
Josef Pieprzyk
Suriadi Suriadi (Eds.)

 123

LN
CS

 1
03

42

22nd Australasian Conference, ACISP 2017
Auckland, New Zealand, July 3–5, 2017
Proceedings, Part I

Information Security
and Privacy

Lecture Notes in Computer Science 10342

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Josef Pieprzyk • Suriadi Suriadi (Eds.)

Information Security
and Privacy
22nd Australasian Conference, ACISP 2017
Auckland, New Zealand, July 3–5, 2017
Proceedings, Part I

123

Editors
Josef Pieprzyk
Queensland University of Technology
Brisbane, QLD
Australia

Suriadi Suriadi
Queensland University of Technology
Brisbane, QLD
Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-60054-3 ISBN 978-3-319-60055-0 (eBook)
DOI 10.1007/978-3-319-60055-0

Library of Congress Control Number: 2017943039

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-1917-6466
http://orcid.org/0000-0002-6311-5927

Preface

The 22nd Australasian Conference on Information Security and Privacy was organized
in beautiful New Zealand on the Massey University campus in Auckland, July 3–5,
2017. This was the first time that the conference was organized outside Australia.

This year we received 150 submissions. Each paper got assigned to four referees. In
the first stage of the review process, the submitted papers were read and evaluated by
the Program Committee members. In the second stage, the papers were scrutinized
during an extensive discussion. Finally, the Program Committee chose 45 regular and
ten short papers to be included in the conference program. The authors of the accepted
papers had ten days for revision and preparation of final versions. The revised papers
were not subject to editorial review and the authors bear full responsibility for their
contents. The submission and review process was supported by the EasyChair con-
ference submission server. We thank the EasyChair people for letting us use it.

The Program Committee voted for the best paper using the Doodle software. We
nominated four papers with best reviews. Out of the four, two papers were the preferred
options with no clear winner. We decided to award the ACISP2017 Best Paper Award
to the two papers:

– “Dynamic Searchable Symmetric Encryption with Physical Deletion and Small
Leakage” by Peng Xu, Shuai Liang, Wei Wang, Willy Susilo, Qianhong Wu and
Hai Jin

– “Multi-user Cloud-Based Secure Keyword Search” by Shabnam Kasra Kerman-
shahi, Joseph K. Liu and Ron Steinfeld

The awards were handed during the conference dinner.
The Jennifer Seberry Lecture this year was delivered by Clark Thomborson from the

University of Auckland, New Zealand. The keynote lecture was presented by L. Jean
Camp from Indiana University, USA. The program also included invited talks by
well-known researchers working in different areas of cybersecurity. They were Dong
Seong Kim, University of Canterbury, New Zealand; Dongxi Liu, CSIRO/Data61,
Australia; Surya Nepal, CSIRO/Data61, Australia; Paul Pang, Unitec Institute of
Technology, New Zealand; Peter Pilley, Department of Internal Affairs, New Zealand;
Ian Welch, Victoria University of Wellington, New Zealand and Henry B. Wolfe,
University of Otago, New Zealand.

We would like to thank the Program Committee members and the external reviewers
for their effort and time to evaluate the submissions. Big thanks go to Julian
Jang-Jaccard and Paul Watters for their excellent job in the organization of the con-
ference. We are indebted to the team at Springer for their continuous support of the
conference and for their help in the production of the conference proceedings.

July 2017 Josef Pieprzyk
Suriadi Suriadi

ACISP 2017

The 22nd Australasian Conference on Information Security
and Privacy

Massey University, Auckland, New Zealand
July 3–5, 2017

In Co-operation with IACR

Sponsored by Massey University

General Co-chairs

Julian Jang-Jaccard Massey University, New Zealand
Paul Watters La Trobe University, Australia

Program Co-chairs

Josef Pieprzyk Queensland University of Technology, Australia
Suriadi Suriadi Queensland University of Technology, Australia

Program Committee

Cristina Alcaraz University of Malaga, Spain
Claudio Agostino Ardagna Università degli Studi di Milano, Italy
Giuseppe Ateniese Stevens Institute of Technology, USA
Man Ho Au Hong Kong Polytechnic University, SAR China
Milton Baar Macquarie University, Australia
Joonsang Baek Khalifa University of Science, UAE
Lynn Batten Deakin University, Australia
Colin Boyd Norwegian University of Science and Technology,

Norway
Serdar Boztas RMIT University, Australia
Alvaro Cardenas University of Texas at Dallas, USA
Aniello Castiglione University of Salerno, Italy
Ebrima Ceesay Leidos and Johns Hopkins University, USA
Jinjun Chen University Technology Sydney, Australia

Shiping Chen Data61 - CSIRO, Australia
Xiaofeng Chen Xidian University, China
Kim-Kwang

Raymond Choo
University of Texas at San Antonio, USA

Christophe Doche Macquarie University, Australia
Ernest Foo Queensland University of Technology, Australia
David Galindo University of Birmingham, UK
Colm Gannon DCET - Internal Affairs, New Zealand
Swee-Huay Heng Multimedia University, Malaysia
Andreas Holzer Google Inc., USA
Xinyi Huang Fujian Normal University, China
Mitsugu Iwamoto University of Electro-Communications, Japan
Sanjay Jha University of New South Wales, Australia
Akinori Kawachi The University of Tokushima, Japan
Peter Kieseberg SBA Research, Austria
Dong Seong Kim University of Canterbury, New Zealand
Howon Kim Pusan National University, South Korea
Jongkil Kim Data61 - CSIRO, Australia
Ryan Ko University of Waikato, New Zealand
Marina Krotofil Hamburg University of Technology, Germany
Noboru Kunihiro University of Tokyo, Japan
Mirosław Kutyłowski Wrocław University of Science and Technology,

Poland
Junzuo Lai Singapore Management University, Singapore
Shujun Li University of Surrey, UK
Kaitai Liang Aalto University, Finland
Dongxi Liu Data61 - CSIRO, Australia
Joseph Liu Monash University, Australia
Shengli Liu Shanghai Jiao Tong University, China
Javier Lopez University of Malaga, Spain
Jiqiang Lu Institute for Infocomm Research, Singapore
Rongxing Lu University of New Brunswick, Canada
Félix Gómez Mármol University of Murcia, Spain
Weizhi Meng Technical University of Denmark, Denmark
Kazuhiko Minematsu NEC Corporation, Japan
Chris Mitchell Royal Holloway - University of London, UK
Paweł Morawiecki Polish Academy of Sciences, Poland
Kirill Morozov Tokyo Institute of Technology, Japan
Yi Mu University of Wollongong, Australia
Surya Nepal Data61 - CSIRO, Australia
Ivica Nikolić Nanyang Technological University, Singapore
Thomas Peyrin Nanyang Technological University, Singapore
Man Qi Canterbury Christ Church University, UK
Kenneth Radke Queensland University of Technology and CERT

Australia, Australia
Reza Reyhanitabar NEC Laboratories Europe, Germany

VIII ACISP 2017

Jun Shao Zhejiang Gongshang University, China
Taeshik Shon Ajou University, South Korea
Haya Shulman Fraunhofer SIT, Germany
Tony Skjellum Auburn University, USA
Ron Steinfeld Monash University, Australia
Chunhua Su Japan Advanced Institute of Science and Technology,

Japan
Willy Susilo University of Wollongong, Australia
Shaohua Tang South China University of Technology, China
Juan Tapiador Universidad Carlos III de Madrid, Spain
Clark Thomborson University of Auckland, New Zealand
Fergus Toolan UCD School of Computer Science, Ireland
Petros Wallden University of Edinburgh, UK
Cong Wang City University of Hong Kong, SAR China
Huaxiong Wang Nanyang Technological University, Singapore
Yu Wang Deakin University, Australia
George Weir University of Strathclyde, UK
Sheng Wen Deakin University, Australia
Henry B. Wolfe University of Otago, New Zealand
Chi Yang Unitec Institute of Technology, New Zealand
Guomin Yang University of Wollongong, Australia
Yanjiang Yang Huawei Singapore Research Center, Singapore
Wun-She Yap Universiti Tunku Abdul Rahman, Malaysia
Xun Yi RMIT University, Australia
Tsz Hon Yuen Huawei Singapore Research Center, Singapore
Aaram Yun Ulsan National Institute of Science and Technology,

South Korea
Xuyun Zhang University of Auckland, New Zealand

Additional Reviewers

Fatma Al Maqbali
Janaka Alawatugoda
Yoshinori Aono
Shahriar Badsha
Anubhab Baksi
Arcangelo Castiglione
Luigi Catuogno
Claire Che
Jiahui Chen
Jie Chen
Rongmao Chen
Ji-Jian Chin
Craig Costello
Hui Cui

Ed Dawson
Nabil El Ioini
Gerardo Fernandez
Filippo Gaudenzi
Junqing Gong
Zheng Gong
Fuchun Guo
Jian Guo
Jingjing Guo
Felix Günther
Jinguang Han
Shuai Han
Yasufumi Hashimoto
Shoichi Hirose

Andrei Kelarev
Jeongsu Kim
Jianchang Lai
Anna Lauks-Dutka
Hyung Tae Lee
Nan Li
Xiaoyu Li
Xingye Lu
Lin Lyu
Jinhua Ma
Moesfa Soeheila

Mohamad
Mihai Moraru
Khoa Nguyen

ACISP 2017 IX

Phuong Ha Nguyen
Tobias Nilges
David Nuñez
Xu Peiming
Jiang Peng
Thye Way Phua
Ananth Raghunathan
Fang-Yu Rao
Juan E. Rubio
Kyoji Shibutani
Siang Meng Sim
Le Su

Bing Sun
Benjamin HongMengTan
Syh-Yuan Tan
Srinivas Vivek
Riad Wahby
Jianfeng Wang
Yunling Wang
Yunhua Wen
Qianhong Wu
Lingling Xu
Rui Xu
Shengmin Xu

Shota Yamada
Xu Yang
Yu Yu
Zuoxia Yu
Shiwei Zhang
Xiao Zhang
Xiaoyu Zhang
Yuexin Zhang
Zongyang Zhang
Peng Zhiniang

X ACISP 2017

Abstracts of Invited Talks

Jennifer Seberry Lecture: Contextual Privacy

Clark Thomborson

Computer Science Department
University of Auckland, Auckland, New Zealand

cthombor@cs.auckland.ac.nz

Abstract. Could you design a computer system which respects all forms of
privacy that are relevant to its users? What forms of privacy are important to you
personally, and in what contexts are they important? How can a user obtain a
“private place” in a computerised system? Is it feasible and economic for a
system to afford a particular form of privacy to its users? Is it socially appro-
priate, or legal, for a system to grant a privacy request? Which privacy requests
should be denied? Can you identify all of the “assets at risk” in a privacy-
protective system? I won’t attempt to answer any of these questions fully!
However I will get you started on finding your own answers, for the next system
you design, for the next privacy analysis you perform, and for the next system
you use. My explanations are grounded in Lawrence Lessig’s taxonomy of
control and liberty, in Alan Westin’s taxonomy of private states, in Helen
Nissenbaum’s legal theory of contextual integrity, and in the Jericho Forum’s
Identity Commandments. I’ll draw examples from commonly-encountered
systems such as Facebook.

Key Note Lecture: Security as Risk
Communication

L. Jean Camp

School of Informatics
Indiana University, Indianapolis, USA

ljcamp@indiana.edu

Abstract. In usable security design, opaque designs enable the user take an
action seamlessly rather than requiring some understanding of the underlying
system design. However, security choices inherently require some information,
or the default option is to prevent all risky behaviors without interaction. In fact,
blocking desired action without communication is one reason that individuals
may abandon security technologies even when the risks these technologies
mitigate are known.

Incentives cannot work unless there are two conditions. First, the incentives
must be visible. Second, there must be a clear action to take in response to the
incentives. Both of these outcomes are the goal of translucent design. A truly
transparent design can overwhelm and under-inform the user with information
about configuration, the nature of the security technology, and the elements of a
risk that are mitigated.

Risk communication allows individuals to easily see the consequences
of their action. The ideal design, of making visible user-action-
system-consequence, may be overwhelming or context-dependent. Risk com-
munication is neither transparent nor opaque; but rather consists of security
technologies that are easy to use, communicate risk choices only to the degree
necessary to avoid inadvertent fatal choices, can be overcome in a
straight-forward manner if the individual chooses to take a risk, or if the system
is in error.

Key Note Lecture: I Was Sure that Was My
Password… and Other Just so Law

Enforcement Stories

Peter Pilley

Department of Internal Affairs, Manukau, New Zealand

Abstract. With the advent of communications devices and software being
encrypted by design there is now a number of new risks presenting themselves
some predicted and some only becoming apparent now.

Who owns the data that is encrypted? What right or access does a family
have to the encrypted data of a sibling or Son/Daughter at the time of their
death? How can law enforcement be seen to be able to successfully investigate a
suspect if they have taken steps to encrypt their communications platform or
device?

These are not new fears or technologies but they do raise some interesting
questions and scenarios. Encrypted networks such as TOR and platforms such as
WhatsApp are potentially removing the traditional investigation methods from
the investigator Agencies are turning to, and in some instances failing in the use
of., more advanced interception techniques. How do we as Law Enforcement
manage this, and more importantly how as a community do we need to see it
managed?

Graphical Security Models

Dong Seong Kim

Department of Computer Science and Software Engineering
University of Canterbury, Christchurch, New Zealand

dongseong.kim@canterbury.ac.nz

Abstract. Graphical security models can be used to assess the network security.
Purely graph based (e.g., Attack Graphs) security models have a state-space
explosion problem. Tree-based models (e.g., Attack Trees) cannot capture the
attack paths information explicitly. In this talk, we briefly introduce a scalable
security model named hierarchical attack representation models (HARM) to deal
with the above mentioned issues. First, I present how the HARM with other
methods to evaluate the effectiveness of Moving Target Defenses. Second, I
present how the HARM can be used to evaluate the security of Internet of
Things. Finally, research revenues in the graphical security modeling and
assessment will be discussed in brief.

Compact-LWE for Lightweight Public Key
Encryption and Leveled IoT Authentication

Dongxi Liu

CSIRO, Data61, Melbourne, Australia
Dongxi.Liu@data61.csiro.au

Abstract. Leveled authentication allows resource-constrained IoT devices to be
authenticated at different strength levels according to the particular types of
communication. To achieve efficient leveled authentication, a lightweight public
key encryption scheme is introduced in this talk, which can produce very short
ciphertexts without sacrificing its security.

The semantic security of this scheme is based on the Learning With Secretly
Scaled Errors in Dense Lattice (referred to as Compact-LWE) problem designed
in CSIRO. This problem is a variant of the Learning With Errors (LWE) prob-
lem, but with two improvements (i.e., secretly scaled errors, which can be very
big, and dense lattice, which has small fundamental parallelepiped) that make
Compact-LWE resistant against well-known lattice-based attacks to LWE. In
addition to the security proof, we verify, with a public attack tool, that the
lattice-based attacks, which are successful on LWE, cannot succeed on
Compact-LWE even for a small dimension parameter (e.g., a lattice of dimen-
sion 13).

The evaluation of our scheme and a leveled Needham-Schroeder-Lowe
public key authentication protocol on the Contiki operating system and Sky
motes will also be introduced.

Orchestration and Automation
of Cybersecurity: Issues and Challenges

Surya Nepal

Data61 CSIRO, Canberra, Australia
surya.nepal@data61.csiro.au

Abstract. Almost all present cybersecurity expenditure and activities (85%)
focuses on designing solutions to prevent known cybersecurity threats. No matter
how much efforts are put in preparation and prevention, these solutions are not
working and cyberattacks and data breaches are inevitable. Current
compromise-to-discovery time can be 30 to 60 days. One the one hand, the
number of incidents of cyberattacks and data breaches are increasing every year;
the increase in time required to detect cyberattacks and data breaches is causing
higher reputational, operational and economic loss due to the impact on the
continuity of the business. On the other hand, we have a limited pool of security
experts who can focus on human-intensive tasks such as analysing programs/
protocols, designing patches, understanding a compromise and responding/
recovering from a compromise. Current approaches are mostly manual, signature
base, reactive and not robust and resilient. Furthermore, the increasing com-
plexity of the cyberspace and its dynamic nature makes it impossible for humans
to effectively secure and protect the cyber system. These space requires a para-
digm shift towards more orchestrated and automated cybersecurity solutions so
security experts could be more efficiently utilised and small-to-medium busi-
nesses can have access to more advanced cybersecurity capabilities through
software-as-a-service. A number of organisations have already started taking
some actions to automate and orchestrate incident response processes, while
researchers have started to explore the coordinated response of the human body
immune system towards building autonomic, resilient cyber systems. This talk
explores the potential opportunities and issues to automate and orchestrate
cybersecurity solutions.

UniteCloud: A Resilient Private Cloud
Platform for Education and Research Service

Paul S. Pang

High Tech Transdisciplinary Research Network
and Department of Computer Science

Unitec Institute of Technology, Auckland, New Zealand
ppang@unitec.ac.nz

Abstract. UniteCloud is a cloud-computing platform developed in Unitec
Institute of Technology to provide a solution to resilient infrastructure and data
services. UniteCloud has been constructed using OpenStack with its peak
computational capability up to 500 virtual machines and maximum storage
allocation 64 tera-bytes per virtual machine. The resiliency of UniteCloud is
achieved by three novel components. CloudViz-3D is a top-level interactive
cloud monitoring system that monitors the running status of cloud and notifies
users before any disaster occurs. rRVM is a low latency and high consistency
high availability system that generates real time backup and disaster recovery.
CRaaSH is an offline disaster recovery system that provides decentralized ser-
vice checkpoint/restart over commodity networks. In addition, the platform
supports group collaborative working, editing, big data processing and machine
learning algorithmic experiments with its open source implementation of Gitlab,
ShareLatex, HadoopDataCenter and TensorFlow. With all its resilient service
features, UniteCloud is specializing in supplying eLearning and eResearch
services for New Zealand tertiary students and staffs.

Software Defined Networking as a Security
Enabler for Enterprises

Ian Welch

School of Engineering and Computer Science
Victoria University of Wellington, Wellington

New Zealand
ian.welch@vuw.ac.nz

Abstract. Industry commentators have raised concerns about software-defined
networking (SDN) as looking “like a nice squishy target to spies and crooks”
and a “nightmare” from a risk assessment point-of-view. Security concerns
include worries that it will be impossible to secure the perimeter because the
network architecture is no longer fixed, the controller managing the control
plane is centralised, and a single point of failure and the software-centric
approach is highly vulnerable to exploitation as opposed to current hardware-
based approaches.

We argue that some of these concerns are not new and software defined
network provides an approach to implementing secure enterprise networks that
can lead to better enforcement and greater assurance. This talk will address
concerns and explain how we are working with other academics and commercial
partners on the development of a software defined security platform that
leverages these advantages over traditional approaches.

Mobile Phone Security Issues

Henry B. Wolfe

Department of Information Science
University of Otago, Dunedin, New Zealand

hank.wolfe@otago.ac.nz

Abstract. We take for granted every day that we are safe from any given risk
because we are protected by various standards, statutes, and laws. The mobile
phone has become ubiquitous and there are currently more than 8 billion con-
nections and almost 5 billion mobile phones in use around the world. It is really
nothing more than a small computer with a radio transmitter and receiver and
other communications devices (Wi/Fi, Bluetooth, etc) integrated into it. Smart
phones may also have the ability to record photos, videos and sound. Most have
a built in Global Positioning Satellite System capability. Some phones may also
have Near Field Communications (NFC). Each of these capabilities may result
in various risks. Every generation of mobile phone has expanded its capabilities
and we are now able to communicate with the Internet in addition to normal
telephone activity.

A long with these capabilities come a number of risks. Some of these are
normally associated with using the Internet, so mobile users are exposed to
malware of various kinds from that source. However, there are other more
insidious risks that are less known. The purpose of this presentation is to discuss
the current risks associated with mobile phone use including malware; loss,
theft, seizure; communications interception, loss of privacy; location logging
and tracking; and bugging. Most people are not aware of these threats. They
assume that their service provider has put in place measures to eliminate any
risks as well as protect their privacy (by the use of cryptography). 100% safe
mobile phone use will unlikely ever be possible. This presentation will cover
mitigating alternatives that can be put in place to reduce the identified mobile
phone risks. These will be graphically portrayed and clearly described and
defined in terms and language that non-technical people will understand.

Contents – Part I

Public Key Encryption

Tightly-Secure Encryption in the Multi-user, Multi-challenge Setting
with Improved Efficiency . 3

Puwen Wei, Wei Wang, Bingxin Zhu, and Siu Ming Yiu

Hierarchical Functional Encryption for Linear Transformations 23
Shiwei Zhang, Yi Mu, Guomin Yang, and Xiaofen Wang

KDM-Secure Public-Key Encryption from Constant-Noise LPN 44
Shuai Han and Shengli Liu

Long-Term Secure Commitments via Extractable-Binding Commitments 65
Ahto Buldas, Matthias Geihs, and Johannes Buchmann

Attribute-Based Encryption

New Proof Techniques for DLIN-Based Adaptively Secure
Attribute-Based Encryption. 85

Katsuyuki Takashima

Attribute-Based Encryption with Expressive and Authorized
Keyword Search . 106

Hui Cui, Robert H. Deng, Joseph K. Liu, and Yingjiu Li

Towards Revocable Fine-Grained Encryption of Cloud Data:
Reducing Trust upon Cloud . 127

Yanjiang Yang, Joseph Liu, Zhuo Wei, and Xinyi Huang

Identity-Based Encryption

Mergeable and Revocable Identity-Based Encryption 147
Shengmin Xu, Guomin Yang, Yi Mu, and Willy Susilo

ID-Based Encryption with Equality Test Against Insider Attack 168
Tong Wu, Sha Ma, Yi Mu, and Shengke Zeng

Lattice-Based Revocable Identity-Based Encryption with Bounded
Decryption Key Exposure Resistance. 184

Atsushi Takayasu and Yohei Watanabe

http://dx.doi.org/10.1007/978-3-319-60055-0_1
http://dx.doi.org/10.1007/978-3-319-60055-0_1
http://dx.doi.org/10.1007/978-3-319-60055-0_2
http://dx.doi.org/10.1007/978-3-319-60055-0_3
http://dx.doi.org/10.1007/978-3-319-60055-0_4
http://dx.doi.org/10.1007/978-3-319-60055-0_5
http://dx.doi.org/10.1007/978-3-319-60055-0_5
http://dx.doi.org/10.1007/978-3-319-60055-0_6
http://dx.doi.org/10.1007/978-3-319-60055-0_6
http://dx.doi.org/10.1007/978-3-319-60055-0_7
http://dx.doi.org/10.1007/978-3-319-60055-0_7
http://dx.doi.org/10.1007/978-3-319-60055-0_8
http://dx.doi.org/10.1007/978-3-319-60055-0_9
http://dx.doi.org/10.1007/978-3-319-60055-0_10
http://dx.doi.org/10.1007/978-3-319-60055-0_10

Searchable Encryption

Dynamic Searchable Symmetric Encryption with Physical Deletion
and Small Leakage . 207

Peng Xu, Shuai Liang, Wei Wang, Willy Susilo, Qianhong Wu,
and Hai Jin

Multi-user Cloud-Based Secure Keyword Search. 227
Shabnam Kasra Kermanshahi, Joseph K. Liu, and Ron Steinfeld

Fuzzy Keyword Search and Access Control over Ciphertexts
in Cloud Computing . 248

Hong Zhu, Zhuolin Mei, Bing Wu, Hongbo Li, and Zongmin Cui

Secure and Practical Searchable Encryption: A Position Paper 266
Shujie Cui, Muhammad Rizwan Asghar, Steven D. Galbraith,
and Giovanni Russello

Cryptanalysis

Fault Attacks on XEX Mode with Application to Certain Authenticated
Encryption Modes . 285

Hassan Qahur Al Mahri, Leonie Simpson, Harry Bartlett, Ed Dawson,
and Kenneth Koon-Ho Wong

How to Handle Rainbow Tables with External Memory. 306
Gildas Avoine, Xavier Carpent, Barbara Kordy, and Florent Tardif

Improved Factoring Attacks on Multi-prime RSA with Small
Prime Difference. 324

Mengce Zheng, Noboru Kunihiro, and Honggang Hu

Efficient Compilers for After-the-Fact Leakage: From CPA
to CCA-2 Secure PKE to AKE . 343

Suvradip Chakraborty, Goutam Paul, and C. Pandu Rangan

Improved Integral Attack on HIGHT . 363
Yuki Funabiki, Yosuke Todo, Takanori Isobe, and Masakatu Morii

Cryptanalysis of Simpira v2 . 384
Ivan Tjuawinata, Tao Huang, and Hongjun Wu

Statistical Integral Distinguisher with Multi-structure and Its Application
on AES . 402

Tingting Cui, Ling Sun, Huaifeng Chen, and Meiqin Wang

Conditional Differential Cryptanalysis for Kreyvium 421
Yuhei Watanabe, Takanori Isobe, and Masakatu Morii

XXIV Contents – Part I

http://dx.doi.org/10.1007/978-3-319-60055-0_11
http://dx.doi.org/10.1007/978-3-319-60055-0_11
http://dx.doi.org/10.1007/978-3-319-60055-0_12
http://dx.doi.org/10.1007/978-3-319-60055-0_13
http://dx.doi.org/10.1007/978-3-319-60055-0_13
http://dx.doi.org/10.1007/978-3-319-60055-0_14
http://dx.doi.org/10.1007/978-3-319-60055-0_15
http://dx.doi.org/10.1007/978-3-319-60055-0_15
http://dx.doi.org/10.1007/978-3-319-60055-0_16
http://dx.doi.org/10.1007/978-3-319-60055-0_17
http://dx.doi.org/10.1007/978-3-319-60055-0_17
http://dx.doi.org/10.1007/978-3-319-60055-0_18
http://dx.doi.org/10.1007/978-3-319-60055-0_18
http://dx.doi.org/10.1007/978-3-319-60055-0_19
http://dx.doi.org/10.1007/978-3-319-60055-0_20
http://dx.doi.org/10.1007/978-3-319-60055-0_21
http://dx.doi.org/10.1007/978-3-319-60055-0_21
http://dx.doi.org/10.1007/978-3-319-60055-0_22

Digital Signatures

Practical Strongly Invisible and Strongly Accountable
Sanitizable Signatures . 437

Michael Till Beck, Jan Camenisch, David Derler, Stephan Krenn,
Henrich C. Pöhls, Kai Samelin, and Daniel Slamanig

Tightly-Secure Signatures from the Decisional Composite
Residuosity Assumption. 453

Xiao Zhang, Shengli Liu, and Dawu Gu

Author Index . 469

Contents – Part I XXV

http://dx.doi.org/10.1007/978-3-319-60055-0_23
http://dx.doi.org/10.1007/978-3-319-60055-0_23
http://dx.doi.org/10.1007/978-3-319-60055-0_24
http://dx.doi.org/10.1007/978-3-319-60055-0_24

Contents – Part II

Symmetric Cryptography

Analysis of Toeplitz MDS Matrices. 3
Sumanta Sarkar and Habeeb Syed

Reforgeability of Authenticated Encryption Schemes 19
Christian Forler, Eik List, Stefan Lucks, and Jakob Wenzel

Indifferentiability of Double-Block-Length Hash Function
Without Feed-Forward Operations . 38

Yusuke Naito

Software Security

FFFuzzer: Filter Your Fuzz to Get Accuracy, Efficiency and Schedulability . . . 61
Fan Jiang, Cen Zhang, and Shaoyin Cheng

Splitting Third-Party Libraries’ Privileges from Android Apps 80
Jiawei Zhan, Quan Zhou, Xiaozhuo Gu, Yuewu Wang, and Yingjiao Niu

SafeStackþ: Enhanced Dual Stack to Combat Data-Flow Hijacking 95
Yan Lin, Xiaoxiao Tang, and Debin Gao

Network Security

Prover Efficient Public Verification of Dense or Sparse/Structured
Matrix-Vector Multiplication . 115

Jean-Guillaume Dumas and Vincent Zucca

JSFfox: Run-Timely Confining JavaScript for Firefox 135
Weizhong Qiang, JiaZhen Guo, Hai Jin, and Weifeng Li

Malware Detection

PriMal: Cloud-Based Privacy-Preserving Malware Detection. 153
Hao Sun, Jinshu Su, Xiaofeng Wang, Rongmao Chen, Yujing Liu,
and Qiaolin Hu

A New Malware Classification Approach Based on Malware
Dynamic Analysis . 173

Ying Fang, Bo Yu, Yong Tang, Liu Liu, Zexin Lu, Yi Wang,
and Qiang Yang

http://dx.doi.org/10.1007/978-3-319-59870-3_1
http://dx.doi.org/10.1007/978-3-319-59870-3_2
http://dx.doi.org/10.1007/978-3-319-59870-3_3
http://dx.doi.org/10.1007/978-3-319-59870-3_3
http://dx.doi.org/10.1007/978-3-319-59870-3_4
http://dx.doi.org/10.1007/978-3-319-59870-3_5
http://dx.doi.org/10.1007/978-3-319-59870-3_6
http://dx.doi.org/10.1007/978-3-319-59870-3_6
http://dx.doi.org/10.1007/978-3-319-59870-3_7
http://dx.doi.org/10.1007/978-3-319-59870-3_7
http://dx.doi.org/10.1007/978-3-319-59870-3_8
http://dx.doi.org/10.1007/978-3-319-59870-3_9
http://dx.doi.org/10.1007/978-3-319-59870-3_10
http://dx.doi.org/10.1007/978-3-319-59870-3_10

Privacy

Privacy-Preserving Aggregation of Time-Series Data with Public
Verifiability from Simple Assumptions . 193

Keita Emura

Privacy-Utility Tradeoff for Applications Using Energy Disaggregation
of Smart-Meter Data . 214

Mitsuhiro Hattori, Takato Hirano, Nori Matsuda, Rina Shimizu,
and Ye Wang

Private Graph Intersection Protocol . 235
Fucai Zhou, Zifeng Xu, Yuxi Li, Jian Xu, and Su Peng

Computing Aggregates Over Numeric Data with Personalized
Local Differential Privacy . 249

Mousumi Akter and Tanzima Hashem

An Efficient Toolkit for Computing Private Set Operations 261
Alex Davidson and Carlos Cid

Authentication

Privacy-Preserving k-time Authenticated Secret Handshakes 281
Yangguang Tian, Shiwei Zhang, Guomin Yang, Yi Mu, and Yong Yu

Exploring Effect of Location Number on Map-Based Graphical
Password Authentication . 301

Weizhi Meng, Wang Hao Lee, Man Ho Au, and Zhe Liu

A QR Code Watermarking Approach Based on the DWT-DCT Technique. . . 314
Yang-Wai Chow, Willy Susilo, Joseph Tonien, and Wei Zong

Elliptic Curve Cryptography

Generating Complete Edwards Curves . 335
Theo Fanuela Prabowo and Chik How Tan

Secure GLS Recomposition for Sum-of-Square Cofactors. 349
Eunkyung Kim and Mehdi Tibouchi

Differential Addition on Twisted Edwards Curves . 366
Reza Rezaeian Farashahi and Seyed Gholamhossein Hosseini

XXVIII Contents – Part II

http://dx.doi.org/10.1007/978-3-319-59870-3_11
http://dx.doi.org/10.1007/978-3-319-59870-3_11
http://dx.doi.org/10.1007/978-3-319-59870-3_12
http://dx.doi.org/10.1007/978-3-319-59870-3_12
http://dx.doi.org/10.1007/978-3-319-59870-3_13
http://dx.doi.org/10.1007/978-3-319-59870-3_14
http://dx.doi.org/10.1007/978-3-319-59870-3_14
http://dx.doi.org/10.1007/978-3-319-59870-3_15
http://dx.doi.org/10.1007/978-3-319-59870-3_16
http://dx.doi.org/10.1007/978-3-319-59870-3_17
http://dx.doi.org/10.1007/978-3-319-59870-3_17
http://dx.doi.org/10.1007/978-3-319-59870-3_18
http://dx.doi.org/10.1007/978-3-319-59870-3_19
http://dx.doi.org/10.1007/978-3-319-59870-3_20
http://dx.doi.org/10.1007/978-3-319-59870-3_21

Short Papers

Certificate Transparency with Enhancements and Short Proofs 381
Abhishek Singh, Binanda Sengupta, and Sushmita Ruj

Update-Tolerant and Revocable Password Backup. 390
Moritz Horsch, Johannes Braun, Dominique Metz,
and Johannes Buchmann

Redactable Graph Hashing, Revisited (Extended Abstract) 398
Andreas Erwig, Marc Fischlin, Martin Hald, Dominik Helm,
Robert Kiel, Florian Kübler, Michael Kümmerlin, Jakob Laenge,
and Felix Rohrbach

On the Security of Designing a Cellular Automata Based Stream Cipher 406
Swapan Maiti, Shamit Ghosh, and Dipanwita Roy Chowdhury

Stegogames . 414
Clark Thomborson and Marc Jeanmougin

A Feasibility Evaluation of Fair and Privacy-Enhanced Matchmaking
with Identity Linked Wishes. 422

Dwight Horne and Suku Nair

Fully Context-Sensitive CFI for COTS Binaries . 435
Weizhong Qiang, Yingda Huang, Deqing Zou, Hai Jin, Shizhen Wang,
and Guozhong Sun

Dual-Mode Cryptosystem Based on the Learning with Errors Problem. 443
Jingnan He, Wenpan Jing, Bao Li, Xianhui Lu, and Dingding Jia

Process Control Cyber-Attacks and Labelled Datasets on S7Comm
Critical Infrastructure . 452

Nicholas R. Rodofile, Thomas Schmidt, Sebastian T. Sherry,
Christopher Djamaludin, Kenneth Radke, and Ernest Foo

Solving the DLP with Low Hamming Weight Product Exponents
and Improved Attacks on the GPS Identification Scheme 460

Jason H.M. Ying and Noboru Kunihiro

Author Index . 469

Contents – Part II XXIX

http://dx.doi.org/10.1007/978-3-319-59870-3_22
http://dx.doi.org/10.1007/978-3-319-59870-3_23
http://dx.doi.org/10.1007/978-3-319-59870-3_24
http://dx.doi.org/10.1007/978-3-319-59870-3_25
http://dx.doi.org/10.1007/978-3-319-59870-3_26
http://dx.doi.org/10.1007/978-3-319-59870-3_27
http://dx.doi.org/10.1007/978-3-319-59870-3_27
http://dx.doi.org/10.1007/978-3-319-59870-3_28
http://dx.doi.org/10.1007/978-3-319-59870-3_29
http://dx.doi.org/10.1007/978-3-319-59870-3_30
http://dx.doi.org/10.1007/978-3-319-59870-3_30
http://dx.doi.org/10.1007/978-3-319-59870-3_31
http://dx.doi.org/10.1007/978-3-319-59870-3_31

Public Key Encryption

Tightly-Secure Encryption in the Multi-user,
Multi-challenge Setting

with Improved Efficiency

Puwen Wei1(B), Wei Wang1(B), Bingxin Zhu1, and Siu Ming Yiu2

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan, China

{pwei,weiwangsdu}@sdu.edu.cn, bingxinzhu@mail.sdu.edu.cn
2 The University of Hong Kong, Pokfulam, Hong Kong

smyiu@cs.hku.hk

Abstract. We construct a compact public-key encryption with tight
CCA security in the multi-user, multi-challenge setting, where the reduc-
tion loss is a constant. Our scheme follows the Hofheinz-Jager framework
but is compressed in the sense that only one of the underlying two-tier
signatures needs to be committed. Considering the virtually unbounded
simulations, e.g., 280, the ciphertext size of our scheme decreases to
about 256 group elements, whereas the best known solution provided by
Blazy et al. required about 625 group elements under the same standard
assumptions. In particular, we formalize a new notion called simulatable
two-tier signature, which plays a central role in the construction of our
tree-based signature and public-key encryption. Combining simulatable
two-tier signatures with additional “ephemeral” signatures, we provide
a method of constructing commitments to a tree-based signature, where
most parts of the tree-based signature can be simulated and sent in the
clear. Our method can reduce the length of the commitments and the
related proofs of knowledge in previous works by 60%.

Keywords: Multi-user · Multi-challenge · Public-key encryption · Tight
security

1 Introduction

Standard security notions for public-key encryptions (PKE) only consider one
user and one challenge ciphertext, e.g., IND-CCA security [27]. The realistic
setting for PKE, however, usually involves more users and ciphertexts, which
is called multi-user, multi-challenge setting. General result [7] shows that one-
user, one-ciphertext security implies security in the multi-user, multi-challenge
setting, and the reduction loss of the proof is nu ·nc, where nu and nc denote the
number of users and the number of challenge ciphertexts per user, respectively.
In that sense, if a PKE which is secure in a one-user, one-challenge setting is
deployed in a multi-user, multi-challenge setting, its security may significantly
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 3–22, 2017.
DOI: 10.1007/978-3-319-60055-0 1

4 P. Wei et al.

deteriorate in the number of users or ciphertexts. In fact, the choice of the size of
cryptographic parameters depends on the concrete loss of the reduction. That is,
the larger the security loss requires, the larger the parameters are. The following
example given by [5] illustrates the relation above. Suppose a RSA-based digital
signature with reduction loss nu · ns is deployed in a large-scale setting, such
as TLS protocol on the internet, where the number of users and signatures are
nu = 220 and ns = 220, respectively. If we want to achieve a security level of
100 “bits of security”, the RSA-modulus size of the digital signature needs to
be greater than 4000 bits, which means much more running time than that of
current schemes with 2048-bit modulus. What is worse, the number of users,
signatures or ciphertexts is usually not clear at deployment time. Hence, it is
necessary to consider tight security for the multi-user/-challenge setting, where
“tight” means the reduction loss is a constant.

Bellare et al. [7] proved the tight IND-CPA security of ElGamal encryption
[15] in the multi-user/-challenge setting. However, the problem of constructing
tightly IND-CCA secure PKE in the same setting from standard assumptions
was left open for many years. The important development was made by Hofheinz
and Jager [19]. They showed the first IND-CCA secure PKE in the multi-user/-
challenge setting, the security of which tightly relates to the decision linear
(DLIN) assumption. Abe et al. [1] improved Hofheinz and Jager’s scheme by
introducing an efficient tagged one-time signature, while the ciphertext of the
resulting scheme still requires many hundreds of group elements. Another line of
research concentrates on the construction of primitives with almost tight secu-
rity, where “almost tight security” means that the reduction loss depends only on
the security parameter and not the number of adversarial queries. Chen and Wee
[13] presented the first fully secure identity-based encryption (IBE) with almost
tight security from the standard assumptions. Subsequently, Blazy, Kiltz and Pan
[9] provided IBE with “somewhat” tight security from affine message authen-
tication. Although the IBE schemes in [9,13] are not proved secure in a multi-
user/-challenge setting, their schemes imply almost tightly secure PKE in the
multi-user/-challenge setting. Then Hofheinz, Koch and Striecks [21] extended
Chen and Wee’s proof technique and constructed an IBE that is almost tightly
secure in the multi-user/-challenge setting, which can be converted to an almost
tightly CCA secure PKE in the same setting via the Canetti-Halevi-Katz para-
digm [12]. Considering the large ciphertexts size in previous works, Libert et al.
[24] showed an almost tightly CCA secure PKE, the ciphertext size of which
decreases to 69 group elements under the DLIN assumption. Subsequent works
[3,20,25] were devoted to further reducing the ciphertexts size. Very recently,
Gay et al. [16] constructed an almost tightly CCA-secure encryption scheme
from the DDH assumption without pairings, where the ciphertext overhead is
only 3 group elements.

Nevertheless, current PKEs with tight CCA security in the multi-user/-
challenge setting (under standard assumptions) are not as compact as their
counterparts with almost tight security. They are more feasibility results than
practical solutions. So far as we know, Blazy et al. [10] provided the most effi-
cient PKE schemes with tight CCA security in the multi-user/-challenge setting.

Tightly-Secure Encryption 5

They gave a new framework for obtaining tightly secure signatures from standard
assumptions, which leads to a tightly CCA-secure encryption using the frame-
work of [19]. The ciphertext size of their PKE is about 625 group elements1.

The difficulty in reducing ciphertext size. Current tightly CCA-secure
encryptions [1,10,19] based on standard assumptions all rely on tightly
simulation-sound non-interactive zero-knowledge proof system (SS-NIZK),
where the central building block is the tightly secure tree-based signature. Due
to the tree structure, the tree-based signature mainly consists of lots of underly-
ing one-time signatures, the number of which is linear with the depth of the tree.
More importantly, the prover has to commit to all those underlying signatures
in the construction of SS-NIZK, which results in the large size of SS-NIZK even
if the underlying signatures size can be made very small, say, only one element
as in [10]. Essentially, any further improvements on the size of the underlying
signatures cannot help in reducing the size of current SS-NIZK dramatically.

Our contribution. In this paper, we focus on the construction of tightly secure
encryptions in the multi-user/-challenge setting and provide a new method of
reducing the size of the commitment to a tree-based signature, which yields
a more compact tightly CCA-secure PKE in the multi-user/-challenge setting
based on standard assumptions. The resulting ciphertext is only of 5λ/(1 +
log d) + d/f + 54 group elements in G, 1 element in Zp and 1 scalar. For d = 2,
f = 1 and 2λ simulations, the ciphertext of our construction requires only about
2.5λ+56 group elements, which is much less than that of [10] (about 7λ+65 group
elements) under the same assumptions. In particular, if λ = 80 (which allows
almost unbounded simulations, suggested by [19]), our ciphertext consists of 256
group elements, 1 element in Zp and 1 scalar, which reduces the ciphertext size
of Blazy et al.’s scheme [10] (roughly 625 group elements) by about 60%.

As a main tool to achieve our construction, we introduce the notion of sim-
ulatable two-tier signatures2, which captures the property of the simulation of
two-tier signatures and the corresponding secondary public keys. Actually, such
property was implicitly used in the security proof of the signatures in previous
works [10,19,22]. Here, we take advantage of this property in a different way:
Without using Groth-Sahai commitments, the simulated two-tier signatures are
directly applied to construction of the simulation extractable NIZK. However, to
generate a commitment to a tree-based signature, simulatable two-tier signatures
needs to be combined with properly embedded ephemeral two-tier signatures,
which is crucial to the shrinking of the ciphertexts. Indeed, the combination of
simulatable two-tier signatures and ephemeral two-tier signatures provide a new
1 The concrete ciphertext size of PKE in [10] is not explicit in their paper. We compute

the ciphertext size according to the appendix of [10] when d = 2, f = 1 and λ =
80. Note that (d, f) are the parameters related to the underlying d-time two-tier
signatures and 2λ denotes the maximal number of signatures.

2 The simulatable two-tier signature is different from the notion simulatable signature
introduced in [2]. The latter is defined in the common reference string (CRS) model
and allows to create valid signatures using the trapdoor associated with the CRS,
while our simulatable two-tier signature does not require the CRS and the trapdoor.

6 P. Wei et al.

method of reducing the size of tightly SS-NIZK, which can be applied in the con-
struction of other tightly secure cryptographic primitives, such as tightly secure
authenticated key exchange [4], leakage resistant public key encryption [14] and
delegatable anonymous credentials [6]. Although the resulting schemes are still
not practical due to hundreds of elements, the concrete efficiency assessment of
theoretical constructions should serve as a reference for more efficient ones as
mentioned in [1].

2 Preliminaries

Digital signatures. A digital signature scheme Sig = (Gen,Sign,Vrfy) consists
of three algorithms. The key generation algorithm Gen on input parameter λ
outputs a public/private key pair (pk, sk). The signing algorithm Sign takes the
signing key sk and a massage m as input and outputs a signature σ. The verifi-
cation algorithm Vrfy on inputs the verification pk, a message m and the corre-
sponding signature σ outputs b ∈ {0, 1}. The security of the signature schemes
can be defined by the following experiment played between a challenger and a
adversary A.

ExpEUF-NCMA
Sig,A,q (λ)

• (m1, . . . ,mq) ← A(1λ);
• (pk, sk) ← Gen(1λ), σi ← Sign(sk,mi), for i = 1, . . . , q;
• (m∗, σ∗) ← A(pk, σ1, . . . , σq);
• If Vrfy(pk,m∗, σ∗) = 1 and m∗ �∈ (m1, . . . ,mq), then return 1. Otherwise,

return 0.

We say Sig is (ε, t, q)-existentially unforgeable against non-adaptive chosen mes-
sage attacks (EUF-NCMA) if Pr[ExpEUF-NCMA

Sig,A,q (λ) = 1] ≤ ε holds for any PPT
adversary A with running time at most t and at most q chosen-message queries.
Additional state information usually needs to be added to the inputs of Sign and
Vrfy when we deal with stateful signatures. For convenience, the stateful tree-
based signatures in [10,19] as well as this paper follow the above definitions of
ordinary signatures, where the state information is not explicitly taken as inputs
of Sign and Vrfy.

Two-Tier Signatures. Two-tier signature schemes, introduced by Bellare and
Shoup [8], have a primary key and a secondary key. The primary key is a long-
time key, which can be used for all signatures, while the secondary key is a
one-time key, which is usually used for only one message. Blazy et al. [10] pre-
sented a generalization of two-tier signature schemes and introduce the notion
of d-time two-tier signature, which allows the secondary key to sign at most d
messages. We follow the definition of d-time two-tier signatures in [10].

Definition 1 (d-time two-tier signature scheme). A d-time two-tier sig-
nature TTSig consists of four probabilistic algorithms (PriGen,SecGen,TTSign,
TTVrfy).

Tightly-Secure Encryption 7

– PriGen(1λ, d) generates a primary verification key ppk and signing key psk.
– SecGen(ppk, psk) generates a secondary verification key and signing key pair

(spk, ssk).
– TTSign(psk,ssk,m) outputs a signature σ for message m. For a stateful

TTSign, it takes as input the state in addition to (psk,ssk,m). That is,
σ ← TTSign(psk,ssk,m; j), where j is the state.

– TTVrfy(ppk, spk,m, σ) deterministically outputs 1 for acceptance, or 0 for
rejection. The stateful version is denoted as TTVrfy(ppk, spk,m, σ; j), where
j is the state.

The security of d-time two-tier signatures is defined by the following experiment.

ExpTT-EUF-NCMA
TTSig,A,q (λ, d)

• (ppk, psk) ← PriGen(1λ, d);
• (m∗, σ∗, i∗) ← AOSig(·)(ppk);
• If TTVrfy(ppk, spki∗ ,m∗, σ∗) = 1 and m∗ �∈ Qi∗ , then return 1. Otherwise,

return 0.

OSig(·) is the signing oracle, which on receiving i-th query Qi = (m1, . . . ,md),
computes (spki, sski) ← SecGen(ppk, psk) and σj ← TTSign(psk,sski,mj) for
j = 1, . . . , d, and returns (spki, σ1, . . . , σd). Note that the adversary submits a
list of messages (m1, . . . ,md) as the i-th query before he sees the i-th secondary
public key. In addition, a valid forgery σ∗ is a signature of the message m∗ under
a secondary public key spki∗ generated by OSig during the query phase.

The security model of the stateful d-time two-tier signatures below is defined
in a similar way, except that the state ji is taken as part of the inputs of TTSign
and TTVrfy.

ExpTT-EUF-NCMA
TTSig,A,q (λ, d)

• (ppk, psk) ← PriGen(1λ, d);
• (m∗, σ∗, i∗, j∗

i∗) ← AOSig(·)(ppk);
• If TTVrfy(ppk, spki∗ ,m∗, σ∗; j∗

i∗) = 1 and m∗ �∈ Qi∗ , then return 1. Oth-
erwise, return 0.

OSig(·) which on receiving i-th query Qi = (m1, . . . ,md) computes (spki, sski) ←
SecGen(ppk, psk) and σj ← TTSign(psk,sski,mj ; ji) for j = 1, . . . , d, and returns
(spki, σ1, . . . , σd). In this paper, we consider the case that ji = j.

Definition 2 (Existential unforgeability against non-adaptive chosen-
message attacks). A d-time two-tier signature TTSig is (t, q, d, ε)-existentially
unforgeable under non-adaptive chosen message attacks (EUF-NCMA) if for any
PPT adversary A with running time t and q chosen-message queries the proba-
bility Pr[ExpTT-EUF-NCMA

TTSig,A,q (λ, d) = 1] ≤ ε.

Chameleon Hash Functions. Chameleon hash functions [23] are a special type
of collision resistant hash functions with public/private keys. Anyone who knows
the private key of a chameleon hash function can easily find collisions for every

8 P. Wei et al.

given input. Formally, a chameleon hash function CHF=(CHGen,CHash,Coll) con-
sists of three algorithms. CHGen takes as input 1λ and outputs the hash key chk
and the trapdoor td. CHash on inputs chk, a message m ∈ MCH and a ran-
domness r ∈ RCH outputs the hash value h ∈ YCH, where MCH, RCH and
YCH denotes the message space, the randomness space and the range of CHash,
respectively. Coll on inputs (td, (m, r), m̃) outputs a randomness r̃ such that
CHash(chk,m, r) = CHash(chk, m̃, r̃). The security of CHF satisfies following
requirements.

– Collision resistance. CHF is (t, ε)-collision resistance if the following holds
for any PPT adversary A with running time t:

Pr
[

(chk,td) ← CHGen(1λ); ((m, r), (m̃, r̃)) ← A(chk)
∧CHash(chk,m, r) = CHash(chk, m̃, r̃) ∧ (m, r) �= (m̃, r̃)

]
≤ ε.

– Uniformity. For all m ∈ MCH, the distributions of (chk,CHash(chk,m, r))
and (chk, y) are computationally indistinguishable, where r

R← RCH, y
R← YCH

and (chk,td) ← CHGen (1λ).

3 Simulatable Two-Tier Signatures

The security of two-tier signatures requires that it is difficult for any PPT adver-
sary to generate a forgery under any secondary public key generated by the ora-
cle. We note that in some two-tier signature schemes, however, it may be easy
for the adversary to output a forgery under a secondary public key generated
by the adversary himself. Since this property can be used in the simulation of
signatures, we call a two-tier signature with such kind of property a simulatable
two-tier signature.

Definition 3 (Simulatable two-tier signature). A two-tier signature TTSig
is simulatable if there exists an efficient algorithm SimTTSign which takes as
input (ppk,m) and outputs (spk′, σ′) such that

– TTVrfy(ppk, spk′,m, σ′) = 1;
– the distribution of (spk′, σ′) is computationally indistinguishable from that of

(spk, σ), where (spk, ssk) ← SecGen(ppk, psk) and σ ← TTSign(psk, ssk,m).
Formally, for all probabilistic polynomial time distinguisher D, there exists a
negligible function ε(λ) such that

Pr[DOSTT(·)(ppk) = 1] − Pr[DOTT(·)(ppk) = 1] ≤ ε(λ),

where (ppk, psk) ← PriGen(1λ, d), OSTT(·) takes as input m and returns
SimTTSign(ppk,m) and OTT(·) takes as input m, computes (spk, ssk) ←
SecGen(ppk, psk), σ ← TTSign(psk, ssk,m) and returns (spk, σ).

for any message m in the message space of TTSig.

Tightly-Secure Encryption 9

There are many two-tier signatures which are simulatable. For instance, the
two-tier signature based on chameleon hash in [10], which is described below.
Other examples of simulatable two-tier signatures under concrete computational
assumptions are shown in Appendix A.

Two-tier signature based on chameleon hash [10]
• PriGen(1λ): (chk, td) ← CHGen(1λ). Output ppk = chk, psk = td.
• SecGen(ppk,psk): h = CHash(ppk, m̂, σ̂), where m̂ is an arbitrary public

element in MCH and σ̂
R← RCH. Output spk = h and ssk = σ̂.

• TTSign(psk,ssk,m): Output σ = Coll(psk, m̂, σ̂,m).
• TTVrfy(ppk, spk,m, σ): Output 1 if CHash(ppk,m, σ) = spk; Otherwise, 0.

We can construct the corresponding SimTTSign as follows.

SimTTSign(ppk,m):
1. On inputs ppk=chk and m, compute spk′ ← CHash(ppk,m, σ′), where

σ′ R← RCH;
2. Output (spk′, σ′).

Claim 1. The two-tier signature based on chameleon hash function is simulat-
able if the underlying Coll(td, m̂, ·,m) is a bijection function from RCH to RCH

for any td generated by CHGen and any m̂, m ∈ MCH.

The proof of Claim 1 proceeds via a sequence of games, where the signing oracle
is gradually modified. The indistinguishability between adjacent games relies on
the properties of the underlying chameleon hash. The proof is omitted due to
lack of space and will be described in the full paper.

4 Tightly Secure Signatures

The tree-based signature schemes of [10,19] cannot be simulated by replacing the
underlying two-tier signatures with simulatable TTSig directly. The main diffi-
culty is that different secondary public keys of sibling nodes cannot be mapped to
the same secondary public key of their parent using SimTTSign, since SimTTSign
on different inputs will generate different secondary public keys. To solve this
problem, we insert additional “ephemeral” d-time two-tier signatures T̂TSig into
each level of the tree, where the primary public/secret key pair (p̂pk, p̂sk) of
T̂TSig are generated during the signing phase of the tree-based signature. In
particular, there are two “ephemeral” secondary public/secret key pairs associ-
ated with each internal node Nvi

. More precisely, each internal node Nvi
lying

on the path (v0, v1, . . . , vh) has secondary public keys (spkvi
, ̂spkvi||0, ̂spkvi||1),

where spkvi
denotes the secondary public key of TTSig, and ̂spkvi||0 and ̂spkvi||1

denote the secondary public keys of T̂TSig. See Fig. 1 in Appendix B for an illus-
tration, where spkvi

is associated with ̂spkvi||0 and ̂spkvi||1 for i = 0, . . . , h − 1,
and the resulting tree has (2d)h leafs. The signer can be viewed as maintaining a

10 P. Wei et al.

2d-ary tree of depth h. In the simulation phase, the secondary public/secret key
pairs (̂spkvi||0, ŝskvi||0) and (̂spkvi||1, ŝskvi||1) can be generated using (p̂pk, p̂sk).
Hence, spkvi

s and the corresponding signature σvi
s in different levels (except for

the root) can be simulated independently by SimTTSign.

TreeSig. Let TTSig = (PriGen,SecGen,TTSign,TTVrfy) be a simulatable one-
time two-tier signature and T̂TSig = (P̂riGen, ŜecGen, T̂TSign, T̂TVrfy) be a d-
time two-tier signature. Our stateful tree-based scheme TreeSig = (TreeSig.Gen,
TreeSig.Sign, TreeSig.Vrfy) is defined as follows.

– TreeSig.Gen(1λ): Compute (ppk, psk) ← PriGen(1λ) and (spkv0
, sskv0) ←

SecGen(ppk, psk). Let the verification key vktree = (ppk, spkv0
) and the signing

key sktree = (psk, sskv0). Let Nv0 be the root of the tree, where v0 = ε.
– TreeSig.Sign(sktree,m): Suppose Nvh

is the leftmost unused leaf and (v0, . . . ,
vh) is the path, where vi = vi−1||βi−1ji−1 for i ∈ {1, . . . , h}, βi−1 ∈ {0, 1} and
ji−1 ∈ {1, . . . , d}.

• Nodes generation. If (̂spkv0||0, ̂spkv0||1) has not been defined, gener-

ate (p̂pk, p̂sk) ← P̂riGen(1λ), (̂spkv0||0, ŝskv0||0) ← ŜecGen(p̂pk, p̂sk) and

(̂spkv0||1, ŝskv0||1) ← ŜecGen(p̂pk, p̂sk).
For i = 1, . . . , h − 1, if the related keys associated to Nvi

are not
defined, compute (spkvi

, sskvi
) ← SecGen(ppk, psk), (̂spkvi||0, ŝskvi||0) ←

ŜecGen(p̂pk, p̂sk) and (̂spkvi||1, ŝskvi||1) ← ŜecGen(p̂pk, p̂sk). For the leaf
Nvh

, compute (spkvh
, sskvh

) ← SecGen(ppk, psk).
• Path authentication. For i = 0, 1, . . . , h − 1, if Nvi+1 has not been

authenticated, compute σvi
← TTSign(psk, sskvi

, ̂spkvi||0|| ̂spkvi||1||p̂pk)
and σ̂vi||βi

← T̂TSign(p̂sk, ̂sskvi||βi
, spkvi+1

; ji), where vi+1 = vi||βiji.
Finally, σvh

← TTSign(psk, sskvh
,m).

The signature σ is (vh; (p̂pk, ̂spkv0||0, ̂spkv0||1); (spkv1
, ̂spkv1||0, ̂spkv1||1), . . . ,

(spkvh−1
, ̂spkvh−1||0, ̂spkvh−1||1), spkvh

; (σv0 , σ̂v0||β0), (σv1 , σ̂v1||β1), . . . , (σvh−1 ,

̂σvh−1||βh−1); σvh
)3.

– TreeSig.Vrfy(vktree,m, σ):
• Parse vh as v0||β0j0||β1j1|| . . . ||βh−1jh−1. For i = 0, 1, . . . , h −

1, check if TTVrfy(ppk, spkvi
, ̂spkvi||0|| ̂spkvi||1||p̂pk, σvi

) = 1 and

T̂TVrfy(p̂pk, ̂spkvi||βi
, spkvi+1

, σ̂vi||βi
; ji) = 1.

• Check if TTVrfy(ppk, spkvh
,m, σvh

) = 1.
If all the above equations hold, return 1; Otherwise, 0.

Theorem 1. TreeSig is (εTree, tTree, qTree)-EUF-NCMA secure, if TTSig is
(εTTSig, tTTSig, qTTSig)-EUF-NCMA secure and T̂TSig is d-time (ε

̂TTSig
,

t
̂TTSig

, q
̂TTSig

)-EUF -NCMA secure, where εTree ≤ εTTSig + ε
̂TTSig

, tTree =
max{tTTSig, t

̂TTSig
} − O(hqTree) and qTree ≤ max{qTTSig, q̂TTSig

}.
3 For simplicity, we omit the description of state information. Indeed, we need to

store the state information, such as vh, (̂ppk, ̂psk), and the secondary public/secret
key pairs and corresponding two-tier signatures generated so far.

Tightly-Secure Encryption 11

The proof of Theorem 1 is shown in Appendix C.

Simulation of TreeSig. This section shows a PPT algorithm SimTree which
can simulate most parts of the signature σ generated by TreeSig. (Note that the
TreeSig is not simulatable.) SimTree takes as input (vktree,m) and works in a
bottom-up fashion to reconstruct secondary keys and signatures associated to
the nodes (except for the root) on the path. More details are as follows.

1. Choose the leftmost unused leaf Nvh
.

2. If p̂pk has not been defined, run (p̂pk, p̂sk) ← P̂riGen(1λ). Compute
(spkvh

, σvh
) ← SimTTSign(ppk,m).

3. For i = h − 1, . . . , 1, if σ̂vi||βi
has not been generated, conduct the following

steps.
(a) If (̂spkvi||0, ̂spkvi||1) are not defined, compute (̂spkvi||0, ŝskvi||0) ← ŜecGen

(p̂pk, p̂sk), (̂spkvi||1, ŝskvi||1) ← ŜecGen(p̂pk, p̂sk) and

(spkvi
, σvi

) ← SimTTSign(ppk, ̂spkvi||0|| ̂spkvi||1||p̂pk).

(b) Compute σ̂vi||βi
← T̂TSign(p̂sk, ̂sskvi||βi

, spkvi+1
; ji), where vi+1 =

vi||βiji.
4. If σ̂v0||β0 has not been generated, conduct the following steps.

(a) If (̂spkv0||0, ̂spkv0||1) are not defined, run (̂spkv0||0, ŝskv0||0) ← ŜecGen

(p̂pk, p̂sk) and (̂spkv0||1, ŝskv0||1) ← ŜecGen(p̂pk, p̂sk).

(b) Compute σ̂v0||β0 ← T̂TSign(p̂sk, ̂sskv0||β0 , spkv1
; j0).

5. Store (vh; (p̂pk, p̂sk); (̂spkv0||0, ŝskv0||0), (̂spkv0||1, ŝskv0||1), . . . , (̂spkvh−1||0,
̂sskvh−1||0), (̂spkvh−1||1, ̂sskvh−1||1); spkv1

, . . . , spkvh
; σ̂v0||β0 , (σv1 , σ̂v1||β1), . . . ,

(σvh−1 , ̂σvh−1||βh−1); σvh
) in the record. Output the signature σSim, which is

(vh; (p̂pk, ̂spkv0||0, ̂spkv0||1); (spkv1
, ̂spkv1||0, ̂spkv1||1), . . . , (spkvh−1

, ̂spkvh−1||0,
̂spkvh−1||1), spkvh

; σ̂v0||β0 , (σv1 , σ̂v1||β1), . . . , (σvh−1 , ̂σvh−1||βh−1); σvh
).

Remark. Note that the only difference between a real signature σ and σSim is
that the latter does not have σv0 . Due to the property of SimTTSig, the distribu-
tion of σSim is computationally indistinguishable from that of the corresponding
parts of the real σ. Indeed, SimTTSig can perfectly simulate the corresponding
parts of σ if TTSig and T̂TSig are chosen properly, e.g., two-tier signatures based
on f -CDHI [10]. Furthermore, it is known that a stateful tree-based signature
can be made stateless using pseudorandom functions (PRF) [17]. The same tech-
nique can be also applied to our scheme, where PRFs are used to determine the
path and to generate the randomness used in TreeSig.Sign and SimTree.

12 P. Wei et al.

5 Tight Simulation Extractable NIZK (SE-NIZK)

In this section, we show how to apply our TreeSig to the construction of SE-NIZK
[1]. For more details on the related definitions of SS-NIZK including simulation
sound extractability, we refer to [1,18,19].

To construct tight simulation sound NIZK proof, previous works [1,10,19]
generate a GS proof π stating that either x ∈ L (which means the simultaneous
satisfiability of a set of PPEs) or it knows a valid signature σ of the public
key of a one-time signature, say opk, where the signature is instantiated with
the tree-based signature. During the proof, the prover needs to compute a tree-
based pseudo-signature σ and generates a commitment Com(σ) to σ. Since a
tree-based signature mainly consists of the related public keys and signatures of
nodes on the path from the root to a leaf, the prover needs to commit to all the
pseudo-signatures of nodes along the path, say, σvi

s. [1,10] find that some parts
of a signature σvi

which do not require the knowledge of the secret key do not
need to be committed and can be sent in the clear. Although such optimization
leads to considerable savings of elements, the number of the commitments to
signatures still grows linearly with the depth of the tree.

Our construction. To further reduce the number of commitments, we replace
the tree-based signature of SE-NIZK in [1] with our TreeSig. Recall that the
signature σ consists of (vh; (p̂pk, ̂spkv0||0, ̂spkv0||1); (spkv1

, ̂spkv1||0, ̂spkv1||1), . . . ,

(spkvh−1
, ̂spkvh−1||0, ̂spkvh−1||1), spkvh

; (σv0 , σ̂v0||β0), (σv1 , σ̂v1||β1), . . . , (σvh−1 ,

̂σvh−1||βh−1); σvh
). In our SE-NIZK, the only part of σ that needs to be committed

is σv0 , while other parts can be simulated using SimTree and sent in the clear.
More details of our SE-NIZK are described below.

Let R be a binary relation, L = {x : ∃w s.t. R(x,w) = 1}, POK=(POK.Crs,
POK.Prv, POK.Vrfy, POK.Ext) be a NIZK proof of knowledge system and
OTSig=(OTSig.Gen, OTSig.Sign, OTSig.Vrfy) be a one-time signature. Our SE-
NIZK for a relation R consists of the following algorithms.

– SE-NIZK.Crs(gk): Run (crspok, τex) ← POK.Crs(gk) and (vktree, sktree) ←
TreeSig.Gen(gk), where gk denotes the global parameter. Let crs = (gk, crspok,
vktree) and τzk = sktree. Output crs, τex and τzk.

– SE-NIZK.Prv(crs, x, w): Parse crs as (gk, crspok, vktree). Compute (opk, osk) ←
OTSig.Gen(gk). Let xse = (x, opk), σ = ⊥, wse = (w, σ) and relation Rse

be Rse(xse, wse) = (R(x,w) = 1) ∨ (TreeSig.Vrfy (vktree, opk, σ) = 1). Here,
σ = ⊥ denotes a pseudo-signature, which is not a valid signature. Gen-
erate π ← POK.Prv(crspok, xse, wse) and σOT ← OTSig.Sign(osk, π), where
POK.Prv is similar to that of [1], except the following modifications for
the commitment Com(σ): Compute σSim ← SimTree(vktree, opk) and gener-
ate a pseudo-signature σ̃v0 and the commitment Com(σ̃v0). Let Com(σ) =
(σSim, Com(σ̃v0)). When Com(σ) are used in the OR proof, we only need
to consider the proof of knowledge for σ̃v0 instead of σ. Output πse =
(π, opk, σOT).

Tightly-Secure Encryption 13

– SE-NIZK.Vrfy(crs, x, πse): Parse πse as (π, opk, σOT). Verify σOT and check π as
a GS proof for Rse. If the above checks are passed, output 1; Otherwise, 0.

– SE-NIZK.PrvSim(crs, τzk, x): Parse crs as (gk, crspok, vktree). Compute (opk, osk)
← OTSig.Gen(gk) and generate Com(σ) as follows: Compute σSim ← SimTree

(vktree, opk), a real signature σv0 ← TTSign(psk, sskv0 , ̂spkv0||0|| ̂spkv0||1||p̂pk)
and the commitment Com(σv0) to σv0 . Let Com(σ) = (σSim, Com(σv0)), where
σ = (σSim, σv0). Similarly, only Com(σv0) needs to be taken into account in the
following proof of knowledge. Let wse = {⊥, σ}. Generate π ← POK.Prv(crspok,
xse, wse) and σOT ← OTSig.Sign(osk, π). Output πse = (π, opk, σOT).

– SE-NIZK.Ext(crs, τex, x, πse): Parse crs as (gk, crspok, vktree) and πse as (π, opk,
σOT). Compute wse ← POK.Ext(crspok, τex, π, (x, opk)). Output w in wse =
(w, σ).

Remark. The distribution of σ = (σSim, σv0) in SE-NIZK.PrvSim may be not
identical to the real tree signature due to the quality of the underlying simulat-
able two-tier signatures. To decrease the reduction loss, we choose proper TTSig,
e.g., TTSig based on f -CDHI [10] (See Appendix A), such that the distributions
of σSim and σ are identical to that of real one. Another method of generating a real
tree signature σ in SE-NIZK.PrvSim is to run TreeSig.Sign(sktree, opk) directly.
Although the latter method is much easier to understand, the corresponding
security proof is a bit more complex than that of the former one. A concrete
instantiation of our SE-NIZK will be provided in the description of encryption
algorithm Enc in Sect. 6, where more details of SE-NIZK.Prv are shown. Details
of other sub-algorithms of SE-NIZK are easy to follow and thus omitted.

Let 2λ denote the number of messages which can be signed by TreeSig.
When instantiated with d-time two-tier signatures of [10], TreeSig requires
5λ/(1 + log d) + (d/f) + 2 group elements and one scalar for vh. Since only one
element needs to be committed, with the GS proof over the DLIN setting, the
commitment and the corresponding proof for the linear pairing-product equation
requires 6 group elements. Hence, the overall cost for the committed signature
is 5λ/(1 + log d) + (d/f) + 7 group elements and 1 scalar.

The completeness of our scheme is easy to verify. Due to Theorem 1 and wit-
ness indistinguishability of POK, Theorem 6 in [1] still holds for our construction.
So we have

Theorem 2. Our SE-NIZK preserves zero-knowledge and simulation extractabil-
ity, if POK is a witness indistinguishable proof of knowledge system with
knowledge-soundness error εks, TreeSig is unforgeable against non-adaptive cho-
sen message attacks (EUF-NCMA) with advantage εTree, and OTSig is strongly
one-time unforgeable against chosen message attacks with advantage εOTSig.
In particular, the zero-knowledge distinguishing advantage εzk ≤ 2εGS and the
simulation-extraction error εse ≤ εOTSig + εks + εTree, where εGS denotes the dis-
tinguishing advantage between hiding and binding GS CRSs.

The proof follows that of [1,19], and more details will be shown in the full paper.

14 P. Wei et al.

Remark. Theorem 2 are proven in the “one instance, one prover setting”, where
the CRS and the prover are fixed, and the adversary can query the corresponding
oracles many times. Since there is only one prover in our setting, the simulator
can generate consistent distributions of simulated tree-based signatures for the
same party. Such properties, however, only can be used to construct tightly
secure PKE in the single user, multi-challenge setting. To extend the tight secu-
rity of PKE to the multi-user, multi-challenge setting, we need the “μ-fold”
tightly secure SE-NIZK. That is, the SE-NIZK is tightly secure in the “multi-
instance, multi-prover setting”, where there are μ SE-NIZK instances (CRSs)
and each instance corresponds to a CRS and a prover. As in [1], it is easy
for our scheme to preserve tightness when extending the security to the multi-
instance, multi-prover setting, since no secret information is shared between
different instances and the underlying complexity assumptions are random self
reducible. In particular, the underlying assumptions of POK, TreeSig and OTSig
in our SE-NIZK are DLIN, f -CDHI and DLOG, respectively, all of which are
random self reducible.

6 Tightly IND-CCA Secure PKE in the Multi-
User/-challenge Setting

To construct tightly IND-CCA secure encryption scheme4, we follow the con-
struction of [1,14], which is an efficient variant of the Naor-Yung paradigm
[10,19,26]. The basic idea is to prove that either we know a TreeSig signa-
ture for the public key of an one-time signature or we know the plaintext and
the randomness corresponding to the ciphertext. On the NIZK for the above
OR relation during encryption phase, we use SimTree to generate most parts of
the commitment to the (pseudo-)TreeSig signature. The underlying public-key
encryption PKEcpa is instantiated with linear encryption scheme [11], which is
proven to be tightly IND-CPA secure in the multi-user/-challenge setting [19].
The underlying TTSig and T̂TSig in TreeSig are instantiated with the d-time
two-tier signature scheme based on f -CDHI [10], where d = 1 for TTSig. The
underlying one-time signature OTSig in SE-NIZK is instantiated with the one-
time two-tier signature scheme based on DLOG. (All the above signatures are
described in Appendix A.) Note that these underlying schemes can share some
parameters, say, the generator g.

Our PKE=(ParGen, KeyGen, Enc, Dec) consists of the following algorithms.

– ParGen(1λ): Generate the common public parameters par = (G, GT , g), where
(G, GT) are bilinear groups of prime order p and g is the generator of G. Let
H : {0, 1}∗ → Z

∗
p be a hash function, which is used in the underlying signatures.

– KeyGen(par): Run the key generation algorithm of the underlying public-
key encryption PKEcpa to generate (pk, sk). That is, randomly choose k ∈ G,
x0, x1 ∈ Zp and compute y0 = kx0 , y1 = kx1 . Let sk = (x0, x1) and pk =

4 For more details on the definition of IND-CCA security in the multi-user/-challenge
setting, we refer to [19].

Tightly-Secure Encryption 15

(y0, y1, k). Run TreeSig.Gen to generate vktree = (ppk, spkv0
) and sktree =

(psk, sskv0), where x
R← Zp, psk = x, ppk = h = gx, sskv0 is empty and spkv0

=
uv0 for a random element uv0 ∈ G. Choose a perfectly witness indistinguishable
Groth-Sahai CRS crs. The public key is PK = (pk, vktree, crs) and the private
key is SK = (sk, sktree).

– Enc(PK,m):
1. Compute c0 = yr0

0 , c1 = yr1
1 and c2 = mkr0+r1 , where r0, r1

R← Zp.
2. SE-NIZK for relation R((pk, c), (m, r0, r1)), where c = (c0, c1, c2).

(a) Generate a public/secret key pair (opk, osk) of a one-time
signature OTSig. Concretely, compute pskOT = xOT, ppkOT = yOT =
gxOT , sskOT = rOT and spkOT = y0

OTgrOT , where xOT, rOT
R← Zp. Let

opk = (ppkOT, spkOT) and osk = (pskOT, sskOT). Next, we will provide
the OR proof for the relation

(R((pk, c), (m, r0, r1)) = 1) ∨ (TreeSig.Vrfy(vktree, σ, opk) = 1).

(b) Generate a commitment to the pseudo-signature on opk.
• Suppose Nvh

is the leftmost unused leaf. Compute σSim ←
SimTree (vktree, opk). Note that σSim =(vh; (p̂pk, ̂spkv0||0, ̂spkv0||1);

(spkv1
, ̂spkv1||0, ̂spkv1||1), . . . , (spkvh−1

, ̂spkvh−1||0, ̂spkvh−1||1),

spkvh
; σ̂v0||β0 , (σv1 , σ̂v1||β1), . . . , (σvh−1 , ̂σvh−1||βh−1); σvh

), p̂pk =
(ĥ0, ĥ1, . . . , ĥc) ∈ G

c+1 and c · f = d.
• σv0 is set to the identity element 1 ∈ G and generate a com-

mitment Com(σv0). Hence, the committed pseudo-signature for
spkOT is (σSim, Com(σv0)).

(c) Provide the OR proof. We need additional variable s for the
switcher, variable wk for the constant k in Eqs. (4), (5) and (6)5

and variable wg for the constant g in the right side of (7), where s, wk

and wg satisfy the following equations.

e(s, s) = e(s, g) (1)
e(wk, g) = e(k, s) (2)
e(wg, g) = e(g, s−1g) (3)

Set s = g. So we have wk = k and wg = 1 due to Eqs. (2) and (3).
Compute the commitments Com(s), Com(wk) and Com(wg) to s,
wk and wg, respectively. Let πs, πk and πg denote the proofs for Eqs.
(1), (2) and (3), respectively. To prove the well-formness of (c0, c1, c2),
we need additional variables a0, a1 and wm satisfying that a0 = kr0 ,
a1 = kr1 and wm = m. Let Com(a0), Com(a1), Com(wm) be the cor-
responding commitments to a0, a1 and wm, respectively. To prove
that the committed variables (wk, a0, a1) satisfy the following equa-
tions, generate NIWI proofs πa0 , πa1 , πm for Eqs. (4), (5) and (6),
respectively.

5 k in the left side of Eq. (6).

16 P. Wei et al.

e(c0, wk) = e(y0, a0) (4)
e(c1, wk) = e(y1, a1) (5)

e(c2, wk)e(w−1
m , k) = e(k, a0a1) (6)

Next, in order to prove the “knowledge” of a signature σv0 on message
̂spkv0||0|| ̂spkv0||1||p̂pk under vktree satisfying

e(σv0 , h) = e(gH(̂spkv0||0|| ̂spkv0||1||̂ppk)uv0 , wg), (7)

compute a NIWI proof πσv0
that the committed variables (σv0 , wg)

satisfy Eq. (7). Note that the underlined wk, a0, a1, wm, σv0 and wg

in the above equations are variables.
Let πGS=(πs, πk, πg, πa0 , πa1 , πm, πσv0

) and Com=(Com(s),
Com(wk), Com(wg), Com(a0), Com(a1), Com(wm), Com(σv0)).

3. Compute σOT ← OTSign(osk, σSim||Com||πGS). That is, σOT = rOT−xOT ·
H(σSim||Com||πGS).

4. Let π = (σSim; Com; πGS ; opk, σOT). The final ciphertext c=(c0, c1, c2;π).
– Dec(SK, c): Parse (c0, c1, c2, ;π) ← c. Check whether π is valid. That is, check

the validity of σOT and σSim, and check the validity of Groth-Sahai proofs πGS .
If π is valid, decrypt (c0, c1, c2) using sk. Otherwise, return ⊥.

With a Groth-Sahai proof system based on DLIN in symmetric pairing
configurations, the commitment to a variable requires 3 group elements, the
proofs for linear pairing product equations cost 3 group elements and proofs for
quadratic equations cost 9 group elements. So we have |(c0, c1, c2)| = 3

G
, |σSim| =

5λ/(1+log d)
G
+d/f

G
+1

G
+1s, |Com| = 3×7 = 21

G
, |πGS | = 9×1+3×6 = 27

G
,

|opk| = 2
G

and |σOT| = 1
Zp

, where the subscripts
G

and
Zp

denote elements in
corresponding groups and subscript s means “scalar”. Hence, the total size of
the ciphertext is 3

G
+(5λ/(1+log d)

G
+d/f

G
+1

G
+1s)+21

G
+27

G
+2

G
+1

Zp
=

5λ/(1 + log d)
G

+ d/f
G

+ 54
G

+ 1
Zp

+ 1s. Since the public key size of our PKE
scheme is similar to that of [10], we only compare the ciphertexts size between
[10] and this paper in Table 1, where f = 1. Note that f = 1 corresponds to the
1-CDHI assumption, which is equivalent to the CDH assumption. Considering
the tradeoff between the efficiency and the reduction loss, we recommend that
f = 1 and d = 2.

Security. Due to Theorem 7 of [1]6, our PKE is still IND-CCA secure in the
multi-user/-challenge setting. Combining with Theorems 1 and 2, we have the
following theorem. The proof is similar to that of Theorem 7 and Theorem 6 of
[1] and is omitted due to lack of space.

Theorem 3. If the underlying encryption PKEcpa is (μ, q)-IND-CPA secure
encryption scheme with advantage εcpa and SE-NIZK is simulation-extractable

6 Theorem 7 in [1] states that their scheme is IND-CCA secure in the multi-challenge
setting. As explained in [1] it is trivial to preserve tightness when extending the
security reduction from the single user setting to the multi-user setting.

Tightly-Secure Encryption 17

Table 1. Comparison of ciphertext size between [10] and this paper when f = 1.
“|Sim|” denotes the number of simulations which the underlying NIZK allows.

|Sim| d = 16 d = 2 d = 1

Blazy et al. [10] 2λ 1.75λG + 65G + 1Zp + 1s 7λG + 65G + 1Zp + 1s 8λG + 65G + 1Zp + 1s

This paper 2λ λG + 70G + 1Zp + 1s 2.5λG + 56G + 1Zp + 1s 5λG + 55G + 1Zp + 1s

Blazy et al. [10] 280 205G + 1Zp + 1s 625G + 1Zp + 1s 705G + 1Zp + 1s

This paper 280 150G + 1Zp + 1s 256G + 1Zp + 1s 455G + 1Zp + 1s

Blazy et al. [10] 220 100G + 1Zp + 1s 205G + 1Zp + 1s 225G + 1Zp + 1s

This paper 220 90G + 1Zp + 1s 106G + 1Zp + 1s 155G + 1Zp + 1s

NIZK with zero-knowledge error εzk and simulation-extraction error εse, then
PKE is (μ, q)-IND-CCA secure with advantage εcca ≤ 2(εzk + εse) + εcpa. In par-
ticular, εcca ≤ 5εdlin + 2(d + 1)εcdhi + 2εdlog + 6εH − μ/p, where εdlin denotes the
distinguishing advantage for DLIN assumption, εcdhi denotes the advantage for
CDHI assumption, εdlog denotes the advantage of DLOG assumption and εH
denotes the advantage for finding collisions of the underlying hash function H.

Acknowledgements. We would like to thank the reviewers for helpful comments.
Puwen Wei and Wei Wang were supported by NSFC (No. 61502276 and No. 61672019)
and the Foundation of Science and Technology on Communication Security Labora-
tory (No. 9140c110207150c11050). Bingxin Zhu was supported by the Fundamental
Research Funds of Shandong University (No. 2016JC029).

A Examples of Simulatable Two-Tier Signatures

In this section, we briefly describe some examples of simulatable two-tier sig-
natures based on schemes in [10]. The validity proof of the corresponding
SimTTSign algorithms is easy to check and thus omitted.

Simulatable two-tier signatures based on f-CDHI [10]
• PriGen(1λ, d): g

R← G, (x0, . . . , xc)
R← Zp, psk = (x0, . . . , xc), ppk =

(g, (h0, . . . , hc)), where c · f = d and hi = gxi for i = 0, . . . , c.
• SecGen(ppk, psk): k

R← G, spk = k, ssk is empty.
• TTSign(psk, ssk, m, j): j = αf + β, where j ∈ {1, . . . , d}, α ∈ {0, . . . , c}

and β ∈ {0, . . . , f − 1}. Output σ = (gmk)1/(xα+β).
• TTVrfy(ppk,spk,m,σ; j): Check if e(σ, hαgβ) = e(gmk, g).
• SimTTSign(ppk,m): r

R← Zp, σ′ ← gr and spk′ = (hαgβ)rg−m, where
j = αf + β. Output (spk′, σ′).

Simulatable two-tier signatures based on DLOG [10]
• PriGen(1λ): x

R← Zp, g ∈ G, psk = x, ppk = y = gx.

• SecGen(ppk, psk): r
R← Zp, ssk = r, spk = y0gr.

• TTSign(psk, ssk, m): Output σ = r − xm.

18 P. Wei et al.

spkv0

spk̂v0||0 spk̂v0||1

σv0

σv0||02

spkv0
̂||02||0 spkv0

̂||02||1

spkv0||02||1d. . .

spkv
̂

h−1||0 spkv
̂

h−1||1
σvh
̂−1||1

spkvh−1||11

σvh−1||11

m

σv0||̂02||1

spkv0||02||11 spkv0||02||12

spkvh−1

σvh−1
. . .

σv̂0||0
spkv0||01 spkv0||02 spkv0||0d spkv0||11 spkv0||12 spkv0||1d. . .

. . .spkvh−1||12 spkvh−1||1d

. . .

Fig. 1. Structure of TreeSig. (̂spkvi||0,
̂spkvi||1) are authenticated by signature σvi that

verifies under spkvi
, and spkvi+1

with vi+1 = vi||βiji is authenticated by signature

σ̂vi||βi
that verifies under ̂spkvi||βi

.

• TTVrfy(ppk, spk, m,σ): Check if ymgσ = spk.
• SimTTSign(ppk,m): σ′ R← Zp and spk′ = ymgσ′

. Output (spk′, σ′).

B Illustration of TreeSig

C Proof of Theorem 1

Proof. Suppose A is a PPT adversary that (εTree, tTree, qTree)-breaks the EUF-
NCMA security of TreeSig. We show how to construct a PPT algorithm B that
(εTTSig, tTTSig, qTTSig)-breaks the EUF-NCMA security of TTSig or a PPT algo-
rithm B̂ that (ε

̂TTSig
, t

̂TTSig
, q

̂TTSig
)-breaks the EUF-NCMA security of T̂TSig.

Tightly-Secure Encryption 19

Construction of B. When receiving (m(1), . . . ,m(q)), B computes (p̂pk, p̂sk) ←
P̂riGen(1λ) and generates the signature σ(j) on m(j) as below, for j = 1, . . . , q.

– Authentication for ̂spkvi||βi
and nodes generation. Choose the leftmost

unused leaf Nvh
. For i = 0, 1, . . . , h − 1, if the related keys associated to Nvi

have not been defined, compute (̂spkvi||0, ŝskvi||0) ← ŜecGen(p̂pk, p̂sk) and

(̂spkvi||1, ŝskvi||1) ← ŜecGen(p̂pk, p̂sk), query the signing oracle OTTSig(·) with

message ̂spkvi||0|| ̂spkvi||1||p̂pk and get (spkvi
, σvi

). For the leaf Nvh
, query the

signing oracle OTTSig(·) with message m(j), and get (spk
v
(j)
h

, σ
v
(j)
h

).
– Authentication for spkvi+1

. For i = 0, 1, . . . , h − 1, if spkvi+1
has not

been authenticated, compute σ̂vi||βi
← T̂TSign(p̂sk, ̂sskvi||βi

, spkvi+1
; ji), where

vi+1 = vi||βiji.

Hence the signature σ(j) on message m(j) can be generated without know-
ing sktree. Return vktree = (ppk, spkv0

) and (σ(1), . . . , σ(q)) to A. Note that B
perfectly simulates the signing oracle of TreeSig and the resulting distribution is
identical to that of the real one. Suppose A outputs a forgery (m∗, σ(∗)) and δ is
the largest index such that spk

v
(∗)
δ

= spk
v
(i)
δ

for some (i). Here, variables with (∗)

(or (i)) denote the corresponding parts of σ(∗) (or σ(i)). Consider the following
cases.

– If p̂pk
(∗) �= p̂pk, B outputs (̂spkv0||0(∗) || ̂spkv0||1(∗) ||p̂pk(∗), σ

v
(∗)
0

, iv0), where iv0

denotes the iv0-th query to OTTSig and corresponds to the secondary public
key spkv0

.

– If p̂pk
(∗)

= p̂pk,
• δ = h. B outputs (m∗, σ

v
(∗)
h

, i
v
(i)
h

), where i
v
(i)
h

denotes the i
v
(i)
h

-th query
to OTTSig and corresponds to spk

v
(i)
h

.
• δ < h.

* β
(∗)
δ �= β

(i)
δ and ̂spk

vδ||β(∗)
δ

�= ̂spk
vδ||(β(i)

δ ⊕1)
. B outputs (̂spkvδ||0(∗) ||

̂spkvδ||1(∗) ||p̂pk(∗), σ
v
(∗)
δ

, i
v
(i)
δ

), where i
v
(i)
δ

denotes the i
v
(i)
δ

-th query to
OTTSig and corresponds to spk

v
(i)
δ

.

* β
(∗)
δ = β

(i)
δ and ̂spk

vδ||β(∗)
δ

�= ̂spk
vδ||β(i)

δ

. B outputs (̂spkvδ||0(∗) || ̂spkvδ||1(∗)

||p̂pk(∗), σ
v
(∗)
δ

, i
v
(i)
δ

).

* Otherwise, B aborts. More precisely, B aborts if ((β(∗)
δ �= β

(i)
δ) ∧

(̂spk
vδ||β(∗)

δ

= ̂spk
vδ||(β(i)

δ ⊕1)
)) or ((β(∗)

δ = β
(i)
δ) ∧ (̂spk

vδ||β(∗)
δ

=

̂spk
vδ||β(i)

δ

)). Denote this event as Bad.

By the perfect simulation of B,

Pr[ExpEUF-NCMA
TreeSig,A,qTree

(λ) = 1 ∧ ¬Bad] = Pr[ExpTT-EUF-NCMA
TTSig,B,qTTSig

(λ) = 1 ∧ ¬Bad],

20 P. Wei et al.

where qTree = q. So we have

Pr[ExpEUF-NCMA
TreeSig,A,qTree

(λ) = 1]

≤ Pr[ExpEUF-NCMA
TreeSig,A,qTree

(λ) = 1 ∧ Bad] + Pr[ExpTT-EUF-NCMA
TTSig,B,qTTSig

(λ) = 1]. (8)

Construction of B̂. Next, we will show that Pr[ExpEUF-NCMA
TreeSig,A,qTree

(λ) = 1∧Bad] ≤
ε

̂TTSig
by constructing a PPT algorithm B̂, which breaks the security of T̂TSig.

B̂ takes as input p̂pk and simulates ExpEUF-NCMA
TreeSig,A,qTree

(λ) as follows. Upon receiv-
ing m(1), . . . ,m(q), B̂ compute (vktree, sktree) ← TreeSig.Gen(1λ) where vktree =
(ppk, spkv0

) and sktree = (psk, sskv0).

1. Authentication for spkvi
and nodes generation. Choose the left-

most unused node Nvh
. For i = 1, . . . , h, if the related keys asso-

ciated to the node Nvi
have not been defined, run SecGen(ppk, psk)

2d times to generate (spkvi−1||01, sskvi−1||01), . . . ,(spkvi−1||0d, sskvi−1||0d)
and (spkvi−1||11, sskvi−1||11), . . . , (spkvi−1||1d, sskvi−1||1d), query O

̂TTSig
(·)

with (spkvi−1||01, . . . , spkvi−1||0d) and (spkvi−1||11, . . . , spkvi−1||1d) respectively,

and get (̂spkvi−1||0; ̂σvi−1||01
1
, . . . , ̂σvi−1||0d

d) and (̂spkvi−1||1; ̂σvi−1||11
1
, . . . ,

̂σvi−1||1d
d). Then, (spkvi−1||01, . . . , spkvi−1||0d) and (spkvi−1||11, . . . , spkvi−1||1d)

are assigned to nodes Nvi−1||01, . . . , Nvi−1||0d and Nvi−1||11, . . . , Nvi−1||1d,
respectively. For message m(j), compute σvh

← TTSign(psk, sskvh
, m(j)).

2. Authentication for ̂spkvi||0 and ̂spkvi||1. For i = 0, 1, . . . , h − 1, if ̂spkvi||0
and ̂spkvi||1 has not been authenticated, compute σvi

← TTSign(psk, sskvi
,

̂spkvi||0|| ̂spkvi||1||p̂pk).

So the signature σ(j) on message m(j) can be generated for j = 1, . . . , q. Note
that, for simplicity, we denote σ̂vi

as the corresponding signature of Nvi
, where

vi = vi−1||βi−1ji−1. B̂ returns vktree = (ppk, spkv0
) and (σ(1), . . . , σ(q)) to A.

Finally, A outputs a forgery (m∗, σ(∗)). Suppose δ is the largest
index such that spk

v
(∗)
δ

= spk
v
(i)
δ

for some i ∈ {1, . . . , q}. B̂ outputs

(spk
v
(∗)
δ+1

, ̂σ
vδ||β(∗)

δ

, i
vδ||β(∗)

δ

, j
(∗)
δ) if either one of the following conditions holds:

– (β(∗)
δ �= β

(i)
δ) ∧ (̂spk

vδ||β(∗)
δ

= ̂spk
vδ||(β(i)

δ ⊕1)
),

– (β(∗)
δ = β

(i)
δ) ∧ (̂spk

vδ||β(∗)
δ

= ̂spk
vδ||β(i)

δ

),

where i
vδ||β(∗)

δ

denotes the i
vδ||β(∗)

δ

-th query to O
̂TTSig

and corresponds to

̂spk
vδ||β(∗)

δ

. Otherwise, B̂ aborts. Note that the above conditions correspond to

the event Bad. Since B̂ perfectly simulates ExpEUF-NCMA
TreeSig,A,qTree

(λ), we have

Pr[ExpEUF-NCMA
TreeSig,A,qTree

(λ) = 1 ∧ Bad] = Pr[ExpTT-EUF-NCMA
̂TTSig,B̂,q

T̂TSig

(λ, d) = 1], (9)

Tightly-Secure Encryption 21

where qTree = q. By (8) and (9), we have εTree ≤ εTTSig + ε
̂TTSig

. Since B has to
make at most h + 1 queries to OTTSig(·) for each m(j), we have tTree = tTTSig −
O(hqTree), qTree ≤ qTTSig. Similarly, for the construction of B̂, tTree = t

̂TTSig
−

O(hqTree), qTree ≤ q
̂TTSig

. Therefore, tTree = max{tTTSig, t̂TTSig
} − O(hqTree) and

qTree ≤ max{qTTSig, q̂TTSig
}.

References

1. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time
signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.)
PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36362-7 20

2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-14623-7 12

3. Attrapadung, N., Hanaoka, G., Yamada, S.: A framework for identity-based encryp-
tion with almost tight security. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 521–549. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48797-6 22

4. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
629–658. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46494-6 26

5. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 273–304. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5 10

6. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03356-8 7

7. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6 18

8. Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures, and
fiat-shamir without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-71677-8 14

9. Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from
affine message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2 23

10. Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from chameleon
hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 12

11. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-28628-8 3

http://dx.doi.org/10.1007/978-3-642-36362-7_20
http://dx.doi.org/10.1007/978-3-642-36362-7_20
http://dx.doi.org/10.1007/978-3-642-14623-7_12
http://dx.doi.org/10.1007/978-3-642-14623-7_12
http://dx.doi.org/10.1007/978-3-662-48797-6_22
http://dx.doi.org/10.1007/978-3-662-48797-6_22
http://dx.doi.org/10.1007/978-3-662-46494-6_26
http://dx.doi.org/10.1007/978-3-662-49896-5_10
http://dx.doi.org/10.1007/978-3-642-03356-8_7
http://dx.doi.org/10.1007/3-540-45539-6_18
http://dx.doi.org/10.1007/978-3-540-71677-8_14
http://dx.doi.org/10.1007/978-3-540-71677-8_14
http://dx.doi.org/10.1007/978-3-662-44371-2_23
http://dx.doi.org/10.1007/978-3-662-44371-2_23
http://dx.doi.org/10.1007/978-3-662-46447-2_12
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3

22 P. Wei et al.

12. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 207–222. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 13

13. Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1 25

14. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key
cryptography in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT
2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-17373-8 35

15. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theor. IT–31(4), 469–472 (1985)

16. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 1–27. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 1

17. Goldreich, O.: Two remarks concerning the goldwasser-micali-rivest signature
scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 104–110.
Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 8

18. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 444–459. Springer, Heidelberg (2006). doi:10.1007/11935230 29

19. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 35

20. Hofheinz, D.: Algebraic partitioning: fully compact and (almost) tightly secure
cryptography. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562,
pp. 251–281. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49096-9 11

21. Hofheinz, D., Koch, J., Striecks, C.: Identity-based encryption with (almost) tight
security in the multi-instance, multi-ciphertext setting. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 799–822. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46447-2 36

22. Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assump-
tions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 275–295. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7 14

23. Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. In: Proceedings of
NDSS 2000, pp. 143–154 (2000)

24. Libert, B., Joye, M., Yung, M., Peters, T.: Concise multi-challenge CCA-secure
encryption and signatures with almost tight security. In: Sarkar, P., Iwata, T.
(eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 1–21. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-45608-8 1

25. Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 681–707.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 28

26. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
cipher-text attacks. In: STOC 1990, pp. 427–437. ACM, New York (1990)

27. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1 35

http://dx.doi.org/10.1007/978-3-540-24676-3_13
http://dx.doi.org/10.1007/978-3-642-40084-1_25
http://dx.doi.org/10.1007/978-3-642-17373-8_35
http://dx.doi.org/10.1007/978-3-642-17373-8_35
http://dx.doi.org/10.1007/978-3-662-49890-3_1
http://dx.doi.org/10.1007/3-540-47721-7_8
http://dx.doi.org/10.1007/11935230_29
http://dx.doi.org/10.1007/978-3-642-32009-5_35
http://dx.doi.org/10.1007/978-3-662-49096-9_11
http://dx.doi.org/10.1007/978-3-662-46447-2_36
http://dx.doi.org/10.1007/978-3-662-46447-2_36
http://dx.doi.org/10.1007/978-3-662-48000-7_14
http://dx.doi.org/10.1007/978-3-662-45608-8_1
http://dx.doi.org/10.1007/978-3-662-48797-6_28
http://dx.doi.org/10.1007/3-540-46766-1_35

Hierarchical Functional Encryption
for Linear Transformations

Shiwei Zhang1(B), Yi Mu1, Guomin Yang1, and Xiaofen Wang2,3

1 Institute of Cybersecurity and Cryptology, School of Computing
and Information Technology, University of Wollongong, Wollongong, Australia

{sz653,ymu,gyang}@uow.edu.au
2 The Center for Cyber Security, University of Electronic Science

and Technology of China, Chengdu 611731, Sichuan, China
wangxuedou@sina.com

3 Guangxi Key Laboratory of Trusted Software,
Guilin University of Electronic Technology, Guilin 541004, Gunagxi, China

Abstract. In contrast to the conventional all-or-nothing encryption,
functional encryption (FE) allows partial revelation of encrypted infor-
mation based on the keys associated with different functionalities.
Extending FE with key delegation ability, hierarchical functional encryp-
tion (HFE) enables a secret key holder to delegate a portion of its decryp-
tion ability to others and the delegation can be done hierarchically. All
HFE schemes in the literature are for general functionalities and not
very practical. In this paper, we focus on the functionality of linear
transformations (i.e. matrix product evaluation). We refine the defini-
tion of HFE and further extend the delegation to accept multiple keys.
We also propose a generic HFE construction for linear transformations
with IND-CPA security in the standard model from hash proof systems.
In addition, we give two instantiations from the DDH and DCR assump-
tions which to the best of our knowledge are the first practical concrete
HFE constructions.

Keywords: Hierarchical · Functional encryption · Matrix product ·
Hash proof system

1 Introduction

Encryption can provide confidentiality and privacy for our sensitive information
in a variety of ways. Typically, conventional encryption is in an all-or-nothing
fashion that an entity is able to either access all the encrypted information or
nothing, excepting the message length. In contrast, functional encryption [8]
allows partial revelation of encrypted information based on the keys associated
with different functionalities. Precisely, Alice can encrypt some message m under
Bob’s public key, and send the ciphertext to a public domain where Charlie can
access. Later, Bob issues a secret key for a function f to Charlie using a master
secret key corresponding to Bob’s public key. As a result, Charlie is able to learn
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 23–43, 2017.
DOI: 10.1007/978-3-319-60055-0 2

24 S. Zhang et al.

f(m) from the ciphertext and the secret key received from Bob but nothing else.
Usually, the function f is a universal function for a function class F indexed by
a function key k from a key space K s.t. F = {fk | k ∈ K}. In this case, Bob
sends a secret key for a function key k to Charlie who learns f(k,m) or simply
fk(m).

When Bob can control the amount of the information that Charlie can reveal,
it leads to a natural question of whether Charlie is able to further let other peo-
ple (e.g. David) obtain a narrower portion of his decryption ability. Hierarchical
functional encryption (HFE) [5,9,11] gives an affirmative answer. In HFE, Char-
lie with a secret key associated with a function f is able to generate a new secret
key associated with a composed function f ′ ◦ f for David without the help of
Bob. Upon receiving the key from Charlie, David can learn f ′(f(m)) but noth-
ing else of the original message m. It is worth noting that the above delegation
process is repeatable that David can delegate a portion of his decryption ability
to other people, making the hierarchy grow deeper and deeper.

In this paper, we focus on HFE for the functionality of matrix product evalua-
tion, which implies the function class of linear transformation via transformation
matrices. More precisely, the functionality is defined as f(A,X) = fA(X) = AX
where the matrix A is the transformation matrix (i.e. the function key) and the
matrix X is the message to be encrypted. It is easy to see that such a function-
ality is a natural generalisation of the functionality of inner product evaluation
[1,2,4,19].

There are a few practical applications of HFE for the functionality of matrix
product evaluation, including but not limited to descriptive statistics. Differing
from the functional encryption for inner product evaluation [1,2,4,19], our pro-
posed HFE allows the evaluation to be done in a levelled manner. We take the
calculation of the weighted sum as an example. Suppose Alice is a researcher
in a consulting firm conducting marketing research on the demand of various
products and the company will sell Alice’s results to different clients. Once the
research results are ready, Alice encrypts the demand level of different areas for
each product (e.g. X =

[
2 1 9 0 6 2 5 6 1

]� for the demand of coffee in different
regions) under her company’s public key. As the manager of Alice’s company,
Bob has the master secret key and decides to sell Alice’s result in different levels
and at different prices. Suppose Charlie wants to buy from Bob some information
he is interested in. He does not want all the details but a overall score for the
demand of coffee, and he is more interested in the areas near his store, i.e. those
areas will have a higher weight. Hence, Charlie buys a secret key of a weighted
matrix (e.g. A =

[
0 1 2 3 4 3 2 1 0

]
) from Bob for a low price so that he can

learn a summary of the market demand (e.g. AX = 65 for coffee).
With HFE, Bob is also able to sell Alice’s result to some regional resellers

(or proxies), e.g. David. Unlike Charlie, David wants the details of some regions
and a summary for other regions. Thus he buys a secret key of a weighted

matrix (e.g. A =
[

I5 05,4

01,5 5 4 1 2

]
) from Bob for a higher price so that he learns

Alice’s partial result (e.g. AX =
[
2 1 9 0 6 38

]� for coffee). Later, David can

Hierarchical Functional Encryption for Linear Transformations 25

resell what he obtained from Bob to other clients in his region. For example,
another store manager Eve in David’s region is interested in Alice’s result, and
decides to buy some market information for her nearby regions from David. In
the reselling process, David uses his secret key for A to generate a new secret
key for C = BA based on Eve’s demand (e.g. B =

[
20 15 10 5 2 0

]
and thus

C =
[
20 15 10 5 2 0 0 0 0

]
). Once Eve gets the key, she can learn CX from Alice’s

research (e.g. CX = 157 for coffee). On the other hand, David can also resell
his data obtained from Bob to other resellers in different levels and at different
prices.

There are many potential applications of HFE for linear transformation, such
as those related to descriptive statistics as demonstrated above. In this paper,
we introduce and formalise this useful cryptographic primitive and present a
generic construction of it. We also show two practical instantiations of the generic
construction based on some standard assumptions.

1.1 Related Work

The formal study of functional encryption (FE) was initiated by Boneh et al. [8]
with syntax and security model defined for general functionality. In this paper, we
focus on the public-key FE. Other than predicate encryption [15] (a subclass of
FE) and theoretical constructions [14] for arbitrary functionality, Abdalla et al.
[2] focused on the functionality of inner product evaluation that only the inner
product 〈x,y〉 of the encrypted vector y is revealed with a secret key for the vec-
tor x. Furthermore, the authors challenged to construct practical schemes with
such a functionality, and proposed an s-IND-CPA secure generic construction
from any s-IND-CPA public key encryption (PKE) schemes with the properties
of randomness reuse, linear key homomorphism, and linear ciphertext homomor-
phism under shared randomness. Precisely, s-IND-CPA (or selective IND-CPA)
is a weaker notion of the standard indistinguishability under chosen plaintext
attacks (IND-CPA) where the adversary is required to submit the target plain-
texts before receiving the public key from the challenger. Based on [2], Abdalla
et al. [1] enhanced their previous generic construction [2] to the standard IND-
CPA security from any s-IND-CPA PKE schemes with the properties of linear
key homomorphism, linear ciphertext homomorphism under shared randomness,
�-public-key reproducibility, and �-ciphertext reproducibility. The authors also
showed several instantiations from various s-IND-CPA PKE schemes based on
Decisional Diffie-Hellman (DDH) assumption [13], Decisional Composite Resid-
uosity (DCR) assumption [10,17], and Learning With Error (LWE) assumption
[18]. Independent from [1], Agrawal et al. [4] constructed function encryption
schemes for inner products directly from DDH, DCR, and LWE assumptions
instead of a generic construction, and obtained better efficiency. It is worth not-
ing that the proofs of the DDH construction and the DCR construction in [4]
are implicitly built on Hash Proof System (HPS) [12] as the HPS makes the
secret keys simulatable and IND-CPA security achievable. In contrast to [4],
Zhang et al. [19] recently provided another framework of constructing functional
encryption for inner products (FE-IP) explicitly from HPS with the properties of

26 S. Zhang et al.

key linearity, hash linearity and diversity. Also, the authors further improved the
security from IND-CPA to indistinguishability under adaptive chosen ciphertext
attacks (IND-CCA).

There are several extension works [3,5,6] on functional encryption. As one of
those extensions, Hierarchical functional encryption (HFE) enables delegation
capability, which is initially mentioned in [5], generalising the notions of hier-
archical identity-based encryption [7] and hierarchical predicate encryption [16]
for more expressive access controls. In particular, [5,9,11] define HFE as a nor-
mal FE with an extra delegation algorithm that takes a function key SKf and a
function f ′ and outputs a function key SKf ′◦f . As mentioned above, the newly
generated key SKf ′◦f allows revelation of f ′(f(m)) but nothing else from the
encrypted message m. In the literature, Ananth et al. [5] and Chandran et al.
[11] purposed general purpose HFE constructions direct from indistinguishable
obfuscation (iO) with fixed depth where the delegation process can only be pro-
ceeded for a fixed number of times. As an improvement, Brakerski et al. [9]
proposed a generic transformation from any general purpose FE to a general
purpose HFE with unbounded depth. The transformation requires a private-key
encryption scheme and a puncturable pseudorandom function family, and does
not rely on iO. As far as we know, all the HFE schemes in the literature are
general purposed and not very practical.

1.2 Our Contribution

In this paper, we refine and simplify the definition of hierarchical functional
encryption (HFE) originally from [5,9,11]. We merge the delegation algorithm
SKf ′◦f ← Delegate(SKf , f ′) with the key generation algorithm SKfk

← KeyGen(
MSK, k) to form a new key generation algorithm SKf ′◦f ← KeyGen(SKf , f ′),
making the master secret key equivalent to a secret key of an identity func-
tion MSK

def= SKid. As a result, our definition of HFE consists of four algorithms
instead of five algorithms, and it is compatible with the IND-CPA security model
defined for the normal functional encryption, which is much simpler than the
previously defined model for HFE. In terms of the evolution of encryption, our
definition of HFE is a more natural generalisation of hierarchical identity-based
encryption (HIBE) [7].

As an extension of HFE, we introduce the notion of extended hierarchi-
cal functional encryption (eHFE), allowing delegation from multiple secret
keys. Precisely, in eHFE, the key generation algorithm takes n secret keys
SKf1 , . . . ,SKfn

for functions f1, . . . , fn correspondingly and a delegation func-
tion f ′, and it generates a new secret key SKf for a function f such that
f(x) = f ′(f1(x), . . . , fn(x)).

We derive the definition of hierarchical function encryption for linear trans-
formation (HFE-LT) from HFE (similarly, eHFE-LT from eHFE) for the func-
tionality of matrix product evaluation. Different from the previous general results
which are of theoretical interest, we propose a generic and practical construction
of HFE-LT. It is worth noting that our construction has unbounded depth in

Hierarchical Functional Encryption for Linear Transformations 27

delegation (Table 1). Since the HFE-LT scheme cannot be trivially constructed
from function encryption for inner products, our generic construction is explicitly
built from hash proof systems (HPS) with key linearity, hash linearity and diver-
sity, and achieves IND-CPA security in the standard model. As an extension, we
also adapt our generic HFE-LT construction to a generic eHFE-LT construction.
We provide two practical HFE-LT instantiations based on the Decisional Diffie-
Hellman (DDH) assumption and the Decisional Composite Residuosity (DCR)
assumption. In the DDH instantiation, the decryption space is limited to be of
polynomial size so that the decryption can be done in polynomial time. How-
ever, in the DCR instantiation, there is no such limitation. In addition, both
instantiations can be extended to the eHFE-LT setting.

Table 1. Comparison of different schemes

Scheme Functionality Assumption Hierarchical Depth Multi-key

[5] Generic iO Yes Constant No

[11] Generic iO + HIBE Yes Fixed No

[9] Generic Generic FE Yes Unbounded No

[1] Inner product s-IND-CPA PKE:
DDH/DCR/LWE

No × No

[4] Inner product DDH/DCR/LWE No × No

Our HFE-LT Matrix product Diverse HPS:
DDH/DCR

Yes Unbounded No

Our eHFE-LT Matrix product Diverse HPS Yes Unbounded Yes

1.3 Paper Organisation

The rest of this paper is organised as follows. It is strongly suggested to read the
preliminaries in Sect. 2, especially the notations used in this paper. In Sect. 3,
we review the subset membership problems, hash proof system, and functional
encryption. As our main contribution, we refine HFE and define HFE-LT in
Sect. 3.1. The generic construction from HPS is proposed in Sect. 3.2 and follows
the security proof in Sect. 3.3. In Sect. 3.4, we adapt HFE to eHFE in terms of
the definition, the generic construction, and the security proof. After that, we
propose our concrete HFE-LT constructions instantiated from DDH and DCR
assumptions in Sect. 4. Finally, the conclusion is addressed in Sect. 5.

2 Preliminaries

2.1 Notations

Let ∈R denote random sampling that x ∈R X means that x is uniformly and
randomly chosen from a set or distribution X. Let ◦ denote the function compo-
sition that (g◦f)(x) = g(f(x)), and id denote the identity function that id(x) = x
and f ◦ id = f . Let �x� denote the floor function of a real number x.

28 S. Zhang et al.

In the group computation, the function sca denotes the inverse operation to
the scalar multiplication that a = scax(b) ⇐⇒ b = ax where X is an additive
group generated by x, a ∈ Z|X|, and b ∈ X. It is an analogue of the logarithm
operation in a multiplicative group.

In the matrix computation, let Xm×n be a matrix of size m × n, and In be
the identity matrix of size n. If the size is clear in the context, X and I are used
for short with size omitted. Let � denote matrix transpose. In addition to the
standard matrix addition and multiplication operations, we define the following
notations for better representations. Let f be a function that takes an element
from X with other fixed parameters as input, X ∈ Xm×n be a matrix, and def=
denote equal by definition. We define that

X def=

⎡

⎢
⎣

X1,1 · · · X1,n

...
. . .

...
Xm,1 · · · Xm,n

⎤

⎥
⎦ , f(X, . . .) def=

⎡

⎢
⎣

f(X1,1, . . .) · · · f(X1,n, . . .)
...

. . .
...

f(Xm,1, . . .) · · · f(Xm,n, . . .)

⎤

⎥
⎦ .

If f is an additive homomorphism that f(a) + f(b) = f(a + b), we have f(A) +
f(B) = f(A + B) where A and B are two matrices with the same size. Besides
that, we can have more complex scalar multiplication as

Af(B) =

⎡

⎢
⎣

A1,1 · · · A1,n

...
. . .

...
Am,1 · · · Am,n

⎤

⎥
⎦

⎡

⎢
⎣

f(B1,1) · · · f(B1,l)
...

. . .
...

f(Bn,1) · · · f(Bn,l)

⎤

⎥
⎦

=

⎡

⎢
⎣

∑n
i=1 A1,if(Bi,1) · · · ∑n

i=1 A1,if(Bi,l)
...

. . .
...∑n

i=1 Am,if(Bi,1) · · · ∑n
i=1 Am,if(Bi,l))

⎤

⎥
⎦

=

⎡

⎢
⎣

f(
∑n

i=1 A1,iBi,1) · · · f(
∑n

i=1 A1,iBi,l)
...

. . .
...

f(
∑n

i=1 Am,iBi,1) · · · f(
∑n

i=1 Am,iBi,l))

⎤

⎥
⎦ = f(AB)

where A is an m × n matrix and B is an n × l matrix. Similarly, we have
f(A)B = f(AB). In addition, the symbol (A | B) denotes an argumented
matrix of two matrices A and B with the same row size. It can be generalised
as (A1 | · · · | An) def=((· · · ((A1 | A2) | A3) | · · ·) | An).

2.2 Subset Membership Problems

Subset Membership Problem (SMP) is a problem class introduced by Cramer
and Shoup [12]. Many standard problems can be classified to SMP, including
DDH and DCR problems.

Definition 1 (Subset Membership Problem). Let L ⊂ X,W be three non-
empty sets, and R = {(x,w) | x ∈ L} ⊂ X × W be a binary relation where w
is a witness of a word x in the language L. Let Λ = (X,L,W,R) be a problem

Hierarchical Functional Encryption for Linear Transformations 29

instance, x ∈R L, and x′ ∈R X \ L. Given two probability distributions DL =
{(Λ, x)} and DX\L = {(Λ, x′)}, there is an algorithm A that distinguishes DL

and DX\L with advantage:

AdvSMP
A =

∣
∣Pr[1 ← A(D ∈R DL)] − Pr[1 ← A(D ∈R DX\L)]

∣
∣

An SMP is computational hard if and only if the advantage AdvSMP
A is negligible

for any probabilistic polynomial time (PPT) algorithm A.

2.3 Hash Proof System

In this subsection, the hash proof system introduced by Cramer and Shoup [12]
and extended by Zhang et al. [19] is reviewed.

Definition 2 (Hash Proof System). A hash proof system (HPS) associated
with subset membership problems consists of the following five polynomial time
algorithms:

– param ← Setup(1λ): The randomised system setup algorithm takes a secu-
rity parameter 1λ as input, and specifies an SMP instance Λ = (X,L,W,R)
where the hash domain is X. The algorithm further specifies a secret hash key
space K, a public hash key space S, and a hash codomain Π. After that, the
algorithm packs all above descriptions and publishes a system-wide parameter
param = (X,L,W,R,K, S,Π).

– SK ← SKGen(param): The randomised secret hash key generation algorithm
takes a system parameter param, and generates a random hash key SK ∈R K.

– PK ← PKGen(SK): The deterministic public hash key generation algorithm
takes a secret hash key SK ∈ K as input, and maps it to a public hash key
PK ∈ S.

– π ← Hash(SK, x): The deterministic private evaluation algorithm takes a
secret hash key SK ∈ K and a word x ∈ X as inputs, and outputs a hash
value π ∈ Π of x.

– π ← PHash(PK, x, w): The deterministic public evaluation algorithm takes
a public hash key PK ∈ S and a word x in the language L along with a
corresponding witness w ∈ W such that (x,w) ∈ R, and output a hash value
π ∈ Π of x.

A HPS is required to be correct that the private evaluation algorithm Hash and
the public evaluation algorithm PHash are equivalent when x ∈ L.

Definition 3 (Correctness). A HPS is correct if

∀param ← Setup(1λ), ∀SK ← SKGen(param), PK ← PKGen(SK),
∀(x,w) ∈ R, Hash(SK, x) = PHash(PK, x, w).

The original definition of HPS from [12] is not sufficient for our schemes, and
the following extended properties introduced by [19] are required.

30 S. Zhang et al.

Definition 4 (Key Linearity). A HPS is linear key homomorphic if K and
S are additive abelian groups and

∀a, b ∈ K, PKGen(a) + PKGen(b) = PKGen(a + b) ∈ S.

Definition 5 (Hash Linearity). A HPS is linear hash homomorphic if K and
Π are additive abelian groups and

∀a, b ∈ K, ∀x ∈ X, Hash(a, x) + Hash(b, x) = Hash(a + b, x) ∈ Π.

Definition 6 (Diversity). A HPS is diverse if

∃π ∈ Π \ {0}, ∀x ∈ X \ L, ∃SK ∈ K, PKGen(SK) = 0 ∧ Hash(SK, x) = π

We call such a element π as an element derived from the diversity.

2.4 Functional Encryption

The definition and the security model of functional encryption by Boneh et al.
[8] are reviewed as follows.

Definition 7 (Functional Encryption). Let f : K × X → Y be a universal
function for a function class F = {fk | k ∈ K} indexed by a function key
space K, mapping the message space X to the revelation space Y . A functional
encryption (FE) for a function class F consists of the following four polynomial
time algorithms:

– (PK,MSK) ← Setup(1λ): The randomised system setup algorithm takes a
security parameter 1λ as input, and generates system-wide parameters and a
random pair of a master secret key MSK and a public key PK.

– SK ← KeyGen(MSK, k): The (probably) randomised secret key generation
algorithm takes a master secret key MSK and a function key k ∈ K as inputs,
and computes a secret key SK for the function fk.

– C ← Encrypt(PK, x): The randomised encryption algorithm takes a public
key PK and a message x ∈ X as inputs, and generates a ciphertext C of the
message x.

– y ← Decrypt(SK, C): The (probably) deterministic decryption algorithm takes
a secret key SK for a function fk and a ciphertext C of a message x as inputs.
The algorithm reveals y = fk(x) ∈ Y from the ciphertext C, and outputs it.

Indistinguishability-based security is considered in this paper. Precisely, we con-
sider the Indistinguishability under Chosen Plaintext Attacks (IND-CPA secu-
rity) formulated by Boneh et al. [8]. In the IND-CPA game formally defined as
follows, an adaptive adversary A tries to distinguish a target ciphertext from
two messages x0 and x1 chosen by A.

Setup phase. The challenger S runs the system setup algorithm Setup(1λ) to
generate a key pair (MSK,PK), and passes the public key PK to A.

Hierarchical Functional Encryption for Linear Transformations 31

Pre-challenge phase. A can adaptively query the key generation oracle
OKeyGen with a function key k ∈ K to obtain a secret key SK for the
function fk. At the same time, S stores the queried function key k in
the list K. The restriction is that A can only query the function key k
such that fk(x0) = fk(x1) where x0 and x1 are the messages chosen by
A in the challenge phase. Otherwise, winning the game is trivial since
Decrypt(SK, C) �= fk(x1−b).

Challenge phase. At some point, A outputs two messages x0 and x1. S
randomly picks b ∈R {0, 1}, and generates a target ciphertext C ←
Encrypt(PK, xb). After that, S passes the target ciphertext C to A.

Post-challenge phase. A can further query the oracle OKeyGen as in the pre-
challenge phase with the same restriction.

Guessing phase. Eventually, A outputs an educated guess b′. If b = b′, A wins.

The advantage of the adversary A winning the IND-CPA game is

AdvIND-CPA
A =

∣
∣
∣
∣Pr [b = b′ | ∀k ∈ K, fk(x0) = fk(x1)] − 1

2

∣
∣
∣
∣

Definition 8 (IND-CPA Security). An FE scheme is Indistinguishable
under Chosen Plaintext Attacks (IND-CPA) if the advantage AdvIND-CPA

A for
all adversary A winning the IND-CPA game in the polynomial time is a negli-
gible function.

3 Hierarchical Functional Encryption for Linear
Transformations

3.1 Definition

In [5,9,11], the hierarchical functional encryption (HFE) is defined as a normal
functional encryption with an extra delegation algorithm Delegate. The (prob-
ably) randomised algorithm SKf ′◦f ← Delegate(SKf , f ′) takes a secret key SKf

for a function f : X → Z ⊂ Y , and an another function f ′ : Z → Z ′ ⊂ Y as
inputs where Z,Z ′ are the images of the functions f, f ′ correspondingly. It gener-
ates a new secret key SKf ′◦f for the composed function f ′ ◦f : X → Z ′ ⊂ Y . By
observing the key generation algorithm SKfk

← KeyGen(MSK, k) and the delega-
tion algorithm SKf ′◦f ← Delegate(SKf , f ′), we find that the algorithm KeyGen
is actually a special case of the algorithm Delegate when the master secret key
MSK is considered as a secret key SKid of an identity function. More precisely, we
have KeyGen(MSK, k) def= Delegate(SKid, fk) → SKfk◦id = SKfk

with MSK
def= SKid.

Therefore, the duplicated algorithm can be removed, and it becomes a more nat-
ural generalisation of hierarchical identity based encryption (HIBE) [7] as there
is no Delegate algorithm in HIBE. The refined HFE is formalised as follows.

32 S. Zhang et al.

Definition 9 (Hierarchical Functional Encryption). A hierarchical func-
tional encryption (HFE) for a function class F = {fk : X → Y | k ∈ K} consists
of the following four polynomial time algorithms:

(PK,MSK) ← Setup(1λ), SKf ′◦f ← KeyGen(SKf , f ′),
C ← Encrypt(PK, x), y = f(x) ← Decrypt(SKf , C).

While other three algorithms work as in Definition 7, the refined key generation
algorithm KeyGen takes a secret key for function f ∈ F : X → Z ⊂ Y , and a
function f ′ : Z → Z ′ ⊂ Y as inputs such that fk = f ′ ◦ f ∈ F for some k ∈ K.
The algorithm KeyGen outputs a secret key for the function fk. The master secret
key is defined as a secret key for the identity function (MSK

def= SKid) and thus it
can be directly used in the decryption algorithm Decrypt.

Remark 1. The secret key holders should be careful in the secret key genera-
tion. If the delegation function f ′ is invertible, the newly generated secret key
SKf ′◦f ← KeyGen(SKf , f ′) is equivalent to the original secret key SKf since

KeyGen(SKf ′◦f , f ′−1) = SKf ′−1◦f ′◦f = SKid◦f = SKf .

As the above operations can be done in the ideal world, it is not considered as
a security issue in the real world, even with a secure scheme.

Since the syntax is similar to the normal FE, the definition of the IND-CPA
security (Definition 8) can be re-used for HFE. When the adversary A query the
key generation oracle OKeyGen for functions f and f ′ to obtain a new secret key
SKf ′◦f in HFE, it can be resolved by querying the original oracle OKeyGen with
a function key k since fk = f ′ ◦ f ∈ F for some k ∈ K. Using the security model
of FE for HFE, we implicitly require that the secret key and the delegated key
have the same distribution.

With the refined definition of HFE, we derive the syntax of our HFE for
Linear Transformations.

Definition 10 (Hierarchical Functional Encryption for Linear Trans-
formations). Let R be a ring, K = {A | A ∈ R

i×δ, i ∈ Z
+}, X = R

δ×γ ,
and Y = {Y | Y ∈ R

i×γ , i ∈ Z
+}. The universal function f : K × X → Y

is defined as fA : X �→ AX. In short, the transformation function fA is sim-
ply denoted by the internal transformation matrix A. A hierarchical functional
encryption for linear transformation (HFE-LT) is an HFE for a function class
F = {fk : X → Y | k ∈ K}, consisting of the following four polynomial time
algorithms:

(PK,MSK) ← Setup(1λ, 1δ, 1γ), SKBA ← KeyGen(SKA,B),
C ← Encrypt(PK,X), Y = AX ← Decrypt(SKA, C).

It is clear that the system setup algorithm Setup specifies the dimensions of K,
X, and Y by the extra inputs δ and γ. Again, the master secret key is a secret

Hierarchical Functional Encryption for Linear Transformations 33

key for the identity matrix that MSK
def= SKI. Since the properties of ring are

not fully used in matrix multiplication, the above definition can be extended
to any algebraic structure (even different structures for K, X, and Y) as long
as (BA)X = B(AX) with all operations valid. In addition to the key genera-
tion algorithm KeyGen, if the delegation matrix B is invertible, the newly gener-
ated key is equivalent to the original key since KeyGen(KeyGen(SKA,B),B−1) =
SKB−1BA = SKA.

3.2 Construction

In this subsection, we propose a generic construction of HFE-LT from HPS. It
is strongly recommended that the readers should read Sect. 2.1 in advance since
our construction is based on the notations defined in Sect. 2.1.

Let Ξ = (Setup,SKGen,PKGen,Hash,PHash) be a diverse HPS associated
with an SMP instance Λ = (X,L,W,R) and further spaces (K,S,Π). The HPS
Ξ is required to have hash linearity for completeness and key linearity for sound-
ness. Let ξ ∈ Π \ {0} be an element derived from the diversity of the HPS Ξ,
and n be the order of the group Π ′ = {aξ | a ∈ Z}. Our hierarchical functional
encryption for linear transformation with R = Zn works as follows1.

– (PK,MSK) ← Setup(1λ, 1δ, 1γ): Given a security parameter 1λ and the size
δ × γ of message matrices, the system setup algorithm generates a system-
wide parameter param ← Ξ.Setup(1λ). Then the algorithm generates a key
matrix KI of size δ × γ as the core part of the secret key of the identity
matrix Iδ ∈ Z

δ×δ
n by invoking Ξ.SKGen(param) for δ×γ times. After that, the

algorithm generates the corresponding public keys P = Ξ.PKGen(KI). The
full secret key for the identity matrix is packed as SKI = (Iδ,KI). Finally,
the algorithm publishes P as the public key PK, and keeps SKI as the master
secret key MSK.

param ← Ξ.Setup(1λ), ki,j ← Ξ.SKGen(param),

KI =

⎡

⎢
⎣

k1,1 · · · k1,γ

...
. . .

...
kδ,1 · · · kδ,γ

⎤

⎥
⎦ ∈ Kδ×γ , P = Ξ.PKGen(KI), SKI = (Iδ,KI).

return (PK,MSK) = (P,SKI).
– SKBA ← KeyGen(SKA,B): In the key generation algorithm, the algorithm

recognises the secret key SKA for the matrix A. If the secret key is not
in the form of SKA = (A,KA) ∈ Z

m×δ
n × Km×γ for some m ∈ Z

+, the
algorithm returns ⊥ for failure indication. The algorithm also checks the
validity of the parameter B ∈ Z

m′×m
n for some m′ ∈ Z

+. If all parameters
are valid and compatible, the algorithm computes and returns a secret key

1 From the key linearity and hash linearity, we have that |K| ≥ |Π| ≥ |Π ′| = n, and
n could be maximised by summing two or more elements derived from the diversity
if those elements generate different groups.

34 S. Zhang et al.

SKBA = (BA,BKA) ∈ Z
m′×δ
n × Km′×γ for the matrix BA. Remark that

BKA = BAKI.
– C ← Encrypt(PK,X): To encrypt a matrix X ∈ Z

δ×γ
n , the algorithm randomly

samples a word x in the language L with a witness w such that (x,w) ∈ R.
After that, the algorithm computes the core part of the ciphertext C =
Xξ + Ξ.PHash(P, x, w) ∈ Πδ×γ . The full ciphertext is C = (x,C).

(x,w) ∈R R, C = Xξ + Ξ.PHash(P, x, w).

return C = (x,C).
– Y ← Decrypt(SKA, C): To decrypt a ciphertext C = (x,C) ∈ X × Πδ×γ

with a secret key SKA = (A,KA) ∈ Z
m×δ
n × Km×γ , the algorithm computes

an intermediate value D = AC − Ξ.Hash(KA, x) ∈ Πm×γ . After that, the
algorithm find the scalar of D with the base ξ as the final decryption result
Y = scaξ(D) ∈ Z

m×γ
n .

D = AC − Ξ.Hash(KA, x).

return Y = scaξ(D).

We show that our construction is complete by verifying the decryption algorithm.
Starting from the intermediate value D, we have

D = AC − Ξ.Hash(KA, x) = A(Xξ + Ξ.PHash(P, x, w)) − Ξ.Hash(KA, x)
= AXξ + AΞ.PHash(P, x, w) − Ξ.Hash(KA, x)
= AXξ + AΞ.Hash(KI, x) − Ξ.Hash(KA, x)
= AXξ + Ξ.Hash(AKI, x) − Ξ.Hash(AKI, x) = AXξ.

Then the completeness of our construction is verified by

Y = scaξ(D) = scaξ(AXξ) = AX.

3.3 Security Proof

Theorem 1. The HFE-LT construction in Sect. 3.2 is IND-CPA secure if the
SMP instance Λ associated with the underlying diverse HPS Ξ is hard.

Proof. In this proof, we require the underlying HPS Ξ to have diversity instead
of smoothness introduced by Cramer and Shoup [12], which is used to prove
the security of an IND-CPA public key encryption scheme. The reason is that
the smoothness only prevents the information leakage of the hashing value from
the public hash keys but not from the secret hash keys. In other words, the
adversary may be able to distinguish ciphertexts via secret keys obtained from
the key generation algorithm KeyGen of the HFE-LT scheme. If we follow the
proof in [12] that the hash values are replaced with random values, the adversary
can recognise this game modification with overwhelming probability by running
the decryption algorithm since the adversary finds that Decrypt(SKA, C) �= AX0

and Decrypt(SKA, C) �= AX1 where C is the challenge ciphertext of X0 or X1.

Hierarchical Functional Encryption for Linear Transformations 35

To prove the theorem, we show that an simulator S can be constructed to
solve the SMP instance Λ = (X,L,W,R) in polynomial time with non-negligible
probability if an adversary A can win the IND-CPA game with non-negligible
probability.

Let (Λ, x∗) be the actual subset membership problem challenged to the sim-
ulator S. The objective of the simulator S is to distinguish whether x∗ ∈ L or
x∗ ∈ X \L with x∗ sampled from L or X \L with equal probability. Following the
IND-CPA game (defined in Sect. 2.4), the simulator S runs the system setup algo-
rithm Setup to generate a key pair (PK,MSK) = (P,SKI), and passes the public
key PK to the adversary A in the setup phase. During the pre-challenge phase,
the simulator S invokes the key generation algorithm KeyGen with the master
secret key MSK = SKI to answer the key generation oracle OKeyGen directly. The
restriction for the adversary A is that A can only query the secret keys for A
such that AX0 = AX1 where X0 and X1 are the target message matrices output
by A in the challenge phase.

At some point, the adversary A outputs two target message matrices X0 and
X1, changing the game state to the challenge phase. The simulator S tosses a
random coin b ∈R {0, 1}, and computes the target ciphertext C∗ = (x∗,C∗)
different to the encryption algorithm Encrypt where

C∗ = Xbξ + Ξ.Hash(KI, x
∗).

After that, the target ciphertext C∗ is sent to the adversary A. In the post-
challenge phase, the adversary A is allowed to access the oracle OKeyGen as before
with the same restriction. Eventually, the adversary A outputs a bit b′ in the
guessing phase. If b = b′, the adversary A wins, and the simulator S outputs 1.
Otherwise, the simulator S outputs 0 instead. Finally, the simulator S halts and
completes the simulation.

After the simulation, we analyse the probabilities in the style of [12,19]. Let
EL be the event that S outputs 1 conditioned on x∗ ∈ L, and EX\L be the event
that S outputs 1 conditioned on x∗ ∈ X \ L. The advantage AdvSMP

S of solving
the subset membership problem is

AdvSMP
S ≥ |Pr[1 ← S | x∗ ∈ L] − Pr[1 ← S | x∗ ∈ X \ L]| =

∣
∣Pr[EL] − Pr[EX\L]

∣
∣

(1)
For the case of x∗ ∈ L, the simulation is perfect since the algorithms Ξ.Hash

and Ξ.PHash are equivalent. From the IND-CPA game, we have

AdvIND-CPA
A =

∣
∣
∣
∣Pr[EL] − 1

2

∣
∣
∣
∣ . (2)

For the case of x∗ ∈ X \ L, we show that the hidden bit b is independent
from the adversary A’s view that

Pr[EX\L] =
1
2

(3)

Since the element ξ is an element derived from the the diversity of the HPS Ξ,
we have that there exists a k ∈ K such that PKGen(k) = 0 and Ξ.Hash(k, x∗) = ξ

36 S. Zhang et al.

where k is not required to be efficiently computable. Let Γ = (Xb − X1−b) · k ∈
Kδ×γ . We have

Ξ.Hash(Γ, x∗) = Ξ.Hash((Xb − X1−b) · k, x∗) = (Xb − X1−b) · Ξ.Hash(k, x∗)
= (Xb − X1−b)ξ = Xbξ − X1−bξ.

Based on Ξ.Hash(Γ, x∗) = Xbξ −X1−bξ, we argue that the target ciphertext C∗

is not only a valid ciphertext of the message Xb under the key KI but also a valid
ciphertext of the message X1−b under the key K∗

I = KI + Γ. More precisely, we
have

C∗ = X1−bξ + Ξ.Hash(KI + Γ, x∗) = X1−bξ + Ξ.Hash(KI, x
∗) + Ξ.Hash(Γ, x∗)

= X1−bξ + Ξ.Hash(KI, x
∗) + Xbξ − X1−bξ = Xbξ + Ξ.Hash(KI, x

∗).

Furthermore, we show that it is impossible for the adversary A to distinguish
KI and K∗

I from the public key P or the secret keys KA obtained from the key
generation oracle OKeyGen. Since Ξ.PKGen(k) = 0 from the diversity, the keys
KI and K∗

I have the same public key

P = Ξ.PKGen(KI + Γ) = Ξ.PKGen(KI) + Ξ.PKGen(Γ)
= Ξ.PKGen(KI) + Ξ.PKGen((Xb − X1−b) · k)
= Ξ.PKGen(KI) + (Xb − X1−b) · Ξ.PKGen(k) = Ξ.PKGen(KI).

Since the adversary A is restricted that A can only query the secret keys for A
such that AX0 = AX1 ⇐⇒ A(X0 − X1) = 0, the keys KI and K∗

I generate
the same secret key KA for such a matrix A for the adversary A as

KA = A(KI + Γ) = AKI + AΓ = AKI + A(Xb − X1−b) · k = AKI.

Hence, the hidden bit b is independent from the adversary A’s view.
By combining Eqs. (1), (2) and (3), we have the following inequality and

complete the proof.

AdvIND-CPA
A ≤ AdvSMP

S .

3.4 Extensions

In the Definition 9, the delegation is performed by one party with a secret key
SKf and a delegation function f ′ so that the delegated party can learn f ′(f(x)).
In order not to be restricted to nested hierarchy, the HFE can be extended to
allow delegation performed by multiple parties. Precisely, n secret key holders
with SKf1 , . . . ,SKfn

can work together to generate a secret key SKf∗ for a func-
tion f∗ defined as f∗(x) = f ′ (f1(x), . . . , fn(x)) where f ′ is a delegation function,
which takes n inputs. The extended HFE is formalised as follows.

Hierarchical Functional Encryption for Linear Transformations 37

Definition 11 (Extended Hierarchical Functional Encryption). An
extended hierarchical functional encryption (eHFE) for a function class F =
{fk : X → Y | k ∈ K} consists of the following four polynomial time algorithms:

(PK,MSK) ← Setup(1λ), SKfk
← KeyGen(SKfk1

, . . . SKfkn
, f ′),

C ← Encrypt(PK, x), y = f(x) ← Decrypt(SKf , C).

While all other components work as in Definition 9, the extended key gen-
eration algorithm KeyGen takes n secret keys for function fki

∈ F : X →
Zi ⊂ Y , and a function f ′ : Z1 × · · · × Zn → Z ′ ⊂ Y as inputs such that
fk(x) def= f ′(fk1(x), . . . , fk2(x)) and fk ∈ F for some k ∈ K. The algorithm
KeyGen outputs a secret key for the function fk. It is worth noting the num-
ber n of parameters of the algorithm KeyGen is not fixed by the system setup
algorithm Setup.

Similar to HFE, the definition of the IND-CPA security (Definition 8) can also
be applied to eHFE with the same method to resolve the queries to the key
generation oracle OKeyGen. Based on Definitions 10 and 11, we derive the syntax
of our extended HFE-LT.

Definition 12 (Extended HFE-LT). Let R be a ring, K = {A | A ∈
R

i×δ, i ∈ Z
+}, X = R

δ×γ , and Y = {Y | Y ∈ R
i×γ , i ∈ Z

+}. The universal
function f : K × X → Y is defined as fA : X �→ AX. An extended hierarchical
functional encryption for linear transformation (eHFE-LT) is an eHFE for a
function class F = {fk : X → Y | k ∈ K}, consisting of the following four
polynomial time algorithms:

(PK,MSK) ← Setup(1λ, 1δ, 1γ), SKB ← KeyGen(SKA1 , . . . ,SKAn
,T),

C ← Encrypt(PK,X), Y = AX ← Decrypt(SKA, C).

In the key generation algorithm KeyGen, the resulted transformation matrix is
calculated as

B = T
(
A�

1

∣
∣ · · · ∣

∣A�
n

)�
.

The construction of our eHFE-LT scheme is exactly the same as the HFE-LT
scheme in Sect. 3.2 except the key generation algorithm. The idea of constructing
the new key generation algorithm is simple due to the special structure of the
secret keys that we combine the keys SKA1 , . . . ,SKA�

to be a new key SKA where
A =

(
A�

1

∣
∣ · · · ∣

∣A�
�

)�, and then runs the original key generation algorithm
KeyGen(SKA,T) to obtain the final key SKB. More precisely, we have

– SKB ← KeyGen(SKA1 , . . . ,SKA�
,T): Given � secret keys for Ai ∈ Z

mi×δ
n , the

algorithm checks the validity of T ∈ Z
m′×∑�

i=1 mi
n for some m′ ∈ Z

+. Then it
computes

B = T
(
A�

1

∣
∣ · · · ∣

∣A�
�

)�
, KB = T

(
K�

A1

∣
∣ · · · ∣

∣K�
A�

)�
.

return SKB = (B,KB) ∈ Z
m′×δ
n × Km′×γ .

38 S. Zhang et al.

Theorem 2. The proposed eHFE-LT construction in Sect. 3.4 is IND-CPA
secure if the SMP instance Λ associated with the underlying diverse HPS Ξ
is hard.

Proof. The proof follows the same lines as in Sect. 3.3 and is omitted.

4 Instantiations

In this section, we instantiate our generic HFE-LT construction from the Deci-
sional Diffie-Hellman (DDH) problem and from the Decisional Composite Resid-
uosity (DCR) problem. Remark that the HFE-LT instantiations can be easily
converted to eHFE-LT instantiations as discussed in Sect. 3.4. For better read-
ability, we use multiplication in this section instead of addition in the previous
sections for the group operations related to HPS. Therefore, all scalar multipli-
cations on groups related to HPS are replaced by exponentiations.

4.1 HFE-LT from DDH

Definition 13 (Decisional Diffie-Hellman problem). Let G be a cyclic
multiplicative group of prime order p where |p| = λ and λ is the security
parameter. Let a, b ∈R Zp, g, Z ∈R G. Given two probability distributions
DDDH = {(g, ga, gb, gab)} and DR = {(g, ga, gb, Z)}, there is an algorithm A
that distinguishes DDDH and DR with advantage:

AdvDDH
A = |Pr[1 ← A(D ∈R DDDH)] − Pr[1 ← A(D ∈R DR \ DDDH)]|

Let g1, g2, x1, x2 ∈R D, w ∈R Zp. The above distributions can be represented
as DDDH = {(g1, g2, gw

1 , gw
2)} and DR = {g1, g2, x1, x2}. Thus fixed on g1, g2,

the DDH problem is an SMP problem where X = G
2, L = {gw

1 , gw
2 } ⊂ X, and

W = Zp. The DDH problem is assumed hard that AdvDDH
A is negligible. From

[12], we review the corresponding HPS construction as follows with K = Z
2
p,

S = Π = G.

– param ← Setup(1λ): g1, g2 ∈R G, return param = (G, g1, g2).
– SK ← SKGen(param): return SK = (k1, k2) ∈R Z

2
p.

– PK ← PKGen(SK): return PK = gk1
1 gk2

2 .
– π ← Hash(SK, x): (x1, x2) ← x, return π = xk1

1 xk2
2 .

– π ← PHash(PK, x, w): return π = PKw.

From [19], the above HPS construction has key linearity, hash linearity, and
diversity with g1 as a derived element2.

2 All elements in G are elements derived from the diversity.

Hierarchical Functional Encryption for Linear Transformations 39

Let ξ = g1. Our HFE-LT instantiation of R = Zp works as follows.

– (PK,MSK) ← Setup(1λ, 1δ, 1γ):

g1, g2 ∈ G, KI =

⎡

⎢
⎣

(k1,1,1, k1,1,2) · · · (k1,γ,1, k1,γ,2)
...

. . .
...

(kδ,1,1, kδ,1,2) · · · (kδ,γ,1, kδ,γ,2)

⎤

⎥
⎦ ∈R (Z2

p)
δ×γ ,

P =

⎡

⎢
⎣

P1,1 · · · P1,γ

...
. . .

...
Pδ,1 · · · Pδ,γ

⎤

⎥
⎦ s.t. Pi,j = g

ki,j,1
1 g

ki,j,2
2 , SKI = (Iδ,KI).

return (PK,MSK) = ((g1, g2,P),SKI).
– SKBA ← KeyGen(SKA,B): return SKBA = (BA,BKA).
– C ← Encrypt(PK,X):

w ∈R Zp, x = (x1, x2) = (gw
1 , gw

2),

⎡

⎢
⎣

X1,1 · · · X1,γ

...
. . .

...
Xδ,1 · · · Xδ,γ

⎤

⎥
⎦ ← X ∈ Z

δ×γ
p ,

C =

⎡

⎢
⎣

C1,1 · · · C1,γ

...
. . .

...
Cδ,1 · · · Cδ,γ

⎤

⎥
⎦ s.t. Ci,j = ξXi,j Pw

i,j = g
Xi,j

1 Pw
i,j .

return C = (x,C).
– Y ← Decrypt(SKA, C):

⎡

⎢
⎣

(k1,1,1, k1,1,2) · · · (k1,γ,1, k1,γ,2)
...

. . .
...

(km,1,1, km,1,2) · · · (km,γ,1, km,γ,2)

⎤

⎥
⎦ ← KA ∈ (Z2

p)
m×γ ,

⎡

⎢
⎣

A1,1 · · · A1,δ

...
. . .

...
Am,1 · · · Am,δ

⎤

⎥
⎦ ← A ∈ Z

m×δ
p ,

D =

⎡

⎢
⎣

D1,1 · · · D1,γ

...
. . .

...
Dm,1 · · · Dm,γ

⎤

⎥
⎦ s.t. Di,j =

∏δ
l=1 C

Ai,l

l,j

x
ki,j,1
1 x

ki,j,2
2

.

return Y = logξ D = logg1
D.

Remark the calculation of logg1
D can be done in polynomial time if the decryp-

tion space {Y} is polynomial sized.

40 S. Zhang et al.

4.2 HFE-LT Instantiation from DCR

Definition 14 (Decisional Composite Residuosity problem). Let p, q be
two safe primes such that p = 2p′ +1 and q = 2q′ +1 where p′, q′ are two primes
of length λ bites and λ is the security parameter. Let N = pq, and N ′ = p′q′. We
have that Z∗

N2 = GNGN ′G2GT where GT is a group generated by −1 (mod N2).
Let P = GN ′G2GT ⊂ Z

∗
N2 , x ∈R P , and x′ ∈R Z

∗
N2 \ P . Given two probability

distributions DP = {(N,x)} and DZ
∗
N2\P = {(N,x′)}, there is an algorithm A

that distinguishes DP and DZ
∗
N2\P with advantage:

AdvDCR
A =

∣
∣
∣Pr[1 ← A(D ∈R DP)] − Pr[1 ← A(D ∈R DZ

∗
N2\P)]

∣
∣
∣

The DCR problem is assumed to be hard with negligible advantage AdvDCR
A .

However, we do not use (Z∗
N2 , P) as (X,L) for several technical reasons. Instead,

we set X = GNGN ′ and L = GN ′ ⊂ X. According to the full version of [12], the
resulted SMP problem with (X,L) is at least hard as the DCR problem. Slightly
different from [12], we have the corresponding HPS construction as follows with
W = {0, . . . , �N/4�}, K = {0, . . . , �N2/2�}, S = L = GN ′ , and Π = X =
GNGN ′ .

– param ← Setup(1λ): μ ∈R Z
∗
N2 , g = μ2N (mod N2), return param = (N, g).

– SK ← SKGen(param): return SK = k ∈R {0, . . . , �N2/2�}.
– PK ← PKGen(SK): return PK = gk (mod N2).
– π ← Hash(SK, x): return π = xk (mod N2).
– π ← PHash(PK, x = gw, w): return π = PKw (mod N2).

Remark that the value N in Setup is generated as described in Defintion 14 and
g is a generator of L = GN ′ with overwhelming probability.

The key linearity and hash linearity of the above HPS can be easily ver-
ified as gk1gk2 = gk1+k2 and xk1xk2 = xk1+k2 . Let ξ = 1 + N (mod N2),
which is a generator of GN of order N . It is worth noting that ξa = 1 + aN

(mod N2) and logξ x = x−1 mod N2

N for all a ∈ ZN and x ∈ GN where the
division does not mean the multiplicative inverse but the division of integers.
We show that the above HPS has diversity and ξ is a derived element such that
∀x ∈ X \ L,∃k ∈ K,PKGen(k) = 1 ∧ Hash(k, x) = ξ where 1 is the identity

element 0 in Definition 6. Let r =
(
logξ xN ′

)−1

mod N where xN ′ ∈ GN and
the multiplicative inverse is computable for all x ∈ GNGN ′ with overwhelming
probability. Let k = rN ′. Since g is a generator of GN ′ of order N ′, we have
PKGen(k) = gk = grN ′

= 1 (mod N2). Since r−1 = logξ xN ′ ⇐⇒ xN ′
= ξr−1

,
we have Hash(k, x) = xrN ′

= (xN ′
)r = (ξr−1

)r = ξ. Hence, the diversity is
verified with the derived element ξ = 1 + N (mod N2).

Our HFE-LT instantiation of R = ZN works as follows3. Let ξ = 1 + N
(mod N2).

3 We do not fully use the key space (i.e. |K| = �N2/2� > N).

Hierarchical Functional Encryption for Linear Transformations 41

– (PK,MSK) ← Setup(1λ, 1δ, 1γ):

μ ∈R Z
∗
N2 , g = μ2N (mod N2), KI =

⎡
⎢⎣

k1,1 · · · k1,γ

...
. . .

...
kδ,1 · · · kδ,γ

⎤
⎥⎦ ∈R {0, . . . , �N2/2�}δ×γ ,

P =

⎡
⎢⎣

P1,1 · · · P1,γ

...
. . .

...
Pδ,1 · · · Pδ,γ

⎤
⎥⎦ s.t. Pi,j = gki,j (mod N2), SKI = (Iδ,KI).

return (PK,MSK) = ((N, g,P),SKI).
– SKBA ← KeyGen(SKA,B): return SKBA = (BA,BKA) where BKA is com-

puted over Z.
– C ← Encrypt(PK,X):

w ∈R {0, . . . , �N/4�}, x = gw (mod N2),

⎡

⎢
⎣

X1,1 · · · X1,γ

...
. . .

...
Xδ,1 · · · Xδ,γ

⎤

⎥
⎦ ← X ∈ Z

δ×γ
N ,

C =

⎡

⎢
⎣

C1,1 · · · C1,γ

...
. . .

...
Cδ,1 · · · Cδ,γ

⎤

⎥
⎦ s.t. Ci,j = ξXi,j Pw

i,j = (1 + Xi,jN)Pw
i,j (mod N2).

return C = (x,C).
– Y ← Decrypt(SKA, C):

⎡

⎢
⎣

A1,1 · · · A1,δ

...
. . .

...
Am,1 · · · Am,δ

⎤

⎥
⎦ ← A ∈ Z

m×δ
N ,

⎡

⎢
⎣

k1,1 · · · k1,γ

...
. . .

...
km,1 · · · km,γ

⎤

⎥
⎦ ← KA ∈ Z

m×γ ,

D =

⎡

⎢
⎣

D1,1 · · · D1,γ

...
. . .

...
Dm,1 · · · Dm,γ

⎤

⎥
⎦ s.t. Di,j =

∏δ
l=1 C

Ai,l

l,j

xki,j
(mod N2),

Y = logξ D =

⎡

⎢
⎣

Y1,1 · · · Y1,γ

...
. . .

...
Ym,1 · · · Ym,γ

⎤

⎥
⎦ s.t. Yi,j =

Di,j − 1 mod N2

N
.

return Y.

5 Conclusion

In this paper, we revisited and simplified the definition of HFE, and further
extended it to eHFE. We derived the notion of HFE-LT from HFE (and eHFE-
LT from eHFE), allowing matrix product evaluation. Furthermore, we proposed
a generic construction of HFE-LT (and eHFE-LT) with IND-CPA security in

42 S. Zhang et al.

the standard model from Hash Proof Systems with key and hash linearity, and
diversity. To illustrate that our scheme is practical, we presented two concrete
HFE-LT instantiations from the DDH and DCR assumptions.

This paper proposed a practical HFE construction for matrix product eval-
uation. It is still an open problem whether we could build a practical HFE for
other functionalities and we leave it as our future work.

Acknowledgements. This work is supported by the National Natural Science Foun-
dation of China under Grants 61502086 and 61572115, the foundation from Guangxi
Colleges and Universities Key Laboratory of Cloud Computing and Complex Systems
(No. YF16202) and the foundation from Guangxi Key Laboratory of Trusted Software
(No. PF16116X).

References

1. Abdalla, M., Bourse, F., Caro, A.D., Pointcheval, D.: Better security for func-
tional encryption for inner product evaluations. Cryptology ePrint Archive, Report
2016/011 (2016)

2. Abdalla, M., Bourse, F., Caro, A., Pointcheval, D.: Simple functional encryp-
tion schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020,
pp. 733–751. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 33

3. Abdalla, M., Raykova, M., Wee, H.: Multi-input inner-product functional encryp-
tion from pairings. Cryptology ePrint Archive, Report 2016/425 (2016)

4. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53015-3 12

5. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. Cryptology ePrint Archive, Report 2013/689 (2013)

6. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 470–491.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 20

7. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005). doi:10.1007/11426639 26

8. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19571-6 16

9. Brakerski, Z., Segev, G.: Hierarchical functional encryption. Cryptology ePrint
Archive, Report 2015/1011 (2015)

10. Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with
a double trapdoor decryption mechanism and its applications. In: Laih, C.-S.
(ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-40061-5 3

11. Chandran, N., Goyal, V., Jain, A., Sahai, A.: Functional encryption: Decentralised
and delegatable. Cryptology ePrint Archive, Report 2015/1017 (2015)

12. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi:10.
1007/3-540-46035-7 4

http://dx.doi.org/10.1007/978-3-662-46447-2_33
http://dx.doi.org/10.1007/978-3-662-53015-3_12
http://dx.doi.org/10.1007/978-3-662-53015-3_12
http://dx.doi.org/10.1007/978-3-662-48797-6_20
http://dx.doi.org/10.1007/11426639_26
http://dx.doi.org/10.1007/978-3-642-19571-6_16
http://dx.doi.org/10.1007/978-3-540-40061-5_3
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4

Hierarchical Functional Encryption for Linear Transformations 43

13. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

14. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. Cryptol-
ogy ePrint Archive, Report 2013/451 (2013)

15. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 9

16. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 62–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 4

17. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

18. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. In: ACM Symposium on Theory of Computing - STOC 2005, pp. 84–93
(2005)

19. Zhang, S., Mu, Y., Yang, G.: Achieving IND-CCA security for functional encryp-
tion for inner products. In: Chen, K., Lin, D., Yung, M. (eds.) Inscrypt 2016. LNCS,
vol. 10143, pp. 119–139. Springer, Cham (2017). doi:10.1007/978-3-319-54705-3 8

http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-642-13190-5_4
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-319-54705-3_8

KDM-Secure Public-Key Encryption
from Constant-Noise LPN

Shuai Han1,2 and Shengli Liu1,2,3(B)

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{dalen17,slliu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Westone Cryptologic Research Center, Beijing 100070, China

Abstract. The Learning Parity with Noise (LPN) problem has found
many applications in cryptography due to its conjectured post-quantum
hardness and simple algebraic structure. Over the years, constructions
of different public-key primitives were proposed from LPN, but most of
them are based on the LPN assumption with low noise rate rather than
constant noise rate. A recent breakthrough was made by Yu and Zhang
(Crypto’16), who constructed the first Public-Key Encryption (PKE)
from constant-noise LPN. However, the problem of designing a PKE
with Key-Dependent Message (KDM) security from constant-noise LPN
is still open.

In this paper, we present the first PKE with KDM-security assum-
ing certain sub-exponential hardness of constant-noise LPN, where the
number of users is predefined. The technical tool is two types of multi-
fold LPN on squared-log entropy, one having independent secrets and
the other independent sample subspaces. We establish the hardness
of the multi-fold LPN variants on constant-noise LPN. Two squared-
logarithmic entropy sources for multi-fold LPN are carefully chosen,
so that our PKE is able to achieve correctness and KDM-security
simultaneously.

Keywords: Learning parity with noise · Key-dependent message
security · Public-key encryption

1 Introduction

The search Learning Parity with Noise (LPN) problem asks to recover a random
secret binary vector s ∈ F

n
2 from noisy linear samples of the form (a, 〈a, s〉 + e),

where a ∈ F
n
2 is chosen uniformly at random and e ∈ F2 follows the Bernoulli

distribution Bμ with parameter μ (i.e., Pr[Bμ = 1] = μ). The decisional LPN
problem simply asks to distinguish the samples (a, 〈a, s〉+ e) from uniform. The
two versions of LPN turn out to be polynomially equivalent [BFKL93,KS06].

From a theoretical point, LPN offers a very strong security guarantee. The
LPN problem can be formulated as a well-investigated NP-complete problem,
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 44–64, 2017.
DOI: 10.1007/978-3-319-60055-0 3

KDM-Secure Public-Key Encryption from Constant-Noise LPN 45

the problem of decoding random linear codes [BMT78]. An efficient algorithm
for LPN would imply a major breakthrough in coding theory. LPN also becomes
a central hub in learning theory: an efficient algorithm for it could be used
to learn several important concept classes such as 2-DNF formulas, juntas and
any function with a sparse Fourier spectrum [FGKP06]. Until now, the best
known LPN solvers require sub-exponential time. Further, there are no quantum
algorithms known to have any advantage over classic ones in solving it. This
makes LPN a promising candidate for post-quantum cryptography.

From a practical point, LPN-based schemes are often extremely efficient.
The operations of LPN are simply bitwise exclusive OR (XOR) between binary
strings, which are more efficient than other quantum-secure candidates like
the learning with errors (LWE) assumption [Reg05]. Consequently, LPN-based
schemes are very suitable for weak-power devices like RFID tags.

Low-Noise LPN vs. Constant-Noise LPN. Obviously, with the noise rate
μ decreasing, the LPN problem can only become easier. Under a constant noise
rate 0 < μ < 1/2, the best known algorithms for solving LPN require 2O(n/ log n)

time and samples [BKW03,LF06]. The time complexity goes up to 2O(n/ log log n)

when given only polynomially many poly(n) samples [Lyu05], and even 2O(n)

when given only linearly many O(n) samples [Ste88,MMT11]. Under a low noise
rate μ = O(n−c) (typically c = 1/2), the best LPN solvers need only 2O(n1−c)

time when given O(n) samples [Ste88,CC98,BLP11,Kir11,BJMM12].
The low-noise LPN is mostly believed to be a stronger assumption than

constant-noise LPN. Moreover, low-noise LPN results in less efficient schemes
than constant-noise LPN. For example, to achieve a same security level, the
secret length n of low-noise LPN for noise rate μ = O(1/

√
n) has to be squared

compared with constant-noise LPN [DMN12], according to the time complexity
of the attack algorithms.

