
A Dynamic Logic Framework
for Abstract Argumentation:

Adding and Removing Arguments

Sylvie Doutre1(B), Faustine Maffre1, and Peter McBurney2

1 IRIT, Université Toulouse 1 Capitole, Toulouse, France
doutre@irit.fr

2 King’s College London, London, UK

Abstract. A dynamic framework, based on the Dynamic Logic of Propositional
Assignments (DL-PA), has recently been proposed for Dung’s abstract argument
system. This framework allows the addition and the removal of attacks, and the
modification of the acceptance status of arguments. We here extend this frame-
work in order to capture the addition and the removal of arguments. We then
apply the framework on an access control case, where an agent engages in an
argued dialogue to access some information controlled by another agent.

1 Introduction

In Dung’s approach to argumentation [7], an argument system is represented as a set
of (abstract) arguments and a binary attack relation between these arguments. Several
semantics—ways to evaluate which arguments should be accepted—have been devel-
oped from this model (see [2]), some of them referred as “extension-based”. These are
semantics which define acceptable sets of arguments, called extensions.

Logical representations of Dung’s approach of argumentation have been presented,
based for instance on propositional logic [3], or more recently on dynamic logic [6]. In
these contributions, the argument system is described by a boolean formula and each
type of semantics is also represented by a boolean formula; for a given semantics, any
interpretation of the propositional variables for which both formulas are true charac-
terizes an extension. In [6], the use of a dynamic logic (DL-PA—Dynamic Logic of
Propositional Assignments [1]) furthermore allows us to model updates of the argu-
ment system, such as addition or removal of an attack, or modification of extensions.
[6] is not the only approach which has tackled the question of the dynamics of argu-
ment systems (see [5,15] for instance), but this one provides a single framework which
encompasses at the same time the argument system, the logical definition of the change
to enforce, and the change operations to perform. Moreover, the logic it is based on
is non-specific to argumentation since it has already been applied in various contexts
[8,12].

Following an idea that was triggered in [6], we extend [6]’s framework to capture
addition and removal of arguments. An extension of Dung’s system is proposed to take
into account, within the set of arguments, those which are currently considered, or,

c© Springer International Publishing AG 2017
S. Benferhat et al. (Eds.): IEA/AIE 2017, Part II, LNAI 10351, pp. 295–305, 2017.
DOI: 10.1007/978-3-319-60045-1 32

296 S. Doutre et al.

say, enabled. The formulas that describe the argument system and the semantics are
modified to take into account this new notion of enabled arguments. We illustrate our
contribution with an example from [14], in which the authors present a protocol for
agents engaging in an argued dialogue to access some information.

The paper is organized as follows. In the next section we introduce the example of
access control dialogue that we will use throughout the paper. In Sect. 3 we show how
to extend the framework of [6] to capture addition and removal of arguments. In Sect. 4
we show how this extension can be used to formalize updates of the argument system
during the dialogue. Section 5 concludes.

2 Our Running Example

In this example taken from [14], an agent, called the client (here, Brussels agent), wants
to access some information. He engages a dialogue with the agent controlling it—the
server (London agent)—in order to convince him to grant authorization to access this
information. The second agent explains the reasons why he cannot give this access by
presenting all the arguments attacking the client’s arguments that he knows.

“Robert is a British businessman visiting Brussels for a meeting. During his visit
he becomes ill and is taken unconscious into hospital. The staff of the hospital suspect
Robert has had a heart attack and seek to prescribe appropriate drugs for his condition.
Unfortunately the safe choice of drugs depends upon various factors, including prior
medical conditions that Robert might have and other drugs he may be taking. The hos-
pital’s agent is given the goal of finding out the required information about Robert, from
the agent representing his London doctor.

In order to gain access to information about Robert, the agent of Brussels Hospital
(B. agent) establishes the following dialogue with the London agent (L. agent):

0. B. agent: I would like to dialog with the agent of Robert’s British doctor; I request
Robert’s health record.

1. L. agent: I cannot provide you Robert’s health record because Robert has only given
his British doctor limited consent to pass on his personal information (argument a1).

2. B. agent: This record could possibly include information that could affect the treat-
ment of Robert’s heart failure. I request it, Robert’s life may be at stake (argument
a2)!

