If the correct key is guessed,
the XOR is 0 because of the integral characteristic. Therefore, if the XOR is not
0, the guessed round key is discarded.

The integral cryptanalysis on HIGHT was first evaluated by the designers [7].
They showed 12-round integral characteristics with 28 chosen plaintexts, and
16-round HIGHT is attacked by using the characteristic. However, the error of

Improved Integral Attack on HIGHT 365

this 12-round characteristics was pointed out by Zhang et al., and they showed
that the correct integral characteristics with 28 chosen plaintexts cover only 11
rounds [25]. Moreover, they improved the 11-round characteristic to 17-round one
by using the higher-order integral characteristics. As a result, 22-round HIGHT
is attacked by using the 17-round characteristic. Then, the key recovery part is
dramatically improved by Sasaki and Wang. They first proposed the meet-in-the-
middle technique for the key recovery of the integral attack [14], which is useful
to reduce the time complexity. Moreover, they proposed the bitwise partial-sum
technique and optimized the key recovery [15]. As a result, 26-round HIGHT is
attacked. Note that both improvements use the same 17-round characteristic by
Zhang et al.

In this paper, we first show new 19-round integral characteristics, which is
improved by two rounds than previous 17-round one. Our new characteristic is
found by the propagation of the division property [21]. The division property
is a general technique to find integral characteristics and recently applied to
a wide range of block ciphers. New 18-round integral characteristics with 263

chosen plaintexts are found by the propagation of the division property, and
18-round characteristics are extended to 19-round ones. Then, we show that 28-
round HIGHT can be attacked by using this extended 19-round characteristic.
Moreover, we show that 29-round HIGHT can be attacked by using the same
characteristic if the full code book is used. Since the previous best attack is
up to 27 rounds, our new attacks are the current best attack under the single-
key setting.

2 Preliminaries

2.1 Specification of HIGHT

HIGHT is a block-cipher proposed at CHES 2006 by Hong et al. [7]. The block
size is 64 bits and the key size is 128 bits. It adopts the type-2 generalized Feistel
network with 8 branches and 32 rounds. Please refer to [7] for details. Note that
a figure with an incorrect subkey order is showed in [7], and the designers later
fixed the problem [1].

Encryption. The 64-bit plaintext and ciphertext are considered as concatena-
tions of 8 bytes and denoted by P = P7‖P6‖ · · · ‖P0 and C = C7‖C6‖ · · · ‖C0,
respectively. The input of the (r + 1)-th round function is represented as
Xr = Xr

7‖Xr
6‖ · · · ‖Xr

0 for r = 0, 1, . . . , 32. At first, the plaintext is loaded into
an internal state X0

7‖X0
6‖ · · · ‖X0

0 as follows.

X0
0 = P0 � WK0, X0

1 = P1, X0
2 = P2 ⊕ WK1, X0

3 = P3,

X0
4 = P4 � WK2, X0

5 = P5, X0
6 = P6 ⊕ WK3, X0

7 = P7,

where WKi denotes 8-bit whitening keys for i = 0, 1, . . . , 7. The operation �
denotes addition mod 28. Then, the value Xr

7‖Xr
6‖ · · · ‖Xr

0 is updated as Fig. 1

366 Y. Funabiki et al.

Fig. 1. Round function procedure of HIGHT

for r = 0, 1, . . . , 31, where F0(x) = (x ≪ 1) ⊕ (x ≪ 2) ⊕ (x ≪ 7) and
F1(x) = (x ≪ 3) ⊕ (x ≪ 4) ⊕ (x ≪ 6). The operation about (x ≪ s) denotes
an s-bit left rotation of an 8-bit value x, and SKi denotes the i-th 8-bit subkey
for i = 0, 1, . . . , 127. The swap of the byte position is omitted in the last round.
The internal state between F and the key addition is defined by Y r

1 , Y r
3 , Y r

5 , Y r
7 ,

and the internal state after the key addition is defined by Zr
1 , Zr

3 , Zr
5 , Zr

7 . Finally,
the ciphertext is generated from X32 by applying the post whitening as follows.

C0 = X32
0 � WK4, C1 = X32

1 , C2 = X32
2 ⊕ WK5, C3 = X32

3 ,

C4 = X32
4 � WK6, C5 = X32

5 , C6 = X32
6 ⊕ WK7, C7 = X32

7 .

Decryption. The decryption process is explained in the similar to the encryp-
tion process. This operation is identical to an operation for encryption apart
from the following two modifications.

1. All � operations are replaced by � operations except for the � operations
connecting SKi and outputs of F0, where the operation about � denotes
subtraction mod 28.

2. The order in which the keys WKi and SKi are applied is reversed.

Key Schedule. The 128-bit master key is considered as a concatenation
of 16 bytes and denoted by K = K15‖K14‖ · · · ‖K0. In the key schedule,
4 whitening keys for plaintexts are first generated from the master key as
(WK0,WK1,WK2,WK3) = (K12,K13,K14,K15), and 4 whitening keys for
ciphertexts are generated from the master key as (WK4,WK5,WK6,WK7) =
(K0,K1,K2,K3). Moreover, the 128 subkeys are generated as{

SK16·i+j = Kj−i mod 8 � δ16·i+j ,

SK16·i+j+8 = K(j−i mod 8)+8 � δ16·i+j+8,

where δi is a constant.

2.2 Integral Characteristics and Division Property

The integral attack was first proposed by Daemen et al. to evaluate the secu-
rity of Square [5], and then it was formalized by Knudsen and Wagner [9].

Improved Integral Attack on HIGHT 367

The integral attack consists of two parts; construction of an integral character-
istic and key recovery. In this subsection, we focus on the first part, and the
second part is described in the next subsection.

The most common integral characteristic exploits the set of chosen plaintexts
such that the sum of chosen bits in texts encrypted a certain number of rounds
is always 0 for all secret keys. Assume that m-bit encrypted texts hold this
characteristic in the target block cipher. Then, since the probability that the
ideal block cipher holds this characteristic is 2−m, the distinguishing attack is
directly derived from the integral characteristic.