For public-key primitives, Alekhnovich [Ale03] constructed a chosen-plaintext
(IND-CPA) secure public-key encryption (PKE) scheme based on low-noise LPN
for noise rate μ = O(1/

√
n). Recently, Döttling et al. [DMN12] provided a

chosen-ciphertext (IND-CCA2) secure PKE scheme from low-noise LPN, and
Kiltz et al. [KMP14] improved the efficiency of the PKE scheme significantly.
David et al. [DDN14] proposed a universally composable oblivious transfer (OT)
protocol from low-noise LPN. All the above schemes are based on LPN for noise
rate μ = O(1/

√
n) or even μ = O(n−1/2−ε) with some ε > 0.

Though constant-noise LPN provides more security confidence and efficiency
than low-noise LPN, it had been a long-standing open problem to construct
public-key primitives based on constant-noise LPN since Alekhnovich’s work
[Ale03]. This problem was not resolved until the recent work of Yu and Zhang
[YZ16], who designed the first IND-CPA secure PKE scheme, the first IND-
CCA2 secure PKE scheme and the first OT protocol from constant-noise LPN.

Key-Dependent Message Security. The traditional IND-CPA (or even IND-
CCA2) security might be sufficient for some scenarios, but not strong enough
for high-level systems like hard disk encryptions [BHHO08] and anonymous cre-
dential systems [CL01], where messages are closely dependent on the secret

46 S. Han and S. Liu

keys. Such an issue was first identified by Goldwasser and Micali [GM84],
and appropriate security notion for key-dependent messages was formalized as
KDM-security by Black et al. [BRS02]. Over the years, more and more coun-
terexamples were found, suggesting that IND-CPA/IND-CCA2 security does
not imply KDM-security (see [ABBC10,CGH12,MO14,BHW15,KRW15,KW16,
AP16,GKW17], to name a few).

Roughly speaking, a PKE scheme is called KDM-secure, if for any PPT
adversary who is given public keys (pk1, · · · , pkl) of l users, it is hard to distin-
guish encryptions of functions of secret keys f(sk1, · · · , skl) from encryptions of
a constant say 0, where the functions f are adaptively chosen by the adversary.
In this work, we focus on KDM-CPA security, where the adversary has no access
to a decryption oracle.

The first KDM-secure PKE scheme in the standard model (i.e., without
using random oracles) was proposed by Boneh et al. [BHHO08] and based
on the decisional Diffie-Hellman (DDH) assumption. Later, more KDM-secure
PKE schemes were constructed from a variety of assumptions, such as the
DDH [CCS09,BHHI10,BGK11,GHV12], the quadratic residuosity (QR) [BG10]
and the decisional composite residuosity (DCR) [BG10,MTY11,Hof13,LLJ15,
HLL16] assumptions. However, these number-theoretic assumptions are succumb
to known quantum algorithms. The only exceptions are the KDM-secure PKE
designed by Applebaum et al. [ACPS09] from LWE and the one proposed by
Döttling [Döt15] from low-noise LPN. Until now, the problem of constructing
KDM-secure PKE from constant-noise LPN has remained open.

Applebaum [App11] provided a generic KDM amplification for boosting
any KDM-secure PKE for affine functions to a KDM-secure PKE for arbitrary
(bounded size) circuits. Thus it suffices to construct KDM-secure PKE schemes
for affine functions to obtain schemes with KDM-security against more general
class of functions.

Our Contributions. In this paper, we present the first KDM-secure PKE
scheme for affine functions from constant-noise LPN, where the number l of
users is predefined. Our construction is neat and enjoys roughly the same effi-
ciency as the IND-CPA secure PKE scheme proposed by Yu and Zhang [YZ16].
We show a comparison in Table 1.

The starting point of our work is a variant of the LPN problem called LPN on
squared-log entropy, which was developed by Yu and Zhang [YZ16] as a techni-
cal tool in their IND-CPA/IND-CCA2 secure PKE construction. Different from
standard LPN, the secret s is not necessarily uniform but only required to have
some squared-logarithmic entropy, and the linear samples a are no longer uni-
formly chosen but sampled from a random subspace of sublinear-sized dimension.

We introduce two types of multi-fold version of LPN on squared-log entropy,
one having independent secrets and the other independent sample subspaces.
Informally speaking, it stipulates that the samples (ai, 〈ai, si〉 + ei) are com-
putationally indistinguishable from uniform, even given multiple instances i =
1, · · · , k for any polynomial k. In the version with independent secrets, si are
independently distributed; in the version with independent sample subspaces, ai

KDM-Secure Public-Key Encryption from Constant-Noise LPN 47

Table 1. Comparison among known PKE schemes either based on LPN or achiev-
ing KDM-security in the standard model under standard assumptions. “KDM?” asks
whether the security is proved in the KDM setting. We kindly note that, the operations
of LWE (i.e., modular additions and multiplications over a large ring) are less efficient
than that of LPN (i.e., bit operations), while low-noise LPN is mostly believed to be a
stronger assumption than constant-noise LPN.

Scheme KDM? Assumption Quantum
resistance?

[Ale03,DMN12,KMP14] ✗ Low-noise LPN �
[YZ16] ✗ Constant-noise LPN �
[BHHO08,CCS09,BHHI10,
BGK11,GHV12]

� DDH ✗

[BG10] � QR ✗

[BG10,MTY11] � DCR ✗

[Hof13,LLJ15,HLL16] � DDH & DCR ✗

[ACPS09] � LWE �
[Döt15] � Low-noise LPN �
Ours � Constant-noise LPN �

are uniformly chosen from independent subspaces. We establish the hardness of
the multi-fold LPN variants on constant-noise LPN.

Then we construct a PKE scheme and reduce the KDM-security to the multi-
fold LPN variants, which are in turn implied by constant-noise LPN. In contrast
to LPN-based PKE constructions in prior works like [Ale03,DMN12,YZ16], our
PKE makes a novel use of two different squared-logarithmic entropy distribu-
tions for LPN secrets in a delicate combination, one of which is employed in the
key generation algorithm and the other is employed in the encryption algorithm.
This is crucial to achieving correctness and KDM-security of our PKE scheme
simultaneously.

2 Preliminaries

Let n ∈ N denote the security parameter. For i ∈ N, define [i] := {1, 2, · · · , i}.
Vectors are used in the column form. Denote by x ←$ X the operation of picking
an element x according to the distribution X. If X is a set, then this denotes
that x is sampled uniformly at random from X. For an algorithm A , denote by
y ←$ A (x; r), or simply y ←$ A (x), the operation of running A with input x
and randomness r and assigning output to y. Denote by |s| the Hamming weight
of a binary string s. For a random variable X and a distribution D, let X ∼ D
denote that X is distributed according to D. “PPT” is short for Probabilistic
Polynomial-Time. Denote by poly an unspecified polynomial function, and negl
an unspecified negligible function. For random variables X and Y , the min-
entropy of X is defined as H∞(X) := − log(maxx Pr[X = x]), and the statistical

48 S. Han and S. Liu

distance between X and Y is defined by Δ(X,Y) := 1
2 ·∑x

∣
∣ Pr[X = x]−Pr[Y =

x]
∣
∣. For probability ensembles X = {Xn}n∈N and Y = {Yn}n∈N, X and Y are

called statistically indistinguishable, denoted by X
s
∼ Y , if Δ(Xn, Yn) ≤ negl(n);

X and Y are called computationally indistinguishable, denoted by X
c
∼ Y , if for

any PPT distinguisher D ,
∣
∣ Pr[D(Xn) = 1] − Pr[D(Yn) = 1]

∣
∣ ≤ negl(n).

2.1 Useful Distributions and Lemmas

For 0 < μ, μ1 < 1 and integers n,m, q, λ ∈ N, we define some useful distributions
as follows.

– Let Bμ denote the Bernoulli distribution with parameter μ, i.e., Pr[Bμ = 1] =
μ and Pr[Bμ = 0] = 1−μ, and Bn

μ the concatenation of n independent copies
of Bμ.

– Let B̃n
μ1

denote the distribution Bn
μ1

conditioned on (1 −
√

6
3)μ1n ≤ |Bn

μ1
| ≤

2μ1n, and (B̃n
μ1

)q an n × q matrix distribution where each column is an
independent copy of B̃n

μ1
.

– Let χn
m denote the uniform distribution over the set {s ∈ F

n
2 | |s| = m}.

– Let Un (resp., Uq×n) denote the uniform distribution over F
n
2 (resp., F

q×n
2).

– Let D
q×n
λ := Uq×λ · Uλ×n.

– Let Pn denote the uniform distribution over the set of all n × n permutation
matrices, i.e., matrices that have exactly one entry of 1 in each row and each
column and 0s elsewhere.

The distribution B̃n
μ1

was introduced by Yu and Zhang [YZ16] as a very impor-
tant distribution in the context of constant-noise LPN. B̃n

μ1
are efficiently sam-

pleable, e.g., by sampling s ←$ Bn
μ1

repeatedly and outputting s until the con-

dition (1 −
√

6
3)μ1n ≤ |s| ≤ 2μ1n is met.

Remark 1. In this work, we are mostly interested in B̃n
μ1

and χn
μ1n for μ1 =

Θ(log n/n), both of which have square-logarithmic entropy, i.e., H∞(B̃n
μ1

) =
Θ(log2 n) and H∞(χn

μ1n) = Θ(log2 n), as shown in [YZ16].

Lemma 1 (Chernoff Bound [KMP14,YZ16]). For any 0 < μ < 1 and any
δ > 0, we have

Pr
[|Bn

μ| > (1 + δ)μn
]

< e−min(δ,δ2)
3 μn.

In particular, for any 0 < μ ≤ (1
2 − p) with 0 < p < 1/2, we have

Pr
[|Bn

μ| > (1
2 − p

2)n
]

< e− p2n
8 .

Lemma 2 (Piling-up Lemma [Mat93]). For independent random variables
ei ∼ Bμi

, i ∈ [q], we have
∑q

i=1 ei ∼ Bσ with σ = 1
2 − 1

2 · ∏q
i=1(1 − 2μi).

KDM-Secure Public-Key Encryption from Constant-Noise LPN 49

Lemma 3 ([YZ16, Lemmas 4.3 and 4.4]). For any 0 < μ ≤ 1/10, any
μ1 = Θ(log n/n) ≤ 1/8, any e ∈ F

n
2 with |e| ≤ 1.01μn, and any s ∈ F

n
2 with

|s| ≤ 2μ1n, it holds that

Pr
[
ŝ�e = 1

] ≤ 1/2−2−μ1n/2 and Pr
[
ê�s = 1

] ≤ 1/2−2−μ1n−1,

where ŝ ∼ B̃n
μ1

and ê ∼ Bn
μ.

We state a simplified version of the leftover hash lemma, by adopting a
specific family of universal hash functions H = {HU : F

n
2 −→ F

l
2 | U ∈ F

l×n
2 },

where HU(x) := U · x ∈ F
l
2 for any x ∈ F

n
2 .

Lemma 4 (Leftover Hash Lemma [HILL99]). For any random variable X
on F

n
2 with min-entropy H∞(X) ≥ k, we have Δ

(
(U,U·x), (U,Ul)

) ≤ 2−(k−l)/2,
where U ∼ Ul×n and x ∼ X.

2.2 Learning Parity with Noise

Definition 1 (Learning Parity with Noise). Let 0 < μ < 1/2. The deci-
sional LPN problem LPNμ,n with secret length n and noise rate μ is hard, if for
any q = poly(n), it holds that

(A,A · s + e) c
∼ (A,Uq), (1)

where A ∼ Uq×n, s ∼ Un and e ∼ Bq
μ.

We say that LPNμ,n is T -hard, if for any q ≤ T , any probabilistic distin-
guisher of running time T , the distinguishing advantage in (1) is upper bounded
by 1/T .

A central tool for constructing IND-CPA/IND-CCA2 secure PKE in [YZ16]
is a variant of the LPN problem, called LPN on squared-log entropy. There are
two main differences: (i) the secret s is not necessarily uniform, but only required
to have some squared-logarithmic entropy; (ii) the rows of A are no longer
uniformly chosen, but sampled from a random subspace of squared-logarithmic
dimension. It was shown in [YZ16] that under constant-noise LPN with certain
sub-exponential hardness, the LPN problem on squared-log entropy is hard even
given some log-sized auxiliary input about the secret and noise. Formally, we
have the following theorem.

Theorem 1 (LPN on Squared-log Entropy [YZ16, Theorem 4.1]). Let

0 < μ < 1/2 be any constant. Assume that LPNμ,n is 2ω(n
1
2)-hard, then for

any λ = Θ(log2 n), q = poly(n), any polynomial-time sampleable distribution
S on F

n
2 with H∞(S) ≥ 2λ, and any polynomial-time computable function f :

(Fn
2 × F

q
2) × Z −→ F

O(log n)
2 with public coins Z, we have

(A,A · s + e, Z, f(s, e;Z)) c
∼ (A,Uq, Z, f(s, e;Z)),

where A ∼ D
q×n
λ , s ∼ S and e ∼ Bq

μ.

50 S. Han and S. Liu

By Remark 1, B̃n
μ1

and χn
μ1n with μ1 = Θ(log n/n) are suitable candidate

distributions for S, as long as the constant hidden in λ = Θ(log2 n) is small
enough such that H∞(B̃n

μ1
) ≥ 2λ and H∞(χn

μ1n) ≥ 2λ hold.

2.3 Public-Key Encryption and Key-Dependent Message Security

A public-key encryption (PKE) scheme PKE = (KeyGen,Enc,Dec) with secret
key space SK and message space M consists of a tuple of PPT algorithms: (i) the
key generation algorithm KeyGen(1n) outputs a public key pk and a secret key
sk ∈ SK; (ii) the encryption algorithm Enc(pk,m) takes as input a public key pk
and a message m ∈ M, and outputs a ciphertext c; (iii) the decryption algorithm
Dec(sk, c) takes as input a secret key sk and a ciphertext c, and outputs either
a message m or a failure symbol ⊥. Correctness of PKE requires that, for all
messages m ∈ M, we have

Pr
[
(pk, sk) ←$ KeyGen(1n) : Dec(sk,Enc(pk,m)) �= m

] ≤ negl(n),

where the probability is over the inner coin tosses of KeyGen and Enc.

Definition 2 (KDM-Security for PKE). Let l ∈ N denote the number of
users, and let F be a family of functions from (SK)l to M. A PKE scheme PKE
is called l-KDM[F]-CPA secure, if for any PPT adversary A , in the following
l-kdm[F]-cpa game played between A and a challenger C , the advantage of A
is negligible in n.

KeyGen. C picks b ←$ {0, 1} as a challenge bit, and proceeds as follows.
(a) For each user i ∈ [l], invoke (pki, ski) ←$ KeyGen(1n).
Finally, C sends the public keys (pk1, · · · , pkl) to A .

Chal(j ∈ [l], f ∈ F). A can query this oracle poly(n) times. Each time, A sends
a user identity j ∈ [l] and a function f ∈ F to C , and C proceeds as follows.
(a) Set f ← 0 (the zero function) if b = 0. Then compute a message m :=

f(sk1, · · · , skl) ∈ M.
(b) Compute the encryption of m under the public key pkj of the j-th user,

i.e., c ←$ Enc(pkj ,m).
Finally, C returns the challenge ciphertext c to A .

Guess. A outputs a guessing bit b′ ∈ {0, 1}. The advantage of A is defined as∣
∣ Pr[b′ = b] − 1

2

∣
∣.

3 Multi-fold LPN on Squared-Log Entropy

In this section, we present the technical tools used in our construction of KDM-
secure PKE from constant-noise LPN. We develop two types of multi-fold version
of LPN on squared-log entropy: one has independent secrets and the other has
independent sample subspaces.

KDM-Secure Public-Key Encryption from Constant-Noise LPN 51

3.1 Multi-fold LPN on Squared-Log Entropy with Independent
Secrets

Firstly, we state a k-fold version of LPN on squared-log entropy with independent
secrets and noise vectors, where the auxiliary input per fold is a 2-bit linear
leakage of the secret and noise.

Lemma 5. Let 0 < μ < 1/2 be any constant. Assume that LPNμ,n is 2ω(n
1
2)-

hard, then for any μ1 = Θ(log n/n) and λ = Θ(log2 n) such that H∞(B̃n
μ1

) ≥ 2λ,
and any k = poly(n), it holds that

(A, Ŝ�A + Ê�, (e, s,P), (Ŝ�e, Ê�Ps)) c
∼ (A,Uk×n, (e, s,P), (Ŝ�e, Ê�Ps)),

(2)
where A ∼ Dn×n

λ , Ŝ ∼ (B̃n
μ1

)k, Ê ∼ Bn×k
μ , e ∼ Bn

μ, s ∼ χn
μ1n and P ∼ Pn.

Proof. By instantiating a transposed version of Theorem1 with q = n, S = B̃n
μ1

and f : (Fn
2 ×F

n
2)×(Fn

2 ×F
n
2 ×F

n×n
2) −→ F

2
2 being f(ŝ, ê; (e, s,P)) = (ŝ�e, ê�Ps),

we obtain

(A, ŝ�A+ê�, (e, s,P), (ŝ�e, ê�Ps)) c
∼ (A,U1×n, (e, s,P), (ŝ�e, ê�Ps)), (3)

where A ∼ Dn×n
λ , ŝ ∼ B̃n

μ1
, ê ∼ Bn

μ, and (e ∼ Bn
μ, s ∼ χn

μ1n, P ∼ Pn) are public
coins. Observe that (2) is k-fold version of (3), thus a standard hybrid argument
leads to Lemma 5. �

We also develop a k-fold version of LPN on squared-log entropy with inde-
pendent secrets and noise vectors, where the auxiliary input per fold is a 1-bit
linear leakage of a special form. We show that the auxiliary input is also com-
putationally indistinguishable from uniform.

Lemma 6. Let 0 < μ < 1/2 be any constant. Assume that LPNμ,n is 2ω(n
1
2)-

hard, then for any μ1 = Θ(log n/n) and λ = Θ(log2 n) such that H∞(B̃n
μ1

) ≥ 2λ,
and any k = poly(n), it holds that

(A, Ŝ�A + Ê�,y, Ŝ�y + e) c
∼ (A,Uk×n,y,Uk), (4)

where A ∼ Dn×n
λ , Ŝ ∼ (B̃n

μ1
)k, Ê ∼ Bn×k

μ , y ∼ Un and e ∼ Bk
μ.

Proof. By instantiating a transposed version of Theorem1 with q = n, S = B̃n
μ1

and f : (Fn
2 × F

n
2) × (Fn

2 × F2) −→ F2 being f(ŝ, ê; (y, e)) = ŝ�y + e, we have

(A, ŝ�A + ê�, (y, e), ŝ�y + e) c
∼ (A,U1×n, (y, e), ŝ�y + e)

⇒ (A, ŝ�A + ê�,y, ŝ�y + e) c
∼ (A,U1×n,y, ŝ�y + e), (5)

52 S. Han and S. Liu

where A ∼ Dn×n
λ , ŝ ∼ B̃n

μ1
, ê ∼ Bn

μ, and (y ∼ Un, e ∼ Bμ) are public coins.
Again, by instantiating a transposed version of Theorem1 with q = 1, S = B̃n

μ1

and f that always outputs nothing, we get

(y, ŝ�y + e) c
∼ (y,U1)

⇒ (A,U1×n,y, ŝ�y + e) c
∼ (A,U1×n,y,U1), (6)

where A ∼ Dn×n
λ , y ∼ Dn×1

λ = Un, ŝ ∼ B̃n
μ1

and e ∼ Bμ.
By combining (5) with (6), we immediately obtain

(A, ŝ�A + ê�,y, ŝ�y + e) c
∼ (A,U1×n,y,U1). (7)

Observe that (4) is k-fold version of (7), thus a standard hybrid argument leads
to Lemma 6. �

3.2 Multi-fold LPN on Squared-Log Entropy with Independent
Sample Subspaces

We introduce an l-fold version of LPN on squared-log entropy, with independent
sample subspaces and noise vectors, but shared a same secret s, i.e.,

(Ai,Ai · s + ei, Z, f(s, ei;Z))i∈[l]
c
∼ (Ai,Uq, Z, f(s, ei;Z))i∈[l]. (8)

The name of “sample subspaces” originates from the fact that, each Ai ∼ D
q×n
λ

is associated with a random subspace of dimension λ, from which the rows of Ai

are sampled.
We stress that this cannot be implied by Theorem1, for two reasons: (i) for l

independent Ai ∼ D
q×n
λ , the distribution of their concatenation

⎛

⎜
⎝

A1

...
Al

⎞

⎟
⎠ does not

follow the form of Dlq×n
λ any more; (ii) we cannot resort to a hybrid argument

since the secret s is shared by the l folds and unknown to the simulator.
For our KDM-secure PKE, it suffices to consider the case free of auxiliary

input.

Theorem 2. Let 0 < μ < 1/2 and l ∈ N be any constant. Assume that LPNμ,n

is 2ω(n
1
2)-hard, then for any μ1 = Θ(log n/n) and λ = Θ(log2 n) such that

H∞(χn
μ1n) ≥ (l + 1)λ, it holds that

(Ai,Ai · s + ei)i∈[l]
c
∼ (Ai,ui)i∈[l],

where s ∼ χn
μ1n, Ai ∼ Dn×n

λ , ei ∼ Bn
μ and ui ∼ Un for i ∈ [l].

Proof. Since H∞(χn
μ1n) ≥ (l + 1)λ, by the leftover hash lemma (i.e., Lemma 4),

we have
(V,V · s) s

∼ (V,y),

KDM-Secure Public-Key Encryption from Constant-Noise LPN 53

where V ∼ Ulλ×n, s ∼ χn
μ1n and y ∼ Ulλ.

By expressing V =

⎛

⎜
⎝

V1

...
Vl

⎞

⎟
⎠ with Vi ∼ Uλ×n and y =

⎛

⎜
⎝

y1

...
yl

⎞

⎟
⎠ with yi ∼ Uλ,

we get
(Vi,Vi · s)i∈[l]

s
∼ (Vi,yi)i∈[l]

⇒ ((Ui,Vi),Ui · Vi · s + ei)i∈[l]
s
∼ ((Ui,Vi),Ui · yi + ei)i∈[l], (9)

where Ui ∼ Un×λ, and ei ∼ Bn
μ.

Next, consider the LPNμ,λ problem on uniform string yi of length λ (instead

of n), which is assumed to be 2ω(λ
1
2) (= nω(1))-hard. It implies that

(Ui,Ui · yi + ei)
c
∼ (Ui,ui),

where ui ∼ Un, for any i ∈ [l]. Through a standard hybrid argument, we have

(Ui,Ui · yi + ei)i∈[l]
c
∼ (Ui,ui)i∈[l]

⇒ ((Ui,Vi),Ui · yi + ei)i∈[l]
c
∼ ((Ui,Vi),ui)i∈[l]. (10)

Finally, by combining (9) with (10) and setting Ai := Ui · Vi ∼ Dn×n
λ ,

Theorem 2 follows. �

4 KDM-Secure PKE from Constant-Noise LPN

In this section, we present a PKE scheme with KDM-security for affine functions
assuming certain sub-exponential hardness (i.e., 2ω(n

1
2) for secret length n) of

constant-noise LPN.

4.1 The Construction

Our PKE scheme uses the following parameters and building blocks.

– Let 0 < μ ≤ 1/10, α > 0 and l ∈ N be any constants, and let μ1 = α log n/n.
– Let λ = β log2 n with a constant β > 0 such that both H∞(B̃n

μ1
) ≥ 2λ and

H∞(χn
μ1n) ≥ (l + 1)λ holds. By Remark 1, such a λ can be easily found by

setting β small enough.
– Let G ∈ F

k×n
2 be the generator matrix of a binary linear error-correcting code

together with an efficient decoding algorithm Decode, which can correct at
least (1

2 − 2
5n3α/2) ·k errors. Such a code exists for k = O(n3α+1), and explicit

constructions of the code can be found in [For66].

We present the construction of PKE = (KeyGen,Enc,Dec) with secret key
space F

n
2 and message space F

n
2 in Fig. 1.

54 S. Han and S. Liu

Fig. 1. Construction of PKE with KDM-security from constant-noise LPN.

Remark 2. In contrast to LPN-based PKE constructions in prior works like
[Ale03,DMN12,YZ16], our PKE scheme makes a novel use of two squared-log
entropy distributions for LPN secrets in a delicate combination, i.e., χn

μ1n in the
KeyGen algorithm and B̃n

μ1
in the Enc algorithm. This is crucial to achieving

correctness and KDM-security of our scheme simultaneously. Jumping ahead,

• For KDM-security, the distribution χn
μ1n employed in KeyGen allows us to

express secret keys of l users, si ∼ χn
μ1n with i ∈ [l], as random permutations

of a base secret key s∗
∼ χn

μ1n, i.e., si := Pi · s∗ for Pi ∼ Pn. Then we
are able to reduce KDM-security for l users to that for a single user. This
approach makes the KDM-security proof possible. (See Subsect. 4.3 for the
formal security proof.)

• For correctness, the distribution B̃n
μ1

employed in Enc helps us to use Lemma 3
to bound the error term Ŝ�e in decryption, where Ŝ ∼ (B̃n

μ1
)k, and decode the

message m successfully. (See Subsect. 4.2 for the formal correctness analysis.)

We stress that χn
μ1n and B̃n

μ1
are carefully selected so that both the correctness

and KDM-security can be satisfied. If χn
μ1n is adopted in both KeyGen and Enc,

it will be hard for us to show the correctness; if B̃n
μ1

is adopted in both KeyGen
and Enc, it will be hard for us to prove the KDM-security.

4.2 Correctness

Theorem 3. Our PKE scheme PKE in Fig. 1 is correct.

Proof. For (pk, sk) ←$ KeyGen(1n) and c ←$ Enc(pk,m), we have

pk = (A,y) = (A,As+e) and c = (C1, c2) = (Ŝ�A+ Ê�, Ŝ�y+ ê+Gm),

KDM-Secure Public-Key Encryption from Constant-Noise LPN 55

where s ∼ χn
μ1n, e ∼ Bn

μ, Ŝ ∼ (B̃n
μ1

)k, Ê ∼ Bn×k
μ and ê ∼ Bk

μ. Then in Dec(sk, c),
it follows that

z = c2 − C1s = Ŝ�y + ê + Gm − (Ŝ�A + Ê�) · s
= Ŝ� · (As + e) + ê + Gm − (Ŝ�A + Ê�) · s
= Gm + ê + Ŝ�e − Ê�s.

We analyze the error term ê + Ŝ�e − Ê�s. By the Chernoff bound (i.e.,
Lemma 1), |e| ≤ 1.01μn holds except with negligible probability 2−Ω(n). Besides,
|s| = μ1n ≤ 2μ1n. Thus, by Lemma 3, we have Ŝ�e ∼ Bk

σ1
for σ1 ≤ 1/2 −

2−μ1n/2 = 1/2 − n−α/2, and Ê�s ∼ Bk
σ2

for σ2 ≤ 1/2 − 2−μ1n−1 = 1/2 − n−α/2.
Then by the Piling-up Lemma (i.e., Lemma2), ê + Ŝ�e − Ê�s ∼ Bk

σ for σ ≤
1/2 − 4

5 · n−3α/2. Finally, by Lemma1,

Pr
[∣

∣ê + Ŝ�e − Ê�s
∣
∣ ≤ (1

2 − 2
5n3α/2) · k

] ≥ 1 − 2−Ω(n−3αk) = 1 − 2−Ω(n).

Therefore, with overwhelming probability, it holds that
∣
∣ê + Ŝ�e − Ê�s

∣
∣ ≤

(1
2 − 2

5n3α/2) · k, and in this case, Decode will be able to decode m from z. �

4.3 KDM-Security for Affine Functions

Theorem 4. Let Faff =
{
f : (Fn

2)l −→ F
n
2

}
be a family of affine functions.

Assume that LPNμ,n is 2ω(n
1
2)-hard, then our PKE scheme PKE in Fig. 1 is

l-KDM [Faff]-CPA secure.

Proof. Suppose that A is a PPT adversary against the l-KDM[Faff]-CPA secu-
rity of PKE with advantage ε. We prove the theorem by defining a sequence of
games G1 –G12 and showing that ε is negligible in n. The changes between adja-
cent games will be highlighted by underline. In the sequel, by a

Gi= b we mean
that a equals b or is computed as b in game Gi, and by Pri[·] we denote the
probability of a particular event occurring in game Gi.

Game G1. This is the l-kdm[Faff]-cpa security game of PKE, which is played
between A and a challenger C .

KeyGen. C picks b ←$ {0, 1} as the challenge bit, and generates the public
keys of l users as follows.
(a) For each user i ∈ [l], choose Ai ←$ Dn×n

λ , si ←$ χn
μ1n, ei ←$ Bn

μ, and
compute yi := Aisi + ei ∈ F

n
2 .

Finally, C sends the public keys pki := (Ai,yi), i ∈ [l], to A .
Chal(j ∈ [l], f ∈ Faff). A can query this oracle Q = poly(n) times. Each time,

A sends a user identity j ∈ [l] and an affine function f ∈ Faff to C , and C
proceeds as follows.
(a) Set f ← 0 (the zero function) if b = 0. Then compute the message

m := f(sk1, · · · , skl) ∈ F
n
2 , which essentially is m :=

∑
i∈[l] Tisi + t ∈ F

n
2 ,

where Ti ∈ F
n×n
2 and t ∈ F

n
2 are 0s in the case of b = 0 and are specified

by A as the description of the affine function f in the case of b = 1.

56 S. Han and S. Liu

(b) Compute the encryption of m under the public key pkj = (Aj ,yj) of the
j-th user, i.e., choose Ŝ ←$ (B̃n

μ1
)k, Ê ←$ Bn×k

μ , ê ←$ Bk
μ, and compute

C1 := Ŝ�Aj + Ê� ∈ F
k×n
2 and c2 := Ŝ�yj + ê + Gm ∈ F

k
2 .

Finally, C returns the challenge ciphertext c := (C1, c2) to A .
Guess. A outputs a guessing bit b′ ∈ {0, 1}.

Let Win denote the event that b′ = b. Then by definition, ε =
∣
∣ Pr1[Win]− 1

2

∣
∣.

Game G2. This game is the same as G1, except that, the oracle KeyGen is
changed as follows.

KeyGen. C picks b ←$ {0, 1} uniformly, and proceeds as follows.
(a) Chooseamastersecret s∗ ←$ χn

μ1n.

(b) For each user i ∈ [l], choose Ai ← $ Dn×n
λ , Pi ←$ Pn, ei ← $ Bn

μ, and
compute si := Pis∗ ∈ F

n
2 and yi := AiPis∗ + ei ∈ F

n
2 .

Finally, C sends the public keys pki := (Ai,yi), i ∈ [l], to A .

Claim 1. Pr1[Win] = Pr2[Win].

Proof of Claim 1. Since s∗
∼ χn

μ1n, we have |s∗| = μ1n. Then as Pi ∼ Pn,
si = Pis∗ follows the distribution χn

μ1n and is independent of s∗, the same as

that in game G1. Besides, yi
G1= Aisi + ei

G2= AiPis∗ + ei. Consequently, the
changes are just conceptual, and Pr1[Win] = Pr2[Win]. �

Game G3. This game is the same as G2, except that, the oracle Chal is changed
as follows.

Chal(j ∈ [l], f ∈ Faff). C proceeds as follows.
(a) Set f ← 0 if b = 0. Then compute Tf :=

∑
i∈[l] TiPi ∈ F

n×n
2 and

m := Tfs∗ + t ∈ F
n
2 .

(b) Choose Ŝ ←$ (B̃n
μ1

)k, Ê ←$ Bn×k
μ , ê ←$ Bk

μ, and compute C1 := Ŝ�Aj +
Ê� ∈ F

k×n
2 and c2 := (C1Pj + GTf) · s∗ − Ê�Pjs∗ + Ŝ�ej + ê + Gt

∈ F
k
2 .

Finally, C returns the challenge ciphertext c := (C1, c2) to A .

Claim 2. Pr2[Win] = Pr3[Win].

Proof of Claim 2. Observe that m
G2=

∑
i∈[l] Tisi + t =

∑
i∈[l] Ti · (Pis∗) + t G3=

Tfs∗ + t, and

c2
G2= Ŝ�yj + ê + Gm = Ŝ� · (AjPjs∗ + ej) + ê + G · (Tfs∗ + t)

= (Ŝ�AjPj + GTf) · s∗ + Ŝ�ej + ê + Gt

= ((C1 − Ê�)Pj + GTf) · s∗ + Ŝ�ej + ê + Gt
G3= (C1Pj + GTf) · s∗ − Ê�Pjs∗ + Ŝ�ej + ê + Gt,

KDM-Secure Public-Key Encryption from Constant-Noise LPN 57

where the penultimate equality is due to C1 = Ŝ�Aj + Ê�. Thus, the changes
are just conceptual. �
Game G4. This game is the same as G3, except that, the oracle Chal is changed
as follows.

Chal(j ∈ [l], f ∈ Faff). C proceeds as follows.
(a) Set f ← 0 if b = 0. Then compute Tf :=

∑
i∈[l] TiPi ∈ F

n×n
2 .

(b) Choose Ŝ ←$ (B̃n
μ1

)k, Ê ←$ Bn×k
μ , ê ←$ Bk

μ, U ←$ F
k×n
2 , and compute

C1 := U ∈ F
k×n
2 and c2 := (C1Pj +GTf)·s∗−Ê�Pjs∗+Ŝ�ej +ê+Gt ∈

F
k
2 .

Finally, C returns the challenge ciphertext c := (C1, c2) to A .

Claim 3. If LPNμ,n is 2ω(n
1
2)-hard, then

∣
∣ Pr3[Win] − Pr4[Win]

∣
∣ ≤ negl(n).

Proof sketch of Claim 3. The only difference between game G3 and game G4

is the distribution of C1 in the Chal(j ∈ [l], f ∈ Faff) queries: in game G3,
C1 = Ŝ�Aj + Ê�; in game G4, C1 = U.

We can construct a PPT distinguisher D to solve the multi-fold LPN problem
described in Lemma 5 by simulating game G3 or game G4 for A , such that the
distinguishing advantage is at least 1

Ql · ∣
∣ Pr3[Win] − Pr4[Win]

∣
∣. Due to lack of

space, we present the construction and analysis of D in the full version [HL17].
Consequently, by Lemma 5, 1

Ql · ∣∣ Pr3[Win] − Pr4[Win]
∣
∣ is negligible in n, and

so is
∣
∣ Pr3[Win] − Pr4[Win]

∣
∣. �

Game G5. This game is the same as G4, except that, the oracle Chal is changed
as follows.

Chal(j ∈ [l], f ∈ Faff). C proceeds as follows.
(a) Set f ← 0 if b = 0. Then compute Tf :=

∑
i∈[l] TiPi ∈ F

n×n
2 .

(b) Choose Ŝ ← $ (B̃n
μ1

)k, Ê ← $ Bn×k
μ ,

ê ← $ Bk
μ, U ←$ F

k×n
2 , and compute C1 := U − GTfP−1

j ∈ F
k×n
2 and

c2 := (C1Pj + GTf) · s∗ − Ê�Pjs∗ + Ŝ�ej + ê + Gt ∈ F
k
2 .

Finally, C returns the challenge ciphertext c := (C1, c2) to A .

Claim 4. Pr4[Win] = Pr5[Win].

Proof of Claim 4. Since U is uniformly chosen and independent of other parts of
the game, C1 = U in game G4 has the same distribution as C1 = U−GTfP−1

j

in game G5. Thus, this change is just conceptual, and Pr4[Win] = Pr5[Win]. �

Game G6. This game is the same as G5, except that, the oracle Chal is changed
as follows.

Chal(j ∈ [l], f ∈ Faff). C proceeds as follows.

58 S. Han and S. Liu

(a) Set f ← 0 if b = 0. Then compute Tf :=
∑

i∈[l] TiPi ∈ F
n×n
2 .

(b) Choose Ŝ ←$ (B̃n
μ1

)k, Ê ←$ Bn×k
μ , ê ←$ Bk

μ, and compute C1 := Ŝ�Aj

+Ê� − GTfP−1
j ∈ F

k×n
2 and

c2 := (C1Pj + GTf) · s∗ − Ê�Pjs∗ + Ŝ�ej + ê + Gt ∈ F
k
2 .

Finally, C returns the challenge ciphertext c := (C1, c2) to A .

Claim 5. If LPNμ,n is 2ω(n
1
2)-hard, then

∣
∣ Pr5[Win] − Pr6[Win]

∣
∣ ≤ negl(n).

The proof of Claim 5 is essentially the same as that for Claim 3, since the change
from game G5 to game G6 is symmetric to the change from game G3 to game
G4. For completeness, we put the proof in the full version [HL17].

Game G7. This game is the same as G6, except that, the oracle Chal is changed
as follows.

Chal(j ∈ [l], f ∈ Faff). C proceeds as follows.
(a) Set f ← 0 if b = 0. Then compute Tf :=

∑
i∈[l] TiPi ∈ F

n×n
2 .

(b) Choose Ŝ ← $ (B̃n
μ1

)k, Ê ← $ Bn×k
μ , ê ← $ Bk

μ, and compute
C1 := Ŝ�Aj + Ê� − GTfP−1

j ∈ F
k×n
2 and c2 := Ŝ�yj + ê + Gt ∈ F

k
2 .

Finally, C returns the challenge ciphertext c := (C1, c2) to A .

Claim 6. Pr6[Win] = Pr7[Win].

Proof of Claim 6. Observe that

c2
G6= (C1Pj + GTf) · s∗ − Ê�Pjs∗ + Ŝ�ej + ê + Gt

= ((Ŝ�Aj + Ê�)Pj) · s∗ − Ê�Pjs∗ + Ŝ�ej + ê + Gt

= Ŝ� · (AjPjs∗ + ej) + ê + Gt G7= Ŝ�yj + ê + Gt,

where the second equality follows from the fact that C1 = Ŝ�Aj +
Ê� − GTfP−1

j . Therefore, this change is just conceptual, and Pr6[Win] =
Pr7[Win]. �

Game G8. This game is the same as G7, except that, the oracle KeyGen is
changed as follows.

KeyGen. C picks b ←$ {0, 1} uniformly, and proceeds as follows.
(a) Choose a master secret s∗ ←$ χn

μ1n.
(b) For each user i ∈ [l], choose Bi ←$ Dn×n

λ , Pi ←$ Pn, ei ← $ Bn
μ, and

compute Ai := BiP−1
i ∈ F

n×n
2 and yi := Bis∗ + ei ∈ F

n
2 .

Finally, C sends the public keys pki := (Ai,yi), i ∈ [l], to A .

Claim 7. Pr7[Win] = Pr8[Win].

KDM-Secure Public-Key Encryption from Constant-Noise LPN 59

Proof of Claim 7. For each i ∈ [l], the permutation Pi ∼ Pn is invertible.
Then as Bi ∼ Dn×n

λ , Ai = BiP−1
i also follows the distribution Dn×n

λ and is
independent of Pi. The reason is as follows. Bi ∼ Dn×n

λ basically means that
Bi = UiVi for Ui ∼ Un×λ and Vi ∼ Uλ×n. Then Ai = BiP−1

i = Ui(ViP−1
i),

where ViP−1
i follows the distribution Uλ×n since Vi is. Consequently, Ai is

distributed according to Dn×n
λ , the same as that in game G7.

Besides, yi
G7= AiPis∗ + ei = (BiP−1

i) · Pis∗ + ei
G8= Bis∗ + ei. Thus, the

changes are just conceptual, and Pr7[Win] = Pr8[Win]. �

Game G9. This game is the same as G8, except that, the oracle KeyGen is
changed as follows.

KeyGen. C picks b ←$ {0, 1} uniformly, and proceeds as follows.
(a) For each user i ∈ [l], choose Bi ←$ Dn×n

λ , Pi ←$ Pn, and compute Ai :=
BiP−1

i ∈ F
n×n
2 and yi ←$ F

n
2 .

Finally, C sends the public keys pki := (Ai,yi), i ∈ [l], to A .

Claim 8. If LPNμ,n is 2ω(n
1
2)-hard, then

∣
∣ Pr8[Win] − Pr9[Win]

∣
∣ ≤ negl(n).

Proof sketch of Claim 8. The only difference between game G8 and game G9 is
that yi = Bis∗ +ei in G8 is replaced by yi ←$ F

n
2 in G9. Observe that the master

secret key s∗ and the noise vectors ei, i ∈ [l], are never used in the Chal oracle in
both G8 and G9. Therefore, we can directly bound the difference by constructing
a PPT distinguisher to solve the multi-fold LPN problem described in Theo-
rem 2, such that the distinguishing advantage is at least

∣
∣ Pr8[Win] − Pr9[Win]

∣
∣.

(For completeness, we show the distinguisher in the full version [HL17].) Conse-
quently, by Theorem 2,

∣
∣ Pr8[Win] − Pr9[Win]

∣
∣ is negligible in n. �

Game G10. This game is the same as G9, except that, the oracle KeyGen is
changed as follows.

KeyGen. C picks b ←$ {0, 1} uniformly, and proceeds as follows.
(a) For each user i ∈ [l], choose Ai ←$ Dn×n

λ , Pi ←$ Pn, and yi ←$ F
n
2 .

Finally, C sends the public keys pki := (Ai,yi), i ∈ [l], to A .

Claim 9. Pr9[Win] = Pr10[Win].

Proof of Claim 9. The proof is essentially the same as that for Claim 7. The key
observation is that Ai = BiP−1

i in game G9 is distributed according to Dn×n
λ

and independent of Pi, the same as that in game G10. Thus, this change is just
conceptual, and Pr9[Win] = Pr10[Win]. �

Game G11. This game is the same as G10, except that, the oracle Chal is
changed as follows.

Chal(j ∈ [l], f ∈ Faff). C proceeds as follows.
(a) Set f ← 0 if b = 0. Then compute Tf :=

∑
i∈[l] TiPi ∈ F

n×n
2 .

60 S. Han and S. Liu

(b) Choose U ←$ F
k×n
2 , u ←$ F

k
2 , and compute C1 := U − GTfP−1

j ∈ F
k×n
2

and c2 := u + Gt ∈ F
k
2 .

Finally, C returns the challenge ciphertext c := (C1, c2) to A .

Claim 10. If LPNμ,n is 2ω(n
1
2)-hard, then

∣
∣ Pr10[Win] − Pr11[Win]

∣
∣ ≤ negl(n).

Proof sketch of Claim 10. The only difference between game G10 and game G11

is the distribution of C1 and c2 in the Chal(j ∈ [l], f ∈ Faff) queries: in game
G10, C1 = Ŝ�Aj + Ê� − GTfP−1

j and c2 = Ŝ�yj + ê + Gt; in game G11,
C1 = U − GTfP−1

j and c2 = u + Gt.
We can construct a PPT distinguisher D to solve the multi-fold LPN prob-

lem described in Lemma 6, by simulating game G10 or game G11 for A . The
construction of D is analogous to that in the proof of Claim 3. Similarly, D ’s
distinguishing advantage is at least 1

Ql ·
∣
∣ Pr10[Win]−Pr11[Win]

∣
∣. For lack of space,

we present the construction and analysis of D in the full version [HL17].
Consequently, by Lemma 6, 1

Ql · ∣
∣ Pr10[Win] − Pr11[Win]

∣
∣ is negligible in n,

and so is
∣
∣ Pr10[Win] − Pr11[Win]

∣
∣. �

Game G12. This game is the same as G11, except that, the oracle Chal is
changed as follows.

Chal(j ∈ [l], f ∈ Faff). C proceeds as follows.
(a) Choose U ←$ F

k×n
2 , u ←$ F

k
2 , and compute C1 := U ∈ F

k×n
2 and c2 :=

u ∈ F
k
2 .

Finally, C returns the challenge ciphertext c := (C1, c2) to A .

Claim 11. Pr11[Win] = Pr12[Win] = 1
2 .

Proof of Claim 11. Since U and u are uniformly chosen and independent of other
parts of the game, C1 = U − GTfP−1

j and C2 = u + Gt in game G11 have the
same distributions as C1 = U and C2 = u in game G12, respectively. Therefore,
the changes are just conceptual, and Pr11[Win] = Pr12[Win].

Moreover, the challenge bit b is never used in game G12, thus completely
hidden from A ’s view. Consequently, we have Pr12[Win] = 1

2 . �
Taking all things together, by Claims 1–11, it follows that ε =∣

∣ Pr1[Win] − 1
2

∣
∣ ≤ negl(n). This completes the proof of Theorem4. �

Acknowledgments. We would like to thank Yunhua Wen for a careful proofreading,
and the reviewers for valuable comments. The authors are supported by the National
Natural Science Foundation of China Grant (Nos. 61672346, 61373153).

KDM-Secure Public-Key Encryption from Constant-Noise LPN 61

References

[ABBC10] Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its
relation to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 403–422. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13190-5 21

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03356-8 35

[Ale03] Alekhnovich, M.: More on average case vs approximation complexity. In:
FOCS 2003, pp. 298–307. IEEE Computer Society (2003)

[AP16] Alamati, N., Peikert, C.: Three’s compromised too: circular insecurity
for any cycle length from (Ring-)LWE. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016. LNCS, vol. 9815, pp. 659–680. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53008-5 23

[App11] Applebaum, B.: Key-dependent message security: generic amplifica-
tion and completeness. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 527–546. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-20465-4 29

[BFKL93] Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives
based on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994). doi:10.1007/
3-540-48329-2 24

[BG10] Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-
key encryption under subgroup indistinguishability. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-14623-7 1

[BGK11] Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure
encryption beyond affine functions. In: Ishai, Y. (ed.) TCC 2011.
LNCS, vol. 6597, pp. 201–218. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19571-6 13

[BHHI10] Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent
message security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 423–444. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13190-5 22

[BHHO08] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryp-
tion from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85174-5 7

[BHW15] Bishop, A., Hohenberger, S., Waters, B.: New circular security counterex-
amples from decision linear and learning with errors. In: Iwata, T., Cheon,
J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 776–800. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48800-3 32

[BJMM12] Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary
linear codes in 2n/20: How 1+1=0 improves information set decod-
ing. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 31

http://dx.doi.org/10.1007/978-3-642-13190-5_21
http://dx.doi.org/10.1007/978-3-642-13190-5_21
http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://dx.doi.org/10.1007/978-3-662-53008-5_23
http://dx.doi.org/10.1007/978-3-642-20465-4_29
http://dx.doi.org/10.1007/978-3-642-20465-4_29
http://dx.doi.org/10.1007/3-540-48329-2_24
http://dx.doi.org/10.1007/3-540-48329-2_24
http://dx.doi.org/10.1007/978-3-642-14623-7_1
http://dx.doi.org/10.1007/978-3-642-19571-6_13
http://dx.doi.org/10.1007/978-3-642-19571-6_13
http://dx.doi.org/10.1007/978-3-642-13190-5_22
http://dx.doi.org/10.1007/978-3-642-13190-5_22
http://dx.doi.org/10.1007/978-3-540-85174-5_7
http://dx.doi.org/10.1007/978-3-540-85174-5_7
http://dx.doi.org/10.1007/978-3-662-48800-3_32
http://dx.doi.org/10.1007/978-3-642-29011-4_31
http://dx.doi.org/10.1007/978-3-642-29011-4_31

62 S. Han and S. Liu

[BKW03] Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity
problem, and the statistical query model. J. ACM 50(4), 506–519 (2003)

[BLP11] Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents:
ball-collision decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 743–760. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 42

[BMT78] Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent
intractability of certain coding problems. IEEE Trans. Inf. Theor. 24(3),
384–386 (1978)

[BRS02] Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the
presence of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC
2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003). doi:10.1007/
3-540-36492-7 6

[CC98] Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight
words in a linear code: application to mceliece’s cryptosystem and to
narrow-sense BCH codes of length 511. IEEE Trans. Inf. Theor. 44(1),
367–378 (1998)

[CCS09] Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme
secure against key dependent chosen plaintext and adaptive chosen cipher-
text attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
351–368. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 20

[CGH12] Cash, D., Green, M., Hohenberger, S.: New definitions and separations for
circular security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC
2012. LNCS, vol. 7293, pp. 540–557. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-30057-8 32

[CL01] Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In: Pfitzmann,
B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer,
Heidelberg (2001). doi:10.1007/3-540-44987-6 7

[DDN14] David, B., Dowsley, R., Nascimento, A.C.A.: Universally composable obliv-
ious transfer based on a variant of LPN. In: Gritzalis, D., Kiayias, A.,
Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 143–158. Springer,
Cham (2014). doi:10.1007/978-3-319-12280-9 10

[DMN12] Döttling, N., Müller-Quade, J., Nascimento, A.C.A.: IND-CCA secure
cryptography based on a variant of the LPN problem. In: Wang, X., Sako,
K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 485–503. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34961-4 30

[Döt15] Döttling, N.: Low noise LPN: KDM secure public key encryption and sam-
ple amplification. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 604–
626. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 27

[FGKP06] Feldman, V., Gopalan, P., Khot, S., Ponnuswami, A.K.: New results for
learning noisy parities and halfspaces. In: FOCS 2006, pp. 563–574. IEEE
Computer Society (2006)

[For66] Forney, G.D.: Concatenated Codes. MIT Press, Cambridge (1966)
[GHV12] Galindo, D., Herranz, J., Villar, J.: Identity-based encryption with mas-

ter key-dependent message security and leakage-resilience. In: Foresti, S.,
Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 627–
642. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33167-1 36

http://dx.doi.org/10.1007/978-3-642-22792-9_42
http://dx.doi.org/10.1007/978-3-642-22792-9_42
http://dx.doi.org/10.1007/3-540-36492-7_6
http://dx.doi.org/10.1007/3-540-36492-7_6
http://dx.doi.org/10.1007/978-3-642-01001-9_20
http://dx.doi.org/10.1007/978-3-642-30057-8_32
http://dx.doi.org/10.1007/978-3-642-30057-8_32
http://dx.doi.org/10.1007/3-540-44987-6_7
http://dx.doi.org/10.1007/978-3-319-12280-9_10
http://dx.doi.org/10.1007/978-3-642-34961-4_30
http://dx.doi.org/10.1007/978-3-662-46447-2_27
http://dx.doi.org/10.1007/978-3-642-33167-1_36

KDM-Secure Public-Key Encryption from Constant-Noise LPN 63

[GKW17] Goyal, R., Koppula, V., Waters, B.: Separating IND-CPA and circular
security for unbounded length key cycles. In: Fehr, S. (ed.) PKC 2017.
LNCS, vol. 10174, pp. 232–246. Springer, Heidelberg (2017). doi:10.1007/
978-3-662-54365-8 10

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci.
28(2), 270–299 (1984)

[HILL99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM J. Comput. 28(4), 1364–1396
(1999)

[HL17] Han, S., Liu, S.: KDM-secure public-key encryption from constant-noise
LPN. IACR Cryptology ePrint Archive, Report 2017/310 (2017)

[HLL16] Han, S., Liu, S., Lyu, L.: Efficient KDM-CCA secure public-key encryption
for polynomial functions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 307–338. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-53890-6 11

[Hof13] Hofheinz, D.: Circular chosen-ciphertext security with compact cipher-
texts. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 520–536. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 31

[Kir11] Kirchner, P.: Improved generalized birthday attack. IACR Cryptology
ePrint Archive, Report 2011/377 (2011)

[KMP14] Kiltz, E., Masny, D., Pietrzak, K.: Simple chosen-ciphertext security from
low-noise LPN. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
1–18. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54631-0 1

[KRW15] Koppula, V., Ramchen, K., Waters, B.: Separations in circular security for
arbitrary length key cycles. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015.
LNCS, vol. 9015, pp. 378–400. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46497-7 15

[KS06] Katz, J., Shin, J.S.: Parallel and concurrent security of the HB and HB+

protocols. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
73–87. Springer, Heidelberg (2006). doi:10.1007/11761679 6

[KW16] Koppula, V., Waters, B.: Circular security separations for arbitrary length
cycles from LWE. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9815, pp. 681–700. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53008-5 24

[LF06] Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: Prisco, R.,
Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer,
Heidelberg (2006). doi:10.1007/11832072 24

[LLJ15] Lu, X., Li, B., Jia, D.: KDM-CCA security from RKA secure authenti-
cated encryption. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 559–583. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 22

[Lyu05] Lyubashevsky, V.: The parity problem in the presence of noise, decod-
ing random linear codes, and the subset sum problem. In: Chekuri, C.,
Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX/RANDOM -2005.
LNCS, vol. 3624, pp. 378–389. Springer, Heidelberg (2005). doi:10.1007/
11538462 32

[Mat93] Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth,
T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer,
Heidelberg (1994). doi:10.1007/3-540-48285-7 33

http://dx.doi.org/10.1007/978-3-662-54365-8_10
http://dx.doi.org/10.1007/978-3-662-54365-8_10
http://dx.doi.org/10.1007/978-3-662-53890-6_11
http://dx.doi.org/10.1007/978-3-662-53890-6_11
http://dx.doi.org/10.1007/978-3-642-38348-9_31
http://dx.doi.org/10.1007/978-3-642-38348-9_31
http://dx.doi.org/10.1007/978-3-642-54631-0_1
http://dx.doi.org/10.1007/978-3-662-46497-7_15
http://dx.doi.org/10.1007/978-3-662-46497-7_15
http://dx.doi.org/10.1007/11761679_6
http://dx.doi.org/10.1007/978-3-662-53008-5_24
http://dx.doi.org/10.1007/978-3-662-53008-5_24
http://dx.doi.org/10.1007/11832072_24
http://dx.doi.org/10.1007/978-3-662-46800-5_22
http://dx.doi.org/10.1007/978-3-662-46800-5_22
http://dx.doi.org/10.1007/11538462_32
http://dx.doi.org/10.1007/11538462_32
http://dx.doi.org/10.1007/3-540-48285-7_33

64 S. Han and S. Liu

[MMT11] May, A., Meurer, A., Thomae, E.: Decoding random linear codes
in Õ(20.054n). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011.
LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25385-0 6

[MO14] Marcedone, A., Orlandi, C.: Obfuscation ⇒ (IND-CPA Security !⇒ Cir-
cular Security). In: Abdalla, M., Prisco, R. (eds.) SCN 2014. LNCS, vol.
8642, pp. 77–90. Springer, Cham (2014). doi:10.1007/978-3-319-10879-7 5

[MTY11] Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public
key encryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT
2011. LNCS, vol. 6632, pp. 507–526. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-20465-4 28

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Gabow, H.N., Fagin, R. (eds.) STOC 2005, pp. 84–93. ACM
(2005)

[Ste88] Stern, J.: A method for finding codewords of small weight. In: Cohen, G.,
Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113.
Springer, Heidelberg (1989). doi:10.1007/BFb0019850

[YZ16] Yu, Y., Zhang, J.: Cryptography with auxiliary input and trapdoor from
constant-noise LPN. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 214–243. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53018-4 9

http://dx.doi.org/10.1007/978-3-642-25385-0_6
http://dx.doi.org/10.1007/978-3-642-25385-0_6
http://dx.doi.org/10.1007/978-3-319-10879-7_5
http://dx.doi.org/10.1007/978-3-642-20465-4_28
http://dx.doi.org/10.1007/978-3-642-20465-4_28
http://dx.doi.org/10.1007/BFb0019850
http://dx.doi.org/10.1007/978-3-662-53018-4_9
http://dx.doi.org/10.1007/978-3-662-53018-4_9

Long-Term Secure Commitments
via Extractable-Binding Commitments

Ahto Buldas1,2, Matthias Geihs3(B), and Johannes Buchmann3

1 Tallinn University of Technology, Tallinn, Estonia
2 Cybernetica AS, Tallinn, Estonia

3 Darmstadt University of Technology, Darmstadt, Germany
mgeihs@cdc.informatik.tu-darmstadt.de

Abstract. Cryptographic commitments are either unconditionally hid-
ing or unconditionally binding, but cannot be both. As a consequence,
the security of commonly used commitment schemes is threatened in the
long-term, when adversaries become computationally much more power-
ful. We improve over this situation by putting forward a new notion of
commitment schemes, so called long-term commitment schemes. These
schemes allow for long-term protection because they allow to adjust the
protection level after the initial commitment. We also present a con-
struction of a long-term commitment scheme. Unfortunately, it seems
impossible to prove the security of such a scheme using the traditional
commitment binding definition. Therefore, we put forward a new notion
of binding commitments, so called extractable-binding commitments, and
use this notion to establish a security proof for our proposed long-term
commitment scheme.

1 Introduction

During the last decades, we have witnessed a fast growth of computer- and
network technology that is expected to continue in the foreseeable future. The
rapid growth of informational assets that require long-term protection poses a
challenge to the cryptographic protection mechanisms. Most of the cryptographic
mechanisms used in practical solutions only provide computational security (i.e.,
security against attackers with limited computational resources). This means
that their security needs to be adjusted over time to protect against attackers
with increasing computational resources.

Commitment schemes are important building blocks in many cryptographic
protocols and also important mechanisms in secure electronic archival storage
[7]. Commitment schemes enable a party to commit to (potentially) secret data,
so that the commitment procedure reveals no useful information about the data
(the hiding property) and the party cannot later deny or modify the already

This work has been co-funded by the DFG as part of project S6 within the CRC
1119 CROSSING.

c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 65–81, 2017.
DOI: 10.1007/978-3-319-60055-0 4

66 A. Buldas et al.

committed data (the binding property). As it is a well-known fact that no com-
mitment scheme can simultaneously be hiding and binding against an adversary
with unlimited computational resources, commitment schemes used in long-term
archives certainly need periodic renewal.

While the precise mathematical security conditions for commitment schemes
have been extensively studied in various contexts and security models, the exact
mathematical security notions for renewable commitments have not been studied
so far. There has been some progress though in the field of digital time-stamping.
Bayer et al. [2] proposed a renewal mechanism for time stamps and recently,
Geihs et al. [14] gave a formal security proof for a timestamp renewal scheme. An
important conclusion of their work was that the overall cryptographic strength
of renewed timestamps tends to decrease gradually when renewed many times.
Hence, for choosing proper security parameters of long-term archives, one has
to know how much extra security we need to compensate the gradual security
decrease.

The renewal method of [2,14] can be adapted for commitment schemes. A
document X and its commitment c = C(X) is renewed by creating (at time t)
a new commitment c∗ = C∗(X, c). If later (say, at t′ > t) the cryptographic
mechanisms of C are broken but those of C∗ are still secure, and it is believed
that the mechanisms in C were secure at t, then after opening the renewed
commitment (c, c∗) (and seeing X), it is still reasonable to believe that X was
indeed the committed message.

To formalize this as a reduction-type security proof, we have to show that
if there exists an adversary A′ that creates a double-opening of c at time t′,
i.e., two commitments c∗

1 = C∗(X, c) and c∗
2 = C∗(X ′, c) such that c opens

to both X and X ′, then there exists an adversary A that breaks the binding
property of C at t. Therefore, we introduce the notion of physical time and
assume that the class Mt of computing technology available at time t widens
when t increases, i.e., Mt ⊆ Mt′ if t < t′. We assume that the adversary is able to
increment the time-reading t of the clock. The adversary can send commitments
to the receiver at any time. The commitment receiver stores all the received
commitments together with the times that they were received. In such a model,
for having the reduction above, we cannot use the classical security definition
for binding because as A′ ∈ Mt′ , we are not able to use the code of A′ to
construct an A ∈ Mt for breaking C. Instead, we have to use extraction-based
binding conditions, i.e., we assume for every committing adversary A1 ∈ Mt the
existence of an extractor Et ∈ Mt that, having as input the random coins of A1,
outputs the committed message X, such that no A2 ∈ Mt is able to open the
commitment with a different message X ′.

In Sect. 2 of this paper, we provide the reader with preliminary notions. In
Sect. 3, we give a formal definition for extractable binding and study its relation
with the existing notions of binding. We show that extractable binding implies
classical binding and we can also show with a quadratic loss of security that
classical binding implies extractable binding. In Sect. 4, we define the notion
of long-term secure renewable commitments and give a construction that uses

Long-Term Secure Commitments via Extractable-Binding Commitments 67

unconditionally hiding and extractable binding commitment schemes. In Sect. 5,
we present a security proof and in Sect. 6, we draw practical conclusions by
giving the exact security evaluation of the scheme under a set of reasonable
assumptions.

2 Preliminaries

Exact Security Model. The traditional provable security model is asymp-
totic and only guarantees that security reductions have practical conclusions for
sufficiently large values of the security parameter. In practice, we would like to
have security reductions for particular choices of the security parameter. Such
an approach is called exact security (or concrete security) and was first proposed
by Bellare et al. [3,4]. In such a model, all the resources of the adversary should
be taken into account. For example, it is insufficient to deal with t-time (p-step)
adversaries without considering their number of states (the code-size). For exam-
ple, in the model with adversaries with unlimited (but still finite!) number of
states any instance of the modular exponent function gx mod n can be inverted
by an O(|x|)-time adversary (where |x| is the bit-size of x). To avoid such an
unintuitive (and impractical) conclusion, we assume that the adversary is forced
to load (read) its code, which means that the code-size of the adversary cannot
exceed its running time (the number of computational steps).

We use the following conventions. A cryptographic adversary A can be
thought of as a computer running an algorithm, where the step count of that
computer is the number of operations performed by the CPU. These concepts
are formalized using a computational model, e.g., Turing Machines [1,17]. If
A is finished after at most p steps, we say A is a p-step adversary. An adver-
sary may use random coins during a computation. We write y

ω←− A, if A uses
random coins ω and outputs y. We describe the concrete security of a crypto-
graphic scheme in terms of a success bound ε : R → [0, 1], which is a function
that maps computational resources R ∈ R to a success probability ε(R) ∈ [0, 1].
We say a cryptographic scheme is ε-secure if for every adversary with computa-
tional resources R, the probability that the adversary breaks the computational
security of the scheme is at most ε(R).

Commitment Schemes. A commitment scheme is the cryptographic equiv-
alent of a sealed envelope. It allows for committing to some message m which
will only later be revealed, where it is guaranteed that the committer cannot
change his mind about the committed message and the receiver does not learn
the message before the commitment is opened. More formally, a commitment
scheme is defined as follows.

Definition 1 (Commitment scheme). A commitment scheme is defined by
a triple of algorithms Setup, Commit, and Verify.

– Setup gets no input and outputs a commitment parameter ck.

68 A. Buldas et al.

– Commit gets as input a commitment parameter ck, and a message m. It out-
puts a commitment c and a witness w.

– Verify gets as input a commitment parameter ck, a message m, a commitment
c, and a witness w. It outputs a boolean b, where b = 1 means that the
commitment is valid and b = 0 means the commitment is invalid.

We remark that in this work we consider commitment schemes that allow
messages of arbitrary length, i.e., with message space {0, 1}∗. Next, we define
the security properties of commitment schemes, which are hiding and binding.
Hiding means that the commitment receiver does not learn the message in the
commitment phase. If this properties holds for commitment receivers with unlim-
ited computational resources, then we say the scheme is unconditional hiding.

Definition 2 (Hiding). A commitment scheme CS is unconditionally hiding if
for any adversary A: AdvHide

CS (A) = Pr
[
ExpHide

CS (A) = 1
]

= 1
2 .

A commitment scheme is binding if the committer cannot change his mind about
the committed message. Here, we only allow computationally bounded commit-
ters. We remark that commitment schemes cannot be unconditionally binding
and unconditionally hiding at the same time [6].

Definition 3 (Classical binding). Let ε : N → [0, 1]. A commitment scheme
is ε-classical-binding if for every integer p, for every p-step adversary A:

AdvBind
CS (A) = Pr

[
ExpBind

CS (A) = 1
]

≤ ε(p) .

Algorithm 1. The hiding experiment ExpHide
CS (A).

ck ← CS.Setup;
(m0, m1, s) ← A(ck);
b ←$ {0, 1};
c ← CS.Commit(ck, mb);
b′ ← A(s, c);
if b = b′ then

return 1;
else

return 0;

Although the classical binding definition presented in this section is the tra-
ditionally most commonly used one, there exist many alternative definitions for
commitment binding. It occurs that the classical binding definition is insufficient
for certain scenarios such as in the Universal Composability Framework [11], for
Quantum Commitments [18], and also for proving the security of long-term com-
mitments. Thus, in the next section we introduce a new notion for commitment
binding called extractable-binding.

Long-Term Secure Commitments via Extractable-Binding Commitments 69

Algorithm 2. The binding experiment ExpBind
CS (A).

ck ← CS.Setup;
(c, m, w, m′, w′) ← A(ck);
if CS.Verify(ck, m, c, w) = CS.Verify(ck, m′, c, w′) = 1 and m �= m′ then

return 1;
else

return 0;

3 Extractable-Binding Commitments

For extractable-binding commitments we require that the committer, who pro-
duces a commitment and later opens the commitment to some message, must
already know the message at the time of the commitment. This notion allows us
to prove the security of long-term commitment schemes (Sects. 4 and 5).

Extractable-binding is defined in experiment ExpExtBind with a two staged
adversary (A1,A2) and an extractor E . Here, A1 is the committing algorithm
who outputs a commitment c and an advice string s that contains information
how to open c. The extractor E gets as input the random coins ω of A1 and
the advice string s. It outputs a message m∗ which is the extracted message.
Afterwards, the second stage adversary A2 is run on input of advice string s and
outputs a commitment opening (m,w). A commitment scheme is extractable-
binding if there exists an extractor such that for any commitment opening, the
extracted message equals the opened message.

Definition 4 (Extractable binding). Let ε : N
3 → [0, 1]. A commitment

scheme CS is ε-extractable-binding, if for every integers p1 and p2, for every p1-
step adversary A1, there exists a pE -step extractor E, such that for every p2-step
adversary A2:

AdvExtBind
CS (A1, E ,A2) = Pr

[
ExpExtBind

CS (A1, E ,A2) = 1
]

≤ ε(p1, pE , p2) .

Algorithm 3. The extractable-binding experiment ExpExtBind
CS (A1, E ,A2).

ck ← CS.Setup;

(s, c)
ω←− A1(ck);

m∗ ← E(ck, ω);
(m, w) ← A2(s);
if CS.Verify(ck, m, c, w) = 1 ∧ m �= m∗ then

return 1;
else

return 0;

70 A. Buldas et al.

Algorithm 4. The single-message knowledge-binding experiment
ExpKBind

CS (A, E , a).
ck ← CS.Setup;

(s, c)
ω1←−− A1(ck);

m′ ← E(ck, ω1);
(m, w) ← A2(a, s);
if CS.Verify(ck, m, c, w) = 1 ∧ m �= m′ then

return 1;
else

return 0;

Related Notions

In the following we discuss other notions of commitment binding that are related
to extractable-binding.

Classical-Binding. It turns out that every extractable-binding commitment
scheme is classical-binding and every classical-binding commitment scheme is
extractable-binding. Theorem1 shows that extractable binding implies classical
binding. Later, with Theorems 2 and 3 we also show that classical binding implies
extractable binding, though with a significant security loss.

Theorem 1 (EB⇒CB). If CS is ε-extractable binding, then CS is ε′-classical-
binding, where ε′(p) = inf{2 · ε(p, pE) : pE ∈ N}.
Proof Let A be a p-step Bind-adversary and let E be any extractor guaranteed
by the assumption. We construct an ExtBind adversary (A1,A2) as follows. The
first stage A1(ck) runs A(ck) (with random string ω) to obtain (c,m,w,m′, w′)
and returns (s, c), where s = (ck, ω,m,w,m′, w′). The second stage A2(s) parses
s to obtain (ck, ω,m,w,m′, w′), tosses a coin b ← {0, 1}, and outputs (m,w)
if b = 0, and otherwise outputs (m′, w′). If A is successful in ExpBind

CS , then
(A1,A2) is successful in ExpExtBind

CS with probability 1
2 independent of the

extractor E . As the running time of (A1,A2) is about p (A2 just parses and
tosses a coin), we have AdvExtBind

CS (A1, E ,A2) ≥ 1
2AdvBind

CS (A) and hence,

AdvBind
CS (A) ≤ 2 · AdvExtBind

CS (A1, E ,A2) ≤ 2 · ε(p, pE) ,

where pE is the step count of E . 	

Knowledge-Binding. Knowledge-binding commitments were proposed by
Buldas and Laur [8] as a new security notion for time-stamping. In comparison
to extractable-binding, knowledge-binding is defined for multi-message commit-
ments (e.g., list commitments or set commitments) and the extractor depends
on the second stage adversary A2, but A2 gets an additional advice string which
is not available to the extractor. Theorem 2 implies that the single-message vari-
ant of knowledge-binding (Definition 5, Algorithm 4) implies extractable-binding
up to a small security loss due to the reduction.

Long-Term Secure Commitments via Extractable-Binding Commitments 71

Definition 5 (Knowledge binding). Let ε : N
2 → [0, 1]. A commitment

scheme CS is ε-knowledge-binding, if for all integers p and pE , for every p-step
adversary A = (A1,A2), there exists a pE -step extractor E, such that for every
advice string a ∈ {0, 1}p:

AdvKBind
CS (A, E , a) = Pr

[
ExpKBind

CS (A, E , a) = 1
]

≤ ε(p, pE) .

Theorem 2 (KB⇒EB). If CS is ε-knowledge-binding, then CS is ε′-
extractable-binding with ε′(p1, pE , p2) = ε(p1 + α · p2 log p2, pE), for some con-
stant α.

Proof. Consider an arbitrary p1-step adversary A1 that acts in terms of the
extractable binding experiment. We define A′

2(a, s) as a universal probabilis-
tic Turing machine that uses the first argument a as a program for an arbi-
trary p2-step machine A2(s). According to [1], A′

2 runs in O(p2 log p2) steps, say
α · p2 log p2 for some constant α. Consider the KBind-adversary A = (A1,A′

2)
that runs in (p1 + α · p2 log p2) steps and let E be a pE -step KBind-extractor.
Note that E can also be considered as an ExtBind-extractor. We observe that
A succeeds in the KBind-experiment if and only if (A1,A2) succeeds in the
ExtBind-experiment and hence,

AdvExtBind
CS (A1, E ,A2) = AdvKBind

CS (A, E , a) ≤ ε(p1 + α · p2 log p2, pE) .

	

Theorem 3 (CB⇒KB). If CS is ε-binding then it is also ε′-knowledge-binding,
where ε′(p, pE) = ε (pE) + α · p

pE
, for some constant α. (from Theorem5 of [8])

Corollary 1 (CB⇒EB). If CS is ε-binding then it is also ε′-extractable-
binding, where ε′(p1, pE , p2) = ε (pE) + α · p1+p2 log p2

pE
, for some constant α.

This corollary is a direct consequence of Theorems 2 and 3. As a conclusion, if a
commitment scheme is ε-binding with ε(p) = p

S , with S ≥ α ·(S′)2 (where α is an
overhead constant), then the commitment scheme is also ε′(p1, pE , p2)-binding
with ε′(p1, pE , p2) = p1+p2

S′ , i.e., we have a quadratic security loss.

Other Related Notions. In [12], Crescenzo proposes an extractable commit-
ment scheme in the public random string model. There, the extractor prepares
the public string such that it can extract the committed message from a commit-
ment. This idea was before used by Canetti and Fischlin to achieve universally
composable commitments [11].

In [13], Dodis et al. propose the notion of preimage-aware hash functions.
Preimage-aware is defined in an idealized model where oracle access to an ide-
alized primitive is globally available. In comparison, our notion is defined in the
standard model and no such ideal assumptions are made.

72 A. Buldas et al.

In [15], Pass and Wee propose an extractable commitment scheme in the
standard model. However, their scheme is only computationally hiding whereas
for long-term secrecy we require commitments to be unconditionally hiding.

In [10], Canetti and Dakdouk generalize the notion of extractable func-
tions. Building on this work, Bitansky et al. formulate the notion of extractable
collision-resistant hash functions [5] in a setting where adversaries have auxiliary
input. In their work, they show how to construct an extractable collision-resistant
hash function from the Knowledge of Exponent Assumption.

In [18], Unruh proposes collapse-binding commitments as a strengthened
security notion for commitments in the quantum setting. Collapse-binding com-
mitments seem conceptually similar to extractable-binding commitments. It is
an interesting open question what is the relation between extractable-binding
and collapse-binding.

4 Long-Term Commitments

4.1 Scheme Description

A long-term secure commitment scheme allows to generate commitments that
remain binding for long periods of time, e.g., decades or even centuries. Such
a commitment is generated in an initial commitment generation procedure and
needs to be updated periodically in order to remain valid. For initial commitment
and also for updating a commitment, a short-term secure commitment scheme
is chosen whose security must be provided until the next update.

The following definition captures long-term commitment schemes more for-
mally. Here, by a a reference to a commitment function we mean a pointer to the
commitment algorithm of a chosen commitment scheme. A commitment func-
tion Com gets as input a message m and outputs a commitment c. By a trusted
commitment verification function we mean a function that allows to verify com-
mitments that have been generated in the past. A commitment verification func-
tion Ver gets as input a message m, a commitment c, a witness w, and a time
t. It outputs 1 if (m,w) is a valid opening for commitment c at time t and it
outputs 0 in any other case.

Definition 6 (Long-term commitment scheme). A long-term commitment
scheme is a triple of algorithms Commit, Recommit, Verify, where:

– Commit gets as input a reference to a commitment function Com, and a mes-
sage m. It outputs a state S, a witness W , and a commitment c.

– Recommit gets as input a state S and a reference to a commitment function
Com. It outputs a state S′, a renewed witness W , and a commitment c.

– Verify gets as input a reference to a trusted commitment verification function
Ver, a message m, a list of commitments C, and a witness W . It outputs a
boolean b, where b = 1 if C is a valid long-term commitment for m and b = 0
if C is invalid.

Long-Term Secure Commitments via Extractable-Binding Commitments 73

Protocol. In the following, we describe how a long-term commitment scheme
(Commit,Recommit,Verify) is used by a committer A for committing to a message
m in the presence of a verifier B. In this protocol, the verifier B maintains a list
of commitment values C.

Initial commitment. The committer A chooses a secure commitment scheme
CS, generates the initial commitment (S,W, c) ← Commit(CS.Com,m) and
sends the commitment c to the verifier B. When B receives c, it reads the
current time t and sets C ← [(t, c)].

Recommitment. A chooses a new commitment scheme CS, generates a new
commitment by running (S,W, c) ← Recommit(CS.Com, S), and sends c to B.
When B receives c, it reads the current time t and appends (t, c) to C.

Verification. A sends the witness W to B. When B receives W , it uses a trusted
commitment verification function Ver and runs b ← Verify(Ver,m,C,W). The
verifier B accepts the commitment if b = 1, otherwise B rejects.

Construction (LtCom). We describe a simple long-term commitment scheme
which we refer to by LtCom. The algorithms Commit, Recommit, and Verify of
LtCom are defined as follows.

– Commit(Com,m): Run (c, w) ← Com(m). Set W = [w] and S = [m,W].
Output S, W , and c.

– Recommit(S,Com): Run (c, w) ← Com(S). Let S = [m, [w1, . . . , wi]]. Set W =
[w1, . . . , wi, w] and S′ = [m,W]. Output S′, W , and c.

– Verify(Ver,m,C,W): Let C = [(c1, t1), . . . , (cn, tn)] and W = [w1, . . . , wn].
Compute b ← ∧n

i=1 Ver(m‖[w1, . . . , wi−1], ci, wi, ti+1), where tn+1 is the cur-
rent time. Output b.

4.2 Security Model

In order to model long-term adversaries whose computational power increases
over time, we assume that the class Mt of computing machines available at
time t widens when t increases, i.e., Mt ⊆ Mt′ whenever t < t′. This model
captures that possibly much more powerful computing architectures may become
available in the future, like quantum computers. Quantum communication is not
considered in this model.

Model of real time. Modeling real time is a delicate issue and different approaches
for modeling time have been proposed. In [14,16] a global clock mechanism is
used in a computational model that only allows for sequential computation and
interaction. In [9], another approach for modeling time in model of concurrent
computation is described. We use a time formalism based on the global clock
mechanism. More precisely, in our security experiments we consider a global
clock Clock that holds a state time, which is initialized to 0. The adversary is
given the power to advance time, but never go backwards, that is, it may call
the oracle Clock to set the time forward.

74 A. Buldas et al.

Adversaries and extractors. We define adversaries with increasing computational
power over time. Such an adversary AClock is defined as a sequence (A(0),A(1),
A(2), . . .) of machines. When A is started, then actually the component A(0) is
run. Whenever a component A(t) advances to a future time t′ by calling Clock,
then the control is given to A(t′), where we assume that A(t′) gets as input the
state of A(t). Extractors may also be sequences (E(0), E(1), E(2), . . .) such that
Et ∈ Mt. That is, running an extractor E at time t means running E(t). We
remark that the extractor components do not have access to the clock oracle.

Real time computational bounds. Let AClock be a computing machine that is
associated with clock Clock and let ρ : N → N and q : N → N be functions.
We say A is ρ-bounded if for every time t, the aggregated step count of the
components of A until time t is at most ρ(t). We say A is q-call-bounded if for
every time t, it has done at most q(t) oracle calls until time t.

Commitment scheme instances. In the following security definitions we
define experiments that involve a set of commitment scheme instances C =
{CS1,CS2, . . .}. Each instance CSi is associated with a start time tsi and an end
time tbi . At the start time, public commitment parameters are generated and
after the end time, commitments generated using this instance are considered
invalid (e.g. not considered secure anymore).

Security Definitions. In the following, we present definitions of binding and
hiding for long-term commitment schemes.

Clock oracle. The following long-term experiments use the clock oracle described
by Algorithm 5. This oracle, in addition to defining the time, also checks whether
new commitment instances have become available and generates and outputs the
public commitment parameters accordingly.

Algorithm 5. The clock oracle Clock(t).
CK ← [];
if t > time then

time ← t;
forall the i ∈ {j : ts

j = t} do
ck ← CSi.Setup;
CK[i] ← ck;
CK ← CK‖(i, ck);

return CK ;

Hiding. The unconditionally hiding experiment ExpLtHide for long-term com-
mitment schemes (Algorithm 6) is defined similar to the unconditionally hid-
ing experiment ExpHide for (short-term) commitment schemes. It considers an
unbounded adversary A which is given access to oracle Clock. The adversary A
generates two messages (m0,m1) and an advice string s. Then, a coin is flipped

Long-Term Secure Commitments via Extractable-Binding Commitments 75

b ←$ {0, 1} and the adversary may call oracles Com and ReCom. If the Com ora-
cle is called, an initial long-term commitment to mb is generated and returned
to the adversary. When the ReCom oracle is called, a chosen long-term commit-
ment is renewed and the adversary gets the renewed commitment value. At some
point in time, the adversary A guesses which message has been committed to by
outputting a bit b′ and wins if it guesses correctly, i.e. if b′ = b. Unconditional
hiding for long-term commitment schemes is defined as follows.

Definition 7 (Long-Term Hiding). A long-term commitment scheme LCS is
unconditionally hiding if for any set C of unconditionally hiding commitment
schemes, for any adversary A:

AdvLtHide
LCS,C (A) = Pr

[
ExpLtHide

LCS,C (A) = 1
]

=
1
2
.

Algorithm 6. The long-term hiding experiment ExpLtHide
LCS,C (A).

(m0, m1, s) ← AClock;
b ←$ {0, 1};
b′ ← AClock,Com,Recom(s);
if b′ = b then

return 1;
else

return 0;

oracleCom(i, j):
(Si, Wi, c) ←
LCS.Commit(Comj , mb);
return c;

oracle Recom(i, j):
(Si, Wi, c) ←
LCS.Recommit(Si,Comj);
return c;

Binding. The binding experiment ExpLtExtBind for long-term commitment
schemes (Algorithm 7) considers a two-staged long-term adversary (A1,A2),
which is given access to an oracle Clock, and an extractor E . The first-stage
adversary A1 outputs an initial commitment c and an advice string s using ran-
dom coins ω. The extractor E then gets the public commitment parameters CK
and random coins ω and outputs an extracted message m′. The initial commit-
ment c is recorded by running Rec(c). Afterwards, the second-stage adversary A2

gets the advice string s, runs the long-term commitment protocol (during which
he may call Rec several times), and finally outputs a message m and a long-
term witness W . The adversary wins if it is finished early enough (time ≤ τ),
(m,W) is a valid opening for the commitment sequence C, and m differs from
the extracted message m′.

Definition 8 (Long-Term Binding). Let M describe the available machine
classes and C describe the available commitment scheme instances. Let ε : N5 →
[0, 1]. A long-term commitment scheme LCS is ε-binding (for M and C) if for any
bounds ρ1, ρE , ρ2, and q, for any ρ1-bounded deterministic adversary A1 ∈ M,
there exists a ρE -bounded extractor E ∈ M, such that for any ρ2-bounded A2 ∈ M

that is q-call-bounded, and any time t:

AdvLtExtBind
LCS,C (A1,E ,A2,t)=Pr

[
ExpLtExtBind

LCS,C (A1, E ,A2, t)=1
]
≤ε(ρ1,ρE ,ρ2,q,t) .

76 A. Buldas et al.

Algorithm 7. The experiment ExpLtExtBind
LCS,C (A1, E ,A2, t) of long-term

extractable-binding.

(s, c)
ω←− AClock

1 ;
m′ ← E(CK, ω);
Rec(c);

(m, W) ← AClock,Rec
2 (s);

if time ≤ t and m �= m′ and
LCS.Verify(Ver, m, C, W) = 1
then

return 1;
else

return 0;

oracle Rec(c):
t ← time;
C ← C‖(t, c);

function Ver(m, c, w, t):

c = (i, c′);
if ts

i ≤ time and t < tb
i then

b ← CSi.Verify(CK[i], m, c, w);
return b;

else
return 0;

5 Security Analysis

In this section we analyze the security of the scheme LtCom described in Sect. 4.
First, we note that LtCom is unconditionally hiding, because if we assume that
the committed messages and the random strings of the individual commitments
are independent, then the commitments are also independent (of each other and
of the committed messages) and contain no information about the committed
messages. We prove that LtCom is long-term binding, given that the accumulated
security level of the used short-term commitment schemes is sufficiently small.
For the long-term binding security analysis we first refine the extractable-binding
definition for short-term commitment schemes to make it meaningful in the long-
term security model. More specifically, we refine the definition such that the
computational models of the adversary and the extractor may be restricted to
a certain class of machines. With Theorem 4, we obtain a bound on the binding
security of the long-term commitment scheme LtCom in terms of the binding
security of each of the chosen short-term commitment schemes.

Definition 9 (Extractable-binding (refined)). Let MA and ME be machine
classes and ε : N3 → [0, 1]. We say a commitment scheme CS is ε-extractable-
binding for adversaries of MA and extractors of ME if for every integers p1
and p2, for every p1-step adversary A1 ∈ MA, there exists a pE -step extractor
E ∈ ME , such that for every p2-step adversary A2 ∈ MA:

AdvExtBind
CS (A1, E ,A2) ≤ ε(p1, pE , p2) .

Theorem 4. Let M describe the available machine classes and C = {CSi}i

describe the available commitment scheme instances. For every i, assume that
the commitment scheme CSi is εi-extractable-binding for adversaries of Mtbi

and
extractors of Mtsi

. Then, LtCom is ε-binding with

ε(ρ1, ρE , ρ2, q, t) =
∑

i∈{i:tbi≤t}
εi

(
ρA(tbi), ρE(tbi), α

)

Long-Term Secure Commitments via Extractable-Binding Commitments 77

and ρA(t) = ρ1(t) + ρ2(t) + q(t) ∗ ρE(t), for a constant α.

Proof. To prove the theorem, we first describe the extractor algorithm that
extracts the committed message from the first commitment of a long-term adver-
sary in ExpLtExtBind. Then we describe a reduction from the security of the
long-term commitment scheme to the aggregated security of the commitment
schemes C.

We start by describing the long-term extractor E (Algorithm 8) that we con-
struct using the first-stage adversary A1 and the short-term extractors {Ei}i

corresponding to commitment schemes {CSi}i. When the long-term extractor
is called with input (CK, ω), it runs A1 using commitment parameters CK and
random coins ω for obtaining the commitment c. The extractor then decomposes
c into a commitment scheme identifier i and a commitment value c′. Afterwards,
it checks if scheme i is currently usable and if this is the case, it runs the extrac-
tor Ei, corresponding to scheme i, with input the corresponding key CK[i] and
random coins ω. The long-term extractor outputs the message m returned by
the short-term extractor Ei.

Algorithm 8. Long-term extractor E(CK, ω)
Simulate A1 using commitment parameters CK and random coins ω to obtain
commitment c;
c = (i, c′);
if ts

i ≤ time < tb
i then

m ← Ei(CK[i], ω);
else

m ←⊥;

return m;

Next, we describe the reduction from a successful long-term adversary to
a set of short-term commitment adversaries, of which at least one is success-
ful. Let (A1,A2) be an adversary pair that participates in ExpLtExtBind. For
each commitment scheme CSi ∈ C, we construct a corresponding short-term
adversary pair (Bi,1,Bi,2) that participates in ExpExtBind. The adversary Bi,1

(Algorithm 9) simulates the experiment ExpLtExtBind with (A1,A2) until it suc-
cessfully obtains two different message-witness pairs which are valid for the same
commitment with respect to commitment scheme CSi, or the lifetime of the com-
mitment scheme CSi is over. It passes the two different message-witness pairs
(m0, w0,m1, w1) to Bi,2 and commits c. The adversary Bi,2 (Algorithm 10) gets
as input the message-witness pairs, flips a coin b ←$ {0, 1}, and outputs (mb, wb).

For every time t, define It = {i : tbi ≤ t} as the set of indices of the schemes
whose lifetime expires until time t. We observe that for every successful run
of the long-term adversary (A1,A2), there is i ∈ It such that the run of the
short-term adversary (Bi,1,Bi,2) is successful. It follows that

AdvLtExtBind
LtCom,C (A1, E ,A2, t) ≤

∑
i∈It

AdvExtBind
CSi

(Bi,1, Ei,Bi,2) .

78 A. Buldas et al.

Assume A1 is ρ1-bounded, A2 is ρ2-bounded, and E is ρE -bounded. Additionally
assume that A2 makes at most q(t) receiver oracle calls until time t. Define
ρB(t) := ρ1(t)+ ρ2(t)+ q(t) ∗ ρE(t). The step count of Bi,1 is bounded by ρB(tbi).
It follows that for every t,

AdvLtExtBind
LtCom,C (A1, E ,A2, t) ≤

∑
i∈It

AdvExtBind
CSi

(Bi,1, Ei,Bi,2)

≤
∑
i∈It

εi

(
ρB(tbi), ρE(tbi), 1

)
. 	

6 Evaluation

We evaluate the security loss over time for the long-term commitment scheme
described in Sect. 4. For our evaluation we consider a scenario where a com-
mitment should last for a time period t. The security level of the long-term
commitment scheme is evaluated in terms of the security level of the short-term
commitment schemes that are used. For convenience, we assume that all used
commitment schemes have the same security level before they become insecure.
Here, by the security level we mean a bound on the success probability of the
adversary. Concretely, consider a long-term commitment scheme that uses short-
term commitment schemes C = {CSi}i. We assume that the extractable-binding
security of a commitment scheme derives from the ratio of the adversary power
pA and the extractor power pE , multiplied by a base security level δ. Hence, we
assume each CSi is ε-secure extractable-binding before its breakage time tbi with
ε(p1, pE , p2) = p1+p2

pE
δ. By Theorem 4, we obtain that the long-term commitment

scheme is ε′-secure extractable-binding with

ε′(ρ1, ρE , ρ2, q, t) = δ ∗
∑

i∈{i:tbi≤t}

ρ1(tbi) + ρ2(tbi) + q(tbi) ∗ ρE(tbi) + α

ρE(tbi)

for some constant α. Let the unit of time be years and assume that the number
of commitment schemes that become available during each year is at most L
and the number of renewals that are done per year is at most R, i.e., |It| =
|{i : tbi ≤ t}| ≤ t ∗ L and q(t) ≤ t ∗ R. We suggest that it is reasonable that
the computational power of the adversary is comparable to the computational
power of the extractor. Hence, we assume that ρ1(t)

ρE
= ρ2(t)

ρE
= 1. We also observe

that the step count α of the very simple second-stage adversary described in
Algorithm 10 should be smaller than ρE , hence, we assume α

ρE(t)
≤ 1. We obtain

the following bound on the long-term security level:

ε′(ρ1, ρE , ρ2, q, t) ≤ 3 ∗ t2 ∗ LRδ .

Long-Term Secure Commitments via Extractable-Binding Commitments 79

Algorithm 9. ExtBind adversary Bi,1(ck) constructed from long-term
adversary (A1,A2) and long-term extractor E .
run

(s∗, c∗) ω∗←−− AClock
1 ;

C ← C ∪ {c∗};
m∗ ← E(CK, ω∗);
M ← M ∪ {m∗};

(m∗∗, W ∗∗) ← AClock,Rec
2 (s∗);

M ← M ∪ {m∗∗};
W ← W ∪ W ∗∗;

until (time ≥ tb
i) or

(∃m, m′ ∈ M, w, w′ ∈ W, (i, c) ∈ C :
CSi.Verify(CK[i], m, c, w) = CSi.Verify(CK[i], m

′, c, w′) = 1);
return ((m, w, m′, w′), c);

simulator Clock(t):
CK ← [];
if t > time then

forall the i ∈ {j : time < ts
j ≤

t} do
if i = i then

ck ← ck;
else

ck ← CSi.Setup;

CK[i] ← ck;
CK ← CK‖(i, ck);

time ← t;

return CK ;

simulator Rec(c):
C ← C ∪ {c};
c = (i, c′);
if ts

i ≤ time then
Let ω be the random coins con-
sumed by A1 and A2 until this
point;
m ← Ei(CK[i], ω, c′);
m = (m′, w′);
M ← M ∪ {m′};
W ← W ∪ {w′};

Algorithm 10. ExtBind adversary Bi,2(s).

s = (m0, w0, m1, w1);
b ←$ {0, 1};
return (mb, wb);

In Fig. 1, we show how the long-term security level develops over time and
for different choices of the base security level δ. We observe that after 100 years
the security level drops from 2−182 to 2−175 (for R = 1, L = 5, and δ = 2−192).
We also observe that there is a constant difference of roughly 218 between the
base security level δ and the long-term security level ε′ if the time period is kept
fixed.

80 A. Buldas et al.

50 100

176

178

180

182

t

−
lo

g
2
(ε

′)

200 300 400
100

200

300

− log2(δ)

−
lo

g
2
(ε

′)

Fig. 1. Evaluation of the security level ε′ of the long-term commitment scheme LtCom
in terms of time t and short-term commitment security level δ. Here, we assume R = 1,
L = 5, and we choose δ = 2−192 for evaluating over time t and we choose t = 100 for
evaluating over δ.

7 Conclusions and Open Questions

We presented a simple construction of a long-term renewable commitment
scheme based on extractable-binding commitment schemes. Our security proofs
have security loss that gradually increases when the renewing procedure is
applied many times and there is no obvious way to avoid it. This suggests that
such a decrease has to be taken into account and the systems that rely on
long-term digital evidence have to be designed with a certain security margin.
An interesting open question is whether secure long-term renewable commit-
ment schemes can be efficiently constructed from commitment schemes with
weaker notions of secure binding. For example, though classical binding implies
extractable binding, the security reductions would double the commitment size.

References

1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press, Cambridge (2009)

2. Bayer, D., Haber, S., Stornetta, W.S.: Improving the efficiency and reliability of
digital time-stamping. In: Capocelli, R., De Santis, A., Vaccaro, U. (eds.) Sequences
II: Methods in Communication, Security, and Computer Science, pp. 329–334.
Springer, New York (1993)

3. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: 38th Annual Symposium on Foundations of Computer
Science, FOCS 1997, Miami Beach, Florida, 19–22 October 1997, pp. 394–403
(1997)

4. Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with
RSA and rabin. In: Proceedings of the International Conference on the Theory and
Application of Cryptographic Techniques, Advances in Cryptology - EUROCRYPT
1996, Saragossa, Spain, 12–16 May 1996, pp. 399–416 (1996)

Long-Term Secure Commitments via Extractable-Binding Commitments 81

5. Bitansky, N., Canetti, R., Chiesa, A., Goldwasser, S., Lin, H., Rubinstein, A.,
Tromer, E.: The hunting of the SNARK. J. Cryptol. 1–78 (2016). doi:10.1007/
s00145-016-9241-9

6. Brassard, G., Crépeau, C., Mayers, D., Salvail, L.: A brief review on the impossi-
bility of quantum bit commitment. arXiv preprint quant-ph/9712023 (1997)

7. Braun, J., Buchmann, J., Demirel, D., Geihs, M., Fujiwara, M., Moriai, S., Sasaki,
M., Waseda, A.: LINCOS: A storage system providing long-term integrity, authen-
ticity, and confidentiality. In: Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, ASIA CCS 2017, pp. 461–468. ACM,
New York (2017)

8. Buldas, A., Laur, S.: Knowledge-binding commitments with applications in time-
stamping. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp.
150–165. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71677-8 11

9. Canetti, R., Cheung, L., Kaynar, D., Lynch, N., Pereira, O.: Modeling computa-
tional security in long-lived systems. In: Breugel, F., Chechik, M. (eds.) CONCUR
2008. LNCS, vol. 5201, pp. 114–130. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85361-9 12

10. Canetti, R., Dakdouk, R.R.: Towards a theory of extractable functions. In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 595–613. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-00457-5 35

11. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 2

12. Crescenzo, G.D.: Equivocable and extractable commitment schemes. In: Cimato,
S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 74–87. Springer,
Heidelberg (2003). doi:10.1007/3-540-36413-7 6

13. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging merkle-damg̊ard for practical
applications. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 371–388.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 22

14. Geihs, M., Demirel, D., Buchmann, J.: A security analysis of techniques for long-
term integrity protection. In: 2016 14th Annual Conference on Privacy, Security
and Trust (PST) (2016)

15. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way
functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00457-5 24

16. Schwenk, J.: Modelling time for authenticated key exchange protocols. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 277–294.
Springer, Cham (2014). doi:10.1007/978-3-319-11212-1 16

17. Turing, A.M.: On computable numbers, with an application to the entscheidung-
sproblem. Proc. London Math. Soc. 2(1), 230–265 (1937)

18. Unruh, D.: Computationally binding quantum commitments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 497–527. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49896-5 18

http://dx.doi.org/10.1007/s00145-016-9241-9
http://dx.doi.org/10.1007/s00145-016-9241-9
http://dx.doi.org/10.1007/978-3-540-71677-8_11
http://dx.doi.org/10.1007/978-3-540-85361-9_12
http://dx.doi.org/10.1007/978-3-540-85361-9_12
http://dx.doi.org/10.1007/978-3-642-00457-5_35
http://dx.doi.org/10.1007/3-540-44647-8_2
http://dx.doi.org/10.1007/3-540-44647-8_2
http://dx.doi.org/10.1007/3-540-36413-7_6
http://dx.doi.org/10.1007/978-3-642-01001-9_22
http://dx.doi.org/10.1007/978-3-642-00457-5_24
http://dx.doi.org/10.1007/978-3-319-11212-1_16
http://dx.doi.org/10.1007/978-3-662-49896-5_18

Attribute-Based Encryption

New Proof Techniques for DLIN-Based
Adaptively Secure Attribute-Based Encryption

Katsuyuki Takashima(B)

Mitsubishi Electric, Kamakura, Japan
Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

Abstract. We propose adaptively secure attribute-based encryption
(ABE) schemes for boolean formulas over large universe attributes from
the decisional linear (DLIN) assumption, which allow attribute reuse in
an available formula without the previously employed redundant multi-
ple encoding technique. Thus our KP-(resp. CP-)ABE has non-redundant
ciphertexts (resp. secret keys). For achieving the results, we develop a
new encoding method for access policy matrix for ABE, by decoupling
linear secret sharing (LSS) into its matrix and randomness, and par-
tially randomizing the LSS shares in simulation. The new techniques are
of independent interest and we expect it will find another application
than ABE.

Keywords: Attribute-based encryption · Multi-use attributes in
policy · Adaptive security · Static assumption

1 Introduction

1.1 Backgrounds

Attribute-based encryption (ABE) introduced by Sahai and Waters [21] presents
an advanced vision for encryption and provides more flexible and fine-grained
access control in sharing and distributing sensitive data than traditional sym-
metric and public-key encryption as well as recent identity-based encryption. In
ABE systems, either one of the parameters for encryption and secret key is a
set of attributes, and the other is an access policy (structure) over a universe of
attributes, e.g., a secret key for a user is associated with an access policy and
a ciphertext is associated with a set of attributes. A secret key with a policy
can decrypt a ciphertext associated with a set of attributes, iff the attribute set
satisfies the policy. If the access policy is for a secret key (resp. for encryption),
it is called key-policy ABE (KP-ABE) (resp. ciphertext-policy ABE (CP-ABE)).

All the existing practical ABE schemes have been constructed by (bilinear)
pairing groups, and the largest class of relations supported by the ABE schemes
is (non-monotone or arithmetic) span programs [3,9,12,13] (or (non-monotone)
span programs with inner-product relations [18]). While general polynomial
size circuits are supported [8,11] recently, they are much less efficient than the

c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 85–105, 2017.
DOI: 10.1007/978-3-319-60055-0 5

86 K. Takashima

pairing-based ABE schemes and non-practical when the relations are limited to
span programs. Hereafter, we focus on pairing-based ABE with span program
access structures. An example of such span program predicate over attributes is
given by (Institute = Univ. A) AND ((Department = Biology) OR (Position =
Professor)), which we simply denote by X1 ∧ (X2 ∨ X3) where X1 := Univ. A,
X2 := Biology and X3 := Professor. We define attribute-multiplicity k for a pred-
icate as the maximum number of appearances of attribute variables, i.e., k = 2
for predicate (X1 ∧ X2) ∨ (X1 ∧ X3) ∨ (X2 ∧ X4) since X1 and X2 appear twice
and others appear just once. While adaptive security for ABE is the standard,
realistic and desirable security notion, previously, either efficiency or security
is sacrificed for achieving the “multi-use” property in adaptively secure ABE.
See adaptively secure ABE in Tables 1 and 2. Our aim is to achieve short (i.e.,
non-redundant) ciphertexts (resp. keys) in adaptively secure multi-use KP-ABE
(resp. CP-ABE) from static assumptions.

In previous static assumption based schemes [9,14,18], for allowing reuse of
attributes in a policy in the adaptive security setting, for example, in KP-ABE,
multiple ciphertext components whose number is linear in the product kn′ of
the number n′ of attributes for the ciphertext and the attribute multiplicity k
for available policies are necessary, which leads to a very long ciphertext. More
precisely, the same information representing attribute set Γ is duplicated over
multiple ciphertext components depending linearly on the multiplicity k. (See
OT10 and CGW15 KP-ABE schemes in Table 1.)

Lewko-Waters [16] first constructed adaptively-secure CP-ABE and KP-ABE
schemes for span programs with allowing reuse of attributes in a policy without
the above redundant multiple encoding technique. While Lewko-Waters’s (CP-)
ABE scheme ([16] and subsequent work [2,3] in Table 1) shows an interesting
approach to allowing reuse of attributes in a policy, the security is proven
only based on q-type assumptions with q the maximum number of attribute-
multiplicities in access structures. However, the assumptions (and also the asso-
ciated schemes) suffered a special attack which was presented by Cheon [10] at
Eurocrypt 2006, which leads to inefficiency. Consequently, it is very desirable
that the q-type assumption should be replaced by a static (non-q type) assump-
tion with keeping compact ciphertexts.

Moreover, we note that there exist no multi-use CP-ABE scheme with short,
i.e., non-redundant, secret keys even in the selective security setting from a static
assumption (Table 2). Now, an important open question is:

Is there an adaptively secure KP-(resp. CP-)ABE scheme for span pro-
grams from a static (standard) assumption whose ciphertext (resp. secret
key) size is not linear in kn′ for the attribute number n′ in ciphertext
(resp. secret key) and the maximum attribute-multiplicity k of available
policies ?

This work makes a significant step for addressing the problem.

New Proof Techniques for DLIN-Based Adaptively Secure 87

1.2 Our Results

We obtain the following results.

Table 1. Comparison with the existing pairing-based multi-use KP-ABE schemes,
where PK, SK, CT stand for public key, secret key, ciphertext, respectively, and n′

represents the number of attributes in CT, n the max of n′, � the number of rows in
access matrix in SK, r the max of the number of columns in access matrix in SK, k
(the max of) the “attribute-multiplicity” of an access matrix in SK, respectively. The
fourth row describes the warm-up scheme in Sect. 5.3.

Security Assump. PK size SK size CT size

GPSW06 [12] Selective DBDH O(n)|G| O(�)|G| O(n′)|G|
Tak14 [22] Semi-adaptive DLIN O(n)|G| O(�n)|G| O(1)|G|
(Warm-up) O(�)|G| O(n)|G|
OT10 [18] Adaptive DLIN O(n)|G| O(�)|G| O(kn′)|G|
LW12 [16] �-Parallel BDHE (+α) O(n)|G| O(�)|G| O(n′)|G|
Att15 [2,3] EDHE3 & 4 para-

metrized by n, �, r

O(n)|G| O(�n)|G| O(1)|G|

CGW15 [9] s-Lin for ∀s O(n) |G| for

s = 2

O(�)|G| for

s = 2

O(kn′)|G|
for s = 2

Proposed Adaptive DLIN O(n + r)|G| O(�)|G| O(n + r)|G|

– We propose an adaptively secure multi-use KP-ABE construction for boolean
formulas (or span programs) over large universe attribute matching predicates
with non-redundant ciphertexts from the DLIN assumption (in Sect. 5). The
size of a ciphertext for attributes is not linear in the product kn′ of the number
of ciphertext attributes n′ and the attribute multiplicity k in available access
structures, but has only a linear dependence on some size parameter r of
access structures. For comparison with existing ones, refer to Table 1.

– We also propose an adaptively secure multi-use CP-ABE construction for the
same access structures as the above KP-ABE with short (non-redundant)
keys from DLIN. The CP-ABE scheme is obtained from the above KP-ABE
by the natural dual conversion, in particular, the key size is not linear in kn′

for the number n′ of key attributes and the attribute multiplicity k in available
access structures. We note that it is the first multi-use CP-ABE construction
with short keys from a static assumption even including the selective secure
schemes (Table 2). For the concrete scheme, see Appendix B.

We used two techniques, decoupling of linear secret sharing (LSS) into two (dual)
components, i.e., span program matrix and randomness, and the partial random-
ization of LSS. A new sparse matrix machinery (Sect. 4) underlies them. The
techniques can be extended naturally to arithmetic span programs (ASP), then,
our results can be extended to ASP based ABE proposed by Ishai and Wee [13].

88 K. Takashima

Table 2. Comparison with the existing pairing-based multi-use CP-ABE schemes,
where PK, SK, CT stand for public key, secret key, ciphertext, respectively, and n′

represents the number of attributes in SK, n the max of n′, � the number of rows in
access matrix in CT, r the max of the number of columns in access matrix in CT, k
(the max of) the “attribute-multiplicity” of an access matrix in CT, respectively.

Security Assump. PK size SK size CT size

Wat11 [25] Scheme 2 Selective ν-BDHE O(n)|G| O(kn′)|G| O(�)|G|
Wat11 [25] Scheme 3 DBDH O(nr)|G| O(kn′ + r)|G| O(�2)|G|
AHY15 [4]a Parameterized O((n�)2λ)|G| O((n�)4λ2)|G| O(1)|G|
OT10 [18] Adaptive DLIN O(n)|G| O(kn′)|G| O(�)|G|
LW12 [16] �-Parallel BDHE (+α) O(n)|G| O(n′)|G| O(�)|G|
CGW15 [9] s-Lin for ∀s O(n) |G| for

s = 2

O(kn′)|G| for

s = 2

O(�)|G| for

s = 2

Proposed Adaptive DLIN O(n + r)|G| O(n + r)|G| O(�)|G|
a Since k ≤ �, the size of secret keys of the AHY15 scheme [4] is very large compared
with others. Also, in [1], a selective-secure constant-size ciphertext, but, large secret
keys CP-ABE scheme was proposed, recently

1.3 Key Techniques

Our results are related to KP- and CP-ABEs, however, for simplicity, we mainly
treat on KP-ABE. According to a new framework introduced by Attrapadung,
doubly selective security (i.e., selective and co-selective) leads to achieving adap-
tive one. Since selective security is easily obtained in KP-ABE, we should con-
centrate on achieving co-selectively secure KP-ABE below.

Based on the technique in [5,22], we have DLIN-based, multi-use and semi-
adaptively secure KP-ABE with short ciphertext size. We give the underlying
scheme in Sect. 5.3 (as a warm-up) and extend it to our adaptive one. Here,
access structure S is given by � × r matrix M and each row Mi ∈ F

r
q of the

matrix is associated to an attribute value by a map ρ, i.e., labeled with attributes
vi := ρ(i). An attribute set Γ satisfies S iff �1 ∈ span〈Mi | vi ∈ Γ 〉 for a fixed
special (all-one) vector �1. First, to achieve short ciphertexts in the underlying
KP-ABE, attributes Γ := {xj}j=1,...,n′ are encoded in an n-dimensional (with
n ≥ n′ +1) vector �y := (y1, . . . , yn) such that

∑n−1
j=0 yn−jz

j = zn−1−n′ ∏n′

j=1(z −
xj). Each (non-zero) attribute value vi (for i = 1, . . . , �) associated with a row
of access structure matrix M (in S) is encoded as �vi := (vn−1

i , . . . , vi, 1), so
�y · �vi = vn−1−n′

i

∏n′

j=1(vi − xj), and the value of inner product is equal to zero
if and only if vi = xj for some j, i.e., vi ∈ Γ . Here, the relation between S

and Γ is determined by the multiple inner product values �y · �vi for one vector �y
which is equivalent to Γ . As in previous works (e.g., [5,22]), a ciphertext element
c1 is encoded with ω�y (for random ω), and key elements k∗

i are encoded with
�vi and shared secret values Mi · �f (i = 1, . . . , �) for a central secret �1 · �f with
uniformly random �f , respectively. We change the encoding method for our new
proof method as indicated below.

New Proof Techniques for DLIN-Based Adaptively Secure 89

Fig. 1. Decoupling of LSS matrix from randomness and partial LSS randomization in
semi-functional parts. Here, (M = (Mi), ρ) is an access structure, uniformly random
�f

U← F
r
q , ξ, ξ′, ξ′

i, θ
′
i

U← Fq, �y := (y1, . . . , yn) such that
∑n−1

j=0 yn−jz
j = zn−1−n′∏n′

j=1(z−
xj), and �vi := (vn−1

i , . . . , vi, 1) for vi := ρ(i).

Basic Idea: Decoupling of LSS Matrix from Randomness. Secret keys
in all previous KP-ABE schemes contain shared secret values s0 := �1 · �f and
si := Mi · �f , which means that randomness �f is fixed at the key generation phase.
Moreover, since, for pre-challenge queried keys (in simulation), the challenge �y
is not yet revealed to the challenger, i.e., simulator, at the query phase, we have
never had a co-selective simulation strategy for achieving compact ciphertexts
together with multi-use leaf attributes vi in the queried access matrix.

For addressing the problem, we change an encoding method of LSS (Fig. 1).
First, we decouple LSS encoding into LSS matrix and randomness, and random-
ness is encoded on the ciphertext side. (Then, the simulation of the randomness
is delayed until the challenge phase.) Precisely, in the secret key, concatenated
Vi := (θi�vi, ξMi) ∈ F

n+r
q are encoded in the i-th component k∗

i for i = 1, .., �
with random θi, ξ. We note that the key component k∗

i has no randomness for
LSS (except for connecting randomness ξ), instead, LSS matrix M := (Mi)�

i=1 is
directly encoded in {k∗

i }. In ciphertext, Y := (ω�y, �f) ∈ F
n+r
q is encoded. Hence,

in decryption, inner-product values are

Y · Vi = ωθi(�y · �vi) + ξMi · �f = ωθi(�y · �vi) + ξsi for i = 1, . . . , �,

therefore, if �y · �vi = 0, secret share ξsi for central secret ξs0 is obtained, and if
�y · �vi �= 0, si is totally hidden from the decryptor since θi is freshly random.

New Proof Techniques: Partial LSS Randomization in Simulation and
New Underlying Lemma. At the top level of strategy of the security proof,

90 K. Takashima

we follow the dual system encryption methodology proposed by Waters [24]. The
above change of encoding enables the simulator to simulate the randomness of
LSS depending on both of the h-th queried access structure S := (M,ρ) and
attributes Γ := {xt} (equivalently, vector �y). We use the simulated randomness
�ah, which is not fully random in F

r
q , but satisfies Mi · �ah = 0 if vi ∈ Γ and

�1·�ah �= 0. Such a vector exists since Γ does not satisfy S, and it has been used for
security in previous works, for example, in [12]. In ciphertext, the concatenated
vector Y ′ := (ω′�y,�ah) ∈ F

n+r
q is encoded in the semi-functional space. And, in

the semi-functional space of the h-th queried key, V ′
i := (θ′

i�vi, ξ
′Mi) ∈ F

n+r
q are

encoded in the i-th component k∗
i for i = 1, .., �. Since V ′

i is independent of Γ ,
it can be simulated for the pre-challenge key. Then,

Y ′ · V ′
i = ω′θ′

i(�y · �vi) + ξ′Mi · �ah =
{

0 if �y · �vi = 0,
ω′θ′

i(�y · �vi) + ξ′Mi · �ah if �y · �vi �= 0,

for i = 1, . . . , �. Here, if �y · �vi �= 0, Y ′ · V ′
i is uniformly random and independent

from other variables since θ′
i are freshly random. Let V ′′

i := (θ′
i�vi, ξ

′
iMi) ∈ F

n+r
q

with uniformly random ξ′
i which are independent of each other for i = 1, . . . , �.

Y ′ · V ′′
i = ω′θ′

i(�y · �vi) + ξ′
iMi · �ah =

{
0 if �y · �vi = 0,
ω′θ′

i(�y · �vi) + ξ′
iMi · �ah if �y · �vi �= 0,

for i = 1, . . . , �. Again, if �y·�vi �= 0, Y ′·V ′′
i is uniformly random and independent of

other variables. That is, Y ′·V ′
i and Y ′·V ′′

i are equivalently distributed. Therefore,
we can conceptually change V ′

i which contains variable ξ′ to V ′′
i with no ξ′

by using the pairwise independence lemma (Lemma 3) as in the previous dual
system encryption proofs. We stress that V ′′

i are also independent of the challenge
attributes Γ , and then can be used in the pre-challenge key simulation. In this
way, we can sequentially eliminate the randomness ξ′ from all key components, k∗

i

for i = 1, .., �, except for k∗
0, and finally, ξ′ remains only in the central element k∗

0,
and the inner-product of the semi-functional parts of k∗

0 and the corresponding
ciphertext component is uniformly random value ξ′�1 ·�ah since �1 ·�ah �= 0. So, the
proof proceeds successfully (See Sect. 5.4 for proof outline).

We extend the sparse matrix technique on dual pairing vector spaces (DPVS)
developed in [19,22] for achieving compact ciphertexts. Refer to Sect. 5.1 for the
details.

1.4 Notations

When A is a random variable or distribution, y
R← A denotes that y is randomly

selected from A according to its distribution. When A is a set, y
U← A denotes

that y is uniformly selected from A. We denote the finite field of order q by
Fq, and Fq \ {0} by F

×
q . A vector symbol denotes a vector representation over

Fq, e.g., �y denotes (y1, . . . , yn) ∈ F
n
q . For two vectors �y = (y1, . . . , yn) and �v =

(v1, . . . , vn), �y ·�v denotes the inner-product
∑n

i=1 yivi. XT denotes the transpose
of matrix X. A bold face letter denotes an element of vector space V, e.g.,

New Proof Techniques for DLIN-Based Adaptively Secure 91

x ∈ V. When bi ∈ V (i = 1, . . . , n), span〈b1, . . . , bn〉 ⊆ V (resp. span〈�x1, . . . , �xn〉)
denotes the subspace generated by b1, . . . , bn (resp. �x1, . . . , �xn). For bases B :=
(b1, . . . , bN) and B

∗ := (b∗
1, . . . , b

∗
N), (x1, . . . , xN)B :=

∑N
i=1 xibi and (y1, . . . ,

yN)B∗ :=
∑N

i=1 yib
∗
i . �ej denotes the canonical basis vector (

j−1
︷ ︸︸ ︷
0 · · · 0, 1,

n+r−j
︷ ︸︸ ︷
0 · · · 0) ∈

F
n+r
q for positive integers n and r. GL(n,Fq) denotes the general linear group

of degree n over Fq.

2 Dual Pairing Vector Spaces (DPVS)

In this paper, for simplicity of description, we will present the proposed schemes
on the symmetric version of dual pairing vector spaces (DPVS) [17] constructed
using symmetric bilinear pairing groups given in Definition 1. Owing to the
abstraction of DPVS, the presentation and the security proof of the proposed
schemes are essentially the same as those on the asymmetric version of DPVS.

Definition 1. “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple
of a prime q, cyclic additive group G and multiplicative group GT of order q,
G �= 0 ∈ G, and a polynomial-time computable nondegenerate bilinear pairing
e : G × G → GT i.e., e(sG, tG) = e(G,G)st and e(G,G) �= 1. Let Gbpg be an
algorithm that takes input 1λ and outputs a description of bilinear pairing groups
(q,G,GT , G, e) with security parameter λ.

“Dual pairing vector spaces (DPVS)” of dimension N by a direct product of
symmetric pairing groups (q,G,GT , G, e) are given by prime q, N -dimensional

vector space V :=

N
︷ ︸︸ ︷
G × · · · × G over Fq, cyclic group GT of order q, and pairing

e : V×V → GT . The pairing is defined by e(x,y) :=
∏N

i=1 e(Gi,Hi) ∈ GT where
x := (G1, . . . , GN) ∈ V and y := (H1, . . . , HN) ∈ V. This is nondegenerate
bilinear i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then x = 0.

3 Definition of KP-ABE

3.1 Span Programs and Access Structures

Definition 2 (Span Programs [6] and Access Structures). U (⊂ {0, 1}∗)
is a universe, a set of attributes, which is expressed by a value of attribute, i.e.,
v ∈ F

×
q (:= Fq \ {0}). A span program over Fq is a labeled matrix S := (M,ρ)

where M is a (� × r) matrix over Fq and ρ is a labeling of the rows of M by
literals from {v, v′, . . .} (every row is labeled by one literal), i.e., ρ : {1, . . . , �} →
{v, v′, . . .}. A span program accepts or rejects an input by the following criterion.
Let Γ be a set of attributes, i.e., Γ := {xj}1≤j≤n′ (xj ∈ F

×
q). The span program

S accepts Γ if and only if �1 ∈ span〈(Mi)ρ(i)=vi∈Γ 〉, i.e., some linear combination
of the rows (Mi)ρ(i)∈Γ gives the all one vector �1.

92 K. Takashima

No row Mi (i = 1, . . . , �) of the matrix M is �0.
We now construct a secret-sharing scheme for a (monotone) span program.

Definition 3. A secret-sharing scheme for span program S := (M,ρ) is:

1. Let M be �×r matrix. Let column vector �f := (f1, . . . , fr)
U← F

r
q . Then, s0 :=

�1 · �f =
∑r

k=1 fk is the secret to be shared, and �s := (s1, . . . , s�)T := M · �fT is
the � shares of the secret s0 and the share si belongs to ρ(i).

2. If span program S := (M,ρ) accepts Γ , i.e., �1 ∈ span〈(Mi)ρ(i)∈Γ 〉, there exist
constants {αi ∈ Fq | i ∈ I} such that I ⊆ {i ∈ {1, . . . , �} | ρ(i) ∈ Γ} and∑

i∈I αisi = s0. Furthermore, these constants {αi} can be computed in time
polynomial in the size of the matrix M .

3.2 Key-Policy Attribute-Based Encryption (KP-ABE)

In key-policy attribute-based encryption (KP-ABE), encryption (resp. a secret
key) is associated with attributes Γ (resp. access structure S). Relation R for
KP-ABE is defined as R(S, Γ) = 1 iff access structure S accepts Γ .

Definition 4 (Key-Policy Attribute-Based Encryption: KP-ABE). A
key-policy attribute-based encryption scheme consists of probabilistic polynomial-
time algorithms Setup,KeyGen,Enc and Dec. They are given as follows:

Setup takes as input security parameter 1λ, a bound n on the number of attributes
per ciphertext and a bound r on the number of columns of an access matrix
in a secret key. It outputs public parameters pk and master secret key sk.

KeyGen takes as input public parameters pk, master secret key sk, and access
structure S := (M,ρ). It outputs a corresponding secret key skS.

Enc takes as input public parameters pk, message m in some associated message
space msg, and a set of attributes, Γ := {xj}n′

j=1. It outputs a ciphertext ctΓ .
Dec takes as input public parameters pk, secret key skS for access structure S,

and ciphertext ctΓ that was encrypted under a set of attributes Γ . It outputs
either m′ ∈ msg or the distinguished symbol ⊥.

A KP-ABE scheme should have the correctness: for all (pk, sk) R← Setup(1λ, n, r),
all access structures S, all secret keys skS

R← KeyGen(pk, sk,S), all messages m,
all attribute sets Γ , all ciphertexts ctΓ

R← Enc(pk,m, Γ), it holds that m =
Dec(pk, skS, ctΓ) if S accepts Γ . Otherwise, it holds with negligible probability.

Definition 5 (Adaptive Security). The model for defining the adaptively
payload-hiding security of KP-ABE under chosen plaintext attack is given by the
following game:

Setup. In the adaptive security, the challenger runs the setup,
(pk, sk) R← Setup(1λ, n, r), and gives public parameters pk to the adversary.

New Proof Techniques for DLIN-Based Adaptively Secure 93

Phase 1. The adversary is allowed to adaptively issue a polynomial num-
ber of key queries, S, to the challenger. The challenger gives skS

R←
KeyGen(pk, sk,S) to the adversary.

Challenge. The adversary submits two messages m(0),m(1), and a challenge
attribute set, Γ , provided that no S queried to the challenger in Phase 1
accepts Γ . The challenger flips a coin b

U← {0, 1}, and computes ct
(b)
Γ

R←
Enc(pk,m(b), Γ). It gives ct

(b)
Γ to the adversary.

Phase 2. Phase 1 is repeated with the restriction that no queried S accepts
challenge Γ .

Guess. The adversary outputs a guess b′ of b, and wins if b′ = b.

The advantage of adversary A in the adaptive game is defined as AdvKP-ABEA (λ) :=
Pr[A wins]−1/2 for any λ. A KP-ABE scheme is adaptively payload-hiding secure
if all poly-time adversaries have at most a negligible advantage in the game.

Remark 1. The challenge Γ is declared by the adversary just before Phase 1
(resp. before Setup) in the semi-adaptive (resp. selective) game, and the corre-
sponding security notions are defined in the similar manner as above.

4 Special Matrix Subgroups

Let n ≥ 2 and ñ := n + r. Lemmas 1, 2 and 3 are key lemmas for the security
proof for our KP- and CP-ABE schemes.

We start by a motivational argument for introducing our new sparse matrix
technique. Previous sparse matrices in DPVS [19,22] are given by the form
whose diagonal element except for the first one is the same denoted by u. (For
the sparse-matrix DPVS and modified pairwise independence lemma, refer to
Sect. 5.4 in [20].) For achieving our information theoretical change from (Y ′, V ′

i)
to (Y ′, V ′′

i) described in Sect. 1.3, we use one more randomness in diagonal ele-
ments, i.e., two random u1 and u2, as given in Eq. (1). More precisely, random
U

U← H(n, r,Fq) acts on F
n+r
q = F

n
q × F

r
q by using different scalars u1 and u2

on the first Fn
q and the second F

r
q respectively. The new sparse matrix action is

the key fact for proving Lemma 3. For positive integers n and r, let

H(n, r,Fq) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u′
1

u′
2 u1

...
. . .

u′
n u1

u′
n+1 u2

...
. . .

u′
n+r u2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u1, u2, u
′
l ∈ Fq

for l = 1, . . . , n + r,
a blank element
in the matrix
denotes 0 ∈ Fq

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (1)

and H(n, r,Fq)× := H(n, r,Fq) ∩ GL(ñ,Fq).

94 K. Takashima

Lemma 1. H(n, r,Fq)× is a subgroup of GL(ñ,Fq), where ñ := n + r.

Lemma 1 is directly verified from the definition of groups. ��
Let

Xi,j :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ′
i,j,1

μ′
i,j,2 μi,j,1

...
. . .

μ′
i,j,n μi,j,1

μ′
i,j,n+1 μi,j,2

...
. . .

μ′
i,j,n+r μi,j,2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ H(n, r,Fq)
for i, j =
1, . . . , 5

(2)

and using Xi,j , we define

L(5, n, r,Fq) :=

⎧
⎪⎨

⎪⎩
X :=

⎛

⎜
⎝

X1,1 · · · X1,5

...
...

X5,1 · · · X5,5

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

Xi,j ∈ H(n, r,Fq)
for i, j = 1, . . . , 5

⎫
⎪⎬

⎪⎭

⋂
GL(5ñ,Fq).(3)

Lemma 2. L(5, n, r,Fq) is a subgroup of GL(5ñ,Fq).

Lemma 2 is given in a similar manner as Lemma 2 in the full version of [19].
For the proof, see the full version of this paper [23]. Next is a generalization of
Lemma 6 in [19].

Lemma 3. Let �ej := (0, . . . , 0,
j

1̌, 0, . . . , 0) ∈ F
n+r
q .

For all �v = (v1, . . . , vn, 0, . . . , 0) ∈ span〈�e1, .., �en〉 \ span〈�e1〉,
�κ = (0, . . . , 0, κ1, . . . , κr) ∈ span〈�en+1, .., �en+r〉 and π ∈ Fq, let

W�v,�κ,π := {(�w, �z) ∈ (span〈�e1, �v,�κ〉 \ span〈�e1〉) × (Fn+r
q \ span〈�e1〉⊥) | �w · �z = π}.

For all (�v,�κ, �x) ∈ (span〈�e1, .., �en〉 \ span〈�e1〉) × span〈�en+1, .., �en+r〉 ×
(
F

n+r
q \ span〈�e1〉⊥)

, and U
U← H(n, r,Fq)×, Z := (U−1)T, the pair ((�v+�κ)U, �xZ)

is uniformly distributed in W�v,�κ, (�v+�κ)·�x except with negligible probability.

For the proof, see the full version of this paper [23].

5 Adaptively Secure Multi-Use KP-ABE Scheme
with Short Ciphertexts

5.1 Key Ideas in Constructing the Proposed KP-ABE Scheme

We extend the techniques developed in [22], where the author presented a semi-
adaptively secure KP-ABE with constant-size ciphertexts by using sparse matrix
DPVS approach. An underlying construction of our proposed one is given in
Sect. 5.3, which is a dual form of the scheme in [22] since the 5n × 5n sparse
basis matrix is used in a dual manner. Hence, while [22] scheme has size O(1)

New Proof Techniques for DLIN-Based Adaptively Secure 95

ciphertexts and size O(�n) keys, the underlying one has size O(n) ciphertexts
and size O(�) keys (Table 1), where �, n are the number of rows in access struc-
ture matrix M and the max of the number of attributes in Γ , respectively. In
other words, the dual conversion of the scheme in [22] to the underlying scheme
increases ciphertext size O(n)-times and then decreases key size O(n)-times.

As mentioned in Introduction, the top level idea of our construction is the
decoupling technique of LSS encoding. The underlying scheme has a usual encod-
ing of LSS, i.e., encoding a central secret s0 and shares si. Therefore, the com-
prehension of the construction idea of the underlying one is necessary for under-
standing our proposed one. In this section, we will explain key ideas of con-
structing the underlying and our KP-ABE schemes. First, we will show how size
O(n) ciphertexts and size O(�) keys can be achieved in the underlying scheme,
where the IPE scheme given in [19] is used as a building block. Here, we will use
a simplified (or toy) version of the underlying KP-ABE scheme, for which the
security is no more ensured in the standard model under the DLIN assumption.

A ciphertext in the simplified KP-ABE scheme consists of two vector ele-
ments, (c0, c1) ∈ G

5 × G
n, and cT ∈ GT . A secret key consists of � + 1 vec-

tor elements, (k∗
0,k

∗
1, . . . ,k

∗
�) ∈ G

5 × (Gn)� for access structure S := (M,ρ),
where the number of rows of M is � and k∗

i with i ≥ 1 corresponds to
the i-th row. Therefore, to achieve shorter secret keys, we have to compress
k∗

i ∈ G
n to a constant size in n. We now employ a special form of basis gen-

eration matrix, X :=

⎛

⎜
⎜
⎜
⎝

μ′
1

μ′
2 μ
...

. . .
μ′

n μ

⎞

⎟
⎟
⎟
⎠

∈ H(n, 0,Fq) of Eq. (1) in Sect. 4, where

μ, μ′
1, . . . , μ

′
n

U← Fq and a blank in the matrix denotes 0 ∈ Fq. The master

secret key (DPVS basis) is B
∗ :=

⎛

⎜
⎜
⎜
⎝

b∗
1
...

b∗
n

⎞

⎟
⎟
⎟
⎠

:=

⎛

⎜
⎜
⎜
⎝

μ′
1G

μ′
2G μG
...

. . .
μ′

nG μG

⎞

⎟
⎟
⎟
⎠

. Let the i-

th component of a secret key associated with S := (M := (Mi)�
i=1, ρ) con-

sists of k∗
i := (θiv

n−1
i + si, θiv

n−2
i , . . . , θivi, θi)B∗ = (θiv

n−1
i + si)b∗

1 + θi(vn−2
i b∗

2

+ · · · + vib
∗
n−1 + b∗

n) =
((

θi(
∑n

j=1 vn−j
i μ′

j) + siμ
′
1

)
G, vn−2

i θiμG, . . . , θiμG
)
,

where vi := ρ(i), θi
U← Fq, �f

U← F
r
q and si := Mi· �f . Then, k∗

i can be compressed to

only two group elements
(
K∗

i,1 :=
(
θi(

∑n
j=1 vn−j

i μ′
j) + siμ

′
1

)
G, K∗

i,2 := θiμG
)

as well as vi, since k∗
i can be obtained by (K∗

i,1, v
n−2
i K∗

i,2, . . . , viK
∗
i,2,K

∗
i,2) (note

that vj
i K

∗
i,2 = vj

i θiμG for j = 0, . . . , n − 2). That is, the i-th component of a
secret key (excluding vi) can be just two group elements, or the size is constant
in n, then (k∗

i)�
i=0 can be compressed into size O(�).

Let B := (bi) be the dual orthonormal basis of B
∗ := (b∗

i), and B be
the public key in the simplified KP-ABE scheme. We specify (c0,k∗

0, cT) such
that e(c0,k∗

0) = gζ−ξs0
T and cT := gζ

T m ∈ GT with s0 is a center secret of
shares {si}i=1,...,� associated with access structure S, which are embedded into

96 K. Takashima

{k∗
i }i=1,...,� as indicated above. We also set a ciphertext for Γ := {x1, . . . , xn′} as

c1 := (ω�y)B where �y := (y1, . . . , yn) such that
∑n−1

j=0 yn−jz
j = zn−1−n′ ∏n′

j=1(z−
xj), and ω

U← Fq. From the dual orthonormality of B and B
∗, if S accepts Γ ,

there exists a system of coefficients {αi}ρ(i)∈Γ such that e(c1,k′∗) = gξs0
T , where

k′∗ :=
∑

ρ(i)∈Γ αik
∗
i . Hence, a decryptor can compute gξs0

T if and only if S accepts
Γ , i.e., can obtain plaintext m. We can extend the simplified KP-ABE to a semi-
adaptively secure KP-ABE scheme under the DLIN assumption just by enlarging
the dimension of the underlying vector space, which is shown in Sect. 5.3. The
security proof is based on the Waters’s dual system technique and given in a
similar manner to [22]. The provably secure scheme has the same asymptotic
sizes of keys and ciphertexts, i.e., O(�)-sized keys and O(n)-sized ciphertexts.

Our goal is to construct an adaptively secure KP-ABE with a compara-
ble asymptotic data sizes, i.e., O(�)-sized keys and O(n + r)-sized ciphertexts,
from the underlying one. We use a decoupling technique of LSS matrix from
randomness for achieving the goal. First, we enlarge the space from O(n) to
O(n + r) dimension. As described in Fig. 1, a uniformly random vector �f ∈ F

r
q

for LSS is encoded on the ciphertext component c1. In the simplified scheme,
c1 := (ω�y, �f)B ∈ G

n+r where �y ∈ F
r
q is defined as above. For encoding each row

Mi of access matrix M on k∗
i , the above matrix X is extended to a (n+r)×(n+r)

matrix in H(n, r,Fq) (Eq. (1)), then the master secret key is given by

B
∗ :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b∗
1

...

b∗
n

b∗
n+1

...
b∗
n+r

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

:=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

μ′
1G

μ′
2G μ1G
...

. . .

μ′
nG μ1G

μ′
n+1G μ2G

...
. . .

μ′
n+rG μ2G

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where

μ1, μ2, μ
′
1, . . . , μ

′
n+r

U← Fq. Here, note that two independent diagonal elements
μ1, μ2 are used for the first n-dimension and the second r-dimension. (Refer to
the argument given in the beginning of Sect. 4.) Hence, k∗

i is given by k∗
i :=

(θi�vi, ξMi)B∗ . We note k∗
i is compressed to three group elements as before, i.e.,

K∗
i,1 :=

(
θi(

∑n
l=1 vn−l

i μ′
l) + ξ(

∑r
l=1 Mi,lμ

′
n+l)

)
G, K∗

i,2 := θiμ1G, K∗
i,3 := ξμ2G

for i = 1, .., �, and the secret key size is O(�). The pairing value of c1 and k∗
i

is e(c1,k∗
i) = gωθi�y·�vi+ξMi·�f

T = gωθi�y·�vi+ξsi

T where si := Mi · �f . These values are
equivalent to the previous underlying scheme. Therefore, the decryption algo-
rithm is the same as before.

We then explain how our full KP-ABE scheme is constructed on the above-
mentioned simplified KP-ABE scheme. The target of designing the full KP-ABE
scheme is to achieve the adaptive security under the DLIN assumption. Here, we
adopt and extend a strategy initiated in [18], in which the dual system encryption
methodology is employed in a modular or hierarchical manner. That is, three
top level assumptions, the security of Problems 1–3, are directly used in the dual
system encryption methodology and the assumptions are reduced to a primitive
assumption, the DLIN assumption. To meet the requirements for applying to the

New Proof Techniques for DLIN-Based Adaptively Secure 97

dual system encryption methodology and reducing to the DLIN assumption, the
underlying vector space is five times greater than that of the above-mentioned
simplified scheme. For example, k∗

i := (θi�vi, ξMi, 02n+2r, ψi�vi, ηiMi, 0n+r)B∗

for ρ(i) = vi, c1 = (ω�y, �f, 02n+2r, 0n+r, �ϕ1)B with �ϕ1
U← F

n+r
q , and

X :=

⎛

⎜
⎝

X1,1 · · · X1,5

...
...

X5,1 · · · X5,5

⎞

⎟
⎠ ∈ L(5, n, r,Fq) of Eq. (3) in Sect. 4, where each Xi,j is

of the form of X ∈ H(n, r,Fq) in the simplified scheme. The vector space con-
sists of four orthogonal subspaces, i.e., real encoding part, hidden part, secret
key randomness part, and ciphertext randomness part. The simplified KP-ABE
scheme corresponds to the first real encoding part.

A key fact in the security reduction is that L(5, n, r,Fq) is a subgroup of
GL(5(n+r),Fq) (Lemma2),which enables a random-self-reducibility argument for
reducing the intractability of Problems 1–3 to theDLINassumption. For the reduc-
tion, see [19]. We employ a new simulation technique in dual system encryption
using random vector �f in c1. For the details, refer to the proof outline in Sect. 5.4.

5.2 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator GKP
ob below, which is used

as a subroutine in the proposed KP-ABE scheme.

GKP
ob (1λ, 5, (n, r)) : paramG :=(q,G,GT , G, e)

R← Gbpg(1
λ), N0 := 5, N1 := 5(n + r),

paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1

λ, Nt, paramG) for t = 0, 1,

ψ
U← F

×
q , gT := e(G, G)ψ, param(n,r) := ((n, r), {paramVt

}t=0,1, gT),

X0 := (χ0,i,j)i,j=1,...,5
U← GL(N0,Fq), X1

U← L(5, n, r,Fq), hereafter,

{μi,j,ι, μ
′
i,j,l}i,j=1,...,5;ι=1,2

l=1,...,n+r denotes non-zero entries of X1 as in Eq. (2),

b∗
0,i := (χ0,i,1, .., χ0,i,5)A =

∑5
j=1 χ0,i,jaj for i = 1, .., 5, B

∗
0 := (b∗

0,1, .., b
∗
0,5),

B∗
i,j,ι := μi,j,ιG, B′∗

i,j,l := μ′
i,j,lG for i, j = 1, . . . , 5; ι = 1, 2; l = 1, . . . , n + r,

for t = 0, 1, (ϑt,i,j)i,j=1,...,Nt
:= ψ · (XT

t)−1,

bt,i := (ϑt,i,1, .., ϑt,i,Nt
)A =

∑Nt
j=1 ϑt,i,jaj for i = 1, .., Nt, Bt := (bt,1, .., bt,Nt

),

return (param(n,r),B0,B
∗
0,B1, {B∗

i,j,ι, B
′∗
i,j,l}i,j=1,...,5;ι=1,2

l=1,...,n+r).

Remark 2. Let sparse block matrix

⎛

⎜
⎜
⎝

b∗
1,(i−1)(n+r)+1

...

b∗
1,i(n+r)

⎞

⎟
⎟
⎠ := (Xi,1 · G · · · Xi,5 · G)

for i = 1, . . . , 5, and B
∗
1 := (b∗

1,1, . . . , b
∗
1,5(n+r)), where Xi,j · G means the

componentwise multiplication. B1 is the dual orthonormal basis of B
∗
1, i.e.,

e(b1,i, b
∗
1,i) = gT and e(b1,i, b

∗
1,j) = 1 for 1≤ i �=j ≤5(n + r).

98 K. Takashima

5.3 Warm-Up: Underlying Semi-adaptively Secure Construction

As a warm-up, we describe a semi-adaptively secure KP-ABE scheme, which is
a dual construction of [22] whose secret keys are compressed by using a sparse
matrix while [22] scheme has compressed ciphertexts. Namely, we use the sparse
matrix in a dual manner of [22]. We refer to Sect. 1.4 for notations on DPVS.

Setup(1λ, n) : / ∗ N0 := 5, N1 := 5n ∗ /

(paramn,B0,B
∗
0,B1, {B∗

i,j,ι, B
′∗
i,j,l}i,j=1,...,5; ι=1,2

l=1,...,n) R← GKP
ob (1λ, 5, (n, 0)),

B̂0 := (b0,1, b0,2, b0,5), B̂
∗
0 := (b∗

0,1, b
∗
0,2, b

∗
0,4),

B̂1 := (b1,1, .., b1,n, b1,4n+1, .., b1,5n),

return pk := (1λ, paramn, {B̂t}t=0,1), sk := (B̂∗
0, {B∗

i,j,ι, B
′∗
i,j,l}i=1,4;j=1,...,5

ι=1,2; l=1,...,n).

KeyGen(pk, sk, S := (M,ρ)) : �f
U← F

r
q , s0 := �1 · �f, η0

U← Fq,

k∗
0 := (1, s0, 0, η0, 0)B∗

0
,

for i = 1, . . . , �, if ρ(i) = vi, �vi := (vi,l)n
l=1 := (vn−1

i , .., vi, 1),

si := Mi · �f, θi, ψi, ηi
U← Fq,

for j = 1, . . . , 5, K∗
i,1,j :=

∑n
l=1 vi,l(θiB

′∗
1,j,l + ψiB

′∗
5,j,l) + siB

′∗
1,j,1 + ηiB

′∗
5,j,1,

K∗
i,2,j := θiB

∗
1,j,1 + ψiB

∗
5,j,1,

return skS := (S, k∗
0, {K∗

i,1,j ,K
∗
i,2,j}i=1,...,�;j=1,...,5).

Enc(pk, m, Γ := {x1, . . . , xn′ |xj ∈ F
×
q , n′ ≤ n − 1}) :

�y := (y1, . . . , yn) such that
∑n−1

j=0 yn−jz
j = zn−1−n′ ∏n′

j=1(z − xj),

ω, ϕ0, ζ
U← Fq, �ϕ1

U← F
n
q , c0 := (ζ, ω, 0, 0, ϕ0)B0 ,

n
︷ ︸︸ ︷

2n
︷ ︸︸ ︷

n
︷ ︸︸ ︷

n
︷ ︸︸ ︷

c1 := (ω�y, 02n, 0n, �ϕ1)B1

cT := gζ
T m, ctΓ := (Γ, c0, c1, cT), return ctΓ .

Dec(pk, skS := (S, k∗
0, {K∗

i,1,j ,K
∗
i,3,j}i=1,...,�

j=1,...,5), ctΓ := (Γ, c0, c1, cT)) :
If S := (M,ρ) accepts Γ , then compute I and {αi}i∈I such that

�1 =
∑

i∈I αiMi, where Mi is the i-th row of M, and
I ⊆ {i ∈ {1, . . . , �} | [ρ(i) = vi ∧ vi ∈ Γ] }.

for i ∈ I, if ρ(i) = vi, �vi := (vi,l)n
l=1 := (vn−1

i , . . . , vi, 1),
n

︷ ︸︸ ︷
n

︷ ︸︸ ︷

k∗
i := (K∗

i,1,1, vi,2K
∗
i,2,1, .., vi,nK∗

i,2,1, · · · K∗
i,1,5, vi,2K

∗
i,2,5, .., vi,nK∗

i,2,5),
n

︷ ︸︸ ︷
2n

︷ ︸︸ ︷
n

︷ ︸︸ ︷
n

︷ ︸︸ ︷

that is, k∗
i := (θi�vi + si�e1, 02n, ψi�vi + ηi�e1, 0n)B∗

1
,

k′∗ :=
∑

i∈I αik
∗
i , K := e(c0,k∗

0) · e(c1,k′∗), return m′ := cT /K.

New Proof Techniques for DLIN-Based Adaptively Secure 99

[Correctness] If S := (M,ρ) accepts Γ , K = e(c0,k∗
0) · e(c1,k ′∗) =

g−ωs0+ζ
T g

ω
∑

i∈I αisi

T = gζ
T where s0 := �1 · �f, si := Mi · �f for i = 1, . . . , �.

We note that secret key skS consists of 5� + 5 group elements and ciphertext
ctΓ consists of 5n + 5 group elements (and one GT element).

The standard DLIN assumption is defined in Appendix A.

Theorem 1. The above multi-use KP-ABE scheme is semi-adaptively payload-
hiding against chosen plaintext attacks under the DLIN assumption.

Theorem 1 is proven in a similar manner as in [22].
In the semi-adaptive security model, the challenge attribute set Γ is declared

by the adversary at the start of the game, but after receiving the public key pk
from the challenger. Therefore, for each key query S := (M,ρ), the challenger
can determine whether ρ(i) ∈ Γ or not for i = 1, . . . , �. The challenger in the
security proof makes use of this information to simulate a component k∗

i of a
queried key for each i = 1, . . . , � in a refined dual system encryption proof. The
main part of the game sequence is similar (but not equal) to the Game 3 sequence
in the proof of Theorem 2 below.

5.4 Proposed Adaptively Secure Construction

By decoupling LSS coefficients si := Mi · �f ∈ Fq to Mi ∈ F
r
q in the key side and

�f ∈ F
r
q in the ciphertext side (of the underlying scheme in Sect. 5.3), we obtain

our proposed adaptively secure KP-ABE scheme.

Setup(1λ, (n, r)) : / ∗ N0 := 5, N1 := 5(n + r) ∗ /

(param(n,r),B0,B
∗
0,B1, {B∗

i,j,ι, B
′∗
i,j,l}i,j=1,...,5; ι=1,2

l=1,...,n+r) R← GKP
ob (1λ, 5, (n, r)),

B̂0 := (b0,1, b0,2, b0,5), B̂
∗
0 := (b∗

0,1, b
∗
0,2, b

∗
0,4),

B̂1 := (b1,1, .., b1,n+r, b1,4(n+r)+1, .., b1,5(n+r)),

return pk := (1λ, param(n,r), {B̂t}t=0,1),

sk := (B̂∗
0, {B∗

i,j,ι, B
′∗
i,j,l}i=1,4;j=1,..,5

ι=1,2; l=1,..,n+r).

KeyGen(pk, sk, S := (M,ρ)) : ξ, η0
U← Fq, k∗

0 := (1, ξ, 0, η0, 0)B∗
0
,

for i = 1, .., �, if ρ(i) = vi, �vi := (vi,l)n
l=1 := (vn−1

i , .., vi, 1), θi, ψi, ηi
U← Fq,

for j = 1, . . . , 5,

K∗
i,1,j :=

∑n
l=1 vi,l(θiB

′∗
1,j,l + ψiB

′∗
5,j,l) +

∑r
l=1 Mi,l(ξB′∗

1,j,n+l + ηiB
′∗
5,j,n+l),

K∗
i,2,j := θiB

∗
1,j,1 + ψiB

∗
5,j,1, K∗

i,3,j := ξB∗
1,j,2 + ηiB

∗
5,j,2,

return skS := (S, k∗
0, {K∗

i,1,j ,K
∗
i,2,j ,K

∗
i,3,j}i=1,...,�;j=1,...,5).

100 K. Takashima

Enc(pk, m, Γ := {x1, . . . , xn′ |xj ∈ F
×
q , n′ ≤ n − 1}) :

�y := (y1, . . . , yn) such that
∑n−1

j=0 yn−jz
j = zn−1−n′ ∏n′

j=1(z − xj),

�f
U← F

r
q , ω, ϕ0, ζ

U← Fq, �ϕ1
U← F

n+r
q , c0 := (ζ, �1 · �f, 0, 0, ϕ0)B0 ,

n+r
︷ ︸︸ ︷

2n+2r
︷ ︸︸ ︷

n+r
︷ ︸︸ ︷

n+r
︷ ︸︸ ︷

c1 := (ω�y, �f, 02n+2r, 0n+r, �ϕ1)B1

cT := gζ
T m, ctΓ := (Γ, c0, c1, cT), return ctΓ .

Dec(pk, skS := (S, k∗
0, {K∗

i,1,j ,K
∗
i,2,j ,K

∗
i,3,j}i=1,...,�

j=1,...,5), ctΓ := (Γ, c0, c1, cT)) :
If S := (M,ρ) accepts Γ, then compute I and {αi}i∈I such that

�1 =
∑

i∈I αiMi, where Mi is the i-th row of M, and
I ⊆ {i ∈ {1, .., �} | [ρ(i) = vi ∧ vi ∈ Γ] }.

for i ∈ I, if ρ(i) = vi, �vi := (vi,l)n
l=1 := (vn−1

i , . . . , vi, 1),
n+r

︷ ︸︸ ︷

k∗
i := (K∗

i,1,1, vi,2K
∗
i,2,1, .., vi,nK∗

i,2,1, Mi,1K
∗
i,3,1, ..,Mi,rK

∗
i,3,1, · · ·

K∗
i,1,5, vi,2K

∗
i,2,5, .., vi,nK∗

i,2,5, Mi,1K
∗
i,3,5, ..,Mi,rK

∗
i,3,5),

n+r
︷ ︸︸ ︷

2n+2r
︷ ︸︸ ︷

n+r
︷ ︸︸ ︷

n+r
︷ ︸︸ ︷

that is, k∗
i := (θi�vi, ξMi, 02n+2r, ψi�vi, ηiMi, 0n+r)B∗

1
,

k′∗ :=
∑

i∈I αik
∗
i , K := e(c0,k∗

0) · e(c1,k′∗), return m′ := cT /K.

[Correctness] If S := (M,ρ) accepts Γ , K = e(c0,k∗
0) · e(c1,k ′∗) =

g−ξs0+ζ
T g

ξ
∑

i∈I αisi

T = gζ
T where s0 := �1 · �f, si := Mi · �f for i = 1, . . . , �.

We note that secret key skS consists of 5� + 5 group elements and ciphertext
ctΓ consists of 5(n + r) + 5 group elements (and one GT element).

While our adaptively secure KP- and CP-ABE schemes have the maxi-
mum of size r as one of public parameters, they allow several useful class of
access structures. According to the explicit construction of span programs from
boolean formulas (e.g., Appendix of [15]), while appending AND gate gets r
(and �) larger, appending OR gate gets only � larger. Therefore, for exam-
ple, available access structures for our adaptive ABE include any r-CNF for-
mula with any arbitrarily long disjunctions (for a bounded r), i.e., length r
conjunctions of length t1, . . . , tr disjunctions for arbitrarily large t1, . . . , tr like

(X1 ∨ arb. long· · · · · · ∨Xt1)∧· · ·∧ (Z1 ∨ arb. long· · · · · · ∨Ztr
), where multi-use of attributes for

X1, . . . ,Xt1 , . . . ,Z1, . . . ,Ztr
is allowed. The j-th column of the LSS matrix M

is given by (

∑j−1
ι=1 tι

︷ ︸︸ ︷
0, . . . , 0,

tj

︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0)T with length � =

∑r
ι=1 tι for j = 1, . . . , r

when the target is all 1 vector �1 ∈ F
r
q .

The standard DLIN assumption is defined in Appendix A.

New Proof Techniques for DLIN-Based Adaptively Secure 101

Theorem 2. The proposed multi-use KP-ABE scheme is adaptively payload-
hiding against chosen plaintext attacks under the DLIN assumption.

The proof of Theorem 2 is given in the full version of this paper [23].

Acknowledgement. This work was supported by JST CREST Grant Number
JPMJCR14D6.

A Decisional Linear (DLIN) Assumption

Definition 6 (DLIN: Decisional Linear Assumption [7]). The DLIN
problem is to guess β ∈ {0, 1}, given (param

G
, G, ξG, κG, δξG, σκG, Sβ) R←

GDLIN
β (1λ), where GDLIN

β (1λ) : param
G

:= (q,G,GT , G, e) R← Gbpg(1λ), κ, δ, ξ, σ
U←

Fq, S0 := (δ + σ)G,S1
U← G, return (param

G
, G, ξG, κG, δξG, σκG, Sβ), for

β
U← {0, 1}. For a probabilistic machine E, we define the advantage of E

for the DLIN problem as: AdvDLIN
E (λ) :=

∣
∣
∣Pr

[
E(1λ, �)→1

∣
∣
∣�

R←GDLIN
0 (1λ)

]
−

Pr
[
E(1λ, �)→1

∣
∣
∣�

R← GDLIN
1 (1λ)

]∣
∣ . The DLIN assumption is: For any proba-

bilistic polynomial-time adversary E, the advantage AdvDLIN
E (λ) is negligible in λ.

B Adaptively Secure Multi-Use CP-ABE Scheme with
Short Secret Keys

B.1 Definition of CP-ABE

Definition 7 (Ciphertext-Policy Attribute-Based Encryption: CP-
ABE). A ciphertext-policy attribute-based encryption scheme consists of four
algorithms.

Setup takes as input security parameter. It outputs the public parameters pk and
a master key sk.

KeyGen takes as input a set of attributes, Γ := {xj}1≤j≤n′ , pk and sk. It outputs
a decryption key.

Enc takes as input public parameters pk, message m in some associated message
space msg, and access structure S := (M,ρ). It outputs the ciphertext.

Dec takes as input public parameters pk, decryption key skΓ for a set of attributes
Γ , and ciphertext ctS that was encrypted under access structure S. It outputs
either m′ ∈ msg or the distinguished symbol ⊥.

A CP-ABE scheme should have the correctness property: for all (pk, sk) R←
Setup(1λ), all attribute sets Γ , all decryption keys skΓ

R← KeyGen(pk, sk, Γ), all
messages m, all access structures S, all ciphertexts ctS

R← Enc(pk,m,S), it holds
that m = Dec(pk, skΓ , ctS) with overwhelming probability, if S accepts Γ .

102 K. Takashima

Definition 8. The model for proving the adaptively payload-hiding security of
CP-ABE under chosen plaintext attack is:

Setup. The challenger runs the setup algorithm, (pk, sk) R← Setup(1λ), and gives
the public parameters pk to the adversary.

Phase 1. The adversary is allowed to issue a polynomial number of queries, Γ ,
to the challenger or oracle KeyGen(pk, sk, ·) for private keys, skΓ associated
with Γ .

Challenge. The adversary submits two messages m(0),m(1) and an access struc-
ture, S := (M,ρ), provided that the S does not accept any Γ sent to the
challenger in Phase 1. The challenger flips a random coin b

U← {0, 1}, and
computes ct

(b)
S

R← Enc(pk,m(b),S). It gives ct
(b)
S

to the adversary.
Phase 2. The adversary is allowed to issue a polynomial number of queries, Γ ,

to the challenger or oracle KeyGen(pk, sk, ·) for private keys, skΓ associated
with Γ , provided that S does not accept Γ .

Guess. The adversary outputs a guess b′ of b.

The advantage of an adversary A in the above game is defined as AdvCP-ABE,PH
A (λ)

:= Pr[b′ = b]− 1/2 for any security parameter λ. A CP-FE scheme is adaptively
payload-hiding secure if all polynomial time adversaries have at most a negligible
advantage in the above game.

B.2 Dual Orthonormal Basis Generator

We describe random dual orthonormal basis generator GCP
ob below, which is

used as a subroutine in the proposed CP-ABE scheme, where GKP
ob is defined

in Sec. 5.2.

GCP
ob (1λ, 5, (n, r)) :

(param(n,r),D0,D
∗
0,D1, {D∗

i,j,ι,D
′∗
i,j,l}i,j=1,...,5;ι=1,2

l=1,...,n+r) R← GKP
ob (1λ, 5, (n, r)),

B0 := D
∗
0, B

∗
0 := D0, B

∗
1 := D1, Bi,j,ι := D∗

i,j,ι, B′
i,j,l := D′∗

i,j,l for all i, j, l, ι,

return (param(n,r),B0,B
∗
0,B

∗
1, {Bi,j,ι, B

′
i,j,l}i,j=1,...,5;ι=1,2

l=1,...,n+r).

B.3 Construction

Setup(1λ, (n, r)) : / ∗ N0 := 5, N1 := 5(n + r) ∗ /

(param(n,r),B0,B
∗
0,B

∗
1, {Bi,j,ι, B

′
i,j,l}i,j=1,...,5;ι=1,2

l=1,...,n+r) R← GCP
ob (1λ, 5, (n, r)),

B̂0 := (b0,1, b0,2, b0,4), B̂
∗
0 := (b∗

0,1, b
∗
0,2, b

∗
0,5),

B̂
∗
1 := (b∗

1,1, .., b
∗
1,n+r, b

∗
1,3(n+r)+1, .., b

∗
1,4(n+r)),

return pk := (1λ, param(n,r), B̂0, {Bi,j,ι, B
′
i,j,l}i=1,4;j=1,...,5

ι=1,2; l=1,...,n+r),

sk := {B̂∗
t }t=0,1.

KeyGen(pk, sk, Γ := {x1, . . . , xn′ |xj ∈ F
×
q , n′ ≤ n − 1}) :

New Proof Techniques for DLIN-Based Adaptively Secure 103

�y := (y1, . . . , yn) such that
∑n−1

j=0 yn−jz
j = zn−1−n′ ∏n′

j=1(z − xj),

�f
U← F

r
q , ω, ϕ0

U← Fq, �ϕ1
U← F

n+r
q , k∗

0 := (1, �1 · �f, 0, ϕ0)B∗
0
,

n+r
︷ ︸︸ ︷

2n+2r
︷ ︸︸ ︷

n+r
︷ ︸︸ ︷

n+r
︷ ︸︸ ︷

k∗
1 := (ω�y, �f, 02n+2r, 0n+r, �ϕ1)B∗

1

skΓ := (Γ,k∗
0, k∗

1). return skΓ .