3. L. agent: I cannot divulge this information, because British law prohibits passing on
information without the consent of the provider of the information (argument a3).

4. B. agent: EC law takes precedence over British law when it would be in the interests
of the owner to divulge the information (argument a4). You should allow me to
access the record.

5. L. agent: Only Robert could decide what would be in his interests (argument a5).
6. B. agent: Robert’s doctor owes a duty of care to Robert and, should he die, the

doctor might be sued by his family, or the Brussels hospital, or both (argument a6).
7. L. agent: OK. I provide you the requested record: Robert’s history of diabetes is...”

Some arguments are directly in favor of giving the permission to access the infor-
mation (a2 and a6), some are directly against this permission (a1 and a3), while others

A Dynamic Logic Framework for Abstract Argumentation 297

are not directly linked to the permission (a4 and a5) but contradict other arguments.
The dialogue ends after London agent has implicitly considered acceptable Brussels’
final argument (a6), which supports the permission to give the requested information to
Brussels. No such argument was acceptable for London agent earlier in the dialogue.

In this paper, we focus on capturing the evolution of the acceptability of arguments
for London agent, after each addition of argument. This can be seen as an a posteriori
analysis of the dialogue, that allows us to understand the reasons why the permission to
access the information was first refused, and then given.

3 Representing Argument Systems

We extend here the definition of an argument system, and of its logical formalization
[6]. We present DL-PA logic and how to compute extensions with DL-PA programs.

3.1 Logical Representation of an Argument System

Argument System. In order to capture addition and removal of arguments, we add a
component to Dung’s argument system [7]: the set of currently considered (“enabled”)
arguments, among all the arguments of the system. These arguments are those which
are known, at some step, in the context of a dialogue.

Definition 1. An argument system for enablement is a tuple F = (A,AEn,R) where
A is a finite set of abstract arguments; AEn ⊆ A is the set of enabled arguments, and
R ⊆ A ×A is the attack relation: (a, b) ∈ R means that a attacks b.

A contains all possible arguments that may arise during the dialogue, while AEn con-
stitutes the set of arguments that have been uttered until now.

An argument system for enablement is represented by a directed graph whose nodes
are enabled arguments and edges are attacks between enabled arguments: there is an
edge between a and b if (a, b) ∈ R, a ∈ AEn and b ∈ AEn. Hence the representation
contains less information than the original model. Note that as soon as an argument is
enabled, all its attacks from (resp. to) other arguments are considered. WhenAEn = A,
the argument system for enablement comes down to Dung’s argument system.

Example 1. In our running example, six arguments were presented during the dia-
logue: A = {a1, a2, a3, a4, a5, a6}. Let us write Fi = (A,AEn

i ,R) the argument
system at step i (steps are numbered as in Sect. 2, from 0 to 6). The attack rela-
tion, from the point of view of London agent, and according to [14], is R =

{(a1, a2), (a3, a2), (a4, a3), (a5, a4), (a6, a1), (a6, a3)}.
At step 0, no argument is considered:AEn

0 = ∅. Then, a1 is uttered:AEn
1 = {a1}. This

argument is not attacked nor attacks any enabled argument; the graph that represents the
argument system thus is:

a1

298 S. Doutre et al.

Then a2 is presented (AEn
2 = {a1, a2}) and the graph becomes:

a1
� a2

The dialogue goes on until all arguments are presented:

a1
� a2

� a3
� a4

� a5

a6
��� ���

The set of enabled argumentsAEn
6 is then equal toA.

In order to logically represent an argument system for enablement F, we extend the
language of [6]. As in [6], a set of attack variables is used to represent attacks:

ATTA = {Atta,b : (a, b) ∈ A ×A}.
Atta,b means that a attacks b. We consider in addition a set of enablement variables:

ENA = {Ena : a ∈ A},
where Ena means that a is enabled (or “considered”).

Let LAtt,En be the set of all formulas that are built variables from ATTA ∪ ENA. The
theory describing the framework F = (A,AEn,R) is the following boolean formula:

ThF =
(∧

(a,b)∈R
Atta,b

)
∧
(∧

(a,b)�R

¬Atta,b
)
∧
(∧
a∈AEn

Ena
)
∧
(∧
a�AEn

¬Ena
)

Note that in the theory, Atta,b is true even if a or b are not enabled. This is required to
not loose any information, and will be important for updates (see Sect. 4).

