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Abstract. Detecting anomalies in the flow of system logs of a high
performance computing (HPC) facility is a challenging task. Although
previous research has been conducted to identify nominal and abnormal
phases; practical ways to provide system administrators with a reduced
set of the most useful messages to identify abnormal behaviour remains a
challenge. In this paper we describe an extensive study of logs classifica-
tion and anomaly detection using K-means on real HPC unlabelled data
extracted from the Curie supercomputer. This method involves (1) classi-
fying logs by format, which is a valuable information for admin, then (2)
build normal and abnormal classes for anomaly detection. Our methodol-
ogy shows good performances for clustering and detecting abnormal logs.

Keywords: Anomaly detection · HPC · Log processing · K-means

1 Introduction

With the rise of artificial intelligence and intensive simulation in science and
engineering, more and more researchers rely on the massive computing power
of High Performance Computing (HPC) clusters. Large HPC facilities consist of
heterogeneous distributed subsystems, which interact in non-trivial ways. Acci-
dental conditions, hardware or software failures, and sustained heavy load can
cause a component in the system to malfunction. Due to the very large num-
ber of components within a supercomputer results in significant number of fault
occurrences. The fact that HPC systems are designed to maximise performances
rather than reliability further increases the risk.

The top-level architectural units, such as storage or compute, are often imple-
mented as interleaved layers of software and hardware that interact together and
with numerous services running aside. A single computing cluster operated by
CEA at TGCC [1], comprises several thousand compute nodes, which run com-
plex scientific applications and libraries. A job scheduler is in charge of allocating
resources and running the tasks as quickly as possible. The nodes communicate
together over a high bandwidth/low latency InfiniBand network. External stor-
age servers, connected to the fabric, expose distributed file systems to all clusters
of the computing center. The component hierarchy is very deep and the intercon-
nections and dependencies very complex. These subsystems record their activity
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using unstructured text lines that constitute a prime source of information for
system administrators.

Classical monitoring solutions periodically check whether services are
responding1 [2]. This is indeed essential order to ensure a certain quality of
service. The current technology implemented in the HPC system allows for sam-
pling2 of performance counters at high frequency [3,4], which supplies the user
with highly granular insight into the performance of each node in the system.
Both approaches lack the ability to provide system administrators with enough
information to understand the nature of the issue they are investigating, only
that there is an issue occurring. This information is made available through more
detail in the console logs.

Robust tools exist to aggregate and centralise the many log streams of a
massively distributed computing infrastructure [5]. Nevertheless, the resulting
composite signal is difficult to exploit efficiently because of its high throughput,
its unstructured format, and its level of noise and information redundancy. In
addition, single messages are incomplete in that they do not contain enough
information to fully trace a failure back to the root cause. A task as com-
mon as identifying faulty components that generate abnormal behaviour can
be extremely time-consuming and has to be done by domain experts. Automatic
anomaly detection can be directly coupled with resource management systems
to mark faulty components and prevent them from being used in production
until the problem is solved.

Nowadays, the need for anomaly detection covers almost every domain in
engineering. All these domains converge towards a common definition that the
anomaly is a deviation from a normal behaviour, which most of the data form.
This definition is extensively explored by Agroual [8] and many other authors
[9,10]. In this context, we refer to abnormal log lines that contain a description
and the source of a failure.

As of today, the common approach of analysing logs first consists in writing
and maintaining regular expressions to match known patterns [6]. This does not
scale well and requires a significant amount of human work and experience. The
main drawback of this approach is that it will systematically lead to a situation
where the common messages are properly parsed and the unexpected ones cannot
be matched against a regular expression despite being highly valuable.

As noted by Ning et al. [7] console logs have a reduced vocabulary, highly
skewed word count distribution, and weak syntax. This makes most natural
language processing approaches unsuitable for solving the problem. The choice
was therefore made to look for anomalies based on the geometrical structure of
the messages rather than try to summarise them.

Adding anomaly detection to the system monitoring process leads to health-
ier and better functioning systems. By applying text mining techniques and
unsupervised learning to actual system logs from petascale HPC clusters, we
have developed an approach to filter the messages and provide the system

1 http://shinken-monitoring.org.
2 https://graphiteapp.org.
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administrators with a selection of the most useful entries to identify and under-
stand anomalies and failures.

2 Problem Statement Within HPC

An HPC environment has domain-specific constraints and characteristics with
high component count and complexity. These subsystems change very quickly in
order to stay cutting-edge, which leads to frequent firmware and OS upgrades.
Therefore, administration and monitoring techniques must be scalable with
regard to the number of nodes as well as not be a large impact on perfor-
mance. Current research is oriented toward the reach of exascale. It is expected
that future Exascale machines will contain many more base components rather
than larger and faster components. This will lead to more failures to investigate
within a larger log stream, thus the critical need for efficient automation.