Enc(pk, m, S := (M,ρ)) : ζ, ξ, η0
U← Fq, c0 := (ζ, ξ, 0, η0, 0)B0 ,

for i = 1, ..., �, if ρ(i) = vi, �vi := (vi,l)n
l=1 := (vn−1

i , .., vi, 1), θi, ψi, ηi
U← Fq,

for j = 1, . . . , 5,

Ci,1,j :=
∑n

l=1 vi,l(θiB
′
1,j,l + ψiB

′
4,j,l) +

∑r
l=1 Mi,l(ξB′

1,j,n+l + ηiB
′
4,j,n+l),

Ci,2,j := θiB1,j,1 + ψiB4,j,1, Ci,3,j := ξB1,j,2 + ηiB4,j,2,

cT := gζ
T m, return ctS := (S, c0, {Ci,1,j , Ci,2,j , Ci,3,j}i=1,...,�

j=1,...,5, cT).

Dec(pk, skΓ := (Γ,k∗
0, k∗

1), ctS := (S, c0, {Ci,1,j , Ci,2,j , Ci,3,j}i=1,...,�
j=1,...,5, cT)) :

If S := (M,ρ) accepts Γ , then compute I and {αi}i∈I such that
�1 =

∑
i∈I αiMi, where Mi is the i-th row of M, and

I ⊆ {i ∈ {1, . . . , �} | ρ(i) ∈ Γ }.

for i ∈ I, if ρ(i) = vi, �vi := (vi,l)n
l=1 := (vn−1

i , . . . , vi, 1),
n+r

︷ ︸︸ ︷

ci := (Ci,1,1, vi,2Ci,2,1, .., vi,nCi,2,1, Mi,1Ci,3,1, ..,Mi,rCi,3,1, · · ·
Ci,1,5, vi,2Ci,2,5, .., vi,nCi,2,5, Mi,1Ci,3,5, ..,Mi,rCi,3,5),

n+r
︷ ︸︸ ︷

2n+2r
︷ ︸︸ ︷

n+r
︷ ︸︸ ︷

n+r
︷ ︸︸ ︷

that is, ci := (θi�vi, ξMi, 02n+2r, ψi�vi, ηiMi, 0n+r)B1 ,

c ′ :=
∑

i∈I αici, K := e(c0,k∗
0) · e(c ′,k∗

1), return m′ := cT /K.

[Correctness] If Γ satisfies S, K = e(c0,k∗
0) · e(c ′,k∗

1) = g−ξs0+ζ
T g

ξ
∑

i∈I αisi

T =
gζ

T where s0 := �1 · �f, si := Mi · �f for i = 1, . . . , �.

Theorem 3. The proposed multi-use CP-ABE scheme is adaptively payload-
hiding against chosen plaintext attacks under the DLIN assumption.

Theorem 3 is similarly proven to Theorem 2.

References

1. Agrawal, S., Chase, M.: A study of pair encodings: predicate encryption in prime
order groups. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563,
pp. 259–288. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 10

2. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 31

http://dx.doi.org/10.1007/978-3-662-49099-0_10
http://dx.doi.org/10.1007/978-3-642-55220-5_31

104 K. Takashima

3. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53890-6 20

4. Attrapadung, N., Hanaoka, G., Yamada, S.: Conversions among several classes of
predicate encryption and applications to ABE with various compactness tradeoffs.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 575–601.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 24

5. Attrapadung, N., Libert, B., Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19379-8 6

6. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Israel Institute of Technology, Technion, Haifa (1996)

7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-28628-8 3

8. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-55220-5 30

9. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46803-6 20

10. Cheon, J.H.: Security analysis of the strong diffie-hellman problem. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg
(2006). doi:10.1007/11761679 1

11. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC 2013, pp. 545–554 (2013)

12. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98 (2006)

13. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza,
J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol.
8572, pp. 650–662. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43948-7 54

14. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 4

15. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-20465-4 31

16. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achiev-
ing full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 12

17. Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10366-7 13

http://dx.doi.org/10.1007/978-3-662-53890-6_20
http://dx.doi.org/10.1007/978-3-662-53890-6_20
http://dx.doi.org/10.1007/978-3-662-48797-6_24
http://dx.doi.org/10.1007/978-3-642-19379-8_6
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-540-28628-8_3
http://dx.doi.org/10.1007/978-3-642-55220-5_30
http://dx.doi.org/10.1007/978-3-662-46803-6_20
http://dx.doi.org/10.1007/978-3-662-46803-6_20
http://dx.doi.org/10.1007/11761679_1
http://dx.doi.org/10.1007/978-3-662-43948-7_54
http://dx.doi.org/10.1007/978-3-642-13190-5_4
http://dx.doi.org/10.1007/978-3-642-20465-4_31
http://dx.doi.org/10.1007/978-3-642-32009-5_12
http://dx.doi.org/10.1007/978-3-642-32009-5_12
http://dx.doi.org/10.1007/978-3-642-10366-7_13

New Proof Techniques for DLIN-Based Adaptively Secure 105

18. Okamoto, T., Takashima, K.: Fully secure functional encryption with general
relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 11

19. Okamoto, T., Takashima, K.: Achieving short ciphertexts or short secret-keys for
adaptively secure general inner-product encryption. Des. Codes Crypt. 77(2–3),
725–771 (2015). the preliminary version appeared in CANS 2011

20. Okamoto, T., Takashima, K.: Dual pairing vector spaces and their applications.
In: IEICE Transactions 98-A(1), pp. 3–15 (2015)

21. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

22. Takashima, K.: Expressive attribute-based encryption with constant-size cipher-
texts from the decisional linear assumption. In: Abdalla, M., Prisco, R. (eds.)
SCN 2014. LNCS, vol. 8642, pp. 298–317. Springer, Cham (2014). doi:10.1007/
978-3-319-10879-7 17

23. Takashima, K.: New proof techniques for DLIN-based adaptively secure attribute-
based encryption. IACR Cryptology ePrint Archive 2015, 1021 (2015)

24. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 36

25. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19379-8 4

http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-319-10879-7_17
http://dx.doi.org/10.1007/978-3-319-10879-7_17
http://dx.doi.org/10.1007/978-3-642-03356-8_36
http://dx.doi.org/10.1007/978-3-642-19379-8_4

Attribute-Based Encryption with Expressive
and Authorized Keyword Search

Hui Cui1(B), Robert H. Deng1, Joseph K. Liu2, and Yingjiu Li1

1 School of Information Systems, Singapore Management University,
Singapore, Singapore

{hcui,robertdeng,yli}@smu.edu.sg
2 Faculty of Information Technology, Monash University, Melbourne, Australia

joseph.liu@monash.edu

Abstract. To protect data security and privacy in cloud storage systems,
a common solution is to outsource data in encrypted forms so that the
data will remain secure and private even if storage systems are compro-
mised. The encrypted data, however, must be pliable to search and access
control. In this paper, we introduce a notion of attribute-based encryp-
tion with expressive and authorized keyword search (ABE-EAKS) to sup-
port both expressive keyword search and fine-grained access control over
encrypted data in the cloud. In ABE-EAKS, every data user is associated
with a set of attributes and is issued a private attribute-key correspond-
ing to his/her attribute set, and each data owner encrypts the message
using attribute-based encryption and attaches the encrypted message
with encrypted keywords related with the message, and then uploads the
encrypted message and keywords to the cloud. To access encrypted mes-
sages containing certain keywords satisfying a search policy, a data user
generates a trapdoor for the search policy using his/her private attribute-
key and sends it to the cloud server equipped to the cloud. The cloud
server searches over encrypted data stored in the cloud for the encrypted
messages containing keywords satisfying the search policy and sends back
the results to the data user who then decrypts the returned ciphertexts
to obtain the underlying messages. We present a generic construction for
ABE-EAKS, formally prove its security, give a concrete construction, and
then extend the concrete ABE-EAKS scheme to support user revocation.
Also, we implement the proposed ABE-EAKS scheme and its extension
and study their performance through experiments.

Keywords: Cloud storage · Data security and privacy · Keyword
search · Attribute-based encryption · Access control

1 Introduction

Consider a cloud storage system (e.g., [21,29,31]) that keeps personal health
records (PHRs) provided by various medical institutions (i.e., data owners),
in which all PHRs are stored in encrypted forms to protect data security and

c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 106–126, 2017.
DOI: 10.1007/978-3-319-60055-0 6

ABE with EAKS 107

privacy [30]. In order to facilitate data sharing, it is important for a cloud storage
system to support powerful keyword search and scalable access control over
the encrypted PHRs [46]. A straightforward approach meeting this requirement
is to combine public key encryption mechanism and public-key based keyword
search1 such as public-key encryption with keyword search (PEKS) put forward
by Boneh et al. [8], which allows a cloud server (equipped to the cloud) to search
over encrypted PHRs on behalf of authorized data users (e.g., doctors, scientists)
without learning any information about the underlying PHRs. Informally, in this
combined approach, a PHR is encrypted using a public-key encryption scheme,
the keywords associated with the PHR are encrypted using PEKS, and the
ciphertext uploaded to the cloud is a concatenation of the “ciphertext” on the
PHR and the “PEKS ciphertext” on the keywords associated with the PHR. To
retrieve all encrypted PHRs containing certain keywords, a data user generates a
“trapdoor” corresponding to the keywords and sends it to the cloud server such
that the cloud server is able to spot and return all encrypted PHRs containing
the specified keywords but learns nothing about the underlying PHRs.

However, a traditional public-key encryption scheme is a one-to-one encryp-
tion scheme targeted for decryption by a single data user, while encrypted mes-
sages in the cloud storage scenarios are expected to be accessed by groups of data
users. Attribute-based encryption (ABE) [28,37,43,44] is widely believed as a
promising solution for accomplishing fine-grained access control over encrypted
data. In an ABE scheme, every data user is identified by a set of attributes and
issued a private attribute-key associated with his/her attributes, every message
is encrypted under an access structure, and any data user whose set of attribute
satisfies the access structure ascribed to a ciphertext can decrypt this ciphertext.

Ideally, search policies should be expressive such that it can be expressed
as conjunction, disjunction or any Boolean formulas. For example, in the afore-
mentioned cloud storage system for PHRs, to find the relationship between “dia-
betes” and “age” or “weight”, a researcher may submit a keyword search request
with a search policy such as “(Illness: Diabetes AND (Age: 30 OR Weight: 100–
200))”2. Unfortunately, most of the existing PEKS schemes only support single
keyword search as in [8]. Though there are efforts in designing expressive key-
word search (EKS) schemes that allows expressive keyword search policies (e.g.,
[10,13,24,32]), in all existing EKS schemes, data users need to send trapdoor
generation requests on search policies to a trusted third party such as the key
generation center (KGC), and then forward the trapdoors given by the KGC to
the cloud server to conduct search over encrypted data. Relying on the KGC to
generate trapdoors is not consistent with the standard PEKS notion in which
trapdoors are generated by each data user himself/herself, and makes the KGC a
bottleneck for both security and performance as it requires the KGC to be online
all the time to answer requests of data users. There are authorized keyword

1 In this paper, unless otherwise specified, all keyword search schemes we talk about
are in the public-key setting.

2 Note that in this paper, each keyword is divided into two parts Ni: Wi, where the
former is the keyword name and the latter is the keyword value, e.g., Illness, Age,
Weight are keyword names and Diabetes, 30, 100–200 are keyword values.

108 H. Cui et al.

search (AKS) schemes (e.g., [20,39–41]) which authorize data users the capa-
bilities of generating trapdoors by themselves, but existing solutions on AKS
either lack the expressiveness in search polices or is inefficient due to the use
of bilinear pairings over the composite-order groups. We note that most of the
previous keyword search schemes are designed without taking message encryp-
tion into consideration, and yet it is known that simply combining a public-key
encryption scheme for the message encryption and a keyword search scheme for
the encryption of keywords may result in a solution subject to severe attacks [3].

Contributions. Motivated by the above observations, we propose a notion
of attribute-based encryption with expressive and authorized keyword search
(ABE-EAKS) to better meet the needs of cloud storage, which supports keyword
search and access control over encrypted data in the setting of multiple data own-
ers and multiple data users such as the cloud-based PHR system. Our goal is to
design an ABE-EAKS scheme which simultaneously enables fine-grained access
control and expressive keyword search over encrypted data without depending
on a trusted third party to generate trapdoors. We compare our proposed ABE-
EAKS scheme with existing constructions on AKS in Table 1.

Table 1. Comparison of properties among the AKS schemes.

Expressiveness Authorized
keyword
search

Bilinear group Construction

AKS [39] AND, OR gates � Composite-Order Concrete

AKS [40] AND gates � Prime-Order Concrete

AKS [41] AND gates � Prime-Order Concrete

AKS [20] Single Keyword � Prime-Order Concrete

ABE-EAKS AND, OR gates � Composite-Order Generic

Prime-Order

We briefly summarize our contributions in this paper as follows.

– Firstly, we propose the notion of ABE-EAKS, which allows fine-grained access
control and expressive keyword search over encrypted messages without rely-
ing on a trusted third party for the trapdoor generation.

– Secondly, we give a generic construction of ABE-EAKS which can be applied
to transform ABE scheme and EKS scheme into a secure ABE-EAKS scheme,
and formally prove its security. The main potential security vulnerability of
an integrated ABE and EAKS scheme is the “swapping attack” [3] where an
attacker can tamper with the ciphertext (which could be either the part on
message encryption or the part on keyword encryption) stored in the cloud
without being detected so that a privileged data user will not obtain the
correct message. Thanks to the generic technique introduced by Fujisaki and

ABE with EAKS 109

Okamoto [15] to achieve security in the integrated public-key and symmetric
encryption schemes, we protect ABE-EAKS from swapping attacks by apply-
ing a similar approach as in [15] such that a data user can check whether a
ciphertext has been modified when performing decryption operation on the
ciphertext.

– Thirdly, we describe an instantiation of ABE-EAKS by applying concrete
ABE and EKS schemes into the generic transformation, and extend the
instantiation with an efficient user revocation mechanism which simultane-
ously improves decryption efficiency.

– Fourthly, we implement the instantiation and its extension to assess their
performance.

1.1 Related Work

Attribute-Based Encryption. Sahai and Waters [37] first introduced
attribute-based encryption (ABE). Later, Goyal et al. [17] formulated two com-
plimentary forms of ABE: key-policy ABE (KP-ABE) and ciphertext-policy
ABE (CP-ABE). In CP-ABE, a private attribute-key is associated with a set
of attributes and a ciphertext is associated with an access structure, while the
situation is reversed in KP-ABE. Nevertheless, we believe that KP-ABE is less
flexible than CP-ABE because the access structure is determined once a data
user’s private attribute-key is issued3. Bethencourt, Sahai and Waters [7] pro-
posed the first CP-ABE scheme, but it was secure under the generic group model.
Cheung and Newport [11] presented a CP-ABE scheme secure under the stan-
dard model, but it only allowed the access structures in AND gates. A CP-ABE
scheme with expressive access structures was put forth by Goyal et al. [16] based
on the number theoretic assumption. Lewko et al. [25] put forward the first fully
secure CP-ABE scheme, but it was in the composite-order groups. Rouselakis
and Waters [36] gave a large universe CP-ABE scheme in the prime-order groups
to improve the efficiency of ABE built from the composite-order groups while
overcoming the limitation of bounded attribute space, but it was selectively
secure.

Public-Key Encryption with Keyword Search. Since Boneh et al. [8] ini-
tiated the study of public-key encryption with keyword search (PEKS), many
solutions [3,4,6,10,18,19,24,27,32,34,35,39,42,48–50] were proposed focusing
on addressing three limitations in PEKS: (1) how to make PEKS secure against
offline keyword dictionary guessing attacks; (2) how to support expressive search
policies; and (3) how to achieve security in the integrated public-key encryption
(PKE) and keyword search in the public-key setting. For the security against
offline keyword dictionary guessing attacks, it requires that no adversary (includ-
ing the cloud server) can learn keywords from a given trapdoor. To the best of
our knowledge, such a security notion is very hard to be achieved in the public-
key setting [38]. In terms of the expressive search policies, there are only a few
expressive keyword search (EKS) schemes [10,14,24,32,39], but they either are
3 In the rest of the paper, unless otherwise specified, what we talk about is CP-ABE.

110 H. Cui et al.

expensive in implementations (e.g., [10,24,32,39]) or have limitations in security
(e.g., [14]). Concerning the security of the integrated PKE scheme with keyword
search scheme, there are solutions such as [3,50], but they only consider the
security in the setting of the traditional public-key encryption schemes.

Authorized Keyword Search. Narayan, Gagné and Safavi-Naini [33] com-
bined PEKS and ABE to create a secure electronic health record system, which
provided both keyword search and access control mechanisms, but it failed to
address the privacy issue of access control policies. Li et al. [27] put forth a notion
of authorized private keyword search (APKS) in the setting of cloud storage and
presented two concrete constructions on APKS, but their schemes were lim-
ited in applications since the search policies were defined and maintained by
the trusted authorities. Sun et al. [40,41] proposed an attribute-based keyword
search with fine-grained owner-enforced search authorization scheme, but it only
supported access structures expressed in “AND” gates and search policies with
conjunctive keywords. Shi et al. [39] presented a searchable encryption based on
ABE to support fine-grained search and access control, but their scheme required
each data user to ask a trusted trapdoor generation center to create trapdoors
on search policies on behalf of himself/herself. Jiang et al. [20] introduced the
notion of public-key encryption with authorized keyword search (PEAKS), but
their construction of PEAKS could only be applied to single keyword search.

1.2 Organization

The remainder of this paper is organized as follows. In Sect. 2, we revisit the
definitions to be used in this paper. In Sect. 3, after depicting the system archi-
tecture for ABE-EAKS, we present its security definition. In Sect. 4, we give
a generic construction of ABE-EAKS, and prove its security. We conclude this
paper in Sect. 5.

2 Preliminaries

In this section, we review some basic cryptographic notions and definitions that
are to be used in this paper.

2.1 Bilinear Pairings

Let G be a group of a prime order p with a generator g. We define ê : G × G →
G1 to be a bilinear map if it has the following properties [9].

– Bilinear: for all g ∈ G, and a, b ∈ Zp, we have ê(ga, gb) = ê(g, g)ab.
– Non-degenerate: ê(g, g) �= 1.

We say that G is a bilinear group if the group operation in G is efficiently
computable and there exists a group G1 and an efficiently computable bilinear
map ê : G × G → G1 as above.

ABE with EAKS 111

2.2 Access Structure and Linear Secret Sharing

Definition 1 Access Structures [26,45]. Let {P1, ..., Pn} be a set of parties.
A collection A ⊆ 2{P1,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆ C, then
C ⊆ A. An (monotone) access structure is a (monotone) collection A of non-
empty subsets of {P1, ..., Pn}, i.e., A ⊆ 2{P1,...,Pn} \{∅}. The sets in A are called
the authorized sets, and the sets not in A are called the unauthorized sets.

Definition 2 Linear Secret Sharing Schemes [26,45]. Let P be a set of
parties, M be a matrix of size l×n, and ρ : {1, ..., l} → P be a function mapping
a row to a party for labeling. A secret sharing scheme Π over a set of parties P
is a linear secret-sharing scheme (LSSS) over Zp if

1. The shares for each party form a vector over Zp.
2. There exists a matrix M which has l rows and n columns called the share-

generating matrix for Π. For i = 1, ..., l, the x-th row of matrix M is labeled
by a party ρ(i), where ρ : {1, ..., l} → P is a function that maps a row to
a party for labeling. Considering that the column vector v = (μ, r2, ..., rn),
where μ ∈ Zp is the secret to be shared and r2, ..., rn ∈ Zp are randomly
chosen, then Mv is the vector of l shares of the secret μ according to Π. The
share (Mv)i belongs to a party ρ(i).

It has been noted in [26] that every LSSS also enjoys the linear reconstruc-
tion property. Suppose that Π is an LSSS for access structure A. Let A be an
authorized set, and define I ⊆ {1, ..., l} as I = {i|ρ(i) ∈ A}. Then the vector
(1, 0, ..., 0) is in the span of rows of matrix M indexed by I, and there exist con-
stants {wi ∈ Zp}i∈I such that, for any valid shares {vi} of a secret μ according
to Π,

∑
i∈I wivi = μ. These constants {wi} can be found in polynomial time

with respect to the size of the share-generating matrix M [5].

Boolean Formulas [26]. Access structures can also be described in terms of
monotonic boolean formulas. LSSS access structures are more general, and can be
derived from representations as boolean formulas. There are standard techniques
to convert any monotonic boolean formula into a corresponding LSSS matrix.
The boolean formula can be represented as an access tree, where the interior
nodes are AND and OR gates, and the leaf nodes correspond to attributes. The
number of rows in the corresponding LSSS matrix will be the same as the number
of leaf nodes in the access tree.

2.3 Attribute-Based Encryption

An attribute-based encryption (ABE) scheme ABE [37] consists of a setup algo-
rithm ABE .Set(1λ) which outputs the public parameter par and the master
private key msk on input a security parameter λ, a key generation algorithm
ABE .KG(par, msk, A) which outputs a private attribute-key skA on input the
public parameter par, the master private key msk and an attribute set A, an
encryption algorithm ABE .Enc(par, A m) which outputs a ciphertext CT on

112 H. Cui et al.

input the public parameter par, an access structure A and a message m, and a
decryption algorithm ABE .Dec(par, skA, CT) which outputs a message m or a
failure symbol ⊥ on input the public parameter par, a private key skA and a
ciphertext CT.

An ABE scheme ABE is indistinguishable under chosen plaintext attacks
(IND-CPA secure) if for any probabilistic polynomial time (PPT) adversary A
= (A1, A2), the advantage function

AdvIND-CPA
ABE,A (λ) = Pr

⎡

⎢
⎢
⎣b′ = b

∣
∣
∣
∣
∣
∣
∣
∣

(par,msk) ← ABE .Set(1λ); b ← {0, 1}
(m0,m1,A

∗, st) ← AABE.KG(msk,·)
1 (par)

CT∗ ← ABE .Enc(par,A∗,mb)
b′ ← AABE.KG(msk,·)

2 (par,m0,m1,A
∗, st,CT∗)

⎤

⎥
⎥
⎦

− 1/2

is negligible in the security parameter λ, where |m0| = |m1|, st is the state
information, and adversary A is not allowed to make key generation queries on
attributes that can satisfy the challenge access structure A

∗.

2.4 Symmetric Encryption

A symmetric encryption (SE) scheme SE with a key space K is composed of an
encryption algorithm SE .Enc(K, m) which outputs a ciphertext CT on input
a key K and a message m, and a decryption algorithm SE .Dec(K, CT) which
outputs m or a failure symbol ⊥ on input a key K and a ciphertext CT [15].

Let st be the state information. A symmetric encryption scheme SE is secure
under chosen plaintext attacks (IND-CPA secure), if for any PPT adversary A
= (A1, A2), the advantage function

AdvIND-CPA
SE,A (λ) = Pr

⎡

⎢
⎢
⎣b′ = b

∣
∣
∣
∣
∣
∣
∣
∣

K ← K; b ← {0, 1}
(m0,m1, st) ← A1(1λ)
CT∗ ← SE .Enc(K,mb)
b′ ← A2(par,m0,m1, st,CT∗)

⎤

⎥
⎥
⎦ − 1/2

is negligible in the security parameter λ, where |m0| = |m1|.

2.5 Expressive Keyword Search

An expressive keyword search (EKS) scheme EKS [24] consists of a setup algo-
rithm EKS.Set(1λ) which outputs the public parameter par and the master
private key msk on input a security parameter λ, a trapdoor generation algo-
rithm EKS.Trd(par, msk, S) which outputs a trapdoor TS on input the public
parameter par, the master private key msk and a search policy S, an encryption
algorithm EKS.Enc(par, W) which outputs a ciphertext CT on input the public
parameter par and a set of keywords W, and a test algorithm EKS.Tst(par, TS,
CT) which outputs 1 or 0 on input the public parameter par, a trapdoor TS and
a ciphertext CT.

ABE with EAKS 113

Denote by st the state information. An expressive keyword search scheme
EKS is indistinguishable under chosen keyword-set attacks (IND-CKA secure)
if for any PPT adversary A = (A1, A2), the advantage function

AdvIND-CKA
EKS,A (λ) = Pr

⎡

⎢
⎢
⎣b′ = b

∣
∣
∣
∣
∣
∣
∣
∣

(par,msk) ← EKS.Set(1λ); b ← {0, 1}
(W∗

0,W
∗
1, st) ← AEKS.Trd(msk,·)

1 (par)
CT∗ ← EKS.Enc(par,W∗

b)
b′ ← AEKS.Trd(msk,·)

2 (par,W∗
0,W

∗
1, st,CT∗)

⎤

⎥
⎥
⎦

− 1/2

is negligible in the security parameter λ, where |W∗
0| = |W∗

1|, and adversary
A is not allowed to make trapdoor generation queries on keywords that can be
satisfied by the challenge keyword set W∗

0 or W∗
1.

3 System Architecture and Security Model

In this section, we describe the framework and security definition of attribute-
based encryption with expressive and authorized keyword search (ABE-EAKS).

3.1 System Architecture

The architecture of an ABE-EAKS scheme is shown in Fig. 1, which consists
of data owners who outsource encrypted data and the associated keywords to
the cloud, data users who are identified by different attributes and are privi-
leged to access data in the cloud, a key generation center (KGC) who holds the
master private key and publishes the public parameter and is responsible for
generating private attribute-keys for data users in terms of their attributes, and
a cloud for data storage which is equipped with a cloud server who executes
search operations over encrypted data for data users. Suppose that a data owner
Bob uploads to the cloud an encrypted document M along with m encrypted
keywords N1: W1, ..., Nm: Wm (here Ni is the keyword name and Wi is the
keyword value) using the public parameter, and an authorized data user Alice,
who is issued with a private attribute-key generated by the KGC in terms of
her attributes, wants to search for documents containing keywords that satisfy
a search policy S. In order to do so, Alice generates a trapdoor over the search
policy S using her private attribute-key. Then, Alice forwards this trapdoor to
the cloud server such that the cloud server is able to spot all ciphertexts that
contain the keywords which satisfy the search policy S and can be decrypted by
Alice. Finally, the cloud server sends the relevant ciphertexts back to Alice.

We assume that the KGC is a trusted entity. The cloud is pubic, and thus any
ciphertexts stored in the cloud might be tampered with by any malicious party.
The cloud server is assumed to be “honest-but-curious”, i.e., it honestly follows
the protocol but it is curious to learn the data stored in the cloud. Data owners
are assumed to honestly encrypt their data as well as the associated keywords and
upload the corresponding ciphertext to the cloud. Data users are not trusted, and

114 H. Cui et al.

Cloud
Server

Cloud

Data

Owner W1, …, Wm

Data

User

Document 1 Keyword set W1

…… ……
Document n Keyword set Wn

Ciphertexts of
encrypted documents
and their keywords

Illness: Diabetes
Gender: Male

Affiliation: City Hospital
Attributes

Department: Medicine

Key
Genera�on

Center (KGC)

Weight

OR

Gender

Illness

AND

Search policy

with hidden

Keyword values

Age

AND

Cloud

Fig. 1. System architecture of ABE-EAKS.

they may even collude with other participants in order to discover information
beyond their privileges. We assume that the trusted KGC is equipped with a
separate authentication mechanism to verify data users before issuing private
attribute-keys to them.

3.2 Framework

Formally, an ABE-EAKS scheme consists of the following algorithms: setup
algorithm Setup, user key generation algorithm KeyGen, trapdoor generation
algorithm Trapdoor, encryption algorithm Encrypt, testing algorithm Test and
decryption algorithm Decrypt. In an ABE-EAKS scheme, the KGC is given the
public parameter and master private key generated from the Setup algorithm,
and runs the KeyGen algorithm to generate each data user a private attribute-
key in terms of his/her attributes. A data owner runs the Encrypt algorithm on
the document and the relevant keywords using the public parameter, and uploads
the corresponding ciphertext to the cloud. A data user can create a trapdoor on
a search policy over a set of keywords by running the Trapdoor algorithm using
his/her private attribute-key. Given a trapdoor, the cloud server runs the Test
algorithm to determine whether an encrypted document contains the keywords
satisfying the specified search policy and its access structure can be satisfied by
the attributes associated with the trapdoor. After receiving the results from the
cloud server, the data user runs the Decrypt algorithm on the ciphertexts to
obtain the underlying document.

– Setup(1λ) → (par, msk). Taking the security parameter λ as the input, this
algorithm outputs the public parameter par and the master private key msk.

– KeyGen(par, msk, A) → skA. Taking the public parameter par, the master
private key msk and an attribute set A of a data user as the input, this
algorithm outputs a private attribute-key skA for this data user.

– Trapdoor(par, skA, S) → TA,S. Taking the public parameter par, the private
attribute-key skA of a data user and a search policy S over a set of keywords
as the input, this algorithm outputs a trapdoor TA,S.

ABE with EAKS 115

– Encrypt(par, (M , A), W) → CT. Taking the public parameter par, a message
M and an access structure A, and a set of keywords W as the input, this
algorithm outputs a ciphertext CT which consists of CTM (an encryption of
M under A), CTW (an encryption of W) and τ (a tag binding CTM and
CTW to prevent them from being tampered with).

– Test(par, CT, TA,S) → 1/0. Taking the public parameter par, a ciphertext
CT and a trapdoor TA,S as the input, this algorithm outputs either 1 if
the keywords associated with CT satisfies the search policy of TA,S and the
access structure ascribed to CT can be satisfied by the attributes of TA,S or
0 otherwise, i.e., the Test algorithm outputs 1 if (1) the attributes associated
with the trapdoor satisfy the access structure of the ciphertext; and (2) the
ciphertext contains the keywords satisfying the search policy of the trapdoor.

– Decrypt(par, skA, CT) → M/⊥. Taking the public parameter par, a private
attribute-key skA over an attribute set A and a ciphertext CT as the input.
This algorithm parses CT = (CTM , CTW, τ), and checks whether the tag τ is
valid for CTM and CTW. If so, it decrypts CTM and outputs the plaintext M
when the attributes of skA satisfies the access structure of CTM . Otherwise,
it outputs a failure symbol ⊥.

We require that an ABE-EAKS scheme is correct, meaning that for all key-
word sets W satisfying search policies S, and attribute sets A satisfying access
structures A, if (par, msk) ← Setup(1λ), skA ← KeyGen(par, msk, A), TA,S

← Trapdoor(par, skA, S), CT ← Encrypt(par, (M , A), W), then Test(par, CT,
TA,S) = 1, Decrypt(par, skA, CT) = M .

Notice that in the concrete construction, the input A in the Encrypt algo-
rithm will be set to be (MA, ρA) where MA is a matrix, and ρA is a function
maps the rows of MA to attributes. In addition, the input S in the Trapdoor
algorithm will be set to be (MS, ρS, {ρS(i)}), where MS is a matrix, and ρS is a
function that associates the rows of MS to keyword names, and {ρS(i)} are the
corresponding keyword values.

3.3 Security Definitions

In addition to provide the confidentiality of the encrypted data (i.e., data pri-
vacy), an ABE-EAKS scheme should ensure that any private information about
the keywords will not be revealed from the ciphertext (i.e., keyword privacy).
Also, it should guarantee that a ciphertext that encrypts a message and a set of
keywords cannot be tampered with without being detected. Below we describe
the security game called indistinguishability under chosen-ciphertext attacks
(i.e., IND-CCA security) for ABE-EAKS to meet these requirements, which is
defined between a challenger algorithm C and an adversary algorithm A.

– Setup. Algorithm C runs the Setup algorithm to obtain the public parameter
par and the master private key msk, and gives par to algorithm A.

– Phase 1. Algorithm A adaptively issues the following queries.

116 H. Cui et al.

1. Algorithm A issues queries for the private attribute-keys corresponding
to the attribute sets A1, ..., Aq1 . For each Ai, i ∈ [1, q1], algorithm C
runs the KeyGen algorithm to generate and send skAi

to algorithm A.
2. Algorithm A issues queries for the plaintexts of the ciphertexts CT1, ...,

CTq2 . For each CTi, i ∈ [1, q2], algorithm C runs the Decrypt algorithm
to output and send Mi to algorithm A.

– Challenge. We describe this phase in terms of data privacy and keyword
privacy, respectively.

• Data privacy. Algorithm A outputs two messages M∗
0 , M∗

1 of the same
size, an access structure A∗ and a keyword set W∗. Algorithm C randomly
chooses β ∈ {0, 1}, runs the Encrypt algorithm on (M∗

β , A
∗), W∗ to

obtain and send the challenge ciphertext CT∗ to algorithm A.
• Keyword privacy. Algorithm A outputs a message M∗, an access structure
A

∗ and two keyword sets W∗
0, W

∗
1 of the same size. Algorithm C randomly

chooses β ∈ {0, 1}, runs the Encrypt algorithm on (M∗, A
∗), W∗

β to
obtain and send the challenge ciphertext CT∗ to algorithm A.

– Phase 2. Algorithm A continues issuing queries to algorithm C as in Phase 1
except with the following restrictions.
1. Algorithm A issues queries for the private attribute-keys corresponding

to the attribute sets Aq1+1, ..., Aq with the restriction that any Ai for
i ∈ [q1 + 1, q] cannot satisfy A

∗.
2. Algorithm A issues queries for the plaintexts of the ciphertexts CTq2+1,

..., CTq′ with the restriction that any CTi for i ∈ [q2 + 1, q′] is not equal
to CT∗.

– Guess. Algorithm A outputs its guess β′ ∈ {0, 1} and wins the game if β′ = β.

An ABE-EAKS scheme is IND-CCA secure if the advantage function refer-
ring to the security game GameIND

Π,A

AdvIND
Π,A(λ) def= |Pr[β = β′] − 1/2|

is negligible in the security parameter λ for any probabilistic polynomial-time
(PPT) adversary algorithm A.

In addition, an ABE-EAKS scheme is said to be selectively IND-CCA secure
if an Init stage is added before the Setup phase where algorithm A commits to
the challenge access structure A

∗ and keyword set W∗ (or keyword sets W∗
0,

W∗
1) which it aims to attack.

4 Generic Construction and Its Extensions

In this section, we give a generic construction of attribute-based encryption
with expressive and authorized keyword search (ABE-EAKS), and analyze its
security.

ABE with EAKS 117

4.1 Generic Construction

Denote by M the message space, K the key space, R the randomness space.
Let ABE = (ABE .Setup, ABE .KeyGen, ABE .Encrypt, ABE .Decrypt) be an
attribute-based encryption (ABE) scheme (e.g., [36,37]), EKS = (EKS.Setup,
EKS.Trapdoor, EKS.Encrypt, EKS.Test) be an expressive keyword search
(EKS) scheme (e.g., [14,24]), and SE = (SE .Encrypt, SE .Decrypt) be a sym-
metric encryption (SE) scheme. Below we describe the generic construction on
ABE-EAKS.

– Setup. This algorithm takes the security parameter λ as the input. It runs
the ABE .Setup algorithm to obtain the public parameter parABE and the
master private key mskABE . Then, it runs the EKS.Setup algorithm to obtain
the public parameter parEKS and the master private key mskEKS . Also, it
randomly chooses two hash functions H0 : M → K, H1 : M → R. It outputs
the public parameter par = (parABE , parEKS , H0, H1) and the master private
key msk = (mskABE , mskEKS).
Remarks. For the correctness of the proposed generic construction on ABE-
EAKS, we require that the schemes EKS and ABE share most elements in
their public parameters such that mskABE ⊆ mskEKS (or mskEKS ⊆ mskABE)
holds. Note that this is possible since there exist techniques to convert a CP-
ABE scheme to a KP-ABE scheme, and vice versa [2], and an EKS scheme
can be obtained from a KP-ABE scheme [14,23]. Therefore, ctW and ct1 (to
be defined below) generated using the same randomness have several elements
in common.

– KeyGen. This algorithm takes the public parameter par, the master pri-
vate key msk and a data user’s attribute set A as the input. It runs the
ABE .KeyGen algorithm on the attribute set A and outputs skA as the pri-
vate attribute-key.

– Trapdoor. This algorithm takes the public parameter par, a private attribute-
key skA and a search policy S as the input. It runs the EKS.Trapdoor algo-
rithm on the search policy S by using the private attribute-key skA in place
of the master private key mskEKS to generate the trapdoor TA,S = (TA, TS),
where TA is associated with attributes of the data user, and TS is associated
with the search policy.
Remarks. Notice that there exists a twist here for running the EKS.Trapdoor
algorithm using the private attribute-key skA in place of the required mas-
ter private key. Firstly, the Trapdoor algorithm randomly chooses a value s,
and binds the value s to skA to obtain TA by performing certain operations.
Then it runs the EKS.Trapdoor algorithm on the search policy S using the
secret value s in place of the required master private key mskEKS to obtain
TS. Finally, it outputs the trapdoor TA,S = (TA, TS).

– Encrypt. This algorithm takes the public parameter par, a message M , an
access structure A and a keyword set W as the input. Firstly, it randomly
chooses R ∈ M, and runs the ABE .Encrypt algorithm on the “message” R
and the access structure A to generate CTR. Secondly, it computes CTM by
running the SE .Encrypt algorithm on the message M using the key H0(R).

118 H. Cui et al.

Thirdly, it computes r = H1(M,R), and runs the EKS.Encrypt algorithm
on the keyword set W using the randomness r to generate ctW. Fourthly, it
runs the ABE .Encrypt algorithm on an identity element 1 under the access
structure A using the randomness r to generate ct1. Finally, it outputs the
ciphertext CT = (CTR, CTM , CTW) for CTW = (ctW, ct1), where (CTR,
CTM) is the encryption of the message M , CTW is the encryption of the
keywords W, which also implicitly plays the role of the tag τ .

– Test. This algorithm takes the public parameter par, a trapdoor TA,S and a
ciphertext CT as the input. It parses TA,S as (TA, TS), and CT as (CTR, CTM ,
(ctW, ct1)). Firstly, it runs the ABE .Decrypt algorithm on the ciphertext ct1
using TA as the private attribute-key to obtain an intermediate value X0.
Then, it runs the EKS.Test algorithm on the trapdoor TS and the ciphertext
(X0, ctW). If the keywords and access structure ascribed to CTW satisfy the
search policy and attributes associated with TA,S, it outputs 1. Otherwise, it
outputs 0.
Remarks. Since the attributes associated with the private attribute-key of
each data user are embedded in the trapdoor, the Test algorithm also excludes
those ciphertexts whose access structures cannot be satisfied by the attributes
of the data user.

– Decrypt. This algorithm takes the public parameter par, a private attribute-
key skA and a ciphertext CT as the input. It parses CT as (CTR, CTM ,
CTW). It runs the ABE .Decrypt algorithm on the ciphertext CTR using the
private attribute-key skA to obtains R′. Then, it computes M ′ by running the
SE .Decrypt algorithm on the ciphertext CTM using the key H0(R′). Finally,
it computes r′ = H1(M ′, R′), and runs the Encrypt algorithm on using the
randomness r′ to obtain CT′

W. If CT′
W is equal to CTW, it outputs M .

Otherwise, it outputs ⊥.

4.2 Security Proof

Theorem 1. Assuming that the underlying ABE is IND-CPA secure, SE is
IND-CPA secure, and EKS is IND-CKA secure, then the proposed construction
on ABE-EAKS is IND-CCA secure in the random oracle model.

Proof. Assuming that there exists an adversary algorithm A that breaks the
IND-CCA security of the proposed ABE-EAKS scheme, then we can build an
adversary algorithm A′ that breaks the IND-CPA security of the underlying
schemes ABE , SE or EKS. Denote by B0, B1, B2 the challenger algorithms in
the IND-CPA security games of the schemes ABE , SE , EKS, respectively.

– Setup. Algorithm A′ is given parABE from algorithm B0 of ABE , and parEKS
from the algorithm B1 of EKS. Algorithm A′ sends par = (parABE , parEKS ,
H0, H1) to algorithm A, where H0, H1 are random oracles controlled by
algorithm A′.

– H0, H1-queries. At any time, algorithm A can query the random oracle H0

(or H1). To respond to these queries, algorithm A′ keeps an initially empty
list LH0 (or LH1) of tuples (Ri, ki) (or ((Mi, Ri), ri)).

ABE with EAKS 119

• If the query Ri (or (Mi, Ri)) already exists in the list LH0 (or LH1),
algorithm A′ responds with ki = H0(Ri) (or ri = H1(Mi, Ri)).

• Otherwise, it randomly chooses ki (or ri), sets ki = H0(Ri) (or ri =
H1(Mi, Ri)), and stores ki (or ri) to the list LH0 (or LH1).

– Phase 1. Algorithm A adaptively issue the following queries to algorithm A′.
• Algorithm A issues private attribute-key queries on attribute sets Ai.

Algorithm A′ forwards each private attribute-key query on Ai to algo-
rithm B0, and sends the corresponding private attribute-key obtained
from algorithm B0 to algorithm A.

• Algorithm A issues decryption queries on ciphertexts CTi. If algorithm
A′ does not have the private attribute-key to decrypt the ciphertext, it
issues a private attribute-key query on an attribute set satisfying the
access structure of CTi to algorithm B0, and then uses the returned pri-
vate attribute-key to decrypt CTi and sends the result to algorithm A.
Otherwise, algorithm A′ runs the ABE .Decrypt algorithm on CTi and
sends the result to algorithm A.

– Challenge. We discuss this phase in terms of data privacy and key privacy,
respectively.

• Data privacy. Algorithm A outputs two messages M∗
0 , M∗

1 of the same
size, an access structure A

∗ and a keyword set W∗. Algorithm A′ sends
R∗

0, R∗
1 and A

∗ to algorithm B0 to obtain CTR∗
β
, and M∗

0 , M∗
1 to algorithm

B1 to obtain CTM∗
β
. Also, it randomly chooses k ∈ K, r ∈ R, β ∈ {0, 1},

sets k = H0(R∗
β), r = H1(M∗

β , R∗
β) (note that because of random oracle,

adversary A′ can easily perform this setting), and runs the EKS.Encrypt
algorithm on W∗ to obtain CTW∗ using the randomness r. Algorithm
A′ sends the challenge ciphertext CT∗ = (CTR∗

β
, CTM∗

β
, CT∗

W) to
algorithm A.

• Keyword privacy. Algorithm A outputs a message M∗, an access structure
A

∗ and two keyword sets W∗
0, W

∗
1 of the same size. Algorithm A′ sends

W∗
0, W∗

1 to algorithm B2 to obtain CTW∗
β
. Also, it randomly chooses

R∗ ∈ M, r ∈ R, sets r = H1(M∗, R∗) (assuming that r is the randomness
used in generating CTW∗

β
), and runs the ABE .Encrypt algorithm on R∗

and A
∗ to obtain CTR∗ , the SE .Encrypt algorithm on M∗ using the key

H0(R∗) to obtain CTM∗ . Algorithm A′ sends the challenge ciphertext
CT∗ = (CTR∗ , CTM∗ , CT∗

Wβ
) to algorithm A.

– Phase 2. Algorithm A continues issuing queries to algorithm A′ as in Phase
1, following the restrictions defined in the security model.

– Guess. Algorithm A makes a guess β′ for β, algorithm A′ forwards β′ to
algorithm B0, B1, B2 as the guesses to the IND-CPA security games for the
schemes ABE , SE and KS.

In the view of algorithm A, the simulation is the same as the real security
game except that algorithm A issues R∗

β for β ∈ {0, 1} or R∗ (or (M∗
β , R∗

β)
for β ∈ {0, 1} or (M∗, R∗)) to the random oracle H0 (or H1). Notice that
algorithm A has negligible probability in outputting such queries; otherwise,
it helps algorithm A′ directly break the IND-CPA security of the underlying

120 H. Cui et al.

attribute-based encryption scheme ABE , symmetric encryption scheme SE or
expressive keyword search scheme EKS.

To conclude, if algorithm A can win the IND-CCA game of ABE-EAKS,
then algorithm A′ can win the IND-CPA game of the underlying schemes ABE ,
SE or EKS. This completes the proof of Theorem 1.

4.3 Extensions

The proposed generic construction on ABE-EAKS can be extended as follows.

– Standard model. Due to the efficiency purpose, the proposed ABE-EAKS
scheme is secure in the random oracle model. There exist generic methodolo-
gies (e.g., [22]) to achieve security in the standard model, which can be applied
to build a generic construction on ABE-EAKS that is secure in the standard
model. Thus, we can replace the symmetric encryption scheme and random
oracles in the proposed ABE-EAKS scheme by the tag-based encryption as
introduced in [22], thereby resulting in a generic construction on ABE-EAKS
that is secure in the standard model.

– User revocation. As a cloud storage system may involve a large number of
data users whose access rights may change with time, it is important to
equip it with an efficient user revocation mechanism. Taking efficiency into
consideration, techniques utilizing a third party to achieve user revocation
(e.g., [12,47]) might be desirable solutions, which can simultaneously reduce
data users’ computational overheads in decryption. It is possible to incorpo-
rate such techniques into ABE-EAKS to additionally achieve efficient user
revocation in the cloud storage system. We detail how to accomplish it in
full version4 of this paper using a concrete construction as an example.

4.4 Performance Analysis

Let lS be the number of keywords in a search policy, lM be the number of
attributes in an access structure, k be the size of an attribute set associated
with a private attribute-key, and m be the size of a keyword set ascribed to
a ciphertext. In Table 2, we summarize the computational overheads incurred
in the instantiation of ABE-EAKS (given in the full version) and its extension
supporting user revocation. Denote “NA” as not applicable, “E” as an expo-
nentiation operation, “P” as a pairing operation, IS = {I1, ..., Iχ1} as a set of
minimum keyword subsets satisfying a search policy S, χ2 as |I1| + ... + |Iχ1 |.

We implement the instantiation of ABE-EAKS and its extension in Charm
[1]. We use Charm of version Charm-0.43 and Python 3.4 in our implementa-
tion. Along with Charm-0.43, we install the PBC library for the underlying
cryptographic operations. Our experiments are run on a laptop with Intel Core
i5-4210U CPU @ 1.70 GHz and 8.00 GB RAM running 64-bit Ubuntu 16.04. We
conduct the experiments over the elliptic curves: SS512 and MNT159 to provide

4 Please contact the authors for the full version.

ABE with EAKS 121

Table 2. Computational overhead of the instantiation and its extension.

Trapdoor Encrypt Test (per
search)

Transform
server

Decrypt user

Instantiation
on ABE-EAKS

(4k + 3) ·
E + 13lS · E

(4 + 10lM) ·
E + 7m · E

≤ (k + χ2) ·
E + (3k +

1 + 6χ2) · P

NA ≥ 4 · P + 2 · E

Extension (4k + 3) ·
E + 13lS · E

(4 + 10lM) ·
E + 7m · E

≤ (k + χ2) ·
E + (3k +
1 + 6χ2) · P

≥ 4 · P + E 2 · E

security level of 80-bit, where SS512 is a supersingular elliptic curve with the
symmetric Type 1 pairing on it, and MNT159 is an asymmetric Type 3 pairing.

To begin with, we test the performance of the search function in the instan-
tiation. In the experiments, each keyword contains a keyword name such as
“Illness”, “Position” and a keyword value such as “Diabetes”, “Doctor”, and we
generate a random set of keywords containing 10 to 50 keywords, and use them
to create 5,000 ciphertexts with access structures composed of 10 attributes.
Thereafter, we create a set of search policies containing 2 to 10 keywords, and
use them to yield trapdoors under the assumption that the data user is given
a private attribute-key associated with 20 attributes. Finally, we run the test
algorithm on the ciphertexts and the trapdoors.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

2 4 6 8 10

Co
m

pu
ta

�o
n

Ti
m

e
(s

)

No. of Keywords in Search Policies

SS512 MNT159

(a) Average time for one
trapdoor generation.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

10 20 30 40 50

Co
m

pu
ta

�o
n

Ti
m

e
(s

)

No. of Keywords in Ciphertexts

SS512 MNT159

(b) Average time for one
encryption operation.

0

50

100

150

200

250

10--2 20--4 30--6 40--8 50--10

Co
m

pu
ta

�o
n

Ti
m

e
(s

)

No. of Keywords in Ciphertexts and Trapdoors

MNT159 SS512

(c) Average time for test-
ing among 5,000 cipher-
texts.

Fig. 2. Computation time of the Trapdoor, Encrypt and Test algorithms.

Figure 2 shows the average computation time of running the Trapdoor,
Encrypt and Test algorithms, respectively. In terms of the trapdoor generation
(See Fig. 2-(a)), the computation time of a data user in creating a trapdoor over a
search policy of 2 to 10 keywords ranges from 0.2 s and 0.4 s for the SS512 curve,
and 0.1 s to 0.3 s for the MNT159 curve, respectively. For the data encryption
(See Fig. 2-(b)), the computation time of generating a ciphertext having 10 to
50 keywords and an access structure with 10 attributes is 0.3 s to 0.8 s for the
SS512 curve, and 0.4 s to 1.2 s for the MNT159 curve, respectively. The compu-
tation time of the Test algorithm increases as the number of keywords involved
in the trapdoor and the ciphertext raises (See Fig. 2-(c)). Regarding the 2 curves

122 H. Cui et al.

used in our experiments, given a trapdoor for a search policy composed of 10
keywords, the computation time of searching over 5,000 encrypted documents
each having 50 keywords is about 82 s and 233 s, respectively.

In addition, we test the computation time of a data user with 10 to 50
attributes in decrypting a ciphertext with an access structure composed of 2 to 10
attributes in the instantiation on ABE-EAKS and its extension in Fig. 3. In the
instantiation of ABE-EAKS (See Fig. 3-(a)), the computation time of decrypting
ciphertexts for access structures with 2 to 10 attributes using attribute-keys of
10 to 50 attributes ranges from 6.5 ms to 17 ms for the SS512 curve and 19 ms to
34 ms for the MNT159 curve, respectively, while in the extension (See Fig. 3-(b)),
the computation time of decrypting ciphertexts for access structures with 2 to
10 attributes using attribute-keys of 10 to 50 attributes is about 0.6 ms in terms
of the SS512 curve and 1.6 ms in terms of the MNT159 curve, respectively.

0

5

10

15

20

10--2 20--4 30--6 40--8 50--10

Co
m

pu
ta

�o
n

Ti
m

e
(m

s)

No. of A�ributes in A�ribute-Keys and Ciphertexts

Instan�a�on Extension

(a) Average time for the
SS512 curve.

0
5

10
15
20
25
30
35
40

10--2 20--4 30--6 40--8 50--10

Co
m

pu
ta

�o
n

Ti
m

e
(m

s)

No. of A�ributes in A�ribute-Keys and Ciphertexts

Instan�a�on Extension

(b) Average time for the
MNT159 curve.

Fig. 3. Computation time of decrypting a ciphertext by a data user.

5 Conclusions

Data encryption is an effective way for protecting data security and privacy in the
cloud; however, in order for encrypted data to be useful, encryption mechanisms
must be amenable to search and access control. In this paper, we introduced
a notion of attribute-based encryption with expressive and authorized keyword
search (ABE-EAKS) to support both expressive keyword search and fine-grained
access control over encrypted data in cloud-based storage systems. We first pre-
sented the framework of ABE-EAKS and gave its security definition, and then
provided a generic construction on ABE-EAKS which is able to transform any
IND-CPA secure ABE scheme and IND-CKA secure EKS scheme into an IND-
CCA secure ABE-EAKS scheme. Thereafter, we gave a concrete construction
of ABE-EAKS based on the transformation and extended it to support user
revocation. Finally, we implemented the concrete ABE-EAKS scheme and its
extension, and studied their performance through experiments.

Acknowledgments. This research work is supported by the Singapore National
Research Foundation under the NCR Award Number NRF2014NCR-NCR001-012 and
the AXA Research Fund.

ABE with EAKS 123

References

1. Akinyele, J.A., Garman, C., Miers, I., Pagano, M.W., Rushanan, M., Green, M.,
Rubin, A.D.: Charm: A framework for rapidly prototyping cryptosystems. J. Cryp-
tographic Eng. 3(2), 111–128 (2013)

2. Attrapadung, N., Yamada, S.: Duality in ABE: Converting attribute based encryp-
tion for dual predicate and dual policy via computational encodings. In: Nyberg, K.
(ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 87–105. Springer, Cham (2015). doi:10.
1007/978-3-319-16715-2 5

3. Baek, J., Safavi-Naini, R., Susilo, W.: On the integration of public key data encryp-
tion and public key encryption with keyword search. In: Katsikas, S.K., López, J.,
Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 217–232.
Springer, Heidelberg (2006). doi:10.1007/11836810 16

4. Baek, J., Safavi-Naini, R., Susilo, W.: Public key encryption with keyword
search revisited. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y.,
Gavrilova, M.L. (eds.) ICCSA 2008. LNCS, vol. 5072, pp. 1249–1259. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-69839-5 96

5. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. Ph.D. thesis,
Israel Institute of Technology, Israel Institute of Technology, June 1996

6. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5 30

7. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (S& P 2007), pp. 321–334.
IEEE Computer Society (2007)

8. Boneh, D., Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 30

9. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
doi:10.1007/3-540-44647-8 13

10. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-70936-7 29

11. Cheung, L., Newport, C.C.: Provably secure ciphertext policy ABE. In: ACM Con-
ference on Computer and Communications Security, CCS 2007, pp. 456–465. ACM
(2007)

12. Cui, H., Deng, R.H., Li, Y., Qin, B.: Server-aided revocable attribute-based
encryption. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.)
ESORICS 2016. LNCS, vol. 9879, pp. 570–587. Springer, Cham (2016). doi:10.
1007/978-3-319-45741-3 29

13. Cui, H., Deng, R.H., Wu, G., Lai, J.: An efficient and expressive ciphertext-policy
attribute-based encryption scheme with partially hidden access structures. In:
Chen, L., Han, J. (eds.) ProvSec 2016. LNCS, vol. 10005, pp. 19–38. Springer,
Cham (2016). doi:10.1007/978-3-319-47422-9 2

14. Cui, H., Wan, Z., Deng, R.H., Wang, G., Li, Y.: Efficient and expressive keyword
search over encrypted data in cloud. IEEE Trans. Dependable Secure Comput.
PP(99), 1 (2016)

http://dx.doi.org/10.1007/978-3-319-16715-2_5
http://dx.doi.org/10.1007/978-3-319-16715-2_5
http://dx.doi.org/10.1007/11836810_16
http://dx.doi.org/10.1007/978-3-540-69839-5_96
http://dx.doi.org/10.1007/978-3-540-74143-5_30
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/978-3-540-70936-7_29
http://dx.doi.org/10.1007/978-3-319-45741-3_29
http://dx.doi.org/10.1007/978-3-319-45741-3_29
http://dx.doi.org/10.1007/978-3-319-47422-9_2

124 H. Cui et al.

15. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. 26(1), 80–101 (2013)

16. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 579–591.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-70583-3 47

17. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM Conference on Computer and
Communications Security, CCS 2006, pp. 89–98 (2006)

18. Gu, C., Zhu, Y., Pan, H.: Efficient public key encryption with keyword search
schemes from pairings. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt
2007. LNCS, vol. 4990, pp. 372–383. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-79499-8 29

19. Hwang, Y.H., Lee, P.J.: Public key encryption with conjunctive keyword search and
its extension to a multi-user system. In: Takagi, T., Okamoto, T., Okamoto, E.,
Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 2–22. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73489-5 2

20. Jiang, P., Mu, Y., Guo, F., Wen, Q.: Public key encryption with authorized keyword
search. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9723, pp. 170–
186. Springer, Cham (2016). doi:10.1007/978-3-319-40367-0 11

21. Jiang, T., Chen, X., Li, J., Wong, D.S., Ma, J., Liu, J.K.: Towards secure and
reliable cloud storage against data re-outsourcing. Future Gener. Comput. Syst.
52, 86–94 (2015)

22. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006). doi:10.1007/11681878 30

23. Lai, J., Deng, R.H., Li, Y.: Expressive CP-ABE with partially hidden access struc-
tures. In: ASIACCS 2012, pp. 18–19. ACM (2012)

24. Lai, J., Zhou, X., Deng, R.H., Li, Y., Chen, K.: Expressive search on encrypted
data. In: ASIACCS 2013, pp. 243–252. ACM (2013)

25. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 4

26. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-20465-4 31

27. Li, M., Yu, S., Cao, N., Lou, W.: Authorized private keyword search over encrypted
data in cloud computing. In: ICDCS 2011, pp. 383–392. IEEE Computer Society
(2011)

28. Liang, K., Au, M.H., Liu, J.K., Susilo, W., Wong, D.S., Yang, G., Yu, Y., Yang,
A.: A secure and efficient ciphertext-policy attribute-based proxy re-encryption for
cloud data sharing. Future Gener. Comput. Syst. 52, 95–108 (2015)

29. Liang, K., Susilo, W., Liu, J.K.: Privacy-preserving ciphertext multi-sharing con-
trol for big data storage. IEEE Trans. Inf. Forensics Secur. 10(8), 1578–1589 (2015)

30. Liu, J., Huang, X., Liu, J.K.: Secure sharing of personal health records in cloud
computing: Ciphertext-policy attribute-based signcryption. Future Gener. Com-
put. Syst. 52, 67–76 (2015)

31. Liu, J.K., Liang, K., Susilo, W., Liu, J., Xiang, Y.: Two-factor data security protec-
tion mechanism for cloud storage system. IEEE Trans. Comput. 65(6), 1992–2004
(2016)

http://dx.doi.org/10.1007/978-3-540-70583-3_47
http://dx.doi.org/10.1007/978-3-540-79499-8_29
http://dx.doi.org/10.1007/978-3-540-79499-8_29
http://dx.doi.org/10.1007/978-3-540-73489-5_2
http://dx.doi.org/10.1007/978-3-319-40367-0_11
http://dx.doi.org/10.1007/11681878_30
http://dx.doi.org/10.1007/978-3-642-13190-5_4
http://dx.doi.org/10.1007/978-3-642-20465-4_31

ABE with EAKS 125

32. Lv, Z., Hong, C., Zhang, M., Feng, D.: Expressive and secure searchable encryption
in the public key setting. In: Chow, S.S.M., Camenisch, J., Hui, L.C.K., Yiu, S.M.
(eds.) ISC 2014. LNCS, vol. 8783, pp. 364–376. Springer, Cham (2014). doi:10.
1007/978-3-319-13257-0 21

33. Narayan, S., Gagné, M., Safavi-Naini, R.: Privacy preserving EHR system using
attribute-based infrastructure. In: ACM CCSW 2010, pp. 47–52. ACM (2010)

34. Rhee, H.S., Park, J.H., Lee, D.H.: Generic construction of designated tester public-
key encryption with keyword search. Inf. Sci. 205, 93–109 (2012)

35. Rhee, H.S., Park, J.H., Susilo, W., Lee, D.H.: Improved searchable public key
encryption with designated tester. In: ASIACCS 2009, pp. 376–379. ACM (2009)

36. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: ACM Conference on Computer and
Communications Security, CCS 2013, pp. 463–474. ACM (2013)

37. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

38. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-00457-5 27

39. Shi, J., Lai, J., Li, Y., Deng, R.H., Weng, J.: Authorized keyword search on
encrypted data. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol.
8712, pp. 419–435. Springer, Cham (2014). doi:10.1007/978-3-319-11203-9 24

40. Sun, W., Yu, S., Lou, W., Hou, Y.T., Li, H.: Protecting your right: Attribute-based
keyword search with fine-grained owner-enforced search authorization in the cloud.
In: IEEE INFOCOM 2014, pp. 226–234. IEEE (2014)

41. Sun, W., Yu, S., Lou, W., Hou, Y.T., Li, H.: Protecting your right: Verifiable
attribute-based keyword search with fine-grained owner-enforced search authoriza-
tion in the cloud. IEEE Trans. Parallel Distrib. Syst. 27(4), 1187–1198 (2016)

42. Tang, Q., Chen, L.: Public-key encryption with registered keyword search. In:
Martinelli, F., Preneel, B. (eds.) EuroPKI 2009. LNCS, vol. 6391, pp. 163–178.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16441-5 11

43. Wang, S., Liang, K., Liu, J.K., Chen, J., Yu, J., Xie, W.: Attribute-based data
sharing scheme revisited in cloud computing. IEEE Trans. Inf. Forensics Secur.
11(8), 1661–1673 (2016)

44. Wang, S., Zhou, J., Liu, J.K., Yu, J., Chen, J., Xie, W.: An efficient file hierarchy
attribute-based encryption scheme in cloud computing. IEEE Trans. Inf. Forensics
Secur. 11(6), 1265–1277 (2016)

45. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19379-8 4

46. Xhafa, F., Wang, J., Chen, X., Liu, J.K., Li, J., Krause, P.: An efficient PHR
service system supporting fuzzy keyword search and fine-grained access control.
Soft Comput. 18(9), 1795–1802 (2014)

47. Yang, Y., Ding, X., Lu, H., Wan, Z., Zhou, J.: Achieving revocable fine-
grained cryptographic access control over cloud data. In: Desmedt, Y. (ed.)
ISC 2013. LNCS, vol. 7807, pp. 293–308. Springer, Cham (2015). doi:10.1007/
978-3-319-27659-5 21

48. Yau, W., Phan, R.C., Heng, S., Goi, B.: Keyword guessing attacks on secure search-
able public key encryption schemes with a designated tester. Int. J. Comput. Math.
90(12), 2581–2587 (2013)

http://dx.doi.org/10.1007/978-3-319-13257-0_21
http://dx.doi.org/10.1007/978-3-319-13257-0_21
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-642-00457-5_27
http://dx.doi.org/10.1007/978-3-319-11203-9_24
http://dx.doi.org/10.1007/978-3-642-16441-5_11
http://dx.doi.org/10.1007/978-3-642-19379-8_4
http://dx.doi.org/10.1007/978-3-319-27659-5_21
http://dx.doi.org/10.1007/978-3-319-27659-5_21

126 H. Cui et al.

49. Zhang, B., Zhang, F.: An efficient public key encryption with conjunctive-subset
keywords search. J. Netw. Comput. Appl. 34(1), 262–267 (2011)

50. Zhang, R., Imai, H.: Generic combination of public key encryption with keyword
search and public key encryption. In: Bao, F., Ling, S., Okamoto, T., Wang, H.,
Xing, C. (eds.) CANS 2007. LNCS, vol. 4856, pp. 159–174. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-76969-9 11

http://dx.doi.org/10.1007/978-3-540-76969-9_11

Towards Revocable Fine-Grained Encryption
of Cloud Data: Reducing Trust upon Cloud

Yanjiang Yang1, Joseph Liu2,3, Zhuo Wei1, and Xinyi Huang4,5(B)

1 Shield Lab, Huawei Singapore Research Center, Singapore, Singapore
{yang.yanjiang,wei.zhuo}@huawei.com

2 Faculty of Information Technology, Monash University, Melbourne, Australia
joseph.liu@monash.edu.au

3 College of Information Engineering, Shenzhen University, Shenzhen, China
4 School of Mathematics and Computer Science, Fujian Normal University,

Fuzhou 350108, China
xyhuang@fjnu.edu.cn

5 State Key Laboratory of Cryptology, Beijing 100878, China

Abstract. ABE (Attribute-based encryption) is capable of fine-grained
data encryption, and thus has been studied for secure cloud data shar-
ing. While a number of efforts have been dedicated to resolving the
user revocation issue in the multi-user cloud data sharing setting, the
trust assumption placed upon the cloud server is still high. In this work,
we identify the necessity of achieving verifiability of cloud decryption in
the proxy-assisted user revocation approach, so as to weaken the trust
assumption on the cloud server. We further formulate a model for the
system, and present two independent constructions following the for-
mulation. Experimental results show the practicality of our proposed
schemes.

Keywords: ABE (Attribute-Based Encryption) · Cloud computing ·
Fine-grained encryption · User revocation · Authenticated encryption

1 Introduction

Cloud storage services, e.g., Dropbox, Microsoft’s Azure storage, and Amazon’s
S3, provides a wonderful platform for data sharing, enabling users to upload and
store their data remotely in the cloud storage as well as to authorize other users to
access and download the remotely stored data in real-time [9,11,12]. It is widely
recognized that the user data need to be encrypted in order to safeguard against
the cloud provider [16,19]. Under this rationale, there have been a number of
work proposing to use attribute-based encryption (ABE) [6,14,15,25] to achieve
fine-grained access control over cloud data [18,20,27–29,33,34]. Indeed, ABE is
a one-to-many public key encryption mechanism in nature, capable of enforc-
ing fine-grained encryption/decryption. In particular, ABE can be categorized
into key policy ABE (KP-ABE) and ciphertext policy ABE (CP-ABE). KP-ABE
allows data to be encrypted with a set of attributes, and each decryption key is
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 127–144, 2017.
DOI: 10.1007/978-3-319-60055-0 7

128 Y. Yang et al.

associated with an access policy (defined in terms of attributes); while CP-ABE
is complementary – data are encrypted under an access policy, and a decryp-
tion key is associated with a set of attributes. In either type, a ciphertext can be
decrypted using the corresponding decryption key only if the attributes satisfy the
access policy.

In the setting of encrypting cloud data with ABE, user revocation has been a
primary challenge to be resolved. One approach proposed in e.g., [2,24,26,34], is
key-update based revocation, where secret key materials are updated to exclude
revoked users. This method suffers from poor scalability as all data must be
re-encrypted and all remaining legitimate user keys are to be updated or re-
distributed, in which case the cost is tremendously high when the data volume
or the number of users scales up.

Another approach is to augment ABE schemes with revocation support by
incorporating revocation related mechanisms. The ABE schemes in [6,14] pro-
pose to include an “expiry time” attribute in the attribute set such that each
decryption key is valid only for a limited period of time. The shortcoming of
this method is that it does not allow for immediate revocation. In [22], Ostro-
vsky et. al. propose to include negative constrains in the access policy, such that
a revocation of certain attributes amounts to negating these attributes. This
mechanism is not scalable in revoking individual users, as each encryption has
to involve information of all revoked users each being treated as a distinctive
attribute.

More recently, yet another approach was introduced in [29,33] which imple-
ments proxy-assisted user revocation, where the cloud server acts as a proxy, and
each user’s decryption capability is split and represented by two parts, namely:
one part is held by the cloud server (i.e., proxy key), and the other part is held
by the user. A decryption requires a partial decryption by the cloud server (i.e.,
cloud decryption or proxy decryption, interchangeably), and a final decryption
by the user. For the purpose of user revocation, the cloud server will simply erase
the cloud-held proxy key associated with the user to be revoked. This method
is particularly promising, as it instantly nullifies a user’s decryption privilege
while without affecting the legitimate users, requiring no key update or data
re-encryption.

While the proxy-assisted user revocation approach demonstrated enormous
potential in attaining revocable attribute-based encryption of cloud data, it has
been observed in [32] that the constructions in [29,33] are based on a strong
assumption – the cloud server is trusted so as not to disclose the revoked users’
proxy keys to the revoked users. Considering the possible compromise of the
cloud server or the probable existence of the unscrupulous insiders within the
cloud service provider, [32] managed to weaken the strong assumption by extend-
ing the proxy-assisted with an “all-or-nothing” strategy, such that the cloud
server itself is equipped with a public/private key pair and the private key is
required in the partial decryption by the cloud server. This means that it is of
no use to a revoked user if the cloud server only reveals to the user his/her proxy
key, but not the cloud’s private key.

Towards Revocable Fine-Grained Encryption of Cloud Data 129

Our Contributions. Going along the line of reducing trust upon the cloud
server in the proxy-assisted user revocation approach as in [32], we further
observe the necessity to provide verifiability of cloud decryption to the authorized
users, i.e., to prevent the cloud server from maliciously manipulating encrypted
cloud data. Manipulating cloud data by the cloud server could indeed occur, con-
sidering the case that some encrypted data records get crashed/lost on the cloud
storage, and the cloud server surreptitiously generates bogus records to fool the
data owners. We are thus motivated to achieve verifiability of cloud decryption
whereby an authorized user is equipped to check the legitimacy of the result of
the partial decryption by the cloud server, leading to a further reduction of the
trust assumption upon the cloud server. In particular, our contributions are as
follows:

• We give a formulation of revocable cloud data sharing with verifiable cloud
decryption.

• We present two concrete schemes under the formulation, by extending and
progressing the scheme in [32].

• We implement our schemes for experiments, in order to test the practicality
of the proposed schemes.

Organization. The remainder of the paper is as follows. Section 2 presents a
formulation of the system, followed by two concrete schemes in Sect. 3. Exper-
imental results are given in Sect. 4, and Sect. 5 reviews related works. Section 6
contains concluding remarks.

2 Description and Formulation of the System

2.1 System Setting

As in the proxy-assisted user revocation approach [29,32,33], we consider a cloud
storage system consisting of a data owner, a group of data consumers/users, and
a cloud server, depicted in Fig. 1. The data owner needs to store its data records
at the cloud server, and authorizes the group of users to access the stored data.
An example of the entities would be such that the data owner is a company and
the data users are the company’s employees. Without fully trusting the cloud
server, the data owner encrypts its data to ensure the privacy of the data against
the cloud server. Data encryption further serves as a measure of built-in fine-
grained access control, in such a way that the users have different decryption
capabilities based on a pre-defined need-to-know basis. Particular to this system
using ABE for data encryption, a user is specified by a set of attributes, e.g.,
according to the user’s functional role in the company, and the user’s decryption
capability is thus attached to her attributes. The data owner encrypts each data
record under an access control policy (specified in terms of attributes), such that
a user can successfully decrypt the encrypted record, if and only if the user’s
attributes satisfy the access policy. As the system works in a multi-user data
sharing setting, user revocation is a critical requirement, e.g. when a user leaves

130 Y. Yang et al.

the company. User revocation allows the data owner to revoke a user’s ability
to decrypt the data (rather than prohibiting the user’s access to the encrypted
data).

Fig. 1. An overview of the cloud data sharing system

Proxy-assisted User Revocation. To facilitate an understanding of the ensu-
ing formulation of the system, we briefly recall the proxy-assisted user revocation
approach [29,32,33]. Specifically, a user’s decryption capability is rendered by
a proxy key and the user’s private key, where the former is held by the cloud
server and the latter is possessed by the user. To manage users’ proxy keys, the
cloud server maintains a list, with each entry containing a user’s identity and
her corresponding proxy key. When the user requests a data record, the cloud
server executes a proxy decryption operation over the data with the user’s proxy
key (also the cloud’s own private key in [32]), generating an intermediate value.
The intermediate value is then returned to the user, who gets the plaintext data
by a user decryption operation using her private key. As such, to revoke a user
it is as simple as to erase the user’s proxy key from the cloud server.

2.2 Formulation of the System

As our subsequent constructions will progress the scheme in [32], our formulation
extends the model thereof as well by adding in the property of verifiability of
cloud/proxy decryption. As such, we first review the formulation in [32], followed
by an exposition on the differences incurred due to the addition of verifiability of
cloud decryption. Hereafter, familiarity with “attribute” and “access structure”
(or “access policy” or “access tree”) as introduced in [6,14] is assumed.

Let Λ denote the universe of attributes. A revocable cloud data encryption
system specified in [32] comprises the following algorithms:

Setup(1κ) → (params,msk): Taking as input a security parameter 1κ, the
data owner executes the algorithm to set up public parameters params, and
a master secret key msk. As usual, params is assumed implicit in the input
of the below algorithms.

Towards Revocable Fine-Grained Encryption of Cloud Data 131

UKGen(u) → (pku, sku): The user key generation algorithm takes as input a
user identity, u, and outputs a pair of public/private keys, (pku, sku), for u.
Note that (pku, sku) is a pair for a standard public key cryptosystem.

PxKGen(msk, pkCS, pku,Au) → PxKu: The proxy key generation algorithm
takes as input msk, the cloud server’s public key pkCS, a user u’s public
key pku, and the user’s attributes, Au ⊂ Λ, and outputs a proxy key PxKu

for u.
Encrypt(m, T) → c: The encryption algorithm takes as input a message m, and

an access tree T which specifies an access policy, and outputs a ciphertext c.
PxDec(skCS, PxKu, c) → v: The proxy/cloud decryption algorithm takes as

input the cloud server’s private key skCS, a user’s proxy key PxKu, and a
ciphertex, c, and outputs an intermediate value v.

UDec(sku, v) → m: The user decryption algorithm takes as input a user’s
private key sku, and an intermediate value v, and outputs a plaintext message
m.

Revoke(u,LPxK) → L′
PxK : Taking as input a user identity u, and the Proxy

Key list LPxK , the algorithm revokes u’s decryption capability by updating
and outputting an updated Proxy Key list, L′

PxK .

Upon the model, three security requirements, i.e., Data Privacy Against
Cloud Server, Data Privacy Against Users and User Revocation Support are
specified in [32]. To avoid repetition, we skip the details.

Necessity of Verifiability of Cloud Decryption. In the above formalization,
the cloud server is assumed to manage the data owner’s data intact and honestly
perform the PxDec algorithm. [17,23] studied verifiable outsourced decryption
of ABE (where its setting is quite similar to ours if the above PxDec algorithm is
understood to be the outsourced decryption of ABE) and identified the necessity
of ensuring verifiability of outsourced decryption. We notice that their arguments
for the verifiability of outsourced decryption apply to our setting of cloud storage
as well, and thus the trust assumption upon the cloud server in the above turns
out be a bit strong. This motivates us to investigate providing verifiability to
cloud/proxy decryption, reducing the trust assumption on the cloud server.

We further observe that the level of verifiability obtained in [17,23] does not
suffice in our setting, and in particular [17,23] did not consider the case where the
cloud server who is entrusted for the outsourced decryption to use a bogus but
valid ciphertext (in place of the genuine ciphertext) in the outsourced decryp-
tion. Note that in [17,23] everyone (including the cloud server) can generate
valid ciphertexts (it is public key encryption anyway) and thus the outsourced
decryption of these bogus ciphertexts is still valid to the data users; but these
ciphertexts are not legitimate, as they are not generated by the data owner. In
our setting of cloud data sharing, a higher level of verifiability is desired – it
should not only ensure the verifiability as in [17,23], but also enable the data
users to verify the legitimacy of the result of cloud decryption. Our idea of for-
malizing this property is to involve the data owner’s master secret key in the
Encrypt algorithm.

132 Y. Yang et al.

System Formalization with Verifiability of Cloud Decryption. For
brevity, we only highlight the differences that are needed to be imposed to the
formulation reviewed above due to the addition of Verifiability of Cloud Decryp-
tion. In particular, the changes are restricted to syntax of the Encrypt and UDec
algorithms, while other algorithms remain unchanged. Note that in our setting,
the verifiability of cloud decryption is checked in the UDec algorithm, rather
than the PxDec algorithm.

Encrypt(msk,m, T) → c: The encryption algorithm takes as input the master
secret key msk, message m and an access tree T , and outputs a ciphertext c.

UDec(sku, v) → {m,⊥}: The user decryption algorithm takes as input a user’s
private key sku, and an intermediate value v, and outputs a plaintext m or ⊥.

More specifically, the Encrypt algorithm additionally takes as input the mas-
ter secret key, and the UDec algorithm could output ⊥ if the verifiability check
fails.

Besides the tree security requirements, Data Privacy Against Cloud Server,
Data Privacy Against Users and User Revocation Support as defined in [32], one
more security requirement, Verifiability of Cloud Decryption is to be imposed on
the system.

Definition 1 [Verifiability of Cloud Decryption]. A revocable fine-grained cloud
data encryption system satisfies verifiability of cloud decryption if for any PPT
adversary, the probability of the adversary winning the following game is ε(κ),
where ε(κ) is a negligible function with respect to the security parameter κ.

Setup. The challenger runs the Setup algorithm to establish (params,msk),
and returns params to the adversary.
Phase 1. The adversary makes a number of data encryption queries, submit-
ting a message mi and an associated access tree for each query. The challenger
executes the Encrypt algorithm and returns the corresponding ciphertexts to
the adversary.
Challenge. The adversary submits an attributes set A∗ and a public key
pk∗

u (the corresponding private key is sk∗
u), and the challenger returns the

corresponding PxK∗
u generated by executing the PxKGen algorithm.

Phase 2. Phase 1 is repeated.
Output. The adversary outputs a ciphertext c∗. The adversary wins the game
if m = UDec(sk∗

u,PxDec(PxK∗
u, c∗)) �= ⊥ and m �= mi for any data encryption

query mi the adversary has asked in Phase 1 and 2.

The formalization essentially captures the requirement that no one (including
the cloud server) except the data owner can generate genuine encrypted data
records.

3 Our Constructions

As argued above, the level of verifiability obtained in [17,23] does not suffice in
our setting, and thus the constructions thereof is not directly applicable to us. In

Towards Revocable Fine-Grained Encryption of Cloud Data 133

this section, we present two independent schemes by working upon the scheme
in [32] to additionally satisfy Definition 1, giving rise to “authenticated” revo-
cable fine-grained cloud data encryption. The two constructions will take the
scheme in [32] as a building block, which is listed in the Appendix for ease of
reference.

3.1 Scheme One

In practice, the actual data encryption in [32] would follow the common practice
of key encapsulation + data encapsulation (KEM/DEM), namely, an encryption
of a data record m is of the form (Encrypt(k, T),SE.Enck(m)), where SE is a
symmetric key block cipher and k is a random key for SE. We also present our
two scheme to be working in the mode of KEM/DEM.

This first scheme is inspired by [23] to use randomness extractor as a building
block to compensate for the loss of entropy of the data encryption key.

Preliminaries. Let s ∈R S denote an element s randomly chosen from a set
S. For a discrete distribution X over X , the min-entropy of X is defined to be
H∞(X) = − log(maxx∈X Pr[X = x]). The average min-entropy of X conditioned
on Y (over Y) is defined as H̃∞(X|Y) = − log Ey∈Y(2−H∞(X|Y =y)). We recall
a lemma in [10] that relates to the security of our scheme: Let X, Y and Z
be random variables. If Y has at most 2r possible values, then H̃∞(X|(Y,Z)) ≥
H̃∞(X|Z) − r.

Random Extractor: An efficient function Ext: X × {0, 1} → Y is an average-
case (k, ε)-strong extractor if for all random variables (X,Z) such that
H̃∞(X|(Y,Z)) ≥ k, we have (Z, s,Ext(X, s)) ≈ε (Z, s, y ←R Y), where s ←R

{0, 1}t, and ≈ε denotes the statistical distance upper-bounding by ε.
In [10], it is shown that any family of pairwise independent hash functions H :

{� : X → Y} is an average-case (H̃∞(X|Z), ε)-strong extractor if H̃∞(X|Z) ≥
log |Y| + 2 log(1/ε).

Construction Details. Following the paradigm of constructing “authenti-
cated” public key encryption, e.g., [1], we reasonably assume the data owner
to possess a pair of signing key/verification key (sk, vk) for a digital signa-
ture scheme Sig. Under the KEM/DEM paradigm, the encryption of a message
m would be (Encrypt(msk, k, T),SE.Enck(m)). We cannot simply let the data
owner sign SE.Enck(m) with sk to provide verifiability of cloud decryption to
the data users. This is because the PxDec algorithm may well output a bogus
k′. Thus the legitimacy of k must be verified as well to the data users. To this
end, we follow the idea of [23]: H0(k) is published as the verification data for
k, where H0 is a cryptographic hash function. Since H0(k) reveals at most |H0|
bits of k, a random extractor � is then applied to k to generate a good random
key k̃ for SE. Let ε� is the upper-bound parameter of the extractor �, then the
parameters must satisfy 0 ≤ |k̃| ≤ |k| − |H0| − 2 log(1/ε�).

134 Y. Yang et al.

We are ready to show how to extend the scheme in [32] (see Appendix),
denoted as Basic, to achieve revocable fine-grained cloud data encryption with
verifiability of cloud decryption. To avoid repetition, we only show the algorithms
to be modified and highlight the extra operations to be added in each of such
algorithms.

Setup(1κ): On input a security parameter 1κ, the algorithm does the following:
• execute (params′,msk′) = Basic.Setup(1κ);
• select a cryptographic hash functions, H0 : GT → {0, 1}�0 , where GT is

contained in params′;
• select a semantically secure block cipher SE = (SE.Enc, SE.Dec) with key

space {0, 1}�SE ;
• select an extractor � : G0 → {0, 1}�SE . Note that let ε� be the upper-

bound parameter of the extractor �, then it must satisfy 0 ≤ �SE ≤
|GT | − �0 − 2 log(1/ε�)1

• determine a digital signature scheme Sig = (Sig.Sign, Sig.Verify), and
select a signing/verification key pair (sk, vk) for Sig;

• set params = params′ ∪ {H0,SE, �,Sig, vk} and msk = msk′ ∪ {sk}.
Encrypt(msk,m, T): Taking as input the master secret key msk, a message m,

and an access tree T , the algorithm works as follows:
• select a random k ∈R GT and compute c′ = Basic.Encrypt(k, T);
• compute k̃ = �(k), and C̃ = SE.Enck̃(m);
• compute σ = (H0(k),Sig.Signsk(H0(k)||C̃)), where sk is contained in

msk;
• set the ciphertext c = (c′, C̃, σ).

PxDec(skCS, PxKu, c = (c′, C̃, σ)): The algorithm works as follows:
• Compute v′ = Basic.PxDec(skCS, PxKu, c′), and set the intermediate

value v = (v′, C̃, σ).
UDec(sku, v = (v′, C̃, σ)): The algorithm works as follows:

• if Sig.Verifyvk(σ) = 0, then output ⊥ and halt;
• compute k = Basic.UDec(sku, v′), and test whether H0(k) equals the cor-

responding value in σ. If not, then output ⊥ and halt;
• compute k̃ = �(k) and m = SE.Deck̃(C̃).

Security Analysis. We show that the proposed scheme satisfies the security
requirements specified in Sect. 2.

Theorem 1. The above scheme achieves Data Privacy Against Cloud Server,
Data Privacy Against Users, and User Revocation Support, respectively, as
specified in [32].

1 Let’s assume to achieve 80-bit security: GT could be instantiated such that |GT | =
512, �0 = 160, ε� = 2−80, then |GT | − �0 − 2 log(1/ε�) = 512 − 160 − 160 = 192.
It is thus more than enough to enable 160-bit block cipher, which can work in an
appropriate mode to encrypt message of an arbitrary length.

Towards Revocable Fine-Grained Encryption of Cloud Data 135

Intuitively, compared to the scheme [32], the only place that reveals more
information in terms of data privacy with respect to both the cloud server and
the users is H0(k). However, this leakage has already been accommodated by the
use of the random extractor �. Hence data privacy of the scheme is warranted.
Formally, we can prove Theorem 1 by a series of hybrid arguments, following the
rationale in [23], but we omit the details.

Theorem 2. The above scheme achieves Verifiability of Cloud Decryption as
specified in Definition 1, given that Sig is universally unforgeable, and H0 is
collisions resistant.

Proof. Recall that c∗ = (c′∗, C̃∗, σ∗ = (H∗
0 (k),Sig.Signsk(H∗

0 (k)||C̃∗)) and the
corresponding v∗ = (v′∗, C̃∗, σ∗) = PxDec(skCS, PxK∗

u, c∗). If the adversary wins
the game, then it means that σ∗ is a valid signature, but SE.Dec�(k)(C̃∗) �= mi

for any asked query mi. From this, two cases can be derived:

1. (C̃∗, σ∗) is the reply of one of the data encryption queries the adversary has
ever asked, or

2. (C̃∗, σ∗) is not the reply of any data encryption queries the adversary has
ever asked.

For case 1, it means that the k∗ decrypted from v∗ is such that k∗ �= k, but
H0(k∗) = H0(k), in which case a collision of H0 is found.

For case 2, it means that (C̃∗, σ∗) is a forged signature of the underlying
digital signature scheme Sig.

The details are tedious and standard, thus omitted. This completes the proof.
�

3.2 Scheme Two

The crust of the first scheme is the explicit protection of the authenticity of
the data encryption key k used in the symmetric key cipher, resulting in H0(k)
which leaks information on k; to compensate for the leakage, random extractor �

is employed. In this section, we present an alternative scheme which is logically
simpler. The rationale is to avoid the explicit protection of k (which has led to
H0(k) and the use of random extractor � in the first scheme); instead, authen-
ticated encryption (e.g., [5,7]) keyed by k is used for data encryption, replacing
the symmetric key cipher used in the first scheme.

A Review of Authenticated Encryption. Authenticated encryption [5,7] is
a well-established symmetric key cryptosystem, simultaneously providing con-
fidentiality and integrity protection of the encrypted messages. Specifically, an
authenticated encryption scheme is AE = (AE.Enc,AE.Dec), where Enc and Dec
are encryption algorithm and decryption algorithm, respectively. Compared to
symmetric key block cipher, authenticated encryption not only protects the con-
fidentiality/privacy of the messages, but also the integrity of the messages. Con-
cretely, AE.Dec could output ⊥ if the ciphertext to be decrypted is invalid. This

136 Y. Yang et al.

property is often naturally formalized as integrity of ciphertexts, i.e., AE.Dec
checks the integrity of a ciphertext and gives up if the ciphertext is not legiti-
mate/authenticated.

The formalization of confidentiality/privacy protection of authenticated
encryption is identical to block cipher, so we do not repeat. For a better under-
standing of integrity protection, below is a formulation of integrity protection of
ciphertexts of authenticated encryption.

1. The challenger chooses a key k for AE.
2. The adversary makes a number of encryption queries, submitting messages

m1,m2, · · · . For each query mi, the challenger computes ci = AE.Enck(mi)
and returns ci to the adversary.

3. Finally, the adversary outputs a ciphertext c∗. The adversary wins if
AE.Deck(c∗) �= ⊥ and c∗ is not any ci returned by the challenger in
step 2.

Integrity protection of ciphertexts stipulates that the probability of the adver-
sary wins is negligible.

NOTE. We point out that implicit in this formulation is that the adversary
cannot make a valid ciphertext under a key k still valid under a different key
k′. To see this, in a strive to output a valid v∗ under k, the adversary itself can
anyway generate a different k′ and in turn generate as many valid ciphertexts
under k′ as it wishes to. So an alternative formalism would be such that at the
end, the adversary outputs a key k∗ �= k and a ciphertext c∗ ∈ {c1, c2, · · · }, and
the adversary wins if AE.Deck∗(c∗) �= ⊥.

Construction Details. Based on the above discussions, encryption of a mes-
sage m is of the form (Encrypt(msk, k, T),AE.Enck(m)), where AE is an authenti-
cated encryption scheme. This time, the data owner can simply sign AE.Enck(m)
to attain verification of cloud decryption. Since k is directly used to key-up AE,
there is no extra leakage of k.

The presentation of the scheme is still in the form of extending Basic, as in
the earlier first scheme.

Setup(1κ): The algorithm does the following:
• execute (params′,msk′) = Basic.Setup(1κ);
• select an authenticated encryption scheme AE = (AE.Enc, AE.Dec) with

key space {0, 1}�AE ;
• determine a digital signature scheme Sig = (Sig.Sign, Sig.Verify), and

select a signing/verification key pair (sk, vk) for Sig;
• set params = params′ ∪ {AE,Sig, vk} and msk = msk′ ∪ {sk}.

Encrypt(msk,m, T): The algorithm works as follows:
• select a random k ∈R {0, 1}�AE and compute c′ = Basic.Encrypt(k, T);
• compute C̃ = AE.Enck(m);
• compute σ = Sig.Signsk(C̃));

Towards Revocable Fine-Grained Encryption of Cloud Data 137

• set the ciphertext c = (c′, C̃, σ).
PxDec(skCS, PxKu, c = (c′, C̃, σ)): The algorithm works as follows:

• Compute v′ = Basic.PxDec(skCS, PxKu, c′), and set the intermediate
value v = (v′, C̃, σ).

UDec(sku, v = (v′, C̃, σ)): The algorithm works as follows:
• if Sig.Verifyvk(σ) = 0, then output ⊥ and halt;
• compute k = Basic.UDec(sku, v′);
• compute m = AE.Deck(C̃).

Security Analysis. Since authenticated encryption and block cipher is the
same in terms of data privacy protection, we only show that this scheme achieves
verifiability of cloud decryption.

Theorem 3. The scheme shown above achieves Verifiability of Cloud Decryp-
tion as specified in Definition 1, given that Sig is universally unforgeable and AE
satisfies integrity protection of ciphertexts.

Proof. Recall that c∗ = (c′∗, C̃∗, σ∗ = Sig.Signsk(C̃∗)). If the adversary wins the
game, then it means that σ∗ is a valid signature upon C̃∗, but SE.Deck(C̃∗) �= mi

for any asked query mi, where k = Basic.UDec(sk∗
u, c′∗). From this, two cases

can be derived:

1. (C̃∗, σ∗) is the reply of one of the data encryption queries the adversary has
ever asked, or

2. (C̃∗, σ∗) is not the reply of any data encryption queries the adversary has
ever asked.

For case 1, it means that k = Basic.UDec(sk∗
u, c′∗) is not the same as the

original key used to generate C̃∗. This directly contradicts integrity of ciphertexts
of authenticated encryption (see the alternative formalism discussed earlier).

For case 2, it means that (C̃∗, σ∗) is a forged signature of the underlying
digital signature scheme Sig.

Due to limited space, we omit the details of the proof which will be provided
in the full version of this paper. This completes the proof. �

4 Experimental Results

To evaluate the performance of our proposed schemes, we did extensive experi-
ments. The implementation is based on the Pairing-Based Cryptography (PBC)
library (https://crypto.stanford.edu/pbc/). The bilinear map e : G0 ×G0 → GT

in our schemes is instantiated with a 512-bit supersingular curve of embedding
degree, with |p| = 160 (p is the prime order of G0 and GT). Other cryptographic
primitives used include RSA digital signature, AES for block cipher, AES-GCM
for authenticated encryption. In addition, SHA256 is used in place of a random
extractor.

https://crypto.stanford.edu/pbc/

138 Y. Yang et al.

Experimental Results. In practical cloud storage services, the performance at
the cloud server’s side and at the user’s side is of concern, which directly relates to
the PxDec algorithm and the UDec algorithm in our schemes. Our experiments
thus mainly gauge the computational performance of these two algorithms in
our schemes. Since our schemes are built upon Basic, the scheme in [32], we also
implemented Basic as the baseline for comparison.

Performance of Proxy Decryption. We run the PxDec algorithm on a desktop
PC with 2.66 GHz Intel Core2Duo and 3.25 GB RAM. The PxDec algorithm
is fed a set of all-AND access trees, i.e., an access tree with all non-leaf being
“AND” gates. The reason is that an access policy in the form of all-AND tree is
expected to impose the heaviest workload in the PxDec algorithm, compared to
the access tree with the same number of leaf nodes. The experimental results are
shown in Fig. 2, which demonstrates timing (i.e., computational performance of
the three schemes) with respect to the number of attributes (leaf nodes). The
experimental results are the average of repeating each experiment for 100 times.

Fig. 2. Computational performance of PxDec of three schemes

As evident from the Figure, (1) the three schemes have identical performance
in proxy decryption. This is apparent from the construction of our two schemes;
(2) the experimental results show that the PxDec algorithm performs linear
computations with respect to the number of attributes; (3) it takes about 1.2 s
to perform the PxDec algorithm in case of 100 attributes. Such a performance
should be acceptable for practical applications.

Performance of User Decryption. We run the UDec algorithm of the three
schemes on a smartphone configured with a 1.2 GHz CPU and 2 GB RAM. The
experimental results are depicted in Fig. 3, which indicates that on average, it
takes about 50 ms to decrypt a ciphertext in the Basic scheme, and about 110 ms
by our two schemes. The extra time taken in our schemes is mainly for digital
signature verification. These results suggest that it is indeed affordable for a
resource constraint device to perform the UDec algorithm.

Towards Revocable Fine-Grained Encryption of Cloud Data 139

Fig. 3. Computational performance of user decryption

5 Related Work

Cloud Data Encryption with ABE. A large number of cloud data encryption
schemes have been proposed in the literature. Of particular relevance to us are
those utilizing ABE. As an one-to-many encryption scheme, ABE is required to
provide user revocation support if deployed for encryption of cloud data.

Yu et al. [34] suggested adopting KP-ABE to achieve fine-grained data shar-
ing. To support user revocation, they proposed using the proxy re-encryption
(PRE) technique [3] to update users’ decryption keys. In this approach, the bulk
of the computationally expensive operations (e.g. re-generation of encrypted
cloud data due to user revocation) are performed by the cloud server. Although
a cloud server generally has significantly more computational resources, each
user’s quota is cost based. Similar limitation is observed in the scheme proposed
by Wang et al. [26]. Sahai et al. [24] proposed an attribute revocable CP-ABE
scheme, using ciphertext delegation and the piecewise property of private keys.
In particular, the system proceeds in epochs, and in each epoch, the attribute
authority generates a set of update keys (as the other piece of each private key)
according to the revocation list. All the ciphertexts are then re-encrypted with a
new access policy (the principal access policy remains unchanged, but the extra
access policy changes in each epoch). A similar attribute revocation method has
also been explored in the multi-authority setting [30,31], where users’ attributes
are issued by multiple independent attribute authorities. Similar to other ABE
schemes with built-in attribute revocation support (such as expiry time and
negative attributes), these schemes face the challenge of transforming attribute
revocation into efficient revocation for individual users. For example, the lim-
itation in the scheme proposed by Liu et al. [21] that uses the “expiry time”
mechanism for user revocation is the inability to support real-time or immedi-
ate revocation. To sum up, the overhead introduced by these schemes in the
re-generation of encrypted data and key update is large, although some have
managed to push much of the overhead for the cloud server to perform.

Yang et al. [29] were the first to propose proxy-assisted user revocation in
using ABE for secure cloud data sharing. The proxy-assisted user revocation

140 Y. Yang et al.

approach actually implements decryption capability splitting, where a data user’s
complete decryption capability is split into two parts – one is taken on by the
cloud server as a proxy while the other is taken on by the user herself. Subsequent
work such as [32,33] improved over [29] by reducing the strong trust assumption
upon the cloud server. Our work in this paper goes along this same line of
research, progressing [29,32,33] by further weakening the trust assumption.

We point out that “decryption capability splitting” contrasts with “decryp-
tion key splitting” to be reviewed shortly, and the two differ mainly in the way
keys are generated: in the latter, the key shares held by the proxy and the user
are generated by a single trusted entity; as a result, it suffers from the issue of
key escrow, from the user’s point of view. In contrast, “decryption capability
splitting” does not have the key escrow problem, as a user can generate her
own key and does need not disclose it to others. It is expected that “decryption
capability splitting” would be advantageous over “decryption key splitting” in
many applications.

Key-Split Cryptography. Boneh et al. [4] proposed “mediated RSA” to split
the private key of RSA into two shares, such that one share is delegated to an
online “mediator” (mediator is a similar concept as proxy in our setting) and
the other is given to the user. As RSA decryption and signing require the col-
laboration of both parties, the user’s cryptographic capabilities are immediately
revoked if the mediator does not cooperate. Recently, Chen et al. [8] presented
a mediated CP-ABE scheme, where the mediator’s key is issued over a set of
attributes. The scheme in [13] and the follow-up work [17,23] can also be viewed
as mediated ABE, although the purpose of these work is to outsource the costly
ABE decryption to the mediator, instead of for immediate revocation. As a final
note, our work in this paper is inspired by [17,23] to provide verifiability of cloud
decryption, but we end up desiring and attaining a higher level of verifiability.

6 Conclusions

In this paper, we went further along the line of reducing trust assumption upon
the cloud server in the proxy-assisted user revocation approach. In particular,
we first identified the necessity of achieving verifiability of cloud decryption, and
then gave a formulation of the system; then two concrete schemes were presented;
experiments were conducted and promising experimental results were obtained.
Our work in this paper walked revocable fine-grained cloud data sharing a step
further towards practical deployment.

Acknowledgments. Joseph K. Liu is supported by the Science and Technology Inno-
vation Projects of Shenzhen (GJHZ20160226202520268). Xinyi Huang is supported by
the Distinguished Young Scholars Fund of Fujian (2016J06013) and the State Key
Laboratory of Cryptology Research Fund.

Appendix: A Review of the Scheme in [32]

The details of the scheme in [32] are as follows.

Towards Revocable Fine-Grained Encryption of Cloud Data 141

Setup(1κ): On input a security parameter 1κ, the algorithm:
– determines a bilinear map, e : G0 × G0 → GT , where G0 and GT are

cyclic groups of κ-bit prime order p;
– selects g, which is a generator of G0;
– selects a cryptographic hash function, H : {0, 1}∗ → G0;
– picks α, β ∈R Zp, and sets params = (e,G0, g, h = gβ ,Gα = e(g, g)α) and

msk = (α, β).
UKGen(u): On input a user identity u, the algorithm chooses xu ∈R Zp, and

sets (pku = gxu , sku = xu). It can be seen that (pku, sku) is a standard
ElGamal type key pair. The cloud server also uses this algorithm to generate
a key pair, (pkCS = gxCS , skCS = xCS).

PxKGen(msk, pkCS, pku,Au): On input msk = (α, β), pkCS = gxCS , pku = gxu

and Au, the algorithm chooses r1, r2, ri ∈R Zp,∀i ∈ Au, and sets

PxKu = (k = (pkr1
CSpkα

ugr2)
1
β , k′ = gr1 ,∀i ∈ Au : {ki1 = gr2H(i)ri , ki2 = gri})

Encrypt(m, T): Taking as input a message, m, and T , the algorithm works
as follows: Firstly, it selects a polynomial, qn, for each node, n, (including
the leaf nodes) in T . These polynomials are chosen in a top-down manner
starting from the root node, rt. For each node n, set the degree dn of the
polynomial qn to be dn = tn − 1, where tn is the threshold value of node n.
Starting with the root node, rt, the algorithm chooses an s ∈R Zp, and sets
qrt(0) = s. It next selects drt other random points to define qrt completely.
For any other node n, it sets qn(0) = qparent(n)(index(n)), and chooses dn

other points to define qn. Let L be the set of leaf nodes in T . The algorithm
sets the ciphertext, c, as

c = (T , C = m · Gs
α, C ′ = hs, C ′′ = gs,

∀� ∈ L : {C�1 = gql(0), C�2 = H(att(�))ql(0)})

PxDec(skCS, PxKu, c): On input skCS = xCS, and PxKu = (k, k′,∀i ∈
Au : {ki1, ki2}) associating with a set of attributes, Au, and a ciphertext,
c = (T , C, C ′, C ′′,∀� ∈ L : {C�1, C�2}), the algorithm outputs an interme-
diate value, v if T (Au) = 1, and ⊥ otherwise. Specifically, the algorithm is
recursive. We first define an algorithm, DecNdn(PxKu, c), on a node, n, of
T . If node, n, is a leaf node, we let z = att(n) and define as follows: z /∈ Au,
DecNdn(PxKu, c) = ⊥; otherwise DecNdn(PxKu, c) = Fn, where

Fn =
e(kz1, Cn1)
e(kz2, Cn2)

=
e(gr2H(z)rz , gqn(0))
e(grz ,H(z)qn(0))

= e(g, g)r2.qn(0) (1)

We now consider the recursive case when n is a non-leaf node. The algorithm,
DecNdn(PxKu, c), then works as follows. For each child node ch of n, it calls
DecNdch(PxKu, c), and stores the output as Fch. Let Sn be an arbitrary tn-
sized set of child nodes, ch, such that Fch �= ⊥. If such a set does not exist,
then the node is not satisfied and DecNdn(PxKu, c) = Fn = ⊥. Otherwise,

142 Y. Yang et al.

we let the Lagrange coefficient, �i,S for i ∈ Zp, and a set S of elements in
Zp be �i,S(x) =

∏
j∈S,j �=i

x−j
i−j . We next compute

Fn =
∏

ch∈Sn

F
�i,S′

n
(0)

ch ,where i=index(ch),
S′

n={index(ch):ch∈Sn}

=
∏

ch∈Sn

(e(g, g)r2.qch(0))�i,S′
n
(0)

=
∏

ch∈Sn

(e(g, g)r2.qparent(ch)(index(ch)))�i,S′
n
(0)

=
∏

ch∈Sn

(e(g, g)r2.qn(i))�i,S′
n
(0)

= e(g, g)r2.qn(0) (2)

In this way, DecNdrt(PxKu, c) for the root node rt can be computed if
Trt(Au) = 1, where DecNdrt(PxKu, c) = e(g, g)r2.qrt(0) = e(g, g)r2.s = Frt.
Next, the proxy decryption algorithm computes

e(k,C ′)
e(k′, C ′′)xCSFrt

=
e((pkr1

CSpkα
ugr2)

1
β , hs)

e(gr1 , gs)xCSe(g, g)r2.s
= e(pku, g)s.α.

Finally, it sets v = (C = m · Gs
α, e(pku, g)s.α).

UDec(sku, v): On input a user private key, sku = xu, and an intermediate
value, v = (C = m·Gs

α, e(pku, g)s.α), the user decryption algorithm computes
m·Gs

α

(e(pku,g)s.α)x
−1
u

= m.

Revoke(u,LPxK): On input a user identity, u, and the Proxy Key list, LPxK ,
the user revoking algorithm deletes the entry corresponding to u from the
list – i.e. L′

PxK = LPxK\{u, PxKu}. In a real world application, an interface
should be provided to the data owner for the data owner to perform the
update in real-time.

References

1. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryp-
tion. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107.
Springer, Heidelberg (2002). doi:10.1007/3-540-46035-7 6

2. Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect
revocation modes. In: Proceedings of the IMA International Conference on Cryp-
tography and Coding, pp. 278–300 (2009)

3. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). doi:10.1007/BFb0054122

4. Boneh, D., Ding, X., Tsudik, G., Wong, C.M.: A method for fast revocation of
public key certificates and security capabilities. In: Proceedings of the USENIX
Security (2001)

http://dx.doi.org/10.1007/3-540-46035-7_6
http://dx.doi.org/10.1007/BFb0054122

Towards Revocable Fine-Grained Encryption of Cloud Data 143

5. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). doi:10.
1007/3-540-44448-3 41

6. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: Proceedings of IEEE S&P (2007)

7. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. http://competitions.cr.yp.to/caesar.html

8. Chen, Y., Jiang, L., Yiu, S.M., Au, M., Xuan, W.: Fully-RCCA-CCA-Secure
ciphertext-policy attribute based encryption with security mediator. In: Proceed-
ings of the 16th International Conference on Information and Communications
Security, ICICS 2014 (2014)

9. Cloud Security Alliance: Security guidance for critical areas of focus in cloud com-
puting (2009). http://www.cloudsecurityalliance.org

10. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractor: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

11. Network, E., Agency, I.S.: Cloud computing risk assessment. http://www.enisa.
europa.eu/act/rm/ les/deliverables/cloud-computing-risk-assessment

12. Gartner: Don’t trust cloud provider to protect your corporate assets,
28 May 2012. http://www.mis-asia.com/resource/cloud-computing/
gartner-dont-trust-cloud-provider-to-protect-your-corporate-assets

13. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of ABE cipher-
texts. In: Proceedings of the USENIX Security (2011)

14. Goyal, V., Pandy, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the ACM CCS 2006
(2006)

15. Hohenberger, S., Waters, B.: Online/Offline attribute-based encryption. In: Kraw-
czyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 293–310. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-54631-0 17

16. Jiang, T., Chen, X., Li, J., Wong, D.S., Ma, J., Liu, J.K.: Towards secure and
reliable cloud storage against data re-outsourcing. Future Gener. Comp. Syst. 52,
86–94 (2015)

17. Lai, J., Deng, R.H., Guan, C., Weng, J.: Attribute-based encryption with verifiable
outsourced decryption. IEEE Trans. Inf. Forensics Secur. 8(8), 1343–1354 (2013)

18. Liang, K., Au, M.H., Liu, J.K., Susilo, W., Wong, D.S., Yang, G., Yu, Y., Yang,
A.: A secure and efficient ciphertext-policy attribute-based proxy re-encryption for
cloud data sharing. Future Gener. Comp. Syst. 52, 95–108 (2015)

19. Liang, K., Susilo, W., Liu, J.K.: Privacy-preserving ciphertext multi-sharing con-
trol for big data storage. IEEE Trans. Inf. Forensics Secur. 10(8), 1578–1589 (2015)

20. Liu, Z., Wong, D.S.: Practical attribute based encryption: traitor tracing, revoca-
tion, and large universe. https://eprint.iacr.org/2014/616.pdf

21. Liu, J., Wan, Z., Gu, M.: Hierarchical attribute-set based encryption for scalable,
flexible and fine-grained access control in cloud computing. In: Proceedings of the
7th Information Security Practice and Experience Conference, ISPEC 2011 (2011)

22. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Proceedings of ACM CCS 2007, pp. 195–203
(2007)

23. Qin, B., Deng, R.H., Liu, S., Ma, S.: Attribute-based encryption with efficient
verifiable outsourced decryption. IEEE Trans. Inf. Forensics Secur. 10(7), 1384–
1393 (2015)

http://dx.doi.org/10.1007/3-540-44448-3_41
http://dx.doi.org/10.1007/3-540-44448-3_41
http://competitions.cr.yp.to/caesar.html
http://www.cloudsecurityalliance.org
http://www.enisa.europa.eu/act/rm/_les/deliverables/cloud-computing-risk-assessment
http://www.enisa.europa.eu/act/rm/_les/deliverables/cloud-computing-risk-assessment
http://www.mis-asia.com/resource/cloud-computing/gartner-dont-trust-cloud-provider-to-protect-your-corporate-assets
http://www.mis-asia.com/resource/cloud-computing/gartner-dont-trust-cloud-provider-to-protect-your-corporate-assets
http://dx.doi.org/10.1007/978-3-642-54631-0_17
https://eprint.iacr.org/2014/616.pdf

144 Y. Yang et al.

24. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext delega-
tion for attribute-based encryption. In: Proceedings of Advances in Cryptology,
Crypto 2012, pp. 199–217 (2012)

25. Waters, B.: Ciphertext-policy attribute-Based encryption: an expressive, efficient,
and provably secure realization. In: Proceedings of Practice and Theory in Public
Key Cryptography, PKC 2011, pp. 53–70 (2011)

26. Wang, G., Liu, Q., Wu, J.: Hierarhical attribute-based encryption for fine-grained
access control in cloud storage services. In: Proceedings of ACM CCS 2010 (2010)

27. Wang, S., Zhou, J., Liu, J.K., Yu, J., Chen, J., Xie, W.: An efficient file hierarchy
attribute-based encryption scheme in cloud computing. IEEE Trans. Inf. Forensics
Secur. 11(6), 1265–1277 (2016)

28. Wang, S., Liang, K., Liu, J.K., Chen, J., Yu, J., Xie, W.: Attribute-based data
sharing scheme revisited in cloud computing. IEEE Trans. Inf. Forensics Secur.
11(8), 1661–1673 (2016)

29. Yang, Y., Ding, X., Lu, H., Wan, Z., Zhou, J.: Achieving revocable fine-grained
cryptographic access control over cloud data. In: Proceedings of the 16th Informa-
tion Security Conference, ISC 2013 (2013)

30. Yang, K., Jia, X.: Expressive, efficient, and revocable data access control for multi-
authority cloud storage. IEEE Trans. Parallel Distrib. Syst. 25(7), 1735–1744
(2014)

31. Yang, K., Jia, X., Ren, K., Zhang, B., Xie, R.: DAC-MACS: Effective Data Access
Control for Multiauthority Cloud Storage Systems. IEEE Trans. Inf. Forensics
Secur. 8(11), 1790–1801 (2013)

32. Yang, Y., Liu, J.K., Liang, K., Choo, K.-K.R., Zhou, J.: Extended proxy-assisted
approach: achieving revocable fine-grained encryption of cloud data. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 146–
166. Springer, Cham (2015). doi:10.1007/978-3-319-24177-7 8

33. Yang, Y., Lu, H., Weng, J., Zhang, Y., Sakurai, K.: Fine-grained conditional proxy
re-encryption and application. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M.
(eds.) ProvSec 2014. LNCS, vol. 8782, pp. 206–222. Springer, Cham (2014). doi:10.
1007/978-3-319-12475-9 15

34. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained
data access control in cloud computing. In: Proceedings of IEEE INFOCOM 2010
(2010)

http://dx.doi.org/10.1007/978-3-319-24177-7_8
http://dx.doi.org/10.1007/978-3-319-12475-9_15
http://dx.doi.org/10.1007/978-3-319-12475-9_15

Identity-Based Encryption

Mergeable and Revocable Identity-Based
Encryption

Shengmin Xu(B), Guomin Yang(B), Yi Mu(B), and Willy Susilo(B)

School of Computing and Information Technology,
Institute of Cybersecurity and Cryptology, University of Wollongong,

Wollongong, Australia
{sx914,gyang,ymu,wsusilo}@uow.edu.au

Abstract. Identity-based encryption (IBE) has been extensively stud-
ied and widely used in various applications since Boneh and Franklin
proposed the first practical scheme based on pairing. In that seminal
work, it has also been pointed out that providing an efficient revocation
mechanism for IBE is essential. Hence, revocable identity-based encryp-
tion (RIBE) has been proposed in the literature to offer an efficient
revocation mechanism. In contrast to revocation, another issue that will
also occur in practice is to combine two or multiple IBE systems into
one system, e.g., due to the merge of the departments or companies.
However, this issue has not been formally studied in the literature and
the naive solution of creating a completely new system is inefficient. In
order to efficiently address this problem, in this paper we propose the
notion of mergeable and revocable identity-based encryption (MRIBE).
Our scheme provides the first solution to efficiently revoke users and
merge multiple IBE systems into a single system. The proposed scheme
also has several nice features: when two systems are merged, there is
no secure channel needed for the purpose of updating user private keys;
and the size of the user private key remains unchanged when multiple
systems are merged. We also propose a new security model for MRIBE,
which is an extension of the security model for RIBE, and prove that the
proposed scheme is semantically secure without random oracles.

Keywords: Identity-based encryption · Revocation · Merging

1 Introduction

Public key encryption is the most basic primitive of public key cryptography. How-
ever, it suffers from the key distribution and management problem. To overcome
this drawback, identity-based encryption (IBE) has been proposed, and it pro-
vides a new paradigm for public key encryption [2,3,5,20]. IBE uses the identity
string (e.g. emails or IP addresses) of a user as the public key of that user. The
sender using an IBE does not need to look up the public keys and the correspond-
ing certificates of the receivers, because the identities together with common pub-
lic parameters are sufficient for encryption. The private keys of all the users are
generated by a private key generator (PKG) which is a fully trusted third party.
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 147–167, 2017.
DOI: 10.1007/978-3-319-60055-0 8

148 S. Xu et al.

Revocation is an essential requirement in a cryptographic system when a
user’s key is compromised and/or any misuse is noticed. In PKI, revocation
is done via certificate revocation lists (CRLs). However, IBE cannot apply this
approach since there is no certificate in the system. Boneh and Franklin provided
the first practical IBE scheme, and they also proposed a revocation mechanism by
appending the timestamp in each identity string, but the workload of updating
the private key is linear to the size of the non-revoked users. To address this
issues, some practical Revocable IBE (RIBE) schemes have been proposed [1,
11,15]. Boldyreva et al. [1] proposed the first practical RIBE scheme with the
authority’s periodic workload to be logarithmic in the number of users while
keeping the scheme efficient in both encryption and decryption. However, their
RIBE scheme limits the number of users in the system. To overcome this problem,
they proposed a method to double the number of users in the system. However,
the size of the private key for each user is also increased whenever the size of
the system is increased. Some following works [11,15] have focused on improving
the security from selective security to adaptive security.

RIBE schemes are useful in many applications such as email systems and
data storage systems by disallowing unauthorised or revoked users to access
encrypted sensitive information in those systems. However, in practice it is also
possible that two or more IBE systems need to be merged due to various rea-
sons. As an example, a university wants to merge two departments: information
technology (IT) and computer science (CS). A naive approach to address this
issue is creating a completely new system and re-generating the public parame-
ter and private keys for all users. However, this approach is impractical since a
new private key needs to be generated for all the users in the combined system
and a secure channel needs to be established between each user and the PKG
for key distribution.

In this paper, we propose a new notion called mergeable and revocable
identity-based encryption (MRIBE) to solve the above problem. Our scheme
inherits the advantage of RIBE schemes by allowing the authority (i.e., PKG)
to efficiently revoke users. In addition, our scheme allows different systems to
be merged into a single system while keeping the size of the user private key
unchanged. Also, there is no secure channel needed for updating the user private
keys during the merging process.

1.1 Related Work

The concept of identity-based cryptography was introduced by Shamir [19], but
the first practical IBE scheme was proposed by Boneh and Franklin in 2001 [3]
and the scheme is proved secure in the random oracle model. Since the random
oracle model is an idealised model, Boneh and Boyen [2] proposed a selectively
security IBE scheme without random oracles in 2004. One year later, Waters [20]
proposed a new IBE scheme with adaptive security in the standard model, but
the size of the public parameter depends on the length of the user identity. To
reduce the size of the public parameter, Gentry [5] proposed another IBE scheme
in the standard model, but its security is based on a non-standard assumption.

Mergeable and Revocable Identity-Based Encryption 149

RIBE is an extension of IBE by providing an efficient revocation mechanism.
The issue of revocation in IBE has been pointed out by Boneh and Franklin in
their seminal work [3]. They suggested that users renew their private keys peri-
odically by representing an identity as ID‖T where ID is the real identity and
T is the current time. However, such an approach is inefficient and not scalable
because a secure channel between the PKG and each user needs to be established
each time, and the workload of generating new private keys is linear in the num-
ber of non-revoked users in each revocation epoch. Hanaoka et al. [8] proposed
an approach that the users periodically renew their private keys without inter-
acting with the PKG but each user needs to posses a tamper-resistant hardware
device. This assumption makes the solution rather impractical. Boldyreva et al.
[1] introduced a scalable but selectively secure RIBE by utilizing several tech-
niques including fuzzy identity-based encryption [13], secret sharing [19] and the
tree-based revocation method proposed for broadcast encryption [4,7,10,12,21].
Libert and Vergnaud [11] proposed the first adaptively secure RIBE scheme.
Seo and Emura [15] improved the security model in [1] to prevent decryption
key exposure attacks. Lee et al. [9] proposed a RIBE scheme by utilizing subset
difference (SD) method instead of the Complete Subtree (CS) method which is
used in all previous works. Recently, the techniques used in RIBE have also been
extended to achieve revocable hierarchical identity-based encryption (RHIBE)
[14,16,17].

1.2 Our Contributions

In this work, we propose a new cryptographic notion named mergeable and
revocable identity-based encryption (MRIBE), which is an extension of revoca-
ble identity-based encryption (RIBE). The proposed MRIBE scheme inherits all
the nice properties of RIBE, in particular the property of allowing efficient revo-
cation, and also allows multiple IBE systems to be merged into a single system,
which makes it more versatile in handling the dynamics that could occur in real
applications.

We also give a new security model for MRIBE by extending of the security
model for RIBE and prove that the proposed scheme is semantically secure in
the standard model. Our scheme is based on RIBE by introducing several new
algorithms to handle the merging functionality. The proposal scheme also has
some several nice features: there is no secure channel needed for key update
during the merging process; and the size of user private key remains unchanged
when multiple systems are merged, which makes the system scalable.

1.3 Paper Organization

Some preliminaries are introduced in the next section. In Sect. 3, we provide
definitions for the MRIBE scheme and its security model. We then present our
MRIBE construction in Sect. 4. The security proof of the proposed scheme is
provided in Sect. 5. Finally, we summarize our result in Sect. 6.

150 S. Xu et al.

2 Preliminaries

In this section, we introduce the notations used in this paper and review
the definitions for bilinear map and pseudorandom function family. We also
review some cryptographic primitives, including threshold secret sharing scheme,
fuzzy identity-based encryption scheme, and revocable identity-based encryption
scheme.

2.1 Notations

Let N denote the set of all natural numbers, and for n ∈ N, we define [n] :=
{1, ..., n}. “x ← y” denotes that x is chosen uniformly at random from y if y is a
finite set, x is output from y if y is a function or an algorithm, or y is assigned to
x otherwise. If x and y are strings, then “|x|” denotes the bit-length of x, “x‖y”
denotes the concatenation of x and y. For a finite set S, “|S|” denotes its size
and S[i] denotes the i-th value in the set S. If A is a probabilistic algorithm,
then “y ← A(x; r)” denotes that A computes y as output by taking x as input
and using r as randomness, and we just write “y ← A(x)” if we do not need
to make the randomness used by A explicit. If furthermore O is a function
or an algorithm, then “AO” means that A has oracle access to O. A function
ε(k) : N → [0, 1] is said to be negligible if for all positive polynomials p(k) and
all sufficiently large k ∈ N, we have ε(k) < 1/p(k). Throughout this paper, we
use the character “k” to denote a security parameter.

2.2 Bilinear Map

Let G and GT be two cyclic multiplicative groups of prime order p and g be a
generator of G. The map e : G × G → GT is said to be an admissible bilinear
pairing if the following properties hold true.

1. Bilinearity: for all u, v ∈ G and a, b ∈ Zp, e(ua, vb) = e(u, v)ab.
2. Non-degeneration: e(g, g) �= 1.
3. Computability: it is efficient to compute e(u, v) for any u.v ∈ G.

We say that (G, GT) are bilinear map groups if there exists a bilinear pairing
e : G × G → GT as above.

2.3 Pseudorandom Function Family

Goldreich, Goldwasser and Micali [6] introduced approaches to constructing ran-
dom functions in 1984. In this section, we review the definition of pseudorandom
function and pseudorandom function family.

Definition 1 (Pseudorandom Function). Let k ∈ N be a security parameter.
A function family F is associated with {Seedk}k∈N, {Domk}k∈N and {Rngk}k∈N.
Formally, for any

∑
← Seedk,D ←

∑
and R ← Rngk, F

k,
∑

,D,R
ω defines a

function which maps an element of D to an element of R. That is, Fk,
∑

,D,R
ω (ρ) ∈

R for any ρ ∈ D.

Mergeable and Revocable Identity-Based Encryption 151

Definition 2 (Pseudorandom Function Family). F is a pseudorandom
function family if F

k,
∑

,D,R
ω (ρi) and RF (ρi) computational indistinguishability

for any ρi ∈ D adaptively chosen by any polynomial time distinguisher, where
RF is a truly random function. That is, for any ρ ∈ D, RF (ρ) ← R.

2.4 Threshold Secret Sharing Scheme

Shamir’s secret sharing scheme [18] divides a secret s into n pieces s1, ..., sn

using a unique polynomial of degree (t − 1), any t out of n shares may be used
to recover the secret. The details are shown as follow.

Choose a group Zp and p ≥ n. Each user ui is associated with a public unique
number ui ∈ Zp and the user set U = {u1, ..., un}. Choose a random k−1 degree
polynomial p(x) = s +

∏k−1
i=1 aix

i where ai ∈ Z
∗
p. Each user in U obtains a share

si = p(ui). When k users come together and form a set J ⊆ U, the secret s can
be recovered by utilizing Lagrange coefficient and polynomial interpolation. For
x, i ∈ Z, set J ⊂ Z the Lagrange coefficient Δi,J(x) is defined as

Δi,J(x) =
∏

j∈J,j �=i

(
x − j

i − j

)

.

To recover p(x), we have following equation:

p(x) =
∑

i∈J

si · Δi,J(x).

Hence, we can recover the secret key s by setting the element x is equal to 0:

s = p(0) =
∑

i∈J

si · Δi,J(0).

2.5 Fuzzy Identity-Based Encryption Scheme

Sahai and Waters [13] proposed a new type of identity-based encryption scheme
called fuzzy identity-based encryption. It is the first attribute-based encryption
scheme. There are two schemes, one has to define the universe in the setup
phase, and the other one has a large universe. In the large universe construction,
it utilizes all elements of Z

∗
p as the universe and defines the following function

to cooperate Shamir’s secret sharing scheme to recover the plaintext from the
ciphertext with J attributes. For x ∈ Z; J ⊂ Z; g, h1, ..., h|J| ∈ G, we define

Hg,J,h1,...,h|J|
def= gx|J|−1

|J|∏

i=1

(
h

Δi,J(x)
i

)

The large universe construction can be used to build revocable identity-based
encryption scheme as follows. The private key generation centre issues the private
key for every user based on the identity ω and the time t in each revocation epoch
for the non-revoked user. The ciphertext is encrypted under the identity ω and
time t. So the revoked users cannot decrypt the ciphertext since they do not
have valid time t component.

152 S. Xu et al.

2.6 Identity-Based Encryption with Revocation Scheme

Boldyreva, Goyal and Kumar [1] points out that the revocation list can be imple-
mented by the complete subtree method [12]. Since our proposed scheme is
mergeable, we slightly modify their revocation scheme. Let xc denote the chil-
dren of node x. For the root node, it has 2 or more degrees since the mergence,
which is differ to the previous work [1]. For the non-root node, it only has two
children xl and xr. The detail of revocation algorithm is described as follows.

The function KUNodes takes three parameters as input, a binary tree T,
revocation list rl and time t. It outputs a set of nodes, which is the minimal set
of nodes in the binary tree T such that the non-revoked nodes have at least one
ancestor or themselves in the set and none of revoked nodes in revocation list
rl have any ancestor or themselves in the set. The function operates as follows.
First it marks all the ancestors of revoked nodes as revoked into the set X, then
output all the non-revoked children of revoked nodes in the set Y. Here is a
formal specification.

KUNodes(T, rl, t)
X,Y ← ∅
∀(vi, ti) ∈ rl if ti ≤ t then add Path(vi) to X
∀x ∈ X if xc �∈ X then add xc to Y
If Y = ∅ then add root to Y
Return Y

Our scheme is based on the binary tree except the root node has more than
two children. After merging, our revocation tree improves the degree of the root
node rather than the depth of the binary tree. Let N denote the number of user
for each system and NS denote the number of systems. Our tree structure keeps
the unchanged size of depth log2 N . Thus the number of the private key for
each user remains unchanged log2 N . After merging all NS system, the new root
node has 2NS degrees. It improves the width NS times compared to the original
revocation tree. However, this tree structure does not reduce the efficient since
NS is not a significant number and we can re-build the whole system if NS is
too large.

3 Formal Definitions and Security Models

3.1 Syntax of Mergeable and Revocable IBE

We start with defining the general syntax of a Mergeable and Revocable IBE
scheme. We recall and modify the definition of revocable IBE schemes as defined
in [1]. Each algorithm is run by one of following parties - key authority, sender
or receiver. The key authority maintains a revocation list rl and state st. We
define parameter NS as the number of system in our proposed scheme and use
the Greek characters as the subscript to represent the instantiations of different
systems in this section and following sections.

Mergeable and Revocable Identity-Based Encryption 153

Definition 3 (Mergeable and Revocable IBE). A mergeable and revocable
identity-based encryption scheme MRIBE = (S,SK,KU ,DK, E ,D,R,MP,
MSK,SKU) is defined by ten algorithms and has associated message space M,
identity space I and time space T . In what follows, we call an algorithm stateful
only if it updates rl or st.
The stateful Setup algorithm S is run by the key authority. Given a security
parameter k, a maximal number of users N and a number of systems NS, it
outputs one public parameters pp which shares to all NS systems, and generates
a public key pki, a master secret key mski, a revocation list rli and a state sti
for each system (i ∈ {1, ..., NS}).
The stateful Private Key Generation algorithm SK is run by the key author-
ity. Given the information of the public key, the master secret key and the state
(pki,mski, statei) in system i and an identity ω ∈ I, it outputs private key skω,i

and an updated state sti.
The Key Update algorithm KU is run by the key authority. Given the infor-
mation of the public key, the master secret key, the revocation list and state
(pki,mski, rli, sti) in system i and a revocation epoch t ∈ T , it outputs a key
update kut,i.
The Decryption Key Generation algorithm DK is run by the receiver. Given
a private key skω,i and a key update kut,i, it outputs decryption key dkω,t,i or a
special symbol ⊥ indicating that ω was revoked.
The Encryption algorithm E is run by the sender. Given a public key pki in
system i and an identity ω ∈ I, an encryption time t ∈ T and a message m ∈ M,
it outputs a ciphertext ci. For simplicity and w.l.o.g. we assume that ω and t are
efficiently computable from ci.
The Decryption algorithm D is run by the receiver. Given a decryption key
dkω,t,i and a ciphertext ci, it outputs a message m ∈ M or a special symbol ⊥
indicating that the ciphertext is invalid.
The stateful Revocation algorithm R is run by the key authority. Given an
identity to be the revoked ω ∈ I, revocation list rli and state sti in system i and
revocation time t ∈ T it outputs updated revocation list rli.
The stateful Merge Parameter algorithm MP is run by the key authority.
Given the public key pkα, the master key mskα, the revocation list rlα and the
state stα in system α, the public key pkβ, the master key mskβ, the revocation
list rlβ and the state stβ in system β, it outputs updated revocation list rlβ and
state stβ.
The Merge Private Key algorithm MSK is run by the key authority. Given
the public key pkα, the master key mskα and the state stα in system α, the public
key pkβ, the master key mkβ and the state stβ in system β and an identity ω ∈ I,
it outputs a mergeable private key skω,α,β.
The Private Key Update algorithm SKU is run by the receiver. Given the
private key skω,α and the mergeable private key skω,α,β, it outputs the private
key skω,β.

154 S. Xu et al.

Correctness requires that, for any outputs of S, any m ∈ M, ω ∈ I and
t ∈ T , all possible states and revocation lists, the following experiments return
1 with probability 1:

– The key authority generates all public parameters for NS systems:

(pp, {pki,mski, rli, sti}i∈{1,...,NS}) ← S(k,N,NS);α, β ← {1, ..., NS}.

– ω1 is a valid user in system α:

(skω1,α, stα) ← SK(pkα,mskα, stα, ω1); kut,α ← KU(pkα,mskα, rlα, stα, t);
dkω1,t,α ← DK(skω1,α, kut,α); c1 ← E(pkα, ω1, t,m1).
If D(dkω1,t,α, c1) �= m1 then return 0; else return 1

– ω2 is a revoked user in system β:

(skω2,β , stβ) ← SK(pkβ ,mskβ , stβ , ω2); rlβ ← R(ω2, rlβ , stβ , t);
kut,β ← KU(pkβ ,mskβ , rlβ , stβ , t).

If DK(skω2,β , kut,β) �= ⊥ then return 0; else return 1

– ω1 is a valid user in system α and merges to system β:

(rlβ , stβ) ← MP({pki,mski, rli, sti}i∈{α,β});
skω1,α,β ← MSK({pki,mski, sti}i∈{α,β}, ω1);

skω1,β ← SKU(skω1,α, skω1,α,β);
dkω1,t,β ← DK(skω1,β , kut,β); c3 ← E(pkβ , ω1, t,m3).
If D(dkω1,t,β , c3) = m3 then return 1; else return 0.

3.2 Security of Mergeable and Revocable IBE

We define the selective-mergeable-and-revocable-ID security for mergeable and
revocable IBE scheme. Our security model is based on the model for selective-
revocable-ID security defined in [1].

Definition 4 (sMRID security). Let MRIBE = (S,SK,KU ,DK, E ,D,R,
MP,MSK,SKU) be a mergeable and revocable IBE scheme defined by the secu-
rity parameter k, the maximum number of user N and the number of systems NS.
The adversary first outputs the challenging identity ω∗, a challenging time t∗ and
a subscript of challenging public key i∗, and also some state information it wants
to preserve. Later it is given access to five oracles that correspond to the algo-
rithms of the scheme. The Private Key Generation Oracle OSK(·, ·) takes a
public key pki and an identity ω, runs SK(pki,mski, sti, ω) to return the private
key skω,i.
The Revocation Oracle OR(·, ·) takes input an identity ω and a time t and
runs R(ω, rli, sti, t) to return the updated revocation list rli else return ⊥ if the
identity ω does not exist in any system.

Mergeable and Revocable Identity-Based Encryption 155

The Key Update Oracle OKU (·, ·) takes input a public key pki and a time t
and runs KU(pki,mski, rli, sti, t) to return key update kut,i.
The Merge Parameter Oracle OMP(·, ·) takes input public key pkα and public
key pkβ and runs MP({pki, mski, rli, sti}i∈{α,β}) to return updated revocation
list rlβ and state stβ. The parameters of system α are no longer valid.
The Merge Private Key Oracle OMSK(·, ·, ·) takes input an identity ω, a
public key pkα and a public key pkβ and runs MSK({pki,mski, sti}i∈{α,β}, ω)
to return the mergeable private key skω,α,β else return ⊥ if related MP(·, ·) does
not query.

Experiment Expsmrid−cpa
MRIBE (k,N,NS)

b ← {0, 1}
(ω∗, t∗, i∗, state) ← A(k,N,NS)
(pp, {pki,mski, rli, sti}i∈{1,...,NS}) ← S(k,N,NS)
(m0,m1, state) ← AOSK,OR,OKU ,OMP ,OMSK(state)
c∗ ← E(pki∗ , ω∗, t∗,mb)

d
$←− AOSK,OR,OKU ,OMP ,OMSK(pki∗ , c∗, state)

If b = d return 1 else return 0.

Note that the following conditions must always hold:

1. m0,m1 ∈ M and |m0| = |m1|.
2. If OSK(·, ·) has been queried on message (pk, ω) then the identity ω has been

initialized or merged in the system with the public key pk.
3. OKU (·, ·) and OR(·, ·) can be queried on time which is greater than or equal to

the time of all previous queries in each system i.e. the adversary is allowed to
query only in a non-decreasing order of time. Also, the oracle OR(·, ·) cannot
be queried on time t if OKU (·, ·) was queried on t.

4. If OR(·, ·) has been queried on (ω∗, t) for any t ≤ t∗ then OSK(·, ·) and
OMSK(·, ·, ·) can be queried on identity ω∗ without constrain. Otherwise,
OSK(·, ·) and OMSK(·, ·, ·) can be queried on identity ω∗ but these queries
cannot derive the secret key skω∗,i∗ in a trivial way. The details are described
as follows.

The relationships between private key generation oracle OSK(·, ·) and merge pri-
vate key generation oracle OMSK(·, ·, ·) has been described in Fig. 1. Suppose the
challenging subscript i∗ is γ (challenging public key is pkγ) and the challenging
identity ω∗ is a non-revoked user, the adversary cannot obtain the secret key
skω,γ and then there are two situations to be considered.

– OSK(pkγ , ω∗) cannot be queried.
– Any queries are equivalent to OSK(pkγ , ω∗) cannot be queried, e.g. if OSK(pkα,

ω∗) and OMSK(ω∗, pkα, pkβ) have been queried, OMSK(ω∗, pkβ , pkγ) can-
not be queried since the former two queries are equivalent to the query
OSK(pkβ , ω∗) and it is trial to gain the private key skγ by continually querying
OMSK(ω∗, pkβ , pkγ).

156 S. Xu et al.

We use two database called DSK and DMSK to record the messages queried
to the OSK(ω∗, ·) and OMSK(·, ·, ω∗) oracles, respectively. We can decide if the
adversary can recover the secret key skω∗,i∗ by checking the database DSK and
DMSK.

System α

OSK(pkα, ω∗)

System β

OSK(pkβ , ω∗)

System γ

OSK(pkγ , ω∗)

OMSK(ω∗, pkα, pkβ) OMSK(ω∗, pkβ , pkγ)

Fig. 1. Relationships of OSK(·, ·) and OMSK(·, ·, ·)

We define the advantage of the adversary Advsmrid−cpa
MRIBE,A,N,NS

(k) as

2 · Pr
[
Expsmrid−cpa

MRIBE,A,N,NS
(k) = 1

]
− 1

The scheme is said to be sMRID-CPA secure if the function Advsmrid−cpa
MRIBE,A,N,NS

(k)
is negligible in k for any efficient algorithm A.

4 The Proposed Schemes

Setup (pp, {pki,mski, rli, sti}i∈{1,...,NS}) ← S(k,N,NS): given a security para-
meter k ∈ N, a maximal number of users N ∈ N and a maximal number of
systems NS ∈ N. The key authority defines the valid space of M, I, T , define
the pseudorandom function Fσ : {0, 1}∗ → Z

∗
p as well as a complete binary tree

T with at least N leaf nodes and does the following.

1. Select bilinear groups (G, p, g) as the public parameter pp which shares to all
systems.

2. For i ∈ {1, ..., NS} do the following:
(a) Randomly choose (ai, ri) ← Z

∗
p and set g1,i ← gai as well as randomly

choose g2,i, h1,i, h2,i, h3,i ← G.
(b) Return public key pk = (g1,i, g2,i, h1,i, h2,i, h3,i), master secret key mski =

(ai, ri), revocation list rli = ∅ and state sti = T.

Private Key Generation (skω,i, sti) ← SK(pki,mski, sti, ω): given an identity
ω ∈ I, a public key pki, a master key mski and a state sti. The key authority
generates private key skω,i for the receiver with identity ω ∈ I and the updated
state st.

1. Choose an unassigned leaf v from Ti and associate it with ω ∈ I.
2. For all node x ∈ Path(v) do the following:

(a) Retrieve ax from T if it was defined. Otherwise, choose it at random
ax ← Zp and store ax at node x in sti = T.

Mergeable and Revocable Identity-Based Encryption 157

(b) Generate random value rx ← Fri
(ω‖x) bases on random value ri in master

secret key msk, the identity ω ∈ I as well as the label value x and set

Dx ← gaxω+ai
2,i Hg2,i,J,h1,i,h2,i,h3,i

(ω)rx ; dx ← grx .

3. Return private key skωi
= {(x,Dx, dx)}x∈Path(v) and the updated state sti =

T.

Key Update kut,i ← KU(pki,mski, rli, sti, t): given a public key pki, a master
secret key mski, a key update time t ∈ T , a revocation list rli and a state sti.
For all nodes x ∈ KUNodes(Ti, rli, t).

1. Generate random value rx ← Zp and set

Ex ← gaxt+a
2,i Hg2,i,J,h1,i,h2,i,h3,i

(t)rx ; ex ← grx .

2. Return key update kut = {(x,Ex, ex)}x∈KUNodes(Ti,rli,t).

Decryption Key Generation dkω,t,i ← DK(skω,i, kut,i): given a private key
skω,i and a key update kut,i. The receiver generates the decryption key dkω,t,i

as follows.

1. Parse skω,i as {(j,Dj , dj)}j∈�j , kut,i as {(k,Ek, ek)}k∈�k for some set of nodes
	j,	k. If there exists a pair (j, k) s.t. j = k, generate the decryption key

dkω,t,i ← (Dj , Ek, dj , ek).

Otherwise, set the decryption key dkω,t,i as ⊥.
2. Return the decryption key dkω,t,i.

Encryption ci ← E(pki, ω, t,m): given an identity ω ∈ I, a public key pki, an
encryption time t ∈ T and a message m ∈ M. The sender encrypts the message
m ∈ M as follows.

1. Randomly choose z ← Zp and generate ciphertext c1, c2, cω, ct.

c1 ← m · e(g1,i, g2,i)z; c2 ← gz;
cω ← Hg2,i,J,h1,i,h2,i,h3,i

(ω)z; ct ← Hg2,i,J,h1,i,h2,i,h3,i
(t)z.

2. Return ciphertext c = (ω, t, c1, c2, cω, ct).

Decryption m ← D(dkω,t,i, c): given a decryption key dkω,t,i and a ciphertext
c. The receiver decrypts the ciphertext c as follows:

1. Compute the message m:

m ← c1

(
e(d, cω)
e(D, c2)

) t
t−ω

(
e(e, ct)
e(E, c2)

) ω
ω−t

.

2. Return the message m.

158 S. Xu et al.

Revocation rli ← R(ω, rli, sti, t): given an identity to be revoked ω ∈ I, a
revocation list rli, a state sti and a revocation time t ∈ T . The key authority
updates the revocation list rli as follows:

1. For all nodes v associated with identity ω ∈ I add (v, t) to rl as follows:

rli ← rli ∪ (v, t).

2. Return the updated revocation list rli.

Merge Parameter (rlβ , stβ) ← MP({pki,mski, rli, sti}i∈{α,β}): given all the
system parameters {pki,mki, rli, sti}i∈{α,β} from system α and system β. The
key authority generates system parameters which bases on the system parame-
ters in the system β as follows:

1. Update the revocation list rlβ by uniting two revocation lists rlα and rlβ .

rlβ ← rlα ∪ rlβ .

2. Update the state stβ as follows:
(a) Let Tα denote the root node in the binary tree in the system α. Remove

the Tα in the state stα. The detail of the tree structure list in system α
is in Fig. 2.

stα ← stα \ Tα.

Tα

Tα‖0

Tα‖00

...
...

Tα‖01

...
...

Tα‖1

Tα‖10

...
...

Tα‖11

...
...

Fig. 2. Tree structure revocation list in System α

(b) Update the state stβ by uniting it and stα and the details in the Fig. 3.
Note that the new tree is a binary tree except the root node has more
than two children.

stβ ← stα ∪ stβ .

3. Return the updated revocation list rlβ and the updated state stβ .

Merge Private Key skω,α,β ← MSK({pki,mski, sti}i∈{α,β}, ω): given all the
system parameters {pki,mki, sti}i∈{α,β} from system α and system β and an
identity ω ∈ I. The key authority generates the mergeable private key skω,α,β .

Mergeable and Revocable Identity-Based Encryption 159

Tβ

Tβ‖0

Tβ‖00

...
...

Tβ‖01

...
...

Tβ‖1

Tβ‖10

...
...

Tβ‖11

...
...

Tα‖0

Tα‖00

...
...

Tα‖01

...
...

Tα‖1

Tα‖10

...
...

Tα‖11

...
...

Fig. 3. Tree structure revocation list after merging α and β

1. Parse pki = (g, g1,i, g2,i, h1,i, h2,i, h3,i) and mki = (ai, ri) for i = α, β.
2. Generate system parameters aα,β , g1,α,β , g2,α,β , h1,α,β , h2,α,β , h3,α,β base on

the system parameters from the system α and the system β.

aα,β = aβ − aα.g1,α,β = g1,β/g1,α; g2,α,β = g2,β/g2,α;
h1,α,β = h1,β/h1,α;h2,α,β = h2,β/h2,α;h3,α,β = h3,β/h3,α.

3. For all node x ∈ Path(v) do the following:
(a) Compute random values rx,α, rx,β and rx,α,β .

rx,α = Frα
(ω‖x); rx,β = Frβ

(ω‖x); rx,α,β = rx,β − rx,α.

(b) Let ax,α and ax,β denote the value in node in system α and system β,
respectively.
If x is the root node in system α. Then compute

Dx,α,β = g
ax,βω−ax,αω+aα,β

2,α · g
ax,βω+aβ

2,α,β · Hg2,α,J,h1,α,h2,α,h3,α
(ω)rx,α,β .

Hg2,α,β ,J,h1,α,β ,h2,α,β ,h3,α,β
(ω)rx,β .

dx,α,β = grx,α,β .

Else, compute

Dx,α,β = g
ax,α,β

2,α · g
ax,αω+aβ

2,α,β · Hg2,α,J,h1,α,h2,α,h3,α
(ω)rx,α,β ·

Hg2,α,β ,J,h1,α,β ,h2,α,β ,h3,α,β
(ω)rx,β .

dx,α,β = grx,α,β .

(c) Return skω,α,β = {(x,Dx,α,β , dx,α,β)}x∈Path(v).

Private Key Update skω,β ← SKU(skω,α, skω,α,β): Parse skω,α as
{(i,Di,α, di,α)}i∈�i and s̃kω,α,β as {(j, Dj,α,β , dj,α,β}j∈�j for some set of nodes
	i and 	j. The receiver generates updated private key skω,β as follows.

160 S. Xu et al.

1. For i ∈	i do the following:

skω,β ← (i,Di,α · Di,α,β , di,α · di,α,β)

2. Return the private key skω,β .

5 Security Proof

Definition 5 (Decisional Bilinear Diffie-Hellman). Let G be a prime order
bilinear group generator. The Decisional Bilinear Diffie-Hellman (DBDH) prob-
lem is said to be hard for G if for every efficient adversary A its advantage
Advdbdh

G,B (k) defined as

Pr[Expdbdh−real
G,A (k) = 1] − Pr[Expdbdh−rand

G,A (k) = 1]

is a negligible function in k, and where the experiments are as follows:

Experiment Expdbdh−real
G,A (k) Experiment Expdbdh−rand

G,A (k)
(G, p, g) ← G(k);x, y, z ← Zp (G, p, g) ← G(k);x, y, z, w ← Zp

X ← gx;Y ← gy;Z ← gz; X ← gx;Y ← gy;Z ← gz;
W ← e(g, g)xyz W ← e(g, g)w

d ← A(k,G, p, g,X, Y, Z,W) d ← A(k,G, p, g,X, Y, Z,W)
Return d Return d

Theorem 1. Let G be a prime order bilinear group generator and MRIBE be
the associated mergeable and revocable identity-based encryption scheme proposed
above. Then for any adversary A attacking sMRID security (defined in Sect. 3.2)
of MRIBE with N users in each system and NS systems, and making qp private
key generation queries, qr revocation queries, qk key update generation queries,
qm merge parameter queries and qmp merge private key generation queries, there
exists an adversary B solving DBDH problem for G such that

Advsmrid−cpa
MRIBE,A,N,NS

(k) ≤ 4 · Advdbdh
G,B (k)

Please refer to AppendixA for the detailed proof.

6 Conclusions

In this paper, we proposed a new variant for Revocalbe Identity Based Encryp-
tion. Our proposed scheme allows not only efficient revocation but also efficient
merging of multiple systems. Compared with all previous RIBE schemes, our
construction does not incur any additional cost. Moreover, the size of the user
private key remains unchanged when multiple systems are merged and there is
no secure channel required for the purpose of key update during the merging
process.

Mergeable and Revocable Identity-Based Encryption 161

A Security Proof

Proof. The proof is similar to that of [1], except we meed to handle multiple
systems and the mergeable algorithms. We construct an adversary B for the
DBDH problem associated with G. B gets (k, G, p, g,X, Y, Z,W) as input and it
has to return a bit d. It is going to use A. For answering oracles, we define the
following four functions. For i, j, l, r ∈ Zp, S = {0, j} define

F1(g2, h1, h2, h3, i, l, r)
def= gl

2Hg2,h1,h2,h3(i)
r, F2(r)

def= gr,

F3(g1, g2, i, j, l, r)
def= g

lΔj,S(i)
2

(

g
−f(i)

i2+u(i)
1

(
g

i2+u(i)
2 gf(i)

)r
)Δ0,S(i)

,

F4(g1, g2, i, r)
def=

(

g
−1

i2+u(i)
1 gr

)Δ0,S(i)

.

Setup: B receives the challenging message (k, G, p, g,X, Y, Z,W) and sets the
system parameters as follows.

– B chooses the N,NS ∈ N and sends the security parameter (k,N,NS) to A.
A generates the challenging identity ω∗, the challenging time t∗, the subscript
of challenging public key i∗ and the state for some related information about
(ω∗, t∗, i∗), then sends (ω∗, t∗, i∗, state) to B.

– B chooses a random bit b ← {0, 1} and initializes the database D,DSK,
DMSK ← ∅, where D is used to record the historical information of the chal-
lenging identity ω∗, and DSK,DMSK records information of the challenging
identity ω∗ to verify whether to abort.

– B simulates the system parameters for all NS systems. B sets public parameter
pp = (G, p, g) and randomly picks a value ir ← {1, 2, ..., NS}, where the
challenging identity ω∗ is initialized in the system with public key pkir

. Then,
B updates the database D ← (pkω∗ , ω∗), where 	pkω∗ ← 	pkω∗ ∪ {pkir

}. ∀j ∈
{1, 2, ..., NS} then:
1. Randomly pick and store rj , r1,j , r2,j ← Z

∗
p in the system j and generate

the parameters g1,j and g2,j .

g1,j ← Xr1,j , g2,j ← Y r2,j .

2. Pick random second-degree polynomials f(x), u(x) with coefficients in Zp

s.t. u(x) = −x2 for x = ω∗, t∗, o.w. u(x) �= −x2. ∀i = {1, 2, 3} then: set
hi,j ← g

u(i)
2,j gf(i).

3. Set the public key pkj ← (g, g1,j , g2,j , h1,j , h2,j , h3,j).
– B sends the public parameter pp and public keys {pki}i∈{1,2,...,NS} to A.
– B simulates the revocation list and the binary tree. ∀j = {1, 2, ..., NS} then:

let rlj be an empty set and Tj be a binary tree with at least N leaf nodes. B
picks a leaf node v∗ from Tir

, where the challenging identity ω∗ is assigned
to the leaf v∗, and chooses a random bit rev ← {0, 1}, where 0 means ω∗ is
a non-revoked user, otherwise, he is a revoked user.

162 S. Xu et al.

OSK(pki, ω): A issues up to qp private key generation queries. B responds to a
query on message (pki, ω) as follows.

– If ω = ω∗, B simulates the private key skω,i for the challenging identity ω∗.
1. If rev = 0, set DSK ← DSK ∪ {pki} and abort if A is able to obtain

the secret key skω∗,i∗ by checking the transactions in database DSK and
DMSK in Fig. 1.

2. Else set v ← v∗. ∀x ∈ Path(v) then:
(a) Set rx ← Fri

(ω∗‖x), where mski = (ai, ri).
(b) If �lx then randomly choose lx ← Zp and store lx in node x.
(c) Set (Dx, dx) and update private key skω∗,i ← skω∗,i ∪ (x,Dx, dx).

Dx ← F1(g2,i, h1,i, h2,i, h3,i, ω
∗, lx, rx), dx ← F2(rx).

– If ω �= ω∗, B simulates the private key skω,i for the identity ω. ∀x ∈ Path(v)
then:
1. Set rx ← Fri

(ω‖x), where mski = (ai, ri).
2. If �lx then randomly choose lx ← Zp and store lx in node x.
3. If rev = 0, set (Dx, dx) and update private key skω,i ← skω,i∪(x,Dx, dx).

Dx ← F3(g1,i, g2,i, ω, t∗, lx, rx), dx ← F4(g1,i, g2,i, ω, rx).

4. If rev = 1, simulate the private key skω,i depends on the Path(v) and
Path(v∗).
(a) ∀x ∈ (Path(v) \ Path(v∗)) then: set (Dx, dx) and update private key

skω,i ← skω,i ∪ (x,Dx, dx).

Dx ← F3(g1,i, g2,i, ω, t∗, lx, rx), dx ← F4(g1,i, g2,i, ω, rx).

(b) ∀x ∈ (Path(v) ∩ Path(v∗)) then: set (Dx, dx) and update private key
skω,i ← skω,i ∪ (x,Dx, dx).

Dx ← F3(g1,i, g2,i, ω, ω∗, lx, rx), dx ← F4(g1,i, g2,i, ω, rx).

– Return the private key skω,i = {(x,Dx, dx)}x∈Path(v).

OR(ω, t): A issues up to qr revocation queries. B responds to a query on message
(ω, t) as follows. If (·, ω) ∈ D, for all leaf nodes v associated with identity ω add
(v, t) to revocation list rli ← rli ∪ (v, t), then return rli else return ⊥.
OKU (pki, t): A issues up to qk key update generation queries. B responds to a
query on message (pki, t) as follows.

– If t �= t∗, B simulates the key update kut,i for the system i.
1. If rev = 0, ∀x ∈ KUNodes(T, rl, t) then: rx ← Z

∗
p, set Ex and dx and

update kut,i ← kut,i ∪ (x,Ex, ex).

Ex ← F3(g1,i, g2,i, t, t
∗, lx, rx), ex ← F4(g1,i, g2,i, t, rx).

Mergeable and Revocable Identity-Based Encryption 163

2. If rev = 1, simulate the key kut depends on the Path(v) and Path(v∗).
(a) ∀x ∈ (KUNodes(T, rl, t)\Path(v∗)) then: rx ← Z

∗
p, set Ex and dx and

update kut,i ← kut,i ∪ (x,Ex, ex).

Ex ← F3(g1,i, g2,i, t, t
∗, lx, rx), ex ← F4(g1,i, g2,i, t, rx).

(b) ∀x ∈ (KNodes(T, rl, t) ∩ Path(v∗)) then: rx ← Z
∗
p, set Ex and dx and

update kut,i ← kut,i ∪ (x,Ex, ex).

Ex ← F3(g1,i, g2,i, t, ω
∗, lx, rx), ex ← F4(g1,i, g2,i, t, rx).

– If t = t∗, B simulates the key update kut,i in the challenging time t∗ for the
system i.
1. If rev = 1 and ∀t ≤ t∗ we have that (ω∗, t) �∈ rli∗ then abort since

challenging identity ω∗ must be revoked when rev = 1.
2. Else, ∀x ∈ KUNodes(T, rl, t) then: rx ← Z

∗
p, set Ex and dx and update

kut,i ← kut,i ∪ (x,Ex, ex).

Ex ← F1(g2,i, h1,i, h2,i, h3,i, t
∗, lx, rx), ex ← F2(rx).

– Return the key update kut,i = {(x,Ex, ex)}x∈KUNodes(T,rl,t).

OMP(pkα, pkβ): A issues up to qm merge parameter generation queries. B
responds to a query on message (pkα, pkβ) by updating the revocation list rlβ ,
state stβ and the database D as follows.

– Update the revocation list and state rlβ ← rlα ∪ rlβ , stβ ← stβ ∪ stα \ Tα.
– If ω∗ is involved in the system with pkα, then updating the database D.

∀(pk, ·) ∈ D then set len = | 	pk|, if pk[len] = pkα, 	pk ← 	pk ∪ pkβ .
– Return the updated revocation list rlβ and state stβ .

OMSK(ω, pkα, pkβ): A issues up to qmp merge private key generation queries. B
responds to a query on message (ω, pkα, pkβ).

– If ω = ω∗, B simulates the private key skω,α,β for challenging identity ω.
1. If rev = 0, set DMSK ← DMSK ∪ {(pkα, pkβ)} and abort if A is able

to obtain the secret key skω∗,i∗ by checking the transactions in database
DSK and DMSK in Fig. 1.

2. Else set v ← v∗. ∀x ∈ Path(v) then:
(a) Set rx,α ← Grα

(ω‖x) and rx,β ← Frβ
(ω‖x).

(b) Set (Dx,α,β , dx,α,β) and update private key skω,α,β ← skω,α,β ∪
(x,Dx,α,β , dx,α,β), where the union symbol is used to combine the
secret keys since this algorithm will return secret keys belong to
Path(v).

Dx,α,β =
F1(g2,β , h1,β , h2,β , h3,β , ω, lx,β , rx,β)
F1(g2,α, h1,α, h2,α, h3,α, ω, lx,α, rx,α)

, dx,α,β =
F2(rx,β)
F2(rx,α)

.

164 S. Xu et al.

– If ω �= ω∗, B simulates the private key skω,α,β for the identity ω. ∀x ∈ Path(v)
then:
1. Set rx,α ← Grα

(ω‖x) and rx,β ← Grβ
(ω‖x).

2. If rev = 0, set (Dx, dx) and update private key skω ← skω ∪ (x,Dx, dx),
where the union symbol is used for the same reason in previous section.

Dx,α,β =
F3(g1,β , g2,β , ω, t∗, lx,β , rx,β)
F3(g1,α, g2,α, ω, t∗, lx,α, rx,α)

, dx,α,β =
F4(g1,β , g2,β , ω, rx,β)
F4(g1,α, g2,α, ω, rx,α)

.

3. If rev = 1, simulate the private key skω depends on the Path(v) and
Path(v∗).
(a) ∀x ∈ (Path(v) \ Path(v∗)) then: set (Dx, dx) and update private key

skω ← skω ∪ (x,Dx, dx).

Dx,α,β =
F3(g1,β , g2,β , ω, t∗, lx,β , rx,β)
F3(g1,α, g2,α, ω, t∗, lx,α, rx,α)

, dx,α,β =
F4(g1,β , g2,β , ω, rx,β)
F4(g1,α, g2,α, ω, rx,α)

.

(b) ∀x ∈ (Path(v) ∩ Path(v∗)) then: set (Dx, dx) and update private key
skω ← skω ∪ (x,Dx, dx).

Dx,α,β =
F3(g1,β , g2,β , ω, ω∗, lx,β , rx,β)
F3(g1,α, g2,α, ω, ω∗, lx,α, rx,α)

, dx,α,β =
F4(g1,β , g2,β , ω, rx,β)
F4(g1,α, g2,α, ω, rx,α)

.