Example 2. We have 6 arguments in our running example. This means that ATTA con-
tains 36 variables and ENA contains 6 variables. Therefore, whatever the step i of the
dialogue, ThFi is a conjunction of 42 literals. For simplification, we do not write explic-
itly every attack literal Atta,b and ¬Atta,b (Atta1,a2 , Atta3,a2 , and ¬Atta1,a3 . . .) but we keep
the expression

(∧
(a,b)∈R Atta,b

)∧(∧(a,b)�R ¬Atta,b). Note that, since in our case the attack
relation R is constant, this expression remains constant.

As examples, the theory at step 0 is:

ThF0 =

(∧
(a,b)∈R

Atta,b
)
∧
(∧

(a,b)�R

¬Atta,b
)
∧¬Ena1∧¬Ena2∧¬Ena3∧¬Ena4∧¬Ena5∧¬Ena6

and the theory at step 3 is:

ThF3 =

(∧
(a,b)∈R

Atta,b
)
∧
(∧

(a,b)�R

¬Atta,b
)
∧ Ena1 ∧ Ena2 ∧ Ena3 ∧¬Ena4 ∧¬Ena5 ∧¬Ena6

A Dynamic Logic Framework for Abstract Argumentation 299

Argumentation Semantics. Given an argument system, an acceptability semantics
identifies a set of extensions, i.e., acceptable sets of arguments. There may be none, one
or several extensions. As in [6], we characterize extensions thanks to a set of accept-
ability variables:

INA = {Ina : a ∈ A}
where Ina stands for “argument a is in the extension”.

Without the notion of enabled arguments (that is, when all arguments are always
considered), it has already been shown how to encode the stable, admissible and com-
plete semantics with propositional formulas [6]. These definitions can be adapted to
consider enabled arguments only. In this case, extensions are subsets of AEn and only
attacks between arguments from AEn are considered. In the corresponding formu-
las, we only include an argument if it is enabled. Also, attacks must be considered
only if they link enabled arguments. To this end, we define the following formula:
AttEna,b = Atta,b ∧ Ena ∧ Enb. Now we can easily transform formulas from [6]: we check
if the argument is enabled, otherwise it will not be included in the extension, and we
replace attacks variables Atta,b by formulas AttEna,b to ensure they are indeed present.
We illustrate this transformation to capture the stable semantics. Let LAtt, ,En,In be the
language of formulas built from P = ATTA ∪ ENA ∪ INA.

Definition 2. LetF = (A,AEn,R) be an argument system for enablement. Let S ⊆ AEn

be a set of enabled arguments. S is conflict-free if ∀a, b ∈ S , (a, b) � R. S is a stable
extension if S is conflict-free and ∀b ∈ AEn\S , ∃a ∈ S such that (a, b) ∈ R (any
considered argument outside the extension is attacked by at least one in the extension).

Note that we do not need to restrict R to the set of considered arguments as a and b
both belong to S which is a subset ofAEn.

The following formula captures the stable semantics1:

StableA =
∧
a∈A

((
Ena → (Ina ↔ ¬

∨
b∈A

(Inb ∧ AttEnb,a)
)) ∧
(
¬Ena → ¬Ina

))

Extensions and Valuations. A valuation is a subset of the set of variables P =

ATTA ∪ ENA ∪ INA: the variables that are currently true. The set of all valuations is
2P. Valuations are denoted by v, v′, v1, v2, etc. A given valuation determines the truth
value of the boolean formulas of the language LAtt, ,En,In in the usual way. For a formula
ϕ, a valuation where ϕ is true is called a model of ϕ and the set of models of ϕ is denoted
by ||ϕ||. A formula is propositionally valid if it is true in all valuations, i.e., if ||ϕ|| = 2P.
The following results are adapted from [6].

Proposition 1. Let F = (A,AEn,R) be an argument system for enablement. Let E ⊆
AEn. Consider vE = {Atta,b : (a, b) ∈ R} ∪ {Ena : a ∈ AEn} ∪ {Ina : a ∈ E}. E is a
stable extension of F if and only if vE is a model of ThF ∧ StableA.

