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Abstract. In this paper, we investigate the problem of estimating multi-
ple quantiles when samples are received online (data stream). We assume
that we are dealing with a dynamical system, i.e. the distribution of
the samples from the data stream changes with time. A major challenge
arises when simultaneously maintaining multiple quantile estimates using
incremental type of estimators. In fact, a naive implementation where
multiple incremental quantile estimators are updated in isolation might
lead to violation monotone property of quantiles, i.e., an estimate of
a lower target quantile might erroneously overpass that of a higher one.
Surprisingly, the related work on countering those violations is extremely
sparse [1,3] and almost absent.

Our work tries to fill this literature gap by proposing two solutions to
the problem that build on the deterministic update based multiplicative
incremental quantile estimator (DUMIQE) recently proposed by Yazidi
and Hammer [5], which was shown to be the most efficient incremental
quantile estimator in the literature.

Experimental results show that the modified DUMIQE methods per-
form very well and have a superior performance to the DUMIQE. More-
over, our proposed methods satisfy the monotone property of quantiles.
The methods outperform the state of the art multiple incremental quan-
tile estimator of Cao et al. [1,3].

1 Introduction

Quantiles are key indicators for monitoring the performance of a system in an
online fashion. For instance, system administrators are interested in monitoring
the 95% response time of a web-server so that to hold it under a certain threshold.
Quantile tracking is also useful for detecting abnormal events and in intrusion
detection systems in general.

In the context of large data streams, quantile estimators have a major com-
putational and memory complexity disadvantage as even linear computational
complexity is not affordable. Several algorithms have been proposed to deal with
this challenges.

The most efficient and lightweight quantile estimator reported in the lit-
erature are the so-called incremental estimators [2,4]. An incremental quantile
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estimator by definition resorts to only the last data sample in order to update the
current estimate. The informed reader will observe that the exponential moving
average is a type of incremental estimator but rather for the average and not
the quantile where the current estimate is a weighted average of the old estimate
and the last observation.

From a practical point of view it is often useful to estimate many quantiles of
the dynamic data stream. A simple approach is to estimate the different quantiles
independent of each other by running incremental estimators in parallel, one for
each quantile to be estimated. Unfortunately, such an approach often leads to
unrealistic estimates as the monotone property of quantiles might be violated,
e.g. that the estimate of a lower quantile can at some time instants overpasses the
estimate of a higher quantile. As a way of illustration, we know that 50% quantile
can not overpass 70% quantile due to the monotone property of the cumulative
distribution and consequently the respective estimates of both quantities should
maintain this monotone property too.

Please note that the latter major disadvantage is inherent in any incremental
quantile estimator without exception since, by design, they do not enforce the
monotone property.

To the best of our knowledge, Cao et al. [3] is the only solution found in
the literature. The main idea is to rather resort to linear interpolation to yield
an increasing approximate of the cumulative function. Consequently, updated
quantile estimates are obtained from the approximate cumulative distribution.
Unfortunately, such operation is usually expensive.

In this paper, we tackle the problem of estimating multiple quantiles from
a dynamically changing data stream. To achieve this, we extend the DUMIQE
method proposed by Yazidi and Hammer [5]. The choice of DUMIQE method
as a core for our current work is deliberate since it was shown to be the most
performant method in the literature. In this paper, we thus focus on extending
the DUMIQE method in order to accommodate the case of tracking multiple
quantiles. DUMIQE presents an efficient extension of randomized update based
multiplicative incremental quantile estimator (RUMIQE) proposed in [6].

It is worth mentioning that the algorithms presented in this paper are not lim-
ited to the incremental quantile estimator developed in [5] and their essence can
be easily transferred and generalized for other types of incremental estimators.

The reminder of the article is organized as follows. In Sect. 2, we present
two different algorithms for designing parallel incremental quantile estimates
satisfying the monotone property. Section 3 presents some thorough experimental
results where we catalogue the performance of the two proposed algorithms and
compare them to the state-of-art. Section 4 concludes the article.