4. Return the private key skω,α,β = {(x,Dx,α,β , dx,α,β)}x∈Path(v).

Output: A outputs two message m0 and m1. B picks a random bit b ← {0, 1}
and generates the challenging ciphertext c∗ = (c∗

1, c
∗
2, cω∗ , ct∗) and then sends c∗

to A. A outputs a bit d. If b = d, B outputs 1 else output 0.

c∗
1 = mb · W r1,ω∗ ·r2,ω∗ , c∗

2 = Z, cω∗ = Zf(ω∗), ct∗ = Zf(t∗).

If any oracles abort, B outputs 1.

A.1 Analysis

Let sreal, srand denote the events that none of the oracles abort in
Expdbdh−real

G,B (k), Expdbdh−rand
G,B (k) respectively. Then

Pr[sreal] = Pr[srand] ≥ 1/2.

The probability that OSK(pki, ω), OMSK(ω, pkα, pkβ) and OKU (pki, t) oracles
abort depends on the bit rev which are chosen independently from whether B is
in Expdbdh−real

G,B (k) or Expdbdh−rand
G,B (k). So, Pr[sreal] = Pr[srand].

OSK(pki, ω) and OMSK(·, ·, ω∗) oracles can be queried on ω∗ without con-
strain only if OR(ω, t) oracle was queried on (ω∗, t) for any t ≤ t∗. Thus, we
have

Mergeable and Revocable Identity-Based Encryption 165

Pr[ω = ω∗] ≤ Pr[(ω∗, t) ∈ rlω∗ ,∀t ≤ t∗]
⇒ 1 − Pr[ω = ω∗] ≥ Pr[(ω∗, t) �∈ rlω∗ ,∀t ≤ t∗]
⇒ 1 − Pr[ω = ω∗] ≥ Pr[(t = t∗) ∧ (ω∗, t) �∈ rlω∗ ,∀t ≤ t∗]

We see that OSK(pki, ω) oracles abort if ω = ω∗ and OKU (t) oracle aborts if
rev = 1, t = t∗ and ∃t ≤ t∗ (ω∗, t) �∈ rlω∗ . Thus,

Pr[sreal] = Pr[(rev = 0) ∧ (ω = ω∗)]
+ Pr[(rev = 1) ∧ (t = t∗) ∧ ((ω∗, t) �∈ rlω∗ ,∀t ≤ t∗)]

= Pr[rev = 0] · Pr[ω = ω∗]
+ Pr[rev = 1] · Pr[(t = t∗) ∧ ((ω∗, t) �∈ rlω∗ ,∀t ≤ t∗)]

≤ 1/2 · Pr[ω = ω∗] +
1
2
(1 − Pr[ω = ω∗]) ≤ 1/2

B simulates the exact experiment Expsmrid−cpa
MRIBE,A,N,NS

(k) for A when B is in
Expdbdh−real

G,B (k) and none of the oracles abort. So,

Pr
[
Expdbdh−real

G,B (k) = 1|sreal
]

≥ Pr
[
Expsmrid−cpa

MRIBE,A,N,NS
(k) = 1

]
.

When B is Expdbdh−rand
G,B (k) and none of the oracles abort then as explained

earlier bit b is information-theoretically hidden from A. So,

Pr
[
Expdbdh−rand

G,B (k) = 1|srand
]

≤ 1/2.

Also, since B outputs 1 when either of the oracles aborts, so

Pr
[
Expdbdh−real

G,B (k) = 1|sreal
]

= 1,

Pr
[
Expdbdh−rand

G,B (k) = 1|srand
]

= 1.

Thus,

Advdbdh
G,B (k) = Pr

[
Expdbdh−real

G,B (k) = 1
]

− Pr
[
Expdbdh−rand

G,B (k) = 1
]

≥ 1/2 ·
(

Pr
[
Expdbdh−real

G,B (k) = 1|sreal
]

− 1
2

)

≥ 1/2 · 1
2

·
(
2 · Pr

[
Expdbdh−real

G,B (k) = 1|sreal
]

− 1
)

≥ 1/2 · Advsmrid−cpa
MRIBE,A,N,NS

(k).

166 S. Xu et al.

References

1. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revo-
cation. In: Ning, P., Syverson, P.F., Jha, S. (eds.) CCS, pp. 417–426. ACM (2008)

2. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption
without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 14

3. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). doi:10.1007/3-540-44647-8 13

4. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-44993-5 5

5. Gentry, C.: Practical identity-based encryption without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006). doi:10.1007/11761679 27

6. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions
(extended abstract). In: FOCS, pp. 464–479. IEEE (1984)

7. Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002). doi:10.
1007/3-540-45708-9 4

8. Hanaoka, Y., Hanaoka, G., Shikata, J., Imai, H.: Identity-based hierarchical
strongly key-insulated encryption and its application. In: Roy, B. (ed.) ASI-
ACRYPT 2005. LNCS, vol. 3788, pp. 495–514. Springer, Heidelberg (2005). doi:10.
1007/11593447 27

9. Lee, K., Lee, D.H., Park, J.H.: Efficient revocable identity-based encryption via
subset difference methods. IACR, 2014:132 (2014)

10. Liang, K., Liu, J.K., Wong, D.S., Susilo, W.: An efficient cloud-based revoca-
ble identity-based proxy re-encryption scheme for public clouds data sharing. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 257–272.
Springer, Cham (2014). doi:10.1007/978-3-319-11203-9 15

11. Libert, B., Vergnaud, D.: Adaptive-ID secure revocable identity-based encryp-
tion. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 1–15. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00862-7 1

12. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001). doi:10.1007/3-540-44647-8 3

13. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

14. Seo, J.H., Emura, K.: Efficient delegation of key generation and revocation
functionalities in identity-based encryption. In: Dawson, E. (ed.) CT-RSA
2013. LNCS, vol. 7779, pp. 343–358. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36095-4 22

15. Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: security model
and construction. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol.
7778, pp. 216–234. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7 14

16. Seo, J.H., Emura, K.: Adaptive-ID secure revocable hierarchical identity-based
encryption. In: Tanaka, K., Suga, Y. (eds.) IWSEC 2015. LNCS, vol. 9241, pp.
21–38. Springer, Cham (2015). doi:10.1007/978-3-319-22425-1 2

http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/978-3-540-24676-3_14
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/978-3-540-44993-5_5
http://dx.doi.org/10.1007/11761679_27
http://dx.doi.org/10.1007/3-540-45708-9_4
http://dx.doi.org/10.1007/3-540-45708-9_4
http://dx.doi.org/10.1007/11593447_27
http://dx.doi.org/10.1007/11593447_27
http://dx.doi.org/10.1007/978-3-319-11203-9_15
http://dx.doi.org/10.1007/978-3-642-00862-7_1
http://dx.doi.org/10.1007/3-540-44647-8_3
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/978-3-642-36095-4_22
http://dx.doi.org/10.1007/978-3-642-36095-4_22
http://dx.doi.org/10.1007/978-3-642-36362-7_14
http://dx.doi.org/10.1007/978-3-319-22425-1_2

Mergeable and Revocable Identity-Based Encryption 167

17. Seo, J.H., Emura, K.: Revocable hierarchical identity-based encryption: history-
free update, security against insiders, and short ciphertexts. In: Nyberg, K. (ed.)
CT-RSA 2015. LNCS, vol. 9048, pp. 106–123. Springer, Cham (2015). doi:10.1007/
978-3-319-16715-2 6

18. Shamir, A.: How to share a secret. ACM 22(11), 612–613 (1979)
19. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,

Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). doi:10.1007/3-540-39568-7 5

20. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). doi:10.1007/11426639 7

21. Yang, Y., Liu, J.K., Liang, K., Choo, K.-K.R., Zhou, J.: Extended proxy-assisted
approach: achieving revocable fine-grained encryption of cloud data. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 146–
166. Springer, Cham (2015). doi:10.1007/978-3-319-24177-7 8

http://dx.doi.org/10.1007/978-3-319-16715-2_6
http://dx.doi.org/10.1007/978-3-319-16715-2_6
http://dx.doi.org/10.1007/3-540-39568-7_5
http://dx.doi.org/10.1007/11426639_7
http://dx.doi.org/10.1007/978-3-319-24177-7_8

ID-Based Encryption with Equality Test
Against Insider Attack

Tong Wu1(B), Sha Ma1,2, Yi Mu1, and Shengke Zeng1,3

1 School of Computing and Information Technology, Institute of Cybersecurity
and Cryptology, University of Wollongong, Wollongong, NSW, Australia

{tw225,sma,ymu,shengke}@uow.edu.au
2 College of Mathematics and Informatics, South China Agricultural University,

Guangzhou 510640, Guangdong, China
3 School of Computer and Software Engineering,

Xihua University, Chengdu 610039, China

Abstract. Testing if two ciphertexts contain the same plaintext is an
interesting cryptographic primitive. It is usually referred to as equality
test of encrypted data or equality test. One of attractive applications
of equality test is for encrypted database systems, where the database
server hosts the encrypted databases and users can query if the plaintext
embedded in a ciphertext on a database is equal to that in the queried
ciphertext without decryption. Although it is not hard to achieve with
the pairing-based cryptography, the security against the insider attack
(by the database server) is a challenging task. In this paper, we propose
a novel equality test scheme aiming to solve the problem. Our scheme
adopts the identity-based cryptography. We prove the security of our
scheme in the random oracle model.

Keywords: ID-Based encryption · Equality test · Insider attack

1 Introduction

The probabilistic public key encryption with equality test (PKEET) [13] is an
interesting technique with wide applications such as in outsourced database sys-
tems, which host and manage encrypted data for clients. The merit of the equal-
ity test scheme is that one can check whether two ciphertexts contain the same
plaintext without decrypting them.

In the original equality test scheme [13], outsourced database servers are
usually considered to be semi-trusted because of its curiosity on user data. We
call it an “Honest but Curious” (HBC) server. It is practical for the server
to obtain the illegal profit from peddling users’ private data by simple brute
force attacks on the encrypted message. Our scheme should resist this kind of
adversaries, even we assume that the adversary has access to all ciphertexts and
can test their equality, which is called “insider attack” [10].

An HBC server (the insider), who runs the test algorithm correctly and
continuously, can perform any polynomial time computation and then obtain
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 168–183, 2017.
DOI: 10.1007/978-3-319-60055-0 9

ID-Based Encryption with Equality Test Against Insider Attack 169

the information beyond its own. The insider attack on an equality test scheme
Ω runs as follows:

Suppose that the adversary has been given the public key and the message
space is M = {m1,m2, ...,m|M|}. The goal of the adversary is to find out the
underlying message of the ciphertext Cm∗ , where m∗ ∈ M. Run an attack with
a binary test function Test(mi,mj):

1: Let i = 1;
2: Run Ω to generate the ciphertext of the message mi as Cmi

;
3: If Test(Cmi

, Cm∗) = True, then return mi as the result;
4: If i < |M|, set i = i + 1 and go to 2, otherwise output ⊥.

The correctness of the above attack is guaranteed by the consistency of the
equality test scheme. In this paper, we propose a novel scheme which resists
such attacks.

1.1 Related Work

Boneh et al. first proposed a public key encryption with keyword search scheme
(PEKS) in the random oracle model [1]. When a user conducts a search, he can
generate a trapdoor with a keyword and his private key. Taking the generated
trapdoor and a ciphertext, the test algorithm will output “accept” if they contain
the same keyword; otherwise, “reject”. Their work provides a solution to the
equality test on encrypted keywords in public key encryption.

To provide a general equality test scheme, Yang et al. proposed the first public
key encryption with equality test (PKEET) [13]. In PKEET, given two tags Ti

and Tj on ciphertexts Ci and Cj generated with PKi and PKj corresponding
to message Mi and Mj , respectively, there is a function Test(·, ·), which outputs
1 iff Mi = Mj . Their work achieves the security against the One-way Chosen
Ciphertext Attack (OW-CCA). There are some extensions of PKEET which offer
the fine or flexible grain authorization and stronger security [5,7–9,11,12]. To
achieve the stronger security, the authorization mechanism is adopted to these
PKEET schemes. Some of them utilize trapdoors generated from private keys
which are used to the authorization process. As an instance, Ma et al. in [8],
proposed a PKEET with the flexible authorization according to four scenarios.
In [9], Ma et al. provided a solution to the PKEET in multi-user setting by
delegating the equality test to a fully trusted proxy. Later, Ma [7] proposed an
identity-based PKEET (IBEET). These works improved the security of PKEET
to IND-CCA security, while private keys are kept secret. However, none of their
works can resist the insider attack.

Mayer et al. [10] proposed a verifiable private equality test (VPET) for multi-
party computation. The protocol resists attacks launched by HBC entities and
active malicious entities who can behave active malicious actions. However, it
requires that all users are online during testing and generate a proof for each

170 T. Wu et al.

equality test. It is therefore impractical for the cloud storage management and
outsourced database services, which require users to be offline. Constructions
presented in [2,6] also provide solutions to insider attacks for the PEKS schemes,
but not for the general equality test. Chen et al. in [2] proposed a PEKS scheme
based on the dual-server framework. Peng et al. [6] proposed a PEKS scheme to
prevent the trapdoor generated globally by containing identity set in trapdoors
by keeping this set secret, so that the insider attack is eliminated.

Above all, how to achieve a PKEET scheme against insider attacks is still
an open problem.

1.2 Our Contribution

The probabilistic public key encryption with equality test was proposed by Yang
et al. [13]. However, their scheme is vulnerable to the above insider attack. Since
the ciphertext can be generated publicly, the HBC server can test the embed-
ded message in the target ciphertext on its guess. To address this problem, we
propose an efficient identity-based equality test scheme with resistance against
the insider attack as our contributions. We define a novel security model for the
confidentiality of IBEET which allows the adversary to conduct the equality test
on all ciphertexts but can not generate ciphertexts. We refer it to as Weak-IND-
ID-CCA (W-IND-ID-CCA). Nevertheless, it is stronger than security models for
previous works under the same attack.

1.3 Organization

The rest of the paper is organized as follows. In Sect. 2, we provide some prelim-
inaries for our construction. In Sect. 3, we formulate the notion of IBEET-IA.
In Sect. 4, we present the construction of IBEET-IA and prove its security in
Sect. 5. In Sect. 6, we construct a secure outsourced database application based
on IBEET-IA and present the experimental results. In Sect. 7, we conclude our
paper.

2 Preliminaries

Before describing our scheme, we introduce some cryptographic preliminaries
used in our scheme.

Definition 1 (Bilinear Group [4]). G1, G2 and GT constitute a bilinear group
if there exists a bilinear map e : G1 × G2 → GT , where |G1| = |G2| = |GT | = p.

The bilinear pairing is an operation conducted on bilinear groups. Informally,
two elements in such group are linearly related to the pairing result. The formal
description of the bilinear paring is given as follows.

ID-Based Encryption with Equality Test Against Insider Attack 171

Bilinear Pairing. Suppose that G1, G2 and GT are three cyclic groups with
the same prime order p. Suppose that g and h are generators of G1 and G2,
respectively. A bilinear pairing e : G1 × G2 → GT holds properties as follows:

1. Bilinearity: For any x ∈ G1, y ∈ G2 and a, b ∈ Z
∗
p, e(xa, yb) = e(x, y)ab.

2. Non-degeneration: e(g, h) �= 1GT
, where 1GT

is the generator of GT .
3. Computability: There exists an efficient algorithm to compute e(x, y), for any

x ∈ G1 and y ∈ G2.

We say that a pairing is symmetric if G1 = G2. Our construction is built on
such groups.

2.1 Bilinear Diffie-Hellman Problem (BDHP)

Definition 2 (Bilinear Diffie-Hellman Problem (BDHP)). Let G1, G2 be
two groups of prime order p. Let e : G1 × G1 → G2 be a bilinear map and let
g be a generator of G1. The BDH problem in (G1,G2, e) is as follows: Given
(g, ga, gb, gc) for some a, b, c ∈ Z

∗
p compute e(g, g)abc ∈ G2. An polynomial algo-

rithm A has advantage ε(·) in solving BDH in (G1,G2, e) if

Pr[A(g, ga, gb, gc) = e(g, g)abc] ≤ ε(λ),

where the probability is over the random choice of (a, b, c) in Z
∗
p, the random

choice of g ∈ G1, and the random bits of A.

We say that the BDH assumption holds if for any randomized polynomial
time (in λ for some sufficiently large λ) algorithm A solves the BDH problem
with the negligible advantage ε(λ). If there exists a bilinear pairing e, then the
DDHP is easy to solve in G1, but the CDHP are still hard in G1.

3 Definitions

In this section, we give formal definitions of our scheme and security model.
Our scheme achieves chosen ciphertext security (i.e. W-IND-ID-CCA) under the
defined security model.

3.1 ID-Based Encryption with Equality Test Against Insider Attack

We propose an ID-based encryption with equality test. The scheme Ω consists
of a set of algorithms: Ω = (Setup,Extract,Enc,Test,Dec).

– Setup(1λ): It takes the secure parameter λ and outputs the system public
parameters pp, the master secret key msk and the master token key mtk.

– Extract(ID,msk,mtk): It takes (ID,msk,mtk) and pp and outputs the private
key dID and token tokID.

– Enc(m, ID, Ppub, tokID): It takes (m, ID, tokID, Ppub) and outputs the ciphertext
C = (c1, c2, c3, c4).

172 T. Wu et al.

– Test(CA, CB): It takes ciphertexts CA and CB produced by user A and user
B, respectively. It outputs 1 if messages associated with CA and CB are equal.
Otherwise, it outputs 0.

– Dec(C, dID, tokID): It takes the ciphertext C, dID and tokID and outputs the
message m, if C is a valid ciphertext under ID. Otherwise, it outputs ⊥.

Note: pp refers to public parameters and hash functions used in our scheme.

3.2 Security Models

Definition 3 (Weak-IND-ID-CCA (W-IND-ID-CCA)). Let Ω = (Setup,
Extract,Enc,Test, Dec) be the scheme and A be a polynomial time adversary.

– Setup: The challenger runs the Setup algorithm to initialize the system and
obtains Ppub, msk and mtk. It gives Ppub to the adversary A.

– Phase 1: The adversary issues queries q1, q2, · · · , qm where qi is one of:
• H1 Query (IDi). The challenger responds by running H1(·) to generate

gIDi
. It sends gIDi

to the adversary.
• Extract Query (IDi). The challenger responds by running Extract algo-

rithm to generate the private key dIDi
corresponding to the public key

IDi. It sends dIDi
to the adversary.

• H2 Query (G3
1 ×G2). The challenger responds by running H2(·) to gener-

ate the corresponding hash value. It sends the hash value to the adversary.
• Encryption Query (mi, IDi). The challenger responds by running Enc to

generate the ciphertext Ci corresponding to (mi, IDi). It sends the cipher-
text Ci to the adversary.

• Decryption Query (Ci, IDi). The challenger responds by running Extract
algorithm to generate dIDi corresponding to IDi. It then runs Dec to
decrypt the ciphertext Ci using dIDi

. It sends the resulting plaintext to
the adversary.

– Challenge: Once A decides the Phase 1 is over, it sends two equal-length
messages m0,m1 and ID∗ to be challenged to the challenger, where both
m0,m1 are not issued in the Encryption Query and ID∗ is not issued in the
Extract Query in the Phase 1. The challenger randomly picks b ∈ {0, 1}, and
responds with C∗ ← Enc(mb, ID

∗, Ppub, tokID∗).
– Phase 2: The adversary issues queries qm+1, qm+2, · · · , qn where qi is one of:

• H1 Query (IDi). The challenger responds as in Phase 1.
• Extract Query (IDi) where IDi �= ID∗. The challenger responds as in

Phase 1.
• H2 Query (G3

1 × G2). The challenger responds as in Phase 1.
• Encryption Query (mi, IDi) where mi /∈ {m0,m1}. The challenger

responds as in Phase 1.
• Decryption Query (Ci, IDi) where (Ci, IDi) �= (C∗, ID∗). The challenger

responds as in Phase 1.
– Output: Finally, A gives a guess b′ on b. If b′ = b, we say A wins the game.

ID-Based Encryption with Equality Test Against Insider Attack 173

We define A’s advantage on breaking the scheme as

AdvW-IND-ID-CCA
Ω,A(H1,H2,Extract,Enc,Dec) =

∣
∣
∣
∣
Pr[b′ = b] − 1

2

∣
∣
∣
∣
= ε(λ),

where ε(λ) is a polynomial of λ. Ω is W-IND-ID-CCA secure if ε(λ) is a negligible
function. In the W-IND-ID-CCA model, the adversary has access to ciphertexts
without any valid tok.

4 The Proposed Scheme

4.1 ID-Based Encryption with Equality Test Against Insider Attack

Our scheme aims to provide the service for designated senders. That is, the
receiver and its designated senders form a group of users. tokID denotes a secret
information shared among group members. The server and other users can only
conduct the equality test.

Our protocol consists of the following five algorithms:

– Setup(1λ): Initially, the system takes a security parameter λ and returns pub-
lic system parameters pp, the master secret key msk and the master token
key mtk.
1. The system generates two multiplicative groups G1 and G2 with the same

prime order p of λ-length bits and a bilinear map e : G1 ×G1 → G2. The
system selects an arbitrary generator g ∈G1.

2. The system selects α, β
$← Z

∗
p as msk and mtk, respectively, and sets

Ppub = gα.
3. The system chooses three hash functions:

H : {0, 1}t → Z
∗
p, H1 : {0, 1}∗ → G1, H2 : G3

1 × G2 → {0, 1}t+l,

where l is the length of random numbers and t is the length of messages.
It publishes pp = {λ, p, t, l, g, Ppub, e,H,H1,H2}.

– Extract(ID,msk,mtk): PKG generates dID and tokID for each user’s ID.

gID = H1(ID), dID = gα
ID, tokID = gβ

ID,

where dID and tokID are distributed via a secure channel.
– Enc(m, ID, Ppub, tokID): To encrypt m, it selects two random numbers r1, r2

$←
Z

∗
p, with |r1| = l. Then it computes

c1 = tok
r1H(m)
ID , c2 = gr1

ID , c3 = gr2 ,

c4 = (m ‖ r1) ⊕ H2(c1 ‖ c2 ‖ c3 ‖ e(Ppub, gID)r2).

Finally, it returns C = (c1, c2, c3, c4).

174 T. Wu et al.

– Test(CA, CB): Suppose that

CA ← Enc(mA, IDA, Ppub, tokIDA
)

and
CB ← Enc(mB , IDB , Ppub, tokIDB

)

are generated by user A and user B, respectively. With CA = (cA,1, cA,2,
cA,3, cA,4) and CB = (cB,1, cB,2, cB,3, cB,4), the test algorithm on CA and CB

runs as follows:

e(cA,1, cB,2) = e(cB,1, cA,2). (1)

If the equation holds, it explains the equality between mA and mB , then
outputs 1. Otherwise, outputs 0.

– Dec(C, dID, tokID): To decrypt the ciphertext C with dID and tokID, it
computes:

m ‖ r1 = c4 ⊕ H2(c1 ‖ c2 ‖ c3 ‖ e(c3, dID)).

If
c1 = tok

r1H(m)
ID ∧ c2 = gr1

ID ,

it returns m. Otherwise, ⊥.

4.2 Correctness

We say that Ω has the ciphertext comparability with error μ, for some function
μ(·). For instance, we run the equality test on CA ← Enc(mA, IDA, Ppub, tokIDA

),
CB ← Enc(mB , IDB , Ppub, tokIDB

) generated by user A and user B, respectively.

CA = (cA,1, cA,2, cA,3, cA,4), CB = (cB,1, cB,2, cB,3, cB,4)

We compute the left hand side (L) and the right hand side (R) of Eq. (1) in
the Test algorithm, respectively. We analyze it in two cases: mA = mB and
mA �= mB .

L := e(cA,1, cB,2)

= e(tokrA,1H(mA)
IDA

, g
rB,1
IDB

)

= e(gβrA,1H(mA)
IDA

, g
rB,1
IDB

)

= e(gIDA
, gIDB

)βrA,1rB,1H(mA)

R := e(cB,1, cA,2)

= e(tokrB,1H(mB)
IDB

, g
rA,1
IDA

)

= e(gβrB,1H(mB)
IDB

, g
rA,1
IDA

)

= e(gIDB
, gIDA

)βrA,1rB,1H(mB)

Case 1: If mA = mB , the equation holds with the probability of 1;
Case 2: If mA �= mB , the equation holds when the collision occurs in hash
function H(m), that is H(mA) = H(mB) while mA �= mB . We define H(m) is a
collision resistant hash function. Pr[H(mA) = H(mB)|mA �= mB] is a negligible
function.

ID-Based Encryption with Equality Test Against Insider Attack 175

5 Security Analysis

The following theorem shows that our scheme is a chosen ciphertext secure
IBEET (i.e. W-IND-ID-CCA), assuming BDH is hard in groups generated by a
BDH parameter generator.

Theorem 1. Let A be a W-IND-ID-CCA adversary on IBEET-IA that making at
most qe times extract queries and qd times decryption queries achieves advantage
at least ε. Suppose A makes at most qe extraction queries, at most qd decryption
queries. Then there is a BDH algorithm B solving the BDH problem with the
advantage at least ε

e(qe+qd+1) .

The hash function H(·) is for mapping and standardizing messages. It can
be any qualified hash function.

5.1 W-IND-ID-CCA Security

Suppose there is a probabilistic polynomial time (PPT) adversary A who
achieves the advantage ε on breaking Ω = (Setup, Extract,Enc,Test,Dec). Given
a BDH instance, a PPT adversary B will take advantage of A to solve the BDH
problem with the probability of ε′. Hence, if the BDH assumption holds, then ε′

is negligible and consequently ε must be negligible.
Assume B holds a BDH tuple (g, U, V,R), where x = logg U , y = logg V and

z = logg R are unkown. Let g be the generator of G1. Finally, B is supposed to
output e(g, g)xyz ∈ G2. The game between B and A runs as follows:

Setup: B sets Ppub = gx·r = Ur, where r
$← Z

∗
p and sets mtk = β

$← Z
∗
p. B gives

Ppub to A.

Phase 1:

– H1 Query. A can query the random oracle H1 at any time. A queries IDi to
obtain gIDi . B responds with gIDi if IDi has been in the H1 table, (IDi, gIDi , ai,
coini). Otherwise, for each IDi, B responds as follows:

• B tosses a coin with Pr[coini = 0] = δ. If coini = 1, responds to A with

gIDi
= gai , ai

$← Z
∗
p. Otherwise, B sets gIDi

= gaiy = V ai .
• B responds with gIDi

, then adds (IDi, gIDi
, ai, coini) in the H1 table, which

is initially empty.
– Extract Query. A queries the private key of IDi. B responds as follows:

• B obtains H1(IDi) = gIDi in the H1 table. If coini = 0, B responds with
⊥ and terminates the game.

• Otherwise, B responds with dIDi
= P ai

pub = Ur·ai and computes tokIDi
=

gβ
IDi

, where ai, gIDi is in the H1 table.
• B sends dIDi

to A, then stores (dIDi
, tokIDi

, IDi) in the private key list,
which is initially empty.

176 T. Wu et al.

– H2 Query. A queries Di ∈ G3
1 × G2. B responds with Wi ∈ H2(Di) in the H2

table. Otherwise, for every Di, B selects a random string Wi = {0, 1}t+l as
the H2(Di). B responds A with H2(Di) and adds (Di,Wi) in the H2 table,
which is initially empty.

– Encryption Query. A queries mi encrypted with IDi. B responds as follows:
• B searches the H1 table to obtain the gIDi

and computes tokIDi
= gβ

IDi
.

• Then B selects ri,1, ri,2
$← Z

∗
p and computes:

ci,1 = tok
ri,1H(mi)
IDi

, ci,2 = g
ri,1
IDi

, ci,3 = gri,2 ,

Di = ci,1 ‖ ci,2 ‖ ci,3 ‖ e(Ppub, gIDi)
ri,2 .

• B queries OH2 to obtain Wi = H2(Di).
• B computes ci,4 = (mi ‖ ri,1) ⊕ Wi.

B responds with Ci = (ci,1, ci,2, ci,3, ci,4).
– Decryption Query. A queries Ci to be decrypted in IDi. B responds as follows:

• B searches the H1 table to obtain the gIDi
. If coini = 1, obtain dIDi

of
IDi in the private key list to decrypt Ci. Then B computes the bilinear
map with dIDi :

e(ci,3, dIDi
) = e(gri,2 , gaixr) = e(g, U)ri,2air.

• After that, B computes Di = ci,1 ‖ ci,2 ‖ ci,3 ‖ e(Ppub, gIDi
)ri,2 and

obtains Wi in the H2 table. B obtains mi and ri,1 by ci,4 ⊕ Wi.
• Eventually, B computes c′

i,1, c
′
i,2 with mi and ri,1 decrypted from Ci. If it

is a valid ciphertext that c′
i,1 = ci,1 and c′

i,2 = ci,2, B responds with mi.
Otherwise, ⊥.

Challenge: Once A decides the Phase 1 is over, A outputs two equal-length
messages m0, m1 and ID∗ to be challenged, where both m0, m1 are not issued
in Encryption Query and ID∗ is not queried in Extract Query in Phase 1.
B responds as follows:

– B encrypts m0 and m1 and gets C0 and C1.
– If B searches the H1 table. If coin∗ = 1, then B responds with ⊥ and termi-

nates the game, since gID∗ = ga∗
.

– Otherwise, B randomly selects b ∈ {0, 1}. Since gID∗ = gya∗
= V a∗

, B can
calculate

c∗
1 = (tokID∗)r∗

1H(mb), c∗
2 = g

r∗
1

ID∗ , c∗
3 = R = gz, c∗

4 = (mb||r∗
1) ⊕ W ∗,

where W ∗ = H2(D∗) and D∗ = c∗
1 ‖ c∗

2 ‖ c∗
3 ‖ e(Ppub, gID∗)z (that

e(Ppub, gID∗)z is unknown which B wants A to compute). C∗ = (c∗
1, c

∗
2, c∗

3, c
∗
4)

is a valid ciphertext for mb.
– B responds A with C∗.

ID-Based Encryption with Equality Test Against Insider Attack 177

Phase 2:

– H1 Query. A queries as in Phase 1.
– Extract Query. A queries as in Phase 1, except that IDi �= ID∗.
– H2 Query. A issues the query as in Phase 1.
– Encryption Query. A queries as in Phase 1, except that the message mi /∈

{m0,m1}.
– Decryption Query. A queries as in Phase 1, except that the ciphertext

(Ci, IDi) �= (C∗, ID∗).

Output: A gives a guess b′ on b. If b′ �= b, B responds with failure and terminates
the game. If b′ = b, then B gets the result of the BDH tuple by guessing the inputs
of H2 Query. Suppose Dout = D∗, B obtains e(Ppub, gID∗)z directly from Dout by
removing first 3k bits (the elements in G1 and G2 is k bits length.) that is c∗

1 ‖
c∗
2 ‖ c∗

3. Then B obtains e(g, g)xyz = e(Ppub, gID∗)z(a
∗r)−1

= (e(U, V)za∗r)(a
∗r)−1

.

Claim. If the algorithm B does not abort during the simulation then the algo-
rithm A’s view is identical to its view in the real attack. Furthermore, if B does
not abort then

∣
∣Pr[b′ = b] − 1

2

∣
∣ ≥ ε

e(qe+qd+1) . The probability over the random
bits used by A, B and the challenger.

Proof. It remains to bound the probability that B aborts during the simulation.
The algorithm B could abort for three reasons: (1) a bad private key extraction
query from A during the phase 1 or 2, (2) A chooses a bad ID to be challenged
on, or (3) a bad decryption query from A during the phase 1 or 2. We define
three corresponding events:

ε1: B aborts at the Extract Query step.
ε2: B aborts at the Decryption Query step.
ε3: B aborts at the Challenge step.

We have
Pr[¬ε1 ∧ ¬ε2 ∧ ¬ε3] ≥ (1 − δ)qe+qdδ.

We provide the proof on Pr[¬ε1 ∧ ¬ε2 ∧ ¬ε3] by induction on the maximum
number of queries qe + qd made by the adversary. Let ε0···i be the event that
ε1 ∨ε2 ∨ε3 happens after A queries at most i times and let i = qe +qd. Similarly,
let εi be the event that ε1 ∨ ε2 ∨ ε3 happens for the first time when A queries
the ith item. For i = 0, it is trivial that Pr[¬ε0···0] = δ. Suppose that for i − 1
the Pr[¬ε0···i−1] = (1 − δ)i−1δ holds. Then for i, it holds

Pr[¬ε0···i] = Pr[¬ε0···i|¬ε0···i−1] Pr[¬ε0···i−1]
= Pr[¬εi|¬ε0···i−1] Pr[¬ε0···i−1]
≥ Pr[¬εi|¬ε0···i−1](1 − δ)i−1δ.

Hence, we bound the probability of εi not to happen with A’s ith query. The
query is either an Extract Query for IDi or a Decryption Query for (Ci, IDi).
Recall that if coini = 1 it cannot cause ε1 and ε2 to happen. We consider three
cases:

178 T. Wu et al.

Case 1. The ith query is the first time A queries IDi. In this case, Pr[coini =
1] = 1 − δ and hence

Pr[¬εi|¬ε0···i−1] ≥ 1 − δ.

Case 2. IDi was queried in previous Extract Query. Assuming the previous query
did not cause ε0···i−1 to happen we have coini = 1. Hence,

Pr[¬εi|¬ε0···i−1] = 1.

Case 3. IDi was queried in the previous Decryption Query. Similarly to Case 2,
we have coini = 1, Hence,

Pr[¬εi|¬ε0···i−1] = 1.

To summarize, we have

Pr[¬εi|¬ε0···i−1] ≥ 1 − δ

whatever the ith query is. Therefore,

Pr[¬εi] ≥ (1 − δ)iδ

is as required. Since

Pr[¬ε1 ∧ ¬ε2 ∧ ¬ε3] ≥ (1 − δ)qe+qdδ,

the success probability is maximum at δopt. Using δopt = 1
qe+qd+1 , the probability

that B does not abort is at least 1
e(qe+qd+1) . This shows that B’s advantage is at

least ε
e(qe+qd+1) as required.

Remark 1. Responses to H1 queries are as in the real attack since responses
are uniformly and independently distributed in G

∗
1. All responses to the private

key extraction queries and decryption queries are valid. Finally, the challenge
ciphertext C∗ given to A is the encryption of mb for some random b ∈ {0, 1}.
Therefore, by the definition of A we have that

∣
∣
∣
∣
Pr[b′ = b] − 1

2

∣
∣
∣
∣
≥ ε

e(qe + qd + 1)
.

6 Experiments on a Database

6.1 Setup of Experiments

The purpose of our experiments is to demonstrate the efficiency and feasibility
of our scheme. The instantiation of our novel IBEET-IA scheme is implemented
in Java with the Java Pairing Based Cryptography library (JPBC) [3]. In our
experiments, type A pairing is invoked for the configuration of our IBEET-IA
program, which is symmetrically built from type A super-singular elliptic curve

ID-Based Encryption with Equality Test Against Insider Attack 179

Table 1. Experimental environment

Hardware Parameter

Computer Mac Pro 13’ 2015

Processor 2.7 GHz Intel Core i5

Operation system OS X El Capitan 10.11.6

Memory 8 GB 1867 MHz DDR3

Cores 2

Software Parameter

Virtual machine VMware Fusion 7

VM OS Ubuntu 14.04.3

VM memory 1024 MB

VM core 1

Database MySQL

Development Java 1.8 + Eclipse + JPBC

with the embedding degree of two. Precisely, the length of elements is 512 bits
for G1 and 1024 bits for G2. For the database, MySQL on a virtual machine with
1024 MB memory and one processing core is used as the experimental environ-
ment. Detailed parameters of our experiments are shown in Table 1. In addition,
experiments were conducted on the practical database with eight tables, which
are constructed with columns over rows on 4 × 273, 8 × 23, 6 × 326, 5 × 2996,
9 × 7, 4 × 273, 8 × 110 and 3 × 7, respectively. After running three experiments
on three algorithms, Enc, Dec and Test, the efficiency of those algorithms are
analyzed. The results are shown in the following subsections.

6.2 Performance Evaluation

In the following three experiments, the total time cost is linear with the size of
entities to be encrypted, decrypted or tested. In Enc and Dec algorithms, they
conduct a pairing and three exponents, simultaneously. Therefore, the average
time consumption is the same, 0.3 s (or 0.3 s) to 0.2 s for each entity in the
encryption and the decryption containing the reading and writing time. The
average time consumption is 0.1 s for each equality test, which is a reasonable
result and can be accepted by practice applications.

Encryption Performance. The encryption encrypted with the user’s ID. For
the ith encryption on mi, it inputs ID and the value of the current cell and
computes

ci
1 = tok

ri
1H(mi)

ID , ci
2 = g

ri
1

ID , ci
3 = gri

2 ,

ci
4 = (mi ‖ ri

1) ⊕ H2(ci
1 ‖ ci

2 ‖ ci
3 ‖ e(Ppub, gID)ri

2),

180 T. Wu et al.

Table 2. Encryption performance

Cells RT [ms]

7 3297
58 19789
183 57940
880 296337
1092 343131
1384 584450
1942 654629
14980 4715098

0 3 6 9 12 15
0

1000

2000

3000

4000

5000

Cell (1000 units)

R
u
n
n
in
g
T
im

e
[s
]

where ri
1, r

i
2

$← Z
∗
p, with |ri

1| = l. Finally, it returns Ci = (ci
1, c

i
2, c

i
3, c

i
4). Results

on the total time consumption over the encryption in each experiment are shown
as Table 2.

The time consumption of the Enc algorithm is linear with the number of cells
to be encrypted. Enc contains one pairing and three exponent computations.

Decryption Performance. We conducted the decryption operation on the
random selected column to evaluate the performance of our decryption algo-
rithm. For the ith decryption on captured (ci

1, c
i
2, c

i
3, c

i
4), it takes ID and the

value of the set and computes

mi ‖ ri
1 = ci

4 ⊕ H2(ci
1 ‖ ci

2 ‖ ci
3 ‖ e(c3, dID)).

If
ci
1 = (tokID)r1H(mi) ∧ ci

2 = g
ri
1

ID ,

it returns mi. Otherwise, it returns ⊥. The results on the total time consumption
over the decryption in each experiment are shown as Table 3.

The time consumption of the Dec algorithm is linear with the number of cells
to be decrypted. Dec contains one pairing and two exponent computations.

Equality Test Performance. We conducted the equality test between two
tables who have the same column. For the ith equality test, it takes IDs and
two ciphertexts which are Ci = (ci

1, c
i
2, c

i
3, c

i
4) and Cj = (cj

1, c
j
2, c

j
3, c

j
4), respec-

tively, and checks whether e(ci
1, c

j
2) is equal to e(cj

1, c
i
2). Results on the total time

consumption over the equality test in each experiment are shown in Table 4.
The time consumption of the Test algorithm is linear with the number of cells

to be conducted the equality test. Test contains only two pairing computations.
The deviation of the performance might be caused by the instability of the CPU
used in our simulation.

ID-Based Encryption with Equality Test Against Insider Attack 181

Table 3. Decryption performance

Cells RT [ms]

7 1640
23 5432
110 27181
122 32544
273 64894
326 74367
2996 715763

0 600 1200 1800 2400 3000
0

200

400

600

800

1000

Cells (unit)
R
u
n
n
in
g
T
im

e
[s
]

Table 4. Equality test performance

Cells RT [ms]

161 16083
1540 149746
33306 2821123
39772 2898100
329560 23247358

0 60 120 180 240 300 360
0

50

100

150

200

250

300

350

400

Cells [Thousand Units]

R
u
n
n
in
g
T
im

e
[m

in
]

6.3 Comparison

There are some PKEET variants. We made a comparison on the efficiency of
algorithms adopted in these schemes. “Exp” refers to the exponent computation.
“P” refers to the pairing computation. “Auth.” refers to the authorization.

The extended PKEET schemes cost three to four steps to conduct the equal-
ity test including analyzing trapdoor and inverse-computing trapdoor. In the
contrast, our scheme only needs two pairing computations to conduct the equal-
ity test. The results in Table 5 indicate the improvement on efficiency in our
scheme comparing with other schemes. In addition to efficiency, our scheme has
shown the improvement on security and achieved the first W-IND-ID-CCA which
is stronger than OW-ID-CCA.

182 T. Wu et al.

Table 5. Comparing the efficiency of algorithms of variant PKEETs with our scheme

PKEETs IA Enc Dec Test Auth. Security

[13] N 3Exp 3Exp 2P N/A OW-CCA

[11] N 4Exp 2Exp 4P 3Exp OW/IND-CCA

[12] N 5Exp 2Exp 4Exp N/A OW/IND-CCA

[5] N 4Exp 4Exp 6Exp + 2P 5Exp OW/IND-CCA

[9] N 1P + 5Exp 1P + 4Exp 4P + 2Exp 3Exp OW/IND-CCA

[7] N 6Exp 2P + 2Exp 4P 2Exp OW-ID-CCA

Ours Y 1P + 3Exp 1P + 2Exp 2P N/A W-IND-ID-CCA

7 Conclusions

The probabilistic public key encryption with equality test proposed by Yang et al.
in 2010 at CT-RSA and its extended works are vulnerable to the insider attack
launched by the semi-trusted server by guessing on the embedding message.
The server can test whether the guessed message is equal to that contained
in the target ciphertext. To solve this problem, we proposed a novel IBEET-IA
scheme which a reasonable efficiency. In order to prove that our scheme is chosen
ciphertext secure, we proposed a novel W-IND-ID-CCA security model under the
defined insider attack. We also demonstrated its efficiency by experiments on a
real database.

Acknowledgement. This work was partially supported by the National Natural
Science Foundation of China (grant numbers: 61402184 and 61402376).

References

1. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryp-
tion with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 30

2. Chen, R., Mu, Y., Yang, G., Guo, F., Wang, X.: Dual-server public-key encryption
with keyword search for secure cloud storage. IEEE Trans. Inf. Forensics Secur.
11(4), 789–798 (2016)

3. De Caro, A., Iovino, V.: JPBC: Java pairing based cryptography. In: Proceedings
of the 16th IEEE Symposium on Computers and Communications, ISCC 2011,
Kerkyra, Corfu, Greece, 28 June–1 July 2011, pp. 850–855. IEEE (2011). http://
gas.dia.unisa.it/projects/jpbc/

4. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

5. Huang, K., Tso, R., Chen, Y., Rahman, S.M.M., Almogren, A., Alamri, A.: PKE-
AET: public key encryption with authorized equality test. Comput. J. 58(10),
2686–2697 (2015)

http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://gas.dia.unisa.it/projects/jpbc/
http://gas.dia.unisa.it/projects/jpbc/

ID-Based Encryption with Equality Test Against Insider Attack 183

6. Jiang, P., Mu, Y., Guo, F., Wang, X., Wen, Q.: Online/offline ciphertext retrieval
on resource constrained devices. Comput. J. 59(7), 955–969 (2016)

7. Ma, S.: Identity-based encryption with outsourced equality test in cloud comput-
ing. Inf. Sci. 328, 389–402 (2016)

8. Ma, S., Huang, Q., Zhang, M., Yang, B.: Efficient public key encryption with
equality test supporting flexible authorization. IEEE Trans. Inf. Forensics Secur.
10(3), 458–470 (2015)

9. Ma, S., Zhang, M., Huang, Q., Yang, B.: Public key encryption with delegated
equality test in a multi-user setting. Comput. J. 58(4), 986–1002 (2015)

10. Mayer, D.A., Wetzel, S.: Verifiable private equality test: enabling unbiased 2-party
reconciliation on ordered sets in the malicious model. In: Proceedings of the 7th
ACM Symposium on Information, Computer and Communications Security, ASI-
ACCS 2012, Seoul, Korea, 2–4 May 2012, pp. 46–47 (2012)

11. Tang, Q.: Public key encryption schemes supporting equality test with authoriza-
tion of different granularity. Int. J. Appl. Crypt. 2(4), 304–321 (2012)

12. Tang, Q.: Public key encryption supporting plaintext equality test and user-
specified authorization. Secur. Commun. Netw. 5(12), 1351–1362 (2012)

13. Yang,G., Tan,C.H.,Huang,Q.,Wong,D.S.: Probabilistic public key encryptionwith
equality test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 119–131.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-11925-5 9

http://dx.doi.org/10.1007/978-3-642-11925-5_9

Lattice-Based Revocable Identity-Based
Encryption with Bounded Decryption Key

Exposure Resistance

Atsushi Takayasu1,3(B) and Yohei Watanabe2,3

1 The University of Tokyo, Tokyo, Japan
takayasu@mist.i.u-tokyo.ac.jp

2 The University of Electro-Communications, Tokyo, Japan
3 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Abstract. A revocable identity-based encryption (RIBE) scheme,
proposed by Boldyreva et al., provides a revocation functionality for
managing a number of users dynamically and efficiently. To capture a
realistic scenario, Seo and Emura introduced an additional important
security notion, called decryption key exposure resistance (DKER), where
an adversary is allowed to query short-term decryption keys. Although
several RIBE schemes that satisfy DKER have been proposed, all the
lattice-based RIBE schemes, e.g., Chen et al.’s scheme, do not achieve
DKER, since they basically do not have the key re-randomization prop-
erty, which is considered to be an essential requirement for achieving
DKER. In particular, in every existing lattice-based RIBE scheme, an
adversary can easily recover plaintexts if the adversary is allowed to issue
even a single short-term decryption key query. In this paper, we propose
a new lattice-based RIBE scheme secure against exposure of a-priori
bounded number of decryption keys (for every identity). We believe that
this bounded notion is still meaningful and useful from a practical per-
spective. Technically, to achieve the bounded security without the key
re-randomization property, key updates in our scheme are short vectors
whose corresponding syndrome vector changes in each time period. For
this approach to work correctly and for the scheme to be secure, cover
free families play a crucial role in our construction.

1 Introduction

1.1 Background

Identity-based encryption (IBE) is currently one of the central cryptographic
primitives. IBE allows any strings to be used as public keys, and therefore is
an advanced form of public-key encryption (PKE). The first practical IBE was
proposed by Boneh and Franklin [9] from bilinear groups. Since then, several
IBE schemes have been proposed including ones from lattices [1,6,10,11,14,20,
24,38–40]. Lattice-based schemes are believed to resist quantum attacks and the
average-case security is guaranteed by the worst-case lattice assumptions.

c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 184–204, 2017.
DOI: 10.1007/978-3-319-60055-0 10

Lattice-Based Revocable Identity-Based Encryption 185

Although IBE is known as an important cryptographic primitive, IBE itself
has not been used that much than PKE in modern society. One main reason
for the situation is inefficient revocation procedures of ordinary IBE schemes.
Revocation functionality is necessary to handle users in cryptographic schemes
since malicious users should be immediately driven out from the schemes, and
even honest users should be revoked if their keys get compromised. In the PKE
setting, the validity of public keys are guaranteed by certificates issued by public-
key infrastructures (PKIs). Therefore, users can be easily revoked by invalidating
the corresponding certificate. On the other hand, IBE does not have such a revo-
cation procedure due to the absence of PKIs. Boneh and Franklin [9] mentioned
the following naive and inefficient revocation procedure: The lifetime of the sys-
tem is divided into discrete time periods. In every time period, a key generation
center (KGC) generates secret keys for each non-revoked user and sends the new
keys to the corresponding users.

Later, Boldyreva et al. [7] proposed a pairing-based IBE scheme with efficient
revocation, which is called a revocable IBE (RIBE) scheme by utilizing the spirit
of fuzzy IBE constructions and a subset cover framework called the complete
subtree (CS) method. They significantly improved the efficiency of revocation
procedures from linear to logarithmic in the number of all users. Specifically, they
considered two kinds of keys: a long-term secret key and a short-term decryption
key. In every time-period, the KGC generates update information called a key
update, and broadcasts it. Each non-revoked user can derive a decryption key
for each time period from his long-term secret key and the key update for the
corresponding time period, while revoked users cannot compute their decryption
keys. After the proposal, Libert and Vergnaud [28] proposed the first adaptively
secure pairing-based RIBE scheme. The first lattice-based RIBE scheme was
proposed by Chen et al. [16] in the selective security model. The idea of these
constructions follow Boldyreva et al.’s one.

Human errors seem never to be eliminated, and therefore a key exposure
problem is unavoidable. In the context of RIBE, Seo and Emura [34] pointed
out that Boldyreva et al.’s security model did not capture such a realistic threat,
and they first realized an RIBE scheme with decryption-key exposure resistance
(DKER) from bilinear groups. An RIBE scheme with DKER, DKER RIBE for
short, guarantees that the security is not compromised even if polynomially many
short-term decryption keys are leaked. Boneh-Franklin’s naive solution captures
DKER, whereas the previous RIBE schemes [7,16,28] are vulnerable against
decryption key exposure. Hence, DKER seems to be a natural security require-
ment for RIBE. Although the construction idea is almost the same as Boldyreva
et al.’s one [7], Seo and Emura [34] made use of the key re-randomization property
for proving the stronger security (i.e., security with DKER). Since the proposal,
DKER has become the standard security notion of RIBE. Indeed, several DKER
RIBE schemes [18,23,26,27,33,35,36] have been proposed.

186 A. Takayasu and Y. Watanabe

However, no lattice-based DKER RIBE schemes have been proposed thus
far; existing lattice-based RIBE schemes [16,17,30]1 do not satisfy DKER. In
particular, Chen et al.’s RIBE scheme immediately becomes insecure even with
an adversary’s single short-term decryption key query. Hence, the limitation does
not stem from proof techniques. Actually, all the existing DKER RIBE schemes
satisfy the key re-randomization property, which is used for preventing adver-
saries from obtaining critical information from decryption key queries. Since the
current lattice-based RIBE construction does not satisfy the property, we should
explore new approaches to construct DKER RIBE schemes.

1.2 Our Contributions

In this paper, we construct the first lattice-based RIBE scheme that is resilient
to decryption key exposure. To be precise, we should note that our scheme is
secure when adversaries are allowed to query a-priori bounded number of short-
term decryption keys, which is denoted by Q, for the target identity. Therefore,
we call our proposal B-DKER RIBE, where B-DKER stands for bounded DKER.
Decryption key exposure is mainly caused by human errors. The leakage might
happen, however we can assume that it rarely happens. Hence, although the
security of B-DKER RIBE is weaker than DKER RIBE, we believe that our
security model is sufficient for practical use. Even if a number of decryption
keys are exposed, our scheme is secure by setting sufficiently large Q, whereas
Chen et al.’s scheme is insecure in such a case (in particular, even in the case
that Q = 1).

One may think that the notion of B-DKER RIBE is similar to that of
bounded-collusion IBE [21] or k-resilient IBE [22]. However, we emphasize
that there is a major gap between them from the practical aspect. In the
bounded-collusion IBE, the number of secret key extraction queries is a-priori
bounded, whereas our definition allows unbounded collusion, i.e., an adversary
can unboundedly issue secret key extraction queries and decryption key queries
except for the target identity. Practically, in the bounded-collusion IBE scenario,
an adversary might collude with the larger number of users than the a-priori
bounded number. The KGC may be unaware of the behind-the-scenes collusion,
and thus the system would not be refreshed before breaking it. On the one hand,
in the B-DKER RIBE scenario, it would appear that decryption key exposures
happen only through human errors or some accident. That is, the leakage can-
not be controlled by adversaries. The KGC may notice the fact of leakage from
users who are honest but leaked their keys, and therefore the KGC can keep the
scheme secure by refreshing it at some point.

To obtain (a kind of) DKER for lattice-based RIBE is the main contribution
of this paper. Our scheme has a different flavor from the template RIBE construc-
tion due to Boldyreva et al. [7] (and therefore Chen et al. [16]) in the sense that
1 Cheng and Zhang [17] proposed the first adaptively secure lattice-based RIBE

scheme, however, their security proofs contain unavoidable bugs. Therefore, there are
no adaptively secure lattice-based RIBE schemes even without DKER. See Sect. 6
for the detail.

Lattice-Based Revocable Identity-Based Encryption 187

each key update corresponds to distinct syndrome vectors in each time period.
Although the modification causes several troubles, cover free families (CFFs)
enable us to resolve them with longer secret keys (see Sect. 1.3 for details). For
simplicity, we discuss our construction in the selective security model through-
out the paper. We believe that it enables readers to understand our technique
easily. In addition, as side contributions, we obtain the following improvements
although they are not very technical: smaller parameters by utilizing Micciancio-
Peikert’s gadget matrix [29], the first semi-adaptively secure lattice-based RIBE,
the first anonymous RIBE scheme that is resilient to decryption key exposure.
They will be discussed in Sect. 6. Notice that in the semi-adaptive security model,
the adversary issues the challenge identity and the challenge time period just
after receiving a public parameter.

1.3 Our Approach

In this section, we show a brief overview of Chen et al.’s lattice-based RIBE con-
struction [16] and our modification to the scheme to achieve B-DKER. The public
parameter of Chen et al.’s RIBE scheme consists of three matrices A0,A1,A2

and a syndrome vector u along with a gadget matrix2 G that was introduced
in [29]. The ciphertext of a plaintext M ∈ {0, 1} for an identity ID and a time
period T is

[A0|A1 + H(ID)G|A2 + H(T)G]T s + noise and uT s + M
⌊q

2

⌋
+ noise

where s is a random secret vector and H() is a public hash function. Each user
has a long-term secret key e′ whereas KGC broadcasts a key update ẽ in each
time period such that

[A0|A1 + H(ID)G] e′ = u′ and [A0|A2 + H(T)G] ẽ = ũ (1)

for some random syndrome vectors u′ and ũ. If the user is non-revoked, these
two syndrome vectors satisfy u′ + ũ = u. The short-term decryption key e for
(ID,T) is their concatenation e := (e′, ẽ).

As opposed to an ordinary IBE, the RIBE simulator should create a long-term
secret key e′ for the target identity ID∗ and a key update ẽ for the challenge time
period T∗. Chen et al. resolved the problem by utilizing a Gaussian sampling
algorithm in a clever way. If we do not care about DKER, the simulator should
create either a secret key e′ for the target identity ID∗ or a key update ẽ for
the target time period T∗. Then, the simulator picks e′ or ẽ in advance and sets
u′ or ũ according to the Eq. (1). Notice that the simulator can create long-term
secret keys and key updates for all the other ID �= ID∗ and T �= T∗ since it has
a trapdoor.

In short, to obtain DKER, the challenge ciphertext for the target (ID∗,T∗)
should not be decrypted by using a key update for T∗ and short-term decryp-
tion keys for (ID∗,T) such that T �= T∗. However, since Chen et al.’s short-term
2 Although the gadget matrix was not used by Chen et al. [16], it is well known that

the parameters can be reduced by utilizing the matrix.

188 A. Takayasu and Y. Watanabe

decryption key is a simple concatenation, the target decryption key for (ID∗,T∗)
can be recovered even with a single decryption key for (ID∗,T). Since there is a
concrete attack, the limitation is not due to proof techniques but the construc-
tion. In other words, the simulator should create both short-term decryption
keys e′ for (ID∗,T) such that T �= T∗ and key updates ẽ for T∗ during the simu-
lation. However, once the simulator uses a Gaussian sampling algorithm and sets
e′, the corresponding syndrome u′ is fixed. Then, the simulator cannot create ẽ
for ũ such that u′ + ũ = u. If lattice-based RIBE scheme supports the key re-
randomization property, we can avoid the problem as Seo-Emura [34], however,
it does not. We will discuss the fact in Sect. 6.

To resolve the problem, we employ a novel RIBE construction. A starting
point of our modification is that our key update ẽ for a time period T satisfies

[A0|A2 + H(T)G] ẽ = ũT

where the corresponding syndrome vector ũT changes in each time period. The
property directly suggests that decryption keys for (ID∗,T) such that T �= T∗

are useless to recover a decryption key for the target (ID∗,T∗). However, a new
problem occurs by the construction. Since a secret key e′ corresponds to a fixed
syndrome vector u′, even non-revoked users cannot derive well-formed decryp-
tion keys such that u′ + ũT = u for all time periods with their secret keys and
key updates. To overcome the issue, in our scheme, each user ID has multiple d
secret keys e′

1, . . . , e
′
d such that

[A0|A1 + H(ID)G] e′
1 = u′

1, . . . , [A0|A1 + H(ID)G] e′
d = u′

d.

A naive approach for the scheme to work correctly is that we use each e′
� in each

time period. However, the modification makes the scheme too inefficient since
the number of secret keys d has to be at least larger than the maximum time
period and results in super-polynomial. To reduce the size, we set u − ũT as
a subset sum of u′

1, . . . ,u
′
d so that non-revoked users can produce well-formed

decryption keys with smaller d. The resulting decryption key is a concatenation
of the corresponding subset sum of e′

1, . . . , e
′
d and the key update ẽ. The simu-

lator utilizes a Gaussian sampling algorithm to create d − 1 secret key elements
e′
1, . . . , e

′
d except e′

�∗ for ID∗ and a key update ẽ for T∗ along with their cor-
responding syndrome vectors, then answers decryption key queries for (ID∗,T)
such that T �= T∗. The remaining syndrome vector u′

�∗ is directly fixed. If e′
�∗ is

not used to answer Q decryption key queries, the approach goes well.
For the above construction to become a provably secure practical RIBE

scheme whose adversary is allowed to query Q decryption keys, there are the
following three requirements: (1) the number of secret keys d is at most polyno-
mially bounded, (2) a subset sum of u1, . . . ,ud produces distinct vectors whose
number is larger than the maximum time period, (3) there is at least one secret
key e′

�∗ that is not used to answer arbitrary Q decryption key queries. Therefore,
we use CFFs so that the resulting scheme satisfies all the above requirements.

Lattice-Based Revocable Identity-Based Encryption 189

2 Preliminaries

Notation, “Probabilistic polynomial-time” is abbreviated as “PPT”. We denote
[a, b] by a set {a, a+1, . . . , b} for any integers a, b ∈ N such that a ≤ b. We some-
times write [d] as [1, d] for simplicity. Let a bold capital A and a bold lower
a denote a matrix and a column vector respectively. Let AT and aT denote
their transposes. If we write (y1, y2, . . . , ym) ← A(x1, x2, . . . , xn) for an algo-
rithm A having n inputs and m outputs, it means to input x1, x2, . . . , xn into
A and to get the resulting output y1, y2, . . . , ym. We write (y1, y2, . . . , ym) ←
AO(x1, x2, . . . , xn) to indicate that an algorithm A that is allowed to access an
oracle O takes x1, x2, . . . , xn as input and outputs (y1, y2, . . . , ym). If X is a set,

we write x
$←X to mean the operation of picking an element x of X uniformly at

random. We use λ as a security parameter. For sufficiently large λ, a function
negl : R → R is negligible if negl(λ) < 1/p(λ) for any polynomial p(λ). Let X
and Y be two random variables taking values in some finite set Ω. Statistical
distance is defined as Δ(X;Y), as Δ(X;Y) := 1

2

∑
s∈Ω |Pr[X = s] − Pr[Y = s]|.

For sets of random variables X and Y , we say that X and Y are statistically
close if Δ(X;Y) is negligible.

Cover Free Families. We define a cover free family (CFF), which is a core
building block in our construction, as follows.

Definition 1 (Cover Free Families [19]). Let α, d,Q be positive integers, and
F := {Fμ}μ∈[α] be a family of subsets of [d], where every |Fμ| = w. F is
said to be w-uniform Q-cover-free if it holds that

⋃Q
j=1 Fij

�⊃ FiQ+1 for any
Fi1 ,Fi2 , . . . ,FiQ+1 ∈ F such that Fik

�= Fi�
for any distinct k, � ∈ [Q + 1].

Lemma 1 ([25]). There is a deterministic polynomial time algorithm CFF.Gen
that, on input of positive integers α and Q, returns d ∈ N and a family
F = {Fμ}μ∈[α], such that F is Q-cover free over [d] and w-uniform, where
d ≤ 16Q2 log α and w = d/4Q.

KUNode Algorithm. To reduce costs of a revocation process, we use a binary
tree structure and apply the following KUNode algorithm as in the previous
RIBE schemes [7,28,34]. KUNode(BT,RL,T) takes as input a binary tree BT, a
revocation list RL, and a time period T ∈ T , and outputs a set of nodes. When
η is a non-leaf node, then we write ηL and ηR as the left and right child of
η, respectively. When η is a leaf node, Path(BT, η) denotes the set of nodes on
the path from η to the root. Each user is assigned to a leaf node. If a user
who is assigned to η is revoked on a time period T ∈ T , then (η,T) ∈ RL.
KUNode(BT,RL,T) is executed as follows. It sets X := ∅ and Y := ∅. For any
(ηi,Ti) ∈ RL, if Ti ≤ T then it adds Path(BT, ηi) to X (i.e., X := X∪Path(BT, ηi)).
Then, for any η ∈ X , if ηL /∈ X , then it adds ηL to Y. If ηR /∈ X , then it adds
ηR to Y. Finally, it outputs Y if Y �= ∅. If Y = ∅, then it adds root to Y and
outputs Y.

Lattices. An m-dimensional integer lattice is an additive discrete subgroup of
Z

m. For positive integers q, n,m, a matrix A ∈ Z
n×m
q , and a vector u ∈ Z

m
q ,

190 A. Takayasu and Y. Watanabe

the m-dimensional integer (shifted) lattices Λ⊥
q (A) and Λu

q (A) are defined as
Λ⊥

q (A) := {e ∈ Z
m : Ae = 0mod q} ,Λu

q (A) := {e ∈ Z
m : Ae = umod q} . The

lattice Λu
q (A) is a shift of the lattice Λ⊥

q (A); if t ∈ Λu
q (A) then Λu

q (A) =
Λ⊥

q (A) + t. Let TA ∈ Z
m×m be a basis of a lattice Λ⊥

q (A). Then TA ∈ Z
m×m

is also a basis of a lattice Λ⊥
q (HA) for a full rank H ∈ Z

n×n
q .

Matrix Norms. For a vector u, we let ‖u‖ denote its L2 norm. For a matrix
R ∈ Z

k×m, we define the following three norms:

– ‖R‖ denotes the L2 length of the longest column of R.
– ‖R‖GS = ‖R̃‖ where R̃ is the Gram-Schmidt orthogonalization of R.
– ‖R‖2 is defined as ‖R‖2 = sup‖x‖=1 ‖Rx‖.

Note that ‖R‖GS ≤ ‖R‖ ≤ ‖R‖2 ≤
√

k‖R‖ and that ‖R · S‖2 ≤ ‖R‖2 · ‖S‖2.

Gaussian Distributions. Let DΛ,σ,c denote the discrete gaussian distribution
over Λ with center c and a parameter σ. If c = 0, we omit the subscript
and denote DΛ,σ. We summarize some basic properties of discrete Gaussian
distributions.

Lemma 2 ([20]). Let Λ be an m-dimensional lattice. Let T be a basis for Λ, and
suppose σ ≥ ‖T‖GS · ω(

√
log m). Then Pr[‖x‖ > σ

√
m : x ← DΛ,σ] ≤ negl(m).

Lemma 3 ([20]). Let n and q be positive integers with q prime, and let m ≥
2n log q. Then for all but a 2q−n fraction of all A ∈ Z

n×m
q and for any σ ≥

ω(
√

log m), the distribution of u = Ae mod q is statistically close to uniform
over Z

n
q where e ← DZm,σ. Furthermore, the conditional distribution of e given

Ae = u mod q is exactly DΛu
q (A),σ.

Sampling Algorithms

Lemma 4. Let n,m, q > 0 be positive integers with q prime. There are proba-
bilistic polynomial time algorithms such that

– [13]: SampleGaussian(T, σ) → e
a randomized algorithm that, given a basis T for an m-dimensional lattice Λ
and a parameter σ ≥ ‖T‖GS · ω(

√
log m) as inputs, then outputs e which is

distributed according to DΛ,σ.
– [4,5,29]: TrapGen(q, n,m) → (A,TA)

a randomized algorithm that, when m ≥ 2n
log q�, outputs a full rank matrix
A ∈ Z

n×m
q and a basis TA ∈ Z

m×m for Λ⊥
q (A) such that A is statistically

close to uniform and ‖TA‖GS = O(
√

n log q) with overwhelming probability
in n.

– [14]: SampleLeft(A,F,u,TA, σ) → e
a randomized algorithm that, given a full rank matrix A ∈ Z

n×m
q , a matrix

F ∈ Z
n×m
q , a vector u ∈ Z

n
q , a basis TA for Λ⊥

q (A), and a Gaussian parame-
ter σ > ‖TA‖GS ·ω(

√
log m) as inputs, then outputs a vector e ∈ Z

2m
q sampled

from a distribution that is statistically close to DΛu
q (A|F),σ.

Lattice-Based Revocable Identity-Based Encryption 191

– [1]: SampleRight(A,G,R,u,TG, σ) → e where F = AR + G
a randomized algorithm that, given full rank matrices A,G ∈ Z

n×m
q , a matrix

R ∈ Z
m×m, a vector u ∈ Z

n
q , a basis TG of Λ⊥

q (G), and a Gaussian parame-
ter σ > ‖TG‖GS · ‖R‖ · ω(

√
log m) as inputs, then outputs a vector e ∈ Z

2m
q

sampled from a distribution that is statistically close to DΛu
q (A|F),σ.

– [29]: Let m > n
log q�. Then there is a fixed full rank matrix G ∈ Z
n×m
q

such that the lattice Λ⊥
q (G) has a publicly known basis TG ∈ Z

m×m
q with

‖TG‖GS ≤
√

5.

We sometimes call G a gadget matrix that enables us to reduce several parame-
ters. We use SampleGaussian(T, σ) only for sampling a distribution DZm,σ. For
the purpose, we always use a standard basis for Z

m as T. Hence, we omit the
basis and write SampleGaussian(σ) throughout the paper.

To obtain a lower bound of σ, we will use the following fact.

Lemma 5 ([1]). Let R be a m×m matrix chosen at random from {−1, 1}m×m.
Then there is a universal constant C such that Pr [‖R‖ > C

√
m] < e−m.

Randomness Extraction

Lemma 6 ([1]). Suppose that m > (n + 1) log2 q + ω(log n) and that q > 2 is
prime. Let R be an m×k matrix chosen uniformly in {−1, 1}m×k where k = k(n)
is polynomial in n. Let A and B be matrices chosen uniformly in Z

n×m
q and

Z
n×k
q respectively. Then, for all vectors e ∈ Z

m
q , the distribution (A,AR,RTe)

is statistically close to the distribution (A,B,RT e).

Encoding Identities as Matrices

Definition 2. Let q be a prime and n be a positive integer. We say that a
function H : Zn

q → Z
n×n
q is a full-rank difference (FRD) map if:

1. for all distinct u,v ∈ Z
n
q , the matrix H(u) − H(v) ∈ Z

n×n
q is full rank,

2. H is computable in polynomial time in n log q.

Learning with Errors (LWE). For α ∈ (0, 1) and an integer q > 2, let Ψ̄α

denote the probability distribution over Zq obtained by choosing x ∈ R according
to the normal distribution with mean 0 and standard deviation α/2

√
π, then

output �qx�. The security of our RIBE scheme is reduced to the following LWE
assumption.

Assumption 1 (Learning with Errors (LWE) Assumption [32]). For
integers n,m = m(n), α ∈ (0, 1) such that a prime q = q(n) > 2 and

αq > 2
√

n, define the distribution: A $← Z
n×m
q , s $← Z

n
q ,x $← Ψ̄m

α ,v $←
Z

m
q . We assume that for any PPT algorithm A (with output in {0, 1}),

AdvLWE
A :=

∣∣Pr
[
A(A,AT s + x) = 1

]
− Pr [A(A,v) = 1]

∣∣ is negligible in the
security parameter n.

Regev [32] showed that (through a quantum reduction) the LWE problem is as
hard as approximating the worst-case GapSVP to Õ(n/α) factors. Peikert [31],
Brakerski et al. [13] showed analogous results through classical reductions.

192 A. Takayasu and Y. Watanabe

3 B-DKER RIBE

M, I, and T denote sets of plaintexts, IDs, and time-periods, respectively.
Throughout this paper, we consider a single bit scheme, i.e., M := {0, 1}.

An RIBE scheme Π consists of seven-tuple algorithms (SetUp, PKG, KeyUp,
DKG, Enc, Dec, Revoke) defined as follows:

– (PP,MK,RL, st) ← SetUp(λ,N): A probabilistic algorithm for setup. It takes
a security parameter λ and the number of users N as input and outputs a
public parameter PP, a master secret key MK, an initial revocation list RL = ∅
and a state st.

– (SKID, st) ← PKG(PP,MK, ID, st): An algorithm for private key generation. It
takes PP, MK, an identity ID ∈ I, and st as input and outputs a secret key
SKID and updated state information st.

– KUT ← KeyUp(PP,MK,T,RL, st): An algorithm for key update generation. It
takes PP, MK, a time-period T ∈ T , a current revocation list RL, and state
st as input, and then outputs a key update KUT.

– DKID,T or ⊥ ← DKG(PP,SKID,KUT): A probabilistic algorithm for decryption
key generation. It takes PP, SKID and KUT as input and then outputs a
decryption key DKID,T at T or ⊥ if ID has been revoked by T.

– CTID,T ← Enc(PP, ID,T,M): A probabilistic algorithm for encryption. It
takes PP, ID ∈ I, and T ∈ T , and a plaintext M ∈ M as input and then
outputs a ciphertext CTID,T.

– M or ⊥ ← Dec(PP,DKID,T,CTID,T): A deterministic algorithm for decryption.
It takes PP, DKID,T and CTID,T as input and then outputs M or ⊥.

– RL ← Revoke(PP, ID,T,RL, st): An algorithm for revocation. It takes (ID,T) ∈
I ×T , the current revocation list RL, and a state st as input and then outputs
an updated revocation list RL.

In the above model, we assume that Π meets the following correctness prop-
erty: For all security parameter λ ∈ N, all (PP,MK,RL, st) ← SetUp(λ,N), all
M ∈ M, all ID ∈ I, all T ∈ T , if ID has not been revoked by T ∈ T , it
holds that M = Dec(DKG(PP,PKG(PP,MK, ID, st),KeyUp(PP,MK,T,RL, st)),
Enc(PP, ID,T,M)).

Throughout this paper, we consider the following security notion called
indistinguishability from random against selective chosen plaintext attacks and
Q-bounded decryption key exposure (IND-sRID-Q-CPA). That is, we define
indistinguishability from random against CPA adversaries taking into account
Q-bounded DKER, which is a weaker notion than original (unbounded)
DKER [34]. Q-bounded DKER guarantees that the RIBE scheme is secure even
if at most Q decryption keys per user leaked, whereas unbounded DKER allows
any number of decryption-key leakage. In our security model, a CPA adversary
is allowed to obtain at most Q decryption keys of the target user ID∗, and tries
to distinguish between the challenge ciphertext and a random element in the
ciphertext space. Therefore, our security model also implies anonymity.

Lattice-Based Revocable Identity-Based Encryption 193

Definition 3 (IND-sRID-Q-CPA). For any a-priori fixed Q (:= poly(λ)),
an RIBE scheme Π is said to satisfy IND-sRID-Q-CPA security if for
all PPT adversaries A, AdvIND-Q-CPA

Π,A (λ,N) is negligible in λ. For a PPT
adversary A, we define A’s advantage against IND-sRID-Q-CPA security by
AdvIND-Q-CPA

Π,A (λ) := |Pr[ExpIND-Q-CPA
Π,A (λ) = 1]−1/2|, where ExpIND-Q-CPA

Π,A (λ)
is defined by the following experiment:

ExpIND-Q-CPA
Π,A (λ) : (ID∗,T∗, state1) ← A(find, λ)

(PP,MK,RL, st) ← SetUp(λ,N)

(M∗, state2) ← AO(find,PP, state1)

CT0 ← Enc(PP, ID∗,T∗,M∗), CT1
$← Cλ, b

$← {0, 1}
b′ ← AO(guess,CTb, state2)
Return 1 if b′ = b; otherwise, return 0

where Cλ is a ciphertext space which is determined by the security parameter λ.
Here, O is a set of oracles {PKG(·), KeyUp(·), Revoke(·, ·), DKG(·, ·)} defined
as follows.

PKG(·): For a query ID ∈ I, it stores and returns PKG(PP,MK, ID, st).
KeyUp(·): For a query T ∈ T , it stores and returns KeyUp(PP,MK,T,RL, st).
Revoke(·, ·): For a query (ID,T) ∈ I × T , it updates a revocation list RL by

running Revoke(PP, ID,T,RL, st).
DKG(·, ·): For a query (ID,T) ∈ I × T , it returns DKG(PP,SKID,KUT) and

stores it unless it is ⊥.

A is allowed to access the above oracles with the following restrictions.

1. KeyUp(·) and Revoke(·, ·) can be queried at a time period which is later than
or equal to that of all previous queries.

2. Revoke(·, ·) cannot be queried at a time period T after issuing T to KeyUp(·).
3. If ID∗ was issued to PKG(·) at T′, then (ID∗,T) must be issued to Revoke(·, ·)

such that T′ ≤ T ≤ T∗.
4. DKG(·, ·) cannot be queried at T before issuing T to KeyUp(·).
5. (ID∗,T∗) cannot be issued to DKG(·, ·).
6. If (ID∗,T)’s such that T �= T∗ were issued to DKG(·, ·) more than Q times,

then (ID∗,T) must be issued to Revoke(·, ·) such that T ≤ T∗.

4 Construction

In this section, we show the construction of our lattice-based B-DKER RIBE
scheme that utilizes CFFs.

– SetUp(λ,N): On input a security parameter λ and a maximal number N
of users, set the parameters q, n,m, σ, α. Then, use the TrapGen(q, n,m)
algorithm to select A0 ∈ Z

n×m
q with a basis TA0 for Λ⊥

q (A0). Select

194 A. Takayasu and Y. Watanabe

A1,A2
$← Z

n×m
q and u ← Z

n
q . Choose an FRD map H as in Definition 2.

Run (w, d,F) $← CFF.Gen(|T |, Q) and finally output

PP := (H,A0,A1,A2,u) , MK := TA0 ,

st := BT, and RL := ∅.
– PKG(PP,MK, ID, st): Parse st as BT. Randomly choose an unassigned leaf η

from BT, and store ID ∈ Z
n
q in the leaf η. For each node θ ∈ Path(BT, η),

perform the following steps: Recall {u′
θ,�}�∈[d] if it was defined. Otherwise,

choose u′
θ,1, . . . ,u

′
θ,d

$← Z
n
q and store them in θ. For every � ∈ [d], sample

e′
θ,� ← SampleLeft(A0,FID,u′

θ,�,TA0 , σ) where FID = A1 +H(ID)G ∈ Z
n×m
q .

Finally output

SKID =
({

θ, {e′
θ,�}�∈[d]

}
θ∈Path(BT,η)

)
.

– KeyUp(PP,MK,T,RL, st): For each node θ ∈ KUNode(BT,RL,T), per-
form the following steps: Recall {u′

θ,�}�∈[d] if it was defined. Other-

wise, choose u′
θ,1, . . . ,u

′
θ,d

$← Z
n
q and store them in θ. Sample ẽθ ←

SampleLeft(A0,FT, ũθ,TA0 , σ) where FT = A2 + H(T)G and ũθ = u −∑
�∈FT

u′
θ,�. Output

KUT =
(
{θ, ẽθ}θ∈KUNode(BT,RL,T) ,FT

)
,

where for simplicity we here assume FT is a d-bit string such that �-th bit is
one for � ∈ FT and other bits are zero.

– DKG(PP,SKID,KUT): Parse SKID and KUT as
{

θ,
{
e′

θ,�

}
�∈[d]

}

θ∈Θsk

and

{θ, ẽθ}θ∈Θku
, respectively. Output ⊥ if Θsk ∩ Θku = ∅. Otherwise, for some

θ ∈ Θsk ∩ Θku, compute eθ =
∑

�∈FT
e′

θ,� and output DKID,T = (eθ, ẽθ).
– Enc(PP, ID,T,M): To encrypt a bit M ∈ {0, 1}, it runs the following steps: Set

FID,T = [A0|FID|FT] ∈ Z
n×3m
q . Choose s $← Z

n
q and RID,RT

$← {−1, 1}m×m.
Choose noise x ← Ψ̄α and a noise vector y ← Ψ̄m

α and set zID = RT
IDy ∈ Z

m
q ,

zT = RT
Ty ∈ Z

m
q . Set

c0 = uT s + x + M
⌊q

2

⌋
∈ Zq, c = FT

ID,Ts +

⎡
⎣

y
zID
zT

⎤
⎦ ∈ Z

3m
q .

Output the ciphertext CTID,T := (c0, c) ∈ Zq × Z
3m
q .

– Dec(PP,DKID,T,CTID,T): It runs the following steps:

Parse c as

⎡
⎣
c0

c1

c2

⎤
⎦ where ci ∈ Z

m
q . Compute c′ = c0 − eT

θ

[
c0

c1

]
− ẽT

θ

[
c0

c2

]
∈ Zq.

Compare c′ and � q
2� treating them as integers in Z. If they are close, i.e., if

|c′ − � q
2�| < � q

4�, output 1, otherwise output 0.

Lattice-Based Revocable Identity-Based Encryption 195

– Revoke(ID,T,RL, st): Add (ID,T) to RL, and output the updated RL.

Parameters and Correctness. We use the following lemma to bound the
noise.

Lemma 7 ([1]). Let e be some vector in Z
m and let y ← Ψ̄α. Then the quantity

|〈e,y〉| when treated as an integer in (−q/2, q/2] satisfies |〈e,y〉| ≤ ‖e‖qα ·
ω(

√
log m) + ‖e‖√m/2.

We have during decryption,

w = c0 − eT
θ

[
c0

c1

]
− ẽT

θ

[
c0

c2

]
= M

⌊q

2

⌋
+ x − eT

θ

[
y

RT
IDy

]
− ẽT

θ

[
y

RT
Ty

]

︸ ︷︷ ︸
error term

.

Then, the error term can be bounded as follows.

Lemma 8. The norm of the error term is bounded by wqσmα · ω(
√

log m) +
O(wσm3/2) with high probability.

Proof. Let eθ = (eθ,1|eθ,2) and ẽθ = (ẽθ,1|ẽθ,2) with eθ,1, eθ,2, ẽθ,1, ẽθ,2 ∈ Z
m.

Then the error term is

x − eT
θ

[
y

RT
IDy

]
− ẽT

θ

[
y

RT
Ty

]
= x − (eθ,1 + ẽθ,1 + RIDeθ,2 + RTẽθ,2)

T y.

From Lemma 2, we have ‖e′
θ,�‖ ≤ σ

√
2m and ‖ẽθ‖ ≤ σ

√
2m with high prob-

ability. The former bounds imply that ‖eθ‖ ≤
∑

�∈FT
‖e′

θ,�‖ ≤ wσ
√

2m. Here,
we use the fact that CFF is w-uniform. By Lemma 5, ‖RID‖ ≤ O(

√
m) and

‖RT‖ ≤ O(
√

m) with high probability. Then, ‖eθ,1 + ẽθ,1 +RIDeθ,2 +RTẽθ,2‖ ≤
‖eθ,1‖+‖ẽθ,1‖+‖RIDeθ,2‖+‖R2ẽθ,2‖ ≤ O(wσm). Then, by Lemma 7, the error
term is bounded by

|x| +
∣∣(eθ,1 + ẽθ,1 + RIDeθ,2 + R2ẽθ,2)Ty

∣∣ ≤ wσmqα · ω(
√

log m) + O(wσm3/2).

��
Now, for the scheme to work correctly, the following conditions should hold,

taking n to be the security parameter:
– the error term is less than q/5 with high probability, i.e., α < [wσm ·

ω(
√

log m)]−1 and q = Ω(wσm3/2),
– that TrapGen can operate, i.e., m > 2n log q,
– that σ is sufficiently large for SampleLeft and SampleRight, i.e., σ > ‖TG‖GS ·

‖RID‖ · ω(
√

log m) =
√

m · ω(
√

log m),
– that Regev’s reduction applies, i.e., q > 2

√
n/α,

Hence, we set the parameters (q,m, σ, α) as follows:

m = 2n1+δ, q = wm2 · ω(
√

log n),

σ =
√

m · ω(
√

log n), α =
[
wm3/2 · ω(

√
log n

)
]−1,

and round up m to the nearest larger integer and q to the nearest larger prime.
Here we assume that δ is such that nδ >
log q� = O(log n).

196 A. Takayasu and Y. Watanabe

5 Security

In this section, we prove the security of our scheme in Sect. 4.

Theorem 1. If the LWE assumption holds and the underlying CFF is Q-cover-
free and w-uniform, then the proposed RIBE scheme in Sect. 4 with the para-
meters set as above is IND-sRID-Q-CPA secure. In particular, if there exists
an adversary A attacking IND-sRID-Q-CPA security of the RIBE scheme,
then there exists an adversary B against the LWE assumption with advantage
AdvLWE

B ≥ 1
wAdvIND-Q-CPA

Π,A (λ) − negl(λ).

Due to the page limitation, we omit some detailed discussion of the following
proof. Especially, we focus on the part that differs from Chen et al.’s proof [16].

Proof. The proof proceeds in a sequence of games where the first game is the
same as IND-sRID-Q-CPA game. In the last game, the challenge ciphertext is a
uniform random element in the ciphertext space, hence, the advantage of a PPT
adversary A is zero. Let Ei denote the event that A wins the game, i.e., b′ = b,
in Game i. Then, A’s advantage in Game i is

∣∣Pr[Ei] − 1
2

∣∣.
Let ID∗ denote the challenge identity. The simulator B guesses an adversarial

type among the following two types:

– Type-I adversary: ID∗ will be revoked before T∗. Hence, A may issue a
secret key extraction query for SKID∗ or decryption key queries DKID∗,T for
T �= T∗ more than Q times.

– Type-II adversary: ID∗ will not be revoked before T∗. Hence, A may issue
decryption key queries DKID∗,T for T �= T∗ at most Q times.

B guesses the types of the adversary with probability 1/2. If the guess is not
correct, B aborts the game and output a random bit. We separate the description
of Game 2 against the Type-I and Type-II adversary. Other games are the same
for both types of the adversary.

Gamereal: This is the original IND-sRID-Q-CPA game between an adversary
A against our scheme and an IND-RID-Q-CPA challenger.

Game 0: The game is the same as Gamereal except that at the beginning of the
game, the challenger guesses an index �∗ ∈ FT∗ such that the secret key element
e′

θ,�∗ is not used to answer the first Q decryption key queries DKID∗,T by A, and
assume that the guess is right. If the guess is not correct, B aborts the game and
output a random bit.

Obviously, the challenger’s guess is right with probability 1/w. In other
words, the reduction loss is w, which is polynomial in the security parameter.
Note that in the rest of the proof, the challenger knows the index �∗. The guess is
crucial to answer ID’s decryption keys in Game 2 against the Type II adversary.

Game 1: In Game 0, the PP contains random matrices A0,A1,A2 in Z
n×m
q . At

the challenge phase, the challenger generates a ciphertext CTID∗,T∗ . We let RID∗

and RT∗ denote random matrices generated for the creation of the challenge

Lattice-Based Revocable Identity-Based Encryption 197

ciphertext. As the proof of Agrawal et al. [1], Game 1 is the same as Game
0 except that we change the creations of A1 and A2 in the PP. The challenger
chooses RID∗ and RT∗ , which will be used to create the challenge ciphertext
CTID∗,T∗ , at the setup phase and construct matrices A1 and A2 as

A1 ← A0RID∗ − H(ID∗)G and A2 ← A0RT∗ − H(T∗)G.

The remainder of the game is unchanged. In A’s view, Game 1 and Game 0
are statistically indistinguishable from Lemma6.

Game 2: In Game 1, {u′
θ,�}�∈[d] are independently random vectors in Z

n
q ,

and the challenger samples {e′
θ,�}�∈[d] and ẽθ using SampleLeft. Game 2 is the

same as Game 1 except that, for each node θ, we change the distributions of
{u′

θ,�}�∈[d], the secret key {e′
θ,�}�∈[d] for ID∗, and the key update ẽθ for T∗ so

that B can create the keys without using the trapdoor TA0 . In this game, the
distributions differ against the type of adversaries. We use Game 2-I and Game
2-II to denote the games.

Type-I Adversary: The modification of Game 2-I is similar to Chen et al.’s
one [16]. By definition, the challenger should answer SKID∗ and DKID∗,T queries
only for the nodes θ ∈ Path(η∗), where η∗ is a randomly selected leaf which
ID∗ will be assigned to. By definition of Type-I adversary, since ID∗ will be
revoked before T∗, the challenger should answer KUT∗ queries only for the nodes
θ /∈ Path(η∗). Hence, there are no nodes θ that the challenger should answer key
queries for both ID∗ and T∗. Then, in Game 2-I, we change the distributions as
follows:

– Sample independently random e′
θ,� ← SampleGaussian(σ) and set u′

θ,� =
[A0|FID∗]eθ,� for � ∈ [d] and θ ∈ Path(η∗),

– Sample ẽθ ← SampleGaussian(σ) and set ũθ = [A0|FT∗]ẽθ for θ /∈ Path(η∗).
Set u′

θ,� for � ∈ [d]\{�∗} as independently random vectors in Z
n
q . Then, set

u′
θ,�∗ = u − ũθ −

∑
�∈FT∗ \{�∗} u

′
θ,�.

Although we use �∗, which the challenger guessed in Game 0, to create
{u′

θ,�}�∈[d] for θ /∈ Path(η∗), the role can be replaced by any � ∈ FT∗ . Then,
the challenger responds to A’s key queries as follows:

– SKID queries for ID �= ID∗ and KUT queries for T �= T∗ are unchanged,
– answers SKID∗ queries using the above

{
e′

θ,�

}
�∈[d]

,

– answers KUT∗ queries using the above ẽθ,
– answers DKID,T queries by using the above SKID and KUT.

Notice that we do not use the trapdoor TA0 to create SKID∗ and KUT∗ .
As Chen et al. [16], we can show that Game 2-I is statistically indistin-

guishable from Game 1 with high probability. In Game 1, {u′
θ,�}�∈[d] are

independently random vectors in Z
n
q , and since {e′

θ,�}�∈[d] for ID∗ and ẽθ

for T∗ are sampled from eθ,� ← SampleLeft(A0,FID∗ ,u′
θ,�,TA0 , σ) and ẽθ ←

SampleLeft(A0,FT∗ , ũθ,TA0 , σ) where ũθ = u −
∑

�∈FT∗ u′
θ,�, the distributions

198 A. Takayasu and Y. Watanabe

are statistically close to D
Λ

u′
θ,�

q ([A0|FID∗]),σ
and D

Λ
ũθ
q ([A0|FT∗]),σ

, respectively. In

Game 2-I, {eθ,�}�∈[d] for ID∗ and ẽθ for T∗ are sampled from DZ2m,σ from
the property of SampleGaussian. Hence, by Lemma 3, the distribution of each
{u′

θ,�}�∈[d] and ũθ in Game 2-I is statistically close to uniform over Z
n
q , respec-

tively. Furthermore, the conditional distribution of each {e′
θ,�}�∈[d] and ẽθ given

{u′
θ,�}�∈[d] and ũθ is statistically close to D

Λ
u′

θ,�
q ([A0|FID∗]),σ

and D
Λ

ũθ
q ([A0|FT∗]),σ

,

respectively. Hence, Game 2-I is statistically indistinguishable from Game 1 in
A’s view.

Type-II adversary. The modification of Game 2-II is the most technical part
of this paper. In this game, the distributions of u′, {e′

θ,�}�∈[d], and ẽθ for θ /∈
Path(η∗) are the same as Game 2-I, however, we change the distributions of
those for θ ∈ Path(η∗). As opposed to the case of Game 2-I, the challenge ID∗

will not be revoked in the challenge time period T∗. Since there are nodes θ
which the simulator should create both the secret key {eθ,�}�∈[d] for ID∗ and the
key update ẽθ for T∗, the previous approach is insufficient. In Game 2-II, we
change the distributions for θ ∈ Path(η∗) as follows:

– Sample independently random e′
θ,� ← SampleGaussian(σ) and set u′

θ,� =
[A0|FID∗]e′

θ,� for � ∈ [d]\{�∗},
– Sample ẽθ ← SampleGaussian(σ) and set ũθ = [A0|FT∗]ẽθ. It immediately

means that u′
θ,�∗ = u − ũθ −

∑
�∈FT∗ \{�∗} u

′
θ,�.

Then, the challenger responds to A’s key queries as follows:

– SKID queries for ID �= ID∗ and KUT queries for T �= T∗ are unchanged,
– answers KUT∗ queries using the above ẽθ,
– answers DKID,T queries for ID �= ID∗ by using the above SKID and KUT,
– answers DKID∗,T queries using the above {e′

θ,�}�∈[d] and KUT.

The challenger can respond to all key queries by A using the key creation algo-
rithms. Although the challenger can create all the other keys, it cannot create
the secret key element e′

θ,�∗ for ID∗. However, it does not matter since the maxi-
mum number of DKID∗,T queries by A is bounded up to Q times by the definition
of Type II adversary. Moreover, thanks to the property of CFFs and the guess
�∗ in Game 0, we know that eθ,�∗ is not used to respond to DKID∗,T queries. As
in Game 2-I, Game 2-II is statistically indistinguishable from Game 1 in A’s
view by Lemma 3.

Game 3: In Game 2, a matrix A0 is generated by TrapGen and its trapdoor
TA0 is used to respond to A’s key queries for ID �= ID∗ and T �= T∗. Game
3 is the same as Game 2 except that we sample A0 as a random matrix in
Z

n×m
q . From the property of TrapGen, matrices generated by the algorithm are

statistically close to random matrices in Z
n×m
q . Hence, the distributions of PP

between Game 2 and Game 3 are statistically indistinguishable. Observe that

[A0|FID] := [A0|A1 + H(ID)G] = [A0|A0RID∗ + (H(ID) − H(ID∗))G] ,
[A0|FT] := [A0|A2 + H(T)G] = [A0|A0RT∗ + (H(T) − H(T∗))G] .

Lattice-Based Revocable Identity-Based Encryption 199

Due to the property of gadget matrix, we know a trapdoor TG which is also a
trapdoor for (H(ID)−H(ID∗))G and (H(T)−H(T∗))G if ID �= ID∗ and T �= T∗,
since H(ID)−H(ID∗) and H(T)−H(T∗) in Z

n×n
q are full rank. Since the trapdoor

is public, one may think that it can be used by anyone, however, the knowledge
of secret RID∗ and RT∗ are required to use SampleRight.

Then, the challenger responds to A’s key queries as follows:

– SKID∗ queries and KUT∗ queries are unchanged,
– answers SKID queries for ID �= ID∗ by e′

θ,� where e′
θ,� ←

SampleRight(A0,G,RID∗ ,u′
θ,�,TG, σ),

– answers KUT queries for T �= T∗ by ẽθ where
ẽθ ← SampleRight(A0,G,RT∗ , ũθ,TG, σ),

– answers DKID,T queries by using the above SKID and KUT.

Due to the property of SampleRight, the distributions of e′
θ,� and ẽθ, which

are the differences from Game 2, are statistically close to D
Λ

u′
θ,�

q ([A0|FID∗]),σ

and D
Λ

ũθ
q ([A0|FT∗]),σ

. As a result, Game 3 is statistically indistinguishable from
Game 2 in A’s view.

Gamefinal: Gamefinal is the same as Game 3 except that the challenge cipher-
text CTID∗,T∗ is always chosen as a random independent element in the ciphertext
space Zq ×Z

3m
q . Since the challenge ciphertext is always a fresh random element

in the ciphertext space, A’s advantage in this game is zero.
If there exists a PPT adversary A to distinguish between Gamefinal and

Game 3, then there exists another adversary B to solve LWE problem. There-
fore,

∣∣Pr[E3] − 1
2

∣∣ = |Pr[E3] − Pr[Efinal]| ≤ AdvLWE
B . Since the proof is the

standard technique of lattice-based cryptography, we omit it.
Thus, we complete the proof. ��

6 Discussion

To conclude this paper, we give some further comments and open questions of
this research.

Key Re-randomization. As mentioned in the introduction, the key re-
randomization property is crucial for constructing all the previous (pairing-
based) DKER RIBE schemes. One may think that lattice-based RIBE schemes
can be easily modified to support the key re-randomization property with
T[A0|FID], which is a short basis of Λ⊥

q ([A0|FID]), as secret keys or T[A0|FT],
which is a short basis of Λ⊥

q ([A0|FT]), as key updates. These bases are used to
support delegation in the context of hierarchical IBE [2,14]. Indeed, the bases
enable any users of RIBE scheme to re-randomize their decryption keys and the
scheme to be decryption key exposure resistant. However, the approach is not
applicable to the RIBE setting. If a user ID has his own secret key T[A0|FID], he
can produce the well-formed decryption key e such that [A0|FID|FT]e = u for
any time periods T without key updates. Hence, KGC cannot revoke any users.
For the same reason, constructing lattice-based revocable hierarchical IBE is a
major open problem that seems very hard to be solved.

200 A. Takayasu and Y. Watanabe

Insecurity of Cheng-Zhang’s RIBE Scheme [17]. Cheng and Zhang claimed
that their proposed RIBE scheme with the subset difference (SD) method is the
first adaptively secure one with smaller key updates. However, there are critical
bugs in their security proof, i.e., Game 3 in the proof of their Theorem 1. Here,
we follow the notation from [17], e.g., id and t. In their Game 3, the simulator
aborts the game if hid∗ = 0, where h() is a certain function, to answer secret key
extraction queries. In addition, the simulator also aborts the game if hid∗ �= 0 to
create a challenge ciphertext. Hence, the game never ends. Note that the same
holds for the target time period t∗.

One may think that Chen et al.’s Gaussian sampling technique [16], which we
also used, can be used to fix the bugs. However, it is not the case. Furthermore,
Cheng-Zhang’s RIBE scheme is not secure even in the selective security model.
The difficulty comes from the SD method which they used to revoke users. The
SD method is another subset cover framework and it enables us to reduce the size
of key updates. Notice that the subset cover framework which Chen et al. [16]
and we used in this paper is the CS method. If we modify Cheng-Zhang’s RIBE
scheme in the selective security model, the secret key e′ and the key update ẽ
satisfy the following equations:

[A0|A1 + H(id)G] e′ = u′ and [A0|A2 + H(t)G] ẽ = ũ.

The main difference between the SD method and the CS method is the restriction
of syndrome vectors u′ and ũ. In the security proof, the simulator should create
both the secret key e′ for the target id∗ and the key update ẽ for the target
t∗. As opposed to the CS method case, if we use the SD method, the simulator
should create both e′ and ẽ for the same syndrome vector u′ = ũ even without
DKER. Since we cannot create the keys by using the trapdoor TG, we try
to create them by using a Gaussian sampling algorithm. Once the simulator
uses a Gaussian sampling algorithm to sample e′ for the target id∗, then the
corresponding syndrome vector u′ = ũ is fixed. Therefore, the simulator cannot
create ẽ for the target t∗ by using a Gaussian sampling algorithm. Therefore,
a construction of lattice-based RIBE with the SD method even in the selective
security model and even without DKER is an interesting open problem.

Gadget Matrix. If we do not use CFFs in our scheme, i.e., w = d = 1, then the
scheme is an RIBE scheme without DKER. However, our parameters are better
than Chen et al.’s [16]. Notice that q and σ in our scheme are smaller than those
in [16]. The improvement stems from the gadget matrix G due to Micciancio
and Peikert [29], hence it is not the technical contribution of this paper.

Semi-adaptive Security. If we replace the hash function FID = A1 + H(ID)G
of Agrawal et al. [1] by that of adaptively secure schemes [6,10,11,14,20,24,38–
40], our scheme achieves semi-adaptive security3, where an adversary issues the

3 Notice that we do not have to replace FT = A2 + H(T)G by adaptively secure
ones. Since the maximum time period is polynomially bounded, |T | security loss
enables us to guess the target time period T∗. Indeed, Seo-Emura [34] constructed
adaptively secure DKER RIBE scheme by combining the Waters IBE [37] for ID and
the Boneh-Boyen IBE [8] for T.

Lattice-Based Revocable Identity-Based Encryption 201

target (ID∗,T∗) in advance of any key queries. What is required to prove the
security of lattice-based RIBE is trapdoors that can sample short vectors e′

θ,�

for ID �= ID∗ and ẽ for T �= T∗ according to discrete Gaussian distributions, where
all the lattice-based IBE schemes have. However, it is insufficient to construct
adaptively secure RIBE even without DKER. In the RIBE setting, we have to
set all u′

θ,� in advance of any key queries, then we use FID∗ , or equivalently ID∗,
for the computations. It means that the simulator has to know ID∗ at that time.
To avoid the obstacle, we should develop new lattice-based RIBE constructions,
which are different from Chen et al.’s [16], or it may be equivalent to new lattice-
based fuzzy IBE constructions, which are different from Agrawal et al.’s [3].

One may think that adaptively secure IBE is more than enough to construct
semi-adaptively secure RIBE. However, we do not know how to construct semi-
adaptively secure lattice-based IBE that is more efficient than adaptively secure
ones. We think that the construction should be an interesting open problem in
this research topic.

Anonymous (B-)DKER RIBE. Our scheme is the first anonymous
(B-)DKER RIBE that is resilient to decryption key exposure. As in lattice-based
IBE schemes (e.g., [1]) and Chen et al.’s RIBE scheme [16], since pairing-based
anonymous IBE [12] does not support the key re-randomization property, an
existing anonymous RIBE scheme [15] is insecure if an adversary is allowed to
query even a single decryption key. Since the spirit of our construction is the use
of distinct ũ’s for each time period and the concrete construction with CFFs,
we did not use specific techniques for lattices. Therefore, we believe that our
approach enables one to construct pairing-based anonymous B-DKER RIBE.

Acknowledgement. We would like to thank Shantian Cheng and Juanyang Zhang
for their sincere discussion with us. We would like to thank Shuichi Katsumata for his
helpful comments. Atsushi Takayasu was (during the submission) and Yohei Watanabe
is supported by a JSPS Fellowship for Young Scientists. This research was supported by
JST CREST Grant Number JPMJCR14D6, Japan, JSPS KAKENHI Grant Number
JP14J08237 and JP17K12697.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13190-5 28

2. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 98–115. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7 6

3. Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional
encryption for threshold functions (or Fuzzy IBE) from lattices. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8 17

4. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann,
J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9.
Springer, Heidelberg (1999). doi:10.1007/3-540-48523-6 1

http://dx.doi.org/10.1007/978-3-642-13190-5_28
http://dx.doi.org/10.1007/978-3-642-14623-7_6
http://dx.doi.org/10.1007/978-3-642-30057-8_17
http://dx.doi.org/10.1007/3-540-48523-6_1

202 A. Takayasu and Y. Watanabe

5. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory
Comput. Syst. 48(3), 535–553 (2011)

6. Apon, D., Fan, X., Liu, F.: Fully-secure lattice-based IBE as compact as PKE.
IACR Cryptology ePrint Archive 2016, 125 (2016)

7. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revo-
cation. In: Ning, P., Syverson, P.F., Jha, S. (eds.) CCS 2008, pp. 417–426. ACM
(2008)

8. Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random
oracles. J. Cryptology 24(4), 659–693 (2011)

9. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

10. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully
secure short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC
2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13013-7 29

11. Boyen, X., Li, Q.: Towards tightly secure lattice short signature and id-
based encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10032, pp. 404–434. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53890-6 14

12. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (Without
Random Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–
307. Springer, Heidelberg (2006). doi:10.1007/11818175 17

13. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) STOC
2013, pp. 575–584. ACM (2013)

14. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptology 25(4), 601–639 (2012)

15. Chen, J., Lim, H.W., Ling, S., Su, L., Wang, H.: Anonymous and adaptively secure
revocable IBE with constant size public parameters. CoRR abs/1210.6441 (2012)

16. Chen, J., Lim, H.W., Ling, S., Wang, H., Nguyen, K.: Revocable identity-
based encryption from lattices. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP
2012. LNCS, vol. 7372, pp. 390–403. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31448-3 29

17. Cheng, S., Zhang, J.: Adaptive-ID secure revocable identity-based encryption
from lattices via subset difference method. In: Lopez, J., Wu, Y. (eds.) ISPEC
2015. LNCS, vol. 9065, pp. 283–297. Springer, Cham (2015). doi:10.1007/
978-3-319-17533-1 20

18. Emura, K., Seo, J.H., Youn, T.: Semi-generic transformation of revocable hierarchi-
cal identity-based encryption and its DBDH instantiation. IEICE Trans. 99–A(1),
83–91 (2016)

19. Erdös, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered
by the union of r others. Isr. J. Math. 51(1), 79–89 (1985)

20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) STOC 2008, pp. 197–206. ACM
(2008)

21. Goldwasser, S., Lewko, A., Wilson, D.A.: Bounded-collusion IBE from key homo-
morphism. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 564–581. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28914-9 32

http://dx.doi.org/10.1007/978-3-642-13013-7_29
http://dx.doi.org/10.1007/978-3-642-13013-7_29
http://dx.doi.org/10.1007/978-3-662-53890-6_14
http://dx.doi.org/10.1007/978-3-662-53890-6_14
http://dx.doi.org/10.1007/11818175_17
http://dx.doi.org/10.1007/978-3-642-31448-3_29
http://dx.doi.org/10.1007/978-3-642-31448-3_29
http://dx.doi.org/10.1007/978-3-319-17533-1_20
http://dx.doi.org/10.1007/978-3-319-17533-1_20
http://dx.doi.org/10.1007/978-3-642-28914-9_32

Lattice-Based Revocable Identity-Based Encryption 203

22. Heng, S.-H., Kurosawa, K.: k -Resilient identity-based encryption in the standard
model. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 67–80. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24660-2 6

23. Ishida, Y., Watanabe, Y., Shikata, J.: Constructions of CCA-secure revocable
identity-based encryption. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol.
9144, pp. 174–191. Springer, Cham (2015). doi:10.1007/978-3-319-19962-7 11

24. Katsumata, S., Yamada, S.: Partitioning via non-linear polynomial functions: more
compact IBEs from ideal lattices and bilinear maps. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 682–712. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-53890-6 23

25. Kumar, R., Rajagopalan, S., Sahai, A.: Coding constructions for blacklisting
problems without computational assumptions. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 609–623. Springer, Heidelberg (1999). doi:10.1007/
3-540-48405-1 38

26. Lee, K.: Revocable hierarchical identity-based encryption with adaptive security.
IACR Cryptology ePrint Archive 2016, 749 (2016)

27. Lee, K., Lee, D.H., Park, J.H.: Efficient revocable identity-based encryption via
subset difference methods. IACR Cryptology ePrint Archive 2014, 132 (2014)

28. Libert, B., Vergnaud, D.: Adaptive-ID secure revocable identity-based encryp-
tion. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 1–15. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00862-7 1

29. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 41

30. Nguyen, K., Wang, H., Zhang, J.: Server-aided revocable identity-based encryption
from lattices. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052,
pp. 107–123. Springer, Cham (2016). doi:10.1007/978-3-319-48965-0 7

31. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In: Mitzenmacher, M. (ed.) STOC 2009, pp. 333–342. ACM
(2009)

32. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) STOC 2005, pp. 84–93. ACM (2005)

33. Seo, J.H., Emura, K.: Revocable hierarchical identity-based encryption. Theor.
Comput. Sci. 542, 44–62 (2014)

34. Seo, J.H., Emura, K.: Revocable identity-based cryptosystem revisited: security
models and constructions. IEEE Trans. Inf. Forensics Secur. 9(7), 1193–1205 (2014)

35. Seo, J.H., Emura, K.: Revocable hierarchical identity-based encryption via history-
free approach. Theor. Comput. Sci. 615, 45–60 (2016)

36. Watanabe, Y., Emura, K., Seo, J.H.: New revocable IBE in prime-order groups:
adaptively secure, decryption key exposure resistant, and with short public para-
meters. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 432–449.
Springer, Cham (2017). doi:10.1007/978-3-319-52153-4 25

37. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). doi:10.1007/11426639 7

38. Yamada, S.: Adaptively secure identity-based encryption from lattices with asymp-
totically shorter public parameters. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 32–62. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49896-5 2

http://dx.doi.org/10.1007/978-3-540-24660-2_6
http://dx.doi.org/10.1007/978-3-319-19962-7_11
http://dx.doi.org/10.1007/978-3-662-53890-6_23
http://dx.doi.org/10.1007/3-540-48405-1_38
http://dx.doi.org/10.1007/3-540-48405-1_38
http://dx.doi.org/10.1007/978-3-642-00862-7_1
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/978-3-319-48965-0_7
http://dx.doi.org/10.1007/978-3-319-52153-4_25
http://dx.doi.org/10.1007/11426639_7
http://dx.doi.org/10.1007/978-3-662-49896-5_2
http://dx.doi.org/10.1007/978-3-662-49896-5_2

204 A. Takayasu and Y. Watanabe

39. Yamada, S.: Asymptotically compact adaptively secure lattice IBEs and verifiable
random functions via generalized partitioning techniques. IACR Cryptology ePrint
Archive 2017, 096 (2017)

40. Zhang, J., Chen, Y., Zhang, Z.: Programmable hash functions from lattices:
short signatures and IBEs with small key sizes. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016. LNCS, vol. 9816, pp. 303–332. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-53015-3 11

http://dx.doi.org/10.1007/978-3-662-53015-3_11
http://dx.doi.org/10.1007/978-3-662-53015-3_11

Searchable Encryption

Dynamic Searchable Symmetric Encryption
with Physical Deletion and Small Leakage

Peng Xu1(B), Shuai Liang1, Wei Wang2, Willy Susilo3, Qianhong Wu4,
and Hai Jin1

1 Services Computing Technology and System Lab,
Cluster and Grid Computing Lab, School of Computer Science and Technology,

Huazhong University of Science and Technology, Wuhan 430074, China
{xupeng,hjin}@mail.hust.edu.cn, 850328459@qq.com

2 Cyber-Physical-Social Systems Lab, School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan 430074, China

viviawangww@gmail.com
3 School of Computing and Information Technology, Institute of Cybersecurity

and Cryptology, University of Wollongong, Wollongong, Australia
wsusilo@uow.edu.au

4 School of Electronic and Information Engineering, Beihang Univerisity,
Beijing, China

qianhong.wu@buaa.edu.cn

Abstract. Dynamic Searchable Symmetric Encryption (DSSE) allows
a client not only to search over ciphertexts as the traditional searchable
symmetric encryption does, but also to update these ciphertexts accord-
ing to requirements, e.g., adding or deleting some ciphertexts. It has
been recognized as a fundamental and promising method to build secure
cloud storage. In this paper, we propose a new DSSE scheme to overcome
the drawbacks of previous schemes. The biggest challenge is to realize
the physical deletion of ciphertexts with small leakage. We employ both
logical and physical deletions, and run physical deletion in due course
to avoid extra information leakage. Our instantiation achieves noticeable
improvements throughout all following aspects: search performance, stor-
age cost, functionality, and information leakage when operating its func-
tions. We also demonstrate its provable security under adaptive attacks
and practical performance according to experimental results.

1 Introduction

Symmetric-key encryption with keyword search (or searchable symmetric encryp-
tion, SSE for short) allows clients to upload their keyword searchable ciphertexts
to a server, and then delegate keyword search to the server and retrieve files of
an expected keyword. A secure SSE scheme can keep the privacy of keywords
not only to outside attackers but also to the server. The details are as follows: for
all keywords of a file, a client respectively generates the corresponding keyword
searchable ciphertexts and the encrypted file in symmetric-key setting, and stores
these ciphertexts in the server; to retrieve the files of an expected keyword, the
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 207–226, 2017.
DOI: 10.1007/978-3-319-60055-0 11

208 P. Xu et al.

client delegates a keyword search token to the server, and then the server finds
out all matching keyword searchable ciphertexts, decrypts out their encrypted
file identifiers, and returns the corresponding encrypted files of these identifiers
to the client; finally, the client decrypts out these files. Since the encryption of
files can be separately processed with an independent symmetric-key encryption
scheme, SSE only focuses on the generation of keyword searchable ciphertexts.
Hence, unless the clear statement, all encryptions or ciphertexts are searchable
in this paper.

In the past decade, most of researches on SSE focus on improving security,
accelerating search performance or searching with multiple keywords. Until 2012,
Kamara et al. [1] first proposed a dynamic SSE (DSSE) scheme (called KPR’12
in our paper) by constructing hidden chains to connect all searchable ciphertexts
of the same keyword. With a keyword search trapdoor, these hidden chains will
be partially disclosed and guide the server to efficiently find out all matching
ciphertexts. In addition, KPR’12 can add new ciphertexts to their corresponding
chains or delete old ciphertexts from these chains. Clearly, DSSE is more flexible
than the traditional SSE both in theory and practice.

But The KPR’12 scheme causes significant information leakage in updating
ciphertexts. Specifically, when adding or deleting ciphertexts, it will leak some
information of the corresponding chains, e.g., the number of ciphertexts in a
chain. These leakage information makes the server having a noticeable advantage
to guess keywords. In 2013, Kamara et al. [2] modified their previous work by
sharply increasing the size of searchable ciphertexts. Technically, this new DSSE
scheme (called KP’13 in our paper) generates secure vectors for all keywords,
where each vector is of size linear with the number of all files, and then constructs
a tree structure for these vectors to accelerate search performance. Since each
keyword is contained only by a part of files in practice, these vectors contain
many redundancies. Hence, KP’13 takes a high storage complexity.

In 2014, Cash et al. [3] proposed a DSSE scheme (called CJJ’14) by apply-
ing private counters to constructing hidden relationships among all keyword
searchable ciphertexts. Technically, each keyword has a private counter which is
initiated as “1”; to generate a searchable ciphertext of a keyword, the current
value of the corresponding counter will be taken as input, and after the gen-
eration, the counter will be added with “1”; when receiving a keyword search
trapdoor, the server can efficiently find out all matching ciphertexts by travers-
ing all possible values of a counter. CJJ’14 is more convenient than KPR’12 and
KP’13. But it cannot physically delete ciphertexts. In other words, only logical
deletion is achieved by taking extra storage to remember the deleted cipher-
texts. When searching a keyword, the deleted ciphertexts will not be taken into
account even if they contain the keyword. Hence, its storage complexity will con-
sistently increase with the total number of both adding or deleting operations.
This disadvantage also appears in the work of [4].

Rough comparisons of the above DSSE schemes are listed in Table 1 (the
exact comparisons will be given in Sect. 7). The summary is that no previous
work is good at all aspects of search complexity, storage complexity, functionality,

Dynamic Searchable Symmetric Encryption with Physical Deletion 209

Table 1. Rough comparisons. Search is to find out the files containing a queried key-
word.AddFile is to add all keyword searchable ciphertexts of a new file. AddKeyword
is to add a new keyword searchable ciphertext of an existing file. DeleteFile is to delete
all keyword searchable ciphertexts of an existing file. DeleteKeyword is to delete a
keyword searchable ciphertext of an existing file. Information leakage denotes the infor-
mation leaked by running previous functions.

Scheme Search

complexity

Storage

complexity

Functions Information

leakage

AddFile AddKeyword DeleteFile DeleteKeyword

KPR’12 [1] Low Normal Achieved Failed Physical Failed Large

KP’13 [2] Normal High Achieved Failed Physical Failed Normal

CJJ’14 [3] Low Low Achieved Achieved Failed Logical Small

Ours Low Low Achieved Achieved Physical Physical Small

and information leakage. Hence, we are interested in proposing a new DSSE
scheme to complete this work.

1.1 Our Main Ideas

Before introducing our main ideas, some basic concepts are needed. In the par-
adigmatic application of DSSE, each file has an unique identifier and several
keywords. It is common to let file-keyword pair (id, w) denote that the file with
identifier id has keyword w. Suppose database DB consists of all such pairs,
which are derived from the application.

For each pair in DB, our scheme will generate three kinds of searchable
ciphertexts, called K1, K2, and K3, respectively. The three kinds of cipher-
texts are used to accordingly achieve functions Search, DeleteFile, and
DeleteKeyword, respectively. Taking pair (id, w) as an example, Fig. 1 shows
the generated three ciphertexts, including their hidden relationships. All K1
ciphertexts of the same keyword construct a hidden chain relationship, like the
chain of keyword w in Fig. 2; all K2 ciphertexts of the same file identifier also
construct a hidden chain relationship, like the chain of identifier id in Fig. 2; no
hidden relationship among K3 ciphertexts is needed.

wL 0|| || wid P

idL ,0 || || ||w id w idL L P

,id wL 0|| ||w idL L

1K

2K

3K

,

Notion: Each ciphertext consists of
an unique label and an encrypted
part (denoted by a grey box). Sym-
bols Lw, Lid and Lid,w are labels.
Symbols Pw and Pid are pointers.
The dashed lines denote the hid-
den relationships among the gener-
ated ciphertexts. “0” in each ci-
phertext denote a tag bit, and its
initial value is “0”.

Fig. 1. The generated ciphertexts for
pair (id, w)

1
wL

1
10|| || wid P 2

wL
2

20|| || wid P 3
wL

3
30|| || wid P

The Hidden Chain of Keyword w

1
idL 1 1

1
,0 || || ||w id w idL L P 2

idL 2 2

2
,0 || || ||w id w idL L P 3

idL 3 3

3
,0 || || ||w id w idL L P

The Hidden Chain of File Identifier id

Fig. 2. The generated hidden chain
relationship among ciphertexts, where
P 1
w = L2

w, P 2
w = L3

w, P 1
id = L2

id, and
P 2
id = L3

id

210 P. Xu et al.

When searching a keyword with the corresponding keyword search token,
function Search finds out the hidden chain of the keyword, and follows the guid-
ance of the chain to rapidly find out all matching K1 ciphertexts. By decrypting
these matching ciphertexts, function Search finally obtains some file identifiers,
which refer to the files containing the queried keywords. However, our chains
among K1 ciphertexts have some differences with that of KPR’12. One differ-
ence is that we do not generate the deterministic heads for all possible chains
when initializing a DSSE scheme as KPR’12 did. On the contrary, the head of
a chain in our DSSE scheme is dynamically generated when the keyword cor-
responding to the chain is the first time to be used. So we do not take extra
storage for any chain’s deterministic head.

When adding a new keyword searchable ciphertext of an existing file with
identifier id (let w′ be the new keyword), function AddKeyword generates
three above mentioned ciphertexts of pair (id, w′). The generated K1 ciphertext
will be linked to the end of the w′’s chain, and similarly the K2 ciphertext will
be linked to the end of the id’s chain. Summarily, our idea is to link the new
generated ciphertexts to the end of chains. This idea is inspired by the drawback
of KPR’12 that linking ciphertexts to the middle of chains causes some impact
on the old ciphertexts in the chains, i.e. extra information leakage. In addition,
we just need to support function AddKeyword, since function AddFile can
be achieved by executing function AddKeyword multiple times.

The biggest challenge in our work is to realize the physical deletion with small
leakage when running functions DeleteKeyword and DeleteFile. Roughly,
both functions need to delete some ciphertexts from chains. If the deletion is
physical, some operations after the deletion are necessary to repair the broken
chains. For example, suppose that the second ciphertext in the hidden chain
of keyword w in Fig. 2 is physically deleted. To repair the broken chain, values
L1
w and L3

w must be known, and then set P 1
w = L3

w. These operations leak
the fact that the ciphertexts with labels L1

w and L3
w are in the same chain

with the ciphertext with label L2
w. In the worst case, all ciphertexts in a chain

will be leaked. To overcome this challenge, our idea is to employ both logical
and physical deletions, and run physical deletion in due course to avoid extra
information leakage. The details are as follows.

First, our K3 ciphertexts are used to support function DeleteKeyword.
When deleting all searchable ciphertexts of a file-keyword pair (id, w), a delete
token allows server to quickly find out the matching K3 ciphertext and then
decrypt out two indices. Referring to Fig. 1, these two indices respectively corre-
spond to a K1 ciphertext and a K2 ciphertext. Then the K1 and K2 ciphertexts
are logically deleted by setting their tag bits to be “1”. Finally, that matching
K3 ciphertext is physically deleted.

Second, our K2 ciphertexts are used to support function DeleteFile. When
deleting all searchable ciphertexts of a file with identifier id, a delete token allows
the server to find out the hidden chain of id. Following this chain, all matching
K2 ciphertexts can be rapidly found. Referring to Fig. 1, each matching K2
ciphertext can be decrypted out two indices, and these indices allow server to

Dynamic Searchable Symmetric Encryption with Physical Deletion 211

find out all related K1 and K3 ciphertexts. Finally, all found K1 ciphertexts are
logically deleted by setting their tag bits to be “1”, and all found K2 and K3
ciphertexts are physically deleted.

Third, our above ideas show the physical deletion of K2 and K3 ciphertexts
and the logical deletion of K1 ciphertexts. Hence, our final goal is to physi-
cally delete the K1 ciphertexts. This work is elegantly achieved when the search
process is rebooted per keyword according to our extra design. Then all logically
deleted K1 ciphertexts of the queried keyword will be physically deleted, and the
corresponding chain will be repaired. Summarily, we do the physical deletion of
the K1 ciphertexts by function Search, not by function DeleteFile as previous
schemes did. This method does not cause extra information leakage, since the
inherent information leakage of function Search is enough for repairing a broken
chain caused by the physical deletion.

1.2 Our Contributions

Compared with KPR’12, we extend the definition of DSSE by additionally defin-
ing functions AddKeyword and DeleteKeyword. As a result, the new DSSE
definition consists of five protocols that are Setup, AddKeyword, DeleteFile,
DeleteKeyword, and Search. A client runs protocol Setup to generate search-
able ciphertexts, which will be stored in a server. The other protocols allow the
client to delegate the corresponding operations to the server. We also extend
the traditional security definition, which is called indistinguishability under
adaptively chosen keyword attacks (IND-CKA2). In our new security defini-
tion, a more powerful adversary is modeled. Specifically, in either a real or
an ideal attack game, an adversary is allowed to make a polynomial num-
ber of adaptive operations to engage in protocols AddKeyword, DeleteFile,
DeleteKeyword, or Search.

Before proposing our complete DSSE scheme, we construct two basic DSSE
schemes to help the understanding of our ideas. The first one shows how to
construct the hidden chains among searchable ciphertexts, add new searchable
ciphertexts to the corresponding chains, and search a keyword according to the
guidance of the corresponding chain. The second one shows how to employ both
logical and physical deletions to delete all searchable ciphertexts of a file. From
these two basic DSSE schemes, we construct our complete DSSE scheme prov-
ably IND-CKA2 secure in the random oracle (RO) model. The two basic DSSE
schemes are also of independent interest in the applications in which limited
functionalities are sufficient.

We make thorough comparisons between our complete DSSE scheme and the
related KPR’12, KP’13, and CJJ’14 schemes. The comparisons show that our
scheme has noticeable advantages in all aspects of search complexity, storage
complexity, functionality, and information leakage. Finally, we show the practi-
cality of our scheme with extensive experimental results in executing its main
functions.

212 P. Xu et al.

1.3 Organization of the Remainder

Sections 2 and 3 respectively define some symbols, two common data structures,
DSSE and its IND-CKA2 security. Sections 4 and 5 respectively show our two
basic DSSE schemes. Section 6 proposes our complete DSSE scheme and its
provable IND-CKA2 security. In Sect. 7, we exactly compare our complete DSSE
scheme with some previous schemes, and then show the practice of our scheme
by numerical results. The other related works on SSE are reviewed in Sect. 8.
Section 9 concludes this paper.

2 Defining Symbols and Data Structures

We let symbol k ∈ N denote the security parameter. The set of all binary strings
of length n ∈ N is denoted as {0, 1}n, and the set of all finite binary strings

denoted as {0, 1}∗. We write x
$← X to represent an element x being sampled

uniformly at random from the set X . The output x of an algorithm A is denoted
by x ← A. |X | represents the size of set X or the total number of members in set
X . W denotes the keyword space. Each file is denoted by an unique identifier.
ID is the set of all the file identifiers. (id, w) is a file-keyword pair, where w ∈ W
and id ∈ ID. DB is a database or a set of different (id, w) pairs. |DB| is the
total number of the pairs in DB (or the size of DB). DB(w) is the set of the
file identities that pair with keyword w ∈ W in DB. Similarly, DB(id) is a set
of the keywords that pair with file id ∈ ID in DB. If pair (id, w) ∈ DB holds,
|DB(id, w)| = 1, otherwise |DB(id, w)| = 0. Symbol || denotes the concatenation
of strings.

Our schemes will employ two standard data structures List and Dictionary.
When T is a List, |T | denotes the total number of records in T . There are four
operations on dictionary D. We define them as follows:

– Creat(T): Take a list T of label-data pairs as input (where each label is
unique), and return a dictionary D;

– Get(D, L): Take a dictionary D and a label L as inputs, return the corre-
sponding data D if (L,D) ∈ D, otherwise return NULL;

– Update(D, (L,D)): Take a dictionary D and a label-data pair (L,D) as
inputs, insert (L,D) into D if L does not exist in D, otherwise update the
original data of label L into the new data D, and finally return ⊥;

– Remove(D, L): Take a dictionary D and a label L as inputs, delete record
(L,D) from D and return ⊥;

Note that the dictionary algorithm Creat(T) is history-independent [3]. It
means that for any list T the distribution of D ← Creat(T) depends only
on the records of T not on the members’ order in T . In addition, the time
complexity of algorithm Get is O(1).

Dynamic Searchable Symmetric Encryption with Physical Deletion 213

3 Defining DSSE and Its Security

To simplify the description of our DSSE concept, we generalize several algo-
rithms defined in KPR’12, and then add two new protocols AddKeyword and
DeleteKeyword. We also make the following assumptions: (1) All file identifiers
will never be re-used; (2) The searchable ciphertexts of the same file-keyword
pair will never be re-added; (3) Keyword space W and set ID have W

⋂
ID = ∅.

Definition 1 (DSSE). A DSSE scheme consists of the following five protocols
between a client and a server:

– Setup: The client takes a security parameter and a database DB as inputs,
generates an initial encrypted database EDB, some secret parameters like
secret keys, and sends EDB to the server. The server stores EDB.

– AddKeyword: To add the searchable ciphertexts of a new file-keyword pair
(id, w), the client takes the file-keyword pair and his secret parameters as
inputs, generates and sends the corresponding searchable ciphertexts to the
server. The server takes the encrypted database EDB as input, and inserts
these ciphertexts into EDB.

– DeleteFile: To delete all searchable ciphertexts of a file with identifier id, the
client takes the file’s identifier and his secret parameters as inputs, generates
and sends a delete token to the server. The server takes the encrypted database
EDB as input, deletes all corresponding searchable ciphertexts from EDB.

– DeleteKeyword: To delete the searchable ciphertexts of a file-keyword pair
(id, w), the client takes the file-keyword pair and his secret parameters as
inputs, generates and sends a delete token to the server. The server takes
the encrypted database EDB as input, deletes the corresponding searchable
ciphertexts from EDB.

– Search: To find out the files containing an expected keyword w, the client
takes the keyword and his secret parameters as inputs, generates and sends
a search token to the server. The server takes the encrypted database EDB
as input, outputs the file identifiers which means that the corresponding files
contain the keyword.

The IND-CKA2 security of a DSSE scheme defines two games: a real game
RealA between an adversary A and a challenger and an ideal game IdealA,S
between the adversary A and a simulator S. In game RealA, the challenger
sets up a real DSSE scheme, and the adversary A adaptively engages in every
protocol of DSSE by querying the challenger. On the contrary, in game IdealA,S ,
the simulator S sets up a simulated DSSE scheme. It means that S never knows
the real database DB chosen by A, and it only takes leakage functions as inputs
to simulate the functions of the challenger. If A cannot distinguish games RealA
and IdealA,S , we say that the DSSE scheme is IND-CKA2 secure. Moreover,
the smaller the leakage, the stronger the IND-CKA2 security.

Definition 2 (IND-CKA2 Security). Let DSSE = (Setup,AddKeyword,
DeleteFile, DeleteKeyword, Search) be a DSSE scheme, A be a stateful

214 P. Xu et al.

adversary, S be a stateful simulator, and (LSetup, LAddKeyword, LDeleteFile,
LDeleteKeyword, LSearch) be stateful leakage functions. Consider the following
probabilistic experiments:

– RealA(k): A chooses DB. A challenger runs Setup to generate some secret
parameters and the encrypted database EDB of DB. A receives EDB and
makes a polynomial number of adaptive operations to engage in protocol
AddKeyword, DeleteFile, DeleteKeyword or Search. For each query,
the challenger returns the corresponding result such as the searchable cipher-
texts that will be added to EDB, a token to delete all searchable ciphertexts
of a file, a token to delete the searchable ciphertexts of a file-keyword pair or
a search token. Finally, A returns one bit b as the output of this experiment.

– IdealA,S(k): A chooses DB. Given LSetup, S simulates and sends EDB to
A. A makes a polynomial number of adaptive operations to engage in protocols
AddKeyword, DeleteFile, DeleteKeyword or Search. For each query,
S is with the corresponding leakage LAddKeyword, LDeleteFile, LDeleteKeyword

or LSearch, then returns an appropriate result such as the searchable cipher-
texts that will be added to EDB, a token to delete all searchable ciphertexts
of a file, a token to delete the searchable ciphertexts of a file-keyword pair or
a search token. Finally, A returns one bit b as the output of this experiment.

If |Pr[RealA(k) = 1] − Pr[IdealA,S(k) = 1]| is negligible, we say that DSSE
is IND-CKA2 secure with leakage functions (LSetup, LAddKeyword, LDeleteFile,
LDeleteKeyword, LSearch).

4 Our Basic DSSE Scheme D-I

Our basic DSSE scheme D-I only consists of protocols Setup, AddKeyword,
and Search. Given a database DB, protocol Setup shows the generation of
K1 ciphertexts, so that all ciphertexts of the same keyword are connected by
a hidden chain. To add the K1 ciphertext of a new file-keyword pair, protocol
AddKeyword connects the new generated ciphertext to the end of the corre-
sponding chain. With a keyword search trapdoor, protocol Search shows how
to quickly find out the related file identifiers. Let F : {0, 1}k × {0, 1}∗ → {0, 1}k
be a key-based pseudo-random function. Let H : {0, 1}∗ → {0, 1}2k be a cryp-
tographic hash functions. The basic scheme D-I is shown in Fig. 3.

In protocol Setup, each keyword w has a pointer parameter Pw, and each
K1 ciphertext is a label-data pair. When generating the K1 ciphertext for a
file-keyword pair (id, w), the generated label Lw is equal to Fk1(w) if it is the
first time to generate a ciphertext for keyword w, otherwise it is equal to Pw,
and the data Dw is the encryption of file identifier id and a new value of Pw.
With the same method, all K1 ciphertexts of the same keyword are connected
by a hidden chain, since the value of Pw encrypted by the former one of any
two neighboring ciphertexts in a chain is equal to the label of the latter one. In
addition, the final value of Pw is privately recorded by the client at the end of
protocol Setup. This value will be used in protocol AddKeyword to generate

Dynamic Searchable Symmetric Encryption with Physical Deletion 215

� Protocol Setup((k,DB), NULL):
– Client: Take k and DB as inputs, randomly choose two secret keys K =

(k1, k2), initialize two empty lists TP and TW , and do the following steps:
1. For each keyword w in DB, initialize pointer parameter Pw = NULL;
2. For each file-keyword pair (id, w) ∈ DB

(a) If Pw = NULL, set label Lw = Fk1(w), otherwise set Lw = Pw;

Set {R,Pw} $← {0, 1}2k;
(b) Generate a K1 ciphertext (Lw, Dw = (Dw,1 = (H(Fk2(w), R) ⊕

(id||Pw)), Dw,2 = R)), and add this ciphertext to TW in the lexicon
order;

3. For each keyword w in DB, add tuple (w,Pw) into TP ; Generate dic-
tionaries DP ← Creat(TP) and DW ← Creat(TW); Keep K and DP

secret, and send the encrypted database EDB = DW to the server;
– Server: Store EDB.

� Protocol AddKeyword((K,DP , id, w), EDB):
– Client: Take K = (k1, k2), DP and a file-keyword pair (id, w) as inputs,

retrieve Pw ← Get(DP , w) according to w, and do the following steps:
1. If Pw = NULL, set Lw = Fk1(w), otherwise set Lw = Pw; Set

{R,Pw} $← {0, 1}2k;
2. Generate a K1 ciphertext (Lw, Dw = (Dw,1 = (H(Fk2(w), R) ⊕

(id||Pw)), Dw,2 = R)), run algorithm Update(DP , (w,Pw)), and send
the ciphertext (Lw, Dw) to the server;

– Server: Take EDB = DW and (Lw, Dw) as inputs, and run algorithm
Update(DW , (Lw, Dw)).

� Protocol Search((K, w), EDB):
– Client: Take K = (k1, k2) and a keyword w as inputs, generate and send a
search token STw = (Fk1(w),Fk2(w)) to the server;

– Server: Take EDB = DW and STw = (Fk1(w),Fk2(w)) as inputs, initialize
an empty set I, set Lw = Fk1(w), and do the following steps:
1. Retrieve data Dw ← Get(DW , Lw) according to Lw; If Dw = NULL,

return I and abort;
2. Parse Dw = (Dw,1, Dw,2), and decrypt out id||Pw = Dw,1 ⊕

H(Fk2(w), Dw,2);
3. Add id to I, set Lw = Pw, and go to step 1).

Fig. 3. Our basic DSSE scheme D-I

a new K1 ciphertext of keyword w. Specifically, this value is taken as the label of
this new ciphertext. Hence, it can be connected to the end of the corresponding
chain.

When receiving a keyword search trapdoor STw = (Fk1(w),Fk2(w)), protocol
Search matches value Fk1(w) with all K1 ciphertexts’ labels to find out the
hidden chain head of keyword w, and applies value Fk2(w) to decrypt out a file
identifier and a pointer value. The file identifier corresponds to a file containing
the queried keyword, and the pointer value guides the server to find out the next
matching ciphertext. So on and so forth, all file identifiers related to the queried
keyword can be found.

5 Our Basic DSSE Scheme D-II

Our basic DSSE scheme D-II only consists of protocols Setup, DeleteFile, and
Search. Given a database DB, protocol Setup applies the same idea as the
first basic DSSE scheme to generate the K1 and K2 ciphertexts. It generates the
hidden chains respectively to connect all K1 ciphertexts of the same keyword
and all K2 ciphertexts of the same file identifier. It is worth noting that each

216 P. Xu et al.

K1 ciphertext in this scheme contains a tag bit with the initial value “0”. When
a tag bit is equal to “1”, it means that the corresponding K1 ciphertext is
logically deleted. To delete all searchable ciphertexts (including the K1 and K2
ciphertexts) of a file, protocol DeleteFile shows the physical deletion of all
related K2 ciphertexts and the logical deletion of all related K1 ciphertexts.

� Protocol Setup((k,DB), NULL):
– Client: Take k and DB as inputs, randomly choose two k-bit secret keys

K = (k1, k2), initialize two empty lists TW and TF , and do the following
steps:
1. For each file identifier id or keyword w in DB, initialize pointer pa-

rameter Pid = NULL or Pw = NULL;
2. For each file-keyword pair (id, w) ∈ DB

(a) If Pw = NULL, set label Lw = Fk1(w), otherwise set Lw = Pw;

Set {R,Pw} $← {0, 1}2k;
(b) Generate a K1 ciphertext (Lw, Dw = (Dw,1 = (H(Fk2(w), R) ⊕

(0||id||Pw)), Dw,2 = R)), and add this ciphertext into TW in the
lexicon order;

(c) If Pid = NULL, set label Lid = Fk1(id), otherwise set Lid = Pid;

Set {R,Pid} $← {0, 1}2k;
(d) Generate a K2 ciphertext (Lid, Did = (Did,1 = (G(Fk2(id), R) ⊕

(Lw||Pid)), Did,2 = R)), and add this ciphertext to TF in the lexicon
order;

3. Generate dictionaries DW ← Creat(TW) and DF ← Creat(TF);
4. Keep the privacy of K, and send the encrypted database EDB =

(DW ,DF) to the server;
– Server: Store EDB.

� Protocol DeleteFile((K, id), EDB):
– Client: Take K = (k1, k2) and a file identifier id as inputs, generate and

send a delete token DTid = (Fk1(id),Fk2(id)) to the server.
– Server: Take EDB = (DW ,DF) and DTid = (Fk1(id),Fk2(id)) as inputs,

set Lid = Fk1(id), and do the following steps:
1. Retrieve data Did ← Get(DF , Lid) according to Lid; If Did = NULL,

return ⊥ and abort;
2. Parse Did = (Did,1, Did,2), decrypt out Lw||Pid = Did,1 ⊕

G(Fk2(id), Did,2), and run algorithm Remove(DF , Lid);
3. Retrieve data Dw ← Get(DW , Lw) according to the decrypted Lw,

parse Dw = (Dw,1, Dw,2), set the tag bit of Dw to be “1” by comput-
ing Dw,1 = Dw,1 ⊕ (1||02k), run algorithms Update(DW , (Lw, Dw =
(Dw,1, Dw,2))) and Remove(DF , Lid), and set Lid = Pid, and go to
step 1).

� Protocol Search((K, w), EDB):
– Client: Take K = (k1, k2) and a keyword w as inputs, generate and send a
search token STw = (Fk1(w),Fk2(w)) to the server.

– Server: Take EDB = (DW ,DF) and STw = (Fk1(w),Fk2(w)) as inputs,
initialize an empty set I, a temporary label-data pair (Lt

w = NULL,Dt
w =

NULL) and a temporary pointer P t
w = NULL, set Lw = Fk1(w), and do

the following steps:
1. Retrieve data Dw ← Get(DW , Lw) according to Lw; If Dw = NULL,

return I and abort;
2. Parse Dw = (Dw,1, Dw,2), and decrypt out T ||id||Pw = Dw,1 ⊕

H(Fk2(w), Dw,2), where T denotes the tag bit of Dw;
3. If Lt

w = NULL, set Lt
w = Lw, Dt

w = Dw, P t
w = Pw and Lw = Pw, and

go to step 1);
4. If T = 1, parse Dt

w = (Dt
w,1, D

t
w,2), update Dt

w,1 = Dt
w,1⊕(0k+1||(P t

w⊕
Pw)), and run algorithms Update(DW , (Lt

w, D
t
w = (Dt

w,1, D
t
w,2))) and

Remove(DW , Lw);
5. If T = 0, add the decrypted file identifier id to I, and set Lt

w = Lw,
Dt

w = Dw and P t
w = Pw;

6. Set Lw = Pw, and go to step 1).

Fig. 4. Our basic DSSE scheme D-II

Dynamic Searchable Symmetric Encryption with Physical Deletion 217

With a keyword search trapdoor, protocol Search not only shows how to quickly
find out the related file identifiers as the first basic DSSE scheme does, but
also shows how to physically delete the K1 ciphertexts that contain the queried
keyword and have their tag bits equaling to “1”. Let F : {0, 1}k × {0, 1}∗ →
{0, 1}k be a key-based pseudo-random function. Let H : {0, 1}∗ → {0, 1}2k+1

and G : {0, 1}∗ → {0, 1}2k be two cryptographic hash functions. The basic
scheme D-II is shown in Fig. 4.

In protocol DeleteFile, a delete token DTid = (Fk1(id),Fk2(id)) allows the
server to match value Fk1(id) with all K2 ciphertexts’ labels and find out a
matching ciphertext. Then the server applies value Fk2(id) to decrypt the match-
ing ciphertext and gets a label Lw and a pointer Pid. The label Lw corresponds
to a K1 ciphertext of id, and the server sets the tag bit of the K1 ciphertext
to be “1”. In addition, the pointer Pid guides the server to quickly find out the
next matching K2 ciphertext. So on and so forth, all K1 and K2 ciphertexts of
id can be found, and the server physically deletes the found K2 ciphertexts and
logically deletes the found K1 ciphertexts. The logically deleted K1 ciphertexts
will be physically deleted by protocol Search. When searching a keyword, pro-
tocol Search can quickly find out all matching K1 ciphertexts as the first basic
DSSE scheme does. If the tag bit of a matching K1 ciphertext is equal to “1”,
the server physically deletes this ciphertext, and repairs the corresponding chain
relationship among the remaining K1 ciphertexts.

6 Our Complete DSSE Scheme

The above two basic DSSE schemes respectively show our following main ideas:
(1) Constructing the hidden chains to connect all searchable ciphertexts of the
same keyword to accelerate the search performance; (2) Saving the storage com-
plexity by dynamically generating chain heads; (3) Adding the new generated
searchable ciphertext at the end of the corresponding chain; (4) Employing both
logical and physical deletions to delete the expected searchable ciphertexts, spe-
cially, running physical deletion in due course.

Note that the above last two main ideas are used to avoid extra information
leakage. In this section, we extend the above two basic schemes to construct
our complete DSSE scheme. It consists of protocols Setup, AddKeyword,
DeleteFile, DeleteKeyword, and Search. Since DeleteKeyword is newly
achieved by this scheme, it makes other protocols having some differences com-
pared with the above two basic DSSE schemes. But this scheme has exactly the
same protocol Search as the basic scheme D-II. Hence, this protocol will not be
shown in this section. Let F : {0, 1}k ×{0, 1}∗ → {0, 1}k be a key-based pseudo-
random function. Let H : {0, 1}∗ → {0, 1}2k+1 and G : {0, 1}∗ → {0, 1}3k+1

be two cryptographic hash functions. Our complete DSSE scheme is shown in
Figs. 5 and 6.

218 P. Xu et al.

� Protocol Setup((k,DB), NULL):
– Client: Take a security parameter k and a database DB as inputs, randomly

choose two k-bit secret keys K = (k1, k2), initialize four empty lists TP , TW ,
TF and TF,W , and do the following steps:
1. For each file identifier id or keyword w in DB, initialize pointer pa-

rameter Pid = NULL or Pw = NULL;
2. For each keyword w in DB and each id ∈ DB(w)

(a) If Pw = NULL, set label Lw = Fk1(w), otherwise set Lw = Pw;

Set {R,Pw} $← {0, 1}2k;
(b) Generate a K1 ciphertext (Lw, Dw = (Dw,1 = (H(Fk2(w), R) ⊕

(0||id||Pw)), Dw,2 = R)), and add this ciphertext to TW in the
lexicon order; Set label Lid,w = Fk1(id, w);

(c) If Pid = NULL, set label Lid = Fk1(id), otherwise set Lid = Pid;

Set {R,Pid} $← {0, 1}2k;
(d) Generate a K2 ciphertext (Lid, Did = (Did,1 = (G(Fk2(id), R) ⊕

(0||Lw||Lid,w||Pid)), Did,2 = R)), and add this ciphertext to TF in

the lexicon order; Set R
$← {0, 1}k;

(e) Generate a K3 ciphertext (Lid,w, Did,w = (Did,w,1 =
(H(Fk2(id, w), R) ⊕ (0||Lw||Lid)), Did,w,2 = R)), and add this ci-
phertext to TF,W in the lexicon order;

3. For each keyword w in DB, add tuple (w,Pw) to TP ; For each file
identifier id in DB, add tuple (id, Pid) to TP ; Generate dictionar-
ies DP ← Creat(TP), DW ← Creat(TW), DF ← Creat(TF) and
DF,W ← Creat(TF,W);

4. Keep K and DP secret, and send the encrypted database EDB =
(DW ,DF ,DF,W) to the server;

– Server: Store EDB.
� Protocol AddKeyword((K,DP , id, w), EDB):

– Client: Take K = (k1, k2), DP and a file-keyword pair (id, w) as inputs,
retrieve Pw ← Get(DP , w) according to w, and do the following steps:
1. If Pw = NULL, set label Lw = Fk1(w), otherwise set Lw = Pw; Set

{R,Pw} $← {0, 1}2k;
2. Generate a K1 ciphertext (Lw, Dw = (Dw,1 = (H(Fk2(w), R) ⊕

(0||id||Pw)), Dw,2 = R)), and run algorithm Update(DP , (w,Pw)); Set
label Lid,w = Fk1(id, w); Retrieve Pid ← Get(DP , id) according to id;

3. If Pid = NULL, set label Lid = Fk1(id), otherwise set Lid = Pid; Set

{R,Pid} $← {0, 1}2k;
4. Generate a K2 ciphertext (Lid, Did = (Did,1 = (G(Fk2(id), R) ⊕

(0||Lw||Lid,w||Pid)), Did,2 = R)), and run algorithm

Update(DP , (id, Pid)); Set R
$← {0, 1}k;

5. Generate a K3 ciphertext (Lid,w, Did,w = (Did,w,1 =
(H(Fk2(id, w), R) ⊕ (0||Lw||Lid)), Did,w,2 = R));

6. Send ciphertexts (Lw, Dw, Lid, Did, Lid,w, Did,w) to the server;
– Server: Take EDB = (DW ,DF ,DF,W) and (Lw, Dw, Lid, Did, Lid,w, Did,w)

as inputs, run algorithms Update(DW , (Lw, Dw)),
Update(DF , (Lid, Did)) and Update(DF,W , (Lid,w, Did,w)).

Fig. 5. Our complete DSSE scheme (Part I)

In this scheme, protocol Setup newly achieves generation of the K3 cipher-
texts. In other words, protocol Setup generates three kinds of searchable cipher-
texts, i.e. K1, K2, and K3, for each file-keyword pair (id, w). Figure 1 shows the
generated K1, K2, and K3 ciphertexts of a file-keyword pair, and their hidden
relationship.

The K3 ciphertexts are used to realize protocol DeleteKeyword. When
deleting all searchable ciphertexts of a file-keyword pair (id, w), the generated
delete token DTid,w = (Fk1(id, w),Fk2(id, w)) of protocol DeleteKeyword
allows the server to find out the matching K3 ciphertext by matching value

Dynamic Searchable Symmetric Encryption with Physical Deletion 219

� Protocol DeleteFile((K, id), EDB):
– Client: Take K = (k1, k2) and a file identifier id as inputs, generate and

send a delete token DTid = (Fk1(id),Fk2(id)) to the server.
– Server: Take EDB = (DW ,DF ,DF,W) and DTid = (Fk1(id),Fk2(id)) as

inputs, set label Lid = Fk1(id), and do the following steps:
1. Retrieve data Did ← Get(DF , Lid) according to Lid; If Did = NULL,

return ⊥ and abort;
2. Parse Did = (Did,1, Did,2), and decrypt out T ||Lw||Lid,w||Pid = Did,1⊕

G(Fk2(id), Did,2), and run algorithm Remove(DF , Lid), where T de-
notes the tag bit of Did;

3. If T = 0, retrieve Dw ← Get(DW , Lw) according to the decrypted Lw,
parse Dw = (Dw,1, Dw,2), set the tag bit of Dw to be “1” by comput-
ing Dw,1 = Dw,1 ⊕ (1||02k), run algorithms Update(DW , (Lw, Dw =
(Dw,1, Dw,2))) and Remove(DF,W , Lid,w); Set Lid = Pid, and go to
step 1).

� Protocol DeleteKeyword((K, id, w), EDB):
– Client: Take secret keys K = (k1, k2) and a file-keyword pair (id, w) as

inputs, generate and send a delete token DTid,w = (Fk1(id, w),Fk2(id, w))
to the server;

– Server: Take EDB = (DW ,DF ,DF,W) and DTid,w =
(Fk1(id, w),Fk2(id, w)) as inputs, set Lid,w = Fk1(id, w) and do the
following steps:
1. Retrieve data Did,w ← Get(DF,W , Lid,w) according to Lid,w; If

Did,w = NULL, return ⊥ and abort;
2. Parse Did,w = (Did,w,1, Did,w,2), decrypt out T ||Lw||Lid = Did,w,1 ⊕

H(Fk2(id, w), Did,w,2), and run algorithm Remove(DF,W , Lid,w);
3. Retrieve data Dw ← Get(DW , Lw) according to the decrypted

label Lw, parse Dw = (Dw,1, Dw,2), set the tag bit of Dw to
be “1” by computing Dw,1 = Dw,1 ⊕ 1||02k, and run algorithm
Update(DW , (Lw, Dw = (Dw,1, Dw,2)));

4. Retrieve data Did ← Get(DF , Lid) according to the decrypted la-
bel Lid, parse Did = (Did,1, Did,2), set the tag bit of Dw to
be “1” by computing Did,1 = Did,1 ⊕ 1||03k, and run algorithm
Update(DF , (Lid, Did = (Did,1, Did,2))).

� Protocol Search((K, w), EDB) is same as the basic scheme D-II.

Fig. 6. Our complete DSSE scheme (Part II)

Fk1(id, w) with all K3 ciphertexts’ labels, and then the server applies value
Fk2(id, w) to decrypt the matching K3 ciphertext, and gets labels Lw and Lid.
These two labels respectively correspond to the K1 and K2 ciphertexts of the
file-keyword pair (id, w). Finally, the server physically deletes the matching K3
ciphertext, and logically deletes the corresponding K1 and K2 ciphertexts by
setting their tag bits to be “1”.

It is different with the second basic DSSE scheme that some K2 ciphertexts
could have been logically deleted before the execution of protocol DeleteFile.
Hence, protocol DeleteFile in this scheme has two ways to delete K2 cipher-
texts. For example, suppose to delete the K2 ciphertext of label Lid in protocol
DeleteFile, the sever decrypts this ciphertext to obtain a tag bit and two labels
Lw and Lid,w. If the tag bit is equal to “0”, the server finds out the corresponding
K1 and K3 ciphertexts according to those two labels, then physically deletes the
K2 and K3 ciphertexts and logically deletes the K1 ciphertext. Otherwise, the
server only physically deletes the k2 ciphertext, since the corresponding K1 and
K3 ciphertexts have been logically or physically deleted by a previous execution
of protocol DeleteKeyword.

220 P. Xu et al.

In addition, protocol AddKeyword has the same essence with protocol
Setup to generate searchable ciphertexts. But protocol AddKeyword takes
only one file-keyword pair as input. Contrarily, protocol Setup takes a lot of
file-keyword pairs as inputs.

Summarily, our complete DSSE scheme shows all of our main ideas intro-
duced in Sect. 1.1. The most contributive and novel work in our scheme should be
the hybrid of logical and physical deletion of searchable ciphertexts, so that the
deletion function only causes small information leakage compared with schemes
KPR’12, KP’13, and CJJ’14.

6.1 Provable IND-CKA2 Security

According to the IND-CKA2 security definition, the security proof of our com-
plete DSSE scheme requires us to construct a simulator S. This simulator only
takes leakage functions as inputs, and simulates our scheme by responding the
following requirements of adversary A. When A chooses a database DB to
engage in protocol Setup, S takes leakage function LSetup as input, and sim-
ulates an encrypted database EDB. When A chooses a new file-keyword pair
to engage in protocol AddKeyword, S takes leakage function LAddKeyword as
input, and simulates the corresponding searchable ciphertexts. When A chooses
a file to engage in protocol DeleteFile, S takes leakage function LDeleteFile as
input, and simulates the corresponding delete token. When A chooses an old file-
keyword pair to engage in protocol DeleteKeyword, S takes leakage function
LDeleteKeyword as input, and simulates the corresponding delete token. When
A chooses a keyword to engage in protocol Search, S takes leakage function
LSearch as input, and simulates the corresponding search token.

All the above simulated data will be sent to A. Moreover they must be indis-
tinguishable with real ones in the view of A. To meet the above requirements,
we have to assume that the hash functions and the pseudo-random function in
our scheme are random oracles. S controls the responses of these oracles, and
makes the above forgeries indistinguishable with the real ones in the view of A.

We define the leakage functions for all proposed protocols. When defining
the leakage functions, the most complex work is to define the leakage caused
by the linkage of some protocols’ instances. In this paper, we apply a new idea
to define the leakage functions. This idea makes the definitions more clear. For
all ciphertexts generated by protocol Setup, let Old(id, w) denote the set of
ciphertexts that were generated for file-keyword pair (id, w), let Old(id) denote
the set of ciphertexts generated for file id, and let Old(w) denote the set of
ciphertexts generated for keyword w. For all ciphertexts generated by protocol
AddKeyword, let New(id, w) denote the set of ciphertexts generated for file-
keyword pair (id, w), let New(id) denote the set of ciphertexts generated for file
id, and let New(w) denote the set of ciphertexts generated for keyword w. The
leakage functions are LSetup = |DB|, LAddKeyword = New(id, w), LDeleteFile =
(Old(id), New(id)), LDeleteKeyword = (Old(id, w), New(id, w)), and LSearch =
(DB(w), Old(w), New(w)), respectively.

Dynamic Searchable Symmetric Encryption with Physical Deletion 221

It is clear that most of above leakage functions are defined as the set of some
related ciphertexts. This method is easy to imply the leakage caused by the linkage
of some protocols’ instances. For example, when running protocol AddKeyword
to add a file-keyword pair (id, w), one can decide that whether keyword w has
been searched by a previous instance of protocolSearch. This leakage is contained
in our definitions. In other words, if the leakage LAddKeyword = New(id, w) of
an instance of protocol AddKeyword has some common ciphertexts with the
leakage LSearch = (DB(w), Old(w), New(w)) of an instance of protocol Search,
it means that keyword w has been searched by the latter instance. In addition,
this example also allows one to decide whether file-keyword pair (id, w) has been
deleted by a previous instance of protocol DeleteFile or DeleteKeyword. This
leakage is also contained in our definitions by the similar reason. In general, given
two instances of our proposed protocols, the leakage caused by their linkage is
implied in our definitions. Finally, we have Theorem1 whose proof can be found
in the full version.

Theorem 1. Suppose hash functions H and G and key-based pseudo-random
function Fk1 are respectively modeled as three random oracles. Our complete
DSSE scheme is IND-CKA2 secure with leakage functions (LSetup, LAddKeyword,
LDeleteFile, LDeleteKeyword, LSearch) in the RO model, where LSetup = |DB|,
LAddKeyword = New(id, w), LDeleteFile = (Old(id), New(id)), LDeleteKeyword =
(Old(id, w), New(id, w)), and LSearch = (DB(w), Old(w), New(w)).

7 Comparisons and Experiments

In this section, we make thorough comparisons between our complete DSSE
scheme and the related schemes KPR’12, KP’13, and CJJ’14 in Table 2. We
also conduct extensive experiments to evaluate the performance of our scheme.
Table 2 shows the following advantages of our scheme: (1) the lowest search
complexity, which is linear with the total number of files Containing The Queried
Keyword; (2) The Lowest Storage Complexity, Which Is Linear With The Size
Of Database Db (Or The Total Number Of File-Keyword Pairs In Database Db);
(3) The Smallest Leakage To Run Protocol Setup, Which Only Contains the
size of database DB; (4) the same leakage with schemes KPR’12, KP’13, and
CJJ’14 to run protocol Search; (5) the same leakage with scheme CJJ’14 to run
protocol AddKeyword; (6) the smaller leakage to run protocol DeleteFile
than that of KPR’12; (7) the same leakage (at the worst case) with scheme
CJJ’14 to run protocol DeleteKeyword. Hence, our DSSE scheme not only
supports all functions mentioned in Table 1, but also has the lowest search and
storage complexities, and the smallest leakages in most cases.

We coded our complete DSSE scheme and tested its performance on a simu-
lated database DB of millions file-keyword pairs. The input security parameter
is of binary size 80 bits. All hash and pseudo-random functions are implemented
by running hash function SHA-256. The practical implementation of a DSSE
scheme consists of two kinds of time-intensive operations: cryptographic compu-
tations and system actions (e.g., network transmission and file system access).

222 P. Xu et al.

Table 2. Exact comparisons

Scheme Search

complexity

Storage

complexity

Leakage functions

LSetup LSearchLAddKeywordLDeleteFileLDeleteKeyword

KPR’12 [1]O(|DB(w)|) O(|DB| + |W|)|W|, |DB| 1© × 3© ×
KP’13 [2] O(|DB(w)|·

log |ID|)
O(|W| · |ID|) |W| · |ID| 1© × 4© ×

CJJ’14 [3] O(|DB(w)|) O(|DB|) |DB| 1© 2© × 5© at the worst case

Ours O(|DB(w)|) O(|DB|) |DB| 1© 2© 4© 5©
1© : DB(w), Old(w), and New(w). 2© : New(id, w). 3© : Old(id), New(id) and a part of DB(w) where

w ∈ DB(id).

4© : Old(id) and New(id). 5© : Old(id, w) and New(id, w). ×: means that the operation cannot be achieved.

All symbols have been defined in Sects. 2 and 6.1.