Division Property. The division property, which was recently proposed in
[21,22], is a general method to find integral characteristics, and it is defined as
follows.

Definition 1 (Division Property [21,22]). Let X be a multiset whose elements
take a value of Fn

2 . When the multiset X has the division property D1n

K
, where K

denotes a set of m-dimensional vectors whose i-th element takes 0 or 1, it fulfills
the following conditions:

⊕
x∈X

xu =

{
unknown if there exist k ∈ K s.t. u � k,

0 otherwise,

where xu =
∏n

i=1 x[i]u[i], and u � k if u[i] ≥ k[i] for all i. Here, x[i] denotes
the i-th bit of x from the least significant bit (lsb).

Todo and Morii showed the propagation rules of the division property for three
basic operations; copy, xor, and and [22].

Let I = {i1, i2, . . . , i|I|} be the index of active plaintext bits. Then, the
division property of such chosen plaintexts becomes D1n

k , where ki = 1 if i ∈ I
and ki = 0 otherwise. Then, to search for integral characteristics, division trail
is evaluated.

Definition 2 (Division Trail [24]). Let us consider the propagation of the divi-
sion property

{k} def= K0 → K1 → K2 → · · · → Kr,

where DKi
be the division property after i-round propagation. Moreover, for any

vector k∗
i+1 ∈ Ki+1, there must exist a vector k∗

i ∈ Ki such that k∗
i can propa-

gate to k∗
i+1 by the propagation rule of the division property. Furthermore, for

(k0,k1, . . . ,kr) ∈ (K0 × K1 × · · · × Kr) if ki can propagate to ki+1 for all
i ∈ {0, 1, . . . , r − 1}, we call (k0 → k1 → · · · → kr) an r-round division trail.

Let Ek be the target r-round block cipher. Then, if there is no division trail
k0

Ek−−→ kr = ei, the i-th bit of r-round ciphertexts is always balanced. In [21],
[20], and [22], all possible division trails are evaluated by using a breadth-first
search. Unfortunately, it is practically infeasible to apply this method to block
ciphers whose block length exceeds 32 because the size of Ki is extremely large.

368 Y. Funabiki et al.

MILP-Aided Propagation Search. A mixed-integer linear programming
(MILP) was introduced to cryptanalysis by Mouha et al. in [11]. Then, the
MILP has been successfully applied to various cryptanalyses [4,13,17,17,18,24].
The MILP is an optimization or feasibility program where variables are restricted
to integers. An MILP model M consists of variables M.var, constraints M.con,
and an objective function M.obj, and the following is an example of MILP.

Example 1.

M.var ← x, y, z as binary.
M.con ← x + 2y + 3z ≤ 4 and x + y ≥ 1
M.obj ← maximize x + y + 2z

The answer of the model M is 3, where (x, y, z) = (1, 0, 1).

MILP solver can solve such optimization program, and it returns infeasible if
there is no feasible solution. Moreover, if there is no objective function, the
MILP solver only evaluates whether this model is feasible or not.

Xiang et al. showed that all division trails are efficiently evaluated by using
the MILP in [24], where three division trails for basic operations are modeled as
follows.

Proposition 1 (MILP model for COPY). Let a
COPY−−−−→ (b1, b2, . . . , bm)

be a division trail of COPY, where one bit is copied to m bits. The following
inequalities are sufficient to describe the propagation of the division property for
copy. {

M.var ← a, b1, b2, . . . , bm as binary.

M.con ← a = b1 + b2 + · · · + bm

Proposition 2 (MILP model for XOR). Let (a1, a2, . . . , am) XOR−−−→ b be
a division trail of XOR, where the XOR of m bits is computed. The following
inequalities are sufficient to describe the propagation of the division property for
xor. {

M.var ← a1, a2, . . . , am, b as binary.

M.con ← a1 + a2 + · · · + am = b

Proposition 3 (MILP model for 2-bit AND). Let (a1, a2)
AND−−−→ b be

a division trail of AND, where the AND of 2 bits is computed. The following
inequalities are sufficient to describe the propagation of the division property for
and. {

M.var ← a1, a2, b as binary.

M.con ← b ≥ ai for all i ∈ {1, 2}
In [24], an additional constraint b − a1 − a2 ≤ 0 is used, but it is redundant.
Namely, even if the redundant constraint is not used, it does not affect the result
of MILP.

Improved Integral Attack on HIGHT 369

We first create the MILP model for a target block cipher by using
Proposition 1, 2, and 3. Then, the division property of plaintexts is constrained
according to the index I of active plaintext bits. Moreover, the division property
of the i-th bit of ciphertexts is constrained to 1 when the i-th bit of ciphertexts
is evaluated, and the division property of the other bits is constrained to 0. If
the MILP solver judges that the model is infeasible, the i-th bit of ciphertexts
is balanced. Please refer to [24] in detail.

2.3 Key Recovery and Bitwise Partial-Sum Technique

Supposing that κ-bit secret key is involved to evaluate the integral characteris-
tic with 2|I| texts from ciphertexts, the trivial key recovery requires 2|I|+κ time
complexity. Ferguson et al. proposed the partial-sum technique to reduce the
time complexity in [6]. In this technique, we first store the frequency of cipher-
texts into a memory, ciphertexts are partially decrypted by guessing the part of
involved keys, and reduce the size of the memory. Since the complexity is the
product of the memory size and the partially guessed key size, the attacker can
reduce the whole complexity by partial decryption and compressing the data
size step by step.

Sasaki and Wang proposed the bitwise partial-sum technique, which improves
the complexity of the partial-sum technique for ARX designs [15]. Suppose that
n-bit variables X,Y and n-bit unknown key K. Also suppose that 22n pairs of
(X,Y) are given to the attacker, and the goal of the attacker is to compute Z
by exhaustively guessing K, where the following two operations are considered.

Z = (X ⊕ K) � Y, Z = (X � K) ⊕ Y.

The complexity to compute Z is 22n · 2n = 23n operations. The bitwise partial-
sum can reduce the complexity to n · 22n+1 by computing Z bit by bit.