1 An equivalent way to express these formulas would be to use the set of enabled arguments.
For example, to describe the stable extensions, we would write: StableA,AEn =

∧
a∈AEn

(
Ina ↔

¬∨b∈AEn (Inb ∧ Attb,a)
) ∧ ∧a�AEn ¬Ina. This highlights the fact that when all arguments are

enabled, i.e., whenAEn = A, we indeed retrieve formulas presented in [6].

300 S. Doutre et al.

Example 3. Let us consider F3 = (A,AEn
3 ,R) with A and R as in Example 1 and

AEn
3 = {a1, a2, a3}.

a1
� a2

� a3

Let vTh = {Atta,b : (a, b) ∈ R} ∪ {Ena1 ,Ena2 ,Ena3 }. Note that the theory ThF3 (see
Example 2) is true in vTh . F3 has only one stable extension: {a1, a3}. Hence v{a1,a3} =
vTh ∪ {Ina1 , Ina3 } is a model of ThF3 ∧ StableA.

3.2 DL-PA: Dynamic Logic of Propositional Assignments

Dynamic Logic of Propositional Assignments DL-PA [1,10] is a variant of Propositional
Dynamic Logic PDL [9], with operators for sequential and nondeterministic composi-
tion of programs, test and iteration (the Kleene star), but where atomic programs are
assignments of truth values to propositional variables. Modal operators associated to
programs can express that some property holds after the modification of the current val-
uation by the program. In our case, they will allow us to update the theory associated to
the argument system as the dialogue progresses.

We will see that the results from [6] are still applicable in our framework. Hence we
also consider the star-free version of DL-PA [10] with the converse operator.

Language. The language DL-PA is defined by the following grammar:

π � p←� | p←⊥ | ϕ? | π; π | π ∪ π | π−
ϕ� p | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ

where p ranges over P.
The formula 〈π〉ϕ reads “after some execution of the program π formula ϕ holds”.

The formula [π]ϕ, abbreviating ¬〈π〉¬ϕ, reads “after every execution of the program π
formula ϕ holds”. The atomic programs p←� and p←⊥ respectively make p true and
make p false. The operators of sequential composition (“;”), nondeterministic composi-
tion (“∪”) and test (“(.)?”) are from PDL. The operator “(.)−” is the converse operator:
the formula 〈π−〉ϕ reads “before some execution of the program π formula ϕ was true”.
Other boolean operators are abbreviated as usual. Like in PDL, skip abbreviates �?
(“nothing happens”).

Semantics and Validity. Models of DL-PA formulas are subsets of the set of proposi-
tional variables P, i.e., valuations. DL-PA programs are interpreted by means of a rela-
tion between valuations. Atomic programs p←� and p←⊥ are interpreted as update
operations on valuations, and complex programs are interpreted just as in PDL by
mutual recursion. Table 1 gives the interpretation of the DL-PA connectives.

Two formulas ϕ1 and ϕ2 are formula equivalent if ||ϕ1|| = ||ϕ2||. Two programs
π1 and π2 are program equivalent if ||π1|| = ||π2||. In that case we write π1 ≡ π2. An
expression is a formula or a program; equivalence is preserved under replacement of a
sub-expression by an equivalent expression [1]. A formula ϕ is DL-PA valid if it is true
in all valuations, i.e., if ||ϕ|| = 2P.

A Dynamic Logic Framework for Abstract Argumentation 301

Table 1. Interpretation of the DL-PA connectives

3.3 Constructing Extensions with DL-PA

As in [6], we can build extensions of an argument system by means of DL-PA programs.
We recall the program vary(P), from [6], with P = {p1, . . . , pn} a set of variables:

vary(P) = (p1←�∪ p1←⊥); . . . ; (pn←�∪ pn←⊥)

vary(P) is a sequence of subprograms, each step i of the sequence nondeterminiscally
setting the value of pi to true or to false. (Note that the ordering of the pi does not
matter.) Executing vary(P) from a valuation v will lead to any valuation where variables
from P\P have the same value than in v, while variables from P can have any value.