0.0 2.0x10
6

4.0x10
6

6.0x10
6

8.0x10
6

1.0x10
7

1.2x10
7

0

30

60

90

120

150

180

210

240

270

T
im

e
 (

s
)

The number of pairs

(a) Encrypt DB

0 20 40 60 80 100 120 140 160 180 200
0

40

80

120

160

200

240

280

320

360

400

T
im

e
 (

m
s
)

Keyword No.

 |DB| =10
6
 ; |DB| = 5*10

6
 ; |DB| =10

7

(b) Search keywords

0.0 2.0x10
5

4.0x10
5

6.0x10
5

8.0x10
5

1.0x10
6

0

5

10

15

20

25

30 |DB| = 3*10
6

T
im

e
(s

)
The number of pairs

(c) Add ciphertexts

2.0x10
5

4.0x10
5

6.0x10
5

8.0x10
5

1.0x10
6

0

2

4

6

8

10

12

14
|DB| = 10

7

T
im

e
 (

s
)

The number of pairs

(d) Delete ciphertexts

10000 20000 30000 40000 50000
400

425

450

475

500

525

550 |DB| = 10
7

T
im

e
 (

m
s
)

The number of ciphertexts

(e) Physical deletion

0 20 40 60 80 100 120 140 160 180 200 220
0

20

40

60

80

100

120

140

160

180

T
im

e
 (

m
s
)

Keyword No.

 Search in serial ; Search in parallel; |DB|=4*10
6

(f) Parallel search

Fig. 7. All tests and their results

To separate cryptographic costs from system costs, we built a test framework
excluding network transmission and disk access. In other words, all data are
stored in memory. Most of tests were implemented in a PC with Intel CPU 2.4
GHz (Core i5) and Ubuntu system by a single thread. Only the final test is a
parallel search with a 4-core processor.

To simulate a database DB with millions file-keyword pairs, we chose 200
commonly used keywords from Google Search Engine. We supposed that each file
had no more than 20 keywords, and each file identifier was randomly generated.
We paired each keyword with some file identifiers according to this keyword’s fre-
quency. Finally, all simulated file-keyword pairs were collected in a database DB.

Figure 7(a) shows the time cost of our complete DSSE scheme to generate
an encrypted database EDB for the above simulated database DB, where |DB|
is between 106 and 107. This process contains generating searchable ciphertexts
and constructing a self-balancing binary search tree (or AVL tree) for these

Dynamic Searchable Symmetric Encryption with Physical Deletion 223

ciphertexts. For example, the time cost to encrypt DB with size 107 is about
241 s. From this experiment result, we can find that the time cost per file-keyword
pair is an amortized value: it is determined by taking the complete execution
time of experiment and dividing by the number of file-keyword pairs.

Figure 7(b) shows the time cost of our complete DSSE scheme to search each
keyword over different scaled DBs. Recall that our protocol Search includes
the process to physically delete the K1 ciphertexts with the tag bit equaling
“1”. We show this process in Fig. 7(e). In Fig. 7(b), the line with triangles shows
the time costs when |DB| = 106, the line with circles shows the time costs
when |DB| = 5 × 106, and the line with rectangles shows the time costs when
|DB| = 107.

Figure 7(c) shows the time cost of our complete DSSE scheme to add the
searchable ciphertexts of several file-keyword pairs. This process excludes the
generation of searchable ciphertexts, since this part is similar with the process
to encrypt a database. So it only contains the process to rebalance the AVL tree
according to these new added ciphertexts. We have a group of experiments to
add the searchable ciphertexts of the different number (between 105 and 106) of
pairs to a database with the original size |DB| = 3 × 106.

Figure 7(d) shows the time cost of our complete DSSE scheme to delete the
searchable ciphertexts of several file-keyword pairs. We have a group of experi-
ments to delete the searchable ciphertexts of different number (between 105 and
106) of pairs from a database with the original size |DB| = 107.

Figure 7(e) shows the time cost of physical deletion when one searches a
keyword in our complete DSSE scheme. Recall that all K1 ciphertexts of the same
keyword are applied to construction of the hidden chain relationship. Suppose
some of them have the tag bit equaling “1”. These ciphertexts will be physically
deleted when their associated keywords are searched. This process contains to
repair a broken chain and rebalance the original AVL tree of the searchable
ciphertexts. For different number (between 104 and 5 × 104) of ciphertexts with
the tag bit equaling “1”, we tested the time cost to physically delete them from
a database with the original size |DB| = 107.

Both in Fig. 7(d) and (e), some singular points indicate that the time cost is
not strictly linear with the number of deleted ciphertexts. These singular points
are caused by the operations to rebalance the AVL tree of searchable ciphertexts.
Comparatively, when different nodes are deleted in an AVL tree, the time costs
to rebalance the AVL tree are also different.

Finally, Fig. 7(f) shows the time cost of parallel search in our complete DSSE
scheme. We simulated four databases with the same number of file-keyword
pairs, and generated their encrypted databases. The total size of all databases is
|DB| = 4×106. The line with circles shows the time cost to search each keyword
in parallel with a 4-core processor, and the line with rectangles shows the time
cost to search each keyword in the serial mode.

224 P. Xu et al.

8 Other Related Works

SSE was first introduced by Song et al. in [5]. Their instantiated scheme takes
search time linear with the total binary size of ciphertexts. A number of efforts
[6–8] follow this line and refine Song et al.’s original work. The SSE scheme
due to Curtmola et al. [9] has been proven to be semantically secure against an
adaptive adversary. It allows search to be processed in logarithmic time.

In addition to the above efforts devoted to either provable security or better
search performance, attention has recently been paid to achieve versatile SSE
schemes. Waters et al. [10] showed practical applications of SSE and employed
it to realize secure and searchable audit logs. Several works in SSE are com-
plex queries for conjunctive [11,12] or disjunctive [13,14] keyword combinations.
The works in [9,15] extended SSE to a multi-sender scenario. Recent results
[16,17] achieved efficiency improvements for these complex queries. The works
in [18,19] supported fuzzy keyword searching. The schemes in [20–23] solved the
problem of multi-keyword ranked search and multi-dimensional range query over
encrypted cloud data. Lu [24] improved the search performance of range queries
by constructing indices. Boldyreva et al. [25] first studied symmetric encryption
primitive with order preserving and provided an instance with provable security.
Chase et al. [26] first studied the searchable symmetric encryption of structured
data.

In addition to the previously introduced DSSE schemes in [1–3], Naveed
et al. [27] proposed a DSSE scheme to trade storage for performance by scattering
the stored blocks using hashing instead of encrypting the indices. This work
leaks keyword frequency like [1]. Emilet et al. [4] proposed a hierarchical index
structure using oblivious random access memory (RAM) to achieve more secure
and effective dynamic ciphertext updates with small leakage. This work is not
efficient in practice because of a large number of communication rounds and
expensive storage costs on the server side [28]. Hahn et al. [29] constructed
visible relationships to group all searchable ciphertexts of the same keyword,
when keywords are at the first time to be searched. According to those groups,
the performance to repeatedly search the same keyword will be significantly
improved. This method can also be applied in KPR’12, KP’13, and CJJ’14 to
accelerate their performance to repeatedly search the same keyword. But the
first-time search performance per keyword of [29] is linear with the total number
of ciphertexts. Hence, its search complexity is the highest one comparably.

9 Conclusion

In this paper, we proposed a new DSSE scheme to simultaneously support fast
keyword search, low storage complexity, versatile functions, and small leakage
when implementing these functions. Our scheme has the search complexity linear
with the number of searchable ciphertexts containing the queried keyword, and
has the storage complexity linear with the size of original database. Compared
with previous works, our scheme has the most versatile functions. In addition to

Dynamic Searchable Symmetric Encryption with Physical Deletion 225

search a keyword, it allows a client to (1) add the searchable ciphertexts of a new
file-keyword pair, (2) delete the searchable ciphertexts of a file, and (3) delete
the searchable ciphertexts of a file-keyword pair. In most cases, our scheme has
the smallest leakage compared with previous works. Furthermore, our scheme is
proven IND-CKA2 secure, which excludes possible vulnerabilities in design. The
most contributive and novel work in our scheme is to achieve physical deletion
with small leakage.

Acknowledgement. The paper is partly supported by the National Natural Science
Foundation of China under grant no. 61472156, the National Program on Key Basic
Research Project (973 Program) under grant no. 2014CB340600, and the Natural Sci-
ence Foundation of China under grant no. 61672083 and 61370190.

References

1. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: ACM CCS 2012, pp. 965–976. ACM (2012)

2. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39884-1 22

3. Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Ros, M.C., Steiner,
M.: Dynamic searchable encryption in very-large databases: data structures and
implementation. In: NDSS (2014)

4. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: NDSS (2014)

5. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE SP 2000, pp. 44–55. IEEE (2000)

6. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, pp. 563–574. ACM (2004)

7. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on
remote encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS
2005. LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). doi:10.1007/
11496137 30

8. Goh, E.J.: Secure Indexes. Cryptography ePrint Archive, Report 2003/216 (2003)
9. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-

tion: improved definitions and efficient constructions. In: ACM CCS 2006, pp.
79–88. ACM (2006)

10. Waters, B.R., Balfanz, D., Durfee, G., Smetters, D.K.: Building an encrypted and
searchable audit log. In: NDSS 2004, vol. 4, pp. 5–6 (2004)

11. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over
encrypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 31–45. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24852-1 3

12. Byun, J.W., Lee, D.H., Lim, J.: Efficient conjunctive keyword search on encrypted
data storage system. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol.
4043, pp. 184–196. Springer, Heidelberg (2006). doi:10.1007/11774716 15

13. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). doi:10.1007/978-3-540-70936-7 29

http://dx.doi.org/10.1007/978-3-642-39884-1_22
http://dx.doi.org/10.1007/11496137_30
http://dx.doi.org/10.1007/11496137_30
http://dx.doi.org/10.1007/978-3-540-24852-1_3
http://dx.doi.org/10.1007/11774716_15
http://dx.doi.org/10.1007/978-3-540-70936-7_29

226 P. Xu et al.

14. Li, M., Yu, S., Cao, N.: Authorized private keyword search over encrypted data in
cloud computing. In: IEEE ISDCS 2011, pp. 383–392. IEEE (2011)

15. Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M.C., Steiner, M.: Outsourced symmet-
ric private information retrieval. In: ACM CCS 2013, pp. 875–888. ACM (2013)

16. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78967-3 9

17. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 20

18. Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over
encrypted data in cloud computing. In: IEEE INFOCOM 2010, pp. 1–5. IEEE
(2010)

19. Wang, B., Yu, S., Lou, W., Hou, Y.T.: Privacy-preserving multi-keyword fuzzy
search over encrypted data in the cloud. In: IEEE INFOCOM 2014, pp. 2112–
2120. IEEE (2014)

20. Shi, E., Bethencourt, J., Chan, T.H.: Multi-dimensional range query over encrypted
data. In: IEEE SP 2007, pp. 350–364. IEEE (2007)

21. Wang, C., Cao, N., Li, J., Lou, W.J.: Secure ranked keyword search over encrypted
cloud data. In: IEEE ICDCS 2010, pp. 253–262. IEEE (2010)

22. Wang, C., Cao, N., Ren, K., Lou, W.: Enabling secure and efficient ranked keyword
search over outsourced cloud data. IEEE Trans. Parallel Distrib. Syst. 23(8), 1467–
1479 (2012). IEEE

23. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.J.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 25(1),
222–233 (2014). IEEE

24. Lu, Y.: Privacy-preserving logarithmic-time search on encrypted data in cloud. In:
NDSS (2012)

25. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric
encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 13

26. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-17373-8 33

27. Naveed, M., Prabhakaran, M., Gunter, C.: Dynamic searchable encryption via
blind storage. In: IEEE SP 2014, pp. 639–654. IEEE (2014)

28. Bosch, C., Hartel, P., Jonker, W., et al.: A survey of provably secure searchable
encryption. ACM Comput. Surv. 47(2) (2014). Article no. 18

29. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.
In: ACM CCS 2014, pp. 310–320. ACM (2014)

http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-642-40041-4_20
http://dx.doi.org/10.1007/978-3-642-01001-9_13
http://dx.doi.org/10.1007/978-3-642-17373-8_33

Multi-user Cloud-Based Secure Keyword Search

Shabnam Kasra Kermanshahi(B), Joseph K. Liu, and Ron Steinfeld

Faculty of Information Technology, Monash University, Melbourne, Australia
{shabnam.kasra,joseph.liu,ron.steinfeld}@monash.edu

Abstract. We propose a multi-user Symmetric Searchable Encryption
(SSE) scheme based on the single-user Oblivious Cross Tags (OXT) pro-
tocol (Cash et al., CRYPTO 2013). The scheme allows any user to per-
form a search query by interacting with the server and any θ−1 ‘helping’
users, and preserves the privacy of database content against the server
even assuming leakage of up to θ − 1 users’ keys to the server (for a
threshold parameter θ), while hiding the query from the θ − 1 ‘helping
users’. To achieve the latter query privacy property, we design a new dis-
tributed key-homomorphic pseudorandom function (PRF) that hides the
PRF input (search keyword) from the ‘helping’ key share holders. By dis-
tributing the utilized keys among the users, the need of constant online
presence of the data owner to provide services to the users is eliminated,
while providing resilience against user key exposure.

Keywords: Multi-user · Cloud storage · Searchable encryption · Query
privacy

1 Introduction

Nowadays, outsourcing data (in any form such as email, backups, financial and so
forth) to off-site hosts known as Cloud has become a common trend. However,
confidentiality of the sensitive data is a major concern [12,21,24,27]. Data is
visible to the cloud and those who have the access to the cloud storage. Although
it seems that encryption of data can be a straightforward solution, search through
the encrypted data is a big challenge. In particular, with such straightforward
approaches, the user has to download and decrypt the data first to perform the
search, due to the fact that the data is not readable by the cloud server. This
communication and computation can make such approaches impractical in many
applications.

Recently, several Searchable Encryption (SE) schemes have been proposed
to address the mentioned problem [9,11,13,33]. SE technique enables the data
owner to encrypt the data while the ability of the server to search the data
is retained. In general, based on the utilized encryption technique (symmet-
ric or public key), searchable encryption schemes can be categorized into two
category: Symmetric Searchable Encryption (SSE) (e.g. [39,42]) and Asymmet-
ric Searchable Encryption (ASE) (e.g. [25,26,38]). There exists other features

c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 227–247, 2017.
DOI: 10.1007/978-3-319-60055-0 12

228 S. Kasra Kermanshahi et al.

to distinguish SE schemes such as structure (single-writer/single-reader, single-
writer/multi-reader, multi-writer/single-reader and multi-writer/ multi-reader)
or functionalities (ranked keyword query, range query, phrase query, etc.). Focus
of this research is on the single-writer/multi-reader SSE scheme that we call it
Multi-client. Our multi-client SSE protocol is inspired by symmetric searchable
encryption (SSE) protocol of Cash et al. [9] called OXT. Although the design-
ers of OXT suggested to distribute the Master-key to the clients to make their
protocol useful for multi-client setting, this straightforward solution increases
the likelihood of Master-key exposure and is not resilient to client key exposure;
exposure of any single client’s key (e.g. by key loss or collusion of this client with
the server or unauthorized users) exposes the whole database contents. Later
on, a multi-client extension of OXT was proposed [8] using a different approach.
In order to search through the server, each client has to refer to the data owner
and get the search token. Although this fixes the key loss resilience problem,
this approach has several functionality limitations. First, it requires per-query
interaction with the data owner. Thus, the data owner must be available all the
time. Second, there is no query privacy for clients against the data owner.

In this paper we present a multi-user SSE which has query privacy against
both data owner and the other key share holders. In addition, once the data
owner performed the EDBSetup phase, it is not necessary to be involved in
protocol unless for key update and revocation. At the same time, our protocol
is resilient against key exposure of up to θ − 1 client keys. A search is performed
by a client via interaction with the server and θ − 1 ‘helping’ users.

1.1 Our Contributions

As mentioned earlier, our generic design is inspired by OXT protocol of Cash
et al. [9]. The contributions of our multi-user SSE can be summarized as followed;

1. Privacy of database content against server resilient against exposure of up to
θ − 1 users’ keys. More precisely, by considering that the data owner does
not collude with server, our multi-user SSE is secure by the size of considered
threshold, θ. That is, server is unable to learn any information by colluding
with any coalition smaller than θ.

It is worth to note that the leakage profile (leakage to server) of our
multi-user SSE is the same as OXT [9].

2. Our most advanced result is preserving query privacy both against data owner
and the other key share holders. This goal has been achieved by designing
a new primitive named Randomizable distributed Key-homomorphic PRF.
Moreover, using distributed Key-homomorphic PRFs enables data owner to
distribute the PRF Key Shares between desirable clients (Key Share Holders)
without further interactions. More precisely, clients would be able to carry
out the search without per-query interaction with data owner which in turn
leads to two more nice features. First, online presence of data owner at all the
time is not required. Second, queries performed by clients are not monitored
by the data owner. Moreover, due to the inherent property of the threshold
secret sharing (explained in Sect. 2.2), in our multi-user SSE scheme, Data
owner is able to revoke the key shares from up to θ − 1 of key share holders.

Multi-user Cloud-Based Secure Keyword Search 229

Remark. In the current related works [9,20,34] if data owner decide to update
the encryption key a substantial amount of cost would be added to the system in
terms of computations performed for encryption of the database using the new
key, bandwidth for uploading EDB (Encrypted DataBase) as well as transferring
required information to the considered clients. We could achieve more efficient
solution which enable data owner to update the encryption key as well as EDB
by sending the corresponding key material to the server.

1.2 Related Works

Followed by the first Symmetric Searchable Encryption (SSE) proposed by Song
et al. [33] several SSE schemes have been proposed (e.g. [7,10,11,13–17,19,22,
23,29,31]). In early stage most of the works were in single-writer/single-reader
setting. However, single-user setting is not beneficial for cloud storage as usually
enterprise cloud servers serve multiple users. Multi-user searchable encryption
was pioneered by Curtmola et al. [13] for symmetric setting. In their scheme,
single-user searchable encryption is transformed to the multi-user one by sharing
the utilized key for encryption of the database. In this scheme, key revocation
is not considered, thus beside of search ability of the revoked users, collusion
with the server is another drawback. Moreover, using broadcast encryption for
handling the search queries make it impractical (inefficiency).

In order to manage search ability of the users, the proposed scheme by Bao
et al. [2] applies a trusted third party called User Manager (UM). Although
it seems that their scheme could handle the key revocation issue, using such a
trusted party is not common in cloud storage. The proposed schemes in [14,40,
41] suffer from similar problem.

The proposed work by Popa et al. [28] could overcome the need to the trusted
administration, however it is inefficient due to unavoidable network bandwidth
overhead and storage overhead. Although the proposed scheme by Tang et al.
[35] could improve the Popa's scheme from security perspective, similar to Multi-
user searchable encryption schemes in [18,37] did not explain how to revoke a
user.

Several searchable encryption schemes have been proposed using Public key
structure in order to provide Multi-user setting [1,3,4,6,32,36], however, they
have limited applications in practice due to the cost of public key solutions.
Thus, investigation of the cons and pros of the mentioned works is out of the
scope of this paper.

Motivated by the SSE protocol of Cash et al. [9], Jarecki et al. [20] and Sun
et al. [34] proposed multi-user SSE schemes.

Although Sun's scheme could improve the communication overhead by avoid-
ing per-query interaction between data owner and clients which exists in the
Jarecki's scheme, Data owner still involved in the token generation process. In
addition, the search keywords are predetermined and restricted by the data
owner. More importantly, user enrollment and revocation remained unconsid-
ered in the mentioned works.

230 S. Kasra Kermanshahi et al.

2 Preliminaries

In this section, the required preliminaries are provided.

2.1 Notations

Frequently used notations and terminologies in this paper are listed in Table 1.

Table 1. Notations and Terminologies

Notation Description

λ A security parameter

idi The document identifier of the i-th document

Widi
A list of keywords contained in the i-th document

DB = (idi, Widi
)d
i=1 A database consisting of a list of document identifier and

keyword-set pairs

DB[w] = {id : w ∈ Wid} The set of identifiers of documents that contain keyword w

W =
⋃d

i=1 Widi
The keyword set of the database

θ Threshold

sterm The least frequent term among queried terms (or keywords) in a

search query

xterm Other queried terms in a search query (i.e., the queried terms

excluding sterm)

2.2 Threshold Secret Sharing

This subsection reviews the secret sharing scheme proposed by Shamir [30]
briefly. The idea is to divide the secret k ∈ Zp (for a prime p > N) into N
pieces such that knowledge of at least θ pieces (threshold) allows recovering k.
More precisely, this scheme consists of two main algorithms Share and Recon
as followed.

• Share: This algorithm inputs a secret k ∈ Zp and outputs the corresponding
key shares k1 ∈ Zp, ..., kN ∈ Zp.

• Recon: Reconstruct the secret using any subset W = {i1, ..., iθ} ⊂ [N] of size
θ by computing k =

∑θ
j=1 λij .kij (mod p), where λij ∈ Zp are reconstruction

coefficients.

2.3 Pseudorandom Functions (PRFs)

In this subsection, we review Pseudorandom Functions.

Key Homomorphic Pseudorandom Functions. Let F : K × X → Y be
an efficiently computable function where (K,⊕) and (Y,⊗) are groups. Tuple
(F ,⊕,⊗) is a key homomorphic PRF if the following properties hold [5]:

1. F is a secure pseudorandom function.
2. For every k1, k2 ∈ K and every x ∈ X , F(k1, x) ⊗ F(k2, x) = F(k1 ⊕ k2, x).

Multi-user Cloud-Based Secure Keyword Search 231

Constructing key homomorphic PRFs in the random oracle model is straight-
forward. Let G be a finite cyclic group of prime order q and let H1 : X → G
be a hash function modeled as a random oracle. Define the function FDDH :
Zq × X → G as FDDH(k, x) ← H1(x)k and observe that FDDH(k1 + k2, x) =
FDDH(k1, x).FDDH(k2, x).

Distributed PRF. A distributed PRF mainly consists of five algorithm; Setup,
Key sharing, Partial evaluation, Combine, and Evaluation with the following
properties [5].

• Setup: This algorithm inputs security parameter κ and outputs public para-
meters pp.

• Key sharing K → KN : This algorithm generates key shares (k1, ..., kN) ∈ KN

of the considered master key (k0 ∈r K) using S = (θ,N) threshold secret
sharing scheme proposed by Shamir [30] which is explained in Subsect. 2.2.

• Partial evaluation: The function F : K × X → Y takes a key share and an
input point and outputs a partial evaluation of the Evaluation function f .

• Combine: The algorithm G : 2[N] × Yθ → Y inputs a subset W ⊂ [N] of size
θ and θ partial evaluations on key shares in the set W and outputs a value
in Y.

• Evaluation: The function f : K × X → Y maps a key and an input to the
space of outputs.

The distributed PRF is initialized by a trusted third party who runs
Setup(1κ) to obtain the public parameters pp, samples the master secret key
mk = k0 uniformly from K, and performs Key sharing(k0) to obtain a tuple
(k1, ..., kN). The key share ki is distributed as the secret key for each key share
holder i along with public parameters pp. A client who wants to compute the
evaluation function using k0 on input x sends x to θ − 1 key share holders
(i1, ..., iθ−1). Each key share holder i responds to the client with F(ki, x). then
the client locally computes f(k0, x) by computing G(W,F(ki1 , x), ...,F(kiθ

, x)).

Correctness. By considering pp as the output of Setup(1κ), k0 sampled uni-
formly from K, and (k1, ..., kN) the key share output by Key sharing(k0). For
every subset W = i1, ..., iθ ⊂ [N] of size θ, and for every input x, a distributed
PRF is correct if f(k0, x) = G(W,F(ki1 , x), ...,F(kiθ

, x).

Security. The Evaluation function f should remain pseudorandom even when
the adversary is given θ − 1 key shares (ki1 , ..., kiθ−1) for indices i1, ..., iθ−1 of its
choice. The adversary is also given an oracle O that performs arbitrary partial
evaluations: it takes (i, x) as input and returns F(ki, x). The adversary should
be unable to distinguish the function from random at point x where did not
query the oracle O. We formalize this intuition through an experiment between
a challenger and an adversary A. For b ∈ {0, 1} the challenger in Exptb

dPRF

operates as follows.

1. Given security parameter κ, the challenger runs Setup(1κ) and publishes pub-
lic parameters pp to the adversary. The challenger then samples a k0 uniformly
from K and runs Key sharing(k0) to obtain (k1, ..., kN).

232 S. Kasra Kermanshahi et al.

2. The adversary specifies a set C∗ = i1, ..., iθ−1, and the challenger responds
with the corresponding key shares ki1 , ..., kiθ−1 .

3. The adversary (adaptively) sends key share queries x1, ..., xQ ∈ X to the
challenger, and for each query xj (here j ∈ [1, Q]) the challenger responds
with F(ki, xj) for each i /∈ C∗.

4. The adversary submits a challenge query x∗ ∈ X \ {x1, .., xQ} to the chal-
lenger. If b = 0, the challenger samples and returns a uniformly random y ∈ Y
to the adversary. If b = 1, the challenger responds with f(k0, x

∗).
5. The adversary can adaptively issue more key share queries (step 3) and chal-

lenge queries (step 4), to which the challenger responds appropriately, so
long as the set of all challenge queries and the set of all key share queries are
disjoint.

6. The adversary outputs a bit b
′ ∈ {0, 1}.

Let Wb denote the probability that A outputs 1 in experiment Exptb
dPRF .

A distributed PRF Π is secure if for all efficient adversaries A the quantity
AdvdPRF [Π,A] := |W0 − W1| is negligible.

2.4 OXT

In this subsection, the proposed protocol by Cash et al. [9] called Oblivious Cross
Tags (OXT) is reviewed. This protocol consists of three main sub-protocols; EDB
generation, Token generation, and Search which are reviewed in Algorithms 1, 2
and 3, respectively.

EDBSetup(λ,DB): Given security parameter λ and DB = (idi,Wi)d
i=1 and

the defined PRFs in Algorithm 1, generates the encrypted database EDB.
TokenGeneration((w̄ = (w1, . . . , wn), EDB)): If client wants to make a query

q over EDB, search tokens are required. Algorithm 2 generates search tokens
based on the given query.

Search(Tokq,EDB,XSet): inputs the search token Tokq = (stag, xtoken[1],
xtoken[2], · · ·) for a query q and (EDB,XSet), then outputs the search result
ERes as shown in Algorithm 3.

DecResult (ERes, K): This algorithm inputs the encrypted search result
ERes and the utilized key, then outputs the documents identifier id.

T-Set Instantiation. Cash et al. in [9] instantiate a T-set as a hash table with
B buckets of size S each. The TSetSetup(T) procedure sets the parameters B
and S depending on the total number N = Σw∈W |T [w]| of tuples in T in such
a way so that (1) the probability of an overflow of any bucket after storing N
elements in this hash table is a sufficiently small constant; and (2) the total size
B.S of the hash table is O(N). Details can be referred to the full paper.

Multi-user Cloud-Based Secure Keyword Search 233

Algorithm 1. EDB Setup Algorithm
Input: λ, DB
Output: EDB , XSet
1: function EDBSetup(λ,DB)
2: Initialize T ← ∅ indexed by keywords W.
3: Select key KS for PRF F . Select keys KX , KI , KZ for PRF Fp with range Z

∗
p.

4: EDB← {}
5: for w ∈ W do
6: Initialize t ← {}; and let Ke ← F (KS , w).
7: for id ∈ DB(w) do
8: Set a counter c ← 1
9: Compute xid ← Fp(KI , id), z ← Fp(KZ , w||c); y ← xidz−1, e ← Enc(Ke, id).

10: Set xtag ← gFp(KX ,w)·xid and XSet ← XSet ∪ {xtag}
11: Append (y, e) to t and c ← c + 1.
12: end for
13: T[w] ← t
14: end for
15: Set (TSet, KT) ← TSet.Setup(T) and let EDB(1) = (TSet,XSet).
16: return EDB = (EDB(1),XSet), K = (KS , KX , KI , KZ), pp
17: end function

Algorithm 2. Token Generation Algorithm
Input: q = (w1 ∧ · · · ∧ wn) , EDB.
Output: Result Tokq.
1: function TokenGeneration((w̄ = (w1, . . . , wn), EDB))
2: Client’s input is (KS , KX , KI , KZ , KT) and w̄.
3: Computes stag ← TSet.GetTag(KT , w1).
4: Client sends stag to the server.
5: for c = 1, 2, . . . until the server stops do
6: for i = 2, . . . , m do
7: xtoken[c, i] ← gFp(KZ ,w1||c)·Fp(KX ,wi)

8: end for
9: xtoken[c] ← (xtoken[c, 2], . . . , xtoken[c, m])
10: end for
11: Tokq ← (stag, xtoken)
12: return Tokq

13: end function

Algorithm 3. Search Algorithm
Input: Tokq = (stag, xtoken[1], xtoken[2], · · ·), EDB,XSet
Output: ERes
1: function Search(Tokq, EDB,XSet)
2: R ← {}
3: for stag ∈ stags do
4: c ← 1; � ← F (stag, c)
5: while � ∈ EDB do
6: (e, y) ← EDB[�]
7: if xtoken[c, i]y ∈ XSet for all i then
8: R ← R ∪ {e}
9: end if
10: c ← c + 1; � ← F (stag, c)
11: end while
12: end for
13: return ERes
14: end function

234 S. Kasra Kermanshahi et al.

3 Syntax of Multi-user SSE

Our multi-user SSE construction Πmu consists of five phases Πmu =
(EDBSetupmu, KeySharingmu, T okenGenmu, Searchmu, Retrievemu) as
defined below. We point out the following main differences from the syntax of
single-user SSE [9]. For client key loss resilience, the KeySharingmu algorithm
allows the Master key K to be split into client key shares K1, . . . , KN using
a threshold secret sharing scheme, such that any θ key shares can reconstruct
K, for a threshold parameter θ. The TokenGenmu protocol allows a client to
compute a search token for a query by interaction with θ − 1 other ‘helping’ key
share holders.

• EDBSetupmu: Data owner runs the algorithm EDBSetupmu where takes
the security parameter λ and the database DB as the inputs and outputs the
encrypted database EDB along with the master key K and the set of public
parameters pp.

• KeySharingmu: Data owner performs this algorithm which inputs pp, master
key K, a threshold parameter θ, and the number of desired key share holders
N , and outputs the generated key shares (K1, ...,KN) ∈ KN of the considered
master key.

• TokenGenmu: The TokenGenmu protocol runs by θ key share holders
(i1, ... , iθ) ∈ [N]. Key share holder i1 who aim to do the search on EDB
starts the protocol by taking the query q, public parameters pp and the key
share Ki1 as inputs. The θ − 1 other key share holders ij where j ∈ [2, θ]
input their key shares Kij

. By the end of this protocol the Key share holder
i1 outputs the search token Tokq whereas the remaining involving key share
holders output ⊥.

• Searchmu: This is a protocol between the Key share holder i1 ∈ [N] and
server where i1 inputs the search token Tokq along with pp and server inputs
pp and EDB. By the end of this protocol the Key share holder i1 outputs
the encrypted result ERes whereas server outputs ⊥.

• Retrievemu: This is a protocol between the Key share holder i1 and θ − 1
other key share holders (i2, ..., iθ) ∈ [N] where (pp,ERes,Ki1) are the inputs
of i1 and the θ−1 other key share holders ij input (pp,Kij

) (where j ∈ [2, θ]).
Finally, the Key share holder i1 outputs Res which is the identifiers of the
documents containing the issued query whereas the remaining involving key
share holders output ⊥.

4 Security Definitions of Multi-user SSE

In this section, we give security definitions of our multi-user searchable encryp-
tion based on two different viewpoints; Privacy against Server and Query Privacy
against other Key Share holders.

Multi-user Cloud-Based Secure Keyword Search 235

4.1 Privacy Against Server

The given semantic security definitions is similar to [9]. The security definition
of our multi-user searchable encryption, here Π, is parametrized by a leakage
function L (knowledge about the database and queries gained by the server
through interaction with a secure scheme).

Indeed, security shows how the server’s view in an adaptive attack (database
and queries are selected by the server) can be simulated using only the output of
L. For algorithms A and S, we define a real experiment RealΠA(λ) and an ideal
experiment IdealΠA,S(λ) as follows:

RealΠA(λ) : A(1λ) chooses a database DB and a subset of corrupted clients
(j1, ..., jθ−1). However, this non-adaptive attacker is not allowed to interact
with the clients. The experiment samples a k0 uniformly from K and runs
Key sharing(k0) to obtain (k1, ..., kN). Then, responds with the correspond-
ing key shares kj1 , ..., kjθ−1 as the exposed key shares to the attacker. After-
wards, the experiment runs (mk, pp,EDB,XSet) ← EDBSetup(1λ,DB) and
returns (pp,EDB,XSet) along with C (the list of key share holders, |C| = N)
to A. Then A repeatedly chooses a query q[i]. Then, the experiment runs the
algorithm TokenGen on input ki1 , ..., kiθ

, and returns Search tokens to A.
Eventually, the experiment outputs the bit that A returns.

IdealΠA,S(λ) : By setting a counter i = 0 and an empty list q the game is ini-
tialized. A(1λ) chooses a DB, a query list q and a subset of corrupted clients
(j1, ..., jθ−1). The experiment responds with simulated key shares kj1 , ..., kjθ−1

as the exposed key shares to the attacker. Afterwards, the experiment runs
(pp,EDB,XSet) ← S(L(DB)) and gives (pp,EDB,XSet) to A. A then repeat-
edly chooses a search query q. To respond, the experiment records this query
as q[i], increments i and gives the output of S(L(DB,q)) to A, where q
consists of all previous queries in addition to the latest query issued by A.
Eventually, the experiment outputs the bit that A returns.

Definition 1 (Security). The protocol Π is called L-semantically-secure
against adaptive attacks if for all adversaries A there exists an efficient algo-
rithm S such that |Pr[RealΠA(λ) = 1] − Pr[IdealΠA,S(λ)]| ≤ negl(λ).

Definition 2 (Leakage). Similar to [9] we define L(DB,q), for DB =
(idi,Wi)d

i=1 and q = (Φ, s,x1, . . . ,xn), as a tuple (N, Φ, s̄,SP,XP,RP, IP)
formed as follows:

• N =
∑d

i=1 |Wi| is the total number of appearances of keywords in documents
(here d indicated the number of documents).

• s̄ ∈ N
T is the equality pattern of the sterms s, indicating which queries have

the same sterms. It is calculated as an array of integers, such that each integer
represents one sterm.

• SP is the size pattern of the queries, i.e. the number of documents matching
the sterm in each query, SP[i] = |DB(s[i])|.

• XP The vector XP has XP[i] set to the number of x-terms in the i-th query.

236 S. Kasra Kermanshahi et al.

• RP[i] = DB[s[i]]∩DB[x[i]], is the results pattern of the queries, which are the
indices of documents matching the entire conjunction.

• IP is the conditional intersection pattern, which is a 4-dimensional table
defined as follows:

IP[i, j, α, β] =

⎧
⎨

⎩

DB(s[i]) ∩ DB(s[j]) if i �= j, α �= β,
and xα[i] = xβ [j],

∅ otherwise,

4.2 Query Privacy Against Other Key Share Holders

Query privacy is a new property for hiding the search keywords of a client from
the other θ − 1 ‘helper’ key share holders (in our construction, this means that
the search query input of PRF is hidden from the ‘helper’ key share holders).

Indeed, this security shows the compromised clients’ view in an adaptive
attack (key share holders and queries are selected by the compromised ‘helper’
clients). For algorithms A and S, we define a Query Privacy Game as follows:

Query Privacy Game: A(1λ) chooses a set of i1, ..., iθ of key share holders,
where i1 is the client making a query and i2, . . . , iθ are the ‘helping’ key share
holders. Then S samples a K0 uniformly from K and runs Key sharing(K0)
to obtain (K1, ...,KN), and returns Ki2 , ...,Kiθ−1 to A. Then A chooses a
pair of keyword queries (x0, x1). In order to respond, S chooses a random bit
b ∈r {0, 1} and runs TokenGenmu protocol with searching client’s input (q =
xb, pp,Ki1) and ‘helper’ client inputs (Ki2 , . . . , Kiθ

). S returns the protocol
view of the ‘helping’ share holders i2, . . . , iθ to A. Then, A outputs a bit b′

which is also outputs by the algorithm S. As a result, Adv(A) = Pr(b =
b′) − 1

2 .

Definition 3 (Query Privacy). The protocol Π is called Query private if for
all adversaries A in Query Privacy Game Adv(A) ≤ negl(λ).

5 Randomizable Key Homomorphic Distributed PRFs

As a tool for our multi-user SSE, we defined a special type of distributed PRF
which makes the input point blind from key share holders and unblind it during
performing Evaluation algorithm.

5.1 Definition

Our Randomizable Distributed PRF (RDPRF) mainly consists of seven algo-
rithm; Setup, Key sharing, Rand, Partial evaluation, Combine, UnRand, and
Evaluation with the following properties. Note that except Rand and UnRand
the rest of the mentioned algorithms are similar to the ones proposed by Boneh
et al. [5] (refer to Sect. 2.3).

Multi-user Cloud-Based Secure Keyword Search 237

• Setup: This algorithm inputs security parameter κ (for the rest of this paper,
we skip the definition of κ) and outputs master-key mk and public parame-
ters pp.

• Key sharing (pp, (mk,N)) → KN : This algorithm generates key shares
(k1, ..., kN) ∈ KN of the considered master key. Here, N is the number of
key share holders, K is the key domain and KN is the domain of key shares.

• Rand: The function Rand(x, pp) → z randomize the input point x ∈ K by a
uniformly random value r ∈ R.

• Partial evaluation: The function F : K × X → Y takes a key share and an
input point and outputs a partial evaluation of the Evaluation function f .

• Combine: The algorithm G : 2[N] ×Yθ → Y inputs a subset W ⊂ [N] of size θ
(threshold) and θ partial evaluations on key shares in the set W and outputs
a value in Y.

• UnRand: The function UnRand(F(k, z), r) inputs the randomized distrib-
uted PRF (RDPRF) under key k and the utilized random value r and outputs
the unradomized DPRF using the inverse of r.

• Evaluation: The function f : K × X → Y maps a key and an input to the
space of outputs.

5.2 PRF Evaluation Protocol

Algorithm 4 must be performed for all of the utilized PRFs. The idea is to
make the clients able to search through the database without interaction with
data owner. More precisely, online presence of data owner at all the time is
not required. In addition, Algorithm 4 enables the client to hide the considered
keyword for search from the other key share holders.

Assume that a client wants to evaluate a PRF such as PRF (k0, x). Thus,
client sends a short message containing x to each key share holder and by receiv-
ing at least θ responses from them, client would be able to evaluate the mentioned
PRF using PRF Evaluation Protocol.

Algorithm 4. PRF Evaluation protocol
Input: Key share holders list C = i1, i2, ..., iN , (ki1 , ..., kiθ

), x, and θ
Output: Y = PRF (k0, x)

function PRFEval(k0, x)
Y ← {}
client C picks random r ∈ Z

∗
p

client C computes z ← Rand(x, pp)
j ← 1
for j = 1, ..., θ do

while ij ∈ C do
client C send z to ij

ij computes yij
= F(kij

, z)

ij sends yij
to C

j ← j + 1
end while
client C performs y ← Combine(W, yi1 , ..., yiθ

)
end for
client C compute y ← Unrand(y, r)
return Y

end function

238 S. Kasra Kermanshahi et al.

Algorithm 4 is inspired by the proposed key homomorphic PRFs by Boneh
et al. [5] (refer to Sect. 2.3). However, it would not leak any information such as
the considered keyword to other key share holders.

Correctness. By considering pp as the output of Setup(1λ), k0 sampled uni-
formly from K, and (k1, ..., kN) the key share output by Key sharing(k0). For
every subset W = i1, ..., iθ ⊂ [N] of size θ, and for every input x, RDPRF is
correct if f(k0, x) = UnRand(G(W,F(ki1 , z), ...,F(kiθ

, z)).

PRF Security Definition of RDPRF. The Evaluation function f should
remain pseudorandom even when the adversary is given θ − 1 key shares
(ki1 , ..., kiθ−1) for indices i1, ..., iθ−1 of its choice. The adversary is also given
an oracle O that performs arbitrary partial evaluations: it takes (i, x) as input
and returns F(ki, x). The adversary should be unable to distinguish the func-
tion from random at point x where did not query the oracle O. Note that, Q
indicates the total number of issued queries; Q = Q1 +Q2, where Q1 and Q2 are
the number of queries made in Query-1 phase and Query-2 phase, respectively.
We formalize this intuition through an experiment between a challenger and an
adversary A. For b ∈ {0, 1} the challenger in Exptb

dPRF operates as follows.

• Setup. Given security parameter κ, the algorithm works as follows:
Step 1: the challenger runs Setup(1λ) and publishes public parameters

pp to the adversary.
Step 2: The challenger then samples a k0 uniformly from K and runs

Key sharing(k0) to obtain (k1, ..., kN).
Step 3: The adversary specifies a set of key share holders C∗ =

i1, ..., iθ−1.
Step 4: The challenger responds with the corresponding key shares

ki1 , ..., kiθ−1.
• Query-1. The adversary (adaptively) sends partial evaluation queries

x1, ..., xQ1 ∈ X to the challenger, and for each query xj the challenger
responds with F(ki, xj) for each i /∈ C∗.

• Challenge. The adversary submits a challenge query (x∗
1, ..., x

∗
m) ∈ X \

{x1, .., xQ} to the challenger. The challenger picks a random bit b ∈ {0, 1}. If
b = 0, the challenger samples yi = f(k0, x

∗
i) for all i �= j and randomly choose

j ∈r (1, ...,m) and returns (y1, ..., ym) to the adversary except the value of yj

is replaced with a uniformly random y ∈ Y.

If b = 1, ∀i ∈ {1, ...,m} the challenger responds with yi = f(k0, x
∗
i).

• Query-2. The adversary can adaptively issue more key share queries (step 3)
while partial evaluation queries xQ1 , ..., xQ1+Q2 ∈ X and challenge queries
(step 4), to which the challenger responds appropriately, so long as the set of
all challenge queries and the set of all key share queries are disjoint.

• Guess. The adversary outputs a bit b
′ ∈ {0, 1}.

Let Wb denote the probability that A outputs 1 in experiment Exptb
dPRF .

A distributed PRF Π is secure if for all efficient adversaries A such that Wb ≤
1
2 + 1

2
Q
M + ε.

Multi-user Cloud-Based Secure Keyword Search 239

Query Privacy Security of RDPRF. The query privacy security of the
Randomizable Key Homomorphic Distributed PRF shows for each x ∈ X , the
output of Rand(x, r) is uniform on the domain of the distributed PRF, X , when
r is uniform in the input space Z

∗
p.

5.3 Concrete Construction of RDPRF

• Setup:
– Choose prime p.
– Choose K = Z

∗
p as the key domain.

– Choose a cyclic group G of prime order p.
– Choose master key k0 ∈r K.
– Define S = (θ,N) threshold secret sharing scheme proposed by Shamir

[30] (refer to Sect. 2.2).
– Output mk = k0.
– Output pp =< G, p, S,K,H > where H : X → G|{1} is a cryptographic

hash function which maps the PRF domain X : {0, 1}∗ to its range, G|{1},
using a randomizer r ∈r R where R = Z

∗
p.

• Key sharing (pp, (mk,N)) → KN : On input mk = k0, an integer N and
threshold secret sharing scheme S outputs key shares k1, ..., kN .

• Rand(x, pp): Picks up a uniformly random value r ∈r Z
∗
p and outputs r and

z = H(x)r.
• Partial evaluation (ki, z): given a key share ki ∈ Z

∗
p and an input point z ∈ G

this algorithm returns yi = F(ki, z) where in fact yi = zki is an element of
group G.

• Combine (W, {yi1 , ..., yiθ
}): for any W = {i1, ..., iθ} ⊂ [N] of size θ and cor-

responding partial evaluations {yi1 , ..., yiθ
} this algorithm outputs f(k, z) =

zk = z
∑θ

j=1 λij
.kij = Πθ

j=1(yij
)λij .

• UnRand (F(k, z), r): this algorithm inputs yr = F(k, z) = H(x)rk and
the related random value r then outputs the unrandomized value y =
y

r−1 (mod p)
r .

• Evaluation(k, x): given a secret k and an input x this algorithm outputs
f(k, x) = H(x)k.

Theorem 1. Suppose the hash function H is random oracle then RDPRF is a
secure randomizable key homomorphic distributed PRF that satisfies PRF secu-
rity if DDH assumption holds and satisfies query privacy unconditionally.

Please refer to the full version for the proof of this Theorem.

6 Our Construction

In this section, we present an extension of OXT [9] for the multi-user symmetric
searchable encryption setting. The proposed extension supports key revocation

240 S. Kasra Kermanshahi et al.

Fig. 1. Instantiation of Multi-user SSE

while preserves full functionality of OXT. Our multi-user SSE construction con-
sists of five algorithm

Π = (EDBSetupmu,KeySharingmu, T okenGenmu, Searchmu, Retrievemu)

In the proposed construction EDBSetupmu algorithm is similar to the ones in
OXT [9] except for the utilized PRFs which are distributed key-homomorphic
PRFs (refer to Sect. 2.3). In order to enable several clients to access same data-
base, Data owner runs Key Sharingmu algorithm which inputs the utilized PRF
keys and outputs the corresponding key shares by performing Shamir’s scheme
[30] explained in Subsect. 2.2. Then, the generated key shares are distributed to
the desired clients along with the list of legitimate key share holders’ identity.
Let D to be a data owner who outsources an encrypted database EDB to a
remote server S such that S cannot learn anything more than what predicted
as the leakage profile. Moreover, authorized clients (Key Share holders) such as
i1, i2, ..., iN are allowed to carry out the search through EDB. Figure 1 illustrates
one example of our construction in the static mode.

To perform a search over EDB, a client needs to run TokenGenmu proto-
col as defined in Algorithm 5. Given the query q, this algorithm first performs
PRFEvaluationProtocol (4) and then generates the search tokens, Tokq. One of
the main contributions of this paper is hiding the searched keywords from other
key share holders when the search token is generated collaboratively. This is
achieved by defining another primitive called Randomizable Key Homomorphic
Distributed PRFs (refer to Sect. 5).

Searchmu protocol is similar to SearchOXT as defined in Algorithm3. Once
the client sent the search token Tokq to the server, server do the search over
EDB and outputs the encrypted result ERes.

Multi-user Cloud-Based Secure Keyword Search 241

Finally, Retrievemu protocol as described in Algorithm 6 should performed
in order to extract the identifiers of the documents containing the searched
keyword.

Algorithm 5. TokenGen Protocol
Input: q = (w1 ∧ · · · ∧ wn) , EDB.
Output: Result Tokq.

function TokenGen((w̄ = (w1, . . . , wn), EDB))
Client’s input is (KS , KX , KI , KZ , KT) and w̄.
Computes stag ← TSet.GetTag(KT , w1).
Client sends stag to the server.
for c = 1, 2, . . . until the server stops client do

for i = 2, . . . , m do
performs PRF Evaluation Protocol on inputs (i1, ..., iθ) and (Ki1 , ..., Kiθ

)
to compute X = Fp(KZ , w1||c) and Yi = Fp(KX , wi)

xtoken[c, i] ← gX·Yi

end for
xtoken[c] ← (xtoken[c, 2], . . . , xtoken[c, m])

end for
Tokq ← (stag, xtoken)
return Tokq

end function

Algorithm 6. Client Search Result Retrieval Protocol
Input: R, w1 , EDB.
Output: Result id.

function Retrieval((e, id))
id ← {}
Client performs PRF Evaluation Protocol for ke ← PRF (ks, w1)
for i = 1, 2, . . . until the server stops do

if ei ∈ R then
compute idi ← Dec(ke, ei)
id ← id ∪ idi

end if
end for
return idi

end function

7 Security Analysis

In this section, we state the security of our multi-user SSE protocol against
dishonest server and dishonest/compromised key share holder, respectively. We
refer the reader to the full version for proofs.

Theorem 2. Let L be the leakage function defined in Sect. 4.2. Then, our multi-
user SSE protocol is L-semantically-secure against adaptive server, if OXT [9]
is secure and DDH assumption holds.

Theorem 3. Our multi-user SSE protocol Πmu is query-private, as defined in
Definition 3.

242 S. Kasra Kermanshahi et al.

8 Performance Comparison

Since our multi-user protocol and the proposed protocol by Sun et al. [34] are
under the framework of OXT [9], in this section we compare our protocol with
them in terms of communication and computation overhead. The communication
overhead between the data owner and the server during EDBSetup phase is the
same in all of them as well as the communication between client and the server.
However, in our multi-user SSE client who wants to search over EDB requires to
communicate with at least θ − 1 (θ is the threshold) key share holders in order
to generate the search token.

Due to the use of ABE the Sun’s protocol has storage overhead and some
computational cost to the data owner. Moreover, the data owner should compute
an extra exponentiation for the PRF calculation during the setup phase, totally
introducing (2

∑
w∈W |DB[w]| + |W|) exponentiation operations for the whole

database.
For a conjunctive query, e.g., Q = (w1 ∧ w2 ∧ · · · ∧ wm) performed by a

client, we assume that the associated keywords belong to the client’s authorized
keyword set w, i.e., wi ∈ w for i ∈ [m]. Table 2 summarizes the computation
and communication of our Multi-user SSE protocol besides of OXT [9] and Sun’s
multi-client protocol [34].

To perform the search as described above, the client in our Multi-user SSE
does not require to refer to the data owner. However, it has to interact with
key share holders to generate the search token where the user needs to compute
((m − 1) + |DB(w1)|)(2exp + 1inv). Note that the two exponentiations and an
inversion here are required for Rand and UnRand functions in PRF Evaluation
protocol. In contrast, the user in OXT [9] requires per-query interaction with
the data owner to get the search token. Thus, the data owner needs to compute
((m − 1).|DB(w1)|) exponentiations.

In Sun’s protocol, the client needs to get secret information from the data
owner at the beginning, where the data owner needs to computes 3 exponentia-
tions and generates an attribute-related secret key for each client, and then the
client is able to perform the searches at the cost of (m + 1) additional exponen-
tiations to the generation of xtoken.

Table 2. Computational and communication cost

Conjunctive query Q = (w1 ∧ w2 ∧ · · · ∧ wm), where wi ∈ w

Reference Data owner’s comp. costClients’ comp. cost Communication cost

Cash et al. [9] |DB[w1]|(m − 1) · exp N/A l(1 + (m − 1).|DB(w1)|)
Sun et al. [34] 3 · exp (|DB[w1]|(m − 1) + (m + 1)) · expl(1 + (m − 1).|DB(w1)|) + 3 lRSA
Our multi-user SSEN/A |DB[w1]|m · exp + m · inv l(m.(1 + |DB(w1)|))
exp: the exponentiation operation on the group; | · |: the size of a finite set or group, e.g., |G|; w:
the authorized keyword set for a client.

Since our Multi-user SSE is the enhanced version of OXT [9], we can estimate
the extra cost of computation and communication over OXT in the mentioned
scenario (by assuming 1inv ≤ 1exp) as followed;

Multi-user Cloud-Based Secure Keyword Search 243

Overhead ratio for computation = 1 +
(2exp + 1inv)((m − 1) + |DB(w1)|)

(1exp)((m − 1).|DB(w1)|)
≤ 1 + 3(

((m − 1) + |DB(w1)|)
((m − 1).|DB(w1)|))

≤ 1 + 3(
1

(m − 1)
+

1
|DB(w1)|)

And the communication overhead for the user is;

Overhead ratio for communication = 1 + l((m − 1)|DB(w1)|)
l(1 + (m − 1).|DB(w1)|)

= 1 + (
1

(m − 1)
+

1
|DB(w1)|)

Here, l indicates the length of Xtoken.

9 Further Extension

In this section we are going to discuss about two extensions of our work as
described below which will be addressed in more details in the extended version
of this document.

First, lets consider the condition that the master key is leaked, Data owner
should update the encrypted database using a new key to prevent any extrac-
tion of the information by unauthorized entity. Thus, Data owner sends a keying
materials to the server for updating the encrypted database. It is assumed that
the server do the update honestly and removes the keying materials after finish-
ing the update. Data owner runs Update algorithm as described below.

Update(EDB,ΔE ,ΔT) : Server run this algorithm which inputs the encrypted
database, EDB, along with two keying materials (ΔE ,ΔT) for the update of
XSet and TSet, respectively. Then, for each i = 1, ..., |t| sent by Data owner
to Server, it computes TSet′ = H(F (stag, i))ΔT . Moreover, in order to update
XSet for each xtagi ∈ XSet for i ∈ [1, |XSet|] this algorithm raise it to ΔE and
computes xtagi = (gFp(KX ,w)·xid)ΔE and update XSet to XSet′. Finally, this
algorithm outputs EDB′ = (XSet′, TSet′) and server deletes ΔE , ΔT and the
old EDB.

Although it seems this method adds some computation overhead to the
server, it is still inexpensive in terms of communication in compare with the
traditional techniques such as re-encryption by Data owner and re-uploading it
to the server.

Second, there are two degrees of collusion between server and the key share
holders; Passive and Active. The weaker one is passive collusion where the Server
exposes θ−1 (here θ indicates the threshold) of key shares of the valid key share
holders. Since our scheme inherited a security property from Shamir’s secret
sharing scheme (refer to Sect. 2.2), having any subset of key shares smaller than
the threshold will not reveal any information about the actual key. Thus, this

244 S. Kasra Kermanshahi et al.

passive collusion do not help the curious server to gain any knowledge about the
key. Moreover, in this condition it is assumed that the server does not communi-
cate with the key share holders, thus cannot be involved in TokenGen protocol.
As a result, it is not possible for the server to gain any knowledge about the
search keyword.

The stronger assumption is Active collusion where Server exposes a subset
of key shares (smaller than threshold) and also can control those θ − 1 the
mentioned key share holders in the token generation process. Similar to the
passive collusion, the curious server is not able to gain any knowledge about the
key using the key shares less than the considered threshold. However, in this
case it is possible for the server to find out about the search tokens till Data
owner identify and revoke the compromised key share holders. Ideally, in this
active server attack, server should not learn anything about EDB beyond the
search tokens for the search queries. Achieving this security can be provided in
the future work.

Beside of what mentioned above, it is worth to note that although the pro-
posed construction provides a single-writer/multi-reader architecture in the sta-
tic mode, it can provide a limited version of multi-writer/multi-reader setting in
dynamic scenario.

10 Conclusions

In this paper we proposed a novel multi-user symmetric searchable encryp-
tion scheme. In fact, we chose to enhance the OXT protocol proposed by Cash
et al. [9] from single writer/single reader structure to single writer/multi reader
one. Our construction is query private against all of the others involving enti-
ties including Data owner, Server, and key share holders. In order to make the
search keyword hidden from the other share holders during the token generation
process, we defined a new distributed key homomorphic PRF.

The security and efficiency of our multi-user SSE have been analyzed from
different aspects. We left some of the open problems to be addressed in the future
works while some ideas for database update and key revocation are provided.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: consis-
tency properties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005). doi:10.
1007/11535218 13

2. Bao, F., Deng, R.H., Ding, X., Yang, Y.: Private query on encrypted data in multi-
user settings. In: Chen, L., Mu, Y., Susilo, W. (eds.) ISPEC 2008. LNCS, vol. 4991,
pp. 71–85. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79104-1 6

3. Bellare, M., Boldyreva, A., ONeill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5 30

http://dx.doi.org/10.1007/11535218_13
http://dx.doi.org/10.1007/11535218_13
http://dx.doi.org/10.1007/978-3-540-79104-1_6
http://dx.doi.org/10.1007/978-3-540-74143-5_30

Multi-user Cloud-Based Secure Keyword Search 245

4. Boneh, D., Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24676-3 30

5. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic
PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40041-4 23

6. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). doi:10.1007/978-3-540-70936-7 29

7. Bösch, C., Tang, Q., Hartel, P., Jonker, W.: Selective document retrieval from
encrypted database. In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012. LNCS, vol.
7483, pp. 224–241. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33383-5 14

8. Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner,
M.: Dynamic searchable encryption in very-large databases: data structures and
implementation. In: NDSS (2014)

9. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 20

10. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on
remote encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS
2005. LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). doi:10.1007/
11496137 30

11. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-17373-8 33

12. Chu, C., Zhu, W.T., Han, J., Liu, J.K., Xu, J., Zhou, J.: Security concerns in
popular cloud storage services. IEEE Pervasive Comput. 12(4), 50–57 (2013)

13. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: ACM CCS 2006,
pp. 79–88 (2006)

14. Dong, C., Russello, G., Dulay, N.: Shared and searchable encrypted data for
untrusted servers. In: Atluri, V. (ed.) DBSec 2008. LNCS, vol. 5094, pp. 127–143.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-70567-3 10

15. Goh, E.: Secure indexes. IACR Cryptology ePrint Archive 2003:216 (2003)
16. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over

encrypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 31–45. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24852-1 3

17. Hore, B., Mehrotra, S., Canim, M., Kantarcioglu, M.: Secure multidimensional
range queries over outsourced data. VLDB J. 21(3), 333–358 (2012)

18. Hwang, Y.H., Lee, P.J.: Public key encryption with conjunctive keyword search and
its extension to a multi-user system. In: Takagi, T., Okamoto, T., Okamoto, E.,
Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 2–22. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73489-5 2

19. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: NDSS (2012)

20. Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.: Outsourced symmetric
private information retrieval. In: ACM CCS 2013, pp. 875–888. ACM (2013)

http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-540-24676-3_30
http://dx.doi.org/10.1007/978-3-642-40041-4_23
http://dx.doi.org/10.1007/978-3-642-40041-4_23
http://dx.doi.org/10.1007/978-3-540-70936-7_29
http://dx.doi.org/10.1007/978-3-642-33383-5_14
http://dx.doi.org/10.1007/978-3-642-40041-4_20
http://dx.doi.org/10.1007/11496137_30
http://dx.doi.org/10.1007/11496137_30
http://dx.doi.org/10.1007/978-3-642-17373-8_33
http://dx.doi.org/10.1007/978-3-540-70567-3_10
http://dx.doi.org/10.1007/978-3-540-24852-1_3
http://dx.doi.org/10.1007/978-3-540-73489-5_2

246 S. Kasra Kermanshahi et al.

21. Jiang, T., Chen, X., Li, J., Wong, D.S., Ma, J., Liu, J.K.: Towards secure and
reliable cloud storage against data re-outsourcing. Future Gener. Comp. Syst. 52,
86–94 (2015)

22. Kerschbaum, F., Sorniotti, A.: Searchable encryption for outsourced data analytics.
In: Camenisch, J., Lambrinoudakis, C. (eds.) EuroPKI 2010. LNCS, vol. 6711, pp.
61–76. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22633-5 5

23. Kuzu, M., Islam, M.S., Kantarcioglu, M.: Efficient similarity search over encrypted
data. In: 2012 IEEE International Conference Data Engineering, pp. 1156–1167
(2012)

24. Liang, K., Au, M.H., Liu, J.K., Susilo, W., Wong, D.S., Yang, G., Phuong, T.V.X.,
Xie, Q.: A DFA-based functional proxy re-encryption scheme for secure public
cloud data sharing. IEEE Trans. Inf. Forensics Secur. 9(10), 1667–1680 (2014)

25. Liang, K., Huang, X., Guo, F., Liu, J.K.: Privacy-preserving and regular language
search over encrypted cloud data. IEEE Trans. Inf. Forensics Secur. 11(10), 2365–
2376 (2016)

26. Liang, K., Su, C., Chen, J., Liu, J.K.: Efficient multi-function data sharing and
searching mechanism for cloud-based encrypted data. In: ASIACCS, pp. 83–94
(2016)

27. Liang, K., Susilo, W., Liu, J.K.: Privacy-preserving ciphertext multi-sharing con-
trol for big data storage. IEEE Trans. Inf. Forensics Secur. 10(8), 1578–1589 (2015)

28. Popa, R.A., Zeldovich, N.: Multi-key searchable encryption. IACR Cryptology
ePrint Archive 2013:508 (2013)

29. Raykova, M., Cui, A., Vo, B., Liu, B., Malkin, T., Bellovin, S.M., Stolfo, S.J.:
Usable, secure, private search. IEEE Secur. Priv. 10(5), 53–60 (2012)

30. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
31. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,

O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-00457-5 27

32. Shi, E., Bethencourt, J., Chan, T.H.H., Song, D., Perrig, A.: Multi-dimensional
range query over encrypted data. In: 2007 IEEE Symposium on Security and Pri-
vacy (SP 2007), pp. 350–364, May 2007

33. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: 2000 IEEE Symposium on Security and Privacy, SP 2000 Proceedings,
pp. 44–55 (2000)

34. Sun, S.-F., Liu, J.K., Sakzad, A., Steinfeld, R., Yuen, T.H.: An efficient non-
interactive multi-client searchable encryption with support for boolean queries.
In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS
2016. LNCS, vol. 9878, pp. 154–172. Springer, Cham (2016). doi:10.1007/
978-3-319-45744-4 8

35. Tang, Q.: Nothing is for free: security in searching shared and encrypted data.
IEEE Trans. Inf. Forensics Secur. 9(11), 1943–1952 (2014)

36. Waters, B.R., Balfanz, D., Durfee, G., Smetters, D.K.: Building an encrypted and
searchable audit log. In: NDSS 2004 (2004)

37. Wu, X., Xu, L., Zhang, X.: Poster: a certificateless proxy re-encryption scheme for
cloud-based data sharing. In: ACMCCS, pp. 869–872. ACM (2011)

38. Xhafa, F., Wang, J., Chen, X., Liu, J.K., Li, J., Krause, P.: An efficient PHR
service system supporting fuzzy keyword search and fine-grained access control.
Soft Comput. 18(9), 1795–1802 (2014)

39. Yang, X., Lee, T., Liu, J.K., Huang, X.: Trust enhancement over range search for
encrypted data. In: IEEE Trustcom, pp. 66–73 (2016)

http://dx.doi.org/10.1007/978-3-642-22633-5_5
http://dx.doi.org/10.1007/978-3-642-00457-5_27
http://dx.doi.org/10.1007/978-3-319-45744-4_8
http://dx.doi.org/10.1007/978-3-319-45744-4_8

Multi-user Cloud-Based Secure Keyword Search 247

40. Yang, Y., Lu, H., Weng, J.: Multi-user private keyword search for cloud computing.
In: CloudCom 2011, pp. 264–271 (2011)

41. Zhao, F., Nishide, T., Sakurai, K.: Multi-user keyword search scheme for
secure data sharing with fine-grained access control. In: Kim, H. (ed.) ICISC
2011. LNCS, vol. 7259, pp. 406–418. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31912-9 27

42. Zuo, C., Macindoe, J., Yang, S., Steinfeld, R., Liu, J.K.: Trusted boolean search
on cloud using searchable symmetric encryption. In: IEEE Trustcom, pp. 113–120
(2016)

http://dx.doi.org/10.1007/978-3-642-31912-9_27
http://dx.doi.org/10.1007/978-3-642-31912-9_27

Fuzzy Keyword Search and Access Control
over Ciphertexts in Cloud Computing

Hong Zhu1, Zhuolin Mei1(B), Bing Wu1, Hongbo Li1, and Zongmin Cui2

1 School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, Hubei, China

meizhuolin@gmail.com
2 School of Information Science and Technology, Jiujiang University,

Jiujiang, Jiangxi, China

Abstract. With the rapid development of cloud computing, more and
more data owners are motivated to outsource their data to cloud for
various benefits. Due to serious privacy concerns, sensitive data should
be encrypted before being outsourced to the cloud. However, this results
that effective data utilization becomes a very challenging task, such as
keyword search over ciphertexts. Although many searchable encryption
methods have been proposed, they only support exact keyword search. In
our paper, we propose a method which could support both the fuzzy key-
word search and access control over ciphertexts. Our proposed method
achieves fuzzy keyword search and access control through algorithm
design and Ciphertext-Policy Attribute-based Encryption. We present
word pattern which can be used to balance the search efficiency and pri-
vacy. The experimental results demonstrate the efficiency of our method.

Keywords: Fuzzy keyword search · Access control · Encryption

1 Introduction

With the rapid development of cloud computing, more and more sensitive infor-
mation are being centralized into the cloud, such as emails, personal health
records, government documents, etc. By outsourcing data to the cloud, data
owners can enjoy various advantages, such as high quality data storage ser-
vice and maintenance [10]. However, the cloud is not fully trusted by the data
owners. Thus, the privacy of sensitive data in the cloud naturally becomes a pri-
mary concern of data owners. To mitigate the concern, sensitive data is usually
encrypted-before-outsourcing to prevent from unauthorized access [8]. Since the
data is encrypted, the searching of documents which contains specific keywords
becomes rather difficult.

To solve the problem above, many searchable encryption methods have been
proposed, e.g. [1,12,14]. However, they only support exact keyword matching.
Misspelled keywords in the query will result in wrong or no matching. Very
recently, a few works [4,8,10,11,15,16] extend the exact keyword matching to
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 248–265, 2017.
DOI: 10.1007/978-3-319-60055-0 13

Fuzzy Keyword Search and Access Control over Ciphertexts 249

approximate keyword matching, also known as fuzzy keyword search. According
to the techniques adopted in these fuzzy keyword search methods, they could
be classified into two classes: (1) Wildcard based fuzzy keyword search methods
[10,11,16]; (2) Locality-Sensitive Hashing (LSH) [6] and Bloom Filter (BF) [3]
based fuzzy keyword search methods [4,8,15]. In wildcard based methods, data
owner has to build an expanded index which covers all the possible misspelling
keywords. It leads to a very large index and low search efficiency. In LSH and BF
based methods, the search is very efficient. However, these methods may miss out
some correct search results, because the adopted technique, Locality-Sensitive
Hashing, only maps the similar items to the same hash value with a possibility.
Additionally, the above fuzzy keyword search methods do not support access
control, which is an important requirement of data sharing in cloud computing.

In this paper, we propose a fuzzy keyword search method supporting access
control (FKS-AC) over ciphertexts. Compared with wildcard based methods
[10,11,16], FKS-AC is more efficient. Compared with LSH and BF based meth-
ods [4,8,15], FKS-AC can accurately obtain all the search results without missing
a result. The contributions are as follows:

(1) We propose a method which supports both the fuzzy keyword search and
access control.

(2) We present word pattern and construct a fuzzy keyword search algorithm.
By utilizing word pattern, the search efficiency and privacy can be balanced.

(3) We implement our method. The experimental results show that our method
is efficient.

The reminder of this paper is organized as follows: Sect. 2 is the preliminaries.
Section 3 is word pattern. Section 4 is the construction of FKS-AC. Section 5
shows the experiment results. Section 6 is the security analysis. Section 7 is the
related work.

2 Preliminaries

A ciphertext-policy attribute based encryption (CP-ABE) [2] consists of five
algorithms: Setup, Encrypt, KeyGen, Delegate and Decrypt.

• Setup(λ) → (PK,MK). The setup algorithm takes the security parameter λ
as input, and outputs a public key PK and a master key MK.

• Encrypt(PK,M,P) → CT . The encryption algorithm takes the public key
PK, a message M , and a policy P as input. The algorithm encrypts M and
outputs a ciphertext CT .

• KeyGen(MK,S) → SK. The key generation algorithm takes the master key
MK and an attribute set S as input. It outputs a private key SK.

• Delegate(SK, ˜S) → ˜SK. The delegate algorithm takes as input a secret key
SK for the attributes in S and a set ˜S ⊆ S. It outputs a secret key ˜SK for
the attributes in ˜S.

250 H. Zhu et al.

• Decrypt(PK,CT, SK) → M . The decryption algorithm takes as input the
public key PK, a ciphertext CT (CT contains a policy P), and a private key
SK (SK contains the attribute set S). If S satisfies P , then the algorithm
decrypts CT and outputs M .

There are some facts related to groups with efficiently computable bilinear
maps which are used in CP-ABE [2]. Let G0 and G1 be two multiplicative cyclic
groups of prime order p. Let g be a generator of G0 and e be a bilinear map,
e : G0 × G0 → G1. The bilinear map e has two properties. (1) Bilinearity: For
all u, v ∈ G0 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab. (2) Non-degeneracy:
e(g, g) �= 1. G0 is a bilinear group if the group operation in G0 and the bilinear
map e : G0 × G0 → G1 are both efficiently computable. Note that the map e is
symmetric and e(ga, gb) = e(g, g)ab = e(gb, ga).

Definition 1 Edit distance [9]. Edit distance is a method to quantitatively
measure the word similarity. The edit distance ed(w,w′) between two words w
and w′ is the number of operations (substitution, deletion, insertion) required
to transform one word into the other. Substitution changes one character to
another in a word. Deletion deletes one character from a word. Insertion inserts
one character into a word.

3 Word Pattern

In this section, we propose word pattern, word pattern function, and character-
appearing order. The word pattern could be used to balance the search effi-
ciency and security. The word pattern function is used to compute the word
pattern. The character-appearing order provides the correct way to perform
fuzzy keyword search.

Definition 2 Word pattern function FM (w◦, i) is defined as below

FM (w◦, i) =

{

(HM (ci
w◦) − HM (c|w◦|

w◦)) mod sp, i = 1
(HM (ci

w◦) − HM (ci−1
w◦)) mod sp, 1 < i ≤ |w◦|

HM is a hash function, ci
w◦ is the ith character in w◦ (w◦ denotes a keyword w

or a searched word w′) and sp is a positive integer.

Definition 3 Mw◦ = (FM (w◦, 1), FM (w◦, 2), . . . , FM (w◦, |w◦|)) is the word pat-
tern of w◦. mi

w◦ = FM (w◦, i) is the word pattern value of the ith character in
w◦, where i = 1, . . . , |w◦|.

Let Schar denote the character set which is used to spell all the keywords,
and |Schar| denote the number of characters in Schar. According the Definition 2,
a word pattern value corresponds to average |Schar|2 mod sp two-contiguous
characters. Given a word pattern value, one can not know the word pattern
value is obtained by calculating which two-contiguous characters. Data owner
could use sp to balance the privacy (keyword privacy and searched word privacy)

Fuzzy Keyword Search and Access Control over Ciphertexts 251

and search efficiency: (1) Smaller sp means there are more characters who have
the same word pattern value. Thus, when decreasing sp, the security could be
enhanced. However, different two-contiguous characters who have the same word
pattern value would affect the efficiency of fuzzy keyword search (see Sect. 4.5).
(2) Larger sp means there are fewer characters who have the same word pattern
value. Thus, when increasing sp, the search efficiency could be improved, but
the security decreases.

Definition 4 Given a word w◦ = c1w◦c2w◦ . . . c
|w◦|
w◦ , for ∀i < j (i, j ∈ [1, |w◦|]),

the character-appearing order of w◦ is that ci
w◦ is before cj

w◦ .

When keywords and searched words have been encrypted, it is difficult to
measure the word similarity according to edit distance. Fortunately, we find a
method to compute ed(w,w′) according to |w∩w′|O (see Theorem 2 in Sect. 4.4),
where |w ∩ w′|O is the maximal number of characters which are the same in w
and w′ in the character-appearing order of w and w′. For example, w = cat is a
keyword, and w′ = acat is a searched word. It is easy to compute |w ∩ w′|O = 3.

4 Fuzzy Keyword Search Supporting Access Control

In our scheme, the cloud is considered to be “honest-but-curious” [4,10,11,15].
Thus the cloud would honestly follow the designated protocols and procedures
to fulfill the service provider’s role, while it may analyze the information stored
and processed on the cloud in order to learn additional information about its
customers. In our scheme, first data owner builds indexes for documents and
encrypts documents using a secure encryption method, such as AES. Next, the
data owner stores the encrypted documents and indexes on the cloud. Then,
the data owner distributes secret keys to users according to their identifiers. A
user uses his/her secret key to generate trapdoors for the searched words and
sends the trapdoors to the cloud for fuzzy keyword search. Upon receiving the
trapdoors, the cloud server performs fuzzy keyword search and replies with the
encrypted documents which contain the searched words.

4.1 System Setup

The data owner defines a character set Schar and an attribute set Sattr.
Schar contains all the characters which are used to spell keywords. For
example, Schar = {a, b, . . . , z, A,B, . . . , Z,−,+, /, . . .}. Sattr contains all
the attributes. For example, for a school, the attribute set is Sattr =
{conputerScience, student, professor, . . .}. Next, the data owner runs the algo-
rithm Setup [2]. Setup takes the security parameter λ as input. It outputs the
public key PK and master key MK. The public key PK is G0, g, h = gβ , f =
g1/β , e(g, g)α and the master key MK is β, gα, where G0 is a bilinear group of
prime order p with generator g, α and β are randomly chosen from Zp. Then, the
data owner chooses a hash function HM and a positive integer sp to construct
the word pattern function FM . Finally, the data owner publishes FM and PK,
but keeps MK secretly.

252 H. Zhu et al.

4.2 Building Index

For each document D, the data owner defines a document policy pD. pD consists
of two kinds of policies. One is error-tolerance policy and the other is access
control policy. For each keyword of D, the data owner defines an error-tolerance
policy, which limits the maximal typos that a user would make when searching
the keyword. Additionally, the data owner defines an access control policy which
represents who has the privilege to search the keywords of D. In this section, we
describe these policies respectively and show how to generate the index IdxD

for D.
Before describing the policies, we want to explain the threshold gate in detail.

In our method, error-tolerance policy, access control policy and document policy
can be transformed into tree structures. In these tree structures, each internal
node is associated with a threshold gate and each leaf is associated with a char-
acter (or an attribute). If an internal node is associated with the threshold gate
T (n,m), it means that: (1) The internal node has m children. (2) T (n,m) returns
true iff there are at least n children who return true. (3) A leaf returns true iff
the character (or attribute) associated with the leaf matches the character (or
attribute) in the query of a user. Note that, (1) “OR” could be represented as
T (1,m), and (2) “AND” could be represented as T (m,m).

Error-tolerance Policy. For each keyword w of the document D, the data
owner defines the maximal error-tolerance value ew and an error-tolerance policy
pw

et: ed(w′, w) ≤ ew, where w′ denotes the searched word. pw
et could be represented

as a three-level tree Tw
pet

(as shown in Fig. 1 (a)). The root of Tw
pet

is composed
of the threshold gate T (1, ew + 1). The root has ew + 1 children, which are
numbered from 1 to ew + 1. The tth child is composed of the threshold gate
T (|w|−ew +t−1, |w|), where t = 1, . . . , ew +1. For each subtree of Tw

pet
, Li is the

ith leaf of the subtree and Li is associated with ci
w (the ith character in w and i

indicates the character-appearing order). Threshold gates T (|w|−ew + t−1, |w|)
(t = 1, . . . , ew + 1) could be used to determine whether a searched word w′

satisfies ed(w,w′) ≤ ew. Specifically, the cloud uses T (|w| − ew + t − 1, |w|) to
perform fuzzy keyword search: If |w| ≥ |w′|, the cloud chooses the threshold gate
in which t = 1; If |w′| − |w| > 0, the cloud chooses the threshold gate in which
t = |w′| − |w| + 1 (see Sect. 4.4).

Fig. 1. Tree structures of error-tolerance, access control and document policies

Fuzzy Keyword Search and Access Control over Ciphertexts 253

Access Control Policy. For each document D, the data owner defines an access
control policy pD

ac. pD
ac could be represented as a tree, denoted by TpD

ac
. Internal

nodes in TpD
ac

are composed of threshold gates and the leaves are associated
with attributes. Figure 1 (b) shows the tree structure of the access control policy
pD

ac=professor OR (student AND computerScience). For this access control
policy pD

ac, it is true iff the user is a professor or a student of computer science. By
setting such access control policies, our method could realize the access control.

Document Policy. For each document D, after constructing the access control
policy and error-tolerance policies, the data owner constructs a document policy
pD. Suppose that: (1) {pw1

et , pw2
et , . . . |w1, w2, . . . ∈ SwD

} is the set of all the error-
tolerance policies of keywords in D, where SwD

is the keyword set of D; (2)
pD

ac is the access control policy of D. The formal description of pD is pD =
(pw1

et ∨. . .∨p
w|SwD

|
et)∧pD

ac, where |SwD
| is the total of keywords in SwD

. Because the
policies pw1

et , . . . , p
w|SwD

|
et and pD

ac could be represented as trees Tw1
pet

, . . . , T
w|SwD

|
pet

and TpD
ac

, respectively, the policy pD could be represented as TpD
, as shown in

Fig. 1 (c).

Index Generation. For each document D, the data owner runs the algorithm
Encrypt(PK, IDD||0l, TpD

) [2] to generate the index, where PK is the public
key, IDD is the identifier of D, TpD

is the document policy of D. The data
owner appends l 0s to the identifier IDD, denoted by IDD||0l. In this way, the
cloud could check whether a decryption is valid [13]. If a decryption outputs a
plaintext that there are l 0s at the end of the plaintext, then the decryption
is valid. Otherwise, it is invalid. After running Encrypt(PK, IDD||0l, TpD

), the
data owner could obtain the ciphertext CT = (TpD

, C̃ = (IDD||0l)e(g, g)αs, C =
hs,∀y ∈ Y : Cy = gqy(0), Cy

′ = H(f(y))qy(0)), where TpD
(as shown in Fig. 1 (c))

is the tree structure of pD, Y is the set of leafs in TpD
, f(y) is the function which

returns the character or attribute associated with y, qy(0) is an integer associated
with y, and H is a hash function (details of Encrypt can be found in [2]).

In the CP-ABE method [2], the characters associated with the leafs of sub-
trees Twi

pet
in TpD

are required to be stored in plaintext. Specifically, the leafs of

the subtree Twi
pet

are associated with the plaintexts of characters c1wi
, . . . , c

|wi|
wi . In

order to protect the privacy of keywords in indexes, data owner should transform
the tree TpD

into a new tree T ∗
pD

by replacing the characters c1wi
, . . . , c

|wi|
wi with

the tuples 〈1, F (wi, 1)〉, . . . , 〈|wi|, F (wi, |wi|)〉. In these tuples, the first elements
indicate the character-appearing orders, and the second elements are the word
pattern values. Then, the data owner could construct the index IdxD by using
the ciphertext CT .

IdxD = (T ∗
pD

, C̃ = (IDD||0l)e(g, g)αs
, C = hs,

wi ∈ SwD
: ewi

,
yk ∈ Y (Twi

Pet
) and yk is the leaf of the t th subtree of Twi

Pet
:

Cyk
= gqyk

(0), Cyk

′ = H(f(yk))qyk
(0)

, i, t, k, FM (wi, k),
y ∈ Y (TpD

ac
) :

Cy = gqy(0), Cy
′ = H(f(y))qy(0))

254 H. Zhu et al.

ewi
denotes the maximal error-tolerance value of wi, char(yk) denotes the char-

acter which is associated with the leaf node yk, f(yk) (or f(y)) is the function
which returns the character (or attribute) associated with the leaf yk (or y),
Y (Twi

pet
) is the set of leafs of Twi

pet
(i = 1, ..., w|SwD

|), Y (TpD
ac

) is the set of leafs of
TpD

ac
.
For simplicity, in the following paragraphs, we use the notation ̂Cck

wi
to denote

(Cyk
= gqyk

(0), Cyk

′ = H(f(yk))qyk
(0)). ̂Cck

wi
is the ciphertext component

corresponding to the kth character ck
wi

in the keyword wi.
We observe that different documents may have the same keywords, and their

indexes have the same word patterns. Thus, these indexes are vulnerable to the
statistical attacks. To prevent such attacks, the data owner could randomize
the keywords and word patterns. For each keyword wi = c1wi

...c
|wi|
wi in D, the

data owner chooses (1) an integer a1wi
(a1wi

≥ 0) randomly, (2) a1wi
characters

randomly, denoted by η1, ..., ηa1wi
, (3) a1wi

positions in wi randomly, and then
put η1, ..., ηa1wi

at these positions. For simplicity, we use the notation wR
i to

denote the randomized wi. Then, the data owner computes the word pattern
and character-appearing order of wR

i . For each artificial character ηi, the data
owner chooses two random values (Cηi

, Cηi

′) as the ciphertext component of
ηi, s.t. |Cηi

| = |Cyj
| and |Cηi

′| = |Cyj

′|, where (Cyj
, Cyj

′) is the ciphertext
component of cj

w′ and cj
w′ is a character randomly chosen from the keyword wi.

According to the method [2], Cyj
and Cyj

′ are computationally indistinguishable
from random values. Thus, according to the word pattern values and ciphertext
components, attackers cannot distinguish which character is a real character or
an artificial character. Thus the index IdxD can prevent the statistical attacks.

4.3 Trapdoor Generation

For each user u, the data owner runs the algorithm KeyGen to generate the
secret key. In our method, the algorithm KeyGen takes as input the master
key MK and Schar ∪ Sattru

(Schar is the character set which is used to spell
all the keywords of documents, and Sattru

is the attribute set distributed to
u by the data owner). It outputs the secret key SKu for u. KeyGen [2] first
randomly chooses a number γ from Zp, a number γc from Zp for each character
c ∈ Schar, and a number γa from Zp for each attribute a ∈ Sattru

. Then, KeyGen
[2] computes the secret key as SKu = (D = g(α+γ)/β ,∀c ∈ Schar : Dc = gγ ·
H(c)γc ,Dc

′ = gγc ;∀a ∈ Sattru
: Da = gγ · H(a)γa ,Da

′ = gγa). Finally, the data
owner distributes the secret key SKu to the user u. For simplicity, in the following
paragraphs, we use the notation Dc to denote (Dc = gγ · H(c)γc ,Dc

′ = gγc). Dc

is the secret key component corresponding to the character c.
The trapdoor generation for a searched word w′ = c1w′ . . . c

|w′|
w′ is as follows.

According to the above description, in the secret key SKu of u, there are secret
key components for all the characters. Thus, for each character in w′, u could
find a corresponding secret key component. Then, u could generate a trapdoor
Tdw′ for w′. The trapdoor Tdw′ is the tuple 〈Tdchar, Tdattr〉, where Tdchar =

Fuzzy Keyword Search and Access Control over Ciphertexts 255

{〈Dci
w′ , i, F (w′, i)〉|i = 1, . . . , |w′|} (Dci

w′ is the secret key component for the ith
character ci

w′ of w′), and Tdattr = {(Da,Da
′)|a ∈ Sattru

}.
For the character c, the secret key component Dc in different trapdoors are

always the same. Thus, these trapdoors are vulnerable to the statistical attacks.
To prevent such attacks, u could run the delegate algorithm Delegate [2] to
generate new secret keys before each search. Then, for each search, u uses a new
secret key to generate trapdoor. We also observe that if the searched words are
the same, their word patterns in the trapdoors are the same. Thus, the trapdoors
are vulnerable to the statistical attacks, which may leak users’ search privacy.
To prevent such attacks, users could use the same randomization method in
Sect. 4.2 to randomize their trapdoors. Finally, u sends the trapdoor Tdw′ to the
cloud to perform fuzzy keyword search.

4.4 Theorem and Property for FKS-AC

Before describing our fuzzy keyword search algorithm in Sect. 4.5, we want to
give some theorems and properties in this section. These theorems and properties
are the basis of our method.

Theorem 1 w is a keyword and w′ is a searched word. ew (ew ≥ 0) is the
maximal error-tolerance value of w. If ed(w,w′) ≤ ew, then there is |w| − ew ≤
|w′| ≤ |w|+ ew, where |w| and |w′| denote the number of characters in w and w′

respectively.

Theorem 1 is the necessary condition of ed(w,w′) ≤ ew and it is easy to be
proofed. Some keywords in indexes, which do not meet users’ search requests,
can be filtered out efficiently using Theorem 1.

Theorem 2 w is a keyword and w′ is a searched word. ew (ew ≥ 0) is the
maximal error-tolerance value of w. ed(w,w′) ≤ ew iff |w ∩ w′|O ≥ |wmax| − ew

(|wmax| = |w| if |w| ≥ |w′|; Otherwise, |wmax| = |w′|).
Proof (1) we proof “if ed(w,w′) ≤ ew, then there is |w ∩ w′|O ≥ |wmax| − ew” in
the following two cases.

Case 1: wmin could be transformed into wmax only by using substitutions and
insertions.

We suppose |wmax ∩ wmin|O = n. As ed(wmax, wmin) ≤ ew, we can sup-
pose ed(wmax, wmin) = ew − k, where k (0 ≤ k ≤ ew) is an integer. Accord-
ing to Definition 1 in Sect. 2, after one operation (substitution or insertion),
the word wmin could be transformed into a new word wmin+1. wmin+1 satisfies
ed(wmax, wmin+1) = ed(wmax, wmin) − 1 and |wmax ∩ wmin+1|O = n + 1. Thus,
it is easy to know that, after ew − k operations (substitutions and insertions),
the word wmin could be transformed into a new word wmin+(ew−k). wmin+(ew−k)

satisfies ed(wmax, wmin+(ew−k)) = ed(wmax, wmin) − (ew − k) = 0 (note that
ed(wmax, wmin) = ew −k) and |wmax ∩wmin+(ew−k)|O = n+(ew −k). According
to Definition 1, ed(wmax, wmin+(ew−k)) = 0 means wmax = wmin+(ew−k). Thus,
we have |wmax ∩ wmin+(ew−k)|O = |wmax|. Because |wmax ∩ wmin+(ew−k)|O =

256 H. Zhu et al.

|wmax| and |wmax ∩ wmin+(ew−k)|O = n + (ew − k), we have the conclusion
|wmax| = n + (ew − k). Then, as |wmax ∩ wmin|O = n and 0 ≤ k ≤ ew, there is
|wmax ∩ wmin|O ≥ |wmax| − ew. Namely, we have |w ∩ w′|O ≥ |wmax| − ew.

Case 2: Substitutions, insertions and deletions are required to transform wmin

into wmax.
To transform wmin into wmax, substitutions and insertions can change the

value of |wmax ∩ wmin|O, but deletions can not. Thus, if substitutions, insertions
and deletions are required to transform wmin into wmax, the conclusion |wmax ∩
wmin|O ≥ |wmax| − ew in Case 1 is still correct. Namely, we have |w ∩ w′|O ≥
|wmax| − ew.

(2) We proof “if |w ∩ w′|O ≥ |wmax| − ew, then there is ed(w,w′) ≤ ew”.
As |wmax| ≥ |wmin| ≥ |wmax ∩ wmin|O and |wmax ∩ wmin|O ≥ |wmax| − ew, we

have |wmax| ≥ |wmin| ≥ |wmax|− ew. As |wmax ∩wmin|O ≥ |wmax|− ew, there are
at least |wmax| − ew characters are the same in wmin and wmax. Namely, there
are at most ew characters are different in wmin and wmax. Thus, to transform
wmin into wmax, the total of operations is no greater than ew. Thus, we can know
that the edit distance between wmin and wmax is no greater than ew. Thus, we
have the conclusion ed(w,w′) ≤ ew.

Theorem 2 is the sufficient and necessary condition of ed(w,w′) ≤ ew. Thus,
by using Theorem 2, our method could correctly perform fuzzy keyword search.
According to Theorem 2, it is easy to know that the thresholds in the error-
tolerance policy pw

et should be set to T (|wmax|−ew, |w|). According to Theorem 1,
if w and w′ satisfy ed(w,w′) ≤ ew, then there are |wmax| = |w|, |w|+1, . . . , |w|+
ew. Thus, thresholds in the error-tolerance policy pw

et are T (|w|−ew, |w|), T (|w|−
ew +1, |w|), . . . , T (|w|, |w|). For simplicity, these threshold gates could be written
as T (|w| − ew + t − 1, |w|), where t = 1, 2, . . . , ew + 1. When |w| ≥ |w′|, it is
obvious that the threshold gate in which t = 1 could be used to test whether
ed(w,w′) ≤ ew. When |w′| > |w|, it requires at least |w′| − |w| deletions to
transform w′ into w. Then, at most ew−(|w′|−|w|) operations are left which could
be used to transform w′ into w. Thus, there are at least |w| − [ew − (|w′| − |w|)]
characters should be the same in w and w′. If one uses T (|w|− ew + t−1, |w|) to
test whether ed(w,w′) ≤ ew, then there is |w|−[ew−(|w′|−|w|)] = |w|−ew+t−1.
Thus, we can compute t = |w′| − |w| + 1. Namely, if |w′| > |w|, the threshold
gate in which t = |w′| − |w| + 1 could be used to test whether ed(w,w′) ≤ ew

(see Sect. 4.2).
A secret key component can be used to decrypt a ciphertext component, iff

they have the correct corresponding relationship.

Definition 5 Corresponding relationship. In an index IdxD, ̂Cci
w

is a
ciphertext component, which corresponds to the ith character ci

w in w. In a
trapdoor Tdw′ , Dcj

w′
is a secret key component, which corresponds to the jth

character cj
w′ in w′. A corresponding relationship is the tuple 〈̂Cci

w
,Dcj

w′
〉. If

ci
w = cj

w′ , 〈̂Cci
w
,Dcj

w′
〉 is correct. Otherwise, it is wrong.

Fuzzy Keyword Search and Access Control over Ciphertexts 257

As keywords in indexes and searched words in trapdoors have been hid-
den to protect the privacy, it is difficult to find out the correct corresponding
relationships. According to the algorithm Decrypt [2], if there are not enough
correct corresponding relationships, the indexes cannot be correctly decrypted to
obtain the identities of documents. “enough” means |w∩w′|O ≥ |wmax|−ew (see
Theorem 2).

The following properties could be used to help the cloud to efficiently find
out the corresponding relationships which may be correct. A

p→ B denotes, if
there is A, then there is B with the probability p. According to Sect. 3, it is
easy to know that p = 1/(|Schar|2/sp). Note that, if the superscript value v of
mw, cw (or mw′ , cw′) is greater than |w| (or |w′|), then v is set to v mod |w| (or
v mod |w′|).

(1) mi+1
w = mj+1

w′
p−→ ci

w = cj
w′ and ci+1

w = cj+1
w′

(2) (mi+1
w + mi+2

w + ... + mi+k
w) mod sp = mj+1

w′
p−→ ci

w = cj
w′ and ci+k

w = cj+1
w′

(3) mi+1
w = (mj+1

w′ + mj+2
w′ + ... + mj+k

w′) mod sp
p−→ ci

w = cj
w′ and ci+1

w = cj+k
w′

(4) (mi+1
w +mi+2

w + ...+mi+k
w) mod sp = (mj+1

w′ +mj+2
w′ + ...+mj+t

w′) mod sp
p−→

ci
w = cj

w′ and ci+k
w = cj+t

w′

By utilizing these properties, it is not difficult to design a optimization method to
find out the corresponding relationships which may be correct. On the one hand,
as different two-contiguous characters may share the same word pattern value,
it is inevitable to find out wrong corresponding relationships, which may reduce
the search efficiency. On the other hand, as wrong corresponding relationships
and correct relationships can not be distinguished, it increases the security.

4.5 Fuzzy Keyword Search with Access Control

In this section, we first illustrate the algorithm Decrypt. Then, we give the Fuzzy
Keyword Search Algorithm with Access Control (FKSAAC).

Iff a user’s attributes and the searched word in his/her trapdoor match
the index of a document, the cloud can definitely find out enough and cor-
rect corresponding relationships by using the property (1)-(4). Then, the algo-
rithm Decrypt can recover the value e(g, g)γs by using the correct correspond-
ing relationships (details can be found in [2]). Finally, the cloud can compute

C̃
e(C,D)/e(g,g)γs = (IDD||0l)e(g,g)αs

e(hs,g(α+γ)/β)/e(g,g)γs = IDD||0l.
FKSAAC takes as input the trapdoor Tdw′ of a searched word w′ and the

index IdxD of an encrypted document D. Iff (1) w′ satisfies ed(wi, w
′) ≤ ewi

(represented by an error-tolerance policy of D), where wi is one of the keywords
in D, and (2) attributes in Tdw′ satisfy the access control policy of D, FKSAAC
outputs IDD of D. Otherwise, FKSAAC outputs false. The algorithm FKSAAC
is given below.

258 H. Zhu et al.

Step 1. For each subtree Twi
pet

(it represents the keyword wi) in T ∗
pD

, FKSAAC
computes |wi| according to the number of ciphertext components in IdxD. Then,
FKSAAC computes |w′| according to the number of secret key components in
Tdw′ . If |wi| − ewi

� ≤|w′| or |w′| � ≤|wi| + ewi
(see Theorem 1), FKSAAC aborts

the keyword wi and then executes Step 1 to test the next keyword in IdxD. Oth-
erwise, FKSAAC computes |w′| − |wi|: (1) If |w′| − |wi| ≤ 0, FKSAAC extracts
ciphertext components from IdxD s.t. these ciphertext components are associ-
ated with the value t = 1; (2) If |w′| − |wi| > 0, FKSAAC extracts ciphertext
components from IdxD s.t. these ciphertext components are associated with the
value t = |w′| − |w| + 1 (see Theorem 2).

Step 2. FKSAAC extracts the word pattern of wi from the index IdxD and the
word pattern of w′ from the trapdoor Tdw′ . Then, FKSAAC finds which secret
key component of an attribute in Tdw′ corresponds to which ciphertext compo-
nent of an attribute in IdxD (these relationships about attributes are easy to be
obtained, because they are stored in plaintext). Next, FKSAAC calculates a set
(denoted by S) of combinations according to the properties in Sect. 4.4. In each
combination, there are |wmax|−ew corresponding relationships (see Theorem 2).
For each combination in S, FKSAAC extracts the corresponding relationships
in it. Then FKSAAC runs the algorithm Decrypt to try to decrypt IdxD by
using these corresponding relationships about characters and the relationships
about attributes: (1) If Decrypt outputs IDD||0l, FKSAAC returns IDD; (2) If
Decrypt outputs ⊥, FKSAAC tests the next combination in S. If all the outputs
of Decrypt are ⊥, FKSAAC executes Step 1 to test the next keyword in IdxD.

Step 3. FKSAAC returns false.
The cloud runs FKSAAC to test all the indexes of encrypted documents, and

then returns the encrypted documents whose identities have been retrieved to
the user u.

5 Experiments

In our experiments, we compare our method FKS-AC with Li’s method,
Fuzzy Keyword Search over Encrypted Data in Cloud Computing (FKS) [10],
and Wang’s method, Privacy-Preserving Multi-Keyword Fuzzy Search over
Encrypted Data in the Cloud (PPMKFS) [15]. We also do the comparison works
of FKS-AC when choosing different values as sp (sp is the parameter in the word
pattern function FM).

The algorithms in FKS-AC are constructed in bilinear groups. We implement
FKS-AC using Java Pairing-Based Cryptography Library (JPBC) version 2.0.0,
which supports the calculations in bilinear groups. In the experiments of FKS-
AC, the character set Schar is {a, b, . . . , z, A,B, . . . , Z,−}, the attribute set Sattr

is {a1, a2, a3} and the access control policies are “a1 AND a2”, “a1 AND a3”,
“a2 AND a3”, “a1 OR a2”, etc. In order to compare FKS-AC, PPMKFS and
FKS fairly (as PPMKFS and FKS do not support access control, the cloud has
to test all the indexes for fuzzy search), we suppose the data owner distributes

Fuzzy Keyword Search and Access Control over Ciphertexts 259

all the attributes a1, a2 and a3 to users. Then, users have the privilege to search
all the documents. Thus, the cloud also has to test all the indexes of documents
after receiving a trapdoor from a user.

Our experiments run on a win7 computer with four 2.80 GHz CPUs and 4 G
RAM. We randomly extract 400 distinct keywords from the documents in ACM
Digital Library. In these keywords, the minimal, maximal and average number
of characters are 3, 14 and 8, respectively. The documents is 1000 in total. Each
document has 5 keywords, which are randomly chosen from these 400 keywords.
Given a keyword w, its maximal error-tolerance value is ew. In the experiments
of FKS-AC and FKS, we set (1) ew = 1, if |w| ≤ 5; (2) ew = 2, if 5 < |w| ≤ 10;
(3) ew = 3, if |w| > 10. To generate a searched word w′, we randomly chooses
ew characters as typos, and insert them into w. Thus, the number of characters
in w′ is |w| + ew (|w′| = 4, 5, . . . , 17). However, we set ew = 1 whether w is a
long keyword or not in the experiments of PPMKFS. This is because that, the
number of typos allowed by PPMKFS is fixed when LSH family has been chosen.

5.1 The Time of Index Generation

Experimental results. Figure 2 shows the index generation times of FKS-AC,
FKS and PPMKFS. Their index generation times are linear to the number of
documents. FKS and PPMKFS are more efficient than FKS-AC.

Analysis of the results. As FKS-AC, FKS and PPMKFS generate index per
document, thus the times of index generation are linear to the number of doc-
uments. The index generation of FKS is constructed on AES. As AES is a
symmetric encryption method and the computing overhead is very low, FKS is
very efficient. PPMKFS is constructed on LSH and BF (LSH and BF consist of
hash functions). The computing overhead of LSH and BF is much less than AES.
Thus, the index generation of PPMKFS is more efficient than FKS. In order to
support access control, FKS-AC is constructed on CP-ABE. As CP-ABE is an
asymmetric encryption method and requires complicated calculations, FKS-AC
spends more time building indexes.

Fig. 2. The time of building indexes Fig. 3. The time of generating trap-
doors

260 H. Zhu et al.

Note that, the data owner generates indexes before outsourcing documents
to the cloud. Index generation could be seen as the initialization work before
providing the service of fuzzy keyword search. Thus, we think the low efficiency
of index generation of FKS-AC could be tolerated.

5.2 The Time of Trapdoor Generation

Experimental results. As shown in Fig. 3, FKS-AC is the most efficient, and
the trapdoor generation times of FKS-AC and PPMKFS are constant. Compared
with FKS-AC and PPMKFS, FKS costs more time for trapdoor generation.

Analysis of the results. In FKS-AC, trapdoor is generated on user client. A
user only puts some secret key components together according to the character-
appearing order of w′, and then computes the word pattern of w′. Thus, the
trapdoor generation of FKS-AC is very efficient. In PPMKFS, trapdoor is gen-
erated by data owner. The data owner generates the trapdoor for a user by
executing LSH and BF. As LSH and BF consist of dozens of hash functions, the
trapdoor generation of PPMKFS is slower than FKS-AC. In FKS, the trapdoor
is generated on user client. Before generating a trapdoor for a searched word, the
user should first generate a fuzzy keyword set. However, a long searched word
necessitates to issue a large fuzzy keyword set. The size of fuzzy keyword set is
O(|w′|ew′) (ew′ = 1 if w′ ≤ 5; ew′ = 2 if 5 < w′ ≤ 10; ew′ = 3 if w′ > 10). Thus,
when |w′| increases, the size of fuzzy keyword set increases rapidly. Then, the
user encrypts each word in the fuzzy keyword set, and their ciphertexts are as
the trapdoor of the searched word. Thus, the efficiency of trapdoor generation
of FKS is very low.

Fig. 4. The average time of fuzzy search

Fuzzy Keyword Search and Access Control over Ciphertexts 261

5.3 The Time of Fuzzy Keyword Search

Experimental results. From Fig. 4 (a), we can see that PPMKFS is the most
efficient. FKS is nearly the same as FKS-AC when |w′| < 10. FKS-AC is more
efficient than FKS when |w′| > 10. Figure 4 (b) shows that the search efficiency
of FKS-AC could be improved by increasing sp.

Analysis of the results. As PPMKFS performs fuzzy search only by multiply-
ing two groups of bit vectors (one group of vectors is a trapdoor, and the other is
the index of a document), PPMKFS is very efficient. However, the search result
of PPMKFS is not accurate. This is because PPMKFS is based on BF and LSH.
Both BF and LSH introduce false positives (a false positive is that, a document
should not be in the search result, but it is). Additionally, LSH introduces false
negatives (a false negative is that, a document should be in the search result, but
it is not). Compared with PPMKFS, FKS and FKS-AC are accurate methods
and do not introduce any false positives or false negatives.

In FKS, the size of trapdoor grows rapidly when |w′| increases. When using
the trapdoor of a long searched word to search a long keyword (the size of the
index and trapdoor are very large), one has to compare each encrypted item in
the trapdoor and each encrypted item in the index. Specifically, the time of fuzzy
keyword search is O(T ×|w|ew ×|w′|ew′), where T is the time for one comparison
between two encrypted items. Thus, the computing overhead of fuzzy search in
FKS increases rapidly and inevitably results a long search time.

If the searched word is long, FKS-AC should do more calculations in bilinear
groups. Thus, the search time of FKS-AC increases when |w′| increases. Recall
that, FKS-AC computes a set of combinations and try to decrypt indexes using
the combinations in the set (see the algorithm FKSAAC in Sect. 4.5). Wrong
combinations in the set would reduce the search efficiency of FKS-AC. When
the searched word w′ is very similar to a keyword w, but the typos in w′ exceeds
ew, then all the combinations found by FKS-AC are wrong combinations. As the
cloud does not know which combinations are wrong, all these wrong combinations
will be used to try to decrypt the index. Thus, the search efficiency decreases.
For example, when using w′ = consttructionn to search w1 = construction, the
search is efficient. When using the same w′ to search w2 = contributions, the
search may be inefficient. When |w′| = 12 or 14, there are many such keywords
like w1 and w2 (e.g. “adaptation” and “adsorption”, “Automation” and “Auto-
mobiles”, etc.). Thus, the search time of FKS-AC increases a lot when |w′| = 12
and 14. From Fig. 4 (b), we can see that, the search efficiency increases with the
value of sp. This is because larger sp could help the cloud to find correspond-
ing relationships more accurate. Thus, the search efficiency increases when sp
increases.

6 Security Analysis

We proof that FKS-AC is secure under the Known Ciphertext Model [15]. Under
this model, adversary can only access the encrypted documents, indexes, sub-
mitted trapdoors, search results, word patterns of keywords and searched words.

262 H. Zhu et al.

If the adversary records all the information he/she can access, the adversary can
build up access patterns. Thus, in the known ciphertext model, nothing beyond
the access patterns and the search results should be leaked. We adapt the nota-
tions in [15] for our proofs.

• Search Pattern (π): Let Q = {w1
′, . . . , wn

′} be the set of searched words for
n consecutive queries, then π be a binary matrix s.t. π[i, j] = 1 if wi

′ ∈ Swi,ewi

and wj
′ ∈ Swi,ewi

, otherwise π[i, j] = 0 (Swi,ewi
is the set of wi

′ satisfying
ed(wi, wi

′) ≤ ewi
).

• Access Pattern (Ap): Let D(wi
′) (wi

′ ∈ Swi,ewi
) be a set that contains the

identities of documents which contain the keyword wi. Let T = {T1, . . . , Tn}
be the trapdoors for the query set Q = {w1

′, . . . , wn
′}. Then, Access Pattern

for the n trapdoors is defined as {Ap(T1) = D(w1
′), . . . , Ap(Tn) = D(wn

′)}.
• History (Hn): Let D be the document set and Q = {w1

′, . . . , wn
′} be the

searched words for n consecutive queries. Then, Hn = (D,Q) is defined as a
n-query History.

• Trace (γ): Let C = {C1, . . . , Cl} be the set of encrypted documents,
id(Ci) be the identity of Ci, |Ci| be the size of Ci, Pwi

be the word
pattern of wi, Pwi

′ be the word pattern of wi
′, Sp(Hn) be the Search

Pattern of Hn and Ap(Hn) be the Access Pattern of Hn. Then, γ(Hn) =
{(id(C1), . . . , id(Cl)), (|C1|, . . . , |Cl|), (Pw1 , . . . , Pwn

), (Pw1′ , . . . , Pwn
′),

Sp(Hn), Ap(Hn)} is defined as the trace of Hn. Trace is the maximum amount
of information that a data owner allows to leak to an adversary.

• V iew (V): Let C = {C1, . . . , Cl} be the set of encrypted documents, id(Ci)
be the identity of Ci, I be the set of indexes of C, Pw = (Pw1 , . . . , Pwn

) be the
set of word patterns of keywords, Pw′ = (Pw1′ , . . . , Pwn

′) be the set of word
patterns of searched words, and T = {T1, . . . , Tn} be the set of trapdoors.
Then, V (Hn) = {(id(C1), . . . , id(Cl)), C, I, Pw, Pw′ , T} is defined as the view
of Hn. V iew is the information that is accessible to an adversary.

We adopt a similar simulation based proof, which is widely used in [5,8,15].
Intuitively, given two histories with the same trace, if the adversary cannot dis-
tinguish which of them is generated by the simulator, the adversary cannot learn
additional information about the index, trapdoors and the encrypted documents
beyond the search result and the access pattern [15].

Theorem 3 FKS-AC is secure under the known ciphertext model.

Proof The notation S denotes the simulator, which can simulate a view V ∗

indistinguishable
from an adversary’s view V (Hn) = {(id(C1), . . . , id(Cl)), C, I, Pw, Pw′ , T}. To
achieve this, the simulator S does the followings:

(1) Identities of documents are available in the trace. Thus, S can copy these
identities, that is, {id(C1)

∗ = id(C1), . . . , id(Cl)
∗ = id(Cl)}. As identity lists

of the adversary’s view V and the simulated view V ∗ are the same, they are
computationally indistinguishable.

Fuzzy Keyword Search and Access Control over Ciphertexts 263

(2) S chooses l random values {C1
∗, . . . , Cl

∗}, s.t. |C1
∗| = |C1|, . . . , |Cl

∗| =
|Cl|. The documents are encrypted by using a secure encryption scheme
(e.g. AES) of the data owner’s choosing. Thus, the outputs of the secure
encryption scheme is computationally indistinguishable from random values.
Hence, Ci

∗ and Ci are computationally indistinguishable.
(3) S runs the algorithm Setup to obtain a public key PK and a master key

MK. Then, S runs the algorithm KeyGen to obtain a secret key SK.
(4) S constructs n consecutive queries Q∗ = {w1

′∗, . . . , wn
′∗}, the word pat-

terns Pw′∗ = (Pw1′∗ , . . . , Pwn
′∗), and the trapdoors T ∗ = {T1

∗, . . . , Tn
∗}.

For each wi
′ ∈ Q, 1 ≤ i ≤ n, S generates the searched word wi

′∗ randomly,
s.t. |wi

′∗| = |wi
′|. Then, S computes the word pattern of wi

′∗. As wi
′∗ is

generated randomly, the word pattern of wi
′∗ is computationally indistin-

guishable from random values. Note that, the searched word wi
′ may have

typos, and additionally, wi
′ has been inserted several random characters at

random positions for randomization purpose (see Sect. 4.3). Thus, the word
patterns of wi

′∗ and wi
′ are computationally indistinguishable. According

to the characters in wi
′∗, S generates the trapdoor Ti

∗ for wi
′∗ by utilizing

the secret key components in SK. As SK is indistinguishable from random
values [2], the trapdoor Ti

∗ generated by utilizing SK is indistinguishable
from random values. For the same reason, the trapdoor Ti for wi

′ is also
indistinguishable from random values. Hence, the trapdoors Ti

∗ and Ti are
computationally indistinguishable.

(5) For each Ci
∗, S sets an empty set SetCi

∗ , where 1 ≤ i ≤ l. According to the
access pattern Ap, if id(Ci) could be retrieved by using the word wj

′, then S
adds wj

′∗ to SetCi
∗ , where 1 ≤ j ≤ n. The set SetCi

∗ is as the keyword set of
the encrypted document Ci

∗. Next, S constructs the document policy for Ci
∗

by using the keywords in SetCi
∗ , and runs the algorithm Encrypt to generate

the index ICi
∗ for Ci

∗. The ciphertext generated by Encrypt is as the index
ICi

∗ of Ci
∗. As the ciphertext is indistinguishable from random values [2],

the index ICi
∗ is indistinguishable from random values. For the same reason,

the index ICi
generated by running Encrypt is also indistinguishable from

random values. Thus ICi
and ICi

∗ are computationally indistinguishable.
Then, we can know that the index set I for {Ci|1 ≤ i ≤ l} and I∗ for
{Ci

∗|1 ≤ i ≤ l} are computationally indistinguishable.

Since each item of V and V ∗ are computationally indistinguishable, FKS-AC
satisfies the security definition presented in Theorem 3.

7 Related Work

Li et al. [10] first propose a searchable encryption method supporting fuzzy key-
word search. For each keyword, data owner use the wildcard technique to build
a fuzzy keyword set which contains all the possible misspellings. The index and
trapdoor are built on the set. To perform a fuzzy search, the cloud checks whether
there is intersection between the index and the trapdoor. To limit the size of the
set, Liu et al. [11] propose a method which is based on a predefined dictionary.

264 H. Zhu et al.

The dictionary is as a filter to delete the meaningless words in a user’s search.
However, this method requires that a user should know much about the filed
he/she queries. Kuzu et al. [8] propose a generic similarity search method based
on Bloom Filter (BF) [3] and Locality-Sensitive Hashing (LSH) [7]. A LSH func-
tion hashes close items to the same hash value with higher probability than the
items that are far apart. Thus the similarity of the keywords could be mea-
sured by using LSH functions. According the hash values of keywords, the data
owner builds indexes using BF. Thus, the indexes could support fuzzy keyword
search. In [15], Wang et al. propose a multi-keyword fuzzy search method. This
method is also based on BF and LSH. However, as LSH can not hash close items
to the same hash value with the probability one hundred per cent, LSH would
introduce false negatives. Namely, the limitation in LSH inevitably results the
in inaccurate search results.

Acknowledgment. The authors would like to thank anonymous reviewers for their
constructive comments. This work is partly supported by the Jiangxi Provincial Natural
Science Foundation of China (No. 20161BAB202036).

References

1. Attrapadung, N., Libert, B.: Functional encryption for inner product: achiev-
ing constant-size ciphertexts with adaptive security or support for negation. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13013-7 23

2. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (SP 2007), pp. 321–334.
IEEE (2007)

3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

4. Chuah, M., Hu, W.: Privacy-aware bedtree based solution for fuzzy multi-keyword
search over encrypted data. In: 2011 31st International Conference on Distributed
Computing Systems Workshops, pp. 273–281. IEEE (2011)

5. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: ACM Conference on Com-
puter and Communications Security, pp. 895–934 (2006)

6. Gionis, A., Indyk, P., Motwani, R., et al.: Similarity search in high dimensions via
hashing. In: VLDB, vol. 99, pp. 518–529 (1999)

7. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, pp. 604–613. ACM (1998)

8. Kuzu, M., Islam, M.S., Kantarcioglu, M.: Efficient similarity search over encrypted
data. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1156–
1167. IEEE (2012)

9. Levenshtein, V.: Binary codes capable of correcting spurious insertions and dele-
tions of ones. Prob. Inf. Transm. 1(1), 8–17 (1965)

10. Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over
encrypted data in cloud computing. In: INFOCOM, 2010 Proceedings IEEE, pp.
1–5. IEEE (2010)

http://dx.doi.org/10.1007/978-3-642-13013-7_23

Fuzzy Keyword Search and Access Control over Ciphertexts 265

11. Liu, C., Zhu, L., Li, L., Tan, Y.: Fuzzy keyword search on encrypted cloud storage
data with small index. In: 2011 IEEE International Conference on Cloud Comput-
ing and Intelligence Systems, pp. 269–273. IEEE (2011)

12. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-00457-5 27

13. Shi, E., Bethencourt, J., Chan, T.H., Song, D., Perrig, A.: Multi-dimensional range
query over encrypted data. In: 2007 IEEE Symposium on Security and Privacy (SP
2007), pp. 350–364. IEEE (2007)

14. Sun, W., Wang, B., Cao, N., Li, M., Lou, W., Hou, Y.T., Li, H.: Privacy-preserving
multi-keyword text search in the cloud supporting similarity-based ranking. In:
Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, pp. 71–82. ACM (2013)

15. Wang, B., Yu, S., Lou, W., Hou, Y.T.: Privacy-preserving multi-keyword fuzzy
search over encrypted data in the cloud. In: IEEE INFOCOM 2014-IEEE Confer-
ence on Computer Communications, pp. 2112–2120. IEEE (2014)

16. Wang, J., Ma, H., Tang, Q., Li, J., Zhu, H., Ma, S., Chen, X.: Efficient verifiable
fuzzy keyword search over encrypted data in cloud computing. Comput. Sci. Inf.
Syst. 10(2), 667–684 (2013)

http://dx.doi.org/10.1007/978-3-642-00457-5_27

Secure and Practical Searchable Encryption:
A Position Paper

Shujie Cui(B), Muhammad Rizwan Asghar,
Steven D. Galbraith, and Giovanni Russello

The University of Auckland, Auckland, New Zealand
scui379@aucklanduni.ac.nz,

{r.asghar,s.galbraith,g.russello}@auckland.ac.nz

Abstract. Searchable Encryption (SE) makes it possible for users to
outsource an encrypted database and search operations to cloud service
providers without leaking the content of data or queries to them. A num-
ber of SE schemes have been proposed in the literature; however, most
of them leak a significant amount of information that could lead to infer-
ence attacks. To minimise information leakage, there are a number of
solutions, such as Oblivious Random Access Memory (ORAM) and Pri-
vate Information Retrieval (PIR). Unfortunately, existing solutions are
prohibitively costly and impractical. A practical scheme should support
not only a lightweight user client but also a flexible key management
mechanism for multi-user access.

In this position paper, we briefly analyse several leakage-based attacks,
and identify a set of requirements for a searchable encryption system for
cloud database storage to be secure against these attacks while ensuring
usability of the system. We also discuss several possible solutions to fulfil
the identified requirements.

1 Introduction

Cloud computing is a successful paradigm offering users virtually unlimited data
storage and computational power at very attractive costs. Despite its merits,
cloud computing raises privacy issues to users. Once the data is outsourced, it is
exposed not only to third party intruders but also to careless or even potentially
malicious Cloud Service Providers (CSPs). Standard encryption can protect the
content of the outsourced data. However, it also prevents users from searching
on encrypted data. If standard encryption is used, there is a trivial solution to
perform search on encrypted data: if a particular piece of data is needed, the
user has to download all the content to its local (trusted) environment, decrypt
the data, and perform the search operation. If the database is very large, this
trivial solution does not scale well. The matter becomes more complicated in
multi-user settings, where multiple users could access the same data set.

The concept of Searchable Encryption (SE) provides a promising solution
to protect outsourced data from unauthorised accesses by CSPs or external
adversaries. Encrypted data is tagged with encrypted keywords (also called
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 266–281, 2017.
DOI: 10.1007/978-3-319-60055-0 14

Secure and Practical Searchable Encryption: A Position Paper 267

search tokens) in such a way that a CSP, which is given an encrypted search
term, can check whether a record has keyword(s) that satisfies the search term.
Such schemes allow the CSP to perform encrypted search on encrypted data
without leaking the content of the query and the data.

Since the seminal paper by Song et al. [45], many SE schemes have been pro-
posed. A long line of works, such as [2,7,9,10,14,18,20,22,23,25,29,30,35,38,
44,45,47,50,53,54,56,57], focus on investigating SE with complex functionality
(e.g., multi-keyword search, range queries, rank search, and fuzzy search) and
improved performance. Although these schemes are secure under some crypto-
graphic assumptions, we will see that the CSP is still potentially able to learn
about the data by observing patterns in the results of insert, delete or update
operations. For instance, the CSP is able to see which encrypted data is accessed
by a given query by looking at the matching records (referred to as access pattern
leakage). By comparing the matched records, the CSP can also infer if two or
more queries are equivalent or not (referred to as search pattern leakage). More-
over, the CSP can simply log the number of matched records or files returned
by each query (referred to as size pattern leakage).

When an SE scheme supports insert and delete operations, it is referred to
as a dynamic SE scheme. Dynamic SE schemes might leak extra information if
they do not support forward privacy and backward privacy properties. Forward
privacy means that the CSP can not learn if newly inserted data or updated
data matches previously executed queries. Backward privacy means that the
CSP can not learn if deleted or stale data matches new queries. Supporting
forward and backward privacy is fundamental to limit the power of the CSP to
collect information on how the data evolves over time. Only a few of the existing
schemes [5,6,10,47] support forward privacy, but no scheme is able to support
both forward and backward privacy simultaneously.

Some recent works [8,27,32,34,58] have shown that even a minor leakage
could be exploited to learn sensitive information and break a scheme. In partic-
ular, given the plaintext of a small number of queries (e.g., data, search habit or
preference of users), a malicious CSP could recover a large fraction of the data
and queries. Unfortunately, the majority of the existing SE solutions, such as
[2,7,9,10,14,18,20,22,23,25,29,30,35,38,44,45,47,50,53,54,56,57], are vulnera-
ble to these attacks due to the leakage of search, access and size patterns, and
lack of forward and backward privacy.

Privacy-sensitive applications, such as electronic healthcare systems, impose
stringent security requirements when it comes to data outsourcing. The first step
to meet those requirements is to minimise information leakage that could lead to
inference attacks. Oblivious Random Access Memory (ORAM) [21,36,46] and
Private Information Retrieval (PIR) [12,13,55] are two possible techniques to
minimise information leakage. However, existing ORAM and PIR schemes are
prohibitively costly and impractical. We are concerned with practical solutions
where users can get the required data efficiently without incurring high storage,
communication and computation overheads. Moreover, in multi-user settings,
users could join or leave the system at any time, ideally without affecting the rest

268 S. Cui et al.

of the users. Unfortunately, neither ORAM nor PIR cover these aspects. There-
fore, an important problem is to develop secure and practical SE schemes for
privacy-sensitive applications. In this paper, we first define a set of requirements
towards a secure cloud database. Then, we provide an extensive classification
of the existing literature based on these requirements. Furthermore, we provide
some research directions and possible approaches to ensure confidentiality with-
out compromising on functionality and a practical user experience.

2 Requirements and Challenges

The recent proposed attacks on SE schemes, such as [8,34,58], put the out-
sourced data at risk. Almost all the attacks recover the data by leveraging private
information leaked by size, search and access patterns. To minimise information
leakage, the size, search and access patterns must be hidden from the CSP. In
this section, for each pattern, we first briefly describe the typical attacks, and
then we identify the requirements and challenges for protecting it. For a prac-
tical solution, a flexible key management mechanism is needed for applications
requiring multi-user access. We also identify the requirements and challenges to
manage the keys, but without leaking private information.

Size Pattern. The number of matched records for each query is called the size
pattern or the frequency information [8,27,34,45]. In particular, we say Size
Pattern Privacy (SzPP) is achieved if the CSP is unable to learn the number
of matched records of a query on encrypted data. In most of the existing SE
schemes, there are two kinds of frequency information leakages. The first kind
is a leakage from the encrypted data stored in the database; we call this sta-
tic frequency information. For instance, in CryptDB [38], the searchable data
is only protected with deterministic encryption (the outer layer encryptions are
peeled off to support search operations). That is, the same data in the database
has the same ciphertext. The frequency information in the database is exposed
to the CSP directly. With the knowledge of publicly available information, like
census data and hospital statistics, Naveed et al. [34] successfully recover more
than 60% of patient records from electronic medical databases based on static
frequency information without executing any search operation. In contrast, some
other schemes [2] use semantically secure primitives to encrypt the data. In such
schemes, the static frequency information is protected since all the encrypted
data has different ciphertexts. However, after performing a query, the CSP could
still count the number of matched records; we call this dynamic frequency infor-
mation. With the knowledge of the frequency information of keywords in plain-
text, attackers could recover the queries easily based on the number of matched
records, which is called a count attack in [8].

Clearly, semantically secure encryption is not sufficient to protect the
dynamic frequency information if the search operation is performed by the CSP.
Protection against the count attack is required.

Access Pattern. We say that an SE scheme achieves Access Pattern Privacy
(APP) if the CSP is unable to infer if two (or more) result sets contain the

Secure and Practical Searchable Encryption: A Position Paper 269

same data or not. A formal definition is given in [14]. A typical instance of
access pattern based attack is the file injection attack introduced in [58], which
is also referred to as the chosen-document attack in [8]. Technically, an active
malicious CSP sends files with keywords of its choice, such as emails, to users
who then encrypt and upload them to the CSP. Afterwards, the CSP tracks
these injected files and checks if they match queries. Since all the keywords in
these files are known to the CSP, given enough injected files, the CSP could
recover the keywords included in queries. Specifically, the keywords included in
the matched but not included in the unmatched injected files are the possible
searched keywords.

ORAM is a primitive intended for hiding storage access patterns. However,
it is difficult to get a practical SE scheme that is based on ORAM technique. We
now explain the two main obstacles to using traditional ORAM in SE schemes.
First, in ORAM, the store address of required data is known to users before fetch-
ing. However, in SE schemes, the CSP first needs to search over the database and
get matched records or indexes of matched files. It is impractical to store all the
addresses on the user side, especially for applications with thousands of users and
resource-constrained devices. Second, despite significant recent improvements
[16,19,40], ORAM incurs huge bandwidth, latency and storage overheads, mak-
ing it impractical for SE schemes. According to the study by Naveed [33], the
naive approach, downloading the whole database and search locally for each
query, is even more efficient than ORAM.

PIR is another approach to hide the access pattern. It allows users to retrieve
the data without leaking which data is retrieved to the CSP. Specifically, in PIR-
based SE schemes, such as [15,42], the CSP returns a much larger data set than
required to the user. Although the access pattern is unknown to the CSP, the
user has to perform some computation locally to extract the matched data. It is
clear that the communication and computation overheads on the user are also
huge in this approach.

Although both the ORAM and PIR techniques can protect the access pattern
from the CSP, they may leak information to users. In an application with fine-
grained access control policies, users should only get what they are allowed to
learn. However, all the existing ORAM and PIR approaches do not ensure that all
the returned data is authorised to the user. Therefore, a more practical method
to protect the access pattern without leaking information to users should be
proposed.

Search Pattern. We say Search Pattern Privacy (SPP) is achieved if the CSP
is not able to distinguish if two (or more) encrypted queries feature the same
keywords or not. In [32], Liu et al. show that given the search habit of users,
the searched keywords could be recovered based on the search pattern. In [8],
Cash et al. illustrate that given the plaintext of a small number of queries, the
plaintext of other queries cou ld be recovered easily if the adversary knows the
search pattern. It is not trivial to protect the search pattern since it can be
inferred not only from the encrypted queries, but also from the access and size
patterns.

270 S. Cui et al.

To protect the search pattern, first we should use a semantically secure
encryption algorithm for the search tokens, which makes same queries look dif-
ferent once encrypted. Recall that to protect the static frequency information,
it is also necessary to encrypt the data with a semantically secure algorithm. If
both the query and the data are semantically secure, to the best of our knowl-
edge, the only solutions in the literature use complex cryptographic primitives
such as pairings or homomorphic encryptions. These primitives tend to be much
slower than traditional symmetric encryption. So these methods do not scale well
when processing the search operation over millions of records. A more efficient
approach to test equality between semantically secure encrypted data is needed.

Furthermore, even if the encrypted queries are semantically secure, the CSP
could still infer the search pattern by looking at the access pattern. That is, by
looking at the physical locations of the encrypted data returned by a search,
the CSP can infer that two queries are equivalent if the same result sets are
returned, since generally only the same query gets exactly the same result set.

However, even if the matched data for all queries are different in terms of the
storage location and ciphertext, the search pattern can still be inferred from the
size pattern. If the database is static then equivalent queries will always return
the same number of matched records or files. This fact can be used by the CSP
to mount an attack: Although it is not always true that the two queries are
logically equivalent when their result sets have the same size, it is true that they
are different queries when their result set sizes are different.

Therefore, to conceal the search pattern, it is necessary to make the size,
storage location and ciphertext of the search results variable even if the same
query is executed twice.

Forward and Backward Privacy. Generally speaking, forward and backward
privacy mean the CSP will learn nothing if it repeats a previously executed query
(using the original search tokens) over newly added or updated data, or executes
a new query over data that was supposed to have been deleted or updated. If the
SE scheme cannot ensure forward and backward privacy, the CSP could recover
all the queries with the file injection attack by executing all the previous queries
again over the newly injected files. Similarly, if the CSP learns the plaintext of
deleted files or records, then the queries could also be recovered by checking if
they match deleted data.

To protect the search and access patterns, it is, in fact, necessary to also
ensure forward and backward privacy. Recall that the storage locations and
ciphertexts of searched data must be updated to protect the search and access
patterns. However, if the CSP could execute the previous queries over the
updated data and get a new set of matched data, it will infer the search pattern
by comparing the result set of a new query with the result sets of previous queries.
Likewise, the CSP can also infer the search pattern by caching the database and
executing all the new queries over it.

Forward privacy is achieved in [5,6,10,47]. Unfortunately, all of these pro-
posals require the user to store a set of the latest keys, which will be used
to encrypt queries. In multi-user settings, where multiple users could read and

Secure and Practical Searchable Encryption: A Position Paper 271

write to the database according to the access control policies, if one of the users
inserts or updates a new record or file, the keys have to be updated, and then the
new keys would have to be distributed to other users. Otherwise, with the stale
keys, the other users cannot get the correct result set. These key management
issues are impractical for multi-user applications. A more flexible approach is
needed. Moreover, to ensure data confidentiality, backward privacy should also
be guaranteed.

Key Management. Another issue with existing SE schemes is to have a very
flexible key management mechanism for multi-user access. Many schemes, like
[14], encrypt the data and queries with a key shared among all the users. Conse-
quently, all the queries and search results issued by one user could be decrypted
by all the other authorised users. Even worse, when one user is revoked, the
single key has to be changed and the data has to be re-encrypted with the new
key. In other schemes, such as [7,52], the keys are only known to the data owner.
The users have to send the query and search result to the data owner to get the
search tokens and cleartext results, which means that the data owner represents
a bottleneck in the system. Both of these options are impractical in modern
organisations, since a large number of users may access the data concurrently,
or they may join and leave their position at any time. We call all such schemes
Single User (SU).

In a Multi-User (MU) scheme, users can submit queries to search or update
the data uploaded by other users according to the access control policies, and no
key regeneration and data re-encryption are needed for user revocation. Almost
all the existing MU SE schemes, such as [2,3,17,31,39,51], are based on proxy-
encryption techniques. Basically, in these schemes, instead of sharing a single
encryption key among all the users, each user has a unique key to encrypt data
and queries. Moreover, the CSP stores another key for each user, with which the
CSP could perform the equality check between the query and data encrypted
by different users. However, all these schemes leak the search pattern since their
query encryption algorithms are deterministic. Moreover, in [2,17], if a malicious
user colludes with the CSP, they can recover all the data by putting their keys
together. The schemes introduced in [3,31,39,51] include several pairing oper-
ations, making the search operations computationally intensive. A more secure
and practical MU key management mechanism is needed.

3 Literature Review

Since the seminal paper by Song et al. [45], many searchable schemes have been
proposed and research in this area has been extended in several directions. In
this section, we categorise the approaches presented in the literature based on
information leakage and key management, and summarise their limitations.

Only several recent works tried to partially address the issue of information
leakage. In [35], Naveed et al. achieve SzPP. The basic idea is to divide each
document into a set of blocks. When a document is requested, a larger set of
blocks will be downloaded and decrypted by the client, which aggravates the

272 S. Cui et al.

Table 1. A comparison of searchable encryption schemes.

Schemes Search
pattern
privacy

Access
pattern
privacy

Size
pattern
privacy

Forward
privacy

Backward
privacy

Key man-
agement

Hang et al. [23] × × × × × �
Ferretti et al. [18] × × × × × �
Popa et al. [38] × × × × × �
Sarfraz et al. [44] × × × × × �
Sun et al. [50] × × × × × �
Yang et al. [56] × × × × × �
Asghar et al. [2] × × × × × �
Bao et al. [3] × × × × × �
Popa et al. [39] × × × × × �
Tang [51] × × × × × �
Kiayias et al. [31] × × × × × �
Curtmola et al. [14] × × × Static Static �
Jarecki et al. [28] × × × Static Static �
Kamara et al. [30] × × × × × �
Kamara et al. [29] × × × × × �
Hahn et al. [22] × × × × × �
Cao et al. [7] � × × Static Static �
Wang et al. [52] � � � Static Static �
Ishai et al. [26] � � � Static Static �
Naveed et al. [35] × × � × × �
Samanthula et al. [43] � � � × × �
Stefanov et al. [47] × × × � × �
Rizomiliotis et al. [41] × × × � × �
Bost [5] × × × � × �
Our objectives � � � � � �

� and × indicate that the property is achieved or not, respectively.� represents a Single User (SU) scheme. � represents a Multi-User (MU) scheme.Static
means the scheme does not support insert, update, or delete operations.

computational and storage overheads on the client side. Moreover, it fails to
achieve SPP and APP, since the same query requests the same block set.

Samanthula et al. [43] present a query processing framework that supports
complex queries. A homomorphic encryption algorithm is used to encrypt the
data in their scheme. Thus, it supports more complex queries when compared to
other schemes, and achieves SPP, APP, and SzPP. However, this scheme is single
user and does not scale well for databases with a large number of attributes.

Secure and Practical Searchable Encryption: A Position Paper 273

Cao et al. [7] design a scheme that supports a multi-keyword ranked search.
The scheme ensures SPP by hiding the trapdoor linkability. Wang et al. [52]
propose a public multi-keyword searchable encryption scheme based on Paillier
[37], which achieves SPP, APP, and SzPP. More recently, in [26], Ishai et al.
protect both the search and access patterns combining a PIR technique with
a B-tree data structure. Although these three schemes provide different index
structures for speeding up the search, the constructions are static and do not
support insert, update, and delete operations.

In [47], Stefanov et al. design a dynamic sub-linear searchable construction
based on an ORAM-like hierarchical structure and achieve forward privacy. Simi-
larly, Rizomiliotis et al. [41] propose another dynamic ORAM-based scheme that
achieves forward privacy and sub-linear search. More recently, the dynamic SE
scheme introduced by Bost [5] also achieves forward privacy. Instead of using an
ORAM-like structure, this scheme relies on a trapdoor permutation. However,
it only ensures forward privacy until a new query is issued. A CSP could still
learn if the new file contains the keywords searched previously, by comparing
the access pattern of a new query with those of previous queries. Moreover, all
these three schemes fail to ensure backward privacy.

Several works have concentrated on supporting multi-user access and simpli-
fying key management. Curtmola et al. [14] introduce a multi-user (MU) scheme
by combining a single user SE scheme with a broadcast encryption scheme, where
only the authorised user can issue queries with the key received from the data
owner. However, each time a user is revoked, the data owner has to generate
a new key. Even worse, the data stored on the cloud server is encrypted with
the key shared among all the users, which means the revoked users can still
recover all the data if they collude with the cloud server. The MU SE scheme
given by Jarecki et al. [28] has the same problem. That is, the data security
against revoked users is achieved based on the assumption that there is no col-
lusion between the cloud server and revoked users; otherwise, the key has to be
updated and the data has to be re-encrypted with the new key. Moreover, in
their scheme, the data owner has to be online to generate search tokens for all
the authorised users.

Hang et al. [23] and Ferretti et al. [18] present two different collusion-resistant
mechanisms that support multi-user access to the outsourced data. Although
they support approaches to avoid key sharing among users, in both, after user
revocation, it is necessary to generate a new key and re-encrypt the data.

CryptDB [38] is a multi-user scheme where each user has her own password,
which is managed by a proxy between the user and the database server. Sarfraz
et al. [44] revisit CrtypDB and also design a MU scheme with a fine-grained
access control. Instead of assigning the keys to users, both [38,44] store them in
a proxy. Since the users never know the underlying encryption key, they do not
require to refresh the key when revoking a user. The problem is that these two
mechanisms require the proxy to be online for performing operations on behalf of
the users. As a result, the proxy represents a single point of failure: an attacker
who compromises the proxy will gain access to all the logged-in users’ keys and
data.

274 S. Cui et al.

Sun et al. [50] utilise a Ciphertext-Policy Attribute-Based Encryption (CP-
ABE) [4] mechanism to achieve a scalable SE scheme that supports multi-user
read and write operations without sharing any key. However, for user revocation,
the data has to be re-encrypted with a new access structure and secret keys of all
the other users need to be updated with a new attribute set. Strictly speaking,
this scheme is also a SU scheme.

In the literature, only the proxy-based encryption schemes, such as [2,3,31,
39,51,56], can support multi-user access, where each user has her own key and
does not require any re-encryption when an authorised user is revoked.

Many other works also investigated approaches to increase search efficiency
[14,22,30], or data integrity and reliability in the setting where the CSP is totally
untrusted [11,49]. Unfortunately, as shown in Table 1, none of the reviewed
approaches are able to limit information leakage and support multi-user access.

4 Possible Solutions and Future Research

In this section, we propose several possible solutions and outline future research
directions to meet the requirements and address the challenges to minimise infor-
mation leakage and achieve a flexible key management.

Size Pattern. If the search operation is performed by the CSP, it is inevitable
that the CSP could count the matched records or files. As mentioned in [8,
14], introducing a set of dummy data into the database is an effective way to
protect the size pattern without leaking private information to users. Basically,
the dummy data should look exactly like the real data and even should match
queries. In this way, the search result for each query will include a random
amount of dummy data. Consequently, the size pattern is protected from the
CSP. However, to ensure a lightweight overhead on the user end, it should be
easy for users to filter out the dummy data before decrypting.

Furthermore, the amount of dummy data should be controllable since it
affects the security level and performance of the system. The higher the per-
centage of dummy data with respect to real data, the harder for the CSP to
infer the real size pattern. However, this also implies that more data should be
searched by the CSP and more dummy data should be filtered out by the user
for each query. The study by Cash et al. in [8] suggests that 1.6 is the minimum
ratio between dummy and real data to resist against count attacks. A thorough
security analysis for identifying a right balance between real and dummy data for
achieving a sustainable level of security and performance should be investigated.

Another possible solution could be dividing the database into partitions and
distributing these partitions over multiple non-colluding CSPs. For each query,
each single CSP searches over its partition independently. Using this approach,
each CSP only gets a small part of the search result. The total number of matched
records is unknown to all the CSPs if they do not put their sub-results together.

Access Pattern. In the access pattern based attacks, the key point is that the
CSP knows which injected records match the query and which do not. Therefore,

Secure and Practical Searchable Encryption: A Position Paper 275

to resist such attacks, we need to make storage locations of the injected data
untraceable for the CSP. In fact, this can be achieved by generating and upload-
ing dummy data when uploading real data. If the dummy and real encrypted
data are indistinguishable to the CSP, it cannot learn if the search result contains
the injected data or dummy data. Even so, the set of data injected at different
time points is still distinguishable for the CSP. A technique that makes the data
inserted at different times untraceable is to shuffle the database after executing
each query, as we explain in the next sections.

Search Pattern. To protect the search pattern, first of all, the encrypted queries
should be semantically secure. Moreover, we should break the link between the
search pattern and access and size patterns. That is, we should ensure that the
CSP will always see a new set of data being matched even if a query equivalent
to the previous one is executed.

To break the link between the access and search patterns, the only choice
is to shuffle the physical locations of the searched data after executing each
query. Moreover, for making the data untraceable, the corresponding ciphertext
should be re-randomised prior to moving to new locations. Even with the ORAM
technique, the access pattern is protected by changing the data location and re-
randomising its ciphertext. In this way, the CSP is unable to infer the search
pattern from the access pattern, since the access patterns for all the queries are
different. Note that the scheme is secure against file injection attacks, because
the shuffling and re-randomisation operations make all the data untraceable
whenever they are inserted.

To break the link between the size pattern and search pattern, when dummy
data is introduced to hide the real size pattern, one possible solution is to ensure
that the responses to all queries have a constant size. However, this potentially
requires a huge number of dummy records (possibly exponentially many) if the
database has large variability in its frequency information. A more practical
solution is to vary the result size of each query. To do this, some of the dummy
data should be deleted or updated, or some new dummy data should be inserted
between any two queries. This ensures that the number of matched dummy
records are different even if the same query is executed again. Alternatively, as
mentioned in Sect. 2, if the database is divided into partitions and stored on
multiple CSPs, the matched data together with a set of unmatched data in each
partition should be re-randomised and moved across CSPs after executing each
query. Due to the re-randomisation and re-location of the data, each CSP will
only see a one-time match. That is, a CSP does not learn whether the data ever
matched previous queries, or will match future queries.

In summary, to resist leakage-based attacks, a number of dummy records
should be introduced and updated after executing each query, and the searched
records should be re-randomised and shuffled after executing each query. All
these operations affect the performance of the system. The fact is that there is
always a trade-off between security and performance. It is impossible to achieve a
higher level security without sacrificing performance. However, we aim to design
a lightweight client for the user. It is impractical to ask the user to perform

276 S. Cui et al.

these operations. Basically, the dummy records increase the storage, bandwidth
and computation overheads on the user end. From a security point of view, these
operations should be hidden from the CSP. Otherwise, the CSP could learn more
useful information and recover the data and queries. Inevitably, a third entity,
or more entities should be involved to guarantee security and achieve efficiency.
Specifically, the following two models can be considered:

• Combining a Private Cloud with the CSP. According to the latest
report by Rightscale [1], the hybrid cloud computing approach is getting
more popular among large enterprises. This model combines the public cloud
service with a private cloud platform owned by the organisation. The private
cloud could be considered as a trusted entity, because it is inherently man-
aged by the organisation, where the sensitive data can be stored and executed
without an extra layer of security. However, due to its limited storage and
computational power, the bulk of the operations and storage should be dele-
gated to the public CSP. To minimise information leakage, the private cloud
could be leveraged to perform the shuffle, re-randomisation and dummy data
refreshment operations after executing each query.

• Combining Multiple CSPs. The third entity could also be an untrusted
public CSP. In fact, the idea of utilising multiple CSPs to reduce the load on
users is already integrated into the ORAM technique. In [48], Stefanov and
Shi have introduced a 2-cloud oblivious storage system that achieves APP
and significantly reduced the bandwidth cost between the client and the CSP.
Recently, Hoang et al. [24] also proposed a distributed encrypted data struc-
ture for SE schemes that could be deployed on two non-colluding CSPs. Their
proposal achieves much higher security than traditional SE schemes. Unfor-
tunately, both [24,48] suffer from the same problem as faced by traditional
ORAM techniques. That is, an encrypted search operation is not considered
and they can only protect the file access pattern. Moreover, in [48], the shuffle
operation is performed before returning the data to users, which increases the
latency on the user side.
We could employ at least two non-colluding CSPs. However, we should also
consider the search operation performed on index structures, and aim to
achieve the index access pattern privacy. Specifically, one CSP stores the
encrypted data and performs the search operation, and after executing each
query, first it returns the result set to the user, and then sends the searched
data to another CSP for shuffling, re-randomising and dummy data refresh-
ing. In this case, the CSP that performs the queries never knows how the
searched data is updated, and the CSP that performs rest of the operations
cannot execute the query and never knows which of the records are matched.
If the CSPs never collude together, all the patterns are protected from them.
However, the cooperation between CSPs should be carefully designed, and
the approaches to resist against the collusion between the CSPs should also
be investigated.

To ensure a high level of security, it is possible to shuffle all the data in
the database. However, this degrades the system performance. Although these

Secure and Practical Searchable Encryption: A Position Paper 277

operations do not affect the end-to-end latency from the user’s point of view, the
next query cannot be executed until the shuffle, re-randomisation, and dummy
data refreshment operations have been finished. Hence, it affects the throughput
of the system and should be completed efficiently. The more data is shuffled and
re-randomised, the more difficult it is for the CSPs to infer the access pattern,
but it is worse in terms of the system performance. It is an interesting research
direction to investigate the required amount of data that should be shuffled and
re-randomised for achieving a sustainable level of security and performance.

Forward and Backward Privacy. To achieve both forward and backward
privacy, first of all, we should ensure the CSP cannot execute previous queries
over newly added data or execute new queries over deleted data. Furthermore, to
achieve SPP and APP, it is also necessary to ensure that the CSP cannot repeat
the previous query after shuffling and re-randomising, or execute a new query
over the snapshot of the data before shuffling and re-randomising. Therefore, not
only the newly added data but also the shuffled and re-randomised data should
include a new element (say a nonce) that should make them unmatched with
the previous queries.

Likewise, a new query should include an element that makes it unmatched
with stale (deleted or modified) data. However, the new queries must match with
the latest data. To this end, the element included in the latest data should be
stored somewhere and used to encrypt new queries, as done in [5,6,10,47]. It
is impractical to store the new element on the user side in multi-user settings.
One possible solution is for a third entity to store and manage these query
elements. In this case, all the queries should first be sent to the third entity and
re-encrypted with the element included in the latest data. Moreover, the element
should be updated when re-randomising the searched data. It is an open problem
to achieve both forward and backward privacy in an efficient manner.

Index Structure. To achieve sub-linear search time, a number of works have
investigated special index structures to narrow down the search range, such as
the inverted index given in [14], the ORAM-like hierarchical structure designed
in [47], the red-black tree based structure proposed by Kamara et al. [29], and
the B-tree based scheme introduced in [26]. Unfortunately, the CSP could learn
the search, access and size patterns from searching the index structure.

To improve search efficiency with minimised leakage, these index structures
need to be redesigned. First, dummy data should be inserted into the structure
to hide the size pattern. Second, both the encrypted nodes and queries should
be semantically secure to hide the search pattern. Finally, to protect patterns
and ensure forward and backward privacy, the searched nodes should be shuffled
and re-randomised after executing each query.

However, it may be infeasible or inefficient to perform those operations on
the proposed index structures. For instance, in the inverted index structure,
encrypted linked lists are used to accelerate the searching. To hide the search
and access patterns, the linked lists should be shuffled and re-randomised after
executing each query. However, the shuffle operation will upset the linkabil-
ity between nodes, and then the CSP cannot get the correct matched indexes.

278 S. Cui et al.

Therefore, one potential future work would be to investigate new sub-linear data
structures that support equality check between semantically secure encrypted
data and can be shuffled and re-randomised efficiently without leaking sensitive
information.

Key Management. The existing proxy encryption based key management
approaches, including [2,3,17,31,39,51], could be used to ensure efficient user
registration and revocation in multi-user settings. However, to ensure SPP, the
query encryption should be replaced with a semantically secure primitive, and
the equality check operation in these schemes should be changed accordingly.
Moreover, as mentioned in [17], the third party could be leveraged to secure
against collusion attacks between a user and the CSP. Meanwhile, an approach
to avoid expensive pairing operations by making use of the third entity should
be investigated.

Towards a more secure cloud database, there are many other security issues
to be addressed, such as the accountability of the search result when the CSP is
assumed to be totally untrusted and the access control for fine-grained access.
Certainly, there is a long way to go to ensure confidentiality and privacy of the
outsourced data.

5 Concluding Remarks

In this paper, we investigated the state of the art of SE schemes and some chal-
lenges for achieving a secure outsourced database. Almost all the existing SE
schemes are vulnerable to inference attacks due to sensitive information leakage,
which makes them unusable for privacy-sensitive applications. Based on these
attacks, we identify a set of requirements for a cloud database that could be
secure against them and ensure an efficient and practical user searching expe-
rience. We also briefly reviewed possible solutions to meet these requirements.
To achieve a better balance between the security level and performance of the
system, we finally outlined several future research directions. These directions
will be developed in future work by the authors.

References

1. Rightscale 2016 state of the cloud report. https://www.rightscale.com/lp/
state-of-the-cloud. Last Accessed 3 July 2016

2. Asghar, M.R., Russello, G., Crispo, B., Ion, M.: Supporting complex queries and
access policies for multi-user encrypted databases. In: Juels, A., Parno, B. (eds.)
CCSW 2013, pp. 77–88. ACM (2013)

3. Bao, F., Deng, R.H., Ding, X., Yang, Y.: Private query on encrypted data in multi-
user settings. In: Chen, L., Mu, Y., Susilo, W. (eds.) ISPEC 2008. LNCS, vol. 4991,
pp. 71–85. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79104-1 6

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: S&P 2007, pp. 321–334. IEEE Computer Society (2007)

5. Bost, R.:
∑

oϕoς: Forward secure searchable encryption. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) SIGSAC 2016, pp.
1143–1154. ACM (2016)

https://www.rightscale.com/lp/state-of-the-cloud
https://www.rightscale.com/lp/state-of-the-cloud
http://dx.doi.org/10.1007/978-3-540-79104-1_6

Secure and Practical Searchable Encryption: A Position Paper 279

6. Bost, R., Fouque, P., Pointcheval, D.: Verifiable dynamic symmetric searchable
encryption: optimality and forward security. IACR Cryptology ePrint Archive
2016, 62 (2016)

7. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 25(1),
222–233 (2014)

8. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: Ray, I., Li, N., Kruegel, C. (eds.) SIGSAC 2015, pp.
668–679. ACM (2015)

9. Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner,
M.: Dynamic searchable encryption in very-large databases: data structures and
implementation. In: NDSS 2014. The Internet Society (2014)

10. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on
remote encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS
2005. LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). doi:10.1007/
11496137 30

11. Cheng, R., Yan, J., Guan, C., Zhang, F., Ren, K.: Verifiable searchable symmetric
encryption from indistinguishability obfuscation. In: Bao, F., Miller, S., Zhou, J.,
Ahn, G. (eds.) ASIA CCS 2015, pp. 621–626. ACM (2015)

12. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

13. Crescenzo, G., Cook, D., McIntosh, A., Panagos, E.: Practical private informa-
tion retrieval from a time-varying, multi-attribute, and multiple-occurrence data-
base. In: Atluri, V., Pernul, G. (eds.) DBSec 2014. LNCS, vol. 8566, pp. 339–355.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-43936-4 22

14. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: Juels, A., Wright,
R.N., di Vimercati, S.D.C. (eds.) CCS 2006, pp. 79–88. ACM (2006)

15. Dautrich, J., Ravishankar, C.V.: Combining ORAM with PIR to minimize band-
width costs. In: Park, J., Squicciarini, A.C. (eds.) CODASPY 2015, pp. 289–296.
ACM (2015)

16. Devadas, S., Dijk, M., Fletcher, C.W., Ren, L., Shi, E., Wichs, D.: Onion ORAM: a
constant bandwidth blowup oblivious RAM. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016. LNCS, vol. 9563, pp. 145–174. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49099-0 6

17. Dong, C., Russello, G., Dulay, N.: Shared and searchable encrypted data for
untrusted servers. In: Atluri, V. (ed.) DBSec 2008. LNCS, vol. 5094, pp. 127–143.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-70567-3 10

18. Ferretti, L., Pierazzi, F., Colajanni, M., Marchetti, M.: Scalable architecture for
multi-user encrypted SQL operations on cloud database services. IEEE Trans.
Cloud Comput. 2(4), 448–458 (2014)

19. Garg, S., Mohassel, P., Papamanthou, C.: TWORAM: efficient oblivious RAM in
two rounds with applications to searchable encryption. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 563–592. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53015-3 20

20. Goh, E.: Secure indexes. IACR Cryptology ePrint Archive 2003, 216 (2003)
21. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious

RAMs. J. ACM 43(3), 431–473 (1996)
22. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.

In: Ahn, G., Yung, M., Li, N. (eds.) SIGSAC 2014, pp. 310–320. ACM (2014)

http://dx.doi.org/10.1007/11496137_30
http://dx.doi.org/10.1007/11496137_30
http://dx.doi.org/10.1007/978-3-662-43936-4_22
http://dx.doi.org/10.1007/978-3-662-49099-0_6
http://dx.doi.org/10.1007/978-3-662-49099-0_6
http://dx.doi.org/10.1007/978-3-540-70567-3_10
http://dx.doi.org/10.1007/978-3-662-53015-3_20

280 S. Cui et al.

23. Hang, I., Kerschbaum, F., Damiani, E.: ENKI: access control for encrypted query
processing. In: Sellis, T.K., Davidson, S.B., Ives, Z.G. (eds.) SIGMOD 2015, pp.
183–196. ACM (2015)

24. Hoang, T., Yavuz, A.A., Guajardo, J.: Practical and secure dynamic searchable
encryption via oblivious access on distributed data structure. In: Schwab, S.,
Robertson, W.K., Balzarotti, D. (eds.) ACSAC 2016. pp. 302–313. ACM (2016)

25. Hwang, Y.H., Lee, P.J.: Public key encryption with conjunctive keyword search and
its extension to a multi-user system. In: Takagi, T., Okamoto, T., Okamoto, E.,
Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 2–22. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73489-5 2

26. Ishai, Y., Kushilevitz, E., Lu, S., Ostrovsky, R.: Private large-scale data-
bases with distributed searchable symmetric encryption. In: Sako, K. (ed.) CT-
RSA 2016. LNCS, vol. 9610, pp. 90–107. Springer, Cham (2016). doi:10.1007/
978-3-319-29485-8 6

27. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: NDSS 2012. The Internet Soci-
ety (2012)

28. Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.: Outsourced symmet-
ric private information retrieval. In: Sadeghi, A., Gligor, V.D., Yung, M. (eds.)
SIGSAC 2013, pp. 875–888. ACM (2013)

29. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39884-1 22

30. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) CCS 2012, pp. 965–976. ACM
(2012)

31. Kiayias, A., Oksuz, O., Russell, A., Tang, Q., Wang, B.: Efficient encrypted key-
word search for multi-user data sharing. In: Askoxylakis, I., Ioannidis, S., Katsikas,
S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 173–195. Springer,
Cham (2016). doi:10.1007/978-3-319-45744-4 9

32. Liu, C., Zhu, L., Wang, M., Tan, Y.: Search pattern leakage in searchable encryp-
tion: attacks and new construction. Inf. Sci. 265, 176–188 (2014)

33. Naveed, M.: The fallacy of composition of oblivious RAM and searchable encryp-
tion. IACR Cryptology ePrint Archive 2015, 668 (2015)

34. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: Ray, I., Li, N., Kruegel, C. (eds.) SIGSAC 2015, pp. 644–
655. ACM (2015)

35. Naveed, M., Prabhakaran, M., Gunter, C.A.: Dynamic searchable encryption via
blind storage. In: SP 2014, pp. 639–654. IEEE Computer Society (2014)

36. Ostrovsky, R.: Efficient computation on oblivious RAMs. In: Ortiz, H. (ed.) STOC
1990, pp. 514–523. ACM (1990)

37. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

38. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: protect-
ing confidentiality with encrypted query processing. In: Wobber, T., Druschel, P.
(eds.) SOSP 2011, pp. 85–100. ACM (2011)

39. Popa, R.A., Zeldovich, N.: Multi-key searchable encryption. IACR Cryptology
ePrint Archive 2013, 508 (2013)

40. Ren, L., Fletcher, C.W., Kwon, A., Stefanov, E., Shi, E., van Dijk, M., Devadas,
S.: Constants count: practical improvements to oblivious RAM. In: Jung, J., Holz,
T. (eds.) USENIX Security 2015, pp. 415–430. USENIX Association (2015)

http://dx.doi.org/10.1007/978-3-540-73489-5_2
http://dx.doi.org/10.1007/978-3-319-29485-8_6
http://dx.doi.org/10.1007/978-3-319-29485-8_6
http://dx.doi.org/10.1007/978-3-642-39884-1_22
http://dx.doi.org/10.1007/978-3-319-45744-4_9
http://dx.doi.org/10.1007/3-540-48910-X_16

Secure and Practical Searchable Encryption: A Position Paper 281

41. Rizomiliotis, P., Gritzalis, S.: ORAM based forward privacy preserving dynamic
searchable symmetric encryption schemes. In: Ray, I., Wang, X., Ren, K.,
Kerschbaum, F., Nita-Rotaru, C. (eds.) CCSW 2015, pp. 65–76. ACM (2015)

42. Rompay, C., Molva, R., Önen, M.: Multi-user Searchable Encryption in the Cloud.
In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 299–316.
Springer, Cham (2015). doi:10.1007/978-3-319-23318-5 17

43. Samanthula, B.K., Jiang, W., Bertino, E.: Privacy-preserving complex query evalu-
ation over semantically secure encrypted data. In: Kuty�lowski, M., Vaidya, J. (eds.)
ESORICS 2014. LNCS, vol. 8712, pp. 400–418. Springer, Cham (2014). doi:10.
1007/978-3-319-11203-9 23

44. Sarfraz, M.I., Nabeel, M., Cao, J., Bertino, E.: Dbmask: Fine-grained access control
on encrypted relational databases. In: Park, J., Squicciarini, A.C. (eds.) CODASPY
2015, pp. 1–11. ACM (2015)

45. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: S&P 2000, pp. 44–55. IEEE Computer Society (2000)

46. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C.W., Ren, L., Yu, X., Devadas, S.:
Path ORAM: an extremely simple oblivious RAM protocol. In: Sadeghi, A., Gligor,
V.D., Yung, M. (eds.) SIGSAC 2013, pp. 299–310. ACM (2013)

47. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: NDSS 2013, vol. 71, pp. 72–75 (2014)

48. Stefanov, E., Shi, E.: Multi-cloud oblivious storage. In: Sadeghi, A., Gligor, V.D.,
Yung, M. (eds.) SIGSAC 2013, pp. 247–258. ACM (2013)

49. Sun, W., Liu, X., Lou, W., Hou, Y.T., Li, H.: Catch you if you lie to me: efficient
verifiable conjunctive keyword search over large dynamic encrypted cloud data. In:
INFOCOM 2015, pp. 2110–2118. IEEE (2015)

50. Sun, W., Yu, S., Lou, W., Hou, Y.T., Li, H.: Protecting your right: attribute-based
keyword search with fine-grained owner-enforced search authorization in the cloud.
In: INFOCOM 2014, pp. 226–234. IEEE (2014)

51. Tang, Q.: Nothing is for free: security in searching shared and encrypted data.
IEEE Trans. Inf. Forensics Secur. 9(11), 1943–1952 (2014)

52. Wang, B., Song, W., Lou, W., Hou, Y.T.: Inverted index based multi-keyword
public-key searchable encryption with strong privacy guarantee. In: INFOCOM
2015, pp. 2092–2100. IEEE (2015)

53. Wang, B., Yu, S., Lou, W., Hou, Y.T.: Privacy-preserving multi-keyword fuzzy
search over encrypted data in the cloud. In: INFOCOM 2014, pp. 2112–2120. IEEE
(2014)

54. Wang, B., Hou, Y., Li, M., Wang, H., Li, H.: Maple: scalable multi-dimensional
range search over encrypted cloud data with tree-based index. In: Moriai, S.,
Jaeger, T., Sakurai, K. (eds.) ASIA CCS 2014, pp. 111–122. ACM (2014)

55. Williams, P., Sion, R.: Usable PIR. In: NDSS 2008. The Internet Society (2008)
56. Yang, Y., Liu, J.K., Liang, K., Choo, K.-K.R., Zhou, J.: Extended proxy-assisted

approach: achieving revocable fine-grained encryption of cloud data. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 146–
166. Springer, Cham (2015). doi:10.1007/978-3-319-24177-7 8

57. Yavuz, A.A., Guajardo, J.: Dynamic searchable symmetric encryption with min-
imal leakage and efficient updates on commodity hardware. In: Dunkelman, O.,
Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 241–259. Springer, Cham (2016).
doi:10.1007/978-3-319-31301-6 15

58. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the power
of file-injection attacks on searchable encryption. In: USENIX Security 2016, pp.
707–720. USENIX Association (2016)

http://dx.doi.org/10.1007/978-3-319-23318-5_17
http://dx.doi.org/10.1007/978-3-319-11203-9_23
http://dx.doi.org/10.1007/978-3-319-11203-9_23
http://dx.doi.org/10.1007/978-3-319-24177-7_8
http://dx.doi.org/10.1007/978-3-319-31301-6_15

Cryptanalysis

Fault Attacks on XEX Mode with Application
to Certain Authenticated Encryption Modes

Hassan Qahur Al Mahri(B), Leonie Simpson, Harry Bartlett, Ed Dawson,
and Kenneth Koon-Ho Wong

Queensland University of Technology, George Street, Brisbane 4000, Australia
hassan.mahri@hdr.qut.edu.au,

{lr.simpson,h.bartlett,e.dawson,kk.wong}@qut.edu.au

Abstract. The XOR-Encrypt-XOR (XEX) block cipher mode was
introduced by Rogaway in 2004. XEX mode uses nonce-based secret
masks (L) that are distinct for each message. The existence of secret
masks in XEX mode prevents the application of conventional fault attack
techniques, such as differential fault analysis. This work investigates
other types of fault attacks against XEX mode that either eliminate
the effect of the secret masks or retrieve their values. Either of these
outcomes enables existing fault attack techniques to then be applied to
recover the secret key. To estimate the success rate and feasibility, we
ran simulations for ciphertext-only fault attacks against 128-bit AES in
XEX mode. The paper discusses also the relevance of the proposed fault
attacks to certain authenticated encryption modes based on XEX, such
as OCB2, OTR, COPA, SHELL and ElmD. Finally, we suggest effective
countermeasures to provide resistance to these fault attacks.