2 Estimation of Multiple Quantiles

Let Xn denote a stochastic variable denoting the possible outcomes from the data
stream at time n and let xn denote a random sample of Xn. We assume that
Xn is distributed according to some distribution fn(x) that varies dynamically
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with time n. Further let Qn(q) denote the quantile associated with probability
q at time n, i.e. Qn(q) = FX(q) = P (Xn ≤ q).

In this paper we focus on simultaneously estimating the quantiles for K
different probabilities q1, q2, . . . , qK at each time step. We assume an increasing
order of the probabilities, i.e. q1 < q2 < · · · < qK . The straight forward approach
to estimate the quantiles would be to simply run DUMIQE (or some other online
estimation procedure) for every target quantile

̂Qn+1(qk) ← (1 + λqk) ̂Qn(qk) if ̂Qn(qk) < xn

̂Qn+1(qk) ← (1 − λ(1 − qk)) ̂Qn(qk) if ̂Qn(qk) ≥ xn

(1)

for k = 1, 2, . . . ,K. Unfortunately, this may lead to a violation of the monotone
property of quantiles, i.e. we may not satisfy

̂Qn+1(q1) ≤ ̂Qn+1(q2) ≤ . . . ≤ ̂Qn+1(qK) (2)

In order to further shed the light on the eventuality of violating the monotone
property, we provide a simple example. Assume at time n that the monotone
property is satisfied and that the sample xn gets a value between ̂Qn(qk) and
̂Qn(qk+1), i.e.

̂Qn(q1) ≤ · · · ≤ ̂Qn(qk) < xn < ̂Qn(qk+1) ≤ · · · ≤ ̂Qn(qK) (3)

Then according to (1) the estimates are updated as follows

̂Qn+1(qj) ← (1 + λqj) ̂Qn(qj) for j = 1, 2, . . . , k

̂Qn+1(qj) ← (1 − λ(1 − qj)) ̂Qn(qj) for j = k + 1, . . . ,K
(4)

which means that the estimates are increased for the quantiles with an estimate
below xn and decreased for the estimates above xn. Consequently, the monotone
property may be violated in this case. Next we present present two modifications
of the DUMIQE such that the monotone property will be satisfied.

2.1 Sorting Based Approach

The first approach we propose in this paper is simple and intuitive. It is based
on sorting the quantile estimates. Every time we receive a new sample xn the
procedure consists of the three following steps:

1. Update the quantile estimates according to (1) and get the estimates
̂Qn+1(qk), k = 1, 2, . . . ,K

2. Sort the updated estimates and denote them ˜Qn+1(qk), k = 1, 2, . . . ,K. The
estimates after sorting naturally will satisfy the monotone property, but will
also contain less (or equal) estimation error than the original estimates. In
other words, this is a win-win solution, but at the computational cost of
sorting the quantiles, O(K log(K)).
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3. We have two alternatives for update at the subsequent time instant n + 1.
Upon receiving the sample (xn+1), we may update according to Eq. (1) using
(a) the estimates from before the sorting, i.e. ̂Qn+1(qk), k = 1, 2, . . . ,K

(b) or the estimates after the sorting, i.e. ˜Qn+1(qk), k = 1, 2, . . . ,K

Alternative (a) means that we do not feed the information from the sorting back
into the estimation process, while in (b) we do. Using alternative (a) means that
we only use sorting to “repair” the estimates from the original estimation process
based on Eq. (1). The overall computational complexity of this approach thus is
O(K log(K)) in every iteration.

2.2 Adjusting the Size λ

The next strategy is based on reducing the value of λ in a given iteration if
the updates result in monotone property violation. Assume that we are in the
situation where the sample xn gets a value between ̂Qn(qk) and ̂Qn(qk+1) as given
by (3). The first observation is that after the update, the monotone property
always will be satisfied on each side of xn, i.e.

̂Qn+1(q1) ≤ ̂Qn+1(q2) ≤ · · · ≤ ̂Qn+1(qk) and

̂Qn+1(qk+1) ≤ ̂Qn+1(qk+2) ≤ · · · ≤ ̂Qn+1(qK)

This follows from Eq. (4). Therefore a sufficient criterion to satisfy the monotone
property is to make sure to use a sufficiently small λ such that permits to satisfy
the following inequality: ̂Qn+1(qk) ≤ ̂Qn+1(qk+1). We derive such a λ, denoted
˜λ, by making sure that the distance between ̂Qn+1(qk) and ̂Qn+1(qk+1) is some
portion, α, of the distance from the previous iteration, i.e.