In practice, we need to evaluate the complexity for mod subtraction because
of analyzing on decryption. At first, n-bit variable Ȳ and K̄ denote inverse
elements corresponding to Y and K, respectively. Then, the following equations
can be easily derived.

(X ⊕ K) � Y = (X ⊕ K) � Ȳ , (X � K) ⊕ Y = (X � K̄) ⊕ Y.

Hence, we can consider that the mod subtraction is equivalent to the mod addi-
tion are equivalent as far as guessing all values of Ȳ and K̄, and use same
procedure shown by [15]. The complexities to compute the above equations with
the bytewise and bitwise partial-sum is given in Table 2.

Table 2. Summary of the complexity of the bytewise and bitwise partial-sum

Target equation Bytewise partial-sum Bitwise partial-sum

Z = (X ⊕ K) � Y 23n n · 22n+1

Z = (X � K) ⊕ Y 23n n · 22n+1

370 Y. Funabiki et al.

3 New Integral Characteristics on HIGHT

3.1 Previous 17-Round Integral Characteristics

Zhang et al. first showed 11-round integral characteristics with 28 chosen plain-
texts in [25]. Moreover, they extended the characteristics to 17-round ones by
using the higher-order integral as

(A,A,A,A,A,A,A, C) 17R−−→ (U ,U ,U ,U ,B0,U ,U ,U),

(A,A,A, C,A,A,A,A) 17R−−→ (B0,U ,U ,U ,U ,U ,U ,U),

where B0 denotes that the lsb of the byte is balanced [25]. Moreover, A denotes
that every value appears the same number in the multiset, C denotes that the
value is fixed to a constant for all texts in the multiset and U denotes that the
multiset is indistinguishable from one of n-bit random values.

3.2 New Integral Characteristics Based on Division Property

We first propose some new 18-round integral characteristics, which are found
by the propagation of the division property. As the unique structure of HIGHT,
there are modular constant additions and modular additions of two values. Such
additions are represented by the combination of half and full adders, and we
generate the MILP model by simulating these adders by three propagation rules.

MILP Model for Modular Additions. We first consider the MILP model
for half and full adders. In the half adder, the input is two bits a and b, and the
output is the sum s and the carry c. Then, s and c are computed as

c = a ∧ b, s = a ⊕ b.

In the full adder, the input is three bits a, b, and x, and the output is the sum
s and the carry c. Then, s and c are computed as

c = (a ∧ b) ⊕ (x ∧ (a ⊕ b)), s = a ⊕ b ⊕ x.

halfAdder and fullAdder in Algorithm 1 generates the MILP model of the
division property for halfAdder and fullAdder, respectively. Here, halfAdder
consists of 6 M.vars and 5 M.cons, and fullAdder consists of 13 M.vars
and 10 M.cons. Moreover, modAdd in Algorithm 1 shows the MILP model of
the division property for modular addition of two n-bit values, where (6 + 13 ×
(n − 2) + 1) M.vars and (5 + 10 × (n − 2) + 1) M.cons are used. Constant
round keys are modular added to the state in HIGHT, and modAddConst in
Algorithm 1 shows the MILP model of the division property. In the constant
addition, corresponding division property is always 0. Therefore, additions of
the lsb and msb are simply represented, and it is enough to use halfAdder for
additions of other bits. Therefore, 2+6×(n−2)+1 M.vars and 1+5×(n−2)+1
M.cons are used.

Improved Integral Attack on HIGHT 371

Algorithm 1. MILP model of division property for modular addition of two
values.
1: procedure halfAdder(M, a, b)
2: M.var ← as, bs, ac, bc, s, c *

3: M.con ← a = as + ac
4: M.con ← b = bs + bc
5: M.con ← s = as + bs
6: M.con ← c ≥ ac and c ≥ bc
7: return (M, s, c)
1: procedure fullAdder(M, a, b, x)

2: M.var ← as, bs, au, bu, av , bv *

3: M.var ← xs, xw, s, c *
4: M.con ← a = as + au + av
5: M.con ← b = bs + bu + bv
6: M.con ← x = xs + xw

7: M.con ← s = as + bs + xs

8: M.var ← u, v, w *

9: M.con ← u ≥ au and u ≥ bu
10: M.con ← v = av + bv
11: M.con ← w ≥ xw and w ≥ v

12: M.con ← c = u+ w

13: return (M, s, c)

1: procedure modAdd(M,a, b, n)
2: (M, s1, c1) = halfAdder(M, a1, b1)

3: for i = 2 to n − 1 do

4: (M, si, ci) = fullAdder(M, ai, bi, ci−1)

5: M.var ← sn
6: M.con ← sn = an + bn + cn−1

7: return (M,s)
1: procedure modAddConst(M,a, n)

2: M.var ← s1, c1
3: M.con ← a1 = s1 + c1
4: for i = 2 to n − 1 do
5: (M, si, ci) = halfAdder(M, ai, ci−1)
6: M.var ← sn
7: M.con ← sn = an + cn−1

8: return (M,s)

* means each variant are defined as binary.

New 18-Round Integral Characteristics. We implemented an MILP model
of the division property for HIGHT. The algorithm to search for integral charac-
teristics is described in Algorithm 2 of AppendixA. To find the longest integral
characteristics, we choose one constant bit from 64 plaintext bits, i.e., 64 sets of
263 chosen plaintexts are tried out. As a result, we found six 18-round integral
characteristics as

IC1 (A,A,A,A,A,A,A,A0)
18R−−→ (U ,U ,U ,U ,B0,U ,U ,U),

IC2 (A,A,A,A0,A,A,A,A) 18R−−→ (B0,U ,U ,U ,U ,U ,U ,U),

IC3 (A,A,A,A,A,A0,A,A) 18R−−→ (U ,U ,U ,U ,B1,0,U ,U ,U),

IC4 (A,A,A,A,A,A1,A,A) 18R−−→ (U ,U ,U ,U ,B1,0,U ,U ,U),

IC5 (A,A0,A,A,A,A,A,A) 18R−−→ (B1,0,U ,U ,U ,U ,U ,U ,U),

IC6 (A,A1,A,A,A,A,A,A) 18R−−→ (B1,0,U ,U ,U ,U ,U ,U ,U),

where Ai denotes seven bits except for i-th bit are active and i-th bit is constant,
and B1,0 denotes that the lsb and the second lsb are balanced1.