Keywords: Side channel analysis · Fault attack · Authenticated encryp-
tion · Block cipher mode · XEX

1 Introduction

In 2004, Rogaway [17] described a new block cipher mode called XOR-Encrypt-
XOR (XEX) that can be used with any block cipher. XEX is a nonce-based mode
in which each message uses a different nonce. A sequence of secret masks Δi (also
known as offsets) is obtained from the encryption of the nonce. A different mask
from this sequence is XOR-ed with each message block both before and after
the underlying block cipher algorithm is applied. If the mode does not apply the
last XOR operation with the secret mask, then it is called XE mode.

XEX/XE modes can be used to provide Authenticated Encryption (AE) (i.e.
provide simultaneously confidentiality and integrity assurance) with the benefit
that the plaintext message is processed only once. This is an attractive feature
of AE modes. The drawback of such modes is that the security depends on both
the key (K) and the mask (L); revealing either of them will breach the security
of the AE mode as a whole [14,17].

c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 285–305, 2017.
DOI: 10.1007/978-3-319-60055-0 15

286 H. Qahur Al Mahri et al.

Fault attacks [7] are active attacks that induce an error during the operation
of a cryptographic system to extract information about internal values, such as
the secret key or any secret variable. The first paper that used fault attacks
against cryptographic protocols was published by Boneh et al. [7] to attack
RSA. Since then, fault attacks have been widely used to attack many encryption
schemes including DES [4] and AES [6,16].

Different physical means can be used to induce a fault into a cryptosystem,
including supplying a voltage glitch, clock tampering, inducing a laser beam or
radiating an electromagnetic field. The induced fault can flip a bit, skip the
execution of an instruction or destroy a memory cell.

The most powerful fault analyses are Differential Fault Analysis (DFA) and
Statistical Fault Analysis (SFA). Differential Fault Analysis [4] requires some
input to be encrypted twice; with a fault being induced in the last rounds of the
second run. After that, the difference between the correct and faulty ciphertexts
is used to retrieve the secret key. On the other hand, SFA [12] does not require
correct and faulty ciphertext pairs. It requires only a collection of faulty cipher-
texts to recover the correct key. However, SFA is not directly applicable unless
two conditions are met: the inputs to the block cipher are different from each
other, and the faulty ciphertexts are the direct outputs of the block cipher [11].

In XEX mode, the nonce-based masks act as a barrier to conventional fault
attack methods. For DFA where two identical block cipher inputs are required to
produce a pair of correct/faulty ciphertexts, such as [4,5,22], XOR-ing different
nonce-based masks with the plaintext blocks prevents this. For SFA where each
block cipher output is XOR-ed with a different secret mask, we do not have
direct access to the block cipher outputs. Thus, neither DFA nor SFA can be
applied directly. This research is motivated by this fact.

To the best of our knowledge, the most relevant recent work investigating
fault attacks on XEX-based modes is by Dobraunig et al. [11]. This work is signif-
icant as it demonstrated the practical relevance of statistical fault attacks intro-
duced in [12] to authenticated encryption modes. The work targeted, amongst
others, the XEX-based AE modes, such as OCB, OTR, COPA, SHELL and
ElmD [3]. Fault attacks on XEX-based modes in [11] require access to parts
of the mode where the block cipher output is either known or XOR-ed with a
constant-based secret mask. These attacks are not applicable when the masks
are not constant-based. The authors performed fault-injection experiments on
three real hardware platforms. They showed that the key can be recovered with
a couple of faulty ciphertexts. Note that all the listed XEX-based modes in
[11] use constant-based masks with the exception of OCB. Although OCB uses
nonce-based masks, the attack targeted the XE part, not the XEX part, where
the output of the block cipher was accessible.

In this paper, we take a different approach by targeting the XEX part that
uses nonce-based secret masks. We propose fault techniques to either skip the
masking effect or retrieve the value of the secret mask L. In either case, con-
ventional fault attack techniques [4,12] can then be used to recover the secret
key. In the worst case, the entire key can be retrieved with a single additional

Fault Attacks on XEX Mode 287

fault as described in [1,15,18,21]. In addition, if XEX is used as an AE mode,
an attacker can breach the AE security by constructing forged messages [14,17].
Unlike previous fault attacks on XEX-based modes, we stress that our approach
targets the part of the mode where a direct application of existing fault attack
techniques is not possible.

We ran several simulations on a PC to demonstrate the effectiveness of our
attacks and to calculate their success rates. The simulations use 128-bit AES
as the underlying block cipher operating in XEX mode. We did not perform
hardware experiments in this work. However, we consider the fault models in this
paper are well documented in the literature and have been shown to be practical
in certain research papers, such as [2,19,20]; so can be applied as outlined in
this paper.

We then investigated the applicability of our proposed techniques to certain
authenticated encryption modes, including candidates in the ongoing CAESAR
competition [3], such as COPA, ELmD, SHELL and OTR. Our attacks show
that the masking function is a point of vulnerability. Hence, efficient alternative
constructions for the mask updating function are suggested as countermeasures.

This paper is organised as follows: Sect. 2 defines the notation used and briefly
describes the AES and XEX schemes. Section 3 describes an approach to elim-
inate the barrier posed by the nonce-based secret masks in XEX mode. The
next section shows fault attacks on the last rounds of AES to retrieve the secret
masks given ciphertext pairs only. Section 5 verifies the relevance of our proposed
approaches to certain authenticated encryption modes and Sect. 6 investigates
mechanisms to avoid the proposed fault attacks. The last section draws a con-
clusion. A practical example of a fault attack, experimental results and figures
are presented in Appendices A, B and C respectively.

2 Preliminaries

2.1 Basic Notations

The following notation will be used consistently throughout this paper:

K : k-bit key used for the block cipher and mask initialisation
n : the block length in bits of the block cipher
N : the nonce that is changed for each message
m : the number of blocks in the plaintext message
M [i] : the ith block in the plaintext message
C[i] : the ith block in the corresponding ciphertext message
E(.) : the block cipher encryption function under the key K

s
i,(r),(o)
jk : the (j, k) byte in the encryption state of plaintext M [i] after the

operation o of round r where j, k ∈ {0, 1, 2, 3}
K

(r)
jk : the (j, k) byte in the subkey of round r where j, k ∈ {0, 1, 2, 3}

Ljk : the (j, k) byte in a nonce-based secret value where j, k ∈ {0, 1, 2, 3}
sbox[.] : the AES substitution box that replaces a byte by another byte
sbox−1[.] : the inverse of the sbox[.] operation
|X| : the length of the string X in bits

288 H. Qahur Al Mahri et al.

msbc(X) : the most significant c bits of X provided that |X| ≥ c
� : logical left shift operation
� : logical right shift operation
∧ : bitwise-and operation
⊕ : bitwise-exclusive-OR operation

2.2 AES Description

In this section, we briefly describe the Advanced Encryption Standard (AES),
and refer the reader to [8] for more technical details.

AES is a 128-bit symmetric block cipher that allows three key sizes: 128-bit,
192-bit and 256-bit. AES is an iterated cipher that consists of a number of similar
rounds. The number of rounds in AES is 10, 12 or 14 depending on the key size
respectively. Each round in AES consists of four fundamental operations:

– SubBytes (SB): This operation is a non-linear substitution that replaces each
byte in the internal state s

(r),(o)
ij with another according to a fixed 8×8 s-box.

– ShiftRow (SR): This operation changes the order of bytes within the same
state where certain bytes are shifted cyclically-left by a certain number of
steps.

– MixColumn (MC): This is a linear transformation of the four bytes in each
column of the state matrix.

– AddRoundKey (AK): The state matrix is combined with a round key by a
bitwise XOR operation.

AES does not apply the MixColumn operation in the last round. The internal
state after each operation for a plaintext block M [i] is written as s

i,(r),(o)
jk and

organised as a matrix of 4 × 4 bytes where 0 ≤ j < 4 and 0 ≤ k < 4. For
example, s

1,(9),(AK)
00 is the first byte of the encryption state of block M [1] after

AddRoundKey operation of round 9.

2.3 The Design of XEX Mode

Rogaway [17] introduced a mode of operation for block ciphers known as XEX.
The underlying block cipher can be any symmetric block cipher. XEX mode is
a nonce-based scheme where every plaintext message uses a different nonce (N).
The nonce is encrypted to obtain a secret value L = E(N). This secret value is
used to obtain a sequence of secret masks {Δi} so that Δi is used during the
processing of the ith message block M [i]. For efficiency of implementation, every
new mask Δi+1 should be easily calculated from the previous one Δi. XEX mode
uses a single key for both the block encryption operation and initialisation of
the sequence of masking values.

In the example proposed in [17], Rogaway suggests a doubling masking tech-
nique, where new masks are obtained as Δi+1 = 2Δi. If Δ0 starts with L, the
doubling masking technique results in a series of masking values: L, 2L, 22L, 23L,
. . . , 2m−1L. Each message block uses a different mask that is XOR-ed both before
and after the underlying block cipher algorithm is applied, as shown in Fig. 1(a).

Fault Attacks on XEX Mode 289

Fig. 1. (a) The most common masking of XEX mode. (b) timing-resistant implemen-
tation of doubling masking technique.

The mask multiplication is performed in the finite field F2n by multiplying
two input polynomials and finding the reminder modulo a primitive polynomial.
When n = 128 and the finite field F2128 is constructed using the commonly used
primitive polynomial f(x) = x128 + x7 + x2 + x + 1, the doubling is as follows:

2L =

{
L � 1 if msb1(L) = 0
(L � 1) ⊕ 012010000111 if msb1(L) = 1

(1)

and can be calculated as shown in Fig. 1(b). We note that this choice of finite
field is used in Rogaway’s paper [17] and has also been adopted in other designs
such as COPA, ELmD, SHELL and OTR.

3 Eliminating the Masks in XEX Mode

This section presents two approaches to eliminate the effect of the secret masks,
effectively converting the XEX mode to ECB mode.

3.1 Stuck-At-Zero Fault Attack

The duration of an injected fault can be permanent or transient. Permanent
fault means that certain bits are disturbed permanently for the entire operation
of a hardware platform, whereas transient faults change the value of certain bits
temporarily. In addition to duration, the location of a fault can be either precise:
affecting a certain bit in an internal register, or random.

Our fault model assumes that the fault will occur in a j-bit block anywhere
in the secret mask register L except the last byte. The fault clears the block
permanently, and could be performed using any practical physical means. That
is, the j-bit in L, where 0 ≤ j ≤ 120, will be stuck at ‘zero’ value permanently.
We consider this fault model to be feasible using sophisticated technology, such
as laser fault injection system and note that several research papers adopt this
fault model (see fault attacks against AES in [6] and ACORN in [10]).

290 H. Qahur Al Mahri et al.

Due to the features of the primitive polynomial used in the doubling masking
technique, the entire masking value L will be stuck permanently at zero after
only a few faulted plaintext blocks in a multi-block message. If only one bit of
L is faulted, L will reach zero after 128 blocks whereas if one byte is faulted, L
will be zero only after 16 blocks. Therefore, the effect of masks in XEX mode is
avoided.

The location of the j-bits cannot be between 121 ≤ j ≤ 127 since these bit
positions are XOR-ed with the feedback value (0x87) in the case where the most
significant bit of L is 1 (see Eq. (1)). Therefore, destroying such bit positions
will not zero the mask L, but will increase the chance for mask collision.

Assuming a permanent fault is not necessary, the attacker can inject transient
stuck-at-zero faults. This fault model has been shown to be feasible using low-
budget equipment in [20]. The attacker can force certain bits of L to be 0 for few
consecutive blocks. In case a byte is faulted, 16 consecutive set-to-zero faults are
required to be induced to any of the first 15 bytes of L.

3.2 Skipping an Instruction Fault Attack

Assuming transient/permanent stuck-at-zero faults are not applicable or con-
sume more time/cost, L can also be overcome in software implementations using
a more efficient and easy to set-up fault model. L can be overcome using skip-
ping an instruction, i.e. an instruction is not executed. An instruction can be
skipped by applying glitch attacks [6]. This fault model was investigated and
proved practical in [19].

One way to eliminate the effect of masks in XEX mode is to skip the execution
of instruction (2) in Fig. 1(b) for 128 consecutive blocks. This step will cause the
doubling mechanism to always choose double[0] and not double[1] provided that
the value of F is zero before the fault injections. Thus after 128 blocks, the entire
128-bit L will be zero and L will be stuck to zero during the processing of all
following blocks.

The chance that F is 0 before a fault injection is 50%. In case F was 1, we
can repeat the attack a second time with another set of 128 consecutive blocks,
but now with a better chance that this carry flag F is zero.

Another more effective way to overcome the masks is to omit the execution of
instruction (4) (see Fig. 1(b)) for 128 consecutive blocks, regardless of the value
of the carry flag F , as in the previous approach. This approach guarantees that
the mask L will be stuck at a value of zero for all following plaintext blocks.

Note that this approach is implementation-dependant. That is, the attacker
needs to have knowledge of the implementation to successfully overcome L.

3.3 Security Implication for Mask Elimination

Forcing the masks in XEX mode to zero reduces XEX mode to ECB mode. As
a result, if the mode is used as an AE mode, this will enable attackers to breach
the integrity assurance mechanism of the mode. In addition, the secret key can

Fault Attacks on XEX Mode 291

be recovered using additional faults. One extra fault injection can completely
recover the key as described in [1,15,18,21].

These proposed fault attacks are easy and efficient due to the particular form
of the primitive polynomial used to define the finite field. Since the polynomial
is sparse and the feedback path is from bits all located in the final byte of L,
the attacks work effectively. This work demonstrates the weakness of this com-
monly used polynomial with respect to fault attacks. Section 6 suggests different
primitive polynomials that avoid these fault attacks.

4 A Ciphertext only Attack to Reveal Secret Mask L

In this section, we describe an approach to obtain the value of L under the stricter
requirement of using ciphertext blocks only. For this section, we consider AES
as the underlying block cipher used in XEX mode.

The challenge with attacking AES in XEX mode rather than the ECB mode
is that the block cipher output is XOR-ed with a mask prior to generating the
ciphertext. That is, the attacker does not have direct access to the output of the
encryption. In addition, masks are guaranteed to be different from each other.
A ciphertext-only statistical fault attack has been used previously to determine
the secret key in AES encryption [12], but this attack requires a collection of
ciphertext bytes that share the same subkey byte. Therefore, the statistical fault
attack cannot be applied directly to obtain the secret key from AES in XEX
mode. We show, however, that the relationship between the masks used in the
doubling masking mechanism enables us to adapt this attack to reveal the ini-
tial mask value L. From this, it is then straightforward to find the secret key,
completely breaking the security of the cipher. In fact, we note that the key bits
can be determined using the same ciphertext bytes used to reveal the mask L.

As a first step toward retrieving L, we collect several masks that share certain
mask bytes only. From Eq. (1) and Fig. 1(b), we note that the doubling operation
used in XEX mode causes the secret mask L = (L00, L01, ..., L33) to shift by one
bit to the left for each block in the message. Moreover, we note that the only
bits of L that are potentially changed in this process are those in the final byte,
L33, of L. Thus, after eight shifts, all of the bytes in the original mask L - except
for L00 and L33 - will appear again in 28L, but shifted a whole byte to the left.
Likewise, all but three bytes of L will appear in 216L and the original byte L32

appears a total of fifteen times as:{
L32, (28L)31, (216L)30, (224L)23, (232L)22, (240L)21, (248L)20, (256L)13,
(264L)12, (272L)11, (280L)10, (288L)03, (296L)02, (2104L)01, (2112L)00

}

before being shifted out of L. In addition, Eq. (1) can be used to show that:

– there is a one-to-one relation between the values of (28L)33 and L00.
– the value of (28L)32 depends only on L00 and L33 such that L33 can be

determined uniquely from L00 and (28L)32.

292 H. Qahur Al Mahri et al.

The first of these results effectively gives us a sixteenth copy of L32 from
the mask byte (2120L)33. In total (for a sufficiently long message), we can have
up to sixteen copies of L32, as shown in Fig. 3 in AppendixC. (We have denoted
(2120L)33 as L

′
32 in this figure.)

In some situations, 16 repetitions of the same byte are not sufficient to deter-
mine the byte’s value with high probability. One way to overcome this problem
is to increase the number of repetitions by using two bytes rather than one.
For example, if we use the byte L32 and the byte (28L)32, then each byte will
repeat 16 times. In addition to these 32 repetitions, we can calculate the value of
the byte (2128L)32 since we know both (2120L)33 and (2120L)00. This new byte
(2128L)32 will also repeat another 16 times. In summary, each of the two bytes
L32 and (28L)32 will repeat 16 times and the combination of the two will repeat
16 more times. At the end, we have 48 occurrences depending only on 16 bits.
The same concept applies if we take three bytes or more. In the case of three
bytes (24 bits), we can have 96 repetitions in total.

In the following experiments, we consider two fault models as in [12]. The first
model (we refer as fault model A) assumes that the attacker has a perfect control
on the faulty byte. The fault induces a constant value. The second fault model
(fault model B) assumes that the injected fault causes a bias to the targeted
byte. Let e be error uniformly distributed in [0, 255]. The two fault models are
as follows:

A. Stuck-at-zero with probability 1:

s
i,(r),(o)
jk = s

i,(r),(o)
jk AND 0 with probability 1.

B. Stuck-at-zero with probability 1/2:

s
i,(r),(o)
jk =

{
s

i,(r),(o)
jk AND 0 with probability 1/2

s
i,(r),(o)
jk AND e with probability 1/2

We will apply a fault attack to the internal state s at rounds 8 and 9 of the AES
encryption operation. As addressed in [2], these fault models are possible, but
for accurate value/location fault injections, high technical skills and high cost
might be needed. However, [2] emphasises that the inability to inject only the
desired fault does not imply the inability to induce the fault. In either case, our
paper outlines the vulnerability of the XEX mode if these faults are possible.

4.1 Fault Model A at Round 9

Suppose that a fault is injected on a certain byte at the end of round 9
(si,(9),(AK)

jk). For example, a fault is induced on the byte s
i,(9),(AK)
00 for the first

and second plaintext blocks (i ∈ {1, 2}) as shown in Fig. 4 in Appendix C.
The injected faults cause the two specified bytes to take a constant value.

The faulty bytes will be identical during propagation in the SubBytes, ShiftRow
and AddRoundKey operations of round 10 as follows:

Fault Attacks on XEX Mode 293

s
1,(10),(SR)
00 = s

1,(10),(SB)
00 = sbox[s1,(9),(AK)

00]

s
2,(10),(SR)
00 = s

2,(10),(SB)
00 = sbox[s2,(9),(AK)

00]

C[1]00 = s
1,(10),(SR)
00 ⊕ K10

00 ⊕ L00

C[2]00 = s
2,(10),(SR)
00 ⊕ K10

00 ⊕ (2L)00
C[1]00 ⊕ C[2]00 = L00 ⊕ (2L)00 = (3L)00

When we XOR C[1]00 and C[2]00, the two bytes s
1,(10),(SR)
00 and s

2,(10),(SR)
00

cancel each other since they are identical, and we obtain the value of (3L)00.
Note that our attack is based on the XOR of two consecutive blocks to obtain
(3L)00 and there is no need to find the subkey byte (K10

00).
Repeating the above experiment for blocks i ∈ {9, 10} will retrieve the byte

(28L)00 ⊕ (29L)00 = (283L)00 which is equivalent to (3L)01 (the second byte of
3L). Similarly, block i ∈ {17, 18} will enable us to determine the third byte of
3L, and so on. Thus, by inducing faults in 32 blocks of a cipher in XEX mode
we can retrieve the whole 3L mask, and consequently, we can easily obtain the
original mask L. (To determine the final byte (3L)33 it is necessary to adjust for
the known value of (3L)00.)

4.2 Fault Model A at Round 8

Assume that the fault is injected on a full diagonal at the end of round 8. For
example, we inject a fault to the state s

i,(8),(AK)
jk where i ∈ {1, 2} as shown in

Fig. 5 in Appendix C. The diagonal consists of four bytes that can have jk indexes
as: {00, 11, 22, 33}, {01, 12, 23, 30}, {02, 13, 20, 31} or {03, 10, 21, 32}. Injecting
faults to a full diagonal seems infeasible; however, in software implementation
running on 32-bit CPUs, a fault to one instruction can distribute to four bytes
(see for example [9]).

In this case, we have one MixColumn operation. Hence, we need to know one
full column of the internal state in order to reverse the MixColumn operation.
Again the injected faults make the four bytes in the diagonal a constant value
and they will remain identical through round 9 and 10. XOR-ing the ciphertext
blocks will retrieve four bytes of 3L mask. For instance, if faults are injected into
the diagonal {00, 11, 22, 33}, then the bytes {(3L)00, (3L)13,(3L)22, (3L)31} will
be retrieved.

Repeating the experiment with another faulty diagonal for plaintext blocks
i ∈ {9, 10}, will retrieve four bytes of the mask 28(3L). However, note that these
retrieved bytes are each shifted one byte to the left of the bytes in the mask 3L.
Hence, four diagonal fault injections can retrieve the original mask L completely.
That is, in total, we need 8 faulty blocks where each block has a faulty diagonal.

4.3 Fault Model B at Round 9

Unlike fault model A, the fault induced by fault model B does not give a fixed
output. Thus, we need to collect several faulty bytes that share the same mask

294 H. Qahur Al Mahri et al.

byte and apply a statistical fault analysis with a distinguisher in order to pre-
dict the correct value for this mask byte from all possible hypothetical values. As
discussed in Sect. 4, with reference to Fig. 3 in Appendix C, the position of the
target byte will move through the various locations in the mask 2i−1L as subse-
quent blocks of the message are processed, so we will need to fault different bytes
of the AES encryption operation for different message blocks. For our attack, we
will use the hamming weight distinguisher, which chooses the hypothetical mask
value that minimises the average hamming weight for the faulty stuck bytes.

Retrieving One Byte. As in Sects. 4.1 and 4.2, we aim to obtain information
on the content of the mask 2i3L. If we retrieve 2i3L completely, then we can
easily calculate the original mask L.

Suppose that a fault is injected on a certain byte at the end of round 9
(si,(9),(AK)

jk). The byte index (jk) will vary depending on the value of the block
index (i). The attack is performed in four steps as follows:

1. Collect ciphertext bytes that share two mask bytes {(2iL)32, (2i+8L)32}. At
the beginning of Sect. 4 we have seen that a maximum of 48 faulty ciphertext
bytes can be collected that share two mask bytes.

2. Collect another 48 faulty ciphertext bytes that share two mask bytes
{(2i+1L)32, (2i+9L)32} from blocks consecutive to the blocks in step 1. The
index of each faulty byte in the first set is the same as the index of the
corresponding faulty byte in the second set.

3. XOR the two faulty ciphertext bytes in each pair from consecutive blocks to
eliminate the shared subkey byte and obtain only two mask bytes {(2i3L)32,
(2i+83L)32}, and their continued mask {(2i+1283L)32.

4. Use the hamming weight distinguisher to predict the correct value for
{(2i3L)32, (2i+83L)32} and their continued mask {(2i+1283L)32 from 216

possible candidates.

An example of this process is presented in greater detail in Appendix A.

Retrieving All Bytes. Extending this attack to determine the remaining mask
bytes requires careful manipulation of the fault injections. The timing of consecu-
tive fault injections is critical to the success of the attack. If the process to recover
a byte after a fault injection is still in progress, injecting a subsequent fault will
cause multiple faults in the internal state. This makes the attack impractical.
However, allowing a delay after recovering the first byte before injecting the
subsequent fault results in the first retrieved mask byte being shifted out of the
internal state. The retrieved byte is no longer useful.

All of the bytes in a mask can be obtained by performing fifteen consecutive
iterations of fault injections with the appropriate timing as discussed above. This
means that any internal state contains at most two faulty bytes. Most modern
devices come with 16-bit or 32-bits registers which makes faulting two bytes at
a time feasible. This approach is discussed in detail at the end of Appendix A.

Fault Attacks on XEX Mode 295

We simulate the proposed fault attacks in Sect. 4.3 using 128-bit AES. The
attacks are developed in C on a standard desktop computer. We compute the
success rate over 1000 iterations using different plaintext messages and nonces.
We find that 96 faulty ciphertext bytes are enough to allow one byte in the secret
mask to be retrieved with a success rate of 99.9%. Under the same conditions,
the attack can be extended to recover the entire 128-bit secret mask with a
success rate of 99.2%. For details of these simulations refer to Appendix B.

5 Application to Authenticated Encryption Modes

We examined AE schemes that use the doubling masking technique including
the candidates of the ongoing CAESAR competition: OTR, COPA, ELmD and
SHELL; and other AE modes, such as ISO 19772 OCB2 [17]. All of these AE
block cipher modes use the masking technique of XEX/XE mode.

A summary of the relevance of our techniques against the secret masks in
these authenticated encryption modes is presented in Table. 1. The (�) mark
indicates that the fault attack technique in the corresponding section of our
paper can be applied to the mode, whereas the (×) mark indicates that our
technique can not be applied. Note that attacks in Sect. 4 cannot be applied to
OTR as OTR is XE-based and not XEX-based.

The (�) symbol in Table. 1 indicates that the secret mask in these modes can
be retrieved more effectively by direct application of SFA [11] than our technique
in Sect. 4 since the masks are constant-based. Note that our attack is directly
applicable to OCB2 whereas attacks in [11] are not.

Table 1. Summary of our attacks on secret masks in certain AE modes.

AE mode Classification Mask type Our fault attack technique

Sect. 3 Sect. 4

COPA XEX Constant-based � ��

ELmD XEX Constant-based � ��

SHELL XEX Constant-based � ��

OCB2 XEX Nonce-based � �
OTR XE Nonce-based � ×

6 Countermeasures

The success of the fault attacks we have presented depends on the properties
of the primitive polynomial used to construct the finite field for updating mask
values in XEX mode. The polynomial used in Sect. 2.3 (also adopted by OCB2,
COPA, ELmD, SHELL and OTR) is sparse and the feedback is obtained only
from bits located in the final byte. Changing the mask updating function is one

296 H. Qahur Al Mahri et al.

approach to prevent our attacks. We outline two alternative techniques for the
mask updating function so that the proposed attack are not applicable.

The technique in the CAESAR candidate, OCB3, is an alternative option
for updating masks which makes our attacks irrelevant. In OCB3 [13], although
OCB3 still uses the doubling mechanism, masks depend on an index and each
mask is XOR-ed with the prior one which prevents the repetition of mask bytes.

Another approach to preclude our attacks is to use a different function for
incrementing masks. Krovetz and Rogaway [13] investigate several maximal 128-
bit Linear Feedback Shift Registers (LFSRs); their internal states could be used
as secret masks. An example of an efficient maximal LFSRs that has performance
comparable to the doubling masking is:

S(X,Y) = (Y, (X � 1) ⊕ (X � 1) ⊕ (Y ∧ 148))

where |X| = |Y | = 64. This LFSR does not include the most significant bit of
the previous mask to increment the next one and does not allow repetition of
mask bytes. Thus, using this LFSR for incrementing masks will avoid our attack.

7 Conclusion

The masking technique in XEX mode acts as a barrier to the fault attack meth-
ods commonly used to recover the secret key of the underlying block cipher. This
paper presented different fault attack techniques against the generic XEX mode
for block ciphers by targeting the secret masks used.

Firstly, we demonstrated three fault attack methods that convert XEX mode
into ECB mode by forcing the secret mask L to zero. Injecting a permanent fault
into a bit (or a byte) anywhere in the register containing the secret mask L,
except for the final byte, will overcome the masking barrier after only 128 (resp.
16) blocks. This can also be achieved using transient faults on a few consecutive
message blocks. For software implementations of XEX mode, we demonstrated
that L can be eliminated through skipping instruction faults.

Secondly, instead of eliminating L, we provided a detailed ciphertext-only
attack to retrieve L. The polynomial used in the doubling masking technique
allows repetition of mask bytes. We used SFA with a collection of faulty cipher-
text blocks to retrieve L bytes. Finding the secret mask enables retrieving the
key using the same faulty blocks.

Thirdly, we verified the ciphertext-only attacks to retrieve L through simu-
lations. In the case of fault model B, we found that the success rate of retrieving
one byte of L is 99.9%, and that of retrieving the entire mask is 99.2%.

In addition, we identified certain authenticated encryption modes that are
susceptible to our proposed fault attack techniques. These modes all used XEX
with a primitive polynomial that makes them vulnerable to our attack.

Our work demonstrates that it is the mask updating function that makes
XEX vulnerable to these fault attacks. Hence, an efficient solution to preclude
these attacks is to change this primitive polynomial used for updating the mask.

Fault Attacks on XEX Mode 297

Appendix A: Practical Example for a Fault Attack Using
Fault Model B

Retrieving One Byte. We demonstrate the fault attack in Sect. 4.3 with the
following example:

Steps [1–2]. We first collect (2 × 48 = 96) faulty bytes in which 48 bytes share
the two mask bytes {L32, (28L)32}, and the other 48 bytes share their consecu-
tive mask bytes {(2L)32, (29L)32}. These 96 bytes can be obtained using three
sets: A, B and G, where each set contains 32 consecutive blocks (see Fig. 6). Set
A shares the two mask bytes {L32, (2L)32}, set B shares {(28L)32, (29L)32} and
set G shares {(2128L)32, (2129L)32}. Remember that the mask bytes (2128L)32
and (2129L)32 are continued masks of {L32, (28L)32} and {2L32, (29L)32} respec-
tively.

The targeted block indexes in each set are:
Set A:

i ∈
{

1, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121,
2, 10, 18, 26, 34, 42, 50, 58, 66, 74, 82, 90, 98, 106, 114, 122

}
Set B:

i ∈
{

9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121, 129,
10, 18, 26, 34, 42, 50, 58, 66, 74, 82, 90, 98, 106, 114, 122, 130

}
Set G:

i ∈
{

129, 137, 145, 153, 161, 169, 177, 185, 193, 201, 209, 217, 225, 233, 241, 249
130, 138, 146, 154, 162, 170, 178, 186, 194, 202, 210, 218, 226, 234, 242, 250

}

The index (jk) of the faulty ciphertext byte corresponds to each block in
every row of all sets A, B and G is:

jk ∈ {
32, 31, 30, 23, 22, 21, 20, 13, 12, 11, 10, 03, 02, 01, 00, 33

}
However, to target each ciphertext byte, we inject a fault to its corresponding
internal state byte s

i,(9),(AK)

jk′ where k
′
= (k + j) mod 4. The faulty ciphertext

byte indexes are not the same as the targeted internal byte indexes because of
the last ShiftRow operation.

Step 3. XOR-ing two ciphertext bytes of the same index jk from two consecutive
blocks will give the following result:

C[i + 1]jk = s
i+1,(10),(SR)
jk ⊕ K10

jk ⊕ 2iLjk

= 2iLjk ⊕ K10
jk ⊕ s

i+1,(10),(SB)

jk′

= 2iLjk ⊕ K10
jk ⊕ sbox[si+1,(9),(AK)

jk′]

C[i + 2]jk = 2i+1Ljk ⊕ K10
jk ⊕ sbox[si+2,(9),(AK)

jk′]

C[i + 1]jk ⊕ C[i + 2]jk = (2i3L)jk ⊕ sbox[si+1,(9),(AK)

jk′] ⊕ sbox[si+2,(9),(AK)

jk′]

298 H. Qahur Al Mahri et al.

where k
′
= (k+j) mod 4. We calculate the value of (C[i+1]jk ⊕C[i+2]jk) from

every two consecutive blocks in each set. This yields the following equations:
Set A:

C[i + 1]jk ⊕ C[i + 2]jk = (3L)32 ⊕ sbox[si+1,(9),(AK)

jk′] ⊕ sbox[si+2,(9),(AK)

jk′]

Set B:

C[i + 1]jk ⊕ C[i + 2]jk = (283L)32 ⊕ sbox[si+1,(9),(AK)

jk′] ⊕ sbox[si+2,(9),(AK)

jk′]

Set G:

C[i + 1]jk ⊕ C[i + 2]jk = (21283L)32 ⊕ sbox[si+1,(9),(AK)

jk′] ⊕ sbox[si+2,(9),(AK)

jk′]

where the value of (21283L)32 is uniquely determined by the values of (3L)32 and
(283L)32, as discussed previously. Each set gives 16 values for (C[i+1]jk ⊕C[i+
2]jk), and in total 48 values.

The sbox in AES is resistant against differential analysis. Thus, knowing the
XOR of sbox[si+1,(9),(AK)

jk′] and sbox[si+2,(9),(AK)

jk′] neither uniquely determines

s
i+1,(9),(AK)

jk′ nor s
i+2,(9),(AK)

jk′ . However, the injected faults will bias the faulty
internal bytes to the all-zero byte. We, therefore, proceed by assuming that one
of the faulty bytes is zero, namely that s

i+2,(9),(AK)

jk′ = 0. This assumption is
valid 50% of the time only. We then apply our statistical distinguisher to the
value of s

i+1,(9),(AK)

jk′ that is determined by this assumption.

Step 4. For each of the 216 candidates for (3L)32 and (283L)32, compute the
value for s

i+1,(9),(AK)

jk′ in sets A, B and G. By completing this step, we will

have 48 values for s
i+1,(9),(AK)

jk′ for each of the 216 candidates. Use the hamming
weight distinguisher to predict the correct value for (3L)32 and (283L)32 and
their continued mask (21283L)32.

Retrieving All Bytes. This attack requires a message of at least 3722 full
blocks encrypted using 128-bit AES in XEX mode. Note that this attack does
not require all the 3722 blocks to be faulted. The steps to retrieve the entire
mask L (see Fig. 7 in Appendix C) are as follows:

1. For blocks (1 ≤ i ≤ 250), perform the fault attack, as in Sect. 4.3 and the
example at the beginning of this appendix, on certain blocks (shown as orange
bytes in Fig. 7) to retrieve the two mask bytes {(3L)32, (283L)32} and their
continued byte (21283L)32.
Note that the byte (21283L)32 continues to appear as (21363L)31, · · · ,
(22403L)00, (22483L)33.

2. For blocks (1 + 248j) ≤ i ≤ (250 + 248j) where j ∈ {1, . . . , 15}, perform the
same attack in step 1. Each iteration is shown in Fig. 7 as successive coloured
bytes as yellow, blue, pink, . . . , lime.
Each iteration retrieves extra bytes and starts just after the previous one.

Fault Attacks on XEX Mode 299

3. Work backwards to calculate the mask bytes and begin with the last faulty
block (shown as lime in Fig. 7). Use Eq. (1) during the transition from one
iteration of faults to the previous iteration. For example, we can calculate
(234643L)33 (grey byte) from (234643L)00 (pink byte) and (234723L)32 (lime
byte). That is, the byte retrieved in the last iteration is not lost.

4. Repeat this approach working backward every 250-block iteration until we
retrieve the entire 21283L.
Note that any internal state contains at most two faulty bytes.

5. Compute the original mask L from 21283L using the primitive polynomial.

Appendix B: Experimental Results

We ran a simulated experiment to retrieve one byte of a secret mask given faulty
ciphertexts only and using the attack method in Sect. 4.3 cis extended to retrieve
the entire L mask. The experiment uses 128-bit AES as the underlying block
cipher. We implemented this using the C language and the GNU GCC compiler
run on a desktop computer.

To simulate fault model B, we used the pseudo-random C function rand() and
the AES with different input messages to determine when the fault should occur.
In either case, we used one bit of the output to determine when the stuck-at-zero
action occurs. These generated faults are injected to AES in XEX mode.

Retrieving One Byte. As a preliminary step, we performed several sub-
experiments with different numbers of faulty bytes to determine how many faulty
bytes are needed to obtain a high success rate. We started with 2 faulty bytes
that share one mask byte and increase by 2 for every following iteration till the
number of faulty bytes is 32 such that every targeted block has only one faulty
byte. For each iteration, we computed the success rate over 1000 simulations
using different plaintext messages and nonces. We performed these experiments
twice: one run uses faults generated from the rand() function and the second
uses faults from the output of AES in XEX mode.

Secondly, we computed the success rate for the attack using 96 faulty bytes,
as described in Sect. 4.3 and Appendix A. This approach provides the hamming
weight distinguisher with 48 faulty bytes that share only two mask bytes.

The results of this experiment are presented in Table 2 for the number of
faulty bytes ranging from 2 to 32 and lastly 96. Note that the success rates in
both columns are close to each other. Note also that only the last row provides
a high success rate of at least 99.9%.

Finally, we evaluated the success rate to retrieve one mask byte considering
a more relaxed injection probabilities (p) to bias the faulty byte towards zero.
Figure 2 compares the success rate and data complexity for p ∈ {0.5, 0.375, 0.25}.
Note that the success rate is about 0.96 when p = 0.5 and about 0.87 when
p = 0.375 in case of (1 faulty byte/block), and these probabilities increase to

300 H. Qahur Al Mahri et al.

Table 2. Success rate of fault attacks using fault model B at round 9.

Number of
faulty bytes

Success Rate (1000 iterations)
rand() as PRF

Success Rate (1000 iterations)
AES as PRF

2 0.280 0.289

4 0.233 0.238

6 0.405 0.377

8 0.467 0.472

10 0.528 0.556

12 0.637 0.631

14 0.673 0.703

16 0.753 0.744

18 0.787 0.790

20 0.821 0.839

22 0.873 0.861

24 0.885 0.888

26 0.909 0.901

28 0.930 0.929

30 0.940 0.936

32 0.957 0.956

96 0.999 0.999

Fig. 2. Success rate to determine one mask byte for different probabilities.

Fault Attacks on XEX Mode 301

0.999 and 0.975 respectively in case of (2 faulty bytes/block). That is, for low
injection probabilities, if an attacker is able to fault more bytes per block, the
success rate will increase.

Retrieve the Whole Mask. We performed an experiment to demonstrate the
success rate of retrieving the entire secret mask 21283L as discussed in Sect. 4.3
and Appendix A. Each byte is retrieved using 96 faulty bytes. The success rate is
also computed over 1000 different plaintext messages each of length 3722 blocks
and each with a different nonce. We found that the success rate to retrieve
every bit in the mask 221443L is 99.2% when using AES as the pseudo-random
function, and 99.3% when using the rand() function.

Appendix C: Figures

Fig. 3. Masks containing the byte L32.

302 H. Qahur Al Mahri et al.

Fig. 4. Graphical representation of round 9 attack to retrieve the value of (3L)00.

Fig. 5. Graphical representation of round 8 attack to retrieve four bytes in L.

Fault Attacks on XEX Mode 303

Fig. 6. Mask bytes targeted according to the position of faulty bytes.

Fig. 7. Technique to retrieve all bytes of 21283L. (Color figure online)

304 H. Qahur Al Mahri et al.

References

1. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. IACR Cryptology ePrint Archive 2004, 100 (2004)

2. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on
cryptographic devices: theory, practice, and countermeasures. Proc. IEEE 100(11),
3056–3076 (2012)

3. Bernstein, D.J.: Cryptographic competitions: CAESAR (2014). http://
competitions.cr.yp.to/caesar-submissions.html

4. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). doi:10.1007/BFb0052259

5. Blömer, J., Krummel, V.: Fault based collision attacks on AES. In: Breveglieri,
L., Koren, I., Naccache, D., Seifert, J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp.
106–120. Springer, Heidelberg (2006). doi:10.1007/11889700 11

6. Blömer, J., Seifert, J.-P.: Fault based cryptanalysis of the advanced encryption
standard (AES). In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45126-6 12

7. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997). doi:10.1007/3-540-69053-0 4

8. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002)

9. Dehbaoui, A., Mirbaha, A.-P., Moro, N., Dutertre, J.-M., Tria, A.: Electromagnetic
glitch on the AES round counter. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol.
7864, pp. 17–31. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40026-1 2

10. Dey, P., Rohit, R.S., Adhikari, A.: Full key recovery of ACORN with a single fault.
J. Inf. Sec. Appl. 29, 57–64 (2016)

11. Dobraunig, C., Eichlseder, M., Korak, T., Lomné, V., Mendel, F.: Statistical fault
attacks on nonce-based authenticated encryption schemes. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 369–395. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-53887-6 14

12. Fuhr, T., Jaulmes, É., Lomné, V., Thillard, A.: Fault attacks on AES with faulty
ciphertexts only. In: FDTC, pp. 108–118. IEEE Computer Society (2013)

13. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21702-9 18

14. Minematsu, K.: Improved security analysis of XEX and LRW modes. In: Biham, E.,
Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 96–113. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-74462-7 8

15. Mukhopadhyay, D.: An improved fault based attack of the advanced encryption
standard. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 421–
434. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02384-2 26

16. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45238-6 7

17. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30539-2 2

http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/BFb0052259
http://dx.doi.org/10.1007/11889700_11
http://dx.doi.org/10.1007/978-3-540-45126-6_12
http://dx.doi.org/10.1007/3-540-69053-0_4
http://dx.doi.org/10.1007/978-3-642-40026-1_2
http://dx.doi.org/10.1007/978-3-662-53887-6_14
http://dx.doi.org/10.1007/978-3-642-21702-9_18
http://dx.doi.org/10.1007/978-3-540-74462-7_8
http://dx.doi.org/10.1007/978-3-642-02384-2_26
http://dx.doi.org/10.1007/978-3-540-45238-6_7
http://dx.doi.org/10.1007/978-3-540-30539-2_2

Fault Attacks on XEX Mode 305

18. Saha, D., Mukhopadhyay, D., Chowdhury, D.R.: A diagonal fault attack on the
Advanced Encryption Standard. IACR Cryptology ePrint Archive 2009, 581 (2009)

19. Schmidt, J., Herbst, C.: A practical fault attack on square and multiply. In: FDTC,
pp. 53–58. IEEE Computer Society (2008)

20. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski,
B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003). doi:10.1007/3-540-36400-5 2

21. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced
encryption standard using a single fault. In: Ardagna, C.A., Zhou, J. (eds.) WISTP
2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21040-2 15

22. Yen, S., Joye, M.: Checking before output may not be enough against fault-based
cryptanalysis. IEEE Trans. Comput. 49(9), 967–970 (2000)

http://dx.doi.org/10.1007/3-540-36400-5_2
http://dx.doi.org/10.1007/978-3-642-21040-2_15
http://dx.doi.org/10.1007/978-3-642-21040-2_15

How to Handle Rainbow Tables
with External Memory

Gildas Avoine1,2,5, Xavier Carpent3, Barbara Kordy1,5,
and Florent Tardif4,5(B)

1 INSA Rennes, Rennes, France
2 Institut Universitaire de France, Paris, France
3 University of California, Irvine, Irvine, USA

4 University of Rennes 1, Rennes, France
5 IRISA, UMR 6074, Rennes, France

florent.tardif@irisa.fr

Abstract. A cryptanalytic time-memory trade-off is a technique that
aims to reduce the time needed to perform an exhaustive search. Such a
technique requires large-scale precomputation that is performed once for
all and whose result is stored in a fast-access internal memory. When the
considered cryptographic problem is overwhelmingly-sized, using an exter-
nal memory is eventually needed, though. In this paper, we consider the
rainbow tables – the most widely spread version of time-memory trade-
offs. The objective of our work is to analyze the relevance of storing the
precomputed data on an external memory (SSD and HDD) possibly min-
gled with an internal one (RAM). We provide an analytical evaluation of
the performance, followed by an experimental validation, and we state that
using SSD or HDD is fully suited to practical cases, which are identified.

Keywords: Time memory trade-off · Rainbow tables · External memory

1 Introduction

A cryptanalytic time-memory trade-off (TMTO) is a technique introduced by
Martin Hellman in 1980 [14] to reduce the time needed to perform an exhaustive
search. The key-point of the technique resides in the precomputation of tables
that are then used to speed up the attack itself. Given that the precomputation
phase is much more expensive than an exhaustive search, a TMTO makes sense
in a few scenarios, e.g., when the adversary has plenty of time for preparing
the attack while she has a very little time to perform it, the adversary must
repeat the attack many times, or the adversary is not powerful enough to carry
out an exhaustive search but she can download precomputed tables. Problems
targeted by TMTOs mostly consist in retrieving the preimage of a hashed value
or, similarly, recovering a cryptographic key through a chosen plaintext attack.

Related Work. Since Hellman’s seminal work, numerous variants, improvements,
analyses, and successful attacks based on a TMTO have been published.
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 306–323, 2017.
DOI: 10.1007/978-3-319-60055-0 16

How to Handle Rainbow Tables with External Memory 307

There exist so two major variants: the distinguished points [12] introduced by
Ron Rivest and the rainbow tables [24] proposed by Philippe Oechslin. According
to Lee and Hong [20], the rainbow tables outperform the distinguished points,
though. As a consequence, we focus on the rainbow tables only, although most
of our results might apply to other approaches as well. It is also worth noting
that there exist time-memory-data trade-offs [8,13,17], which are particularly
(but not only) relevant for attacking stream ciphers. We do not consider this
particular family in this work.

Several algorithm-based improvements of the original rainbow table method
have been suggested. They reduce either the average running time of the attack
or the memory requirement, which are actually directly related to each other. In
practice, any, even tiny gain can have a significant impact. Important improve-
ments published so far include the checkpoints [5], the fingerprints [1], the delta-
encoding storage [2], and the heterogeneous tables [3,4]. For more details about
the analysis of TMTOs and their variants, we refer the reader to [7,15,16,19].

Technology-related enhancements have also been suggested, for example
on the implementation of TMTOs on specialized devices such as GPUs or
FPGAs [10,21,23,25]. GPU indeed provide a lot of parallel processing power
at very affordable prices, and were therefore considered as a support of the rain-
bow scheme, but as far as hash function are involved, they are mainly used,
e.g. in commercial products, to perform exhaustive searches. However, improve-
ments benefiting from the technological advances in data storage have not yet
been addressed so much. Most scientific articles published so far assume that the
tables fit into the internal memory (RAM). In such a case, accessing the memory
is fast enough to be neglected in the evaluation of the TMTO performance. As
a consequence, only the computational cost of the cryptographic function to be
attacked is considered in the analytic formulas [24]. Nevertheless, implemented
tools, e.g., OphCrack [29] and RainbowCrack [27], deal with large-space prob-
lems that tend to outweigh the available internal memory. The tools must then
use both the internal memory and some external memory. The algorithms used
to balance the tables between the memories are poorly documented. To the best
of our knowledge, only Kim, Hong, and Park [18] and Spitz [28] formally address
this issue. In their article, Kim et al. explain which algorithms the existing tools
use.

Finally, examples of successful attacks based on TMTO include (but are not
limited to) breaking A5/1 [9] and LILI-128 [26], cracking Windows LM-Hash
passwords [24] and Unix passwords [22], recovering keys from Texas Instru-
ments’ digital signature transponders [11] and from Megamos Crypto vehicle
immobilizers [30].

Contribution. Storing rainbow tables in an external memory has been ignored
up to now because this approach was considered impractical with mechanical
hard disk drives (HDD). Indeed, HDDs are efficient in sequential reads but per-
form poorly when random accesses to the disk are required. TMTOs rely mostly
on random accesses to the precomputed tables. However, storage devices improve
a lot these years. In particular, solid state drives (SSD) are much faster than

308 G. Avoine et al.

HDDs and, although they are still expensive, their price has already decreased
significantly. SSDs provide smaller latencies than HDDs because they do not
have mechanical parts.

In this paper, we study the behavior of the rainbow tables when they do
not fit in RAM. We consider two algorithms. The first one, provided by Lee
and Hong in [20], consists in storing the tables in an external memory (Lee and
Hong consider the SSD case only) and then filling the RAM with as many table
rows as possible; the memory is then emptied and refilled with the subsequent
rows. The second algorithm, which we suggest, consists in keeping the tables in
the external memory and performing direct accesses to that memory. RAM is
very fast but also very expensive, and its size is still quite limited today. SSD
is slower but reasonably priced. Finally, HDD is slow but also very cheap. We
analyze the relevance of storing the precomputed data on an external memory
(SSD and HDD) possibly mingled with an internal one (RAM). We provide an
analytical evaluation of the performance, followed by an experimental validation,
and we state that using SSD or HDD is fully suited to practical cases, which are
identified in the following sections.

2 Primer on Rainbow Tables

2.1 Mode of Operation

Let h : A → B be a one-way function, defined as being a function that is easy
to compute but practically impossible to invert. Such a function is typically a
cryptographic hash function. Given the image y in B of a value in A, the problem
we want to solve is to find the preimage of y, i.e., x in A satisfying h(x) = y.
The only way to solve the problem consists in picking values in A until the
equation holds. This approach is called a brute force or an exhaustive search if
the set A is exhaustively visited. The attack is practical if the set A is not too
large. Providing a numerical upper bound is difficult because it depends on the
running time of h, on the available processing resources, and on the time that
can be devoted to the attack. Roughly speaking, an academic team can today
easily perform 248 cryptographic operations during a single day, using a cluster
of CPUs. Nonetheless, if the attack is expected to be repeated many times, e.g.,
to crack passwords, then restarting the computations from scratch every time is
cumbersome. A TMTO consists in performing heavy precomputations once, to
make the subsequent attacks less resource-consuming.

2.2 Precomputations

Building Tables. The objective of the precomputations is to build tables, which
is done by computing matrices first. As depicted in Fig. 1, a matrix consists
of a series of chains built by iterating alternatively h and reduction functions
ri : B → A, such that ri maps any point in B to an arbitrary point in A, in an
efficient and uniformly distributed fashion. The starting points of the chains are

How to Handle Rainbow Tables with External Memory 309

Fig. 1. Matrix computed from m starting points.

chosen arbitrarily and the chains are of fixed length t, which defines the end-
ing points. This process stops when the number of chains with different ending
points is deemed satisfactory. A table then consists of the first and last columns
of the matrix, and the remaining intermediary values are discarded. A table
is said rainbow if the reduction functions ri, for 1 ≤ i ≤ t − 1, are all differ-
ent, while a single reduction function used all along the table leads to classical
Hellman-like tables. Rainbow tables are then usually filtered to remove dupli-
cated ending points: such tables are called clean rainbow tables [2,4] or perfect
rainbow tables [6,24]. Similarly, we have clean matrices.

Maximum Size. A table of maximal size is obtained when the starting points
fully cover the set A. Given that the functions ri are not injective, many chains
collide, though, and the number of rows in a clean rainbow table is consequently
much smaller than N . Let t be the chain length, then the maximum number of
rows in a table is provided by Oechslin in [24]:

mmax =
2N

t + 1
. (1)

Success Rate. The success rate of a clean rainbow table is the probability P for
a random value in A to appear in the associated matrix:

P = 1 −
(
1 − m

N

)t

≈ 1 − e
mt
N . (2)

We observe that the maximum probability is obtained when m = mmax, and the
maximum probability consequently tends towards 86% when t tends to infinity.
To increase this success rate, several tables can be used. For instance, for � = 4
tables, the success rate is greater than 99.9%.

2.3 Attack

Procedure. Given y ∈ B, the attack consists in retrieving x ∈ A, such that
h(x) = y. To do so, a chain starting from y is computed and the check whether

310 G. Avoine et al.

the generated value matches one of the ending points from the table is performed
at each iteration.

Given that the reduction functions are different in every column, the attack
procedure is quadratic with respect to the chain length. It is also worth noting
that the process is applied to the � tables, and the optimal order of search is to go
through each table at the same pace. This means that the right-most unvisited
column of each table is explored, then the process is iterated until the left-most
columns are reached.

Once a matching ending point is found, the corresponding starting point
stored in the table is used to recompute the chain until reaching y. If the latter
does not belong to the rebuilt chain, then we say that a false alarm occurred.
False alarms exist because the reduction functions ri are not injective. Then, the
process goes on, until y is found in a column more on the left or the tables have
been fully explored.

Evaluation. The analytic formula to evaluate the number of h-operations that
are required on average to recover a preimage is given by Avoine, Oechslin, and
Junod in [6]:

T ≈ γ
N2

M2
, (3)

where γ is a small factor that depends on c = mt
N (the matrix stopping constant)

and � (the number of tables), and M = m�. See e.g. Theorem 2 in [20].

3 Performance of the Algorithms

3.1 Terminology and Assumptions

Rainbow tables can be stored in either internal memory (RAM) or external mem-
ory (e.g., SSD or HDD). An alternative is to use two complementary memories,
e.g., RAM & SSD or RAM & HDD to benefit from the advantages of both of
them.

The attack presented in Sect. 2, possibly combined with practical improve-
ments, works on a single internal or external memory. It consists in performing
direct lookups into the memory for matching ending points. We refer to it as
AlgoDLU (for Direct Look Up). The software Ophcrack [29] employs AlgoDLU in
the case when only RAM is used. Kim, Hong, and Park analyze in [18] another
algorithm, hereafter denoted AlgoSTL, that is used by RainbowCrack [27] and
rcracki-mt [32]. Note that tables are generated the same way, regardless of the
algorithm used for the attack. A same set of table can thus be used for AlgoDLU

or AlgoSTL interchangeably.
We describe below these algorithms and analyze their performance, taking

both computation time and access time into account. In the rest of this paper,
AlgoDLU/RAM, AlgoDLU/SSD, and AlgoDLU/HDD refer to AlgoDLU using respectively
RAM, SSD, or HDD only. The same holds for AlgoSTL/SSD and AlgoSTL/HDD

which refer to AlgoSTL using SSD and HDD respectively in addition to the RAM
(RAM-only AlgoSTL is not meaningful).

How to Handle Rainbow Tables with External Memory 311

The model used throughout this paper is the following. The attack (excluding
the precomputation phase) is performed on a single computer with access to
RAM and external memory (SSD or HDD). We denote τF the time (seconds)
taken for the CPU to compute an iteration of h. For the external memory, we
use two parameters – τS and τL – which revolve around the concept of page
which is the smallest amount of external memory that can be addressed by the
system. The seek time τS (seconds) corresponds to the time taken to read a
single random page. The sequential read time τL (seconds) is the time to read a
page during the read of many consecutive pages.

When the tables fit in RAM, the costs of a memory access and of an h-
operation are of the same order of magnitude, i.e., a few hundred CPU cycles.
However, the number of memory accesses grows linearly with the length of the
table, while the number of h-computations is quadratic. Consequently, when
the table is wide enough, the memory access time can be neglected (i.e., τS =
τL = 0), and the attack time is equal to T multiplied by the cost of a single
h-operation.

3.2 AlgoDLU

The algorithm AlgoDLU is the attack described in Sect. 2.3. Its performance is
provided in Theorem 1.

Theorem 1. AlgoDLU’s average wall-clock time is TDLU = γ N2

M2 τF + N
m log2 mτS.

Proof. The first term of TDLU is the portion of the time used by computations.
The second term corresponds to the overhead of seeking data in the memory. As
already stated in [6], the attack performs N

m lookups on average in order to find
a preimage. Each lookup requires log2 m seeks in the memory if a dichotomic
search is performed. Finally, each seek costs τS seconds on average.

We now look at the case where the memory that is used is RAM. In such
a case, the algorithm AlgoDLU/RAM is based on the assumption that the tables
entirely reside in RAM, and no external memory is used. It takes advantage of
fast RAM accesses given that we assume the RAM access time is negligible. In
this case, the previous theorem is simplified and leads to Corollary 1.

Corollary 1. AlgoDLU/RAM’s average wall-clock time is TRAM = γ N2

M2 τF .

3.3 AlgoSTL

The algorithm AlgoSTL, described by Kim, Hong, and Park in [18], significantly
differs from the other algorithm, mainly because the attack starts with comput-
ing all the t possible chains from the value y in B whose preimage is looked for.
The tables are then loaded in RAM according to the following procedure. Given
the k-th table tablek (1 ≤ k ≤ �), containing m ordered pairs (starting point,
ending point), a sub-table of tablek is a table that contains m/s ordered pairs

312 G. Avoine et al.

belonging to tablek. In AlgoSTL, tables are stored in an external memory (SSD
or HDD) and each of them is partitioned into s non-overlapping sub-tables of a
given size. Each of the s sub-tables are loaded into RAM, one at a time, which
explains the acronym of the algorithm: Sub-Table Loading. For each sub-table
loaded, the t possible chains are used to discover matching endpoints and discard
false alarms, as it is done in AlgoDLU/RAM.

The efficiency of AlgoSTL is investigated in [18] and summarized in
Theorems 2 and 3. The proofs are provided in [18].

Theorem 2. AlgoSTL’s average wall-clock time is

TSTL = L · τL + F · τF , (4)

where L = mP
cβ , F = δ N2

L2 , δ ≈ P 3

β2

(
1

2(1−e−c) + 1
6 − c

48

)
, and where c = mt

N < 2, β

is the number of table entries (starting point – ending point pair) per page, and
P = 1 − e−c� is the total probability of success.

Theorem 3. In optimal configuration, that is when the memory is of optimal
size for a given problem, AlgoSTL’s average wall-clock time is

T ∗
STL =

3
2

2
3
τ

2
3
L τ

1
3

F δ
1
3 N

2
3 , (5)

and the memory associated to this situation corresponds to

m =
(

β
τF

τL

) 1
3

(
1

1 − e−c
+

1
3

− c

24

) 1
3

cN
2
3 .

Compared with [18], note that we changed the notations R̄tc to δ, R̄tc to γ, c̄
to c, and R̄ps to P , for consistency with the other algorithms and other notations
in the literature. Also note that the definition of R̄tc (δ) is inconsistent in [18] –
sometimes multiplied by a factor of β2. We chose to stick with the approximation
used in Theorem 2, which corresponds to Proposition 5 in [18].

AlgoSTL has an optimal amount of memory at which it operates. This is
because T = O

(
m + 1

m2

)
. Beyond a certain threshold, the decrease of the F

factor fails to compensate for the increase of the L factor. This behavior is
further commented on in Sect. 5.

The value s (number of sub-tables per table) is thoroughly discussed in [18].
If s is too small, sub-tables are very large, and when the search ends, it is likely
that significant time was wasted loading the last sub-table. If s is too big, read
operations are done on a small amount of memory, which is sub-optimal. As
stated in [18] however, the value of s has relatively little impact on the efficiency
of AlgoSTL, provided it is “reasonable” (ranging from 45 to 100 in the examples
discussed in [18]). In what follows, we assume such a reasonable s is used.

How to Handle Rainbow Tables with External Memory 313

4 Algorithm Constants

The algorithms analyzed in this paper rely on the τS , τL and τF parameters heav-
ily. These are machine-specific constants which can only be determined exper-
imentally. We measured these values for the configuration used in our experi-
mental validation of AlgoDLU, presented in Sect. 6.

4.1 Experimental Setup

The measurements have been done on a single machine with an Intel E5-1603
v3 CPU clocked at 2.8 GHz, and with 32 GB of RAM available. It uses Intel
SSD DC-3700 external memory with a capacity of 400 GB, which is separated
from the disk containing the operating system.

The Intel SSD use Non-Volatile Memory Express technology, so-called NVMe,
which is an interface that provides smaller latencies, by connecting the SSD
directly via PCI-Express to the processor and memory instead of going through
an intermediate controller. This also allows for better stability in measurements.

4.2 Determination of Values for τS, τL and τF

The time measurements are made with the processor’s internal time stamp
counter, via the RDTSC instruction. This instruction is constant with respect
to the power management re-clocking, and is synchronized across all cores on
this CPU model. The processor does not have dynamic over-clocking, i.e., Turbo
Boost capabilities, so the time stamp counter always increments 2.8 billion times
per seconds. This allows for accurate measurements up to nanosecond precision.

Computation Time τF . We use the MD5 hash function as the one-way function
h. We assume that, during the execution of the TMTO, the CPU is warmed-up,
i.e., it is running at its nominal frequency, which is expected in usual conditions.
In this case, the time taken by successive applications of h is constant. We have
estimated the time τF taken by a single application of h by averaging over the
measurement of 106 applications of h, which gives τF = 1.786 · 10−7 s.

Sequential Block Read Time τL. In the context of external memory model with
sub-tables loading, the constant τL refers to the time taken to read a page on
disk during a sequential read of many blocks. The sub-tables are typically chosen
to reach the maximal read throughput of the disk, with sizes in the order of the
dozen or hundreds of megabytes. We note that, since disk have usually better
performance in sequential reads than in random access, we should have τL � τS .

We measured the time to load 1000 arbitrary random data files, of size rang-
ing from 10 to 500 MB, in a RAM allocated array. We obtained τL = 4.59 ·10−6 s
with a standard deviation σ = 0.73 · 10−6 s. For reference, the same test on a
5400 rpm HDD gave us τL = 20.99 · 10−6 s with σ = 7.65 · 10−6 s.

314 G. Avoine et al.

Single Block Read Time τS . We measured the time taken by successive single-
page reads of values at random positions in at least 1 GB files. Each read has
been measured separately. The value obtained, averaged over 500 measurements,
is τS = 149.6 · 10−6 s, σ = 20.7 · 10−6 s, which is indeed much larger than τL. On
HDD, we obtained τS = 7.41 · 10−3 s and σ = 3.79 · 10−3 s.

5 Analysis

This section compares the two algorithms described in Sect. 3 on different mem-
ory types and aims to characterize which of them has better performance depend-
ing on various parameters.

Analysis of AlgoSTL and comparison between AlgoSTL/HDD and AlgoDLU/RAM

was previously done in [18]. However, this comparison is limited in several ways.
Most importantly, it only accounts for AlgoSTL in optimal configuration, that is
with a fixed memory size. Furthermore, it only considers two data points of mem-
ory for AlgoDLU/RAM and one for AlgoSTL/HDD, and does not study AlgoDLU/HDD.
The conclusion drawn in [18] is that AlgoSTL is superior for large problems, but
the comparison is inconclusive for smaller problems.

In the analysis presented in the current paper, we overcome the aforemen-
tioned limitations and also study the case of the SSD memory. We base our
comparison on the “Small Search Space Example” given in [18], on which
AlgoDLU/RAM and AlgoSTL/HDD have been compared. The problem space cor-
responds to passwords of length 7 over a 52-character alphabet (standard key-
board), which gives N = 527 = 239.903. The other parameters are P = 0.999,
� = 4, c = 1.7269, δ = 0.73662/β2, γ = 8.3915, 16 bytes per chain (β = 256 for
4 KB pages). For τF , τL, τS , we use values obtained experimentally – see Sect. 4
for details on the methodology – instead of those given in [18]. The reason is
that in [18], τS was not provided and the constants emanated from a different
machine.

5.1 Comparing AlgoSTL and AlgoDLU

Figure 2(a) presents the average wall-clock time for the three algorithms for vary-
ing amount of memory available when a SSD is used. Note that AlgoDLU/RAM is
presented at a somewhat unfair advantage since it uses RAM instead of external
memory, and is only represented in Fig. 2(a) for completeness.

The main conclusions are the following: (1) The cost of AlgoSTL stops decreas-
ing beyond a certain amount of memory available. This is due to the fact that
the time taken for loading increasing amount of chains in RAM is not made up
for by the decrease in computation. It is assumed that the optimal amount of
external memory is used when possible, even when more is available. This also
means that AlgoSTL has an inherent minimal average search time which can never
be improved regardless of the memory available. AlgoDLU has no such threshold.
(2) The area (in terms of the external memory amount) where AlgoSTL is more
efficient than AlgoDLU is very small.

How to Handle Rainbow Tables with External Memory 315

Fig. 2. Average wall-clock time, depending on the memory available.

We can further elaborate that the curves for TSTL and TDLU do not intersect if
AlgoDLU is always more efficient, otherwise they intersect at two points (possibly
only one point in a degenerated case). Whether there are 0 or 2 (and the positions
of these) intersections depends on problem parameters (N , M , c, �) and machine
parameters (β, τF , τL, τS). To illustrate this, Fig. 2 shows the effect of changing
some parameters, with all other parameters left untouched.

– Fig. 2(b): When N = 256 the algorithm AlgoDLU is superior throughout.
– Fig. 2(c): The md5crypt function is 955 times slower than MD5. When used,

it gives τF = 0.171 ms, and AlgoDLU is again superior throughout.
– Fig. 2(d): Using a hard disk drive instead of SSD implies τS = 7.41 ms and

τL = 20.99µs. Expectedly, AlgoDLU suffers from longer seek time, and AlgoSTL

dominates on a larger area (but not globally).

316 G. Avoine et al.

5.2 Comparison with RAM

Figure 3 presents regions, in terms of RAM and external memory available, in
which each algorithm, completed with naive online brute-force and dictionary
methods, is the most efficient. Formulas for average wall-clock time described in
Sect. 3 were used for AlgoSTL and AlgoDLU. An average of N

2 τF is used for online
brute-force, and the dictionary method is assumed to dominate as long as it has
sufficient memory available, i.e., 16N bytes (MD5 hashes are 16 bytes).

It is difficult to conclude unequivocally on AlgoSTL and AlgoDLU, as their
respective performances highly depend on parameters. It can however be

Fig. 3. Regions, in terms of RAM and external memory, where each algorithm has
minimum time, in four different scenarios.

How to Handle Rainbow Tables with External Memory 317

observed that (1) AlgoDLU typically outperforms AlgoSTL on large problems, and
when h is expensive; and (2) the seek time is of crucial importance for AlgoDLU,
which performs poorly compared to AlgoSTL on devices (such as hard disk) with
slow seek time but high sequential read performance.

5.3 HDD and SSD

Figure 4 compares the performances of AlgoDLU and AlgoSTL on SSD and HDD.
The dashed line represents points where SSD memory and HDD memory are
equal. Nowadays, HDD memory is cheaper than SSD, which corresponds to the
region above this line.

5.4 Discussion

Conclusion of the Comparisons. The various comparisons done in this section
show that many parameters influence the choice of the algorithm and mem-
ory type to use, and it is difficult to make a simple judgment as to
which is best. These parameters include problem parameters (N,M, c, �) and
machine/technology parameters (β, τF , τL, τS). A few observation can be made
however.

– AlgoDLU performs better on larger problem spaces than AlgoSTL.
– AlgoDLU performs better on slower hash functions than AlgoSTL.
– AlgoSTL handles better than AlgoDLU the use of slower memories such as HDD.
– In many scenarios, a large portion of where AlgoSTL is most appropriate is
not in its optimal configuration.

– In some scenarios, the region where AlgoSTL is most appropriate is also close
to the typical memory size.

Fig. 4. Regions, in terms of SSD and HDD memory, where each algorithm has minimum
time.

318 G. Avoine et al.

Limits of the Analysis. First of all, our results and observations are based on the
measures given in Sect. 4. Using a particularly fast or slow HDD, for instance,
might influence the results in a non-negligible way. Likewise, using clusters of
many disks to reach high quantities of memory might affect τS and τL enough
that the conclusions would be different.

Furthermore, the analysis is based on Sect. 3, and does not consider optimiza-
tions such as checkpoints [1,5], endpoint truncation [1,20], and prefix/suffix or
compressed delta encoding for chain storage [2]. Likewise, it does not consider
optimizations exploiting the architecture, such as loading sub-tables while com-
puting chains in AlgoSTL.

Including these optimizations would make the analysis much more complex,
and we believe that taking them into consideration would not change our con-
clusions. While some optimizations might favor one algorithm more than the
other, it is very unlikely that the frontiers between regions of best performance
would shift significantly.

6 Experimentation

We have set up experiments in order to validate the analytical results described in
Sects. 3 and 5. The formulas established in Sect. 3 assume that AlgoDLU/SSD and
AlgoDLU/HDD do not use RAM at all. We show that, in reality, these algorithms
actually do use RAM because operating systems use cache techniques to speed
up lookups. Thus, a value read from an external memory is temporarily saved in
cache to prevent (to some extent) from accessing the external memory again to
get the same value. As a consequence, the results provided in Sect. 3 correspond
to upper bounds in practice. We refine the formulas to take the caching effect into
account, and we then show that the refined formulas describe more accurately
the experimental results.

6.1 Parameters and Methodology

We have conducted the experiments on two problems of size N = 231 and 236,
using the MD5 hash function for a number of columns t ∈ {100, 200, . . . , 900}.
The size of the problems allowed us to precompute the matrices in a reasonable
time frame. For the 236-problem, the precomputation of the full matrix took 5 h
on 400 processor cores. Sorting the ending points and removing the duplicated
ones required a couple of days due to the network latencies.

For each problem, � = 4 tables were computed with a matrix stopping con-
stant of c = 1.92 (m = 0.96mmax), giving P ≈ 0.999. Each (starting point,
ending point) pair is stored on 8 and 16 bytes for N = 231 and N = 236 respec-
tively. The tables are clean and ordered with respect to the ending points.

To evaluate the average running time of AlgoDLU, we average the measured
attack time for the hashes of 1000 randomly-generated values in the problem
space. The timings were based on the processor timestamp counter (RDTSC). In
order to keep the experiments independent, the environment is reset before each

How to Handle Rainbow Tables with External Memory 319

tests. Indeed there are side effects to be expected due to the way the operating
system handles files, some of which also affect the measurements themselves. We
discuss them in the subsequent sections.

6.2 Paging and Caching Mechanisms

For every access to data stored on external memory, the full page containing
the data is actually returned to the operating system. Since the 60 s, the paging
mechanism is based on 4 KB pages in most operating systems and external
memories [31].

Due to the caching mechanism, the data is not fetched directly from the
external memory every time we perform a lookup. Instead, the page containing
the data is first copied from the external memory to the internal memory, and
only then it can be read. Such a mechanism allows the system to speed up
memory accesses: as long as the internal memory is not reclaimed for another
use, the content of the page remains in it. This means that, if the same page is
accessed again, it can be retrieved directly from the internal memory instead of
waiting for the external memory.

If several lookups are performed on values that are located close enough in
the external memory, then only the earliest lookup will require accessing the
external memory. This phenomenon happens when a lookup is performed in
the dichotomic search. As a consequence, at some point, every external memory
access fetches elements that are located in the same page. Taking paging and
caching mechanisms into account, Theorem 1 can be refined to yield Theorem 4.

Theorem 4. Given β (starting points, ending points) pairs per page. Taking the
paging and caching mechanisms into account, AlgoDLU’s average wall-clock time
is

TDLU = γ
N2

M2
τF +

N

m
(log2 m − log2 β) · τS . (6)

Proof. The loading of pages instead of single values corresponds to a dichotomic
search tree that is log2 β levels shallower. Thus, each lookup consists in log2 m−
log2 β page loads instead of log2 m.

6.3 Reducing the Caching Impact

To get proper experimental results and bypass the operating system’s built-in
caching mechanism, we use a cache eviction technique and restrain the internal
memory allocated to the program.

Every page that remains in memory after each experiment needs to be reset
to a blank state. We use the madvise system call to tell the kernel that no
additional pages are required. Although the kernel could ignore the setting and
keep the pages in memory anyway, it did not seem to happen in our experiments.
Alternative methods exist, such as requesting a cache drop, but they might affect
the experiments by wiping data needed by the operating system.

320 G. Avoine et al.

We also restrain the internal memory that the program can use to a few
megabytes, using the cgroup kernel subsystem. Software limitation was used
instead of physically limiting the internal memory because physical limitation
may cause the operating system to starve for memory, which would greatly affect
the results.

6.4 Experimental Results

As expected, our implementation of AlgoDLU/RAM, which mainly depends on τF ,
follows closely the curve given by Corollary 1.

The experimental results concerning AlgoDLU are presented in Fig. 5. The
dashed curves are computed from the revised formula for AlgoDLU, provided by
Eq. (6). For each problem, we give the timings when the RAM is restrained (line
with dots) and when it is not (line with triangles).

Some caching can still be noticed on the curves, but trying to restrain RAM
even further resulted in failures which could be explained by the fact that there
is no distinction for the OS between file caching and the caching of the exe-
cutable itself. Thus, we have to overprovision the RAM to be certain that the
program itself does not starve during the execution. Nevertheless, we observe
that the experimental curve is below the analytic dashed-line curve. This con-
firms that Eq. (6) is a more accurate upper bound to the practical wall-clock
time of AlgoDLU than the formula of Theorem 1.

Finally, we remark that even though we have restrained RAM drastically,
we can notice the gain in time due to the caching done by the OS. The zones
concerning AlgoDLU in Fig. 2 would therefore have smaller areas, in practice. The
impact of the native caching operated by the OS is difficult to predict with exact
precision, though.

Fig. 5. TMTO attack average online running time per column, on 1000 hashed values

How to Handle Rainbow Tables with External Memory 321

7 Conclusion

In this paper, we have studied the use of external memory for time-memory
trade-offs based on rainbow tables. The use of external memory is motivated by
large problems for which precomputed tables are too big to fit in RAM. Two
approaches were compared: the first one relying on the classical AlgoSTL algo-
rithm which takes advantage of RAM by processing sub-tables in internal mem-
ory; and the second, based on the AlgoDLU algorithm, which uses the standard
RAM-based rainbow table algorithm directly on external memory (we are not
aware of public implementations or analyses of AlgoDLU on external memory).

We evaluate the two algorithms and compare their efficiency on different
memory types and different problem parameters. Conclusions are subject to
parameters, but several major observations are made. AlgoDLU performs better
than AlgoSTL on larger problem spaces, slower hash functions, and faster mem-
ories. At the very least, it is not the case that AlgoSTL is unequivocally more
efficient on larger problems, contrarily to what was previously thought.

Costs of the various memory types were not considered formally in our analy-
sis because of the great variability in prices and setups. Very roughly speaking,
we can observe that nowadays, a gigabyte of RAM costs between 5 and 20 times
more than a gigabyte of SSD, which itself costs between 3 and 8 times more
than a gigabyte of HDD. Such prices and comparisons might help an imple-
menter make an educated decision regarding the memory type to use.

We implemented AlgoDLU and validated its efficiency analysis (analysis and
validation of AlgoSTL was previously done in [18]). It shows that the analysis is
close, but in fact pessimistic due to caching in RAM. Exploiting the RAM in
addition to external memory might give an extra edge to AlgoDLU. Optimizations
on AlgoSTL might exist as well, such as computing chains and loading tables in
parallel. Analysis of such optimizations, along with other algorithmic optimiza-
tions on rainbow tables and other trade-off variants might be an interesting
continuation of this work.

Acknowledgments. This work has been partly supported by the COST Action
IC1403 (Cryptacus). Xavier Carpent was supported, in part, by a fellowship of the
Belgian American Educational Foundation.

References

1. Avoine, G., Bourgeois, A., Carpent, X.: Analysis of rainbow tables with finger-
prints. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 356–374.
Springer, Cham (2015). doi:10.1007/978-3-319-19962-7 21

2. Avoine, G., Carpent, X.: Optimal storage for rainbow tables. In: Lee, H.-S.,
Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 144–157. Springer, Cham
(2014). doi:10.1007/978-3-319-12160-4 9

3. Avoine, G., Carpent, X.: Heterogeneous rainbow table widths provide faster crypt-
analyses. In: ACM Asia Conference on Computer and Communications Security
- ASIACCS 2017, ASIA CCS 2017, Abu Dhabi, UAE, pp. 815–822. ACM, April
2017

http://dx.doi.org/10.1007/978-3-319-19962-7_21
http://dx.doi.org/10.1007/978-3-319-12160-4_9

322 G. Avoine et al.

4. Avoine, G., Carpent, X., Lauradoux, C.: Interleaving cryptanalytic time-memory
trade-offs on non-uniform distributions. In: Pernul, G., Ryan, P.Y.A., Weippl, E.
(eds.) ESORICS 2015. LNCS, vol. 9326, pp. 165–184. Springer, Cham (2015).
doi:10.1007/978-3-319-24174-6 9

5. Avoine, G., Junod, P., Oechslin, P.: Time-memory trade-offs: false alarm detection
using checkpoints. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.)
INDOCRYPT 2005. LNCS, vol. 3797, pp. 183–196. Springer, Heidelberg (2005).
doi:10.1007/11596219 15

6. Avoine, G., Junod, P., Oechslin, P.: Characterization and improvement of time-
memory trade-off based on perfect tables. ACM Trans. Inf. Syst. Secur. 11(4),
17:1–17:22 (2008)

7. Barkan, E.P.: Cryptanalysis of ciphers and protocols. Ph.D. thesis, Technion -
Israel Institute of Technology, Haifa, Israel, March 2006

8. Biryukov, A., Mukhopadhyay, S., Sarkar, P.: Improved time-memory trade-offs
with multiple data. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897,
pp. 110–127. Springer, Heidelberg (2006). doi:10.1007/11693383 8

9. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In: Goos, G., Hartmanis, J., Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS,
vol. 1978, pp. 1–18. Springer, Heidelberg (2001). doi:10.1007/3-540-44706-7 1

10. Bitweasil: Cryptohaze (2012). http://cryptohaze.com/. Accessed 19 Apr 2017
11. Bono, S., Green, M., Stubblefield, A., Juels, A., Rubin, A., Szydlo, M.: Security

analysis of a cryptographically-enabled RFID device. In: USENIX Security Sympo-
sium - USENIX 2005, Baltimore, Maryland, USA, pp. 1–16. USENIX, July–August
2005

12. Denning, D.E.: Cryptography and Data Security, p. 100. Addison-Wesley, Boston
(1982)

13. Dunkelman, O., Keller, N.: Treatment of the initial value in time-memory-data
tradeoff attacks on stream ciphers. Inf. Process. Lett. 107(5), 133–137 (2008)

14. Hellman, M.: A cryptanalytic time-memory trade off. IEEE Trans. Inf. Theory IT
26(4), 401–406 (1980)

15. Hoch, Y.Z.: Security analysis of generic iterated hash functions. Ph.D. thesis, Weiz-
mann Institute of Science, Rehovot, Israel, August 2009

16. Hong, J., Jeong, K.C., Kwon, E.Y., Lee, I.-S., Ma, D.: Variants of the distinguished
point method for cryptanalytic time memory trade-offs. In: Chen, L., Mu, Y.,
Susilo, W. (eds.) ISPEC 2008. LNCS, vol. 4991, pp. 131–145. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-79104-1 10

17. Hong, J., Sarkar, P.: New applications of time memory data tradeoffs. In: Roy, B.
(ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 353–372. Springer, Heidelberg
(2005). doi:10.1007/11593447 19

18. Kim, J.W., Hong, J., Park, K.: Analysis of the rainbow tradeoff algorithm used in
practice. IACR Cryptology ePrint Archive (2013)

19. Kim, J.W., Seo, J., Hong, J., Park, K., Kim, S.-R.: High-speed parallel imple-
mentations of the rainbow method in a heterogeneous system. In: Galbraith, S.,
Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 303–316. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34931-7 18

20. Lee, G.W., Hong, J.: Comparison of perfect table cryptanalytic tradeoff algorithms.
Des. Codes Crypt. 80(3), 473–523 (2016)

21. Lu, J., Li, Z., Henricksen, M.: Time-memory trade-off attack on the GSM
A5/1 stream cipher using commodity GPGPU - (extended abstract). In: Malkin,
T., Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS,
vol. 9092, pp. 350–369. Springer, Cham (2015). doi:10.1007/978-3-319-28166-7 17

http://dx.doi.org/10.1007/978-3-319-24174-6_9
http://dx.doi.org/10.1007/11596219_15
http://dx.doi.org/10.1007/11693383_8
http://dx.doi.org/10.1007/3-540-44706-7_1
http://cryptohaze.com/
http://dx.doi.org/10.1007/978-3-540-79104-1_10
http://dx.doi.org/10.1007/11593447_19
http://dx.doi.org/10.1007/978-3-642-34931-7_18
http://dx.doi.org/10.1007/978-3-319-28166-7_17

How to Handle Rainbow Tables with External Memory 323

22. Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: Cracking Unix passwords
using FPGA platforms. SHARCS - Special Purpose Hardware for Attacking Cryp-
tographic Systems, February 2005

23. Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: Time-memory trade-off attack
on FPGA platforms: UNIX password cracking. In: Bertels, K., Cardoso, J.M.P.,
Vassiliadis, S. (eds.) ARC 2006. LNCS, vol. 3985, pp. 323–334. Springer, Heidelberg
(2006). doi:10.1007/11802839 41

24. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45146-4 36

25. Jean-Jacques, Q., Francois-Xavier, S., Rouvroy, G., Jean-Pierre, D., Jean-Didier, L.:
A cryptanalytic time-memory tradeoff: first FPGA implementation. In: Glesner, M.,
Zipf, P., Renovell, M. (eds.) FPL 2002. LNCS, vol. 2438, pp. 780–789. Springer,
Heidelberg (2002). doi:10.1007/3-540-46117-5 80

26. Saarinen, M.-J.O.: A time-memory tradeoff attack against LILI-128. In: Daemen, J.,
Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 231–236. Springer, Heidelberg
(2002). doi:10.1007/3-540-45661-9 18

27. Shuanglei, Z.: Rainbowcrack (2017). http://project-rainbowcrack.com/. Accessed
19 Apr 2017

28. Spitz, S.: Time memory tradeoff implementation on Copacobana. Master’s thesis,
Ruhr-Universität Bochum, Bochum, Germany, June 2007

29. Tissières, C., Oechslin, P.: Ophcrack (2016). http://ophcrack.sourceforge.net/.
Accessed 19 Apr 2017

30. Verdult, R., Garcia, F.D., Ege, B.: Dismantling megamos crypto: wirelessly lock-
picking a vehicle immobilizer. In: Proceedings of the 22nd USENIX Security Sym-
posium - USENIX 2013, Washington, DC, USA, pp. 703–718, August 2013

31. Weisberg, P., Wiseman, Y.: Using 4KB page size for virtual memory is obsolete.
In: Proceedings of the IEEE International Conference on Information Reuse and
Integration - IRI 2009, Las Vegas, Nevada, USA, pp. 262–265, August 2009

32. Westergaard, M., Nobis, J., Shuanglei, Z.: Rcracki-mt (2014). http://tools.kali.org/
password-attacks/rcracki-mt. Accessed 19 Apr 2017

http://dx.doi.org/10.1007/11802839_41
http://dx.doi.org/10.1007/978-3-540-45146-4_36
http://dx.doi.org/10.1007/3-540-46117-5_80
http://dx.doi.org/10.1007/3-540-45661-9_18
http://project-rainbowcrack.com/
http://ophcrack.sourceforge.net/
http://tools.kali.org/password-attacks/rcracki-mt
http://tools.kali.org/password-attacks/rcracki-mt

Improved Factoring Attacks on Multi-prime
RSA with Small Prime Difference

Mengce Zheng1,2(B), Noboru Kunihiro2, and Honggang Hu1

1 Key Laboratory of Electromagnetic Space Information, CAS,
University of Science and Technology of China, Hefei, China

hghu2005@ustc.edu.cn
2 The University of Tokyo, Tokyo, Japan

zheng@it.k.u-tokyo.ac.jp, kunihiro@k.u-tokyo.ac.jp

Abstract. In this paper, we study the security of multi-prime RSA with
small prime difference and propose two improved factoring attacks. The
modulus involved in this variant is the product of r distinct prime factors
of same bit-size. Zhang and Takagi (ACISP 2013) showed a Fermat-like
factoring attack on multi-prime RSA. In order to improve the previous
result, we gather more information about the prime factors to derive r
simultaneous modular equations. The first attack is based on combining
r equations to solve one multivariate modular equation by a generic
lattice approach. Since the equation form is similar to multi-prime Φ-
hiding problem, we propose the second attack by applying the optimal
linearization technique. We also show that our attacks can achieve better
bounds in the experiments.

Keywords: Cryptanalysis · Multi-prime RSA · Small prime difference ·
Factoring attack · Lattice · Linearization technique

1 Introduction

1.1 Background

RSA [20] is a famous public key cryptosystem that has been widely used in var-
ious settings. However, the original RSA is not fit for some constrained environ-
ments. Since people need faster and more efficient RSA encryption/decryption
processes, several variants have been proposed and surveyed [3]. In this paper,
we focus on a variant called multi-prime RSA. It is described as follows.

Key Generation. Generate r distinct primes p1, p2, . . . , pr of same bit-size and
modulus N =

∏r
i=1 pi. Pick a random number that is coprime to ϕ(N) =∏r

i=1(pi − 1) as the public key e and compute the corresponding private key
d = e−1 mod ϕ(N).

Encryption. Transform the message string into an integer M ∈ ZN and com-
pute the ciphertext as C = Me mod N .

c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 324–342, 2017.
DOI: 10.1007/978-3-319-60055-0 17

Improved Factoring Attacks on Multi-prime RSA 325

Decryption. Compute Mi = Cdi mod pi for di = d mod (pi − 1), 1 ≤ i ≤ r.
Combine Mi’s by the Chinese Remainder Theorem to obtain the plaintext
M = Cd mod N .

This variant modifies the modulus to N = p1p2 · · · pr for r ≥ 3. It was
patented by Compaq [5], using a modulus of the form N = p1p2p3. We then discuss
the performance of multi-prime RSA. The advantage is the efficiency when using
Chinese Remainder Theorem in its decryption process. From [3], we know that the
asymptotic speedup over the standard RSA is approximately r2

4 . Moreover, ordi-
nary attacks such as small private exponent attack and partial key exposure attack
are less effective as r increases. But r should not be unrestrictedly large because
of the Elliptic Curve Method [18]. Since factoring a multi-prime RSA modulus
using ECM is much easier with increasing r, one might choose r = 3, 4 and 5 for
most settings. Generally speaking, multi-prime RSA with appropriate r might be
a practical alternative for reducing the decryption costs.

Without loss of generality, we have p1 < p2 < · · · < pr and 1
2N

1
r < p1 <

N
1
r < pr < 2N

1
r . The second one indicates that the prime factors are balanced,

which means that they are roughly of same bit-size. The prime difference Δ is
defined as Δ := maxi�=j |pi − pj | = pr − p1 = Nγ for 0 < γ < 1

r . The security
of multi-prime RSA has been investigated for small private exponent [4,13,14]
and for small prime difference [1,22,25,26].

Prime difference was introduced by de Weger [11] to show that one can find
an enhanced small private exponent attack with small prime difference. As for
multi-prime RSA, it is also applied to obtain some improvements. Thereafter
we review some related previous attacks. Suppose that N is a multi-prime RSA
modulus with r prime factors. Let e ≈ N be a valid public key and d = N δ be
its corresponding private key.

Bahig-Bhery-Nassr [1]. Given the prime difference Δ = Nγ and the public
key (N, e), then multi-prime RSA is insecure if γ and d satisfy

2d2 + 1 <
N

2
r −γ

6r
.

Zhang-Takagi [25,26]. Given the prime difference Δ = Nγ and the public key
(N, e), then d can be probabilistically found in time polynomial in log N if γ and
δ satisfy

δ < 1 −
√

1 + γ − 2
r
.

The bound was later refined to

δ < 1 −
√

1 + 2γ − 3
r

for γ ≥ 3
2r

− 1 + δ

4
,

δ <
3
r

− 1
4

− 2γ for γ <
3
2r

− 1 + δ

4
.

326 M. Zheng et al.

They also presented a Fermat-like factoring attack for

γ <
1
r2

.

Takayasu-Kunihiro [22]. Given the prime difference Δ = Nγ and the public
key (N, e), then d can be probabilistically found in time polynomial in log N if
γ and δ satisfy

δ < 1 −
√

1 + 2γ − 3
r

for
3
2
(
1
r

− 1
4
) ≤ γ <

1
r
,

δ < 1 − 2
3
(

√

(7 + 8γ − 12
r

)(1 + 2γ − 3
r
) − 1 − 2γ +

3
r
) for γ <

3
2
(
1
r

− 1
4
).

Notice that the condition 3
2r − 1+δ

4 in Zhang-Takagi attack degenerates
to − δ

4 for r = 6, and the condition 3
2 (1r − 1

4) in Takayasu-Kunihiro attack degen-
erates to 0 for r = 4. Thus, Zhang-Takagi attack and Takayasu-Kunihiro attack
depend on δ with γ < 1

r for larger r. In such cases, factoring attacks with quite
small γ are much more effective without any restriction on δ. The distinction
is the dependence on the private exponent and this is also the advantage of
factoring attacks.

1.2 Our Contribution

In this paper, we aim to factor the multi-prime RSA modulus with small prime
difference. More concretely, N can be factored in polynomial time under which
condition when given the multi-prime RSA modulus N that is the product of r
distinct primes and its prime difference Nγ .

Let xi = pi − p for i = 1, 2, . . . , r with |xi| = |pi − p| < pr − p1 = Nγ for
p = [N

1
r]. At ACISP 2013, Zhang and Takagi [25] solved xi from each equation

and computed prime factors by pi = xi + p. In our opinion, they only made use
of partial information about prime factors with prime difference. In contrast, we
transform the knowledge of all balanced prime factors with prime difference into
the following modular equations.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 + p = 0 mod p1,

x2 + p = 0 mod p2,

...
xr + p = 0 mod pr.

Our factoring problem is somewhat similar to multi-prime Φ-hiding problem
introduced by Kiltz et al. [16] because of the modular equation form. The defin-
ition of multi-prime Φ-hiding problem is given. Let N = p1 · · · pr be a composite
integer (of unknown factorization) with r distinct prime factors of same bit-size.
Given N and a prime e, decide whether e divides pi for 1 ≤ i ≤ r − 1 or not.

Improved Factoring Attacks on Multi-prime RSA 327

In order to solve multi-prime Φ-hiding problem, one can try to solve the
following simultaneous equations and then conclude that e is Φ-hidden in N or
not.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ex1 + 1 = 0 mod p1,

ex2 + 1 = 0 mod p2,

...
exr−1 + 1 = 0 mod pr−1.

There exist some differences between these two problems. In Φ-hiding prob-
lem, since it is not necessary to know the exact values of the unknowns but
enough to know if the equations can be solved, one can perform a linearization on
the product

∏r−1
i=1 (exi+1) and then decide if

∏r−1
i=1 (exi+1) = 0 mod p1p2 · · · pr−1

can be solved. Thus, it is like a “decision”-form problem. Our factoring problem
is like a “search”-form one because we must extract the value of every unknown
variable. In our optimized method, we can transform the factoring problem into
a “decision”-form problem and then apply the optimal linearization technique.

Another difference is that we do not have exr + 1 = 0 mod pr in Φ-hiding
problem. This special feature can be applied to improve the bound [24]. However
we can not directly use the same technique to solve the factoring problem.

Our improvements are based on two ideas. The first one is a direct method
by gathering all the equations together to solve an r-variate modular equation.
The drawback of this method is that the running time is exponential in r. So we
provide an optimized method by combining fewer equations. Inspired by Tosu
and Kunihiro [23], we can benefit from the optimal linearization technique with
fewer unknowns and less cost. Thus, we will obtain a great speedup and efficient
performance in the practical implementation.

We show that multi-prime RSA modulus with small prime difference can be
efficiently factored in the following cases due to various r’s.

– For r ≤ 6, we have

γ <
2

r(r + 1)
.

– For r ≥ 7 and an optimal l, we have

γ <
2

l + 1

(
1
r

) l+1
l

.

– For much larger r and the base of natural logarithm e, we have

γ <
2

er(log r + 1)
.

328 M. Zheng et al.

2 Preliminaries

2.1 Lattice Based Method

We briefly introduce lattice based method including the LLL algorithm [17],
Coppersmith’s technique [6–8], Howgrave-Graham’s lemma [15] and Coron’s
reformulation [9,10].

The technique is to construct a set of polynomials modulo R sharing the
common roots and then reduce them to the equations over the integers. After
transforming known parameters into constructed polynomials’ coefficients that
form a lattice basis matrix with dimension w. One can compute some short lattice
vectors whose norm is expected to be sufficiently small by the LLL algorithm.
Eventually, one can solve the desired roots. The LLL algorithm proposed by
Lenstra, Lenstra and Lovász [17] is practically used for finding approximately
small lattice vectors.

Lemma 1. Let L be a lattice with determinant det(L). The LLL algorithm out-
puts a reduced basis (v1, v2, . . . , vw) in polynomial time, and for 1 ≤ i ≤ w, the
reduced basis vectors satisfy

‖v1‖, ‖v2‖, . . . , ‖vi‖ ≤ 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i .

The following lemma presented by Howgrave-Graham [15] helps us to judge
whether the roots of a modular equation are also roots over the integers. To
a given polynomial g(x1, . . . , xn) =

∑
ai1,...,inxi1

1 · · · xin
n , its norm is defined as

‖g(x1, . . . , xn)‖2 :=
∑ |ai1,...,in |2.

Lemma 2. Let g(x1, . . . , xn) ∈ Z[x1, . . . , xn] be an integer polynomial that is a
sum of at most m monomials. Suppose that

1. ‖g(x1X1, . . . , xnXn)‖ ≤ R√
m

,

2. g(x(0)
1 , . . . , x

(0)
n) = 0 mod R for |x(0)

1 | ≤ X1, . . ., |x(0)
n | ≤ Xn.

Then we have g(x(0)
1 , . . . , x

(0)
n) = 0 over the integers.

The above fundamental lemmas give us the final condition, which is roughly
det(L) < Rw. Some RSA cryptanalytic applications [2,8,12] are derived from
such lattice based method. But Boneh and Durfee [2] have noted that solving
multivariate equations is heuristic because the polynomials derived from lattice
reduction algorithms are not guaranteed to be algebraically independent. In
order to extract the exact roots in practice, we rely on the following assumption.

Assumption 1. The polynomials derived from the LLL algorithm in lattice
based method are algebraically independent. Furthermore, the solution can be
efficiently found by Gröbner basis computations.

Our improved attacks can be reduced to solving multivariate linear equations
that was studied by Herrmann and May [12].

Improved Factoring Attacks on Multi-prime RSA 329

Lemma 3. Let ε > 0 and let N be a sufficiently large composite integer (of
unknown factorization) with a divisor p ≥ Nβ. Furthermore, let f(x1, . . . , xn) ∈
Z[x1, . . . , xn] be a linear polynomial in n variables. Under Assumption 1, we
can find solutions (x(0)

1 , . . . , x
(0)
n) of the equation f(x1, . . . , xn) = 0 mod p with

|x(0)
1 | ≤ Nη1 , . . . , |x(0)

n | ≤ Nηn if
n∑

i=1

ηi ≤ 1 − (n + 1)(1 − β) + n(1 − β)
n+1
n − ε.

The time complexity is polynomial in log N and (e/ε)n.

The lattice based algorithm was later improved by Lu et al. [19] and Takayasu
and Kunihiro [21]. Since the cryptanalysis is based on approximations, we neglect
the lower order terms and remove ε in our methods for simplicity.

2.2 Some Notations

We introduce the following notations for our methods.

– p denotes the value of rounding N
1
r to the nearest integer and it is mentioned

above as p = [N
1
r].

– σk
i denotes the elementary symmetric polynomial in k variables y1, . . ., yk of

degree i and it is defined by σk
i :=

∑
λ⊂{1,2,...,k},|λ|=i

(∏
j∈λ yj

)
.

– Qk denotes the product of k prime factors that are chosen from p1, p2, . . . , pr

and hence Qk is a divisor of N .
– Q′

k denotes the numerical value of the left side after solving the equation and
hence Q′

k is a multiple of Qk.

3 Improved Factoring Attacks

3.1 The Direct Method

As mentioned before, we gather all the equations together to solve an r-variate
modular equation. More concretely, we present the following factoring attack.

Proposition 1. Let N = p1 · · · pr be a multi-prime RSA modulus for p1 < · · · <
pr and pr−p1 = Nγ for 0 < γ < 1

r . Then under Assumption 1, N can be factored
in time polynomial in log N but exponential in r if

γ <
2

r(r + 1)
.

Our approach utilizes the equation form of multi-prime Φ-hiding problem. Let e
be the inverse of p modulo N , namely e = p−1 mod N . Then yi + p = 0 mod pi

can be rewritten as eyi + 1 = 0 mod pi and we obtain
⎧
⎪⎪⎨

⎪⎪⎩

ey1 + 1 = 0 mod p1,

...
eyr + 1 = 0 mod pr.

330 M. Zheng et al.

Combining all equations together gives us

r∏

i=1

(eyi + 1) =
r∑

i=1

eiσr
i + 1 = 0 mod N.

We have e = p−1 mod N that is equivalent to ep = 1 mod N . It can be reduced
to

∑r
i=1 eiσr

i + ep = 0 mod N and further

r∑

i=1

ei−1σr
i + p = 0 mod N.

Regarding each σr
i as a new variable makes

∑r
i=1 ei−1σr

i + p a linear equation.
We then figure out each ηi of |σr

i | < Nηi for i = 1, . . . , r and apply Lemma 3
with β = 1. It is not hard to know that ηi = iγ for 1 ≤ i ≤ r. Thus, the final
condition is

∑r
i=1 iγ < 1, which can be simplified to

γ <
2

r(r + 1)
.

After solving the linear equation, we obtain the values of σr
1, . . . , σ

r
r . Then

we extract x1, . . . , xr by solving xr − σr
1x

r−1 + · · · + (−1)rσr
r = 0 over the

integers. Finally, we compute the prime factors p1, . . . , pr for pi = xi + p. The
full description of the algorithm is given in Appendix A.1.

The running time depends on reducing the basis matrix and extracting the
common roots. The LLL algorithm can output the desired polynomials in time
polynomial in log N but exponential in r. This may be a drawback due to large r
and forces us to find more efficient method. The Gröbner basis computation for
finding the common roots is usually polynomial time in practice. Additionally,
one can obtain more polynomials derived from the LLL algorithm and hence the
Gröbner basis computation is suggested rather than resultant computation.

3.2 The Optimized Method

As described in the direct method, we still solve the factoring problem in the
view of a “search”-form problem. Its drawback is that the time complexity is
exponential in r. Consequently, the factoring attack becomes less efficient for
larger r.

When considering taking fewer equations to form one modular equation, we
have some interesting observations. We randomly choose k (2 ≤ k ≤ r − 1)
equations and obtain a new equation F (y1, . . . , yk) = 0 mod Qk. Fortunately, it
is enough to know the numerical value Q′

k of the left side and not necessary to
know exact values of y1, . . . , yk. Then, computing the greatest common divisor
gcd (Q′

k, N) gives us all combinations of k prime factors that indicate every prime
factor.

In fact, the factoring problem is refined to become of “decision”-form. Thus,
we can employ the optimal linearization similar to the technique proposed by

Improved Factoring Attacks on Multi-prime RSA 331

Tosu and Kunihiro [23] when solving multi-prime Φ-hiding problem. The idea
is to examine all possible linearization cases to find the optimal setting when it
can be efficiently solved. We present the optimized factoring attack below.

Proposition 2. Let N = p1 · · · pr be a multi-prime RSA modulus for p1 < · · · <
pr and pr−p1 = Nγ for 0 < γ < 1

r . Then under Assumption 1, N can be factored
in time polynomial in log N with an optimal l if

γ <
2

l + 1

(
1
r

) l+1
l

.

We consider combining k equations and performing a linearization of l (2 ≤
l ≤ k) variables. Note that the parameters k and l need to be decided later.
First, we have (y1 + p)(y2 + p) · · · (yk + p) = 0 mod Qk. It can be rewritten as
∑k

i=0 pk−iσk
i = 0 mod Qk. The expansion is

σk
k + pσk

k−1 + p2σk
k−2 + · · · + pk = 0 mod Qk.

Then, we apply a linearization for the case of l variables. Let t1, . . . , tl+1 be
the integers satisfying t1 = k > t2 > · · · > tl+1 = 0. We obtain

pk−t1u1 + pk−t2u2 + · · · + pk−tlul + pk = 0 mod Qk,

where ui :=
∑ti

j=ti+1+1 pti−jσk
j for 1 ≤ i ≤ l. For |yi| < Nγ , p ≈ N

1
r and γ < 1

r ,

we know that the bound is |ui| < N
ti−ti+1−1

r +(ti+1+1)γ . In other words, we have

ηi =
ti − ti+1 − 1

r
+ (ti+1 + 1)γ.

Thus, we can find the roots of the linear equation by Lemma 3 with β = k
r

and above ηi if
∑n

i=1 ηi < 1 − (l + 1)(1 − β) + l(1 − β)
l+1
l .

Then we have

γ <
l ·

(
k+1

r + (1 − k
r)

l+1
l − 1

)

l +
∑l

i=2 ti
.

The above bound reaches its maximum by setting (t1, t2, t3, . . . , tl) to be
(k, l − 1, l − 2 . . . , 1). The condition now is

γ <
2

l + 1

(
k + 1

r
+ (1 − k

r
)

l+1
l − 1

)

.

We can further optimize k to obtain the best bound on γ by calculating the
derivative on k. It can be verified that k = r − 1 is the most suitable choice.
Thus, we derive the condition

γ <
2

l + 1

(
1
r

) l+1
l

.

332 M. Zheng et al.

It means that we need to solve

u1 + pr−lu2 + · · · + pr−2ul + pr−1 = 0 mod Qr−1.

The optimal value of l can be discovered by numerical computation. For each
positive integer r ≤ 10, the optimal cases are l = 2 for r = 3, 4, 5, and l = 3 for
r = 6, 7, 8, 9, 10. To be specific, we show the final equations need to be solved in
our optimized method as follows.

– For r = 3, 4, 5, that is

u1 + pr−2u2 + pr−1 = 0 mod Qr−1.

– For r = 6, 7, 8, 9, 10, that is

u1 + pr−3u2 + pr−2u3 + pr−1 = 0 mod Qr−1.

As analyzed in [23], we set l ≈ log r for much larger r and the condition is
approximated

γ <
2

er(log r + 1)
,

where e is the base of natural logarithm. Therefore, we also present the factoring
attack for much larger r.

Proposition 3. Let N = p1 · · · pr be a multi-prime RSA modulus for p1 < · · · <
pr and pr−p1 = Nγ for 0 < γ < 1

r . Then under Assumption 1, N can be factored
in time polynomial in log N for much larger r if

γ <
2

er(log r + 1)
.

After solving the modular equation, we obtain the values of u1, . . . , ul. Then
we know all combinations of r − 1 prime factors by gcd (Q′

r−1, N). Finally, we
compute each prime factor by N

gcd (Q′
r−1,N) .

Note that we can find all prime factors by solving the linear equation once
because every combination (or product) of r − 1 prime factors is equivalent to
each other. Using l ≈ log r implies that our method works in time polynomial in
log N and r.

3.3 Discussions

Compare with the direct method, we have two improvements in our optimized
method. Firstly, we decrease the number of unknown variables and significantly
improve the practical performance for larger r. Secondly, we can achieve a better
bound for much larger r at the same time. But for r ≤ 6, the direct method offers
a higher bound and hence the factoring attack is still in polynomial time.

Improved Factoring Attacks on Multi-prime RSA 333

Note that the unknown variables ui’s in the optimized method are quite
unbalanced. So we make further improvement by applying better lattice con-
structions proposed by Takayasu and Kunihiro [21]. Here we omit the compli-
cated analysis and show another advantage. For r ≤ 10, the optimal l is always
2. It means that the final equation we need to solve in the optimized method is
u1 + pr−2u2 + pr−1 = 0 mod Qr−1. Thus, we further reduce the running time of
the optimized factoring attack. The full description of the optimized algorithm
and detailed lattice construction are given in Appendix A.2.

Table 1 shows the comparison of upper bound on γ due to above factoring
attacks for r ≤ 10. The fourth column provides the results using better lattice
construction that is discussed above. It is visible that our methods are superior.

Table 1. The comparison of upper bound on γ due to above factoring attacks

r Section 3.1 Section 3.2 Section 3.3 Zhang-Takagi [25]

3 0.1666 0.1283 — 0.1111

4 0.1000 0.0833 0.0835 0.0625

5 0.0666 0.0596 0.0608 0.0400

6 0.0476 0.0458 0.0474 0.0277

7 0.0357 0.0373 0.0387 0.0204

8 0.0277 0.0312 0.0327 0.0156

9 0.0222 0.0267 0.0282 0.0123

10 0.0181 0.0232 0.0248 0.0100

3.4 Experimental Results

We now state some experimental results to show the practical performance of
our methods. These experiments are carried out under Sage 7.3 running on a
laptop with Intel Core i7 CPU 2.70 GHz and 8 GB RAM. The numbers we
used are chosen uniformly at random and Assumption 1 is found to hold for the
experiments.

During the experiments, we collect many polynomials satisfying our require-
ments. In other words, we obtain enough sufficiently short vectors after running
the LLL algorithm. Hence, we extract the common roots by Gröbner basis com-
putation and finally attain the factorization of multi-prime RSA modulus.

We provide the experimental results on two attacks according to Sects. 3.1
and 3.2 (actually refined by Sect. 3.3), namely the γe1-column and γe2-column,
respectively. The γzt-column provides the experimental bound of Zhang-Takagi
method. The results about the comparison are showed in Table 2.

We firstly comment the experiments for r = 3. We reduce a 220-dimensional
lattice for the direct method while we use a lattice whose dimension is 300 for
the optimized method. A 1536-bit multi-prime RSA modulus can be successfully
factored by a 174-bit prime difference by the direct method. While using the

334 M. Zheng et al.

Table 2. The experimental results of upper bound on γ

r γzt γe1 γe2

3 0.1109 0.1132 0.1120

4 0.0620 — 0.0750

5 0.0396 — 0.0533

6 0.0275 — 0.0337

7 0.0202 — 0.0286

optimized method, a 172-bit difference leads to the factorization of a 1536-bit
modulus. Thus, we conclude that the direct method performs better for r = 3
with roughly similar lattice setting. On the other hand, we observe that the
optimized method runs much faster, which is predicted above.

For 4 ≤ r ≤ 7, we use the optimized method with lattices whose dimension is
around 300 since it is more efficient. We carry out experiments for much smaller
moduli with almost the same lattice setting and they work much better. We
also do experiments for moduli of the same size with various lattice dimensions
for r = 3, 4. The results become better as the lattice dimension increases. So
the lattice dimension may be a critical limitation that influences the practical
performance of lattice based methods. The optimized bounds for 4 ≤ r ≤ 7
showed in the γe2-column are those observed in the experiments with much
smaller moduli. More details are given in Appendix B.

4 Conclusions

Factoring attack works better than small private exponent attack on multi-prime
RSA with much smaller prime difference, and the former removes the restriction
on the private exponents. We further upgrade the insecure bound on the prime
difference and propose improved factoring attacks based on lattice approach and
the optimal linearization technique.

To summarize, our factoring attacks make significant improvements by taking
full knowledge of the small prime difference. We combine more equations rather
than only one equation to solve the factoring problem. Furthermore, applying
the optimal linearization technique on unknown variables helps us to reduce the
time cost and obtain better results.

For our factoring attacks on multi-prime RSA modulus with r primes, solving
an r-variate linear equation constructed by r simultaneous modular equations
is preferred for r ≤ 6. And solving an l-variate (l depends on r) linear equation
constructed by r − 1 equations is preferred for r ≥ 7. Both factoring attacks can
be done in polynomial time.

Improved Factoring Attacks on Multi-prime RSA 335

Acknowledgments. The first author is supported by China Scholarship Council
Grant No. 201606340061. This research was partially supported by JST CREST Grant
Number JPMJCR14D6, Japan and JSPS KAKENHI Grant Number 16H02780, and
National Natural Science Foundation of China (Grant Nos. 61522210, 61632013), 100
Talents Program of Chinese Academy of Sciences, and the Fundamental Research Funds
for the Central Universities in China (Grant No. WK2101020005).

A Algorithms

A.1 The Direct Method

Algorithm 1. The direct method (Sect. 3.1)
Input: Multi-prime RSA modulus N with r and small prime difference Nγ .
Output: The factorization N = p1 · · · pr.

1: Compute p = [N
1
r] and e = p−1 mod N .

2: Construct the linear modular equation with unknown variables σr
i :

σr
1 + e1σr

2 + · · · + er−1σr
r + p = 0 mod N.

3: Figure out ηi’s that are related to the bounds Nηi on σr
i for 1 ≤ i ≤ r:

|σr
i | < N iγ .

4: Extract each σr
i by applying Lemma 3.

5: Solve xr − σr
1xr−1 + · · · + (−1)rσr

r = 0 over the integers.
6: Set pi = p + xi in increasing order with roots xi for 1 ≤ i ≤ r.

A.2 The Optimized Method

In Takayasu-Kunihiro lattice construction, we carefully work out the selection of
polynomials by considering the sizes of root bounds. For example, we deal with
u1 + pr−2u2 + pr−1 = 0 mod Qr−1 in our optimized method. We use ui2

2 (u1 +
pr−2u2 + pr−1)i1Nmax{t−i1,0} as the shift polynomials with positive integers m
and t that will be optimized later. The indexes i1 and i2 satisfy 0 ≤ i1 + i2 ≤ m
and 0 ≤ γ1i1 + γ2i2 ≤ βt in order to select as many helpful polynomials as
possible and to let the basis matrix be triangular.

Thus, the shift polynomials modulo pt have the common roots for u1 and u2.
We span a lattice by the coefficient vectors of above shift polynomials and the
equations are derived from the reduced LLL basis vectors. The small roots can
be easily recovered by Gröbner basis computation.

336 M. Zheng et al.

Algorithm 2. The optimized method (Sect. 3.2)
Input: Multi-prime RSA modulus N with r and small prime difference Nγ .
Output: The factorization N = p1 · · · pr.

1: Compute p = [N
1
r].

2: Choose an optimal l according to r.
3: Construct the linear modular equation with unknown variables ui:

u1 + pr−lu2 + · · · + pr−2ul + pr−1 = 0 mod Qr−1.

4: Figure out ηi’s that are related to the bounds Nηi on σr
i for 1 ≤ i ≤ l with known

(t1, t2, t3, . . . , tl, tl+1) = (r − 1, l − 1, l − 2 . . . , 1, 0):

|ui| < N
ti−ti+1−1

r
+(ti+1+1)γ .

5: Extract each ui by using Takayasu-Kunihiro lattice construction.
6: Compute Q′

r−1 = u1 + pr−lu2 + · · · + pr−2ul + pr−1 with roots {u1, . . . , ul}.
7: Set pi = N/ gcd (Q′

r−1, N) in increasing order for 1 ≤ i ≤ r.

B More Details About the Experimental Results

More graphs about the experimental results are showed below. Firstly, as showed
in Figs. 1 and 2, upper bound on γ gets better when the lattice dimension
increases. For the direct method, upper bound on γ remains stable when the
lattice dimension is between 50 and 170. For the optimized method, the value is
between 60 and 300.

We then show the experimental results for r = 3 using the direct method in
Fig. 3. As the size of the modulus increases, γ finally arrives around 0.113. This
value is beyond the asymptotic bound 1

9 of previous Zhang-Takagi method.
The remaining graphs are related to the experiments for 3 ≤ r ≤ 7 with var-

ious moduli using the optimized method. The lattice dimension of each experi-
ment is set around 300. From Figs. 4, 5, 6, 7 and 8, we find that upper bound on
γ is higher for smaller modulus and then goes to a lower value. Also it will finally
arrive at a certain value that may be determined by the lattice dimension.

Another observation is that these lattices whose dimension is around 300
seem less effective for moduli with larger bit-size. To be specific, it is less effective
for the moduli of greater than 500-bit when r = 3. The critical bit-size is 700-bit
for r = 4, 5 and 1000-bit for r = 6, 7. Thus, we guess that the lattices used in
our experiments are effective for the prime factor of less than 160-bit. To obtain
desired upper bounds, we need to apply some lattices with huge dimension.

Improved Factoring Attacks on Multi-prime RSA 337

Fig. 1. The experimental results of upper bound on γ with various lattice dimensions
and the same bit-size moduli for r = 3 using the direct method

Fig. 2. The experimental results of upper bound on γ with various lattice dimensions
and the same bit-size moduli for r = 4 using the optimized method

338 M. Zheng et al.

Fig. 3. The experimental results of upper bound on γ with various moduli for r = 3
using the direct method

Fig. 4. The experimental results of upper bound on γ with various moduli for r = 3
using the optimized method

Improved Factoring Attacks on Multi-prime RSA 339

Fig. 5. The experimental results of upper bound on γ with various moduli for r = 4
using the optimized method

Fig. 6. The experimental results of upper bound on γ with various moduli for r = 5
using the optimized method

340 M. Zheng et al.

Fig. 7. The experimental results of upper bound on γ with various moduli for r = 6
using the optimized method

Fig. 8. The experimental results of upper bound on γ with various moduli for r = 7
using the optimized method

Improved Factoring Attacks on Multi-prime RSA 341

References

1. Bahig, H.M., Bhery, A., Nassr, D.I.: Cryptanalysis of multi-prime RSA with small
prime difference. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012. LNCS, vol. 7618,
pp. 33–44. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34129-8 4

2. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.
IEEE Trans. Inf. Theory 46(4), 1339–1349 (2000)

3. Boneh, D., Shacham, H.: Fast variants of RSA. CryptoBytes 5(1), 1–9 (2002)
4. Ciet, M., Koeune, F., Laguillaumie, F., Quisquater, J.J.: Short private exponent

attacks on fast variants of RSA. Technical report, UCL Crypto Group Technical
Report Series CG-2002/4, Université Catholique de Louvain (2002)

5. Collins, T., Hopkins, D., Langford, S., Sabin, M.: Public key cryptographic appa-
ratus and method, US Patent#5,848,159 (1997)

6. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 178–189. Springer, Heidelberg (1996). doi:10.1007/3-540-68339-9 16

7. Coppersmith, D.: Finding a small root of a univariate modular equation. In:
Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer,
Heidelberg (1996). doi:10.1007/3-540-68339-9 14

8. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptology 10(4), 233–260 (1997)

9. Coron, J.-S.: Finding small roots of bivariate integer polynomial equations revis-
ited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 492–505. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3 29

10. Coron, J.-S.: Finding small roots of bivariate integer polynomial equations: a direct
approach. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 379–394.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5 21

11. De Weger, B.: Cryptanalysis of RSA with small prime difference. Appl. Algebra
Eng. Commun. Comput. 13(1), 17–28 (2002)

12. Herrmann, M., May, A.: Solving linear equations modulo divisors: on factoring
given any bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
406–424. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89255-7 25

13. Hinek, M.J.: On the security of multi-prime RSA. J. Math. Cryptology 2(2), 117–
147 (2008)

14. Hinek, M.J., Low, M.K., Teske, E.: On some attacks on multi-prime RSA. In:
Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 385–404. Springer,
Heidelberg (2003). doi:10.1007/3-540-36492-7 25

15. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997). doi:10.1007/BFb0024458

16. Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under chosen-
plaintext attack. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 295–313.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7 16

17. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

18. Lenstra Jr., H.W.: Factoring integers with elliptic curves. Ann. Math. 126(3),
649–673 (1987)

19. Lu, Y., Zhang, R., Peng, L., Lin, D.: Solving linear equations modulo unknown
divisors: revisited. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol.
9452, pp. 189–213. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 9

http://dx.doi.org/10.1007/978-3-642-34129-8_4
http://dx.doi.org/10.1007/3-540-68339-9_16
http://dx.doi.org/10.1007/3-540-68339-9_14
http://dx.doi.org/10.1007/978-3-540-24676-3_29
http://dx.doi.org/10.1007/978-3-540-74143-5_21
http://dx.doi.org/10.1007/978-3-540-89255-7_25
http://dx.doi.org/10.1007/3-540-36492-7_25
http://dx.doi.org/10.1007/BFb0024458
http://dx.doi.org/10.1007/978-3-642-14623-7_16
http://dx.doi.org/10.1007/978-3-662-48797-6_9

342 M. Zheng et al.

20. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

21. Takayasu, A., Kunihiro, N.: Better lattice constructions for solving multivariate
linear equations modulo unknown divisors. In: Boyd, C., Simpson, L. (eds.) ACISP
2013. LNCS, vol. 7959, pp. 118–135. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39059-3 9

22. Takayasu, A., Kunihiro, N.: General bounds for small inverse problems and its
applications to multi-prime RSA. In: Lee, J., Kim, J. (eds.) ICISC 2014. LNCS,
vol. 8949, pp. 3–17. Springer, Cham (2015). doi:10.1007/978-3-319-15943-0 1

23. Tosu, K., Kunihiro, N.: Optimal bounds for multi-prime Φ-hiding assumption. In:
Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 1–14.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31448-3 1

24. Xu, J., Hu, L., Sarkar, S., Zhang, X., Huang, Z., Peng, L.: Cryptanalysis of
multi-prime Φ-hiding assumption. In: Bishop, M., Nascimento, A.C.A. (eds.)
ISC 2016. LNCS, vol. 9866, pp. 440–453. Springer, Cham (2016). doi:10.1007/
978-3-319-45871-7 26

25. Zhang, H., Takagi, T.: Attacks on multi-prime RSA with small prime difference. In:
Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol. 7959, pp. 41–56. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39059-3 4

26. Zhang, H., Takagi, T.: Improved attacks on multi-prime RSA with small prime
difference. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 97(7),
1533–1541 (2014)

http://dx.doi.org/10.1007/978-3-642-39059-3_9
http://dx.doi.org/10.1007/978-3-642-39059-3_9
http://dx.doi.org/10.1007/978-3-319-15943-0_1
http://dx.doi.org/10.1007/978-3-642-31448-3_1
http://dx.doi.org/10.1007/978-3-319-45871-7_26
http://dx.doi.org/10.1007/978-3-319-45871-7_26
http://dx.doi.org/10.1007/978-3-642-39059-3_4

Efficient Compilers for After-the-Fact Leakage:
From CPA to CCA-2 Secure PKE to AKE

Suvradip Chakraborty1, Goutam Paul2(B), and C. Pandu Rangan1

1 Department of Computer Science and Engineering, Indian Institute
of Technology Madras, Chennai, India

suvradip1111@gmail.com, prangan55@gmail.com
2 Cryptology and Security Research Unit (CSRU), R. C. Bose Centre

for Cryptology and Security, Indian Statistical Institute, Kolkata, India
goutam.paul@isical.ac.in

Abstract. The goal of leakage-resilient cryptography is to construct
cryptographic algorithms that are secure even if the adversary obtains
side-channel information from the real world implementation of these
algorithms. Most of the prior works on leakage-resilient cryptography
consider leakage models where the adversary has access to the leak-
age oracle before the challenge-ciphertext is generated (before-the-fact
leakage). In this model, there are generic compilers that transform any
leakage-resilient CPA-secure public key encryption (PKE) scheme to its
CCA-2 variant using Naor-Yung type of transformations. In this work,
we give an efficient generic compiler for transforming a leakage-resilient
CPA-secure PKE to leakage-resilient CCA-2 secure PKE in presence of
after-the-fact split-state (bounded) memory leakage model, where the
adversary has access to the leakage oracle even after the challenge phase.
The salient feature of our transformation is that the leakage rate (defined
as the ratio of the amount of leakage to the size of secret key) of the trans-
formed after-the-fact CCA-2 secure PKE is same as the leakage rate of
the underlying after-the-fact CPA-secure PKE, which is 1 − o(1).

We then present another generic compiler for transforming an
after-the-fact leakage-resilient CCA-2 secure PKE to a leakage-resilient
authenticated key exchange (AKE) protocol in the bounded after-the-
fact leakage-resilient eCK (BAFL-eCK) model proposed by Alawatugoda
et al. (ASIACCS’14). To the best of our knowledge, this gives the first
compiler that transform any leakage-resilient CCA-2 secure PKE to an
AKE protocol in the leakage variant of the eCK model.

Keywords: After-the-fact leakage · Bounded memory leakage · Split-
state · Authenticated key exchange · Leakage-resilient exponentiation

1 Introduction and Related Works

Most of the real-world attacks on a cryptosystem target the physical implementa-
tion of the device in which it is implemented. Such “physical attacks” are usually

c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 343–362, 2017.
DOI: 10.1007/978-3-319-60055-0 18

344 S. Chakraborty et al.

based on the side-channel information about the internals of the cryptographic
device, which the adversary may get via myriads of side-channel attacks like
timing measurements, power analysis, fault injection attacks, electromagnetic
measurements, microwave attacks, memory attacks and many more [18,20,21].
Leakage-resilient cryptography was introduced to deal with this problem from
a theoretical standpoint. It guarantees the security of the cryptosystems even
in the face of side-channel attacks and analyzes the effectiveness of side-channel
countermeasures in a mathematically rigorous way. The broad idea is that in
addition to the usual interfaces with which the adversary can interact with the
cryptographic primitive, he/she can choose arbitrary leakage functions (subject
to some technical constraints) and get back the result of applying these functions
on the secret state of the system.

Based on the restrictions on the leakage functions, various leakage models
have evolved in the literature over the past decade. In their pioneering work
named “physically observable cryptography”, Micali and Reyzin [25] put up a
comprehensive framework to model side-channel attacks called only computation
leaks information (OCLI). Their axiom relies on the assumption that leakage
happens as a result of computation and there is no leakage in the absence of
computation. Inspired by the “cold-boot attack” Halderman [18], Akavia and
Goldwasser [1] formalized the notion of “bounded memory leakage” model. This
model removes the restriction that leakage only happens from computation.
Instead it allows the adversary to learn any arbitrary information about the
secret state of the system stored in memory, with the only restriction that the
amount of leakage is bounded. A generalization of the above model called the
continuous leakage model was proposed by Dodis et al. [13] and Brakerski et al.
[8]. This model places no bound on the overall size of the leakage. The secret
key of the cryptosystem is refreshed periodically (erasing the old one) keeping
the public key same, and the adversary can obtain bounded leakage in between
any two successive key refreshes.

After-The-Fact Leakage. Most of the prior formulations of leakage-resilient
PKE[1,8,27–29] considered leakage before the challenge ciphertext is made avail-
able to the adversary. So, even if one bit of the secret key leaks in the post-
challenge phase, the security of the previously encrypted messages may not be
guaranteed. This severely restricts the meaning and applicability of this security
notion and also the resulting constructions. However, this seems to be a nec-
essary restriction, as otherwise an adversary may design a leakage function by
simply encoding the decryption function along with the challenge ciphertext and
the two messages (submitted in the challenge phase) to leak exactly the bit that
we are trying to hide using encryption.

Halevi and Lin [19] proposed the first meaningful security notion of after-
the-fact leakage(AFL) in the context of PKE schemes. Since achieving security
against after-the-fact leakage in its full generality is impossible, they considered
the split-state leakage restriction, where it is assumed that the secret key is split
into two parts (in general can be multiple) and each of them is stored in sepa-
rate memory locations. The adversary can get leakages from each of this memory

Efficient Compilers for After-the-Fact Leakage 345

locations, but independently of each other. Then they showed how to construct
an AFL-CPA-secure PKE scheme under their new security model. The leakage
rate (defined as the ratio of the leakage tolerated by the scheme to the size
of the secret key) of their construction approached 1 − o(1) under appropriate
choice of parameters. Later, Dziembowski and Faust [15] gave a construction of a
AFL-CCA-2 secure PKE scheme in the continuous leakage model under the split-
state assumption, with the further restriction that leakage only happens from
computation (OCLI axiom). The leakage rate tolerated by their construction is
also far from the optimal 1 − o(1) rate obtained by the CPA-secure construc-
tion of Halevi and Lin [19]. Zhang et al. [34] proposed a generic transformation
from AFL-CPA-secure PKE scheme to a AFL-CCA-2-secure PKE scheme. Their
transformation preserves the leakage rate of the AFL-CPA-secure PKE scheme,
and hence achieves a leakage rate of 1 − o(1). However, the main drawback of
their transformation is that it is very inefficient since it uses simulation-sound
non-interactive zero-knowledge proof system, which is far from practical. Fujisaki
et al. [16] constructed a multiple-challenge CCA-secure PKE that simultaneously
tolerates post-challenge secret key and sender-randomness leakage in the split-
state leakage model. However, in their construction that randomness is also split
into two parts, unlike ours, where we consider only the secret key to be spit-
ted, and not the randomness. Also, the scheme of [16] cannot support split-state
decryption as defined in [19] and also in this work. Hence, the two approaches
are incomparable.

Leakage-resilient AKE. Authenticated Key Exchange (AKE) protocols allow
two parties to jointly compute a unique shared secret key and also to mutually
authenticate each other with the assurance that the shared key is known only to
them. In our work, we consider the case of 2-party AKE setting. The traditional
security models for AKE protocols [7,9,12,22–24,30,31] do not incorporate the
possibility of side-channels and hence the AKE protocols analyzed in these mod-
els may be completely insecure in the face of side-channel attacks.

Alwen et al. [6] gave the first construction of leakage-resilient AKE (LR-AKE)
protocol in the RO model. However, the protocol requires three passes and also
does not capture after-the-fact leakage. Later, Moriyama and Okamoto [26] pro-
posed a two-pass (one round) LR-AKE protocol by extending the eCK model to
the setting of bounded memory leakage introduced in [1]. However, it also does
not capture after-the-fact leakage. In the context of key exchange, after-the-fact
leakage was first modeled by Alawatugoda et al. [4] in both the bounded and
continuous leakage setting. They also gave somewhat generic constructions of
LR-AKE protocols in their new models [4,5]. Unfortunately, both these proto-
cols have been shown insecure in their respective models in the subsequent works
(see [32,33]). Recently, Chen et al. [11] gave a generic framework for construct-
ing LR-AKE protocols in the presence of after-the-fact leakage in the bounded
memory leakage model (they called their model challenge-dependent eCK (CLR-
eCK) model).

346 S. Chakraborty et al.

1.1 Our Contributions

In this work we continue the study of after-the-fact leakage in the context of
CCA-2 secure public key encryption (PKE) schemes and authenticated key
exchange (AKE) protocols. Our contributions are two-fold and described below.

1. As our first contribution, we give a generic compiler from a AFL-CPA-secure
PKE scheme to a AFL-CCA-2 secure PKE scheme. The salient feature of our
compiler is that it preserves the leakage rate in the CPA to CCA transfor-
mation mentioned above. In other words, the amount of leakage than can be
tolerated by our AFL-CCA-2 secure PKE scheme is the same as the amount
of leakage tolerated by the underlying AFL-CPA secure PKE scheme. Besides,
our compiler is also much more efficient than the compiler proposed in [34].
So, on one hand our AFL-CCA-2 secure PKE scheme achieves the optimal
leakage rate of 1 − o(1), and on the other hand is much more efficient than
the state-of-the-art AFL-CCA-2 secure PKE constructions.

2. As our second contribution, we propose a generic compiler from AFL-CCA-2
secure PKE scheme to an after-the-fact leakage-resilient AKE protocol in the
BAFL-eCK security model (which is leakage analogue of the eCK model for
AKE protocols) proposed in [4]. Note that such a compiler from a CCA-2
secure PKE to a eCK-secure AKE protocol in the standard (non-leakage)
model was already proposed by Alawatugoda [2]. They left such a transfor-
mation in the context of leakage as a future open problem. Our compiler from
AFL-CCA-2 secure PKE scheme to BAFL-eCK secure AKE protocol can be
seen as a leakage-resilient implementation of the compiler presented in [2],
and hence we solve the above open problem.

1.2 Organization

The rest of the paper is organized as follows. In Sect. 2, we provide the necessary
preliminaries required for our constructions. In Sect. 3 we give the security model
for after-the-fact leakage resilient CCA-2 secure (AFL-CCA-2) PKE in split-state
state (Sect. 3.1) and present our compiler from CPA to CCA-2 secure PKE in the
same model (Sect. 3.2). In Sect. 4, we present our generic compiler from CCA-2
secure PKE in the above model to a BAFL-eCK-secure AKE in the standard
model. Finally Sect. 5 concludes the paper.

2 Preliminaries

In this section, we provide some basic notations, definitions and tools needed
throughout the paper.

2.1 Notations

Throughout this work, we denote the security parameter by κ. We assume that
all the algorithms take as input (implicitly) the security parameter represented in

Efficient Compilers for After-the-Fact Leakage 347

unary, i.e., 1κ. For an integer n ∈ N, where N denotes the set of natural numbers,
we use the notation [n] to denote the set [n] def= {1, . . . , n}. For a randomized
function f , we write f(x; r) to denote the unique output of f on input x with
random coins r. We write f(x) to denote a random variable for the output of
f(x; r), over the random coins r. For a set S, we let US denote the uniform
distribution over S. For an integer r ∈ N, let Ur denote the uniform distribution
over {0, 1}r, the bit strings of length r. For a distribution or random variable X,
we denote by x ← X the action of sampling an element x according to X. For a
set S, we write s

$←− S to denote sampling s uniformly at random from the S. A
function μ is negligible iff ∀c ∈ N, ∃n0 ∈ N such that ∀n ≥ n0, μ(n) < n−c. We
sometimes use negl(κ) to denote the set of negligible functions μ(κ). We denote
an ensemble X as a collection of distributions {Xκ}κ∈N. We sometimes drop the
subscript κ when clear from context and write x ← X instead of x ← Xκ to
denote sampling an element x from Xκ. For two matrices A and B, we denote
A�B to denote the multiplication of A and B. Let G be a group of prime order
p such that log2(p) ≥ κ. Let g be a generator of G, then for a (column/row)
vector A = (A1, · · · , An) ∈ Z

n
p , we denote by gA the vector C = (gA1 , · · · , gAn).

Furthermore, for a vector B = (B1, · · · , Bn) ∈ Z
n
p , we denote by CB the group

element X =
∏n

i=1 gAiBi = g
∑n

i=1 AiBi . We say that F is (εprf , sprf , qprf)-secure
PRF family, if no adversary of size sprf (when viewed as a circuit) and making
qprf oracle queries can distinguish F (instantiated with a random key) from a
uniformly random function except with a negligible advantage εprf .
We assume that the reader is familiar with the notions of min-entropy, average
conditional min-entropy and randomness extractors. We refer the reader to the
full version of our paper [10] for these definitions.

2.2 Leakage-Resilient Storage

We review the definitions of leakage-resilient storage according to Dziembowski
and Faust [15]. The idea is to split the storage of elements into two parts using
a randomized encoding function. As long as leakages from each of its two parts
are bounded and independent of each other, no adversary can learn any useful
information about the encoded element.
For any m,n ∈ N, the storage scheme Λn,m

Z∗
p

efficiently stores elements s ∈ Z
∗
p

where:

– Encoden,m
Z∗
p

(s) : sL
$←− (Z∗

p)
n\{(0n)}, and sR ← (Z∗

p)
n×m such that sL�sR = s,

where sL and sR are interpreted as (1×n) and (n×m) matrices respectively.
The function finally outputs (sL, sR).

– Decoden,m
Z∗
p

(sL, sR) : outputs sL � sR = s.

Definition 1 (λS-limited adversary). If the amount of leakage obtained by
the adversary from each of sL and sR is limited to λSL

and λSR
bits respectively,

the adversary is known as a λS-limited adversary, where λS = (λSL
, λSR

).

348 S. Chakraborty et al.

Definition 2 (λΛ, ε1-secure leakage-resilient storage scheme). We say

that Λ = (Encode,Decode) is a (λΛ, ε1)-secure leakage-resilient, if for any s0, s1
$←−

M, and any λΛ-limited adversary C, the leakage from Encode(s0) = (s0L , s0R)
and Encode(s1) = (s1L , s1R) are statistically ε1 close. For an adversary-chosen
leakage function f = (f1, f2), and a secret s such that Encode(s) = (sL, sR), the
leakage is denoted as (f1(sL), f2(sR)).

Lemma 1 ([15]). Suppose that m < n/20. Then Λn,m
Z∗
p

= (Encoden,m
Z∗
p

(s),
Decoden,m

Z∗
p

(sL, sR)) is (λS , negl(κ))-secure for some negligible function negl and
λS = (0.3 · n log p, 0.3 · n log p).

2.3 Complexity Assumption

The complexity assumption required for our AKE construction is the standard
Decisional Diffie-Hellman (DDH) problem. One may refer to the full version of
our paper [10] for its description.

2.4 True Simulation Extractable Non-interactive Zero Knowledge
Argument System

In this section, we recall the notion of (same-string) true-simulation extractable
non-interactive zero knowledge argument (tSE-NIZK) first introduced in [14].
This notion is similar to the notion of simulation-sound extractable NIZKs [17]
with the difference that the adversary has oracle access to simulated proofs only
for true statements., in contrast to any arbitrary statement as in simulation-
sound extractable NIZK proof system.

Let � be an efficiently computable binary relation. For pairs (y, x) ∈ �, we
call y the statement and x the witness. Let L = {y | ∃ x s.t. (y, x) ∈ �} be the
language consisting of statements in �. A NIZK argument system consists of
three algorithms (CRSGen,Prove,Verify) such that: (1) Algorithm CRSGen takes
as input 1κ and generates a common reference string (CRS) crs, a trapdoor TK
and an extraction key EK; (2) Algorithm Prove takes as input the statement-
witness pair (y, x) and crs and outputs an argument π such that �(y, x) ∈ 1; (3)
Algorithm Verify takes as input crs, a statement y, and a purported argument
π and outputs 1 if the argument is acceptable and 0 otherwise. We require the
following properties to hold:

1. Perfect Completeness: For all (y, x) ∈ �, (crs,TK) ← CRSGen(1κ), if
π ← Prove(crs, (y, x)), then Verify(crs, x, π) = 1.

2. Soundness: For all malicious provers P∗ we have,

Pr
[
Verify(crs, y, π∗) = 1, y /∈ �|(crs,TK)←CRSGen(1κ), (y, π∗) ← P∗(1κ, crs)

]

≤ negl(κ).

3. (Composable) Zero-Knowledge: There exists a PPT simulator Sim such
that for all PPT adversaries A, the probability that the experiment below
outputs 1 is at most 1/2 + negl(κ).

Efficient Compilers for After-the-Fact Leakage 349

(a) The challenger samples (crs,TK) ← CRSGen(1κ), gives (crs,TK) to A.
(b) The adversary A chooses (y, x) ∈ � and gives it to the challenger.

(c) The challenger samples π0 ← Prove(y, x, crs), π1 ← Sim(y,TK), b
$←−

{0, 1}, and gives πb to A.
(d) The adversary A outputs a bit b′ as a guess for b; output 1 if b′ = b, else

output 0.
4. Strong True-simulation f-Extractability: We start by defining the sim-

ulation oracle SIMTK(.). A query to the simulation oracle consists of a
statement-witness pair (y, x). The oracle checks if (y, x) ∈ �. If true, it
outputs a simulated argument Sim(TK, y), otherwise it outputs ⊥. Let f
be a fixed efficiently computable function. There exists a PPT algorithm
EXT(y, π,EK) such that for all PPT adversaries P∗, we have Pr[P∗ wins| ≤
negl(κ) in the following game.
(a) The challenger samples (crs,TK,EK) ← CRSGen(1κ), and gives crs to P∗.
(b) P∗SIMTK(.) can adaptively access the simulation oracle SIMTK(.) as

defined above.
(c) Finally, the adversary P∗ outputs a tuple (y∗, π∗).
(d) The challenger runs z∗ ← EXT(y∗, π∗,EK)
(e) P∗ wins if (a) (y∗, π∗) �= (y, π) for all pairs (y, π) returned by the simu-

lation oracle SIMTK(.); (b) Verify(crs, y∗, π∗) = 1 and (c) for all x′ such
that f(x′) = z∗, we have �(y∗, x′) ∈ 0. (,i.e., the adversary P∗ wins if
the extractor cannot extract a good value z∗ on at least one valid witness
x′; i.e., f(x′) = z∗.)

3 CPA to CCA-2 Transformation in the Presence of
After-the-fact Leakage

In this section, we present our generic compiler for transforming a leakage-
resilient CPA-secure PKE to leakage-resilient CCA-2 secure PKE in the pres-
ence of after-the-fact leakage. We first give the security model for after-the-fact
CCA-2 secure PKE scheme in Sect. 3.1, followed by the details of our compiler
in Sect. 3.2.

3.1 CCA-2 Security in a Split State Model

We consider the bounded split-state leakage model similar to [19]. Here the secret
key of the cryptosystem is split into two parts, and the adversary can obtain
leakage from each of these two parts independently, but not a joint leakage from
both the secret key components.

Definition 3. (Split state encryption) [19]. A 2-split state encryption
scheme E = (E .Gen, E .Enc, E .Dec) has the following structure:

350 S. Chakraborty et al.

– E .Gen(1κ): The key generation algorithm comprises of two subroutines
namely, E .Gen1 and E .Gen2. On input the security parameter 1κ, the key gen-
eration subroutine E .Geni (i ∈ {1, 2}) generates the public-secret key pair,
i.e., (pki, ski) ← E .Geni(1κ, ri) where ri ∈ {0, 1}∗. The public key consists of
the pair pk = (pk1, pk2) and the secret key consists of the pair sk = (sk1, sk2).

– E .Encpk=(pk1,pk2)(m): The (randomized) encryption algorithm takes as input
a message m, the public key pk = (pk1, pk2), and outputs a ciphertext c.

– E .Dec(1κ, c, sk = (sk1, sk2)): The decryption consists of two partial decryp-
tion subroutines E .Dec1, E .Dec2 and a combining subroutine Comb. The
decryption subroutine E .Deci (i ∈ {1, 2}) takes as input the ciphertext c
and the secret key ski and outputs the partial decryption ti, i.e., ti ←
E .Deci(c, ski). Finally, Comb takes the ciphertext and the pair (t1, t2) to
recover the plaintext m, i.e., m ← Comb(c, t = (t1, t2)).

We want the usual correctness requirement to hold for the 2-split state encryp-
tion scheme E , i.e., ∀(pki, ski) ← E .Geni(1κ)(i ∈ {1, 2}),∀m ∈ M, we have,
E .Dec

(
sk = (sk1, sk2), c = E .Encpk(m)

)
= m.

We now define the notion of CCA-2 security of PKE schemes in the presence of
after-the-fact split-state memory leakage.

Definition 4 (CCA-2 security of split state PKE against after-the-fact
leakage (�(κ))-AFL-CCA-2 security)). Let κ ∈ N be the security parame-
ter and let �pre(κ) and �post(κ) be the upper bound on the amounts of memory
leakage before and after the challenge phase respectively. A 2-split state PKE
E = (E .Gen, E .Enc, E .Dec) is resilient to �(κ)=

(
(�pre(κ), (�post(κ)

)
leakage in the

split-state model, if for all PPT adversaries A, the probability that the experi-
ment below outputs 1 is at most 1

2 + negl(κ).

1. Key Generation: The challenger chooses r1, r2 ∈ {0, 1}∗ at random and
computes (pki, ski) ← E .Geni(1κ, ri) (i ∈ {1, 2}) and sends pk = (pk1, pk2) to
the adversary.

2. Pre-challenge Leakage queries: The adversary makes an arbitrary number
of leakage queries (fpre

1,i , f
pre
2,i) adaptively. Upon receiving the i-th leakage query

the challenger sends back (fpre
1,i (sk1), f

pre
2,i (sk2)), provided

n(κ)∑

i=1

fpre
1,i (sk1) ≤

�pre(κ) and
n(κ)∑

i=1

fpre
2,i (sk2) ≤ �pre(κ), where n(κ) denote the number of pre-

challenge leakage queries made in this phase.
3. Pre-challenge Decryption queries: The adversary A may ask decryption

queries adaptively. The challenger returns the plaintexts mi corresponding to
the queried ciphertexts ci.

4. Challenge: In this phase the challenger chooses b
$←− {0, 1} and computes

c∗ =E .Encpk(mb) and gives it to A.

Efficient Compilers for After-the-Fact Leakage 351

5. Post-challenge Leakage queries: The adversary makes an arbitrary
number of leakage queries (fpost

1,j , fpost
2,j) adaptively. Upon receiving the j-

th leakage query the challenger sends back (fpost
1,j (sk1), f

post
2,j (sk2)), provided

n′(κ)∑

j=1

|fpost
1,j (sk1)| ≤ �post(κ) and

n′(κ)∑

j=1

|fpost
2,j (sk2)| ≤ �post(κ), where n′(κ)

denotes the number of post-challenge leakage queries made in this phase.
6. Post-challenge Decryption queries: The adversary may continue query-

ing the decryption oracle adaptively with different ciphertexts ci with the
only restriction that ci �= c∗.

7. Guess: Finally, the adversary outputs a bit b′ for a guess of the bit b chosen
the challenger. If b′ = b, output 1, else output 0.

We define the advantage of A as AdvAFL-CCA-2
A (κ) = |Pr[b′ = b] − 1

2 |.

3.2 The Generic Transformation

In this section, we give the generic transformation from after-the-fact leakage-
resilient CPA-secure (AFL-CPA) PKE to after-the-fact leakage-resilient CCA-2
secure (AFL-CCA-2) PKE. The main tool we will be using for our transformation
is true-simulation extractable NIZK argument system (tSE-NIZK) as defined as
Sect. 2.4.
Let E = (E .Gen, E .Enc, E .Dec) be the �(κ) = (�pre(κ), �post(κ))-leakage-resilient
2-split state CPA-secure PKE from above, and let Π = (CRSGen,Prove,Verify)
be a one-time, strong f -tSE NIZK argument for the relation

�enc = {(m, r), (pk, c) | c = Encpk(m; r)}

where f(m, r) = m, i.e., the extractor only requires to extract the message m and
not the randomness r of encryption. We show how to construct a leakage-resilient
CCA-2 secure PKE E ′ = (E ′.Gen, E ′.Enc, E ′.Dec) secure against after-the-fact
leakage.

1. E ′.Gen(1κ) : Output p̂k = (pk, crs), ŝk = sk, where (pk, sk) ← E .Gen, and
(crs,TK,EK) ← CRSGen(1κ).

2. E ′.Enc(p̂k,m) : Output the ciphertext C = (c, π), where c ← E .Encpk(m; r)
and π ← Prove(crs, (pk, c), (m, r)).

3. E ′.Dec(sk, C) : Parse C = (c, π). If Verify(crs, (pk,C), π) = 1, output
E .Dec(sk, c), else output ⊥.

Theorem 1. Assume that E is a �(κ) =
(
�pre(κ), �post(κ)

)
-AFL-LR-CPA-secure

PKE and Π is a one-time strong f-tSE NIZK argument system for the relation
�enc where, for any witness (m, r), we define f(m, r) = m. Then the scheme E ′

defined above is
(
�pre(κ), �post(κ)

)
-AFL-LR-CCA-2-secure PKE.

352 S. Chakraborty et al.

Proof. The proof of this theorem follows via series of games argument. All the
games are variant of the original �(κ)-AFL-CCA-2 security game. These games
differ in how the challenger ciphertext C∗ = (c∗, π∗) is generated and the answers
to the decryption oracle queries are simulated.

Game 0. This is the original �(κ)-AFL-LR-CCA-2 security game. The challenger
correctly generates the public key p̂k = (pk, crs) as in the key generation algo-
rithm and gives it to the adversary. When the adversary submits two challenge
messages m0,m1, the challenger computes the challenge ciphertext correctly as
in the construction. The answers to the decryption queries are also answered
correctly. In other words the challenger does the following:

1. Compute (pk, sk) ← E .Gen, and (crs,TK,EK) ← CRSGen(1κ). Sets the secret
key as ŝk = sk and gives the public key p̂k = (pk, crs) to the adversary A.

2. Chooses bit b
$←− {0, 1} and compute c∗ ← E .Encpk(mb; r), π∗ ←

Provecrs((pk, c∗), (mb, r)), and output C∗ = (c∗, π∗) as challenger ciphertext.
Finally give C∗ to the adversary.

3. The pre- and post-challenge decryption queries (Ci, πi) made by A are
answered using E ′.Dec(sk, C ′

i).
4. When the adversary asks pre- and post-challenge leakage queries

(fpre
1,i , f

pre
2,i) and (fpost

1,i , fpost
2,i), the challenger returns (fpre

1,i (sk1), f
pre
2,i (sk2)) and

(fpost
1,i (sk1), f

post
2,i (sk2)) respectively, provided the leakage does not exceed �pre

and �post on both the coordinates in the pre- and post-challenge leakage phase.

Game 1. In this game the CRS for Π is generated along with a simulation
trapdoor TK and the argument π∗ in the challenge ciphertext is simulated using
the zero-knowledge simulator SIMTK. The pre- and post-challenge decryption
and leakage queries are answered as in Game 0. In other words the challenger
does the following:

1. Compute (pk, sk) ← E .Gen, and (crs,TK,EK) ← CRSGen(1κ). Sets the secret
key as ŝk = sk and gives the public key p̂k = (pk, crs) to the adversary A.

2. Chooses bit b
$←− {0, 1} and compute c∗ ← E .Encpk(mb; r), π∗ ←

SIMTK(pk, c∗), and output C∗ = (c∗, π∗) as challenger ciphertext. Finally
give C∗ to the adversary.

The decryption and leakage queries are handled in a similar manner as Game
0. The indistinguishability of Game 0 and Game 1 follows from the NIZK
property of the tSE-NIZK argument system Π.

Game 2. In this game the CRS for Π is generated together with a simulation
trapdoor TK and an extraction trapdoor EK. The challenge ciphertext is sim-
ulated using the zero-knowledge simulator similarly as Game 1. However the
decryption queries are handled in a different manner. The decryption queries
Ci = (ci, πi) are answered by running the extractor on the arguments πi to
extract f(mi, ri) = mi. In other words the challenger does the following:

Efficient Compilers for After-the-Fact Leakage 353

1. Compute (pk, sk) ← E .Gen, and (crs,TK,EK) ← CRSGen(1κ). Sets the secret
key as ŝk = sk and gives the public key p̂k = (pk, crs) to the adversary A.

2. Chooses bit b
$←− {0, 1} and compute c∗ ← E .Encpk(mb; r), π∗ ←

SIMTK(pk, c∗), and output C∗ = (c∗, π∗) as challenger ciphertext. Finally
give C∗ to the adversary.

3. When the adversary queries to the decryption oracle using Ci = (ci, πi), the
challenger runs EXT((p̂k, ci), πi,TK) to extract the message mi.

The answers to the leakage queries are answered similarly as in Game 0.
The indistinguishability of Game 1 and Game 2 follow from the strong one-
time true-simulation extractability property of the tSE-NIZK argument system
Π. The adversary A sees only one simulated proof of a true statement, namely,
the argument π∗ in the challenge ciphertext C∗ = (c∗, π∗). Therefore by the
strong one-time true simulation extractability property of Π, A cannot produce
any new statement-argument pair (ci, πi) �= (c∗, π∗) for which the argument πi

verifies but the extractor fails to extract the correct mi.

Game 3. This is the final game. In which game the challenger changes the
way in which the challenge ciphertext c∗ is generated. Instead of encrypting the
message mb, the challenger produces the challenge ciphertext as an encryption
of 0 (or any fixed message in the message space), i.e., the challenger computes
the challenge ciphertext as C∗ = (c∗, π∗), where c∗ ← E .Encpk(0; r) and π∗ ←
SIMTK(pk, c∗). The decryption queries are still answered using the extraction
trapdoor as in Game 2. The leakage queries are answered using the leakage oracle
of the AFL-LR-CPA secure scheme E . We show that Game 2 and Game 3 are
indistinguishable.

Claim. Game 2 and Game 3 are indistinguishable by the �(κ) = (�pre(κ), �post(κ))-
AFL-CPA security of the PKE scheme E .

Proof. If Game 2 and Game 3 can be distinguished we can build an adversary
A′ against the �(κ)-AFL-CPA secure PKE E . The adversary A′ simulates the
execution environment for A as follows:

1. A′ receives the public key pk∗ and computes (crs,TK,EK) ← CRSGen(1κ). It
then sends the public key p̂k = (pk∗, crs) to A.

2. When A makes pre- and post-challenge decryption oracle queries Ci = (ci, πi),
A′ uses the extraction trapdoor of the tSE-NIZK argument system Π to sim-
ulate the response to these queries, i.e., it computes EXT((p̂k, ci), πi,TK) to
extract mi. As already argued above (indistinguishability of Game 1 and
Game 2) this properly simulates the decryption oracle responses (except with
negligible probability) by the strong one-time true simulation extractability
property of Π.

3. When A makes pre- and post-challenge leakages queries, A′ forwards them
to the leakage oracle of the challenger of the �(κ)-AFL-LR-CPA-secure PKE
scheme E , and returns back the response to A.

354 S. Chakraborty et al.

4. When A makes the challenge query with two messages m0 and m1, A′ for-
wards them to its challenger. It gets back the ciphertext c∗ and computes
π∗ ← SIMTK(pk, c∗). Finally, it returns C∗ = (c∗, π∗) to A.

5. When A output a bit b′, A′ also outputs the same bit b′.

With all but negligible probability, the above represents a proper simulation
of the environment for A by A′. Thus if the advantage of A is negligible, the
advantage of A′ is also negligible. This proves the above claim.