̂Qn+1(qk+1) − ̂Qn+1(qk) = α
(

̂Qn(qk+1) − ̂Qn(qk)
)

(1 − ˜λ(1 − qk+1)) ̂Qn(qk+1) − (1 + ˜λqk) ̂Qn(qk) = α
(

̂Qn(qk+1) − ̂Qn(qk)
) (5)

with α ∈ [0, 1). Solving (5) with respect to ˜λ we get

˜λ = (1 − α)
̂Qn(qk+1) − ̂Qn(qk)

(1 − qk+1) ̂Qn(qk+1) + qk ̂Qn(qk)

= (1 − α)H
(

̂Qn(qk), ̂Qn(qk+1)
)

(6)

We substitute λ with ˜λ in (1) if using the originally chosen λ results into the
violation of the monotone property. We then obtain the following updates



206 H.L. Hammer and A. Yazidi

̂Qn+1(qk) ← (1 + λqk) ̂Qn(qk) if ̂Qn(qk) < xn ∩ ̂Qn(qk+1) < xn (7)

̂Qn+1(qk) ← (1 + λqk) ̂Qn(qk)

if ̂Qn(qk) < xn ∩ ̂Qn(qk+1) ≥ xn ∩ λ < H
(

̂Qn(qk), ̂Qn(qk+1)
) (8)

̂Qn+1(qk) ←
(

1 + (1 − α)H
(

̂Qn(qk), ̂Qn(qk+1)
)

qk

)

̂Qn(qk)

if ̂Qn(qk) < xn ∩ ̂Qn(qk+1) ≥ xn ∩ λ > H
(

̂Qn(qk), ̂Qn(qk+1)
) (9)

̂Qn+1(qk) ← (1 − λ(1 − qk)) ̂Qn(qk) if ̂Qn(qk) ≥ xn ∩ ̂Qn(qk−1) ≥ xn (10)

̂Qn+1(qk) ← (1 − λ(1 − qk)) ̂Qn(qk)

if ̂Qn(qk) ≥ xn ∩ ̂Qn(qk−1) < xn ∩ λ < H
(

̂Qn(qk−1), ̂Qn(qk)
) (11)

̂Qn+1(qk) ←
(

1 − (1 − α)H
(

̂Qn(qk−1), ̂Qn(qk)
)

(1 − qk)
)

̂Qn(qk)

if ̂Qn(qk) ≥ xn ∩ ̂Qn(qk−1) < xn ∩ λ > H
(

̂Qn(qk−1), ̂Qn(qk)
) (12)

for k = 2, . . . , K − 1. The special cases for k = 1 and k = K are shown below.
Equation (7) shows the case when xn takes a value above ̂Qn(qk+1) and therefore
is no risk of violation of the monotone property. The update therefore is as
in (1). Equation (8) shows the case when xn takes a value between ̂Qn(qk−1)
and ̂Qn(qk) and we may potentially get a monotone violation. But since λ <

H
(

̂Qn(qk), ̂Qn(qk+1)
)

we are able to maintain the monotone property using
λ. Thus, this update is also as in (1). Equation (9) shows the case when xn

takes a value between ̂Qn(qk−1) and ̂Qn(qk) and λ > H
(

̂Qn(qk), ̂Qn(qk+1)
)

and

therefore we get a monotone violation using λ and we need to use ˜λ from (6)
instead of λ in this update. Equations (10) to (12) show the similar updates
when xn takes a value below ̂Qn(qk+1).