Given an argument system F, the idea of [6] is to start from a valuation where
the theory ThF is verified, and vary accessibility variables Ina; this leads to several
valuations, some corresponding to an extension. To “filter” these valuations to keep
stable extensions only, we test the formula capturing the semantics (see Sect. 3.1). More
formally, we use the following program to build stable extensions:

makeExtStableA = vary(INA);StableA?

Example 4. In Example 3, we have seen that v{a1,a3} = vTh ∪{Ina1 , Ina3 } is the only stable
extension. ThF3 is true in this valuation thanks to vTh , and the values of the accessibil-
ity variables describe the extension. Executing makeExtStableA from, e.g., vTh , will lead
exactly to v{a1,a3}; StableA is not true for any other valuation linked by vary(INA).

The following results are adapted from [6].

Lemma 1. Let F be an argument system for enablement. Let v1 be a model of ThF.
Then (v1, v2) ∈ ||makeExtStableA || if and only if v2 is a model of ThF ∧ StableA.

The main result about the construction of extensions with DL-PA is as follows.

Proposition 2. Let F = (A,AEn,R) be an argument system for enablement. The fol-
lowing equivalence is DL-PA valid:

ThF ∧ StableA ↔ 〈(makeExtStableA)−〉ThF
Remember that 〈π−〉ϕ means “before some execution of the program π formula ϕ

was true”. This indeed corresponds to the update of ThF by makeExtStableA .

302 S. Doutre et al.

4 Updating the Argument System Throughout the Dialogue

With the extended framework, we are now able to model changes that may happen in
a dialogue, that is, addition, and possibly, removal of arguments. We update the theory
corresponding to an argument system to this end:

ThF � Ena = 〈(Ena←�)−〉ThF
ThF � ¬Ena = 〈(Ena←⊥)−〉ThF

where ThF � Ena refers to updating the system to add (enable) argument a and ThF �
¬Ena to updating the system to remove (disable) argument a. Since attacks are already
in the theory even if arguments are not considered, we do not need to include them in
our update: all the attacks from (resp. to) a to (resp. from) other enabled arguments,
are considered. The framework, being an extension of [6], however allows us to remove
some of these attacks, or add extra ones, if necessary.

Example 5. In our running example, at step 0, AEn
0 = ∅, and ThF0 is as described in

Example 2. At step 1, argument a1 is enabled. The theory is thus updated as follows:

ThF0 � Ena1 = 〈(Ena1←�)−〉ThF0

Using properties of DL-PA, we explain in details this update. First, it is shown in [6]
that (p←�)− is equivalent to p?∪ (p?; p←⊥) (p is now true and was either already true
or was false). Hence:

ThF0 � Ena1 ≡ 〈Ena1 ? ∪ (Ena1 ?;Ena1←⊥)〉ThF0

DL-PA shares most properties about program operators with PDL [1], such as:

〈π ∪ π′〉ϕ↔ 〈π〉ϕ ∨ 〈π′〉ϕ 〈π; π′〉ϕ↔ 〈π〉〈π′〉ϕ 〈χ?〉ϕ↔ χ ∧ ϕ
Using these, we can transform our updated theory:

ThF0 � Ena1 ≡ (Ena1 ∧ ThF0) ∨ (Ena1 ∧ 〈Ena1←⊥〉ThF0)

The first part of the disjunction is equivalent to ⊥ since ThF0 is a conjunction of literals
and one is ¬Ena1 . For the second part, we consider two properties of DL-PA [1]:

〈p←�〉(ϕ ∧ ϕ′)↔ 〈p←�〉ϕ ∧ 〈p←�〉ϕ′ 〈p←�〉¬ϕ↔ ¬〈p←�〉ϕ
With these equivalences, we know that in 〈Ena1←⊥〉ThF0 , the operator 〈Ena1←⊥〉 can
distribute over the conjunction and be placed before every literal of ThF0 , and that for
negative literals, 〈Ena1←⊥〉 can be “pushed” against the variable. We obtain:

ThF0 � Ena1 ≡ Ena1 ∧
(∧

(a,b)∈R
〈Ena1←⊥〉Atta,b

)
∧
(∧

(a,b)�R

¬〈Ena1←⊥〉Atta,b
)