1 Sun et.al. also independently proposed 18-round integral characteristics in [16].
However, they presented only two characteristics as IC1 and IC2.

372 Y. Funabiki et al.

3.3 Extended 19-Round Integral Characteristics

We propose how to extend six 18-round integral characteristics to 19-round ones
by appending one round to the plaintext side. Especially, we do not need to guess
secret keys for extensions from IC1, IC2, IC3 and IC5, and it does not require the
use of the full code book. Unfortunately, other two extensions requires guessing
the part of secret keys, but we can easily append one round by using the full
code book.

Extending IC1 and IC2. We consider the extension from IC1 and IC2, where
the round function using F0 is involved (see Fig. 2). Then, the lsb of the left half
of the output is represented as

L[0] ⊕ (F0(R) � SK)[0] = L[0] ⊕ F0(R)[0] ⊕ SK[0].

When the lsb of the left half of the plaintext takes a value X = F0(R)[0], the
lsb of the left half of the output is always constant. As a result, we can get two
19-round integral characteristics as

IC1’ (A7‖X ,A,A,A,A,A,A,A) 19R−−→ (U ,U ,U ,U ,B0,U ,U ,U),

IC2’ (A,A,A,A,A7‖X ,A,A,A) 19R−−→ (B0,U ,U ,U ,U ,U ,U ,U),

without guessing any bit of secret key, where Ai denotes that i bits are active.

Extending IC3 and IC5. We consider the extension from IC3 and IC5, where
the round function using F1 is involved (see Fig. 3). Then, the lsb of the left half
of the output is represented as

L[0] � (F1(R) ⊕ SK)[0] = L[0] ⊕ F1(R)[0] ⊕ SK[0].

When the lsb of the left half of the plaintext takes a value X = F1(R)[0], the
lsb of the left half of the output is always constant. As a result, we can get two
19-round integral characteristics as

IC3’ (A,A,A,A,A,A,A7‖X ,A) 19R−−→ (U ,U ,U ,U ,B1,0,U ,U ,U),

IC5’ (A,A,A7‖X ,A,A,A,A,A) 19R−−→ (B1,0,U ,U ,U ,U ,U ,U ,U),

without guessing any bit of secret key.

Fig. 2. IC1, 2

1

Fig. 3. IC3, 5

1

Fig. 4. IC4, 6

Improved Integral Attack on HIGHT 373

Extending IC4 and IC6. We consider the extension from IC4 and IC6 (see
Fig. 4). The second lsb is constant in these integral characteristics instead of the
lsb. Then, the second lsb of the left half of the output is represented as

L[1] ⊕ F1(R)[1] ⊕ SK[1] ⊕ (L[0] × (F1(R)[0] ⊕ SK[0])).

When the second lsb of the left half of the plaintext takes a value X = F1(R)[1]⊕
(L[0] × (F1(R)[0] ⊕ SK[0])), the output second lsb is constant. Then,

IC4’ (A,A,A,A,A,A,A6‖X‖A1,A) 19R−−→ (U ,U ,U ,U ,B1,0,U ,U ,U),

IC6’ (A,A,A6‖X‖A1,A,A,A,A,A) 19R−−→ (B1,0,U ,U ,U ,U ,U ,U ,U).

Unfortunately, these extension requires guessing SK[0] and the full code book.
These integral characteristics could not be detected by MILP-aided tool. In

our procedure that how to extend integral characteristics, we have to compose
the set of chosen plaintexts which include some non-linear part, represented
as X . On the other hand, the division property provide the completely linear
and generalized set of chosen plaintexts. As a result, the MILP-aided tool using
the division property can find 18-round integral characteristics but cannot find
19-round ones.

4 28-Round Attack on HIGHT Without Full Code Book

4.1 Whitening Key Addition to Integral Characteristics

In Sect. 3.3, we showed new 19-round integral characteristics, but we cannot use
each characteristic directly because whitening key is added to plaintexts at first.
In this section, we propose how to add the whitening to six 19-round integral
characteristics.

First, we add the whitening to IC1’ or IC2’, where the XOR is used as the
addition. Then, the whitening key is linearly involved to the lsb of the left half
of the output. Therefore, even if there is the whitening, we can use IC1’ without
guessing the key.

Next, we add the whitening to IC3’ or IC5’, where the modular addition is
used as the addition. Then, the whitening key is nonlinearly involved to the lsb
of the left half of the output. Unfortunately, this requires guessing the whitening
key, and the use of the full code book is required to add the whitening. Similarly,
the full code book is required to add the whitening to IC4’ or IC6’.

As a result, we can add the whitening to IC1’ and IC2’ without using the
full code book. Other four integral characteristics can be added the whitening
when the full code book is used. Hereafter, we only use IC1’ and IC2’ to avoid
the use of the full code book in this section.

374 Y. Funabiki et al.

4.2 Meet-in-the-Middle Technique

Let us consider the integral attack using IC1’. Then, X19
3 [0] is balanced and can

be written as a linear combination of two variables X20
4 [0] and Z19

3 [0], where
Xr

i [j] denotes the j-th bit of the Xr
i . In the meet-in-the-middle technique [14],

each sum is independently computed from ciphertexts, and secret keys satis-
fying

⊕
Z19
3 [0] =

⊕
X20

4 [0] are recovered by using the computation like the
meet-in-the-middle attack. Furthermore, for HIGHT, this concept is extended
by exploiting more linearity inside the round function in [15]. Since the complex-
ity for computing

⊕
Z19
3 [0] is much bigger than the one for

⊕
X20

4 [0], we reduce
the number of subkeys involved

⊕
Z19
3 [0]. We focus on that Z19

3 [0] is computed
by SK77[0]�Y 19

3 [0], and this is represented as Z19
3 [0] = SK77[0]⊕Y 19

3 [0] because
the lsb of the modular addition is a XOR. Therefore, SK77[0] can be removed,
namely