The techniques used to reliably propagate console messages from the nodes
that generate them to a log processing cluster is out of the scope of this article.
This work explores means to process the logs and present them in a useful way to
the system administrators. In particular, identify outliers among the aggregated
stream of messages.

We focused on unstructured text messages, so any attempt to apply machine
learning techniques on the problem had to come with a matrix representation of
the log corpus. The chosen technique had to be efficient, in terms of CPU and
memory footprint, so as to be applicable for the very large volume of logs that
a HPC cluster can generate.

As scalability of mining algorithms are a large factor in this systems automa-
tion, the genomic sequence mining algorithms described in [11] are not applica-
ble due to the scalability limitations. Linking resource usage to console log
[12,13] returned interesting results, but failed at identifying problems that are
not described by both datasets.

Definitions

A log message , or record, consists of one or multiple lines of text attached
to a timestamp. A record describes an event that occurred on a component
of the system at that time. Messages of a component are emitted and recorded
sequentially. The sequence of log messages is referred to as system log or log data.

A record can be divided into fields, which in turn fall into two categories.
The well-known ones (such as date, time, hostname, process name, etc.) usually
prefix the messages and format-free information follows. The latter contains the
most relevant information but is by far the hardest to process. Only a small
minority of applications publish their log format and specifications.

We call anomalies the log records that describe abnormal situations. They
are distant from the records that are emitted during nominal operations. The
definition of abnormality depends on some terms/tags in the log line (Fatal,
Error, Err, etc.), and many other patterns validated by experts.
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Log format varies significantly, an example of these logs is described in the
following figure:

2015-11-xx 15:21:09,568 ERROR tuned.utils.commands:
Executing hdparm error: [Errno 2] No such file or directory

Dec 6 03:56:37 [158XXX] node1789.c-curie.hpc.cea.fr
pengine: error: unpack_resources: Resource start-up
disabled since no STONITH resources have been defined

141912041 2016 Dec 7 03:35:01 x kern warning kernel
Lustre: DEBUG MARKER: Sun Dec 7 03:35:01

Fig. 1. Heterogeneous log format sample

3 Unsupervised Log Clustering and Anomaly Detection

A lot of methods and tools exist in machine learning to analyse and to detect
anomalies in data centers, some of them mentioned previously. The simplest
rely on regular expressions, while others empower more advanced methods like
Natural language processing (NLP) or machine learning [8].

Log data files Data trans-
formation

log clustering Anomaly
detection

Fig. 2. Different phases before achieving detection

Within an unsupervised environment, where no prior information is avail-
able, the detection process of anomalies is complex and challenging. As in every
domain, many elements within the data center can lead to an anomaly. Fur-
thermore, the amount of data generated daily is huge. The detection process is
defined in Fig. 2.

Our first dataset contains more than 300 log lines of heterogeneous logs,
extracted from different templates. Three of these logs are presented in Fig. 1.
The entire dataset contains about 15 different log formats. One of these formats
constitutes our second dataset, that will be used to demonstrate the concept of
the anomaly detection and log clustering. This dataset contains more than 32
million entries used to test the clustering efficiency and scalability, and 1 million
log lines used for anomaly detection.

The transformation of the data is an important phase that has a large impact
on the quality of clustering. Our goal is to cluster the logs by format and message
type using respectively the first and the second datasets. If we consider the
log-files analysis process as a classic text mining problem, where we can for
example cluster the data by the subject of interest, or extract useful information
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such as correlated words. Hence, since we assume no prior knowledge of the
type of logs to keep consistent with the heterogeneity and rapid changes of the
system. The log data are transformed into a frequency matrix that can be easily
consumed by machine learning methods. To do so, we keep only the type of logs
(error, info, debugging, notices, etc.), and the log description (cleaned up). The
cleanup of the message consisted in forcing lowercase, removing punctuation
signs, and stemming process. For log messages that contained a file path, we
concatenated the path into one word to optimise our representation and to avoid
sparse representation by producing too many terms.

