
aGrUM: A Graphical Universal
Model Framework

Christophe Gonzales, Lionel Torti, and Pierre-Henri Wuillemin(B)

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, Paris, France
{christophe.gonzales,lionel.torti,pierre-henri.wuillemin}@lip6.fr

Abstract. This paper presents the aGrUM framework, a C++ library
providing state-of-the-art implementations of graphical models for deci-
sion making, including Bayesian Networks, Influence Diagrams, Credal
Networks, Probabilistic Relational Models. This is the result of an ongo-
ing effort to build an efficient and well maintained open source cross-
platform software, running on Linux, MacOS X and Windows, for deal-
ing with graphical models. The framework also contains a wrapper, pyA-
grum, for exploiting aGrUM within Python.

1 Introduction

The aGrUM project started eight years ago at the artificial intelligence and
decision department of University Pierre and Marie Curie (http://www.lip6.fr).
Developed by several contributors, in particular the authors of the present paper,
the project grew into an extensive open source graphical model framework. This
one includes the aGrUM C++ library, a Python wrapper and some applica-
tions, all running on Linux, MacOS and Windows (supported compilers include
g++, clang, mvsc, mingw). The framework is freely available at http://agrum.
org1. There also exists a dedicated website (http://agrum.org) for the python
wrapper: pyAgrum.

The goal of aGrUM is the development of an efficient, easy-to-use and well
maintained framework for dealing with graphical models for decision making
(e.g., Bayesian Networks, Influence Diagrams, etc.). The emphasis is set on high
standards for performance, code quality and usability. The aGrUM framework
is now used by academics and industrials around the world, both end-users and
algorithm designers. European projects DREAM, MIDAS and SCISSOR as well
as French ANR projects SKOOB, INCALIN, LARDONS and DESCRIBE also
exploit aGrUM. It is a placeholder for its authors’ research and more than
fifty papers published in international conferences and journals use aGrUM
for implementation and benchmarking. The framework’s name, aGrUM, stands
for “A GRaphical Universal Model” but let us be clear that aGrUM does not
provide a universal model but offers serveral puns in the French language.

1 The website also contains installation instructions, the library’s documentation and
support.

c© Springer International Publishing AG 2017
S. Benferhat et al. (Eds.): IEA/AIE 2017, Part II, LNAI 10351, pp. 171–177, 2017.
DOI: 10.1007/978-3-319-60045-1 20

http://www.lip6.fr
http://agrum.org
http://agrum.org
http://agrum.org


172 C. Gonzales et al.

2 AGrUM Features

The aGrUM C++ library is divided into seven modules, the majority of which
relate to different graphical models:

– BN: Bayesian Networks.
– Learning: Bayesian Network learning algorithms [2,5].
– CN: Credal Networks [3].
– FMDP: Factorized Markov Decision Processes [4].
– ID: Influence Diagrams.
– PRM: Probabilistic Relational Models [6].
– Core: common data structures and utilities.

The BN module provides flexible and efficient implementations of Bayesian
Networks. Those can be read from (and written to) files of different formats
(BIF, DSL, net, cnf, BIFXML, UAI). They can also be generated (randomly)
from several “generators” or learnt from data using the Learning module. The
aGrUM library allows users to define BNs using traditional Conditional Prob-
ability Tables (CPT), but also using Noisy OR or Noisy AND gates, Logit mod-
els, aggregators (and, or, max, min, exists, forall, etc.). In addition, for a high
level of efficiency, CPTs can be encoded using different representations (arrays,
sparse matrices, algebraic decision diagrams, etc.). Those are exploited in various
inference algorithms like Lazy Propagation, Shafer-Shenoy, Variable Elimination,
Gibbs sampling, etc., including relevant reasoning methods.

A specific module is provided for learning the structure and/or parameters
of BNs from datasets. Currently, those can be either CSV files or SQL data-
bases. Here again, the library has been designed in order to be as flexible as
possible and follows a component-based approach: structure learning algorithms
are a combination of a handler for reading the database, a score among (BD,
BDeu, K2, AIC, BIC/MDL) with, possibly, some additional a priori (smoothing
or Dirichlet), a component for scheduling local structure changes and a set of
constraints that the user wishes to be satisfied. The latter includes structural
constraints like requiring/forbidding arcs, limiting the indegrees and imposing
a partial ordering on the nodes. The learning algorithms currently implemented
using this framework are greedy hill climbing, local search with tabu list and K2.
BN parameters can also be learnt either by maximum likelihood or maximum
a posteriori. All the learning algorithms are highly parallelized thanks to the
OpenMP library.