⊕
X20

4 [0] =
⊕

Y 19
3 [0]. Furthermore, by utilizing the linearity of F0, i.e.,

Y 19
3 [0] = X20

3 [7] ⊕ X20
3 [6] ⊕ X20

3 [1], we can move more subkey bits, and finally
get the following equation.⊕

(X20
4 [0] ⊕ X21

4 [7] ⊕ X21
4 [6] ⊕ X21

4 [1]) =
⊕

(Z20
3 [7] ⊕ Z20

3 [6] ⊕ Z20
3 [1]). (1)

Unfortunately, 13-byte keys are involved to the right half of Eq. (1), and we
cannot append 9 rounds like [15]. Moreover, 14-byte keys are involved when
IC2’ is used. Alternatively, we attack 28-round HIGHT from the 2-nd round
to 29-th round with whitening keys. Then, 12-byte keys and 13-byte keys are
involved when IC1’ and IC2’ are used, respectively. We detail the analyses of the
involved keys about each Zr

i in Table 5 of AppendixB.
We prepare the 28-round HIGHT from the 2-nd to 29-th round and apply

IC1’ to 19-round between 2-nd and 20-th round. Then, X20
3 [0] is balanced, and

we finally get the following equation.⊕
(X21

4 [0] ⊕ X22
4 [7] ⊕ X22

4 [6] ⊕ X22
4 [1]) =

⊕
(Z21

3 [7] ⊕ Z21
3 [6] ⊕ Z21

3 [1]). (2)

4.3 Attack Procedure

We use the relationship between the whitening key, subkey and master key in
Table 3.

Since the computation for the right-hand side of Eq. (2) requires much more
complexity than the left-hand side, we only explain the procedure to obtain
the right-hand side of Eq. (2) and evaluate the time complexity. The partial
decryption for obtaining

⊕
(Z21

3 [7]⊕Z21
3 [6]⊕Z21

3 [1]) is shown in Fig. 5. We first
describe our procedure with the bytewise partial-sum technique as following
steps:

1. The analysis starts from at most 264 ciphertexts of (C0, . . . , C7).
2. K1 and K2 are guessed and the data is compressed into 256 texts.
3. K2 has been already guessed, so K3 is guessed and the data is converted

into 256 texts.

Improved Integral Attack on HIGHT 375

Table 3. Relationship between Whitening key, Subkey and Master key from 1-st to
29-th round

Round RK7 RK5 RK3 RK1 Round RK7 RK5 RK3 RK1

W K15 K14 K13 K12 16 K12 K11 K10 K9

1 K3 K1 K1 K0 17 K7 K6 K5 K4

2 K7 K6 K5 K4 18 K3 K2 K1 K0

3 K11 K10 K9 K8 19 K15 K14 K13 K12

4 K15 K14 K13 K12 20 K11 K10 K9 K8

5 K2 K1 K0 K7 21 K6 K5 K4 K3

6 K6 K5 K4 K3 22 K2 K1 K0 K7

7 K10 K9 K8 K15 23 K14 K13 K12 K11

8 K14 K13 K12 K11 24 K10 K9 K8 K15

9 K1 K0 K7 K6 25 K5 K4 K3 K2

10 K5 K4 K3 K2 26 K1 K0 K7 K6

11 K9 K8 K15 K14 27 K13 K12 K11 K10

12 K13 K12 K11 K10 28 K9 K8 K15 K14

13 K0 K7 K6 K5 29 K4 K3 K2 K1

14 K4 K3 K2 K1 W K3 K2 K1 K0

15 K8 K15 K14 K13

When Round is W, RKi denotes the round key corresponding WK.
Otherwise, RKi denotes the round key corresponding SK

4. K15 is guessed and the data is compressed into 248 texts.
5. K3 has been already guessed, so K4 is guessed and the data is converted

into 248 texts.
6. K8 is guessed and the data is converted into 248 texts.
7. K11 is guessed and the data is compressed into 240 texts.
8. K1 has been already guessed, so K0 is guessed and the data is converted

into 240 texts.
9. K9 is guessed and the data is converted into 240 texts.

10. K12 is guessed and the data is converted into 240 texts.
11. K7 is guessed and the data is compressed into 232 texts.
12. K3 has been already guessed, so the data is converted into 232 texts.
13. K0 has been already guessed, so the data is converted into 232 texts.
14. K8 has been already guessed, so the data is converted into 232 texts.
15. K13 is guessed and the data is compressed into 224 texts.
16. K4 has been already guessed, so the data is compressed into 216 texts.
17. K12 has been already guessed, so the data is compressed into 28 texts.
18. K0 has been already guessed, so the data is compressed into 1 text of Z21

3 .
Then, we can calculate the value of

⊕
(Z21

3 [7] ⊕ Z21
3 [6] ⊕ Z21

3 [1]).

This procedure and its time complexity evaluation is summarized in Table 4.
Step 11 and 15 requires the dominant time complexity, where 2128 round

376 Y. Funabiki et al.

3 2 1

Fig. 5. Partial decryption for
⊕

(Z21
3 [7] ⊕ Z21

3 [6] ⊕ Z21
3 [1]) on 28-round attack

function computations is used for the bytewise partial sum. We apply the bit-
wise partial sum to Step 11 and 15 to reduce the complexities. Step 11 starts
from 240 texts of (X27

0 ,X26
3 ,X26

4 ,X26
5 ,X27

7), and the goal is obtaining 232 texts of
(X27

0 ,X25
3 ,X26

5 ,X27
7) with guessing K7. We then apply the bitwise partial sum to

guess K7. Referring Table 2, its time complexity is reduced to n·(280+39+1) = 2123

round functions, where n = 8. In Step 15, we can also reduce the time complex-
ity about 2128 to n · (288+31+1) = 2123 round functions, similarly. Finally, the
time complexity in the key recovery is estimated by Step 11 and 15 because the
complexities of other steps are negligible compared with 2123. Hence, the time
complexity of the key recovery is about 2124 round functions(RF).