For the smallest and largest quantile estimates, we only get potential
monotone violations upwards and downwards, respectively, resulting in the fol-
lowing updates

̂Qn+1(q1) ← (1 + λq1) ̂Qn(q1) if ̂Qn(q1) < xn ∩ ̂Qn(q2) < xn (13)

̂Qn+1(q1) ← (1 + λq1) ̂Qn(q1)

if ̂Qn(q1) < xn ∩ ̂Qn(q2) ≥ xn ∩ λ < H
(

̂Qn(q1), ̂Qn(q2)
) (14)

̂Qn+1(q1) ←
(

1 + (1 − α)H
(

̂Qn(q1), ̂Qn(q2)
)

q1

)

̂Qn(q1)

if ̂Qn(q1) < xn ∩ ̂Qn(q2) ≥ xn ∩ λ > H
(

̂Qn(q1), ̂Qn(q2)
) (15)

̂Qn+1(q1) ← (1 − λ(1 − q1)) ̂Qn(q1) if ̂Qn(q1) ≥ xn (16)
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and

̂Qn+1(qK) ← (1 + λqK) ̂Qn(qK) if ̂Qn(qK) < xn (17)

̂Qn+1(qK) ← (1 − λ(1 − qK)) ̂Qn(qK) if ̂Qn(qK) ≥ xn ∩ ̂Qn(qK−1) ≥ xn (18)

̂Qn+1(qK) ← (1 − λ(1 − qK)) ̂Qn(qK)

if ̂Qn(qK) ≥ xn ∩ ̂Qn(qK−1) < xn ∩ λ < H
(

̂Qn(qK−1), ̂Qn(qK)
) (19)

̂Qn+1(qK) ←
(

1 − (1 − α)H
(

̂Qn(qK−1), ̂Qn(qK)
)

(1 − qK)
)

̂Qn(qK)

if ̂Qn(qK) ≥ xn ∩ ̂Qn(qK−1) < xn ∩ λ > H
(

̂Qn(qK−1), ̂Qn(qK)
) (20)

By estimating all the quantiles using the rules in (7)–(12), we ensure that the
monotone property in (2) is satisfied in every iteration n = 1, 2, 3, . . ..

The most expensive part of this algorithm is to find the k in (3) that can be
computed in O(log(K)) operations which is less expensive than updating every
quantile ,i.e, O(K). The overall computational complexity of this approach thus
is O(K) in every iteration.

3 Experiments

It is possible to prove that the DUMIQE approach in (1) converges to the true
quantiles [5]. Unfortunately, it is hard (or impossible) to prove convergence for
the methods described above. As described above the running estimation process
is then simply the DUMIQE in (1). Since the theoretical proofs of the methods
above are intrinsically hard, we instead resort to simulations to document the
effectiveness of the approaches.

The experiments focus on the methods ability to track quantile estimates
when the distribution of the data stream changes with time. We consider the
two different cases were we assume that the data correspond to outcomes from
a normal distribution. Furthermore, we assume that the expectation of the dis-
tribution varies with time

μn = a sin
(

2π

T
n

)

, n = 1, 2, 3, . . .

which is the sinus function with period T . Moreover, we assume that the standard
deviation of the distribution do not vary with time but is equal to one.

Now, we turn to conducting a thorough analysis of how well the proposed
methods in Sect. 2 estimate quantiles of data streams. We estimated quantiles
of both the normally and χ2 distributed data streams above using two different
periods, namely T = 800 (rapid variation) and T = 8000 (slow variation), i.e.
in total four different data streams. In addition, for each of the four data streams
we estimated quantiles that were centered around the median or in the tail of
the distribution, i.e. eight different cases. We chose the quantiles close enough
to get a fair amount of monotone property violations. Naturally, if we choose
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the quantiles far from each other we will rarely or never get any violations. In
greater details, we estimated to following quantiles for the different cases.

– For the normal distribution and the quantiles around the median, we esti-
mated the quantiles related to the following probabilities qk = Φ(−0.8 +
0.2(k − 1)), k = 1, 2, . . . , 9 where Φ(·) refers to the cumulative distribution
function of the standard normal distribution. Recall that in dynamical sys-
tems, as in these experiments, the value of a quantile related to a specific
probability varies with time.

– For the normal distribution and the quantiles in the tail of the distribution,
we use qk = Φ(0.8 + 0.2(k − 1)), k = 1, 2, . . . , 9.

The probabilities related to quantiles in the median and around the tail of the
distribution are centered around the probabilities 0.5 and 0.95, respectively. The
choices above resulted in a monotone property violation in about every third
iteration using a typical value λ = 0.05 in (1).

