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Abstract. In this paper we present an agent-based model (ABM) of
scientific inquiry aimed at investigating how different social networks
impact the efficiency of scientists in acquiring knowledge. As such, the
ABM is a computational tool for tackling issues in the domain of scientific
methodology and science policy. In contrast to existing ABMs of science,
our model aims to represent the argumentative dynamics that underlies
scientific practice. To this end we employ abstract argumentation theory
as the core design feature of the model.

1 Introduction

In this paper we present an agent-based model (ABM) as a computational tool
for tackling issues in the domain of scientific methodology and science policy,
which concern social aspects of scientific inquiry.1 In contrast to most other
ABMs of science (e.g. [2,8–11]), our model is based on the idea that an essential
component of scientific inquiry is an argumentative dynamics between scientists.
To this end, we employ abstract argumentation frameworks as one of the design
features of our ABM (previously shown fruitful for the modeling of scientific
debates in [7] and employed in an ABM of social behavior in [4]). The model
is designed to investigate how different social networks impact the efficiency of
scientists in discovering the best of the pursued scientific theories.

2 The Model

The aim of our ABM is to represent scientists engaged in an inquiry with the
goal of finding the best of the given rivaling theories, where they occasionally
exchange arguments with other scientists, pro or con the given pursued theories.
We tackle the question, which structure of the information flow leads scientists
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to most efficiently discover the best theory, where efficiency is measured in terms
of their success and the time they need to complete their exploration.2

Agents, representing scientists, move along an argumentative landscape. The
argumentative landscape, which represents rivaling theories in a given scientific
domain, is based on a dynamic abstract argumentation framework.

Similarly to Dung’s abstract argumentation framework (AF) [3], the frame-
work underlying our model consists of a set of arguments A and an attack relation
� over A. In addition to attacking each other, arguments may also be connected
by a discovery relation ↪→. The latter represents the path which scientists have
to take in order to discover different parts of the given theory.

An argumentative landscape is given by a triple 〈A,�, ↪→〉 where A =
〈A1, . . . ,Am〉 is partitioned in m many theories Ti = 〈Ai, ai, ↪→〉 which are trees
with ai ∈ Ai as a root and

� ⊆
⋃

1≤i,j≤m
i�=j

(Ai × Aj) and ↪→ ⊆
⋃

1≤i≤m

(Ai × Ai).

Given the abstract nature of arguments, we interpret them as hypotheses
which scientists investigate, occasionally encountering defeating evidence, repre-
sented by attacks from other arguments, and then attempting to find defending
arguments for the attacked hypothesis.

The model is round-based. Each round (≈ a research day) agents perform one
of the following actions: 1a. Explore a single argument a. This way they gradually
discover possible attacks (on a and from a to an argument from another theory)
as well as neighboring arguments via the discovery relation. 1b. Alternatively, if
probabilistically triggered, move to a neighboring argument along the discovery
relation. 2. Move to an argument of a rivaling theory. In order to decide whether
to work on the current theory (1a, 1b) or to move to another one (2), every
five rounds (≈ a research week) agents assess the degree of defensibility of the
theories. A theory has degree of defensibility n if it has n defended arguments
where an argument a is defended in the theory if each attacker b from another
theory is itself attacked by some argument c in the current theory. Agents always
prefer the most defensible theory.

An agent discovers the argumentative landscape by investigating arguments
or by means of exchanging information about the landscape with other agents,
connected by so-called social networks. We distinguish between two types of
social networks. First, our agents are divided into collaborative networks that
consist of up to five individuals who start from the same theory root. While
each agent gathers information on her own, every five steps this information is
shared with all other agents forming the same collaborative network.

Second, besides sharing information with agents from the same net-
work, every five steps each agent shares information with agents from other

2 The source code is available at https://github.com/g4v4g4i/ArgABM/tree/
AppArg2017.
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collaborative networks with a given probability of information sharing.3 This
way the agents form ad-hoc and random communal networks with agents from
other collaborations. A higher probability of information sharing leads to a higher
degree of interaction among agents.

Finally, we represent reliable and deceptive scientists. Reliable agents share
all the information they have gathered during their exploration of the current
theory, while deceptive agents don’t share the information regarding the discov-
ered attacks on their current theory. Hence, deceptive agents only provide some
information while they withhold other. In this way they lead the receiver to a
wrong inference [1].

Agents share information in a unidirectional or a bidirectional way (with a
50/50 chance). Moreover, our model takes into account the fact that receiving
information is time costly.

3 The Main Findings

We have run the simulation 100 times with 10, 20, 30, 40, 70 and 100 agents by
varying: the probability of information sharing (namely: 0.3; 0.5; 1.0); reliable
and deceptive agents. The landscape consists of 3 theories, only one of which has
the maximum degree of defensibility, representing the objectively best theory.4

The program runs until each agent is on a fully explored theory. In order to
assess the efficiency of agents, we have defined their success similarly to other
ABMs of science, e.g. in [10,11]: a run is considered successful if, at the end of
the run, all agents have converged onto the objectively best theory.

In what follows we present the most significant results of our simulations.

Information sharing. For smaller groups of reliable agents (up to 20) the
impact of information sharing is rather small (Fig. 1a). From 30 agents on, we
observe a positive impact of an increase in information sharing on the successful
convergence, with no negative effect on time steps needed (Fig. 1b). While for
smaller groups of deceptive agents a higher degree of information sharing has a
relatively small impact, we notice positive effects in cases of larger communities,
without slowdowns.

Reliable vs. deceptive agents. If we compare groups with same degrees of
information sharing, reliable agents tend to be more successful than the deceptive
ones, while being equally fast (and only sometimes being slightly slower).

Size of the scientific community. Larger populations of 70 and 100 agents are
outperformed by smaller populations (with an optimum around 20 and 30). A
possible explanation is that with larger sized populations information circulates
less among research groups, which may prevent them from converging.
3 While agents share their full subjective knowledge within their collaborative net-

works, the information which they share with agents from other networks concerns
recently obtained knowledge of the theory which they are currently exploring.

4 Each theory is modeled as a (discovery-)tree of depth 3, where each argument (except
for the final leaves) has 4 child-arguments (altogether 85 arguments).
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Fig. 1. (a) Success (b) Time needed

Our finding that increased communication tends to be epistemically beneficial
(or at least, not epistemically harmful) undermines the robustness of conclusions
drawn from ABMs in [5,6,10,11], under different modeling choices.
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