Since only one integral characteristic with one balance bit is used, this key
recovery only reduces the 1-bit of information on the master key. Therefore, we
finally exhaustively searches 2127 master keys. As a result, the whole complexity
of our attack is 2124 RF + 2127 Enc ≈ 2127 Enc.

5 29-Round Attack on HIGHT with Full Code Book

When the use of the full code book is acceptable, we can attack 29-round HIGHT,
where one round is added to the plaintext side from the 28-round attack. There-
fore, while 28-round HIGHT from the 2-nd to 29-th round is attacked in Sect. 4,
the natural 29-round HIGHT is attacked.

Improved Integral Attack on HIGHT 377

We briefly describe the overview of our 29-round attack. We first prepare
the set of chosen texts for the input of the 2-nd round function such that it
brings 19-round integral characteristics, i.e., X20

3 [0] is balanced, and it is the
same as the 28-round attack. Next, we guess the round key in the 1-st round
and whitening keys, and get the set of corresponding plaintexts. Since the set
of plaintexts depends on the guessed keys, 29-round attack requires the use of
the full code book. Moreover, the position of the guessed keys depends on each
characteristic, and AppendixC shows it in detail. Finally, we execute the key
recovery that is the same as that for the 28-round attack.

Table 4. Summary of the computation for
⊕

(Z21
3 [7] ⊕ Z21

3 [6] ⊕ Z21
3 [1]).

Step Guessed keys Data size Texts need to be analyzed Complexity

(bytewise)

Complexity

(bitwise)

1 — 264 (C0, C1, C2, C3, C4, C5, C6, C7) 264 MA —

2 K1, K2 256 (C0, C1, X28
3 , C4, C5, C6, C7) 216 ·264 = 280

RF

—

3 K3(, K2) 256 (C0, C1, X28
3 , X28

4 , X28
5 , C6, C7) 216 ·28 ·256 =

280 RF

—

4 K15 248 (C0, C1, X27
3 , X28

5 , C6, C7) 224 ·28 ·256 =

288 RF

—

5 K4(, K3) 248 (C0, C1, X27
3 , X28

5 , X28
6 , X28

7) 232 ·28 ·248 =

288 RF

—

6 K8 248 (C0, C1, X27
3 , X27

4 , X27
5 , X28

7) 240 ·28 ·248 =

296 RF

—

7 K11 240 (C0, C1, X26
3 , X27

5 , X28
7) 248 ·28 ·248 =

2104 RF

—

8 K0(, K1) 240 (X28
0 , X27

0 , X26
3 , X27

5 , X28
7) 256 ·28 ·240 =

2104 RF

—

9 K9 240 (X27
0 , X26

3 , X27
5 , X27

6 , X27
7) 264 ·28 ·240 =

2112 RF

—

10 K12 240 (X27
0 , X26

3 , X26
4 , X26

5 , X27
7) 272 ·28 ·240 =

2120 RF

—

11 K7 232 (X27
0 , X25

3 , X26
5 , X27

7) 280 ·28 ·240 =

2128 RF

n · (280+39+1) =

2123 RF

12 (K3) 232 (X27
0 , X24

3 , X26
5 , X27

7) 288 ·20 ·232 =

2120 RF

—

13 (K0) 232 (X27
0 , X24

3 , X25
5 , X27

7) 288 ·20 ·232 =

2120 RF

—

14 (K8) 232 (X27
0 , X23

3 , X25
5 , X27

7) 288 ·20 ·232 =

2120 RF

—

15 K13 224 (X23
3 , X25

5 , X25
6) 288 ·28 ·232 =

2128 RF

n · (288+31+1) =

2123 RF

16 (K4) 216 (X23
3 , X23

4) 296 ·20 ·224 =

2120 RF

—

17 (K12) 28 (X22
3) 296 ·20 ·216 =

2112 RF

—

18 (K0) 1
⊕

(Z21
3 [7] ⊕ Z21

3 [6] ⊕ Z21
3 [1]) 296 · 20 · 28 =

2104 RF

—

MA and RF stand for memory access and round function, respectively

378 Y. Funabiki et al.

We first try to execute 29-round attack using the 19-round integral char-
acteristic IC1’. To prepare the set of plaintexts, we have to guess the value of
K14 and K2. Unfortunately, K14 is not involved to the key recovery shown in
Table 4. Therefore, the complexity of each step always requires 28 times, and the
time complexity in Step 11 and 15 is over 2128 even if the bit-wise partial sum
is applied. As a result, we cannot use IC1’. We next try to execute 29-round
attack using the 19-round integral characteristic IC3’. Note that the position of
balanced byte is the same as that by IC1’, i.e., X20

3 [0] is balanced. Therefore,
we can use the same procedure for the key recovery. To prepare the set of plain-
texts, we have to guess the value of K15 and K3, which are already guessed in
Step 4 and 3 in the key recovery, respectively. Hence, we add two bytes to the
guessed keys in Step 1–2 and one byte to them in Step 3, and the complexity
does not change after Step 4. Therefore, even if IC3’ is used, the complexity of
the key recovery is still 2124 RF because the dominant part is in Step 11 and
15. Moreover, when IC4’ is used, we have to guess the value of not only K15

and K3 but also the lsb of K4 and K12, but all additional guessing keys have
been already guessed in the key recovery. Therefore, similarly to the key recovery
using IC3’, the dominant complexity is still 2124 RF. Since we can execute the
key recovery using both IC3’ and IC4’ in the same time, 2 bits of information of
the master key is recovered. As a result, the whole complexity of our attack is
2124 RF + 2126 Enc ≈ 2126 Enc.

6 Conclusions

In this paper, we first proposed 19-round integral characteristics by using the
propagation of the division property. These characteristics are improved by
two rounds compared with previous ones. Then, we showed the attack against
28-round HIGHT by appending 9-round key recovery. We attacked 28-round
HIGHT with 263 data size and 2127 time complexity. Moreover, we showed
another attack on 29-HIGHT with 264 data size and 2126 time complexity. These
attacks are the best known attack against HIGHT under the single-key setting.