The documents term (log-term) matrix, which contains the frequency of
terms regarding all the logs, is our first input from the pre-processing phase.
The term frequency and inverse document frequency (tfidf) [14] is a widely used
matrix in text mining that evaluates how important a term is to a document
within a collection of documents. This is defined as:

tdidf(d, t) = tf(d, t)∗log( |D|
df(t) ), where tf(t) is the number of occurrences of term

t in a document divided by the total number of terms in the documents.
An example of this transformation is illustrated in Fig. 3:

Original log:
148228XXX 2016 Dec 21 03:35:01 node3435 cron info CROND (root) CMD
(/usr/bin/test -e /dev/lnet && /usr/sbin/lctl mark >/dev/null 2>&1) 2

Transformed log:
info crond root cmd usr-bin-test dev-lnet usr-sbin-lctl mark dev-null

Fig. 3. Log transformation

The K-means family methods are used extensively in text mining [9] and
outlier and anomaly detection [8]. A performance discussion of K-means cluster-
ing in comparison to other approaches such as hierarchical (hclust) and density
(dbscan) clustering is done in the next section.

3.1 Log-Files Clustering Using K-means

Our process is illustrated by Fig. 4 where the main input can contain logs with
millions of formats. Then for each format group, we apply another clustering to
build normal and abnormal classes.

The K-means [15] is an unsupervised algorithm which aims to group the data
into K clusters, where K needs to be user defined. The K-means setup can be
resumed into major setup: assignment setup and update setup. The knowledge
of K is not an obstacle in this study, unlike in many unsupervised problems since
we are dealing with known template that generates the logs. So, the number of
K can be estimated easily.

Otherwise, an estimation of K is conceivable in the case where new templates
are setup or new logs appear. For such estimation, several statistic criteria exist
like Akaike Information Criterion [16] or Bayesian Information criterion [17].
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1419129601 2014 Dec 21 03:40:01 bcluster3435 kern warning kernel 
15:37:29,262 INFO anaconda: /sbin/anaconda 19.31.79-1
[Wed Aug 26 15:12:25 2015] (pid=18949) [notice] flushing caches
Mon Dec  7 12:09:04 2015 - INFO | received on stdout

LOG type 1 LOG type 2 LOG type x

Clustering 

Clustering Clustering Clustering 

Normal\abnorm
al classes

Normal\abnorm
al classes x

Normal\abnorm
al classes x

Anomaly 
detection

Fig. 4. Log clustering stages and anomaly detection

The classic K-means similarity measure is, in general, the Euclidean distance
which is defined as:

De = (
n∑

t=1

|wt,a − wt,b|2)1/2

Where T = t1, ...tm is the term set and wt,a is the term weights computed using
(tdidf).

Generally, the document term matrices are known to be highly dimensional.
A situation where standard k-means is less powerful than other techniques.

Consequently, we tried during the prepossessing phase to simplify our doc-
ument term matrix, to get less terms by deleting the least significant ones and
merge paths in one word, etc. Also the standard distance definition of k-means
based on centroids was replaced by the cosine similarity measure which is more
efficient for document term clustering than Euclidian distance [19].

It can be considered as the correlation between two term vectors, with certain
independence of document length. So, with two documents t1, t2 forming the
term-set T = t1, ..., tn, the cosine is denoted by:

Dc =
−→
t1 .

−→
t2

|t1||t2|
In simple manner, when two documents are identical the distance is equal

to 1, and if they are very different the distance equals 0. After computing the
similarity measures, each data point is assigned to the cluster with the highest
cosine similarity measure (the classic k-means steps).

The usage of kmeans for anomaly detection was inspired by many studies
[8,9,18] that use the same method for anomaly detection. Before discussing the
clustering results, we will explain in the next section the anomaly detection
process using K-means.
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4 Anomaly Detection and Log Classification
Using K-Means

In many anomaly detection problems, the unsupervised part is used for labelling
data, then semi-supervised or supervised method like OSVM [9] are used for
detection and classification. However, we propose in this part of the work to use
K-means centroids and Euclidean distance to classify the new logs as abnormal
or not.

In [18] the authors propose to build normal and abnormal classes using K-
means. A data point with a distance closer to the normal centroid and under
a threshold is labelled as normal. Otherwise the data point is abnormal. This
process of detection is adapted to our problematic and used on 1 million of log
lines to detect anomalies.

4.1 Results Discussion

First in this section, we will compare the clustering results of different data set.
The number of k is known for the three datasets (k = 15 for the 300 logs dataset,
and k = 5 or 6 for the other datasets).

Heterogeneous Classification

Clustering the heterogeneous logs is the first relevant information that we can
provide to the admin. Technically, because every log is provided from a spe-
cific template or system, grouping these logs allows us to link specific anomaly
detection to a specific log source, i.e. hardware fault or software application. In
addition to K-means, we have also tested dbscan, which is used for clustering
logs [7] as well as noise and outlier detection, and hclust with an implementation
package of hierarchical clustering in R.