Beside BNs, other graphical models have been implemented: Credal Net-
works (module CN), Factorized Markov Decision Processes (FMDP), Influence
Diagrams (ID) and Probabilistic Relational Models (PRM). These modules fol-
low the same philosophy as the BN module: high flexibility, inference efficiency,
extended file format support. For instance, all these models are shipped with
tailored inference algorithms, e.g., loopy propagation and Monte Carlo for CN,
SPUDD for FMDPs, Shafer-Shenoy for IDs.

All the aforementioned modules rely on the core module for their data struc-
tures and common algorithms. These include classical data structures like lists,



aGrUM: A Graphical Universal Model Framework 173

Fig. 1. Some Python notebooks using pyAgrum.

hashtables, AVL search trees, sets, heaps, etc., that have been implemented in
the library in such a way that they are both safe and particularly efficient. More
complex data structures and algorithms are provided, like graph definitions and
algorithms (including, e.g., a whole hierarchy of triangulations, notably incre-
mental ones) and the different flavors of multidimensional tables described in
the preceding page. The core of the aGrUM library also provides some tools



174 C. Gonzales et al.

used to make sure that aGrUM’s code satisfies the highest quality standards
and is memory leak free.

3 Extensions

Beside the aGrUM library, the aGrUM framework provides a wrapper for
Python: pyAgrum. It also implements the specific probabilistic graphical mod-
els (PGM) language O3PRM (http://O3PRM.lip6.fr).

3.1 PyAgrum

pyAgrum is a Python wrapper for the C++ aGrUM library. It provides a very
user friendly high-level interface for manipulating aGrUM’s graphical models
while keeping the high performance level of the C++ library. Within Python
Notebooks, pyAgrum can be easily used as a PGM graphical editor. Figure 1
shows such notebooks, illustrating, e.g., how BN structure learning and infer-
ences can be performed. Note that many computations’ outputs are provided
graphically in order to facilitate their analysis by the users. Other learning
libraries, such as Pandas (http://pandas.pydata.org), can also be used in con-
junction with pyAgrum’s models. The latter include Bayesian Networks, Credal
Networks and Influence Diagrams. All these features make pyAgrum a very ver-
satile and efficient PGM package. Tutorials, demos and downloading/installation
instructions can be found at http://agrum.org.

Figure 2 is taken from one of many examples provided with the pyAgrum note-
books (notebooks are available on pyAgrum website http://agrum.org). In this
example, we use pyAgrum to iterate over 100 probabilistic inferences to produce
these results. Without entering into details, the idea is to visualize the impact
of evidence over one variable on another. Here the x axis represents an increas-
ing belief that the MINV OLSET variable of the classical benchmark Bayesian
network Alarm equals NORMAL. The y axis indicates the posterior probability
of the V ENTALV variable given the evidence over MINV OLSET . Each curve
indicates the probability of a particular value of V ENTALV given the evidence
on MINV OLSET .

3.2 O3PRM

The aGrUM library contains a specific module named PRM for Probabilis-
tic Relational Models. They are a fully object-oriented extension of Bayesian
Networks, as specified in [7]: they implement the notions of classes, interfaces,
instances, attributes, reference slots, slot chains, systems, etc.. Their object-
oriented nature greatly reduces the maintenance and creation costs of complex
systems with many repeated subcomponents. Highly efficient inference engines
like structured variable elimination (SVE) or SVE with relevant reasoning are
provided in the module. A bridge with the BN module exists that enables ground-
ing PRMs into BNs, thereby allowing the exploitation of all the available BN-
related algorithms of aGrUM. Finally, a domain specific language O3PRM
has been developed to enable users to easily create PRMs.

http://O3PRM.lip6.fr
http://pandas.pydata.org
http://agrum.org
http://agrum.org


aGrUM: A Graphical Universal Model Framework 175

Fig. 2. pyAgrum in action: sensibility analysis

4 Towards aGrUM 1.0

aGrUM is under active development and, even if many of its features are robust
and well designed, aGrUM is still missing some fundamental algorithms and
useful features that we strive to implement.

Regarding approximate probabilistic inference, we wish to add various Belief
Propagation algorithms. For exact inference, we still have to parallelize and
further optimize our inference engines. With these additions, aGrUM will offer a
wide variety of optimized probabilistic inference algorithms, making it a complete
framework for probabilistic inference.