∧ ¬〈Ena1←⊥〉Ena1 ∧ ¬〈Ena1←⊥〉Ena2 ∧ ¬〈Ena1←⊥〉Ena3

∧ ¬〈Ena1←⊥〉Ena4 ∧ ¬〈Ena1←⊥〉Ena5 ∧ ¬〈Ena1←⊥〉Ena6

A Dynamic Logic Framework for Abstract Argumentation 303

We finally use a last DL-PA property [1]:

〈p←⊥〉q↔
⎧⎪⎪⎨⎪⎪⎩
⊥ if p = q

q otherwise

Most of the conjuncts fall in the second category and thus are not affected by the pro-
gram, except ¬〈Ena1←⊥〉Ena1 which is equivalent to ¬⊥, that is, to �, and thus will
disappear from the conjunction. We end with:

ThF0 � Ena1 ≡Ena1 ∧
(∧

(a,b)∈R
Atta,b

)
∧
(∧

(a,b)�R

¬Atta,b
)

∧ ¬Ena2 ∧ ¬Ena3 ∧ ¬Ena4 ∧ ¬Ena5 ∧ ¬Ena6

which is the theory ThF1 , i.e., forAEn
1 = {a1}.

Example 6. We can finally fully run through our main example. A and R remain con-
stant and are as described in Example 1. We are going to run the example from step 0
to step 6, hence showing the addition/enablement of arguments step after step. Notice
that it may be run the other way round, from step 6 to step 0; the removal/disablement
of arguments would then be illustrated.

At step 0,AEn
0 = ∅, and ThF0 is as in Example 2. The execution of

〈(makeExtStableA)−〉ThF0

allows one to get the only stable extension of F0: ∅.
When a1 is uttered, the set of enabled arguments becomes AEn

1 = {a1}. As we have
seen in Example 5:

ThF1 = 〈(Ena1←�)−〉ThF0

Executing makeExtStableA from any valuation satisfying ThF1 will lead to one valuation,
where Ina1 is true and every Inai for i ∈ {2, . . . , 6} is false; this means we obtain one
stable extension: {a1}.

We summarize the results at each step of the dialogue in Table 2. Numbers in the first
column are steps. In the second column, we write, first, the DL-PA formula describing
the updated theory, and second, the DL-PA formula true in valuations corresponding to
(stable) extensions. Then in the third column we give the current graph representing the
argument system, and the set of extensions.

After the server (London agent) has presented all his arguments, we end up with one
extension: {a2, a5, a6}. In this setting, he accepts to provide the information as argument
a6, which directly supports the permission, belongs to at least one extension (following
the principle of trustfulness of [14]).

5 Conclusion

This paper presents an extension of the formal framework of [6], which allows us to
update the argument system by adding or removing an argument. We achieve this by

304 S. Doutre et al.

Table 2. Evolution of the argument system and of the set of extensions during the dialogue

including a set of currently enabled arguments to the argument system and a new set of
propositional variables reflecting this set in the logical representation. With new appro-
priate formulas for the argument system and semantics, the formalization of [6] is gen-
eral enough to transpose well to this extension. Our new framework allows us to easily
model the evolution of the argument graph during dialogue, as shown with the exam-
ple of [14]. It is interesting to note that while we focused on the stable semantics, any
semantics that can be described by a logical formula can be encoded in our framework.

Implemented theorem proving methods for DL-PA have not yet been developed,
DL-PA being quite recent, but a paper such as the present on applications motivates
implementation work.

The evolution of the argument system and the set of extensions during the dialogue,
as illustrated in Table 2, is similar to the key idea of Discourse Representation Theory
(DRT) [11] in linguistics. This idea is that the semantics of a dialogue may be con-
structed by the participants, jointly and incrementally as the dialogue proceeds. Other
work in multi-agent systems has also drawn on these ideas, for example, [4,13].

The dialogue analysis has been made from the point of view of one agent in this
paper, and a posteriori. A perspective is to extend it to several agents, and to capture
some ongoing strategy each one of them may have to fulfill own goals. In this case,
agents may or may not agree on the set of arguments and on the set of attacks. For
every of his arguments, an agent could compute the set of extensions for the current
graph plus this argument, and thereby identify the argument that brings him closer to
his personal goal. This is similar to the update of extensions in [6] but with a different
approach (modifying arguments rather than attacks). We leave this to future work.