A Detailed MILP Model for HIGHT

In this appendix, the detailed algorithm to search for integral characteristics on
HIGHT is described.

As a result of running the Algorithm2 with our machine (CPU: i5-6500 @
3.20 GHz, 3.20 GHz/RAM: 8.00 GB/64-bit operating system, x64 base proces-
sor), it took about 50 min.

Improved Integral Attack on HIGHT 379

Algorithm 2. MILP model of division property for R-round HIGHT.
1: procedure funcF(M,x, r1, r2, r3)
2: M.var ← y[j], x1[j], x2[j], x3[j] for j ∈ {0, 1, . . . , 7}*
3: for j = 0 to 7 do
4: M.con ← x[j] = x1[j] + x2[j] + x3[j]
5: M.con ← y[j] = x1[(j−r1) mod 8]+x2[(j−r2) mod 8]+x3[(j−r3) mod 8]
6: return (M,y)
1: procedure roundFunc1(M, l, r)
2: M.var ← x[j], s[j] for j ∈ {0, 1, . . . , 7}*
3: for j = 0 to 7 do
4: M.con ← r[j] = x[j] + s[j]
5: (M,y) = funcF(M,x, 3, 4, 6)
6: t = modAdd(M, l,y, 8)
7: return (M, s, t)
1: procedure roundFunc0(M, l, r)
2: M.var ← x[j], s[j] for j ∈ {0, 1, . . . , 7}*
3: for j = 0 to 7 do
4: M.con ← r[j] = x[j] + s[j]
5: (M,y) = funcF(M,x, 1, 2, 7)
6: z = modAddConst(M,y, 8)
7: M.var ← t[j] for j ∈ {0, 1, . . . , 7}*
8: for j = 0 to 7 do
9: M.con ← t[j] = l[j] + z[j]

10: return (M, s, t)
1: procedure HIGHT(round R, index I, target bit t)
2: create MILP model M
3: M.var ← x0

i [j] for (i, j) ∈ {(0, 0), (0, 1), . . . , (7, 7)}*
4: for (i, j) = (0, 0) to (7, 7) do
5: if 8 × i + j is included in I then M.con ← x0

i [j] = 1
6: else M.con ← x0

i [j] = 0
7: for r = 0 to R − 1 do
8: (M,xr+1

1 ,xr+1
2) = roundFunc1(M,xr

1,x
r
0)

9: (M,xr+1
3 ,xr+1

4) = roundFunc0(M,xr
3,x

r
2)

10: (M,xr+1
5 ,xr+1

6) = roundFunc1(M,xr
5,x

r
4)

11: (M,xr+1
7 ,xr+1

0) = roundFunc0(M,xr
7,x

r
6)

12: for (i, j) = (0, 0) to (7, 7) do
13: if 8 × i + j = t then M.con ← xr

i [j] = 1
14: else M.con ← xr

i [j] = 0
15: solve this MILP model M
16: if M is infeasible then return the target bit is balanced.
17: else return the target bit is unknown.
* means each variant are defined as binary.

380 Y. Funabiki et al.

B Involved Key Size in Key Recovery

In this appendix, the detailed analyses of the involved key size in the calculation
of Zr

i is described.

Table 5. The number of involved key bytes in calculation of Zr
i

Rounds of Key Recovery Target Type of using IC Involved Key Size Ignored Keys

20 − 28 R Z20
3 IC1’, IC3’, IC4’ 13 bytes K5,K6,K10

20 − 28 R Z20
7 IC2’, IC5’, IC6’ 14 bytes K4,K12

21 − 29 R Z21
3 IC1’, IC3’, IC4’ 12 bytes K5,K6,K10,K14

21 − 29 R Z21
7 IC2’, IC5’, IC6’ 13 bytes K7,K8,K12

22 − 30 R Z22
3 IC1’, IC3’, IC4’ 13 bytes K10,K13,K14

22 − 30 R Z22
7 IC2’, IC5’, IC6’ 13 bytes K8,K11,K12

23 − 31 R Z23
3 IC1’, IC3’, IC4’ 13 bytes K5,K13,K14

23 − 31 R Z23
7 IC2’, IC5’, IC6’ 13 bytes K7,K8,K15

24 − 32 R Z24
3 IC1’, IC3’, IC4’ 13 bytes K4,K5,K9

24 − 32 R Z24
7 IC2’, IC5’, IC6’ 14 bytes K7,K11

C Detailed Addition of Whitening Layer

In this appendix, we described detailed procedure how to add the whitening layer
to three 19-round integral characteristics. The first 2-round procedure on HIGHT
is shown in Fig. 6. Please refer to Table 3 in order to know the relationship
between the round keys and the master keys.

Fig. 6. 1-st and 2-nd round procedure of HIGHT

Improved Integral Attack on HIGHT 381

We consider the extension from IC1’ and the lsb of X2
0 is represented as

X2
0 [0] = X1

7 [0] ⊕ SK7[0] ⊕ F0(X1
6)[0]

= X0
6 [0] ⊕ WK3[0] ⊕ SK7[0] ⊕ F0(F1(X0

4 � WK2) ⊕ SK2 � X0
5)[0].

We can ignore the value of WK3[0] and SK7[0] because X2
0 [0] is added linearly

by them using XOR. But we cannot ignore that this extension requires guessing
the value of K14 and K2 as WK2 and SK2, respectively. Next, we consider the
extension from IC3’. In case of considering the lsb, we can regard the modular
addition as the XOR. So the lsb of X2

2 is represented as

X2
2 [0] = X1

1 [0] ⊕ SK4[0] ⊕ F1(X1
0)[0]

= X0
0 [0] ⊕ WK0[0] ⊕ SK4[0] ⊕ F1(F0(X0

6 ⊕ WK3) � SK3 ⊕ X0
7)[0].