The above claim shows that Game 2 and Game 3 are indistinguishable. Now,
note that Game 3 is completely independent of the bit b, and hence the advantage
of any adversary in Game 3 is exactly 0. So, by the indistinguishability of the
Games 0–3, the advantage of any adversary in Game 0 is negl(κ). This concludes
the proof of the above theorem. �

Remark 1. Note that the leakage tolerance of the AFL-LR-CCA-2 secure PKE E ′

is exactly same as the leakage tolerance of the underlying AFL-LR-CPA-secure
PKE E . This is because in Games 2 and 3 the decryption secret key sk is never
used for answering the decryption oracle queries. Instead, the extractor trapdoor
of the tSE-NIZK is used for simulating the decryption queries and also it is never
used in the real scheme. In other words, the decryption oracle responses do not
leak any useful information to the adversary, and the leakage that happens from
the construction due to adaptive access of the leakage oracle by the adversary is
taken care of by the underlying AFL-CPA-secure PKE. This essentially allows
us to tolerate the same amount of leakage, namely � = (�pre, �post) bits of leakage
as the underlying CPA-secure scheme E .

4 Compiler for After-the-Fact Leakage-Resilient AKE
Protocols

We give a generic framework for designing a bounded after-the-fact leakage
eCK-secure (BAFL-eCK) AKE protocol using an arbitrary AFL-LR-CCA-2
secure public key encryption scheme, an arbitrary pseudo-random function and
a leakage-resilient storage scheme as defined in Sect. 2.2. We prove the security of
our protocol in the standard model, assuming the hardness of the DDH problem.

4.1 The Bounded After-the-Fact Leakage-ECK (BAFL-eCK) Model

The BAFL-eCK model, introduced by Alawatugoda et al. [4], can be seen as
a (bounded) leakage analogue of the eCK model [23]. Here, the secret key of
the cryptosystem is split into n parts and it is assumed that the adversary gets
independent leakage from each split. This is modeled by allowing the adversary
to send a tuple leakage function f = (f1, · · · , fn), where the size n of the tuple is
protocol-specific (for our purpose n = 2, since we consider 2-split state model).
The total amount of leakage from each split of the secret key is bounded by the
leakage parameters. In particular, if the total leakage bound on the i-th split
of the secret key is λi, then the condition

∑ |fi(ski)| ≤ λi should hold, where

Efficient Compilers for After-the-Fact Leakage 355

ski denote the ith split of the secret key sk. In the BAFL-eCK model it is also
assumed that leakage happens as a result of computation following the “Only
Computation leaks” (OCLI) axiom [25]. For a key exchange protocol, computa-
tion takes place on issuing a Send query. So sending an adversary-chosen adaptive
tuple leakage function with the Send query reflects the OCLI premise. Apart from
this, the adversary also has all the capabilities of an eCK adversary, namlely, it
can completely control the communication channel, it can corrupt a party to get
its long-terms secret key, reveal the ephemeral/session-specific randomness of a
party, and also obtain session keys of sessions run by different parties. Finally,
in a “fresh” test/challenge session the adversary has to distinguish the session
key of that session from a random session key, where freshness is defined as in
the eCK model, with one more restriction that the leakage bound of both the
parties involved in the test session must be respected. Another notable feature
of this model is that the adversary has access to the leakage oracle even after
the test session (modeling after-the-fact leakage), as long as the bounded and
independent leakage assumption holds true. Due to space constraints we refer
the reader to [4] and the full version of our paper [10] for detailed description of
the BAFL-eCK model.

4.2 Generic BAFL-eCK Secure AKE Protocol in Standard Model

In this section we present a generic construction of BAFL-eCK secure key
exchange protocol P using an arbitrary AFL-LR-CCA-2 secure PKE scheme, a
LRS encoding scheme and an arbitrary pseudo-random function. We then prove
the security of our AKE protocol in the standard model assuming the security
of the above primitives and the hardness of the DDH problem. Suppose κ is the
security parameter. Let G denotes a cyclic multiplicative group of prime order p
generated by g. The main building blocks used in our construction of the AKE
protocol are as follows:

– �(κ)-after-the-fact leakage-resilient 2-split state CCA-2 (AFL-CCA-2) secure
PKE E = (E .Gen, E .Enc, E .Dec) with key space K, message space M.

– Λn,1
Z∗
p

= (Encoden,1
Z∗
p

(s),Decoden,1
Z∗
p

(sL, sR)) be a (λS , ε1) leakage-resilient storage
scheme

– F : G × {0, 1}∗ → SK be a (εprf , sprf , qprf)-secure PRF family, where SK
denotes the session-key space.

Overview of our Construction. We denote the two protocol participants
as UA and UB. We assume that UA is the initiator and UB is the responder.
Alawatugoda [3] gave a generic transformation of a CCA2-secure PKE scheme
to an eCK-secure key exchange protocol in the standard model. Our compiler can
be viewed as leakage-resilient implementation of the compiler of Alawatugoda
[3]. We denote the public-secret key pair of parties UA and UB as (pkUA

, skUA
)

and (pkUB
, skUB

) respectively. We denote (a,A) and (b,B) as the long-term
Diffie-Hellman (DH) secret and public keys of UA and UB respectively. We also

356 S. Chakraborty et al.

denote (eskA, epkA) and (eskB , epkB) as the ephemeral secret and public keys
of UA and UB respectively.

The main idea of the construction of [3] is that it computes epkA and epkB

as DH public keys and eskA and eskB as DH secret keys. It then encrypts
the epkA and epkB using a CCA-2 secure PKE. The other party who has the
secret key can successfully recover epkA and epkB respectively. In the session
key generation phase both the parties perform two DH session key derivation.
The first session key derivation involves the ephemeral public and secret keys of
both the parties, whereas the second DH session key generation involves the DH
long-term keys of both the parties. Finally both the parties use a PRF to derive
the final session key.

Our generic AKE construction also follows this simple design strategy. How-
ever, the adversarial model is stronger than the eCK model. This is because the
BAFL-eCK model trivially implies the eCK model, but the other way is not
true. In particular, apart from all the information the adversary gets in the eCK
model, additionally it also obtains leakage from the secret key of the parties, i.e.
both the secret key of the cryptosystem as well as the DH long-term secret key
of parties. The leakage that happens from the secret key of the CCA-2 secure
PKE can be handled by using a AFL-CCA-2 secure encryption scheme. However,
apart from this, the leakage from the DH long-term secret keys also needs to be
accounted for. For this, we use leakage-resilient storage (LRS) scheme. However,
directly using the LRS scheme does not work for our purpose since the secret
values in our case are exponents of DH public keys. So we need a way to perform
exponentiation in a leakage-resilient fashion. The possibility of leakage-resilient
exponentiation was mentioned in [3]. However, no formal derivation was present.
Here, we show the leakage-resilient exponentiation operation explicitly and show
its correctness.

Leakage-resilient exponentiation. We use the LRS scheme to perform secure
exponentiation in the presence of leakage. Suppose that x is the exponent (DH
secret key) and we need to compute the DH public key X = gx. We first encode

x using the LRS scheme as (xL, xR) ← Encoden,1
Z∗
p

(x), where xL
$←− (Z∗

p)
n\{(0n)},

xR ← (Z∗
p)

n×1 \ {(0n×1)} such that xL � xR = x. To compute X = gx, we use
the two encodings (xL, xR), and finally erase x from memory. More precisely,
we first compute X ′ = gxL = (gxL1 , gxL2 , · · · , gxLn), and then compute X =

(X ′)xR =
n∏

i=1

gxLi
·xRi = g

n∑

i=1
xLi

·xRi = gx.

In our AKE protocol the party UA chooses aL
$←− (Z∗

p)
n \ {(0n)}, aR

$←−
(Z∗

p)
n×1 \ {(0n×1)} and the value of the ephemeral DH exponent a is implicitly

set as aL � aR. Party UB also performs similar operation. In the key generation
process if we first choose the long-term DH secret key a it must be securely
erased from memory after getting the encoded values aL and aR of a. However,
in practice secure erasure may not be possible always and some traces of the
secret key may be leaked to the adversary. In order to avoid such a vulnerability,
two values aL and aR are picked at random and we use them as the encodings of

Efficient Compilers for After-the-Fact Leakage 357

Table 1. Proposed BAFL-eCK secure AKE protocol P

UA UB

Key Generation

Public parameters: (G, p, 〈g〉)
aL

$←− (Z∗
p)n \ {(0n)}, bL

$←− (Z∗
p)n \ {(0n)},

aR
$←− (Z∗

p)n×1 \ {(0n×1)} bR
$←− (Z∗

p)n×1 \ {(0n×1)}
A′ = gaL , A = (A′)aR = gaL·aR = ga B′ = gbL , B = (B′)bR = gbL·bR = gb

(pkUA , skUA) ← E .Gen(1κ (,) pkUB , skUB) ← E .Gen(1κ)

Session Execution

eskA
$←− Z

∗
p, epkA ← geskA eskB

$←− Z
∗
p, epkB ← geskB

CA ← E .EncpkUB
(epkA) CB ← E .EncpkUA

(epkB)
UA,UB ,CA−−−−−−−−−−−−−−−−→
UB ,UA,CB←−−−−−−−−−−−−−−−−

Session Key Generation

Set sid = (UA||UB ||CA||CB teS) sid = (UA||UB ||CA||CB)

epkB ← E .DecskUA
(CB), epkA ← E .DecskUB

(CA),

Z′
A1 = (B)aL , ZA1 = (Z′

A1)
aR , Z′

B1 = (A)bL , ZB1 = (Z′
B1)

bR ,

ZA2 = epkeskA
B , ZB2 = epkeskB

A ,

SK = F (ZA1 , sid) ⊕ F (ZA2 , sid) SK = F (ZB1 , sid) ⊕ F (ZB2 , sid)

the long-term DH exponent a. In this way, we refrain from using the long-term
DH secret key a directly. Note that, this approach is identical to first picking
a random element a ∈ Z

∗
p and then encoding it to obtain aL and aR. Thus

our approach avoids the vulnerability of exposing the secret DH exponent and
hence avoid leaking directly from the exponents a and b. Since the value a is
not available to the adversary, it can get only bounded and independent leakage
(under split-state assumption) from aL and aR respectively. We can then use
the security of the LRS scheme to argue security of our AKE protocol.

Thus combined with the security of the AFL-CCA-2 secure encryption, LRS
scheme and security of DH key exchange (DDH assumption), we obtain a BAFL-
eCK-secure AKE protocol in standard model. The details of the protocol is
presented in Table 1.

Correctness: The correctness of the protocol is easy to verify. It is enough to
show that ZA1 = ZB1 and ZA2 = ZB2 . The correctness of the decrypted values
epkB and epkA at both the parties UA and UB respectively follow from the
correctness of the AFL-CCA-2 secure PKE scheme.
We have ZA1 = (Z ′

A1
)aR = ((B)aL)aR = BaL·aR = Ba = (gb)a = gab.

Similarly, ZB1 = (Z ′
B1

)bR = ((A)bL)bR = AbL·bR = Ab = (ga)b = gab = ZA1 .

The value ZA2 = epkeskA

B = (geskB)eskA = (geskA)eskB = epkeskB

A = ZB2 .

358 S. Chakraborty et al.

4.3 Security Proof

In this section we proof the following theorem:

Theorem 2. If E = (E .Gen, E .Enc, E .Dec) is a �(κ)-AFL-CCA-2-secure PKE,
Λn,1
Z∗
p

be a (λΛ, ε1) leakage-resilient storage scheme, F is a (εprf , sprf , qprf) PRF,
and the DDH assumption holds in G of prime order p generated by g, then the
above AKE protocol P is (�(κ), λΛ)-BAFL-eCK-secure. In particular,

AdvBAFL-eCK
P (A)

≤ n2�2 max
(
(2ε1 + AdvDDH

B (κ) + εprf), (AdvAFL-CCA-2
S (κ) + εprf)

)
.

where n is the total no. of protocol principles/parties and � is the maximum no.
of sessions that can be executed by a party concurrently.

Proof Sketch. We give an overview of our proof here. The detailed proof is given
in full version of our paper [10].

According to the freshness condition of the BAFL-eCK model (see Def. 3.2
in [4]) we have to consider the following cases and sub-cases:

1. A partner to the test session exists.
(a) Adversary corrupts both the owner and the partner principals to the test

session.
(b) Adversary corrupts neither the owner nor the partner principal to the

test session.
(c) Adversary corrupts the owner to the test session, but does not corrupt

the partner to the test session.
(d) Adversary corrupts the partner to the test session, but does not corrupt

the owner to the test session.
2. A partner to the test session does not exist.

(a) Adversary corrupts the owner to the test session.
(b) Adversary does not corrupt the owner to the test session.

Case 1(a). In this case, the adversary corrupts both the owner and the peer
to the test session. So the adversary knows both the long-term Diffie-Hellman
(DH) keys a and b of the parties UA and UB respectively. Besides, it also learns
the secret keys of the AFL-CCA-2 secure encryption scheme E , namely, skUA

and skUB
of UA and UB respectively. However, the adversary does not learn

the ephemeral secret keys of the test session and its matching session. So, the
secrecy of the session key lies in the secrecy of the values ZA2 and ZB2 . Note
that the adversary can get both epkA and epkB by using the encryption secret
keys. So the value ZA2 = ZB2 = geskAeskB is hard to distinguish from a random
value by the DDH assumption. In our proof we replace it with a random value.
Finally, we replace the session key with a random value from the same space.
This change is again oblivious to the adversary by the security of the PRF F
used for deriving the final session key. Also note that the leakage queries in this
case does not make much sense since the adversary already knows the long-term

Efficient Compilers for After-the-Fact Leakage 359

keys of both the principles. Since the challenger has the secret keys of all the
parties it can easily simulate the leakage queries.

Case 1(b). In this case, the adversary learns the ephemeral secret keys eskA

and eskB of parties UA and UB respectively corresponding to the test session
and its matching session. The adversary does not know the long-term DH keys
and the secret keys of the AFL-CCA-2 secure PKE scheme E . However, the
adversary may obtain leakage from both of them via Send queries according to
the BAFL-eCK security model. In this case, the challenger knows neither of the
long-term secrets of UA and UB, so it cannot simulate the leakage queries by
itself. Instead the challenger uses the leakage oracle of the AFL-CCA-2 secure
PKE scheme and the LRS scheme to respond to the leakage queries. The LRS
scheme Λn,1

Z∗
p

ensures that even if the adversary obtains bounded leakage from the
two encodings of the secret key independently, it cannot learn any information
about the secret value. Given that the adversary does not learn any information
about the long-term DH keys, the security of the DH shared key ZA1 = ZB1

ensures the secrecy of the session key. In particular, given the DH public keys
ga and gb, it is hard to distinguish the value ZA1 = ZB1 = gab from random
value by the DDH assumption. Similar to the above case, we then replace this
value with a random value. Finally, we replace the session key with a random
value from the same space. This change is again oblivious to the adversary by
the security of the PRF F used for deriving the final session key.

Case 1(c). In this case the adversary A learns the long-term DH key of UA,
i.e., a = aL · aR and the secret key skUA

. For party UB, the adversary learns
the ephemeral secret key eskB . In his case, the challenger knows skUA

and a,
so it can simulate the leakage queries for party UA by itself. However, for party
UB, it does not know its long-term secret keys. It uses the leakage oracle of the
AFL-CCA-2 secure PKE scheme and the LRS scheme to answer leakage queries
for UB . Note that, the adversary can compute the value ZA1 = ZB1 = gab. So
the secrecy of the session key in this case depends on the security of the values
ZA2 and ZB2 . Also note that the adversary knows the value eskB . However, the
ephemeral public key epkA is protected by the security of CA, since the long-term
secret key skB is not revealed to the adversary A.

Case 1(d). The security in this case is similar to that of Case 1(c). Here the
adversary A learns the long-term DH key of UB , i.e., b = bL · bR, the secret key
skUB

and the ephemeral secret key eskA of party UA. In this case, challenger
uses the leakage oracle of the AFL-CCA-2 PKE scheme and the LRS scheme to
answer leakage queries for UA. As before, the adversary can compute the value
ZA1 = ZB1 = gab. So the secrecy of the session key in this case depends on the
security of the values ZA2 and ZB2 . The adversary also knows the value eskA.
However, the ephemeral public key epkB is protected by the security of CB , since
the long-term secret key skA is not revealed to the adversary A.

In Case 2, the partner to the test session does not exist. By the freshness
condition of the BAFL-eCK, the adversary is not allowed to corrupt the peer
to the test/challenge session. The proof for Case 2(a) is similar to the proof of

360 S. Chakraborty et al.

Case 1(c). The situation that the ephemeral secret key of the partner to the
test session is given to A is the same as the case that the test session has no
matching session because A can decide arbitrary ephemeral key. By a similar
argument the proof for Case 2(b) is also similar to the analysis for Case 1(d).

5 Conclusion

In this paper, we proposed two generic compilers for after-the-fact leakage.
One is a generic transformation from a leakage-resilient CPA-secure PKE to
a leakage-resilient CCA-2-secure PKE in split-state bounded memory leakage
model. The salient feature of our transformation is that the leakage tolerance
of the transformed CCA-2 secure PKE is exactly same as the leakage tolerance
of the underlying CPA-secure PKE and is also efficient. Our second compiler
transforms any after-the-fact leakage-resilient CCA-2 secure PKE to a leakage-
resilient AKE protocol in the BAFL-eCK model. An interesting open problem
would be to design a generic compiler for transforming a CPA-secure PKE to
a CCA-2 secure PKE in the presence of after-the-fact leakage, but in non-split
state model. We also leave open the problem of constructing a generic compiler
for leakage-resilient CPA-secure PKE to a leakage resilient CCA-2 secure PKE
in the presence of continuous after-the-fact leakage.

Acknowledgments. We acknowledge the reviewers for their helpful comments. Part
of this work was initiated when the first author was visiting R. C. Bose Centre for Cryp-
tology and Security, Indian Statistical Institute, Kolkata during the Summer of 2016.
The first and the third author are grateful to the project “Information Security Edu-
cation and Awareness Program” of Ministry of Information Technology, Government
of India.

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol.
5444, pp. 474–495. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00457-5 28

2. Alawatugoda, J.: Generic construction of an\ mathrm {eCK}-secure key exchange
protocol in the standard model. Int. J. Inf. Secur., 1–17 (2015)

3. Alawatugoda, J.: Generic transformation of a CCA2-secure public-key encryption
scheme to an eCK-secure key exchange protocol in the standard model. Cryptology
ePrint Archive, Report 2015/1248 (2015). http://eprint.iacr.org/2015/1248

4. Alawatugoda, J., Stebila, D., Boyd, C.: Modelling after-the-fact leakage for key
exchange. In: Proceedings of the 9th ACM Symposium on Information, Computer
and Communications Security, pp. 207–216. ACM (2014)

5. Alawatugoda, J., Stebila, D., Boyd, C.: Continuous after-the-fact leakage-resilient
eCK-Secure key exchange. In: Groth, J. (ed.) IMACC 2015. LNCS, vol. 9496, pp.
277–294. Springer, Cham (2015). doi:10.1007/978-3-319-27239-9 17

6. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 3

http://dx.doi.org/10.1007/978-3-642-00457-5_28
http://eprint.iacr.org/2015/1248
http://dx.doi.org/10.1007/978-3-319-27239-9_17
http://dx.doi.org/10.1007/978-3-642-03356-8_3

Efficient Compilers for After-the-Fact Leakage 361

7. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994). doi:10.1007/3-540-48329-2 21

8. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Cryptography resilient
to continual memory leakage (2010)

9. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 453–474. Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6 28

10. Chakraborty, S., Paul, G., Rangan, C.P.: Efficient compilers for after-the-fact leak-
age: from CPA to CCA-2 secure PKE to AKE (full version). Cryptology ePrint
Archive (2017). http://eprint.iacr.org/2017/451

11. Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F.: Strongly leakage-resilient authen-
ticated key exchange. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 19–36.
Springer, Cham (2016). doi:10.1007/978-3-319-29485-8 2

12. Cremers, C.: Examining indistinguishability-based security models for key
exchange protocols: the case of CK, CK-HMQV, and ECK. In: Proceedings of the
6th ACM Symposium on Information, Computer and Communications Security,
pp. 80–91. ACM (2011)

13. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: 2010 51st Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 511–520. IEEE (2010)

14. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key
cryptography in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT
2010. LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-17373-8 35

15. Dziembowski, S., Faust, S.: Leakage-resilient cryptography from the inner-product
extractor. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
702–721. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 38

16. Fujisaki, E., Kawachi, A., Nishimaki, R., Tanaka, K., Yasunaga, K.: Post-challenge
leakage resilient public-key cryptosystem in split state model. IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci. 98(3), 853–862 (2015)

17. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol.
4284, pp. 444–459. Springer, Heidelberg (2006). doi:10.1007/11935230 29

18. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot
attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)

19. Halevi, S., Lin, H.: After-the-fact leakage in public-key encryption. In: Ishai, Y.
(ed.) TCC 2011. LNCS, vol. 6597, pp. 107–124. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19571-6 8

20. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

21. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

22. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). doi:10.1007/11535218 33

http://dx.doi.org/10.1007/3-540-48329-2_21
http://dx.doi.org/10.1007/3-540-44987-6_28
http://eprint.iacr.org/2017/451
http://dx.doi.org/10.1007/978-3-319-29485-8_2
http://dx.doi.org/10.1007/978-3-642-17373-8_35
http://dx.doi.org/10.1007/978-3-642-17373-8_35
http://dx.doi.org/10.1007/978-3-642-25385-0_38
http://dx.doi.org/10.1007/11935230_29
http://dx.doi.org/10.1007/978-3-642-19571-6_8
http://dx.doi.org/10.1007/978-3-642-19571-6_8
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/11535218_33

362 S. Chakraborty et al.

23. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75670-5 1

24. Menezes, A., Ustaoglu, B.: Comparing the pre- and post-specified peer models for
key agreement. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol.
5107, pp. 53–68. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70500-0 5

25. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24638-1 16

26. Moriyama, D., Okamoto, T.: Leakage resilient eCK-secure key exchange protocol
without random oracles. In: Proceedings of the 6th ACM Symposium on Informa-
tion, Computer and Communications Security, pp. 441–447. ACM (2011)

27. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03356-8 2

28. Qin, B., Liu, S.: Leakage-resilient chosen-ciphertext secure public-key encryption
from hash proof system and one-time lossy filter. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8270, pp. 381–400. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-42045-0 20

29. Qin, B., Liu, S.: Leakage-flexible CCA-secure public-key encryption: simple con-
struction and free of pairing. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 19–36. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54631-0 2

30. Sarr, A.P., Elbaz-Vincent, P., Bajard, J.-C.: A new security model for authenti-
cated key agreement. In: Garay, J.A., Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280,
pp. 219–234. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15317-4 15

31. Shoup, V.: On formal models for secure key exchange. Citeseer (1999)
32. Toorani, M.: On continuous after-the-fact leakage-resilient key exchange. In: Pro-

ceedings of the Second Workshop on Cryptography and Security in Computing
Systems, p. 31. ACM (2015)

33. Yang, Z., Li, S.: On security analysis of an after-the-fact leakage resilient key
exchange protocol. Inf. Process. Lett. 116(1), 33–40 (2016)

34. Zhang, Z., Chow, S.S.M., Cao, Z.: Post-challenge leakage in public-key encryption.
Theor. Comput. Sci. 572, 25–49 (2015)

http://dx.doi.org/10.1007/978-3-540-75670-5_1
http://dx.doi.org/10.1007/978-3-540-70500-0_5
http://dx.doi.org/10.1007/978-3-540-24638-1_16
http://dx.doi.org/10.1007/978-3-540-24638-1_16
http://dx.doi.org/10.1007/978-3-642-03356-8_2
http://dx.doi.org/10.1007/978-3-642-42045-0_20
http://dx.doi.org/10.1007/978-3-642-54631-0_2
http://dx.doi.org/10.1007/978-3-642-15317-4_15

Improved Integral Attack on HIGHT

Yuki Funabiki1(B), Yosuke Todo2, Takanori Isobe3, and Masakatu Morii1

1 Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
funabiki@stu.kobe-u.ac.jp, mmorii@kobe-u.ac.jp

2 NTT Secure Platform Laboratories, 3-9-11 Midori-cho,
Musashino, Tokyo 180-8585, Japan

todo.yosuke@lab.ntt.co.jp
3 University of Hyogo, 7-1-28 Minatojima-minamimachi,

Chuo-ku, Kobe, Hyogo 650-0047, Japan
takanori.isobe@ai.u-hyogo.ac.jp

Abstract. HIGHT is a lightweight block cipher with 64-bit block length
and 128-bit security, and it is based on the ARX-based generalized Feis-
tel network. HIGHT became a standard encryption algorithm in South
Korea and also is internationally standardized by ISO/ICE 18033-3.
Therefore, many third-party cryptanalysis against HIGHT have been
proposed. Especially, impossible differential and integral attacks are
applied to reduced-round HIGHT, and the current best attack under the
single-key setting is 27 rounds using the impossible differential attack.
In this paper, we propose an improved integral attack against HIGHT.
We first propose new 19-round integral characteristics by using the prop-
agation of the division property, and they are improved by two rounds
compared with previous integral characteristics. Finally, we can attack
28-round HIGHT by appending 9-round key recovery. Moreover, we can
attack 29-round HIGHT if the full code book is used, and it improves by
two rounds compared with previous best attack.

Keywords: Block cipher · HIGHT · Integral attack · Division
property · Partial-sum technique · Bitwise partial-sum technique ·
Meet-in-the-middle technique

1 Introduction

The lightweight cryptography is one of the most actively discussed topics in
the community of symmetric-key cryptographers. The motivation of the light-
weight symmetric-key cryptography is to design high-performance and secure
symmetric-key ciphers under the area-constraining environments. Such ciphers
are expected to be proper for radio frequency identification (RFID), sensor net-
work, and Internet of Things (IoT). Nowadays, a huge number of such ciphers
have been proposed, and please refer to [2], where a list of lightweight ciphers is
well summarized.

The generalized Feistel network (GFN) is suited to the design of lightweight
block ciphers because each F-function is very small. LBlock [23] and TWINE [19]
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 363–383, 2017.
DOI: 10.1007/978-3-319-60055-0 19

364 Y. Funabiki et al.

Table 1. Comparison of attack results on HIGHT.

Model Attack #Rounds Data Time Reference

Single key Imp. Diff 18 246.8 2109.2 [7]

Imp. Diff 26 261 2119.53 [12]

Imp. Diff 26 261.6 2114.35 [3]

Imp. Diff 27 258 2126.6 [3]

Integral 16 242 251 [7]

Integral 22 262 2118.71 [25]

Integral 22 262 2102.35 [14]

Integral 26 257 2120.55 [15]

Integral 28 263 2127 Sect. 4

Integral 29 264 2126 Sect. 5

Related key Imp. Diff 31 264 2127.28 [12]

rectangle 32 (full) 257.84 2125.83 [10]

are examples of such ciphers. HIGHT, which was proposed by Hong et al. at
CHES 2006 [7], is also a lightweight block cipher adopting the GFN. Moreover,
HIGHT was standardized by ISO/IEC 18033-3 [8]. HIGHT only consists of three
operations, i.e., modular additions over 256, bitwise rotations, and bitwise XOR.
Such structure is often called ARX, and HIGHT is regarded as an ARX-based
generalized Feistel network. Some ARX-based ciphers have been proposed, but
there are many unsolved problems in the security analysis compare with the
S-box-based ciphers. Therefore, HIGHT standardized by ISO/IEC is one of the
most attractive ARX-based ciphers and is well analyzed.

In the related-key setting, the full HIGHT was already broken using the
related-key rectangle attack [10]. On the other hand, impossible differential and
integral attacks have been often applied to HIGHT under the single-key setting,
but the full HIGHT has not been attacked yet. The current best attack is pro-
posed by Chen using the impossible differential attack and 27-round HIGHT is
attacked [3] (Table 1).

In this paper, we propose the current best attack by using the improved inte-
gral attacks. The integral attack consists of two parts; an integral characteristic
and key recovery. In the integral characteristic, attackers first prepare a set of
chosen plaintexts, where the XOR of the part of all corresponding states after
several encryption rounds is always 0 for all secret keys. Then, in the key recov-
ery, they guess round keys used in the last several rounds and evaluate whether
the XOR of partially decrypted texts is 0 or not. If the correct key is guessed,
the XOR is 0 because of the integral characteristic. Therefore, if the XOR is not
0, the guessed round key is discarded.

The integral cryptanalysis on HIGHT was first evaluated by the designers [7].
They showed 12-round integral characteristics with 28 chosen plaintexts, and
16-round HIGHT is attacked by using the characteristic. However, the error of

Improved Integral Attack on HIGHT 365

this 12-round characteristics was pointed out by Zhang et al., and they showed
that the correct integral characteristics with 28 chosen plaintexts cover only 11
rounds [25]. Moreover, they improved the 11-round characteristic to 17-round one
by using the higher-order integral characteristics. As a result, 22-round HIGHT
is attacked by using the 17-round characteristic. Then, the key recovery part is
dramatically improved by Sasaki and Wang. They first proposed the meet-in-the-
middle technique for the key recovery of the integral attack [14], which is useful
to reduce the time complexity. Moreover, they proposed the bitwise partial-sum
technique and optimized the key recovery [15]. As a result, 26-round HIGHT is
attacked. Note that both improvements use the same 17-round characteristic by
Zhang et al.

In this paper, we first show new 19-round integral characteristics, which is
improved by two rounds than previous 17-round one. Our new characteristic is
found by the propagation of the division property [21]. The division property
is a general technique to find integral characteristics and recently applied to
a wide range of block ciphers. New 18-round integral characteristics with 263

chosen plaintexts are found by the propagation of the division property, and
18-round characteristics are extended to 19-round ones. Then, we show that 28-
round HIGHT can be attacked by using this extended 19-round characteristic.
Moreover, we show that 29-round HIGHT can be attacked by using the same
characteristic if the full code book is used. Since the previous best attack is
up to 27 rounds, our new attacks are the current best attack under the single-
key setting.

2 Preliminaries

2.1 Specification of HIGHT

HIGHT is a block-cipher proposed at CHES 2006 by Hong et al. [7]. The block
size is 64 bits and the key size is 128 bits. It adopts the type-2 generalized Feistel
network with 8 branches and 32 rounds. Please refer to [7] for details. Note that
a figure with an incorrect subkey order is showed in [7], and the designers later
fixed the problem [1].

Encryption. The 64-bit plaintext and ciphertext are considered as concatena-
tions of 8 bytes and denoted by P = P7‖P6‖ · · · ‖P0 and C = C7‖C6‖ · · · ‖C0,
respectively. The input of the (r + 1)-th round function is represented as
Xr = Xr

7‖Xr
6‖ · · · ‖Xr

0 for r = 0, 1, . . . , 32. At first, the plaintext is loaded into
an internal state X0

7‖X0
6‖ · · · ‖X0

0 as follows.

X0
0 = P0 � WK0, X0

1 = P1, X0
2 = P2 ⊕ WK1, X0

3 = P3,

X0
4 = P4 � WK2, X0

5 = P5, X0
6 = P6 ⊕ WK3, X0

7 = P7,

where WKi denotes 8-bit whitening keys for i = 0, 1, . . . , 7. The operation �
denotes addition mod 28. Then, the value Xr

7‖Xr
6‖ · · · ‖Xr

0 is updated as Fig. 1

366 Y. Funabiki et al.

Fig. 1. Round function procedure of HIGHT

for r = 0, 1, . . . , 31, where F0(x) = (x ≪ 1) ⊕ (x ≪ 2) ⊕ (x ≪ 7) and
F1(x) = (x ≪ 3) ⊕ (x ≪ 4) ⊕ (x ≪ 6). The operation about (x ≪ s) denotes
an s-bit left rotation of an 8-bit value x, and SKi denotes the i-th 8-bit subkey
for i = 0, 1, . . . , 127. The swap of the byte position is omitted in the last round.
The internal state between F and the key addition is defined by Y r

1 , Y r
3 , Y r

5 , Y r
7 ,

and the internal state after the key addition is defined by Zr
1 , Zr

3 , Zr
5 , Zr

7 . Finally,
the ciphertext is generated from X32 by applying the post whitening as follows.

C0 = X32
0 � WK4, C1 = X32

1 , C2 = X32
2 ⊕ WK5, C3 = X32

3 ,

C4 = X32
4 � WK6, C5 = X32

5 , C6 = X32
6 ⊕ WK7, C7 = X32

7 .

Decryption. The decryption process is explained in the similar to the encryp-
tion process. This operation is identical to an operation for encryption apart
from the following two modifications.

1. All � operations are replaced by � operations except for the � operations
connecting SKi and outputs of F0, where the operation about � denotes
subtraction mod 28.

2. The order in which the keys WKi and SKi are applied is reversed.

Key Schedule. The 128-bit master key is considered as a concatenation
of 16 bytes and denoted by K = K15‖K14‖ · · · ‖K0. In the key schedule,
4 whitening keys for plaintexts are first generated from the master key as
(WK0,WK1,WK2,WK3) = (K12,K13,K14,K15), and 4 whitening keys for
ciphertexts are generated from the master key as (WK4,WK5,WK6,WK7) =
(K0,K1,K2,K3). Moreover, the 128 subkeys are generated as{

SK16·i+j = Kj−i mod 8 � δ16·i+j ,

SK16·i+j+8 = K(j−i mod 8)+8 � δ16·i+j+8,

where δi is a constant.

2.2 Integral Characteristics and Division Property

The integral attack was first proposed by Daemen et al. to evaluate the secu-
rity of Square [5], and then it was formalized by Knudsen and Wagner [9].

Improved Integral Attack on HIGHT 367

The integral attack consists of two parts; construction of an integral character-
istic and key recovery. In this subsection, we focus on the first part, and the
second part is described in the next subsection.

The most common integral characteristic exploits the set of chosen plaintexts
such that the sum of chosen bits in texts encrypted a certain number of rounds
is always 0 for all secret keys. Assume that m-bit encrypted texts hold this
characteristic in the target block cipher. Then, since the probability that the
ideal block cipher holds this characteristic is 2−m, the distinguishing attack is
directly derived from the integral characteristic.

Division Property. The division property, which was recently proposed in
[21,22], is a general method to find integral characteristics, and it is defined as
follows.

Definition 1 (Division Property [21,22]). Let X be a multiset whose elements
take a value of Fn

2 . When the multiset X has the division property D1n

K
, where K

denotes a set of m-dimensional vectors whose i-th element takes 0 or 1, it fulfills
the following conditions:

⊕
x∈X

xu =

{
unknown if there exist k ∈ K s.t. u � k,

0 otherwise,

where xu =
∏n

i=1 x[i]u[i], and u � k if u[i] ≥ k[i] for all i. Here, x[i] denotes
the i-th bit of x from the least significant bit (lsb).

Todo and Morii showed the propagation rules of the division property for three
basic operations; copy, xor, and and [22].

Let I = {i1, i2, . . . , i|I|} be the index of active plaintext bits. Then, the
division property of such chosen plaintexts becomes D1n

k , where ki = 1 if i ∈ I
and ki = 0 otherwise. Then, to search for integral characteristics, division trail
is evaluated.

Definition 2 (Division Trail [24]). Let us consider the propagation of the divi-
sion property

{k} def= K0 → K1 → K2 → · · · → Kr,

where DKi
be the division property after i-round propagation. Moreover, for any

vector k∗
i+1 ∈ Ki+1, there must exist a vector k∗

i ∈ Ki such that k∗
i can propa-

gate to k∗
i+1 by the propagation rule of the division property. Furthermore, for

(k0,k1, . . . ,kr) ∈ (K0 × K1 × · · · × Kr) if ki can propagate to ki+1 for all
i ∈ {0, 1, . . . , r − 1}, we call (k0 → k1 → · · · → kr) an r-round division trail.

Let Ek be the target r-round block cipher. Then, if there is no division trail
k0

Ek−−→ kr = ei, the i-th bit of r-round ciphertexts is always balanced. In [21],
[20], and [22], all possible division trails are evaluated by using a breadth-first
search. Unfortunately, it is practically infeasible to apply this method to block
ciphers whose block length exceeds 32 because the size of Ki is extremely large.

368 Y. Funabiki et al.

MILP-Aided Propagation Search. A mixed-integer linear programming
(MILP) was introduced to cryptanalysis by Mouha et al. in [11]. Then, the
MILP has been successfully applied to various cryptanalyses [4,13,17,17,18,24].
The MILP is an optimization or feasibility program where variables are restricted
to integers. An MILP model M consists of variables M.var, constraints M.con,
and an objective function M.obj, and the following is an example of MILP.

Example 1.

M.var ← x, y, z as binary.
M.con ← x + 2y + 3z ≤ 4 and x + y ≥ 1
M.obj ← maximize x + y + 2z

The answer of the model M is 3, where (x, y, z) = (1, 0, 1).

MILP solver can solve such optimization program, and it returns infeasible if
there is no feasible solution. Moreover, if there is no objective function, the
MILP solver only evaluates whether this model is feasible or not.

Xiang et al. showed that all division trails are efficiently evaluated by using
the MILP in [24], where three division trails for basic operations are modeled as
follows.

Proposition 1 (MILP model for COPY). Let a
COPY−−−−→ (b1, b2, . . . , bm)

be a division trail of COPY, where one bit is copied to m bits. The following
inequalities are sufficient to describe the propagation of the division property for
copy. {

M.var ← a, b1, b2, . . . , bm as binary.

M.con ← a = b1 + b2 + · · · + bm

Proposition 2 (MILP model for XOR). Let (a1, a2, . . . , am) XOR−−−→ b be
a division trail of XOR, where the XOR of m bits is computed. The following
inequalities are sufficient to describe the propagation of the division property for
xor. {

M.var ← a1, a2, . . . , am, b as binary.

M.con ← a1 + a2 + · · · + am = b

Proposition 3 (MILP model for 2-bit AND). Let (a1, a2)
AND−−−→ b be

a division trail of AND, where the AND of 2 bits is computed. The following
inequalities are sufficient to describe the propagation of the division property for
and. {

M.var ← a1, a2, b as binary.

M.con ← b ≥ ai for all i ∈ {1, 2}
In [24], an additional constraint b − a1 − a2 ≤ 0 is used, but it is redundant.
Namely, even if the redundant constraint is not used, it does not affect the result
of MILP.

Improved Integral Attack on HIGHT 369

We first create the MILP model for a target block cipher by using
Proposition 1, 2, and 3. Then, the division property of plaintexts is constrained
according to the index I of active plaintext bits. Moreover, the division property
of the i-th bit of ciphertexts is constrained to 1 when the i-th bit of ciphertexts
is evaluated, and the division property of the other bits is constrained to 0. If
the MILP solver judges that the model is infeasible, the i-th bit of ciphertexts
is balanced. Please refer to [24] in detail.

2.3 Key Recovery and Bitwise Partial-Sum Technique

Supposing that κ-bit secret key is involved to evaluate the integral characteris-
tic with 2|I| texts from ciphertexts, the trivial key recovery requires 2|I|+κ time
complexity. Ferguson et al. proposed the partial-sum technique to reduce the
time complexity in [6]. In this technique, we first store the frequency of cipher-
texts into a memory, ciphertexts are partially decrypted by guessing the part of
involved keys, and reduce the size of the memory. Since the complexity is the
product of the memory size and the partially guessed key size, the attacker can
reduce the whole complexity by partial decryption and compressing the data
size step by step.

Sasaki and Wang proposed the bitwise partial-sum technique, which improves
the complexity of the partial-sum technique for ARX designs [15]. Suppose that
n-bit variables X,Y and n-bit unknown key K. Also suppose that 22n pairs of
(X,Y) are given to the attacker, and the goal of the attacker is to compute Z
by exhaustively guessing K, where the following two operations are considered.

Z = (X ⊕ K) � Y, Z = (X � K) ⊕ Y.

The complexity to compute Z is 22n · 2n = 23n operations. The bitwise partial-
sum can reduce the complexity to n · 22n+1 by computing Z bit by bit.

In practice, we need to evaluate the complexity for mod subtraction because
of analyzing on decryption. At first, n-bit variable Ȳ and K̄ denote inverse
elements corresponding to Y and K, respectively. Then, the following equations
can be easily derived.

(X ⊕ K) � Y = (X ⊕ K) � Ȳ , (X � K) ⊕ Y = (X � K̄) ⊕ Y.

Hence, we can consider that the mod subtraction is equivalent to the mod addi-
tion are equivalent as far as guessing all values of Ȳ and K̄, and use same
procedure shown by [15]. The complexities to compute the above equations with
the bytewise and bitwise partial-sum is given in Table 2.

Table 2. Summary of the complexity of the bytewise and bitwise partial-sum

Target equation Bytewise partial-sum Bitwise partial-sum

Z = (X ⊕ K) � Y 23n n · 22n+1

Z = (X � K) ⊕ Y 23n n · 22n+1

370 Y. Funabiki et al.

3 New Integral Characteristics on HIGHT

3.1 Previous 17-Round Integral Characteristics

Zhang et al. first showed 11-round integral characteristics with 28 chosen plain-
texts in [25]. Moreover, they extended the characteristics to 17-round ones by
using the higher-order integral as

(A,A,A,A,A,A,A, C) 17R−−→ (U ,U ,U ,U ,B0,U ,U ,U),

(A,A,A, C,A,A,A,A) 17R−−→ (B0,U ,U ,U ,U ,U ,U ,U),

where B0 denotes that the lsb of the byte is balanced [25]. Moreover, A denotes
that every value appears the same number in the multiset, C denotes that the
value is fixed to a constant for all texts in the multiset and U denotes that the
multiset is indistinguishable from one of n-bit random values.

3.2 New Integral Characteristics Based on Division Property

We first propose some new 18-round integral characteristics, which are found
by the propagation of the division property. As the unique structure of HIGHT,
there are modular constant additions and modular additions of two values. Such
additions are represented by the combination of half and full adders, and we
generate the MILP model by simulating these adders by three propagation rules.

MILP Model for Modular Additions. We first consider the MILP model
for half and full adders. In the half adder, the input is two bits a and b, and the
output is the sum s and the carry c. Then, s and c are computed as

c = a ∧ b, s = a ⊕ b.

In the full adder, the input is three bits a, b, and x, and the output is the sum
s and the carry c. Then, s and c are computed as

c = (a ∧ b) ⊕ (x ∧ (a ⊕ b)), s = a ⊕ b ⊕ x.

halfAdder and fullAdder in Algorithm 1 generates the MILP model of the
division property for halfAdder and fullAdder, respectively. Here, halfAdder
consists of 6 M.vars and 5 M.cons, and fullAdder consists of 13 M.vars
and 10 M.cons. Moreover, modAdd in Algorithm 1 shows the MILP model of
the division property for modular addition of two n-bit values, where (6 + 13 ×
(n − 2) + 1) M.vars and (5 + 10 × (n − 2) + 1) M.cons are used. Constant
round keys are modular added to the state in HIGHT, and modAddConst in
Algorithm 1 shows the MILP model of the division property. In the constant
addition, corresponding division property is always 0. Therefore, additions of
the lsb and msb are simply represented, and it is enough to use halfAdder for
additions of other bits. Therefore, 2+6×(n−2)+1 M.vars and 1+5×(n−2)+1
M.cons are used.

Improved Integral Attack on HIGHT 371

Algorithm 1. MILP model of division property for modular addition of two
values.
1: procedure halfAdder(M, a, b)
2: M.var ← as, bs, ac, bc, s, c *

3: M.con ← a = as + ac
4: M.con ← b = bs + bc
5: M.con ← s = as + bs
6: M.con ← c ≥ ac and c ≥ bc
7: return (M, s, c)
1: procedure fullAdder(M, a, b, x)

2: M.var ← as, bs, au, bu, av , bv *

3: M.var ← xs, xw, s, c *
4: M.con ← a = as + au + av
5: M.con ← b = bs + bu + bv
6: M.con ← x = xs + xw

7: M.con ← s = as + bs + xs

8: M.var ← u, v, w *

9: M.con ← u ≥ au and u ≥ bu
10: M.con ← v = av + bv
11: M.con ← w ≥ xw and w ≥ v

12: M.con ← c = u+ w

13: return (M, s, c)

1: procedure modAdd(M,a, b, n)
2: (M, s1, c1) = halfAdder(M, a1, b1)

3: for i = 2 to n − 1 do

4: (M, si, ci) = fullAdder(M, ai, bi, ci−1)

5: M.var ← sn
6: M.con ← sn = an + bn + cn−1

7: return (M,s)
1: procedure modAddConst(M,a, n)

2: M.var ← s1, c1
3: M.con ← a1 = s1 + c1
4: for i = 2 to n − 1 do
5: (M, si, ci) = halfAdder(M, ai, ci−1)
6: M.var ← sn
7: M.con ← sn = an + cn−1

8: return (M,s)

* means each variant are defined as binary.

New 18-Round Integral Characteristics. We implemented an MILP model
of the division property for HIGHT. The algorithm to search for integral charac-
teristics is described in Algorithm 2 of AppendixA. To find the longest integral
characteristics, we choose one constant bit from 64 plaintext bits, i.e., 64 sets of
263 chosen plaintexts are tried out. As a result, we found six 18-round integral
characteristics as

IC1 (A,A,A,A,A,A,A,A0)
18R−−→ (U ,U ,U ,U ,B0,U ,U ,U),

IC2 (A,A,A,A0,A,A,A,A) 18R−−→ (B0,U ,U ,U ,U ,U ,U ,U),

IC3 (A,A,A,A,A,A0,A,A) 18R−−→ (U ,U ,U ,U ,B1,0,U ,U ,U),

IC4 (A,A,A,A,A,A1,A,A) 18R−−→ (U ,U ,U ,U ,B1,0,U ,U ,U),

IC5 (A,A0,A,A,A,A,A,A) 18R−−→ (B1,0,U ,U ,U ,U ,U ,U ,U),

IC6 (A,A1,A,A,A,A,A,A) 18R−−→ (B1,0,U ,U ,U ,U ,U ,U ,U),

where Ai denotes seven bits except for i-th bit are active and i-th bit is constant,
and B1,0 denotes that the lsb and the second lsb are balanced1.

1 Sun et.al. also independently proposed 18-round integral characteristics in [16].
However, they presented only two characteristics as IC1 and IC2.

372 Y. Funabiki et al.

3.3 Extended 19-Round Integral Characteristics

We propose how to extend six 18-round integral characteristics to 19-round ones
by appending one round to the plaintext side. Especially, we do not need to guess
secret keys for extensions from IC1, IC2, IC3 and IC5, and it does not require the
use of the full code book. Unfortunately, other two extensions requires guessing
the part of secret keys, but we can easily append one round by using the full
code book.

Extending IC1 and IC2. We consider the extension from IC1 and IC2, where
the round function using F0 is involved (see Fig. 2). Then, the lsb of the left half
of the output is represented as

L[0] ⊕ (F0(R) � SK)[0] = L[0] ⊕ F0(R)[0] ⊕ SK[0].

When the lsb of the left half of the plaintext takes a value X = F0(R)[0], the
lsb of the left half of the output is always constant. As a result, we can get two
19-round integral characteristics as

IC1’ (A7‖X ,A,A,A,A,A,A,A) 19R−−→ (U ,U ,U ,U ,B0,U ,U ,U),

IC2’ (A,A,A,A,A7‖X ,A,A,A) 19R−−→ (B0,U ,U ,U ,U ,U ,U ,U),

without guessing any bit of secret key, where Ai denotes that i bits are active.

Extending IC3 and IC5. We consider the extension from IC3 and IC5, where
the round function using F1 is involved (see Fig. 3). Then, the lsb of the left half
of the output is represented as

L[0] � (F1(R) ⊕ SK)[0] = L[0] ⊕ F1(R)[0] ⊕ SK[0].

When the lsb of the left half of the plaintext takes a value X = F1(R)[0], the
lsb of the left half of the output is always constant. As a result, we can get two
19-round integral characteristics as

IC3’ (A,A,A,A,A,A,A7‖X ,A) 19R−−→ (U ,U ,U ,U ,B1,0,U ,U ,U),

IC5’ (A,A,A7‖X ,A,A,A,A,A) 19R−−→ (B1,0,U ,U ,U ,U ,U ,U ,U),

without guessing any bit of secret key.

Fig. 2. IC1, 2

1

Fig. 3. IC3, 5

1

Fig. 4. IC4, 6

Improved Integral Attack on HIGHT 373

Extending IC4 and IC6. We consider the extension from IC4 and IC6 (see
Fig. 4). The second lsb is constant in these integral characteristics instead of the
lsb. Then, the second lsb of the left half of the output is represented as

L[1] ⊕ F1(R)[1] ⊕ SK[1] ⊕ (L[0] × (F1(R)[0] ⊕ SK[0])).

When the second lsb of the left half of the plaintext takes a value X = F1(R)[1]⊕
(L[0] × (F1(R)[0] ⊕ SK[0])), the output second lsb is constant. Then,

IC4’ (A,A,A,A,A,A,A6‖X‖A1,A) 19R−−→ (U ,U ,U ,U ,B1,0,U ,U ,U),

IC6’ (A,A,A6‖X‖A1,A,A,A,A,A) 19R−−→ (B1,0,U ,U ,U ,U ,U ,U ,U).

Unfortunately, these extension requires guessing SK[0] and the full code book.
These integral characteristics could not be detected by MILP-aided tool. In

our procedure that how to extend integral characteristics, we have to compose
the set of chosen plaintexts which include some non-linear part, represented
as X . On the other hand, the division property provide the completely linear
and generalized set of chosen plaintexts. As a result, the MILP-aided tool using
the division property can find 18-round integral characteristics but cannot find
19-round ones.

4 28-Round Attack on HIGHT Without Full Code Book

4.1 Whitening Key Addition to Integral Characteristics

In Sect. 3.3, we showed new 19-round integral characteristics, but we cannot use
each characteristic directly because whitening key is added to plaintexts at first.
In this section, we propose how to add the whitening to six 19-round integral
characteristics.

First, we add the whitening to IC1’ or IC2’, where the XOR is used as the
addition. Then, the whitening key is linearly involved to the lsb of the left half
of the output. Therefore, even if there is the whitening, we can use IC1’ without
guessing the key.

Next, we add the whitening to IC3’ or IC5’, where the modular addition is
used as the addition. Then, the whitening key is nonlinearly involved to the lsb
of the left half of the output. Unfortunately, this requires guessing the whitening
key, and the use of the full code book is required to add the whitening. Similarly,
the full code book is required to add the whitening to IC4’ or IC6’.

As a result, we can add the whitening to IC1’ and IC2’ without using the
full code book. Other four integral characteristics can be added the whitening
when the full code book is used. Hereafter, we only use IC1’ and IC2’ to avoid
the use of the full code book in this section.

374 Y. Funabiki et al.

4.2 Meet-in-the-Middle Technique

Let us consider the integral attack using IC1’. Then, X19
3 [0] is balanced and can

be written as a linear combination of two variables X20
4 [0] and Z19

3 [0], where
Xr

i [j] denotes the j-th bit of the Xr
i . In the meet-in-the-middle technique [14],

each sum is independently computed from ciphertexts, and secret keys satis-
fying

⊕
Z19
3 [0] =

⊕
X20

4 [0] are recovered by using the computation like the
meet-in-the-middle attack. Furthermore, for HIGHT, this concept is extended
by exploiting more linearity inside the round function in [15]. Since the complex-
ity for computing

⊕
Z19
3 [0] is much bigger than the one for

⊕
X20

4 [0], we reduce
the number of subkeys involved

⊕
Z19
3 [0]. We focus on that Z19

3 [0] is computed
by SK77[0]�Y 19

3 [0], and this is represented as Z19
3 [0] = SK77[0]⊕Y 19

3 [0] because
the lsb of the modular addition is a XOR. Therefore, SK77[0] can be removed,
namely

⊕
X20

4 [0] =
⊕

Y 19
3 [0]. Furthermore, by utilizing the linearity of F0, i.e.,

Y 19
3 [0] = X20

3 [7] ⊕ X20
3 [6] ⊕ X20

3 [1], we can move more subkey bits, and finally
get the following equation.⊕

(X20
4 [0] ⊕ X21

4 [7] ⊕ X21
4 [6] ⊕ X21

4 [1]) =
⊕

(Z20
3 [7] ⊕ Z20

3 [6] ⊕ Z20
3 [1]). (1)

Unfortunately, 13-byte keys are involved to the right half of Eq. (1), and we
cannot append 9 rounds like [15]. Moreover, 14-byte keys are involved when
IC2’ is used. Alternatively, we attack 28-round HIGHT from the 2-nd round
to 29-th round with whitening keys. Then, 12-byte keys and 13-byte keys are
involved when IC1’ and IC2’ are used, respectively. We detail the analyses of the
involved keys about each Zr

i in Table 5 of AppendixB.
We prepare the 28-round HIGHT from the 2-nd to 29-th round and apply

IC1’ to 19-round between 2-nd and 20-th round. Then, X20
3 [0] is balanced, and

we finally get the following equation.⊕
(X21

4 [0] ⊕ X22
4 [7] ⊕ X22

4 [6] ⊕ X22
4 [1]) =

⊕
(Z21

3 [7] ⊕ Z21
3 [6] ⊕ Z21

3 [1]). (2)

4.3 Attack Procedure

We use the relationship between the whitening key, subkey and master key in
Table 3.

Since the computation for the right-hand side of Eq. (2) requires much more
complexity than the left-hand side, we only explain the procedure to obtain
the right-hand side of Eq. (2) and evaluate the time complexity. The partial
decryption for obtaining

⊕
(Z21

3 [7]⊕Z21
3 [6]⊕Z21

3 [1]) is shown in Fig. 5. We first
describe our procedure with the bytewise partial-sum technique as following
steps:

1. The analysis starts from at most 264 ciphertexts of (C0, . . . , C7).
2. K1 and K2 are guessed and the data is compressed into 256 texts.
3. K2 has been already guessed, so K3 is guessed and the data is converted

into 256 texts.

Improved Integral Attack on HIGHT 375

Table 3. Relationship between Whitening key, Subkey and Master key from 1-st to
29-th round

Round RK7 RK5 RK3 RK1 Round RK7 RK5 RK3 RK1

W K15 K14 K13 K12 16 K12 K11 K10 K9

1 K3 K1 K1 K0 17 K7 K6 K5 K4

2 K7 K6 K5 K4 18 K3 K2 K1 K0

3 K11 K10 K9 K8 19 K15 K14 K13 K12

4 K15 K14 K13 K12 20 K11 K10 K9 K8

5 K2 K1 K0 K7 21 K6 K5 K4 K3

6 K6 K5 K4 K3 22 K2 K1 K0 K7

7 K10 K9 K8 K15 23 K14 K13 K12 K11

8 K14 K13 K12 K11 24 K10 K9 K8 K15

9 K1 K0 K7 K6 25 K5 K4 K3 K2

10 K5 K4 K3 K2 26 K1 K0 K7 K6

11 K9 K8 K15 K14 27 K13 K12 K11 K10

12 K13 K12 K11 K10 28 K9 K8 K15 K14

13 K0 K7 K6 K5 29 K4 K3 K2 K1

14 K4 K3 K2 K1 W K3 K2 K1 K0

15 K8 K15 K14 K13

When Round is W, RKi denotes the round key corresponding WK.
Otherwise, RKi denotes the round key corresponding SK

4. K15 is guessed and the data is compressed into 248 texts.
5. K3 has been already guessed, so K4 is guessed and the data is converted

into 248 texts.
6. K8 is guessed and the data is converted into 248 texts.
7. K11 is guessed and the data is compressed into 240 texts.
8. K1 has been already guessed, so K0 is guessed and the data is converted

into 240 texts.
9. K9 is guessed and the data is converted into 240 texts.

10. K12 is guessed and the data is converted into 240 texts.
11. K7 is guessed and the data is compressed into 232 texts.
12. K3 has been already guessed, so the data is converted into 232 texts.
13. K0 has been already guessed, so the data is converted into 232 texts.
14. K8 has been already guessed, so the data is converted into 232 texts.
15. K13 is guessed and the data is compressed into 224 texts.
16. K4 has been already guessed, so the data is compressed into 216 texts.
17. K12 has been already guessed, so the data is compressed into 28 texts.
18. K0 has been already guessed, so the data is compressed into 1 text of Z21

3 .
Then, we can calculate the value of

⊕
(Z21

3 [7] ⊕ Z21
3 [6] ⊕ Z21

3 [1]).

This procedure and its time complexity evaluation is summarized in Table 4.
Step 11 and 15 requires the dominant time complexity, where 2128 round

376 Y. Funabiki et al.

3 2 1

Fig. 5. Partial decryption for
⊕

(Z21
3 [7] ⊕ Z21

3 [6] ⊕ Z21
3 [1]) on 28-round attack

function computations is used for the bytewise partial sum. We apply the bit-
wise partial sum to Step 11 and 15 to reduce the complexities. Step 11 starts
from 240 texts of (X27

0 ,X26
3 ,X26

4 ,X26
5 ,X27

7), and the goal is obtaining 232 texts of
(X27

0 ,X25
3 ,X26

5 ,X27
7) with guessing K7. We then apply the bitwise partial sum to

guess K7. Referring Table 2, its time complexity is reduced to n·(280+39+1) = 2123

round functions, where n = 8. In Step 15, we can also reduce the time complex-
ity about 2128 to n · (288+31+1) = 2123 round functions, similarly. Finally, the
time complexity in the key recovery is estimated by Step 11 and 15 because the
complexities of other steps are negligible compared with 2123. Hence, the time
complexity of the key recovery is about 2124 round functions(RF).

Since only one integral characteristic with one balance bit is used, this key
recovery only reduces the 1-bit of information on the master key. Therefore, we
finally exhaustively searches 2127 master keys. As a result, the whole complexity
of our attack is 2124 RF + 2127 Enc ≈ 2127 Enc.

5 29-Round Attack on HIGHT with Full Code Book

When the use of the full code book is acceptable, we can attack 29-round HIGHT,
where one round is added to the plaintext side from the 28-round attack. There-
fore, while 28-round HIGHT from the 2-nd to 29-th round is attacked in Sect. 4,
the natural 29-round HIGHT is attacked.

Improved Integral Attack on HIGHT 377

We briefly describe the overview of our 29-round attack. We first prepare
the set of chosen texts for the input of the 2-nd round function such that it
brings 19-round integral characteristics, i.e., X20

3 [0] is balanced, and it is the
same as the 28-round attack. Next, we guess the round key in the 1-st round
and whitening keys, and get the set of corresponding plaintexts. Since the set
of plaintexts depends on the guessed keys, 29-round attack requires the use of
the full code book. Moreover, the position of the guessed keys depends on each
characteristic, and AppendixC shows it in detail. Finally, we execute the key
recovery that is the same as that for the 28-round attack.

Table 4. Summary of the computation for
⊕

(Z21
3 [7] ⊕ Z21

3 [6] ⊕ Z21
3 [1]).

Step Guessed keys Data size Texts need to be analyzed Complexity

(bytewise)

Complexity

(bitwise)

1 — 264 (C0, C1, C2, C3, C4, C5, C6, C7) 264 MA —

2 K1, K2 256 (C0, C1, X28
3 , C4, C5, C6, C7) 216 ·264 = 280

RF

—

3 K3(, K2) 256 (C0, C1, X28
3 , X28

4 , X28
5 , C6, C7) 216 ·28 ·256 =

280 RF

—

4 K15 248 (C0, C1, X27
3 , X28

5 , C6, C7) 224 ·28 ·256 =

288 RF

—

5 K4(, K3) 248 (C0, C1, X27
3 , X28

5 , X28
6 , X28

7) 232 ·28 ·248 =

288 RF

—

6 K8 248 (C0, C1, X27
3 , X27

4 , X27
5 , X28

7) 240 ·28 ·248 =

296 RF

—

7 K11 240 (C0, C1, X26
3 , X27

5 , X28
7) 248 ·28 ·248 =

2104 RF

—

8 K0(, K1) 240 (X28
0 , X27

0 , X26
3 , X27

5 , X28
7) 256 ·28 ·240 =

2104 RF

—

9 K9 240 (X27
0 , X26

3 , X27
5 , X27

6 , X27
7) 264 ·28 ·240 =

2112 RF

—

10 K12 240 (X27
0 , X26

3 , X26
4 , X26

5 , X27
7) 272 ·28 ·240 =

2120 RF

—

11 K7 232 (X27
0 , X25

3 , X26
5 , X27

7) 280 ·28 ·240 =

2128 RF

n · (280+39+1) =

2123 RF

12 (K3) 232 (X27
0 , X24

3 , X26
5 , X27

7) 288 ·20 ·232 =

2120 RF

—

13 (K0) 232 (X27
0 , X24

3 , X25
5 , X27

7) 288 ·20 ·232 =

2120 RF

—

14 (K8) 232 (X27
0 , X23

3 , X25
5 , X27

7) 288 ·20 ·232 =

2120 RF

—

15 K13 224 (X23
3 , X25

5 , X25
6) 288 ·28 ·232 =

2128 RF

n · (288+31+1) =

2123 RF

16 (K4) 216 (X23
3 , X23

4) 296 ·20 ·224 =

2120 RF

—

17 (K12) 28 (X22
3) 296 ·20 ·216 =

2112 RF

—

18 (K0) 1
⊕

(Z21
3 [7] ⊕ Z21

3 [6] ⊕ Z21
3 [1]) 296 · 20 · 28 =

2104 RF

—

MA and RF stand for memory access and round function, respectively

378 Y. Funabiki et al.

We first try to execute 29-round attack using the 19-round integral char-
acteristic IC1’. To prepare the set of plaintexts, we have to guess the value of
K14 and K2. Unfortunately, K14 is not involved to the key recovery shown in
Table 4. Therefore, the complexity of each step always requires 28 times, and the
time complexity in Step 11 and 15 is over 2128 even if the bit-wise partial sum
is applied. As a result, we cannot use IC1’. We next try to execute 29-round
attack using the 19-round integral characteristic IC3’. Note that the position of
balanced byte is the same as that by IC1’, i.e., X20

3 [0] is balanced. Therefore,
we can use the same procedure for the key recovery. To prepare the set of plain-
texts, we have to guess the value of K15 and K3, which are already guessed in
Step 4 and 3 in the key recovery, respectively. Hence, we add two bytes to the
guessed keys in Step 1–2 and one byte to them in Step 3, and the complexity
does not change after Step 4. Therefore, even if IC3’ is used, the complexity of
the key recovery is still 2124 RF because the dominant part is in Step 11 and
15. Moreover, when IC4’ is used, we have to guess the value of not only K15

and K3 but also the lsb of K4 and K12, but all additional guessing keys have
been already guessed in the key recovery. Therefore, similarly to the key recovery
using IC3’, the dominant complexity is still 2124 RF. Since we can execute the
key recovery using both IC3’ and IC4’ in the same time, 2 bits of information of
the master key is recovered. As a result, the whole complexity of our attack is
2124 RF + 2126 Enc ≈ 2126 Enc.

6 Conclusions

In this paper, we first proposed 19-round integral characteristics by using the
propagation of the division property. These characteristics are improved by
two rounds compared with previous ones. Then, we showed the attack against
28-round HIGHT by appending 9-round key recovery. We attacked 28-round
HIGHT with 263 data size and 2127 time complexity. Moreover, we showed
another attack on 29-HIGHT with 264 data size and 2126 time complexity. These
attacks are the best known attack against HIGHT under the single-key setting.

A Detailed MILP Model for HIGHT

In this appendix, the detailed algorithm to search for integral characteristics on
HIGHT is described.

As a result of running the Algorithm2 with our machine (CPU: i5-6500 @
3.20 GHz, 3.20 GHz/RAM: 8.00 GB/64-bit operating system, x64 base proces-
sor), it took about 50 min.

Improved Integral Attack on HIGHT 379

Algorithm 2. MILP model of division property for R-round HIGHT.
1: procedure funcF(M,x, r1, r2, r3)
2: M.var ← y[j], x1[j], x2[j], x3[j] for j ∈ {0, 1, . . . , 7}*
3: for j = 0 to 7 do
4: M.con ← x[j] = x1[j] + x2[j] + x3[j]
5: M.con ← y[j] = x1[(j−r1) mod 8]+x2[(j−r2) mod 8]+x3[(j−r3) mod 8]
6: return (M,y)
1: procedure roundFunc1(M, l, r)
2: M.var ← x[j], s[j] for j ∈ {0, 1, . . . , 7}*
3: for j = 0 to 7 do
4: M.con ← r[j] = x[j] + s[j]
5: (M,y) = funcF(M,x, 3, 4, 6)
6: t = modAdd(M, l,y, 8)
7: return (M, s, t)
1: procedure roundFunc0(M, l, r)
2: M.var ← x[j], s[j] for j ∈ {0, 1, . . . , 7}*
3: for j = 0 to 7 do
4: M.con ← r[j] = x[j] + s[j]
5: (M,y) = funcF(M,x, 1, 2, 7)
6: z = modAddConst(M,y, 8)
7: M.var ← t[j] for j ∈ {0, 1, . . . , 7}*
8: for j = 0 to 7 do
9: M.con ← t[j] = l[j] + z[j]

10: return (M, s, t)
1: procedure HIGHT(round R, index I, target bit t)
2: create MILP model M
3: M.var ← x0

i [j] for (i, j) ∈ {(0, 0), (0, 1), . . . , (7, 7)}*
4: for (i, j) = (0, 0) to (7, 7) do
5: if 8 × i + j is included in I then M.con ← x0

i [j] = 1
6: else M.con ← x0

i [j] = 0
7: for r = 0 to R − 1 do
8: (M,xr+1

1 ,xr+1
2) = roundFunc1(M,xr

1,x
r
0)

9: (M,xr+1
3 ,xr+1

4) = roundFunc0(M,xr
3,x

r
2)

10: (M,xr+1
5 ,xr+1

6) = roundFunc1(M,xr
5,x

r
4)

11: (M,xr+1
7 ,xr+1

0) = roundFunc0(M,xr
7,x

r
6)

12: for (i, j) = (0, 0) to (7, 7) do
13: if 8 × i + j = t then M.con ← xr

i [j] = 1
14: else M.con ← xr

i [j] = 0
15: solve this MILP model M
16: if M is infeasible then return the target bit is balanced.
17: else return the target bit is unknown.
* means each variant are defined as binary.

380 Y. Funabiki et al.

B Involved Key Size in Key Recovery

In this appendix, the detailed analyses of the involved key size in the calculation
of Zr

i is described.

Table 5. The number of involved key bytes in calculation of Zr
i

Rounds of Key Recovery Target Type of using IC Involved Key Size Ignored Keys

20 − 28 R Z20
3 IC1’, IC3’, IC4’ 13 bytes K5,K6,K10

20 − 28 R Z20
7 IC2’, IC5’, IC6’ 14 bytes K4,K12

21 − 29 R Z21
3 IC1’, IC3’, IC4’ 12 bytes K5,K6,K10,K14

21 − 29 R Z21
7 IC2’, IC5’, IC6’ 13 bytes K7,K8,K12

22 − 30 R Z22
3 IC1’, IC3’, IC4’ 13 bytes K10,K13,K14

22 − 30 R Z22
7 IC2’, IC5’, IC6’ 13 bytes K8,K11,K12

23 − 31 R Z23
3 IC1’, IC3’, IC4’ 13 bytes K5,K13,K14

23 − 31 R Z23
7 IC2’, IC5’, IC6’ 13 bytes K7,K8,K15

24 − 32 R Z24
3 IC1’, IC3’, IC4’ 13 bytes K4,K5,K9

24 − 32 R Z24
7 IC2’, IC5’, IC6’ 14 bytes K7,K11

C Detailed Addition of Whitening Layer

In this appendix, we described detailed procedure how to add the whitening layer
to three 19-round integral characteristics. The first 2-round procedure on HIGHT
is shown in Fig. 6. Please refer to Table 3 in order to know the relationship
between the round keys and the master keys.

Fig. 6. 1-st and 2-nd round procedure of HIGHT

Improved Integral Attack on HIGHT 381

We consider the extension from IC1’ and the lsb of X2
0 is represented as

X2
0 [0] = X1

7 [0] ⊕ SK7[0] ⊕ F0(X1
6)[0]

= X0
6 [0] ⊕ WK3[0] ⊕ SK7[0] ⊕ F0(F1(X0

4 � WK2) ⊕ SK2 � X0
5)[0].

We can ignore the value of WK3[0] and SK7[0] because X2
0 [0] is added linearly

by them using XOR. But we cannot ignore that this extension requires guessing
the value of K14 and K2 as WK2 and SK2, respectively. Next, we consider the
extension from IC3’. In case of considering the lsb, we can regard the modular
addition as the XOR. So the lsb of X2

2 is represented as

X2
2 [0] = X1

1 [0] ⊕ SK4[0] ⊕ F1(X1
0)[0]

= X0
0 [0] ⊕ WK0[0] ⊕ SK4[0] ⊕ F1(F0(X0

6 ⊕ WK3) � SK3 ⊕ X0
7)[0].

This extension requires guessing the value of K15 and K3 as WK3 and SK3,
respectively. Finally, we consider the extension from IC4’ and the second lsb is
represented as

X2
2 [1] = X1

1 [1] ⊕ F1(X1
0)[1] ⊕ SK4[1] ⊕ (X1

1 [0] × (F1(X1
0)[0] ⊕ SK4[0])),

where each X1 are represented as follows:

X1
1 [1] = X0

0 [1] ⊕ WK0[1] ⊕ (X0
0 [0] × WK0[0])),

X1
1 [0] = X0

0 [0] ⊕ WK0[0],

X1
0 = F0(X0

6 ⊕ WK3) � SK3 ⊕ X0
7 .

This extension requires guessing the value of K4[0],K12[0],K15 and K3 as
SK4[0],WK0[0],WK3 and SK3, respectively.

References

1. Agency, K.I.S.: Hight algorithm specification (2009)
2. Biryukov, A., Perrin, L.: Lightweight cryptography lounge (2015). http://cryptolux.

org/index.php/Lightweight Cryptography
3. Chen, J., Wang, M., Preneel, B.: Impossible differential cryptanalysis of the light-

weight block ciphers TEA, XTEA and HIGHT. In: Mitrokotsa, A., Vaudenay, S.
(eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 117–137. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31410-0 8

4. Cui, T., Jia, K., Fu, K., Chen, S., Wang, M.: New automatic search tool for impos-
sible differentials and zero-correlation linear approximations (2016). http://eprint.
iacr.org/2016/689

5. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). doi:10.1007/
BFb0052343

6. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting, D.:
Improved cryptanalysis of Rijndael. In: Goos, G., Hartmanis, J., Leeuwen, J.,
Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer, Heidelberg
(2001). doi:10.1007/3-540-44706-7 15

http://cryptolux.org/index.php/Lightweight_Cryptography
http://cryptolux.org/index.php/Lightweight_Cryptography
http://dx.doi.org/10.1007/978-3-642-31410-0_8
http://eprint.iacr.org/2016/689
http://eprint.iacr.org/2016/689
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/3-540-44706-7_15

382 Y. Funabiki et al.

7. Hong, D., et al.: HIGHT: a new block cipher suitable for low-resource device. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer,
Heidelberg (2006). doi:10.1007/11894063 4

8. ISO/IEC: JTC1: ISO/IEC 18033–3: Information technology - security techniques
- encryption algorithms - part 3: Block ciphers (2010)

9. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). doi:10.1007/
3-540-45661-9 9

10. Koo, B., Hong, D., Kwon, D.: Related-key attack on the Full HIGHT. In:
Rhee, K.-H., Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 49–67. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-24209-0 4

11. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-34704-7 5

12. Özen, O., Varıcı, K., Tezcan, C., Kocair, Ç.: Lightweight block ciphers revisited:
cryptanalysis of reduced round PRESENT and HIGHT. In: Boyd, C., González
Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 90–107. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02620-1 7

13. Sasaki, Y., Todo, Y.: New impossible dierential search tool from design and crypt-
analysis aspects (2016). http://eprint.iacr.org/2016/1181. This paper is accepted
in Eurocrypt 2017

14. Sasaki, Y., Wang, L.: Meet-in-the-middle technique for integral attacks against
feistel ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp.
234–251. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35999-6 16

15. Sasaki, Y., Wang, L.: Bitwise partial-sum on HIGHT: A New tool for integral
analysis against ARX designs. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS,
vol. 8565, pp. 189–202. Springer, Cham (2014). doi:10.1007/978-3-319-12160-4 12

16. Sun, L., Wang, W., Liu, R., Wang, M.: Milp-aided bit-based division property
for ARX-based block cipher. IACR Cryptology ePrint Archive 2016, 1101 (2016).
http://eprint.iacr.org/2016/1101

17. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L.: Towards
finding the best characteristics of some bit-oriented block ciphers and automatic
enumeration of (related-key) differential and linear characteristics with predefined
properties (2014). http://eprint.iacr.org/2014/747

18. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evalu-
ation and (Related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45611-8 9

19. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE : a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC
2012. LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35999-6 22

20. Todo, Y.: Integral cryptanalysis on full MISTY1. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 413–432. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-47989-6 20

21. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46800-5 12

http://dx.doi.org/10.1007/11894063_4
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/978-3-642-24209-0_4
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-02620-1_7
http://eprint.iacr.org/2016/1181
http://dx.doi.org/10.1007/978-3-642-35999-6_16
http://dx.doi.org/10.1007/978-3-319-12160-4_12
http://eprint.iacr.org/2016/1101
http://eprint.iacr.org/2014/747
http://dx.doi.org/10.1007/978-3-662-45611-8_9
http://dx.doi.org/10.1007/978-3-642-35999-6_22
http://dx.doi.org/10.1007/978-3-642-35999-6_22
http://dx.doi.org/10.1007/978-3-662-47989-6_20
http://dx.doi.org/10.1007/978-3-662-46800-5_12

Improved Integral Attack on HIGHT 383

22. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-52993-5 18

23. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-21554-4 19

24. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53887-6 24

25. Zhang, P., Sun, B., Li, C.: Saturation attack on the block cipher HIGHT.
In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888,
pp. 76–86. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10433-6 6

http://dx.doi.org/10.1007/978-3-662-52993-5_18
http://dx.doi.org/10.1007/978-3-642-21554-4_19
http://dx.doi.org/10.1007/978-3-662-53887-6_24
http://dx.doi.org/10.1007/978-3-642-10433-6_6

Cryptanalysis of Simpira v2

Ivan Tjuawinata(B), Tao Huang, and Hongjun Wu

Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore
S120015@e.ntu.edu.sg, {huangtao,wuhj}@ntu.edu.sg

Abstract. In Asiacrypt 2016, Simpira v2 was proposed as a family of
efficient permutations. It combines the AES round function with the Gen-
eralized Feistel Scheme (GFS) to construct permutations with arbitrarily
large size which is a multiple of 128-bit. In this paper, we study the secu-
rity of Simpira-3, the 3-block instance of Simpira v2. By applying the
truncated differential analysis, we construct 8-round and 9-round distin-
guishers for Simpira-3 with complexity 2 and 222 respectively. Then, we
apply the impossible differential analysis to construct a 9-round impos-
sible differential. Using this impossible differential, we can launch 9- and
10-round partial key recovery attacks on Simpira-3-based block cipher.
Lastly, we present a boomerang distinguisher for 10-round Simpira-3
with practical complexity 223. To the best of our knowledge, this is the
first cryptanalysis results on Simpira-3. Our analysis will not affect the
security of Simpira.

Keywords: Simpira · Impossible-differential cryptanalysis · Crypto-
graphic permutation

1 Introduction

In the recent development of the symmetric-key cryptographic algorithms, per-
mutation is one of the commonly used building blocks. Permutations can be used
to build block ciphers. A well-known result is to use the (iterated) Even-Mansour
construction [10,11] with a permutation to construct a block cipher. Permuta-
tions can be used to design hash functions. This kind of application can be found
in the SHA-3 finalist Keccak [4], JH [21] and Grøst [12]. It can be used to design
authenticated cipher as well. In the recent CAESAR competition, many candi-
dates are based on permutations, such as Ascon [9], ICEPOLE [17,18], NORX
[1], Ketje [2] and Keyak [3].

Simpira v2 [14] is a family of permutations proposed by Gueron and Mouha
in Asiacrypt 2016. Different from the previous permutations designs, Simpira
provides a scalable framework which can process any multiple of the 128-bit
AES block size. The Generalized Feistel Structure (GFS) with an F-function that
consists of two rounds AES operation is used when the block size is more than
128-bit. The designers also proposed several applications of Simpira v2: a block
cipher using Even-Mansour construction, a hash function using Davies-Meyer
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 384–401, 2017.
DOI: 10.1007/978-3-319-60055-0 20

Cryptanalysis of Simpira v2 385

construction, a wide-block encryption scheme and an authenticated encryption
scheme. The security of Simpira is 2128 for distinguishing attacks. The designers
also claim that when the permutation is at least 256-bit, the security of Simpira-
based block cipher has 128-bit security. The software performance of Simpira
with block number b ≤ 4 and b = 6 is below 1 cycle per byte on the Intel
Skylake processor using AES-NI.

Previous work. In [19], Rønjom analysed the invariant subspaces on Simpira
v1 [13], the first version of Simpira. It was shown in the analysis that invari-
ant subspaces existed in the even-round of Simpira-4, the 4-block variant of
the Simpira family. Dobraunig et al. [8] independently proposed an attack on
Simpira-4 which exploited the property of the GFS of Simpira-4. Due to those
analysis, the designers of Simpira have updated the design with a different GFS
for Simpira-4 as well as the definition of round constant for all the Simpira
family. Zong et al. [22] presented the first cryptanalysis results on Simpira v2.
They provided a 9-round impossible differential for Simpira-4 and presented a
partial key-recovery attack on the 7-round Simpira-4-based block cipher. The
complexity of this attack is 257 to recover 256 bits key. For the 8-round case, the
complexity is 2170 to recover all the key bits.

Our contributions. Considering the instances in the Simpira family, Simpira-
1 is the 12-round AES without round-key; Simpira-2 is an application of the
standard Feistel network; Simpira-4 has been studied in the previous analysis.
But the properties of Simpira-3 have not been thoughtfully analysed in any
previous work. In this paper, we give the first analysis on the Simpira-3. The
summary of our results are listed below.

– Truncated Differential Analysis:
8 rounds:

• Distinguishing attack with 2 queries, 0 probability of false negative
and 2−96 probability of false positive

9 rounds:
• Distinguishing attack with 222 inverse queries, 0.0001 probability of

false negative and 0.00003 probability of false positive.
• Key Recovery attack with 224 decryption queries to recover k0 and

k2
– Impossible Differential Analysis:

9 rounds:
• Key Recovery attack with 250 decryption queries to recover k0.

10 rounds:
• Key Recovery attack with 270 decryption queries to recover k1.

– Boomerang attack
10 rounds:

• Distinguishing attack with 223 queries which distinguishes Simpira-3
from random permutation with failure probability less than 0.1%.

• Key Recovery attack with 253 encryption queries and 285 decryption
queries to recover k0.

386 I. Tjuawinata et al.

Outline. The rest of the paper is organized as follows. In Sect. 2, we provide
the preliminaries for our analysis. In Sect. 3, we present the truncated differential
cryptanalysis on Simpira-3. In Sect. 4, we apply the impossible differential attack
on Simpira-3. In Sect. 5, we discuss the boomerang attack on Simpira-3. We
conclude this paper in Sect. 6.

2 Preliminaries

2.1 Notation

⊕
Bitwise XOR

P Plaintext space

C Ciphertext space

K Key space

S Intermediate state

S
[h]
j [�1, · · · , �t] State of round h, subblock j, byte �1, �2, · · · , �t

0 Zero difference

∗ Arbitrary difference

2.2 Description of Simpira

We describe the specification for Simpira-3, the 3-block instance of Simpira,
which is the target of our analysis. A complete specification on Simpira v2 can
be found in [14]. Simpira-3 is a permutation function that follows the type-1
Generalized Feistel structure (GFS-1) with 3 sub-blocks of size 128 bits each.
Figure 1 illustrates how Simpira-3 works in three consecutive rounds 3i, 3i + 1
and 3i + 2. Note that we have re-ordered the sub-blocks in rounds S[3i+1] and
S[3i+2] for readability. The total number of rounds is 21 for Simpira-3 proposed
in [14].

The non-linear function Fc,b is a 2 round AES with the first AddRoundKey
changed to AddRoundConstant and the second one omitted. The round constant
depends on the value of c, b, where c is a counter that is initialized by one and
incremented after every evaluation of Fc,b. We assign the number of blocks as
the value of b, which is 3 for Simpira-3. More specifically:

F(c,b)(S) = MC ◦ SR ◦ SB ◦ AC ◦ MC ◦ SR ◦ SB(S).

Here MC,SR, SB are MixColumn, ShiftRow and SubByte of the AES [6] respec-
tively. AC is AddRoundConstant.

We will omit the index (c, b) of F(c,b) for the remainder of this paper.

Cryptanalysis of Simpira v2 387

Fig. 1. Round 3i, 3i + 1, 3i + 2 of Simpira-3, 0 ≤ i ≤ 6.

2.3 Even-Mansour Construction

In [11], Even and Mansour proposed a way to use a keyless permutation to
build a block cipher. Given a permutation π, the block cipher built by the Even-
Mansour construction with a single key K is defined to be E : P × K → C such
that for any plaintext P ∈ P and key K ∈ K,

E(P,K) = π(P ⊕ K) ⊕ K.

In this paper, we consider the block cipher built from the Even-Mansour
construction with the permutation function described in Subsect. 2.2. So the
length of P,K and C are all 384 bits each. The security claim given in [14] is
the least between 2128 and 2n/2 where n = 384. Hence the security claim is 2128

while it does not claim any security for the attack with bigger complexity. So we
aim for attacks with complexity less than 2128.

3 Truncated Differential Attack on Simpira-3

In this section, we review some basic concepts and properties of Simpira-3. Then
we apply the truncated differential cryptanalysis [16] to study the security of
Simpira-3.

First, we recall the definition of Super S-Box as defined in [7].

Definition 1. [7] The AES Super Sbox SS maps a 4-byte array (a0, a1, a2, a3)
to a 4-byte array (b0, b1, b2, b3) using a 4-byte array key (k0, k1, k2, k3). It consists
of the sequence of four transformations: SubByte, MixColumn, AddRoundKey and
SubByte.

388 I. Tjuawinata et al.

By this definition and the commutativity of SubByte and ShiftRow, we can
rewrite the definition of F (S) as

F (S) = MC ◦ SR ◦ SS ◦ SR(S).

The Super SBox has the following property:

Property 1. Fix a key K = (k0, k1, k2, k3) ∈ F
32
2 and consider non-zero input and

output differences Δinput,Δoutput ∈ F
32
2 . Then in average, the equation:

SS(x) ⊕ SS(x ⊕ Δinput) = Δoutput

has one solution for x.

In our analysis, we consider two types of byte difference, either 0 (must be zero)
or ∗ (arbitrary value). Let ΔS1,ΔS2 be two 4×4 non-zero matrices with elements
from {0, ∗} representing two truncated differential pattern in some state. We say
ΔS1 �= ΔS2 if

{(i, j)|0 ≤ i, j ≤ 3,ΔS1(i, j) = ∗} ∩ {(i, j)|0 ≤ i, j ≤ 3,ΔS2(i, j) = ∗} = ∅.

The following observation is made in [22].

Observation 1. If there exists at least one column of SR ◦SB(ΔS) to be inac-
tive, then the number of possible values of ΔF (S) is strictly less than 2128.

This means that if SR◦SB(ΔS) has at least one zero columns, ΔF (S) will have
some pattern that we can recognize.

For the Generalized Feistel structure of 3 sub-blocks, there exists asymmetry
between the forward and backward direction. More specifically, in the forward
direction, any difference introduced through F will pass through F in each of
the following rounds, this is not true for the backward direction. Every time
a difference is introduced to a sub-block by F , it will pass through one round
untouched before having to go through another F . This leads to a slower dif-
fusion in the backward direction than the forward direction. In our truncated
differential cryptanalysis, we will exploit this property to study the inverse per-
mutation.

After searching the possible truncated differential of Simpira-3, the following
observation gives the best 8-round truncated differential that we found.

Observation 2 (8-Round Backward Truncated Differential). Let a be a trun-
cated differential pattern such that SR ◦ SB(a) has at least one zero column.
Then the differential

(0, 0, a) 8R backwards−−−−−−−−−→ (F (a), r, r)

has probability 1. This means that if ΔS[8] = (0, 0, a), then with probability 1,
we have ΔS[0] = (F (a), r, r).

Cryptanalysis of Simpira v2 389

Proof. Here we use r to represent the unknown difference in some sub-blocks. For
example F (F (a)) is not considered as identifiable, so we label it as r. It is easy to
see that the following 8-round backwards differential holds with probability 1:

(0, 0, a) → (0, 0, a) → (0, 0, a) → (F (a), 0, a) → (F (a), 0, a)
→ (F (a), r, a) → (F (a), r, a) → (F (a), r, r) → (F (a), r, r).

This characteristic is depicted in Fig. 2.

Fig. 2. Backward difference propagation of the 8-round Simpira-3 (0, 0, a)
8R−−→

(F (a), r, r).

3.1 Distinguishing Attacks on Simpira-3

In this subsection, we describe the distinguishing attack on Simpira-3 based on
the truncated differential characteristic we found above. We propose two different
distinguishing attacks, one for the 8-round Simpira-3 and another for the 9-round
Simpira-3.

8-Round Distinguishing Attack. Suppose that Π is a permutation function
defined as Π : (F128

2)3 → (F128
2)3. We will identify if Π is an 8-round Simpira-3

or a random permutation using the following procedure.

1. Select a a differential pattern such that SR ◦ SB(a) has three zero columns.
Possible values of a are depicted in Fig. 3. Choose C1, C2 ∈ (

F
128
2

)3 such that
C1 ⊕ C2 ∈ (0, 0, a).

390 I. Tjuawinata et al.

Fig. 3. Four possible pattern of a. Filled cells denote arbitrary differences as long as
they are not all zero.

Fig. 4. Respective patterns of MC−1(F (a)).

2. Input C1 and C2 to the inverse oracle of Π to obtain P = (p10, p
1
1, p

1
2) and

P2 = (p20, p
2
1, p

2
2).

3. Calculate MC−1(p10 ⊕ p20). If the pattern does not follow the corresponding
pattern depicted in Fig. 4, we conclude that Π is a random permutation.
Otherwise, we conclude that it is Simpira-3.

Note that if Π is Simpira-3, by Observation 2, given a difference of pattern
(0, 0, a), with probability 1 after 8 inverse rounds, the pattern will be (F (a), r, r).
So the probability of a false negative in our attack is 0. On the other hand, if Π is
a random permutation, p10 ⊕ p20 is supposed to be a random 128-bit state. Hence
MC−1(p10 ⊕ p20) is again a random 128-bit state. The probability that it has the
corresponding pattern given in Fig. 4 is at most the probability that the value in
the 12 blank cells are all zero, which is (2−8)12 = 2−96. So the probability of our
attack giving a false positive is 2−96. Considering the complexity of the attack,
we only require 2 inverse queries and negligible processing time and storage.

9-Round Distinguishing Attack. In this attack, we will add a round after
the 8-round truncated differential characteristic. Namely (F (a), 0, a) → (0, 0, a),
which is depicted in Fig. 5.

Fig. 5. Round 9 in distinguishing attack.

The details of this 9-round distinguishing attack is given in Appendix A. The
complexity of this attack is 222 queries of the inverse permutation.

Cryptanalysis of Simpira v2 391

3.2 Key Recovery Attack on 9-Round Simpira-3

The distinguishing attacks given above can easily be adapted to attack the block
cipher constructed by using the Even-Mansour construction with Simpira-3.

Assuming that the encryption scheme follows the (single key) Even-Mansour
structure with key K = (k0, k1, k2) and the permutation function being the 9-
round Simpira-3, we can use the 9-round truncated differential distinguisher to
launch the partial key recovery attack.

The attack is given in the Appendix B. With 224 decryption queries, we are
able to recover 256 key bits out of the total 384 key bits.

4 Impossible Differential Attack on Simpira-3

In this section, we will use the impossible differential [5,15] to analyse the block
cipher based on Simpira-3. We remark that the analysis described in this section
can be adapted to develop distinguishing attack using a similar method.

The backward truncated differential trail we found in the previous section
can be extended to an impossible differential trail in the following observation.

Observation 3 (9-round Impossible Differential). Let a and b be two truncated
differential patterns such that SR◦SB(a) and SR◦SB(b) have at least one zero
column and the nonzeros of SR ◦SB(a) and SR ◦SB(b) lie in different column.
Then the differential:

(b, F (b), r) 9R−−→ (a, 0, 0)

is impossible.

Proof. We can see that the following 1 round forward truncated differential has
probability 1.

(b, F (b), r) → (b, F (b), r).

In the backward direction, as discussed in Observation 2, the differential pattern
follows the following path:

(a, 0, 0) → (a, 0, 0) → (a, 0, 0) → (a, F (a), 0) → (a, F (a), 0)
→ (a, F (a), r) → (a, F (a), r) → (r, F (a), r) → (r, F (a), r).

If the trail is valid, we must have some difference that is in both patterns, F (b)
and F (a). Since the nonzero columns of SR ◦SB(a) is completely different from
the nonzero columns of SR ◦SB(b), we have MC−1(F (a)) �= MC−1(F (b)). But
it is impossible for a non-zero difference to be both in F (a) and F (b). Hence this
9 rounds differential path is an impossible differential. ��

For the following attacks, we will consider two families of patterns which
are denoted by a and b. The first family, a, is already defined in Figs. 3 and 4.
The other family, b, is in fact the complement of a, depicted in Figs. 6 and 7
respectively.

392 I. Tjuawinata et al.

Fig. 6. Four possible patterns of b.

Fig. 7. Patterns of MC−1(F (b)) corresponding to Fig. 6.

4.1 Key Recovery Attack on 10-Round Simpira-3

For the key recovery attack for EK with Π being the 10-round Simpira-3,
we use the 9-round impossible differential we described in Observation 3 and
then append it with the rotated variant of the round given in Fig. 5 which is
(a, 0, 0) 1R−−→ (a, F (a), 0).

We describe the 10-round attack in the following steps:

1. Let a be the first pattern given in Fig. 3. We also fix b to be the corresponding
pattern in Fig. 6. Lastly, let F (a) and F (b) be the MixColumn of the corre-
sponding patterns in Figs. 4 and 7 respectively.

2. Construct 234 ciphertexts differing only in the active cells of (a, F (a), 0). This
gives us 267 ciphertext pairs each with difference pattern (a, F (a), 0).

3. Decrypt the 234 ciphertexts to find the corresponding plaintexts. Filter the
pairs with plaintext difference (b, F (b), r). This gives us a 64 bit filter. There-
fore, we expect to have 23 pairs out of the 267 pairs of plaintext with differ-
ences pattern (b, F (b), r).

4. For each of the remaining pair, let the ciphertext difference be (Δc0,Δc1,Δc2)
and the plaintext difference be (Δp0,Δp1,Δp2). From the impossible differ-
ential in Observation 3, the relation (a, 0, 0) → (a, F (a), 0) in Round 10 must
be invalid. This gives a filter of one value of the key bytes k1[0, 7, 10, 13] (See
Step 4 in Appendix B for more details).

5. Repeat this 234 times to filter out all wrong k1[0, 7, 10, 13].
6. Repeat the whole process for other patterns of (a, F (a), b, F (b)) to recover

the remaining bytes of k1.

The reasoning behind the 234 repetition is exactly the same as the reasoning
of the repetition done in the 9-round key recovery using truncated differential
found in Appendix B. The complexity of this attack is 234 × 234 × 4 ≈ 270

decryption queries and 2104 pairs to recover k1.
We can actually also mount a key recovery attack on 9-round Simpira-3,

which can be found in Appendix C.

Cryptanalysis of Simpira v2 393

5 Boomerang Attack on Simpira-3

The boomerang attack, proposed by David Wagner in FSE 1999 [20] is a powerful
tool to analyse block ciphers and permutations. To apply the boomerang attack,
we need to concatenate two short differential trails to make a longer one.

In our analysis, we apply it to the truncated differential of Simpira-3. We
first review the following result from [20] in finding the success probability of
the boomerang attack.

Lemma 1. [20] Let E be an encryption operation that can be decomposed to
E = E1 ◦ E0. We further let Δ → Δ∗ be a truncated differential characteristic
for E0 and ∇ → ∇∗ be a truncated differential characteristic for E−1

1 . Then a
truncated boomerang attack using these two characteristics has success probability
p where:

p ≈ Pr(Δ → Δ∗) × Pr(∇ → ∇∗)2 × Pr(Δ∗ → Δ)
×Pr(w ⊕ x ⊕ y ∈ Δ∗|w ∈ Δ∗, x, y ∈ ∇∗).

A slight modification on Observation 3 gives us the following observation:

Observation 4. Let b be one of the pattern given in Fig. 6. Then the truncated
boomerang attack for 9 rounds with:

• Δ = (b, F (b), r) 1R−−→ Δ∗ = (b, F (b), r)
• ∇ = (b, 0, 0) 8R−−→ ∇∗ = (r, F (b), r)

has success probability 2−32.

Proof. By Observation 3 we have that Pr(Δ → Δ∗) = Pr(∇ → ∇∗) = 1.
Furthermore, it is easy to see that Pr(Δ∗ → Δ) = 1. So the success probability
p of this attack is the same as the probability that w = (w0, w1, w2) ⊕ x =
(x0, x1, x2) ⊕ y = (y0, y1, y2) ∈ (b, F (b), r) given that w ∈ (b, F (b), r),x,y,∈
(r, F (b), r). Now note that this probability is one for the second and third sub-
block. So we have the success probability, p is:

p ≈ Pr(w ⊕ x ⊕ y ∈ (b, F (b), r)|w ∈ (b, F (b), r),x,y,∈ (r, F (b), r))
= Pr(w0 ⊕ x0 ⊕ y0 ∈ b|w0 ∈ b, x0, y0 ∈ r)
= Pr(z0 ∈ b|z0 ∈ r)
= Pr(z0 has 4 zeros in the four specific cells)

= (2−8)4 = 2−32. ��

5.1 Distinguishing Attack on 10- Rounds Simpira-3

The differences used in our boomerang attack are given below:

• Δ = (b, F (b), r),
• Δ∗ = (b, F (b), r),

394 I. Tjuawinata et al.

• ∇ = (b, 0, 0),
• ∇∗ = (r, F (b), r),

where b is one of the four patterns described in Fig. 6.
Assume that we are given a permutation function Π and we are asked to

identify whether Π is a 10-round Simpira-3 or a random permutation. Again we
will use the rotated pattern given in Fig. 5 such that it follows the form for the
10-th round of Simpira-3.

1. Fix a pattern b to be one of the pattern given in Fig. 3 and F (b) be the
MixColumn of the corresponding pattern given in Fig. 7.

2. Generate 222 different P (i), i = 1, · · · , 222 such that for any i, j, P (i) ⊕ P (j) ∈
(b, F (b), r).

3. Compute C(i) = Π(P (i)).
4. Generate d

(i)
0 such that c

(i)
0 ⊕ d

(i)
0 ∈ b.

5. Compute δ = F (c(i)0) ⊕ F (d(i))0 and generate d
(i)
1 = c

(i)
1 ⊕ δ. Lastly, we let

d
(i)
2 = c

(i)
2 . Define D(i) = (d(i)0 , d

(i)
1 , d

(i)
2).

6. Compute Q(i) = Π−1(D(i)).
7. Compute n =

∣
∣{{i, j} : i �= j,Q(i) ⊕ Q(j) ∈ (b, F (b), r)}∣∣.

8. If n ≥ 1880, conclude that Π is Simpira-3, otherwise, conclude that Π is a
random permutation.

Note that if Π is Simpira, the probability that Q(i) ⊕ Q(j) ∈ (b, F (b), r) is
2−32 by Observation 4. On the other hand, this probability is 2−64 when Π
is a random permutation. With a similar argument in the 9-round truncated
differential distinguishing attack, the probabilities of false negative and false
positive are 0.0001 and 0.00003 respectively. The complexity of this attack is
222Π queries, 222Π−1 queries and 243 pairs to process.

Here we need to use the actual input value of the state in the last round’s
F . Hence this distinguisher of the permutation function cannot be applied to
distinguish the block cipher using Even-Mansour construction with 10-round
Simpira-3 as its permutation function.

Moreover, we can construct a distinguisher for 9-round Simpira-3 and launch
a partial key recovery attack for 10-round Simpira-3 based on it. The details are
provided in Appendices E and F respectively.

6 Conclusion

In this paper, we described three types of cryptanalysis on Simpira-3, namely
truncated differential analysis, impossible differential analysis and boomerang
attack. Applying the cryptanalysis techniques, we present the first practical dis-
tinguisher for 9-round and 10-round Simpira-3 permutations with complexity
222 and 223 respectively. We also present partial key recovery attacks on the
9-round and 10-round Simpira-3 based block ciphers, which greatly reduce the
key space in those instances. We remark that our attacks on Simpira-3 cannot
directly extend to Simpira-4 to improve the previous results, as Simpira-4 has a
more symmetric structure.

Cryptanalysis of Simpira v2 395

Our attacks provide the first concrete security analysis on Simpira-3. The
results confirm that Simpira-3 has a good security margin and we hope that
our results will be useful for the future analysis on the Simpira family of
permutations.

A 9-Round Truncated Differential Distinguishing Attack

The 9-round truncated differential distinguisher can be done in the following
way. We are assuming that we are given a permutation Π :

(
F
128
2

)3 → (
F
128
2

)3

and we are asked to identify whether Π is a 9-round Simpira-3 or a random
function.

1. Fix the pattern a as the last pattern given in Fig. 3 and F (a) as the MixColumn
of its corresponding pattern in Fig. 4. In other words, now the non-zero cells of
a are in cells 1, 6, 11, 12 following the numbering of state cells in [6]. Similarly,
the possible non-zero cells of MC−1(F (a)) are in cells 3, 6, 9, 12.

2. Fix c1 ∈ F
128
2 , c0[0, 1, 2, 4, 5, 6, 8, 10, 11, 13, 14, 15] and c2[0, 1, · · · , 11,

13, 14, 15].
3. For i, j = 0, · · · , 28 − 1, we define c

(28i+j)
0 [3, 6, 9, 12] = (i, j, 0, 0) and

c
(216+28i+j)
0 [3, 6, 9, 12] = (0, 0, i, j). So now we have c

(i)
0 for i = 0, · · · , 217 − 1.

4. For i = 0, · · · , 24 − 1, we define c
(i)
2 [12] = i and c

(24+i)
2 [12] = 24 + i. So now

we have c
(j)
2 for j = 0, · · · , 25 − 1.

5. For i = 0, · · · , 217 − 1, j = 0, · · · , 25 − 1, calculate Π−1(c(i)0 , c1, c
(j)
2) =

(p(i,j)0 , p
(i,j)
1 , p

(i,j)
2). From these plaintexts, we can generate 243 plaintext pairs.

6. Count the number of plaintext pairs that have difference pattern (F (a), r, r).
Let this number be n. If n ≥ 1880, conclude that Π is Simpira-3. Otherwise
we conclude that Π is a random permutation.

Note that if Π is Simpira-3 and F (Δc2) = Δc0, then Δp0 = F (a) with
probability 1. So

Pr(Δp0 = F (a)|Π is Simpira − 3 and F (Δc2) = Δc0) = Pr(F (Δc2) = Δc0).

Now we note that by the choice of our inputs,

{MC−1(Δci0)} = {Δ ∈ {0, ∗}4×4,Δ[0, 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 15] = 0}.

Moreover,

{Δcj2} = {Δ ∈ {0, ∗}4×4,Δ[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15] = 0}.

By design, MC−1(F (Δcj2)) has the fourth pattern given in Fig. 4. So the
probability above equals to the probability that MC−1(Δci0) coincides with the
value we get from MC−1(F (Δcj2)) which only depends on the value of the 4
values in cells 3, 6, 9, 12. Hence this probability is 2−32.

396 I. Tjuawinata et al.

Furthermore, if Π is Simpira-3, F (Δc2) �= Δc0 or if Π is a random per-
mutation, Δp0 can be seen as a random 128-bit state. So we also have that
MC−1(Δp0) is also a random 128-bit state. So for this value to be in the
MC−1(F (a)) pattern, the probability, as discussed before, is 2−96. So now we
have that if Π is Simpira-3, then the number of pairs that has ΔP0 in F (a) pat-
tern follows a binomial distribution with 243 trials and 2−32 + 2−96(1 − 2−32) ≈
2−32 success probability. Let this random variable be denoted by X1. On the
other hand, if Π is a random permutation, then this random variable follows
another binomial distribution with 243 trials and 2−96 success probability. Let
this random variable be denoted by X2. Then our attack’s probability of false
negative is

α = Pr(n ≤ 1779|n ∼ X1).

and our attack’s false positive probability is

β = Pr(n ≥ 1880|n ∼ X2).

A simple calculation using the normal approximation of random variables will
tell us that α ≈ 0.0001 and β ≈ 0.00003.

Lastly, for the complexity, our attack complexity is 222 inverse enquiries and
243 comparison.

B 9-Round Key Recovery Using Truncated Differential

1. Select a according to the first pattern given in Fig. 3. F (a) is the difference
after MixColumn of the corresponding pattern in Fig. 4.

2. Generate (c(i)0 , c1, c
(j)
2) with an analogous method as the one we described in

the 9-rounds distinguishing attack in Appendix A.
3. Decrypt (c(i)0 , c1, c

(j)
2) to obtain 222 plaintexts (p(i,j)0 , p

(i,j)
1 , p

(i,j)
2) and generate

243 plaintext-ciphertext pairs from it, all with the ciphertext differences in
the pattern (F (a), 0, a).

4. Out of these 243 pairs, we have a probability 2−32 for the corresponding Δp0
to have difference pattern F (a). When this happens with high probability we
have F (Δc2) = Δc0. We can expect around 211 pairs that satisfy this. Let
the differences in the first and last sub-blocks be (Δc

(i)
0 ,Δc

(i)
2), i = 1, · · · , 211

with its corresponding ciphertexts being (c(i,1)0 , c
(i,1)
2) and (c(i,2)0 , c

(i,2)
2). Due

to the linearity of SR and MC, we also have that SS(SR(Δc2)) =
MC−1 ◦ SR−1(Δc0). By Observation 1, we can identify the value of
(c(i,1)0 ⊕ k0, c

(i,1)
2 ⊕ k2) and (c(i,2)0 ⊕ k0, c

(i,2)
2 ⊕ k2). Note that since the

observation only mentions that there is in average one pair of solutions for
(c(i,1)0 ⊕ k0, c

(i,1)
2 ⊕ k2) and (c(i,2)0 ⊕ k0, c

(i,2)
2 ⊕ k2), there are two possibili-

ties of matching the pair. So for each of the filtered (Δc0,Δc2), we obtain
two possible values of (k0[0, 5, 10, 15], k2[0, 7, 10, 13]). Note that the two pos-
sible values that we obtain from (Δc

(i)
0 ,Δc

(i)
2) will contain a correct key

Cryptanalysis of Simpira v2 397

(k∗
0 [0, 5, 10, 15], k∗

2 [0, 7, 10, 13]) and (k∗
0 [0, 5, 10, 15] ⊕ Δ0, k

∗
2 [0, 7, 10, 13] ⊕ Δ2)

where Δ0 = c
(i,1)
0 ⊕ c

(i,2)
0 and Δ2 = c

(i,1)
2 ⊕ c

(i,2)
2 .

So a wrong key can be in at least two pairs if the difference in both
the first and last sub-blocks in the two pairs are the same. Now a specific
difference in the last block can only occur in at most 27 different pairs by
our choices of c2. Since we have 211 pairs, we can expect to filter out all the
wrong (k0[0, 5, 10, 15], k2[0, 7, 10, 13]).

5. Repeating the whole process with a as the second, third and last patterns
given in Fig. 3 will help us in recovering the other 12 bytes of k0 and k2.

Note that here the complexity of each iteration is 222 decryption enquiry and 243

processing of the pairs and there are 4 iterations. So in total, the time complexity
is 224 to recover the value of k0 and k2.

C Key Recovery Attack on 9-Round Simpira-3

We define EK to be the block cipher built by using the Even-Mansour construc-
tion with 9-round Simpira-3.

For this key recovery attack, we use a shortened variant of the 9-round impos-
sible differential that we have in Observation 3 where we omit the first round
of that trail. Therefore, we need to rotate the whole trail and it changes the
input difference pattern from (F (b), r, b) to (F (b), r, r). This 8-round impossible
differential can be found in the Appendix D. Based on this differential, we then
append one more round, which is the round given in Fig. 5. The attack procedure
is given as follows:

1. Let a be the first pattern in Fig. 3, and b be the first pattern given in Fig. 6,
which is the complementary of a. Let F (a) and F (b) be the MixColumn of the
corresponding patterns in Figs. 4 and 7 respectively.

2. Construct 222 ciphertexts that differ in the active cells of (F (a), 0, a). This
provides us with 243 ciphertext pairs with difference pattern (F (a), 0, a).

3. Decrypt the 222 ciphertexts to get 222 plaintexts. For each of the 243 pairs
of plaintext, we check if they have difference pattern (F (b), r, r). Since F (b)
provides a 32-bit filter, we expect to have 211 pairs of plaintext with difference
(F (b), r, r).

4. For each of the remaining pair, let the ciphertext difference be (Δc0,Δc1,Δc2)
and the plaintext difference be (Δp0,Δp1,Δp2). From the impossible differ-
ential in Appendix D, the relation (0, 0, a) → (F (a), 0, a) in Round 9 must
be invalid. This gives a filter of one value of the key bytes k0[0, 7, 10, 13] (See
Step 4 in Appendix B for more details).

5. Repeat the above procedure for 226 times to detect all wrong possible values
of k0[0, 7, 10, 13].

6. Repeat the whole process for the other 3 patterns of (a, F (a), b, F (b)) to
recover the remaining bytes of k0.

398 I. Tjuawinata et al.

For each iteration, we are left with 211 pairs. With 226 iterations, the total
number of pairs is 237. The probability that any wrong key left after the attack
is (1 − 2−32)2

37
< 2−32. Hence we expect to have only one key remaining after

226 iterations.
In total we have 222 × 226 × 4 ≈ 250 decryption queries and 251 pairs to

process to recover the value of k0.

D 8-Round Impossible Differential Figure

See Fig. 8.

Fig. 8. 8-round impossible differential used for 9-round impossible distinguisher

E Distinguishing Attack on 9- Rounds Simpira-3

In this case, we will be using the following values:

• Δ = (a, F (a), r),
• Δ∗ = (a, F (a), r),
• ∇ = (a, 0, 0) and
• ∇∗ = (r, F (a), r)

where a is one of the patterns described in Fig. 3.
By the same argument as the one given in Observation 4, it is easy to see

that the success probability of this boomerang trail is 2−96.
Assume that we are given a permutation function Π and we are asked to

identify whether Π is 10-round Simpira-3 or a random permutation.

Cryptanalysis of Simpira v2 399

1. Fix a pattern a to be one of the pattern given in Fig. 3 and F (a) be MixColumn
of the corresponding pattern given in Fig. 7.

2. Generate 251P (i), i = 1, · · · , 251 such that for any i, j, P (i) ⊕ P (j) ∈
(a, F (a), r).

3. Calculate C(i) = Π(P (i)).
4. Generate D(i) such that C(i) ⊕ D(i) ∈ (a, 0, 0)
5. Calculate Q(i) = Π−1(D(i)).
6. Compute n =

∣
∣{(i, j)|i �= j,Q(i) ⊕ Q(j) ∈ (a, F (a), r)}∣∣ .

7. If n ≥ 2, conclude that Π is Simpira-3, otherwise, conclude that Π is a
random permutation.

We note that in this attack, if Π is Simpira, the probability that Q(i)⊕Q(j) ∈
(a, F (a), r) is 2−96 by the observation we made above. This probability becomes
2−192 when Π is a random permutation. So by a similar argument in the 9-
Rounds Distinguishing attack based on Truncated differential analysis, the prob-
ability of false negative and false positive are 0.0001 and 0.00003 respectively.
The complexity here is 251Π queries, 251Π−1 queries and 2100 pairs to process.

The distinguisher we introduced above in fact can be improved if we are
using b instead of a. However, we will be using the distinguisher described here
to launch a key recovery attack on 10-rounds Simpira-3 and the complexity of
the key recovery attack is the smallest if we use a.

F 10-Round Key Recovery Attack Using Boomerang

As before, let EK be a block cipher built by using the Even Mansour scheme
with 10-round Simpira-3 as its permutation function. For this attack, we will
call the active diagonal in each of the pattern given in Fig. 3 as first, second,
third and fourth diagonal respectively. So for example, in the first pattern given
in Fig. 6, the active diagonals are second, third and fourth diagonal. Similarly,
we call the active anti-diagonal in each of the pattern given in Fig. 4 as the first,
second, third and fourth anti-diagonal respectively.

The attack goes as follows:

1. Let a be the first pattern given in Fig. 3 and F (a) be the MixColumn of the
corresponding pattern in Fig. 4.

2. Construct 251 plaintexts P (i), i = 1, · · · , 251 such that ∀i, j, P (i) ⊕ P (j) ∈
(a, F (a), r).

3. Calculate C(i) = (c(i)0 , c
(i)
1 , c

(i)
2) = EK(P (i)).

4. For each guess of the value of the first diagonal of k0, generate d
(i)
0 such

that d
(i)
0 ⊕ c

(i)
0 ∈ a. Since we guessed the value of the keys in the active

cells, we know the exact value of δ = F (d(i)0 ⊕ c
(i)
0). Generate d

(i)
1 such that

d
(i)
0 ⊕ c

(i)
0 = δ. Set d

(i)
2 = c

(i)
2 and let D(i) = (d(i)0 , d

(i)
1 , d

(i)
2).

5. Calculate Q(i) = E−1
K (D(i)).

400 I. Tjuawinata et al.

6. Compute n =
∣
∣{(i, j)|i �= j,Q(i) ⊕ Q(j) ∈ (a, F (a), r)}∣∣ . If n ≥ 2, conclude

that the current guess of k0[0, 5, 10, 15] passes the filter. Otherwise, conclude
the current guess is wrong repeat with different guess of the 4-byte subkey.

7. Repeat the whole attack with the other three patterns of a to retrieve the
value of k0 in the other three diagonals.

Note that in this attack, we assume that if our guess key is wrong, then
the remaining 9 rounds is a random permutation instead of 9-round Simpira-3
that is discussed in the 9-rounds distinguishing attack. So we use the 9-round
distinguishing attack here to decide whether the current guess of key is correct
or not. So with failure probability of less than 0.1%, we can recover the value
of k0. For the complexity, for each pattern of a, we recover one diagonal of k0
with complexity 251 encryption queries and 232 × 251 = 283 decryption queries.
Since we repeat the attack four times for four different values of a, the total
complexity is 253 encryption queries and 285 decryption queries.

We note here that this attack recovers different subkey from the one recovered
in the key recovery attack of 10-round Simpira-3 based on impossible differential
attack. The attack described in this subsection recovers the value of k0 while the
previous one recovers the value of k1.

References

1. Aumasson, J.-P., Jovanovic, P., Neves, S.: NORX v3.0. Submission to CAESAR
(2016). http://competitions.cr.yp.to/caesar-submissions.html

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAESAR
submission: Ketje v2. Submission to CAESAR (2016). http://competitions.cr.yp.
to/caesar-submissions.html

3. Bertoni, G., Daemen, J., Peeters, J., Van Assche, G., Van Keer, R.: CAESAR
submission: Keyak v2. Submission to CAESAR (2016). http://competitions.cr.yp.
to/caesar-submissions.html

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function
family main document. Submission to NIST (Round 2) (2009)

5. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 2

6. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-the Advanced Encryption
Standard. Springer, Heidelberg (2002)

7. Daemen, J., Rijmen, V.: Understanding two-round differentials in AES. In: Prisco,
R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 78–94. Springer, Heidelberg
(2006). doi:10.1007/11832072 6

8. Dobraunig, C., Eichlseder, M., Mendel, F.: Cryptanalysis of Simpira v1. Cryptology
ePrint Archive, Report 2016/244 (2016). http://eprint.iacr.org/2016/244

9. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission
to CAESAR (2016). http://competitions.cr.yp.to/caesar-submissions.html

10. Dunkelman, O., Keller, N., Shamir, A.: Minimalism in cryptography: the Even-
Mansour scheme revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 336–354. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 21

http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/3-540-48910-X_2
http://dx.doi.org/10.1007/11832072_6
http://eprint.iacr.org/2016/244
http://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/978-3-642-29011-4_21
http://dx.doi.org/10.1007/978-3-642-29011-4_21

Cryptanalysis of Simpira v2 401

11. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. J. Cryptology 10(3), 151–161 (1997)

12. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl-a SHA-3 candidate. Submission to NIST
(2008)

13. Gueron, S., Mouha, N.: Simpira: a family of efficient permutations using the AES
round function. Cryptology ePrint Archive, Report 2016/122 (2016). http://eprint.
iacr.org/2016/122

14. Gueron, S., Mouha, N.: Simpira v2: a family of efficient permutations using the AES
round function. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10031, pp. 95–125. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53887-6 4

15. Knudsen, L.: DEAL - a 128-bit block cipher. In: NIST AES Proposal (1998)
16. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE

1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). doi:10.1007/
3-540-60590-8 16

17. Morawiecki, P., Gaj, K., Homsirikamol, E., Matusiewicz, K., Pieprzyk, J.,
Rogawski, M., Srebrny, M., Wójcik, M.: ICEPOLE v2. submission to CAESAR
competition. http://competitions.cr.yp.to/caesar-submissions.html

18. Morawiecki, P., Gaj, K., Homsirikamol, E., Matusiewicz, K., Pieprzyk, J.,
Rogawski, M., Srebrny, M., Wójcik, M.: ICEPOLE: high-speed, hardware-
oriented authenticated encryption. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 392–413. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44709-3 22

19. Rønjom, S.: Invariant subspaces in Simpira. Cryptology ePrint Archive, Report
2016/248 (2016). https://eprint.iacr.org/2016/248

20. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156–170. Springer, Heidelberg (1999). doi:10.1007/3-540-48519-8 12

21. Wu, H.: The hash function JH. Submission to NIST (2011)
22. Zong, R., Dong, X., Wang, X.: Impossible differential attack on Simpira v2. Cryp-

tology ePrint Archive, Report 2016/1161 (2016). http://eprint.iacr.org/2016/1161

http://eprint.iacr.org/2016/122
http://eprint.iacr.org/2016/122
http://dx.doi.org/10.1007/978-3-662-53887-6_4
http://dx.doi.org/10.1007/3-540-60590-8_16
http://dx.doi.org/10.1007/3-540-60590-8_16
http://competitions.cr.yp.to/caesar-submissions.html
http://dx.doi.org/10.1007/978-3-662-44709-3_22
http://dx.doi.org/10.1007/978-3-662-44709-3_22
https://eprint.iacr.org/2016/248
http://dx.doi.org/10.1007/3-540-48519-8_12
http://eprint.iacr.org/2016/1161

Statistical Integral Distinguisher
with Multi-structure and Its Application

on AES

Tingting Cui1,2,4, Ling Sun1, Huaifeng Chen1, and Meiqin Wang1,3(B)

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China

mqwang@sdu.edu.cn
2 Science and Technology on Communication Security Laboratory,

Chengdu 610041, China
3 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

4 Nanyang Technological University, Singapore, Singapore

Abstract. Advanced Encryption Standard (AES), published by NIST,
is widely used in data encryption algorithms, hash functions, authenti-
cation encryption schemes and so on. Studying distinguishing attacks on
(reduced round) AES can help designers and cryptanalysts to evaluate the
security of target ciphers. Since integral attack is one of the most power-
ful tool in the field of symmetric ciphers, in this paper, we evaluate the
security of AES by integral cryptanalysis. Firstly we put forward a new
statistical integral distinguisher with multiple structures on input and
integral properties on output, which enables us to reduce the data com-
plexity comparing to the traditional integral distinguishers under mul-
tiple structures. As illustrations, we propose a secret-key distinguisher
on 5-round AES with secret S-box under chosen-ciphertext mode. Its
data, time and memory complexities are 2114.32 chosen ciphertexts, 2110

encryptions and 233.32 blocks. This is the best integral distinguisher on
AES with secret S-box under secret-key setting so far. Then we present
improved known-key distinguishers on 8-round and full 10-round AES-128
with reduced complexities based on Gilbert’s work at ASIACRYPT’14.
These distinguishers are the best ones according to the time complexity.
Moreover, the proposed statistical integral model could be used to pro-
ceed known-key distinguishing attacks on other AES-like ciphers.

Keywords: Statistical integral model · Secret S-box · Secret key ·
Known key · AES

1 Introduction

Advanced Encryption Standard (AES) [8], published by NIST, is widely used in
the field of symmetric ciphers. For instances, AES and reduced-round versions of
AES are usually used as components for hash functions, authentication encryp-
tion schemes and so on. Since the goal of distinguishing attack is to distinguish
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 402–420, 2017.
DOI: 10.1007/978-3-319-60055-0 21

Statistical Integral Distinguisher with Multi-structure and Its Application 403

a target cipher from random permutations with some special property, studying
the distinguishers on AES can help designers and cryptanalysts to evaluate the
security of target cipher, which is meaningful.

In secret-key distinguishing attack, adversary needs to distinguish the target
cipher from random permutations without knowing the key and internal states.
Such distinguisher can be used in key-recovery attack. Furthermore, reduced
round AES are often utilized to design authentication encryptions such as the
third-round candidates AES-OTR [20] in CAESAR competition [6]. It is necessary
to research the secret-key distinguisher on AES. Beside that, the performances of
block ciphers under known key settings need be considered. Block ciphers, because
of their security and simplicity, are often adopted as components of hash func-
tions by designers, such as Whirlpool [3] and Photon [13]. Since the attacker can
fully control the inter behaviour of a hash function, if a block cipher is used to
design hash function, its resistance to known-key attack or chosen-key attack,
where the adversaries know the key or can choose the key, should be considered.
The first known-key security model is proposed by Knudsen and Rijmen for block
cipher in [15] where the secret key is known to the attacker and the goal is to
distinguish the block cipher from a random permutation by constructing a set of
plaintext/ciphertext pairs satisfying a special property. Such a property is easy
to check but impossible to achieve for any random permutation with the same
complexity and a non-negligible probability by using oracle accesses to this ran-
dom permutation and its inverse. Since its establishment, several types of known-
key distinguishers have been proposed, such as distinguishers with integral prop-
erty [1,12,15,21], subspace distinguishers [17,18], (multiple) limited-birthday dis-
tinguishers [11,14], and the known-key distinguisher for PRESENT by combining
meet-in-the-middle technique and truncated differential [5]. Moreover, the chosen-
key distinguishing attack on the full AES-256 has been provided in [4].

Integral attack is an important cryptanalytic technique for symmetric-key
ciphers, which was firstly put forward by Daemen et al. in [7], then unified as
integral attack by Knudsen and Wagner in [16]. In an integral distinguisher, one
fixes a part of plaintext bits and takes all possible values for the other plaintext
bits such that the values on partial bits of ciphertext are uniformly distributed,
to distinguish an actual cipher from a random permutation. If one additional lin-
ear layer is considered, the property will be that the XOR of all possible values of
the specific part of ciphertext becomes zero, which is referred as zero-sum prop-
erty [2]. In order to reduce the data complexity, Wang et al. applied statistical
technique on original integral distinguisher and proposed a statistical integral
distinguisher at FSE’16 [24], which consists of applying a statistical technique
to the original integral distinguisher with the active property. As a result, this
statistical integral distinguisher requires less data complexity than that of the
original integral distinguisher. However, Wang et al. only considered the case
that only one integral property on ciphertext, they didn’t discuss the cases that
there are several integral properties on ciphertext and multiple structures of data
should be used at the same time. These limit the effect of integral attacks on
block ciphers, especially for known-key distinguishing attacks.

404 T. Cui et al.

In this paper, we consider the cases omitted in [24] and use our statistical
integral model to improve secret-key and known-key distinguishing attacks on
AES with further less data and time complexities.

1.1 Our Contributions

Statistical Integral Distinguisher with Multiple Structures. We propose
a statistical integral distinguisher with multiple structures on input and integral
properties on output. In some situations of integral attacks such as known-key
distinguishing attack on AES, multiple structures of input have to be used where
for each structure s input bits take all possible values and the corresponding
b t-bit outputs are uniformly distributed respectively. The statistical integral
distinguisher in [24] can reduce the data complexity from O(2s) to O(2s−t/2)
by using one t-bit integral property if only one structure is used. But if there
are Ns structures involved, the model in [24] cannot be applied. For the sake
of reducing the data requirements for the original integral distinguisher with
multiple structures, we construct a new statistical integral distinguisher. In our
new distinguisher, the data complexity is

O(
√

Ns/b · 2s− t
2),

while the data complexity of the original distinguisher is

O(Ns · 2s).

In order to verify our theoretical model, we implement the experiments for mini
version of AES. It shows that the experimental results are in good accordance
with the theoretic results.

Improved Secret-Key Integral Distinguisher on AES. AES is one of
the most famous block ciphers. Until 2015, the best secret-key distinguishers
on AES were 4 rounds, such as impossible differential, zero-correlation linear
hull and integral distinguisher. Then at CRYPTO’16, Sun et al. proposed a 5-
round distinguisher on AES with secret S-box under chosen-ciphertext mode
with integral zero-correlation technique in [23]. But the data complexity of this
distinguisher is up to 2128. Recently, Grassi et al. put forward a 5-round distin-
guisher on AES with secret S-box by utilizing a 4-round impossible differential
in [9]. The data complexity is 298.2. Later, they proposed another one on 5-round
AES in [10]. That distinguisher is independent with the details of S-box, MC
operation and secret-key, and its data complexity is reduced to 232. However,
it utilizes the property of AES structure and has nothing with the secret-key,
this weakness limits it to be used in key recovery attacks. In this paper, we will
evaluate the security of AES from the point of integral distinguishing attack. We
present a secret-key distinguisher on 5-round AES with secret S-box by adopting
our statistical integral model under chosen-ciphertext mode. The data and time
complexities are 2114.32 chosen ciphertexts and 2110 encryptions respectively. Its
memory requirements are 233.32 blocks. This is the best integral distinguisher on
AES with secret S-box under secret-key setting so far (Table 1).

Statistical Integral Distinguisher with Multi-structure and Its Application 405

Improved Known-Key Distinguishers on AES. We apply the statistical
integral distinguisher with multiple structures into the known-key distinguish-
ing attacks on AES. The first known-key distinguisher on AES was proposed
by Knudsen and Rijmen in [15], where they gave an integral known-key distin-
guisher for 7-round AES. At ASIACRYPT’14, Gilbert provided a very impor-
tant untwisted representation of AES and used this representation to distin-
guish 8-round AES and the full 10-round AES with the complexity 264 under
the known-key model in [12]. Besides the integral known-key distinguishers, the
known-key distinguisher with match-in-the-middle technique for 7-round AES
was presented in [19], with rebound technique for 8-round AES were provided
in [11,14] whose complexities are 248 and 244 8-round encryptions respectively.
In this paper, we take advantage of our statistical integral model to improve
known-key distinguisher on 8-round AES and full 10-round AES, whose respec-
tive time complexities are 242.61 computations and 259.60 computations. These
distinguishers are the best known-key ones on AES according to the time com-
plexity so far. See Table 2.

Table 1. Summary of secret-key integral distinguishers on AES

Type Rounds Data (CC) Time Memory Source

Integral 5 2128 2128 - [23]

Statistical integral 5 2114.32 2110 233.32 Section 4

CC: Chosen-cipertext

Table 2. Summary of known-key distinguishing attacks on AES

Type Rounds Time Memory Source

Integral 7 256 − [15]

MITM 7 224 − [19]

Limited-birthday 8 248 235 bytes [11]

Multiple limited-birthday 8 244 235 bytes [14]

Integral 8 264 − [12]

Statistical integral 8 242.61 213 bytes Section 5

Integral 10 264 − [12]

Statistical integral 10 259.60 258.84 bytes Section 5

MITM: Match-in-the-middle

1.2 Ontline of This Paper

In Sect. 2, some preliminaries are given. Then we present a statistical inte-
gral model with multiple structures on input and integral properties on out-
put in Sect. 3. In Sects. 4 and 5, secret-key statistical integral distinguisher and
improved known-key distinguishers on AES are put forward respectively. At last,
we conclude this paper in Sect. 6.

406 T. Cui et al.

2 Preliminaries

2.1 Description of AES

AES is a byte-orient Substitution-Permutation Network (SPN). It has three
versions, namely AES-128, -192 and -256. The block-size/key-size/total-rounds
of these versions are 128/128/10, 128/192/12 and 128/256/14 respectively. Each
round function includes 4 components:

– SubBytes (SB): A nonlinear bijective mapping F
8
2 → F

8
2 for each byte of state;

– ShiftRows (SR): Left rotate the i-th row by i bytes, where i = 0, 1, 2, 3;
– MixColumns (MC): Left multiply with an MDS matrix over the field GF (28)

on each column;
– AddRoundKey (AK): XOR with a 128 bits subkey.

It is worth noting that there is a whiten key XORed with plaintext before
the first round function and the MC operation is omitted in the last round. Since
we do not use the key schedule in this paper, we ignore it here.

All in all, 2r-round AES can be described as follows:

AES2r = AK � (SB � SR � MC � AK)2r−1 � SB � SR � AK (1)

where A � B denotes to implement A operation firstly, then B operation.
In [12], Gilbert proposed a new representation of AES. Firstly he defined

two operations T and SC as follows, then built two special byte permutations
P = SR �T �SR−1 and Q = SR−1 �T �SR �SC. With these two permutations,
Gilbert proposed two transformations S = Q−1 � SB � MC � AK � SB � P−1

and R = P � SR � MC � AK � SR � Q, which operate on columns and rows
respectively.

T :

⎛

⎜⎜
⎝

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

⎞

⎟⎟
⎠ �→

⎛

⎜⎜
⎝

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15

⎞

⎟⎟
⎠

SC :

⎛

⎜
⎜
⎝

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

⎞

⎟
⎟
⎠ �→

⎛

⎜
⎜
⎝

a0 a12 a8 a4

a1 a13 a9 a5

a2 a14 a10 a6

a3 a15 a11 a7

⎞

⎟
⎟
⎠

As a result, 2r-round AES has three equivalent representations:

AES2r = AK � SR � Q � (S � R)r−1 � S � P � SR � AK, (2)

AES2r = AK � P −1 � SB � R � (S � R)r−1 � SB � Q−1 � AK, (3)

AES2r = AK � SB � SR � MC � AES2r−2 � AK−1 � MC � AK · SB � SR � AK. (4)

Statistical Integral Distinguisher with Multi-structure and Its Application 407

Throughout this paper, we use X(i) and X(i∼j), i, j = 0, 1, . . . , 15 to denote the
i-th byte and i ∼ j-th bytes of state X respectively.

2.2 Brief Description of Known-Key Distinguishers on AES in [12]

In this subsection, we briefly recall the known-key distinguishers for 8-round and
10-round AES proposed by Gilbert at ASIACRYPT’14 [12].

In order to mount a known-key distinguisher for AES8, Gilbert firstly pro-
posed two integral distinguishers shown in Fig. 1, where (Aj

1, A
j
2, A

j
3, A

j
4), j =

0, 1, . . . , 4, A and C denote uniform distribution on 4 bytes, uniform dis-
tribution on 1 bytes and constant respectively. Then given 264 data Z =
{R(x, 0, 0, 0) ⊕ (y, 0, 0, 0)|x, y ∈ (0, 1)32}, this set Z can be divided into 232

structures according to different values of x, and each structure takes all 232

values on the first column and constants on other columns. So the set Z sat-
isfies the first integral distinguisher in Fig. 1. Since R operation is an affine
mapping, R(Z−1) = {(x, 0, 0, 0) ⊕ R−1(y, 0, 0, 0)} can be divided into 232 struc-
tures according to different values of y, thus the set R(Z−1) satisfies the second
integral distinguisher in Fig. 1.

Combining with these two integral distinguishers with R operation above,
a known-key distinguisher on AES8 is built that all input and output bytes
resulted from 264 middle texts Z are uniformly distributed. However, for ran-
dom permutations, the upper bound of the probability satisfying the uniformly
distributed property for each byte is 1

2128−1 with q ≤ N = 264 oracle queries.
Furthermore, with the representation of Eq. (3), Gilbert mounted a known-

key distinguisher for AES10. This distinguisher is implemented by extending
one round on each side based on the distinguisher for AES8. The same 264

middle texts Z as for the known-key distinguisher on AES8 are used. For the
corresponding input-output pairs (pi, ci), i = 1, . . . , 264, the adversary can find
at least one value (Δ,Γ), where Δ,Γ ∈ (0, 1)128, to make each byte of R ◦
SB(P−1(pi) ⊕ Δ) and R−1 ◦ SB−1(Q(ci) ⊕ Γ) be uniform distribution within
time complexity 264. However, for a random permutation, the upper bound of
the probability satisfying the uniformly distributed property for each byte is
2−16.5 with q ≤ N = 264 oracle queries.

Since Gilbert’s work is based on the integral distinguisher and uses the active
property1, if we can improve the statistical integral model proposed by Wang
et al. in [24], we can further improve Gilbert’s work and widely utilize the new
method to all AES-like ciphers. With the improved known-key distinguishers,
10-round AES-like ciphers cannot be regarded as ideal random permutations,
and the time complexities of new distinguishers are less than previous ones.

1 Active property means that the values on target bits are uniform distributed.

408 T. Cui et al.

⎡
⎢⎢⎣
A0

1CCC
A0

2CCC
A0

3CCC
A0

4CCC

⎤
⎥⎥⎦

S−1
−−−→

⎡
⎢⎢⎣
A0

1CCC
A0

2CCC
A0

3CCC
A0

4CCC

⎤
⎥⎥⎦

R−1
−−−→

⎡
⎢⎢⎣
A1

1A
2
1A

3
1A

4
1

A1
2A

2
2A

3
2A

4
2

A1
3A

2
3A

3
3A

4
3

A1
4A

2
4A

3
4A

4
4

⎤
⎥⎥⎦

S−1
−−−→

⎡
⎢⎢⎣
A1

1A
2
1A

3
1A

4
1

A1
2A

2
2A

3
2A

4
2

A1
3A

2
3A

3
3A

4
3

A1
4A

2
4A

3
4A

4
4

⎤
⎥⎥⎦

(AK�SR�Q)−1
−−−−−−−−−−−→

⎡
⎢⎣
AAAA
AAAA
AAAA
AAAA

⎤
⎥⎦

⎡
⎢⎢⎣
A0

1CCC
A0

2CCC
A0

3CCC
A0

4CCC

⎤
⎥⎥⎦

S−→

⎡
⎢⎢⎣
A0

1CCC
A0

2CCC
A0

3CCC
A0

4CCC

⎤
⎥⎥⎦

R−→

⎡
⎢⎢⎣
A1

1A
2
1A

3
1A

4
1

A1
2A

2
2A

3
2A

4
2

A1
3A

2
3A

3
3A

4
3

A1
4A

2
4A

3
4A

4
4

⎤
⎥⎥⎦

S−→

⎡
⎢⎢⎣
A1

1A
2
1A

3
1A

4
1

A1
2A

2
2A

3
2A

4
2

A1
3A

2
3A

3
3A

4
3

A1
4A

2
4A

3
4A

4
4

⎤
⎥⎥⎦

P�SR�AK−−−−−−−−→

⎡
⎢⎣
AAAA
AAAA
AAAA
AAAA

⎤
⎥⎦

Fig. 1. Two integral distinguishers under the new representation of AES in [12]

2.3 Statistical Integral Distinguisher

In this subsection, we recall the statistical integral distinguisher proposed by
Wang et al. in [24].

Assume that H : Fn
2 → F

n
2 is a part of a block cipher, its input and output

both can be split into two parts as follows:

H : Fr
2 × F

s
2 → F

t
2 × F

u
2 ,H(x, y) =

(
H1(x, y)
H2(x, y)

)
.

If the first r bits of input are fixed as a constant λ and only the first t bits of
output are considered, then the function H can be denoted as Tλ:

Tλ : Fs
2 → F

t
2, Tλ(y) = H1(λ, y).

When y takes over all possible values, the outputs Tλ(y) are uniformly distrib-
uted, then an integral distinguisher is constructed.

If the adversary only takes N < 2s different y, sets a counter V [Tλ(y)] and
initializes this counter as zero, a statistical integral distinguisher can be con-
structed by investigating the distribution of the statistic as follows:

T =
2t−1∑

i=0

(V [Tλ(y)] − N · 2−t)2

N · 2−t
(5)

For the right key guess (the target cipher), the statistic T follows a χ2 distri-
bution with mean μ0 = (2t−1) 2

s−N
2s−1 and variance σ2 = 2(2t−1)(2

s−N
2s−1)2, but for

the wrong key guess (a random permutation), it follows a χ2 distribution with
mean μ0 = (2t −1) and variance σ2 = 2(2t −1). The relation of data complexity,
type-I error probability α0 and type-II error probability α1 is as follows

N =
(2s − 1)(q1−α0 + q1−α1)√

(2t − 1)/2 + q1−α1

+ 1, (6)

Statistical Integral Distinguisher with Multi-structure and Its Application 409

3 Statistical Integral Distinguisher with Multiple
Structures on Input and Integral Properties on Output

In some integral distinguishers, there are b groups of t output bits with the active
property. If we can utilize all properties at the same time, the data complexity
can be further reduced. What’s more, in some attack settings, Ns structures,
i.e. that Ns different λ, should be used together. For these special settings, we
construct the new statistical integral distinguisher in this section.

Firstly, we split the input into two parts and output into b + 1 parts.

H : Fr
2 × F

s
2 → F

t
2 × F

t
2 × . . . × F

t
2 × F

u
2 , H(x, y) =

⎛

⎜
⎜
⎝

H1(x, y)
H2(x, y)

. . .
Hb+1(x, y)

⎞

⎟
⎟
⎠ .

Then we use T i
λ to denote the function Hi where the first r bits of its input are

fixed to the value λ and b outputs Hi, 1 ≤ i ≤ b, are considered:

T i
λ : Fs

2 → F
t
2, T i

λ(y) = Hi(λ, y), i = 1, 2, . . . , b.

For a special integral distinguisher, when y iterates all possible values of F
s
2,

T i
λ(y), i = 1, 2, . . . , b are all uniformly distributed with probability one. Further

more, if we take Ns values for λ, i.e. Ns structures and in each structure y
iterates all possible values of Fs

2, the integral properties on output are satisfied
as well.

Now assume we need N < 2s values of y under each structure and we use
Ns structures which are independent. T i

λ(y) ∈ F
t
2, i = 1, 2, . . . , b are computed

for each y and we allocate a counter vector Vi[T i
λ(y)] to store the occurrences of

T i
λ(y). Then we investigate the distribution of the following statistic:

C =
Ns∑

λ=1

b∑

i=1

2t−1∑

T i
λ(y)=0

(Vi[T i
λ(y)] − N · 2−t)2

N · 2−t
. (7)

The statistic C follows different distributions determined by whether we are
dealing with an actual cipher or a random permutation.

Proposition 1. For sufficiently large N , and t, the statistic 2s−1
2s−N Ccipher

(Ccipher is the statistic C for cipher) follows a χ2-distribution with degree of
freedom b ·Ns ·(2t −1), which means that Ccipher approximately follows a normal
distribution with mean and variance

μ0 = Exp(Ccipher) = b ·Ns ·(2t −1)
2s − N

2s − 1
, σ2

0 = V ar(Ccipher) = 2b ·Ns · (2t−1)(
2s − N

2s − 1
)2.

The statistic Crandom (Crandom is the statistic C for randomly drawn permu-
tation) follows a χ2-distribution with degree of freedom b · Ns · (2t − 1), which
means that Crandom approximately follows a normal distribution with mean and
variance

μ1 = Exp(Crandom) = b ·Ns · (2t −1) and σ2
1 = V ar(Crandom) = 2b ·Ns · (2t −1).

410 T. Cui et al.

Proof. Deduced from Proposition 1 in [24], for a randomly drawn permutation,
the statistic

∑2t−1
T i

λ(y)=0
(Vi[T

i
λ(y)]−N ·2−t)2

N ·2−t follows a χ2-distribution with degree of
freedom 2t − 1 for any λ and i. Then the statistic C ′

random for the randomly
drawn permutation

Crandom =
Ns∑

λ=1

b∑

i=1

2t−1∑

T i
λ(y)=0

(Vi[T i
λ(y)] − N · 2−t)2

N · 2−t

is the sum of Ns ·b independent χ2 statistics with degree of freedom 2t −1, so the
statistic Crandom follows a χ2-distribution with degree of freedom b ·Ns · (2t −1).
Then for sufficiently large N and t, Crandom approximately follows a normal
distribution with the expected value and variance:

Exp(Crandom) = b · Ns · (2t − 1) and V ar(Crandom) = 2b · Ns · (2t − 1).

Since the statistic for the cipher 2s−1
2s−N

∑2t−1
T i

λ(y)=0
(Vi[T

i
λ(y)]−N ·2−t)2

N ·2−t , for any λ

and i, follows a χ2-distribution with degree of freedom 2t − 1 deduced from [24].
Then the statistic 2s−1

2s−N C ′
cipher for the cipher

2s − 1

2s − N
Ccipher =

Ns∑

λ=1

b∑

i=1

2s − 1

2s − N

2t−1∑

T i
λ
(y)=0

(Vi[T
i
λ(y)] − N · 2−t)2

N · 2−t

is the sum of Ns · b independent χ2 statistics with degree of freedom 2t − 1, so the statistic
2s−1
2s−N

Ccipher follows a χ2-distribution with degree of freedom b · Ns · (2t − 1). Then for suffi-
ciently large N and t, Ccipher approximately follows a normal distribution with the expected
value and variance:

Exp(Ccipher) = b · Ns · (2t − 1) · 2s − 1

2s − N
and V ar(Ccipher) = 2b · Ns · (2t − 1) · (2s − 1

2s − N
)2.

�
Corollary 1. Under the assumption of Proposition 1, for type-I error probability
α0 (the probability to wrongfully discard the cipher), and type-II error probability
α1 (the probability to wrongfully accept a randomly chosen permutation as the
cipher), to distinguish a cipher and a random permutation based on b independent
t-bit outputs when randomly choosing Ns values for r-bit inputs and N values
for s-bit inputs, then the following equation holds.

N =
(2s − 1)(q1−α0 + q1−α1)√
(b · Ns · (2t − 1))/2 + q1−α0

+ 1, (8)

where q1−α0 and q1−α1 are the respective quantiles of the standard normal
distribution.

Corollary 1 is obtained from the equation about the decision threshold τ =
μ0 +σ0q1−α0 = μ1 −σ1q1−α1 . And the statistic test is also based on the decision

Statistical Integral Distinguisher with Multi-structure and Its Application 411

threshold τ : if C ≤ τ , the test outputs ‘cipher’; Otherwise, if the statistic C >
τ , the test outputs ‘random’. Note that in this statistical method the success
probability Ps = 1 − α0, and the relation between α1 and the advantage of the
attack a is α1 = 2−a.

In order to verify the theoretical model in Corollary 1, we implement the
experiments for mini version of AES in Appendix A.1. It shows that the exper-
imental results are in good accordance with the theoretic results.

From Eq. (8), we know that the data complexity for the statistical distin-
guisher is N · Ns. For the given values of n, s, t, α0, α1, the ratio of the data
complexity with Ns structures to that with one structure is

√
Ns. It means that

more structures will result in high data complexity, so we should avoid to utilize
more structures. However, for the known-key integral distinguisher for AES etc.,
we have to use enough structures to make the plaintexts and the ciphertexts
satisfying the desired properties simultaneously. Moreover, if b is increased, the
data complexity can be reduced, but as b increases, the time complexity in some
situations will be increased accordingly. Thus, we should take the proper value
for b according to the time-data tradeoff.

4 Secret-Key Statistical Integral Distinguisher
on Reduced 5-Round AES

In this section, we propose a secret-key distinguisher on 5-round AES with our
statistical integral model based on the work of Sun et al. in [23]. In this distin-
guisher, the S-box used in AES is secret.

Firstly, we slightly modify the zero-correlation linear hull for 5-round decryp-
tion of AES under chosen-ciphertext mode proposed by Sun et al. in [23] (Lemma
3). Let V = {(x(i)) ∈ F 16

28 |x(0) ⊕ x(13) = (k5)(0) ⊕ (k5)(13)}, and assume that the
input mask ΓI = (a(i))0≤i≤15 and output mask Γ 0

O = (β(i))0≤i≤15 satisfy:

a(i) =

{
a, i = 0, 13,

0, otherwise.
β(j) =

{
nonzero, j = {0, 5, 10, 15}
0, otherwise.

Then the correlation for ΓI → Γ 0
O on V is always 0. Note that there are three

other zero-correlation linear hulls as well, when j = {1, 6, 11, 12}, {2, 7, 8, 13},
{3, 4, 9, 14}. The corresponding output masks are Γ 1

O, Γ 2
O and Γ 3

O respectively.
One of the four cases is shown in Fig. 2.

With the technique proposed by Sun et al. in [22], these four zero-correlation
linear hulls can be transformed into integral ones. Taking the linear hull ΓI → Γ 0

O

as an example, the corresponding integral distinguisher is that if the adver-
sary takes over 2120 different values of ciphertexts c satisfying c(0) ⊕ c(13) =
(k5)(0) ⊕ (k5)(13), then the values on 4 bytes of plaintext (p(0), p(5), p(10), p(15))
are uniformly distributed.

Based on these integral distinguishers, we can implement a statistical integral
distinguisher for each candidate Δ = (k5)(0)⊕(k5)(13), where s = 120 and t = 32.
In order to have the success probability (1 − α0)2

8
= (1 − α1)2

8
= 95%, we set

412 T. Cui et al.

b
b

a
a

SB SR MC

SB SR MC

SB SR MC

SB SR MC

SB SR

k1

k2

k3

k4

k5

Contradiction

Fig. 2. Zero-correlation linear hull on 5-round AES with secret S-box under secret-key
setting. Gray and white cells denote nonzero and zero masks respectively. The two cells
with a or b are exactly the same mask.

Algorithm 1. Secret-key statistical integral distinguisher on 5-round AES
with secret S-box
1 for 28 candidates of Δ do
2 Set a counter V [4][232] and initialize it to zero;
3 for N chosen ciphertext/plaintext pairs (c, p) do

// Consider those four integrals together.

4 for i ← 0 ∼ 3 do
5 Increment counter V [i][ci

part] by one according to the related 4 bytes

ci
part ∈ (0, 1)32 of ciphertext c;

6 Calculate the statistic TΔ =
∑3

b=0

∑232−1
z=0

(V [b][z]−N·2−32)2

N·2−32 ;

7 if Only one Δ such that TΔ < τ then
8 return AES;

9 return random permution;

α0 = α1 = 0.0002, then q1−α0 = q1−α1 ≈ 3.54. Meanwhile, we can use these
four integral distinguishers above together within one structure, so b = 4 and
Ns = 1. Thus by Eq. (8), N = 2106.32 chosen ciphertexts. The decision threshold
is about τ ≈ 17179212992.15. As there are 28 different values of Δ, the total data
complexity of this distinguisher is N ′ = 2106.32×28 = 2114.32 chosen ciphertexts.

Statistical Integral Distinguisher with Multi-structure and Its Application 413

What’s more, we can see from Algorithm 1, the main time complexity hap-
pens on Step 5, which is about 28×2106.32×4×1/16×1/5 ≈ 2110 encryptions, if
we regard one simple operation as 1

16 one round encryption. Beside that, memory
requirements are about 4 × 232 × 10 ≈ 237.32 bytes = 233.32 blocks.

As far as we know, this distinguisher is the best secret-key integral one on
5-round AES with secret S-box.

5 Improved Known-Key Distinguishers on AES

In this section, we will use our new statistical integral model to reduce the
complexities of known-key distinguishers on AES proposed by Gilbert at ASI-
ACRYPT’14 in Sects. 5.1 and 5.2.2 The time complexity is reduced to 242.61 in
the known-key distinguisher on 8-round AES. For the 10-round AES, the time
complexity is reduced to 259.60. Compared to all the public known-key distin-
guishers for 8-round AES, our distinguisher is the best one according to both
time and memory complexities. Moreover, our known-key distinguisher on 10-
round AES is the best one according to the time complexity.

5.1 Improved Known-Key Distinguisher on 8-Round AES

As described in Subsect. 2.2, the known-key distinguisher for AES8 is based on
the uniformly distributed integral property with 232 structures and each struc-
ture takes 232 texts. This integral property can be transformed to a statistical
integral property by using Proposition 1. So in our known-key distinguisher on
AES8, we utilize the statistical integral properties on each byte of input and
output to distinguish the actual cipher and random permutations. In this way,
the required number of structures and texts of one structure can be reduced. The
process to distinguish the actual cipher AES8 from the random permutation is
described in Algorithm 2.

Since in the middle of the distinguisher, the numbers of structures before
and after R operation should be the same, i.e. that N = Ns. By applying
Proposition 1 in above case, we have s = 32, t = 8, b = 16 and N = Ns. If we set
the error probabilities α0 = 2−128 and α1 = 2−128 (the values of α0 and α1 can be
different and take any suitable values), then q1−α0 = q1−α1 ≈ 13.06. According
to Eq. (8), N = Ns ≈ 220.81 and the threshold value τ ≈ 7478730631.39.

For the case of AES8, as α0 = 2−128, the probability to wrongly regard AES8

as a random permutation is α0+(1−α0)α0 ≈ 2−127, which means that the success
probability to correctly identify AES cipher is about (1 − α0)2 ≈ 1 − 2−127.

While for the case of random permutation, the adversary can implement
encryption and decryption oracle queries to the cipher and random permuta-
tion. But statistical integral property (exploiting χ2 distribution) is different
2 These improved known-key distinguishers on AES in this paper follow the idea in

Gilbert’ work at ASIACRYPT’14, but we adopt statistical integral method instead
of integral method and more delicate processes to reduce the data and time com-
plexities.

414 T. Cui et al.

Algorithm 2. Improved known-key distinguisher on AES8

1 Initialize the statistic C′ and C′′ as zero;
2 for all N values of x ∈ (0, 1)32 do
3 Initialize the counter vector V [16][28] to zero;
4 for all N values of y ∈ (0, 1)32 do
5 Compute 16 bytes of input p(l), l = 0, . . . , 15 from

Z = (x, 0, 0, 0) ⊕ R(y, 0, 0, 0);
6 Increment the corresponding counter V [l][p(l)] by one;

7 C′ = C′ +
∑15

l=0

∑28−1
p(l)=0[

(V [l][p(l)]−N×2−8)2

N×2−8];

8 if C′ > τ then
9 return ⊥; // The distinguishing attack is failed.

10 for all N values of y ∈ (0, 1)32 do
11 Initialize the counter vector V [16][28] to zero;
12 for all N values of x ∈ (0, 1)32 do
13 Compute 16 bytes of output c(l), l = 0, . . . , 15 from

Z = (x, 0, 0, 0) ⊕ R(y, 0, 0, 0);
14 Increment the corresponding counter V [l][c(l)] by one;

15 C′′ = C′′ +
∑15

l=0

∑28−1
c(l)=0[

(V [l][c(l)]−N×2−8)2

N×2−8];

16 For AES8, C′′ ≤ τ ;
17 For any random permutation, C′′ > τ .

from traditional integral property (utilizing uniform distribution). At the best
of times the adversary chooses the data which automatically satisfy the statisti-
cal property on the input, but to satisfy the statistical property on the output,
the probability is α1 = 2−128. In order to satisfy the statistical properties both
on the input and output, the probability to wrongly regard this random permu-
tation as AES cipher is 1 × α1 = 2−128.

To summarize, the advantage to distinguish AES cipher from random permu-
tation is not negligible. The total time complexity of this known-key distinguisher
is about 2 × 241.61 = 242.61 computations. The memory requirements are about
16 × 28 × 2 = 213 bytes used for storing the counter vector V [16][28].

5.2 Improved Known-Key Distinguisher on 10-Round AES

The statistical integral distinguisher on AES10 is based on the distinguishing
property of AES10 in [12], which is represented according to Eq. (4), see Fig. 3.

Along with the idea within the distinguisher on AES10 in [12], in our known-
key distinguisher on AES10, we use Ns < 232 structures, each of which takes
N = Ns middle texts, to obtain N2 input/output pairs. For AES cipher,
there is one value for (Δ,Γ) to let each byte of R ◦ SB(R−1(input ⊕ Δ)) and
R−1 ◦ SB−1(Q(output ⊕ Γ)) satisfy the statistical integral property with a high
probability. But for any random permutation, the probability to have one solu-
tion for (Δ,Γ) to obtain the same property is very low.

Statistical Integral Distinguisher with Multi-structure and Its Application 415

However, in above way, the distinguisher has high time complexity. In order to
reduce the time complexity, we implement the distinguisher in the following way.
As Ns structures are used, we divide them into Ns/ns groups and each group has
ns structures. Then we compute the statistic value for each group. There is one
value (Δ,Γ) to make all the statistics for Ns/ns groups on both states Input′ =
MC ◦SR◦SB(input⊕Δ) and Output′ = MC−1 ◦SB−1 ◦SR−1(output⊕Γ) less
than the given threshold τ for AES10. However, for the random permutation,
even if the attacker can carefully choose the inputs to find one value of Δ to
satisfy the statistical property on the state Input′ with probability one, the
probability to find one value Γ to satisfy the statistical property on the state
Output′ is very low.

In order to further reduce the time complexity, we focus on statistics on
8-byte states – Input′(0∼3) and Output′(0∼3). So we only need to find two 32-
bit values for Δ′ = (Δ(0),Δ(5),Δ(10),Δ(15)) and Γ ′ = (Γ(0), Γ(7), Γ(10), Γ(13)).
The detailed process for this known-key distinguisher on AES10 is described in
Algorithm 3.

In this setting, by applying Proposition 1, s = 32, t = 8, b = 1 and ns = 28.
If we set the error probabilities α0 = 2−50 and α1 = 2−10.51, then N = 227.92

and τ = 64123.53 according to Eq. (8).

ZR−1(Z)

(input)
(I∗)−1

←−−−−−

⎡
⎢⎣�

AAAA
AAAA
AAAA
AAAA

⎤
⎥⎦ (AK�SR�Q�S�R�S)−1

←−−−−−−−−−−−−−−−−−

⎡
⎢⎣
A1CCC
A2CCC
A3CCC
A4CCC

⎤
⎥⎦ R−1

←−−−

⎡
⎢⎣
A1CCC
A2CCC
A3CCC
A4CCC

⎤
⎥⎦ S�R�S�P�SR−−−−−−−−−−→

⎡
⎢⎣
AAAA
AAAA
AAAA
AAAA

⎤
⎥⎦ F∗

−−→ (output)

(I∗)−1 = (AK � SB � SR � MC)−1 F∗ = MC � AK � SB � SR � AK

Fig. 3. Known-key distinguisher for AES10. (A1, A2, A3, A4) and A denote uniform
distribution on 4 bytes and 1 byte respectively. C denotes constant byte.

In Algorithm 3, we filter out the wrong values for Δ′ = (Δ(0),Δ(5),Δ(10),
Δ(15)) with the statistics on Input′(0∼3) one by one. At last, the probability
that one wrong Δ′ is remained after all 227.92−8 filtering processes is about
(232 − 1) ·α4×219.92

1 ≈ 0, while the probability that the right candidate Δ cannot
pass the filtering process is 1 − (1 − α0)4×219.92 ≈ 2−28.08.

In the similar way, we filter out the wrong values for Γ ′ = (Γ(0), Γ(7),
Γ(10), Γ(13)) with the statistics for Output′(0∼3) one by one. Finally, the prob-
ability that one wrong Γ ′ can pass the filtering process is also about 0, while
the probability that the right Γ ′ cannot pass the filtering process is also 2−28.08.
Therefore, for the case of AES10, the probability to correctly identify the AES10

cipher is about (1 − 2−28.08)2 ≈ 1 − 2−27.08.
While for the case of random permutation, at the best of the times the

adversary can choose the inputs that there is always at least one value of Δ′

remaining after the filtering process, but the probability that there is at least
one Γ ′ surviving after the filtering process is about 0.

416 T. Cui et al.

Algorithm 3. Improved known-key distinguisher on AES10

1 Allocate vectors V [N][N], V ′[N][N];
2 for all N2 values of (yi, xj), 0 ≤ i, j < N do
3 Calculate input p and output c from Z = (xj , 0, 0, 0) ⊕ R(yi, 0, 0, 0) and let

V [j][i] = (p(0), p(5), p(10), p(15)), V ′[i][j] = (c(0), c(7), c(10), c(13));

// Steps 4 ∼ 30 proceed the first group with ns structures.