A Dynamic Logic Framework for Abstract Argumentation 305

Acknowledgements. This work benefited from the support of the AMANDE project (ANR-13-
BS02-0004) of the French National Research Agency (ANR).

References

1. Balbiani, P., Herzig, A., Troquard, N.: Dynamic logic of propositional assignments: a well-
behaved variant of PDL. In: Logic in Computer Science (LICS). IEEE (2013)

2. Baroni, P., Giacomin, M.: Semantics of abstract argument systems. In: Simari, G., Rahwan,
I. (eds.) Argumentation in Artificial Intelligence, pp. 25–44. Springer, US (2009)

3. Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: 10th Interna-
tional Workshop on Non-Monotonic Reasoning (NMR 2004), pp. 59–64 (2004)

4. Bratu, M., Andreoli, J.-M., Boissier, O., Castellani, S.: A software infrastructure for nego-
tiation within inter-organisational alliances. In: Padget, J., Shehory, O., Parkes, D., Sadeh,
N., Walsh, W.E. (eds.) AMEC 2002. LNCS, vol. 2531, pp. 161–179. Springer, Heidelberg
(2002). doi:10.1007/3-540-36378-5 10

5. Coste-Marquis, S., Konieczny, S., Mailly, J.G., Marquis, P.: On the revision of argumentation
systems: minimal change of arguments statuses. KR 14, 52–61 (2014)

6. Doutre, S., Herzig, A., Perrussel, L.: A dynamic logic framework for abstract argumentation.
In: KR 2014, pp. 62–71. AAAI Press (2014)

7. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

8. Gaudou, B., Herzig, A., Lorini, E., Sibertin-Blanc, C.: How to do social simulation in
logic: modelling the segregation game in a dynamic logic of assignments. In: Villatoro, D.,
Sabater-Mir, J., Sichman, J.S. (eds.) MABS 2011. LNCS, vol. 7124, pp. 59–73. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-28400-7 5

9. Harel, D.: Dynamic logic. In: Gabbay, D.M., Günthner, F. (eds.) Handbook of Philosophical
Logic, vol. II, pp. 497–604. D. Reidel, Dordrecht (1984)

10. Herzig, A., Lorini, E., Moisan, F., Troquard, N.: A dynamic logic of normative systems. In:
IJCAI 2011, pp. 228–233 (2011). www.irit.fr/∼Andreas.Herzig/P/Ijcai11.html

11. Kamp, H., Reyle, U.: From Discourse to Logic: Introduction to Modeltheoretic Semantics of
Natural Language, Formal Logic and Discourse Representation Theory, Studies in Linguis-
tics and Philosophy, vol. 42. Kluwer Academic, Dordrecht, The Netherlands (1993)

12. Maffre, F.: Ignorance is bliss: observability-based dynamic epistemic logics and their appli-
cations. Ph.D. thesis, University of Toulouse (2016)

13. McBurney, P., Parsons, S.: Posit spaces: a performative theory of e-commerce. In: AAMAS
2003, pp. 624–631. ACM Press (2003)

14. Perrussel, L., Doutre, S., Thévenin, J.-M., McBurney, P.: A persuasion dialog for gaining
access to information. In: Rahwan, I., Parsons, S., Reed, C. (eds.) ArgMAS 2007. LNCS,
vol. 4946, pp. 63–79. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78915-4 5

15. de Saint-Cyr, F.D., Bisquert, P., Cayrol, C., Lagasquie-Schiex, M.C.: Argumentation update
in YALLA (yet another logic language for argumentation). Int. J. Approximate Reasoning
75, 57–92 (2016)

http://dx.doi.org/10.1007/3-540-36378-5_10
http://dx.doi.org/10.1007/978-3-642-28400-7_5
www.irit.fr/~Andreas.Herzig/P/Ijcai11.html
http://dx.doi.org/10.1007/978-3-540-78915-4_5

	A Dynamic Logic Framework for Abstract Argumentation: Adding and Removing Arguments
	1 Introduction
	2 Our Running Example
	3 Representing Argument Systems
	3.1 Logical Representation of an Argument System
	3.2 DL-PA: Dynamic Logic of Propositional Assignments
	3.3 Constructing Extensions with DL-PA

	4 Updating the Argument System Throughout the Dialogue
	5 Conclusion
	References