We plan to add the Expectation-Maximization (EM) algorithm and its struc-
tural counterpart SEM into aGrUM’s learning module. The EM algorithm is
widely used in machine learning for finding maximum likelihood or maximum a
posteriori estimates of parameters. In conjunction with the learning algorithms
already implemented in aGrUM, the framework will offer a broad range of meth-
ods for learning Bayesian Networks and other graphical models.

We also plan to add into aGrUM mixed discrete/continuous extensions of
Bayesian networks, including, e.g., that proposed in [1], and to provide efficient
learning and inference algorithms for these models.



176 C. Gonzales et al.

Algorithms are not the only way we wish to improve aGrUM for a first stable
version. Indeed, documentation and tutorials are as important as algorithms for
spreading aGrUM’s use. Even if we try to provide the most complete and up-
to-date documentation, we still feel that its readability and examples can be
improved.

As for all open source projects, aGrUM’s community is very important to
us and we hope to convince more people from various scientific communities to
adopt aGrUM and pyAgrum as their main tool for modeling graphical models. To
achieve this goal we are putting a lot of efforts in making aGrUM and pyAgrum
easier to use: distributing PyPi and conda packages, porting aGrUM to Win-
dows, talking about aGrUM in various conferences. Another important change
for aGrUM is its open source license. Currently, aGrUM is distributed under
GPL2.0, which can forbid its use due to the contaminant nature of GPL2.0. We
plan to switch to LGPL or another integration friendly open source license.

We hope to release version 1.0 of aGrUM in 2017. Afterwards, we plan to
improve aGrUM’s performance with integration of GPU support and memory
optimization. We also plan to test aGrUM against other open source framework
with the goal to provide the most performing graphical model framework in the
open source community.

5 Conclusion

This paper has presented aGrUM, a powerful framework for manipulating
graphical models for decision making. It is designed to be flexible, well main-
tained and highly efficient. The core of the framework is the C++ aGrUM
library but wrappers like pyAgrum enable users to exploit aGrUM within
high level and easy-to-use programming languages like Python.

The development of the aGrUM framework has not only been stimulated by
academic research, it is also the result of different industrial collaborations. For
instance, aGrUM’s O3PRMs are exploited in ongoing projects with EDF (the
French national electricity provider) on risk management in nuclear power plants
and with IBM on the exploitation of probabilities in rule-based expert systems.
The BN learning module is exploited in projects with IRSN, the French Institute
for Nuclear Safety, for nuclear incident scenario reconstruction. Other projects
with Airbus Research and the Open Turns project use aGrUM for structural
learning in copules with continuous variables.

References

1. Cortijo, S., Gonzales, C.: Bayesian networks with conditional truncated densities.
In: Florida Artificial Intelligence Research Society Conference (FLAIRS 2016), pp.
656–661 (2016)

2. Gonzales, C., Dubuisson, S., Manfredotti, C.E.: A new algorithm for learning non-
stationary dynamic Bayesian networks with application to event detection. In:
Florida Artificial Intelligence Research Society Conference (FLAIRS 2015), pp. 564–
569 (2015)



aGrUM: A Graphical Universal Model Framework 177

3. Hourbracq, M., Baudrit, C., Wuillemin, P.H., Destercke, S.: Dynamic credal net-
works: introduction and use in robustness analysis. In: International Symposium
on Imprecise Probability: Theories and Applications (ISIPTA 2013), pp. 159–169
(2013)

4. Magnan, J.: Représentations graphiques de fonctions et processus décisionnels
Markoviens factorisés. Ph.D. thesis, University Pierre and Marie Curie, Paris, France
(2016)

5. Magnan, J.C., Wuillemin, P.H.: Efficient incremental planning and learning with
multi-valued decision diagrams. J. Appl. Logic 22, 63–90 (2016)

6. Torti, L.: Structured probabilistic inference in object-oriented probabilistic graphical
models. Ph.D. thesis, University Pierre and Marie Curie, Paris, France (2012)

7. Torti, L., Wuillemin, P.H., Gonzales, C.: Reinforcing the object-oriented aspect of
probabilistic relational models. In: Workshop on Probabilistic Graphical Models
(PGM 2010), pp. 273–280 (2010)


	aGrUM: A Graphical Universal Model Framework
	1 Introduction
	2 AGrUM Features
	3 Extensions
	3.1 PyAgrum
	3.2 O3PRM

	4 Towards aGrUM 1.0
	5 Conclusion
	References