4 for all 216 values of (Δ(0), Δ(5)) do
5 Allocate vectors V1[ns][2

24];
6 for all ns values of j and N values of i do
7 Get (p(0), p(5), p(10), p(15)) from V[j][i];
8 Compute W0 = 2 · SB(p(0) ⊕ Δ(0)) ⊕ 3 · SB(p(5) ⊕ Δ(5)); // · operate

on F 8
2 .

9 Let V1[j][W0, p(10), p(15)] increase one;

10 for all 28 values of Δ(10) do
11 Allocate a counter vectors V2[ns][2

16], and initialize to zero;
12 for all ns values of j and all 224 values of W0‖p(10)‖p(15) do
13 Compute W1 = W0 ⊕ (SB(p(10) ⊕ Δ(10)));
14 Let V2[j][W1, p(15)] += V1[j][W0, p(10), p(15)];

15 for all 28 values of Δ(15) do
16 Allocate counter vectors V3[ns][2

8], and initialize to zero;
17 for all ns values of j and all 216 values of (W1, p(15)) do
18 W ′ = W1 ⊕ (SB(p(15) ⊕ Δ(15))), let V3[j][W

′] +=
V2[j][W1, p(15)];

19 C1 =
∑ns−1

j=0

∑28−1
W ′=0

(V3[j][W
′]−N×2−8)2

N×2−8 ;

20 if C1 ≤ τ then
21 Put Δ′ = (Δ(0), Δ(5), Δ(10), Δ(15)) into Vk. // About remain

232 · α1 values.

22 for all values of Δ′ ∈ Vk do
23 Allocate counter vectors V4[ns][2

8], and initialize to zero;
24 for all ns values of j and N values of i do
25 Get (p(0), p(5), p(10), p(15)) from V[j][i] and compute Input′

1 = SB(p(0) ⊕
Δ(0)) ⊕ 2 · SB(p(5) ⊕ Δ(5)) ⊕ 3 · SB(p(10) ⊕ Δ(10)) ⊕ SB(p(15) ⊕ Δ(15));

26 Increment V4[j][Input′
1] by one;

27 C2 =
∑ns−1

j=0

∑28−1
W=0

(V4[j][W]−N×2−8)2

N×2−8 ;

28 if C2 ≤ τ then
29 Put Δ′ into Vk1 [·]. // About 232 · α2

1 values are remained.

30 Proceed the similar steps as 22-29 for the other 2 bytes Input′
(2∼3). // About 1

value is remained.

31 Check if this Δ′ satisfies the other N/ns − 1 groups of ns structures;
32 if there is no solution for Δ′ remained then
33 return ⊥. // The distinguishing attack is failed.

34 Proceed Steps 4 ∼ 31 with V ′[N][N] to compute the distributions on
Output′

(0∼3) by guessing Γ ′ = (Γ(0), Γ(7), Γ(10), Γ(13));

35 For AES10, there exists one solution for Γ ′;
36 For any random permutation, there is no solution for Γ ′.

Statistical Integral Distinguisher with Multi-structure and Its Application 417

So the success probability of this distinguisher is about 1 − 2−27.08. The
advantage to distinguish AES10 from random permutation is not negligible.
The time complexity of Steps 2 ∼ 3 is N × N = 255.84 full round encryptions.
Then the time complexity of Steps 4 ∼ 9 is about 216 ×ns ×N = 251.92 memory
accesses (MA). Steps 10 ∼ 14 take 216 × 28 × ns × 224 = 256 MA, and Steps
15 ∼ 21 require about 232×ns×216 = 256 MA. Since α1 = 2−10.51, Steps 22 ∼ 29
take 232 × α1 × ns × N = 257.41 MA and Step 30 needs about (232 × α2

1 + 232 ×
α3
1)×ns ×N ≈ 246.91 MA. After one filter process, the number of candidates for

Δ is about 1. Consequently by filtering with other N/ns −1 groups of structures,
the time complexity of Step 31 is (N/ns − 1) × ns × N ≈ 255.84 MA. Then if we
roughly set one access to a table is equivalent to one full round encryption, the
total complexity from Step 4 ∼ 31 is about 251.92 + 256 + 256 + 257.41 + 246.91 +
255.84 ≈ 258.49 encryptions. Since Step 34 also takes 258.49 encryptions, the total
time complexity of the whole attack is about 255.84 + 2 × 258.49 ≈ 259.60 full
round encryptions. In addition, the dominant memory requirements happen on
V [N][N] and V ′[N][N], which need about 2 × 4 × N × N = 258.84 bytes.

6 Conclusion

In this paper, we propose a statistical integral distinguisher with multiple struc-
tures on input and multiple integral properties on output based the work of
Wang et al. at FSE’16. With this distinguisher, we give the known-key distin-
guishing attack on 8-round and full round AES-128 based on the Gilbert’s work
at ASIACRYPT’14, which are the best known-key distinguishers for AES so far
according to the time complexity. Beside that, we present a secret-key statistical
integral distinguisher on 5-round AES with secret S-box under chosen-ciphertext
mode. This is the best integral distinguisher on AES with secret S-box under
secret-key setting. As a future work, we try to apply more statistical techniques
into the field of symmetric ciphers and find improved attack on AES and AES-
like ciphers.

Acknowledgement. This work has been supported by 973 Program (No.
2013CB834205), NSFC Projects (No. 61133013, No. 61572293), Program for New
Century Excellent Talents in University of China (NCET-13-0350), Program from
Science and Technology on Communication Security Laboratory of China (No.
9140c110207150c11050).

A Appendix

A.1 Experiment Results

In order to verify the theoretical model of statistical integral distinguisher in
Sect. 3, we implement the distinguishing attack in Sect. 5 on a mini variant of
AES with the block size 64-bit denoted as AES* here. The round function of
AES* is similar to that of AES, including four operations, i.e., SB, SR,MC and

418 T. Cui et al.

AK. 64-bit block is partitioned into 16 nibbles and SB uses S-box S0 in LBlock.
SR is same as that of AES, and the matrix used in MC is

M =

⎛

⎜⎜
⎝

1 1 4 9
9 1 1 4
4 9 1 1
1 4 9 1

⎞

⎟⎟
⎠ ,

which is defined over GF (24). For the multiplication, each nibble and value in
M are considered as a polynomial over GF (2) and then the nibble is multiplied
modulo x4 + x + 1 by the value in M . The addition is simply XOR operation.
The subkeys are XORed with the nibbles in AK operation.

There is similar known-key integral distinguisher for 8-round AES* since
its similarity to AES, see Fig. 1. Given a set of data Z = {(x, 0, 0, 0) ⊕
R(y, 0, 0, 0)|x ∈ (0, 1)16} for fixed y, i.e., the first column of Z takes all 216 possi-
ble values and other columns are fixed to some constants, after S�R�S operation,
each column of output u is active, i.e. that 216 values are uniformly distributed
on each column of output. Since R−1(Z) = {R−1((x, 0, 0, 0) ⊕ (y, 0, 0, 0))} has
216 structures that each one takes all 216 possible values on the first columns
and constants on other columns, after (S � R � S)−1 operation, each column of
output u is active.

In our experiment, we consider the distributions of four 8-bit values in v
including the first and second nibble in each column of v. Here s = 16, t = 8
and b = 4. If we set α0 = 0.2 and take different values for N and Ns, α1 and τ
can be computed using Eq. (8). By randomly choosing Ns values for y and N
values for x, we proceed the experiment to compute the statistics C ′ for AES*
and random permutations. With 2000 times of experiments, we can obtain the
empirical error probabilities α̂0 and α̂1. The experimental results for α̂0 and α̂1

are compared with the theoretical values α0 and α1 in Fig. 4.

7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

log(N)

e
rr

o
r

p
ro

b
a

b
ili

ty

7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

log(N)

e
rr

o
r

p
ro

b
a

b
ili

ty

← N
s
=1

← N
s
=10

N
s
=20 →

Fig. 4. Experimental results for AES* considering four input bytes. In detail, set the
value of α0 and change the values of N and Ns, the theoretical and empirical α0 are
shown in the left part of figure, corresponding α1 calculated and tested by Eq. (5) are
shown in the right part of figure.

Statistical Integral Distinguisher with Multi-structure and Its Application 419

6 6.5 7 7.5 8 8.5 9 9.5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

log(N)
e

rr
o

r
p

ro
b

a
b

ili
ty

Fig. 5. Experimental results for AES* considering two input and output bytes. In
detail, set the theoretical α0 = 0.2 and change the values of N , then the corresponding
theoretical α1 and empirical α0 and α1 are calculated and tested by Eq. (5) in this
figure

Moreover, we implement the second experiment where we set b = 4 including
two bytes of u and two bytes of v. We set α0 = 0.2 and let N = Ns, the
empirical error probabilities are obtained from 1000 times of experiments. The
experimental results for α̂0 and α̂1 are compared with the theoretical values α0

and α1 in Fig. 5.
Figures 4 and 5 show that the test results for the error probabilities are in

good accordance with those for theoretical model.

References

1. Aoki, K.: A middletext distinguisher for full CLEFIA-128. In: 2012 International
Symposium on Information Theory and its Applications (ISITA), pp. 521–525.
IEEE (2012)

2. Aumasson, J., Meier, W.: Zero-sum distinguishers for reduced keccak-f and for
the core functions of luffa and hamsi, 2009. Presented at the rump session of
Cryptographic Hardware and Embedded Systems- CHES (2009)

3. Barreto, P.S.L.M., Rijmen, V.: Whirlpool. In: van Tilborg, H.C.A., Jajodia,
S. (eds.) Encyclopedia of Cryptography and Security, 2nd edn, pp. 1384–1385.
Springer, New York (2011)

4. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack
on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8 14

5. Blondeau, C., Peyrin, T., Wang, L.: Known-key distinguisher on full PRESENT. In:
Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 455–474.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 22

6. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. https://competitions.cr.yp.to/caesar.html

7. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). doi:10.1007/
BFb0052343

8. FIPS 197. Advanced Encryption Standard. Federal Information Processing Stan-
dards Publication 197, U.S. Department of Commerce/N.I.S.T (2001)

http://dx.doi.org/10.1007/978-3-642-03356-8_14
http://dx.doi.org/10.1007/978-3-662-47989-6_22
https://competitions.cr.yp.to/caesar.html
http://dx.doi.org/10.1007/BFb0052343
http://dx.doi.org/10.1007/BFb0052343

420 T. Cui et al.

9. Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its appli-
cations to AES - extended version. https://eprint.iacr.org/2016/592

10. Grassi, L., Rechberger, C., Rønjom, S.: A new structural-differential property of
5-round AES. https://eprint.iacr.org/2017/118.pdf

11. Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: improved attacks for AES-like
permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–
383. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13858-4 21

12. Gilbert, H.: A simplified representation of AES. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 200–222. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-45611-8 11

13. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 13

14. Jean, J., Naya-Plasencia, M., Peyrin, T.: Multiple limited-birthday distinguishers
and applications. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol.
8282, pp. 533–550. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43414-7 27

15. Knudsen, L., Rijmen, V.: Known-key distinguishers for some block ciphers. In:
Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-76900-2 19

16. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). doi:10.1007/
3-540-45661-9 9

17. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: Rebound dis-
tinguishers: results on the full whirlpool compression function. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 126–143. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-10366-7 8

18. Lamberger, M., Mendel, F., Rechberger, C., Rijmen, V., Schläffer, M.: The rebound
attack and subspace distinguishers: application to whirlpool. Cryptology ePrint
Archive, Report 2010/198 (2010)

19. Mendel, F., Peyrin, T., Rechberger, C., Schläffer, M.: Improved cryptanalysis of the
reduced Grøstl compression function, ECHO permutation and AES block cipher.
In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 16–35. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05445-7 2

20. Minematsu, K.: AES-OTR (v3.1). https://competitions.cr.yp.to/round3/
aesotrv31.pdf

21. Minier, M., Phan, R.C.-W., Pousse, B.: Distinguishers for ciphers and known key
attack against Rijndael with large blocks. In: Preneel, B. (ed.) AFRICACRYPT
2009. LNCS, vol. 5580, pp. 60–76. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02384-2 5

22. Sun, B., Liu, Z., Rijmen, V., Li, R., Cheng, L., Wang, Q., Alkhzaimi, H., Li,
C.: Links among impossible differential, integral and zero correlation linear crypt-
analysis. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215,
pp. 95–115. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 5

23. Sun, B., Liu, M., Guo, J., Qu, L., Rijmen, V.: New insights on AES-like SPN
ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp.
605–624. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4 22

24. Wang, M., Cui, T., Chen, H., Sun, L., Wen, L., Bogdanov, A.: Integrals go
statistical: cryptanalysis of full Skipjack variants. In: Peyrin, T. (ed.) FSE
2016. LNCS, vol. 9783, pp. 399–415. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-52993-5 20

https://eprint.iacr.org/2016/592
https://eprint.iacr.org/2017/118.pdf
http://dx.doi.org/10.1007/978-3-642-13858-4_21
http://dx.doi.org/10.1007/978-3-662-45611-8_11
http://dx.doi.org/10.1007/978-3-642-22792-9_13
http://dx.doi.org/10.1007/978-3-662-43414-7_27
http://dx.doi.org/10.1007/978-3-540-76900-2_19
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/978-3-642-10366-7_8
http://dx.doi.org/10.1007/978-3-642-05445-7_2
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
http://dx.doi.org/10.1007/978-3-642-02384-2_5
http://dx.doi.org/10.1007/978-3-642-02384-2_5
http://dx.doi.org/10.1007/978-3-662-47989-6_5
http://dx.doi.org/10.1007/978-3-662-53018-4_22
http://dx.doi.org/10.1007/978-3-662-52993-5_20
http://dx.doi.org/10.1007/978-3-662-52993-5_20

Conditional Differential Cryptanalysis
for Kreyvium

Yuhei Watanabe1(B), Takanori Isobe2, and Masakatu Morii3

1 National Institute of Advanced Industrial Science and Technology, Osaka, Japan
yuhei.watanabe@aist.go.jp

2 University of Hyogo, Hyogo, Japan
takanori.isobe@ai.u-hyogo.ac.jp
3 Kobe University, Hyogo, Japan

Abstract. Kreyvium is a NLFSR-based stream cipher which is oriented
to homomorphic-ciphertext compression. This is a variant of Trivium
with 128-bit security. Designers have evaluated the security of Kreyvium
and concluded that the resistance of Kreyvium to the conditional differ-
ential cryptanalysis is at least the resistance of Trivium, and even better.
However, we consider that this attack is effective due to the structure
of Kreyvium. This paper shows conditional differential cryptanalysis for
Kreyvium. We propose the method of arrangement of differences and
conditions to obtain good higher-order conditional differential charac-
teristics. We use two types of higher-order conditional differential char-
acteristics to find the distinguisher, e.g. the bias of higher-order con-
ditional differential characteristics of keystream and the neutrality of
keystreams. In the first one, we obtain a distinguisher on Kreyvium with
730 rounds from 20-th order characteristic. In the second one, we obtain
a distinguisher on Kreyvium with 899 rounds from 24-th and 25-th order
conditional differential characteristic. We experimentally confirm all our
attacks. The second one shows that we can obtain the distinguisher on
Kreyvium with more rounds than the distinguisher on Trivium. There-
fore, Kreyvium has lower security than Trivium for the conditional dif-
ferential cryptanalysis.

Keywords: Differential cryptanalysis · Conditional differential ·
Higher-order differential · Distinguisher · Kreyvium

1 Introduction

A fully homomorphic encryption (FHE) scheme is a promising technology for
recent cloud-based services such as cloud computing and storage services. How-
ever, if FHE schemes are deployed in a straightforward method, the size of
ciphertexts becomes very large, and the environment of communication consid-
erably suffers from it. In order to reduce the size of ciphertexts, Cateaut et al.

This work was done when the first and second authors belonged to Kobe University.

c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 421–434, 2017.
DOI: 10.1007/978-3-319-60055-0 22

422 Y. Watanabe et al.

Table 1. Results of the conditional differential cryptanalysis for Trivium and Kreyvium
on the single-key setting

Cipher Round Evaluation Type of attack Reference

Trivium 798 Neutrality Distinguisher [6]

799 Cube attack Key recovery [5]

829 Cube tester Distinguisher [9]

Kreyvium 730 Zero sum Distinguisher Sect. 4

899 Neutrality Distinguisher Sect. 4

showed an efficient method for compressing ciphertexts by using a symmetric
encryption scheme, and investigate the cost of a homomorphic evaluation when
several symmetric primitives are used for this purpose [3]. Furthermore, they pro-
posed a new NLFSR-based stream cipher called Kreyvium, and optimized for
the usage of FHE. Kreyvium is based on a Trivium, and offers 128-bit security,
while Trivium [2] achieves only 80-bit security.

Designers of Kreyvium have evaluated the security of Kreyvium for various
attacks which are applied to Trivium. The most successful attacks on Trivium
are cube attacks and conditional differential cryptanalysis [1,4–7,9,10]. Dinur et
al. proposed cube attacks and showed key recovery attacks for Trivium with 774
rounds by using 29-th order differential characteristic [4]. Aumasson et al. pro-
posed cube testers, and showed a distinguisher for Trivium with 790 rounds by
using 30-th order differential characteristic [1]. Stankovski showed cube testers,
and showed a distinguisher for Trivium with 806 rounds by using 44-th order dif-
ferential characteristic [10]. Fouque et al. improved cube attacks, and showed key
recovery attacks for Trivium with 799 rounds by using 37-th order differential
characteristic [5]. Liu et al. proposed a heuristic algorithm for searching favor-
able cubes, and showed a distinguisher for Trivium with 839 rounds by using
37-th order differential characteristic [7]. Sarker et al. improved cube testers,
and showed a distinguisher for Trivium with 829 rounds by using 27-th order
differential characteristic [9]. Knellwolf et al. showed a conditional differential
cryptanalysis, and showed a distinguisher for Trivium with 798 rounds by using
24-th and 25-th order conditional differential characteristic [6]. Moreover, they
showed a distinguisher for Trivium with 961 rounds on the weak-key setting.

Designers of Kreyvium conclude that the resistance of Kreyvium to these
attacks is at least the resistance of Trivium, and even better [3]. The reason is
that adversaries have fewer bits forced to be zero than the case of Trivium despite
introducing IV bits in two registers simultaneously. In addition, since Kreyvium
has two additional XORs per round, they get more involved relations that provide
a better resistance against the conditional differential cryptanalysis [6].

1.1 Our Contribution

In this paper, we explore the security of conditional differential cryptanalyses
for Kreyvium. Our evaluation starts with the fact that the important factor for

Conditional Differential Cryptanalysis for Kreyvium 423

finding good conditional differential characteristics is how to arrange differences
and conditions in the initial states, not the number of zero in the initial state.
Kreyvium supports 128-bit IV whose size is larger than that of Trivium, and is
initially loaded into two registers of sizes 84 and 111 bits. We exploit degree of
freedom of IV and the structure of Kreyvium to determine appropriate positions
of differences and conditions to efficiently prevent the diffusion of differences.

We propose two types of higher-order conditional differential characteris-
tics. The first one observes the bias of higher-order differential characteristics
of keystream, i.e. the sum of keystream bits generated by a set of chosen IVs
becomes zero. We give a distinguisher on 730-round Kreyvium by using 20-th
order conditional differential characteristic with 220 IVs. The second one utilize
the neutrality of keystreams to find distinguisher as well as Knellwolf et al.’s
attack [6], where neutrality means the probability that d-th order conditional
differential characteristic equals (d + 1)-th order conditional differential charac-
teristic. In this case, we obtain a distinguisher on 899-round Kreyvium by using
24-th and 25-th order conditional differential characteristic, whose round is 70
more round than the best attacks of Trivium. Note that all our attacks are exper-
imentally verified. Table 1 summarizes the results of Trivium and our results of
Kreyvium. Therefore, we reveal that conditional differential attacks on Kreyvium
are much more efficient than Trivium contrary to designer’s expectation.

1.2 Paper Organization

This paper is organized as follows. Section 2 explains the description of
Kreyvium. In Sect. 3, we describe the conditional differential cryptanalysis for
Trivium. In Sect. 4, we propose the conditional differential cryptanalysis for
Kreyvium. Section 5 concludes this paper.

2 Description of Kreyvium

Kreyvium, which was proposed by Canteaut et al. in 2016, is a stream cipher
for the efficient homomorphic-ciphertext compression [3]. Kreyvium consists of
five registers whose size is 93, 84, 111, 128, and 128 bits, respectively. Let
(s1, s2, . . . , s93), (s94, s95, . . . , s177), (s178, s179, . . . , s288), (K∗

127,K
∗
126, . . . ,K

∗
0),

and (IV ∗
127, IV ∗

126, . . . , IV ∗
0) be states of each register. Kreyvium has 128-bit key

and 128-bit initialization vector (IV). Figure 1 shows the structure of Kreyvium.
Let k, x, and z be the key and the IV, the keystream, respectively. The algorithm
of Kreyvium consists of the key initialization part and the keystream generation
part. In the key initialization part, the key and the IV are loaded into registers.
The key initialization part initializes them by the update functions. This part is
clocked 1152 times. Let t be the number of round Algorithm 1 shows the process
of this part. In the keystream generation part, we obtain the keystream from
initialized state. Algorithm 2 shows the process of this part.

424 Y. Watanabe et al.

Fig. 1. Kreyvium

3 Conditional Differential Cryptanalysis

Knellwolf et al. showed a conditional differential cryptanalysis for Trivium in
2011 [6]. The conditional differential cryptanalysis is a kind of differential crypt-
analyses, and it is well suited for analysis of NLFSR-base ciphers. This attack
imposes conditions to prevent differences from spreading and observes a bias of
the difference on the keystream bit.

3.1 Overview of Conditional Differential Cryptanalysis

Figure 2 shows the overview of the conditional differential cryptanalysis. Adver-
saries introduce the difference into the IV and observe the propagation of it. In
the key initialization part, they analyze conditions on initial state bits to prevent
the propagation of differences. In the end, they obtain the conditional differen-
tial characteristic between the initial state and the keystream. When they find
a good differential characteristic which appear in the keystream, they can use
it as a distinguisher which is able to distinguishing keystreams from random
sequence.

Usually, the update function of NLFSR-based stream cipher consists of linear
operations and nonlinear operations. Figure 3 shows patterns of the diffusion of
differences. If a state bit inputted to the linear operation has a difference, it is

Conditional Differential Cryptanalysis for Kreyvium 425

Algorithm 1. Key Initialization
(s1, s2, . . . , s93) ← (k0, k1, . . . , k92)
(s94, s95, . . . , s177) ← (x0, x1, . . . , x83)
(s178, s179, . . . , s288) ← (x84, . . . , x127, 1, . . . , 1, 0)
(K∗

127,K
∗
126, . . . ,K

∗
0) ← (k0, k1, . . . , k127)

(IV ∗
127, IV

∗
126, . . . , IV

∗
0) ← (x0, x1, . . . , x127)

for i = 1 to 1152 do
t1 = s66 ⊕ s91 · s92 ⊕ s93 ⊕ s171 ⊕ IV ∗

0

t2 = s162 ⊕ s175 · s176 ⊕ s177 ⊕ s264
t3 = s243 ⊕ s286 · s287 ⊕ s288 + s69 ⊕ K∗

0

t4 ← K∗
0

t5 ← IV ∗
0

(s1, s2, . . . , s93) ← (t3, s1, s2, . . . , s92)
(s94, s95, . . . , s177) ← (t1, s94, s95, . . . , s176)
(s178, s179, . . . , s288) ← (t2, s178, s179, . . . , s287)
(K∗

127,K
∗
126, . . . ,K

∗
0) ← (t4,K

∗
127,K

∗
126, . . . ,K

∗
1)

(IV ∗
127, IV

∗
126, . . . , IV

∗
0) ← (t5, IV

∗
127, IV

∗
126, . . . , IV

∗
1)

end for

Algorithm 2. Keystream Generation
for i = 1 to N do

output z ← s66 ⊕ s93 ⊕ s162 ⊕ s177 ⊕ s243 ⊕ s288 ⊕ K∗
0

t1 = s66 ⊕ s91 · s92 ⊕ s93 ⊕ s171 ⊕ IV ∗
0

t2 = s162 ⊕ s175 · s176 ⊕ s177 ⊕ s264
t3 = s243 ⊕ s286 · s287 ⊕ s288 ⊕ s69 ⊕ K∗

0

t4 ← K∗
0

t5 ← IV ∗
0

(s1, s2, . . . , s93) ← (t3, s1, s2, . . . , s92)
(s94, s95, . . . , s177) ← (t1, s94, s95, . . . , s176)
(s178, s179, . . . , s288) ← (t2, s178, s179, . . . , s287)
(K∗

127,K
∗
126, . . . ,K

∗
0) ← (t4,K

∗
127,K

∗
126, . . . ,K

∗
1)

(IV ∗
127, IV

∗
126, . . . , IV

∗
0) ← (t5, IV

∗
127, IV

∗
126, . . . , IV

∗
1)

end for

surely diffused to output of the update function. If a state bit inputted to the
nonlinear operation has the difference, we is not able to know whether output of
the update function has a difference without knowledge of values inputted to non
linear function. In this case, conditions are imposed to determine the difference
of the update bit.

3.2 Higher-Order Differential Characteristics

The attack for Trivium utilizes higher-order conditional differential characteris-
tics. We describe a basic strategy of the analysis for Trivium. Let k and x be a
key and IV. Let d be the number of order. Let f be the function of the stream
cipher. The d-th differential characteristic of fwith respect to e1, e2, . . . , ed is

426 Y. Watanabe et al.

NLFSR δ

Key initialization

NLFSRδ δδ

c : condition

NLFSR

Propagation differences Analyzing conditions

δ : difference

cc c

Analyzing conditions on initial state bits
to prevent the propagation of differences

Fig. 2. Overview of conditional differential cryptanalysis in the single-key setting

NLFSR

NLFSR

δ

δ

Impose conditions to prevent the propagation of a difference

A difference is diffused

An existence of a difference on the update value is unknown

Fig. 3. Patterns of the diffusion of differences

defined as

Δ(d)
e1,...,ed

f(k, x) =
∑

c∈L(e1,...,ed)

f(k, x ⊕ c),

where L(e1, . . . , ed) is the set of all 2d linear combinations of e1, . . . , ed.
The higher-order conditional differential characteristic Δ

(d)
e1,...,edf(k, x) is a

characteristic between the initial state and the keystream bit. A distinguisher
can be obtained from the bias of Δ

(d)
e1,...,edf(k, x). When the IV changes ran-

domly, adversaries observe the bias of Δ
(d)
e1,...,edf(k, x). If they find the bias of

Δ
(d)
e1,...,edf(k, x), they obtain the distinguisher.

Instead of deriving the bias of Δ
(d)
e1,...,edf(k, x), adversaries will derive neu-

tral variables for the higher-order conditional differential characteristics. This
technique is used in [6]. Let i be the index of the IV, and let ei be the
1-bit difference at bit position i of x. This attack evaluates a distinguisher
by the neutrality of xi in Δ

(d)
e1,...,edf(k, x). This means the probability that

Δ
(d)
e1,...,edf(k, x) = Δ

(d)
e1,...,edf(k, x⊕ei) for a random key k. Using a single neutral

Conditional Differential Cryptanalysis for Kreyvium 427

variable as a distinguisher needs at least two evaluations of Δ
(d)
e1,...,edf(k, x). In

the case of a d-th order conditional differential characteristic this reveals to 2d+1

queries to f . If the neutrality of xi is p, the resulting distinguishing advantage
is |1/2 − p|.

Knellwolf et al. obtained the distinguisher for Trivium with 798 rounds and
with 961 rounds on the weak-key setting by using 24-th and 25-th order condi-
tional differential characteristic.

4 Conditional Differential Cryptanalysis of Kreyvium

This section shows the conditional differential cryptanalysis for Kreyvium. First
of all, we explain our attack strategy, and then we introduce an efficient method
to determine appropriate positions of differences and conditions by exploiting
degree of freedom of IV and the structure of Kreyvium. Finally we give distin-
guishers of reduced-round Kreyvium by using higher-order conditional differen-
tial characteristics.

4.1 Attack Strategy

In our attack, we utilize higher-order conditional differential characteristics simi-
lar to attacks on Trivium. In order to obtain higher-order conditional differential
characteristics for NLFSR-based stream ciphers with large number of rounds, we
need to properly choose arrangements of differences and conditions in the ini-
tial states, and control propagation of differences. In particular, we need to find
appropriate positions of differences and conditions to efficiently prevent the dif-
fusion of differences

As mentioned before, an update function of NLFSR-based stream cipher
consists of linear operations and nonlinear operations. Figure 4 shows the con-
struction of update functions of Kreyvium. Let ST be a state of the Kreyvium in
round T . Let fA and fB be a linear function and nonlinear function, respectively.
We define ST

A and ST
B for t1, t2, and t3 as a set of bits which is used in fA and

fB , respectively, where

ST
At1

= {s66, s93, s171, x0},

ST
At2

= {s162, s177, s264},

ST
At3

= {s243, s288, s69, k0},

ST
Bt1

= {s91, s92},

ST
Bt2

= {s175, s176},

ST
Bt3

= {s286, s287}.

428 Y. Watanabe et al.

Then, fA and fB for each t are given as

fA(ST
At1

) = s66 ⊕ s93 ⊕ s171 ⊕ x0,

fB(ST
Bt1

) = s91 · s92,

fA(ST
At2

) = s162 ⊕ s177 ⊕ s264,

fB(ST
Bt2

) = s175, s176,

fA(ST
At3

) = s243 ⊕ s288 ⊕ s69 ⊕ k0,

fB(ST
Bt3

) = s286 · s287.

The update function of an Kreyvium is given as,

(Update) = fA(ST
A) ⊕ fB(ST

B),

where the difference of the update value is defined as follows.

Δ(Update) = ΔfA(ST
A) ⊕ ΔfB(ST

B)

Let us consider how to efficiently prevent the diffusion of differences by exploiting
properties of a linear function fA and nonlinear function fB .

Linear Function. Since ΔfA(ST
A) is a linear function, output difference of

ΔfA(ST
A) is determined from inputs differences. If the number of input bits hav-

ing a difference are even, these differences are canceled out in fA(ST
A), i.e., an

output difference of ΔfA(ST
A) becomes zero. Regarding linear function fA(ST

A),
we try to find differences in the initial state which lead to such a event of
ΔfA(ST

A) = 0.

Nonlinear Function. In the case of ΔfB(ST
B), we are not able to determine an

output difference of ΔfB(ST
B) from input differences. However, we can control

an output difference of ΔfB(ST
B) by the values of inputs. For example, if only

s92 has a difference, an output difference of ΔfB(ST
Bt1

) becomes zero under
the condition of s91 = 0. Thus, we impose conditions to state bits which do not
have differences and control the value of ΔfB(ST

B). Regarding nonlinear function
fB(ST

B), we try to find conditions of values in the initial state which lead to such
a event of ΔfB(ST

B) = 0.

4.2 How to Arrange Differences in Initial State

In order to get an efficient differential characteristic, we determine positions of
differences in initial states which prevent the diffusion of differences in linear

Conditional Differential Cryptanalysis for Kreyvium 429

Update

Fig. 4. Construction of the update function of Kreyvium

operations. According to Algorithm 1, state bits of linear operations are given
as follows:

t1 : s66, s93, s171

t2 : s162, s177, s264

t3 : s243, s288, s69.

Each bit has following distances,

t1 : 93 − 66 = 27, 171 − 66 = 105, 171 − 93 = 78
t2 : 177 − 162 = 15, 264 − 162 = 102, 264 − 177 = 87
t3 : 288 − 243 = 45, 243 − 69 = 174, 288 − 69 = 219

Interestingly, every distances are multiples of three. Figure 5 shows distances
of state bits used for computing t2. As mentioned before, two differences are
XORed, then the result is a zero difference. For example, if s66 and s93 have
differences, the t1 is given as follows;

s66 ⊕ Δs66 ⊕ s93 ⊕ Δs93 = s66 ⊕ 1 ⊕ s93 ⊕ 1 = s66 ⊕ s93.

In this case, the propagation of differences in the linear function is prevented.
If such events happen frequently, we expect to obtain better higher-order dif-
ferential characteristics. Therefore, we arrange differences with the distance of
multiples of three.

Next, let us consider that which area in the initial states where differences are
inserted is preferable to prevent the diffusion of the differences. In the Kreyvium
IV is loaded into registers as follows;

(s94, s95, . . . , s177) ← (x0, x1, . . . , x83)
(s178, s179, . . . , s288) ← (x84, . . . , x127, 1, . . . , 1, 0)

We use not only the area of x0, x1, . . . , x83 but also the area of x84, . . . , x127 to
arrange differences. According to the algorithm of Kreyvium, in the position of

430 Y. Watanabe et al.

15 bit

102 bit 87 bit

Each distance is the multiple of 3

Fig. 5. Distances of state bits (t2)

The diffusion of differences is happened.
Differences are arranged far from these bits.

: positions of the IV in the initial state

Use this area to obtain
better differential characteristics

Fig. 6. Concept of the arrangement of differences

s162 and s243, a difference is propagated to other states by the update function.
Thus, we arrange differences into positions which is far from such bits, namely
leftmost bit of the register. Figure 6 shows the concept of the arrangement of
differences by exploiting the construction of Kreyvium. Therefore, we divide
differences into the register size of 84 and the register size of 111, and arrange
differences in bits whose positions are far from s162 and s243.

Let j be indices of IV. When d-th order characteristic is used, our attack
arranges d-bit differences as follows,

j = 3l,

where l is 0 ≤ l ≤ d/2 − 1 and 28 ≤ l ≤ 28 + (d/2 − 1).

4.3 How to Arrange Conditions in Initial State

In the update process of Kreyvium, there are nonlinear operations, namely AND
operation, such as s91 ·s92, s175 ·s176, and s286 ·s287. As shown in Sect. 4.1, when

Conditional Differential Cryptanalysis for Kreyvium 431

Use consecutive 2-bit

One bit has difference and the other bit is 0.
Difference of the AND operation is 0.

Impose conditions to fulfill this event

Fig. 7. How to impose conditions to the nonlinear operation

one bit has the difference and the other bit has the condition, we can control
the value of the difference of nonlinear operations. Figure 7 shows how to impose
conditions to nonlinear operations. Let a and b be state bits. Let Δa be the
difference of a. The difference of output of the operation of a · b is Δa · b because
(a ⊕ Δa) · b = ab ⊕ Δa · b. If b is zero, Δa · b is zero. Moreover, these operations
use the consecutive 2 bits of the state, e.g. s175 and s176. Therefore, when a bit
of state bit except the leftmost bit and the rightmost bit of the register has a
difference, we arrange zero values into both the former and later of the state
bit. For example, when s176 has the difference in the initial state, we impose
conditions such as s175 = s177 = 0. Additionally, when the leftmost bit s178
has the difference in the initial state, we impose conditions such as s162 = 0,
s176 = 0, and s177 = 1 to get t2 = 0 in the first round.

Therefore, for d-th order characteristic, our attack arranges 2(d− 1)-bit con-
ditions in the initial state as follows,

j = 3m − 1
j = 3n + 1

where m is 1 ≤ l ≤ d/2−1 and 29 ≤ l ≤ 28+(d/2−1), and n is 0 ≤ n ≤ d/2−1
and 28 ≤ n ≤ 28 + (d/2 − 1).

4.4 Distinguisher for Kreyvium

We show the distinguisher of the first output keystream bit by using the higher-
order conditional differential characteristic.

As shown in Sect. 3, we obtain higher-order differential characteristics as
follows. The d-th differential characteristic of f with respect to e1, e2, . . . , ed is
defined as

Δ(d)
e1,...,ed

f(k, x) =
∑

c∈L(e1,...,ed)

f(k, x ⊕ c),

where L(e1, . . . , ed) is the set of all 2d linear combinations of e1, . . . , ed.

432 Y. Watanabe et al.

Zero-Sum Distinguisher. Let us use the parameter of d = 20, namely 20-
th order conditional differential characteristics. In this case, we arrange 20-bit
differences by using the rule in Sect. 4.2 and impose 38-bit conditions obtained
in Sect. 4.3 as follows:

Differences :xj j = 3l for 0 ≤ l ≤ 9 and 28 ≤ l ≤ 37
Conditions :xj j = 3m − 1 for 1 ≤ m ≤ 9 and 29 ≤ m ≤ 37

j = 3n + 1 for 0 ≤ n ≤ 9 and 28 ≤ n ≤ 37

Since x84 = s178 has the difference, we additionally impose x68 = 0, x82 = 0,
and x83 = 1. Then we find the bias of Δ

(d)
e1,...,edf(k, x) = 0 with probability

one after 730 key initialization rounds. We actually do experiments with 128
different keys and 210 different IVs, and confirm that our distinguisher works in
any pair of key and IVs. We evaluate time complexity of our attack. The bias
of Δ

(d)
e1,...,edf(k, x) = 0 is obtained with probability one in our attack. In random

case, this event happen with probability 1/2. When we perform our distinguisher
for N times, the success probability is 1− (1/2)N . Then, time complexity of our
attack is given by N · 220. Therefore, we can distinguish Kreyvium from random
source up to 730 rounds with time complexity of N ·220 and 220 IVs. If N is 210,
time complexity of our attack is given by 230. It takes eight hours to find our
distinguisher with one CPU core (Intel(R) Core(TM) i7 CPU 4771@ 3.50Ghz).

Neutrality Distinguisher. We evaluate the neutrality of Δ
(d)
e1,...,edf(k, x) to

find the distinguisher. In this case, we use the parameter of d = 24 and d = 25,
namely 24-th and 25-th order conditional differential characteristics.

First, we arrange 24-bit differences and 48-bit conditions are given as follows:

Differences :xj j = 3l for 0 ≤ l ≤ 11 and 28 ≤ l ≤ 39
Conditions :xj j = 3m − 1 for 1 ≤ m ≤ 11 and 29 ≤ m ≤ 40

j = 3n + 1 for 0 ≤ n ≤ 11 and 28 ≤ n ≤ 40

Since x84 = s178 has the difference, we additionally impose x68 = 0, x82 = 0,
and x83 = 1. In this case, we arrange conditions for d = 25 because we use 25-th
order conditional differential characteristics in later.

Second, we arrange 25-bit differences and 48-bit conditions are given as fol-
lows:

Differences :xj j = 3l for 0 ≤ l ≤ 11 and 28 ≤ l ≤ 40

The arrangement of conditions is similar to the case of 24-bit. In this case, we
have 25-bit differences and 51-bit conditions. Then, we have 128−(25+51) = 52-
bit IVs which can be chosen freely. We evaluate the neutrality of 24-th and 25-th
order conditional differential characteristics. In our attack, we can evaluate the
neutrality by using the constant key because 52-bit IVs can be chosen freely.
We do experiments with 492 different keys and 27 different IVs, and obtain the

Conditional Differential Cryptanalysis for Kreyvium 433

average of biases. From the average of bias, we find the bias of neutrality with
probability 0.53435 after 899 key initialization rounds. Based on this bias, the
number of samples for a distinguishing attack is given by Theorem1.

Theorem 1 [8]. Let X and Y be the distributions, and suppose that the event
e happens in X with probability p and in Y with probability p · (1 + q). Then for
small p and q, O(1

p·q2) samples suffice to distinguish X from Y with a constant
probability of success.

In this case, p and q are given as p = 1/2 and q = 0.03435. The number of samples
is 1

pq2 = 424. Then, time complexity of our attack is given by 225·27·424 ≈ 240.728.
It takes 32 hours to find our distinguisher with one CPU core (Intel(R) Core(TM)
i7 CPU 4771@ 3.50Ghz).

5 Conclusion

This paper showed the conditional differential cryptanalysis for Kreyvium. Our
method was inspired by the attack for Trivium. In Kreyvium, the IV is loaded
into two registers of sizes 84 and 111 bits. We proposed how to arrange dif-
ferences and conditions based on this structure. Our arrangement of differences
and conditions could obtain good conditional differential characteristics. We pro-
posed two types of higher-order conditional differential characteristics to find the
distinguisher, i.e. the bias of higher-order conditional differential characteristics
of keystream and the neutrality of keystreams. In the first one, the biases were
found, and we obtained the distinguisher on Kreyvium with 730 rounds by using
20-th order conditional differential characteristic. In the second one, we found the
specific neutrality and obtained the distinguisher on Kreyvium with 899 rounds
by using 24-th and 25-th order conditional differential characteristic. As a result,
Kreyvium is weak for the conditional differential cryptanalysis compared with
Trivium.

Acknowledgments. This work was supported in part by Grant-in-Aid for Scientific
Research (C) (KAKENHI 26330155, 17K12698) for Japan Society for the Promotion
of Science.

References

1. Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recov-
ery attacks on reduced-round MD6 and Trivium. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03317-9 1

2. Cannière, C.: Trivium: a stream cipher construction inspired by block cipher
design principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 171–186. Springer, Heidelberg (2006).
doi:10.1007/11836810 13

http://dx.doi.org/10.1007/978-3-642-03317-9_1
http://dx.doi.org/10.1007/978-3-642-03317-9_1
http://dx.doi.org/10.1007/11836810_13

434 Y. Watanabe et al.

3. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Paillier,
P., Sirdey, R.: Stream ciphers: a practical solution for efficient homomorphiccipher-
text compression. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 313–333.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-52993-5 16

4. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-01001-9 16

5. Fouque, P.-A., Vannet, T.: Improving key recovery to 784 and 799 rounds of Triv-
ium using optimized cube attacks. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424,
pp. 502–517. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43933-3 26

6. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis
of Trivium and KATAN. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol.
7118, pp. 200–212. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28496-0 12

7. Liu, M., Lin, D., Wang, W.: Searching cubes for testing boolean functions and its
application to Trivium. In: IEEE International Symposium on Information Theory,
ISIT 2015, pp. 496–500 (2015)

8. Mantin, I., Shamir, A.: A practical attack on broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002). doi:10.1007/
3-540-45473-X 13

9. Sarkar, S., Maitra, S., Baksi, A.: Observing biases in the state: case stud-
ies with Trivium and Trivia-SC. Des. Codes Cryptogr. 82(1), 351–375 (2017).
http://dx.doi.org/10.1007/s10623-016-0211-x

10. Stankovski, P.: Greedy distinguishers and nonrandomness detectors. In: Gong, G.,
Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 210–226. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-17401-8 16

http://dx.doi.org/10.1007/978-3-662-52993-5_16
http://dx.doi.org/10.1007/978-3-642-01001-9_16
http://dx.doi.org/10.1007/978-3-662-43933-3_26
http://dx.doi.org/10.1007/978-3-642-28496-0_12
http://dx.doi.org/10.1007/3-540-45473-X_13
http://dx.doi.org/10.1007/3-540-45473-X_13
http://dx.doi.org/10.1007/s10623-016-0211-x
http://dx.doi.org/10.1007/978-3-642-17401-8_16

Digital Signatures

Practical Strongly Invisible and Strongly
Accountable Sanitizable Signatures

Michael Till Beck1, Jan Camenisch2(B), David Derler3, Stephan Krenn4,
Henrich C. Pöhls5, Kai Samelin2,6, and Daniel Slamanig3

1 Ludwig-Maximilians-Universität München, Munich, Germany
michael.beck@ifi.lmu.de

2 IBM Research – Zurich, Rüschlikon, Switzerland
{jca,ksa}@zurich.ibm.com

3 IAIK, Graz University of Technology, Graz, Austria
{david.derler,daniel.slamanig}@tugraz.at

4 AIT Austrian Institute of Technology GmbH, Vienna, Austria
stephan.krenn@ait.ac.at

5 ISL and Chair of IT-Security, University of Passau, Passau, Germany
hp@sec.uni-passau.de

6 TU Darmstadt, Darmstadt, Germany

Abstract. Sanitizable signatures are a variant of digital signatures
where a designated party (the sanitizer) can update admissible parts
of a signed message. At PKC ’17, Camenisch et al. introduced the notion
of invisible sanitizable signatures that hides from an outsider which parts
of a message are admissible. Their security definition of invisibility, how-
ever, does not consider dishonest signers. Along the same lines, their
signer-accountability definition does not prevent the signer from falsely
accusing the sanitizer of having issued a signature on a sanitized mes-
sage by exploiting the malleability of the signature itself. Both issues
may limit the usefulness of their scheme in certain applications.

We revise their definitional framework, and present a new construc-
tion eliminating these shortcomings. In contrast to Camenisch et al.’s
construction, ours requires only standard building blocks instead of
chameleon hashes with ephemeral trapdoors. This makes this, now even
stronger, primitive more attractive for practical use. We underpin the
practical efficiency of our scheme by concrete benchmarks of a prototype
implementation.

1 Introduction

Digital signatures are an important means to protect the integrity and authen-
ticity of digital data. Ordinary digital signatures are all-or-nothing in the sense

The full version of this paper is available at the IACR Cryptology ePrint Archive.
J. Camenisch and K. Samelin were supported by the EU ERC Percy, grant
agreement n◦ 32131. D. Derler, S. Krenn, H. C. Pöhls and D. Slamanig were
supported by EU H2020 project Prismacloud: This project has received funding
from the European Union’s Horizon 2020 research and innovation programme under
grant agreement n◦ 644962.

c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 437–452, 2017.
DOI: 10.1007/978-3-319-60055-0 23

438 M.T. Beck et al.

that once a message has been signed, it is only possible to verify whether the
signature is valid for the entire original message or not. In particular, it is not
possible to update (parts of) a signed message in a determined manner with-
out invalidating the signature. However, there are many real-life use cases in
which a subsequent modification of the signed data by some designated entity
is desired. As an illustrative example consider a patient record that is signed
by a medical doctor. The accountant, tasked to charge an insurance company,
requires authentic information about the treatments and the patient’s insurance
number, but not of other parts of the patient record. Clearly, when using con-
ventional digital signatures to guarantee the authenticity of the patient record,
far too much information is revealed to the accountant. One solution to avoid
such privacy intrusive practices would require the doctor to re-sign only the data
relevant for the accountant. However, this would have to be repeated every time
a new subset of the record needs to be forwarded to some party that demands
authentic information. Especially, this would induce too much overhead to be
practical in real scenarios, or may even be impossible due to loss of availability
of the doctor for signing subsets from old documents.

Sanitizable signature schemes (SSS) [2] allow for such controlled modifica-
tions of signed messages without invalidating the signature. In fact, they are
more general than strictly needed by the given example: when signing, the signer
determines which blocks m[i] of the message m = (m[1],m[2], . . . ,m[i], . . . ,m[�])
can be updated (i.e., are flagged admissible). Any such admissible block can later
be changed to a different bitstring m[i]′ ∈ {0, 1}∗, where i ∈ {1, 2, . . . , �}, by a
designated party named the sanitizer. The sanitizer is represented by a public
key. The sanitization process requires the corresponding private key, but does
not require the signer’s involvement. Sanitization of a message m results in an
altered message m′ = (m[1]′,m[2]′, . . . ,m[i]′, . . . ,m[�]′), where m[i] = m[i]′ for
every non-admissible block, and also a signature σ′, which verifies under the
given public keys. Hence, authenticity of the message m′ is still ensured. Com-
ing back to the above example, playing the role of the sanitizer, a server storing
the signed patient records is able to black-out the sensitive parts of a signed
patient record, without any additional communication with the doctor, and, in
particular, without access to doctor’s signing key.

Concrete real-world applications of SSSs include secure routing, privacy-
preserving document disclosure, anonymous credentials, group content protec-
tion, and blank signatures [2,10–12,17,18,21,31].

Motivation. Recently, the property of invisibility was proposed by Camenisch
et al. [13] as a very strong notion of privacy for SSS.1 Informally, this prop-
erty guarantees that an outsider cannot even decide which blocks of a signed
message are admissible. This property is especially useful, if it must be hidden
which parts of a signed message can be changed by a sanitizer. However, their
invisibility definition is weak in the sense that it is not possible to query the

1 Their idea dates back to the original paper by Ateniese et al. [2], which name this
property “strong transparency” (cf. Pöhls et al. for a discussion [41]). However, they
neither provide a formal definition nor a provably secure construction.

Practical Strongly Invisible and Strongly Accountable Sanitizable Signatures 439

sanitization oracle for keys different from the challenged ones. Thus, as soon as
the adversary gains access to a sanitization oracle, it may be able to decide this
question, which may be too limiting, or surprising, in certain use-cases. This
is in particular relevant, if a sanitizer needs to sanitize messages from multiple
signers: in one of their application scenarios, a cloud-service is used to outsource
some computations. The results, however, need to be signed by the outsourcing
party. Using SSSs, the cloud can sanitize a signed message, and input the result
of the computation. However, it must remain hidden which computations are
outsourced to protect trade secrets. This is precisely captured by the invisibility
property. However, if the cloud-service uses the same key pair for multiple clients,
Camenisch et al.’s [13] definition is not sufficient. Moreover, their construction
does not achieve “strong signer-accountability”, as defined by Krenn et al. [35].
Namely, they do not prevent the signer from exploiting the malleability of pre-
viously seen sanitized signatures to accuse the sanitizer of having created one
particular signature. We stress that this only addresses the signature; the mes-
sage in question still needs to be issued by the sanitizer at some point. We stress
that this limitation is explicitly mentioned by Camenisch et al. [13]. Nonetheless,
lacking both properties may lead to some practical issues. For “strong signer-
accountability”, this was already pointed out by Krenn et al. [35], and thus it is
desirable to achieve the strengthened properties.

Contribution. Our contribution is manifold. (1) We present a strengthened
invisibility definition dubbed strong invisibility, which even protects against dis-
honest signers. (2) We present a provably secure construction of strongly invisible
sanitizable signatures, which (3) also achieves a stronger accountability notion
compared to the construction by Camenisch et al. [13]. In particular, we exclude
the malleability of the signatures, even for signers. This makes our construction
suitable for a broader range of applications. Moreover, (4) our construction does
not require chameleon-hashes with ephemeral trapdoors, and can thus be con-
sidered simpler than the one in [13], as only standard primitives are required. In
more detail, the construction is solely based on unique signatures, labeled CCA2-
secure encryption schemes, and collision-resistant chameleon-hashes, paired with
a special and novel way to generate randomness for the chameleon-hashes.
Finally, (5) to demonstrate that our construction is practical, we have imple-
mented it. The evaluation shows that the primitive is efficient enough for most
use-cases.

Related Work and State-of-the-Art. SSSs have been introduced by
Ateniese et al. [2], and later most of the current security properties were intro-
duced by Brzuska et al. [8] (with some later refinements due to Gong et al. [30]).
Later on, additional properties such as (strong) unlinkability [10,12,26], and non-
interactive public accountability [11,12] were introduced. Quite recently, Krenn
et al. further refined the security properties to also account for the signatures in
analogy to the strong unforgeability of conventional signatures [35].

440 M.T. Beck et al.

Invisibility of SSS, formalized by Camenisch et al. [13], prohibits that an
outsider can decide which blocks are admissible, dating back to the original ideas
by Ateniese et al. [2]. We extend their work, and use the aforementioned results as
our starting point for the strengthened definitions. Miyazaki et al. also introduce
invisibility of sanitizable signatures [38]. However, they actually address the
related, but different [37], concept of redactable signatures [7,22,33,42,43].

Also, several extensions such as limiting the sanitizer to certain val-
ues [15,23,34,41], SSSs which allow the signer to add new sanitizers after sign-
ing [17,44], SSSs for multi-sanitizer and multi-signer environments [9,12,16], as
well as sanitization of signed encrypted data [19,25] have been considered. SSSs
have also been used as a tool to make other primitives accountable [40], and
to construct other primitives, such as redactable signatures [6,37]. Also, SSSs
for data-structures that are more complex than simple lists have been consid-
ered [41]. Our results carry over to the aforementioned extended settings with
only minor additional adjustments. Implementations of SSSs are also presented,
proving that this primitive is practical [11,12,36,39].

Finally, we note that computing on signed messages is a much broader
field, and refer to [1,7,20,28,29] for comprehensive overviews of other related
primitives.

2 Preliminaries

Let us give our notation, assumptions, and the required building blocks, first.
All formal security definitions are given in the full version of this paper.

Notation. The main security parameter is denoted by λ ∈ N. All algorithms
implicitly take 1λ as an additional input. We write a ← A(x) if a is assigned to
the output of algorithm A with input x. If we use external random coins r, we use
the notation a ← A(x; r), where r ∈ {0, 1}λ. An algorithm is efficient if it runs in
probabilistic polynomial time (ppt) in the length of its input. For the remainder
of this paper, all algorithms are ppt if not explicitly mentioned otherwise. Most
algorithms may return a special error symbol ⊥ /∈ {0, 1}∗, denoting an exception.
If S is a set, we write a ← S to denote that a is chosen uniformly at random
from S. For a message m = (m[1],m[2], . . . ,m[�]), we call m[i] a block, while
� ∈ N denotes the number of blocks in a message m. For a list we require that
we have a unique, injective, and efficiently reversible, encoding, mapping the list
to {0, 1}∗. In the definitions, we speak of a general message space M to be as
generic as possible. For our instantiations, however, we let the message space
M be {0, 1}∗ to reduce unhelpful boilerplate notation. A function ν : N → R≥0

is negligible, if it vanishes faster than every inverse polynomial, i.e., ∀k ∈ N,
∃n0 ∈ N such that ν(n) ≤ n−k, ∀n > n0. For certain security properties we
require that values only have one canonical representation, e.g., a “2” is not the
same as a “02”, even if written as elements of N.

Practical Strongly Invisible and Strongly Accountable Sanitizable Signatures 441

We assume that the reader is familiar with IND-CCA2 secure labeled
encryption-schemes, pseudo-random functions, unique strongly-unforgeable dig-
ital signatures, and pseudo-random generators. Formal definitions are given in
the full version of this paper.

Chameleon-Hashes. The given framework is based upon the work done by
Camenisch et al. [13].

Definition 1. A chameleon-hash CH is a tuple of five ppt algorithms
(CHPGen,CHKGen,CHash,CHCheck,CHAdapt), such that:

CHPGen. The algorithm CHPGen outputs public parameters of the scheme:
ppch ← CHPGen(1λ). For brevity, we assume that ppch is implicit input to
all other algorithms.

CHKGen. The algorithm CHKGen given the public parameters ppch outputs the
private, and public, keys of the scheme: (skch, pkch) ← CHKGen(ppch).

CHash. The algorithm CHash gets as input the public key pkch, and a mes-
sage m to hash. It outputs a hash h, and some randomness r: (h, r) ←
CHash(pkch,m).2

CHCheck. The deterministic algorithm CHCheck gets as input the public key pkch,
a message m, randomness r, and a hash h. It outputs a decision d ∈ {0, 1}
indicating whether the hash h is valid: d ← CHCheck(pkch,m, r, h).

CHAdapt. The algorithm CHAdapt on input of secret key skch, the message m,
the randomness r, hash h, and a new message m′ outputs new randomness
r′: r′ ← CHAdapt(skch,m,m′, r, h).

The correctness and formal security definitions are given in the full paper.

Definition 2 (Secure Chameleon-Hashes). We call a chameleon-hash CH
secure, if it is correct, indistinguishable, collision-resistant, and unique.

RSA Instance Generator. Let (n, p, q, e, d) ← RSAKGen(1λ) be an instance
generator which returns an RSA modulus n = pq, where p and q are distinct
primes, e > n′ an integer co-prime to ϕ(n), and de ≡ 1 mod ϕ(n). Here, n′ is the
largest RSA modulus possible w.r.t. λ. It is assumed that e is prime and chosen
independently of p and q, while d is calculated from e, and not vice versa.

The Chameleon-Hash by Camenisch et al. [13]. Next, as Construction 1,
we restate the construction by Camenisch et al. [13], which is secure, if the
one-more RSA-Assumption [4] holds. Now, let CH := (CHPGen,CHKGen,CHash,
CHCheck,CHAdapt) as defined in Construction 1. Hn : {0, 1}∗ → Z

∗
n, with n ∈ N,

denotes a random oracle. Each n is implicitly required to have λ bits. This is
not explicitly checked in the algorithms.

2 The randomness r is also sometimes called “check value” [3].

442 M.T. Beck et al.

CHPGen(1λ): Call RSAKGen with the restriction e > n′, and e prime. Return e.
CHKGen(ppch): Generate p, q using RSAKGen(1λ). Let n = pq. Compute d such that

ed ≡ 1 mod ϕ(n). Return (skch, pkch) = (d, n).
CHash(pkch, m): Draw r ← Z

∗
n. If external random coins r′ is used, one can use the

random oracle, i.e., r ← Hn(r′). Let h ← Hn(m)re mod n. Return (h, r).
CHCheck(pkch, m, r, h′): If r /∈ Z

∗
n, return 0. Let h ← Hn(m)re mod n. Return 1, if

h = h′, and 0 otherwise.
CHAdapt(skch, m, m′, r, h): If CHCheck(pkch, m, r, h) = 0, return ⊥. If m = m′,

return r. Let g ← Hn(m), y ← gre mod n, and g′ ← Hn(m′). Return
r′ ← (y(g′−1))d mod n.

Construction 1. Secure CH

3 Stronger Invisible Sanitizable Signatures

We now present our framework for strongly invisible sanitizable signatures, along
with the strengthened security model, and a provably secure construction based
on only standard primitives.

3.1 The Framework for Sanitizable Signature Schemes

Subsequently, we introduce the framework for SSSs. The definitions are essen-
tially the ones given by Camenisch et al. [13], which are itself based on existing
work [2,8,11,12,30,35]. However, due to our goals, we need to re-define the secu-
rity experiments. Like Camenisch et al. [13], we do not consider “non-interactive
public accountability” [11,12,32], which allows a third party to decide which
party is accountable, instead transparency is achieved, which is mutually exclu-
sive to this property. However, it remains elegantly easy to achieve, e.g., by
signing the signature again [11,13].

For brevity, we now set some additional notation. This notation is based on
existing definitions, making reading more comfortable [8,13]. The variable ADM
contains the set of indices of the modifiable blocks, as well as � denoting the total
number of blocks in the message m. We write ADM(m) = 1, if ADM is valid
w.r.t. m, i.e., ADM contains the correct � and all indices are in m. For example,
let ADM = ({1, 2, 4}, 4). Then, m must contain four blocks, and all but the third
are admissible. If we write mi ∈ ADM, we mean that mi is admissible. MOD is
a set containing pairs (i,m[i]′) for those blocks that are modified, meaning that
m[i] is replaced with m[i]′. We write MOD(ADM) = 1, if MOD is valid w.r.t.
ADM, meaning that the indices to be modified are contained in ADM. To allow
for a compact presentation of our construction, we write ˜Xn,m, with n ≤ m, for
the vector (Xn,Xn+1,Xn+2, . . . , Xm−1,Xm).

Definition 3 (Sanitizable Signatures). A sanitizable signature scheme
SSS consists of the ppt algorithms (SSSPGen,KGensig,KGensan,Sign,Sanit,Verify,
Proof, Judge) such that:

Practical Strongly Invisible and Strongly Accountable Sanitizable Signatures 443

SSSPGen. The algorithm SSSPGen, on input security parameter λ, generates the
public parameters: ppsss ← SSSPGen(1λ). We assume that ppsss is implicitly
input to all other algorithms.

KGensig. The algorithm KGensig takes the public parameters ppsss, and returns
the signer’s private key and the corresponding public key: (sksig, pksig) ←
KGensig(ppsss).

KGensan. The algorithm KGensan takes the public parameters ppsss, and returns
the sanitizer’s private key as well as the corresponding public key:
(sksan, pksan) ← KGensan(ppsss).

Sign. The algorithm Sign takes as input a message m, sksig, pksan, as well as a
description ADM of the admissible blocks. If ADM(m) = 0, this algorithm
returns ⊥. It outputs a signature σ ← Sign(m, sksig, pksan,ADM).

Sanit. The algorithm Sanit takes a message m, modification instruction MOD,
a signature σ, pksig, and sksan. It outputs m′ together with σ′: (m′, σ′) ←
Sanit(m,MOD, σ, pksig, sksan) where m′ ← MOD(m) is message m modified
according to the modification instruction MOD.

Verify. The algorithm Verify takes as input the signature σ for a message m
w.r.t. the public keys pksig, and pksan. It outputs a decision d ∈ {1, 0}: d ←
Verify(m,σ, pksig, pksan).

Proof. The algorithm Proof takes as input sksig, a message m, a signature σ,
a set of polynomially many additional message/signature pairs {(mi, σi)},
and pksan. It outputs a string π ∈ {0, 1}∗ which can be used by the Judge
to decide which party is accountable given a message/signature pair (m,σ):
π ← Proof(sksig,m, σ, {(mi, σi) | i ∈ N}, pksan).

Judge. The algorithm Judge takes as input a message m, a signature σ, pksig,
pksan, as well as a proof π. Note, this means that once a proof π is generated,
the accountable party can be derived by anyone for that message/signature
pair (m,σ). It outputs a decision d ∈ {Sig,San}, indicating whether the
message/signature pair has been created by the signer, or the sanitizer:
d ← Judge(m,σ, pksig, pksan, π).

Correctness of Sanitizable Signature Schemes. The usual correctness require-
ments must hold, i.e., every signed and sanitized message/signature pair
should verify, while a honestly generated proof on a honestly generated mes-
sage/signature pair points to the correct accountable party. We refer to Brzuska
et al. [8] for a formal definition, which straightforwardly extends to this frame-
work.

3.2 Security of Sanitizable Signature Schemes

Next, we introduce the security model, based on the work done by Camenisch
et al. [13], but extended to account for our new insights. In other words, we
strengthen their invisibility notion, and achieve strong signer-accountability [35].

Due to space requirements, we only sketch the security properties we do not
alter. The formal definitions are given in the full version of this paper.

444 M.T. Beck et al.

Unforgeability. No one should be able to generate any new signature not seen
before without having access to any private keys.

Immutability. Sanitizers must only be able to perform allowed modifications.
In particular, a sanitizer must not be able to modify non-admissible blocks.

Privacy. Similar to semantic security for encryption schemes, privacy captures
the inability of an attacker to derive any knowledge about sanitized parts.

Transparency. An attacker cannot tell whether a specific message/signature
pair has been sanitized or not.

Sanitizer-Accountability. For sanitizer-accountability, a sanitizer should not
be able to accuse a signer if the signer is actually not responsible for a given
message/signature pair.

Fig. 1. SSS strong signer-accountability

Definition 4 (Strong Signer-Accountability). An SSS is strongly signer-
accountable, if for any ppt adversary A there exists a negligible function ν such
that Pr[SSig-AccountabilitySSSA (λ) = 1] ≤ ν(λ) , where the experiment is defined
in Fig. 1.

3.3 Strong Invisibility of SSSs

Subsequently, we introduce the property of strong invisibility. The definition is
derived from the one given by Camenisch et al. [13], but allows queries to the
sanitization oracle with all adversarially chosen public keys.

In a nutshell, the adversary can query an LoRADM oracle which either makes
ADM0 or ADM1 admissible in the final signature. Of course, the adversary has to
be restricted to ADM0∩ADM1 for sanitization requests for signatures originating
from those created by LoRADM, and their derivatives, to avoid trivial attacks
with the challenge key. However, compared to the original definition, we do
not restrict that the signer public key is the challenge one. Moreover, as in the
original definition, the sign oracle can be simulated by querying the LoRADM
oracle with ADM0 = ADM1.

Definition 5 (Strong Invisibility). An SSS is strongly invisible, if for
any ppt adversary A there exists a negligible function ν such that
∣

∣

∣Pr[SInvisibilitySSSA (λ) = 1] − 1
2

∣

∣

∣ ≤ ν(λ) , where the corresponding experiment is
defined in Fig. 2.

Practical Strongly Invisible and Strongly Accountable Sanitizable Signatures 445

Fig. 2. SSS strong invisibility

Clearly, our definition implies the invisibility definition by Camenisch et al. [13],
and strong invisibility is not implied by any other property.

Definition 6 (Secure SSS). We call an SSS secure, if it is correct, private,
unforgeable, immutable, sanitizer-accountable, strongly signer-accountable, and
strongly invisible.

As mentioned before, we do not consider non-interactive public accountability,
unlinkability, or transparency, as essential requirements, as it depends on the
concrete use-case whether these properties are required.

3.4 Construction

Our construction is similar to the one by Camenisch et al. [13]3 but contains sev-
eral improvements. In their paradigm, each block is protected by a chameleon-
hash with ephemeral trapdoors under the sanitizer’s key, while the hash values
are signed by the signer. Then the ephemeral trapdoors for the modifiable blocks
are revealed to the sanitizer, who can modify those blocks by computing colli-
sions. Our trick is to mimic chameleon hashes with ephemeral trapdoors by
generating a fresh chameleon hash key pair for each block, while only the over-
all message is protected by a chameleon hash under the sanitizer’s key. Then
we give the secret keys ski

ch for which the respective block m[i] is admissible

3 Which, in turn, is based on prior work [8,30,36].

446 M.T. Beck et al.

SSSPGen(1λ): Let ppch ← CHPGen(1λ). Return ppsss = ppch.
KGensig(ppsss): Let (pkΣ , skΣ) ← KGenΣ(1λ), κ ← KGenprf(1

λ), and return
((κ, skΣ), pkΣ).

KGensan(ppsss): Let (skch, pkch) ← CHKGen(ppsss), (skΠ , pkΠ) ← KGenΠ(1λ), and
return ((skch, skΠ), (pkch, pkΠ)).

Construction 2. Secure and transparent SSS - Key Generation

to the sanitizer while the public keys pki
ch are included in the signature by the

signer. To hide whether a given block is sanitizable, each ski
ch is encrypted; a

sanitizable block contains the real ski
ch, while a non-admissible block encrypts

a 0 (0 is assumed to be an invalid ski
ch). To prohibit the re-use of ciphertexts

from different pksigs, which is exactly the thin line between invisibility and strong
invisibility, the signer also needs to put its public key pksig into the label for each
ciphertext. As we show in the proof, this then allows to simulate decryption for
all requests when using labeled CCA2-secure encryption. To achieve accountabil-
ity, as Camenisch et al. [13], we generate additional “tags” for a chameleon-hash
(which binds everything together) in a special way, i.e., using PRFs and PRGs.
This idea can essentially be tracked back to Brzuska et al. [8]. To achieve strong
signer-accountability, we need to resort to unique signature schemes, and gener-
ate the randomness of the chameleon hash (one can use the one given in Sect. 2)
in a special way. Namely, we use the unique signature scheme to sign a random
value. The resulting signature is hashed, and used as a randomness source for
the outer chameleon-hash. To maintain transparency, the signature is encrypted
to the sanitizer, who verifies that the signature is correct upon every sanitiza-
tion, and does not produce sanitized signatures otherwise. This is necessary, as
the definition of CH collision-resistance does not rule out that the adversary
can find new colliding hashes for already seen collisions. Our trick prohibits such
attacks. In more detail, the proof π needs to also contain the randomness used to
generate the chameleon-hash, which is exactly the hashed signature on a public
random value. For readability, we split up the construction into three parts. The
first part (Construction 2) contains the key generation algorithms. The second
part (Construction 3) contains the algorithms for signing, sanitizing, and ver-
ifying, while the third part (Construction 4) contains the algorithms for proof
generation and the judge.

Theorem 1 (proven in the full version of this paper). If Π, Σ, and CH,
are secure, while PRF, and PRG, are pseudo-random, the construction given in
Construction 2–4 is a secure, and transparent, SSS.

4 Evaluation

To demonstrate the practicality of our scheme, we have implemented our con-
struction in Java. The chameleon-hash CH we implemented is the one presented
in Sect. 2. All RSA-moduli for Σ and CH have a fixed bit-length of 2,048 Bit
(with balanced primes). Likewise, each e generated (one for Σ, and one for CH)

Practical Strongly Invisible and Strongly Accountable Sanitizable Signatures 447

Sign(m, sksig, pksan, ADM): If ADM(m) �= 1, return ⊥. Let x0 ← {0, 1}λ, x′
0 ←

Evalprf(κ, x0), τ ← Evalprg(x
′
0), x1 ← {0, 1}λ. Further, let

∀i∈{1, . . . , �} : (ski
ch, pk

i
ch)←CHKGen(ppch), (hi, ri) ← CHash(pki

ch, (i, m[i], pksig)),

∀j /∈ ADM : skj
ch ← 0, and ∀i ∈ {1, . . . , �} : ci ← EncΠ(pkΠ , ski

ch, pksig).

Return σ = (σ′, x0, x1,˜pkch1,�, r̃0,�, τ, ch, c̃1,�,˜h0,�), where

σh ← SignΣ(skΣ , x1), ch ← EncΠ(pkΠ , (m, σh, r̃1,�, τ), pksig), t ← H(σh, x1, pksig),

(h0, r0) ← CHash(pkch, (0, x0, x1,˜pkch1,�, m, τ, �,˜h1,�, ch, c̃1,�, r̃1,�, pksig); t),

σ′ ← SignΣ(skΣ , (x0, x1,˜pkch1,�,
˜h0,�, c̃1,�, pksan, pksig, �))

Verify(m, σ, pksig, pksan): Return 1 if all of the following checks hold, and 0 otherwise:

∀ i ∈ {1, . . . , �} : CHCheck(pki
ch, (i, m[i], pksig), ri, hi) = 1 ∧

CHCheck(pkch, (0, x0, x1,˜pkch1,�, m, τ, �,˜h1,�, ch, c̃1,�, r̃1,�, pksig), r0, h0) = 1 ∧
VerifyΣ(pkΣ , (x0, x1,˜pkch1,�,

˜h0,�, ch, c̃1,�, pksan, pksig, �), σ
′) = 1.

Sanit(m, MOD, σ, pksig, sksan): Return ⊥ if Verify(m, σ, pksig, pksan) �= 1. Let
(mo, σh, r̃o1,�, τ

o) ← DecΠ(skΠ , ch, pksig), check whether VerifyΣ(pkΣ , x1, σh) �= 1,

and return ⊥ if so. Further, obtain (hv
0 , ·) ← CHash(pkch, (0, x0, x1,˜pkch1,�, m

o,

τ o, �,˜h1,�, ch, c̃1,�, r̃
o
1,�, pksig); H(σh, x1, pksig)) and return ⊥ if hv

0 �= h0. Otherwise,
obtain

∀i ∈ {1, . . . , �} : ski
ch ← DecΠ(skΠ , ci, pksig) and return ⊥, if ski

ch = ⊥ ∨
(m[i]′ ∈ MOD ∧ ski

ch = 0).

For each block m[i]′ ∈MOD, let r′
i ←CHAdapt(ski

ch, (i, m[i], pksig), (i, m[i]′, pksig),
ri, hi). If any r′

i = ⊥, return ⊥. For each block m[i]′ /∈ MOD, let r′
i ← ri. Let

m′ ← MOD(m). Draw τ ′ ← {0, 1}2λ. Let

r′
0 ← CHAdapt(skch,(0, x0, x1,˜pkch1,�, m, τ, �,˜h1,�, ch, c̃1,�, r̃1,�, pksig),

(0, x0, x1,˜pkch1,�, m
′, τ ′, �,˜h1,�, ch, c̃1,�, ˜r′

1,�, pksig), r0, h0).

Finally, return (m′, (σ′, x0, x1,˜pkch1,�,
˜r′

0,�, τ
′, ch, c̃1,�,˜h0,�)).

Construction 3. Secure and transparent SSS - Main Algortihms

has 2,050 Bit. Σ is a standard RSA-FDH implementation, with the required con-
straints. We have fixed the output size of H, PRF, and PRG, to 512 and 2 · 512,
respectively, as these sizes turned out to yield the best performance when using
2,048 Bit moduli. H, and PRF, were implemented using SHA-512. Hn is SHA-512
in counter-mode [5], similar to what is used in existing implementations [14,27]. Π
was implemented using the IND-CCA2-secure version of RSA-OAEP (2,048 Bit
modulus), paired with a symmetric encrypt-then-MAC cipher-suite (AES/3DES-
CBC-MAC). These implementations were taken from the SCAPI-framework [24].
They use 128 Bit encryption keys, and 112 Bit MAC keys.

448 M.T. Beck et al.

Proof(sksig, m, σ, {(mi, σi) | i ∈ N}, pksan): If any of the following checks holds return
⊥:

Verify(m, σ, pksig, pksan) = 0 ∨ ∃i ∈ {1, . . . , �} : Verify(mi, σi, pksig, pksan) = 0

Otherwise, go through the list of (mi, σi) and find a (non-trivial) colliding tuple
of the chameleon-hash with (m, σ), i.e., where it holds that

1 = CHCheck(pkch, (0, x0, x1,˜pkch1,�, m, τ, �,˜h1,�, ch, c̃1,�, r̃1,�, pksig), r0, h0) ∧
1 = CHCheck(pkch, (0, x0, x1,˜pkch1,�, m

′, τ ′, �, ˜h′
1,�, c

′
h, ˜c′

1,�, ˜r′
1,�, pksig), r

′
0, h

′
0) ∧

(τ �= τ ′ ∨ m �= m′) ∧ h0 = h′
0.

Let this signature/message pair be (σ′, m′) ∈ {(mi, σi) | i ∈ N}. Return
π = ((σ′, m′),Evalprf(κ, x0), SignΣ(skΣ , x1)), where x0, and x1, are contained in
(σ′, m′).

Judge(m, σ, pksig, pksan, π): Parse π as ((σ′, m′), v, σh) with v ∈ {0, 1}λ, and return
Sig on failure. Return Sig if any of the following checks hold

0 = Verify(m′, σ′, pksig, pksan) ∨ 0 = Verify(m, σ, pksig, pksan) ∨
VerifyΣ(pkΣ , x1, σh) = 0 ∨ Evalprg(v) �= τ ′.

With t′ ← H(σh, x1, pksig), (ht, rt) ← CHash(pkch, (0, x0, x1,˜pkch1,�, m
′, τ ′, �,˜h1,�,

ch, c̃1,�, ˜r′
1,�, pksig); t

′), return San if we have a non-trivial collision satisfying the
following checks, and Sig otherwise:

h0 = h′
0 = ht ∧ rt = r0 ∧

1 = CHCheck(pkch, (0, x0, x1,˜pkch1,�, m, τ, �,˜h1,�, c̃1,�, pksig), r0, h0) ∧
1 = CHCheck(pk′

ch, (0, x′
0, x

′
1,
˜pk′

ch1,�′ , m
′, τ ′, �′, ˜h′

1,�′ , c′
h, ˜c′

1,�′ , pksig), r
′
0, h

′
0) ∧

c̃1,� = ˜c′
1,�′ ∧ x0 = x′

0 ∧ x1 = x′
1 ∧ � = �′ ∧ ˜pkch1,� = ˜pk′

ch1,�′ ∧ ˜h0,� = ˜h′
0,�′ .

Construction 4. Secure and transparent SSS - Accountability

The measurements were performed on a Lenovo W530 with an Intel i7-
3470QM@2.70 Ghz, and 16 GiB of RAM. No performance optimization such as
CRT were implemented, and only a single thread does the computations. This
was done to see the actual lower bound of our construction, i.e., any additional
optimization helps. We evaluated our implementation with 32 blocks, wheres
50% were marked as admissible. For sanitization, 50% of the admissible blocks
were sanitized, i.e., 8 blocks. We omitted proof generation, and the judge, as
they are simple database look-ups, paired with comparisons, and depend on the
number of signatures generated. The overall results are depicted in Fig. 3a and
b and are based on 200 runs. Parameter generation is also omitted, as this is a
one-time setup, i.e., drawing a random prime with 2,050 Bit.

As demonstrated, signing is the most expensive operation. The lion’s share
is finding suitable primes; the exponentiations within the algorithms only have
a negligible overhead, as seen by the runtime of sanitization, and verification.
A practical optimization would therefore be to generate the generated keys in

Practical Strongly Invisible and Strongly Accountable Sanitizable Signatures 449

Fig. 3. Performance evaluation results

advance, when no other computation is done, or even in parallel. However, even
without these optimization the runtime can be considered practical, also with
decent security parameters, and rather expensive RSA-based primitives.

5 Conclusion

We have strengthened the current invisibility definition of sanitizable signatures.
Namely, the adversary is now able to query arbitrary keys to the sanitization
oracle. We have shown that prohibiting this may lead to serious problems in real-
life scenarios. Moreover, we have presented a simplified construction of a strongly
invisible, and transparent, sanitizable signature scheme, which is also strongly
signer-accountable. That is, we even exclude malleability of the signatures. Our

450 M.T. Beck et al.

construction is also simpler than the construction given by Camenisch et al. [13],
as it does not require chameleon hashes with ephemeral trapdoors, i.e., it only
requires standard primitives, which are less costly. Our corresponding evaluation
shows that this primitive canbe consideredpractical. Still, it remains an openprob-
lem how to construct SSSs which are simultaneously unlinkable, and invisible.

References

1. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., shelat, A., Waters, B.:
Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 1–20. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28914-9 1

2. Ateniese, G., Chou, D.H., Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol.
3679, pp. 159–177. Springer, Heidelberg (2005). doi:10.1007/11555827 10

3. Ateniese, G., Magri, B., Venturi, D., Andrade, E.R.: Redactable blockchain - or -
rewriting history in bitcoin and friends. IACR Cryptology ePrint Archive 2016,
757 (2016)

4. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-rsa-
inversion problems and the security of chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003). doi:10.1007/s00145-002-0120-1

5. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS, pp. 62–73 (1993)

6. Bilzhause, A., Huber, M., Pöhls, H.C., Samelin, K.: Cryptographically enforced
four-eyes principle. In: ARES, pp. 760–767 (2016)

7. Brzuska, C., et al.: Redactable signatures for tree-structured data: definitions and
constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp.
87–104. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13708-2 6

8. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
Schröder, D., Volk, F.: Security of sanitizable signatures revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-00468-1 18

9. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Sanitizable signatures: how
to partially delegate control for authenticated data. In: BIOSIG, pp. 117–128 (2009)

10. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of sanitizable
signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056,
pp. 444–461. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13013-7 26

11. Brzuska, C., Pöhls, H.C., Samelin, K.: Non-interactive public accountability for
sanitizable signatures. In: Capitani di Vimercati, S., Mitchell, C. (eds.) EuroPKI
2012. LNCS, vol. 7868, pp. 178–193. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40012-4 12

12. Brzuska, C., Pöhls, H.C., Samelin, K.: Efficient and perfectly unlinkable sani-
tizable signatures without group signatures. In: Katsikas, S., Agudo, I. (eds.)
EuroPKI 2013. LNCS, vol. 8341, pp. 12–30. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-53997-8 2

13. Camenisch, J., Derler, D., Krenn, S., Pöhls, H.C., Samelin, K., Slamanig, D.:
Chameleon-hashes with ephemeral trapdoors and applications to invisible sani-
tizable signatures. IACR Cryptology ePrint Archive 2017, 11 (2017)

14. Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: Virtual smart cards: how to
sign with a password and a server. In: Zikas, V., Prisco, R. (eds.) SCN 2016. LNCS,
vol. 9841, pp. 353–371. Springer, Cham (2016). doi:10.1007/978-3-319-44618-9 19

http://dx.doi.org/10.1007/978-3-642-28914-9_1
http://dx.doi.org/10.1007/11555827_10
http://dx.doi.org/10.1007/s00145-002-0120-1
http://dx.doi.org/10.1007/978-3-642-13708-2_6
http://dx.doi.org/10.1007/978-3-642-00468-1_18
http://dx.doi.org/10.1007/978-3-642-13013-7_26
http://dx.doi.org/10.1007/978-3-642-40012-4_12
http://dx.doi.org/10.1007/978-3-642-40012-4_12
http://dx.doi.org/10.1007/978-3-642-53997-8_2
http://dx.doi.org/10.1007/978-3-642-53997-8_2
http://dx.doi.org/10.1007/978-3-319-44618-9_19

Practical Strongly Invisible and Strongly Accountable Sanitizable Signatures 451

15. Canard, S., Jambert, A.: On extended sanitizable signature schemes. In: Pieprzyk,
J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-11925-5 13

16. Canard, S., Jambert, A., Lescuyer, R.: Sanitizable signatures with several sign-
ers and sanitizers. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT
2012. LNCS, vol. 7374, pp. 35–52. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31410-0 3

17. Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable signatures and their
application to content protection. In: Bellovin, S.M., Gennaro, R., Keromytis, A.,
Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-68914-0 16

18. Canard, S., Lescuyer, R.: Protecting privacy by sanitizing personal data: a new
approach to anonymous credentials. In: ASIACCS, pp. 381–392 (2013)

19. Damg̊ard, I., Haagh, H., Orlandi, C.: Access control encryption: enforcing informa-
tion flow with cryptography. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol.
9986, pp. 547–576. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53644-5 21

20. Demirel, D., Derler, D., Hanser, C., Pöhls, H.C., Slamanig, D., Traverso, G.: PRIS-
MACLOUD D4.4: overview of functional and malleable signature schemes. Tech-
nical report, H2020 Prismacloud (2015). www.prismacloud.eu

21. Derler, D., Hanser, C., Slamanig, D.: Blank digital signatures: optimization and
practical experiences. In: Camenisch, J., Fischer-Hübner, S., Hansen, M. (eds.)
Privacy and Identity 2014. IAICT, vol. 457, pp. 201–215. Springer, Cham (2015).
doi:10.1007/978-3-319-18621-4 14

22. Derler, D., Pöhls, H.C., Samelin, K., Slamanig, D.: A general framework for
redactable signatures and new constructions. In: Kwon, S., Yun, A. (eds.)
ICISC 2015. LNCS, vol. 9558, pp. 3–19. Springer, Cham (2016). doi:10.1007/
978-3-319-30840-1 1

23. Derler, D., Slamanig, D.: Rethinking privacy for extended sanitizable signatures
and a black-box construction of strongly private schemes. In: Au, M.-H., Miyaji,
A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 455–474. Springer, Cham (2015).
doi:10.1007/978-3-319-26059-4 25

24. Ejgenberg, Y., Farbstein, M., Levy, M., Lindell, Y.: SCAPI: the secure computation
application programming interface. IACR Cryptology ePrint Archive 2012, 629
(2012)

25. Fehr, V., Fischlin, M.: Sanitizable signcryption: sanitization over encrypted data
(full version). IACR Cryptology ePrint Archive, Report 2015/765 (2015)

26. Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J., Schröder, D.,
Simkin, M.: Efficient unlinkable sanitizable signatures from signatures with re-
randomizable keys. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y.
(eds.) PKC 2016. LNCS, vol. 9614, pp. 301–330. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49384-7 12

27. Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J., Schröder, D.,
Simkin, M.: Efficient unlinkable sanitizable signatures from signatures with re-
randomizable keys. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y.
(eds.) PKC 2016. LNCS, vol. 9614, pp. 301–330. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49384-7 12

28. Ghosh, E., Goodrich, M.T., Ohrimenko, O., Tamassia, R.: Fully-dynamic verifiable
zero-knowledge order queries for network data. ePrint 2015, 283 (2015)

http://dx.doi.org/10.1007/978-3-642-11925-5_13
http://dx.doi.org/10.1007/978-3-642-31410-0_3
http://dx.doi.org/10.1007/978-3-642-31410-0_3
http://dx.doi.org/10.1007/978-3-540-68914-0_16
http://dx.doi.org/10.1007/978-3-662-53644-5_21
www.prismacloud.eu
http://dx.doi.org/10.1007/978-3-319-18621-4_14
http://dx.doi.org/10.1007/978-3-319-30840-1_1
http://dx.doi.org/10.1007/978-3-319-30840-1_1
http://dx.doi.org/10.1007/978-3-319-26059-4_25
http://dx.doi.org/10.1007/978-3-662-49384-7_12
http://dx.doi.org/10.1007/978-3-662-49384-7_12

452 M.T. Beck et al.

29. Ghosh, E., Ohrimenko, O., Tamassia, R.: Zero-Knowledge authenticated order
queries and order statistics on a list. In: Malkin, T., Kolesnikov, V., Lewko, A.B.,
Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 149–171. Springer,
Cham (2015). doi:10.1007/978-3-319-28166-7 8

30. Gong, J., Qian, H., Zhou, Y.: Fully-secure and practical sanitizable signatures. In:
Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 300–317.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-21518-6 21

31. Hanser, C., Slamanig, D.: Blank digital signatures. In: ASIACCS, pp. 95–106 (2013)
32. Höhne, F., Pöhls, H.C., Samelin, K.: Rechtsfolgen editierbarer signaturen. Daten-

schutz und Datensicherheit 36(7), 485–491 (2012). doi:10.1007/s11623-012-0165-8
33. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.

In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002). doi:10.1007/3-540-45760-7 17

34. Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: Rhee, M.S., Lee,
B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006).
doi:10.1007/11927587 28

35. Krenn, S., Samelin, K., Sommer, D.: Stronger security for sanitizable signatures.
In: Garcia-Alfaro, J., Navarro-Arribas, G., Aldini, A., Martinelli, F., Suri, N. (eds.)
DPM/QASA -2015. LNCS, vol. 9481, pp. 100–117. Springer, Cham (2016). doi:10.
1007/978-3-319-29883-2 7

36. de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: Scope of security properties of
sanitizable signatures revisited. In: ARES, pp. 188–197 (2013)

37. de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: On the relation between
redactable and sanitizable signature schemes. In: Jürjens, J., Piessens, F., Bielova,
N. (eds.) ESSoS 2014. LNCS, vol. 8364, pp. 113–130. Springer, Cham (2014). doi:10.
1007/978-3-319-04897-0 8

38. Miyazaki, K., Hanaoka, G., Imai, H.: Invisibly sanitizable digital signature scheme.
IEICE Trans. 91–A(1), 392–402 (2008)

39. Pöhls, H.C., Peters, S., Samelin, K., Posegga, J., Meer, H.: Malleable signa-
tures for resource constrained platforms. In: Cavallaro, L., Gollmann, D. (eds.)
WISTP 2013. LNCS, vol. 7886, pp. 18–33. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-38530-8 2

40. Pöhls, H.C., Samelin, K.: Accountable redactable signatures. In: ARES, pp. 60–69
(2015)

41. Pöhls, H.C., Samelin, K., Posegga, J.: Sanitizable signatures in XML signature —
performance, mixing properties, and revisiting the property of transparency. In:
Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 166–182. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21554-4 10

42. Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., Meer, H.: Redactable signa-
tures for independent removal of structure and content. In: Ryan, M.D., Smyth,
B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 17–33. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-29101-2 2

43. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.)
ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002). doi:10.
1007/3-540-45861-1 22

44. Yum, D.H., Seo, J.W., Lee, P.J.: Trapdoor sanitizable signatures made easy. In:
Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 53–68. Springer, Hei-
delberg (2010). doi:10.1007/978-3-642-13708-2 4

http://dx.doi.org/10.1007/978-3-319-28166-7_8
http://dx.doi.org/10.1007/978-3-642-21518-6_21
http://dx.doi.org/10.1007/s11623-012-0165-8
http://dx.doi.org/10.1007/3-540-45760-7_17
http://dx.doi.org/10.1007/11927587_28
http://dx.doi.org/10.1007/978-3-319-29883-2_7
http://dx.doi.org/10.1007/978-3-319-29883-2_7
http://dx.doi.org/10.1007/978-3-319-04897-0_8
http://dx.doi.org/10.1007/978-3-319-04897-0_8
http://dx.doi.org/10.1007/978-3-642-38530-8_2
http://dx.doi.org/10.1007/978-3-642-38530-8_2
http://dx.doi.org/10.1007/978-3-642-21554-4_10
http://dx.doi.org/10.1007/978-3-642-29101-2_2
http://dx.doi.org/10.1007/3-540-45861-1_22
http://dx.doi.org/10.1007/3-540-45861-1_22
http://dx.doi.org/10.1007/978-3-642-13708-2_4

Tightly-Secure Signatures from the Decisional
Composite Residuosity Assumption

Xiao Zhang1,2, Shengli Liu1,2,3(B), and Dawu Gu1

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{zhangx522,slliu,dwgu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Westone Cryptologic Research Center, Beijing 100070, China

Abstract. In this paper, we construct the first tightly secure signa-
ture scheme against adaptive chosen message attacks (CMA) from the
Decisional Composite Residuosity (DCR) Assumption. Moreover, the
verification key in our scheme is of constant size. Based on the DCR
assumption, we design a one-time secure signature scheme first, then
we employ a flat tree structure to obtain a signature scheme that is
secure against non-adaptive chosen message attacks (NCMA). By com-
bining the one-time scheme and NCMA-secure scheme, we obtain the
final CMA-secure signature scheme with a tight security reduction to
the DCR assumption.

1 Introduction

One focus of modern cryptography has been the construction of Digital Signature
schemes that can be rigorously proved secure based on computational assump-
tions. Over the years, many digital signature schemes were proposed, and the
securities of the schemes were proved with reductions to the one-wayness of
trapdoor permutations [GMR88,Rom90], the RSA assumption [HJK11,HW09],
the CDH assumption [Wat05] and the Short Integer Solution (SIS) assumption
[CG05a,MP12], etc.

A proof of security for a cryptographic scheme generally proceeds by demon-
strating a reduction which shows how a polynomial-time adversary A “breaking”
the scheme can be used to construct a polynomial-time adversary B “solving”
a hardness problem. What we expect is the success probabilities (εA, εB) and
running time (TA, TB) of A and B are approximately the same. However, secu-
rity reductions often suffer from a nontrivial multiplicative security loss L (such
that only εA ≤ L · εB can be guaranteed). We call a scheme tightly secure if its
security reduction to a hardness problem is tight, i.e., the security loss factor L
is a constant number. If the factor L is only related to the security parameter
λ, the scheme is called almost tightly secure. As to digital signature, security
reduction of most of the existing schemes will lose at least a factor q, which is
the maximal number of queried signatures. As a consequence, to realize a desired
target security level, one has to increase the apparent security level inside the
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part I, LNCS 10342, pp. 453–468, 2017.
DOI: 10.1007/978-3-319-60055-0 24

454 X. Zhang et al.

construction to compensate for the loose reduction, e.g., key-length recommen-
dations should also take q into account. This inflates the size of data atoms by
some polynomial factor, with in turn increases the running time of cryptographic
operations by another polynomial factor.

To achieve tight security reduction, the first effort was made by Cramer and
Damgard in [CD96], who proposed the use of flat tree structure for signature
schemes based on the RSA assumption. In the follow-up papers [CG05a,BMS03],
Cramer and Damgard’s method was extended to cover Factoring and CDH
assumptions, respectively. Later, Hofheinz and Jager [HJ12] proposed a binary
tree-based construction from the Decision Linear (DLIN) assumption. More
recently, Blazy et al. [BKKP15] gave a new framework for obtaining signa-
tures with a tight security reduction by showing that any Chameleon Hash func-
tion can be transformed into a (binary) tree-based signature scheme with tight
security. Their instantiations include signature schemes from assumptions like
DLOG, RSA, SIS, Factoring. Other than tree-based signature schemes, works
on identity-based encryption [CW13,BKP14] imply almost tightly secure signa-
tures based on the k-LIN assumption. In addition, applying algebraic partition-
ing technique, Hofheinz proposed a tightly secure signature scheme based on
DDH in [Hof16b].

The DCR assumption, proposed by Paillier [Pai99], has been widely used in
public-key encryption (PKE). Very recently, a PKE with almost tight security
reduction to the DCR assumption has been proposed by Hofheiz in [Hof16a].
A natural question is:

Is that possible to design a tightly secure digital signature scheme from the
DCR assumption?

In this paper, we answer this question affirmatively.

Table 1. Comparison with existing tightly secure signature schemes

Scheme Assumption Reduction loss Verification key Signature size

[HJ12] LIN O(1) O(1) O(λ)

[CW13] k-Lin O(λ) O(λk2) O(k)

[BKP14] k-Lin O(λ) O(λk2) O(k)

[BKKP15] DLOG O(1) O(1) O(λ)

[BKKP15] RSA O(1) O(1) O(λ)

[BKKP15] Factoring O(1) O(1) O(λ)

[Hof16b] DDH O(λ) O(1) O(1)

Our scheme DCR O(1) O(1) O(λ)

Remark. The verification key of the signature scheme based on RSA (and Fac-
toring) in [BKKP15] consists of at least 6 elements, while the verification key
of our scheme has only 3 elements. At the same time, the modulus N used in
[BKKP15] cannot be public parameter since the factoring of N is included in the
signing key. In our scheme, N can be shared as public parameter by all users.

Tightly-Secure Signatures from the DCR Assumption 455

1.1 Our Contributions

In this paper, we construct tightly secure digital signature schemes from the
DCR assumption.

– We construct a one-time signature scheme, which is strongly existentially
unforgeable under non-adaptive chosen message attacks (sot-euf -ncma)
based on the DCR assumption.

– From the one-time signature scheme, we construct a tree-based signature
scheme, which is existentially unforgeable under non-adaptive chosen message
attacks (euf -ncma), with a tight reduction to the DCR assumption.

– We show how to combine the euf -ncma secure signature scheme with the
sot-euf -ncma secure scheme to yield an adaptively secure signature scheme
(existentially unforgeable under adaptive chosen message attacks) with a tight
reduction to the DCR assumption.

A comparison of our scheme with other several existing tightly secure schemes
is demonstrated in Table 1.

2 Preliminaries

2.1 Notations

The security parameter is λ. “PPT” abbreviates “probabilisitic polynomial-
time”. We denote by x

$←−− X the process of sampling an element x from a
finite set X uniformly at random. A function negl : N → R is negligible if for
any polynomial p(λ) it holds that negl(λ) < 1/p(λ) for all sufficiently large
λ ∈ N. Let [n] = {1, 2, . . . , n}. By A := B we denote that the value of B is
assigned to A. For integers x,N ∈ Z with N > 0, we define

|x|N =

{
x mod N if x mod N < N/2
−x mod N if x mod N ≥ N/2

(1)

such that 0 ≤ |x|N ≤ N/2.

2.2 Groups and Public Parameters

Let N = PQ, for distinct safe primes P,Q (i.e., such that P = 2P ′ + 1 and
Q = 2Q′ + 1 for prime P ′, Q′ > 2λ). Define

G1 =
{
|xN |N2

∣∣ x ∈ Z
∗
N2

}
⊆ Z

∗
N2

G2 =
{
|(1 + N)e|N2

∣∣ e ∈ ZN

}
⊆ Z

∗
N2

G =
{
|y|N2

∣∣ y ∈ Z
∗
N2

}
⊆ Z

∗
N2

456 X. Zhang et al.

Apparently, we have the following facts [Hof16a].

– G1, G2, G are well-defined groups with the group operation a · b = |ab|N2 ;
– The membership in G can be efficiently decided.
– G1 · G2 = {h1 · h2 | h1 ∈ G1, h2 ∈ G2} = G.

Furthermore, let GGen be a PPT algorithm that on input 1λ returns descrip-
tions of G, G1, G2, and generators g, g1, g2 of G, G1 and G2 respectively. In other
words, par = (G, G1, G2, g, g1, g2) ← GGen.

2.3 Decisional Composite Residuosity (DCR) Assumption

In 1999, Paillier presented the Decisional Composite Residuosity (DCR) assump-
tion in [Pai99], Informally speaking, the DCR assumption states that given a RSA
modulus N and an integer z ∈ Z∗

N2 , it is hard to decide whether z is a N -th
residue modulo N2 or not. Following [DJ01], here we will give a variant of DCR
assumption in Definition 1: given an element z ∈ G, it is hard to decide whether
z is in G1 or a coset of G1 generated by g2. This assumption is in fact implied
by Paillier’s original DCR assumption.

Definition 1 (DCR Assumption). The DCR Assumption holds relative to
GGen in group G if for any PPT A, the following is negligible:

Advdcr
G,A(λ) := |Pr [A(par, gr

1) = 1] − Pr [A(par, gr
1g2) = 1] |, (2)

where par= (N, G, G1, G2, g, g1, g2)←GGen(1λ), r
$←−− Z|G1|.

2.4 Collision-Resistant Hash Function

Definition 2 (Collision-resistant hash function). A family of collision-
resistant hash function CRHF, associated with a domain X and a range R,
consists of two PPT algorithms (HGen,HEval). HGen(1λ) generates a uniformly
random function, denoted by H : X → R. HEval(H,x) produces the value H(x)
for all x ∈ X . Furthermore, for any PPT algorithm A, the following function is
negligible:

Advcr
H,A(λ) := Pr[x �= x′ ∧ H(x) = H(x′) | H ← HGen(1λ), (x, x′) ← A(H)].

2.5 Signatures

Definition 3 (Signature scheme). A digital signature scheme with message
space M consists of three PPT algorithms SS = (Gen,Sign,Verify) with the fol-
lowing properties.

– The probabilistic key generation algorithm Gen(1λ) returns the verifica-
tion/secret key (vk, sk).

– The probabilistic signing algorithm Sign(sk,m) returns a signature σ w.r.t.
message m in message space M.

Tightly-Secure Signatures from the DCR Assumption 457

– The deterministic verification algorithm Verify(vk,m, σ) returns 1 or 0, where
1 means that σ is a valid signature of message m.

Definition 4 (euf-ncma security). A digital signature scheme SS = (Gen,
Sign, Verify) is existentially unforgeable under non-adaptive chosen message
attacks (euf-ncma), if for any PPT adversary A, the following advantage is
negligible:

Adveuf-ncma
SS,A (λ) := Pr

⎡
⎢⎢⎣

m∗ /∈ Q
∧ Verify(vk, m∗, σ∗) = 1

∣∣∣∣∣∣∣∣

Q := {m1, · · · , mq} ← A(1λ)
(vk, sk) ← Gen(1λ)
σi ← Sign(sk, mi) for j ∈ [q]
(m∗, σ∗)←A(vk, σ1, · · · , σq)

⎤
⎥⎥⎦ . (3)

If Adveuf-ncma
SS,A (λ) is negligible for q = 1, then SS is one-time existentially unforgeable

under non-adaptive chosen message attacks (oteuf-ncma).

Definition 5 (euf-cma security). A digital signature scheme SS = (Gen, Sign,
Verify) is existentially unforgeable secure under adaptive chosen message attacks
(euf-cma), if for any PPT adversary A, the following advantage is negligible:

Adveuf-cma
SS,A (λ) := Pr

[
m∗ /∈ Q
∧ Verify(vk, m∗, σ∗) = 1

∣∣∣∣ (vk, sk) ← Gen(1λ)

(m∗, σ∗) ← ASignO(vk)

]
, (4)

where the oracle SignO(mi) runs σi ← Sign(sk,mi), and Q = {mi}i∈[q] denotes
q queries made by A to the signing oracle. If Adveuf-ncma

SS,A (λ) is negligible for
any PPT adversary A who has only one access to SignO, then SS is one-time
existentially unforgeable under adaptive chosen message attacks (oteuf-cma).

If we relax adversary’s winning condition from m∗ /∈ Q to (m∗, σ∗) /∈
{(mi, σi)i∈[q]} in Eq. (4), the euf -cma security is improved to strong euf -cma
security, denoted by seuf -cma (and oteuf -cma to soteuf -cma, respectively).
Similarly, if m∗ /∈ Q is replaced with (m∗, σ∗) /∈ {(mi, σi)i∈[q]} in Eq. (3), the
euf -ncma security is improved to strong euf -ncma security, denoted by seuf -
ncma (and oteuf -ncma to soteuf -ncma, respectively).

3 One-Time Signatures Against Non-adaptive
Adversaries

In this section, we construct a soteuf -ncma secure signature scheme and prove
its security with a tight reduction to the DCR assumption.

To setup the system, first call GGen(1λ) to output
par = (N, G, G1, G2, g, g1, g2). Here N = PQ and G, G1, G2 are defined as in
Sect. 2.2 with |G1| = ϕ(N)/4 and |G2| = N . Let pp = (par,H) be the global
public parameters, where H : {0, 1}∗ → {0, 1}�H is a collision-resistant hash
function. Moreover, |G2| = N > 2�H . The global public parameters pp serves as
implicit input for all algorithms of the following signature scheme.

Our signature scheme OTS consists of three algorithms (OTGen, OTSig,
OTVer) described as follows.

458 X. Zhang et al.

– OTGen(1λ) uniformly chooses x, y ∈ G, and sets osk = (x, y), ovk = (X,Y) =
(xN , yN) ∈ G

2
1. Then it outputs osk and ovk.

– OTSig(osk,M) computes

σ = |x · yκ|N ∈ {0, · · · ,
N/2�} for κ = H(M) (5)

and outputs σ.
– OTVer(ovk,M, σ) outputs 1 iff σN = X ·Y κ for ovk = (X,Y) and κ = H(M).

Correctness is straightforward. Before presenting security proof, we give a
technical lemma as follows.

Lemma 1. Let Z = gr
1g

b
2 for r

$←−− Z|G1| and b
$←−− {0, 1} be a DCR challenge

and κ ∈ {0, 1}�H . There exists an algorithm T which takes as inputs Z, κ (public
parameter pp is an implicit input), and outputs σ ∈ {0, · · · ,
N/2�}, X,Y ∈ G

2,
i.e., (σ,X, Y) ← T (Z, κ), such that

(i) (X,Y, σ, κ) satisfies the equation

σN = X · Y κ. (6)

(ii) For each κ, there exists a unique σ such that (κ, σ) satisfies (6).
(iii) If b = 0, (X,Y) is distributed uniformly over G

2
1.

(iv) If b = 1, then (6) has a unique solution (κ, σ).

Proof. Algorithm T can be constructed as follows. It chooses s, t
$←−− G

2
1, sets

X := sN/Zκ, Y := tNZ, and σ = |stκ|N . A straightforward calculation shows
that (6) holds no matter b = 0 or b = 1.

For (σ, κ) that satisfies (6), assume that there exists another valid output σ′

satisfying σ′N = XY κ = σN . Recall that for any W ∈ G1, σN = W has a unique
solution σ ∈ G such that σ ∈ {0, · · · ,
N/2�}. This fact leads to (ii).

If b = 0, (X,Y) is distributed uniformly over G
2
1 due to the fact that s, t are

randomly chosen in G1 and Z ∈ G1. This yields (iii).
If b = 1, assume that there are two pairs (κ, σ) and (κ′, σ′) satisfying (6), i.e.,

σN = X · Y κ, σ′N = X · Y κ′
. (7)

According to (ii), for each κ, there exists a unique σ such that (κ, σ) satisfies
(6), so all we have to do is to prove κ = κ′. Eq. (7) implies (σ/σ′)N = Y κ−κ′

. For
b = 1, Y = tNZ = tNgr

1g2, then (σ/σ′)N = (tNgr
1g2)

κ−κ′
. Since (σ/σ′)N ∈ G1,

we have gκ−κ′
2 = 1 hence κ = κ′. So we proved (iv) and complete the proof. �

Theorem 1. If the DCR assumption holds relative to GGen in group G, and H
is collision-resistant, the above signature scheme OTS is strongly one-time euf-
ncma secure. To be more specific, for any PPT adversary A, there exist PPT
adversaries BDCR and BCRHF such that

Advsoteuf-ncma
OTS,A (λ) = Advoteuf-ncma

OTS,A (λ) ≤ Advcr
BCRHF(λ) + Advdcr

BDCR(λ). (8)

Tightly-Secure Signatures from the DCR Assumption 459

Proof. Advoteuf-ncma
OTS,A (λ) characterizes the probability that A wins in the oteuf -

ncma security game. Let badcoll be the event that A’s forgery (M∗, σ∗) induces
a hash collision, i.e., A ever queried a message M(�= M∗) such that H(M) =
H(M∗). Therefore,

Advoteuf-ncma
OTS,A (λ) = Pr [A wins]

= Pr [A wins ∧ badcoll] + Pr
[
A wins ∧ badcoll

]
≤ Pr [badcoll] + Pr

[
A wins ∧ badcoll

]
(9)

It is easy to see that

Pr [badcoll] ≤ Advcr
BCRHF(λ) (10)

where adversary BCRHF simulates the oteuf -ncma game with A and outputs such
a collision upon badcoll.

To bound Pr
[
A wins ∧ badcoll

]
, we construct an adversary BDCR as follows.

BDCR receives as input a DCR challenge Z = gr
1g

b
2 with r

$←−− Z|G1| and b
$←−−

{0, 1}. It invokes A, and receives a message M chosen by A. Then BDCR invokes
algorithm T in Lemma 1 to obtain (σ,X, Y) ← T (Z,H(M)). It returns vk :=
(X,Y) and signature σ to A. If A outputs a forgery (M∗, σ∗), such that H(M) �=
H(M∗) and σ∗N = X · Y H(M∗), then BDCR outputs 1, otherwise 0.

– If b = 0, vk = (X,Y) is a correctly distributed verification key by Property
(iii). Note that σ is a valid signature for M under vk by Property (i) and is
unique by Property (ii), thus is correctly distributed. Hence BDCR perfectly
simulates the oteuf -ncma game for A, and BDCR outputs 1 as long as A wins
and badcoll occurs. As a result,

Pr
[
BDCR(Z) = 1 | b = 0

]
= Pr

[
A wins ∧ badcoll

]
. (11)

– If b = 1, the solution (H(M), σ) for Eq. (6) is unique according to prop-
erty (iv) of Lemma 1. Note that badcoll does not occur, so M �= M∗ implies
H(M) �= H(M∗). Hence, it is impossible for (M∗, σ∗) to pass the verification.
As a result, BDCR outputs 1 with probability 0, i.e.,

Pr
[
BDCR(Z) = 1 | b = 1

]
= 0. (12)

Eqs. (11) and (12) implies that

Advdcr
BDCR(λ) = |Pr

[
BDCR(Z) = 1 | b = 0

]
− Pr

[
BDCR(Z) = 1 | b = 1

]
|

= Pr
[
A wins ∧ badcoll

]
. (13)

The combination of (9) (10) and (13) derives (8). Note that our signing
algorithm OTSig is deterministic, i.e., M∗ �= M is equivalent to (M∗, σ∗) �=
(M,σ), thus the above signature scheme OTS is strongly one-time euf -ncma
secure as well. �

460 X. Zhang et al.

4 Tightly Secure Signatures Against Non-adaptive
Adversaries

This scheme NSIG is based on the one-time signature scheme OTS in Sect. 3,
and implicitly includes a binary tree of depth d, which allows us to sign up to 2d

signatures, such that all nodes except the root node can be generated “on the
fly”. Each node will be associated with a key pair (ovk, osk) of OTS and will
be defined by the verification key ovk. This tree will be initialized by generating
(ovk0, osk0) for the root by invoking OTGen. Define the root node N0 := ovk0.
When signing a message M , the signer picks the leftmost unused leaf Nd, invokes
(ovkd, oskd) ← OTGen(1λ), and defines Nd := ovkd = (xN

d , yN
d). The signer

determines the path P from the leaf Nd = ovkd to the root N0 = ovk0 and
collects all the nodes along the path and all their siblings to a set called SP. How
to obtain set SP is illustrated in Fig. 1. For each node in SP, if no key is assigned
for the node yet, the signer invokes (ovk, osk) ← OTGen(1λ) to assign this node
with a freshly generated verification key ovk.

The signer will sign the path in a top-down manner. For each node Ni−1 ∈
{Nj}j∈[d] along the path P, the signer will generate a signature on its two child
nodes using oski−1, i.e., σi−1 ← OTSig(oski−1, N

left
i ||N right

i). For the leaf node,
compute σd ← OTSig(oskd,M). Finally, the signer outputs the verification keys
of nodes in set SP and all the one-time signatures (σi)i∈[d] as the final signature

σ =
(
(N left

i+1||N
right
i+1 , σi)i∈{0,1,...,d−1}, σd

)
on M . Furthermore, as a quiet standard

technique, we can transform our stateful tree-based scheme into a stateless one
by using pseudo-random function. See more details in [Gol86].

This signature scheme consists of three algorithms NSIG = (NGen,NSign,
NVerify) as follows. Let pp = (par(= N, G, G1, G2, g, g1, g2),H) be the public
parameters serving as implicit input for all algorithms of the scheme. We also
illustrate the tree in Fig. 1.

– NGen(1λ): Invoke (ovk0, osk0) ← OTSig, and this defines the root of the tree
N0 = ovk0. Set sk = osk0 = (x, y) ∈ G

2
1, vk = ovk0 = (X,Y) = (xN , yN) ∈

G
2
1 and return (vk, sk).

– NSign(sk,M): Choose the leftmost unused leaf Nd. Determine all nodes
{N0, N1, . . . , Nd} along the path P from root N0 to leaf Nd. (Some of them
may not be assigned with any value initially.)
For i = 0 to d − 1 do

Find the two child nodes (N left
i+1, N

right
i+1) of Ni (here Ni+1 is either N left

i+1 or
N right

i+1).
If N left

i+1 is not defined, then

(ovki, oski) ← OTGen(1λ); N left
i+1 := ovki;

If N right
i+1 is not defined, then

(ovk′
i, osk

′
i) ← OTGen(1λ); N right

i+1 := ovk′
i;

Tightly-Secure Signatures from the DCR Assumption 461

N0

NL
1 N1

N2

N3

...

NL
d−1 Nd−1

NL
d Nd

Md = M

NR
3

NR
2

Fig. 1. The tree in the NSIG scheme. The nodes on the path is the blue nodes
and their siblings are the light blue ones. All the nodes on the path and their sib-
lings constitute set SP = {N0, N

L
1 , N1, N2, N

R
2 , N3, N

R
3 , . . . , NL

d , Nd}. In this signature
σ = ((M0, σ0), (M1, σ1), · · · , (Md−1, σd−1), σd), M0 = NL

1 ||N1, M1 = N2||NR
2 , M2 =

N3||NR
3 , . . . , Md−1 = NL

d ||Nd, Md = M . (Color figure online)

σi ← OTSig(oski, N
left
i+1||N

right
i+1).

σd ← OTSig(oskd,M).
σ := ((N left

i+1||N
right
i+1 , σi)i∈{0,1,...,d−1}, σd).

Return(σ)
– NVerify(vk,M, σ): Parse σ = ((M0, σ0), (M1, σ1), · · · , (Md−1, σd−1), σd). Fur-

ther parse Mi = (ovki+1||ovk′
i+1).

Md := M ;
For i = d down to 1 do

If OTVer(ovki,Mi, σi) = 0 ∧ OTVer(ovk′
i,Mi, σi) = 0, Return(0);

If OTVer(vk = ovk0,M0, σ0) = 0, Return(0); Else Return(1).

The correctness NSIG follows from OTS. We prove the security as follows.

Theorem 2. If the DCR assumption holds with GGen, and H is collision-
resistant, then NSIG is euf-ncma secure. Specifically, for any PPT adversary
A, there exist PPT adversaries BDCR and BCRHF such that

Adveuf-ncma
NSIG,A (λ) ≤ Advcr

BCRHF(λ) + Advdcr
BDCR(λ). (14)

Proof. In the euf -ncma security game, assume adversary A chooses q messages
(M (j))j∈[q], receives q corresponding signatures (σ(j))j∈[q] and vk from the chal-
lenger, and outputs a forgery (M∗, σ∗). Denote by N

(1)
d , · · · , N

(q)
d the q leaves

that were used by the challenger in signing q chosen messages M (1), · · · ,M (q).

462 X. Zhang et al.

For j ∈ [q], parse σ(j) =
(
(M (j)

i , σ
(j)
i)i∈{0,1,...,d−1}, σ

(j)
d

)
and σ∗ = ((M∗

i ,

σ∗
i)i∈{0,1,...,d−1}, σ∗

d). For A’s forgery, define set M∗ := {M∗
1 ,M∗

2 , . . . ,M∗
d−1,M

∗}.
For each message query M (j) from A and the corresponding signature σ(j), define
M(j) := {M

(j)
1 ,M

(j)
2 , . . . ,M

(j)
d−1,M

(j)}.
Let badcoll be the event that there exists a k ∈ [q], and an element m ∈ M(k)

and an element m∗ ∈ M∗ such that m �= m∗ but H(m) = H(m∗). Clearly,

Adveuf-ncma
NSIG,A (λ) = Pr [A wins]

= Pr [A wins ∧ badcoll] + Pr
[
A wins ∧ badcoll

]
≤ Pr [badcoll] + Pr

[
A wins ∧ badcoll

]
(15)

It is easy to see that

Pr [badcoll] ≤ Advcr
BCRHF(λ) (16)

for an adversary BCRHF that simulate euf -ncma game with A and outputs any
such collision upon badcoll.

Let badcoll be the event that badcoll does not occur. To bound
Pr

[
A wins ∧ badcoll

]
, we construct an adversary BDCR, who simulates the real

euf -ncma game for A as follows.

– BDCR receives as input a DCR challenge Z = gr
1g

b
2 with r

$←−− Z|G1| and

b
$←−− {0, 1}.

– Denote by (M (1), · · · ,M (q)) the q messages chosen by A, (N (1)
d , · · · , N

(q)
d)

the q leftmost leaves that were used in signing the q messages.
– BDCR constructs a binary tree of at least q paths in a bottom-up way by using

the algorithm T in Lemma 1.
• BDCR computes κ(j) = H(M (j)) for all j ∈ [q]. Given Z and κ(1), · · · , κ(q),

each queried leaf node N
(j)
d is determined by computing

(σ(j)
d ,X(j), Y (j)) ← T (Z, κ(j))

and setting N
(j)
d := (X(j), Y (j)). BDCR records (N (j)

d , σ
(j)
d) and attaches

the tuple to leaf node N
(j)
d .

• For i = d − 1 down to 0 do
For j = 1 to q do

For each node N
(j)
i in the i-th level of the j-th path, if N

(j)
i is not

defined,
do the following steps.

1. Let N
(j)left
i+1 and N

(j)right
i+1 be the left child and right child of N

(j)
i .

2. If N
(j)right
i+1 is not defined1, choose a random element R ∈ {0, 1}�H ,

and call (σ̃(j),X
(j)right
i+1 , Y

(j)right
i+1) ← T (Z,R). Define N

(j)right
i+1 :=

(X(j)right
i+1 , Y

(j)right
i+1).

1 Since the q leaves are the leftmost ones, N
(j)left
i+1 has already been determined.

Tightly-Secure Signatures from the DCR Assumption 463

3. Compute κ
(j)
i = H(N (j)left

i+1 ||N (j)right
i+1).

(σ(j)
i ,X

(j)
i , Y

(j)
i) ← T (Z, κ

(j)
i).

Set N
(j)
i := (X(j)

i , Y
(j)
i).

4. BDCR records (N (j)left
i+1 , N

(j)right
i+1 , σ

(j)
i) and attaches the tuple to node

N
(j)
i .

• Consequently, the root N0 is determined by the previous procedure. Sup-
pose N0 = (X0, Y0). BDCR defines vk := (X0, Y0).

• For each queried message M (j) with j ∈ [q], BDCR computes the
corresponding signature as follows. It chooses the path from the
root to the j-th leftmost leaf. According to the attachments of the
d nodes N

(j)
0 , N

(j)
1 , . . . , N

(j)
d on the j-th path, BDCR sets σ(j) =

((N (j)left
i+1 ||N (j)right

i+1 , σ
(j)
i)i∈{0,1,...,d−1}, σ

(j)
d)).

• BDCR sends (vk, σ(1), . . . , σ(q)) to A.
– After obtaining A’s forgery (M∗, σ∗), BDCR outputs 1 if Badcoll does not occur

and (M∗, σ∗) is a valid forgery (i.e., it passes the verification).

Now we analyze the probability Pr
[
BDCR(Z) = 1 | b = 0

]
and Pr[BDCR(Z) =

1 | b = 1]. Recall that the value of each node Ni in the tree is generated by
T (Z, ·)

– If b = 0, then Z = gr
1. According to Property (iii) of Lemma 1, T (Z, ·)

will output uniform (X,Y). Hence, vk = N0 = (X0, Y0) is randomly dis-
tributed over G1 × G1, just like the output of NGen. Therefore, BDCR per-
fectly simulates vk for A. Moreover, BDCR computes the signature of M (j)

as σ(j) = ((N (j)left
i+1 ||N (j)right

i+1 , σ
(j)
i)i∈{0,1,...,d−1}, σ

(j)
d)). Here both N left

i+1 =
(X left

i+1, Y
left
i+1) and N right

i+1 = (Xright
i+1 , Y right

i+1) are randomly distributed G1 × G1,
since they are outputs of T (Z, ·). Recall that (σ(j)

i ,X
(j)
i , Y

(j)
i) is generated

by T (Z,H(N (j)left
i+1 ||N (j)right

i+1)), then σi is also correctly distributed according
to Property (i) and (ii) of Lemma 1.
In this case, BDCR perfectly simulates the euf -ncma game for A, and

Pr
[
BDCR(Z) = 1 | b = 0

]
= Pr

[
A wins ∧ badcoll

]
. (17)

– If b = 1, we analyze the valid forgery (M∗, σ∗) of A. First, parse σ∗ =(
(M∗

i , σ∗
i)i∈{0,1,...,d−1}, σ∗

d

)
, and M∗

i = N∗left
i+1 ||N∗right

i+1 . Since the forgery is
valid, we have OTVer(N∗left

i ,Mi, σi) = 1 or OTVer(N∗right
i ,Mi, σi) = 1 for i ∈

[d] (we set M∗
d = M∗). If OTVer(N∗left

i ,Mi, σi) = 1, set N∗
i = N∗left

i , other-
wise set N∗

i = N∗right
i . We also have that OTVer(N0 = N∗

0 ,M0, σ0) = 1. Con-
sequently we get the set of nodes along the path forged by A, which is denoted
by Ω∗ = {N∗

0 = N0, N
∗
1 , . . . , N∗

d }. Recall that BDCR sets up a binary tree by
answering A’s q signature queries, where each signature σ(j) determines a
unique path of the tree. Define set Ω(j) = {N

(j)
0 = N0, N

(j)
1 , . . . , N

(j)
d }, which

consists of all the nodes along the j-th path. Because the forgery path (deter-
mined by A) and the tree (created by BDCR with the q paths) share the same

464 X. Zhang et al.

root N0, there must exists a path k and a biggest index δ such that N∗
δ ∈ Ω(k).

Suppose that N∗
δ = N

(k)
δ = (X,Y), then N∗

δ+1 �= N
(k)
δ+1. We have

(σ
(k)
δ)

N
= X · Y

H(N
(k)left
δ+1 ||N(k)right

δ+1)
, either N

(k)
δ+1 = N

(k)left
δ+1 or N

(k)
δ+1 = N

(k)right
δ+1 . (18)

At the same time, if σ∗
δ is a valid signature, we have

σ∗
δ

N = X · Y
H(N∗left

δ+1 ||N∗right
δ+1)

, either N∗
δ+1 = N∗left

δ+1 or N∗
δ+1 = N∗right

δ+1 . (19)

If Badcoll does not occur, N∗
δ+1 �= N

(k)
δ+1 implies H(N∗left

δ+1 ||N∗right
δ+1) �=

H(N (k)left
δ+1 ||N (k)right

δ+1). Recall that (σ(k)
δ ,X, Y) are output of T (Z =

gr
1g

b
2,H(N (k)left

δ+1 ||N (k)right
δ+1)). Now that b = 1, according to Property (iv),

equation σN = X · Y κ has a unique solution (σ, κ). That means Eqs. (18)
and (19) cannot hold simultaneously as long as Badcoll does not occur. As a
result,

Pr
[
BDCR(Z) = 1 | b = 1

]
= 0. (20)

Then BDCR output 1 with probability 0.

Combining Eqs. (17) and (20), we have

Advdcr
BDCR(λ) =

∣∣Pr
[
BDCR(Z) = 1 | b = 0

]
− Pr

[
BDCR(Z) = 1 | b = 1

]∣∣
= Pr

[
A wins ∧ badcoll

]
.

(21)

Finally, Eq. (14) follows from Eqs. (15), (16) and (21). �

5 Tightly Secure Signatures Against Adaptive
Adversaries

With the euf -ncma secure NSIG in Sect. 4 and the oteuf -ncma secure OTS
in Sect. 3, we construct an euf -cma secure ASIG. The construction is inspired
by [HJ12]. The key pair (vk, sk) is generated using NSIG. To sign a message
M , the signer uses algorithm T to generate a fresh verification key ovk and a
corresponding one-time signature σ for M , then signs ovk with sk of NSIG.

Different from the security reduction in [EGM89], which will lose a factor of q
(the number of queried signatures), our reduction is tight. The key observation is
that our one-time signature scheme is implemented by algorithm T in Lemma 1,
which can strictly exclude the reduction factor 1/q resulting from 1-out-q valid
forgery match in [EGM89].

Our scheme consists of three algorithms ASIG = (AGen,ASign,AVerify) as
follows. Let pp = (par(= N, G, G1, G2, g, g1, g2),H) be the public parameters
serving as implicit input for all algorithms of the scheme.

Tightly-Secure Signatures from the DCR Assumption 465

– AGen(1λ): Invoke (vkN , skN) ← NGen and choose Z = gr
1 for r

$←−− Z|G1|. Set
vk := (vkN , Z) and sk := skN .

– ASig(sk,M): Invoke (σ′,X, Y) ← T (Z,H(M)), set M ′ = (X,Y) and compute
σ′′ ← NSig(sk,M ′). Return σ = (σ′, σ′′,X, Y).

– AVerify(vk,M, σ): Parse σ = (σ′, σ′′,X, Y). Set M ′ = (X,Y) and output 1 if
NVerify(vkN ,M ′, σ′′) = 1 and σ′N = X · Y H(M), otherwise 0.

In this scheme, the verification key consists of only three elements in G. The
correctness follows from the correctness of NSIG and Property (i) of Lemma 1.

Theorem 3. If the DCR assumption holds with GGen, and H is collision-
resistant, then SIG is euf-cma secure. Specifically, for any PPT adversary A,
there exist PPT adversaries BDCR and BCRHF such that

Adveuf-cma
SIG,A (λ) ≤ 2Advcr

BCRHF(λ) + 2Advdcr
BDCR(λ). (22)

Proof. Given vk, adversary A adaptively queries q messages and outputs a
forgery. Assume A chooses q messages M (j) and receives the corresponding sig-
natures σ(j) = (σ′(j), σ′′(j),X(j), Y (j)) for all j ∈ [q]. Finally A outputs a forgery
(M∗, σ∗), with σ∗ = (σ′∗, σ′′∗,X∗, Y ∗).

Let badcoll be the event that A’s forgery (M∗, σ∗) induces a hash collision,
i.e., there exists a queried M (j)(�= M∗) such that H(M (j)) = H(M∗). We have

Adveuf-cma
ASIG,A (λ) = Pr [A wins]

= Pr [A wins ∧ badcoll] + Pr
[
A wins ∧ badcoll

]
≤ Pr [badcoll] + Pr

[
A wins ∧ badcoll

]
(23)

Clearly, we have

Pr [badcoll] ≤ Advcr
BCRHF(λ) (24)

for an adversary BCRHF that simulate euf -cma game with A and outputs such
a collision upon badcoll.

Let Reuse be the event that for A’s forgery (M∗, σ∗ = (σ′∗, σ′′∗,X∗, Y ∗)),
there exists j ∈ [q] such that (X(j), Y (j)) = (X∗, Y ∗). Let Reuse be the event
that Reuse does not occur, i.e., ∀ j ∈ [q], (X(j), Y (j)) �= (X∗, Y ∗). Then

Pr
[
A wins ∧ badcoll

]
= Pr[A wins ∧ badcoll ∧ Reuse] + Pr[A wins ∧ badcoll ∧ Reuse]

≤ Pr[A wins ∧ badcoll ∧ Reuse]︸ ︷︷ ︸
(∗)

+Pr[A wins ∧ Reuse]︸ ︷︷ ︸
(∗∗)

. (25)

We will show that (∗) is negligible due to the DCR assumption. More precisely,
we construct a PPT algorithm BDCR which simulate the euf -cma game for A as
follows.

BDCR is given Z = gr
1g

b
2 where r is random and b ← {0, 1}. BDCR invokes

(vkN , skN) ← NGen(pp), sets vk := (vkN , Z) and sk := skN . It sends vk to A.

466 X. Zhang et al.

When A queries a message M (j) for signature, BDCR uses sk to invoke σ(j) ←
ASig(sk,M (j)) and replies σ(j) to A. Finally A outputs a forgery (M∗, σ∗) with
σ∗ = (σ′∗, σ′′∗,X∗, Y ∗). If (M∗, σ∗) is valid, no hash collision occurs, and there
exists some j ∈ [q] such that (X∗, Y ∗) = (X(j), Y (j)), i.e., A wins∧badcoll∧Reuse
happens, BDCR outputs 1.

If b = 0, we have Z = gr
1. Then both vk = (vkN , Z) and σ(j) (j ∈ [q]) replied

by BDCR are correctly distributed. Therefore,

Pr[BDCR(Z) = 1|b = 0] = Pr[A wins ∧ badcoll ∧ Reuse].

If b = 1, we have Z = gr
1g2. Due to Property (iv) of Lemma 1, σ′N = X ·Y H(M)

only has a unique solution (σ′(j),H(M (j))). M (j) �= M∗ and no hash collision
imply that H(M (j)) �= H(M∗). Therefore, σ∗N = X · Y H(M∗) does not hold,
and A’s forgery cannot be valid. Therefore,

Pr[BDCR(Z) = 1|b = 1] = 0.

Consequently,

Advdcr
BDCR(λ) = |Pr

[
BDCR(Z) = 1 | b = 0

]
− Pr

[
BDCR(Z) = 1 | b = 1

]
|

= Pr[A wins ∧ badcoll ∧ Reuse]. (26)

To show (∗∗) is negligible, we construct an euf -ncma adversary B for NSIG
as follows.

At the beginning, B randomly chooses q pairs (x(j), y(j)) ∈ G
2
1 as one-time

secret keys osk(j) = (x(j), y(j)), and computes (X(j), Y (j)) = (x(j)N , y(j)N) as
verification keys ovk(j) of OTS. Then it sends {(X(j), Y (j))}j∈[q] to its own
challenger and obtains verification key vkN and signatures {σ′′(j)}j∈[q].

Next, B chooses r
$←−− Z|G1|, computes Z = gr

1 and sends vk := (vkN , Z) to
adversary A. Note that vkN is generated by B’s challenger with NGen, therefore
vk is correctly distributed.

When A queries a message M (j), B uses the secret key (x(j), y(j)) of OTS

to generate σ′(j) ← OTSig(osk(j),M (j)), i.e., σ′(j) = |x(j) · y(j)H(M(j))|N , and
returns σ(j) = (σ′(j), σ′′(j),X(j), Y (j)) to A for all j ∈ [q]. Since σ′(j) has the
same distribution as that generated by algorithm T and σ′′(j) is the output of
NSIG, B simulates the euf -cma game perfectly for A.

Finally, A outputs its forgery σ∗ = (σ′∗, σ′′∗,X∗, Y ∗). Then B outputs
((X∗, Y ∗), σ′′∗) as its own forgery. It is obvious that if A’s forgery is valid,
and � j ∈ [q] such that (X(j), Y (j)) = (X∗, Y ∗), i.e., A wins∧Reuse occurs, then
B’s forgery is valid. So we have

Tightly-Secure Signatures from the DCR Assumption 467

Pr
[
A wins ∧ Reuse

]
=Adveuf-ncma

NSIG,B (λ) ≤ Advcr
BCRHF(λ) + Advdcr

BDCR(λ), (27)

where the last step of Eq. (27) follows from Theorem 2.
Finally, the combination of (23), (24), (25), (26) and (27) yields (22) and we

complete this proof. �

Acknowledgments. The authors are supported by the National Natural Science
Foundation of China Grant (Nos. 61672346, 61373153, 61472250). We thank the anony-
mous reviewers for their comments and suggestions.

References

[BKKP15] Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from
chameleon hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp.
256–279. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 12

[BKP14] Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) Identity-based encryption from
affine message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44371-2 23

[BMS03] Boneh, D., Mironov, I., Shoup, V.: A secure signature scheme from bilin-
ear maps. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 98–110.
Springer, Heidelberg (2003). doi:10.1007/3-540-36563-X 7

[CD96] Cramer, R., Damg̊ard, I.: New generation of secure and practical RSA-
based signatures. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 173–185. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 14

[CG05a] Catalano, D., Gennaro, R.: Cramer-Damg̊ard signatures revisited: efficient
flat-tree signatures based on factoring. In: Vaudenay, S. (ed.) PKC 2005.
LNCS, vol. 3386, pp. 313–327. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-30580-4 22

[CW13] Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual
system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40084-1 25

[DJ01] Damg̊ard, I., Jurik, M.: A generalisation, a simplication and some applica-
tions of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC
2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001). doi:10.
1007/3-540-44586-2 9

[EGM89] Even, S., Goldreich, O., Micali, S.: On-Line/Off-Line digital signatures. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 263–275. Springer,
New York (1990). doi:10.1007/0-387-34805-0 24

[GMR88] Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308
(1988)

[Gol86] Goldreich, O.: Two remarks concerning the Goldwasser-Micali-Rivest sig-
nature scheme. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 104–110. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 8

[HJ12] Hofheinz, D., Jager, T.: Tightly secure signatures and public-key
encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32009-5 35

http://dx.doi.org/10.1007/978-3-662-46447-2_12
http://dx.doi.org/10.1007/978-3-662-44371-2_23
http://dx.doi.org/10.1007/978-3-662-44371-2_23
http://dx.doi.org/10.1007/3-540-36563-X_7
http://dx.doi.org/10.1007/3-540-68697-5_14
http://dx.doi.org/10.1007/978-3-540-30580-4_22
http://dx.doi.org/10.1007/978-3-540-30580-4_22
http://dx.doi.org/10.1007/978-3-642-40084-1_25
http://dx.doi.org/10.1007/978-3-642-40084-1_25
http://dx.doi.org/10.1007/3-540-44586-2_9
http://dx.doi.org/10.1007/3-540-44586-2_9
http://dx.doi.org/10.1007/0-387-34805-0_24
http://dx.doi.org/10.1007/3-540-47721-7_8
http://dx.doi.org/10.1007/978-3-642-32009-5_35
http://dx.doi.org/10.1007/978-3-642-32009-5_35

468 X. Zhang et al.

[HJK11] Hofheinz, D., Jager, T., Kiltz, E.: Short signatures from weaker
assumptions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011.
LNCS, vol. 7073, pp. 647–666. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25385-0 35

[Hof16a] Hofheinz, D.: Adaptive partitioning. IACR Cryptology ePrint Archive 2016,
373 (2016)

[Hof16b] Hofheinz, D.: Algebraic partitioning: fully compact and (almost) tightly
secure cryptography. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016.
LNCS, vol. 9562, pp. 251–281. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49096-9 11

[HW09] Hohenberger, S., Waters, B.: Realizing hash-and-sign signatures under
standard assumptions. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 333–350. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 19

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 41

[Pai99] Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–
238. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

[Rom90] Rompel, J.: One-way functions are necessary and sufficient for secure sig-
natures. In: Proceedings of the Twenty-Second Annual ACM Symposium
on Theory of Computing, pp. 387–394. ACM (1990)

[Wat05] Waters, B.: Efficient identity-based encryption without random oracles.
In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127.
Springer, Heidelberg (2005). doi:10.1007/11426639 7

http://dx.doi.org/10.1007/978-3-642-25385-0_35
http://dx.doi.org/10.1007/978-3-642-25385-0_35
http://dx.doi.org/10.1007/978-3-662-49096-9_11
http://dx.doi.org/10.1007/978-3-662-49096-9_11
http://dx.doi.org/10.1007/978-3-642-01001-9_19
http://dx.doi.org/10.1007/978-3-642-01001-9_19
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/11426639_7

Author Index

Akter, Mousumi II-249
Asghar, Muhammad Rizwan I-266
Au, Man Ho II-301
Avoine, Gildas I-306

Bartlett, Harry I-285
Beck, Michael Till I-437
Braun, Johannes II-390
Buchmann, Johannes I-65, II-390
Buldas, Ahto I-65

Camenisch, Jan I-437
Carpent, Xavier I-306
Chakraborty, Suvradip I-343
Chen, Huaifeng I-402
Chen, Rongmao II-153
Cheng, Shaoyin II-61
Chow, Yang-Wai II-314
Chowdhury, Dipanwita Roy II-406
Cid, Carlos II-261
Cui, Hui I-106
Cui, Shujie I-266
Cui, Tingting I-402
Cui, Zongmin I-248

Davidson, Alex II-261
Dawson, Ed I-285
Deng, Robert H. I-106
Derler, David I-437
Djamaludin, Christopher II-452
Dumas, Jean-Guillaume II-115

Emura, Keita II-193
Erwig, Andreas II-398

Fang, Ying II-173
Farashahi, Reza Rezaeian II-366
Fischlin, Marc II-398
Foo, Ernest II-452
Forler, Christian II-19
Funabiki, Yuki I-363

Galbraith, Steven D. I-266
Gao, Debin II-95

Geihs, Matthias I-65
Ghosh, Shamit II-406
Gu, Dawu I-453
Gu, Xiaozhuo II-80
Guo, JiaZhen II-135

Hald, Martin II-398
Han, Shuai I-44
Hashem, Tanzima II-249
Hattori, Mitsuhiro II-214
He, Jingnan II-443
Helm, Dominik II-398
Hirano, Takato II-214
Horne, Dwight II-422
Horsch, Moritz II-390
Hosseini, Seyed Gholamhossein II-366
Hu, Honggang I-324
Hu, Qiaolin II-153
Huang, Tao I-384
Huang, Xinyi I-127
Huang, Yingda II-435

Isobe, Takanori I-363, I-421

Jeanmougin, Marc II-414
Jia, Dingding II-443
Jiang, Fan II-61
Jin, Hai I-207, II-135, II-435
Jing, Wenpan II-443

Kasra Kermanshahi, Shabnam I-227
Kiel, Robert II-398
Kim, Eunkyung II-349
Kordy, Barbara I-306
Krenn, Stephan I-437
Kübler, Florian II-398
Kümmerlin, Michael II-398
Kunihiro, Noboru I-324, II-460

Laenge, Jakob II-398
Lee, Wang Hao II-301
Li, Bao II-443
Li, Hongbo I-248
Li, Weifeng II-135

Li, Yingjiu I-106
Li, Yuxi II-235
Liang, Shuai I-207
Lin, Yan II-95
List, Eik II-19
Liu, Joseph K. I-106, I-127, I-227
Liu, Liu II-173
Liu, Shengli I-44, I-453
Liu, Yujing II-153
Liu, Zhe II-301
Lu, Xianhui II-443
Lu, Zexin II-173
Lucks, Stefan II-19

Ma, Sha I-168
Maiti, Swapan II-406
Matsuda, Nori II-214
Mei, Zhuolin I-248
Meng, Weizhi II-301
Metz, Dominique II-390
Morii, Masakatu I-363, I-421
Mu, Yi I-23, I-147, I-168, II-281

Nair, Suku II-422
Naito, Yusuke II-38
Niu, Yingjiao II-80

Paul, Goutam I-343
Peng, Su II-235
Pöhls, Henrich C. I-437
Prabowo, Theo Fanuela II-335

Qahur Al Mahri, Hassan I-285
Qiang, Weizhong II-135, II-435

Radke, Kenneth II-452
Rangan, C. Pandu I-343
Rodofile, Nicholas R. II-452
Rohrbach, Felix II-398
Ruj, Sushmita II-381
Russello, Giovanni I-266

Samelin, Kai I-437
Sarkar, Sumanta II-3
Schmidt, Thomas II-452
Sengupta, Binanda II-381
Sherry, Sebastian T. II-452
Shimizu, Rina II-214
Simpson, Leonie I-285
Singh, Abhishek II-381

Slamanig, Daniel I-437
Steinfeld, Ron I-227
Su, Jinshu II-153
Sun, Guozhong II-435
Sun, Hao II-153
Sun, Ling I-402
Susilo, Willy I-147, I-207, II-314
Syed, Habeeb II-3

Takashima, Katsuyuki I-85
Takayasu, Atsushi I-184
Tan, Chik How II-335
Tang, Xiaoxiao II-95
Tang, Yong II-173
Tardif, Florent I-306
Thomborson, Clark II-414
Tian, Yangguang II-281
Tibouchi, Mehdi II-349
Tjuawinata, Ivan I-384
Todo, Yosuke I-363
Tonien, Joseph II-314

Wang, Meiqin I-402
Wang, Shizhen II-435
Wang, Wei I-3, I-207
Wang, Xiaofen I-23
Wang, Xiaofeng II-153
Wang, Ye II-214
Wang, Yi II-173
Wang, Yuewu II-80
Watanabe, Yohei I-184
Watanabe, Yuhei I-421
Wei, Puwen I-3
Wei, Zhuo I-127
Wenzel, Jakob II-19
Wong, Kenneth Koon-Ho I-285
Wu, Bing I-248
Wu, Hongjun I-384
Wu, Qianhong I-207
Wu, Tong I-168

Xu, Jian II-235
Xu, Peng I-207
Xu, Shengmin I-147
Xu, Zifeng II-235

Yang, Guomin I-23, I-147, II-281
Yang, Qiang II-173
Yang, Yanjiang I-127

470 Author Index

Ying, Jason H.M. II-460
Yiu, Siu Ming I-3
Yu, Bo II-173
Yu, Yong II-281

Zeng, Shengke I-168
Zhan, Jiawei II-80
Zhang, Cen II-61
Zhang, Shiwei I-23, II-281

Zhang, Xiao I-453
Zheng, Mengce I-324
Zhou, Fucai II-235
Zhou, Quan II-80
Zhu, Bingxin I-3
Zhu, Hong I-248
Zong, Wei II-314
Zou, Deqing II-435
Zucca, Vincent II-115

Author Index 471

	Preface
	ACISP 2017
	Abstracts of Invited Talks
	Jennifer Seberry Lecture: Contextual Privacy
	Key Note Lecture: Security as Risk Communication
	Key Note Lecture: I Was Sure that Was My Password… and Other Just so Law Enforcement Stories
	Graphical Security Models
	Compact-LWE for Lightweight Public Key Encryption and Leveled IoT Authentication
	Orchestration and Automation of Cybersecurity: Issues and Challenges
	UniteCloud: A Resilient Private Cloud Platform for Education and Research Service
	Software Defined Networking as a Security Enabler for Enterprises
	Mobile Phone Security Issues
	Contents -- Part I
	Contents -- Part II
	Public Key Encryption
	Tightly-Secure Encryption in the Multi-user, Multi-challenge Setting with Improved Efficiency
	1 Introduction
	2 Preliminaries
	3 Simulatable Two-Tier Signatures
	4 Tightly Secure Signatures
	5 Tight Simulation Extractable NIZK (SE-NIZK)
	6 Tightly IND-CCA Secure PKE in the Multi-User/-challenge Setting
	A Examples of Simulatable Two-Tier Signatures
	B Illustration of TreeSig
	C Proof of Theorem 1
	References

	Hierarchical Functional Encryption for Linear Transformations
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Paper Organisation

	2 Preliminaries
	2.1 Notations
	2.2 Subset Membership Problems
	2.3 Hash Proof System
	2.4 Functional Encryption

	3 Hierarchical Functional Encryption for Linear Transformations
	3.1 Definition
	3.2 Construction
	3.3 Security Proof
	3.4 Extensions

	4 Instantiations
	4.1 HFE-LT from DDH
	4.2 HFE-LT Instantiation from DCR

	5 Conclusion
	References

	KDM-Secure Public-Key Encryption from Constant-Noise LPN
	1 Introduction
	2 Preliminaries
	2.1 Useful Distributions and Lemmas
	2.2 Learning Parity with Noise
	2.3 Public-Key Encryption and Key-Dependent Message Security

	3 Multi-fold LPN on Squared-Log Entropy
	3.1 Multi-fold LPN on Squared-Log Entropy with Independent Secrets
	3.2 Multi-fold LPN on Squared-Log Entropy with Independent Sample Subspaces

	4 KDM-Secure PKE from Constant-Noise LPN
	4.1 The Construction
	4.2 Correctness
	4.3 KDM-Security for Affine Functions

	References

	Long-Term Secure Commitments via Extractable-Binding Commitments
	1 Introduction
	2 Preliminaries
	3 Extractable-Binding Commitments
	4 Long-Term Commitments
	4.1 Scheme Description
	4.2 Security Model

	5 Security Analysis
	6 Evaluation
	7 Conclusions and Open Questions
	References

	Attribute-Based Encryption
	New Proof Techniques for DLIN-Based Adaptively Secure Attribute-Based Encryption
	1 Introduction
	1.1 Backgrounds
	1.2 Our Results
	1.3 Key Techniques
	1.4 Notations

	2 Dual Pairing Vector Spaces (DPVS)
	3 Definition of KP-ABE
	3.1 Span Programs and Access Structures
	3.2 Key-Policy Attribute-Based Encryption (KP-ABE)

	4 Special Matrix Subgroups
	5 Adaptively Secure Multi-Use KP-ABE Scheme with Short Ciphertexts
	5.1 Key Ideas in Constructing the Proposed KP-ABE Scheme
	5.2 Dual Orthonormal Basis Generator
	5.3 Warm-Up: Underlying Semi-adaptively Secure Construction
	5.4 Proposed Adaptively Secure Construction

	A Decisional Linear (DLIN) Assumption
	B Adaptively Secure Multi-Use CP-ABE Scheme with Short Secret Keys
	B.1 Definition of CP-ABE
	B.2 Dual Orthonormal Basis Generator
	B.3 Construction

	References

	Attribute-Based Encryption with Expressive and Authorized Keyword Search
	1 Introduction
	1.1 Related Work
	1.2 Organization

	2 Preliminaries
	2.1 Bilinear Pairings
	2.2 Access Structure and Linear Secret Sharing
	2.3 Attribute-Based Encryption
	2.4 Symmetric Encryption
	2.5 Expressive Keyword Search

	3 System Architecture and Security Model
	3.1 System Architecture
	3.2 Framework
	3.3 Security Definitions

	4 Generic Construction and Its Extensions
	4.1 Generic Construction
	4.2 Security Proof
	4.3 Extensions
	4.4 Performance Analysis

	5 Conclusions
	References

	Towards Revocable Fine-Grained Encryption of Cloud Data: Reducing Trust upon Cloud
	1 Introduction
	2 Description and Formulation of the System
	2.1 System Setting
	2.2 Formulation of the System

	3 Our Constructions
	3.1 Scheme One
	3.2 Scheme Two

	4 Experimental Results
	5 Related Work
	6 Conclusions
	References

	Identity-Based Encryption
	Mergeable and Revocable Identity-Based Encryption
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions
	1.3 Paper Organization

	2 Preliminaries
	2.1 Notations
	2.2 Bilinear Map
	2.3 Pseudorandom Function Family
	2.4 Threshold Secret Sharing Scheme
	2.5 Fuzzy Identity-Based Encryption Scheme
	2.6 Identity-Based Encryption with Revocation Scheme

	3 Formal Definitions and Security Models
	3.1 Syntax of Mergeable and Revocable IBE
	3.2 Security of Mergeable and Revocable IBE

	4 The Proposed Schemes
	5 Security Proof
	6 Conclusions
	A Security Proof
	A.1 Analysis

	References

	ID-Based Encryption with Equality Test Against Insider Attack
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Organization

	2 Preliminaries
	2.1 Bilinear Diffie-Hellman Problem (BDHP)

	3 Definitions
	3.1 ID-Based Encryption with Equality Test Against Insider Attack
	3.2 Security Models

	4 The Proposed Scheme
	4.1 ID-Based Encryption with Equality Test Against Insider Attack
	4.2 Correctness

	5 Security Analysis
	5.1 W-IND-ID-CCA Security

	6 Experiments on a Database
	6.1 Setup of Experiments
	6.2 Performance Evaluation
	6.3 Comparison

	7 Conclusions
	References

	Lattice-Based Revocable Identity-Based Encryption with Bounded Decryption Key Exposure Resistance
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Our Approach

	2 Preliminaries
	3 B-DKER RIBE
	4 Construction
	5 Security
	6 Discussion
	References

	Searchable Encryption
	Dynamic Searchable Symmetric Encryption with Physical Deletion and Small Leakage
	1 Introduction
	1.1 Our Main Ideas
	1.2 Our Contributions
	1.3 Organization of the Remainder

	2 Defining Symbols and Data Structures
	3 Defining DSSE and Its Security
	4 Our Basic DSSE Scheme D-I
	5 Our Basic DSSE Scheme D-II
	6 Our Complete DSSE Scheme
	6.1 Provable IND-CKA2 Security

	7 Comparisons and Experiments
	8 Other Related Works
	9 Conclusion
	References

	Multi-user Cloud-Based Secure Keyword Search
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works

	2 Preliminaries
	2.1 Notations
	2.2 Threshold Secret Sharing
	2.3 Pseudorandom Functions (PRFs)
	2.4 OXT

	3 Syntax of Multi-user SSE
	4 Security Definitions of Multi-user SSE
	4.1 Privacy Against Server
	4.2 Query Privacy Against Other Key Share Holders

	5 Randomizable Key Homomorphic Distributed PRFs
	5.1 Definition
	5.2 PRF Evaluation Protocol
	5.3 Concrete Construction of RDPRF

	6 Our Construction
	7 Security Analysis
	8 Performance Comparison
	9 Further Extension
	10 Conclusions
	References

	Fuzzy Keyword Search and Access Control over Ciphertexts in Cloud Computing
	1 Introduction
	2 Preliminaries
	3 Word Pattern
	4 Fuzzy Keyword Search Supporting Access Control
	4.1 System Setup
	4.2 Building Index
	4.3 Trapdoor Generation
	4.4 Theorem and Property for FKS-AC
	4.5 Fuzzy Keyword Search with Access Control

	5 Experiments
	5.1 The Time of Index Generation
	5.2 The Time of Trapdoor Generation
	5.3 The Time of Fuzzy Keyword Search

	6 Security Analysis
	7 Related Work
	References

	Secure and Practical Searchable Encryption: A Position Paper
	1 Introduction
	2 Requirements and Challenges
	3 Literature Review
	4 Possible Solutions and Future Research
	5 Concluding Remarks
	References

	Cryptanalysis
	Fault Attacks on XEX Mode with Application to Certain Authenticated Encryption Modes
	1 Introduction
	2 Preliminaries
	2.1 Basic Notations
	2.2 AES Description
	2.3 The Design of XEX Mode

	3 Eliminating the Masks in XEX Mode
	3.1 Stuck-At-Zero Fault Attack
	3.2 Skipping an Instruction Fault Attack
	3.3 Security Implication for Mask Elimination

	4 A Ciphertext only Attack to Reveal Secret Mask L
	4.1 Fault Model A at Round 9
	4.2 Fault Model A at Round 8
	4.3 Fault Model B at Round 9

	5 Application to Authenticated Encryption Modes
	6 Countermeasures
	7 Conclusion
	References

	How to Handle Rainbow Tables with External Memory
	1 Introduction
	2 Primer on Rainbow Tables
	2.1 Mode of Operation
	2.2 Precomputations
	2.3 Attack

	3 Performance of the Algorithms
	3.1 Terminology and Assumptions
	3.2 Algo DLU
	3.3 Algo STL

	4 Algorithm Constants
	4.1 Experimental Setup
	4.2 Determination of Values for S, L and F

	5 Analysis
	5.1 Comparing Algo STL and Algo DLU
	5.2 Comparison with RAM
	5.3 HDD and SSD
	5.4 Discussion

	6 Experimentation
	6.1 Parameters and Methodology
	6.2 Paging and Caching Mechanisms
	6.3 Reducing the Caching Impact
	6.4 Experimental Results

	7 Conclusion
	References

	Improved Factoring Attacks on Multi-prime RSA with Small Prime Difference
	1 Introduction
	1.1 Background
	1.2 Our Contribution

	2 Preliminaries
	2.1 Lattice Based Method
	2.2 Some Notations

	3 Improved Factoring Attacks
	3.1 The Direct Method
	3.2 The Optimized Method
	3.3 Discussions
	3.4 Experimental Results

	4 Conclusions
	A Algorithms
	A.1 The Direct Method
	A.2 The Optimized Method

	B More Details About the Experimental Results
	References

	Efficient Compilers for After-the-Fact Leakage: From CPA to CCA-2 Secure PKE to AKE
	1 Introduction and Related Works
	1.1 Our Contributions
	1.2 Organization

	2 Preliminaries
	2.1 Notations
	2.2 Leakage-Resilient Storage
	2.3 Complexity Assumption
	2.4 True Simulation Extractable Non-interactive Zero Knowledge Argument System

	3 CPA to CCA-2 Transformation in the Presence of After-the-fact Leakage
	3.1 CCA-2 Security in a Split State Model
	3.2 The Generic Transformation

	4 Compiler for After-the-Fact Leakage-Resilient AKE Protocols
	4.1 The Bounded After-the-Fact Leakage-ECK (BAFL-eCK) Model
	4.2 Generic BAFL-eCK Secure AKE Protocol in Standard Model
	4.3 Security Proof

	5 Conclusion
	References

	Improved Integral Attack on HIGHT
	1 Introduction
	2 Preliminaries
	2.1 Specification of HIGHT
	2.2 Integral Characteristics and Division Property
	2.3 Key Recovery and Bitwise Partial-Sum Technique

	3 New Integral Characteristics on HIGHT
	3.1 Previous 17-Round Integral Characteristics
	3.2 New Integral Characteristics Based on Division Property
	3.3 Extended 19-Round Integral Characteristics

	4 28-Round Attack on HIGHT Without Full Code Book
	4.1 Whitening Key Addition to Integral Characteristics
	4.2 Meet-in-the-Middle Technique
	4.3 Attack Procedure

	5 29-Round Attack on HIGHT with Full Code Book
	6 Conclusions
	A Detailed MILP Model for HIGHT
	B Involved Key Size in Key Recovery
	C Detailed Addition of Whitening Layer
	References

	Cryptanalysis of Simpira v2
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Description of Simpira
	2.3 Even-Mansour Construction

	3 Truncated Differential Attack on Simpira-3
	3.1 Distinguishing Attacks on Simpira-3
	3.2 Key Recovery Attack on 9-Round Simpira-3

	4 Impossible Differential Attack on Simpira-3
	4.1 Key Recovery Attack on 10-Round Simpira-3

	5 Boomerang Attack on Simpira-3
	5.1 Distinguishing Attack on 10- Rounds Simpira-3

	6 Conclusion
	A 9-Round Truncated Differential Distinguishing Attack
	B 9-Round Key Recovery Using Truncated Differential
	C Key Recovery Attack on 9-Round Simpira-3
	D 8-Round Impossible Differential Figure
	E Distinguishing Attack on 9- Rounds Simpira-3
	F 10-Round Key Recovery Attack Using Boomerang
	References

	Statistical Integral Distinguisher with Multi-structure and Its Application on AES
	1 Introduction
	1.1 Our Contributions
	1.2 Ontline of This Paper

	2 Preliminaries
	2.1 Description of AES
	2.2 Brief Description of Known-Key Distinguishers on AES in [12]
	2.3 Statistical Integral Distinguisher

	3 Statistical Integral Distinguisher with Multiple Structures on Input and Integral Properties on Output
	4 Secret-Key Statistical Integral Distinguisher on Reduced 5-Round AES
	5 Improved Known-Key Distinguishers on AES
	5.1 Improved Known-Key Distinguisher on 8-Round AES
	5.2 Improved Known-Key Distinguisher on 10-Round AES

	6 Conclusion
	A Appendix
	A.1 Experiment Results

	References

	Conditional Differential Cryptanalysis for Kreyvium
	1 Introduction
	1.1 Our Contribution
	1.2 Paper Organization

	2 Description of Kreyvium
	3 Conditional Differential Cryptanalysis
	3.1 Overview of Conditional Differential Cryptanalysis
	3.2 Higher-Order Differential Characteristics

	4 Conditional Differential Cryptanalysis of Kreyvium
	4.1 Attack Strategy
	4.2 How to Arrange Differences in Initial State
	4.3 How to Arrange Conditions in Initial State
	4.4 Distinguisher for Kreyvium

	5 Conclusion
	References

	Digital Signatures
	Practical Strongly Invisible and Strongly Accountable Sanitizable Signatures
	1 Introduction
	2 Preliminaries
	3 Stronger Invisible Sanitizable Signatures
	3.1 The Framework for Sanitizable Signature Schemes
	3.2 Security of Sanitizable Signature Schemes
	3.3 Strong Invisibility of SSSs
	3.4 Construction

	4 Evaluation
	5 Conclusion
	References

	Tightly-Secure Signatures from the Decisional Composite Residuosity Assumption
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Notations
	2.2 Groups and Public Parameters
	2.3 Decisional Composite Residuosity (DCR) Assumption
	2.4 Collision-Resistant Hash Function
	2.5 Signatures

	3 One-Time Signatures Against Non-adaptive Adversaries
	4 Tightly Secure Signatures Against Non-adaptive Adversaries
	5 Tightly Secure Signatures Against Adaptive Adversaries
	References

	Author Index