To evaluate the detection and quality of the clustering results, we have chosen
to use the common F-measure evaluation criterion. It expresses the performance
of an anomaly detection method using the precision P and sensitivity R measures
where: P = TP

TP+FP and R = TP
TP+FN and TP , FP , TN , FN are respectively:

True Positive, False Positive, True Negative and False Negative.
To measure the performance of our approach, The F-measure is denoted by

F = 2 × P×R
P+R where F � 1 indicates a good performance and F � 0 means that

the method does not detect any anomaly in the data.

Table 1. Anomaly detection performance (F-measures) in different data sets with
different number of clusters.

Dbscan Hclust Kmeans

300 Log 0.39 0.63 0.87

32M Log 0.20 0.64 0.80

01M Log 0.5 0.7 0.94
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The original log files are composed of 15 clusters (k = 15). Using dbscan
only 9 clusters were formed, with 39% performance. These results are not only
due to misclassification of logs, but can also be explained by the particularity
of dbscan to not cluster logs that do not respect the density parameters. With
an f-score of 63% Hclust misclassified data and returned similar logs with only
minor differences. We observe the same thing for K-means, but with a much
higher performance (87%) (Fig. 5).

Cluster:
info broker master archive old log file
info broker master move old log file var-log-shinken shinken log to var-log-shinken-archives shinken log
info shinken poller master init connection scheduler master https tipasa tipasa ocre cea
info shinken poller master connection ok schedul schedul master
info receive master receive master stop workers
Cluster:
info crond root cmd usr-bin-test dev-lnet usr-sbin-lctl mark dev-null
cron info crond root cmd usr-bin-test dev-lnet usr-sbin-lctl mark dev-null
cron info crond root cmd usr-lib64-sa-sa
kern warning kernel
kern warning kernel lustre debug marker
Cluster:
api ni lnetstartuplndnis add lni
api ni lnetstartuplndnis add lni
lprocosc oscwractive activate ignore repeat request
lprocosc oscwractive activate ignore repeat request
ostosc ffffeaf communicate operation ostconnect failed

Fig. 5. Sample of clustering

Using a classic server to process the original dataset (32 million log lines)
which contains only six format families (k = 6). Clustering accuracy for K-
means is 80%, 20% for dbscan with heavy processing, and an intermediate score
of 64% for hclust. However, these results are accompanied with a great challenge
of scalability where execution time took a few minutes for K-means and many
hours for dbscan.

Anomaly Detection

To build normal and abnormal classes we followed the definition of anomalies
given above. The clustering performances on the training subset of 1 million logs
are presented in Table 1. Two global clusters were built manually, the normal
cluster contains 5 sub-clusters, and the abnormal one which contains mostly
error tags.

To detect anomalies, we extracted (test set) from normal and abnormal clus-
ters about 200 log lines (100 abnormal, 100 normal log lines). And then tried
to use the Euclidean distance from centroid to classify the test set. We did not
make any assumption or threshold about the normal or abnormal clusters, and
the detection process showed very satisfying results. A sample of the results is
presented in Fig. 6.

The dataset we used contains only few types of abnormal logs, which explains
the good clustering and detection performances. To evaluate the method more
efficiently, we would need more types of abnormal logs.
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Abnormal cluster :
err corosync totem marking ringid interface jobalt faulty
err corosync totem marking ringid interface jobalt faulty
err corosync totem marking ringid interface jobalt faulty
err corosync totem marking ringid interface jobalt faulty
err corosync totem marking ringid interface jobalt faulty
err corosync totem marking ringid interface jobalt faulty

Normal Cluster:
info stonith ng info stonith command processed stexecute lrmd
info stonith ng info stonith command processed stexecute lrmd
info stonith ng info log operation restofence curiel getting status ipmijo
info stonith ng info log operation restofence curiel getting status ipmijo
notice corosync totem automatically recovered ring
notice corosync totem automatically recovered ring
notice corosync totem retransmit list
notice corosync totem retransmit list
notice corosync totem retransmit list

Fig. 6. Sample of abnormal and normal cluster

5 Conclusion and Future Works

This work illustrates the ability to provide system administrators with a use-
ful vision of system logs. It significantly speeds up troubleshooting and failure
analysis by clustering heterogeneous logs. The efficiency of the technique, its
scalability, and the fact that it works on unlabelled data makes it particularly
appropriate for very large and constantly changing data centers such as HPC
facilities. The results are limited by the wealth of data, since we have hardly any
prior information about the data. Pre-processing is indeed an important phase
in such methods and we need to improve the new data representation in order to
use more sophisticated algorithms and techniques such as co-clustering or den-
sity methods. Abnormal logs detected can serve as a strong input to troubleshoot
and identify the root-cause of an anomaly.
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