This extension requires guessing the value of K15 and K3 as WK3 and SK3,
respectively. Finally, we consider the extension from IC4’ and the second lsb is
represented as

X2
2 [1] = X1

1 [1] ⊕ F1(X1
0)[1] ⊕ SK4[1] ⊕ (X1

1 [0] × (F1(X1
0)[0] ⊕ SK4[0])),

where each X1 are represented as follows:

X1
1 [1] = X0

0 [1] ⊕ WK0[1] ⊕ (X0
0 [0] × WK0[0])),

X1
1 [0] = X0

0 [0] ⊕ WK0[0],

X1
0 = F0(X0

6 ⊕ WK3) � SK3 ⊕ X0
7 .

This extension requires guessing the value of K4[0],K12[0],K15 and K3 as
SK4[0],WK0[0],WK3 and SK3, respectively.

References

1. Agency, K.I.S.: Hight algorithm specification (2009)
2. Biryukov, A., Perrin, L.: Lightweight cryptography lounge (2015). http://cryptolux.

org/index.php/Lightweight Cryptography
3. Chen, J., Wang, M., Preneel, B.: Impossible differential cryptanalysis of the light-

weight block ciphers TEA, XTEA and HIGHT. In: Mitrokotsa, A., Vaudenay, S.
(eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 117–137. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31410-0 8

4. Cui, T., Jia, K., Fu, K., Chen, S., Wang, M.: New automatic search tool for impos-
sible differentials and zero-correlation linear approximations (2016). http://eprint.
iacr.org/2016/689

5. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). doi:10.1007/
BFb0052343

6. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting, D.:
Improved cryptanalysis of Rijndael. In: Goos, G., Hartmanis, J., Leeuwen, J.,
Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer, Heidelberg
(2001). doi:10.1007/3-540-44706-7 15

http://cryptolux.org/index.php/Lightweight_Cryptography
http://cryptolux.org/index.php/Lightweight_Cryptography
http://dx.doi.org/10.1007/978-3-642-31410-0_8
http://eprint.iacr.org/2016/689
http://eprint.iacr.org/2016/689
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/3-540-44706-7_15

382 Y. Funabiki et al.

7. Hong, D., et al.: HIGHT: a new block cipher suitable for low-resource device. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer,
Heidelberg (2006). doi:10.1007/11894063 4

8. ISO/IEC: JTC1: ISO/IEC 18033–3: Information technology - security techniques
- encryption algorithms - part 3: Block ciphers (2010)

9. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). doi:10.1007/
3-540-45661-9 9

10. Koo, B., Hong, D., Kwon, D.: Related-key attack on the Full HIGHT. In:
Rhee, K.-H., Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 49–67. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-24209-0 4

11. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-34704-7 5

12. Özen, O., Varıcı, K., Tezcan, C., Kocair, Ç.: Lightweight block ciphers revisited:
cryptanalysis of reduced round PRESENT and HIGHT. In: Boyd, C., González
Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 90–107. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02620-1 7

13. Sasaki, Y., Todo, Y.: New impossible dierential search tool from design and crypt-
analysis aspects (2016). http://eprint.iacr.org/2016/1181. This paper is accepted
in Eurocrypt 2017

14. Sasaki, Y., Wang, L.: Meet-in-the-middle technique for integral attacks against
feistel ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp.
234–251. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35999-6 16

15. Sasaki, Y., Wang, L.: Bitwise partial-sum on HIGHT: A New tool for integral
analysis against ARX designs. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS,
vol. 8565, pp. 189–202. Springer, Cham (2014). doi:10.1007/978-3-319-12160-4 12

16. Sun, L., Wang, W., Liu, R., Wang, M.: Milp-aided bit-based division property
for ARX-based block cipher. IACR Cryptology ePrint Archive 2016, 1101 (2016).
http://eprint.iacr.org/2016/1101

17. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L.: Towards
finding the best characteristics of some bit-oriented block ciphers and automatic
enumeration of (related-key) differential and linear characteristics with predefined
properties (2014). http://eprint.iacr.org/2014/747

18. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evalu-
ation and (Related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45611-8 9

19. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE : a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC
2012. LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35999-6 22

20. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-47989-6 20

21. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46800-5 12

http://dx.doi.org/10.1007/11894063_4
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/978-3-642-24209-0_4
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-02620-1_7
http://eprint.iacr.org/2016/1181
http://dx.doi.org/10.1007/978-3-642-35999-6_16
http://dx.doi.org/10.1007/978-3-319-12160-4_12
http://eprint.iacr.org/2016/1101
http://eprint.iacr.org/2014/747
http://dx.doi.org/10.1007/978-3-662-45611-8_9
http://dx.doi.org/10.1007/978-3-642-35999-6_22
http://dx.doi.org/10.1007/978-3-642-35999-6_22
http://dx.doi.org/10.1007/978-3-662-47989-6_20
http://dx.doi.org/10.1007/978-3-662-46800-5_12

Improved Integral Attack on HIGHT 383

22. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-52993-5 18

23. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-21554-4 19

24. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53887-6 24

25. Zhang, P., Sun, B., Li, C.: Saturation attack on the block cipher HIGHT.
In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888,
pp. 76–86. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10433-6 6

http://dx.doi.org/10.1007/978-3-662-52993-5_18
http://dx.doi.org/10.1007/978-3-642-21554-4_19
http://dx.doi.org/10.1007/978-3-662-53887-6_24
http://dx.doi.org/10.1007/978-3-642-10433-6_6

	Improved Integral Attack on HIGHT
	1 Introduction
	2 Preliminaries
	2.1 Specification of HIGHT
	2.2 Integral Characteristics and Division Property
	2.3 Key Recovery and Bitwise Partial-Sum Technique

	3 New Integral Characteristics on HIGHT
	3.1 Previous 17-Round Integral Characteristics
	3.2 New Integral Characteristics Based on Division Property
	3.3 Extended 19-Round Integral Characteristics

	4 28-Round Attack on HIGHT Without Full Code Book
	4.1 Whitening Key Addition to Integral Characteristics
	4.2 Meet-in-the-Middle Technique
	4.3 Attack Procedure

	5 29-Round Attack on HIGHT with Full Code Book
	6 Conclusions
	A Detailed MILP Model for HIGHT
	B Involved Key Size in Key Recovery
	C Detailed Addition of Whitening Layer
	References