To measure estimation error, we use the average of the root mean squares
error (RMSE) for each quantile

RMSE =
1
K

K
∑

k=1

√

√

√

√

1
N

N
∑

n=1

(

Qn(qk) − ̂Qn(qk)
)2

where N is the total number of samples in the data stream. We investigate the
estimation error for a large set of different values of the parameter λ. In the
experiments we used N = 107 which efficiently removed any Monte Carlo errors
in the experimental results.

The results for the normal are shown in Fig. 1. In the figure the abbreviations
SORT, PREV refer to the estimation approaches presented in Sects. 2.1 and 2.2.
For the sorting based approach in Sect. 2.1, bring = TRUE means that we fed
the sorted quantiles back into the estimation procedure were fed back in to the
estimation procedure. DUMIQE refers to updating the quantiles using (1) and
ignoring that the monotone property may get violated.

For all the estimation methods, we observe that the estimation error increases
when the period decreases or when estimating further into the tail of the dis-
tribution. It seems also that feeding the updated estimates ˜Qn(qk) back into
the estimation process further improves the estimation compared to not feeding
them in. For the approach based on adjusting the size of λ in Sect. 2.2, it seems
like using α = 0.5 (making small updates) performs poor in all the experiments.
Using α = 0 we update as much as possible without violating the monotone prop-
erty and performs about equally well to sorting the quantiles (Sect. 2.1). For the
sorting approach, whether feeding the sorted estimates back in the estimation
process or not has minimal effect on the estimation. An interesting observation
is that almost all the approaches perform better than updating DUMIQE in
isolation, i.e., without enforcing the monotone property. In other words, we are
able to both satisfy the monotone property and improve estimation precision
with a minimal extra computational costs.
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Fig. 1. Estimation error for data from the normal distribution.

Table 1. Estimation error using the method in Cao et al. (2009) [3].

T = 800, Median T = 800, Tail T = 8000, Median T = 8000, Tail

Normal distribution 0.312 0.630 0.259 0.370

T = 800, Median T = 800, Tail T = 8000, Median T = 8000, Tail

χ2 distribution 0.79 2.40 0.445 1.611

For comparison we also tested the method in [3] for the eight estimation tasks
described above. The latter method is the only method we have found in the
literature that attempts to estimate multiple quantiles in a dynamical system.
The method have two tuning parameters, a weight parameter similar to λ in
the methods in this paper, and a parameter that controls the width of intervals
to estimate the distribution of the data stream around a quantile. To achieve
as good results as possible we ran the method for a large set of values for the
two parameters. The best estimation results are shown in Table 1. We remark
that for the normal distribution and T = 800 Cao et al. performs well. For the
normal distribution and T = 8000, the methods in this paper outperforms Cao
et al. (2009) [3]. For all the cases related to the χ2 distribution, the methods in
this paper outperforms Cao et al. (2009) [3] with a clear margin. Not only does
the methods in this paper outperform Cao et al. (2009) [3], they are also far
simpler to implement and only contain only one tuning parameters which makes
it easier to tune the method to perform well. The experiments also showed that
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the methods in this paper are less sensitive to the choice of the tuning parameter
compared to Cao et al. (2009) [3].

4 Closing Remarks

In this paper, we have devised two methods that incrementally estimate multiple
quantiles from a dynamic data stream while enjoying the ability to maintain
the monotone property of the quantiles. Surprisingly, the work on this type of
incremental quantile estimators is very sparse. The first proposed method is
simple and is based on sorting the quantiles whenever the monotone property is
violated. The second method suggests to adjust in a online manner the value of
the parameter λ to ensure that the monotone property is never violated.

The results show that the suggested methods perform very well in estimating
multiple quantiles. Most of the methods outperform the DUMIQE and at the
same time satisfy the monotone property of quantiles. The method of adjust-
ing the value of λ (Sect. 2.2) is of the same order of computational complexity
as DUMIQE. In other words, we are able to both satisfy the monotone prop-
erty and improve estimation precision at the cost of a minimal increase of the
computational cost.

A research avenue worth investigating in the future is to deploy multiple
parallel quantile estimators in order to improve the accuracy of tracking a single
quantile estimate.
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